Chapter 6 )
Weakly Nonnegative Quadratic Forms Shethie

In the previous chapters we met notions like positivity, nonnegativity and weak
positivity, and applied to them various techniques like deflations, inflations, one-
point extensions, reflections and edge reductions. Here we turn our attention to
weakly nonnegative forms, that is, semi-unit quadratic forms g : Z" — Z such that
q(v) = 0 for all positive vector v in Z". The above-mentioned methods are used to
extend earlier results and algorithms to the weak nonnegative context, where now
the existence of maximal sincere g-roots plays a key role, and hypercritical forms
take the place of critical forms.

6.1 Hypercritical Forms

A quadratic semi-unit form g : Z" — 7 is called hypercritical if it is not weakly
nonnegative, but every proper restriction ¢’ is. For instance, the m-Kronecker
form g, (x1,x2) = x% + x% — mx1xy is weakly nonnegative if and only if
m < 3, and is hypercritical exactly when m > 3. Theorem 5.2 tells us that if
the number of variables is at least three, then a critical (nonweakly positive) form is
nonnegative with radical generated by a positive vector z, called a critical vector. In
Proposition 6.2 below we give an analogous result for hypercritical forms.

Lemma 6.1. Let g : 7" — 7 be a hypercritical semi-unit form.

a) Ifq is also critical, then n = 2 and q is the Kronecker form q,, = x%—i—x%—mmxz
for some m > 3. In particular, g has no critical vector.

b) If q is nonunitary then n = 2 and q is (up to order of variables) one of the forms
q,, or q,, below, with m > 0,

gy, (x1,x2) = Xf —mx1x and gy (x1,x2) = —mxx2.
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182 6 Weakly Nonnegative Quadratic Forms

Proof. 1f q is also critical and n > 3, by Theorem 5.2 the form ¢ is nonnegative, in
particular weakly nonnegative. This is impossible since g is hypercritical.

Then n = 2, that is, g (x1, x2) = )cl2 + x% — mx1x, for some m € 7Z (since q is
unitary by Lemma 5.5(a)). Observe that if m < 2 then g is weakly nonnegative, and
see Proposition 1.23 for the claim on critical vectors.

To verify (b) observe first that the forms g}, and ¢,, are hypercritical precisely
when m > 0. Consider a vertex ¢ € {1, ..., n} such that g(e.) = 0, and take x(©) to
be the vector in Z"~! obtained by deleting the variable x.. Then

q(x) =q ) +xc [ Y giexi
i#c

Now, if ¢ is hypercritical then there is a positive sincere vector x such that g(x) <
0. Moreover, ¢ (x(©) > 0 implies that the second summand above is negative.
Since x is a positive vector, there must be a d # ¢ such that g.; < 0. Then the
restriction ¢’ = ¢{“? is one of the hypercritical forms ¢/, or ¢/, above. Since ¢ is
itself hypercritical, then ¢ = ¢’ and the result follows. O

By Lemma 6.1(b) we may focus only on hypercritical unit forms, which can be
characterized as follows.

Proposition 6.2. For a unit form q : 7' — 7 with n > 3 the following are
equivalent.

a) The form q is hypercritical.

b) The form q is not weakly nonnegative, and for every critical restriction g of q
there is an index i with I = {1, ...,n} — {i}, and a positive critical vector z of
q" such that q(z)e;) < 0.

Proof. Assume ¢ is hypercritical and consider a positive vector v with g(v) < 0.
Since any proper restriction ¢’ is weakly nonnegative, the vector v is sincere. If
g! is critical, since n > 3 then ¢’ is a proper restriction of g by Lemma 6.1(a).
Moreover, since g;; > —2 forall i # j (for g does not contain any Kronecker form
gm With m > 2) by Theorem 5.2 we may take a critical positive vector z for ¢,
which we identify with its inclusion in Z".

Take positive numbers m and k such that kv — mz is a positive but nonsincere
vector, say (kv —mz); = 0. (Such numbers exist: take anindex j € {1, ..., n} such

that i' < i’ foralli € {1,...,n} and take k := z; and m := v;.) Therefore
t J
0 < gV (kv —mz) = kK*q(v) — kmq(z|v) + m*q(z) < —km Y _viq(zle),
i¢l

and since v; > O foralli € {1,...,n} there must exist an i ¢ I with g(zle;) < O.
Observe now that 2z + ¢; is a sincere vector for ¢ is hypercritical and

qQ2z+ei) =4q(2) +2q(zle) +1=2q(zle)) +1 <O0.
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Hence I = {1,...,n} — {i}. For the converse assume that ¢ is not weakly
nonnegative for some i € {1,...,n} and take I C {1,...,n} — {i} such that ¢’
is a critical restriction of g¥) (thus a critical restriction of ¢). By hypothesis (b) we
have g/ = ¢©). Therefore ¢'") is hypercritical as well as critical, and by Lemma 6.1,
it is the Kronecker form ¢, for some m > 3, which contradicts the existence of a
critical vector for ¢). Then ¢ is weakly nonnegative for all i € {1, ...,n}, that
is, q is a hypercritical form. O

Lemma 6.3. Letq : Z" — Z be a hypercritical unit form with at least three indices

i, J, k.

a) If qij = =2 then n = 3. In particular, the bigraph B, associated to q is one of
the following six bigraphs:

i (5 I
2 2 2
I Is Ts
1 \/ 3 1 \3 1 \3
2 2 2
b) Ifgij = qik = qjx = —1 and q® is critical, then n = 4 and the bigraph of q is

one of:

Ni N N3

Moreover, the quadratic form g represents numbers —1 and —3 for
A € (T3, Ty, Ts, Ts, N2, N3}

Proof. Since g has at least three vertices, B, does not contain any Kronecker form
gm as a restriction for m > 3, that is, g,s > —2 for all vertices r < s.

Assume first that g;; = —2 for some vertices i < j. Then g7} is a critical
restriction of g. By Proposition 6.2 we have n = 3. Set (i, j, k) = (1,2,3) and
notice that z = (1, 1) is a critical vector of ¢®, thus again by Proposition 6.2 we
have

0 < q(zle3) = q13 + q23.
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This implies that B, is one of the bigraphs 71, ..., Ts. Moreover, the forms g7; for
i =1,...,6 are all hypercritical (Exercise 1 below).

Assume now that g;; = qix = qjx = —1. Then ¢!/} is a critical restriction of
q,hence n = 4 and we may take (i, j, k, £) = (1, 2, 3, 4). Since q(3) is critical (with
critical vector e] +e2 +e4), we have g14 = go4 = —1 and 0 > g(e; +e2+e3les) =
—2 + g34. Therefore g34 € {—1, 0, 1}, with corresponding cases N1, N> and N3.

For the last claim simply verify g7, (vi) = —1 = g; (v;.) and gr; (w;) = =3 =
4qn; (w;.) for the vectors in the following list (fori = 3,...,6 and j = 2, 3)

v3=(1,2,1) and w3 = (2,5, 2),
va=(1,1,1) and wg = (2,3,2),
vs = (2,2, 1) and ws = (4,4, 1),
ve = (1,1,1) and wg = (2,2, 1),
vy = (1,1,1,1) and w) = (2,2,2, 1),
vy =(2,2,2,1) and w = (4, 4,4, 1). O

We now show that almost all hypercritical forms represent numbers —1 and —3.
The importance of these two numbers will be clear in the proof of Theorem 6.16. In
what follows, by a slender quadratic form we mean a unit form g with g;; > —1 for
all i < j. The bigraph associated to the Kronecker form ¢,, is denoted by K, for
m # 0.

Proposition 6.4. Let g : 7' — 7 be a hypercritical unit form whose associated
bigraph is not K,,, (m > 3), T1, T>» or N (see Lemma 6.3 for notation). Then there
are positive (sincere) vectors v and w such that q(v) = —1 and g(w) = —3.

Proof. Consider By, the bigraph associated to g. Since K,, is not contained in B,
form > 3 we have ¢;; > —2foralli < j. If g;; = —2 for some i < j, by
Lemma 6.3(a) the bigraph B, is one of T3, ..., Ts, which represent —1 and —3.
Therefore we may assume that g is a slender form. We may also assume, using
Proposition 6.2, that g™ is a critical form with critical vector z, and g(z|e,) =
—s < 0. Moreover, by Proposition 5.4 we may take z; = 1.

First we show that 0 < s < 3. By the above assumptions, the vector x :=
7z — e1 + ey, is positive and not sincere. Thus, since g (e1le,) = g1, > —1,

0<q(x)=q@)+2—qzler) +q(zlen) —qleilen) =2 —qin —s <4 —>5.
Notice now that s # 3. Indeed, for s = 3 and x = z — e] + ¢, we have 0 <
q(x) =2 — g(er|en) — 3, thatis, g1, = —1 and ¢(x) = 0. Then ¢! is not weakly

positive, and again by 6.2, the form ¢! is critical. Since x, = 1 the vector x is
critical for ¢1. We may assume that g, = —1, therefore

0=g(xlex) =q(zle2) — q12 + q2n = —q12 — 1,
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that is, g1 = —1. Now use Lemma 6.3(b) to conclude that B, = Nj, which is
impossible.

The proof is completed by showing that in cases s = 1, 2 such vectors v and w
may be given explicitly:

Cases = 1.

q(2z+en) = 1+2q(zlen) = —1 and g(4z +e,) = 1 +44q(zlen) = —3.
Case s = 2.

q(z+e)=1+¢q(zley) = —1and g2z + e,) = 1+ 2q(zle,) = —3. |

As an immediate consequence we have:

Corollary 6.5. Let g : 7' — 7Z be a hypercritical unit form with n > 5. Then q
represents numbers —1 and —3.

For integers a < b denote by [a, b] the set of integers £ witha < £ < b.

Lemma 6.6. For any hypercritical unit form q : 7' — 7 there is a (sincere) vector
v € [0, 12]" such that q(v) < 0.

Proof. The statement is clear for Kronecker forms g,, = gk,, with m > 3, and for
the forms with associated bigraphs 73, T4, T5, Ts, N2, N3 by simple inspection of
the proof of the last claim in Lemma 6.3.

If g is not the form associated to graphs 77, T», then by Proposition 6.4 we may
assume that ¢ is a critical restriction with positive critical vector z, and —1 is
either represented by 2z 4 e, or by z + e,,. Since by Corollary 3.31 we have z; < 6
for all i (cf. also Proposition 2.22), then both 2z + ¢, and z + ¢, belong to [0, 12]".

To deal with cases T1, T» (resp. N1) evaluate at the vector v = (1, 1, 1) (resp.
v=(1,1,1, 1)) to get g, (v) = =2, g1, (v) = =3 (resp. gn, (v) = —2). |

Exercises 6.7.

1. Show that all bigraphs in Lemma 6.3 correspond to hypercritical forms.
2. Prove that the form g,, = gx,, does not represent the number —3 for any m > 2.
3. Show that the form g4 does not represent the number —1 for any

A € {KWM Tl, T21 NI}WLZ4

4. Which of the forms associated to 77, 7> or N; represents the number —3?

6.2 Maximal and Locally Maximal Roots

For a weakly nonnegative semi-unit form ¢ : Z" — Z denote by rad™ (¢) the set of
positive vectors x with g(x|e;) = 0 fori = 1, ..., n (called the positive radical of
q). Observe that if x € rad™ (¢g) then ¢ has no maximal positive root (with partial
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orderx > yif x — y € Njj), since 1 = g(v) = g(v + mx) for any positive g-root
v and any m € N. As in the weakly positive case, we say that a weakly nonnegative
semi-unit form ¢ is sincere if it has a sincere positive root.

Proposition 6.8. Let g : 7' — 7 be a sincere weakly nonnegative unit form. The
following are equivalent.

a) There are finitely many sincere positive roots of q (and we call g finitely sincere).
b) There is a maximal sincere positive root of q.
c) radt(g) = 0.

Proof. Clearly we have that (a) implies (b) and that (b) implies (c). To show that
(c) implies (a) let us assume that g has infinitely many sincere positive roots. Then
we may take a sequence of sincere positive g-roots y', y2, ... with y" < y”*! for
m=1,2,...(see Lemma 5.12). Notice that |g(y"|e;)| < 2foralli = 1,...,n and
m > 1. This follows from the sincerity of y™ and the inequality

0<q(y"+xe)=2+q0"e).

Hence there are y¢ < y™ with q(y%le;) = q(y"|¢;) foralli = 1,...,n and 0 #
y" — yt e rad " (q). ]

A positive root v of a semi-unit form ¢ is said to be locally maximal if g (v|e;) > 0
foralli =1, ..., n. For v a maximal positive g-root, since ; (v) = v —q(v|e;)e; is
again a g-root where o; is the i-th reflection for g (Sect. 1.2), v is a locally maximal
root. The converse is false in general, as the following example shows.

Example 6.9. Consider the quadratic form g given by the following bigraph, and
selected vectors u and v.

u 1 1 v: 2 2
N / N /
2 4
/ /

1 / 1 1 7 2
N / N/ /
2 2 2 4
/ 7\ / RN
N s 1 N s 2
N / N /

ANIVEN N2

Then g is weakly nonnegative and u < v are positive g-roots with u a locally
maximal root.

Proposition 6.10. Let g : 7' — 7 be a finitely sincere weakly nonnegative unit
form. Then a sincere positive root y of q is maximal if and only if y is locally
maximal.
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Proof. We only need to show that local maximality implies maximality. Assume y
is a locally maximal sincere positive root of g, and that x is a root with y < x. Then

q1x) =Y xiq(yle)) = Y yig(yler) = q(yly) = 2.

i=1 i=1

Thus0 < g(x —y) =2—g¢g(y|x) <0, thatis, g(x —y) = 0. Notice thatv :=x — y
satisfies g(v|e;) > O foralli = 1,...,n (for if g(vle;) < 0 then g(2v + ¢;) =
4q(v) + 1 4+ 2g(v]e;) < 0). We also have g(v|y) = q(x]|y) — 2 = 0, therefore

0=q|y) = Zyiq(v|€i),
i=1

which implies that v € rad™ (g), in contradiction with Proposition 6.8. O

A vertex i such that g(y|e;) > 0 for a locally maximal positive g-root y of a
weakly nonnegative semi-unit form g is called an exceptional index (or vertex) for
y (cf. Lemma 5.9).

Lemma 6.11. For a locally maximal positive root y of a weakly nonnegative semi-
unit form q, one of the following situations occur:

a) There are exactly two exceptional indices i # j and q(yle;)) = yi =1=y; =

q(ylej).
b) There is only one exceptional index i, and q(yle;) = 1 and y; = 2.
c) There is only one exceptional index i, and q(yl|e;) =2 and y; = 1.

Furthermore, if y is also maximal then situation (c) never occurs.

Proof. Let y be a sincere locally maximal positive g-root. Then we have
n
2=q0ly) =) yigOlen,
i=1

thus clearly one of (a), (b) or (c) occurs. If (c¢) holds then g2y — ¢;) = 5 —
2g(yle;) = 1 and 2y — ¢; > y, therefore y is not a maximal root. O

The following lemma will be useful to determine the maximality of positive
sincere roots. For instance, this criterion is used below in the proof of Lemma 6.13.

Lemma 6.12. Let g : Z" — 7 be a semi-unit form with a maximal sincere positive
root y. Then for any positive vector v with q(v) = —1 we have g(y|v) = 0.

Proof. Since v is positive and y is locally maximal we have g (y|v) > 0. Then

_q(lv)

2(v) v=y+q(ylvv,

oy(y) =y

which is a positive g-root with y < o0y (y). By maximality g(y|v) = 0. O
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Lemma 6.13. Let g : Z" — 7 be a unit form such that there are indices 1 < i <
J <nwith =5 < gij < —3. Then q has no maximal sincere positive root.

Proof. Let us assume that y is a sincere maximal positive root of g (hence locally
maximal). Consider the triple r = (e;, ¢}, y) and the root induced unit form g, given
by

qr(x1, x2, x3) 1= q(x1€; + x2¢; + x3Y)

= X} + x5 + 23 4+ xix3q(yles) + xax3q(yle;) — sx1xa,

where g;; = —s for some integer 5. Let B be the bigraph associated to g,. The shape
of B depends on the values of g (y|e;) and g(y|e;). Since y is a root we have

2=qO1y) =) wa(len,
k=1

and since y is sincere, positive and locally maximal then g(y|ex) > O for at most
two vertices k (and g (y|ex) = O for the rest), and in particular m := g(yle; +¢;) €
{0, 1, 2}. Thus we consider four cases: Case 1) m = 0; Case 2) m = 1; Case
3) m = 2 and g(yle;)g(yle;) = 0, and Case 4) g(yle;) = 1 = g(ylej). These
cases correspond to the four possibilities for B as depicted below (from left to right,

observe that in all cases we have (g,)12 = g12 = —5).
9 1 1 1
3 4 1 1
7 4 3 6
8 12 1 1 2 1 2 3
2 2 3 6 1 1 1 1
4 sedges 4 3 sedges 3 2 sedges 4 5 sedges 10

Each vertex of B contains a column with three natural numbers, corresponding to
three vectors in Z5° which are, from top to bottom, sincere positive roots of g, for
s = 3,4, 5 respectively. Then g, has a sincere positive root x = (x1, x2, x3) and
y' :=x1e; +x2ej + x3y is aroot of ¢ with y’ > y, which is impossible. |

The following technical lemma imposes restrictions on sincere weakly nonnega-
tive unit forms which fail to be unitary.

Lemma 6.14. Let g : ! — 7 be a weakly nonnegative semi-unit form, and x € 7.1
a positive sincere root. Forr = 0,1 take I" = {i € I | g;; = r} and consider the

restriction x” = x|;r in Z!". Then one and only one of the following assertions
holds:

a) gxH =1 and gij = 0 foranyi € and j eI
b) q(x') = 0 and there exist i # j in I° such that x; = x;j = gij = 1. Moreover, if
s € I%andt € I is a different index satisfying qs; # 0 then {s, t} = {i, j}.
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c) q(xl) = 0 and there exist i in I1° and j € I' such that x; = xj =gqij = L
Moreover, if s € I° and t € I is a different index satisfying qs; # 0 then
{s,t} =1{i, j}.

Furthermore, if x is maximal and I1° # @ % I', then (c) holds and I° contains
exactly one element.

Proof. Let us suppose that / = {1, ...,n} and 19 = {1,...,m} form < n. Then

l=qgkx)= q(xl) +q(x0) ~|—q(x1|x0), where q(x1|x0) = Z qijXiXj.
iel!
jel®

Now, by Lemma 6.1 we have ¢;; > 0 fori € 1° and j € I (for ¢, and g, are
hypercritical if m > 0). Hence the three summands on the right of the equation
are nonnegative, therefore exactly one of them is nonzero. This leads to the three
assertions above, since x is sincere.

For the last claim we give a root y > x for both cases (a) and (b). For (a) take
y = 2x%4x!, whereas for (b) take y = x°+2x!. Notice that y > x since I" = ¢ for
r =0, 1. Thus if x is a maximal root then (c) holds, that is, 1 = g(x) = ¢ (x!|x?).
Further, if k € I° with k # i then

q(x +ex) = q(x"1x%) + g(xler) + g (xlexr) = g(x' 1% = 1,

that is, x + e is aroot of ¢ larger than x. O
Exercises 6.15.

1. Do hypercritical unit forms have to be connected?

2. Show that the quadratic form ¢ in Example 6.9 is weakly nonnegative.

3. Show that if ¢ contains a bigraph with shape T7, 7> or N; (as in Lemma 6.3),
then g does not have a maximal sincere positive root.

4. In Example 6.9, verify that # and v are roots of g.

5. For a weakly nonnegative semi-unit form ¢, a positive g-root x and a positive
isotropic vector z of g, show that the following assertions hold:

i) g(xlej) > —2and g(zle;) > —1fori =1,...,n.
ii) If x; > O then g(x|e;) <2, and if z; > 0 then g(z|e;) < 1.
iii) qij = 3if x; #O;éxj,andq,-j <2if gz 750752]'.

6. Let ¢ be a nonzero connected weakly nonnegative semi-unit form. Must g be
unitary?

7. Consider the unit form in three variables g (x1, x2, x3) = xlz + x% + x32 — $X1X2.
Show that if s > 3 and s — 2 is not the square of an integer, then g has a sincere
positive root.
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6.3 Criteria for Weak Nonnegativity

Here we prove a Weak Nonnegativity Criterion due to Happel and de la Pefia
in [31]. Ovsienko showed in [44] that this result also holds without the condition
gij = —Sforalli < j.

Theorem 6.16 (Happel-de la Pefia). Let g : Z" — 7 be a unit form with q;; >
—Sforalll <i < j < n.If q has a maximal sincere positive root, then q is weakly
nonnegative.

Proof. Let y be a maximal sincere positive root of g. By Lemma 6.13 and
Exercise 6.15.3, the form g does not contain bigraphs of type Ny, T1, T», K3, Ky,
Ks, nor, by assumption, bigraphs K,, for m > 6. If g is not weakly nonnegative,
there is a hypercritical restriction ¢/ of ¢, and by Proposition 6.4 there exist positive
vectors v and w with support I and with ¢g(v) = —1 and g(w) = —3. It follows
from Lemma 6.12 that g(y|v) = 0. Since v and w are positive vectors with same
support and y is locally maximal, then g (y|w) = 0. Therefore

g2y +w) =4q(y) +q(w) =1,

in contradiction with the maximality of y. O

Lemma 6.17. Let g be a hypercritical unit form and i an index such that ¢ is not
critical. Then gV is a positive form.

Proof. Observe first that ¢ is weakly positive, since otherwise it would contain a
critical restriction ¢, contradicting Proposition 6.2. Again by Proposition 6.2 there
must exist a vertex ¢ such that ¢(°) is a critical restriction of ¢ (hence ¢ # i), with
critical positive vector z such that ¢(zlec) < 0. Then ¢©@® is a positive unit form
by Corollary 5.3.

If ¢ is not positive, there is a nonzero vector v such that ¢®(v) < 0. In
particular v. # 0 since ¢(©@) is positive, so we may assume that v = v’ + v.e,
with v, = 0 and v, > 0. Notice that for &/, 8 > 0 we have

g(av + Bz) = a?q (V) + afq(z]v' + veer) < aBucq(zles) < 0.

Since ¢ is weakly positive the vector v’ has a negative entry. But z is a critical
positive vector of ¢(©), therefore we may find &, 8 > 0 such that «v+ gz is a positive
nonsincere vector (take for instance « = z, and 8 = —v, where a is an index such
that ’Z’Z is minimal among all fractions IZ}; for j € supp(z) = {1, ...,n}—{c}). This
is impossible since g (av + Bz) < 0 and ¢ is hypercritical, hence ¢ is a positive
unit form. |

The following immediate consequence may be considered as a partial analogue
of Theorem 5.2 (see also Corollary 5.3).

Corollary 6.18. Any proper restriction of a hypercritical unit form is nonnegative.
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Proof. The result is clear for Kronecker forms ¢, with m > 3. Therefore we may
assume the hypercritical form ¢ has at least three vertices (in particular g;; > —2
for all i < j). By Lemma 6.17, if ¢ is not positive then ¢* is critical, thus
nonnegative by Theorem 5.2. O

We now prove a generalization of the (Jacobi-like) Zeldych Criterion 5.26 given
in [55]. Again we do not assume the quadratic form to be unitary. Let ad(B) denote
the adjugate of a square matrix B.

Proposition 6.19. Let g : 7' — 7 be an integral quadratic form with associated
symmetric matrix A (thatis, q(x) = x" Ax for any x € Z"). The following assertions
are equivalent:

a) The form q is weakly nonnegative.
b) For every principal submatrix B of A we have either det(B) > 0, or ad(B) has
a negative entry.

Proof. Let B be a principal submatrix of A and assume that ad(B) is nonnegative
(that is, it has no negative entry). By Perron—-Frobenius Theorem 1.36 there exists a
positive eigenvector v € R” of ad(B) with eigenvalue p > 0. Assuming that g is
weakly nonnegative and considering g as a real function ggr : R” — R we have by
continuity

1 1
0<gr(v) =v'Bv=v'B(ad(B)v) = det(B)|v]?
o o

and therefore det(B) > 0.

Suppose now that g satisfies (b) but is not weakly nonnegative. Since property
(b) is preserved by principal minors, by induction on n we may assume that ¢
is hypercritical. By Corollary 6.18, every proper restriction of g is nonnegative,
therefore by Proposition 1.33 we have det(B) > 0 for each proper principal
submatrix B of A.

Thus det(A) < O since otherwise g would be nonnegative. Take ad(A) = (v;;).
By hypothesis there must exist i, j with v;; < 0. Let v be the j-th column of ad(A),
so that Av = det(A)e; and g(v) = det(A)v;;. Further, let w > 0 be a sincere
positive vector with g(w) < 0. For A = —ZZ > 0 we have (v + Aw); = 0 and

(since the restriction ¢!) is nonnegative)

0 <q(+rw)
= q(v) 4+ 2Aw' Av + A*q(w)
< det(A)[vj; + 2 w;]
_ det(A)

[vjjwi — 2vijw;].
w; Y ijwj
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As in the proof of Proposition 5.26, if v;; < 0 we take i = j, thus
0 <qg(v+Aiw) < det(A)(—vj;) <0,
and if vj; > O then v;;w; — 2v;;w; > 0 and we have

det(A)
0<qgqlw+rw) < [vjjw; —2v;jw;] < 0.
wi

Both cases yield a contradiction. O

The following practical criterion is useful for the computational verification of
weak nonnegativity.

Theorem 6.20. A semi-unit form q : 7' — Z is weakly nonnegative if and only if
q(z) = 0 forevery z € [0, 12]".

Proof. If ¢ is weakly nonnegative then g(z) > O for all z € [0, 12]". If ¢q is
not weakly nonnegative, then there is a hypercritical restriction ¢’ of g, and by
Lemmas 6.1 and 6.6 there is a vector z € [0, 12]" with ¢ (v) < 0. |

We say that a weakly nonnegative semi-unit form g is O-sincere if there exists
a sincere vector y € rad*(q). We point out that in this case any isotropic vector
y € Nj belongs to the positive radical rad " (¢) of g. In fact, we have the following
more general result.

Lemma 6.21. Let g : Z! — 7 be a weakly nonnegative semi-unit form and take
-1
weq(0).

a) Ifx € rad* (¢) and supp(u) C supp(x), then p € rad(q).
b) If u is positive and z € 7! is such that q(z|p) = 0 and z + nu is a positive
sincere vector for some n > 0, then u € rad™ (q)-

Proof. Assume there is an index i € [ such that g(u|e;) # 0 and take ¢ = +£1 such
that eg(ule;) > 0. Taking y = e; — 2e ., we observe that

q(y) = q(ei) —2eq(ule;) < —1.

By the requirement on the supports in (a), notice that there exists a k > 0 such that
y + kx is a positive vector, thus we arrive at the contradiction

0<q(y+kx)=q) =-1

This shows (a). For (b) assume that u ¢ rad(q), thus there exists i € I with
q(ulei) > 0 (for u is a positive vector). In particular, there is k£ > 0 such that

q(z +kule;) = q(zle;)) +kq(ule;) > g(z) + 2.
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Take m := max(k,n) and y := z + mu. Then g (yle;) > q(z) +2 and g(y) = q(2)
since g (z|u) = 0 and g () = 0. Therefore

gy —ei) =q(y) +qei) —qylei)) =q(@)+1—q(yle;)) <= —1,

which is impossible since y > z + nu is positive and sincere. O

For a semi-unit form g with a sincere positive radical vector z, we trivially
observe that any vector x may be taken into a positive vector x + kz with k € N, so
that g (x) = g (x + kz). This proves the following lemma.

Lemma 6.22. Any O-sincere form is nonnegative.

6.4 Iterated Edge Reductions

Recall from Sect. 5.3 that for a unit form g : Z" — Z and indicesi # j withg;; <0
we construct a quadratic form ¢’ (x) = g(p(x)) + xixj, with p : /Ny given
by

ek, ifl <k <un;

pler) = }
ei+ej, ifk=n+1,

called the edge reduction of q with respect to i and j. The same construction can be
performed when ¢ is a semi-unit form (or even a pre-unit form, that is, an integral
quadratic form g with g(e;) < 1 for all indices i) satisfying g(¢;) = 1 = g(e;) and
qij < 0.

The quadratic form ¢ can be recovered from ¢’ using the nonlinear map 7 :
7" — 7"t defined as follows,

w(x)y =xk, fork ¢{i,j,n+ 1}and

Os | — Ay X ), f S K
(1 )y () = | T ) =
(x,' —x/',(),x/'), ifx,- >x/~.

Since p o w = Id we have g (x) = ¢’(;r (x)) for any vector x € Z".

Example 6.23. Consider the unit form g with associated bigrah B, as shown below
(left). Its edge reduction with respect to vertices a, b is the form ¢’ with bigrah B,/

(right).
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B, = o,
Y

N y

For a quadratic form ¢ denote by X7 (gq) the set of isotropic vectors of g with
nonnegative entries.

Proposition 6.24. Let g : 7' — 7 be a semi-unit form and q' : Z"t' — 7 be
obtained from q by edge reduction with respect to indices i and j. Then q is weakly
nonnegative if and only if q' is weakly nonnegative. In this case the maps p and &
are bijections (inverse to each other) between the sets X (q) and XV (q').

Proof. Take a positive vector y in Z"+1_If ¢ is weakly nonnegative, since p(y) > 0
we have

q' () =q()+ iy >0.

Conversely, if 0 < x € Z" and ¢’ is weakly nonnegative, then 7 (x) > 0 and
q(x) =q'(w(x)) = 0.

Assume that ¢ and g’ are weakly nonnegative. By the identity ¢ (x) = ¢’ (7 (x)) the
mapping 7 restricts to a function 7 : Xt (g) = XT(g'). If y € X7 (q’) then

0=¢'"(») =g+ iy

Since both summands on the right are nonnegative, it follows that y;y; = 0 (thus
y € Im(x)) and that p(y) € XV (g). In particular, 7 : X7 (q) — XT(¢')is a
surjective mapping, and the result follows since p o 7 = Id. O

Even though there is a bijection between X+ (g) and X ¥ (¢) when g is a weakly
nonnegative semi-unit form and ¢’ is an edge reduction of ¢, it is not always true that
q and g’ have the same number of critical vectors (a vector z is critical for g if the
restriction of g to the support supp(z) of z is critical having z has positive generator
of its radical). For instance, if ¢ and ¢’ are the forms shown in Exercise 6.23, then
the following vectors vy and v, are critical vectors for g,

2 1
1/\$1 i

0 00
0 0.0 1 11
N N
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while ¢’ has the following different critical vectors, 7 (v1), 7 (v2) and a third vector
w with an entry 3.

1 0 0
AN - ath
0 0 1 ™1

N7 \1/ N,
0 \}0 RN - \\1\1
\0/ \1/ \l/

This behavior, along with notions like positive corank and conformality for edge
reductions, are further explored in [54].

For a unit form g which is not weakly positive there might be an arbitrarily long
iterated edge restriction for ¢, which is evident from the following example,

B, = o) —— e B, = e

q - 2

N
oy

3 .
o3

where By is a subbigraph of the bigraph B, associated to the edge reduction ¢’ of
q with respect to the vertices 2 and 3. Notice that this example is actually weakly
nonnegative.

An iterated edge reduction for a semi-unit form ¢’ : Z" — Z is a quadratic form
q : Z™ — Z with m > n that is obtained iteratively from ¢ by a sequence of edge
reductions. For instance, for the example in three variables g above, consider the
iterated edge reductions g” by edges {1, 2}, {1, 2} and {2, 3}, and the reduction g"”
by edges {2, 3}, {1, 2} and {1, 2} respectively, as shown below.

Bq// = .43 Bq/// = ST .53
o5 " @) o - 02

o] ®]

o o

.3. .3

The following is a suitable generalization of Theorem 5.24 to the weakly nonnega-
tive setting.

Theorem 6.25. A semi-unit form q : 7' — 7 is weakly nonnegative if and only if
any iterated edge reduction q’ of q is semi-unitary.

Proof. The necessity follows from Proposition 6.24.
For the converse assume that g is a semi-unit form which is not weakly
nonnegative. If there are vertices a # b with g,p < —2, then the edge reduction



196 6 Weakly Nonnegative Quadratic Forms

of ¢ with respect to a and b is not semi-unitary. Therefore we may assume that
qab > —2 for all vertices a # b. By Proposition 6.2 there is a critical vector z and
i ¢ supp(z) such that g(z|e;) < 0. In particular,

qQz+e;) =qii +2q(zle;)) < 0.

Take vertices a and b with g4 < 0 and consider the reduction ¢’ of ¢ with respect
to a, b. First we notice that there exists a j ¢ supp(z) such that

q'2n(z2) +ej) <O0.
If a =i and b € supp(z) then take j = n + 1, so that
q'2m(2) + en+1) = q(P[27(2) + ent1]) = ¢z +ei +ep) < gz +e;) <O0.
Ifi ¢ {a, b} or {a, b} N supp(z) = ¥ then take j = i and observe that
q'2n(z) +e) =qQRz+e) <O.

Now, if the weight |z| = ), |z;| of z is greater than one, taking a, b € supp(z)
we have |7(z)] < |z|. By the above argument, replacing g for some iterated
reduction of g, we may assume that |z| = 1, thatis, z = ¢, for some k € {1, ..., n}.
Hence

0> gQex + ei) = 4qik + gii + 2qui.

Since gi;, qrk € {0, 1} we have gxr = 0 > gi;. Then the bigraph B associated to the
restriction q{k”} has one of the following forms,

Co—D)  Cu.

corresponding to cases ¢;; = 0 (left) and g;; = 1 (these restrictions are the
hypercritical semi-unit forms ¢,, and ¢,, from Lemma 6.1). For the reduction ¢’
of g with respect to k and i we have

q,’,+1,,,+1 = qkk + qii + qki = qii + Gki»

thus ¢’ is not a semi-unit form unless B has the form C’k ®. In this case
the restriction (¢"){%>"*+1} has the following associated bigraph,

()

®n+1

7
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hence the reduction of ¢’ with respect of k and n + 1 is not a semi-unit form, which
completes the proof. O

Following [54], by an exhaustive reduction for a semi-unit form g : Z" — 7Z we
mean an iterated edge reduction g’ of ¢ satisfying the following conditions:

i) Every edge reduction involved in the construction of ¢’ is with respect to vertices
i and j satisfying 1 <i < j <n.
ii) Forany 1 <i < j < nwehaveql.’j > 0.

Notice that all exhaustive reductions involve the same number K of edge reductions,
namely

K== Y a

i<jandg;;<0

The forms ¢g” and ¢’ right before Theorem 6.25 are examples of exhaustive
reductions of the quadratic form

q(x1, x2,x3) = x7 + x5 + x3 — 2x1x2 + xX1x3 — x2%3.

Furthermore, we may consider a sequence qo, ql, qz, ... of semi-unit forms such
that ¢ = ¢ and for k > 0 the form ¢* is obtained from ¢*~! by an exhaustive
reduction. Then we say that ¢* is obtained from ¢ by an iterated exhaustive
reduction (of length k). Notice that there is a sequence of integers

n=npo<n<n<...<ng

such that qi is a semi-unit form in n; variables for i = 0, ..., k. It is not known
whether a semi-unit form ¢ is weakly nonnegative if and only if any iterated
exhaustive reduction of g stops, after finitely many steps, in a quadratic form
having only nonnegative coefficients. However, the following criterion (which is
an alternative version of Theorem 6.25) was proved in [54].

Remark 6.26. Let g : Z' — 7 be a semi-unit form, and ¢g¥ : Z" — Z be a
sequence of iterated exhaustive reductions of g fork =0, 1, 2, ... Then g is weakly
nonnegative if and only if ¢g¥ is semi-unitary for all k < 31.

6.5 Semi-Graphical Forms

The following result, known as the reduction theorem by deflations of weakly
nonnegative forms, gives the main procedure to obtain graphical forms from weakly
nonnegative semi-unit forms, which is one of the main tools in next section. We
present a useful generalization.
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Theorem 6.27. Let q : Z! — 7 be a weakly nonnegative semi-unit form with a
maximal sincere positive root x. If I = J U K is a nontrivial partition of the index
set I, then there is an iterated deflation T for q concentrated in J such that the form
q' = qT satisfies the following.

a) The form q' is a weakly nonnegative semi-unit form.

b) The form q' has a maximal positive root x’ with x = T (x').
¢) We have qi’j > 0foralli, j € J Nsupp(x’).

d) There are inclusions,

RY(¢)—T—>RT(g) and ZT(g)——= 5" (q).

Proof. Take a deflation Tl]_ for g and the form g~ = quj_ Consider a positive
vector y € Z" and take y~ = TJ (y) =y +yiej. Then y~ is a positive vector and

g M =qT;y)=q(7) =0,

which shows (a). For (b) we take i and j with x; > x; so that x™ := (Ti;)’lx is
a positive ¢~ -root. If y™ is a positive ¢~ -root with y~ > x7, then y := Tl]_ (y7)is
a positive g-root with y > x. Hence y = x, that is, the vector x is a maximal root.
The claim (d) follows as in Lemma 2.19. Therefore points (a), () and (d) hold for
iterated deflations.

For (c), as long as there are vertices i and j such that g;; < 0 we may take a
deflation Tl]_ or Tj; and continue with the reduction. The process must stop since in

each step the weight [x~| = ), x;” of x™ is smaller than the weight |x| of x. m|

Following Drixler, Golovachtchuk, Ovsienko and de la Pefia [22], we say that
a semi-unit form ¢ : Z! — Z is semi-graphical if there exists a vertex w € I
such that g.; < O for all i # w, and ¢;; > O for all i, j # w. As defined by
Ringel [46], a graphical form is a semi-graphical unit form g such that |g;;| < 1 for
all i # j. According to Sect. 5.5, a centered form g is a semi-graphical unit form
with g,; = —1 for all i # w. Therefore graphical forms are centered.

Lemma 6.28. Let g be a finitely sincere weakly nonnegative semi-unit form. Then
By is a connected bigraph. Moreover, qi; = 0 for a vertex i if and only if gjj > 0
forall j #1i.

Proof. If B, has a nontrivial partition supported by the sets of vertices / Uand 12,
and x is a sincere positive g-root, then x = x! 4 x? with supp(x’) = I fori = 1, 2.
Since 1 = q(xl) + q(xz) we may assume that q(xl) = 1 and q(xz) = 0, and
thus conclude that all vectors x! 4 mx? are sincere positive g-roots for m > 0, in
contradiction with g being finitely sincere.

For the second assertion notice that if g;; = 0 and g;; < 0, then ¢(2¢; + ¢;) =
qjj +2gij < 0. Conversely, assume that g;; > 0 for all j # j and that g;; = 1.
Since B, is connected, there exists j # i such that g;; > 0. Then for any sincere
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positive root x we have

q(xle) =2xi + Y xiqui = 3,
ki

which is impossible since 0 < g(x — ¢;) <2 — g(x]e;). |

The Kronecker form g, for m > 2 is a semi-graphical form which is critical
and hypercritical for m > 3. All other critical semi-graphical forms are actually
graphical.

Lemma 6.29. Any critical semi-graphical form q in n > 3 variables is a graphical
form.

Proof. Since n > 3 we have g;; > —1 forall i, j # w. We show that g;; < 1 for
i, j # w. Since the vector e; — e; is not sincere, and proper restrictions of critical
forms are positive (cf. Corollary 5.3), we have

0 <gqlei—ej) =2—gqij,

thus the result. m]

The list of critical semi-graphical forms with n > 3 is precisely that of Table 5.3.
It will be useful to have a classification of centered hypercritical forms (equivalently,
hypercritical semi-graphical forms with n > 3 variables). In Table 6.1 we exhibit
such forms.

Recall that by a O-sincere form we mean a weakly nonnegative semi-unit
form g having a sincere positive radical vector. We say that a 0-sincere (weakly
nonnegative) unit form is reduced provided g;; < 1 for all vertices i, j (compare to
slender forms). The following lemma justifies this definition. Recall from Sect. 5.5
that a unit form ¢ is obtained from ¢’ by doubling a vertex k if g is the one-point
extension ¢ = q’[—ey] (cf. also Exercise 3.32.4).

Lemma 6.30. Let g be a 0-sincere (weakly nonnegative) unit form. Then q is not
reduced if and only if there is a vertex i such that q can be recovered from the
restriction ¢\ by doubling a vertex.

Proof. Assume g : Z" — 7 and take for simplicity i = n and ¢’ = ¢™. Then
clearly g'[—ex]in = 2, thus ¢ = g'[—ex] is not reduced.

For the converse assume that g;; > 1 for some vertices i # j, and take z to be a
sincere positive radical vector of g. Then we have

O0<qg(z+e —ej)=qlei—ej) =2—gqij,
thatis, g;; = 2. In particular g (¢; — e;) = 0, and since ¢ is a nonnegative unit form

(Lemma 6.22), by Lemma 3.2(a) the vector e; — ¢; is radical, that is, g is obtained
from ¢’ by doubling vertex j. i
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Table 6.1 Hypercritical graphical forms

HE2)

In the last part of this section we begin with technical preparations to end
our discussion on integral quadratic forms with a generalization of Ovsienko’s
Theorem 5.25 to the weakly nonnegative context. In Table 6.2 we show some 0-
sincere forms of small corank. The reason why we exclude those forms associated
to bigraphs €' (1), € (2), €(3) and €' (4’) is the content of the following result (cf.
Table 5.3 and the figure below).

€(1) 2 ¢Q2) 2 ?(3) )

NANZANE/

The following classification result of graphical weakly nonnegative unit forms of
small corank, due partially to Ringel [46] (cf. [23] for comments and proofs), will
be used in the last steps in the proof of our last result Theorem 6.37.

We say that a O-sincere graphical form ¢ is triangular if there are precisely three
critical restrictions ¢!, ¢’ and ¢’3 of ¢ such that for any i # j in {I,2, 3} the
restriction ¢/iY/j is a 0-sincere form of corank 2.
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Table 6.2 Reduced O-sincere semi-graphical forms of corank one or two, without the forms
associated to € (1), €(2), ¢ (3) and € (4") appearing as critical restrictions

Ao

In cases Ajp and Aj; the vector shown as integers at the vertices is the positive generator of the
radical. A vertex marked as e; or e; represents a critical restriction g or ¢ of shape Ao or
Ay, respectively

Theorem 6.31. Let g : Z! — 7 be a 0-sincere graphical form without critical
restrictions having associated bigraph of the shape € (1), € (2), € (3) or € 4).

a) If cork(q) = 3 then q is either triangular or one of the forms associated to ©
or ©; (see Table 6.3).
b) cork(q) =2 if and only if ¢ = qy, for £ =15, ..., 20 (see Table 6.2).

Remark 6.32. Let g be one of the forms g, for £ = 15,...,20. If u(l) and u(z)
are critical vectors of ¢ one can show by inspection that there are vertices i and j
such that ,u(l) = 1. In particular, for
any positive radical vector u of g, there are positive numbers m and m such that
p=mip® +mop®.

Similarly, it can be shown that if g is a triangular O-sincere form, then there
are vertices {i, j, k} such that the restriction of the critical vectors u", 1® and
w13 are the canonical vectors with three entries. Therefore, for any sincere positive
radical vector p there are positive numbers m 1, my and m3 such that u = m ,u(l) +
map® + map®.
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Exercises 6.33.

1.

Show that the solid star T, ., is equivalent to the centered form g where q("’)
has associated bigraph B = U/ (r; — 1) and where [ (m) is the complete dotted
bigraph on m vertices.

. Letq : Z! — Z be a weakly nonnegative centered unit form with center w, and

fori € I consider the set S; = {j € I | g;; > 0}. Show that if x is a positive
sincere vector, S C S; with i # w and

xi —q(xler) = xo — ) xj,

jes

then § = §; and ¢;; = 1 forall j € §;.

. Let g : Z! — 7 be a weakly nonnegative semi-graphical form with center .

Suppose that x is a maximal sincere positive root with x,, > 7 and only one
exceptional vertex.

a) Show that g is a centered form, and that ¢;; < 1 forall j # w.

b) Set S = {j # i | ¢ij > 0} and show that the restriction of B, to S is a
complete graph with dotted edges. Moreover, x; = 1 for all j € S! and if
Jj € Siand k € I satisfy gjx > 0, thenk € S;.

c¢) Prove that S; has exactly x,, — 2 elements.

d) Notice that g is not weakly positive (why?) and show that if J C [ and the
restriction qJ is critical, then S; C J.

e) Conclude that x,, = 7. [Hint: use (c) and (d) to verify that the restriction g’
may be identified with the critical form g« (), see Table 5.3].

. Which of the hypercritical centered forms in Table 6.1 have as restriction the

following bigraphs?

AN

6.6 Generalizing Ovsienko’s Theorem

Our objective in this section is to show that any maximal positive root x of a weakly

nonnegative unit form ¢ satisfies x; < 12 for any index i, following arguments by
Drixler, Golovachtchuk, Ovsienko and de la Pefia in [23]. We say that x € Z" is a

2-layer root of an integral quadratic form g : Z" — Z if x is a positive g-root and

there exist positive isotropic vectors u and ' such that x = w + u’ (in particular

1 =qx)=q(ulu)).
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Theorem 6.34. Let g : 7" — Z be a weakly nonnegative semi-unit form with a
maximal positive root x.

a) Ifthere is a positive isotropic vector u with L < x then x is a 2-layer root.
b) If x is a 2-layer root then x; < 12 foralli =1, ..., n.

Proof. Without loss of generality we may assume that x is a sincere vector. To
show (a), by maximality of x we have u ¢ rad(q), and therefore g (x|) # O by
Lemma 6.21(b). That g (x|n) = 1 follows from the equations

0=<g(x—p) =q) —qgxin) =1-qxlw),
0<qg(x+mu) =qgx)+mgx|un) =1+mg(x|n), forallm > 0.

Hence g(x — u) = g(x) — g(x|u) + g() = 0, thatis, u’ := x — w is an isotropic
vector.

We now turn to the proof of (b), which we illustrate with an example. Take
x =+ 1 with w and u’ positive isotropic vectors of g.

X

Step 1. First we double all vertices I = {1,...,n} of the foormq : Z" — Z
Z

(cf. Exercises 3.32.4 and 5) to get a weakly nonnegative form ¢ : Z/Y/ —
ZIUJ

. . X¥=10F1t

oy o3

where J = {n + 1,...,2n}. Consider u as a vector in and define u =
Y| eiyn. Then the projection 7w : Z/% — Z! given by n(ei1n) = ¢ =
m(e;) fori € I satisfies w(x) = x where x = u + p is a maximal positive root
of g (see Exercise 3.32.4(d)).

Take I’ = supp(n) and J' = supp(u), and replace g by its restriction to I’ U J’
(figure below for our example).

y ————————— 3

Step 2. Apply now the Reduction Theorem 6.27 to g with respect to I’ to get an
iterated deflation T' (concentrated in /’) and a weakly nonnegative quadratic form
g’ = qT with a positive maximal root n such that 7 () = x, and q;j > 0 for all

i, j € I'Nsupp(n).
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By Lemma 6.14, there is a vertex w € I’ such that the support of 1 is J' N {w},
q., = 0 and the restriction ¢’ of ¢’ to J' is a unit form (in the example below
the iterated flation is T = T|,T;,). Moreover, there exists a j € J " such that
Nw =1j = q;,j = 1 (in particular n = u + ey), and j is the unique element in
J' satisfying g;,; # 0.

Y : \cO
4/ —_— 3/
Step 3. By Lemma 6.21(b) we have i € rad™ (¢’), thus i belongs to the set

U={yeradt(q)|y; =1}

If U has infinitely many elements, there exist y < y € U, therefore y — y’ €
rad ™ (¢’). This contradicts the maximality of 7.

We conclude by pointing out that U is a finite set, thus by Lemma 6.35 below we
have u; < 6 fori € I. Since by symmetry we also have u; < 6, then x; < 12 for
alli e 1. |

Lemma 6.35. Suppose q : Z! — Zisa (weakly nonnegative) 0-sincere semi-unit
form such that there is an index i € I with ¢ unitary. If the set U of positive
radical vectors y of g with y; = 1 is finite, then y; < 6 foranyy € U andi € I.

Proof. We claim that the restriction ¢¥) is a weakly positive unit form. Otherwise
there exists a positive isotropic vector i with i ¢ supp(u). By Lemma 6.21(a) the
vector p is radical, contradicting the finiteness of U.

If y e Utheng(y —e;) = q(e;) = 1, thus y — ¢; is a positive root of the weakly
positive form ¢@. The result follows from Ovsienko’s Theorem 5.25. O

The following example shows that the bound 12 in Theorem 6.34 is optimal.
The example is constructed by identifying all but the exceptional vertices of two
copies of g, , where the vector shown (a maximal positive root) is the sum of the
corresponding positive generators of the radicals of g, (one for each copy).

6 1

The example above is not a 0-sincere form, which is a direct consequence of the
following lemma.
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Lemma 6.36. Suppose q : ZI' — 7 is a (weakly nonnegative) O-sincere unit form.
Then g;j > 1 if and only if q is obtained from g9 by doubling vertex j.

Proof. Assume that g;; > 1. By Exercise 6.15.5 we have ¢;; = 2. Since ¢; — ¢;
is an isotropic vector (0 = 2 — g;; = q(e; — ¢;)), by Lemma 6.21(a) the vector
e; — ej is radical. Therefore by Exercise 3.32.6 the form g is equal to g®[j] (up to
areordering of vertices if necessary). The converse is evident. O

The following generalization of Ovsienko’s Theorem is the main result in [23].

Theorem 6.37. Let q : 7' — 7 be a weakly nonnegative semi-unit form with a
maximal positive root x. Then x; < 12 foralli =1, ..., n.

Sketch of Proof. Suppose on the contrary that x is a maximal positive root of g with
Xo > 12 forsome w € {1, ..., n}.

Step 1. We may assume that q : 7! — 7. is a weakly nonnegative centered form
without critical restriction of shape € (1), € (2), € (3) or €(4). In this case, the
maximal root x has two exceptional vertices. We may further assume that the
cardinality |I| is minimal among all such forms.

Apply the Reduction Theorem 6.27 with respect to the set I’ = I — {w} and the
maximal root x to get an iterated deflation T concentrated in I’ and a maximal
positive root x” of ¢’ = ¢T such that x = T (x’). Deleting some vertices if
necessary, we may assume that x’ is sincere, thus q{j > O0foralli, j # w.

If there exists an i # w such that g/, > 0 then by Lemma 6.28 we have ¢/, = 0.
In particular ¢; is a positive isotropic vector of g’ with e¢; < x’, therefore by
Theorem 6.34, x’ is a 2-layer root and x,, = x,, < 12, a contradiction.
Moreover, if ql.’ » < —1 then gj,, = —2 and the vector e, + ¢; is isotropic for q’
with e, + ¢; < x’, which is again impossible. Hence ¢’ is a centered form.
Observe from Table 5.3 (see also the graphs after Lemma 6.30) that if ¢’ is a
critical restriction of ¢’ with associated bigraph 4 (2), €' (3) or & (4’), then there
is a positive isotropic vector ;4 < x, which once more by Theorem 6.34 yields a
contradiction.

Finally, the statement about the exceptional vertices of x’ is worked out in
Exercise 6.33.3. Write ¢ for ¢’ and x for x’.

Step 2.  Let i and j be the exceptional vertices of x and consider the quadratic form
q(y) = q(y) — yiyj. Then q is a O-sincere centered form with sincere positive
radical vector x.

By Lemma 6.11 we have x; = 1 = x}, therefore i, j # w.

First notice that the restriction ¢)/) is weakly positive (otherwise there is a
critical restriction with a critical positive vector u, and g(u + x) = g(x) =
1 since i, j ¢ supp(u), contradicting the maximality of x). This implies that
2 < gqij < 3. Indeed, by Exercise 6.15.5 the inequality 0 < g;; < 3 holds. If
gij < lthenq(e; +e;j+e,) < 2 and the claim below yields a contradiction with
z=¢€ tej+ew

Claim. If z is a positive vector with g(z) < 2 satisfying zx < 1 forall k # w
and z; = 1 = z;, then z, > 6.
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Proof. If z, < 6 then x — 7 is a positive vector and since ¢’ is weakly
positive we have

0<qgPVx—2)=q(x—2) =q(x) +q@) —q(x]2)
=1+4q@) — (zig(xle)) +zjq(xlej)) =qz) —1 < 1.

Then x —z is a positive root of ¢ (), and by Theorem 5.25 we have x, —z,, < 6,
in contradiction with x, > 12. O

Observe that the bilinear form associated to g has the following shape,
qg(lw) = glw) —viw; — vjw;,

hence g(x|ex) = O for all k since g(x|lex) = xx = 1 for k = i, j. Then x
is a sincere positive radical vector for ¢, and we only need to show that g is
weakly nonnegative. Observe that g =¢g® and ¢ = ¢V If ¢ is not weakly
nonnegative, then there is a hypercritical restriction g’ where J C I contains
both i and j. From Table 6.1 we see that ¢;; # 3. Furthermore, if g;; = 2 then
g’ has a restriction including i and j with one of the following bigraphs (see
Exercise 6.33.4)

AN

Using the claim above with the vector z as indicated by the vertices in the figure,
which satisfies g (z) < 2, we get a contradiction. Then ¢ is a 0-sincere form with
sincere positive radical vector x.

Step 3. If for some vertices s, t € I we have qs; > 1, then {s, t} = {i, j}.

Assume on the contrary that i does not belong to the set {s, 7} and consider the
restriction ¢’ = ¢¥), which has the vector y = x — ¢; as positive root. If ¢’ is
weakly positive, then y,, = x, < 6, contradicting Ovsienko’s Theorem. Then
there is a critical restriction (¢)” of ¢’ with critical positive vector .
Since g,; = g5+ > 1, by Lemma 6.36 the O-sincere form ¢ is obtained from its
restriction ¢ by doubling vertex s. Consequently the vector w = u — use; +
Wres is a positive isotropic vector for ¢’ (thus also for ¢). Since i, j ¢ supp(w)
implies that g (w|x) = 0 we get the equation

g(x +w) =qx) =1,

which contradicts the maximality of x.
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For a weakly nonnegative unit form ¢ : Z! — Z consider the union I* of
the supports of all positive radical vectors of g. By Lemma 6.21, the restriction
gt =q! " is a O-sincere form, called the O-sincere kernel of q.

Step4. Let £+ : ZK — 7 be the O-sincere kernel of the restriction ¢. Then £+
is nontrivial and satisfies cork(§T) < 2.
Notice that y = o;(x) = x — ¢; is a sincere positive root of ¢’ := ¢"). Since
Yo > 12, the form ¢’ is not weakly positive, thus the O-sincere kernel £ is
nontrivial.
Now, since ¢’ = q(i), by Step 3 the form ¢’ is graphical. Assume that cork(§ ") >
3. Then we may take a O-sincere restriction & of £% such that cork(£) = 3 (cf.
Lemma 6.22 and Remark 3.21).
Apply Theorem 6.31 to the form &, and notice first of all that @ is not the bigraph
associated to & (by Theorem 6.34, since the vector z with z,, = 5 and zx = 1 for
all other vertices is isotropic with z < x). Thus if & is triangular or B is @, it
can be seen that there exist critical vectors 1, w2 and u3 of £ such that

(s — )l <2, and (s —udil <1 fork # o,

for any s # t in {1, 2, 3} (see Exercise 2 below). Hence x — (g — us) > O.
Suppose that there are s # ¢ such that g (x|us — py) > 2. Then

q(xlps — ) = q(y + eils — ) = qleilps — ) > 2,

and since x — (us — uy) > 0, we get the contradiction

0<qg(x— (s — 1)) =qgx) +qQus — ) — g(x|ps — pr) < 0.

In particular, in the set {g(e;|1k)}k=1.2,3 there are at least two equal elements,
say g(eil;1) = q(ei|ln2). We may also assume that (1 — @2), > 0. Then
s — Wy is a radical vector of ¢, and taking d = min(xx | (s — )k = —1)
we get a nonsincere positive g-root z = x + d(us — i) satisfying z, > 12.
Using Exercise 1 below, the vector z is a sincere maximal positive root of the
restriction of g to the (proper) support of z, obtaining in this way a contradiction
to the minimal choice of |/]| established in Step 1.

Step 5. The form q admits no critical restriction with associated bigraph of shape
€ (1),€(2),63)or €¢&).
Since the form g is centered (Step 2), its bigraph does not contain the bigraph
% (1) as arestriction. In all other cases notice that the support of the critical vector
1 must contain both i and j (otherwise it would be a critical vector for ¢). Thus
w would be a positive root of g, and using the claim in Step 2 we get i, > 6, a
contradiction.

Step 6.  Final analysis of the case cork(é1) = 2.
Consider that £+ : ZX — 7 is a O-sincere graphical form with cork(¢ %) = 2,
which is by construction a restriction of the quadratic form ¢ = ¢® where
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q: 7! — 7 is our original form. First we notice that K = I — {i}, that is, that
£t = ¢® . Indeed, if there is a k # i in I — K then the restriction of ¢ to the
set K U {k} has corank 3 by Exercise 5 below. This is impossible since £ has
corank 2. Hence K = I — {i}. We will reach a contradiction by considering two
cases.

Case ¢;; = 2. By Lemma 6.30 the form g is obtained from £ ™ = ¢ by doubling
vertex j. Define the vector u := x — e; + ¢, which can be shown to be a sincere
isotropic vector for & * with u j = 2. Indeed, we have

ET) =q(x —ei +¢j) = q(x) = q(x) — xix; = 0.

Taking wV and 1@ to be critical vectors of the two critical restrictions of £+,
there are positive integers m and my such that u = m ,u(l) + mzu(z) (see
Remark 6.32). Since u#; = 2, up to exchanging the roles of w® and 1@ we
1

; ) 51)
uM < x, therefore x is a 2-layer root by Theorem 6.34(a). This contradicts
X > 12 by part (b) of that theorem.

Case g;; = 1. Again by Exercise 5 and Theorem 6.31, either ¢ is a triangular
form, or the form associated to one of the bigraphs @; or ©;. If ¢ is triangular,
then by Remark 6.32 there are positive integers m1, mo, m3 such that

may suppose that " = O or ;” = 1. But notice that in both cases we have

x=mip® +mop® +myu®,

where miu™™, miu® and mu® are critical vectors of ¢. Since x; = 1 we
may assume that Ml(l) = 0, therefore u < x. This is again impossible by
Theorem 6.34. A similar argument can be formulated for case ©®; (see Exercise 3
below). Finally, if ¢ = g@,, then the vector z given by z,, = 5 and z; = 1 for
i # w is a positive g-root, contradicting the claim in Step 2 (see Table 6.3 and
Exercise 4).

Step 7. Final analysis of the case cork(§T) = 1.
We assume now that £7 is itself a critical form, and let u be its critical vector.
Suppose first that £ is the form associated to one of the graphs %'(5) or € (6).
It can be shown then (see Exercise 6(b) and (c) below) that £ is the (one-point)
restriction of a form of corank 2. Therefore we have again £é* = ¢ = q(i). As
before we consider separately the cases ¢;; =2 and ¢;; = 1.
Case q;; = 2. By Lemma 6.30 the form ¢ is obtained from § * by doubling
vertex j. Hence u := x — ¢; + ¢, is a sincere positive radical vector of §%.
Because u; = 2 we have u = mu for some m € {1,2}. However, recall from
Proposition 5.4 that ©, < 6, therefore x,, < 2u, < 12, a contradiction.
Case g; ;= 1. A direct inspection of the bigraphs Y17, ..., ¥ given in
Exercise 6 shows that, since x; = 1, we may find a critical restriction of g
avoiding vertex i, and such that its critical vector p satisfies ©4 < x. The
contradiction is again derived from Theorem 6.34.



6.6 Generalizing Ovsienko’s Theorem 209

By Step 5 and the discussion above we may finally suppose that £ is the form
associated to the graph €' (4). Let us first assume that K = I — {i} (that is, that
£t = ¢W). Then if g;j = 2 we can argue as above, while if ¢;; = 1 then by
Exercise 6(a) the form ¢ fails to be O-sincere, in both cases a contradiction.
Therefore we may fix a vertex k # i in the set I — K. Let us now assume
that I — K = {i,k}. If g;; = 2 then one can check that ¢ is not 0-sincere,
and if g;; = 2 then by Exercise 6(d) the form ¢ is associated to one of the
bigraphs ¥is, ..., Y13, and one can proceed as above to find a critical vector p
with 4 < x, obtaining a contradiction using Theorem 6.34.

Assume now that we can find a second vertex £ # i, different from k, in the
set I — K. Consider the restriction § = ¢XY%% and take ¢’ = 7. Hence
(q’ )(k) = &7, which is the form associated to the graph %'(4). By Exercise 6(a),
the graph associated to ¢’ has shape A or Aj;. By Exercise 6(d), the form ¢
is either not 0-sincere, or is associated to one of the bigraphs ¥is5, ¥4, ¥17 Or
Yig. It is shown in [23, Sect. 9.9] that all these cases imply that g itself is not
0-sincere, a contradiction.

This completes the proof. O

Exercises 6.38.

1.

Let g : Z! — 7 be a weakly nonnegative semi-unit form with a maximal sincere
positive root x. If i € rad(g) and x + w is a positive vector, show that x + p is
a maximal sincere positive root of the restriction of ¢ to the support of x + u.

. Let ¢ be a O-sincere graphical form of corank 3 without having as restriction a

form associated to the bigraphs €'(1), € (2), €(3) or € (4').

a) If g is a triangular form, let @1, (2 and p3 be the positive critical vectors of
q. Show that for s # ¢ in {1, 2, 3} we have

[(us =)ol <2, and  |(us — udkl <1,  fork # w.

[Hint: Use Theorem 6.31.]
b) If B, = ®; consider the vectors

Show that (¢, 2 and u3 are critical vectors of ¢, and that for s # ¢ in {1, 2, 3}
we have

[(us — k] < 1, forall k.

Why is g not a triangular form?
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Table 6.3 Some 0-sincere semi-graphical forms of corank 3

3. Show that if ¢ is the quadratic form associated to &, (Table 6.3), and ,u(l),
u®, 1@ and u® are its critical vectors, then there are nonnegative integers
mi, ..., mq such that any sincere positive radical vector ; can be written as

@) 3 (C))

w=mip +mop® +m3p® + map®.

Show also that we may assume, up to a reordering of variables, that m and m;
are positive integers.

4. Consider the quadratic form g with bigraph @; with center w (Table 6.3), and let
z be the vector with z,, = 5 and z; = 1 for all other vertices. Show that z is an
isotropic vector for g. Is it a radical vector?

5. Let g : ZX — Z be a O-sincere graphical form without critical restriction of

shape €(1), €(2), €(3) or €(4’), and take k € K.

a) Show that if the restriction ¢ is a 0-sincere form of corank 2, then ¢ is
0-sincere of corank 3.

b) Show that in the situation of point (a), either ¢ is a triangular form, or g is
one of the forms @; or ®, shown in Table 6.3.

6. Let ¢ : Z/ — 7 be a weakly nonnegative graphical form having no critical
restriction of shape €'(1), € (2), € (3) or € (4'). Consider a vertex j € J.

a) Show thatif ¢(/) = q%4), then ¢ is the form associated to one of the bigraphs
Ajg or Aqp below, and cork(g) = 1.

b) Show that if q(j ) = %(5)> then g is the form associated to ¥17, Y19 or ¥y,
and cork(qg) = 2 (see Table 6.2).

¢) Show that if q(j ) = q%(6), then ¢q is the form associated to ¥ig or ¥y, and
cork(q) = 2 (see Table 6.2).
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d) Show that if ¢(/) = qa,, OF gV = qa,,, then either g is the form associated
to Y15, Y16, Y17 O Y13, Or g is not O-sincere.

A 4

7

7. Let g : Z7 — 7 be a graphical O-sincere form having no critical restriction of
shape € (1), €(2), €(3) or € (4’). Show that if there is a vertex j € J such
that q(/) has associated bigraph A1 or A1, then B, is Y15, W16, W17 or ¥is. In
particular g has corank 2.
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