
Chapter 3
Nonnegative Quadratic Forms

In this chapter we deal with semi-unit forms that are nonnegative, that is, integral
quadratic forms q(x1, . . . , xn) = ∑

1≤i≤j≤n qij xixj with diagonal coefficients qii

in the set {0, 1} for i = 1, . . . , n such that q(x) ≥ 0 for any vector x = (x1, . . . , xn)

in Z
n. As before it will be convenient to set qji = qij for i �= j . We begin by

describing nonnegative forms related to (solid) graphs (those forms q satisfying
qij ≤ 0 for i �= j ).

3.1 Extended Dynkin Graphs

Recall that extended Dynkin diagrams (also known as Euclidean graphs) are
obtained from Dynkin graphs Δ by adding a vertex ω and edges joining ω with
certain exceptional vertices in Δ (cf. Tables 2.1 and 2.2 in Chap. 2 and Lemma 5.9
in Chap. 5). It was shown in Proposition 2.2 that the quadratic form qG associated
to a (solid) connected graph G is positive if and only if G is a Dynkin diagram.
This result is generalized below to the nonnegative setting, by means of extended
Dynkin diagrams (cf. [46]). Recall that for a set of indicesG0 the support of a vector
x ∈ Z

G0 is given by supp(x) = {i ∈ G0 | xi �= 0}, and that the vector x is positive
if x �= 0 and xi ≥ 0 for all i ∈ G0.

Proposition 3.1. Let G be a connected (solid) graph. Then the associated
quadratic form qG is semi-unitary nonpositive and nonnegative if and only if G

is a loop or an extended Dynkin diagram Ãn, D̃m or Ẽp for n ≥ 1, m ≥ 4 or
p = 6, 7, 8 (see Table 2.2).

Proof. Consider an extended Dynkin diagram Δ̃ and its associated quadratic form
q = qΔ̃. Observe that any proper subgraph of Δ̃ is union of Dynkin diagrams.
Hence by Lemma 2.1 any proper restriction of q is positive. Now, it can be directly
verified that the vector pΔ̃ displayed as vertices in Table 2.2 is an isotropic vector
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for q (see Exercise 2.10.4). Therefore q is a critical nonpositive unit form, and by
Theorem 2.12 the form q is nonnegative (again since q has an isotropic vector and
Kronecker forms qm with |m| > 2 are anisotropic, see Proposition 1.20). If Δ̃ is a
single loop, then qΔ̃ is clearly a nonnegative semi-unit form (the zero form in one
variable ξ ).

Let nowG be a connected graph with n vertices such that q := qG is nonpositive
and nonnegative and take the canonical vectors {ei}i∈G0 of Z

G0 .
First notice that if I ⊂ G0 is a subset of vertices such that qI has a positive

radical vector w, then I = G0. Indeed, if i ∈ G0 − I we may complete w by zeros
to a vector v in ZG0 , which is a (positive) radical vector of q by Lemma 2.11. Since
vi = 0, as shown in Lemma 1.1 we have

q(v|ei) = 2qiivi +
∑

j �=i

qij vj =
∑

j �=i

qij vj < 0,

where the last inequality is due to the connectedness of G, since qij ≤ 0 for all
i �= j and v is a positive vector. This is impossible since v is a radical vector of q .

Assume that G has a loop, say in vertex i (that is, qii ≤ 0). By nonnegativity
we have 0 ≤ q(ei) = qii , that is, the vertex i has exactly one loop on it. Then ei

is a positive radical vector for the one-variable restriction q{i}, and by the above we
have n = 1 and G is a single loop (that is, q is the zero form ξ in one variable).
Assume now that G has no loop, but has multiple edges (say qij < −1 for vertices
i �= j ). Then 0 ≤ q(ei + ej ) = 2 + qij , that is qij = −2, and in particular ei + ej

is a positive radical vector of the restriction q{i,j}. Therefore n = 2 and q is the
Kronecker form q2(x1, x2) = (x1 − x2)

2.
Hence we may assume that G is a simple graph (with no loops nor multiple

edges). By Proposition 2.2 the graphG is not a Dynkin diagram, for q is nonpositive.
Recall that for any connected simple graph G that is not a Dynkin graph, there is a
subsetE0 ⊂ G0 such that the full subgraphE ofG determined by E0 is an extended
Dynkin diagram (cf. Table 2.2 and Exercise 2.10.5). For any such diagram E, the
restriction qE0 of q has a positive radical vector pE , the one exhibited in Table 2.2.
Using again the above argumentwe haveE0 = G0, that is, G is an extended Dynkin
diagram which completes the proof. ��

We give a useful result for nonnegative semi-unit forms which is analogous to
Lemma 2.14, compare also with Lemma 2.11. We say that an integral quadratic
form q : Zn → Z is pre-unitary or a pre-unit form if q(ei) ≤ 1 for i = 1, . . . , n,
where e1, . . . , en is the canonical basis for Zn. Recall that a vector z in Z

n is an
isotropic vector for q if q(z) = 0.

Lemma 3.2. Let q : Z
n → Z be a nonnegative pre-unit form. Then q is semi-

unitary and the following hold.

a) Any isotropic vector for q is a radical vector.
b) We have |qij | ≤ 2 for all indices i, j ∈ {1, . . . , n}.
c) If q(ei) = 0 for some i ∈ {1, . . . , n}, then qij = 0 for all j ∈ {1, . . . , n}.
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Proof. That q is semi-unitary is evident. For (a) consider an isotropic vector x ∈
Z

n, an arbitrary integer m and an index i ∈ {1, . . . , n}. Then we have

0 ≤ q(mx + ei) = m2q(x) + q(ei) + mq(x|ei) ≤ 1 + mq(x|ei).

Since m is arbitrary the equality q(x|ei) = 0 must hold, and since this is true for
any index i, the vector x is radical for q .

Take now indices i �= j and observe that by nonnegativity, since qij = q(ei|ej ),
we have

0 ≤ q(ei ± ej ) = q(ei) + q(ej ) ± qij ≤ 2 ± qij ,

which shows (b). Assume finally that q(ei) = 0 for some i ∈ {1, . . . , n}. By (a) the
canonical vector ei is radical for q , that is, for any j �= i we have

0 = q(ei |ej ) = qij ,

thus (c) holds. ��
Let q be an integral quadratic form. Recall form Sect. 2.4 that a flation for q is a

linear transformation T ε
ij : Zn → Z

n given by

T ε
ij : v 
→ v − εviej ,

where ε ∈ {+,−} is a sign such that εqij = |qij |. When qij > 0 we say that T +
ij is

an inflation for q , and when qij < 0 the transformation T −
ij is called a deflation. A

finite composition of flations is called an iterated flation.
In contrast to the positive case, nonnegative unit forms are not preserved under

flations, as the following example shows. Let ξ denote the zero quadratic form in
one variable and take q

Ã2
to be the form associated to the extended Dynkin diagram

Ã2. Then q := q
Ã2

T = ξ ⊕ qA2 is not unitary, where the iterated flation T is the

composition T −
12T

−
13.

•1 •3

•2

•1 •3

•2

•1 •3

•2
−→ −→
T −
12 T −

13

Notice that if q ′ denotes the quadratic form associated to the bigraph in the middle,
then the vector e1 + e3 generates the radical of q ′, and T −

12(e1 + e3) = e1 + e2 + e3
is a generator of the radical of q

Ã2
. Notice also that T −

13 is not a Gabrielov

transformation, and that its inverse T +
13 is neither an inflation nor a deflation for q

(see Proposition 2.17). However, we show next that semi-unitary forms are actually
preserved under flations.
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Lemma 3.3. For n ≥ 1, the set of nonnegative semi-unit forms with n variables
(denotedSU≥0(n)) is invariant under inflations and deflations.

Proof. Since flations are equivalences, we only need to show that they preserve
semi-unitary forms in the nonnegative case.

Let us assume that T ε
ij is a flation for a nonnegative semi-unit form q : Zn → Z

with qij �= 0. By Lemma 3.2 we have |qij | ∈ {1, 2} and q(ei) = 1 = q(ej ). Notice
that

q(ei − εej ) = q(ei) + q(ej ) − εqij = 2 − |qij | ∈ {0, 1}.

Take qε = qT ε
ij . Since qε(ei) = q(ei − εej ) and qε(ek) = q(ek) for k �= i, by the

above we conclude that qε is semi-unitary. ��
The fact that flations do not necessarily preserve connectedness of nonnegative

semi-unit forms (as exhibited in the example above) was used in [7] to classify those
forms.

Lemma 3.4. If q is a nonzero nonnegative connected semi-unit form, then q is
unitary. Moreover, if T ε

ij is a flation for q such that qε = qT ε
ij is not connected,

then |qij | = 2 and there is a nonnegative connected unit form q ′ such that

qε = q ′ ⊕ ξ,

where ξ is the zero form in one variable.

Proof. Assume first that q is connected but nonunitary, say q(e1) = 0. If n > 1
then for any other index 1 < i ≤ n we have q1i = 0 by Lemma 3.2(c), which is
impossible since q is connected. Then n = 1 and q is the zero form.

For the second claim let us assume that qε = qT ε
ij is not connected. Observe that

we must have |qij | = 2 (for if |qij | = 1 then T ε
ij is a Gabrielov transformation, hence

qε is connected by Proposition 2.17). By Lemma 3.2(c)we have q(ei) = 1 = q(ej ),
and

qε(ei) = q(ei − εej ) = 2 − |qij | = 0.

Again by Lemma 3.2(c) the bigraph Bε associated to qε has an isolated loop at
vertex i. The result will follow by showing that Bε has exactly two connected
components, that is, we will show that for any vertex k �= i, if k �= j then k and j

belong to the same connected component of Bε . Let B be the bigraph associated to
q . Since for k �= i we have qε

k,i = 0 = qε(ei), and considering that q is unitary, then

qε(ek + ei) = qε(ek) + qε(ei) + qε
ki = q(ek) = 1,
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and therefore, if moreover k �= j ,

1 = qε(ek + ei) = q(ek + ei − εej )

= q(ek) + q(ei) + q(ej ) − |qij | + qki − εqkj

= 1 + qki − εqkj ,

that is, qki = εqkj . Hence, since B is connected, for every k �= i, j there exists a
walk w in B joining k and j and not containing vertex i. The same is true in Bε

since the bigraph Bε differs from B only on edges containing vertex i (for clearly
q(i) = (qε)(i)). ��

Recall that a vector x in Z
n is called sincere if supp(x) = {1, . . . , n}. The

proof of the following result, analogous to Theorem 2.20 and due originally to
Ovsienko [43], is based on an argument given by von Höhne in [52].

Theorem 3.5. Let q : Z
n → Z be a connected nonnegative unit form with

rad(q) = Zv for a sincere positive vector v. Then there exists an iterated inflation
T and an extended Dynkin graph Δ̃ such that qT = qΔ̃.

Proof. Let B0 be the bigraph associated to q = q0. If B0 has no dotted edges, by
Proposition 3.1 the connected graph B0 is an extended Dynkin graph and we are
done. Assume otherwise that (q0)ij > 0 for some i �= j and consider the inflation
T0 = T +

ij and q1 = q0T0 with associated bigraph B1. Notice that if (q0)ij > 1,
then q0(ei − ej ) = 2 − (q0)ij ≤ 0. By nonnegativity and Lemma 3.2(a), the vector
ei − ej is radical for q0, contradicting the hypothesis on the generator of rad(q0).
Therefore (q0)ij = 1 and by Lemma 3.4 the unit form q1 is connected.

Observe that the radical of q1 is generated by the positive sincere vector
v1 := (T +

ij )−1v = v + viej . Iterating this process we find a sequence of
connected nonnegative forms q0, q1, q2, . . . with associated connected bigraphs
B0, B1, B2, . . . and an inflation Tr for qr such that qr+1 = qrTr . Moreover, the
radical of each form qr is generated by a sincere positive vector vr . We show that
this process is finite, arriving in this way at a quadratic form qr with Br having no
dotted edge, therefore Br is an extended Dynkin graph again by Proposition 3.1.

For r ≥ 0 consider the set

Cqr = {x ∈ Z
n | qr(x) = 1 and there are indices i, j with xi > 0 and xj < 0}.

We divide the proof into two steps.

Step 1. The set Cqr is finite for each r ≥ 0.
Let us assume that Cqr is an infinite set. Notice that for any of its elements x and
an arbitrary index i ∈ {1, . . . , n} we have

0 ≤ q(x ± ei) = q(x) + q(ei) ± q(x|ei) = 2 ± q(x|ei),
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therefore |q(x|ei)| ≤ 2. Consequently we may find a sequence {a0, a1, a2, . . . , }
of different vectors in Cqr such that for any i ∈ {1, . . . , n} and any k ≥ 0 we have
q(a0|ei) = q(ak|ei). By construction, for any k �= � the difference ak − a� is
a radical vector for qr , therefore a nonzero integral multiple of vr . In particular,
ak − a� is a sincere vector, hence ak

i �= a�
i for any index i. This implies that for

any integer m ≥ 1 there is an integer M > 0 such that for any k ≥ M none of the
entries ak

i of the vector ak belongs to the interval [−m,m]. Therefore we may
find k < � such that

min
i=1,...,n

(a�
i ) < min

i=1,...,n
(ak

i ) < 0 < max
i=1,...,n

(ak
i ) < max

i=1,...,n
(a�

i ).

Then the difference ak − a� is a radical vector for qr with a negative entry as
well as a positive entry. This is impossible since the radical of qr is generated by
a positive vector vr . Thus Cqr is a finite set for r ≥ 0.

Step 2. For r ≥ 0 the inflation Tr determines a proper inclusion Cqr+1 → Cqr .
First assume that for a qr+1-root x the vector Tr(x) does not belong to Cqr , and
assume that Tr = T +

ij for indices i �= j . Multiplying by (−1) if necessary, we
may assume that Tr(x) = x − xiej is a positive vector, that is, that xk ≥ 0 for
k �= j and xj − xi ≥ 0. Since xi ≥ 0 we must have xj ≥ 0, that is, the vector
x itself is positive. This shows that Tr(x) ∈ Cqr for any vector x in Cqr+1 . Thus
Tr : Cqr+1 → Cqr is an inclusion (for Tr is Z-invertible) which is proper since
Tr(ei) = ei − ej ∈ Cqr − Tr(Cqr+1).

Using Steps 1 and 2 we get a sequence of proper inclusions between finite sets

Cqr

Tr−1
Cqr−1

Tr−2
. . . Cq2

T1
Cq1

T0
Cq0,

hence the iterative process must stop, which completes the proof. ��
In the last result of this section we reformulate Vinberg’s characterization of

extended Dynkin diagrams (presented originally in the context of Cartan matrices,
see [51] and [32]) to the setting of integral quadratic forms (adapting the short
presentation given in [3]). For a unit form q : Z

n → Z denote by rad+(q) the
subset of rad(q) consisting of positive vectors.

Theorem 3.6 (Vinberg). Let G be a connected (solid) graph without loops. The
following are equivalent:

a) The graph G is an extended Dynkin diagram (see Table 2.2).
b) The associated unit form qG satisfies rad+(qG) �= ∅.
Proof. That (a) implies (b) is clear, since for an extended Dynkin graph Δ̃, the
vector pΔ̃ given in Table 2.2 belongs to rad+(qΔ̃).

For the converse consider the following classical terminology (cf. [3] or [32]).
For a unit form q : Z

n → Z, a vector x in Z
n is said to be subadditive if x is

positive and q(x|ei) ≥ 0 for i = 1, . . . , n. If moreover q(x|ei) = 0 for all i then x
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is said to be an additive vector for q (observe that x is additive for q if and only if
x ∈ rad+(q)). Next we divide the proof into several steps.

Step 1. The Kronecker form qm(x1, x2) = x2
1 +x2

2 −mx1x2 admits no subadditive
vector for m > 2. A direct calculation shows that for x = (x1, x2) we have

qm(x|e1) = 2x1 − mx2, and qm(x|e2) = 2x2 − mx1.

This shows that for m > 2 and x a positive vector we have either qm(x|e1) < 0
or qm(x|e2) < 0.

Step 2. If G is an extended Dynkin diagram then any subadditive vector for qG is
additive. Let x be a subadditive vector for qG and take y = pG where pG is the
positive vector given in Table 2.2. Since y is a radical vector for qG, then

0 = qG(x|y) =
n∑

i=1

yiqG(x|ei).

This implies that qG(x|ei) = 0 since qG(x|ei) ≥ 0 and yi > 0 for i = 1, . . . , n,
that is, x is an additive vector for qG.

Step 3. Let G be a connected (solid) graph without loops. If qG admits a
subadditive vector x, then for any proper restriction qI

G of qG, the restriction x ′
of x to the coordinates of I is a subadditive vector for qI

G which is not additive.
First notice that x must be a sincere vector (otherwise, by connectedness there
are vertices i ∈ supp(x) and j /∈ supp(x) with (qG)ij < 0, and therefore
qG(x|ej ) < 0). In particular the restriction x ′ is also a positive vector. Then for
i ∈ I , using that x is a positive vector and that (qG)ij ≤ 0 for j �= i, we have

0 ≤ qG(x|ei) = 2xi +
∑

j �=i

(qG)ij xj ≤ 2xi +
∑

j∈I, j �=i

(qG)ij xj = qI
G(x ′|ei),

which shows that x ′ is a subadditive vector for qI
G. To show that x ′ is not additive

observe that, since G is connected and I is a proper subset of vertices, we may
find vertices i ∈ I and j /∈ I such that (qG)ij < 0. Since x is sincere, this shows
that the second inequality in the expression above is strict, therefore qI

G(x ′|ei) >

0 for such i ∈ I .

We are able now to complete the proof. Take a graph G as in the hypothesis, and
assume that x ∈ rad+(qG), that is, x is an additive vector for qG. Steps 3 and 1
imply that qG has no Kronecker restriction of the shape qm for m > 2 (that is, G

has at most double edges).
Now, if G has as full subgraph an extended Dynkin graphG′, then Step 3 implies

that the restriction x ′ is a subadditive vector for qG′ , which is not additive. This
contradicts Step 2, therefore G admits no extended Dynkin diagram as proper full
subgraph. Since G is not a Dynkin diagram (for rad(qG) �= 0), then G is an
extended Dynkin diagram (see Exercise 2.10.5). ��
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The following examples show that, in the Theorem above, condition rad+(qG) �=
∅ cannot be replaced by rad(qG) �= ∅.

+1 −1

+1 −1

+1 −1

+1 +1 −1 −1

+1 −1

+2 −2

+1 −1

+1 +1 −1 −1

Indeed, the depicted connected graphsG are not extended Dynkin diagrams, but the
vector with entries as displayed in the figures is a radical vector of qG. Subadditive
roots of q , also called locally maximal roots, will be studied later in Sect. 6.2.

3.2 Dynkin Type and Corank

An integral quadratic form q is said to be balanced if q−1(0) = rad(q), that is, if
the linear form q(x|−) vanishes for every x ∈ Z

n with q(x) = 0.
Let q : Z

n → Z be a nonnegative quadratic semi-unit form. It was shown in
Lemma 3.2(a) and (b) that q is a balanced form and that |qij | ≤ 2 for all 1 ≤ i <

j ≤ n. We show next that these conditions characterize all nonnegative forms. This
Nonnegativity Criterion, given in [7], (see also [8]), will be useful in subsequent
chapters. Observe that m-Kronecker forms qm(x1, x2) = x2

1 − mx1x2 + x2
2 are

balanced (cf. Proposition 1.20), but for |m| ≥ 3 they fail to be nonnegative forms.

Theorem 3.7. A semi-unit form q : Z
n → Z is nonnegative if and only if the

following conditions hold:

N1) For 1 ≤ i < j ≤ n we have |qij | ≤ 2.
N2) The form q is balanced, that is, every isotropic vector for q is a radical vector.

Proof. The necessity was shown in Lemma 3.2(a) and (b).
Assume now that q satisfies conditions (N1) and (N2), and let us also assume

that n is minimal such that there is a vector v ∈ Z
n with q(v) < 0. Notice

in particular that n > 2, since Kronecker forms satisfying condition (N1) are
nonnegative. For any vertex i ∈ {1, . . . , n} the restriction q(i) satisfies condition
(N1), which is condition (P1) in Theorem 2.15. If q(i) is anisotropic then it is
positive by Theorem 2.15. Hence there exists an index i and an isotropic vector
z for q(i), for otherwise q would be critical nonpositive, thus nonnegative by
Theorem 2.12. Viewing z as a vector in Z

n by setting zi = 0, notice that there are
nonzero integers a and b such that av + bz is nonsincere. But since q is balanced
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and q(bz) = 0, the vector bz is radical for q , therefore

q(av + bz) = a2q(v) < 0.

This is impossible by minimality of n, for clearly any restriction of q satisfies
conditions (N1) and (N2) (see Exercise 1 below). ��

The following reduction theorem, given in [7], is the main tool for the classifica-
tion of nonnegative semi-unit forms in terms of Dynkin diagrams. For ε ∈ {+,−}
and a vector x in Z

n define the vectors xε by taking xε
i = max(εxi, 0) for

i = 1, . . . , n, so we have x = x+ − x− (recall that x is positive if x �= 0 and
x = x+). Consider also the weight of a vector x in Z

n given by |x| = ∑n
i=1 |xi |.

Recall that the corank of a semi-unit form q is the rank of its radical.

Theorem 3.8. Let q be a connected nonnegative semi-unit form with corank c.
Then there exists an iterated flation T such that qT = p ⊕ ξc, where ξc is the
zero quadratic form in c variables and p is a connected positive unit form.

Proof. Notice first that by connectedness and Lemma 3.2(c), we may assume that q
is a unitary form. We proceed by induction on the corank c of q . If c = 0 then q is
positive and there is nothing to show. For c > 0 the proof is divided into two steps:

Step 1. There is an iterated inflation T such that qT has a positive radical vector.
For a nonzero radical vector v assume that there are vertices i ∈ supp(v+) and
j ∈ supp(v−) with qij > 0 and |vi | ≤ |vj | (exchange the roles of i and j

otherwise). Define q ′ = qT +
ij and v′ = (T +

ij )−1v = v + viej , and observe that
since vi and vj have opposite sign we have |vi + vj | < |vj |. Since |v′| < |v|
this process must stop, getting an iterated inflation T , a quadratic semi-unit form
q̂ = qT and a vector v̂ = T −1v satisfying

0 = q̂ (̂v) = q̂ (̂v + − v̂ −) = q̂ (̂v +) + q̂ (̂v −) +
∑

(i,j)

q̂ij v̂i v̂j ,

where the sum runs over the set supp(̂v +) × supp(̂v −). Since every summand
on the right side of the equation is nonnegative, all of them are equal to zero
(for (̂q)ij ≤ 0 if (i, j) ∈ supp(̂v +) × supp(̂v −)). By Lemma 3.2(a) all three
vectors v̂ +, v̂ − and v̂ + + v̂ − are positive radical vectors of q̂ . Notice that by
Lemma 3.4, if the form q̂ is not connected then there is a connected unit form q̂ ′
and an integer c′ with q̂ = q̂ ′ ⊕ ξc′

, for 0 ≤ c′ ≤ c. Thus by induction we may
assume that q̂ is connected.

Step 2. If q has a positive radical vector, there exists an iterated deflation T ′ such
that qT ′ is the direct sum of a zero form in k variables (for 1 ≤ k ≤ c) and a
connected nonnegative unit form with corank c − k.
Assume that v is a positive radical vector of q and that there exist i, j ∈ supp(v)

with qij < 0 and vi ≤ vj .
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Take q ′ = qT −
ij and v′ = (T −

ij )−1v = v − viej , and observe that v′ is a positive
radical vector for q ′ with |v′| < |v|. Repeating this procedure as long as possible
we end up with a quadratic form q̃ and a positive radical vector ṽ such that

0 = q̃ (̃v) =
n∑

i=1

q̃ii ṽ
2
i +

∑

1≤i<j≤n

q̃ij ṽi ṽj .

Again, both summands on the right side are nonnegative, hence zero. Then q̃ii =
0 for any i in the support of ṽ, and the claim follows from Lemma 3.4.

We conclude the proof of the theorem by induction, using Steps 1 and 2 above, and
Lemma 3.4 for connectivity. ��

Considering Theorems 3.8 and 2.20, for a nonnegative semi-unit form q there
is an iterated flation T such that qT = qΔ ⊕ ξc, where Δ is a disjoint union of
Dynkin diagrams, qΔ is its associated (positive) unit form, and c is the corank of q .
Notice that if there are iterated inflations T and T ′ for q such that qT = p ⊕ ξc

and qT ′ = p′ ⊕ ξc, then p and p′ are equivalent positive unit forms, therefore by
Theorem 2.20 the disjoint union of Dynkin graphs Δ related to q is unique up to a
permutation of its components. This disjoint union Δ is referred to as the Dynkin
type of q , writtenDyn(q) = Δ. We now show that the Dynkin type of a nonnegative
semi-unit form, together with its corank, determine the equivalence class of such
forms. Here and in what follows, the zero quadratic form in c ≥ 1 variables will be
denoted by ξc.

Corollary 3.9. Let q and q ′ be nonnegative semi-unit forms. Then q and q ′ are
equivalent forms if and only if they have the same Dynkin type and the same corank.

Proof. Assume first that q and q ′ are equivalent forms. Then cork(q) =
cork(q ′) =: c. Take iterated flations T and T ′ such that qT = p ⊕ ξc and
q ′T ′ = p′ ⊕ ξc, where p and p′ are positive unit forms. By transitivity observe that
p and p′ are equivalent forms, hence using Corollary 2.21 we have

Dyn(q) = Dyn(p) = Dyn(p′) = Dyn(q ′).

For the converse assume there is a disjoint union of Dynkin graphs Δ with
Dyn(q) = Δ = Dyn(q ′), and an integer c with cork(q) = c = cork(q ′). Then
there are iterated flations T and T ′ with

qT = qΔ ⊕ ξc = q ′T ′.

In particular, we have q ′ = qT (T ′)−1, that is, q and q ′ are equivalent forms. ��
Example 3.10. The quadratic form q associated to the following bigraph is nonneg-
ative with Dynkin type Dyn(q) = D4 and corank one.
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1• •2

•5

3• •4

Its radical is generated by the vector e2+e4+e5. Moreover, the restricted forms q(2),
q(4) and q(5) are positive with Dynkin typeD4, whileDyn(q(1)) = Dyn(q(3)) = A3.

Exercises 3.11. 1. Let q : Zn → Z be a balanced semi-unit form, and take a subset
of indices I ⊂ {1, . . . , n}. Show that the restricted form qI is also balanced.

2. Show that if q : Z
n → Z is a nonnegative unit form of Dynkin type An

with radical generated by a single positive sincere vector then q = q
Ãn

for the

extended Dynkin diagram Ãn.
3. Find a connected bigraph B with at least three dotted edges such that qB is a

nonnegative unit form with Dynkin type E6 and radical generated by a sincere
positive vector.

4. Which of the following unit forms is nonnegative?

a) q(x) = x2
1 + x2

2 + x2
3 + x2

4 + x1x2 − x3(x1 − x2 + x4).
b) q(x) = x2

1 + . . . + x2
5 − x1(x2 + x3 + x4 + x5) + x4x5.

c) q(x) = x2
1 + . . . + x2

5 − x1(x2 + x3 + x4) + x5(x2 − x3 + x4) − x3(x2 − x4).

5. Show that for any integer c ≥ 0 and any Dynkin graph G there is a connected
nonnegative unit form q with Dyn(q) = G and corank c.

6. Prove that the following unit forms are nonnegative and determine their Dynkin
type and corank.

a) x2
1 + . . . + x2

5 − x2(x1 − x5) + x3(x1 − x2 + x4 − x5) + x4(x1 + x5).
b) x2

1+. . .+x2
6+x1(x2−x3−x5+x6)−x4(x2−x3+x5−x6)+(x2+x3)(x5−x6).

c) x2
1 + . . .+x2

7 −x1(x2 +x3 +x4)+x2x3 +x4(x2 +2x3)+x5(x6 −x7)+x6x7.

3.3 Radicals and Their Extensions

Recall that a quadratic form q : ZI → Z is said to be regular if rad(q) = 0. For a
subset of indices J ⊂ {1, . . . , n} consider the inclusion σ : ZJ → Z

n determined
by ej 
→ ej . The restriction qJ : ZJ → Z of q is given by qJ (x) = q(σ(x)) for
x ∈ Z

J . In that situation we say rad(qJ ) ⊆ rad(q) if the restriction of σ to the
radical of qJ determines an injective map σ : rad(qJ ) → rad(q). As mentioned
in Lemma 2.11 and its following example, it is not always true that rad(q ′) ⊂
rad(q) for a unit form q . Our purpose here is to show that this property characterizes
nonnegativity.

Instead of using the somehow clumsy term “critical not nonnegative form”, we
say that a quadratic form q is hypercritical nonnegative if any proper restriction q ′
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of q is nonnegative, but q itself is not. Notice, for instance, that a Kronecker form

qm is hypercritical nonnegative if and only if |m| ≥ 3. The following graph ˜̃
E8 with

10 vertices,

3

2 4 6 5 4 3 2 1 •

has hypercritical nonnegative associated form q = q˜̃
E8
, where the bullet • is

the unique vertex in ˜̃
E8 satisfying that the restriction q(•) is nonpositive (thus

critical nonpositive.). The vector in Z
9 indicated by the numbers at the vertices

is the generator of the radical of q(•). It is convenient to point out that if q is
simultaneously a critical nonpositive and hypercritical nonnegative form then q is a
Kronecker form qm with |m| ≥ 3. We say that a nonzero vector z in Z

n is called a
critical vector for a critical nonpositive form q : Zn → Z if z generates the radical
of q (cf. Theorem 2.12).

Proposition 3.12. Let q : Z
n → Z be a unit form with n ≥ 3. Then q is

hypercritical nonnegative if and only if q is not nonnegative and for any critical
nonpositive restriction qI of q , there exists an index i such that I = {1, . . . , n}−{i}
and a critical vector z′ of qI such that q(z|ei) < 0 where z is the vector in Z

n

obtained by extending z′ by zeros.

Proof. First let q be a hypercritical nonnegative unit form, and take v ∈ Z
n with

q(v) < 0. Since any proper restriction of q is nonnegative, v is a sincere vector.
Assume qI is a critical nonpositive form. Since n ≥ 3, the form qI is a proper
restriction of q . Further, qI is not the Kronecker form qm with |m| ≥ 3, for q is
hypercritical nonnegative. Therefore qI has a critical vector z′ (see Theorem 2.12).
Complete z′ with zeros to a vector z in Zn.

Take integers m, k and a vertex j ∈ I such that (kv + mz)j = 0. Since

0 ≤ q(j)(kv + mz) = k2q(v) + m2q(z) + kmq(z|v) < km

n∑

i=1

viq(z|ei),

there must exist a vertex i ∈ {1, . . . , n} satisfying q(z|ei) �= 0 (hence i /∈ I ).
Multiplying z by (−1) if necessary we may assume that q(z|ei) < 0. Moreover,

q(2z + ei) = 4q(z) + 1 + 2q(z|ei) = 1 + 2q(z|ei) < 0,

therefore q hypercritical implies that 2z + ei is a sincere vector, that is, I =
{1, . . . , n} − {i} (and z′ is a critical vector for q(i)).

For the converse we need to show that q(i) is nonnegative for any i = 1, . . . , n.
If q(i) is not nonnegative for some i ∈ {1, . . . , n} then there is a critical
nonpositive restriction qI of q(i) (that is, I ⊂ {1, . . . , î, . . . , n}). By hypothesis,
I = {1, . . . , î, . . . , n} and q(i) is the m-Kronecker form for some m with |m| ≥ 3
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(since q(i) is not nonnegative, cf. Theorem 2.12). This contradicts the existence of a
critical vector for qI (cf. Proposition 1.20). ��
Corollary 3.13. Every hypercritical nonnegative unit form q is regular (that is,
rad(q) = 0).

Proof. If q is a binary form, then q is the Kronecker form qm with |m| ≥ 3, and by
Proposition 1.20 the form q is anisotropic, in particular regular.

Let v be a radical vector of a hypercritical nonnegative unit form q : Zn → Z

with n > 2. Consider a vertex i such that qI is a critical nonpositive restriction
of q for I = {1, . . . , n} − {i}, with critical vector z′ whose extension by zeros z

to Z
n satisfies q(z|ei) < 0. If vi = 0 then v is an integral multiple of z (for the

restriction of v to a vector in Z
I is a radical vector for qI ), which is impossible

since z /∈ rad(q)). Suppose now that vi �= 0 and consider the vector v′ in Z
I such

that v = v′ + viei . Then

0 = q(v|z) = q(v′|z) + viq(ei |z) = qI (v′|z) + viq(z|ei) = viq(z|ei) �= 0,

again a contradiction. ��
As an illustration consider the (solid) r-pointed star graph Sr with r + 1 vertices

and r edges

Sr = 1

2 r

0 · · ·
3 5

4

for r ≥ 1. Observe that qSr is nonnegative if and only if r ≤ 4, and is regular
if and only if r �= 4. The first assertion is consequence of qS5 being hypercritical
nonnegative. For the second claim, take q = qSr and x = (x0, x1, . . . , xr ) in Z

r+1

such that q(x|ei) = 0 for i = 0, . . . , r . These equations can be written as

2x0 = x1 + . . . + xr ,

2x1 = x0,

· · · · · ·
2xr = x0,

and in particular 4x0 = rx0. Therefore there exists such nonzero x if and only if
r = 4.
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Theorem 3.14. For a semi-unit form q the following are equivalent:

a) The form q is nonnegative.
b) For any restriction q ′ of q we have rad(q ′) ⊆ rad(q).

Proof. That (a) implies (b) was shown in Lemma 3.2 (see also Lemma 2.11).
Assume that q is not nonnegative and take a hypercritical nonnegative restriction
qI of q (with I ⊂ {1, . . . , n}) and a vertex i ∈ I such that q ′ = (qI )(i) is a
critical nonpositive restriction of qI (see Proposition 3.12). Then there is a critical
vector z ∈ rad(q ′) but its extension by zeros σ(z) ∈ Z

I is not radical for qI by
Corollary 3.13, in particular not a radical vector for q . ��

We say that a semi-unit form q ′ : Zn → Z is a radical extension of a semi-unit
form q : Zm → Z (with m ≤ n) if there is a subgroup U of Zn and a subgroup
U ′ of rad(q ′) such that Zn = U ⊕ U ′ and q = q ′|U . In other words, q ′ is radical
extension of q if there is a Z-invertible transformation S : Zn → Z

n such that

q ′S = q ⊕ ξn−m.

In particular the columns of S consists of roots or isotropic vectors of q ′. Throughout
the text we will find many instances of radical extensions: Theorem 3.8 implies that
every nonnegative semi-unit form with Dynkin type Δ is radical extension of the
positive unit form qΔ (see details below in Theorem 3.15). In Sect. 3.5 we will
consider one-point extensions, one of the main tools in the construction of unitary
forms. Radical explosions are defined in Sect. 5.5, with a particular case known as
doubling of vertices used in Sect. 6.5 for the construction of graphical forms.

Let q : Zn → Z be a nonnegative semi-unit form. Observe that rad(q) is a pure
subgroup of Zn (that is, if 0 �= n ∈ Z with nv ∈ rad(q), then v ∈ rad(q)), hence
there is an isomorphism Z

n/rad(q) → Z
n−c where c = cork(q) is the corank of q .

Recall that for v ∈ rad(q) we have q(w + v) = q(w) for any w ∈ Z
n, thus we may

consider a well-defined induced mapping

q : Z
n/rad(q) Z,

w + rad(q) q(w).

We show that there is a basis in Zn/rad(q) which makes q a positive unit form.

Theorem 3.15. Let q : Zn → Z be a nonnegative semi-unit form. Then the induced
mapping q : Zn/rad(q) → Z is Z-equivalent to qΔ, where Δ is the Dynkin type of
q . In particular, q is radical extension of qΔ.

Proof. Applying Theorems 3.8 and 2.20 to each connected component of q , there
is a Z-invertible linear transformation T : Zn → Z

c ⊕ Z
n−c such that

qT −1 = ξc ⊕ qΔ : Zc ⊕ Z
n−c → Z,
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where Δ is the Dynkin type of q and c = cork(q). Notice that Zc = T (rad(q)) =
rad(qT −1), thus we have an induced isomorphism T : Zn/rad(q) → Z

n−c which
makes the following diagram commutative,

Z
n/rad(q)

q
T

Z
n

T

q
Z

Z
n−c

pΔ

Z
c ⊕ Z

n−c

ξc⊕pΔ

Z

where � denotes canonical projections. Hence T is the desired equivalence, since
we have q = pΔT . Taking U = T −1(Zn−c) and U ′ = T −1(Zc) as in the definition
of radical extension above, it is clear that q is a radical extension of qΔ. ��
Exercises 3.16.

1. Show that the quadratic forms associated to the following bigraphs are nonnega-
tive, and find their radicals and Dynkin type.

• •

•

• • •

•

• •

• • • •

• •

2. Prove that a semi-unit form q is positive if and only if rad(q ′) = 0 for any
restriction q ′ of q .

3. Give an example of a nonregular unit form q which fails to be nonnegative.
4. Determine all hypercritical nonnegative unit forms in 5 variables.

3.4 Omissible Variables

In this section we analyze, following [7] and [9], how Dynkin type and corank
change under restrictions of nonnegative semi-unit forms.

Lemma 3.17. Let q : Z
n → Z be a nonnegative semi-unit form. For any vertex

i ∈ {1, . . . , n} we have

0 ≤ cork(q) − cork(q(i)) ≤ 1.

Proof. Take I = {1, . . . , n} − {i} and consider the canonical inclusion σ : ZI →
Z

n. By Theorem 3.14 we have σ(rad(q(i))) → rad(q), which shows the first
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inequality. Observe now that rad(q) is a pure subgroup of Zn, and that σ(rad(q(i)))

is a pure subgroup of rad(q) (cf. Remark 4.2). Hence, if v1, . . . , vr is a Z-
basis of rad(q(i)), then their image wi := σ(vi) may be completed to a basis
w1, . . . , wr ,wr+1, . . . , wc of rad(q) (where c = cork(q) and r = cork(q(i)),
see Proposition 4.1). If r < c − 1 then there are non-zero integers a and b with
(awc−1 + bwc)i = 0, which means that awc−1 + bwc is a radical vector of q

belonging to σ(rad(q(i))). This is impossible since w1, . . . , wr ,wr+1, . . . , wc is
linearly independent and w1, . . . , wr generate σ(rad(q(i))). Therefore c − r ≤ 1,
which completes the proof. ��

We now generalize Proposition 2.25 to the nonnegative setting. The following
partial ordering of Dynkin graphs was introduced in Sect. 2.4.

Am ≤ An, for m ≤ n;
An < Dn ≤ Dp, for 4 ≤ n ≤ p;
Dp < Ep ≤ Eq , for 6 ≤ p ≤ q ≤ 8.

As before we take rAn = 1, rDm = 2, rE6 = 3, rE7 = 4 and rE7 = 6 to be the
maximal value the entries of a maximal positive root of qΔ may attain, where Δ is
a Dynkin graph (cf. Table 2.1 and Remark 2.24).

Proposition 3.18. Let q be a connected nonnegative unit form. Then for any
connected restriction q ′ of q we have Dyn(q ′) ≤ Dyn(q).

Proof. We will show that Dyn(q(i)) ≤ Dyn(q) for any 1 ≤ i ≤ n such that q(i) is
still connected (see Exercise 6 below). For simplicity we take i = n.

Suppose first that cork(q(n)) = c = cork(q). Using Theorems 3.8 and 2.20 there
is an iterated flation T : Zn−1 → Z

n−1 such that q(n)T = ξc ⊕ qΔ′ where Δ′ =
Dyn(q(n)). Consider the linear transformation T̃ = T ⊕[1] : Zn → Z

n, and observe
that qT̃ = ξc ⊕ q̃ with q̃ a positive unit form (for cork(qT̃ ) = cork(q) = c). Let
v = pΔ′ be the maximal positive root of qΔ′ (see Table 2.1) and take vn = 0, so that
we may view v as a positive root of q̃ . If Dyn(q) = Δ, then Dyn(̃q) = Δ and we
have

rΔ′ = max
i=1,...,n

(|vi |) ≤ rΔ,

where the last inequality follows from Proposition 2.22. Since the number of
vertices of Δ′ is n− 1− c, and that of Δ is n− c, we get |Δ′

0| < |Δ0| and rΔ′ ≤ rΔ.
Thus by Remark 2.24 we have Δ′ ≤ Δ.

Suppose now that cork(q(n)) �= cork(q) hence by Lemma 3.17 we have
cork(q(n)) = cork(q) − 1. Taking Dyn(q(n)) = Δ′ and Dyn(q) = Δ, we notice
as above that |Δ′

0| = |Δ0|. As in the proof of Theorem 3.15, the inclusion σ :
Z

n−1 → Z
n induces an injection σ : Zn−1/rad(q(n)) → Z

n/rad(q). If q and q(n)

are the induced positive unit forms of Theorem 3.15, then σ determines an inclusion
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R(q(n)) → R(q). Observe finally that if |Δ′
0| = |Δ0| and |R(qΔ′)| ≤ |R(qΔ)|, then

Δ′ ≤ Δ, which completes the proof. ��
In what follows we give conditions on an index 1 ≤ i ≤ n and a nonnegative

semi-unit form q ensuring that the restriction qi and q have same Dynkin type. We
say that an index i ∈ {1, . . . , n} is an omissible point (or an omissible variable) for
a nonnegative semi-unit form q : Zn → Z if q(ei) = 1 and there is a radical vector
v of q with vi = 1. In Example 3.10, for instance, indices 2, 4 and 5 are omissible
points.

Example 3.19. Let q be the quadratic form associated to the following bigraph:

•b

•
a• • • • • • • •d

•c

Then q is nonnegative, Dyn(q) = E8 and cork(q) = 3. Moreover, vertices a and
d are omissible points, Dyn(q(b)) = D7 and Dyn(q(c)) = E7 with cork(q(b)) =
cork(q(c)) = 3.

Proposition 3.20. Let q : Zn → Z be a connected nonnegative semi-unit form.

a) For any omissible variable i for q , the restriction q(i) is connected and satisfies
Dyn(q(i)) = Dyn(q).

b) If q is unitary and cork(q) > 0, then q admits an omissible variable.

Proof. Let i be an omissible point of q and v ∈ rad(q) with vi = 1. Consider
x = {x1, . . . , x�} a Z-basis of Zn/rad(q) (recall that rad(q) is a pure subgroup
of Zn) and take a representative xj ∈ Z

n of xj with x
j

i = 0 for j = 1, . . . , �
(which is possible since vi = 1). Denote by σ : Zn−1 → Z

n the canonical inclusion
with q(i) = qσ , and take yj ∈ Z

n−1 with xj = σ(yj ). Since rad(q(i)) ⊂ rad(q)

(Theorem 3.14), the set y = {π(y1), . . . , π(y�)} is linearly independent, where
π : Z

n−1 → Z
n−1/rad(q(i)) is the canonical projection. Since cork(q(i)) =

cork(q) − 1 (Lemma 3.17), the rank of Zn−1/rad(q(i)) is �, thus y is a Z-basis
of Zn−1/rad(q(i)). If T denotes the change of basis transformation between x and
y, we have q = q(i)T .

Since q is connected, this implies first that q(i) is connected, thus q(i) is also
connected. Moreover, we have Dyn(q) = Dyn(q(i)), which shows (a).

Assume now that cork(q) > 0 and that q is unitary. By Lemma 3.17, and
restricting q to a subset of vertices if necessary, we may assume that cork(q) = 1
and that rad(q) is generated by a sincere vector v. Moreover, composing with
a point inversion S we get a nonnegative quadratic form q ′ = qS with radical
generated by a positive sincere vector v′ = Sv. By Theorem 3.5, there is an iterated
flation T such that q ′T is the quadratic form associated to an extended Dynkin
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graph. All these forms have an omissible point (cf. Table 2.2), hence the same is
true for q ′. Since |vi | = |v′

i | for i = 1, . . . , n, the form q admits an omissible
variable. ��
Remark 3.21. As a consequence of Proposition 3.20, for any nonnegative semi-unit
quadratic form q and any c ≤ cork(q), there exists a restriction q ′ of q such that
cork(q ′) = c and Dyn(q ′) = Dyn(q).

In particular, taking c = 0 in the last remark, there is a positive restriction q ′
of q with Dyn(q ′) = Dyn(q), called a core of q . The form q in Example 3.10 has
exactly three cores, namely q(2), q(4) and q(5).

Exercises 3.22.

1. Give an example of a semi-unit form q and a flation T for q such that qT is no
longer semi-unitary.

2. Determine which of the following quadratic forms are nonnegative:

i) q1 = x2
1 + x2

2 + x2
3 + x2

4 − x1x2 + x1x3 − x1x4 + x2x3 + x2x4 − 2x3x4.
ii) q2 = x2

1 + . . . + x2
6 − (x1 + x4)(x2 + x3) − x3x5 − x4x6 + x2x3 + x4x5.

iii) q3 = x2
1 + . . . + x2

4 − x1(x2 + x3 + x4) − x2x4 + x3x4.

3. Prove that if q is a nonnegative unit form then q is connected if and only if the
induced quadratic form q given in Theorem 3.15 is connected.

4. Show that if the quadratic form q associated to a complete bigraph with at least
four vertices is nonnegative, then q is a positive form.

5. Let q be a nonnegative unit form such that Dyn(q) = Dyn(q(i)). Is i necessarily
is an omissible variable for q?

6. Show that if q is a connected nonnegative unit form and q ′ is a connected
restriction of q , then there is a sequence of indices i1, . . . , ir with q ′ = q(i1)···(ir )
and such that q(i1)···(is ) is connected for any s = 1, . . . , r .

3.5 Root Induction and One-Point Extensions

Let q : Zn → Z be a semi-unit form. Following [9], for a finite collection of q-roots
r = (rj )j∈J define the quadratic form induced by r, denoted by qr : ZJ → Z, to
be the form

qr(y) = q

⎛

⎝
∑

j∈J

yj r
j

⎞

⎠ .

Notice that qr(ej ) = q(rj ) = 1 for any j ∈ J , that is, qr is a unit form. Moreover,
if q is nonnegative then qr is again nonnegative. Observe also that if I ⊂ {1, . . . , n}
and r = (ei)i∈I , then the root induction qr is precisely the restriction qI . We say
that two unit forms q and q ′ are root equivalent if q is root induced from q ′, and q ′
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is root induced from q . First we show that root equivalence is indeed an equivalence
relation in the set of unit quadratic forms. Clearly we only need to prove transitivity.

Lemma 3.23. Let r = (ri)i∈I and s = (sj )j∈J be finite collections of q-roots
and qr -roots respectively, where q is a unit form. Then there exists a collection t of
q-roots such that (qr)s = qt .

Proof. Take tj = ∑
i∈I s

j
i ri for j ∈ J . Observe that q(tj ) = q

(∑
i∈I s

j
i ri

)
=

qr(s
j ) = 1, thus t = (tj )j∈J is a collection of q-roots. Then we have

(qr)s(x) = qr

⎛

⎝
∑

j∈J

xj s
j

⎞

⎠ = q

⎛

⎝
∑

i∈I

⎛

⎝
∑

j∈J

xj s
j

⎞

⎠

i

ri

⎞

⎠

= q

⎛

⎝
∑

j∈J

xj

(
∑

i∈I

s
j
i ri

)⎞

⎠ = q

⎛

⎝
∑

j∈J

xj t
j

⎞

⎠ = qt (x). ��

We now show how root induction behaves with respect to connectivity. For
convenience, for an empty collection of q-roots r we denote by qr the trivial
quadratic form in zero variables. Let us first analyze the positive case.

Remark 3.24. Consider a positive unit form q that decomposes as q = q1⊕q2, and
take a finite collection r = (rj )j∈J of q-roots. There is a partition J = J 1 ∪ J 2

such that q1(rj ) = 1 for j ∈ J 1 and q2(rj ) = 1 for j ∈ J 2, where rj is obtained
from rj by extending by zeros. Take collections r ′ = (rj )j∈J 1 and r ′′ = (rj )j∈J 2 .
Then

qr(x) = q

⎛

⎝
∑

j∈J

xj r
j

⎞

⎠ = q1

⎛

⎝
∑

j∈J 1

xjr
j

⎞

⎠+q2

⎛

⎝
∑

j∈J 2

xj r
j

⎞

⎠ = q1
r ′(x ′)⊕q2

r ′′(x ′′),

where x ′ and x ′′ are the restrictions of x to the entries indexed by J 1 and J 2

respectively.

Lemma 3.25. Let p : ZJ → Z and q : ZI → Z be root equivalent positive unit
forms. If p = p1 ⊕ · · · ⊕ pm and q = q1 ⊕ · · · ⊕ qn are decompositions with pa

and qb connected for a = 1, . . . ,m and b = 1, . . . , n, then m = n and there is a
permutation π such that pk is root equivalent to qπ(k) for k = 1, . . . , n.

Proof. Let r = (rj )j∈J and s = (si )i∈I be finite collections of q-roots and p-roots
respectively with p = qr and q = ps . Using Remark 3.24, we have a partition
I = ⋃m

a=1 Ia such that si is a pa-root for i ∈ Ia , where si is obtained from si by
extending by zeros. Take s(a) = (si )i∈Ia for a = 1, . . . ,m.

Observe first that |I | = |J |. Indeed, if there is an integral linear dependence in
the collection s, say

∑
xj s

j = 0, then taking x = (xj ) we have q(x) = ps(x) =
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p(
∑

i∈I xj s
j ) = p(0) = 0, contradicting the positivity of q . Then s is a linearly

independent set, and |I | ≤ |J |. Exchanging positions of p and q we get |J | ≤ |I |.
Now we have

q = ps = p1
s(1) ⊕ . . . ⊕ pa

s(a) ⊕ . . . ⊕ pm
s(m),

and from |I | = |J | it follows that s(a) is aQ-basis in the domain of pa . In particular,
m ≤ n. Exchanging the roles of p and q we get n ≤ m. Hence m = n and there is
a permutation π of the set {1, . . . , n} such that pa is root equivalent to qπ(a) using
the Remark above. ��

Assume that q : Z
n → Z is a nonnegative semi-unit form for which the last

variable n is omissible, and take a radical vector v of q with vn = 1. As shown
before, the restriction q(n) has the same Dynkin type as q . We want to recover q from
its restriction q(n). With that purpose define the one-point extension p[v] : Zn → Z

of a semi-unit form p : Zn−1 → Z with respect to a p-root v as

p[v] = pe(v), where e(v) = (e1, . . . , en−1,−v).

Lemma 3.26. Let q : Zn → Z be a nonnegative semi-unit form such that n is an
omissible point for q , and take p = q(n). Then there exists a p-root v ∈ Z

n−1 such
that q = p[v] and such that v + en is a radical vector for q .

Proof. Take v a radical vector for q such that vn = 1, and let v ∈ Z
n−1 with

v = v + en. Then

p(v) = q(v − en) = q(v) + q(en) + q(v|en) = 1,

since q(en) = 1. Observe that the coefficients of p[v] are given as follows,

p[v](ei |en) = p[v](ei + en) − p[v](ei) − p[v](en)

= p(ei − v) − p(ei) − p(−v)

= −p(ei |v).

Notice now that q(ei|en) = q(n)[v](ei |en) for i = 1, . . . , n − 1. Since v is a radical
vector for q we have

0 = q(ei |v) = q(ei|v + en) = q(n)(ei |v) + q(ei |en) = q(ei|en) − q(n)[v](ei |en),

which completes the proof. ��
Proposition 3.27. Let q be a nonnegative quadratic unit form, and consider a core
p of q . Then q and p are root equivalent forms.
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Proof. Being a restriction of q , the core p is the root induced from q . For the
converse we proceed by induction on c = cork(q). If c = 0 then p = q and
there is nothing to prove. Assume that c > 0 and take an omissible variable i

(using Proposition 3.20(b)) such that p is a restriction of q(i) (written p ⊂ q(i)).
By Proposition 3.20 we have Dyn(q(i)) = Dyn(p), thus p is a core of q(i). By
induction there is a collection r of p-roots such that q(i) = pr . By Lemma 3.26
there is a q(i)-root v such that q = q(i)[v] = (pr)e(v), and by the Transitivity
Lemma 3.23, q is root induced from p. ��

We proceed now to prove the main result of this section, as provided in [9].

Theorem 3.28 (Barot-de la Peña). Two nonnegative unit forms have the same
Dynkin type if and only if they are root equivalent forms.

Proof. Assume first that p : ZI → Z and q : ZJ → Z are root equivalent forms. By
Proposition 3.27, p and any of its cores are root equivalent, as well as q and any of
its cores. Thus we may assume that both p and q are positive unit forms. In this case
we have shown that root induction preserves connected components (Lemma 3.25),
therefore we may also assume that p and q are connected.

Take a collection of q-roots r = (ri)i∈I with p = qr and a collection of p-roots
s = (sj )j∈J with q = ps . Consider the linear maps

Z
I ϕ

Z
J

x i∈I xir
i

and Z
J ψ

Z
I

y j∈J yj s
j .

Since p(x) = qr(x) = q(ϕ(x)) and q(y) = ps(y) = p(ψ(y)) and p, q are positive
unit forms, both ϕ and ψ are injective maps, which implies |I | = |J |. Moreover,
ϕ and ψ induce respectively injective functions p−1(1) → q−1(1) and q−1(1) →
p−1(1), and by Proposition 2.3 both sets p−1(1) and q−1(1) are finite. Hence p

and q are connected positive unit forms in the same number of variables and with
the same number of roots. This implies that p and q have the same Dynkin type
(cf. Table 2.1).

Assume now that Dyn(p) = Dyn(q), and take cores p′ and q ′ of p and q

respectively. By Proposition 3.20 we have Dyn(p′) = Dyn(q ′). Since p′ and q ′
are positive unit forms, they are equivalent by Corollary 2.21. Take a matrix T with
columns r1, . . . , rm such that p′ = q ′T . Then ri is a q ′-root for i = 1, . . . ,m
(for p′ is unitary) and the collection r = (r1, . . . , rm) of q ′-roots clearly satisfies
p′ = q ′

r , that is, p
′ and q ′ are root equivalent unit forms. By Proposition 3.27, p is

root equivalent to p′ and q is root equivalent to q ′, hence by transitivity we conclude
that p and q are root equivalent forms. ��

As an interesting consequence of the result above, we show that the number of
nonnegative unit forms q without double edges (that is, such that |qij | < 2 for all
i < j ) of fixed Dynkin type is bounded.
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Proposition 3.29. Let q be a nonnegative unit form of Dynkin type Δ, and take
p = qΔ. Then q has no double edge if and only if there exists a collection of p-roots
r such that r ∩ −r = ∅ and q = pr .

Proof. From Theorem 3.28 we know that there is a finite collection r of p-roots
such that q = pr . Assume first that there are ri = εrj in the collection r with i �= j

and ε = ±1. Then

εqij = pr(ei |εej ) = pr(ei + εej ) − pr(ei) − pr(ej ) = p(ri + εrj ) − 2 = 2,

that is, q has a double edge. On the other hand, if ri �= rj and ri �= −rj for any
i �= j , then

0 < p(ri ± rj ) = pr(ei ± ej ) = 2 ± q(ei |ej ) = 2 ± qij ,

that is, q has no double edge. ��
Proposition 3.29 yields the following immediate consequence.

Corollary 3.30. There are only finitely many nonnegative unit forms without
double edges of a given Dynkin type.

We end this section with a result necessary for Chaps. 5 and 6.

Corollary 3.31. Let q : Zn → Z be a nonnegative unit form with radical generated
by a vector v ∈ Z

n. Then |vi | ≤ 6 for i = 1, . . . , n.

Proof. Consider a core p : Zn−1 → Z of q and take a p-rootw such that q = p[w].
By Proposition 2.22 we have |wi | ≤ 6 for i = 1, . . . , n − 1, and the result follows
since v = ±(w + en), see Lemma 3.26. ��
Exercises 3.32.

1. Find all nonnegative unit forms of Dynkin type A3 without double edges.
2. Find a bound for the number of connected nonnegative unit forms of a given

Dynkin type Δ without double edges.
3. Let q : Zn → Z be a unit form with a root u, and consider a flation T : Zn → Z

n

for q . Show that T −1u is a qT -root, and that q[u]T = (qT )[T −1u], where
T = T ⊕ [1].

4. Doubling vertices. Let q : Zn → Z be a unit form. For an index i ∈ {1, . . . , n}
the one-point extension q[i] = q[−ei] = qvi , where vi = (e1, . . . , en, ei), is
called the doubling of the vertex i. Consider the morphism π : Zn+1 → Z

n given
by π(ek) = ek if k ≤ n and π(en+1) = ei . Show that:

a) The mapping π is order preserving.
b) For all x, y ∈ Z

n+1 we have q[i](x, y) = q(π(x), π(y)).
c) rad(q[i]) = rad(q) ⊕ Z(en+1 − ei).
d) A vector x ∈ N

n+1 is a maximal positive root of q[i] if and only if π(x) is a
maximal positive root of q .
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5. Considering Exercise 4 above, show that for any pair of vertices i �= j in I and
q : ZI → Z a unit form we have q[i][j ] = q[j ][i].

6. Show that if q : Zn+1 → Z is a semi-unit form such that en+1 − ei ∈ rad(q),
then q = q(n+1)[i].

3.6 Order of Dynkin Types

With the above analysis of root induction we may generalize the partial order within
Dynkin diagrams studied in Proposition 3.18. As defined in [9], for two Dynkin
types Γ and Δ we set Γ ≤ Δ if there is a nonnegative unit form q such that
Dyn(q) = Δ and a q-root induced form p with Dyn(p) = Γ . In what follows
an empty graph will be considered as a Dynkin type, corresponding to the form qr

for an empty set of q-roots r .

Lemma 3.33. Let Γ and Δ be Dynkin types such that Γ is an immediate predeces-
sor of Δ. Then either Δ = Γ � A1 or there is a Dynkin type Θ with Γ = Θ � Γ ′
and Δ = Θ � Δ′, where Δ′ is connected and Γ ′ is an immediate predecessor of Δ′.

Proof. Notice first that for Dynkin types Δ1 and Δ2, any predecessor of Δ1 � Δ2
has the shape Γ1 � Γ2 where Γi ≤ Δi for i = 1, 2. Indeed, suppose that q is a
nonnegative unit form with Dynkin type Δ := Δ1 � Δ2. By Theorem 3.28 there is
a collection of qΔ-roots s such that q = (qΔ)s . Thus for any q-root induced form
qr (where r is a collection of q-roots), using Lemma 3.23 we have qΔ-roots t with
qr = ((qΔ)s)r = (qΔ)t . Since qΔ = qΔ1 ⊕ qΔ2 and qΔ is a positive unit form, by
Remark 3.24 we have

qr = (qΔ1 ⊕ qΔ2)t = (qΔ1)t ′ ⊕ (qΔ2)t ′′,

for appropriate collections of qΔi -roots t ′ and t ′′. This shows that any predecessor
of Δ1 � Δ2 has the shape Dyn(qr) = Γ1 � Γ2 with Γi ≤ Δi for i = 1, 2.

Now, if Δ is connected, taking Θ = ∅ there is nothing to prove. Otherwise there
is a Dynkin type Θ such that Δ = Θ � Δ′ with Δ′ connected. By the above we
have Γ = Θ ′ � Γ ′ with Θ ′ ≤ Θ and Γ ′ ≤ Δ′, with exactly one strict inequality
since Γ is an immediate predecessor of Δ (see Exercise 1 below). If Γ ′ = Δ′ then
we apply the result to Θ (using induction on the number of connected components)
and rearrange components. If Θ ′ = Θ then Γ ′ is an immediate predecessor of Δ′,
which completes the proof (observe that Γ ′ is empty if and only if Δ′ = A1). ��

In order to understand the partial relation in Dynkin types determined by
root induction, using Lemma 3.33 it is sufficient to determine the immediate
predecessors of all (connected) Dynkin diagrams. This is done in the following
result, given in [9], which is used below in Table 3.1 to compute immediate
predecessors of Dynkin graphs.
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Table 3.1 Immediate predecessors of a Dynkin diagram Δ

Immediate predecessors Immediate predecessors

Dynkin diagram Δ Γ of Δ with |Γ | = |Δ| Γ of Δ with |Γ | < |Δ|
An (n ≥ 1) An−1

Ai � An−i−1

(i = 1, . . . , n − 2)

D4 A
4
1 A3

D5 A
2
1 � A3 A4

D4

D6 A
2
1 � D4 A5

A
3
2 D5

Dm (m > 6) A
2
1 � Dm−2 Am−1

A3 � Dm−3 Dm−1

Di � Dm−i

(i = 4, . . . , m − 4)

E6 A1 � A5 D5

A
3
2

E7 A7 D6

A1 � D6

A2 � A5

E8 A8

D8

A1 � E7

A2 � E6

A3 � D5

A
2
4

The notation Σm indicates the disjoint union of m copies of a Dynkin type Σ

Theorem 3.34. Let Γ be an immediate predecessor of a Dynkin diagram Δ. Then
Γ is a restriction (by either one or two points) of the extended Dynkin diagram Δ̃.

Proof. Take a nonnegative unit form q : ZJ → Z with Dyn(q) = Δ, and consider
a collection r = (ri )i∈I of q-roots such that p = qr has Dynkin type Dyn(p) = Γ .
The multi-point extension q[r], defined by the root induction qe(r) where e(r) =
(ej )j∈J � (−ri)i∈I (see Exercise 4 below), also satisfies Dyn(q) = Δ, and clearly
p is equal to the restriction q[r]I . Thus substituting q by q[r] we may assume that
p = qI for some subset of indices I ⊂ J .

Take j1, . . . , jt such that J = I � {j1, . . . , jt }, and for 0 ≤ a ≤ t define Ia =
I � {j1, . . . , ja}. Then we have

Γ = Dyn(qI0) ≤ Dyn(qI1) ≤ . . . ≤ Dyn(qIt−1) ≤ Dyn(qIt ) = Δ,
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and since Γ is an immediate predecessor of Δ, there is exactly one a for which
Dyn(qIa−1) �= Dyn(qIa ). Of course we may substitute q by qIa and p by qIa−1 ,
so that there is a vertex i ∈ J such that p = q(i). Observe that Lemma 3.2(a)

implies that any omissible vertex j for p is also omissible for q , therefore if
the restriction pI ′

is a core of p, then the restriction qI ′
has Dynkin type Δ

(by Proposition 3.20(a)) and qI ′ = (qI ′
)(i). Hence we may assume from the

beginning that p is a positive unit form with Dyn(p) = Γ such that p = q(i)

for a nonnegative unit form q with Dyn(q) = Δ. Take for simplicity i = n. By
Theorem 2.20 there is an iterated inflation T for p such that pT = qΓ , and clearly
qΔ = (q(T ⊕ [1]))(n). Replacing q by q(T ⊕ [1]), altogether we get a nonnegative
unit form q with Dyn(q) = Δ such that q(n) = qΓ . In particular by Lemma 3.17
we have cork(q) = 0 or cork(q) = 1.

By construction we have qij ≤ 0 for all i �= j in J − {n}. If qni > 0 for some
i �= n then the inflation T +

ni does not modify the restriction q(n) and takes q into a
root equivalent unit form q ′ = qT +

ni . Iterating this process we consider two cases,
when q is positive and when q has corank one. In the first case take a q-rootw with
wn > 0 and observe that w′ = T −

ni (w) = w + wnei is a q ′-root with w′
n > 0. Since

the entries of all roots of a positive unit form are bounded in absolute value by 6
(Proposition 2.22), the process must stop after finitely many steps. Similarly, if q

has corank one, take v to be the radical vector with rad(q) = Zv and vn > 0. Then
v′ = T −

ni v = v+vnei is a generator of rad(q ′) with v′
n > 0. Now by Corollary 3.31,

all entries of these generators are bounded in absolute value by 6, thus the process
must be finite again.

Then we may assume that the associated bigraph G of q has no dotted edges,
and by Propositions 2.2 and 3.1 we conclude that G is either Δ or the corresponding
extended Dynkin diagram Δ̃, hence the result. ��
Exercises 3.35.

1. Show that if Γ is an immediate predecessor of a Dynkin type Δ, then for any
Dynkin type Σ we have that Σ � Γ is an immediate predecessor of Σ � Δ.

2. Let q be a nonnegative unit form with finite collections of roots r = (ri)i∈I and
s = (si)i∈I . Prove that qr = qs if and only if r − s is a collection of radical
vectors for q .

3. Show that if Γ � Σ ≤ Δ � Σ then Γ ≤ Δ.
4. For a collection of q-roots r = (r1, . . . , rm) where q : Zn → Z is a nonnegative

unit form, define q[r] as qe(r) where e(r) = (e1, . . . , en,−r1, . . . ,−rm), called
themulti-point extension of q by the collection r . Show that the iterated one-point
extension q[r1][r2] · · · [rm] is a multi-point extension.

5. Prove or give a counterexample: A quadratic unit form q with |qij | ≤ 2 for i < j

is nonnegative if and only if q−1(0) is an abelian group.
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