
Chapter 6
Weakly Nonnegative Quadratic Forms

In the previous chapters we met notions like positivity, nonnegativity and weak
positivity, and applied to them various techniques like deflations, inflations, one-
point extensions, reflections and edge reductions. Here we turn our attention to
weakly nonnegative forms, that is, semi-unit quadratic forms q : Zn → Z such that
q(v) ≥ 0 for all positive vector v in Z

n. The above-mentioned methods are used to
extend earlier results and algorithms to the weak nonnegative context, where now
the existence of maximal sincere q-roots plays a key role, and hypercritical forms
take the place of critical forms.

6.1 Hypercritical Forms

A quadratic semi-unit form q : Zn → Z is called hypercritical if it is not weakly
nonnegative, but every proper restriction qI is. For instance, the m-Kronecker
form qm(x1, x2) = x2

1 + x2
2 − mx1x2 is weakly nonnegative if and only if

m < 3, and is hypercritical exactly when m ≥ 3. Theorem 5.2 tells us that if
the number of variables is at least three, then a critical (nonweakly positive) form is
nonnegative with radical generated by a positive vector z, called a critical vector. In
Proposition 6.2 below we give an analogous result for hypercritical forms.

Lemma 6.1. Let q : Zn → Z be a hypercritical semi-unit form.

a) If q is also critical, then n = 2 and q is the Kronecker form qm = x2
1+x2

2−mx1x2
for some m ≥ 3. In particular, q has no critical vector.

b) If q is nonunitary then n = 2 and q is (up to order of variables) one of the forms
q ′
m or q ′′

m below, with m > 0,

q ′
m(x1, x2) = x2

1 − mx1x2 and q ′′
m(x1, x2) = −mx1x2.

© Springer Nature Switzerland AG 2019
M. Barot et al., Quadratic Forms, Algebra and Applications 25,
https://doi.org/10.1007/978-3-030-05627-8_6

181

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05627-8_6&domain=pdf
https://doi.org/10.1007/978-3-030-05627-8_6


182 6 Weakly Nonnegative Quadratic Forms

Proof. If q is also critical and n ≥ 3, by Theorem 5.2 the form q is nonnegative, in
particular weakly nonnegative. This is impossible since q is hypercritical.

Then n = 2, that is, q(x1, x2) = x2
1 + x2

2 − mx1x2 for some m ∈ Z (since q is
unitary by Lemma 5.5(a)). Observe that if m ≤ 2 then q is weakly nonnegative, and
see Proposition 1.23 for the claim on critical vectors.

To verify (b) observe first that the forms q ′
m and q ′′

m are hypercritical precisely
when m > 0. Consider a vertex c ∈ {1, . . . , n} such that q(ec) = 0, and take x(c) to
be the vector in Zn−1 obtained by deleting the variable xc. Then

q(x) = q(c)(x(c)) + xc

⎛
⎝∑

i �=c

qicxi

⎞
⎠ .

Now, if q is hypercritical then there is a positive sincere vector x such that q(x) <

0. Moreover, q(c)(x(c)) ≥ 0 implies that the second summand above is negative.
Since x is a positive vector, there must be a d �= c such that qcd < 0. Then the
restriction q ′ = q{c,d} is one of the hypercritical forms q ′

m or q ′′
m above. Since q is

itself hypercritical, then q = q ′ and the result follows. �	
By Lemma 6.1(b) we may focus only on hypercritical unit forms, which can be

characterized as follows.

Proposition 6.2. For a unit form q : Z
n → Z with n ≥ 3 the following are

equivalent.

a) The form q is hypercritical.
b) The form q is not weakly nonnegative, and for every critical restriction qI of q

there is an index i with I = {1, . . . , n} − {i}, and a positive critical vector z of
qI such that q(z|ei) < 0.

Proof. Assume q is hypercritical and consider a positive vector v with q(v) < 0.
Since any proper restriction qI is weakly nonnegative, the vector v is sincere. If
qI is critical, since n ≥ 3 then qI is a proper restriction of q by Lemma 6.1(a).
Moreover, since qij ≥ −2 for all i �= j (for q does not contain any Kronecker form
qm with m > 2) by Theorem 5.2 we may take a critical positive vector z for qI ,
which we identify with its inclusion in Zn.

Take positive numbers m and k such that kv − mz is a positive but nonsincere
vector, say (kv−mz)j = 0. (Such numbers exist: take an index j ∈ {1, . . . , n} such
that zi

vi
≤ zj

vj
for all i ∈ {1, . . . , n} and take k := zj and m := vj .) Therefore

0 ≤ q(j)(kv − mz) = k2q(v) − kmq(z|v) + m2q(z) < −km
∑
i /∈I

viq(z|ei),

and since vi > 0 for all i ∈ {1, . . . , n} there must exist an i /∈ I with q(z|ei) < 0.
Observe now that 2z + ei is a sincere vector for q is hypercritical and

q(2z + ei) = 4q(z) + 2q(z|ei) + 1 = 2q(z|ei) + 1 < 0.
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Hence I = {1, . . . , n} − {i}. For the converse assume that q(i) is not weakly
nonnegative for some i ∈ {1, . . . , n} and take I ⊂ {1, . . . , n} − {i} such that qI

is a critical restriction of q(i) (thus a critical restriction of q). By hypothesis (b) we
have qI = q(i). Therefore q(i) is hypercritical as well as critical, and by Lemma 6.1,
it is the Kronecker form qm for some m ≥ 3, which contradicts the existence of a
critical vector for q(i). Then q(i) is weakly nonnegative for all i ∈ {1, . . . , n}, that
is, q is a hypercritical form. �	
Lemma 6.3. Let q : Zn → Z be a hypercritical unit form with at least three indices
i, j, k.

a) If qij = −2 then n = 3. In particular, the bigraph Bq associated to q is one of
the following six bigraphs:

1 3

2

1 3

2

1 3

2

1 3

2

1 3

2

1 3

2

T5 T6T4

T1 T3T2

b) If qij = qik = qjk = −1 and q(k) is critical, then n = 4 and the bigraph of q is
one of:

1 3

2 4

1 3

2 4

1 3

2 4

N1 N2 N3

Moreover, the quadratic form qΔ represents numbers −1 and −3 for

Δ ∈ {T3, T4, T5, T6, N2, N3}.
Proof. Since q has at least three vertices, Bq does not contain any Kronecker form
qm as a restriction for m ≥ 3, that is, qrs ≥ −2 for all vertices r < s.

Assume first that qij = −2 for some vertices i < j . Then q{i,j} is a critical
restriction of q . By Proposition 6.2 we have n = 3. Set (i, j, k) = (1, 2, 3) and
notice that z = (1, 1) is a critical vector of q(3), thus again by Proposition 6.2 we
have

0 < q(z|e3) = q13 + q23.
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This implies that Bq is one of the bigraphs T1, . . . , T6. Moreover, the forms qTi for
i = 1, . . . , 6 are all hypercritical (Exercise 1 below).

Assume now that qij = qik = qjk = −1. Then q{i,j,k} is a critical restriction of
q , hence n = 4 and we may take (i, j, k, �) = (1, 2, 3, 4). Since q(3) is critical (with
critical vector e1 + e2 + e4), we have q14 = q24 = −1 and 0 > q(e1+ e2 + e3|e4) =
−2 + q34. Therefore q34 ∈ {−1, 0, 1}, with corresponding cases N1, N2 and N3.

For the last claim simply verify qTi (vi) = −1 = qNj (v
′
j ) and qTi (wi) = −3 =

qNj (w
′
j ) for the vectors in the following list (for i = 3, . . . , 6 and j = 2, 3)

v3 = (1, 2, 1) and w3 = (2, 5, 2),

v4 = (1, 1, 1) and w4 = (2, 3, 2),

v5 = (2, 2, 1) and w5 = (4, 4, 1),

v6 = (1, 1, 1) and w6 = (2, 2, 1),

v′
2 = (1, 1, 1, 1) and w′

2 = (2, 2, 2, 1),

v′
3 = (2, 2, 2, 1) and w′

3 = (4, 4, 4, 1). �	

We now show that almost all hypercritical forms represent numbers −1 and −3.
The importance of these two numbers will be clear in the proof of Theorem 6.16. In
what follows, by a slender quadratic form we mean a unit form q with qij ≥ −1 for
all i < j . The bigraph associated to the Kronecker form qm is denoted by Km for
m �= 0.

Proposition 6.4. Let q : Zn → Z be a hypercritical unit form whose associated
bigraph is not Km (m ≥ 3), T1, T2 or N1 (see Lemma 6.3 for notation). Then there
are positive (sincere) vectors v and w such that q(v) = −1 and q(w) = −3.

Proof. Consider Bq , the bigraph associated to q . Since Km is not contained in Bq

for m ≥ 3 we have qij ≥ −2 for all i < j . If qij = −2 for some i < j , by
Lemma 6.3(a) the bigraph Bq is one of T3, . . . , T6, which represent −1 and −3.
Therefore we may assume that q is a slender form. We may also assume, using
Proposition 6.2, that q(n) is a critical form with critical vector z, and q(z|en) =
−s < 0. Moreover, by Proposition 5.4 we may take z1 = 1.

First we show that 0 < s ≤ 3. By the above assumptions, the vector x :=
z − e1 + en is positive and not sincere. Thus, since q(e1|en) = q1n ≥ −1,

0 ≤ q(x) = q(z) + 2 − q(z|e1) + q(z|en) − q(e1|en) = 2 − q1n − s < 4 − s.

Notice now that s �= 3. Indeed, for s = 3 and x = z − e1 + en we have 0 ≤
q(x) = 2 − q(e1|en) − 3, that is, q1n = −1 and q(x) = 0. Then q(1) is not weakly
positive, and again by 6.2, the form q(1) is critical. Since xn = 1 the vector x is
critical for q(1). We may assume that q2n = −1, therefore

0 = q(x|e2) = q(z|e2) − q12 + q2n = −q12 − 1,
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that is, q12 = −1. Now use Lemma 6.3(b) to conclude that Bq = N1, which is
impossible.

The proof is completed by showing that in cases s = 1, 2 such vectors v and w

may be given explicitly:
Case s = 1.

q(2z + en) = 1 + 2q(z|en) = −1 and q(4z + en) = 1 + 4q(z|en) = −3.

Case s = 2.

q(z + en) = 1 + q(z|en) = −1 and q(2z + en) = 1 + 2q(z|en) = −3. �	

As an immediate consequence we have:

Corollary 6.5. Let q : Zn → Z be a hypercritical unit form with n ≥ 5. Then q

represents numbers −1 and −3.

For integers a ≤ b denote by [a, b] the set of integers � with a ≤ � ≤ b.

Lemma 6.6. For any hypercritical unit form q : Zn → Z there is a (sincere) vector
v ∈ [0, 12]n such that q(v) < 0.

Proof. The statement is clear for Kronecker forms qm = qKm with m ≥ 3, and for
the forms with associated bigraphs T3, T4, T5, T6, N2, N3 by simple inspection of
the proof of the last claim in Lemma 6.3.

If q is not the form associated to graphs T1, T2, then by Proposition 6.4 we may
assume that q(n) is a critical restriction with positive critical vector z, and −1 is
either represented by 2z + en or by z + en. Since by Corollary 3.31 we have zi ≤ 6
for all i (cf. also Proposition 2.22), then both 2z + en and z + en belong to [0, 12]n.

To deal with cases T1, T2 (resp. N1) evaluate at the vector v = (1, 1, 1) (resp.
v = (1, 1, 1, 1)) to get qT1(v) = −2, qT2(v) = −3 (resp. qN1(v) = −2). �	
Exercises 6.7.

1. Show that all bigraphs in Lemma 6.3 correspond to hypercritical forms.
2. Prove that the form qm = qKm does not represent the number −3 for any m ≥ 2.
3. Show that the form qΔ does not represent the number −1 for any

Δ ∈ {Km, T1, T2, N1}m≥4.

4. Which of the forms associated to T1, T2 or N1 represents the number −3?

6.2 Maximal and Locally Maximal Roots

For a weakly nonnegative semi-unit form q : Zn → Z denote by rad+(q) the set of
positive vectors x with q(x|ei) = 0 for i = 1, . . . , n (called the positive radical of
q). Observe that if x ∈ rad+(q) then q has no maximal positive root (with partial
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order x ≥ y if x − y ∈ N
n
0), since 1 = q(v) = q(v + mx) for any positive q-root

v and any m ∈ N. As in the weakly positive case, we say that a weakly nonnegative
semi-unit form q is sincere if it has a sincere positive root.

Proposition 6.8. Let q : Zn → Z be a sincere weakly nonnegative unit form. The
following are equivalent.

a) There are finitely many sincere positive roots of q (and we call q finitely sincere).
b) There is a maximal sincere positive root of q .
c) rad+(q) = ∅.
Proof. Clearly we have that (a) implies (b) and that (b) implies (c). To show that
(c) implies (a) let us assume that q has infinitely many sincere positive roots. Then
we may take a sequence of sincere positive q-roots y1, y2, . . . with ym < ym+1 for
m = 1, 2, . . . (see Lemma 5.12). Notice that |q(ym|ei)| ≤ 2 for all i = 1, . . . , n and
m ≥ 1. This follows from the sincerity of ym and the inequality

0 ≤ q(ym ± ei) = 2 ± q(ym|ei).

Hence there are y� < ym with q(y�|ei) = q(ym|ei) for all i = 1, . . . , n and 0 �=
ym − y� ∈ rad+(q). �	

A positive root v of a semi-unit form q is said to be locally maximal if q(v|ei) ≥ 0
for all i = 1, . . . , n. For v a maximal positive q-root, since σi(v) = v − q(v|ei)ei is
again a q-root where σi is the i-th reflection for q (Sect. 1.2), v is a locally maximal
root. The converse is false in general, as the following example shows.

Example 6.9. Consider the quadratic form q given by the following bigraph, and
selected vectors u and v.

u : 1 1

2

11

2 4 2

1 1

2

1 1

v : 2 2

4

21

2 6 4

1 2

2

1 1

Then q is weakly nonnegative and u < v are positive q-roots with u a locally
maximal root.

Proposition 6.10. Let q : Zn → Z be a finitely sincere weakly nonnegative unit
form. Then a sincere positive root y of q is maximal if and only if y is locally
maximal.
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Proof. We only need to show that local maximality implies maximality. Assume y

is a locally maximal sincere positive root of q , and that x is a root with y < x. Then

q(y|x) =
n∑

i=1

xiq(y|ei) ≥
n∑

i=1

yiq(y|ei) = q(y|y) = 2.

Thus 0 ≤ q(x − y) = 2− q(y|x) ≤ 0, that is, q(x − y) = 0. Notice that v := x − y

satisfies q(v|ei) ≥ 0 for all i = 1, . . . , n (for if q(v|ei) < 0 then q(2v + ei) =
4q(v) + 1 + 2q(v|ei) < 0). We also have q(v|y) = q(x|y) − 2 = 0, therefore

0 = q(v|y) =
n∑

i=1

yiq(v|ei),

which implies that v ∈ rad+(q), in contradiction with Proposition 6.8. �	
A vertex i such that q(y|ei) > 0 for a locally maximal positive q-root y of a

weakly nonnegative semi-unit form q is called an exceptional index (or vertex) for
y (cf. Lemma 5.9).

Lemma 6.11. For a locally maximal positive root y of a weakly nonnegative semi-
unit form q , one of the following situations occur:

a) There are exactly two exceptional indices i �= j and q(y|ei) = yi = 1 = yj =
q(y|ej).

b) There is only one exceptional index i, and q(y|ei) = 1 and yi = 2.
c) There is only one exceptional index i, and q(y|ei) = 2 and yi = 1.

Furthermore, if y is also maximal then situation (c) never occurs.

Proof. Let y be a sincere locally maximal positive q-root. Then we have

2 = q(y|y) =
n∑

i=1

yiq(y|ei),

thus clearly one of (a), (b) or (c) occurs. If (c) holds then q(2y − ei) = 5 −
2q(y|ei) = 1 and 2y − ei > y, therefore y is not a maximal root. �	

The following lemma will be useful to determine the maximality of positive
sincere roots. For instance, this criterion is used below in the proof of Lemma 6.13.

Lemma 6.12. Let q : Zn → Z be a semi-unit form with a maximal sincere positive
root y. Then for any positive vector v with q(v) = −1 we have q(y|v) = 0.

Proof. Since v is positive and y is locally maximal we have q(y|v) ≥ 0. Then

σv(y) = y − q(y|v)

q(v)
v = y + q(y|v)v,

which is a positive q-root with y ≤ σv(y). By maximality q(y|v) = 0. �	
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Lemma 6.13. Let q : Zn → Z be a unit form such that there are indices 1 ≤ i <

j ≤ n with −5 ≤ qij ≤ −3. Then q has no maximal sincere positive root.

Proof. Let us assume that y is a sincere maximal positive root of q (hence locally
maximal). Consider the triple r = (ei, ej , y) and the root induced unit form qr given
by

qr(x1, x2, x3) := q(x1ei + x2ej + x3y)

= x2
1 + x2

2 + x2
3 + x1x3q(y|ei) + x2x3q(y|ej ) − sx1x2,

where qij = −s for some integer s. LetB be the bigraph associated to qr . The shape
of B depends on the values of q(y|ei) and q(y|ej ). Since y is a root we have

2 = q(y|y) =
n∑

k=1

ykq(y|ek),

and since y is sincere, positive and locally maximal then q(y|ek) > 0 for at most
two vertices k (and q(y|ek) = 0 for the rest), and in particular m := q(y|ei + ej ) ∈
{0, 1, 2}. Thus we consider four cases: Case 1) m = 0; Case 2) m = 1; Case
3) m = 2 and q(y|ei)q(y|ej) = 0, and Case 4) q(y|ei) = 1 = q(y|ej ). These
cases correspond to the four possibilities for B as depicted below (from left to right,
observe that in all cases we have (qr)12 = q12 = −s).

9
3
7

8
2
4

···
s edges

12
2
4

1
4
4

1
3
3

···
s edges

1
6
3

1
1
3

2
1
2

···
s edges

1
1
4

1
1
6

2
1
5

···
s edges

3
1
10

Each vertex of B contains a column with three natural numbers, corresponding to
three vectors in Z

B0 which are, from top to bottom, sincere positive roots of qr for
s = 3, 4, 5 respectively. Then qr has a sincere positive root x = (x1, x2, x3) and
y ′ := x1ei + x2ej + x3y is a root of q with y ′ > y, which is impossible. �	

The following technical lemma imposes restrictions on sincere weakly nonnega-
tive unit forms which fail to be unitary.

Lemma 6.14. Let q : ZI → Z be a weakly nonnegative semi-unit form, and x ∈ Z
I

a positive sincere root. For r = 0, 1 take I r = {i ∈ I | qii = r} and consider the
restriction xr = x|I r in Z

I r
. Then one and only one of the following assertions

holds:

a) q(x1) = 1 and qij = 0 for any i ∈ I 0 and j ∈ I .
b) q(x1) = 0 and there exist i �= j in I 0 such that xi = xj = qij = 1. Moreover, if

s ∈ I 0 and t ∈ I is a different index satisfying qst �= 0 then {s, t} = {i, j }.
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c) q(x1) = 0 and there exist i in I 0 and j ∈ I 1 such that xi = xj = qij = 1.
Moreover, if s ∈ I 0 and t ∈ I is a different index satisfying qst �= 0 then
{s, t} = {i, j }.

Furthermore, if x is maximal and I 0 �= ∅ �= I 1, then (c) holds and I 0 contains
exactly one element.

Proof. Let us suppose that I = {1, . . . , n} and I 0 = {1, . . . ,m} for m ≤ n. Then

1 = q(x) = q(x1) + q(x0) + q(x1|x0), where q(x1|x0) =
∑

i∈I 1

j∈I 0

qij xixj .

Now, by Lemma 6.1 we have qij ≥ 0 for i ∈ I 0 and j ∈ I (for q ′
m and q ′′

m are
hypercritical if m > 0). Hence the three summands on the right of the equation
are nonnegative, therefore exactly one of them is nonzero. This leads to the three
assertions above, since x is sincere.

For the last claim we give a root y > x for both cases (a) and (b). For (a) take
y = 2x0+x1, whereas for (b) take y = x0+2x1. Notice that y > x since I r �= ∅ for
r = 0, 1. Thus if x is a maximal root then (c) holds, that is, 1 = q(x) = q(x1|x0).
Further, if k ∈ I 0 with k �= i then

q(x + ek) = q(x1|x0) + q(x1|ek) + q(x0|ek) = q(x1|x0) = 1,

that is, x + ek is a root of q larger than x. �	
Exercises 6.15.

1. Do hypercritical unit forms have to be connected?
2. Show that the quadratic form q in Example 6.9 is weakly nonnegative.
3. Show that if q contains a bigraph with shape T1, T2 or N1 (as in Lemma 6.3),

then q does not have a maximal sincere positive root.
4. In Example 6.9, verify that u and v are roots of q .
5. For a weakly nonnegative semi-unit form q , a positive q-root x and a positive

isotropic vector z of q , show that the following assertions hold:

i) q(x|ei) ≥ −2 and q(z|ei) ≥ −1 for i = 1, . . . , n.
ii) If xi > 0 then q(x|ei) ≤ 2, and if zi > 0 then q(z|ei) ≤ 1.
iii) qij ≤ 3 if xi �= 0 �= xj , and qij ≤ 2 if zi �= 0 �= zj .

6. Let q be a nonzero connected weakly nonnegative semi-unit form. Must q be
unitary?

7. Consider the unit form in three variables q(x1, x2, x3) = x2
1 + x2

2 + x2
3 − sx1x2.

Show that if s ≥ 3 and s − 2 is not the square of an integer, then q has a sincere
positive root.
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6.3 Criteria for Weak Nonnegativity

Here we prove a Weak Nonnegativity Criterion due to Happel and de la Peña
in [31]. Ovsienko showed in [44] that this result also holds without the condition
qij ≥ −5 for all i < j .

Theorem 6.16 (Happel–de la Peña). Let q : Zn → Z be a unit form with qij ≥
−5 for all 1 ≤ i < j ≤ n. If q has a maximal sincere positive root, then q is weakly
nonnegative.

Proof. Let y be a maximal sincere positive root of q . By Lemma 6.13 and
Exercise 6.15.3, the form q does not contain bigraphs of type N1, T1, T2, K3, K4,
K5, nor, by assumption, bigraphs Km for m ≥ 6. If q is not weakly nonnegative,
there is a hypercritical restriction qI of q , and by Proposition 6.4 there exist positive
vectors v and w with support I and with q(v) = −1 and q(w) = −3. It follows
from Lemma 6.12 that q(y|v) = 0. Since v and w are positive vectors with same
support and y is locally maximal, then q(y|w) = 0. Therefore

q(2y + w) = 4q(y) + q(w) = 1,

in contradiction with the maximality of y. �	
Lemma 6.17. Let q be a hypercritical unit form and i an index such that q(i) is not
critical. Then q(i) is a positive form.

Proof. Observe first that q(i) is weakly positive, since otherwise it would contain a
critical restriction qI , contradicting Proposition 6.2. Again by Proposition 6.2 there
must exist a vertex c such that q(c) is a critical restriction of q (hence c �= i), with
critical positive vector z such that q(z|ec) < 0. Then q(c)(i) is a positive unit form
by Corollary 5.3.

If q(i) is not positive, there is a nonzero vector v such that q(i)(v) ≤ 0. In
particular vc �= 0 since q(c)(i) is positive, so we may assume that v = v′ + vcec

with v′
c = 0 and vc > 0. Notice that for α, β > 0 we have

q(αv + βz) = α2q(i)(v) + αβq(z|v′ + vcec) ≤ αβvcq(z|ec) < 0.

Since q(i) is weakly positive the vector v′ has a negative entry. But z is a critical
positive vector of q(c), thereforewe may find α, β > 0 such that αv+βz is a positive
nonsincere vector (take for instance α = za and β = −va where a is an index such
that va

za
is minimal among all fractions

vj

zj
for j ∈ supp(z) = {1, . . . , n}− {c}). This

is impossible since q(αv + βz) < 0 and q is hypercritical, hence q(i) is a positive
unit form. �	

The following immediate consequence may be considered as a partial analogue
of Theorem 5.2 (see also Corollary 5.3).

Corollary 6.18. Any proper restriction of a hypercritical unit form is nonnegative.
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Proof. The result is clear for Kronecker forms qm with m ≥ 3. Therefore we may
assume the hypercritical form q has at least three vertices (in particular qij ≥ −2
for all i < j ). By Lemma 6.17, if q(i) is not positive then q(i) is critical, thus
nonnegative by Theorem 5.2. �	

We now prove a generalization of the (Jacobi-like) Zeldych Criterion 5.26 given
in [55]. Again we do not assume the quadratic form to be unitary. Let ad(B) denote
the adjugate of a square matrix B.

Proposition 6.19. Let q : Zn → Z be an integral quadratic form with associated
symmetric matrixA (that is, q(x) = xtAx for any x ∈ Z

n). The following assertions
are equivalent:

a) The form q is weakly nonnegative.
b) For every principal submatrix B of A we have either det(B) ≥ 0, or ad(B) has

a negative entry.

Proof. Let B be a principal submatrix of A and assume that ad(B) is nonnegative
(that is, it has no negative entry). By Perron–Frobenius Theorem 1.36 there exists a
positive eigenvector v ∈ R

n of ad(B) with eigenvalue ρ > 0. Assuming that q is
weakly nonnegative and considering q as a real function qR : Rn → R we have by
continuity

0 ≤ qR(v) = vtBv = 1

ρ
vtB(ad(B)v) = 1

ρ
det(B)‖v‖2,

and therefore det(B) ≥ 0.
Suppose now that q satisfies (b) but is not weakly nonnegative. Since property

(b) is preserved by principal minors, by induction on n we may assume that q

is hypercritical. By Corollary 6.18, every proper restriction of q is nonnegative,
therefore by Proposition 1.33 we have det(B) ≥ 0 for each proper principal
submatrix B of A.

Thus det(A) < 0 since otherwise q would be nonnegative. Take ad(A) = (vij ).
By hypothesis there must exist i, j with vij < 0. Let v be the j -th column of ad(A),
so that Av = det(A)ej and q(v) = det(A)vjj . Further, let w > 0 be a sincere
positive vector with q(w) < 0. For λ = − vij

wi
> 0 we have (v + λw)i = 0 and

(since the restriction q(i) is nonnegative)

0 ≤ q(v + λw)

= q(v) + 2λwtAv + λ2q(w)

< det(A)[vjj + 2λwj ]

= det(A)

wi

[vjjwi − 2vijwj ].
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As in the proof of Proposition 5.26, if vjj < 0 we take i = j , thus

0 ≤ q(v + λw) < det(A)(−vjj ) ≤ 0,

and if vjj ≥ 0 then vjjwi − 2vijwj ≥ 0 and we have

0 ≤ q(v + λw) <
det(A)

wi

[vjjwi − 2vijwj ] ≤ 0.

Both cases yield a contradiction. �	
The following practical criterion is useful for the computational verification of

weak nonnegativity.

Theorem 6.20. A semi-unit form q : Zn → Z is weakly nonnegative if and only if
q(z) ≥ 0 for every z ∈ [0, 12]n.
Proof. If q is weakly nonnegative then q(z) ≥ 0 for all z ∈ [0, 12]n. If q is
not weakly nonnegative, then there is a hypercritical restriction q ′ of q , and by
Lemmas 6.1 and 6.6 there is a vector z ∈ [0, 12]n with q(v) < 0. �	

We say that a weakly nonnegative semi-unit form q is 0-sincere if there exists
a sincere vector y ∈ rad+(q). We point out that in this case any isotropic vector
y ∈ N

n
0 belongs to the positive radical rad+(q) of q . In fact, we have the following

more general result.

Lemma 6.21. Let q : ZI → Z be a weakly nonnegative semi-unit form and take
μ ∈ q−1(0).

a) If x ∈ rad+(q) and supp(μ) ⊂ supp(x), then μ ∈ rad(q).
b) If μ is positive and z ∈ Z

I is such that q(z|μ) = 0 and z + nμ is a positive
sincere vector for some n ≥ 0, then μ ∈ rad+(q).

Proof. Assume there is an index i ∈ I such that q(μ|ei) �= 0 and take ε = ±1 such
that εq(μ|ei) > 0. Taking y = ei − 2εμ, we observe that

q(y) = q(ei) − 2εq(μ|ei) ≤ −1.

By the requirement on the supports in (a), notice that there exists a k ≥ 0 such that
y + kx is a positive vector, thus we arrive at the contradiction

0 ≤ q(y + kx) = q(y) ≤ −1.

This shows (a). For (b) assume that μ /∈ rad(q), thus there exists i ∈ I with
q(μ|ei) > 0 (for μ is a positive vector). In particular, there is k ≥ 0 such that

q(z + kμ|ei) = q(z|ei) + kq(μ|ei) ≥ q(z) + 2.
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Take m := max(k, n) and y := z + mμ. Then q(y|ei) ≥ q(z) + 2 and q(y) = q(z)

since q(z|μ) = 0 and q(μ) = 0. Therefore

q(y − ei) = q(y) + q(ei) − q(y|ei) = q(z) + 1 − q(y|ei) ≤ −1,

which is impossible since y ≥ z + nμ is positive and sincere. �	
For a semi-unit form q with a sincere positive radical vector z, we trivially

observe that any vector x may be taken into a positive vector x + kz with k ∈ N, so
that q(x) = q(x + kz). This proves the following lemma.

Lemma 6.22. Any 0-sincere form is nonnegative.

6.4 Iterated Edge Reductions

Recall from Sect. 5.3 that for a unit form q : Zn → Z and indices i �= j with qij < 0
we construct a quadratic form q ′(x) = q(ρ(x)) + xixj , with ρ : Zn+1 → Z

n given
by

ρ(ek) =
{

ek, if 1 ≤ k ≤ n;
ei + ej , if k = n + 1,

called the edge reduction of q with respect to i and j. The same construction can be
performed when q is a semi-unit form (or even a pre-unit form, that is, an integral
quadratic form q with q(ei) ≤ 1 for all indices i) satisfying q(ei) = 1 = q(ej ) and
qij < 0.

The quadratic form q can be recovered from q ′ using the nonlinear map π :
Z

n → Z
n+1 defined as follows,

π(x)k = xk, for k /∈ {i, j, n + 1} and

(π(x)i, π(x)j , π(x)n+1) =
{

(0, xj − xi, xi), if xi ≤ xj ,

(xi − xj , 0, xj ), if xi > xj .

Since ρ ◦ π = Id we have q(x) = q ′(π(x)) for any vector x ∈ Z
n.

Example 6.23. Consider the unit form q with associated bigrah Bq as shown below
(left). Its edge reduction with respect to vertices a, b is the form q ′ with bigrah Bq ′
(right).
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Bq = •a

• • •

• • •
•b

Bq = •a

• • •
•

• • •
•b

For a quadratic form q denote by Σ+(q) the set of isotropic vectors of q with
nonnegative entries.

Proposition 6.24. Let q : Zn → Z be a semi-unit form and q ′ : Zn+1 → Z be
obtained from q by edge reduction with respect to indices i and j . Then q is weakly
nonnegative if and only if q ′ is weakly nonnegative. In this case the maps ρ and π

are bijections (inverse to each other) between the sets Σ+(q) and Σ+(q ′).

Proof. Take a positive vector y in Zn+1. If q is weakly nonnegative, since ρ(y) > 0
we have

q ′(y) = q(ρ(y)) + yiyj ≥ 0.

Conversely, if 0 < x ∈ Z
n and q ′ is weakly nonnegative, then π(x) > 0 and

q(x) = q ′(π(x)) ≥ 0.

Assume that q and q ′ are weakly nonnegative. By the identity q(x) = q ′(π(x)) the
mapping π restricts to a function π : Σ+(q) → Σ+(q ′). If y ∈ Σ+(q ′) then

0 = q ′(y) = q(ρ(y)) + yiyj .

Since both summands on the right are nonnegative, it follows that yiyj = 0 (thus
y ∈ Im(π)) and that ρ(y) ∈ Σ+(q). In particular, π : Σ+(q) → Σ+(q ′) is a
surjective mapping, and the result follows since ρ ◦ π = Id. �	

Even though there is a bijection between Σ+(q) and Σ+(q ′) when q is a weakly
nonnegative semi-unit form and q ′ is an edge reduction of q , it is not always true that
q and q ′ have the same number of critical vectors (a vector z is critical for q if the
restriction of q to the support supp(z) of z is critical having z has positive generator
of its radical). For instance, if q and q ′ are the forms shown in Exercise 6.23, then
the following vectors v1 and v2 are critical vectors for q ,

2

1 1 1

0 0 0

1

1

0 0 0

1 1 1

2
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while q ′ has the following different critical vectors, π(v1), π(v2) and a third vector
w with an entry 3.

1

1 1 1

1

0 0 0

0

0

0 0

1

1 1 1

1

0

1 1 1

3

1 1 1

1

This behavior, along with notions like positive corank and conformality for edge
reductions, are further explored in [54].

For a unit form q which is not weakly positive there might be an arbitrarily long
iterated edge restriction for q , which is evident from the following example,

Bq = •1 •2

•3

Bq = •1 •2
•4

•3

where Bq is a subbigraph of the bigraph Bq ′ associated to the edge reduction q ′ of
q with respect to the vertices 2 and 3. Notice that this example is actually weakly
nonnegative.

An iterated edge reduction for a semi-unit form q ′ : Zn → Z is a quadratic form
q : Zm → Z with m ≥ n that is obtained iteratively from q by a sequence of edge
reductions. For instance, for the example in three variables q above, consider the
iterated edge reductions q ′′ by edges {1, 2}, {1, 2} and {2, 3}, and the reduction q ′′′
by edges {2, 3}, {1, 2} and {1, 2} respectively, as shown below.

Bq = •4
•1 •5 •2

•6
•3

Bq = •5
•1 •6 •2

•4
•3

The following is a suitable generalization of Theorem 5.24 to the weakly nonnega-
tive setting.

Theorem 6.25. A semi-unit form q : Zn → Z is weakly nonnegative if and only if
any iterated edge reduction q ′ of q is semi-unitary.

Proof. The necessity follows from Proposition 6.24.
For the converse assume that q is a semi-unit form which is not weakly

nonnegative. If there are vertices a �= b with qab < −2, then the edge reduction
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of q with respect to a and b is not semi-unitary. Therefore we may assume that
qab ≥ −2 for all vertices a �= b. By Proposition 6.2 there is a critical vector z and
i /∈ supp(z) such that q(z|ei) < 0. In particular,

q(2z + ei) = qii + 2q(z|ei) < 0.

Take vertices a and b with qab < 0 and consider the reduction q ′ of q with respect
to a, b. First we notice that there exists a j /∈ supp(z) such that

q ′(2π(z) + ej ) < 0.

If a = i and b ∈ supp(z) then take j = n + 1, so that

q ′(2π(z) + en+1) = q(ρ[2π(z) + en+1]) = q(2z + ei + eb) ≤ q(2z + ei) < 0.

If i /∈ {a, b} or {a, b} ∩ supp(z) = ∅ then take j = i and observe that

q ′(2π(z) + ei) = q(2z + ei) < 0.

Now, if the weight |z| = ∑
i |zi | of z is greater than one, taking a, b ∈ supp(z)

we have |π(z)| < |z|. By the above argument, replacing q for some iterated
reduction of q , we may assume that |z| = 1, that is, z = ek for some k ∈ {1, . . . , n}.
Hence

0 > q(2ek + ei) = 4qkk + qii + 2qki.

Since qii, qkk ∈ {0, 1} we have qkk = 0 > qki . Then the bigraph B associated to the
restriction q{k,i} has one of the following forms,

•k
··· •i •k

··· •i

corresponding to cases qii = 0 (left) and qii = 1 (these restrictions are the
hypercritical semi-unit forms q ′

m and q ′′
m from Lemma 6.1). For the reduction q ′

of q with respect to k and i we have

q ′
n+1,n+1 = qkk + qii + qki = qii + qki,

thus q ′ is not a semi-unit form unless B has the form •k •i. In this case
the restriction (q ′){k,i,n+1} has the following associated bigraph,

•n+1

•k •i
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hence the reduction of q ′ with respect of k and n + 1 is not a semi-unit form, which
completes the proof. �	

Following [54], by an exhaustive reduction for a semi-unit form q : Zn → Z we
mean an iterated edge reduction q ′ of q satisfying the following conditions:

i) Every edge reduction involved in the construction of q ′ is with respect to vertices
i and j satisfying 1 ≤ i < j ≤ n.

ii) For any 1 ≤ i < j ≤ n we have q ′
ij ≥ 0.

Notice that all exhaustive reductions involve the same numberK of edge reductions,
namely

K = (−1)
∑

i<j and qij <0

qij .

The forms q ′′ and q ′′′ right before Theorem 6.25 are examples of exhaustive
reductions of the quadratic form

q(x1, x2, x3) = x2
1 + x2

2 + x2
3 − 2x1x2 + x1x3 − x2x3.

Furthermore, we may consider a sequence q0, q1, q2, . . . of semi-unit forms such
that q0 = q and for k > 0 the form qk is obtained from qk−1 by an exhaustive
reduction. Then we say that qk is obtained from q by an iterated exhaustive
reduction (of length k). Notice that there is a sequence of integers

n = n0 < n1 < n2 < . . . < nk

such that qi is a semi-unit form in ni variables for i = 0, . . . , k. It is not known
whether a semi-unit form q is weakly nonnegative if and only if any iterated
exhaustive reduction of q stops, after finitely many steps, in a quadratic form
having only nonnegative coefficients. However, the following criterion (which is
an alternative version of Theorem 6.25) was proved in [54].

Remark 6.26. Let q : Z
n → Z be a semi-unit form, and qk : Z

nk → Z be a
sequence of iterated exhaustive reductions of q for k = 0, 1, 2, . . . Then q is weakly
nonnegative if and only if qk is semi-unitary for all k ≤ 31.

6.5 Semi-Graphical Forms

The following result, known as the reduction theorem by deflations of weakly
nonnegative forms, gives the main procedure to obtain graphical forms from weakly
nonnegative semi-unit forms, which is one of the main tools in next section. We
present a useful generalization.
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Theorem 6.27. Let q : ZI → Z be a weakly nonnegative semi-unit form with a
maximal sincere positive root x. If I = J ∪ K is a nontrivial partition of the index
set I , then there is an iterated deflation T for q concentrated in J such that the form
q ′ = qT satisfies the following.

a) The form q ′ is a weakly nonnegative semi-unit form.
b) The form q ′ has a maximal positive root x ′ with x = T (x ′).
c) We have q ′

ij ≥ 0 for all i, j ∈ J ∩ supp(x ′).
d) There are inclusions,

R+(q )
T

R+(q) and Σ+(q )
T

Σ+(q).

Proof. Take a deflation T −
ij for q and the form q− = qT −

ij . Consider a positive

vector y ∈ Z
n and take y− = T −

ij (y) = y + yiej . Then y− is a positive vector and

q−(y) = q(T −
ij y) = q(y−) ≥ 0,

which shows (a). For (b) we take i and j with xj ≥ xi so that x− := (T −
ij )−1x is

a positive q−-root. If y− is a positive q−-root with y− ≥ x−, then y := T −
ij (y−) is

a positive q-root with y ≥ x. Hence y = x, that is, the vector x is a maximal root.
The claim (d) follows as in Lemma 2.19. Therefore points (a), (b) and (d) hold for
iterated deflations.

For (c), as long as there are vertices i and j such that qij < 0 we may take a
deflation T −

ij or T −
ji and continue with the reduction. The process must stop since in

each step the weight |x−| = ∑
i x−

i of x− is smaller than the weight |x| of x. �	
Following Dräxler, Golovachtchuk, Ovsienko and de la Peña [22], we say that

a semi-unit form q : Z
I → Z is semi-graphical if there exists a vertex ω ∈ I

such that qωi < 0 for all i �= ω, and qij ≥ 0 for all i, j �= ω. As defined by
Ringel [46], a graphical form is a semi-graphical unit form q such that |qij | ≤ 1 for
all i �= j . According to Sect. 5.5, a centered form q is a semi-graphical unit form
with qωi = −1 for all i �= ω. Therefore graphical forms are centered.

Lemma 6.28. Let q be a finitely sincere weakly nonnegative semi-unit form. Then
Bq is a connected bigraph. Moreover, qii = 0 for a vertex i if and only if qij ≥ 0
for all j �= i.

Proof. If Bq has a nontrivial partition supported by the sets of vertices I 1 and I 2,
and x is a sincere positive q-root, then x = x1+x2 with supp(xi) = I i for i = 1, 2.
Since 1 = q(x1) + q(x2) we may assume that q(x1) = 1 and q(x2) = 0, and
thus conclude that all vectors x1 + mx2 are sincere positive q-roots for m > 0, in
contradiction with q being finitely sincere.

For the second assertion notice that if qii = 0 and qij < 0, then q(2ei + ej ) =
qjj + 2qij < 0. Conversely, assume that qij ≥ 0 for all j �= j and that qii = 1.
Since Bq is connected, there exists j �= i such that qij > 0. Then for any sincere
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positive root x we have

q(x|ei) = 2xi +
∑
k �=i

xkqki ≥ 3,

which is impossible since 0 ≤ q(x − ei) ≤ 2 − q(x|ei). �	
The Kronecker form qm for m ≥ 2 is a semi-graphical form which is critical

and hypercritical for m ≥ 3. All other critical semi-graphical forms are actually
graphical.

Lemma 6.29. Any critical semi-graphical form q in n ≥ 3 variables is a graphical
form.

Proof. Since n ≥ 3 we have qij ≥ −1 for all i, j �= ω. We show that qij ≤ 1 for
i, j �= ω. Since the vector ei − ej is not sincere, and proper restrictions of critical
forms are positive (cf. Corollary 5.3), we have

0 < q(ei − ej ) = 2 − qij ,

thus the result. �	
The list of critical semi-graphical forms with n ≥ 3 is precisely that of Table 5.3.

It will be useful to have a classification of centered hypercritical forms (equivalently,
hypercritical semi-graphical forms with n > 3 variables). In Table 6.1 we exhibit
such forms.

Recall that by a 0-sincere form we mean a weakly nonnegative semi-unit
form q having a sincere positive radical vector. We say that a 0-sincere (weakly
nonnegative) unit form is reduced provided qij ≤ 1 for all vertices i, j (compare to
slender forms). The following lemma justifies this definition. Recall from Sect. 5.5
that a unit form q is obtained from q ′ by doubling a vertex k if q is the one-point
extension q = q ′[−ek] (cf. also Exercise 3.32.4).
Lemma 6.30. Let q be a 0-sincere (weakly nonnegative) unit form. Then q is not
reduced if and only if there is a vertex i such that q can be recovered from the
restriction q(i) by doubling a vertex.

Proof. Assume q : Z
n → Z and take for simplicity i = n and q ′ = q(n). Then

clearly q ′[−ek]kn = 2, thus q = q ′[−ek] is not reduced.
For the converse assume that qij > 1 for some vertices i �= j , and take z to be a

sincere positive radical vector of q . Then we have

0 ≤ q(z + ei − ej ) = q(ei − ej ) = 2 − qij ,

that is, qij = 2. In particular q(ei − ej ) = 0, and since q is a nonnegative unit form
(Lemma 6.22), by Lemma 3.2(a) the vector ei − ej is radical, that is, q is obtained
from q ′ by doubling vertex j . �	
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Table 6.1 Hypercritical graphical forms

•

• • • • •

•

• • • • •

•

• • •

• • • •

•

• •

• •

• • • •

•

• •

• • •

• • • •

•

• •

• •

• • • • •

•

• • •

• • •

• • •

In the last part of this section we begin with technical preparations to end
our discussion on integral quadratic forms with a generalization of Ovsienko’s
Theorem 5.25 to the weakly nonnegative context. In Table 6.2 we show some 0-
sincere forms of small corank. The reason why we exclude those forms associated
to bigraphs C (1), C (2), C (3) and C (4′) is the content of the following result (cf.
Table 5.3 and the figure below).

2

2

2

1 1 1 1

3

1 1

1 1 1 1

4

1

1 1

1 1 1 1 1

The following classification result of graphical weakly nonnegative unit forms of
small corank, due partially to Ringel [46] (cf. [23] for comments and proofs), will
be used in the last steps in the proof of our last result Theorem 6.37.

We say that a 0-sincere graphical form q is triangular if there are precisely three
critical restrictions qI1 , qI2 and qI3 of q such that for any i �= j in {1, 2, 3} the
restriction qIi∪Ij is a 0-sincere form of corank 2.
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Table 6.2 Reduced 0-sincere semi-graphical forms of corank one or two, without the forms
associated to C (1), C (2), C (3) and C (4′) appearing as critical restrictions

A10 A11

Ψ15 Ψ16 Ψ17

Ψ18 Ψ19 Ψ20

4

2

1 1 1

1 0 1 1

4

2

0 1 1

1 1 1 1

•

•

• •i •i •

• •i •i •

•

• • •j

•j • • •

•

•

•i • • j •

• •

•

•i •

• •

• • •i • •

•

• • • •

• •

• •

• •

• • •

•

•

• • •

• • • • •

In cases A10 and A11 the vector shown as integers at the vertices is the positive generator of the
radical. A vertex marked as •i or •j represents a critical restriction q(i) or q(j) of shape A10 or
A11, respectively

Theorem 6.31. Let q : Z
I → Z be a 0-sincere graphical form without critical

restrictions having associated bigraph of the shape C (1), C (2), C (3) or C (4′).

a) If cork(q) = 3 then q is either triangular or one of the forms associated to Θ1
or Θ2 (see Table 6.3).

b) cork(q) = 2 if and only if q = qΨ� for � = 15, . . . , 20 (see Table 6.2).

Remark 6.32. Let q be one of the forms qΦ� for � = 15, . . . , 20. If μ(1) and μ(2)

are critical vectors of q one can show by inspection that there are vertices i and j

such that μ
(1)
i = 1 and μ

(1)
j = 0, and μ

(2)
i = 0 and μ

(2)
j = 1. In particular, for

any positive radical vector μ of q , there are positive numbers m1 and m2 such that
μ = m1μ

(1) + m2μ
(2).

Similarly, it can be shown that if q is a triangular 0-sincere form, then there
are vertices {i, j, k} such that the restriction of the critical vectors μ(1), μ(2) and
μ(3) are the canonical vectors with three entries. Therefore, for any sincere positive
radical vector μ there are positive numbersm1, m2 and m3 such that μ = m1μ

(1) +
m2μ

(2) + m3μ
(3).
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Exercises 6.33.

1. Show that the solid star Tr1,...,rs is equivalent to the centered form q where q(ω)

has associated bigraph B = 	I (ri − 1) and where I (m) is the complete dotted
bigraph on m vertices.

2. Let q : ZI → Z be a weakly nonnegative centered unit form with center ω, and
for i ∈ I consider the set Si = {j ∈ I | qij > 0}. Show that if x is a positive
sincere vector, S ⊂ Si with i �= ω and

xi − q(x|ei) ≥ xω −
∑
j∈S

xj ,

then S = Si and qij = 1 for all j ∈ Si .
3. Let q : ZI → Z be a weakly nonnegative semi-graphical form with center ω.

Suppose that x is a maximal sincere positive root with xω ≥ 7 and only one
exceptional vertex.

a) Show that q is a centered form, and that qij ≤ 1 for all j �= ω.
b) Set S′

i = {j �= i | qij > 0} and show that the restriction of Bq to S′
i is a

complete graph with dotted edges. Moreover, xj = 1 for all j ∈ S′
i and if

j ∈ Si and k ∈ I satisfy qjk > 0, then k ∈ Si .
c) Prove that Si has exactly xω − 2 elements.
d) Notice that q is not weakly positive (why?) and show that if J ⊂ I and the

restriction qJ is critical, then Si ⊂ J .
e) Conclude that xω = 7. [Hint: use (c) and (d) to verify that the restriction qI

may be identified with the critical form qC (6), see Table 5.3].

4. Which of the hypercritical centered forms in Table 6.1 have as restriction the
following bigraphs?

•

• • • •

•

• • •

• • • •

6.6 Generalizing Ovsienko’s Theorem

Our objective in this section is to show that any maximal positive root x of a weakly
nonnegative unit form q satisfies xi ≤ 12 for any index i, following arguments by
Dräxler, Golovachtchuk, Ovsienko and de la Peña in [23]. We say that x ∈ Z

n is a
2-layer root of an integral quadratic form q : Zn → Z if x is a positive q-root and
there exist positive isotropic vectors μ and μ′ such that x = μ + μ′ (in particular
1 = q(x) = q(μ|μ′)).
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Theorem 6.34. Let q : Zn → Z be a weakly nonnegative semi-unit form with a
maximal positive root x.

a) If there is a positive isotropic vector μ with μ < x then x is a 2-layer root.
b) If x is a 2-layer root then xi ≤ 12 for all i = 1, . . . , n.

Proof. Without loss of generality we may assume that x is a sincere vector. To
show (a), by maximality of x we have μ /∈ rad(q), and therefore q(x|μ) �= 0 by
Lemma 6.21(b). That q(x|μ) = 1 follows from the equations

0 ≤ q(x − μ) = q(x) − q(x|μ) = 1 − q(x|μ),

0 ≤ q(x + mμ) = q(x) + mq(x|μ) = 1 + mq(x|μ), for all m ≥ 0.

Hence q(x − μ) = q(x) − q(x|μ) + q(μ) = 0, that is, μ′ := x − μ is an isotropic
vector.

We now turn to the proof of (b), which we illustrate with an example. Take
x = μ + μ′ with μ and μ′ positive isotropic vectors of q .

•2 •1

•4 •3

x = 1 1
1 0 + 1 0

1 1 .

Step 1. First we double all vertices I = {1, . . . , n} of the form q : Z
n → Z

(cf. Exercises 3.32.4 and 5) to get a weakly nonnegative form q : ZI∪J → Z,
where J = {n + 1, . . . , 2n}. Consider μ as a vector in Z

I∪J and define μ =∑n
i=1 μ′

iei+n. Then the projection π : ZI∪J → Z
I given by π(ei+n) = ei =

π(ei) for i ∈ I satisfies π(x) = x where x = μ + μ is a maximal positive root
of q (see Exercise 3.32.4(d)).
Take I ′ = supp(μ) and J ′ = supp(μ), and replace q by its restriction to I ′ ∪ J ′
(figure below for our example).

2

4 1

2

4 3

Step 2. Apply now the Reduction Theorem 6.27 to q with respect to I ′ to get an
iterated deflation T (concentrated in I ′) and a weakly nonnegative quadratic form
q ′ = qT with a positive maximal root η such that T (η) = x, and q ′

ij ≥ 0 for all
i, j ∈ I ′ ∩ supp(η).
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By Lemma 6.14, there is a vertex ω ∈ I ′ such that the support of η is J ′ ∩ {ω},
q ′

ωω = 0 and the restriction q ′ of q ′ to J ′ is a unit form (in the example below
the iterated flation is T = T −

12T
−
14). Moreover, there exists a j ∈ J ′ such that

ηω = ηj = q ′
ωj = 1 (in particular η = μ + eω), and j is the unique element in

J ′ satisfying q ′
ωj �= 0.

2 ω

4 3

Step 3. By Lemma 6.21(b) we have μ ∈ rad+(q ′), thus μ belongs to the set

U = {y ∈ rad+(q ′) | yj = 1}.

If U has infinitely many elements, there exist y ′ < y ∈ U , therefore y − y ′ ∈
rad+(q ′). This contradicts the maximality of η.

We conclude by pointing out that U is a finite set, thus by Lemma 6.35 below we
have μi ≤ 6 for i ∈ I . Since by symmetry we also have μi ≤ 6, then xi ≤ 12 for
all i ∈ I . �	
Lemma 6.35. Suppose q : ZI → Z is a (weakly nonnegative) 0-sincere semi-unit
form such that there is an index i ∈ I with q(i) unitary. If the set U of positive
radical vectors y of q with yi = 1 is finite, then yi ≤ 6 for any y ∈ U and i ∈ I .

Proof. We claim that the restriction q(i) is a weakly positive unit form. Otherwise
there exists a positive isotropic vector μ with i /∈ supp(μ). By Lemma 6.21(a) the
vector μ is radical, contradicting the finiteness of U .

If y ∈ U then q(y − ei) = q(ei) = 1, thus y − ei is a positive root of the weakly
positive form q(i). The result follows from Ovsienko’s Theorem 5.25. �	

The following example shows that the bound 12 in Theorem 6.34 is optimal.
The example is constructed by identifying all but the exceptional vertices of two
copies of q

Ẽ8
, where the vector shown (a maximal positive root) is the sum of the

corresponding positive generators of the radicals of q
Ẽ8

(one for each copy).

6 1

4 8 12 10 8 6 4

1

The example above is not a 0-sincere form, which is a direct consequence of the
following lemma.
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Lemma 6.36. Suppose q : Zn → Z is a (weakly nonnegative) 0-sincere unit form.
Then qij > 1 if and only if q is obtained from q(i) by doubling vertex j .

Proof. Assume that qij > 1. By Exercise 6.15.5 we have qij = 2. Since ei − ej

is an isotropic vector (0 = 2 − qij = q(ei − ej )), by Lemma 6.21(a) the vector
ei − ej is radical. Therefore by Exercise 3.32.6 the form q is equal to q(i)[j ] (up to
a reordering of vertices if necessary). The converse is evident. �	

The following generalization of Ovsienko’s Theorem is the main result in [23].

Theorem 6.37. Let q : Zn → Z be a weakly nonnegative semi-unit form with a
maximal positive root x. Then xi ≤ 12 for all i = 1, . . . , n.

Sketch of Proof. Suppose on the contrary that x is a maximal positive root of q with
xω > 12 for some ω ∈ {1, . . . , n}.
Step 1. We may assume that q : ZI → Z is a weakly nonnegative centered form

without critical restriction of shape C (1), C (2), C (3) or C (4′). In this case, the
maximal root x has two exceptional vertices. We may further assume that the
cardinality |I | is minimal among all such forms.
Apply the Reduction Theorem 6.27 with respect to the set I ′ = I − {ω} and the
maximal root x to get an iterated deflation T concentrated in I ′ and a maximal
positive root x ′ of q ′ = qT such that x = T (x ′). Deleting some vertices if
necessary, we may assume that x ′ is sincere, thus q ′

ij ≥ 0 for all i, j �= ω.
If there exists an i �= ω such that q ′

iω ≥ 0 then by Lemma 6.28 we have q ′
ii = 0.

In particular ei is a positive isotropic vector of q ′ with ei < x ′, therefore by
Theorem 6.34, x ′ is a 2-layer root and xω = x ′

ω ≤ 12, a contradiction.
Moreover, if q ′

iω < −1 then qiω = −2 and the vector eω + ei is isotropic for q ′
with eω + ei < x ′, which is again impossible. Hence q ′ is a centered form.
Observe from Table 5.3 (see also the graphs after Lemma 6.30) that if qJ is a
critical restriction of q ′ with associated bigraph C (2), C (3) or C (4′), then there
is a positive isotropic vector μ < x, which once more by Theorem 6.34 yields a
contradiction.
Finally, the statement about the exceptional vertices of x ′ is worked out in
Exercise 6.33.3. Write q for q ′ and x for x ′.

Step 2. Let i and j be the exceptional vertices of x and consider the quadratic form
q(y) = q(y) − yiyj . Then q is a 0-sincere centered form with sincere positive
radical vector x.
By Lemma 6.11 we have xi = 1 = xj , therefore i, j �= ω.
First notice that the restriction q(i)(j) is weakly positive (otherwise there is a
critical restriction with a critical positive vector μ, and q(μ + x) = q(x) =
1 since i, j /∈ supp(μ), contradicting the maximality of x). This implies that
2 ≤ qij ≤ 3. Indeed, by Exercise 6.15.5 the inequality 0 ≤ qij ≤ 3 holds. If
qij ≤ 1 then q(ei + ej + eω) ≤ 2 and the claim below yields a contradiction with
z = ei + ej + eω.

Claim. If z is a positive vector with q(z) ≤ 2 satisfying zk ≤ 1 for all k �= ω

and zi = 1 = zj , then zω > 6.
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Proof. If zω ≤ 6 then x − z is a positive vector and since q(i)(j) is weakly
positive we have

0 < q(i)(j)(x − z) = q(x − z) = q(x) + q(z) − q(x|z)
= 1 + q(z) − (ziq(x|ei) + zj q(x|ej)) = q(z) − 1 ≤ 1.

Then x−z is a positive root of q(i)(j), and by Theorem 5.25 we have xω−zω ≤ 6,
in contradiction with xω > 12. �	
Observe that the bilinear form associated to q has the following shape,

q(v|w) = q(v|w) − viwj − vjwi,

hence q(x|ek) = 0 for all k since q(x|ek) = xk = 1 for k = i, j . Then x

is a sincere positive radical vector for q, and we only need to show that q is
weakly nonnegative. Observe that q(i) = q(i) and q(j) = q(j). If q is not weakly
nonnegative, then there is a hypercritical restriction qJ where J ⊂ I contains
both i and j . From Table 6.1 we see that qij �= 3. Furthermore, if qij = 2 then
qJ has a restriction including i and j with one of the following bigraphs (see
Exercise 6.33.4)

2

1 1 1 1

4

1 1 1

1 1 1 1

Using the claim above with the vector z as indicated by the vertices in the figure,
which satisfies q(z) ≤ 2, we get a contradiction. Then q is a 0-sincere form with
sincere positive radical vector x.

Step 3. If for some vertices s, t ∈ I we have qst > 1, then {s, t} = {i, j }.
Assume on the contrary that i does not belong to the set {s, t} and consider the
restriction q ′ = q(i), which has the vector y = x − ei as positive root. If q ′ is
weakly positive, then yω = xω ≤ 6, contradicting Ovsienko’s Theorem. Then
there is a critical restriction (q ′)J of q ′ with critical positive vector μ.
Since qst = qst > 1, by Lemma 6.36 the 0-sincere form q is obtained from its
restriction q(t) by doubling vertex s. Consequently the vector w = μ − μtet +
μtes is a positive isotropic vector for q ′ (thus also for q). Since i, j /∈ supp(w)

implies that q(w|x) = 0 we get the equation

q(x + w) = q(x) = 1,

which contradicts the maximality of x.
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For a weakly nonnegative unit form q : Z
I → Z consider the union I+ of

the supports of all positive radical vectors of q . By Lemma 6.21, the restriction
q+ := qI+

is a 0-sincere form, called the 0-sincere kernel of q .
Step 4. Let ξ+ : ZK → Z be the 0-sincere kernel of the restriction q(i). Then ξ+

is nontrivial and satisfies cork(ξ+) ≤ 2.
Notice that y = σi(x) = x − ei is a sincere positive root of q ′ := q(i). Since
yω > 12, the form q ′ is not weakly positive, thus the 0-sincere kernel ξ+ is
nontrivial.
Now, since q ′ = q(i), by Step 3 the form q ′ is graphical. Assume that cork(ξ+) ≥
3. Then we may take a 0-sincere restriction ξ of ξ+ such that cork(ξ) = 3 (cf.
Lemma 6.22 and Remark 3.21).
Apply Theorem 6.31 to the form ξ , and notice first of all thatΘ1 is not the bigraph
associated to ξ (by Theorem 6.34, since the vector z with zω = 5 and zk = 1 for
all other vertices is isotropic with z < x). Thus if ξ is triangular or Bξ is Θ2, it
can be seen that there exist critical vectors μ1, μ2 and μ3 of ξ such that

|(μs − μt )ω| ≤ 2, and |(μs − μt)k| ≤ 1 for k �= ω,

for any s �= t in {1, 2, 3} (see Exercise 2 below). Hence x − (μs − μt) > 0.
Suppose that there are s �= t such that q(x|μs − μt) ≥ 2. Then

q(x|μs − μt ) = q(y + ei |μs − μt) = q(ei |μs − μt ) ≥ 2,

and since x − (μs − μt) > 0, we get the contradiction

0 ≤ q(x − (μs − μt )) = q(x) + q(μs − μt ) − q(x|μs − μt) < 0.

In particular, in the set {q(ei|μk)}k=1,2,3 there are at least two equal elements,
say q(ei|μ1) = q(ei |μ2). We may also assume that (μ1 − μ2)ω ≥ 0. Then
μs − μt is a radical vector of q , and taking d = min(xk | (μs − μt)k = −1)
we get a nonsincere positive q-root z = x + d(μs − μt) satisfying zω > 12.
Using Exercise 1 below, the vector z is a sincere maximal positive root of the
restriction of q to the (proper) support of z, obtaining in this way a contradiction
to the minimal choice of |I | established in Step 1.

Step 5. The form q admits no critical restriction with associated bigraph of shape
C (1), C (2), C (3) or C (4′).
Since the form q is centered (Step 2), its bigraph does not contain the bigraph
C (1) as a restriction. In all other cases notice that the support of the critical vector
μ must contain both i and j (otherwise it would be a critical vector for q). Thus
μ would be a positive root of q , and using the claim in Step 2 we get μω > 6, a
contradiction.

Step 6. Final analysis of the case cork(ξ+) = 2.
Consider that ξ+ : ZK → Z is a 0-sincere graphical form with cork(ξ+) = 2,
which is by construction a restriction of the quadratic form q(i) = q(i) where
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q : ZI → Z is our original form. First we notice that K = I − {i}, that is, that
ξ+ = q(i). Indeed, if there is a k �= i in I − K then the restriction of q(i) to the
set K ∪ {k} has corank 3 by Exercise 5 below. This is impossible since ξ+ has
corank 2. Hence K = I − {i}. We will reach a contradiction by considering two
cases.
Case qij = 2. By Lemma 6.30 the form q is obtained from ξ+ = q(i) by doubling
vertex j . Define the vector u := x − ei + ej , which can be shown to be a sincere
isotropic vector for ξ+ with uj = 2. Indeed, we have

ξ+(u) = q(x − ei + ej ) = q(x) = q(x) − xixj = 0.

Taking μ(1) and μ(2) to be critical vectors of the two critical restrictions of ξ+,
there are positive integers m1 and m2 such that u = m1μ

(1) + m2μ
(2) (see

Remark 6.32). Since uj = 2, up to exchanging the roles of μ(1) and μ(2) we

may suppose that μ
(1)
j = 0 or μ

(1)
j = 1. But notice that in both cases we have

μ(1) < x, therefore x is a 2-layer root by Theorem 6.34(a). This contradicts
xω > 12 by part (b) of that theorem.
Case qij = 1. Again by Exercise 5 and Theorem 6.31, either q is a triangular
form, or the form associated to one of the bigraphs Θ1 or Θ2. If q is triangular,
then by Remark 6.32 there are positive integers m1, m2, m3 such that

x = m1μ
(1) + m2μ

(2) + m3μ
(3),

where m1μ
(1), m1μ

(2) and m1μ
(3) are critical vectors of q. Since xi = 1 we

may assume that μ
(1)
i = 0, therefore μ(1) < x. This is again impossible by

Theorem 6.34. A similar argument can be formulated for case Θ2 (see Exercise 3
below). Finally, if q = qΘ1 , then the vector z given by zω = 5 and zi = 1 for
i �= ω is a positive q-root, contradicting the claim in Step 2 (see Table 6.3 and
Exercise 4).

Step 7. Final analysis of the case cork(ξ+) = 1.
We assume now that ξ+ is itself a critical form, and let μ be its critical vector.
Suppose first that ξ+ is the form associated to one of the graphs C (5) or C (6).
It can be shown then (see Exercise 6(b) and (c) below) that ξ+ is the (one-point)
restriction of a form of corank 2. Therefore we have again ξ+ = q(i) = q(i). As
before we consider separately the cases qij = 2 and qij = 1.
Case qij = 2. By Lemma 6.30 the form q is obtained from ξ+ by doubling
vertex j . Hence u := x − ei + ej is a sincere positive radical vector of ξ+.
Because uj = 2 we have u = mμ for some m ∈ {1, 2}. However, recall from
Proposition 5.4 that μω ≤ 6, therefore xω ≤ 2μω ≤ 12, a contradiction.
Case qij = 1. A direct inspection of the bigraphs Ψ17, . . . , Ψ20 given in
Exercise 6 shows that, since xi = 1, we may find a critical restriction of q

avoiding vertex i, and such that its critical vector μ satisfies μ < x. The
contradiction is again derived from Theorem 6.34.
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By Step 5 and the discussion above we may finally suppose that ξ+ is the form
associated to the graph C (4). Let us first assume that K = I − {i} (that is, that
ξ+ = q(i)). Then if qij = 2 we can argue as above, while if qij = 1 then by
Exercise 6(a) the form q fails to be 0-sincere, in both cases a contradiction.
Therefore we may fix a vertex k �= i in the set I − K . Let us now assume
that I − K = {i, k}. If qij = 2 then one can check that q is not 0-sincere,
and if qij = 2 then by Exercise 6(d) the form q is associated to one of the
bigraphs Ψ15, . . . , Ψ18, and one can proceed as above to find a critical vector μ

with μ < x, obtaining a contradiction using Theorem 6.34.
Assume now that we can find a second vertex � �= i, different from k, in the
set I − K . Consider the restriction q̃ = qK∪{k,�}, and take q ′ = q̃(�). Hence
(q ′)(k) = ξ+, which is the form associated to the graph C (4). By Exercise 6(a),
the graph associated to q ′ has shape A10 or A11. By Exercise 6(d), the form q̃

is either not 0-sincere, or is associated to one of the bigraphs Ψ15, Ψ16, Ψ17 or
Ψ18. It is shown in [23, Sect. 9.9] that all these cases imply that q itself is not
0-sincere, a contradiction.

This completes the proof. �	
Exercises 6.38.

1. Let q : ZI → Z be a weakly nonnegative semi-unit form with a maximal sincere
positive root x. If μ ∈ rad(q) and x + μ is a positive vector, show that x + μ is
a maximal sincere positive root of the restriction of q to the support of x + μ.

2. Let q be a 0-sincere graphical form of corank 3 without having as restriction a
form associated to the bigraphs C (1), C (2), C (3) or C (4′).

a) If q is a triangular form, let μ1, μ2 and μ3 be the positive critical vectors of
q . Show that for s �= t in {1, 2, 3} we have

|(μs − μt)ω| ≤ 2, and |(μs − μt)k| ≤ 1, for k �= ω.

[Hint: Use Theorem 6.31.]
b) If Bq = Θ2 consider the vectors

μ1 4

0 1 2

1 1 0

1 1 0 1

μ2 5

1 0 2

1 2 1

1 1 0 1

μ3 5

0 1 2

1 2 1

1 1 1 0

Show thatμ1, μ2 andμ3 are critical vectors of q , and that for s �= t in {1, 2, 3}
we have

|(μs − μt )k| ≤ 1, for all k.

Why is q not a triangular form?
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Table 6.3 Some 0-sincere semi-graphical forms of corank 3

•

• • •

• • •

• • • •

•

• • •

• • •

• • • •

Θ1 Θ2

3. Show that if q is the quadratic form associated to Θ2 (Table 6.3), and μ(1),
μ(2), μ(3) and μ(4) are its critical vectors, then there are nonnegative integers
m1, . . . ,m4 such that any sincere positive radical vector μ can be written as

μ = m1μ
(1) + m2μ

(2) + m3μ
(3) + m4μ

(4).

Show also that we may assume, up to a reordering of variables, that m1 and m2
are positive integers.

4. Consider the quadratic form q with bigraph Θ1 with center ω (Table 6.3), and let
z be the vector with zω = 5 and zi = 1 for all other vertices. Show that z is an
isotropic vector for q . Is it a radical vector?

5. Let q : Z
K → Z be a 0-sincere graphical form without critical restriction of

shape C (1), C (2), C (3) or C (4′), and take k ∈ K .

a) Show that if the restriction q(k) is a 0-sincere form of corank 2, then q is
0-sincere of corank 3.

b) Show that in the situation of point (a), either q is a triangular form, or q is
one of the forms Θ1 or Θ2 shown in Table 6.3.

6. Let q : Z
J → Z be a weakly nonnegative graphical form having no critical

restriction of shape C (1), C (2), C (3) or C (4′). Consider a vertex j ∈ J .

a) Show that if q(j) = qC (4), then q is the form associated to one of the bigraphs
A10 or A11 below, and cork(q) = 1.

b) Show that if q(j) = qC (5), then q is the form associated to Ψ17, Ψ19 or Ψ20,
and cork(q) = 2 (see Table 6.2).

c) Show that if q(j) = qC (6), then q is the form associated to Ψ18 or Ψ20, and
cork(q) = 2 (see Table 6.2).
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d) Show that if q(j) = qA10 or q(j) = qA11 , then either q is the form associated
to Ψ15, Ψ16, Ψ17 or Ψ18, or q is not 0-sincere.

4

2

1 1 1

1 0 1 1

4

2

0 1 1

1 1 1 1

A10 A11

7. Let q : ZJ → Z be a graphical 0-sincere form having no critical restriction of
shape C (1), C (2), C (3) or C (4′). Show that if there is a vertex j ∈ J such
that q(j) has associated bigraph A10 or A11, then Bq is Ψ15, Ψ16, Ψ17 or Ψ18. In
particular q has corank 2.
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