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1 Introduction

Systems that are able to automatically adapt their behavior in cases of faults
have always been very much appealing for research and practice. Because of
the increasing importance of applications like autonomous vehicles, the internet
of things (IoT), or industry 4.0 dealing with increased autonomy, self-adaptation
increases importance as well. For example, consider a truly autonomous vehicle
transporting passengers from one location to another. If there is a system fault
occurring during operation, there is no human driver working as fallback mechanism
for assuring that the vehicle goes to a safe state, e.g., driving to an emergency lane
of a highway and stopping there. In case of autonomous driving the system itself is
responsible for any action after detecting a failure. This is one of the most significant
differences to ordinary cars even if they have implemented automated functions like
lane assist.

It is also worth noting that in many situations coming to a safe state is not that
simple even for today’s cars. For example, an emergency break as consequence of
a fault in the control system of the car’s engine might cause an accident if this is
done on a high way with another car behind. Or another example is stopping a
car in a tunnel without an emergency lane. Therefore, a car that is not moving is
not necessarily in a safe state. As a consequence faults during operation should be
handled in a smart way either via compensating or repairing faults during operation
requiring self-adaptive systems. Of course it is worth mentioning that such a self-
adaptive behavior does not allow to compromise safety. According to the IEEE
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Systems and Software Engineering Vocabulary [29] fail-safe refers to a system or
component that automatically places itself in a safe operating mode in the event of
a failure.

Self-adaptive systems that assure fail-safe behavior in the context of autonomous
vehicles are also often referred to fail-operational system, i.e., system that still
remain operational even in case of faults. In order to implement fail-operational
behavior we have to use methods that assure also the behavior to be fail-safe. We
need methods that can be proven to work as expected never compromising safety.
We therefore discuss methods relying on model-based reasoning in this chapter,
because such methods guarantee to deliver all results that fulfill all properties
specified in models. What remains is to prove that the models capture the important
parts of the system and also its properties like safety.

The idea of using models for various purposes like diagnosis is not new and
dates back to the early 1980s of the last century (see, for example, [11]). Model-
based reasoning is characterized of using models directly to implement certain
tasks without requiring to reformulate available knowledge. In case of diagnosis,
the model is used to derive the expected behavior that can be compared with
observations. If we see a deviation between the expected behavior and the observed
one, model-based reasoning utilizes the model to identify the root cause of the
detected misbehavior. The basic principles behind model-based reasoning are still
very suitable for today’s challenges like autonomous systems and driving. If a
model is appropriately capturing its corresponding system, then all conclusions
drawn from the model are reasonable and also appropriate. Therefore, valida-
tion and verification can focus on the model once the reasoning algorithms are
tested.

In this chapter we discuss the basic principles of model-based reasoning includ-
ing algorithms. We do not only focus on one available technique that makes use
of models formalizing the correct behavior of components, but also abductive
diagnosis where we use fault models for obtaining root causes in a similar way than
medical doctors do when reasoning from observed symptoms back to hypotheses. In
addition, we outline an approach for online repair of systems interacting with their
environment using sensors and actuators. We discuss how to integrate diagnosis
with repair and also the different types of repair. For the latter, we make use of
a running example from the autonomous robotics domain. It is worth noting that
the purpose of the chapter is mainly to give an overview of model-based reasoning
for self-adaptive systems. Therefore, we also discuss related research and previous
work that has been published.

This chapter is organized as follows: We first introduce the application domain
of autonomous mobile robots in Sect. 2. Afterwards, in Sect. 3 we introduce
the basic concepts of model-based reasoning including model-based diagnosis
and abductive diagnosis. In Sect. 4 we discuss issues of modeling for model-
based reasoning, followed by Sect. 5 where we introduce the basic architectures
behind a self-adaptive system. There we make use of three examples outlining
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the different repair actions necessary to bring the system back into an operational
state. Finally, we discuss related literature in Sect. 6 and conclude the chapter
in Sect. 7.

2 Example

In this section, we introduce the example of a mobile robot having a differential
drive for moving from one point in a plain to another. We will use this example in
our chapter for introducing the basic concepts behind model-based reasoning and
in an extended form for showing how self-adaptive behavior can be implemented
using models of the system directly.

A differential drive comprises two wheels with varying speed. Depending on the
speed of the wheels the robot either rotates, moves on a straight line, or on a curve.
In the following, we discuss a kinematics model of a mobile robot with a differential
drive. For more details we refer the interested reader to [17]. In Fig. 1 we show the
underlying ingredients. We assume that the robot is at its current position (xR, yR)

heading in a direction specified by the angle θ from the x-axis. We further assume
that the distance between the wheels is d. Depending on the speed of the right or
left wheel vR , vL, respectively, the robot rotates about its instantaneous center of
curvature (ICC) with a rotational speed ω. The ICC lies on a straight line between
the axis of the wheels and its distance from the center of the robot (lying on the
same line) is R.

Obviously, there must be a relationship between ω and the speed of the wheels
because both wheels are on the same line connected with ICC and thus have to have
the same rotational speed. We are able to formalize this relationship as follows:

ω(R + d/2) = vR

ω(R − d/2) = vL
(1)

Fig. 1 Mobile robot with
differential drive
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From Eq. (1) we are able to obtain R and ω if knowing vR and vL.

R = d

2

vR + vL

vR − vL

; ω = vR − vL

d
(2)

From Eq. (2) we can distinguish 3 corner cases of movement for a differential
drive robot, which are usually used as available actions when planning a route for
the robot from its current position to its finally expected position:

1. If vR = vL > 0, then ω becomes zero, and R infinite. Hence, the robot is moving
on a straight line.

2. If vR = −vL, then R becomes zero, and we obtain a rotation around the center
of the robot. The direction of the rotation in this case is clockwise (assuming
vL > 0) and counter clockwise, otherwise.

3. If vL = 0 and vR > 0 ( vL > 0 and vR = 0), then R = d
2 (R = − d

2 ) and the
robot rotates counter clockwise on its left wheel (clockwise on its right wheel).

Based on the above equations, we are also able to come up with a forward
kinematics of the differential drive robot. In this case we assume that the robot is at
a specific position (xR, yR) and direction with angle θ . The speed vR and vL are the
control parameters to bring the robot to a new position. Using Eq. (2) we first obtain
the ICC location:

ICC = (x − R sin (θ), y + R cos (θ)) (3)

Assuming the robot is at its location at time t we are now able to state its new
position at time t +�t where ICCx and ICCy references are the ICC location of the
x- and y-axis, respectively:

⎛
⎝

x′
R

y′
R

θ ′

⎞
⎠ =

⎛
⎝

cos (ω�t) − sin (ω�t) 0
sin (ω�t) cos (ω�t) 0

0 0 1

⎞
⎠

⎛
⎝

xR − ICCx

yR − ICCy

θ

⎞
⎠ +

⎛
⎝

ICCx

ICCy

ω�t

⎞
⎠ (4)

Using Eq. (4) we are able to predict the movements of a robot with a differential
drive over time providing that we know the speed of the wheels vR and vL. In
control engineering someone would also be interested to compute values for vR and
vL in order to reach a certain goal location. Searching for such values is also known
as inverse kinematics problem. In case of a differential drive we are not able to
compute such velocities. Instead what we can do is to separate this problem. We are
able to move on a straight line and we are also able to rotate the robot on its current
place. Hence, the problem of reaching an arbitrary location can be solved rotating
the robot such that there is only a straight movement necessary to reach the goal,
and afterwards move forward.

Without any doubt the given equations provide a model that explains the kinemat-
ics of a differential drive robot providing that the relevant information like the wheel
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speeds, the robot’s dimensions, and the current location of a robot together with
its direction is known. However, in the following, we will not use those equations
directly. Instead we will focus on an abstraction of the behavior for diagnosis and
also for implementing self-healing behavior. The abstraction we are going to use can
be easily obtained from the cases we distinguished for the robot’s movement pro-
viding the wheel speeds. For example, we might consider a finite number of values
for speed, i.e., either the speed is 0 or the positive or negative nominal value. In this
case the domain would be {v−

n , 0, v+
n }. Using this domain we are able to formalize

the ordinary behavior of a differential drive robot using first order logic (FOL) as
follows:

val(vL, v+
n ) ∧ val(vR, v+

n ) → motion(straight line)

val(vL, v+
n ) ∧ val(vR, v−

n ) → motion(rotateclockwise)

val(vL, v−
n ) ∧ val(vR, v+

n ) → motion(rotatecounter clockwise)

val(vL, 0) ∧ val(vR, 0) → motion(stop)

In the rules we use the predicate val/2 stating that a particular speed given as
first argument has the value given in the second argument. The predicate motion/1
is for establishing that a certain motion pattern is valid, i.e., either following the
straight line or rotating clockwise or counter clockwise. The first rule formalizes the
case where a robot moves on a straight line. The second is for indicating the case of
clockwise rotation. The third one is for rotating counter clockwise, and the last one
specifies the case where the robot stops moving. Note that this formalization does
not comprise the case where the speed of one wheel is set to a value unequal 0, and
the one of the other wheel is set to 0. Such a setting would also lead to a rotation
and can be easily added to the abstract model if required.

The control problem of reaching a certain location can be represented using
abstract values for the speed of the wheels. The following sequence assures that
the robot first rotates and afterwards moves straightforward.

(vL = v+
n , vR = v−

n )0, (vL = v+
n , vR = v+

n )1

In this representation, we use (. . .)i to indicate given values to be used at time i.
Note that we do not consider a specific time. Instead each element indicates a state
occurring at a particular point in time and lasting for a certain period. Hence, the
presentation abstracts not only the values but also time. In the following section we
show how such abstract models can be used for identifying the cause of a detected
misbehavior. For example, we will consider the case of a differential drive robot
that follows a wrong trajectory. In Fig. 2 we depict such a case, where a robot is
expected to rotate clockwise followed by moving on a straight line but follows a
curve. Obviously in this case either the speed of the left wheel is too low or the one
of the right wheel too high.
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Fig. 2 A small mobile robot
driving the wrong trajectory

3 Model-Based Reasoning

The underlying idea behind model-based reasoning is to use a model of a system
directly to reason about the system. In one instance, i.e., model-based diagnosis, the
system’s model is used for identifying root causes in case of an observed behavior
that contradicts the expected one. A model in model-based diagnosis (MBD) com-
prises the system’s structure including its components and interconnections, as well
as the component models. The health state of components, i.e., a predicate indicating
whether a component is working as expected or not, is used to indicate a root cause.
In this terminology an incorrectly working component maybe an explanation for
the detected unexpected deviation in the observed behavior. Davis [11] was one of
the first outlying basic principles behind MBD that Reiter [46] and De Kleer and
Williams [13] further formalized and extended.

It is worth noting that in classical MBD the component models only describe
the correct behavior. This makes the theory general applicable even in cases where
there is no knowledge about faults and their consequences available. De Kleer et
al. [14] later presented an extension incorporating models of faulty behavior into
the theory including some theoretical consequences. For example, in MBD without
fault models every superset of a diagnosis itself is a diagnosis, which is not the
case when using fault models. Note that there is a close relationship between MBD
and other diagnosis theories like abductive diagnosis [21]. In abductive diagnosis,
symptoms are explained based on hypotheses, which—more or less—represent
known faulty behavior. Console and Torasso [7] showed how to integrate also
correct behavior into abductive reasoning, and later Console et al. [8] showed that
abductive diagnosis is MBD using models of faulty behavior.
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In this section, we recall the basic foundations behind MBD and also abductive
diagnosis. For this purpose, we make use of the differential drive robot as a running
example. In contrast to the mathematical model of the kinematics outlined in
Sect. 2, we will use an abstract representation, which we initially discussed in
the same section. Because of the fact that diagnosis relies on systems comprising
interconnected components, we first start with such a component-oriented model
for a differential drive robot. In Fig. 3 we depict such a robot where each wheel has
a wheel encoder attached and is connected to an electric motor that drives the wheel.
The wheel encoder is for giving feedback to a controller that supplies the motors of
the left and the right wheel with their expected voltage level.

In Fig. 4 we summarize the component-oriented representation of the differential
drive robot. The control component C is connected to motor ML and MR . The
motors are connected to their corresponding wheels WL and WR , respectively. With
attached wheel encoders EL and ER the rotational speed of the wheels is given back
to the controller C. Hence, the motors work as actuators whereas the wheel encoders
as sensors.

The behavior of each component can be specified again in an abstract way using
the value domain {v−

n , 0, v+
n } where distinguish a negative nominal value, zero, and

Fig. 3 A small mobile robot
comprising a differential
drive with two motors and
two wheel encoders for
obtaining the wheels’ rotation

Fig. 4 The
component-oriented model of
the differential drive robot
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a positive nominal value, respectively. For example, if the input to the motor is a
positive nominal value, then its output, i.e., its rotational speed, is also a positive
nominal value. We can similarly define the behavior of a wheel and the wheel
encoders. We will further formalize the components’ behavior when introducing
MBD and afterwards abductive diagnosis in the following subsections.

3.1 Model-Based Diagnosis

In this subsection we outline the basic definitions of MBD from Reiter [46] in
slightly adapted form. According to Reiter, MBD allows to reason directly from
models and is therefore also called reasoning from first principles. A system model
itself comprises components, their interconnections, and the components’ behavior.
All components of the system that might cause a misbehavior are assumed to be
element of a set COMP . The structure and behavior has to be specified in a formal
form in SD. Formally, a system (model) according to Reiter is defined as follows:

Definition 1 (Diagnosis System) A pair (SD,COMP) is a diagnosis system
providing that SD is a system description comprising a model of the system, and
COMP a set of system components.

Using Definition 1 we are able to represent the differential drive robot as
diagnosis system as follows: We start with the components. In the representation
we only take care of components, which we want to classify as faulty or correct.
Hence, in this example, we only consider the motors and the wheel encoders to be
faulty, ignoring the health state of the control component and the wheels, so that:

COMPR = {ML,MR,EL,ER}
Despite this design decision, we have to formulate a model of the wheels as well.

Basically, we have to state that if there is a rotation applied at the axis, it is also
provided to the wheel encoder. Using FOL, we are able to express this behavior as
follows:

∀X : wheel(X) → (∀Y : domA(Y ) → (val(in(X), Y ) ↔ val(out (X), Y )))

In the above rule we make use of a predicate value/2 to assign a value to a port
of a component, where we assume that a wheel has only one input and one output.
We further restrict the values using the predicate domA/1 to three values as follows
representing the abstract value domain introduced in Sect. 2.

domA(v−
n ) ∧ domA(0) ∧ domA(v+

n )

Note that in this domain we only consider nominal speed and speed 0. If needed
in an application scenario, we might either use more abstract values or to use even
models based on the continuous domain. In the former case, it is important to
consider all abstract values that allow us to distinguish the different behavior of
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a system we want to diagnose. In the latter case, we might have to use a different
underlying reasoning system for diagnosis.

In addition to the domain description, we add the information that we have two
wheels to the model stating:

wheel(WL) ∧ wheel(WR).

The models for the motors and the encoders can be similarly formalized. In both
cases there is only one input and one output. If the input is zero, then the output
has also to be zero. If it is a nominal value, the value is propagated to the output.
However, in contrast to the wheel, we now have the situation that a component might
fail. In this case we do not know its behavior. In order to distinguish the health state
of a component, we use a new predicate Ab/1 for each element of COMPR that
if true, states that the component is faulty. For MBD we only specify the correct
behavior requiring to formalize a rule in case ¬Ab is true. For the motor and the
encoder, we use the following rules for this purpose:

∀X : motor(X) → (∀Y : domA(Y ) → (¬Ab(X)

→ (val(in(X), Y ) ↔ val(out (X), Y ))))

∀X : enc(X) → (∀Y : domA(Y ) → (¬Ab(X)

→ (val(in(X), Y ) ↔ val(out (X), Y ))))

Again, we also represent the structure of the system formally:

motor(ML) ∧ motor(MR) ∧ enc(EL) ∧ enc(ER)

What is missing to finalize the FOL model, is a representation of the structure.
This can be easily done, connecting the ports of the components:

val(out (ML),X) ↔ val(in(WL),X) ∧ val(out (WL),X) ↔ val(in(EL),X)

val(out (MR),X) ↔ val(in(WR),X) ∧ val(out (WR),X) ↔ val(in(ER),X)

Although we do not model the control component directly, we add some rules
stating what should be the case for given motion patterns like stop, going straight, or
rotating. The following rules formalize the motion patterns. There we only state the
expected values of the different ports for the motors so that they would provide the
expected motion pattern, which should also be visible at the outputs of the encoders.

stop → (val(in(ML), 0) ∧ val(in(MR, 0)))

straight → (val(in(ML), v+
n ) ∧ val(in(MR, v+

n )))

rot clk → (val(in(ML), v+
n ) ∧ val(in(MR, v−

n )))

rot invclk → (val(in(ML), v−
n ) ∧ val(in(MR, v+

n )))
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The set of all the discussed FOL rules constitute the system description for the
robot example SDR .

After formalizing a diagnosis system, we have to state a diagnosis problem.
Diagnosis is necessary if an observed behavior is in contradiction with the expected
behavior, which we derive from the system description, i.e., the model. Hence, a
diagnosis problem has two ingredients: (1) the diagnosis system and (2) a set of
observations stating values for connections between components or equally good
the ports of components. Formally, a diagnosis problem is defined as follows:

Definition 2 (Diagnosis Problem) A tuple (SD,COMP,OBS), where
(SD,COMP) is a diagnosis system and OBS a set of observations, is a diagnosis
problem.

For our robot example, we can easily state a diagnosis problem. For example, let
us assume the faulty behavior we depict in Fig. 2. In case of the expected straight-
line movement, we see a curve going to the left. Let us further assume that the
encoder of the left wheel does not give us back the nominal value but the one of the
right wheel does. Note that this assumption explains the actual behavior assuming
that the left motor has less number of revolutions than expected. For this diagnosis
problem, we can easily state the observations OBSR:

OBSR = {straight,¬val(out (EL), v+
n ), val(out (ER), v+

n )}

Note that predicates or rules given in a set are assumed to be true. Thus
all elements of such sets can be considered as being connected using logic
conjunctions, i.e., ∧. Given a diagnosis problem, we are now interested in finding
diagnoses. We first define a diagnosis formally.

Definition 3 (Diagnosis) Given a diagnosis problem (SD,COMP,OBS). A set
� ⊆ COMP is a diagnosis if and only if SD ∪ OBS ∪ {Ab(C)|C ∈ �} ∪
{¬Ab(C)|C ∈ COMP \ �} is satisfiable.

In this definition of diagnosis, we are searching for an assignment of health
states to all components, which eliminates all contradictions with the given obser-
vations. For example, (SDR,COMPR,OBSR) would lead to a contradicting
logical sentence when assuming all components to be correct, i.e., setting their
corresponding negated predicate ¬Ab to true, because in this case we would expect
val(out (EL), v+

n ) to be true, which contradicts OBSR . When setting Ab(ML) to
true and all other components to be working as expected, we are able to eliminate the
contradiction. Hence, {ML} is a diagnosis. Unfortunately, assuming all components
to be faulty would also be a diagnosis according to Definition 3. Therefore, we need
a stronger definition of diagnosis, which focuses on parsimonious explanations.

Definition 4 (Minimal Diagnosis ) Given a diagnosis problem (SD,COMP,OBS).
A diagnosis � for (SD,COMP,OBS) is a minimal diagnosis if and only if there
exists no diagnosis �′ that is a subset of �.
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The definition of minimal diagnosis assures that only the smallest diagnoses in
terms of the subset relation are considered. In case of our robot example, we obtain
two minimal diagnoses {ML} and {EL} indicating that either the left motor or the
left encoder is not working as expected. From here on, we assume if not otherwise
stated that we are interested in minimal diagnoses only.

Computing minimal diagnoses is computationally expensive. In particular, the
problem of searching for a minimal diagnosis is NP-complete providing that a
theorem prover or any other reasoning algorithm can check satisfiability in linear
time, which is not even the case for propositional logic where we know that the
satisfiability problem (SAT) is itself NP-complete. However, in practice this is not
so much a big deal, because we are mostly not interested in finding all minimal
diagnoses but also the smallest ones with respect to cardinality. Moreover, in most
cases there are enough single fault or double fault diagnoses, and the challenge is
more to reduce the number of diagnosis candidates.

In literature there are many diagnosis algorithms discussed in detail. Greiner
et al. [25] discussed a corrected version of Reiter’s diagnosis algorithm outlined
in [46], which makes use of conflicts for computing diagnoses. For more details
about conflicts and further issues regarding MBD we refer to [46]. More recently,
Felfernig et al. [18] presented the FastDiag algorithm, which allows computing
diagnoses directly from the model. Nica et al. [41] presented an empirical evaluation
of different diagnosis algorithm focusing on runtime. To be self-contained we
briefly outline a simple algorithm for diagnosis, which makes use of a theorem
prover like Prover9 [35] for checking satisfiability of the system description, the
observations together with the health assumptions. The theorem prover is called
using the function TP and takes a set of rules and facts as input. It returns consistent
if the given argument is satisfiable and inconsistent, otherwise.

The CompMBD algorithm (Algorithm 1) computes minimal diagnoses up to
a cardinality n. Minimality is assured because in Line 4 we remove all supersets
of components that are already diagnoses. The algorithm obviously computes all

Algorithm 1 CompMBD ((SD,COMP,OBS), n)
Input: Given a diagnosis system (SD,COMP), a set of observations OBS, and a number n ∈

{1, . . . , |HYP |}.
Output: A set of minimal abductive diagnoses up to cardinality n

1: Let �S = ∅
2: for i = 1 to n do
3: Let C be the set of all combinations of elements of HYP of size i.
4: Remove from C all elements where there exists a subset in �S .
5: for � in C do
6: if TP(SD ∪ OBS ∪ {Ab(x)|x ∈ �} ∪ {¬Ab(x)|x ∈ COMP \ �}) is consistent

then
7: Add � to �S .
8: end if
9: end for

10: end for
11: return �S
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diagnoses because we consider all combinations of components of a particular
cardinality in each iteration. The elements in �S have to be diagnoses according to
Definition 3 because of the theorem prover call in Line 6. The runtime complexity
is in the worst case O(2|COMP |) ignoring the complexity of the theorem prover
call because we search for diagnosis considering all combinations of components.
CompMBD should therefore only be used in a small value of n preferable smaller or
equivalent to 3, which seems to be sufficient for practical applications, where we are
mainly interested in a small number of diagnoses as already discussed previously.

But how to obtain a small number of diagnoses? How can we select the most
likely diagnoses and do not need to consider all computed diagnosis candidates? In
literature we find two practicable reasonable answers to these questions. De Kleer
and Williams [13] introduced a probabilistic framework for MBD. There the authors
discuss how to assign probabilities to diagnoses. For this purpose, we need the
probability that a given component C ∈ COMP fails, i.e., pF (C). If we know
this probability for each component, we are able to assign a probability to each
diagnosis � ⊆ COMP as follows:

p(�) =
∏
C∈�

pF (C)
∏

C∈COMP \�
(1 − pF (C)) (5)

Hence, when using the probability of a diagnosis we can come up with a ranking
of diagnoses presenting the most likely diagnosis first. Note that either the fault
probabilities of components can be obtained due to the availability of reliable
empirical data, e.g., from experiments, or we assign probabilities correspondingly
to expectations. In the latter case, we might consider one component to be more
likely to fail than another.

Alternatively to using probabilities, De Kleer and Williams suggested to make
use of probing. For example, if we know that the encoder of our differential drive
robot delivers the correct result given the motor’s speed, we can conclude that only
the motor has to be responsible for the wrong behavior. Hence, measuring values
at certain connections between components can restrict the number of diagnoses.
In their paper, De Kleer and Williams presented an optimal probing strategy that
reduces the number of diagnoses with the least number of additional measurements.
When using such a strategy, we are able to finally come up with a single fault
diagnosis.

An alternative strategy for reducing the number of computed diagnoses is based
on the introduction of fault models. There we make use of the faulty behavior of
components to restrict the number of valid diagnoses given the observations. Struss
and Dressler [57] discussed the integration of fault models into a general diagnostic
framework, and—as already mentioned—De Kleer et al. [14] introduced a theory of
diagnosis with fault models. Because of the increase in the search space, i.e., we do
not only need to check all subsets of the set of components but also each possible
mode, using fault models is not feasible forlarger systems. Friedrich et al. [22]
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presented an alternative way of reducing the number of diagnoses without the need
for fault models. The authors suggested to specify logical rules representing physical
necessities. If such a rule is violated during diagnosis, there is contradiction and
the corresponding behavior is physically impossible. Using physical impossibilities
does not change the overall computational complexity and effectively reduces the
number of computed diagnoses.

3.2 Abductive Diagnosis

In contrast to MBD where we model only the correct behavior of components,
abductive reasoning deals with models of the faulty behavior. From a logical per-
spective abductive reasoning makes use of hypotheses to explain certain symptoms.
We have rules of the form hypothesis → symptom. Abduction is reasoning in
the opposite direction of the implication →. In case of abductive diagnosis the
hypotheses represent different health states of components, which cause a certain
behavior.

The following formalization is extension of the definition of Friedrich et al. [21]
where the authors focused on propositional horn clause abduction problems, i.e.,
abductive diagnosis based on propositional logic dealing with implication rules and
facts only. We first define abductive diagnosis systems similar to diagnosis systems
in MBD.

Definition 5 (Abductive Diagnosis System) A pair (SD,HYP ) is an abductive
diagnosis system where SD is a logical model, and HYP a finite set of hypotheses.

The definition of abductive diagnosis system is similar to Definition 1. The
difference is that in case of MBD we have a set of components whereas in the case
of abduction we use hypotheses. This change is due to the fact that in case of MBD
we only consider the Ab and ¬Ab health state for each component but we may have
more health states when dealing with abduction.

To illustrate the definitions, we make again use of our differential drive robot
example but simplify the model. Instead of using all components of the robot (see
Fig. 4), we focus on the motors only. We first specify what is going to happen in
case the motor is running as expected, too slow, or too fast. Such a behavior can be
formalized in a general way as follows:

∀x : (motor(x) ∧ expected(x)) → nominalspeed(x)

∀x : (motor(x) ∧ tooslow(x)) → reducedspeed(x)

∀x : (motor(x) ∧ toof ast (x)) → increasedspeed(x)
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In these rules the predicates expected/1, tooslow/1, and toof ast/1 represent
the health states of the motors. We state that our system has two motors:

motor(mL) ∧ motor(mR)

Furthermore, we introduce three rules stating that we can only have one speed
for a motor at each time.

∀x : ¬(nominalspeed(x) ∧ reducedspeed(x))

∀x : ¬(nominalspeed(x) ∧ increasedspeed(x))

∀x : ¬(increasedspeed(x) ∧ reducedspeed(x))

These three rules are for assuring that only one of the predicates representing
speed can be true at a time. To finalize the model for abductive diagnosis, we
introduce rules deriving a motion pattern for a mobile robot. The goal is to classify
the observed behavior like given in Fig. 2 using a single predicate. Depending on
the speed of the left and right motor, we obtain the following motion patterns:

(reducedspeed(mL) ∧ nominalspeed(mR)) → lef t curve

(reducedspeed(mL) ∧ increasedspeed(mR)) → lef t curve

(nominalspeed(mL) ∧ increasedspeed(mR)) → lef t curve

(nominalspeed(mL) ∧ reducedspeed(mR)) → right curve

(increasedspeed(mL) ∧ reducedspeed(mR)) → right curve

(increasedspeed(mL) ∧ nominalspeed(mR)) → right curve

(nominalspeed(mL) ∧ nominalspeed(mR)) → straight

In this example, we distinguish three motion patterns, which we want to explain
using abductive diagnosis. The introduced rules are element of SDA and HYPA =
{expected(mL), tooslow(mL), toof ast (mL), expected(mR), tooslow(mR),

toof ast (mR)}. (SDA,HYPA) states an abductive diagnosis system for our
differential drive robot example.

Before defining abductive diagnosis formally, we introduce the definition of an
abductive diagnosis problem.

Definition 6 (Abductive Diagnosis Problem) A tuple (SD,HYP,OBS) is an
abductive diagnosis problem where (SD,HYP ) is a abductive diagnosis system
and OBS is a set of observations.

This definition of a diagnosis problem is similar to the model-based diagnosis
definition. For our running example the tuple (SDA,HYPA, {lef t curve}) repre-
sents an abductive diagnosis problem. A solution to this problem is an explanation
for the observations, where an explanation is a conjunction of hypotheses that allow
to derive the given observations.
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Definition 7 (Abductive Diagnosis) Given an abductive diagnosis problem
(SD,HYP,OBS). A set � ⊆ HYP is a diagnosis if and only if

1. SD ∪ � |� OBS, and
2. SD ∪ � is satisfiable, i.e., SD ∪ � �|� ⊥

In this definition, we make use of logic reasoning to define abductive diagnosis.
In the first part, we require that the given observations, i.e., the observed symptoms,
can be logically derived (|�) from the model SD together with the hypotheses in �.
The second part assures that we cannot trivially obtain OBS, which would be the
case if SD together with � is inconsistent, because we can derive anything from
inconsistent theories.

We furthermore define minimal abductive diagnoses as follows:

Definition 8 (Minimal Abductive Diagnosis) Given an abductive diagnosis prob-
lem (SD,HYP,OBS). An abductive diagnosis � ⊆ HYP for the given diagnosis
problem is a minimal diagnosis if and only if there is no other diagnosis �′ that is a
subset of �.

For the differential drive robot example and the abductive diagnosis problem
(SDA,HYPA, {lef t curve}) we are able to compute three different minimal abduc-
tive explanations:

{tooslow(mL), expected(mR)}
{tooslow(mL), toof ast (mR)}
{expected(mL), toof ast (mR)}

Either the left motor mL is too slow, providing that mR is running as expected
or faster, or the right motor is running faster providing mL being slower or running
at nominal speed. This result might be further reduced measuring the speed of the
motors and comparing it with the expected values. It is worth noting that we are
also able to make use of a slightly changed definition of diagnosis probability from
Eq. (5). In case of abductive diagnosis we assume that we know the probabilities
for each health state, i.e., each element in HYP . Hence, the definition of diagnosis
probability can be simplified.

pA(�) =
∏
x∈�

p(x)

In case of our robot example, we might state that the expected behavior is much
more likely. In this case we would prefer the first and the last of the three diagnoses.

Similar to MBD abductive diagnosis is at least NP-complete. In the following,
we outline a basic algorithm for computing all abductive diagnosis up to a specific
size. The algorithm is not optimized. For other algorithms we refer the interested
reader to [39] and [31].
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Algorithm 2 CompAD ((SD,HYP,OBS), n)
Input: Given an abductive diagnosis system (SD,HYP ), a set of observations OBS, and a

number n ∈ {1, . . . , |COMP |}.
Output: A set of minimal diagnoses up to cardinality n

1: Let �S = ∅
2: for i = 1 to n do
3: Let C be the set of all combinations of elements of COMP of size i.
4: Remove from C all elements where there exists a subset in �S .
5: for � in C do
6: if TP(SD ∪ HYP) is consistent then
7: if TP(SD ∪ HYP ∪ ¬OBS) is inconsistent then
8: Add � to �S .
9: end if

10: end if
11: end for
12: end for
13: return �S

Algorithm 2 implements the abductive diagnosis algorithm CompAD where we
go through all subsets of the hypothesis set and check for diagnosis. In Line 6 we
first check whether the hypotheses are consistent with the system description. If this
is true, we check whether we are able to derive OBS using SD together with HYP .
This has to be the case if assuming that the observations are not valid (¬OBS)
together with SD and HYP leads to an inconsistency. The algorithm obviously
terminates and computes all minimal abductive diagnoses up to a size n. Minimality
is assured because we remove all supersets of already detected diagnoses in
Line 4.

3.3 Summary on Model-Based Reasoning for Diagnosis

The presented diagnosis approaches, i.e., MBD and abductive diagnosis, have been
successfully used in practice. Whereas MBD makes use of a model capturing the
correct behavior of components for computing diagnoses, abductive diagnosis relies
on fault models. Both approaches rely on models that can be formally represented
and where a reasoning mechanism is available for checking satisfiability. It is worth
noting that we do not necessarily rely on FOL, propositional logic or any other logic
formalism. We may also make use of constraints to represent models and constraint
solving for checking satisfiability. For an introduction into constraints and constraint
solving we refer to Rina Dechter’s seminal book [16].

Although both diagnosis approaches are computationally demanding, current
work, e.g., [41] and [31], has shown that MBD and abductive diagnosis can be
used for practical applications and that their worst case computational complexity
is not a limiting factor in practice. The only more severe restrictions of course are
the necessity to have models that can be used for diagnosis. Obtaining such models
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in practice is not always that simple, but due to the increasing importance of models
for system development, this challenge seems to be solvable. There has been more
recent work dealing with obtaining models from available development artifacts,
see, e.g., [64].

4 Modeling for Diagnosis and Repair

Model-based reasoning requires that we have a model of the system we want to
diagnose. In particular, we need a model that can be feed into a reasoning engine
in order to determine consistency. In the previous sections we made use of FOL
or other logics as underlying modeling language. However, model-based reasoning
is not restricted to logic as a formalism for modeling. Beside the use of a certain
modeling language a model to be used for model-based reasoning has also to provide
means for setting or characterizing the health state of components or any other
assumption we want to reason about.

In order to come up with models for diagnosis and repair, we first focus on
some modeling principles that may be used. Wherever necessary, we distinguish
modeling for MBD from abductive diagnosis. When starting modeling of systems
the first part comprises coming up with the system’s architecture, i.e., its parts
and their interconnections together with the system’s environment and interface.
The interface of the system and its context is important in order to allow systems
communicating with their environments. For modeling, we have to know this infor-
mation as well. The architecture of a system can be seen as component-connection
model where connections are interfaces between the ports of components. A
connection is for exchanging information and data. From an abstract point of view
each connection has a name and a type, e.g., a natural number or an array of
reals.

After identifying the components, their interfaces, i.e., ports, and the connections,
we have to represent the behavior of each component. In case of digital circuits
such a behavior can be expressed using Boolean logic whereas in case of physical
components differential equations would be a more appropriate form if we want
to closely describe the real behavior of components over time. It is worth noting
that the data types of the connections of course are also the same for connected
components and should be used to come up with a component model. This
component model has to capture the correct behavior in case of MDB and the
fault behavior in case of abductive diagnosis. Before discussing the differences
in modeling for MBD and abductive diagnosis, we first have a closer look at the
underlying data types.

As already said, in principle formalisms used to describe models range from
logic sentences to differential equations or even programs formulating a certain
behavior. In case of diagnosis in general such fine-grained representations of
reality are not needed and some form of abstraction is usually sufficient. Instead
of using real valued connections we might be able to distinguish some finite
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number of values that allow representing the behavior sufficiently. For example,
let us consider again the robot example. Instead of dealing with the exact values
of voltage and current used to control the number of rotations of a motor, it is
sufficient to consider the case where there is voltage applied and thus the motor
starts rotating, and the case where there is no voltage and the motor stops rotating.
We may also want to distinguish a case where the voltage is too low or too high
causing a decreased or increased speed. However, this depends on the current
application.

For modeling the behavior we therefore require to search for the right degree
of abstraction. Right in this context is informally speaking a set of values that
can be distinguished leading to different behaviors. Using abstraction has the
advantage of not requiring sophisticated simulation and requiring less computa-
tional resources. The use of abstraction for modeling is not new and has been
proposed in the context of artificial intelligence almost 30 years ago. In qualitative
reasoning (QR)1 [62] researchers have been working on coming up with different
kind of abstractions and also different underlying modeling principles. For the
latter Kuiper’s qualitative simulation [33], Forbus’s qualitative process theory
[20], and De Kleer et al.’s work on confluences [12] are worth mentioning. In
qualitative simulation, ordinary differential equations are mapped to their abstract
corresponding qualitative differential equations, which can be used to obtain all
possible behaviors of a system without knowing the exact values. In addition,
qualitative simulation also allows specifying new qualitative values in certain cases.
Qualitative process theories make use of processes for specifying the abstract
behavior of systems. There not components are of importance but processes
determining the value of variables. There are still modeling environments, e.g.,
[4], available that are mainly used for formulating from biology and sustainable
engineering.

In qualitative reasoning, we distinguish two possible cases of abstraction.
Either there is a mapping of quantities directly to their corresponding qualitative
values [10] or we represent deviations [56]. For example, in the case of an electrical
motor we might be only interested in the case where the motor is stopping, rotating
clockwise or anticlockwise. When knowing the electrical characteristics we may
come up with the following mapping:

[−12 V, −0.5 V] �→ −ω

]−0.5 V, 0.5 V[ �→ 0

[0.5 V, 12 V] �→ +ω

1In qualitative reasoning variable values are abstract representations of their original domain.
Instead of quantities like real numbers, qualitative representations are used for various purposes
like simulation or diagnosis. Because of using qualitative values the name qualitative reasoning
was established.
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In this mapping, the assumption is that the motor can take voltages from −12 V
to +12 V and that the rotational speed can be either anticlockwise (−ω), zero (0),
or clockwise (+ω). The abstract domain {−ω, 0,+ω} is totally ordered and we are
also able to introduce abstract operations for such domains to be used further on for
modeling the behavior. Of course because of abstraction we are losing information
and sometimes the operators cannot distinguish potential outcomes. In this case, the
question comes up to increase the abstract domain and to introduce new abstract
values. This process can also be automated. Sachenbacher and Struss [48] presented
a solution for automated domain abstraction.

In contrast to the direct representation of quantities as elements of an abstract
domain, deviation models only consider as the name suggested deviations from
nominal or expected behavior. Instead of stating that a value is 0.9 and therefore
lower than the expected value of 1.0, the deviation, e.g., the value is small, is used.
Hence, in case of deviation models we do not have a mapping of values to their
qualitative representation but a mapping of deviations to their representation, e.g.,
“<” for stating a value to be smaller as expected. Deviation models have been used
successfully in diagnosis, e.g., [56]. For more information about qualitative models
have a look at [58, 59].

In the following, we discuss providing models for MBD and abductive diagnosis
separately. Let us start with modeling for MBD. As already outlined we have a
component-connection model and (possible abstract) data types for the connections,
ports, and interfaces to the system environment and context. What we need now is
the behavior of components. What we do first is to come up with certain types of
components like a logical and with two inputs and one output. For each component
type we need to specify a relationship between the different ports in case the
component is working as expected. Hence, for each component C of type type we
have to come up with rules of the form ∀C : (type(C) → (¬Ab(C) → Behav))

where Behav specifies the correct behavior of component C.
In case of our mobile robot example explained in Sect. 2 and later in Sect. 3, we

defined the behavior of a motor as (val(in(X), Y ) ↔ val(out (X), Y )) stating that
every value Y on the input port in(X) has to be transferred to its output out (X) and
vice versa. Hence, we do not only specify one direction of data flow but formalize
the model in a relational way ignoring the information whether a certain port works
as input or output.

The behavior might also be given as equation like v = R · i representing a
model for an electrical resistor. In such an equation we also do not have a data
flow direction. We are only specifying relations that constraint given quantities or
qualities. Of course it is necessary that the underlying reasoning mechanism is able
to handle the given models. When relying on FOL we would not be able to specify
the resistor model as given. In this case we may use a different kind of logic or a
different (abstract) representation.

In addition, to the component models, we might also want to add rules stating
physical impossibilities [22]. For example, let us consider an analog circuit com-
prising two bulbs in parallel coupled with a battery. A simple model would state that
bulbs are lighting if there is voltage provided, and that a battery provides voltage.
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In case one bulb is lighting but the other is not, there would be two diagnoses, i.e.,
the bulb that is not lighting and also the battery. The latter diagnosis is of course
physically impossible, because an empty or broken battery cannot provide voltage.
We can solve this issue via stating the impossibility: If a bulb is lighting, then
there has to be a voltage. When adding such a rule, the battery cannot longer be a
diagnosis.

Modeling for abductive diagnosis starts with the same input, i.e., the structure of
the system. However, instead of defining the correct behavior, we are interested
in the faulty cases and their consequences. Hence, we adopt a form of cause–
effect reasoning, where causes are (faulty) health states of components and there
effect are the symptoms we observe and want to explain. In this setting symptoms
are deviations from the expected behavior. This type of modeling goes beyond
MBD where we only have the health states correct or faulty, which we repre-
sent using ¬Ab and Ab, respectively. In case of abductive diagnosis we have
one or more health states for each component, which can also be represented
using predicates. For each of these health states we present their consequences
formally in the model. For this purpose, we would usually use rules of the
form ∀C : type(C)→ (causei(C)→ eff ectsi(C)) where type(C) is the type of
the component, e.g., a Boolean and gate, causei represents the health state, and
eff ectsi the consequences following from the given cause.

Such knowledge can be easily obtained from a failure mode and effect analysis
(FMEA) [6, 26], which is regularly used in the context of safety critical systems in
order to analyze the consequences of a fault and its corresponding risks. From the
FMEA we obtain a table of the form:

Failure mode Effects Risk
.
.
.

.

.

.
.
.
.

This table can be almost directly mapped to cause–effect rules. For more details
we refer to Wotawa [64] explaining the transformation in detail.

For practical applications it would be a significant advantage to have general
modeling languages available that allows for writing models for model-based
reasoning, like for simulation where we have beside Matlab/Simulink2 other
languages like Modelica [24]. Note that in contrast to simulation where all boundary
conditions have to be known, in diagnosis we need models that allow to specify
also the unknown behavior. Modeling languages for diagnosis have to deal with
this specific requirement. Fleischanderl et al. [19] were one of the first introducing
a modeling language for MBD considering the component-connection modeling
principles and also different data types. The only limitation was the lack of
considering time information in the models. Bonus et al. [5] presented an extension

2See https://de.mathworks.com/products/simulink.html.

https://de.mathworks.com/products/simulink.html
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of Modelica that can be used of modeling for MBD. Most recently, Nica and
Wotawa [40] presented a language that also allows to come up with models
considering time.

It is also worth mentioning modeling approaches that make use of physical
models written in Modelica for fault localization using MBD and abductive
diagnosis. De Kleer et al. [15, 36] discussed an approach for extracting diagnosis
system models from Modelica models using explicit fault modes. Sterling et al.
[55] presented an approach for mapping Modelica programs to diagnosis systems
directly considering abstractions, and Peischl et al. [43] outlined the use of Modelica
programs for obtaining cause–effect models for abductive diagnosis.

In summary, (1) modeling starts with identifying the boundaries of systems and
their internal structure comprising components and their interconnections. In the
second step (2) we have a look at the underlying data types of the connections
and component ports as well as the interfaces of the system to its environment.
For the data types, we have to elaborate on abstractions that are strong enough
to distinguish the important behavioral aspects of components. If this is done, we
formalize the component behavior in step (3) where we distinguish the case of MBD
from abductive diagnosis. If we only know the correct behavior, we have to rely on
MBD and define the component behavior as relations over the component ports. In
case of abductive reasoning, we define rules of the form causes imply effects where
a cause is a certain fault of a component. For abductive reasoning, it is also possible
to determine the model from FMEAs, which are often used in engineering practice
to determine the system’s risk.

Until now, we have discussed the modeling steps for diagnosis. But are there any
specific parts when dealing with repair or self-repair? Friedrich et al. [23] were one
of the first considering repair as part of diagnosis. They formalized the repair process
including diagnosis as one part. Basically, the general diagnostic process continues
the diagnosis and probing loop until one candidate can be obtained, which should
be replaced. Hence, in the simplest form repair is only a replacement of a faulty
component. In case of fail-operational behavior or self-adaptive systems this would
be close to the spare components that can be invoked whenever the component itself
becomes faulty. However, as motivated in the introduction, we do not always have
a spare component. Here we would require to change the system in a way such that
the important functionality can still be guaranteed.

In the first case, i.e., using spare components for replacing broken components
during runtime, we do not need an additional model. For this purpose, it is sufficient
to know which component is faulty and should be replaced. Hence, both diagnosis
approaches can be used directly. This is not possible, when wanting a system to
behave as expected but maybe in a degraded mode. In such a case we need to model
the degradation. We can do this via modeling which parameters have to be changed
and how in case of a fault. Hence, we would need to specify also what can be done
in case of a specific fault. In the next section, we discuss repair in much more detail
and also provide examples for each of the different repair cases.
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5 Self-adaptation Using Models

In this section, we discuss the use of model-based reasoning for self-adaptation.
According to Weyns et al. [63] self-adaptation is the ability of a system to adapt to
dynamic and changing operating conditions autonomously, i.e., without requiring
human intervention. Self-adaptation can be seen as form of self-healing behavior,
which is also known as autonomic computing where a system can detect, diagnose,
and repair localized faults originating from software or hardware (see [30]). In
the previous sections of this chapter, we already discussed the use of models for
diagnosis purposes. Hence, we have to extend our framework to the capabilities of
repair and in particular self-repair [9].

Repair itself can be classified according to [60] in (1) attributive repair and
(2) functional repair. In attributive repair the idea is to restore the system to
its original state, whereas in functional repair the focus is only on restoring the
(important) functionality but not necessarily bringing the system back to its fault-
free state. Hence, in functional repair we are also satisfied with a degraded behavior.
Nevertheless in both types of repair we require a certain redundancy in order to
bring back the system in a desired state. For example, in software-based self-repair
[49], the reconfiguration is done on side of the user program to allow execution on
the available processors.

It is worth noting that in order to achieve self-adaptation or self-healing the
system itself has to monitor its health-state and react appropriately over time in case
the actual behavior of the system is in contradiction with its expected behavior. After
detecting such a relevant behavioral deviation, the system has to perform diagnosis
using its underlying knowledge and later on self-repair. Hence, a self-healing system
has to follow a certain system architecture. For example, IBM suggested such a
reference model for autonomic control loops [28], which is also called the MAPE-
K (Monitor, Analyze, Plan, Execute, Knowledge) loop. In this section, we introduce
a simplified architecture, which requires monitoring, diagnosis (which is a kind of
analysis), and repair (which comprises planning and execution). For all these three
steps we rely on a model, i.e., knowledge of the system.

In Fig. 5 we see on the left the classic architecture of a system that interacts
with its environment. For this purpose, we have a sensor and an actuator level for
obtaining information from the environment and interacting with the environment.
The system and their in particular the control component makes use of the
measurements coming from the sensor level and its internal state to compute values
for the actuators. For example, our differential drive robot may localize an object at
a certain position via a laser range sensor or a computer vision system and computes
the commands for the motors for moving to detected object. In case of a fault in any
parts of the system, the robot will not work as expected anymore because it cannot
detect the misbehavior and also not react accordingly.

This situation is different in case of the system architecture on the right side of
Fig. 5. There we have an additional smart diagnostics component, which takes the
information provided by the sensors together with the current state of the control
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Fig. 5 Control system without (left) and with (right) a smart diagnostic component

component to derive a diagnosis and afterwards repair actions, which might change
the control component itself (1), the sensor information (2), or the actuators (3). For
all three cases, we are going to outline examples later in this part of the chapter.
Before, we discuss the structure of the smart diagnostics and how model-based
reasoning can be integrated.

A smart diagnostics has to monitor the current system and based on this
information to draw conclusions about the health state of the system over time.
Hence, in every step at a certain point in time t , we have to evaluate the system’s
behavior with respect to deviations from the expected behavior. For this purpose, we
can use the health state of the system obtained at the immediately previous time step
t − 1 to predict a behavior. If this behavior is equivalent to the observed value, we
know that the system is still in the same health state at time t and no further action
is required. Otherwise, we have to run diagnosis to explain the deviation and in case
of identifying the root cause to repair the system.

It is worth noting that there might be the case that a fault occurring at a time
step is only visible after more than one time step. In this case, diagnosis might give
us back a wrong result. In order to overcome this issue, the time span between two
time steps used for monitoring has to be defined as being large enough for all faults
to be visible in the observations. If this is not possible, e.g., because of underlying
physical processes requiring substantially different time spans for being observed,
we have to introduce separated monitoring/diagnosis/repair cycles for all of these
processes.

In Fig. 6 we illustrate time step t using information from the previous step t − 1.
Note that the observations are extracted from the sensor data and the internal state
of the control block. When implementing the smart diagnostics there has to be
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Fig. 6 A monitoring/diagnosis/repair cycle at time step t

a program mapping the monitored variables to their corresponding observations
OBSt . This mapping does not necessarily need to set all potential observations.
There may be observations that cannot be obtained at all points in time. But this
is not a problem for model-based reasoning because there computation is done on
available information only. It is also worth noting that in case of FOL as underlying
modeling language, the mapping has to set the truth values of predicates. All
observations that can be obtained must be true at the certain point in time t .

In Fig. 6 we also see that in case of a contradiction we call a method REPAIR and
not diagnosis. This method calls a diagnosis algorithm for identifying candidates,
selects the best candidate, and computes necessary repair steps either to bring the
system into a correct state again or in a degraded mode where the system still can
deliver its required functionality. Depending on the repair step the health state of a
system � may or may not change. In case of using spare parts the system after repair
should incorporate only healthy components. In a degraded mode, the system has
some components still not working as expected but which have been compensated.
Formally, we can define a system health state as mapping of components to their
health states.

Definition 9 (System Health State) A system health state �S for a system with a
set of components COMP is a sequence of pairs 〈(c1, h1), . . . , (c|COMP |, h|COMP |)〉
where for all components c ∈ COMP we have a corresponding (component) health
state h.
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Algorithm 3 REPAIR (SD,OBS)
Input: Given the model of a SD and a set of observations OBS at the current time t

Output: A system health state �S

1: Compute the set of diagnosis �S using either CompMBD or CompAd depending on the
diagnosis method used.

2: Select the one diagnosis � from �S .
3: Apply repair mechanisms using �.
4: Let �S be the old system health state at time t − 1.
5: if Spare part repair then
6: Change the health states in �S for all components in � to their correct state, i.e., ¬Ab.
7: end if
8: if Compensating action repair then
9: Change the health states in �S for all components in � with their corresponding health

state provided in �.
10: end if
11: return �S

In a smart diagnostics the system health state is continuously adapted over time
using the current observations and the past system health state. In the following,
we first summarize the REPAIR algorithm and afterwards introduce three possible
cases how such a smart diagnostics maybe react and why.

Algorithm 3 implements the necessary steps for repairing a system. The way a
system is repaired is not explicitly stated in the algorithm and depends on the kind
of possible action. However, we distinguish two cases either repairing via using new
components or compensating actions. A compensating action in the context of this
work is any change of parameters or health states of the system that still allow the
system to behave as close as possible to its expectations. Compensating actions are
very much application specific. Furthermore, in REPAIR we also do not specifically
describe how to select a diagnosis. In practice, we either make use of probabilities
for obtaining the most likely diagnosis, or we may make a random selection. Ideally,
the diagnosis itself should only provide us with one diagnosis. However, that cannot
be assured always. Moreover, if we select a wrong diagnosis, this will be visible
later in time when there is again a deviation with the expected values. In such a
situation we may consider changing the probabilities of faults and finally improve
reasoning and selection over time. De Kleer and Williams [13] suggested such a
process. The only issue that has to be assured is that the selection of the diagnosis
does not violate certain properties like safety. If this can be the case we further are
able to use such properties during diagnosis selection.

We now discuss the three cases of faults with corresponding repair that may occur
during operation of a system. In Fig. 5, we see three different locations of a fault:
❶ indicates a fault in the control block, ❷ states a fault in the sensor block, and ❸

represents the case of a fault on side of the actuators. For all three cases, we discuss
examples.

Control (❶): Let us consider the differential drive robot from Fig. 3 and its
architecture depicted in Fig. 4. Instead of modeling the behavior using qualitative
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domains, we now make use of equations and variables to specify the behavior.
In particular for motors we say that the voltage applied is proportional to their
number of rotations. The following rule states this behavior where sX represents
the speed of the motor and vX the applied voltage. In this rule we set the constant
stating the proportion between speed and voltage to 1.0.

∀X : motor(X) → (¬Ab(X) → (sX = 1.0 · vX))

Encoders can be similarly modeled. Instead of speed a rotational encoder (or
wheel encoder) returns pulses. In the following rule we assume that there are
36 pulses delivered for one full rotation. Hence, the number of pulses tX is a
function 36 · · · sX where sX is the speed that should be measured.

∀X : enc(X) → (¬Ab(X) → (tX = 36 · sX))

In addition, we have to model the structure, i.e., the components and connections,
of the system:

motor(mL) ∧ motor(mR)

enc(eL) ∧ enc(eR)

smL
= seL

∧ smR
= seR

For this example, the above rules and equations represent the model SD and
COMP = {mL,mR, eL, eR}. Let us further assume that we have the following
observations, where the voltage comes from the control block and the number of
pulses from the encoders.

vmL
vmR

teL
teR

2.0 V 2.0 V 72 72

In this case, obviously everything is fine and there is no contradiction with
the expectations. Let us now consider the case of a robot following the wrong
trajectory depicted in Fig. 2. For this case, we would receive observations like
the following, where the number of pulses on the left side is small than expected:

vmL
vmR

teL
teR

2.0 V 2.0 V 54 72

Using MBD, we are able to compute the two minimal diagnoses: {mL} and
{eL}. This result can be further improved when using physical impossibilities or
other known properties, e.g., stating that a broken encoder would not deliver any
pulses, i.e., ∀X : enc(X) → (¬Ab(X) ∨ tX = 0). In addition, we might extend
the model also to compensate the fault. In this example, the left motor is not
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running the right speed. If extending the voltage, we may speed up the motor.
Hence, we may come up with a component representing the proportionality
factor between the voltage and the speed. The new model would look like:

∀X : motor(X) → (¬Ab(X) → (sX = cX · vX))

∀X : const (X) → (¬Ab(X) → (cX = 1.0))

const (cL) ∧ const (cR)

cmL
= ccL

∧ cmR
= ccR

The set of components would be COMP = {mL,mR, eL, eR, cL, cR}. Using
this model together with the rule stating the property that broken encoders do
not deliver pulses, we obtain again two minimal diagnoses but this time: {mL}
and {cL}. The encoder is not a diagnosis anymore because we observe pulses.
Let us now take a closer look at diagnosis {cL}. When the constant is wrong, any
value for variable ccL

can be inserted. Using an equation solver a value of 0.75
for ccL

explains the lower value of teL
. Assuming that this reduction of speed

when providing the same voltage is—more or less—equally distributed over the
working range of the input voltage, we would multiply the voltage with 1

0.75
which equals to 1.33 before using it as input for the left motor.3

In this example, the compensation would be valid until new observations
contradict again the behavior, maybe leading to further adaptations of the input
voltage. Moreover, the diagnosis {cL} with its corresponding compensating value
would be part of the system health state of the differential drive robot. The repair
rule for this diagnosis would state how to compute the compensating value and
how to apply it. The application may be either part of the component block, or
before or in the actuator block of the smart diagnostics architecture (see Fig. 5
right picture).

Sensor (❷): In the second example, we illustrate how smart diagnostics can be
used for sensor fusion and there in particular on identifying contradictions in sen-
sor information and to react in an appropriate manner. For illustration purposes
let us consider a mobile robot comprising the three sensors, inertial measurement
unit (IMU), computer vision system (CVS), and the wheel encoders. All of
this sensor can be used to identify the direction a robot is moving. From the
IMU we would get an acceleration vector in the direction of movement when
starting. The CVS can provide among other things an optical flow indicating
the direction, and from the encoders we receive pulses where the difference
indicates the direction. In the following we formalize the behavior of the different
sensors:

3In practice, someone might make use of a more sophisticated process after detecting such a fault.
A search procedure might be used to find the right voltage levels for the left motor in order to
guarantee moving on a straight line.
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∀X : imu(X) → (¬Ab(X) → (∀Y : accdir(X, Y ) ↔ dirI (X, Y )))

∀X : cvs(X) → (¬Ab(X) → (∀Y : optf lowdir(X, Y ) ↔ dirV (X, Y )))

∀X : encs(X)→
⎛
⎝¬Ab(X)→

⎛
⎝

(equiv(X) ↔ dirE(X, straight))∧
(right greater(X) ↔ dirE(X, lef t))∧
(lef t greater(X) ↔ dirE(X, right))∧

⎞
⎠

⎞
⎠

Note that dirI /2, dirV /2, and dirE/2 are predicates for representing the current
direction of the IMU, the CVS, and the encoders, respectively. In this example,
we do not distinguish the encoders for the different wheels. We only assume that
we know their number of pulses and are able to compare them leading to the
respective truth values for the corresponding predicates.
In order to check consistency we further have to come up with consistency
properties stating that all the different direction values should be the same.

∀X : ∀Y : ∀Z : ∀V : (dirI (X, V ) ∧ dirV (Y, V ) ∧ dirE(Z, V )).

Moreover, we have to state that each sensor is only allowed to deliver one value
at a particular time.

∀X : ∀V : ∀W : dirI (X, V ) ∧ dirI (X,W) → V = W

∀X : ∀V : ∀W : dirV (X, V ) ∧ dirV (X,W) → V = W

∀X : ∀V : ∀W : dirE(X, V ) ∧ dirE(X,W) → V = W

After specifying the structure of the system comprising three components
COMP = {imu1, cvs1, encs1} using the following rules, we obtain a complete
model for sensor fusion:

imu(imu1) ∧ cvs(cvs1) ∧ encs(encs1)

Let us assume now that we obtain the following observations:

OBS = {accdir(imu1, straight), optf lowdir(cvs1, right),

equiv(encs1)}.

From SD and OBS and assuming all components to work correctly we get a
contradiction because the CVS is returning a different value. From the model,
we are able to compute two minimal diagnoses, i.e., {cvs1} and {imu1, encs1}.
When focusing on the smallest diagnosis first, we would disable the CVS, which
is the repair action for this example. Note that in this example we do not have
a compensating action. Instead we simply turn off a component, which would
not influence the rest of the system because the other two sensors determine the
value used for further controlling the robot.
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Actuator (❸): In the last example, we show the case of spare parts. Assume that
we have the differential drive robot but this time we add power circuits for
providing enough voltage and current for the motors. When using a similar
model than in Sect. 3, we can determine which motor is faulty and therefore,
which power circuit should be replaced. If we have a hardware architecture with
integrated spare parts that can be enabled, the repair action would simply enable
the new power circuit and disable the old one.

The presented approach for repairing detected and localized faults based on
models has the advantage of relying on system models and therefore always
delivering the best possible diagnoses for the given observations and the system
model. We do not rely on data for learning diagnosis, therefore the approach can be
used even in situations where such data is not available, e.g., after the development
of systems where no feedback from its use is available. The approach allows for
implementing fail-operational systems. We can assure that the proposed diagnosis
fulfills given properties before applying it. Furthermore, the underlying algorithms
deliver all minimal diagnoses as explained in this chapter. In order to prove that
the approach is working as expected, we have to validate the model and there in
particular their capabilities of specifying the behavior of the system. In this section,
we further discussed how to use diagnosis for coming up with repair suggestions
and how to integrate them in a smart diagnostics.

6 Related Research

The use of model-based reasoning for self-adaptation is not new. Rajan et al. [45]
discussed the use of model-based reasoning in a combination with planning to form
a new control system for an automated space probe, which was successfully tested
in space. Later Hofbauer et al. [27] and Brandstötter et al. [3] introduced a model-
based adaptive system that allows a robot adapting its drive in case of a fault in a
motor. There the authors suggested to use hybrid automata for modeling where each
state of the automata represents a certain health state of the robot. Besides diagnosis
the approach also allowed to adapt the kinematics autonomously.

Besides reacting on hardware faults, there is also work on dealing with software
faults occurring during operation. Steinbauer et al. [54] discussed a model-based
approach for a mobile robot control system that is able to reduce the number
of software processes that have to be restarted in case of a crash. The presented
approach relies on an abstract model of the software considering the dependencies
between software components. For an overview of the use of model-based reasoning
to self-adaptive behavior, we refer the interested reader to [53].

Krenn and Wotawa [32] introduced another interesting approach to implement
self-healing behavior based on models. There the model captures the ordinary
behavior using rules that have to fulfill a certain goal, e.g., obtaining sensor
measurements and sending them to a particular server. By specifying alternative
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rules to achieve a certain sub-goal, it is possible to easily add redundancy. The
execution system searches for those rules that can be executed at a particular point
in time considering such alternative rules.

In the context of self-healing system research there is a lot of research dealing
with self-adaptation and self-repair. Some like [9] discuss changes in traditional
design practice in order to implement self-repair for producing systems comprising
hardware and software components. For reconfiguration of electronic devices we
refer, for example, to [2, 37, 47, 61]. For self-adapting software have a look at [38,
51] and more recently [44, 49, 52, 63]. Such software systems have to have the
ability to modify itself in response to a change in its operating environment.

In the domain of automotive systems Seebach et al. [50] presented an approach
for implementing self-healing behavior. There the authors made use of the adaptive
cruise control (ACC) system as example application. In their approach the ACC
system is deactivated and restarted after reconfiguration. Especially, in case of auto-
motive systems fail-safe properties have to be fulfilled even after reconfiguration.
Barbosa et al. [1] introduced the use of the formal modeling language Lotos to
check monitored quantities over time. In particular, the presented tool monitors the
execution traces generated by a self-adaptive system and annotates the probabilities
of occurrence of each system action on their respective transition on the system
model, created at design time as labelled transition system (LTS) that is used for
checking properties.

In the context of cyber-physical systems there has also been research published.
Niggemann and Lohweg [42] discussed the state of the art of diagnosis of cyber-
physical systems and the research questions but focusing more on production
systems. Mahadevan et al. [34] introduced the application of causal diagrams for
fault localization. The approach presented in this work relies in contrast to these
papers on model-based reasoning based on formal models.

7 Conclusions

In this chapter, we discussed the basic principles and foundations behind model-
based reasoning in detail. We motivated why reasoning based on models is of
particular interest for self-adaptive systems using a running example from the
autonomous mobile robot domain. We illustrated different challenges that occur in
this domain and discussed possible solutions. Regarding diagnosis we introduced
two different methods, i.e., (1) model-based diagnosis and (2) abductive diagnosis.
The first relies on models of system components only considering the correct behav-
ior. The latter requires knowledge about faults and their corresponding behavior. For
both approaches we outlined a simple algorithm allowing for computing minimal
diagnoses from models and observations.

Because modeling is the important part, when introducing model-based reason-
ing, we also explained how to model for diagnosis. We outlined a process that
starts with a system architecture comprising components and connections. From
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this discussed how to come up with abstract models that map potentially infinite
domains into a small set. For this purpose, we referred to qualitative reasoning and
the abstractions discussed there. Furthermore, we introduced concepts for extracting
models from other development artifacts like FMEAs or simulation models.

After presenting the basic concepts, we focused on the integration of diagnosis
for self-adaptive systems. There we introduced a system combining a smart
diagnostics with an ordinary control system interacting via sensors and actuators
with its environment. We discussed the basic repair cycle and an algorithm for
combining diagnosis with repair. In contrast to previous work we did not only rely
on simple repair actions, e.g., replacing one component with its spare part, but also
discussed how compensating actions can be integrated and used in the proposed
setting. For the latter it is worth noting that the system model itself can be used to
obtain sufficient information about the compensation.

The presented approach can be integrated into cyber-physical systems like
autonomous vehicles in order to implement fail-operational behavior where com-
pensating repair as well as automated repair using redundant hardware that can be
enabled during operation is required.
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