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Preface

This work intends to collect and present combinatorial and numerical results on
integral quadratic forms as originally obtained in the context of the representation
theory of algebras and derived categories. Apart from their shared source and
structure, these results have some features in common:

(a) They are elementary, only requiring some linear algebra for their understanding.
(b) Some of the beautiful results remain practically unknown to students and

scholars. As a taste, we mention the following theorem due to Drozd: If
q : Zn → Z is an integral quadratic unit form which is positive definite on the
positive cone, then q accepts only finitely many roots, that is, vectors u ∈ Z

n

with q(u) = 1.
(c) The results are scattered in papers written between 1970 and the present day.

Some in journals which are scarcely available.
(d) Although some books on representation theory and derived categories have

appeared in recent years, filling an important theoretical gap, none of those
works touch any of the topics considered in this book (with the possible
exception of the first chapter in Ringel’s book Tame algebras and integral
quadratic forms).

(e) Most of the results that we present share an important device, namely the
consideration of diagrams (Dynkin diagrams, Euclidean diagrams) and their
groups of reflections. These objects have their source in Lie theory, mainly
in the classification of root systems in the sense of Bourbaki. For a general
account of the history of these diagrams, we refer the reader to the article The
ubiquity of Coxeter–Dynkin diagrams (an introduction to the ADE problem)
by Hazewinkel, Siersma and Veldkamp.

As said before, the main body of the text has almost no prerequisites, besides
some basic linear algebra. We have made no attempt to give a self-contained
exposition of the subject, although most of the material lends itself to a quite
complete presentation. Some of the topics beyond the scope of the book are drawn
up in the exercises, and so the reader is encouraged to go through them to gain a
wider insight into the matter. We have not committed to give exhaustive references
of definitions and results, referring instead to external sources for historical notes.

vii



viii Preface

Readers interested in combinatorial aspects of integral quadratic forms, poten-
tially related to the representations of algebras, Weyl groups and Lie theory, will
find these notes helpful and hopefully stimulating. Due to the accessible nature of
the topic, we also believe the book is a nice starting point for undergraduate students
interested in representation theory.

The chapter titles are mainly drawn from representation theory, referring to
arithmetic properties of quadratic forms (positivity, non-negativity and their weak
versions). In Chap. 1 we review the basic concepts and results used throughout the
following chapters, particularly some classical binary integral forms and quadratic
forms over the real numbers. In Chaps. 2 and 3 the concepts of positivity and non-
negativity of integral quadratic forms are studied, while Chaps. 5 and 6 analyze weak
versions of these attributes (where one restricts attention to vectors in the positive
cone). Here we consider (pre- or semi-)unit forms. In contrast to the unitary case,
Chap. 4 is dedicated to presenting analogous results for concealed integral quadratic
forms, as well as surveying some group theoretical and spectral properties of such
forms. We point out that Chaps. 2 and 3 are not prerequisites for Chaps. 4–6.

There are many new proofs of old results all over the text, as well as generaliza-
tions and remarkable new results. Concepts, results and algorithms in the text are
illustrated with plenty of examples, exercises, figures and tables. In order to maintain
a level of readability in the proofs, some technical steps are left as exercises for the
reader.

This work has grown over the course of many years as the authors moved
between cities and jobs. It is a pleasure to acknowledge the comments and interest of
our students (two groups of them divided by time and distance). We also thank the
Instituto de Matemáticas UNAM, Centro de Investigación en Matemáticas A.C. and
Instituto Tecnológico Autónomo de México for their support. The second author
acknowledges the support of the program FORDECYT CONACYT during his
postdoctoral stays in CIMAT A.C. and IMATE Mexico City.

As the first author has expressed in his Introduction to the representation theory
of algebras, we apologize to the reader for any errors that still remain in the text.

Motivation and Problems

Is it possible to solve x2 − xy + y2 = 2 within the integers? Since x2 − xy + y2 =
(x− 1

2y)
2 + 3

4y
2 is a sum of squares we should have 3

4y
2 ≤ 2 or |y| ≤

√
8
3 < 2, that

is, y = −1, 0, 1. By symmetry, x = −1, 0, 1. We depict the values of x2 − xy + y2

for different x and y in the following table:

x

⎧
⎨
⎩

y︷ ︸︸ ︷
3 1 1
1 0 1
1 1 3

and conclude that the question has a negative answer.



Preface ix

How many integer solutions does x2 − 3xy + y2 = 1 have? It is clear that
(x, y) = ±(1, 0),±(0, 1) are solutions. But, for instance, (x, y) = (3, 8) is also a
solution. We now reformulate the left-hand side:

x2 − 3xy + y2 = (x, y)

(
1 − 3

2
− 3

2 1

)(
x

y

)
,

and to get rid of the halves, we look for integer solutions of

(x, y)

(
2 −3

−3 2

)(
x

y

)
= 2.

Let T =
(

3 −1
8 −3

)
and observe two things: det(T ) = −1 and the first column

of T is a solution to our problem. In other words, T defines a Z-invertible
linear transformation T : Z

2 → Z
2, that is, a change of basis. Curiously we

have T t

(
2 −3

−3 2

)
T =

(
2 −3

−3 2

)
. Thus, if v = (

x
y

)
is a solution, then so are

T v, T 2v, . . . But unfortunately T 2 = Id, and it seems that our trick failed. Since
the equation is symmetric in x and y we can also switch the coordinates, that is, we

consider S =
(

0 1
1 0

)
T and then v, Sv, S2v, . . . are solutions to our problem. For

instance:
(

1

0

)
,

(
8

3

)
,

(
55

21

)
,

(
377

144

)
, . . .

are all solutions of our original problem. If v = (
v1
v2

)
is a solution with v1 > v2 > 0

then (Sv)1 = (T v)2 = 8v1 − 3v2 > 5v1 and (Sv)2 = (T v)1 = 3v1 − v2 > 2v1,
thus we see that Siv �= Sjv for all i �= j . In conclusion, there are infinitely many
solutions to our problem.

We will be interested in studying integral quadratic forms q in n variables, by
which we mean a homogeneous polynomial of degree two with coefficients qij in Z.

q(x1, . . . , xn) =
∑

1≤i<j≤n

qij xixj .

Specifically, we are interested in which integers m ∈ Z are represented by q ,
meaning that we can find some vector x ∈ Z

n so that q(x) = m.
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Some famous problems in mathematics can be traced back to a representability
problem. For instance, Pythagorean triples (a, b, c) are integral solutions of the
equation

x2 + y2 − z2 = 0.

Four thousand years ago the Babylonians had already filled clay tablets with lists of
triplets solving the above dependence. Not only (3, 4, 5) and (5, 12, 13) appear, but
larger numbers such as (3367, 3456, 4825). The chances that such answers were
found by trial and error are slim. The Babylonians must have used some kind of
elementary number theory to generate their triples.

Among other famous representability problems we mention the following cele-
brated theorems:

Theorem 1 (Lagrange, 1772). Any non-negative integer m can be written as a
sum of four integer squares.

The quadratic form q(x1, x2, x3, x4) = x2
1+x2

2 +x2
3+x2

4 referred to in Lagrange’s
Theorem is an example of a so-called universal integral quadratic form.

Theorem 2 (Legendre, 1798). A non-negative integer m can be written as a sum
of three integer squares if and only if m is not of the form 4a(8k + 7) for some
a, k ∈ Z.

Theorem 3 (Fermat, 1640). A prime number p > 2 can be written as a sum of
two integer squares if and only if p ≡ 1(mod 4).

While we can ask about which integers are represented by a given quadratic
form q , it is also interesting to ask in how many ways it is represented by q . For
particular cases, there are also some classical answers to this problem. Let rq (m)

count the number of ways of representing m by q . We recall:

Theorem 4 (Jacobi, 1828). If q = x2 + y2 + z2 +w2 and m is a positive integer,
then

rq(m) = 8
∑

0<d |m
d �=4k

d.

As it turns out, it is a very difficult problem to determine rq(m) for general
quadratic forms. More modest goals are still quite useful. We formulate two main
questions:

Question 1. Can we describe which integers m are represented by q? (When is
rq(m) > 0?)

Question 2. In about how many ways is m represented by q? (How big is rq (m)? Is
it finite?)
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An important thing to notice is that two quadratic forms q1 and q2 look the
same (so we will call them equivalent) if they only differ by some invertible
(linear) change of variables with integer coefficients. For convenience, we write
this equivalence as q1 ∼ q2. Notice that if q1 and q2 are equivalent, then rq1(m) =
rq2(m) for all integers m.

It will also be important to keep track of how many ways a form q is equivalent
to itself. We call these self-equivalences the automorphisms of q , and collectively
refer to them as Aut(q). Since for answering our two main questions we cannot
distinguish between equivalent quadratic forms, it makes sense to consider the
representation problem for classes of equivalent forms.

In fact, associated to a quadratic form q there is a symmetric n by n integer matrix
Mq defined as

q(v) = 1

2
vtMqv.

Two quadratic forms q1 and q2 are equivalent when Mq1 = T tMq2T for some Z-
invertible matrix T . Observe that, in particular, in this situation we have det(Mq1) =
det(Mq2). Sometimes we will denote xtMqy by q(x|y), which yields the n by n

matrix

Mq = (q(ei|ej ))ni,j=1 ,

in the canonical basis e1, . . . , en of the group Z
n.

Representation problems will frequently occur in this book, sometimes in
unexpected ways. For instance, we will consider the following quadratic form:

q0(x1, x2, x3, x4) =
4∑

i=1

x2
i −

∑
1≤i<j≤4

xixj ,

and observe that the numbers −2 and −3 are represented by q0:

q0(1, 1, 1, 1) = −2 and q0(1, 1, 2, 2) = −3.

This simple fact has the following important consequences. Consider a quadratic
form q(x1, . . . , xn) whose restriction to the first coordinates is q0. We claim that for
any sincere integral solution u = (u1, . . . , un) of q(x) = 1, there is another integral
vector v �= u majorizing u with q(v) = 1. We indicate the steps of the proof.

Indeed, assume that u is a sincere integral vector satisfying q(u) = 1 and assume
that u is not majorized by any other integral solution of q(x) = 1. First observe that
q(v|ei) ≥ 0 for every i = 1, . . . , n since otherwise the vector v = u − q(u|ei)ei
majorizes u and q(v) = 1. Since q(u|u) = 2, there is either one exceptional index
a with q(u|ea) �= 0 and uaq(u|ea) = 2 or there are two exceptional indices a, b
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with q(u|ea) �= 0 �= q(u|eb) and uaq(u|ea) = 1 = ubq(u|eb). In the first case, the
situation q(u|ea) = 2 is discarded since then q(2u−ea) = 1 and 2u−ea majorizes u.

Consider w = (1, 1, 1, 1, 0, . . . , 0) and w′ = (1, 1, 2, 2, 0, . . . , 0) in Z
n

satisfying q(w) = −2 and q(w′) = −3. By the above analysis 0 ≤ q(u|w) ≤ 2.
We distinguish cases depending on the value of q(u|w). If q(u|w) = 0 then also
q(u|w′) = 0 and q(2u+w′) = 1. If q(u|w) = 2 then q(u+w) = 1. If q(u|w) = 1
then taking w′′ = w − ea we have q(u|w′′) = 0, q(w′′) = q0(w

′′) = 0 and
q(u + w′′) = 1. All constructed vectors majorize u, a contradiction that completes
the proof of our claim.

The quadratic forms we consider in this book are unit forms. A unit form q is a
quadratic form of the shape

q(x1, . . . , xn) = x2
1 + . . . + x2

n +
∑
i<j

qij xixj .

For the sake of visualization, we depict integral unit forms as diagrams. Indeed, we
consider unit forms q defined by graphs with n vertices, where we set s solid edges
(resp. s dotted edges) between vertices i and j if qij = −s (resp. qij = s). A typical
example is the following:

which corresponds to the quadratic form q0 given above.
Our interest in quadratic forms comes from the study of finite-dimensional alge-

bras. Although we cleaned the presented material completely from that background,
one can still see its traces, namely the emphasis on roots and properties like weak
positivity, which play a central role throughout the book. In the following paragraphs
we give a very rough sketch of the suppressed representation theoretical material to
provide some understanding for the discussed notions.

If A is the ring of upper triangular n×n-matrices with entries in C, then obviously
A is a finite-dimensional C algebra. Any A-module is automatically a C-vector
space, and so are the sets of A-module homomorphisms HomA(M,N) between
two fixed (left) modules. The property of finitely generated modules translates into
finite dimension of vector spaces over C.

The ring A decomposes as a left module into a sum of projective modules,
and in our example we have A = ⊕n

i=1 Pi where Pi = AEii and Eii is the
matrix with a unique non-zero entry, located in the i-th row and i-th column.
For any left A-module M we define vec(M) to be the vector whose i-th entry
is dimCHomA(Pi,M). Take Cij = dimCHomA(Pj , Pi) and define the quadratic
form q(v) = vtC−1v for C = (Cij )

n
i,j=1.
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Invoking Gabriel’s Theorem it turns out that we have q(vec(M)) = 1 if and
only if M is indecomposable, that is, M cannot be properly decomposed into a
direct sum of A-modules. In our example

q(x) = x2
1 − x1x2 + x2

2 − x2x3 + x2
3 + · · · + xn−1xn + x2

n

= 1

2
[x2

1 + (x1 − x2)
2 + (x2 − x3)

2 + · · · + (xn−1 − xn)
2 + x2

n],

and thus we see that if x �= 0 then q(x) > 0. As we will see later, this implies
that there are only finitely many vectors x for which q(x) = 1. In conclusion:
there are only finitely many possibilities for (dimCHomA(Pi,M))ni=1 if M is
indecomposable.

We are only interested in solutions of q(x) = 1 for which all entries xi are non-
negative, since we should have xi = dimCHomA(Pi,M). This explains why we
study, for instance, if a quadratic form q has finitely or infinitely many vectors x
with positive entries and q(x) = 1.

Schaffhausen, Switzerland Michael Barot
Mexico City, Mexico Jesús Arturo Jiménez González
Mexico City, Mexico José-Antonio de la Peña
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Chapter 1
Fundamental Concepts

In this chapter we recall the basic concepts and results that will be used throughout
the book. Most of the concepts may be found in standard books on matrix theory and
linear algebra. We will also introduce the correspondence between integral quadratic
forms and bigraphs, which will be an essential tool.

There are many interesting historical surveys on the development of contem-
porary algebra, in particular in what could be considered as the origin of modern
representation theory. In the following paragraphs we briefly discuss some of
the highlights that led to the topics considered in this book, based on Katz
and Parshall [36], Brechenmacher [14, 15], Gustafson [29] and on comments in
Ringel [46], Gabriel and Roiter [26] and notes by the authors.

Particular instances of integral quadratic equations have been considered for
a long time: from Pythagorean triples (second millennium B.C.), Brahmagupta
who developed solutions for what is now known as Pell’s equation (628 A.D.),
to Fermat’s Theorem on the sum of pairs of square integers (1640). It is now
generally accepted that Lagrange’s work in 1775 established the current general
framework for the study of quadratic forms, considering for the first time equiva-
lences, reduction methods and discriminants, concepts that were further developed
by Euler and Legendre in the late eighteenth century. In 1801 Gauss published
his Disquisitiones Arithmeticae, dedicating extensive analysis to binary integral
quadratic forms. Gauss’ influential work arguably inspired Dirichlet, Dedekind and
Hilbert in the nineteenth century to develop a transition towards algebraic number
theory, with concepts such as quadratic (and more general) number fields.

Also in the nineteenth century a monumental revolution in algebra was begin-
ning, triggered by ideas from Hamilton, Cayley, Grassmann and Clifford, among
many others. For instance, a huge effort was invested in formulations of struc-
tural theorems for different types of semi-simple algebras (commutative algebras
by Hilbert and the non-commutative case by Molien and Cartan, and later by
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Wedderburn using purely algebraic methods). At this stage, a ‘representation
theoretical’ flavor was already prominent: both the canonical form of matrices
(Jordan–Weierstrass) and of pencils of matrices (Weierstrass–Kronecker) may now
be formulated as problems of representations of algebras.

Noether’s work on ‘module theoretical’ aspects of algebras changed perspectives
in the early twentieth century. For instance, it led to a sudden revived interest
in representation type, which led Brauer and Thrall to formulate their famous
conjectures (mid 40s), considered to be precursors of modern representation theory.
Parallel and independent work on the representation type of group algebras over
fields with positive characteristic guided Baev, Heller, Reiner and Krugljak in the
1960s to the idea of tame and wild behavior.

In the early 70s, rings of finite representation type attracted the attention of
Gabriel, who used diagrammatic methods to classify hereditary algebras with
that property when studying earlier results by Yoshii. The emergence of Dynkin
diagrams in Gabriel’s work, and recently developed ideas on root systems coming
from the classification of semi-simple finite-dimensional Lie algebras in the 1950s,
allowed Tits, Bernstein, Gelfand and Ponomarev to establish direct connections
between representations of algebras and roots system of certain quadratic forms and
their associated reflections. Further investigation of hereditary algebras translated
the tame-wild dichotomy to associative finite-dimensional algebras (Donovan–
Freislich), proven ultimately by Drozd in 1979. These connections, together with
such powerful tools as the flourishing homological algebra, sparked a considerable
amount of research on properties of quadratic forms in relation to (significantly
complex) algebraic structures and their representations. In these notes we intend
to collect some remarkable results in this direction, achieved from the 70s to the
present day.

1.1 Quadratic and Bilinear Forms

Consider an integral quadratic form q : Z
n → Z, that is, q is a homogeneous

polynomial of second degree in n variables x1, . . . , xn with coefficients in Z. Hence
a quadratic form has the shape

q(x) =
∑

1≤i≤j≤n

qij xixj ∈ Z[x1, . . . , xn].

For convenience, throughout the text we will take qij := qji for i > j . If
we denote the column vector x by (x1, . . . , xn), for any matrix A = (aij ) with
coefficients in Z we get a quadratic form xtAx = ∑n

i=1 aiix
2
i + ∑

i<j (aij +
aji)xixj . We say that the symmetric n × n-matrix A is associated to the quadratic
form q if xtAx = q(x). Notice that the matrix A is unique (usually denoted
by Aq ), and its coefficients belong to 1

2Z. Define then the determinant of q as
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det(q) = det(Aq). There is always a unique lower triangular matrix Tq with
coefficients in Z such that q(x) = xtTqx, referred to as the Gram matrix of q .
Given r1, . . . , rn ∈ Z we denote by diag(r1, . . . , rn) the quadratic form q(x) =
r1x

2
1 + . . .+ rnx

2
n .

Given a (symmetric) matrix A we have a (symmetric) bilinear form

Z
n × Z

n Z

(x, y) xtAy.

The case x = y produces the quadratic form q(x) = xtAx. Conversely,
given a (symmetric) bilinear form (−|−) : Z

n × Z
n → Z define the (sym-

metric) matrix SM(−|−) with coefficients SM(−|−)i,j = (ei |ej ), where e1 =
(1, 0, . . . , 0), . . . , en = (0, . . . , 0, 1) is the canonical basis for Zn.

For a quadratic form q denote by q(x|y) the symmetric bilinear form given by

q(x + y) = q(x)+ q(y)+ q(x|y).

That q(x|y) is a symmetric bilinear form follows directly from the observation
q(x|y) = xt (Tq + T t

q )y, where Tq is the Gram matrix of q . Notice that q(x|x) =
q(2x)− 2q(x) = 2q(x) and that q(x|y) = 2(xtAqy) for all x, y ∈ Z

n, that is,

SMq(−|−) = Tq + T t
q = 2Aq.

Lemma 1.1. For an integral quadratic form q : Z
n → Z, an arbitrary vector

v = (v1, . . . , vn) in Z
n and an index � ∈ {1, . . . , n}, we have

q(v|e�) = 2q��v� +
∑
i �=�

q�ivi = ∂

∂v�
q(v),

where ∂
∂v�

denotes the partial derivative of q with respect to the variable v�.

Proof. The last equality is clear. To show the first one denote by (aij )
n
i,j=1 the

symmetric matrixAq associated to q . Writing q(x) = ∑
1≤i≤j≤n

qij xixj and qij = qij

for i �= j we have qij = 2aij for i �= j and qii = aii for i = 1, . . . , n. Using the
expression q(x|y) = 2(xtAqy) we therefore have

q(v|e�) = q(e�|v) = et�(2Aq)v

= (2a�1, . . . , 2a��, . . . , 2a�n)v = 2q��v� +
∑
i �=�

q�ivi,

which completes the proof. ��
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We recall how the coefficients of a bilinear formZ
n×Z

n → Z, given by (x|y) →
xtAy for a matrix A, change under a transformation of variables,

xi =
n∑

j=1

tij ξj , for i in {1, . . . , n} and tij in Z.

In matrix notation we write x = T ξ , where x and ξ are the column matrices
(x1, . . . , xn) and (ξ1, . . . , ξn) respectively, and T is the change of basis matrix (tij ).
We obtain a new bilinear form in the variables ξ and ν, given by

〈ξ |ν〉 = ξ t Ãν = ξ tT tAT ν = (T ξ |T ν),

where x = T ξ , y = T ν and Ã = T tAT . If T is a Z-invertible matrix we say
that the bilinear forms (−|−) and 〈−|−〉 are equivalent (that is, the matrices A and
Ã are congruent, written A ∼ Ã). We also say that two quadratic forms q and q ′
are equivalent if their associated symmetric matrices Aq and Aq ′ are congruent.
Since q(x|y) = 2(xtAqy), observe that two integral quadratic forms q and q ′
are equivalent if and only if so are their corresponding bilinear forms q(−|−) and
q ′(−|−). Recall that T is Z-invertible if and only if det(T ) = ±1, in which case
(assuming Ã = T tAT ) we have det(Ã) = det(A) det(T )2 = det(A).

The radical of q is the subset of Zn given by

rad(q) = {v ∈ Z
n | q(u + v) = q(u)+ q(v) for all u in Z

n}
= {v ∈ Z

n | q(u|v) = 0 for all u in Z
n}

= {v ∈ Z
n | q(v|ei) = 0 for i = 1, . . . , n}

Clearly v ∈ rad(q) if and only if Aqv = 0, thus rad(q) is a subgroup of Zn and its
rank is called the corank of q , written cork(q). Observe that

rad(q) = {v ∈ Z
n | q(u) = q(u + v) for all u ∈ Z

n}.

We say that q is regular if rad(q) = 0, and notice that q is regular if and only if
det(A) �= 0.

If the symmetric matrix Aq of q : Zn → Z has diagonal block form,

Aq = A1 ⊕ A2 =
[
A1 0
0 A2

]
,

then we say that q decomposes as q = q1 ⊕ q2 where q1 : Zn1 → Z is the form
given by q1(x1) = xt1A1x1 (for x1 ∈ Z

n1 and 0 ≤ n1 ≤ n) and q2 : Zn−n1 → Z

is given by q2(x2) = xt2A2x2 for x2 ∈ Z
n−n1 . For an index set I , a quadratic form

q : Z
I → Z is disconnected if there exists a (nontrivial) partition I = I1 ∪ I2
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such that qij = 0 for i ∈ I1 and j ∈ I2 (observe that there is an enumeration of
indices such that q = q1 ⊕ q2 for suitable quadratic forms q1 : Z

I1 → Z and
q2 : ZI2 → Z). Otherwise q is said to be connected.

Since integral quadratic forms are the main object of study in subsequent chap-
ters, we establish once and for all a visualization tool through (regularized) signed
graphs. Our motivation comes from an algebraic setting, where the alternative
terminology bigraph is commonly used (see for instance [18] for general concepts
in graph theory).

A bigraphB is a graph (B0, B1) (that is, a set of vertices B0 together with a set of
edges B1, admitting loops and multi-edges) such that B1 may contain both solid and
dotted edges. Throughout, the elements of B0 will have labels taken from a finite
subset of natural numbers (usually {1, 2, . . . , n}).

Any pair of edges between vertices i, j are called parallel edges (possibly i = j ).
We will assume that no solid edge is parallel to a dotted edge. Such bigraphs are
called regular, and the process of deleting all such pairs (a pair at a time) is called
regularization of bigraphs. For 1 ≤ i ≤ j ≤ n, let aij be the number of solid edges
(resp. bij the number of dotted edges) joining vertices i and j in a bigraph B. We
define the (upper triangular) adjacency matrix TB of the bigraph B as follows:

(TB)ij =
{
aij − bij , if i ≤ j ;
0, if i > j.

Define the integral quadratic form qB : Zn → Z associated to a bigraph B with n

vertices as

qB(x) = xt (Idn − TB)x,

and notice that the symmetric matrix AqB associated to the quadratic form qB is
given by AqB = Idn − 1

2 (TB + T t
B). Alternatively, take the (symmetric) adjacency

matrix AB of B having as coefficients (AB)ji = (AB)ij = aij − bij if i ≤ j , and
observe that qB(x|y) = xtABy.

Now, given an integral quadratic form q = ∑
1≤i≤j≤n qij xixj we define the

bigraph Bq associated to q as follows. Let (Bq)0 be the set {1, . . . , n}, and for each
pair of different vertices i, j the set (Bq)1 contains |qij | edges connecting i and j.

These edges are solid if qij < 0 or dotted if qij > 0. In addition, Bq has |1 − qii |
solid loops attached to the vertex i if 1−qii ≥ 0, otherwise there are |1−qii| dotted
loops on it. By construction Bq is always a regular bigraph, and we have qBq = q .
Notice moreover that BqB is the regularization of the bigraph B.

Example 1.2. Let us consider the quadratic form q(x1, x2, x3, x4) = 4x2
1 + x2

2 +
x2

4 − 3x1x2 − 4x1x3 + 4x2x4 − 3x3x4. Its associated bigraph and corresponding
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(upper) adjacency matrix are depicted below:

Bq =
−3 3 4 0
0 0 0 −4
0 0 1 3
0 0 0 0

TBq =

•2

•1 •4

•3

We say that q is a quadratic unit form or simply a unitary form if aii = 1 for all
1 ≤ i ≤ n. Notice that q is a unit form if and only if its associated bigraph Bq has
no loop. Observe also that if Bq has no loops or multiple edges, then by Lemma 1.1

q(v|ei) = 2vi +
∑
j �=i

qij vj = 2vi −
∑

there is
an edge
i−j

vj .

Consider a quadratic form q : ZI → Z for an index set I , and for a subset J ⊂ I

take the inclusion ρ : ZJ → Z
I given by ρ : ei → ei . The restriction qJ of q to the

index set J is given by

qJ (x) := q(ρ(x)).

Throughout the text, for a vertex i ∈ I we write q(i) instead of qI−{i}. If (Bq)0 = I

let B ′ be the full subbigraph of Bq determined by J (that is, (B ′)0 = J and (B ′)1
consists of those edges in Bq joining vertices in J ), then qJ = qB ′ . Therefore, for
a vertex i in a bigraph B, the expression B(i) will denote the bigraph obtained from
B by deleting vertex i and all edges containing it.

Exercises 1.3. In the following exercises we consider quadratic forms with
coefficients over a general ring R, not necessarily over Z.

1. Take the field with two elements R = F2. Show that there are exactly eight
quadratic forms in the variables x1, x2, four of them have two associated
symmetric matrices, while the rest have no associated symmetric matrix at all.

2. Let q(x1, . . . , xn) be a quadratic form over the ring R. There is an induced map
Q : Rn → R given by Q(v) = q(v). Show that the mapping Q is quadratic, that
is, that it satisfies:

i) Q(av) = a2Q(v) for any a ∈ R and v ∈ Rn.
ii) The map Q(−|−) : Rn × Rn → R given by

Q(v|w) = Q(v + w) − Q(v) − Q(w)

is R-bilinear and symmetric.
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3. Two quadratic maps Q : Rn → R and Q′ : Rn → R are called isometric if there
exists an invertible map T : Rn → Rn such that Q(v) = Q′(T v) for all v ∈ Rn.
Prove:

i) Let q(x1, . . . , xn) and q ′(x1, . . . , xn) be two quadratic forms with corre-
sponding quadratic maps Q,Q′ : Rn → R. Assume that the matrices Aq

and Aq ′ are congruent, then Q and Q′ are isometric.
ii) Let R be a field with Char(R) �= 2. Assume that Q and Q′ are isometric,

then the matrices Aq and Aq ′ are congruent.

4. Let R be a unique factorization domain (UFD) and β : Rn → R a linear map.
Then Ker(β) is a pure submodule of Rn, that is, if v ∈ Rn and 0 �= a ∈ R are
such that av ∈ Ker(β), then v ∈ Ker(β). Show the following,

i) A pure submodule of Rn is direct summand of Rn.
ii) If Rn = V ⊕ Rs , then V is isomorphic to Rn−s .

5. Let T : Rn → Rn be an isometry for the quadratic forms q(x1, . . . , xn) and
q ′(x1, . . . , xn), that is, q(x) = q ′(T x) for all x in Rn. Show that the map T

induces an isomorphism between rad(q) and rad(q ′).
6. Let q = ax2

1 + bx1x2 + cx2
2 and q ′ = a′x2

1 + b′x1x2 + c′x2
2 be two quadratic

forms over Z. Show that q and q ′ are congruent if and only if there exist numbers
α, β, γ, δ ∈ Z with αδ − βγ = ±1 such that

a′ = aα2 + bαγ + cγ 2,

b′ = 2aαβ + b(αδ + βγ ) + 2cγ δ,

c′ = aβ2 + bβδ + cδ2.

1.2 Reflections

Let q(x1, . . . , xn) : Zn → Z be a quadratic form over the integers. Consider the
canonical basis e1, . . . , en for Zn. We say that 0 �= x ∈ Z

n is a reflection vector of
q if q(x|ei)

q(x)
∈ Z for all i = 1, . . . , n. For a reflection vector x define the reflection

morphism at x , σx : Zn → Z
n, by

σx(y) = y − q(x|y)
q(x)

x.

Examples 1.4.

1. If q is a unit form, then all canonical vectors e1, . . . , en are reflection vectors.
The corresponding reflection σei is called simple reflection at i and is denoted by
σi .

2. If q(v) = 1 then v is a reflection vector.
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3. Considering the integral quadratic form q(x1, x2) = x2
1 + x2

2 − x1x2, then v =
e1 − e2 ∈ Z

2 is a reflection vector with q(v) = 3. Observe that σv : Z2 → Z
2

has associated matrix
[

0 1
1 0

]
, which cannot be obtained as a product of simple

reflections σi (1 ≤ i ≤ n) (see Exercise 1.7.1).

In the following lemma we summarize some basic facts about reflections. We
stress that the same result holds for more general rings, in particular for Z, R and C.

Lemma 1.5. Let v ∈ Z
n be a reflection vector for an integral quadratic form q .

a) The reflection σv : Z
n → Z

n maps v into −v, and acts as the identity in the
orthogonal complement of v given by v⊥ = {w ∈ Z

n | q(v|w) = 0}.
b) Reflections are involutions, that is, σ 2

v = IdZn .
c) Reflections are q-invariant (or isometries, that is, q(σv(x)) = q(x) for all x ∈

Z
n).

d) If w is a reflection vector, then σv(w) is a reflection vector.
e) If v �= w are reflection vectors then

σvσw = σwσv if and only if q(w|v) = 0.

f) For i �= j we have σiσj = σjσi if and only if qij = 0.
g) For i �= j we have σiσj σi = σjσiσj if and only if qij ∈ {1,−1}.
Proof. Points (a) and (b) are clear. For (c) observe that

q(σv(x)) = q(x) +
(
q(v|x)
q(v)

)2

q(v) − q(v|x)
q(v)

q(v|x) = q(x).

For (d) and (e) let w be a reflection vector and x ∈ R
n. Then

q(x|σv(w)) = q(x|w)− q(v|w)
q(v)

q(x|w),

where q(v|x)
q(v)

∈ Z since v is a reflection vector, and q(x|w) is divisible by q(w) =
q(σv(w)) since w is a reflection vector. This shows (d), and (e) follows from the
observation

σv(σw(x)) − σw(σv(x)) = q(v|w)[q(w|x)v − q(v|x)w]
q(v)q(w)

.

Thus if v �= w, then σv and σw commute if and only if q(v|w) = 0. Point (f )
follows from (e), and (g) is left as an easy exercise. ��
Example 1.6. Let q = 4x2

1 + x2
2 + x2

4 − 3x1x2 − 4x1x3 + 4x2x4 − 3x3x4 be the
integral quadratic form of Example 1.2. Canonical vectors e2 and e4 are reflection
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vectors of q , and the simple reflections σ2 and σ4 are respectively given by matrices

⎛
⎜⎜⎝

1 0 0 0
3 −1 0 −4
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ and

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 −4 3 −1

⎞
⎟⎟⎠ .

An isometry of q is a q-invariant Z-invertible transformation σ : Zn → Z
n (that

is, σ satisfies q(σ(x)) = q(x) for any vector x in Z
n). In terms of matrices, this is

equivalent to having BtAqB = Aq for the associated n× n matrices B of σ and Aq

of q . An isometry σ of q satisfies det(σ )2 = 1.
For any reflection vector v, the reflection σv is an isometry of q with determinant

det(σv) = −1. We will denote by O(q) = OZ(q) the group of isometries of q , and
by W(q) = WZ(q) the Weyl group of a unit form q , that is, the subgroup of O(q)

generated by the simple reflections σ1, . . . , σn of q (see Sect. 4.4 for more on Weyl
groups).

One of our main interests is to analyze the set R(q) of roots of a quadratic form
q (or simply q-roots), and the set Σ(q) of isotropic vectors of q , given by

R(q) = {v ∈ Z
n | q(v) = 1} and Σ(q) = {v ∈ Z

n | q(v) = 0}.

For a unit form q it follows from Lemma 1.5(c) that both sets R(q) and Σ(q) are
stable under the action of the Weyl group W(q) associated to q . A root of the shape
y = w(ei) for w in W(q) and ei a canonical basis vector is called a real root of q .
The canonical vectors ei are sometimes called simple roots.

As noted in Example 1.4(3), the Weyl group W(q) associated to the unit form
q(x1, x2) = x2

1 + x2
2 − x1x2 is a proper subgroup of O(q). In fact, W(q) has order 6

and O(q) is formed by those integral 2 × 2 matrices

[
a b

c d

]
with either ad − bc = 1

and a − d = b = −c, or ad − bc = −1 and a = b − c = −d . In particular, the
order of O(q) is 12.

Exercises 1.7.

1. Let q be the quadratic form of Example 1.4(3) and consider its Weyl group W(q).
Write down those 2 × 2 matrices corresponding to elements of the Weyl group

W(q). Show that the transformation σv =
[

0 1
1 0

]
does not belong to W(q). [Hint:

W(q) has (2 + 1)! elements.]
2. Describe all the elements of O(q) for q as in Exercise 1.
3. Show that σiσj σi = σjσiσj if and only if qij ∈ {1,−1}.
4. Let α : Zn → Z

n be an isometry of q , and v be a reflection vector of q . Show
that α(v) is a reflection vector and that ασvα−1 = σα(v).

5. Let v ∈ Z
n be a vector with q(v) �= 0, and consider the lattice v⊥ = {w ∈ Z

n |
q(v|w) = 0}. Show that Zn = Zv ⊕ v⊥ if and only if v is a reflection vector.
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6. Let q : Zn → Z be a unit form and 1 ≤ i ≤ n an index. Consider the restricted
form q(i) : Zn−1 → Z. Show that W(q(i)) may be seen as a proper subgroup of
W(q). [Hint: Suppose i = 1 and let σ ′

j be a reflection of q(1) for 2 ≤ j ≤ n.
Notice that the matrix of the reflection σj has the shape

σj =
[

1 0
∗ σ ′

j

]
.

If a product of reflections σj1 . . . σjs with 2 ≤ j1, . . . , js ≤ n has a matrix of
shape

[
1 0
∗ Idn−1

]
,

then σj1 . . . σjs = IdZn .]
7. Let B1 and B2 be bigraphs and B = B1 �B2 their disjoint union. Let qi = qBi for

i = 1, 2 and q = qB . Show that W(q) = W(q1) × W(q2) is the direct product
of groups W(q1) and W(q2).

1.3 Representability

We say that a quadratic form q represents an integer a if there is a nonzero vector
v ∈ Z

n such that q(v) = a. We write

D(q) = DZ(q) = {q(v) such that v ∈ Z
n and v �= 0}

for the set of elements which are represented by q . A quadratic form q : Zn → Z is
called isotropic (over the integers Z) if 0 ∈ DZ(q), otherwise q is called anisotropic.
If v is a nonzero vector with q(v) = 0, we call v an isotropic vector for q , and denote
the set of isotropic vectors of q by Σ(q). Clearly a quadratic form q : Z → Z given
by x → ax2 is anisotropic if and only if a �= 0.

An integral quadratic form q : Zn → Z is said to be universal (over the positive
integers) if DZ(q) = Z (resp. DZ(q) = N). A quadratic form q is said to be
positive if q(x) > 0 for any nonzero vector x ∈ Z

n. By a universal positive
form we mean a positive form q which is universal over the positive integers.
The Conway–Schneeberger Fifteen Theorem states that a positive integral form q

whose associated symmetric matrix Aq has integer coefficients (referred to in this
section as matrix-integral form) is universal if and only if it represents all positive
numbers up to 15. A positive integral quadratic form accepting half integers in its
symmetric matrix is universal whenever it represents all positive numbers up to 290.
The original proof of Conway and Schneeberger’s Fifteen Theorem, based on many
specific computations, was never published. A shorter proof given by Bhargava [11]
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is based in a escalation process, which we describe in what follows, where we
assume that all quadratic forms are positive and matrix-integral.

The truant of a nonuniversal positive quadratic form q is the smallest positive
integer not represented by q . An escalation of a nonuniversal quadratic form
q(x1, . . . , xn) is a positive quadratic form q̃(x1, . . . , xn, xn+1) such that the restric-
tion to the first n variables is q , and q̃(0, . . . , 0, 1) is the truant of q . For instance,
the direct sum

q(x1, . . . , xn) + ax2
n+1

is an escalation of q , where a is the truant of q . An escalator form is either q1(x1) =
x2

1 or a quadratic form obtained as an escalation of a nonuniversal escalator form.
The fundamental step in the proof of the Fifteen Theorem is to show that there are
only finitely many escalator forms (all of them in at most five variables).

Observe first that the truant of q1 is 2, thus any escalation of the quadratic form
q1(x1) = x2

1 is determined by

q2(x1, x2) = x2
1 + 2bx1x2 + 2x2

2 ,

and by the Cauchy–Schwarz inequality,

|b|2 = |q2((1, 0)|(0, 1))|2 ≤ q2(1, 0)q2(0, 1) = 2.

All escalators in two variables are listed below,

q2,1(x1, x2) = x2
1 + 2x2

2 ,

q2,2(x1, x2) = x2
1 + 2x1x2 + 2x2

2 = (x1 + x2)
2 + x2

2 ,

q2,3(x1, x2) = x2
1 − 2x1x2 + 2x2

2 = (x1 − x2)
2 + x2

2 .

Notice that there are only two isomorphism classes of escalators in two variables,
namely those with associated symmetric matrices

A1 =
(

1 0
0 2

)
and A2 =

(
1 0
0 1

)
,

both nonuniversal with truants 3 and 5 respectively. Any escalation of the form qA1

is isomorphic to a form with associated symmetric matrix

B1,1 =
⎛
⎝

1 0 0
0 1 0
0 0 1

⎞
⎠ , B1,2 =

⎛
⎝

1 0 0
0 1 0
0 0 2

⎞
⎠ , B1,3 =

⎛
⎝

1 0 0
0 1 0
0 0 3

⎞
⎠ .
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Similarly, any escalation of the form qA2 is isomorphic to a form with symmetric
matrix

B2,1 =
⎛
⎝

1 0 0
0 2 0
0 0 2

⎞
⎠ , B2,2 =

⎛
⎝

1 0 0
0 2 0
0 0 3

⎞
⎠ , B2,3 =

⎛
⎝

1 0 0
0 2 1
0 1 4

⎞
⎠ ,

B2,4 =
⎛
⎝

1 0 0
0 2 0
0 0 4

⎞
⎠ , B2,5 =

⎛
⎝

1 0 0
0 2 1
0 1 5

⎞
⎠ , B2,6 =

⎛
⎝

1 0 0
0 2 0
0 0 5

⎞
⎠ .

These nine quadratic forms are all nonuniversal, and can be escalated to give rise
to 207 nonisomorphic quadratic forms in four variables. Only six out of these
207 quadratic forms are nonuniversal, and their escalations produce all remaining
escalator forms (1630 isomorphism classes in five variables, all of them universal).
Thus arguing as above, the following theorem was shown in [11].

Theorem 1.8 (Fifteen Theorem). Let q be an integral positive form with integral
associated symmetric matrix Aq . Then q is a universal if and only if q represents
the numbers 1, . . . , 15.

1.4 Binary Integral Quadratic Forms

This section deals with binary integral quadratic forms q = ax2
1 + bx1x2 + cx2

2
(with a, b, c in Z), which will be denoted by q = (a, b, c), and their classification
through the determinant,

det(q) = ac − b2

4
.

The most prominent examples of binary forms are Pell forms q[r] = (1, 0,−r)

and Kronecker forms qm = (1,−m, 1) for r,m ∈ Z. Here we briefly describe
the general theory of binary forms (due originally to Gauss [28]), collecting some
results from Conway [19] and Buell [17].

First notice that d = −4 det(q) is an integer satisfying d ≡ 0, 1 mod (4), usually
known as the discriminant of q . Indeed, if b = 2k+δ for some k ∈ Z and δ ∈ {0, 1},
then b2 = 4(k2 + δk) + δ, and therefore d ≡ δ mod (4). Moreover, for any integer
d ≡ 0 mod (4) (resp. d ≡ 1 mod (4)) there exists a binary quadratic form q with
discriminant d = −4 det(q), namely q = (1, 0,−d/4) (resp. q = (1, 1,−(d −
1)/4)). In any case this is called the principal form of discriminant d . We say that
a binary form q = (a, b, c) is respectively definite, semi-definite or indefinite if its
discriminant d = b2 − 4ac satisfies respectively d < 0, d = 0 or d > 0. Notice that
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if d ≥ 0 then either a, c ≥ 0 or a, c ≤ 0. We say that q is positive (semi-) definite in
the first case, and negative (semi-)definite in the second.

Two binary forms q and q ′ are called properly equivalent if there exists an
integral transformation T : Z

2 → Z
2 with det(T ) = 1 such that q ′ = qT . If u

and v are the columns of T (which will be written as T = [u|v]), then we have

qT (x1, x2) = q(ux1 + vx2) = q(u)x2
1 + q(u|v)x1x2 + q(v)x2

2 ,

that is, qT = (q(u), q(u|v), q(v)). For instance, a Kronecker form qm is definite
if and only if |m| ≤ 1, while a Pell form q[r] is definite precisely when r < 0.
Moreover, q2t and q[t2−1] are properly equivalent, and so are qm and q−m for all
m ∈ Z.

The following algorithm describes how to construct a sequence of binary forms,
starting with a given form q = (a, b, c) having nonsquare discriminant. This
algorithm is used in [19] when b is an even number to define so-called reduced
forms. Here we focus on binary forms with nonsquare discriminant, commenting on
the quadratic case at the end of this section.

Algorithm 1.9 (Binary Reduction). Let q = (a, b, c) be a binary form with c �=
0. Define a new binary form −→q = (−→a ,

−→
b ,−→c ) as follows. Consider the equation

b + −→
b ≡ 0 mod 2c. (∗)

i) Take −→
a = c.

ii) If equation (∗) has a solution
−→
b satisfying (

−→
b )2 − d ≤ 0, take

−→
b as such a

solution with maximal value.
iii) If equation (∗) has no solution

−→
b satisfying (

−→
b )2 − d ≤ 0, take

−→
b as the

solution of (∗) with minimal absolute value, choosing the sign of
−→
b opposite

to that of b in case of a tie.

iv) Take −→
c = (

−→
b )2−d

4c .

Then the binary form −→
q , referred to as the (right) shift of the binary form q , is

properly equivalent to q .

Proof. Consider the matrix T = [u|v] = (
0 −1
1 α

)
where α = b+−→

b
2c . We know that

qT = (q(u), q(u|v), q(v)), and clearly q(u) = q((0, 1)) = c = −→
a . We compute,

q(v) = q((−1, α)) = a − bα + cα2

= a − b2 + b
−→
b

2c
+ b2 + 2b

−→
b + (

−→
b )2

4c

= a + (
−→
b )2 − b2

4c
= (

−→
b )2 − d

4c
= −→

c .
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We also have

q(u|v) = q(u+ v) − q(u) − q(v)

= q((−1, 1 + α)) − −→a − −→c
= a − b(1 + α) + c(1 + α)2 − c − −→

c

= a − bα + −→
b + cα2 − −→

c

= −→
b + a − b2 + b

−→
b

2c
+ b2 + 2b

−→
b + (

−→
b )2

4c
− (

−→
b )2 − b2 + 4ac

4c
= −→

b .

Hence qT = (
−→
a ,

−→
b ,

−→
c ) = −→

q , and the result follows since det(T ) = 1. ��
As a mild generalization of Buell’s definition in [17], we say that a binary form

q is (binary) reduced if it satisfies the following conditions,

|b| ≤ min{|a|, |c|}, if q is definite,
|√d − 2|a|| < b <

√
d, if q is indefinite.

We say that a binary form q ′ is an iterated (right) shift of q if there is a sequence
of binary forms q0, . . . , qr with r ≥ 0 such that q = q0, q ′ = qr and qi+1 = −→qi for
0 ≤ i < r . If r > 0 we say that q ′ is a nontrivial iterated (right) shift of q . Observe
that if q has nonsquare discriminant, then we may iterate Algorithm 1.9 indefinitely,
since none of the binary forms qi appearing in this sequence has zero third term.
We start by analyzing Algorithm 1.9 when applied to positive definite forms (the
negative definite case can be treated analogously).

Theorem 1.10. If q is a positive definite binary form, then there is an iterated shift
q ′ of q such that q ′ is binary reduced. Moreover, if q itself is binary reduced, then
so is −→

q .

Proof. Take q = (a, b, c). By assumption we have d = b2 − 4ac < 0 and 0 ≤
a, c. Therefore in Algorithm 1.9 we always take

−→
b with minimal absolute value

(point (iii)).
Let us first show that if |b| < c then −→

q = (c,−b, a). By minimality it is clear

that
−→
b = −b (since any other solution of equation (∗) satisfies |−→b | > c > |b|).

Then −→
c = b2−d

4c = a. In particular, if q is binary reduced then so is −→
q =

(c,−b, a), and q = −→−→
q .

Let us now assume that q is not binary reduced. By the above we may assume
that c < |b|. We proceed by induction on |b|. Notice that c < |b| implies that

|−→b | < |b|. Indeed, if |−→b | ≥ |b| < c then we may choose a sign ± such that−→
b ±2c is a solution of (∗) with smaller absolute value than

−→
b , which is impossible

by minimality of
−→
b . Hence, if |−→b | ≤ −→

c then −→
q is a binary reduced form. Use

induction otherwise. ��
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Corollary 1.11. For every negative integer d there is a finite number of proper
equivalence classes of positive definite binary forms with discriminant d .

Proof. Assume q = (a, b, c) is a binary reduced positive definite form with
discriminant d = b2 − 4ac ≤ 0. Observe that, as shown in the proof of
Theorem 1.10, if q = (a, b, c) is binary reduced then −→

q = (c,−b, a). Hence
we may assume that a ≤ c.

First notice that 3b2 ≤ −d . This follows from the equation

4b2 ≤ 4a2 ≤ 4ac = b2 − d,

which holds since q is binary reduced. This property also implies that ac − b2 > 0,
therefore we have 3ac ≤ −d . Since both a and c are positive, there is a finite
number of possible values for a, b and c. This shows that there is a finite number
of binary reduced positive definite forms with discriminant d , and the result follows
from Theorem 1.10. ��

As shown in the proof of Theorem 1.10, for any positive definite binary form q =
(a, b, c) the sequence of iterated right shifts q,−→q ,

−→−→
q , . . . is ultimately periodic, for

q = −→−→
q if q is binary reduced. We point out that q = −→

q if and only if b = 0 and
a = c. For instance, the Kronecker forms q1 and q−1 are periodic positive definite
binary forms, and the same holds for the Pell equations qr and −→

qr = (−r, 0, 1) for
r < 0. Similarly it can be shown that

(13, 10, 2)(2, 2, 1)(1, 0, 1)

is a sequence of iterated shifts of the positive definite form (13, 10, 2), where q =
(1, 0, 1) is binary reduced with q = −→

q . In Table 1.1 we describe all positive definite
binary reduced forms with discriminant −50 ≤ d < 0.

The same periodicity phenomenon on iterated sequences of shifts is presented
in the indefinite case with nonsquare discriminant, which we consider next. In
the following preliminary result we show some alternative definitions for binary
reduced indefinite forms (compare with [17] and [19]).

Lemma 1.12. For an indefinite binary form q = (a, b, c) with discriminant d the
following conditions are equivalent.

i) |√d − 2|a|| < b <
√
d .

ii) |√d − 2|c|| < b <
√
d .

iii) 0 < b <
√
d < min{b + 2|a|, b + 2|c|}.

Proof. Assume (i) holds. Then |√d − b| = √
d − b < 2|a|, and since

|√d − b| · |√d + b| = 4|a| · |c|,
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Table 1.1 Positive definite reduced binary forms (a, b, c) with small discriminant and a ≤ c

Discriminant h Primitive forms Nonprimitive forms

−3 1 (1, 1, 1) −
−4 1 (1, 0, 1) −
−7 1 (1, 1, 2) −
−8 1 (1, 0, 2) −

−11 1 (1, 1, 3) −
−12 2 (1, 0, 3) (2, 2, 2)

−15 2 (1, 1, 4), (2, 1, 1) −
−16 2 (1, 0, 4) (2, 0, 2)

−19 1 (1, 1, 5) −
−20 2 (1, 0, 5), (2, 2, 3) −
−23 3 (1, 1, 6), (2,±1, 3) −
−24 2 (1, 0, 6), (2, 0, 3) −
−27 2 (1, 1, 7) (3, 3, 3)

−28 2 (1, 0, 7) (2, 2, 4)

−31 3 (1, 1, 8), (2,±1, 4) −
−32 3 (1, 0, 8), (3, 2, 3) (2, 0, 4)

−35 2 (1, 1, 9), (3, 1, 3) −
−36 3 (1, 0, 9), (2, 2, 5) (3, 0, 3)

−39 4 (1, 1, 10), (2,±1, 5), (3, 3, 4) −
−40 2 (1, 0, 10), (2, 0, 5) −
−43 1 (1, 1, 11) −
−44 4 (1, 0, 11), (3,±2, 4) (2, 2, 6)

−47 5 (1, 1, 12), (2,±1, 6), (3,±1, 4) −
−48 4 (1, 0, 12), (3, 0, 4) (2, 0, 6), (4, 4, 4)

The corresponding cycle of binary reduced forms is given by (a, b, c)(c,−b, a). The number of
proper equivalence classes of forms with discriminant d is denoted by h = h(d)

we have 2|c| < |√d + b| = √
d + b. Then −b <

√
d − 2|c|. Similarly, since

−b <
√
d − 2|a| (that is, 2|a| < √

d + b = |√d + b|), we must have
√
d − b =

|√d − b| < 2|c|, that is,
√
d − 2|c| < b. This shows that (i) implies (ii), and the

converse follows applying the above to the binary form (c, b, a).
Now, if (ii) holds then

√
d < b + 2|c|, and since (i) also holds we have

√
d <

b + 2|a|. Therefore (ii) implies (iii). Assume finally that (iii) holds. Since
√
d <

min{b + 2|a|, b + 2|c|} we have

√
d − 2|a| < b and

√
d − b < 2|c|.

Considering that 0 < b <
√
d we have |√d − b| < 2|c|, which again implies

that
√
d + b = |√d + b| > 2|a| since |√d − b| · |√d + b| = 4|a| · |c|. Then

−b <
√
d − 2|a| and (i) holds. ��
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Lemma 1.13. Let q0, q1, q2, . . . be a sequence of iterated right shifts of indefinite
binary forms with nonsquare discriminant d . Taking qi = (ai, bi, ci ), there is an
r ≥ 0 such that |br | <

√
d . Moreover, for any r ≥ 0 with |br | <

√
d we have

|bi| <
√
d < bi + 2|ai|, for all i > r.

Proof. Let q = (a, b, c) be an indefinite form with nonsquare discriminant d .

Notice that |b| < √
d if and only if ac < 0. If |b| < √

d then there is a solution
−→
b

to equation b + −→
b ≡ 0 mod 2c with (

−→
b )2 − d < 0, namely

−→
b = −b. Therefore

−→
c = (

−→
b )2−d

4c has the opposite sign to c = −→
a , that is, |−→b | < √

b. Let us suppose

that
√
d >

−→
b + 2|c|. Since |−→b | <

√
d we actually have

√
d > |−→b + 2|c||,

that is, (
−→
b + 2|c|)2 − d < 0, in contradiction with the maximality of

−→
b . Hence√

d <
−→
b + 2|c|, which shows the second claim.

Assuming now that
√
d < |b| we have |b| > min{|a|, |c|} =: m, since

(|−→b | + m)(|−→b | − m) = b2 − m2 ≥ b2 − 4ac > 0.

Take q = q0 and its sequence of iterated right shifts q0, q1, . . . and assume there is
an s > 0 such that |bi| >

√
d for 0 ≤ i ≤ s,

(a0, b0, c0)(a1, b1, c1)(a2, b2, c2) . . . (as−1, bs−1, cs−1)(as, bs, cs).

Let us suppose that there is a solution bi+1 to Eq. (∗) bi + bi+1 ≡ mod2ci with

b2
i+1 − d < 0, as in Algorithm 1.9(ii). Then ci+1 = b2−d

4c has the opposite sign to

ci = ai+1. In particular, |bi+1| <
√
d and i > s. Therefore there is no solution of (∗)

satisfying b2
i+1 − d < 0 for 0 ≤ i < s. Then we must choose bi+1 with minimal

absolute value, which implies that |bi+1| ≤ |ci | = |ai+1|. Since
√
d < |bi+1|, then

we have |bi+1| > min{|ai+1|, |ci+1|} = |ci+1|. Then the sequence above satisfies

|c0| = |a1| ≥ |b1| > |c1| = . . . ≥ |cs−1| = |as | ≥ |bs| > |cs |,

which means that s < |c0|. This bound for the value of s shows the first claim. ��
Theorem 1.14. If q is an indefinite binary form with nonsquare discriminant, then
there is an iterated shift q ′ of q such that q ′ is binary reduced. Moreover, if q itself
is binary reduced, then so is −→

q .

Proof. Take q = (a, b, c). For the first claim we proceed by induction on |a|. Using
Lemma 1.13 we may assume that |b| < √

d < b + 2|a|. If |a| ≤ |c|, then we have
|b| < √

d < min{b + 2|a|, b + 2||c}. Observe that if b ≤ 0 then necessarily
√
d <

2|a| and
√
d < 2|c|, which implies that d < (2|a|)(2|c|) = −4ac, that is, b2 < 0,

a contradiction. Then 0 < b <
√
d < min{b + 2|a|, b + 2||c}, and by Lemma 1.12

the binary form q is binary reduced. If |a| > |c|, take −→q = (−→a ,
−→
b ,−→c ) the right
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shift of q , and since |a| > |c| = |−→a | we may use induction to complete the result.
This shows the first statement.

Assume now that q is binary reduced. By Lemmas 1.12 and 1.13 we have

|−→b | < √
d <

−→
b + 2|−→a |.

We show that b + −→
b > 0. That b + −→

b ≥ 0 follows from maximality of
−→
b ,

since −b is a solution of (∗) with (−b)2 − d < 0 (cf. Algorithm 1.9). If
−→
b = −b

then |√d + b| = √
d + b < 2|c|. As has been argued before, this implies that

2|a| < |√d − b| = √
d − b, that is,

√
d > b+ 2|a|, in contradiction with q being a

binary reduced form (see Lemma 1.12 above).

Hence there exists k > 0 such that b + −→
b = 2|c|k, and we have the following

inequalities,

2|c| − −→
b = b − 2|c|(k − 1) ≤ b <

√
d,

that is, −−→
b <

√
d − 2|c| = √

d − 2|−→a |. Since
√
d − 2|−→a | < −→

b , we conclude
that

−→
b > 0 and that −→

q is binary reduced. ��
Observe that if q = (a, b, c) is a binary reduced indefinite form with nonsquare

discriminant d , then 0 < b <
√
d and 0 ≤ (2|a|)(2|c|) = d − b2 < d . Therefore

there are only finitely many such forms. This remark, together with Theorem 1.14,
implies the following result.

Corollary 1.15. For every positive nonsquare integer d there is a finite number of
proper equivalence classes of indefinite binary forms with discriminant d .

It also follows from Theorem 1.14 and the remark above that any sequence
of iterated right shifts of indefinite binary forms with nonsquare discriminant is
eventually periodic. In general it is possible that different binary forms q and q ′

with nonsquare discriminant satisfy −→
q = −→

q ′ . Take for instance q = (1, 0, 2) and
q ′ = (3,−2, 1) for the positive definite case, or q = (1, 3, 1) and q ′ = (−1, 1, 1)
for the indefinite case. However, this cannot happen if q and q ′ are binary reduced.

Lemma 1.16. Let q and q ′ be binary reduced forms with nonsquare discriminant

d such that −→q = −→
q ′ . Then q = q ′.

Proof. Since q = −→−→
q if q is a binary reduced definite form, the claim is clear for the

definite case.
Assume now that q is indefinite. Take q = (a, b, c), q ′ = (a′, b′, c′) and −→

q =−→
q ′ = (

−→
a ,

−→
b ,

−→
c ). Then we have c = c′ = −→

a . We also have

b + −→
b ≡ 0 mod 2|c| and b′ + −→

b ≡ 0 mod 2|c|.
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Hence b−b′ = (
√
d−b′)− (

√
d−b) ≡ 0 mod 2|c|. Since both q and q ′ are binary

reduced, we have

0 <
√
d − b < 2|c| and 0 <

√
d − b′ < 2|c|,

which implies that |(√d − b′) − (
√
d − b)| < 2|c|. Then b = b′, and necessarily

a = a′ since q and q ′ are properly equivalent. ��
By a cycle of reduced forms we mean a sequence of iterated shifts q0, q1, . . . , qr

with r ≥ 0 such that −→
qr = q0. We say that a binary form q with nonsquare

discriminant is cyclic if it is a nontrivial iterated right shift of itself.

Corollary 1.17. Let q be a binary form with nonsquare discriminant. Then q is
binary reduced if and only if q is a cyclic form.

Proof. If q is cyclic, then q is binary reduced by Theorems 1.10 and 1.14, and an
obvious version of Theorem 1.10 for the negative definite case.

Let q be a binary reduced form. If q is definite, then q = −→−→
q (as shown in the

proof of Theorem 1.10 for the positive case, and similarly for the negative case).
Hence q is a cyclic form.

Assume now that q is a binary reduced indefinite form. Since the sequence of
iterated shifts starting with q is ultimately periodic, by Theorem 1.14 we may

assume that −→
q is cyclic. Then there is a binary reduced form q ′ with

−→
q ′ = −→

q .
By Lemma 1.16 we have q = q ′, that is, q is a cyclic binary form. ��

It is clear that if the iterations of indefinite binary forms q and q ′ with nonsquare
discriminant lead to the same cycle of reduced forms, then q and q ′ are properly
equivalent. Buell has shown that the converse is also true [17], that is, there is a
bijective correspondence between proper classes of binary forms with nonsquare
discriminant and cycles of binary reduced forms. Let us see some examples before
considering forms with square discriminant.

Applying Algorithm 1.9 to the Kronecker form qm = (1,−m, 1) with |m| ≥ 3
(which has positive nonsquare discriminant (|m| + 2)(|m| − 2)), we get the binary
reduced form p = −→

qm = (1, |m| − 2, 2 − |m|). The corresponding cycle of reduced

forms has period two (that is,
−→−→
p = p), and consists of the forms

p = (1, |m| − 2, 2 − |m|) and −→
p = (2 − |m|, |m| − 2, 1).

Consider now the binary form q = (3, 10, 6) with discriminant d = 28. Construct
the sequence of iterated shifts q0 = q, q1, q2, . . . and observe that q0 and q1 =
(6, 2,−1) are not binary reduced forms, and that q6 = q2, that is the forms
q2, . . . , q5 constitute the cycle of binary reduced forms associated to q0,

(−1, 4, 3)(3, 2,−2)(−2, 2, 3)(3, 4,−1).

Another example of sequence of indefinite binary reduced forms is given by

(3, 10,−4)(−4, 6, 7)(7, 8,−3)(−3, 10, 4)(4, 6,−7)(−7, 8, 3),
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with discriminant d = 148. We follow Conway’s notation in [19], where(
1 4 3 2 2 2 3 4

)
and

(
3104 6 7 8

)
denote the cycles above. We stress that this notation

expresses one, two or four cycles, those obtained by setting alternating signs in the
lower row. In Table 1.2 we exhibit all cycles of indefinite binary reduced forms with
discriminant 0 < d < 50.

Table 1.2 Cycles of indefinite binary reduced forms of small discriminant 0 < d < 50

Discriminant h Primitive forms Nonprimitive forms

1 1
(

0 1
) −

4 2
(

0 2 1 2
) (

0 2
)

5 1
(

1 1
) −

8 1
(

1 2
) −

9 3
(

0 3 1 3
) (

0 3
)

12 2
(

1 2 2 2
) −

13 1
(

1 3
) −

16 4
(

0 4 1 4
) (

0 4
)
,
(

0 4 2 4
)

17 1
(

1 3 2 1 2 3
) −

20 2
(

1 4
) (

2 2
)

21 2
(

1 3 3 3
) −

24 2
(

1 4 2 4
) −

25 5
(

0 5 1 5
) ; (0 5 2 3 2 5

) (
0 5
)

28 2
(

1 4 3 2 2 2 3 4
) −

29 1
(

1 5
) −

32 3
(

1 4 4 4
) (

2 4
)

33 2
(

1 5 2 3 3 3 2 5
) −

36 6
(

0 6 1 6
) (

0 6
) ; (0 6 2 6

) ; (0 6 3 6
)

37 1
(

1 5 3 1 3 5
) −

40 2
(

1 6
) ; (2 4 3 2 3 4

) −
41 1

(
1 5 4 3 2 5 2 3 4 5

) −
44 2

(
1 6 2 6

) −
45 3

(
1 5 5 5

) (
3 3
)

48 4
(

1 6 3 6
) (

2 4 4 4
)

49 7
(

0 7 1 7
) ; (0 7 2 5 3 7

) (
0 7
)

The number of (proper) equivalence classes of such forms with discriminant d is denoted by h =
h(d)
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A binary form (a, b, c) is called primitive if gcd(a, b, c) = 1. Notice that if q
is nonprimitive and properly equivalent to q ′, then q ′ is also nonprimitive, for if
an integer s divides a, b and c, then s divides q(u), q(u|v) and q(v). Taking s =
gcd(a, b, c), the form p = 1

s
q is a primitive binary form with s2 det(p) = det(q).

Clearly the form q is binary reduced if and only if so is p, and 1
s
−→
q = −→

p . Hence we
may restrict our attention to primitive forms, as we do next when considering binary
forms with square discriminant. Let us first analyze the case of zero discriminant.

Lemma 1.18. Let q be a primitive binary form with zero discriminant. Then there
exists a ≥ 0 and c ∈ Z with gcd(a, c) = 1 such that

q = (a2, 2ac, c2) or q = (−a2, 2ac,−c2).

In particular, any such form is properly equivalent to (±1, 0, 0).

Proof. Assume first that q = (a′, b′, c′) is a primitive form with zero discriminant,
that is, (b′)2 = 4ac. We may also assume that a′ ≥ 0, and therefore c′ ≥ 0. Then
gcd(a′, c′) = 1, and considering prime decompositions of a′ and c′, this implies
that there are relatively prime integers a and c with a′ = a2, c′ = c2 and b′ = 2ac.
Of course we may choose a ≥ 0. Moreover, since gcd(a, c) = 1, there are integers

u1 and u2 such that au1 + bu2 = 1. Taking the matrix T =
(
u1 −b

u2 a

)
a direct

calculation verifies that det(T ) = 1 and qT = (1, 0, 0).
If a′ ≤ 0 then c′ ≤ 0, and the result follows similarly. ��
Next we complete Algorithm 1.9 to include binary forms (a, b, c) with c = 0.

Algorithm 1.19 (Binary Reduction). For a primitive binary form q = (a, b, 0)
with b �= 0 define a new binary form −→

q = (0, b, c) taking c with minimal absolute
value (positive in case of a tie) such that

ac ≡ 1 mod b.

Then q and −→
q are properly equivalent forms. In particular, −→

q is primitive.

Proof. Let T = [u|v] be a linear transformation with u = (u1, u2), v = (v1, v2)

and det(T ) = 1. A direct calculation shows that

qT = (q(u), q(u|v), q(v)) = (u1(au1 +bu2), b+2v1(au1 +bu2), v1(av1 +bv2)).

By hypothesis there is a v2 with ac + bv2 = 1, therefore taking u = (−b, a) and
v = (−c,−v2), we have det(T ) = bv2 + ac = 1 and

qT = (−b(−ab + ab), b + 2v1(−ab + ab),−c(−ac− bv2)) = (0, b, c).

Hence qT = −→
q , that is, q and −→

q are properly equivalent. That −→
q is primitive is

clear. ��
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It is easy to verify that applying Algorithm 1.9 to an indefinite form q with
square discriminant d we eventually obtain a binary form (a,

√
d, 0) for some

integer a (see Exercise 7 below). In addition to binary forms satisfying any of the
equivalent conditions in Lemma 1.12, those forms (a, b, 0) and (0, b, a) satisfying
−b < 2a ≤ b are also called binary reduced. Extending the shifting process
with Algorithm 1.19, it can easily be shown that sequences of iterated shifts are
also ultimately periodic for indefinite forms with square discriminant, and the same
correspondence between cyclic forms and binary reduced forms holds in this case.
It is important to notice at this point that the usual definition of cycle in the case
of binary forms with square discriminant does not include the construction given
in Algorithm 1.19. Instead, in this case the cycle associated to a binary form is
just a finite sequence of reduced forms, justified by the relation between continued
fractions and reduction of binary forms (see Buell [17]). For instance, the form
q = (−7, 4, 3) yields the sequence

(−7, 4, 3)(3, 8,−3)(−3, 10, 0)(0, 10, 3),

where the right shift of (0, 10, 3) is (3, 8,−3), that is, the last three forms are binary
reduced. See more examples in Table 1.2, where we use a similar notation as in the
indefinite case with nonsquare discriminant, that is, the sequence of reduced forms
above is denoted by

(
0103 8 310

)
. For this case we have to be careful with the signs in

the lower row, considering the rule ac ≡ 1 mod b when completing a period in the
cycle.

The following criterion is an easy consequence of our discussion above.

Proposition 1.20. A binary form is isotropic if and only if it has square discrimi-
nant.

Proof. Let q be a binary form with discriminant b2. By the discussion above, q is
equivalent to a form (a, b, 0) for some a ∈ Z. In particular, q is isotropic.

Suppose that u = (u1, u2) is an isotropic vector for q . We may assume that u1
and u2 are relatively prime. Choose integers v1 and v2 such that u1v2 − v1u2 =
1, and consider the matrix T = [u|v], where v is the vector (v1, v2). Since
qT = (q(u), q(u|v), q(v)) = (0, q(u|v), q(v)), the forms qT and q have square
discriminant d = q(u|v)2. This completes the proof. ��

We end this section with a characterization of definite and indefinite binary
forms, whose generalization to multiple variables will play a fundamental role in
subsequent chapters.

Proposition 1.21. Let q be a binary form.

a) The form q is positive definite if and only if q(x) > 0 for any 0 �= x in Z
2.

b) The form q is negative definite if and only if q(x) < 0 for any 0 �= x in Z
2.

c) The form q is indefinite if and only if there are vectors x and y in Z
2 such that

q(x) > 0 and q(y) < 0.
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Proof. Since all mentioned properties are invariant under proper equivalence, we
may assume that q = (a, b, c) is a binary reduced form. If q is indefinite with
nonsquare discriminant, then a and c have opposite sign (for 0 < b <

√
d). Then

point (c) follows by taking x and y to be the canonical vectors e1 and e2 in Z
2. If

q has square discriminant then ac = 0 and 0 ≤ a, c < b. Taking x = e1 + e2 and
y = e1 − e2 in this case, we complete the proof of (c).

Assume now that q is positive definite. Then there are integers 0 ≤ ra ≤ rc such
that a = |b| + ra and c = |b| + rc, and we have

q(x1, x2) = (|b|+ra)x
2
1 +bx1x2+(|b|+rc)x

2
2 = |b|

2
[x2

1 +(x1±x2)
2+x2

2 ]+rax
2
1 +rcx

2
2 ,

where ± is the sign of b. This shows (a), since we have expressed q as sum of
squares with nonnegative coefficients. Point (b) can be shown similarly. ��
Exercises 1.22.

1. Give an explicit proper equivalence between (a, a, c) and (a,−a, c).
2. Find the cycle of reduced forms associated to the following quadratic forms.

i) (1, 3,−2).
ii) (1, 35,−22).

iii) (22, 9,−14).

3. Give an example of a positive definite binary form q such that
−→−→
q is not binary

reduced.
4. How many proper equivalence classes of indefinite binary forms with discrimi-

nant d = 52 are there?
5. How many proper equivalence classes of positive definite binary forms with

discriminant d = −51 are there?
6. Find the cycle of reduced forms corresponding to the Pell form qr with r > 0.
7. For primitive binary forms q = (a, b, 0) and q ′ = (a′, b, 0), show that q is

properly equivalent to q ′ if and only if a + a′ ≡ 0 mod b. Conclude that for
every b > 0 there is a finite number of proper equivalence classes of binary
forms with discriminant b2.

8. Let (fn)n∈N be the sequence of Fibonacci numbers defined recursively as f0 = 0,
f1 = 1 and fi+1 = fi + fi−1 for i ≥ 1. For n > 0, define the quadratic form

q2n = f2n−1x
2
1 − 2f2nx1x2 + f2n+1x

2
2 .

Prove that q2n ∼ x2
1 + x2

2 .
9. Let (fn)n∈N be the sequence of Fibonacci numbers. For n > 0 consider the

quadratic form q2n defined in Exercise 8, and

q2n−1 = f2n−1x
2
1 − (f2n + f2n−2)x1x2 + f2n−1x

2
2 .

Prove that 1 ∈ DZ(q2n) for any n > 0, also 1 ∈ DZ(q1) but 1 /∈ DZ(q2n−1) for
n ≥ 2.
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1.5 Kronecker Forms and the Pell Equation

In this section we give explicit solutions to equation q(x) = 1 with vectors x in Z
2

for Kronecker forms qm (with associated bigraphs Km as below) and for Pell forms
q[r] (the so-called positive Pell equation).

Km =
m>0

and Km =
m<0

• ··· • • ··· •

As direct consequence of Proposition 1.20 we have that a Kronecker form qm is
isotropic if and only if |m| = 2, and similarly a Pell form q[r] is isotropic if and only
if r is a square integer.

Consider matrices T = (
0 1−1 m

)
and S = (

0 1
1 0

)
, and their corresponding linear

transformations

T : Z
2

Z
2

(x1, x2) (x2,mx2 − x1),

S : Z
2

Z
2

(x1, x2) (x2, x1)

.

Observe that if Aqm is the symmetric matrix associated to qm then

T tAqmT =
(

0 −1
1 m

)(
1 −m

2
−m

2 1

)(
0 1

−1 m

)
= Aqm,

and similarly StAqmS = Aqm and (T −1)tAqmT
−1 = Aqm , where T −1 =

(
m −1
1 0

)
.

Take ε ∈ {+1,−1} such that m = ε|m| and define recursively a0 = 0, a1 = 1
and as+1 = |m|as − as−1 for s ≥ 1. In the following proposition we show that the
set of roots R(qm) of the Kronecker form qm is

R(qm) = {±(as, ε
sas+1),±(εsas+1, as)}s≥0.

With a direct calculation one can show that

{T sei}s∈Z, i=1,2 = {±(as, ε
sas+1),±(εsas+1, as)}s≥0,

where e1 and e2 are the canonical vectors in Z
2. Observe also that if m = 0 then

{T sei}s∈Z, i=1,2 = {±ei}i=1,2, and that for m = 1 we have

{T sei}s∈Z, i=1,2 = {±ei,±(e1 + e2)}i=1,2.

Proposition 1.23. For m ∈ Z the set of roots R(qm) of the Kronecker form qm is
given by

R(qm) = {T sei}s∈Z, i=1,2.
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In particular, qm has infinitely many roots if and only if |m| > 1.

Proof. The claim is clear for m = 0, 1 since R(q0) = {±ei}i=1,2 and

R(q1) = {±ei,±(e1 + e2)}i=1,2.

Assume that m ≥ 2. For arbitrary s ∈ Z and i = 1, 2 by the above we have

qm(T
sei) = eti (T

s)tAqmT
sei = etiAqmei = q(ei) = 1.

Therefore {T sei}s∈Z, i=1,2 ⊆ R(qm).
Assume now that x = (x1, x2) is a root of qm with x1x2 �= 0, and observe that

we may suppose that 0 < x1 < x2 (for m ≥ 2). We claim that if T −1x = (y1, y2)

then 0 ≤ y1 < y2 = x1. Indeed, if y1 ≥ x1 then y1 = mx1 − x2 implies that
(m − 1)x1 ≥ x2 and

1 = x2
1 + x2

2 − (m − 1)x1x2 − x1x2 ≤ x1(x1 − x2) < 0,

a contradiction. We conclude that there is an s < 0 with T sx = (0, 1), hence
x ∈ {T sei}s∈Z, i=1,2. For negative m we proceed similarly. ��

It is interesting to observe that the simple reflections associated to a Kronecker
form qm with m > 0 can be obtained as σ1 = ST and σ2 = T S. In particular, the
transformation σ2σ1 given by

σ2σ1 = T 2 =
(−1 m

−m m2 − 1

)

is known as the Coxeter transformation of the Kronecker form (cf. Sect. 4.6).
The binary integral quadratic form q[d] = x2

1 −dx2
2 has a long history, and is still

a source of active research (see for instance [4]). Here we are interested in finding
its roots, that is, solutions to the Pell equation,

x2
1 − dx2

2 = 1,

for integer values of x1 and x2. A solution with x1x2 = 0 is called trivial. Notice that
for d < 0 or d a square integer, the Pell equation has only trivial solutions (since in
the latter case, 1 = (x1+

√
dx2)(x1−

√
dx2) implies x1+

√
dx2 = x1−

√
dx2 = ±1).

Hence we will assume that d > 0 is not a square integer.
It will be convenient to consider the (real) quadratic ring Z[√d] (see for

instance [17]). Its elements have the form α = x1 + √
dx2 with integers x1 and

x2. Sums and products are given by

(x1 + √
dx2) + (x ′

1 + √
dx ′

2) = (x1 + x ′
1) + √

d(x2 + x ′
2),

(x1 + √
dx2)(x

′
1 + √

dx ′
2) = (x1x

′
1 + dx2x

′
2) + √

d(x1x
′
2 + x ′

1x2).
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The conjugate of α is α = x1 − √
dx2, and the function given by

N(α) = αα = x2
1 − dx2

2

is usually known as the norm of α. We will identify the ring Z[√d] with Z
2 via x1 +√

dx2 → (x1, x2) (which is well defined since
√
d is an irrational number). Under

this identification a norm one quadratic number is a solution to the Pell equation.
Observe that N : Z[√d] → Z is a multiplicative function (Exercise 2). Therefore,
given a solution α to the Pell equation N(α) = 1, all of the quadratic numbers ±αn

for n ∈ Z are also solutions to the Pell equation. A solution α > 1 such that any
solution to the Pell equation has the form ±αn with n ∈ Z is called a fundamental
solution.

Proposition 1.24. If the Pell equation x2
1 − dx2

2 = 1 has a nontrivial solution, then
it has a fundamental solution.

Proof. Multiplying by (−1) and taking the conjugate if necessary, we may assume
there is a solution y1 + √

dy2 to the Pell equation with y1 > 0 and y2 > 0. Since
{x1 + √

dx2}x1,x2∈N is a discrete subset of R, we may also assume that α = y1 +√
dy2 is the minimal solution greater than 1 (see Exercise 3). If β is a solution

greater than 1, choose n ≥ 1 such that αn < β ≤ αn+1. Then

1 < α−nβ ≤ α,

and by minimality, β = αn+1. Therefore any solution has the form ±αn with n ∈ Z,
that is, α is a fundamental solution to the Pell equation x2

1 − dx2
2 = 1. ��

We show now the existence of nontrivial solutions to the Pell equation x2
1−dx2

2 =
1. The following technical lemma due to Dirichlet, in terms of elementary modular
arithmetic, establishes the fundamental step in the proof of Theorem 1.26 (attributed
to Lagrange, cf. [4]).

Lemma 1.25. There exists a nonzero integer m with solutions (x1, x2) and (y1, y2)

to the equation q[d](x) = m, with (x1, x2) �= ±(y1, y2) and

x1 ≡ x2 mod |m| and y1 ≡ y2 mod |m|.

Proof. Observe first that there exists an M > 0 such that |x2
1 − dx2

2 | < M has
infinitely many solutions. Indeed, by Exercise 6 there are infinitely many p

q
with

q > 0 such that |√d − p
q
| < 1

q2 , thus |p − √
dq| < 1

q
and

|p2 − dq2| = |p − √
dq||p + √

dq| < 1

q
(|p − √

dq| + 2
√
dq)

< 1 + 2
√
d = M.

Therefore there exists an m with |m| < M and infinitely many p + √
dq with

N(p + √
dq) = m (observe that m �= 0, see Exercise 4).
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Now, there are only m2 options for p modulo |m| and for q modulo |m|, therefore
we may find (p, q) and (p′, q ′) satisfying the claim. ��
Theorem 1.26. For d a positive nonsquare integer there exists a nontrivial solution
to the Pell equation x2

1 − dx2
2 = 1.

Proof. Let m, (x1, x2) and (y1, y2) be as in Lemma 1.25 and take α = x1 + √
dx2

and β = y1 + √
dy2. Notice that αβ has the form

αβ = (x1 + √
dx2)(y1 − √

dy2) = (x1y1 − dx2y2) + √
d(y1x2 − x1y2),

where

x1y1 − dx2y2 ≡ x2
1 − dx2

2 ≡ 0 mod |m|,

y1x2 − x1y2 ≡ x1x2 − x1x2 ≡ 0 mod |m|.

Hence there exists a w1 + √
dw2 such that αβ = m(w1 + √

dw2), therefore

m2N(w1 + √
dw2) = N(m(w1 + √

dw2)) = N(αβ) = m2,

and since m �= 0 we have N(w1 + √
dw2) = 1. Finally w2 �= 0, for otherwise

y1x2 = x1y2, which implies that α is a multiple of β, contradicting N(α) = N(β)

and α �= ±β. ��
Combining Proposition 1.24 and Theorem 1.26 we now describe all solutions to

x2
1 − dx2

2 = 1. By the above, starting with a fundamental solution α = x1 + √
dx2,

all solutions have the shape ±αn (n ∈ Z). For n > 0 we have

αn =
⎡
⎣

� n
2 �∑

j=0

(
n

2j

)
djx

n−2j
1 x

2j
2

⎤
⎦+ √

d

⎡
⎢⎣

� n−1
2 �∑

j=0

(
n

2j + 1

)
djx

n−2j−1
1 x

2j+1
2

⎤
⎥⎦ ,

and α−n = αn.
There is a nice relation between the roots of certain Kronecker forms and Pell

forms, and the Chebyshev polynomials of the first kind Tn(t) and second kind Un(t).
Define the polynomials U−1(�) = 0 and U0(�) = 1 in the variable �, and take
recursively for s ≥ 0,

Us+1(�) = 2�Us(�) − Us−1.

Notice that by construction and Proposition 1.23, for � > 0 the roots of q2� with
nonnegative entries are given by the following vectors in Z

2,

(Us(�), Us+1(�)), and (Us+1(�), Us(�)).
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Consider now the linear transformation W : Z
2 → Z

2 with matrix W =(
1 −�

0 1

)
. A direct calculation shows that q[�2−1]W = q2�. Therefore, if we take

T−1(�) = 0 and Ts(�) = Us(�) − �Us−1(�) for s ≥ 0, then the following are
solutions to the Pell equation q[�2−1] = 1,

(Ts+1(�), Us(�)).

We stress that the Chebyshev polynomial of the first kind Ts may be given
recursively by setting T0(�) = � and for s ≥ 0,

Ts+1(�) = 2�Ts(�) − Ts−1(�).

See the exercises below and Chap. 4 for alternative definitions and properties of
Chebyshev polynomials.

Exercises 1.27.

1. Show that for s ≥ 0 the Chebyshev polynomials are given by

Ts(�) = cos(s arccos(�)) and Us(t) = sin((s + 1) arccos(�))√
1 − �2

.

2. Show that if α, β ∈ Z[√d], then N(αβ) = N(α)N(β).
3. Consider the order in Z[√d] induced from the order in R, and let (x1, x2) be a

nontrivial solution to the Pell equation x2
1 − dx2

2 = 1. Show that

i) x1, x2 > 0 if and only if x1 + √
dx2 > 1.

ii) x1 > 0 and x2 < 0 if and only if 0 < x1 + √
dx2 < 1.

4. Show that if N(α) = 0 for α ∈ Z[√d] then α = 0.
5. Find the fundamental solution to the equation x2 − 5y2 = 1.
6. Dirichlet’s approximation theorem. For z ∈ R a D-approximation to z is a

rational number p
q

with q > 0 (and gcd(p, q) = 1) such that |z − p
q
| < 1

q2 .

i) Show that any positive real number has a D-approximation.
ii) For z > 0, show that z is irrational if and only if z has infinitely many D-

approximations.

[Hint: for n > 0 consider the numbers iz − �iz� for i = 0, . . . , n, where �w�
denotes the integral part of w. Use the Pigeonhole Principle for these n + 1
numbers within the set of n semi-closed intervals [ j

n
,
j+1
n
) for j = 0, . . . , n−1.]

7. Find the roots of the Chebyshev polynomials Ts and Us .
8. Prove the following explicit formula for Us ,

Us(�) =
�s/2�∑
i=1

(−1)i
(
s − i

i

)
(2�)s−2i.
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1.6 Quadratic Forms with Real Coefficients

Here we consider the case of quadratic forms q(x1, . . . , xn) = ∑n
i,j=1 qij xixj with

qij in the field of real numbers R for 1 ≤ i ≤ j ≤ n. We use throughout general
results in linear algebra, as can be found for instance in [27] or [33].

Proposition 1.28. Let A be a symmetric n × n real matrix and q(x) = xtAx.

a) All the eigenvalues of A are real numbers.
b) If λ1 ≤ λ2 ≤ · · · ≤ λn are the eigenvalues of A, then

λ1 = min{q(x) | x ∈ R
n with ‖x‖ = 1},

λn = max{q(x) | x ∈ R
n with ‖x‖ = 1}.

Proof.

(a) Let λ ∈ C and 0 �= v ∈ C
n with Av = λv. Then λ‖v‖2 = λv tv = (Av) tv =

v tA tv = v tAv = λ‖v‖2, where λ denotes the complex conjugate of λ. Hence
λ = λ ∈ R.

(b) The well-known Gram–Schmidt orthonormalisation process yields an n × n

matrix U with orthonormal columns such that

A = UtDU,

where D = diag (λ1, . . . , λn) is the diagonal matrix with entries λ1, . . . , λn.
Hence for x ∈ R

n with ‖x‖ = 1 and y = Ux, we get ‖y‖ = 1 and q(x) =
xtAx = ytDy = ∑n

i=1 λiyi . Therefore we have

λ1 = λ1‖y‖2 = λ1

n∑
i=1

y2
i ≤

n∑
i=1

λiy
2
i = q(x) ≤ λn

n∑
i=1

y2
i = λn‖y‖2 = λn.

If u1 and un are vectors in R
n with ||u1|| = 1 = ||un|| and Aui = λiu

i for i = 1, n,
then

q(ui) = (ui)tAui = λi ||ui ||2 = λi,

for i = 1, n. This completes the proof. ��
It can be shown that a real quadratic form q(x1, . . . , xn) can be represented in an

infinite number of ways as

q(x) =
r∑

i=1

aiX
2
i ,
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with nonzero coefficients ai , and where Xi = ∑n
j=1 αij xj for i = 1, . . . , r are

linearly independent linear forms in the variables x1, . . . , xn. Here r is the rank of
the quadratic form q , that is, the rank of the symmetric matrix Aq associated to q .

We show that the number of coefficients ai > 0 (resp. ai < 0) is an invariant of
the quadratic form q (see for instance [27, X§2]).

Theorem 1.29 (Sylvester’s Law of Inertia). Given two representations of the
quadratic form q(x) as

q(x) =
r∑

i=1

aiX
2
i and q(x) =

r∑
i=1

biY
2
i ,

where Xi (resp. Yi ) are linearly independent real linear forms in the variables
x1, . . . , xn with a1 ≥ a2 ≥ · · · ≥ as > 0 > as+1 ≥ · · · ≥ ar and b1 ≥ b2 ≥
· · · ≥ bt > 0 > bt+1 ≥ · · · ≥ br , then we have s = t .

Proof. With the above notation assume that s < t . Since Xi (resp. Yi ) are real linear
forms in the variables x1, . . . , xn, we may consider the following equations

X1 = 0, X2 = 0, . . . Xs = 0, Yt+1 = 0, . . . Yr = 0,

as a system of r − (t − s) equations in the r variables Y1, . . . , Yr . Because r −
(t − s) < r, there exists a nonzero solution Y0 = (Y1, Y2, . . . , Yr ) for this system.
Consequently there is a nonzero v ∈ R

n such that for q(x) = ∑r
i=1 aiX

2
i we get

q(v) ≤ 0, while for q(x) = ∑r
i=1 biY

2
i we get q(v) > 0. A contradiction showing

that s = t . ��
The difference σ (q) between the number of positive squares and the number of

negative squares in a representation q(x) = ∑r
i=1 aiX

2
i is called the signature of

q . The number n0 := n − r is known as the corank of q . The common number
n+ := s = t in Theorem 1.29 is referred to as the positive index of inertia of q (and
similarly for n− := r − n+), and the triple (n+, n0, n−) is also called the signature
of q .

There are simple methods to reduce a real quadratic form to a sum of independent
squares. We will describe here an algorithm due to Lagrange (cf. [27, X§3]).

Algorithm 1.30 (Lagrange’s Method). Let q(x) = ∑n
i,j=1 aij xixj be a given

real quadratic form with aij = aji for i < j . We consider two cases:

(1) Assume a11 �= 0. Then

q(x) = 1

a11

⎛
⎝

n∑
j=1

a1jxj

⎞
⎠

2

+ q1(x2, . . . , xn),

where q1 is a quadratic form in the variables x2, . . . , xn.
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(2) Assume a11 = 0 = a22 and a12 �= 0. Then

q(x) = 1

2a12

⎡
⎣

n∑
j=1

(a1j + a2j )xj

⎤
⎦

2

− 1

2a12

⎡
⎣

n∑
j=1

(a1j − a2j )xj

⎤
⎦

2

+q2(x3, . . . , xn),

where q2 is a quadratic form in the variables x3, . . . , xn. Observe that the linear
forms

∑n
j=1 a1jxj and

∑n
j=1 a2j xj are linearly independent.

By successive application of Steps (1) and (2), the form q(x) can always be
reduced to a sum of squares. Moreover, the linear forms obtained are linearly
independent since at each step the constructed linear form contains a variable which
does not appear in the remaining quadratic form.

Let us consider some examples.

i) Consider the matrix B =
(
a r

r b

)
and the binary quadratic form q(x) = xtBx.

Using Algorithm 1.30 we take q(x) to the form

q(x) =
⎧
⎨
⎩

1
a
(ax1 + rx2)

2 +
(
b − r2

a

)
x2

2 , if a �= 0;
1
2r (rx1 + rx2)

2 − 1
2r (rx1 − rx2)

2, if a = 0 = b.

ii) The quadratic form q(x1, x2, x3, x4) = 4x2
1 + x2

2 + x2
4 − 3x1x2 − 4x1x3 +

4x2x4 − 3x3x4 of Example 1.2 is taken to the following sum of squares (see
Exercise 6(iv) below)

1

4
(4x1− 3

2
x2−2x3)

2+ 16

7
(

7

16
x2

2 − 3

4
x3+2x4)

2− 7

16
(−16

7
x3+ 27

14
x4)

2− 417

64
x4.

Let A = (aij ) be an n × n symmetric real matrix and take 1 ≤ i1 < i2 < · · · <
is ≤ n. The principal minor A(i1, . . . , is ) of A is defined as the determinant of the
matrix

⎛
⎜⎜⎜⎝

ai1i1 ai1i2 . . . ai1is
ai2i1 ai2i2 . . . ai2is
...

...
. . .

...

ais i1 ais i2 . . . ais is

⎞
⎟⎟⎟⎠ .

For i ≤ j , we denote by A(i,j) the minor A(1, . . . , î, . . . , ĵ , . . . , n) obtained by
omitting the i-th row and the j -th column of the matrix A. The i-th consecutive
principal minor is the determinant Di = A(1, . . . , i). The adjugate matrix ad(A)
of A is defined as the n × n-matrix with entries

ad(A)ij = (−1)i+jA(i,j).
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It is well known that A ad(A) = det(A)Idn = ad(A) A.
Let r be the rank of A and assume Di = A(1, . . . , i) �= 0 for 1 ≤ i ≤ r . It can

be shown (see Exercise 6 below) that the matrix A is congruent to

D = diag

(
1

D1
,
D1

D2
, . . . ,

Dr−1

Dr

, 0, . . . , 0

)
.

In particular, the quadratic form q admits the following expression, known as
Jacobi’s Formula (cf. [27, X§3]),

q(x) =
r∑

i=1

Di−1

Di
X2
i , (D0 = 1),

for linearly independent functions X1, . . . , Xr . In fact, this formula can be rewrit-
ten as

q(x) =
r∑

i=1

Y 2
i

Di−1Di

,

where Yi = ciixi + ci,i+1xi+1 + · · · + cinxn (for i = 1, . . . , r), and

cij = det

⎛
⎜⎜⎜⎝

a11 . . . a1 i−1 a1j
...

. . .
...

...

ai−1 1 . . . ai−1 i−1 ai−1 j

ai 1 . . . ai i−1 aij

⎞
⎟⎟⎟⎠

(
=: A

(
1 . . . i − 1 i

1 . . . i − 1 j

))
.

Exercises 1.31.

1. Let U be a n × n real matrix. Show that the following are equivalent:

(i) UtU = In is the identity matrix.
(ii) U is nonsingular and Ut = U−1.

(iii) The rows of U form an orthonormal basis of Rn.
(iv) For all x ∈ R

n, the norm of U(x) is the same as that of x, that is,
(U(x))tU(x) = xtx.

A matrix with these properties is called real orthogonal.

2. For θ ∈ R, take T (θ) =
(

cos θ sin θ

− sin θ cos θ

)
. Show that a 2 × 2-matrix U is real

orthogonal if and only if U = T (θ) or U =
(

1 0

0 −1

)
T (θ), for some θ ∈ R.

3. Let U be a 3 × 3 real orthogonal matrix. Show that if det U > 0, then U is

congruent to

(
1 0
0 T (θ)

)
for some θ ∈ R.
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4. Show that any real symmetric matrix A is congruent to a diagonal matrix

diag (1, 1, . . . , 1, 0, 0, . . . , 0,−1,−1, . . . ,−1),

with π entries 1, r entries 0 and ν entries −1, where σ = π − ν is the signature
of the quadratic form q(x) = xtAx.

5. Let q(x1, . . . , xn) be a quadratic form. Show that Steps (1) and (2) given in
Lagrange’s Method 1.30 may be written as

q(x) = 1

4a11

(
∂q

∂x1

)2

+ q1(x),

q(x) = 1

8a12

[(
∂q

∂x1
+ ∂q

∂x2

)2

−
(
∂q

∂x1
− ∂q

∂x2

)2
]

+ q2(x).

6. Apply Lagrange’s Method 1.30 to reduce the following quadratic forms to a sum
of squares:

(i) an(x1, . . . , xn) =
n∑

i=1
x2
i −

n−1∑
i=1

xixi+1;

(ii) dn(x1, . . . , xn) =
n∑

i=1
x2
i −

n−2∑
i=1

xixi+1 − xn−2xn, for n ≥ 3;

(iii) e6(x1, . . . , x6) =
6∑

i=1
x2
i −

4∑
i=1

xixi+1 − x3x6;

(iv) q(x1, . . . , x4) = 4x2
1 + x2

2 + x2
4 − 3x1x2 − 4x1x3 + 4x2x4 − 3x3x4;

(v) q2n−1(x1, x2), as defined in Exercise 1.22.8.

7. Let A = (aij ) be a real symmetric n × n matrix. Prove the following:

(i) Let r = rk(A) be the rank of the matrix A. Then there are numbers
1 ≤ i1 ≤ i2 ≤ · · · ≤ ir ≤ n such that A(i1) �= 0, A(i1, i2) �=
0, . . . , A(i1, i2, . . . , ir ) �= 0.

(ii) Assume that Di = A(1, . . . , i) �= 0 for i = 1, . . . , r and r = rk(A). Then
A = GtDG, where D = diag (D1, . . . ,Dr , 0 . . . , 0) and

G =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

g11 g12 . . . . . . g1n

0 g22 . . . . . . g2n

. . . . . . . . . . . . . . .

0 . . . grr . . . grn

0 . . . 0 . . . 0

0 . . . 0 . . . 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
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where gij =
A

⎛
⎝1 . . . i − 1 i

1 . . . i − 1 j

⎞
⎠

A
(
1 . . . i − 1

) for 1 ≤ i ≤ j ≤ r . Hence gii = Ci

Di−1
for

i = 1, . . . , r .
(iii) In the situation of point (ii) we have A = T tDT for an invertible upper

triangular matrix.

1.7 Positive and Nonnegative Quadratic Forms

A real quadratic form q(x1, . . . , xn) is called positive (resp. nonnegative) if for any
nonzero vector 0 �= v ∈ R

n we have q(v) > 0 (resp. q(v) ≥ 0). The same
terminology will be used for quadratic forms over subrings of R, in particular
for integral quadratic forms. In this section we give classical characterizations of
positive and nonnegative real quadratic forms (following Gantmacher [27, X§4]).

Proposition 1.32. Let q(x) = xtAqx be a real quadratic form and Aq its
associated symmetric matrix. The following are equivalent:

a) The form q is positive.
b) The form q is nonnegative and regular.
c) All eigenvalues of Aq are positive.
d) If Di = Aq(1, . . . , i) is the i-th principal minor of Aq , we have

D1 > 0, D2 > 0, . . . , Dn > 0.

Proof. That (a) implies (b) is obvious. To show that (b) implies (c) recall from
Proposition 1.28(a) that any eigenvector 0 �= v ∈ R

n of Aq has real eigenvalue λ.
Then

λ‖v‖2 = vtAqv = q(v) ≥ 0,

which implies that λ ≥ 0. If λ = 0 we get Aqv = λv = 0 and rad(q) �= 0.
Let us show now that (d) follows from (a). By Exercise 1.31.7 there is an invert-

ible matrix T such thatAq = T tDT , whereD = diag
(

1
D1

, D1
D2

, . . . ,
Dr−1
Dr

, 0, . . . , 0
)

and r = rk(Aq). Then the product of the eigenvalues of Aq is 0 < det(Aq) =
(detT )2 detD. Hence Dn > 0. Consider the (n − 1) × (n − 1) symmetric matrix
A
(n)
q obtained from Aq by omitting the n-th row and column. Since the quadratic

form xtA
(n)
q x is positive, Dn−1 > 0. By induction we get (d).

We show now that (c) implies (a). Let 0 < λ1 ≤ λ2 ≤ · · · ≤ λn be the
eigenvalues of Aq . For any 0 �= v ∈ R

n, we get

q(v) = ‖v‖2q

(
v

‖v‖
)

≥ λ1‖v‖2 > 0.



1.7 Positive and Nonnegative Quadratic Forms 35

Hence q(x) is positive. Finally, that d implies (a) follows from Jacobi’s Formula
q(x) = ∑r

i=1
Di−1
Di

X2
i . ��

For instance, the quadratic form q(x) = ∑6
k=1 x

2
k − ∑4

k=1 xkxk+1 − x3x6 is
positive. Indeed, q(x) = xtAqx where

Aq = 1
2

2 −1 0 0 0 0
−1 2 −1 0 0 0
0 −1 2 −1 0 −1
0 0 −1 2 −1 0
0 0 0 −1 2 −1
0 0 −1 0 −1 2

; Bq =
•6

•1 •2 •3 •4 •5 .

Taking B = 2Aq we have the minors B(1) = 2, B(1, 2) = 3, B(1, 2, 3) = 4,
B(1, 2, 3, 4) = 5, B(1, 2, 3, 4, 5) = 6 and det(B) = 3, which are all positive. Then
the positivity of q follows from Proposition 1.32.

Observe that from the fact A(1) ≥ 0, A(1, 2) ≥ 0, . . . , A(1, 2, . . . , n) ≥ 0
it does not follow that A is nonnegative. Consider for instance the quadratic form
q(x1, x2) = −x2

2 . Instead, we have the following appropriate generalization.

Proposition 1.33. Let q(x) = xtAqx be a real quadratic form with associated
symmetric matrix Aq . The following are equivalent,

a) The form q is nonnegative.
b) All eigenvalues of Aq are nonnegative.
c) Every principal minor of Aq is nonnegative (that is, Aq(i1, . . . , is) ≥ 0 for 1 ≤

i1 < i2 < · · · < is ≤ n).

Proof. The equivalence of (a) and (b) follows as in the proof of Proposition 1.32.
To show that (a) implies (c) observe that if q is nonnegative, then det(Aq) ≥ 0. The
quadratic form q(I), obtained by making xi = 0 for i ∈ I = {1, . . . , n}\{i1, . . . , is},
is also nonnegative. Hence Aq(i1, . . . , is) ≥ 0.

We show now that (a) follows from (c). Take ε > 0 and consider the quadratic
form

qε(x) = q(x)+ ε

n∑
i=1

x2
i =: xtAεx,

for an appropriate symmetric matrix Aε. Observe that

Aε(1, . . . , j ) = εj +
j∑

i=1

Aq(i)ε
j−1 +

∑
1≤i1<i2≤j

Aq(i1, i2)ε
j−2 + · · · + Aq(1, . . . , j )

≥ εj > 0.

Therefore by Proposition 1.32 the form qε is positive. Notice finally that q = lim
ε→0

qε

is nonnegative. ��
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For instance, for each n ∈ N, the quadratic form
∑n

i=1 x
2
i − ∑n−1

i=1 xixi+1 −
x1xn is nonnegative, which can be shown using any of the equivalent conditions of
Proposition 1.33.

Remark 1.34. Concerning the invariants rank rk(q) (given as the rank of the asso-
ciated symmetric matrix Aq ) and signature σ (q) (as introduced after Theorem 1.29)
of a real quadratic form q , we have:

i) A quadratic form q(x) =
n∑

i=1
qij xixj is positive if and only if rk(q) = 0 and

σ (q) = n;
ii) The quadratic form q(x) is nonnegative if and only if σ (q) = n − rk(q).

1.8 Cones in Real Vector Spaces

Following Vandergraft [50], we say that a closed subset K of the real vector space
R
n is called a cone if the following conditions hold.

a) K + K ⊂ K (that is, for v and w in K we have v + w ∈ K).
b) λK ⊂ K for any λ ≥ 0 (that is, λv ∈ K for any v in K).

We further say that K is a proper cone if

c) K ∩ (−K) = {0}.
We say that K is a solid cone if moreover

d) K generates the vector space Rn.

Let us consider some examples. The positive cone V + in R
n is given by

V + = {v = (v1, . . . , vn) ∈ R
n | vi ≥ 0 for 1 ≤ i ≤ n}.

Given a linear transformation α : R
n → R

n and a cone K in R
n, the preimage

α−1(K) is a cone. Taking V = R
n, the dual space V ∗ is the set of linear

transformations from V to R, written V ∗ = HomR(V ,R). For K ⊂ R
n consider

the set K⊥ = {f ∈ V ∗ | f (v) ≥ 0, for v ∈ K}. If K is a cone, then K⊥ is a cone.
Consider the natural isomorphism

φ : V → V ∗∗, φ(v)(g) = g(v), for g ∈ V ∗ and v ∈ V.

If K is a proper solid cone, then K⊥⊥ = φ(K) (see Exercise 7 below).
Let V = R

n and A be a real n × n matrix. We say that a cone K is invariant
under A if A(K) ⊂ K . For instance, if A is a nonnegative matrix (that is, all entries
of A are nonnegative real numbers) then the positive cone V + is invariant under A.
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Let q(x) = xtAx be a real positive quadratic form with 0 < λ1 ≤ λ2 ≤
· · · ≤ λn the eigenvalues of A. Consider a set v1, . . . , vn of linearly independent
eigenvectors of A with Avi = λivi for 1 ≤ i ≤ n. Define the (proper solid)

cone K =
{

n∑
i=1

μivi | μi ≥ 0

}
. Then clearly A(K) ⊂ K . As last example

consider the matrix A =
(

1 a

1 −1

)
with a > 0. Then A leaves invariant the cone

K = {(x, y) ∈ R
2 | 0 ≤ y ≤ x}. Observe that the maximal eigenvalue of A is

ρ(A) = √
a + 1, with eigenvector (1, 1

a
(ρ(A) − 1)) ∈ K .

Let us briefly recall some classical definitions. For a real n × n matrix A, it is a
fundamental fact that there exists an invertible matrix T such that

T −1AT =
⊕

λ∈Spec(A)

(
dλ⊕
i=1

Ji(λ)
νiλ

)

is the Jordan form of A, where Spec(A), the spectrum of A, denotes the set of
eigenvalues of A (counting repetitions). For each λ ∈ Spec(A), the degree dλ is the
maximal size of a Jordan block with eigenvalue λ appearing in the decomposition
and νiλ ≥ 0 is the number of blocks Ji(λ) in such a decomposition (multiplicity of
the block),

Ji(λ) =

⎛
⎜⎜⎜⎜⎝

λ 1

λ
. . .

. . . 1
λ

⎞
⎟⎟⎟⎟⎠
.

Therefore we have 0 ≤ νiλ ≤ n with ν
dλ
λ > 0 and

∑
λ∈Spec(A)

dλ∑
i=1

iνiλ = n.

The number ρ(A) = max{|λ| | λ ∈ Spec(A)} is called the spectral radius of the
matrix A. Observe that Spec(A) ⊂ Bρ(A), the ball of radius ρ(A) and center at 0 in
C
n.

We will only indicate the main steps of the proof of the following important
result, which goes back to Perron and Frobenius for the case of positive matrices,
and to Birkhoff and Vandergraft [12, 50] in the general situation (for details, see [50]
and Exercises 8, 9 and 12).
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Theorem 1.35 (Birkhoff–Vandergraft). Let K be a proper solid cone in R
n and

A a real n × n matrix such that A(K) ⊆ K . The following hold:

a) The spectral radius ρ(A) is an eigenvalue of A.
b) We have dρ(A) ≥ dλ for any eigenvalue λ of A with |λ| = ρ(A).
c) There is a nonzero vector v ∈ K with Av = ρ(A)v.

Sketch of Proof. Let ε1, . . . , εn be a Jordan basis of A ordered in the following way:
λ1, . . . , λs are the eigenvalues of A with multiplicities and such that |λ1| ≥ |λ2| ≥
· · · ≥ |λs |. Vectors εm1, . . . , εms are all the eigenvectors of A (corresponding to the
eigenvalues λ1, . . . , λs ) with 0 = m0 < m1 < m2 < · · · < ms = n. Moreover, for
each 1 ≤ h ≤ n there is a unique 1 ≤ j (h) ≤ s such that mj(h)−1 < h < mj(h) and

A(εh) = λj(h)εh + εh+1, if h < mj(h),

A(εmj(h)
) = λj(h)εmj(h)

.

The size bj of the Jordan block Jbj (λj ) is mj − mj−1. Take M := max{bj |
|λj | = ρ(A)}. We may assume that 1, 2, . . . , t are the indices j with |λj | = ρ(A)

and bj = M .
The case ρ(A) = 0 is clear, so we may assume ρ(A) > 0. Exercise 8 shows the

existence of numbers d1, . . . , dt ∈ C such that

0 �= y =
t∑

j=1

dj εmj ∈ K.

Assume that λ1 /∈ R, (that is, λ1 �= ρ(A)). By Exercise 9 there are real numbers
0 ≤ c0, . . . , cq , not all zero, such that

q∑
p=0

cpλ
p

1 = 0.

We get then y∗ = ∑q
p=0 cpA

p(y) = ∑t
j=2 dj

(∑q
p=0 cpλ

p
j

)
εmj ∈ K , and since

K is a proper cone, 0 �= y∗. After canceling all summands corresponding to λi /∈ R,
(1 ≤ i ≤ t), we get a vector 0 �= ỹ ∈ K which is a linear combination of {εmj |
λj = ρ(A) and bj = M}. Hence

A(ỹ) = ρ(A)ỹ,

dρ(A) = M ≥ dλ, if |λ| = ρ(A).

Therefore (a), (b) and (c) hold. ��
It will be useful to have a sharper version of Theorem 1.35 in case the matrix

A = (aij ) is nonnegative (written A ≥ 0), that is, aij ≥ 0 for all 1 ≤ i, j ≤ n. We
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say that A is a reducible matrix if there is a permutation matrix P such that

PAP t =
(
B 0
C D

)
,

where B is a m × m matrix with m < n. In fact, if 0 ≤ A is an irreducible n × n-
matrix, then (Idn + A)n−1 > 0, that is, all its entries are positive real numbers.

The following statement is part of the classical Perron–Frobenius Theorem.

Theorem 1.36. Let A be an irreducible real matrix with nonnegative entries.
Then

a) The spectral radius ρ(A) is a simple eigenvalue of A.
b) There exists a vector v ∈ R

n with positive coordinates such that Av = ρ(A)v.

Exercises 1.37.

1. Let A be a symmetric real n × n matrix with q(x) = xtAx a positive form.
Consider the set EA of points x ∈ R

n such that xtAx = 1. Show the
following:

(i) EA is an ellipsoid.
(ii) The lengths of the principal semi-axes of EA are 1√

λ1
, . . . , 1√

λn
, where

0 < λ1 ≤ · · · ≤ λn are the eigenvalues of A.
(iii) If B(ε) is a ball with center at 0 ∈ R

n and radius ε, then

B

(
1√
λn

)
⊂ EA ⊂ B

(
1√
λ1

)
.

(iv) Let H be any hyperplane generated by vectors w1, . . . , wk in R
n. Then

the intersection E′ of EA and H is an ellipsoid in H . Let bi be the length
of the semi-axes of E′ in the direction given by wi . We may assume that
b1 ≥ b2 ≥ · · · ≥ bk . Show the following inequalities:

1√
λ1

≥ b1,
1√
λ2

≥ b2, . . . ,
1√
λk

≥ bk.

As an illustration of the case n = 3 and k = 2 see the following figure:

•
•

•

•

a1

a2

a3
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where ai = 1√
λi

for i = 1, 2, 3.

2. Let qn(x1, x2) be the forms associated to the Fibonacci numbers as introduced
in Exercises 1.22.8 and 9. Prove the following:

(i) For all n ≥ 1, q2n is positive.
(ii) The form q1 is positive, q3 is nonnegative and q2n−1 is indefinite for n ≥ 3.

3. Let q(x1, . . . , xn) = ∑
1≤i≤j≤n qij xixj be a real quadratic form with qii > 0

for all i. Show that the following are equivalent:

(i) The radical of q satisfies rad(q) �= 0.
(ii) We have 0 ∈ DR(q) and 0 is locally a minimal value for the function q :

R
n → R.

4. Let K be a cone in R
n. Show that the following are equivalent:

(i) K is a solid cone.
(ii) The interior K0 of K is nonempty.

(iii) K + (−K) = R
n.

5. Let K be a cone in R
n. Take x ∈ K0 and y ∈ K . Show that x + y ∈ K0.

6. Given a cone K ⊂ R
n and a linear transformation α : Rn → R

n, find conditions
for the cone α−1(K) to be solid.

7. A cone K ⊂ V is generated by a set of vectors {vi}i∈I if

K =
{∑

i∈I
λivi | 0 ≤ λi ∈ R, i ∈ I

}
.

If I is finite, then K is called polyhedral.

(i) Show that a polyhedral proper solid cone K has the shape

K =
s⋂

i=1
H+
vi
,

where {v1, . . . , vs} is a set in R
n and H+

vi
= {x ∈ R

n | xtvi ≥ 0} is a
half-space determined by the vector vi .

(ii) Show that a polyhedral proper solid cone K satisfies K⊥⊥ = ϕ(K), where
ϕ : V → V ∗∗ is the evaluation map.

(iii) Observe that any proper solid cone K is a limit of a sequence (Kn)n∈N of
polyhedral proper solid cones. Use (ii) to prove that K⊥⊥ = ϕ(K).

8. Keeping the notation introduced in Theorem 1.35, show that there exists a
nonzero

y =
t∑

j=1

dj εmj ∈ K,
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for certain numbers dj ∈ C.
[Hint: Since K is a solid cone we may choose

0 �= z ∈
n∑

i=1

ciεi ∈ K0,

with 0 �= ci ∈ R. Then for r ≥ n

Ar(z) =
n∑

i=1

ciA
r(εi) =

n∑
h=1

⎛
⎝ ∑

mj(h)−1<i<mj(h)

ciλ
r−(h−i)
j (h)

(
r

h − i

)⎞
⎠ εh,

where
(
r
j

)
is the binomial coefficient.

It is not hard to see that

w = lim
r→∞

Ar(z)

ρ(A)rr(M−1)

is well-defined. Moreover,w is a linear combination of those εmj with 1 ≤ j ≤ t

and w ∈ K .]
9. For λ ∈ C \ R show that there are nonnegative real numbers c0, . . . , cq , not all

of them zero, such that

q∑
p=0

cpλ
p = 0.

10. Assume that A is a real n × n matrix such that A(K) ⊂ K for a cone K ⊂ R
n.

We say that K is properly invariant under A if Am(K − {0}) ⊂ K0 for some
m > 0. In this case prove the following:

(i) The spectral radius ρ(A) is a simple eigenvalue of A, and for any ρ(A) �=
λ ∈ SpecA we have |λ| < ρ(A).

(ii) There is a vector 0 �= y ∈ K0 with eigenvalue ρ(A).

11. Let n be a natural number ≥ 2. Consider the matrices

P =
(

1 0
n 1

)
and C = −PP t =

(−1 n

−n n2 − 1

)
.

Show the following:

(i) The cone K generated by Cm
p1

and Cm
p2

for m ≥ 1, where p1 = (0
1

)
and

p2 = (1
n

)
, is invariant under C. It is a solid cone in (R2)+.
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(ii) The spectral radius of C is ρ = n2−2+n
√
nn−4

2 and the eigenvector of C in
K is (1, (1 + ρ)/n).

12. Give a proof of the Perron–Frobenius Theorem stated in 1.36. [Hint: Use
Theorem 1.35.]



Chapter 2
Positive Quadratic Forms

In the previous chapter we reviewed the basic definitions and tools necessary to
study properties of quadratic forms. Recall that an integral quadratic form q(x) =∑

i≤j qij xixj is unitary if all diagonal coefficients qii are equal to one. In this
chapter we study positive unit forms, that is, those integral quadratic unit forms
with q(x) > 0 for every nonzero vector x in Z

n. In what follows the term diagram
is synonymous with simple graph, and a vector v = (v1, . . . , vn) in Z

n is called
positive, written v > 0, if v is nonzero and vi ≥ 0 for i = 1, . . . , n.

2.1 Dynkin Graphs

Dynkin graphs (or Dynkin diagrams, see Table 2.1 below) appear in many places in
mathematics: algebra, geometry, probability theory. In our context they are the main
classification device for nonnegative quadratic unit forms, hence of great importance
throughout the text. Here we are concerned with properties of integral quadratic
forms associated to Dynkin diagrams.

Lemma 2.1. Let Δ be one of the Dynkin graphs An, Dm or Ep for n ≥ 1, m ≥ 4
and p = 6, 7, 8 shown in Table 2.1. Then qΔ is a positive unit form.

Proof. Let us consider first graphs An with n ≥ 1. For x = (x1, . . . , xn) in Z
n,

observe that

qAn(x) = x2
1 − x1x2 + x2

2 − x2x3 + . . . + x2
n−1 − xn−1xn + x2

n

= 1

2

[
x2

1 + (x1 − x2)
2 + (x2 − x3)

2 + . . . + (xn−1 − xn)
2 + x2

n

]
.
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Table 2.1 Dynkin diagrams Δn with n vertices

Notation Graph Δ |R(qΔ)|

An (n ≥ 1) 1 1 1 . . . 1 1
n(n + 1)

Dm (m ≥ 4) 1

1 2 2 . . . 2 2 1

1

2m(m − 1)

E6
2

1 2 3 2 1

72

E7
2

2 3 4 3 2 1

126

E8
3

2 4 6 5 4 3 2

240

The vector pΔn
with entries given by the numbers in the vertices is the maximal root of qΔn

. Its
largest entry is denoted by rΔn

In particular, qAn(x) ≥ 0, and qAn(x) = 0 if and only if x1 = 0 and xi+1 = xi
for 1 ≤ i < n. That is, qAn is a positive unit form. Notice also that if x1 �= 0 then
qAn(x) >

1
2x

2
1 .

Consider now the form qDm for m ≥ 4, and observe that with an appropriate
enumeration of the vertices in Dm, for x in Z

m we have the equality

qDm(x) = qAm−1(x1 + x2, x3, . . . , xm) − 2x1x2.

If x in nonzero and x1 + x2 = 0 then we have qDm(x) = qAm−1(x1 +
x2, x3, . . . , xm) + 2x2

1 > 0. If x1 + x2 �= 0, by the above we have

qDm(x) >
1

2
(x1 + x2)

2 − 2x1x2 = 1

2
(x1 − x2)

2 ≥ 0.

This shows that qDm is a positive unit form.
Alternatively we may use Lagrange’s Method (Algorithm 1.30) to find that,

qDm(x) = (x1 − 1

2
x3)

2 + (x2 − 1

2
x3)

2

+1

2

[
(x3 − x4)

2 + (x4 − x5)
2 + . . . + (xm−1 − xm)

2 + x2
m

]
.
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The following expressions for exceptional cases qE6 , qE7 and qE8 and suitable
ordering of vertices can be shown similarly,

qE6(x) = (x1 − 1

2
x2)

2 + 3

4
(x2 − 2

3
x3)

2 + 2

3
(x3 − 3

4
x4 − 3

4
x5)

2

+5

8
(x4 − 3

5
x5)

2 + 2

5
(x5 − 5

4
x6)

2 + 3

8
x2

6 ,

qE7(x) = (x1 − 1

2
x2)

2 + 3

4
(x2 − 2

3
x3)

2 + 2

3
(x3 − 3

4
x4 − 3

4
x5)

2

+5

8
(x4 − 3

5
x5)

2 + 2

5
(x5 − 5

4
x6)

2 + 3

8
(x6 − 4

3
x7)

2 + 1

3
x2

7 ,

qE8 (x) = (x1 − 1

2
x2)

2 + 3

4
(x2 − 2

3
x3)

2 + 2

3
(x3 − 3

4
x4 − 3

4
x5)

2

+5

8
(x4 − 3

5
x5)

2 + 2

5
(x5 − 5

4
x6)

2 + 3

8
(x6 − 4

3
x7)

2 + 1

3
(x7 − 3

2
x8)

2 + 1

4
x2

8 ,

which completes the proof. ��
It turns out that the forms qΔ associated to Dynkin graphs are all the connected

positive unit forms q with associated bigraph having no dotted edges (that is, those
forms satisfying qij ≤ 0 for all indices i < j ).

Proposition 2.2. Let G be a connected graph (without dotted edges). Then qG is a
positive unit form if and only if G is a Dynkin diagram (see Table 2.1).

Proof. By Lemma 2.1, for a Dynkin diagram Δ the unit form qΔ is positive.
For the converse take G a connected graph and observe that if a restriction qIG of

qG is nonpositive, then the form qG itself is nonpositive. Indeed, if qIG(x) ≤ 0 for
a vector x in Z

G0−I , then completing x with zeros to a vector x ′ in Z
G0 , we have

qG(x
′) = qIG(x) ≤ 0. In particular G is a simple graph (that is, G has no loop and

no multiple edges).
The above implies that the graphG does not contain an extended Dynkin diagram

(see Table 2.2) for their associated forms are nonpositive (as a direct calculation
shows, cf. Exercise 4 below).

The result follows now from a combinatorial observation: a simple graph G is a
Dynkin diagram if and only if G does not contain as (full) subgraph any extended
Dynkin diagram (cf. Exercise 5). ��

A vector x in Z
n is called sincere if all its entries xi are nonzero. The set of roots

(resp. positive roots) of a quadratic form q , that is, the set of (positive) vectors x
in Z

n with q(x) = 1, is denoted by R(q) (resp. by R+(q)). Observe that in the
following result we do not require the quadratic form to be unitary.
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Table 2.2 Extended Dynkin diagrams Δ̃n with n + 1 vertices

Notation Graph

An (n ≥ 2)
1 1 1 · · · 1 1 1

Dn (n ≥ 4) 1 1

2 2 . . . 2 2

1 1

E6

1

2

1 2 3 2 1

E7
2

1 2 3 4 3 2 1

E8
3

2 4 6 5 4 3 2 1

The vector pΔ̃n
with entries given by the numbers in the vertices is the generator of the radical of

the quadratic form qΔ̃n

Proposition 2.3. A positive integral quadratic form admits only finitely many roots.

Proof. A polynomial q with integral coefficients may be considered as a function
qR : R

n → R. Notice that qR(x) ≥ 0 for any x in R
n. Indeed, for any y in Q

n

there is a vector x in Z
n and p ∈ Z nonzero such that y = x/p. Hence qR(y) =

q(x)/p2 ≥ 0, and the same holds for y in R
n by continuity.

We show that qR(x) > 0 for all nonzero x in R
n. Let x ∈ R

n with qR(x) =
0. Then qR has in x a local minimum, thus 0 = ∂q(x)

∂xi
= 2qiixi + ∑

j �=i qij xj
for i = 1, . . . , n (see Lemma 1.1), that is, x1, . . . , xn satisfy a system of n linear
equations. If the determinant of that system is zero, then it has a nonzero solution
z/p with z ∈ Z

n and 0 �= p ∈ Z. But then qR(z/p) must be zero, in contradiction
to 0 < q(z)/p2 = qR(z). Hence the determinant of the above system is nonzero,
forcing x = 0.

This shows that qR restricted to the sphere S = {x ∈ R
n | ||x|| = 1} is a

positive function. Since S is compact, qR takes its minimum in some x0 ∈ S. Then
qR(v) = ||v||2qR( v

||v||) ≥ ||v||2qR(x0) for all v �= 0. Therefore any root v must

satisfy ||v||2 ≤ 1
qR(x0)

, that is, any root of q is contained in {z ∈ Z
n | ||z||2 ≤

1
qR(x0)

}, which is a finite set. ��
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Remark 2.4. With the same proof we may actually show that, if q is a positive
integral quadratic form, for any c > 0 the number of vectors y in Z

n with q(y) = c

is finite.

The number of roots |R(qΔ)| of the quadratic form qΔ associated to a Dynkin
diagram Δ is shown in Table 2.1. These numbers will appear later in Chap. 4 in
relation to the order of certain Coxeter matrices.

2.2 Roots and Reflections

Notice that Proposition 2.3 holds for all positive integral quadratic forms and
provides in principle an algorithm for constructing their roots as far as the number
min{qR(x) | ||x|| = 1} can be efficiently calculated. In the following we give a much
more efficient way to inductively construct roots, which works nicely for unitary
forms.

In Sect. 1.2 we have defined the i-th (simple) reflection associated to a unit form
q as

σi : Zn → Z
n, σi(x) = x − q(x|ei)ei .

It was noted in Lemma 1.5(c) that q(σi(x)) = q(x) − q(x|ei)2 + q(x|ei)2q(ei) =
q(x), hence by applying simple reflections to already known roots we can hope
to find new ones. The following result shows that this is in effect a powerful tool.
Recall that there is a partial ordering in Z

n, declaring x < y whenever 0 < y − x.

Proposition 2.5. Let x < y be positive roots of a positive unit form q : Z
n →

Z. Then there is a sequence of reflections σi1 , . . . , σit with σit · · · σi1(x) = y and
σis · · · σi1(x) = x + ei1 + · · · + eis for all s ∈ {1, . . . , t}.
Proof. Using the positivity of q and that x �= y are roots of q , we obtain from
q(x) = q(y−(y−x)) = q(y)+q(y−x)−q(y|y−x) that 0 < q(y−x) = q(y|y−x).
Hence there is an index i ∈ {1, . . . , n} such that xi < yi and 0 < q(y|ei).

Notice that y �= ei , for x is a positive vector and x < y. Since 0 < q(y − ei) =
2 − q(y|ei) we get q(y|ei) = 1 and therefore x ≤ σi(y) = y − ei < y. Set i1 = i

and repeat the process with σi(x) instead of x. ��
Remark 2.6. Observe that in the proof of Proposition 2.5 we only require the
quadratic form q to satisfy q(x) > 0 for positive vectors x. We dedicate Chap. 5 to
the study of these kinds of quadratic forms, called weakly positive unit forms.

There seems to be one flaw in the above result, namely, it will produce only
positive roots. But in the following result we will see that this is all we need for the
forms associated to Dynkin graphs.
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Lemma 2.7. Let Δ be a Dynkin graph with associated unit form q : Zn → Z. If v
is a root of qΔ then either v > 0 or −v > 0. In particular qΔ has a unique maximal
positive root.

Proof. Take q = qΔ and let v+ and v− be defined by v+
i = max{vi, 0} and v−

i =
max{−vi, 0} for i = 1, . . . , n. Then v = v+ − v− and

1 = q(v) = q(v+ − v−) = q(v+) + q(v−) +
n∑

i,j=1

v+
i v

−
j (−qij ).

Since q is a positive form by Lemma 2.1, the three summands on the right are
nonnegative integers (for if qij > 0 then i = j and v+

i v
−
j = 0). Since v �= 0 we

conclude that either v+ = 0 or v− = 0.
For the second claim consider a maximal positive root x of q . Since σi(x) = x−

q(x|ei)ei is again a root of q (Lemma 1.5(c)), by maximality we have q(x|ei) ≥ 0
for all i = 1, . . . , n. Moreover, if x has a zero entry, since Δ is connected there
are vertices i and j with xi = 0 and xj > 0 such that qij < 0. Then q(x|ei) =∑

j �=i qij xj < 0, which is impossible again by maximality of x. Hence x is a sincere
vector, and the same holds for any other maximal positive root y. Since there is
vertex i with q(x|ei) > 0, and y is a positive sincere root, then

0 < q(x − y) = q(x)+ q(y) − q(x|y) = 2 −
n∑

i=1

yiq(x|ei) < 2,

that is, x − y is a root of q . Since both x and y are maximal positive roots, then
x − y has both negative and positive entries, which is impossible by the first claim
of the lemma. ��

By the above it suffices to know all positive roots of the quadratic form qΔ
associated to a Dynkin graph Δ. For instance, let q = qD4 be the form associated to
the Dynkin diagram D4 with the following enumeration of its vertices,

D4 : •3

•1 •2 •4

We already know that the canonical vectors e1, e2, e3, e4 of Z
n are roots of qΔ.

Reflecting these roots we get

σ1(e1) = −e1, (we discard this root, since it is negative)

σ2(e1) = e1 + e2, (a new root)

σ3(e1) = e1 = σ4(e1).
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Since σi(v) > v if and only if q(v|ei) < 0, this last condition has to be investigated.
We have from Lemma 1.1

q(v|ei) = 2vi +
∑
j �=i

qij vj = 2vi −
∑

there is
an edge
i−j

vj .

Now the calculations become easy, since σi(v) > v if and only if
∑

i−j vj > 2vi .
For instance we have

100
0 σ2

110
0 σ4

111
0 σ3

111
1 σ2

121
1 =: δ.

Observe now that σi(δ) = δ for i = 1, 3, 4 and σ2(δ) = 111
1

, hence no new root is
obtained, and the maximal root is found. The following picture exhibits all positive
roots of the form qD4 .

121
1

111
1

011
1

111
0

110
1

011
0

010
1

110
0

001
0

010
0

000
1

100
0

An edge indicates that the two roots at the end points are obtained by a reflection
from each other (we omitted those reflections which leave a root unchanged or turn
it negative). An entry vi is depicted underlined if σi(v) > v. A patient reader may
calculate the corresponding pictures for qE6 , qE7 and qE8 (Fig. 2.1). The least patient
readers may take a look at the outcome on page 50, where we show all three in one
(displaying only sincere roots). It thus remains to investigate the cases qAn and qDn

in general. We leave the easier case to the reader and analyze the roots of qDn here.
First we construct all positive roots v in Z

n with vi = 0, 1 and call such vectors
thin. Denote by supp(v) the set of indices i ∈ {1, . . . , n} for which vi �= 0, and call
it the support of v (thus a root v of q is sincere if supp(v) = {1, . . . , n}). We say
that a vector v is connected if so is the restricted form qsupp(v). Recall that a tree
graph is a connected graph G such that |G0| = |G1| + 1 (for instance, all Dynkin
graphs are trees).
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Fig. 2.1 Subposets of the root poset for qE6 (left above), qE7 (left below) and qE8 (right)
corresponding to sincere roots
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Lemma 2.8. Let G be a tree graph with n vertices, and v be a vector in Z
n.

a) If v is a thin vector, then v is a root of qG if and only if v is a connected vector.
b) If G is a Dynkin graph and v is a qG-root, then v is connected.

Proof. Take q = qG. If v is a connected thin vector then the restriction of G to
supp(v) is a tree, and

q(v) =
∑

vertices i
in supp(v)

v2
i +

∑
edges i−j
in supp(v)

qij vivj

= �vertices − �edges = 1.

If v is not connected then q(v) = �vertices− �edges > 1, hence v is not a root. This
shows (a).

For (b), assume G is a Dynkin graph. By Lemma 2.1 the form q is positive. Let
us suppose that v = v′ + v′′ in such a form that supp(v′) ∩ supp(v′′) = ∅, and
qij = 0 for i ∈ supp(v′) and j ∈ supp(v′′). If v is a root of q , then

1 = q(v) = q(v′ + v′′) = q(v′) + q(v′′),

and by positivity either v′ = 0 or v′′ = 0, which shows that v is a connected vector.
��

Consider a Dynkin graph Dn with the following ordering of vertices,

•n−1

•1 •2 · · · •n−2

•n

and for 1 ≤ � < k ≤ n − 2 take the vector p�,k = ∑n
i=� ei + ∑n−2

i=k ei in Z
n as

depicted below,

1

0 · · · 0 1 · · · 1 2 · · · 2

k 1

The following result completes the description of roots of the positive quadratic
form qDn .

Lemma 2.9. If v is a positive nonthin root of q = qDn , then v = p�,k for some
1 ≤ � < k ≤ n − 2.

Proof. Let w ∈ Z
n be defined by wi = 1 if vi > 0 and wi = 0 if vi = 0. Since v

is a root, by Lemma 2.8(b) the vector v is connected, and so is w for supp(w) =
supp(v). Hence by Lemma 2.8(a), w is a thin root of q .
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Since v is a positive nonthin vector we have w < v, and by Proposition 2.5
there exists a sequence of reflections σi1 , . . . , σis with σis · · · σi1(w) = v such that
σis · · · σi1(w) = w + ei1 + · · · + eis . We want to show that i1 = n − 2 and that
ir−1 − rr = 1 for 1 < r ≤ s.

Recall from Lemma 1.1 that q(v|ei) = 2vi −∑
i−j

vj , where the symbol i − j

denotes the sum over all edges in Dn having i as an end-point. Since σi1(w) =
w−q(w|ei1)ei1 > w if and only if

∑
i−j wj > 2wi and since supp(w) = supp(v),

there must exist more than two edges ending in i1, showing that i1 = n− 2 and that
wn = wn−1 = wn−2 = wn−3 = 1.

Then σi1(w) = p�,n−2 for some 1 ≤ � < n − 2. Now, a direct calculation
shows that, for 1 ≤ � < k ≤ n − 2, the inequality q(p�,k|ei) < 0 implies either
i = �− 1 or � < i = k − 1. In the first case we have supp(σi(p�,k)) �= supp(p�,k),
which is unacceptable for our construction. Therefore we have � < i = k − 1 and
σi(p�,k) = p�,k−1. Proceeding inductively we get v = σis · · ·σi2(σi1(w)) = p�,k
for some � < k ≤ n − 2, which completes the result. ��
Exercises 2.10.

1. Let q be a positive unit form. Show that if v is a root of q then v is a connected
vector. Is the same true for nonnegative unit forms?

2. Show that any positive root of qAn is thin. What is the shape of the picture of all
positive roots if any two roots are connected by an edge if one is obtained by a
reflection from the other?

3. Describe all positive roots of E6.
4. Let Δ̃ be an extended Dynkin diagram. Show that the vector pΔ̃ described in

Table 2.2 is a radical vector of the quadratic form qΔ̃.
5. Suppose that G is a connected simple graph that does not contain as (full)

subgraph any extended Dynkin diagram. Show thatG is a Dynkin diagram. [Hint:
define the degree of a vertex in G as the number of edges that contain it, and a
ramification to be a vertex of degree greater than 2. Then notice that G must have
at most one ramification vertex, with degree at most 3.]

6. Show that if G is a Dynkin graph, and i is any of its vertices, then the restriction
G(i) is disjoint union of Dynkin graphs.

2.3 Criteria for Positivity

We call a quadratic unit form critical nonpositive if it is not positive but each proper
restriction is. The critical nonpositive forms are, so to speak, the borderline which
separates the positive forms from the rest. Since positive forms are always weakly
positive (cf. Remark 2.6), we could compare critical nonpositive forms with critical
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nonweakly positive forms.

critical nonpositive

critical nonweakly positive

positive

weakly positive

We will have to correct this picture (later in Sect. 5.1) when considering critical
nonweakly positive forms. Now we restrict our discussion to unit forms.

First we need a simple result on nonnegative integral forms. Recall from Sect. 1.1
that a vector v in Z

n is called a radical vector for q : Zn → Z if q(v + u) = q(u)

for all vectors u, or equivalently, if q(v|ei) = 0 for i = 1, . . . , n.

Lemma 2.11. Let q : Zn → Z be a nonnegative unit form and p = qI a restriction
of q with I ⊂ {1, . . . , n}. Then any radical vector of p, if extended by zeros to a
vector in Z

n, is a radical vector of q .

Proof. Let v ∈ rad(p) and v be the extension of v by zeros in the missing
coordinates. For i ∈ I we have

q(v|ei) = qiivi +
n∑

j=1

vjqij = qiivi +
∑
j∈I

vj qij = qI (v|ei) = 0.

Suppose that there is an i /∈ I with q(v|ei) �= 0. Since q(v) = 0, taking α = qii + 1
we have

0 ≤ q(αv − q(v|ei)ei) = α2q(v) + q(v|ei)2qii − αq(v|ei)2

= q(v|ei)2(qii − α)

< 0,

a contradiction, hence the result. ��
Consider the following example, which shows that the hypothesis of nonnegativ-

ity in the previous lemma is actually needed: Let q = qB be the quadratic form
associated to the graph B = 1 2 3. Then rad(q(3)) = Z(e1 + e2).
Nevertheless, e1 + e2 is not a radical vector for q , since q(e1 + e2|e3) = −1. We
will come back to this situation later in Sect. 3.3.
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Recall that the corank of an integral quadratic form q is given as the rank of its
radical rad(q). The following characterization of critical nonpositive forms is an
adaptation of a theorem of Ovsienko in the weakly positive setting (cf. Ringel [46]
and Theorem 5.2 below).

Theorem 2.12. Let q be a unit form. Then q is critical nonpositive if and only
if either q is the Kronecker form qm for some integer m with |m| ≥ 3 or q is
nonnegative of corank one with a sincere radical vector.

Proof. Clearly, for |m| ≥ 3 the m-Kronecker form

qm(x1, x2) = x2
1 − mx1x2 + x2

2 ,

is not positive since qm(1,±1) = 2 ∓ m is negative for the appropriate sign. Thus
qm is critical nonpositive.

If q is nonnegative of corank one with a sincere radical vector v, then for any
vertex i the restriction q(i) is nonnegative. But if w ∈ rad(q(i)) then by Lemma 2.11
the extension by zeros w of w satisfies w ∈ rad(q). Since rad(q) is generated by
the sincere vector v and wi = 0, it follows that w = 0. In other words, q is critical
nonpositive.

Assume now that q : Z
n → Z is critical nonpositive. Then there exists a

nonzero vector v ∈ Z
n with q(v) ≤ 0. Choose such a v with minimal weight

|v| = ∑
i |vi |. Since each restriction of q is positive, v is a sincere vector. Define

I = {i ∈ {1, . . . , n} | vi > 0} and J = {i ∈ {1, . . . , n} | vi < 0}.
For i ∈ I we have |v− ei| < |v| and by minimality, 0 < q(v− ei) = q(v)+ 1 −

q(v|ei), hence q(v|ei) ≤ q(v). Similarly, for each i ∈ J we have q(v|ei) ≥ −q(v),
that is,

q(v|ei)
{

≤ q(v), if i ∈ I,

≥ −q(v), if i ∈ J.

If q(v) = 0 we obtain viq(v|ei) ≤ 0 for all i ∈ {1, . . . , n}, and thus from
0 = q(v) = ∑

i viq(v|ei) we deduce that q(v|ei) = 0, that is, that v is a radical
vector.

For any w ∈ Z
n choose nonzero integers μ, λ such that (μw − λv)i = 0 for

some index i ∈ {1, . . . , n}. Then μ2q(w) = q(μw) = q(μw − λv) = q(i)(μw −
λv) ≥ 0 with equality if and only if μw = λv. This shows that q is nonnegative.
By minimality of v, we have that μ divides λ, therefore q has corank one with
rad(q) = Zv.

If q(v) < 0, then we obtain from the values of q(v|ei) above that viq(v|ei) < 0
for each index i ∈ {1, . . . , n}. For i ∈ I , we deduce from q(v|ei) ≤ q(v) =
1
2

∑
j vj q(v|ej ) < 0 that

(vi − 2)q(v|ei) ≥ −
∑
i �=j

vj q(v|ej ) > 0,
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where the last inequality is due to the fact that there must exist at least one other
index apart from i. We obtain vi−2 < 0, thus vi = 1. Similarly, for i ∈ J , we obtain
vi = −1. Choose a vertex x such that |q(v|ex)| ≤ |q(v|ei)| for all i ∈ {1, . . . , n},
then

−n

2
|q(v|ex)| ≥ 1

2

n∑
i=1

−|q(v|ei)| = q(v) ≥ −|q(v|ex)|,

which implies n = 2 and |q(v)| = |q(v|ex)|, that is, q is a Kronecker form qm.
From 0 > q(v) = 2 − |qij | = 2 − |m| we get |m| ≥ 3. ��

We stress that a critical nonpositive form can very well be weakly positive.
That happens precisely in the situation where q is the m-Kronecker form for some
negative m ≤ −3, or where the sincere radical vector is not positive.

Corollary 2.13. Any critical nonpositive unit form q has infinitely many roots.

Proof. By Proposition 1.23, Kronecker forms qm with |m| ≥ 3 have infinitely many
roots. Now, if q is nonnegative with sincere radical vector v, then for any index i we
have

1 = q(ei) = q(ei + mv),

for any m ≥ 0, that is, ei + mv is a q-root. Thus the result is completed by the
characterization given in Theorem 2.12. ��

An integral quadratic form q(x) = ∑
i≤j qij xixj is called semi-unitary or a

semi-unit form given qii ∈ {0, 1} for i = 1, . . . , n. We need the following almost
trivial observation.

Lemma 2.14. Let q : Zn → Z be a semi-unit form. If q is positive, then

a) The form q is unitary.
b) We have |qij | ≤ 1 for any indices i, j ∈ {1, . . . , n}.
Proof. Since q is a positive semi-unit form we have 1 ≥ qii = q(ei) > 0, thus q
is unitary. Taking indices i �= j and a sign ε ∈ {+1,−1} such that |qij | = εqij , we
have

0 < q(ei − εej ) = q(ei) + q(ej ) − εq(ei|ej ) = 2 − |qij |,

hence the result. ��
The following handy Positivity Criterion [7, Theorem 2.2] will be useful in

Chap. 3. By Proposition 1.20, a Kronecker form qm with |m| ≥ 3 satisfies q−1
m (0) =

0, although qm is (critical) nonpositive.
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Theorem 2.15. A semi-unit form q : Zn → Z is positive if and only if the following
conditions hold:

P1) We have |qij | ≤ 2 for 1 ≤ i < j ≤ n.
P2) The form q is anisotropic (that is, q(x) �= 0 for any nonzero vector x in Z

n).

Proof. The necessity of conditions (P1) and (P2) follows by Lemma 2.14. Assume
that q is not positive and satisfies these conditions. Take 0 �= v ∈ Z

n with q(v) ≤ 0,
and notice that q is a unit form (for if qii = 0 then ei ∈ q−1(0)), and that |qij | ≤ 1
(for if qij = ±2 then ei ± ej ∈ q−1(0)).

We proceed by induction on n. For n = 1 we have q(x1) = x2
1 , and for

n = 2, q(x1, x2) = x2
1 + x2

2 + ax1x2 with a ∈ {±1, 0}. All of these forms are
positive. Assume n ≥ 3, and observe that any restriction q(i) satisfies (P1) and (P2).
Therefore by induction we have that q is critical nonpositive. By Theorem 2.12,
since n ≥ 3 the form q is nonnegative with corank one, in contradiction to (P2). ��

We end this section with yet another characterization of positive unit forms.

Theorem 2.16. Let q : Zn → Z be a unit form. Then q is positive if and only if q
has finitely many roots.

Proof. If q is a nonpositive unit form, then there exists a restriction qI of q which
is critical nonpositive. By Corollary 2.13, q has infinitely many roots.

The converse was shown in Proposition 2.3. ��

2.4 Inflations, Deflations and Dynkin Type

Gabrielov transformations have been used since the early seventies for the sys-
tematic study of quadratic unit forms (see for instance [22] and [23]). They are
involutions that preserve unitary forms, and in many cases (for instance in the
positive setting) their iterations generate all equivalences between such forms.

Denote by U(n) the set of all unitary quadratic forms q : Zn → Z in n variables.
For indices i, j ∈ {1, . . . , n} take Eij to be the elementary n × n matrix having as
unique nonzero entry a 1 at coordinates (i, j).

Proposition 2.17. Let U(n) be the set of unitary forms in n-variables. For each
i �= j in {1, . . . , n} define the Gabrielov transformation

ij : (n) (n)

q ij(q) = qG
q
ij ,

where Gq
ij is the linear transformation given by the matrix Gq

ij = Id − qijEij . Then
Gij is an involution that preserves connected unit forms.
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Proof. Notice that for k ∈ {1, . . . , n} we have

G
q
ij (ek) =

{
ek, if k �= i,

ei − qij ej , if k = i.

To show that Gij (q) is a unitary form we observe that

q(G
q
ij (ek)) =

{
q(ek) = 1, if k �= i,

q(ei − qij ej ) = q(ei) + q2
ij q(ej ) − q2

ij = 1, if k = i.

Therefore Gij : U(n) → U(n) is a well defined function.
We show now that Gij is an involution. Take q ′ = Gij (q) and observe that for

k �= i and � �= i we have

q ′
k� = q(G

q
ij (ek)|Gq

ij (e�)) = q(ek|e�) = qk�.

On the other hand we have

q ′
i� =

{
q(G

q

ij (ei)|Gq

ij (e�)) = q(ei|e�) − qij q(ej |e�) = qi� − qij qj�, if � �= j,

q(G
q

ij (ei)|Gq

ij (ej )) = q(ei |ej ) − qij q(ej |ej ) = −qij , if � = j.

The same equations imply that, if q ′′ = Gij (q ′), then q ′′
k� = qk� for k, � �= i, and

q ′
i� =

{
q ′
i� − q ′

ij q
′
j� = (qi� − qij qj�) + qij qj� = qi�, if � �= j,

−q ′
ij = qij , if � = j.

Therefore q ′′ = q , that is, Gij is an involution.
Assume now that q is a disconnected unit form. After a re-enumeration if

necessary, we may take 1 < m < n such that qij = 0 if 1 ≤ i ≤ m and m < j ≤ n.
Then q = q ′ ⊕ q ′′ for unitary forms q ′ : Zm → Z and q ′′ : Zn−m → Z, and the
symmetric matrix Aq associated to the unit form q is diagonal by blocks,

Aq =
(
Aq ′ 0
0 Aq ′′

)
= Aq ′ ⊕ Aq ′′ .

If 1 ≤ i ≤ m and m < j ≤ n then qij = 0 and Gij (q) = q = q ′ ⊕ q ′′. If
1 ≤ i, j ≤ m or m < i, j ≤ n we have respectively either

Gij (q) = Gij (q
′) ⊕ q ′′ or Gij (q) = q ′ ⊕ Gij (q

′′),

where in the right-hand side of the equalities the expression Gij corresponds to a
Gabrielov transformation of appropriate size. In any case Gij (q) is a disconnected
form. Hence, since Gabrielov transformations are involutions, they preserve con-
nectedness. ��
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It is clear that Gij (q) = q if and only if qij = 0. In what follows we take
a slightly different approach, considering similar transformations called inflations
and deflations of integral quadratic forms.

Take a sign ε ∈ {+,−}, and for different indices 1 ≤ i, j ≤ n define the linear
transformation T ε

ij : Zn → Z
n by

T ε
ij : v → v − εviej .

Observe that T +
ij is the inverse of T −

ij , therefore the forms q− = qT −
ij and q+ =

qT +
ij are Z-equivalent to q . In particular, q− and q+ are positive if so is q .

We call the transformation T −
ij a deflation for q if qij < 0, and the transformation

T +
ij is an inflation for q if qij > 0. Inflations and deflations are simply called flations,

and a finite composition of flations is an iterated flation. To be precise, an iterated
flation for q is a composition T = T

ε1
i1j1

· · · T εr
ir jr

such that T ε1
i1j1

is a flation for q , and

taking inductively q0 = q and qs = qs−1T
εs
isjs

for s ≥ 0, T εs
is js

is a flation for qs−1.
Notice that if |qij | = 1 and ε ∈ {+1,−1} is such that |qij | = εqij , then the form
qT ε

ij coincides with the Gabrielov transformation Gij (q).

Corollary 2.18. For any n ≥ 1 the set of positive unit forms in n variables,
denoted U>0(n), is invariant under deflations and inflations. Moreover, these
transformations are involutions that preserve connected positive unit forms.

Proof. Flations preserve positivity since they are equivalences. Let q : Z
n → Z

be a positive unit form. By Lemma 2.14(b) we have |qij | ≤ 1 for 1 ≤ i < j ≤ n.
Therefore in the positive case, flations correspond to Gabrielov transformations, and
the result follows from Proposition 2.17. ��

If T ε
ij is a flation for q and qε = qT ε

ij , then there is a bijection

R(qε) −→ R(q)

given by x → T ε
ij (x). Perhaps the most important property of flations is that they

allow us to control the number of positive roots of a unitary form, as we show next.

Lemma 2.19. Let q : Zn → Z be a unit form and take indices 1 ≤ i �= j ≤ n and
1 ≤ � �= m ≤ n with qij < 0 and q�m > 0. Consider respectively quadratic forms
q− = qT −

ij and q+ = qT +
�m. Then we have proper inclusions

(T −
ij ) : R+(q−) → R+(q) and (T +

�m)
−1 : R+(q) → R+(q+).

Proof. For a positive root x ∈ R+(q−) we have 1 = q−(x) = q(T−
ij x). Thus

T −
ij x ∈ R+(q) and ei ∈ R+(q) is a root not belonging to the image T −

ij (R
+(q−)).

The second proper inclusion follows from the first since (T +
�m)

−1 = T −
�m and q =

q+T −
�m. ��
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We are now able to prove a central theorem in the theory of unitary forms, first
shown by Ovsienko in the early seventies.

Theorem 2.20. Let q be a positive unit form. Then there exists an iterated inflation
T and a unique (up to permutation of components) disjoint union of Dynkin
diagrams G such that qT = qG.

Proof. By Corollary 2.18 we may assume that q is a connected form. Consider the
bigraph B0 associated to q . If B0 has no dotted edges, by Proposition 2.2 the graph
B0 is a Dynkin diagram and we are done. Assume B0 has a dotted edge {i, j } and
take T 1 = T +

ij . Again by Corollary 2.18 the quadratic form q1 = qT 1 is also a

positive unit form, having a connected associated bigraph B1. By Lemma 2.19 and
Theorem 2.16 we have |R+(q0)| < |R+(q1)| < ∞. Iterating this process we get a
sequence of positive unit forms q0, q1, q2, . . . in the same number of variables, and
inequalities

|R+(q0)| < |R+(q1)| < |R+(q2)| < . . .

We end the proof by showing that this process must stop, that is, that there must
exist i > 0 such that the bigraph Bi associated to qi has no dotted edges (and is
therefore a Dynkin diagram). Indeed, since there is a finite number of unit positive
forms with a fixed number of variables (for |qij | ≤ 1 for all i, j , see Lemma 2.14),
we conclude that the set of cardinalities {|R+(qi)|}i≥0 is bounded. To complete the
proof take T as the iterated flation T 1 · · · T i so that qBi = qT and Bi is a Dynkin
graph.

For the uniqueness claim assume again that q is connected, and that there are
iterated flations T and T ′ and Dynkin graphs G and G′ with qT = qG and qT ′ =
qG′ . Since the forms qT and qT ′ have the same number of roots, and |G0| = |G′

0|,
we conclude that G = G′ (cf. Table 2.1). ��

By the Dynkin type of a positive unit form q we mean the disjoint union of
Dynkin graphs Dyn(q) = G given in Theorem 2.20. That this is a well defined
invariant of the quadratic form q is the content of our next result.

Corollary 2.21. Two positive unit forms q and q ′ are equivalent if and only if
Dyn(q) = Dyn(q ′).

Proof. If Dyn(q) = Dyn(q ′) = G, then there are iterated inflations T and T ′ such
that qT = qG = q ′T ′. Therefore q = q ′T ′T −1, that is, q and q ′ are equivalent
forms.

For the converse we may assume that q and q ′ are equivalent connected unit
forms (see Corollary 2.18). Take iterated inflations T and T ′ such that qT = qG
and q ′T ′ = qG′ for Dynkin diagrams G and G′ as in Theorem 2.20. Since qG is
equivalent to qG′ , the graphs G and G′ have the same number of vertices and their
associated forms have the same number of roots. A direct inspection of Table 2.2
shows that G = G′, hence the result. ��
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Notice that each Dynkin diagram Δ has a unique maximal root, that is, a vector
pΔ ∈ R(qΔ) such that for all v ∈ R(qΔ) we have v ≤ pΔ (the vector formed by the
values in the vertices of Table 2.1). From this we obtain

|vi | ≤ rΔ, for all i and all v ∈ R(qΔ),

where rAn = 1, rDn = 2, rE6 = 3, rE7 = 4 and rE8 = 6. This remark can be
extended to all connected positive unit forms.

Proposition 2.22. If v = (v1, . . . , vn) is an arbitrary root of a connected positive
unit form q : Zn → Z of Dynkin type Δ, then |vi | ≤ rΔ for all i ∈ {1, . . . , n}.
Proof. Let q : Zn → Z be a connected positive unit form with Dyn(q) = Δ and
v ∈ R(q). Let C : Zn → Z

n be the transformation given by C(ei) = εiei , where
εi = −1 if vi ≤ 0 and εi = 1 otherwise. The form q ′ = qC is a connected positive
unit form and v′ = C−1v is a root of q ′ with v′

i = |vi | for all i ∈ {1, . . . , n}.
Moreover, by Corollary 2.21 we have Dyn(q ′) = Dyn(q). If q ′ = qΔ, then v′ ≤ pΔ
by maximality of the root pΔ of qΔ. Otherwise we may apply an inflation T +

ij to

q ′ to obtain a connected positive unit form q ′′ = q ′T +
ij and a positive root v′′ =

(T +
ij )

−1v′ = v′+v′
i ej > v′. Continuing with this process we get an iterated inflation

T and a positive root ṽ of q ′T such that v′ < ṽ and qT = qΔ. Again by maximality
of the root pΔ we have ṽ < pΔ, which completes the proof. ��

As a direct consequence of Proposition 2.22 we have the following observation,
which remarkably also holds in the context of weakly positive unit forms (see
Ovsienko’s Theorem 5.25).

Corollary 2.23. Let q : Zn → Z be a positive unit form. Then for any root v =
(v1, . . . , vn) of q we have |vi | ≤ 6 for i = 1, . . . , n.

Proof. This follows from Proposition 2.22 since rΔ ≤ rE8 = 6 for any Dynkin
diagram Δ. ��

Now we investigate how Dynkin diagrams behave under restriction of quadratic
forms. For this purpose we introduce a partial ordering on Dynkin graphs by setting

Am ≤ An, for m ≤ n;
An < Dn ≤ Dp, for 4 ≤ n ≤ p;
Dp < Ep ≤ Eq , for 6 ≤ p ≤ q ≤ 8.

The following easy observation will be used below.

Remark 2.24. For Dynkin graphs G and G′ we have G ≤ G′ if and only if |G0| ≤
|G′

0| and rG ≤ rG′ (cf. Table 2.1).

Recall that if I is a subset of indices I ⊆ {1, . . . , n} then the restriction qI :
Z
I → Z of a quadratic form q : Zn → Z is given by qI (x) = q(σ(x)) for a vector
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x in Z
I , where σ : ZI → Z

n is the linear transformation determined by σ(ei) = ei
for i ∈ I . As before, if I = {1, . . . , n} − {i} for some index i then we use the
notation qI = q(i).

Proposition 2.25. Let q be a connected positive unit form. Then for any connected
restriction qI of q we have Dyn(qI ) ≤ Dyn(q).

Proof. We show that Dyn(q(i)) ≤ Dyn(q) for any i ∈ {1, . . . , n} with q(i)

connected. By simplicity we may assume that i = n. Let T : Z
n−1 → Z

n−1 be
an iterated inflation such that q(n)T = qΔ′ given by Theorem 2.20.

Take T̂ = T ⊕ [1] and q̂ = qT̂ . Since T̂ is Z-invertible we have Dyn(̂q) =
Dyn(q) by Corollary 2.21. Extending the maximal root of qΔ′ by zeros we obtain a
root v of q̂. By Proposition 2.22 we get

rΔ′ ≤ max
i
(|vi |) ≤ rΔ,

where Δ = Dyn(q). Clearly |Δ′
0| < |Δ0|, thus the result follows from Remark 2.24.

��
It might look a little odd at this point to define the order An < Dn instead of

An < Dn+1, but since this result will be generalized to nonnegative unit forms later
in Sect. 3.6, we choose to introduce the final order at once.

Exercises 2.26.

1. Show that the number of roots of the quadratic form qEp associated to the Dynkin
graph Ep for p ∈ {6, 7, 8} is different from |R(qAn)| and |R(qDm)| for any n ≥ 1
and m ≥ 4.

2. Find two different Dynkin graphs Δ and Δ′ such that the positive unit forms
qΔ and qΔ′ have the same number of roots. [Hint: Use Exercise 1 and the Pell
equation x2

1 − 2x2
2 = 1 to find values for a > 0 such that there are integral

solutions to the equations n = m + a and n(n + 1) = 2m(m + 1).]
3. Compute the Dynkin type of the following positive unit forms,

a) q(x) = x2
1 + x2

2 + x2
3 + x2

4 − (x1 + x2)(x3 + x4) + x1x2 + x3x4.
b) q ′(x) = x2

1 + x2
2 + x2

3 + x2
4 + x1x4 − x1x2 − x2x3 − x3x4.

4. Show that any positive unit form q may be taken by deflations to qB where B is
a bigraph with no solid edges.

5. Give an example of a nonunitary positive integral quadratic form in at least three
variables.

6. Determine which of the following unit forms is positive, and find the correspond-
ing Dynkin type for those forms which are positive.

a) q(x) = x2
1 + x2

2 + x2
3 + x2

4 − x2(x1 − x3) − x4(x1 + x3) + x1x3.
b) q ′(x) = x2

1 + x2
2 + x2

3 + x2
4 + x2

5 + x2
6 − x1(x2 + x4 − x6) − x2(x3 + x5 +

x6) + x3(x4 + x5) − x4x6.
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7. Let V : Zn → Z
n be a point inversion, that is, a linear transformation such that

V (ei) = ±ei where ei, . . . , en are the canonical vector of Zn. Given a positive
unit form q , is there an iterated flation T for q such that V = T ?

8. Give an example of a unit form q and a flation T for q such that qT is no longer
a unitary form.

2.5 Recognizing Positive Unit Forms

Let G be a simple graph (with only solid edges, no loop and no multiple edges) and
for two different vertices r and s define [r, s]G to be the number of edges between
vertices r and s (notice that [r, s]G = −(qG)rs). For fixed vertices i, j we define a
new graph G′ with the same vertices as G and the same edges as G, except those
containing vertex i for which we have

[r, i]G′ =
{

|[r, i]G − [i, j ]G[r, j ]G|, if r �= j,

[j, i]G, if r = j.

We denote the new graph G′ by GTij and say that G is transformed by the graph
flation Tij into G′. Observe thatGTij is again a simple graph. Starting with a bigraph
B we define a new graph Frame(B) (with only solid edges), referred to as the frame
of bigraph B, by turning solid all dotted edges of B. For a unit form q we take
Frame(q) to be the frame of the associated bigraph Bq of q .

Lemma 2.27. Let q be a positive unit form. Take vertices i �= j such that qij �= 0
and take ε ∈ {+1,−1} with εqij > 0. Then we have

Frame(q)Tij = Frame(qT ε
ij ).

Proof. By Lemma 2.14(b) we have |qij | = 1. Hence the claim follows from the
expression

q(T ε
ij x) = q(x − qij xiej ) = q(x)+ x2

i − qij xiq(x|ej )

= q(x)+ x2
i − qij xi

⎡
⎣2xj +

∑
k �=j

qkj xk

⎤
⎦

= q(x)− qij xi

⎡
⎣2xj +

∑
k �=i,j

qkj xk

⎤
⎦

= q(x)− qij

⎡
⎣∑

k �=i

qkj xkxi + xixj

⎤
⎦ .

��
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Notice that if the vertices i and j are not connected by an edge, then GTij = G.

Remark 2.28. Let G be a simple graph, and take vertices i �= j . Then G =
(GTij )Tij , that is, graph flations are involutions.

Proof. By the comment above we may assume that [i, j ]G = 1. Take G′ = GTij
and G′′ = G′Tij . We only need to show that for r �= i, j we have [r, i]G′′ = [r, i]G.
By definition,

[r, i]G′′ = |[r, i]G′ − [i, j ]G′ [r, j ]G′ | = ||[r, i]G − [i, j ]G[r, j ]G| − [i, j ]G[r, j ]G|.

If [r, j ]G = 0 then [r, i]G′′ = |[r, i]G| = [r, i]G. Otherwise we have [r, j ]G =
1 = [i, j ]G and therefore |[r, i]G − [i, j ]G[r, j ]G| = [i, j ]G[r, j ]G − [r, i]G, and in
particular

||[r, i]G − [i, j ]G[r, j ]G| − [i, j ]G[r, j ]G| = | − [r, i]G| = [r, i]G.

This completes the proof. ��
We say that two simple graphs are flation equivalent if one is obtained from the

other by a sequence of graph flations. By Remark 2.28 this is actually an equivalence
relation. We call a graph G positive admissible if there exists a positive unit form q

with Frame(q) = G.

Proposition 2.29. The following statements hold.

a) Let G and G′ be flation equivalent simple graphs. Then G is positive admissible
if and only if G′ is positive admissible.

b) If q and q ′ are equivalent positive unit forms then their frames Frame(q) and
Frame(q ′) are flation equivalent.

Proof. Assume G is a positive admissible graph and take a positive unit form q with
G = Frame(q). Take an iterated graph flation T = Ti1j1 · · ·Tir jr for r ≥ 1 such
that G′ = GT . Choose signs εi, . . . , εr such that T ε := T

ε1
i1j1

· · · T εr
ir jr

is an iterated
flation for q . Taking q ′ = qT ε and using Lemma 2.27 observe that

Frame(q ′) = Frame(qT ε) = Frame(q)T = GT = G′.

Since q ′ is a positive unit form, then G′ is a positive admissible graph, which shows
(a).

For (b), since q and q ′ have the same Dynkin type, by Theorem 2.20 there
are iterated inflations that take q and q ′ to qΔ for some disjoint union of Dynkin
diagrams Δ. In particular there is an iterated flation T with q ′ = qT . Then
Lemma 2.27 implies that Frame(q) and Frame(q ′) are flation equivalent graphs.

��
In the following results we describe bigraphs associated to positive unit forms.

We start with some necessary conditions. A (chordless) cycle in a bigraph B is a full
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subbigraph which is connected and where every vertex has exactly two neighbors.
We say that a bigraph B satisfies the cycle condition if every cycle in B has an odd
number of dotted edges.

Proposition 2.30. The bigraph Bq associated to a positive unit form q always
satisfies the cycle condition.

Proof. Suppose on the contrary that there exists a positive unit form q and a cycle C
in B = Bq which has an even number of dotted edges. Suppose that C has vertices
{x1, . . . , xn} with qxi,xi+1 �= 0 for i = 1, . . . , n − 1 and qxn,x1 �= 0. Since q is
a positive unit form we have n > 2. Define a vector v in Z

B0 by setting vy = 0
for all y /∈ C, vx1 = 1 and take inductively vxi+1 = −qxi,xi+1vxi = ±1, using
Lemma 2.14(b). Then

q(v) =
n∑

i=1

v2
xi

+
n−1∑
i=1

qxixi+1vxi vxi+1 + qx1xnvx1vxn

= n −
n−1∑
i=1

q2
xixi+1

v2
xi

− (−qx1xn)

(
n−1∏
i=1

(−qxixi+1)

)
v2
x1

= 0,

in contradiction to q being a positive unit form. ��
By a point inversion we mean a linear transformation V : Zn → Z

n such that
V (ei) = ±ei for all i ∈ {1, . . . , n}. If q ′ = qV we also say that q ′ is a point
inversion of q . Recall that a walk in a (bi)graph G is an alternating sequence of
vertices and connecting edges,

w = (v0, d1, v1, d2, v2 . . . , vn−1, dn, vn),

starting and ending in vertices v0 and vn (see for instance [18]). The number n is
said to be the length of w. A walk w will be denoted by w = (v0|d1 · · · dn|vn), or
simply by w = d1 · · · dn. We say that a walk w is reduced if it does not contain any
subsequence of the form (v0, d, v1, d, v0) for an edge d joining vertices v0 �= v1,
and that w is open if it does not start and end at the same vertex. In what follows all
walks are assumed to be reduced.

Proposition 2.31. For two positive unit forms p and q the following are equiva-
lent:

a) There exists a point inversion V such that q = pV .
b) Frame(q) = Frame(p) and for every cycle C in the bigraph Bq , the number of

edges {i, j } in C with qij �= pij is even.

Proof. Let us first show that (a) implies (b). That Frame(q) = Frame(qV ) for
any point inversion V is clear. Assume that there is a j such that V (ej ) = −ej and
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V (ei) = ei for any other index i. If j is a vertex in cycle C, then there are exactly
two edges in C containing j , namely α = {i, j } and α′ = {j, i ′} for some vertices i
and i ′. Then we have for p = qV that pij = −qij and pji′ = −qji′ . For the rest of
the edges {a, b} in Bq it is clear that pab = qab. Hence point (b) follows inductively
for arbitrary point inversions.

For the converse choose a maximal subtree Σ = (Σ0,Σ1) of B = Bq (that is,
a connected subgraph of B such that |B0| = |Σ0| = |Σ1| + 1). Since Frame(q) =
Frame(p), there is a point inversion V such that q ′ = pV satisfies qij = q ′

ij for
all edges {i, j } in Σ . We only need to verify that qij = q ′

ij for any other edge
α = {i, j } in B. By maximality of Σ , both vertices i and j belong to the subtree
Σ . In particular, there is a walk w = (x0, α1, x1, . . . , xd−1, αd , xd) contained in Σ

with x0 = i and xd+1 = j .
We proceed by induction on the (relative) distance dΣ(i, j) between vertices i

and j along subtree Σ (the length d of the walk w above). If dΣ(i, j) = 1 then
the edge α = {i, j } actually belongs to Σ (for Frame(q) has no double edges by
Lemma 2.14(b)), hence qij = q ′

ij .
Assume now that dΣ(i, j) > 1. If the full subgraph C of B consisting of vertices

x0, . . . , xd (which contains edges α = {i, j }, α1 = {x0, x1}, . . . , αd = {xd−1, xd})
is a (chordless) cycle of B, then we have qxr−1,xr = q ′

xr−1xr
for r = 1, . . . , d ,

which yields qij = q ′
ij by the hypothesis in (b). If C is not a cycle, then there are

indices 1 ≤ r < s − 1 ≤ d such that β = {xr, xs} is an edge of B different from α.
Replacing any of the edges αr, . . . , αs in Σ by the edge β, we get a maximal subtree
Σ ′ of B where the relative distance dΣ ′(i, j) is strictly smaller than dΣ(i, j). Apply
induction in this case.

Altogether we have a point inversionV such that q = q ′ = pV , which completes
the proof. ��
Corollary 2.32. If two positive unit forms p and q have the same frame then they
are equivalent. In particular, they have same Dynkin type.

Proof. By Proposition 2.30 both bigraphs Bp and Bq satisfy the cycle condition.
Hence statement (b) in Proposition 2.31 is satisfied, and the forms p and q are
equivalent. The second claim is consequence of Corollary 2.21. ��

Therefore we might speak of the Dynkin type of a positive admissible graph G,
which will be denoted by Dyn(G).

Proposition 2.33. Let q be a unit form with positive admissible frame. Then q is
positive if and only if Bq satisfies the cycle condition.

Proof. Let p be a positive unit form with Frame(p) = Frame(q). If q is positive
then Bq satisfies the cycle condition by Proposition 2.30. On the other hand, if Bq

satisfies the cycle condition then p and q satisfy condition (b) in Proposition 2.31,
hence there is a point inversion V with q = pV . In particular q is a positive unit
form. ��
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2.6 Assemblers

If Γ is a graph without loops, we will say that two edges a, b of Γ are incident
if they have a single vertex in common. Define the incidence graph of Γ to be the
graph G having as vertices the edges of Γ (G0 = Γ1), where two vertices in G

are joined by a (single solid) edge if and only if they are incident edges in Γ . We
denote the graph G by Inc(Γ ) (compare with the definition of an incidence (signed)
graph associated to a directed graph, as recently given in [35]). For the sake of
clarity, graphs Γ with Frame(B) = Inc(Γ ) will be referred to as assemblers for
the bigraph B, as well as for the unit form q in case B = Bq . Consider for instance
the following assemblers Γ next to their corresponding incidence graphs Inc(Γ ),

•
• • •

• • •

•
• • •

•
• •

•
• •

• •

••

• •

•
• •

Γ1 Inc(Γ1) Γ2 Inc(Γ2)

Keeping the notation introduced in Sect. 2.5, next we show that the class of
incidence graphs is invariant under graph flations. For two incident edges a �= b

in an assembler Γ , define the flation for assemblers of Γ to be the graph ΓTa,b

obtained from Γ by exchanging the edge a by the symmetric difference aΔb (if
a = {i, j } and b = {i, k} we have aΔb = {j, k}).
Proposition 2.34. Let Γ be a graph without loop, and take a and b to be incident
edges in Γ . Then

Inc(Γ )Tab = Inc(ΓTab),

where Tab is the graph flation as defined in Sect. 2.5.

Proof. Take G = Inc(Γ ), G′ = Inc(ΓTab) and G′′ = GTab. It is clear that for
vertices c �= a and d �= a in G0 = G′

0 = G′′
0 we get

[c, d]G = [c, d]G′ = [c, d]G′′ .

By definition we have [a, c]G′′ = |[a, c]G − [a, b]G[b, c]G| for c �= b, and
[a, b]G′′ = [a, b]G. Let us assume that the edge c is incident to a in Γ (that is,
[a, c]G = 1). We distinguish two cases: In the first one we have that c is not incident
to b in Γ (thus [b, c]G = 0, and therefore [a, c]G′′ = 1), where two subcases appear
as shown below,

Γ

c

ba b

c

a
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Γ ab

c

b
a

b
c
a

Notice that in these subcases the edges a and c remain incident in the graph ΓTab

(that is, [a, c]G′ = 1). For the second case we assume that c is incident to b in
Γ (that is, [b, c]G = 1, and now [a, c]G′′ = 0), where the possibilities are shown
below,

Γ
c

ba b

c

a

Γ ab

c

b

a

b
c

a

Observe now that edges a and c are not incident to each other in the graph ΓTab,
that is, we have [a, c]G′ = 0. In both cases we obtain [a, c]G′ = [a, c]G′′ whenever
[a, c]G = 1.

The case where edge c is not incident to edge a (that is, [a, c]G = 0) can be
treated in a similar way, and is left as exercise. Since we want to show that [c, d]G′ =
[c, d]G′′ for all vertices c and d in G, by the above the proof is completed by noticing
that [a, b]G′′ = [a, b]G = 1 = [a, b]G′ . ��

We illustrate the previous proposition with some examples, showing on top of
each graph Gi a corresponding assembler Γi with Inc(Γi) = Gi , and below it a
bigraph Bi with frame Frame(Bi) = Gi . Notice that assemblers are not unique (see
Exercise 2 below).

• •

•
• •

3 2

5

4 1

• •

•
• •

3 2

5

4 1

• •

•
• •

3 2

5

4 1

• •

•
• •

3 2

5

4 1

G1 G2=G1T1,5 G3=G2T1,4 G4=G3T1,3

• •
•

• •

3 2

5

4 1
••
•• •4 5

2

3 1 ••
•• •4 5

2

3 1
•
•

•• •4 5

2

3

1

Γ1 Γ2=Γ1 1,5 Γ3=Γ2 1,4 Γ4=Γ3 1,3

• •

•
• •

3 2

5

4 1

• •

•
• •

3 2

5

4 1

• •

•
• •

3 2

5

4 1

• •

•
• •

3 2

5

4 1

B1 B2=B1T
+
1,5 B3=B2T

+
1,4 B4=B3T

+
1,3
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Assume now that Γ is a bigraph, and take Γ = Frame(Γ ). Define the incidence
graph of a bigraph Γ , also denoted by Inc(Γ ), to be the union of Inc(Γ ) with
a vertex ω joined exclusively to those vertices of Inc(Γ ) corresponding to dotted
edges of Γ . Flations for assemblers Tab act in the same way on the frame of Γ ,
leave all edges different from a with the same type (solid or dotted) and change the
type of a if and only if b is a dotted edge. We will also say that a bigraph Γ is
an assembler of bigraph B (resp. of a unit form q) if Inc(Γ ) = Frame(B) (resp.
Inc(Γ ) = Frame(q)).

Corollary 2.35. Let Γ be a bigraph and a �= b be incident edges in Γ . Then

Inc(Γ )Tab = Inc(ΓTab).

Moreover, if Γ satisfies the cycle condition, so does ΓTab.

Proof. Take G = Inc(Γ ), G′ = Inc(ΓTab) and G′′ = GTab. To show that
[c, d]G′ = [c, d]G′′ for all vertices c and d in G0 = G′

0 = G′′
0, by Proposition 2.34

we only need to assume that c = a and d = ω. Observe that [a, ω]G′′ �= [a, ω]G if
and only if [b, ω]G = 1, that is, if and only if b is a dotted edge in Γ . On the other
hand, by definition [a, ω]G′ �= [a, ω]G if and only if b is a dotted edge in Γ , which
shows the first claim.

For the second claim, assume that C is a cycle in Γ with t ≥ 2 vertices, and that
Tab is a flation for assemblers that modifies C. Hence a must be an edge of C.

First, if b is also an edge of C, then t > 2 (for a and b are incident edges in Γ )
and C is transformed by Tab to a smaller cycle C′ with the edge b (not belonging
to C′) attached next to a. Observe that b is dotted if and only if edge a changes its
type, therefore ΓTab also satisfies the cycle condition.

Now, if b does not belong to the cycle C, then this cycle is transformed after Tab

to a larger cycle C′ now including b. Again, edge b is dotted if and only if the type
of a is changed, thus concluding that ΓTij satisfies the cycle condition. ��

As for inflations and deflations (Corollary 2.18), and for graph flations
(Remark 2.28), it is clear that flations for assemblers are involutions. In particular,
any iterated flation for assemblers T = Ta1b1 · · ·Tarbr is reversible, with inverse
given by T −1 = Tarbr · · ·Ta1b1 .

Recall that a tree Γ is a connected graph satisfying |Γ0| = |Γ1|+ 1. A connected
graph Γ with |Γ0| = |Γ1| is usually called a pseudotree (or 1-tree). Particular cases
of the following result, corresponding to Dynkin types A and D, were presented
with different formulations respectively in [5] and [6]. The details for the proof of
the following combinatorial observation, needed for the main result in this section,
are left as exercise.
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Remark 2.36. Every Dynkin graph Δ has an assembler Γ Δ with the following
shapes:

(i) Γ An 1 • 2 • 3 · · · n • for n ≥ 1;

(ii) Γ Dm
1

2
• 3 • 4 · · · m • for m ≥ 4;

(iii) Γ Ep

= •

= •

= • 1

2
• 3 • 4 · · · p−1 • for 6 ≤ p ≤ 8.

Moreover, if Γ is respectively a solid tree with n ≥ 1 edges, a solid pseudotree with
m ≥ 4 edges, or a pseudotree with the cycle condition and p ∈ {5, 6, 7} edges, then
there is a Dynkin graph Δ (respectively Δ = An, Δ = Dm or Δ = Ep+1) and an
iterated flation for assemblers T such that ΓT = Γ Δ.

Sketch of the Proof. A direct observation yields Δ = Frame(Δ) = Inc(Γ Δ).
For the second claim, recall that a pendant edge in Γ is an edge containing an

edge of degree one (that is, a vertex belonging to only one edge in Γ , cf. [18]).
Assume that Γ is a solid tree with n ≥ 1 edges, and observe that Γ is a linear graph
(that is, Γ = An+1) if and only if Γ has at most two pendant edges. It can be easily
shown that if Γ has more than two pendant edges, then there is an iterated flation
for assemblers T such that ΓT has fewer pendant edges than Γ , which shows the
claim for the case A.

Similarly, if Γ is a pseudotree with m ≥ 4 edges then there is an iterated flation
for assemblers T such that Γ ′ = ΓT has exactly one pendant edge (hence Γ ′
consists of a linear graph with a cycle attached at one end-point). Now, as illustrated
in the figure before Corollary 2.35, such a graph Γ ′ may be taken by means of
iterated flations for assemblers to a graph with shape Γ Dm . Finally, for the case E

use the above and the fact that flations for assemblers preserve the cycle condition
(Corollary 2.35). ��
Theorem 2.37. For a connected unit form q the following are equivalent:

a) The form q is positive with Dynkin type Δ.
b) The associated bigraphBq satisfies the cycle condition and there is an assembler

Γ for q such that

i) Γ is a solid tree, for the case of Dynkin type A.
ii) Γ is a solid pseudotree and |Γ1| ≥ 4, for the case of Dynkin type D.

iii) Γ is a pseudotree with the cycle condition and |Γ1| + 1 ∈ {6, 7, 8}, for the
case of Dynkin type E.

Proof. Assume first that q is a positive unit form. By Proposition 2.33 the bigraph
Bq associated to form q satisfies the cycle condition. By Theorem 2.20 there
is an iterated inflation T + = T +

a1b1
· · · T +

arbr
for q such that qT + = qΔ for a

Dynkin graph Δ (the Dynkin type of the connected form q). Observe that Dynkin
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graphs of type An, Dm and Ep are respectively incidence graphs of a solid tree
Γ An , a solid pseudotree Γ Dm and a pseudotree with the cycle condition Γ Ep (see
Remark 2.36). Hence by Proposition 2.27 we have Δ = Inc(Γ Δ) = Frame(qΔ) =
Frame(qT +) = Frame(q)T , where T is the iterated graph flation given by
T = Ta1b1 · · · Tarbr . Applying the reversed iterated graph flation T −1 we get by
Proposition 2.34,

Frame(q) = Inc(Γ Δ)T −1 = Inc(Γ ΔT −1),

where T −1 is the corresponding iterated flation for graphs T −1 = Tarbr · · ·Ta1b1 .
Then (b) follows since (iterated) flations for assemblers preserve solid trees, solid
pseudotrees and (by Corollary 2.35) pseudotrees with the cycle condition.

Assume now that (b) holds. By Remark 2.36 there is a Dynkin graph Δ and an
iterated flation for assemblers T such that ΓT = Γ Δ. Again by Proposition 2.34
and Corollary 2.35 we have

Δ = Inc(Γ Δ) = Inc(ΓT ) = Inc(Γ )T = Frame(q)T ,

where T is the iterated graph flation corresponding to T , that is, Δ = Frame(qΔ)
and Frame(q) are flation equivalent graphs. Since Frame(qΔ) is positive
admissible and Bq satisfies the cycle condition by hypothesis, we conclude by
Proposition 2.33 that the unit form q is positive. By the above we also have
Dyn(Frame(q)) = Dyn(Frame(qΔ)) = Δ, which implies that q has Dynkin type
Δ. This completes the proof. ��

We end this section with a description, up to point inversion, of the roots of
connected positive unit forms of Dynkin type An and Dm. In what follows we say
that a (reduced) walk w is minimal if, for any cycle C in Γ , every edge in C appears
at most once along the walk w. Consider a graphΓ , a walk w in Γ and the incidence
graph G = Inc(Γ ) of Γ . Define the incidence vector vw of the walk w to be the
vector in Z

G0 = Z
Γ1 given as follows: for a ∈ G0 = Γ1 the entry vwa is the number

of times that the edge a appears along the walk w.

Theorem 2.38. Let Γ be a solid tree or a solid pseudotree which is assembler of a
positive unit form q (of Dynkin type A or D). Then for any open minimal walk w of
Γ there exists a point inversion V such that V (vw) is a root of q . Moreover, every
root of q can be found in this way.

Proof. Take a minimal walk w = (x|a1 · · · ad |y) from vertex x to vertex y in Γ . We
proceed by induction on d . Case d = 1 is obvious, since vw is a canonical vector
and q is unitary. Suppose that d > 1 and consider any flation for assemblers of the
shape Tai ,ai+1 for some 1 ≤ i < d . The walk w determines a smaller minimal open
walk w′ in Γ ′ = ΓTai ,ai+1 (also starting and ending at vertices x and y) by taking
out the corresponding edge ai+1. Since w′ has smaller length than w, by induction
there is a point inversion V ′ such that v′ := V ′(vw′

) is a root of the positive unit
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form q ′ = qT ε
ai,ai+1

, for an appropriate sign ε. Notice that

T ε
ai,ai+1

(v′) = v′ − εv′
ai
eai+1,

which is a root of q . By minimality and since Γ is a (pseudo)tree, a given edge will
appear at most two times in the sequence of edges of the walk w, thus the walk w′
contains the edge ai+1 at most once. Notice also that if v′

ai
is nonzero, then it has the

same value of εv′
ai+1

. Hence, up to a change of sign in coordinate ai+1, we deduce
that the vector T ε

ai,ai+1
(v′) is the incidence vector vw of walk w, which shows the

first claim.
For the second claim we count walks. Let us first assume that Γ is a solid tree

with n edges (thus q has Dynkin type An). Enumerating vertices in Γ observe that
for any x < y in Γ0 there is a unique walk w starting at x and ending in y, thus
producing n(n+ 1) different roots. Indeed, a tree Γ with n edges has n+ 1 vertices,
and for any walk w in Γ both vw and −vw are roots of q up to a point inversion.
This is the total number of q-roots of Dynkin type An (see Table 2.1).

Assume now that Γ is a pseudotree with m ≥ 4 edges and notice that for any
vertices x < y in Γ0 there are exactly two minimal walks starting at x and ending in
y (either surrounding or not the unique cycle in Γ ). Since pseudotrees with m edges
have m vertices, as above we produce 2m(m−1) different q-roots, which is the total
number of roots for positive unit forms of Dynkin type m (cf. Table 2.1). ��

In what follows we will depict the shape of those bigraphs corresponding to
positive unit forms of Dynkin type A or D having a sincere positive root (indicating
the entries of such vectors in the vertices of the bigraph). Our pictures may contain
some snake edges (a a������ ), each of them represents a line in B, that is, a full
subgraph of type Am with solid edges (and integer value a at each vertex).

Corollary 2.39. Any sincere positive root of a connected positive unit form q of
Dynkin type An is given by a line with values 1 at each entry, represented by the
picture:

1 1

(A)

Moreover, if v is a sincere positive root of a connected positive unit form q of Dynkin
type Dn, then v is shown in one of the illustrations in Table 2.3.

Proof. Case A is direct consequence of Theorem 2.38, since this is the shape of
incidence vectors vw for open walks in a tree Γ which is the assembler for q .

Assume now that q has Dynkin type Dm and that Γ is a pseudotree. Consider
again Theorem 2.38 and observe that a walk in Γ which is not a line has the
following form,
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δ3 δ2 β1 · · · βs

δ1=αr αr−1 · · ·α1 α0

δu−1 δu γ1 · · · γt

...

for integers r, s ≥ 0, t ≥ 1 and u ≥ 2. When u > 2, cases (D1–D4) in Table 2.3
correspond respectively to the cases r = 0 = s, r > 0 = s, r > 0 < s and
r = 0 < s. When u = 2, we have cases (D1′–D4′). ��
Exercises 2.40.

1. Find an assembler for the positive unit forms given in Exercise 2.26.3.
2. Find a (solid) graph G with at least two assemblers (that is, different (bi)graphs

Γ and Γ satisfying Inc(Γ ) = G = Inc(Γ ′)).
3. Let G be a complete solid graph with n vertices (that is, G has no loop and

[i, j ]G = 1 for any pair of different vertices i and j ). Find an iterated graph
flation T such that GT = An.

4. Let Γ be a pseudotree bigraph with the cycle condition such that |Γ1| + 1 /∈
{6, 7, 8}. Show that Inc(Γ ) is a positive admissible graph, and determine its
Dynkin type.

5. Give an example of a (solid) graph Γ such that no bigraph B with Frame(B) =
Inc(Γ ) satisfies the cycle condition.

Table 2.3 Sincere positive roots of positive unit forms of Dynkin type D

1

1 1 1

1

1 1

1 1 1

1 1

1

2 2 1 1

1

1 1

2 2 1 1

1 1

1 1 1

2 2

1 1 1

1 1 1 1

2 2

1 1 1 1

1

1 1 1 1

1

1 1 1 1

1 1 1 1

(D1 ) (D1)

(D2 )
(D2)

(D3 ) (D3)

(D4 )
(D4)
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6. Show that a graph which is a solid cycle is positive admissible of Dynkin type
A3 if it has three points, and of Dynkin type Dn if it has n ≥ 4 points.

Recall that if q : Zn → Z and i ∈ {1, . . . , n}, then the restriction of q to the
set {1, . . . , i − 1, i + 1, . . . , n} is denoted by q(i). Similarly we denote by G(i) the
restriction to {1, . . . , i − 1, i + 1, . . . , n} of a graph G with vertices {1, . . . , n}. Let
x be a vertex in a connected graph G with more than one vertex. The connecting
valence vG(x) of x in G is the number of connected components of G(x). We say
that G is a block if all its vertices have connecting valence one.

7. Let G be a connected graph. Show that G is a positive admissible block of
Dynkin type An if and only if G is a complete graph.

8. Let G be a block of Dynkin type Dn. Show that if Dyn(G(x)) = Dn−1 for a
vertex x, then G(x) is a block.

9. Describe all blocks of Dynkin type Dn.
10. Describe all nonblocks of Dynkin type E6.
11. Find the Dynkin type and an assembler for the following positive unit forms.

a) q(x) = x2
1 + . . .+x2

6 −x1(x2 +x3)+x2(x3 +x4 −x5)+x3(x4 −x6)−x4x5.
b) p(x) = x2

1 + . . . + x2
6 − x1(x2 + x3 + x4) + x2(x3 + x4) + x3(x4 − x5) −

x4x6 − x5x6.

12. Using inflations, show that the form qB is positive of Dynkin type E8, where B
is the following bigraph. How many positive roots does qB have?

· ·
· ·

· ·
· ·

13. Show that if C is a (solid) cycle with t > 1 vertices and v is a sincere vector in
Z
t , then qC(v) > 1.

14. We say that the roots of a positive unit form q of Dynkin type Δ attain their
maximum if there exists a root v and a vertex i such that |vi | = rΔ, see
Proposition 2.22. Show that if Dyn(q) = Dn, then the roots of q attain their
maximum if and only if Frame(q) is not a block.

15. Show that the following graphs contain a subgraph of Dynkin type E6:

a) β1 · · · βr

α γ1 · · · γs ω

δ1 · · · δt

b) β1
· · · βr

α γ1 · · · γs ω

δ1
· · · δt

c) β1 · · · βr

α ω

γ1 · · · γs

for r, s, t ≥ rof1 r, s ≥ 2.
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16. For i, j ≥ 2 consider the graph Hi,j given by

1 β3 β4 · · · βj

αi
· · · α4 α3 2

Show that if Hi,j has n ≥ 4 elements, then Dyn(Hi,j ) = Dn.
17. For a positive admissible graph G of Dynkin type Dn, what is the number of

vertices x of G such that Dyn(G(x)) = An−1?
18. Show that the following graphs are either of Dynkin type E or nonpositive

admissible:

a) βt βt−1

α β1 · · · βt−2

b) βt βt−1

α β1 · · · βt−2 γ

for t ≥ rof5 t ≥ 4.

19. Take a graph G of Dynkin type D and two proper subsets of vertices I, J with
I ∩ J = ∅. Assume that both restrictions GI and GJ are connected. Show that
if Dyn(GI ) = D, then Dyn(GJ ) = A.

20. Assume that G is a connected graph of Dynkin type Dn with more than 5
vertices. Show that if x and y are vertices such that Dyn(G(x)) = Dyn(G(y)) =
Dn−1 and G(x)(y) is connected, then Dyn(G(x)(y)) = Dn−2.



Chapter 3
Nonnegative Quadratic Forms

In this chapter we deal with semi-unit forms that are nonnegative, that is, integral
quadratic forms q(x1, . . . , xn) = ∑

1≤i≤j≤n qij xixj with diagonal coefficients qii
in the set {0, 1} for i = 1, . . . , n such that q(x) ≥ 0 for any vector x = (x1, . . . , xn)

in Z
n. As before it will be convenient to set qji = qij for i �= j . We begin by

describing nonnegative forms related to (solid) graphs (those forms q satisfying
qij ≤ 0 for i �= j ).

3.1 Extended Dynkin Graphs

Recall that extended Dynkin diagrams (also known as Euclidean graphs) are
obtained from Dynkin graphs Δ by adding a vertex ω and edges joining ω with
certain exceptional vertices in Δ (cf. Tables 2.1 and 2.2 in Chap. 2 and Lemma 5.9
in Chap. 5). It was shown in Proposition 2.2 that the quadratic form qG associated
to a (solid) connected graph G is positive if and only if G is a Dynkin diagram.
This result is generalized below to the nonnegative setting, by means of extended
Dynkin diagrams (cf. [46]). Recall that for a set of indicesG0 the support of a vector
x ∈ Z

G0 is given by supp(x) = {i ∈ G0 | xi �= 0}, and that the vector x is positive
if x �= 0 and xi ≥ 0 for all i ∈ G0.

Proposition 3.1. Let G be a connected (solid) graph. Then the associated
quadratic form qG is semi-unitary nonpositive and nonnegative if and only if G
is a loop or an extended Dynkin diagram Ãn, D̃m or Ẽp for n ≥ 1, m ≥ 4 or
p = 6, 7, 8 (see Table 2.2).

Proof. Consider an extended Dynkin diagram Δ̃ and its associated quadratic form
q = qΔ̃. Observe that any proper subgraph of Δ̃ is union of Dynkin diagrams.
Hence by Lemma 2.1 any proper restriction of q is positive. Now, it can be directly
verified that the vector pΔ̃ displayed as vertices in Table 2.2 is an isotropic vector
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for q (see Exercise 2.10.4). Therefore q is a critical nonpositive unit form, and by
Theorem 2.12 the form q is nonnegative (again since q has an isotropic vector and
Kronecker forms qm with |m| > 2 are anisotropic, see Proposition 1.20). If Δ̃ is a
single loop, then qΔ̃ is clearly a nonnegative semi-unit form (the zero form in one
variable ξ ).

Let now G be a connected graph with n vertices such that q := qG is nonpositive
and nonnegative and take the canonical vectors {ei}i∈G0 of ZG0 .

First notice that if I ⊂ G0 is a subset of vertices such that qI has a positive
radical vector w, then I = G0. Indeed, if i ∈ G0 − I we may complete w by zeros
to a vector v in Z

G0 , which is a (positive) radical vector of q by Lemma 2.11. Since
vi = 0, as shown in Lemma 1.1 we have

q(v|ei) = 2qiivi +
∑
j �=i

qij vj =
∑
j �=i

qij vj < 0,

where the last inequality is due to the connectedness of G, since qij ≤ 0 for all
i �= j and v is a positive vector. This is impossible since v is a radical vector of q .

Assume that G has a loop, say in vertex i (that is, qii ≤ 0). By nonnegativity
we have 0 ≤ q(ei) = qii , that is, the vertex i has exactly one loop on it. Then ei
is a positive radical vector for the one-variable restriction q{i}, and by the above we
have n = 1 and G is a single loop (that is, q is the zero form ξ in one variable).
Assume now that G has no loop, but has multiple edges (say qij < −1 for vertices
i �= j ). Then 0 ≤ q(ei + ej ) = 2 + qij , that is qij = −2, and in particular ei + ej
is a positive radical vector of the restriction q{i,j}. Therefore n = 2 and q is the
Kronecker form q2(x1, x2) = (x1 − x2)

2.
Hence we may assume that G is a simple graph (with no loops nor multiple

edges). By Proposition 2.2 the graphG is not a Dynkin diagram, for q is nonpositive.
Recall that for any connected simple graph G that is not a Dynkin graph, there is a
subset E0 ⊂ G0 such that the full subgraphE of G determined by E0 is an extended
Dynkin diagram (cf. Table 2.2 and Exercise 2.10.5). For any such diagram E, the
restriction qE0 of q has a positive radical vector pE , the one exhibited in Table 2.2.
Using again the above argument we have E0 = G0, that is, G is an extended Dynkin
diagram which completes the proof. ��

We give a useful result for nonnegative semi-unit forms which is analogous to
Lemma 2.14, compare also with Lemma 2.11. We say that an integral quadratic
form q : Zn → Z is pre-unitary or a pre-unit form if q(ei) ≤ 1 for i = 1, . . . , n,
where e1, . . . , en is the canonical basis for Zn. Recall that a vector z in Z

n is an
isotropic vector for q if q(z) = 0.

Lemma 3.2. Let q : Z
n → Z be a nonnegative pre-unit form. Then q is semi-

unitary and the following hold.

a) Any isotropic vector for q is a radical vector.
b) We have |qij | ≤ 2 for all indices i, j ∈ {1, . . . , n}.
c) If q(ei) = 0 for some i ∈ {1, . . . , n}, then qij = 0 for all j ∈ {1, . . . , n}.
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Proof. That q is semi-unitary is evident. For (a) consider an isotropic vector x ∈
Z
n, an arbitrary integer m and an index i ∈ {1, . . . , n}. Then we have

0 ≤ q(mx + ei) = m2q(x)+ q(ei) + mq(x|ei) ≤ 1 + mq(x|ei).

Since m is arbitrary the equality q(x|ei) = 0 must hold, and since this is true for
any index i, the vector x is radical for q .

Take now indices i �= j and observe that by nonnegativity, since qij = q(ei|ej ),
we have

0 ≤ q(ei ± ej ) = q(ei) + q(ej ) ± qij ≤ 2 ± qij ,

which shows (b). Assume finally that q(ei) = 0 for some i ∈ {1, . . . , n}. By (a) the
canonical vector ei is radical for q , that is, for any j �= i we have

0 = q(ei |ej ) = qij ,

thus (c) holds. ��
Let q be an integral quadratic form. Recall form Sect. 2.4 that a flation for q is a

linear transformation T ε
ij : Zn → Z

n given by

T ε
ij : v → v − εviej ,

where ε ∈ {+,−} is a sign such that εqij = |qij |. When qij > 0 we say that T +
ij is

an inflation for q , and when qij < 0 the transformation T −
ij is called a deflation. A

finite composition of flations is called an iterated flation.
In contrast to the positive case, nonnegative unit forms are not preserved under

flations, as the following example shows. Let ξ denote the zero quadratic form in
one variable and take q

Ã2
to be the form associated to the extended Dynkin diagram

Ã2. Then q := q
Ã2
T = ξ ⊕ qA2 is not unitary, where the iterated flation T is the

composition T −
12T

−
13.

•1 •3

•2

•1 •3

•2

•1 •3

•2
−→ −→
T −
12 T −

13

Notice that if q ′ denotes the quadratic form associated to the bigraph in the middle,
then the vector e1 + e3 generates the radical of q ′, and T −

12(e1 + e3) = e1 + e2 + e3
is a generator of the radical of q

Ã2
. Notice also that T −

13 is not a Gabrielov

transformation, and that its inverse T +
13 is neither an inflation nor a deflation for q

(see Proposition 2.17). However, we show next that semi-unitary forms are actually
preserved under flations.
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Lemma 3.3. For n ≥ 1, the set of nonnegative semi-unit forms with n variables
(denoted SU≥0(n)) is invariant under inflations and deflations.

Proof. Since flations are equivalences, we only need to show that they preserve
semi-unitary forms in the nonnegative case.

Let us assume that T ε
ij is a flation for a nonnegative semi-unit form q : Zn → Z

with qij �= 0. By Lemma 3.2 we have |qij | ∈ {1, 2} and q(ei) = 1 = q(ej ). Notice
that

q(ei − εej ) = q(ei) + q(ej ) − εqij = 2 − |qij | ∈ {0, 1}.

Take qε = qT ε
ij . Since qε(ei) = q(ei − εej ) and qε(ek) = q(ek) for k �= i, by the

above we conclude that qε is semi-unitary. ��
The fact that flations do not necessarily preserve connectedness of nonnegative

semi-unit forms (as exhibited in the example above) was used in [7] to classify those
forms.

Lemma 3.4. If q is a nonzero nonnegative connected semi-unit form, then q is
unitary. Moreover, if T ε

ij is a flation for q such that qε = qT ε
ij is not connected,

then |qij | = 2 and there is a nonnegative connected unit form q ′ such that

qε = q ′ ⊕ ξ,

where ξ is the zero form in one variable.

Proof. Assume first that q is connected but nonunitary, say q(e1) = 0. If n > 1
then for any other index 1 < i ≤ n we have q1i = 0 by Lemma 3.2(c), which is
impossible since q is connected. Then n = 1 and q is the zero form.

For the second claim let us assume that qε = qT ε
ij is not connected. Observe that

we must have |qij | = 2 (for if |qij | = 1 then T ε
ij is a Gabrielov transformation, hence

qε is connected by Proposition 2.17). By Lemma 3.2(c)we have q(ei) = 1 = q(ej ),
and

qε(ei) = q(ei − εej ) = 2 − |qij | = 0.

Again by Lemma 3.2(c) the bigraph Bε associated to qε has an isolated loop at
vertex i. The result will follow by showing that Bε has exactly two connected
components, that is, we will show that for any vertex k �= i, if k �= j then k and j

belong to the same connected component of Bε . Let B be the bigraph associated to
q . Since for k �= i we have qεk,i = 0 = qε(ei), and considering that q is unitary, then

qε(ek + ei) = qε(ek) + qε(ei) + qεki = q(ek) = 1,
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and therefore, if moreover k �= j ,

1 = qε(ek + ei) = q(ek + ei − εej )

= q(ek) + q(ei) + q(ej ) − |qij | + qki − εqkj

= 1 + qki − εqkj ,

that is, qki = εqkj . Hence, since B is connected, for every k �= i, j there exists a
walk w in B joining k and j and not containing vertex i. The same is true in Bε

since the bigraph Bε differs from B only on edges containing vertex i (for clearly
q(i) = (qε)(i)). ��

Recall that a vector x in Z
n is called sincere if supp(x) = {1, . . . , n}. The

proof of the following result, analogous to Theorem 2.20 and due originally to
Ovsienko [43], is based on an argument given by von Höhne in [52].

Theorem 3.5. Let q : Z
n → Z be a connected nonnegative unit form with

rad(q) = Zv for a sincere positive vector v. Then there exists an iterated inflation
T and an extended Dynkin graph Δ̃ such that qT = qΔ̃.

Proof. Let B0 be the bigraph associated to q = q0. If B0 has no dotted edges, by
Proposition 3.1 the connected graph B0 is an extended Dynkin graph and we are
done. Assume otherwise that (q0)ij > 0 for some i �= j and consider the inflation
T0 = T +

ij and q1 = q0T0 with associated bigraph B1. Notice that if (q0)ij > 1,
then q0(ei − ej ) = 2 − (q0)ij ≤ 0. By nonnegativity and Lemma 3.2(a), the vector
ei − ej is radical for q0, contradicting the hypothesis on the generator of rad(q0).
Therefore (q0)ij = 1 and by Lemma 3.4 the unit form q1 is connected.

Observe that the radical of q1 is generated by the positive sincere vector
v1 := (T +

ij )
−1v = v + viej . Iterating this process we find a sequence of

connected nonnegative forms q0, q1, q2, . . . with associated connected bigraphs
B0, B1, B2, . . . and an inflation Tr for qr such that qr+1 = qrTr . Moreover, the
radical of each form qr is generated by a sincere positive vector vr . We show that
this process is finite, arriving in this way at a quadratic form qr with Br having no
dotted edge, therefore Br is an extended Dynkin graph again by Proposition 3.1.

For r ≥ 0 consider the set

Cqr = {x ∈ Z
n | qr(x) = 1 and there are indices i, j with xi > 0 and xj < 0}.

We divide the proof into two steps.

Step 1. The set Cqr is finite for each r ≥ 0.
Let us assume that Cqr is an infinite set. Notice that for any of its elements x and
an arbitrary index i ∈ {1, . . . , n} we have

0 ≤ q(x ± ei) = q(x)+ q(ei) ± q(x|ei) = 2 ± q(x|ei),
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therefore |q(x|ei)| ≤ 2. Consequently we may find a sequence {a0, a1, a2, . . . , }
of different vectors in Cqr such that for any i ∈ {1, . . . , n} and any k ≥ 0 we have
q(a0|ei) = q(ak|ei). By construction, for any k �= � the difference ak − a� is
a radical vector for qr , therefore a nonzero integral multiple of vr . In particular,
ak − a� is a sincere vector, hence aki �= a�i for any index i. This implies that for
any integer m ≥ 1 there is an integer M > 0 such that for any k ≥ M none of the
entries aki of the vector ak belongs to the interval [−m,m]. Therefore we may
find k < � such that

min
i=1,...,n

(a�i ) < min
i=1,...,n

(aki ) < 0 < max
i=1,...,n

(aki ) < max
i=1,...,n

(a�i ).

Then the difference ak − a� is a radical vector for qr with a negative entry as
well as a positive entry. This is impossible since the radical of qr is generated by
a positive vector vr . Thus Cqr is a finite set for r ≥ 0.

Step 2. For r ≥ 0 the inflation Tr determines a proper inclusion Cqr+1 → Cqr .
First assume that for a qr+1-root x the vector Tr(x) does not belong to Cqr , and
assume that Tr = T +

ij for indices i �= j . Multiplying by (−1) if necessary, we
may assume that Tr(x) = x − xiej is a positive vector, that is, that xk ≥ 0 for
k �= j and xj − xi ≥ 0. Since xi ≥ 0 we must have xj ≥ 0, that is, the vector
x itself is positive. This shows that Tr(x) ∈ Cqr for any vector x in Cqr+1 . Thus
Tr : Cqr+1 → Cqr is an inclusion (for Tr is Z-invertible) which is proper since
Tr(ei) = ei − ej ∈ Cqr − Tr(Cqr+1).

Using Steps 1 and 2 we get a sequence of proper inclusions between finite sets

Cqr

Tr−1
Cqr−1

Tr−2
. . . Cq2

T1
Cq1

T0
Cq0,

hence the iterative process must stop, which completes the proof. ��
In the last result of this section we reformulate Vinberg’s characterization of

extended Dynkin diagrams (presented originally in the context of Cartan matrices,
see [51] and [32]) to the setting of integral quadratic forms (adapting the short
presentation given in [3]). For a unit form q : Z

n → Z denote by rad+(q) the
subset of rad(q) consisting of positive vectors.

Theorem 3.6 (Vinberg). Let G be a connected (solid) graph without loops. The
following are equivalent:

a) The graph G is an extended Dynkin diagram (see Table 2.2).
b) The associated unit form qG satisfies rad+(qG) �= ∅.

Proof. That (a) implies (b) is clear, since for an extended Dynkin graph Δ̃, the
vector pΔ̃ given in Table 2.2 belongs to rad+(qΔ̃).

For the converse consider the following classical terminology (cf. [3] or [32]).
For a unit form q : Z

n → Z, a vector x in Z
n is said to be subadditive if x is

positive and q(x|ei) ≥ 0 for i = 1, . . . , n. If moreover q(x|ei) = 0 for all i then x
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is said to be an additive vector for q (observe that x is additive for q if and only if
x ∈ rad+(q)). Next we divide the proof into several steps.

Step 1. The Kronecker form qm(x1, x2) = x2
1 +x2

2 −mx1x2 admits no subadditive
vector for m > 2. A direct calculation shows that for x = (x1, x2) we have

qm(x|e1) = 2x1 − mx2, and qm(x|e2) = 2x2 − mx1.

This shows that for m > 2 and x a positive vector we have either qm(x|e1) < 0
or qm(x|e2) < 0.

Step 2. If G is an extended Dynkin diagram then any subadditive vector for qG is
additive. Let x be a subadditive vector for qG and take y = pG where pG is the
positive vector given in Table 2.2. Since y is a radical vector for qG, then

0 = qG(x|y) =
n∑

i=1

yiqG(x|ei).

This implies that qG(x|ei) = 0 since qG(x|ei) ≥ 0 and yi > 0 for i = 1, . . . , n,
that is, x is an additive vector for qG.

Step 3. Let G be a connected (solid) graph without loops. If qG admits a
subadditive vector x, then for any proper restriction qIG of qG, the restriction x ′
of x to the coordinates of I is a subadditive vector for qIG which is not additive.
First notice that x must be a sincere vector (otherwise, by connectedness there
are vertices i ∈ supp(x) and j /∈ supp(x) with (qG)ij < 0, and therefore
qG(x|ej ) < 0). In particular the restriction x ′ is also a positive vector. Then for
i ∈ I , using that x is a positive vector and that (qG)ij ≤ 0 for j �= i, we have

0 ≤ qG(x|ei) = 2xi +
∑
j �=i

(qG)ij xj ≤ 2xi +
∑

j∈I, j �=i

(qG)ij xj = qIG(x
′|ei),

which shows that x ′ is a subadditive vector for qIG. To show that x ′ is not additive
observe that, since G is connected and I is a proper subset of vertices, we may
find vertices i ∈ I and j /∈ I such that (qG)ij < 0. Since x is sincere, this shows
that the second inequality in the expression above is strict, therefore qIG(x

′|ei) >
0 for such i ∈ I .

We are able now to complete the proof. Take a graph G as in the hypothesis, and
assume that x ∈ rad+(qG), that is, x is an additive vector for qG. Steps 3 and 1
imply that qG has no Kronecker restriction of the shape qm for m > 2 (that is, G
has at most double edges).

Now, if G has as full subgraph an extended Dynkin graph G′, then Step 3 implies
that the restriction x ′ is a subadditive vector for qG′ , which is not additive. This
contradicts Step 2, therefore G admits no extended Dynkin diagram as proper full
subgraph. Since G is not a Dynkin diagram (for rad(qG) �= 0), then G is an
extended Dynkin diagram (see Exercise 2.10.5). ��
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The following examples show that, in the Theorem above, condition rad+(qG) �=
∅ cannot be replaced by rad(qG) �= ∅.

+1 −1

+1 −1

+1 −1

+1 +1 −1 −1

+1 −1

+2 −2

+1 −1

+1 +1 −1 −1

Indeed, the depicted connected graphs G are not extended Dynkin diagrams, but the
vector with entries as displayed in the figures is a radical vector of qG. Subadditive
roots of q , also called locally maximal roots, will be studied later in Sect. 6.2.

3.2 Dynkin Type and Corank

An integral quadratic form q is said to be balanced if q−1(0) = rad(q), that is, if
the linear form q(x|−) vanishes for every x ∈ Z

n with q(x) = 0.
Let q : Z

n → Z be a nonnegative quadratic semi-unit form. It was shown in
Lemma 3.2(a) and (b) that q is a balanced form and that |qij | ≤ 2 for all 1 ≤ i <

j ≤ n. We show next that these conditions characterize all nonnegative forms. This
Nonnegativity Criterion, given in [7], (see also [8]), will be useful in subsequent
chapters. Observe that m-Kronecker forms qm(x1, x2) = x2

1 − mx1x2 + x2
2 are

balanced (cf. Proposition 1.20), but for |m| ≥ 3 they fail to be nonnegative forms.

Theorem 3.7. A semi-unit form q : Z
n → Z is nonnegative if and only if the

following conditions hold:

N1) For 1 ≤ i < j ≤ n we have |qij | ≤ 2.
N2) The form q is balanced, that is, every isotropic vector for q is a radical vector.

Proof. The necessity was shown in Lemma 3.2(a) and (b).
Assume now that q satisfies conditions (N1) and (N2), and let us also assume

that n is minimal such that there is a vector v ∈ Z
n with q(v) < 0. Notice

in particular that n > 2, since Kronecker forms satisfying condition (N1) are
nonnegative. For any vertex i ∈ {1, . . . , n} the restriction q(i) satisfies condition
(N1), which is condition (P1) in Theorem 2.15. If q(i) is anisotropic then it is
positive by Theorem 2.15. Hence there exists an index i and an isotropic vector
z for q(i), for otherwise q would be critical nonpositive, thus nonnegative by
Theorem 2.12. Viewing z as a vector in Z

n by setting zi = 0, notice that there are
nonzero integers a and b such that av + bz is nonsincere. But since q is balanced
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and q(bz) = 0, the vector bz is radical for q , therefore

q(av + bz) = a2q(v) < 0.

This is impossible by minimality of n, for clearly any restriction of q satisfies
conditions (N1) and (N2) (see Exercise 1 below). ��

The following reduction theorem, given in [7], is the main tool for the classifica-
tion of nonnegative semi-unit forms in terms of Dynkin diagrams. For ε ∈ {+,−}
and a vector x in Z

n define the vectors xε by taking xεi = max(εxi, 0) for
i = 1, . . . , n, so we have x = x+ − x− (recall that x is positive if x �= 0 and
x = x+). Consider also the weight of a vector x in Z

n given by |x| = ∑n
i=1 |xi |.

Recall that the corank of a semi-unit form q is the rank of its radical.

Theorem 3.8. Let q be a connected nonnegative semi-unit form with corank c.
Then there exists an iterated flation T such that qT = p ⊕ ξc, where ξc is the
zero quadratic form in c variables and p is a connected positive unit form.

Proof. Notice first that by connectedness and Lemma 3.2(c), we may assume that q
is a unitary form. We proceed by induction on the corank c of q . If c = 0 then q is
positive and there is nothing to show. For c > 0 the proof is divided into two steps:

Step 1. There is an iterated inflation T such that qT has a positive radical vector.
For a nonzero radical vector v assume that there are vertices i ∈ supp(v+) and
j ∈ supp(v−) with qij > 0 and |vi | ≤ |vj | (exchange the roles of i and j

otherwise). Define q ′ = qT+
ij and v′ = (T +

ij )
−1v = v + viej , and observe that

since vi and vj have opposite sign we have |vi + vj | < |vj |. Since |v′| < |v|
this process must stop, getting an iterated inflation T , a quadratic semi-unit form
q̂ = qT and a vector v̂ = T −1v satisfying

0 = q̂ (̂v) = q̂ (̂v+ − v̂−) = q̂ (̂v+) + q̂ (̂v−) +
∑
(i,j)

q̂ij v̂i v̂j ,

where the sum runs over the set supp(̂v+) × supp(̂v−). Since every summand
on the right side of the equation is nonnegative, all of them are equal to zero
(for (̂q)ij ≤ 0 if (i, j) ∈ supp(̂v+) × supp(̂v−)). By Lemma 3.2(a) all three
vectors v̂+, v̂− and v̂+ + v̂− are positive radical vectors of q̂ . Notice that by
Lemma 3.4, if the form q̂ is not connected then there is a connected unit form q̂ ′
and an integer c′ with q̂ = q̂ ′ ⊕ ξc

′
, for 0 ≤ c′ ≤ c. Thus by induction we may

assume that q̂ is connected.
Step 2. If q has a positive radical vector, there exists an iterated deflation T ′ such

that qT ′ is the direct sum of a zero form in k variables (for 1 ≤ k ≤ c) and a
connected nonnegative unit form with corank c − k.
Assume that v is a positive radical vector of q and that there exist i, j ∈ supp(v)
with qij < 0 and vi ≤ vj .
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Take q ′ = qT −
ij and v′ = (T −

ij )
−1v = v − viej , and observe that v′ is a positive

radical vector for q ′ with |v′| < |v|. Repeating this procedure as long as possible
we end up with a quadratic form q̃ and a positive radical vector ṽ such that

0 = q̃ (̃v) =
n∑

i=1

q̃ii ṽ
2
i +

∑
1≤i<j≤n

q̃ij ṽi ṽj .

Again, both summands on the right side are nonnegative, hence zero. Then q̃ii =
0 for any i in the support of ṽ, and the claim follows from Lemma 3.4.

We conclude the proof of the theorem by induction, using Steps 1 and 2 above, and
Lemma 3.4 for connectivity. ��

Considering Theorems 3.8 and 2.20, for a nonnegative semi-unit form q there
is an iterated flation T such that qT = qΔ ⊕ ξc, where Δ is a disjoint union of
Dynkin diagrams, qΔ is its associated (positive) unit form, and c is the corank of q .
Notice that if there are iterated inflations T and T ′ for q such that qT = p ⊕ ξc

and qT ′ = p′ ⊕ ξc, then p and p′ are equivalent positive unit forms, therefore by
Theorem 2.20 the disjoint union of Dynkin graphs Δ related to q is unique up to a
permutation of its components. This disjoint union Δ is referred to as the Dynkin
type of q , written Dyn(q) = Δ. We now show that the Dynkin type of a nonnegative
semi-unit form, together with its corank, determine the equivalence class of such
forms. Here and in what follows, the zero quadratic form in c ≥ 1 variables will be
denoted by ξc.

Corollary 3.9. Let q and q ′ be nonnegative semi-unit forms. Then q and q ′ are
equivalent forms if and only if they have the same Dynkin type and the same corank.

Proof. Assume first that q and q ′ are equivalent forms. Then cork(q) =
cork(q ′) =: c. Take iterated flations T and T ′ such that qT = p ⊕ ξc and
q ′T ′ = p′ ⊕ ξc, where p and p′ are positive unit forms. By transitivity observe that
p and p′ are equivalent forms, hence using Corollary 2.21 we have

Dyn(q) = Dyn(p) = Dyn(p′) = Dyn(q ′).

For the converse assume there is a disjoint union of Dynkin graphs Δ with
Dyn(q) = Δ = Dyn(q ′), and an integer c with cork(q) = c = cork(q ′). Then
there are iterated flations T and T ′ with

qT = qΔ ⊕ ξc = q ′T ′.

In particular, we have q ′ = qT (T ′)−1, that is, q and q ′ are equivalent forms. ��
Example 3.10. The quadratic form q associated to the following bigraph is nonneg-
ative with Dynkin type Dyn(q) = D4 and corank one.



3.3 Radicals and Their Extensions 85

1• •2

•5

3• •4

Its radical is generated by the vector e2+e4+e5. Moreover, the restricted forms q(2),
q(4) and q(5) are positive with Dynkin typeD4, while Dyn(q(1)) = Dyn(q(3)) = A3.

Exercises 3.11. 1. Let q : Zn → Z be a balanced semi-unit form, and take a subset
of indices I ⊂ {1, . . . , n}. Show that the restricted form qI is also balanced.

2. Show that if q : Z
n → Z is a nonnegative unit form of Dynkin type An

with radical generated by a single positive sincere vector then q = q
Ãn

for the

extended Dynkin diagram Ãn.
3. Find a connected bigraph B with at least three dotted edges such that qB is a

nonnegative unit form with Dynkin type E6 and radical generated by a sincere
positive vector.

4. Which of the following unit forms is nonnegative?

a) q(x) = x2
1 + x2

2 + x2
3 + x2

4 + x1x2 − x3(x1 − x2 + x4).
b) q(x) = x2

1 + . . .+ x2
5 − x1(x2 + x3 + x4 + x5) + x4x5.

c) q(x) = x2
1 + . . .+ x2

5 − x1(x2 + x3 + x4)+ x5(x2 − x3 + x4)− x3(x2 − x4).

5. Show that for any integer c ≥ 0 and any Dynkin graph G there is a connected
nonnegative unit form q with Dyn(q) = G and corank c.

6. Prove that the following unit forms are nonnegative and determine their Dynkin
type and corank.

a) x2
1 + . . . + x2

5 − x2(x1 − x5) + x3(x1 − x2 + x4 − x5) + x4(x1 + x5).
b) x2

1 +. . .+x2
6 +x1(x2−x3−x5+x6)−x4(x2−x3+x5−x6)+(x2+x3)(x5−x6).

c) x2
1 + . . .+x2

7 −x1(x2 +x3 +x4)+x2x3 +x4(x2 + 2x3)+x5(x6 −x7)+x6x7.

3.3 Radicals and Their Extensions

Recall that a quadratic form q : ZI → Z is said to be regular if rad(q) = 0. For a
subset of indices J ⊂ {1, . . . , n} consider the inclusion σ : ZJ → Z

n determined
by ej → ej . The restriction qJ : ZJ → Z of q is given by qJ (x) = q(σ(x)) for
x ∈ Z

J . In that situation we say rad(qJ ) ⊆ rad(q) if the restriction of σ to the
radical of qJ determines an injective map σ : rad(qJ ) → rad(q). As mentioned
in Lemma 2.11 and its following example, it is not always true that rad(q ′) ⊂
rad(q) for a unit form q . Our purpose here is to show that this property characterizes
nonnegativity.

Instead of using the somehow clumsy term “critical not nonnegative form”, we
say that a quadratic form q is hypercritical nonnegative if any proper restriction q ′
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of q is nonnegative, but q itself is not. Notice, for instance, that a Kronecker form

qm is hypercritical nonnegative if and only if |m| ≥ 3. The following graph ˜̃E8 with
10 vertices,

3

2 4 6 5 4 3 2 1 •

has hypercritical nonnegative associated form q = q˜̃
E8

, where the bullet • is

the unique vertex in ˜̃E8 satisfying that the restriction q(•) is nonpositive (thus
critical nonpositive.). The vector in Z

9 indicated by the numbers at the vertices
is the generator of the radical of q(•). It is convenient to point out that if q is
simultaneously a critical nonpositive and hypercritical nonnegative form then q is a
Kronecker form qm with |m| ≥ 3. We say that a nonzero vector z in Z

n is called a
critical vector for a critical nonpositive form q : Zn → Z if z generates the radical
of q (cf. Theorem 2.12).

Proposition 3.12. Let q : Z
n → Z be a unit form with n ≥ 3. Then q is

hypercritical nonnegative if and only if q is not nonnegative and for any critical
nonpositive restriction qI of q , there exists an index i such that I = {1, . . . , n}−{i}
and a critical vector z′ of qI such that q(z|ei) < 0 where z is the vector in Z

n

obtained by extending z′ by zeros.

Proof. First let q be a hypercritical nonnegative unit form, and take v ∈ Z
n with

q(v) < 0. Since any proper restriction of q is nonnegative, v is a sincere vector.
Assume qI is a critical nonpositive form. Since n ≥ 3, the form qI is a proper
restriction of q . Further, qI is not the Kronecker form qm with |m| ≥ 3, for q is
hypercritical nonnegative. Therefore qI has a critical vector z′ (see Theorem 2.12).
Complete z′ with zeros to a vector z in Z

n.
Take integers m, k and a vertex j ∈ I such that (kv + mz)j = 0. Since

0 ≤ q(j)(kv + mz) = k2q(v) + m2q(z) + kmq(z|v) < km

n∑
i=1

viq(z|ei),

there must exist a vertex i ∈ {1, . . . , n} satisfying q(z|ei) �= 0 (hence i /∈ I ).
Multiplying z by (−1) if necessary we may assume that q(z|ei) < 0. Moreover,

q(2z + ei) = 4q(z)+ 1 + 2q(z|ei) = 1 + 2q(z|ei) < 0,

therefore q hypercritical implies that 2z + ei is a sincere vector, that is, I =
{1, . . . , n} − {i} (and z′ is a critical vector for q(i)).

For the converse we need to show that q(i) is nonnegative for any i = 1, . . . , n.
If q(i) is not nonnegative for some i ∈ {1, . . . , n} then there is a critical
nonpositive restriction qI of q(i) (that is, I ⊂ {1, . . . , î, . . . , n}). By hypothesis,
I = {1, . . . , î, . . . , n} and q(i) is the m-Kronecker form for some m with |m| ≥ 3
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(since q(i) is not nonnegative, cf. Theorem 2.12). This contradicts the existence of a
critical vector for qI (cf. Proposition 1.20). ��
Corollary 3.13. Every hypercritical nonnegative unit form q is regular (that is,
rad(q) = 0).

Proof. If q is a binary form, then q is the Kronecker form qm with |m| ≥ 3, and by
Proposition 1.20 the form q is anisotropic, in particular regular.

Let v be a radical vector of a hypercritical nonnegative unit form q : Zn → Z

with n > 2. Consider a vertex i such that qI is a critical nonpositive restriction
of q for I = {1, . . . , n} − {i}, with critical vector z′ whose extension by zeros z
to Z

n satisfies q(z|ei) < 0. If vi = 0 then v is an integral multiple of z (for the
restriction of v to a vector in Z

I is a radical vector for qI ), which is impossible
since z /∈ rad(q)). Suppose now that vi �= 0 and consider the vector v′ in Z

I such
that v = v′ + viei . Then

0 = q(v|z) = q(v′|z) + viq(ei |z) = qI (v′|z) + viq(z|ei) = viq(z|ei) �= 0,

again a contradiction. ��
As an illustration consider the (solid) r-pointed star graph Sr with r + 1 vertices

and r edges

Sr = 1

2 r

0 · · ·
3 5

4

for r ≥ 1. Observe that qSr is nonnegative if and only if r ≤ 4, and is regular
if and only if r �= 4. The first assertion is consequence of qS5 being hypercritical
nonnegative. For the second claim, take q = qSr and x = (x0, x1, . . . , xr ) in Z

r+1

such that q(x|ei) = 0 for i = 0, . . . , r . These equations can be written as

2x0 = x1 + . . .+ xr ,

2x1 = x0,

· · · · · ·
2xr = x0,

and in particular 4x0 = rx0. Therefore there exists such nonzero x if and only if
r = 4.
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Theorem 3.14. For a semi-unit form q the following are equivalent:

a) The form q is nonnegative.
b) For any restriction q ′ of q we have rad(q ′) ⊆ rad(q).

Proof. That (a) implies (b) was shown in Lemma 3.2 (see also Lemma 2.11).
Assume that q is not nonnegative and take a hypercritical nonnegative restriction
qI of q (with I ⊂ {1, . . . , n}) and a vertex i ∈ I such that q ′ = (qI )(i) is a
critical nonpositive restriction of qI (see Proposition 3.12). Then there is a critical
vector z ∈ rad(q ′) but its extension by zeros σ(z) ∈ Z

I is not radical for qI by
Corollary 3.13, in particular not a radical vector for q . ��

We say that a semi-unit form q ′ : Zn → Z is a radical extension of a semi-unit
form q : Zm → Z (with m ≤ n) if there is a subgroup U of Zn and a subgroup
U ′ of rad(q ′) such that Zn = U ⊕ U ′ and q = q ′|U . In other words, q ′ is radical
extension of q if there is a Z-invertible transformation S : Zn → Z

n such that

q ′S = q ⊕ ξn−m.

In particular the columns of S consists of roots or isotropic vectors of q ′. Throughout
the text we will find many instances of radical extensions: Theorem 3.8 implies that
every nonnegative semi-unit form with Dynkin type Δ is radical extension of the
positive unit form qΔ (see details below in Theorem 3.15). In Sect. 3.5 we will
consider one-point extensions, one of the main tools in the construction of unitary
forms. Radical explosions are defined in Sect. 5.5, with a particular case known as
doubling of vertices used in Sect. 6.5 for the construction of graphical forms.

Let q : Zn → Z be a nonnegative semi-unit form. Observe that rad(q) is a pure
subgroup of Zn (that is, if 0 �= n ∈ Z with nv ∈ rad(q), then v ∈ rad(q)), hence
there is an isomorphism Z

n/rad(q) → Z
n−c where c = cork(q) is the corank of q .

Recall that for v ∈ rad(q) we have q(w+ v) = q(w) for any w ∈ Z
n, thus we may

consider a well-defined induced mapping

q : Z
n/rad(q) Z,

w + rad(q) q(w).

We show that there is a basis in Z
n/rad(q) which makes q a positive unit form.

Theorem 3.15. Let q : Zn → Z be a nonnegative semi-unit form. Then the induced
mapping q : Zn/rad(q) → Z is Z-equivalent to qΔ, where Δ is the Dynkin type of
q . In particular, q is radical extension of qΔ.

Proof. Applying Theorems 3.8 and 2.20 to each connected component of q , there
is a Z-invertible linear transformation T : Zn → Z

c ⊕ Z
n−c such that

qT −1 = ξc ⊕ qΔ : Zc ⊕ Z
n−c → Z,
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where Δ is the Dynkin type of q and c = cork(q). Notice that Zc = T (rad(q)) =
rad(qT −1), thus we have an induced isomorphism T : Zn/rad(q) → Z

n−c which
makes the following diagram commutative,

Z
n/rad(q)

q
T

Z
n

T

q
Z

Z
n−c

pΔ

Z
c ⊕ Z

n−c

ξc⊕pΔ

Z

where � denotes canonical projections. Hence T is the desired equivalence, since
we have q = pΔT . Taking U = T −1(Zn−c) and U ′ = T −1(Zc) as in the definition
of radical extension above, it is clear that q is a radical extension of qΔ. ��
Exercises 3.16.

1. Show that the quadratic forms associated to the following bigraphs are nonnega-
tive, and find their radicals and Dynkin type.

• •

•

• • •

•

• •

• • • •

• •

2. Prove that a semi-unit form q is positive if and only if rad(q ′) = 0 for any
restriction q ′ of q .

3. Give an example of a nonregular unit form q which fails to be nonnegative.
4. Determine all hypercritical nonnegative unit forms in 5 variables.

3.4 Omissible Variables

In this section we analyze, following [7] and [9], how Dynkin type and corank
change under restrictions of nonnegative semi-unit forms.

Lemma 3.17. Let q : Z
n → Z be a nonnegative semi-unit form. For any vertex

i ∈ {1, . . . , n} we have

0 ≤ cork(q) − cork(q(i)) ≤ 1.

Proof. Take I = {1, . . . , n} − {i} and consider the canonical inclusion σ : ZI →
Z
n. By Theorem 3.14 we have σ(rad(q(i))) → rad(q), which shows the first
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inequality. Observe now that rad(q) is a pure subgroup of Zn, and that σ(rad(q(i)))
is a pure subgroup of rad(q) (cf. Remark 4.2). Hence, if v1, . . . , vr is a Z-
basis of rad(q(i)), then their image wi := σ(vi) may be completed to a basis
w1, . . . , wr ,wr+1, . . . , wc of rad(q) (where c = cork(q) and r = cork(q(i)),
see Proposition 4.1). If r < c − 1 then there are non-zero integers a and b with
(awc−1 + bwc)i = 0, which means that awc−1 + bwc is a radical vector of q
belonging to σ(rad(q(i))). This is impossible since w1, . . . , wr ,wr+1, . . . , wc is
linearly independent and w1, . . . , wr generate σ(rad(q(i))). Therefore c − r ≤ 1,
which completes the proof. ��

We now generalize Proposition 2.25 to the nonnegative setting. The following
partial ordering of Dynkin graphs was introduced in Sect. 2.4.

Am ≤ An, for m ≤ n;
An < Dn ≤ Dp, for 4 ≤ n ≤ p;
Dp < Ep ≤ Eq , for 6 ≤ p ≤ q ≤ 8.

As before we take rAn = 1, rDm = 2, rE6 = 3, rE7 = 4 and rE7 = 6 to be the
maximal value the entries of a maximal positive root of qΔ may attain, where Δ is
a Dynkin graph (cf. Table 2.1 and Remark 2.24).

Proposition 3.18. Let q be a connected nonnegative unit form. Then for any
connected restriction q ′ of q we have Dyn(q ′) ≤ Dyn(q).

Proof. We will show that Dyn(q(i)) ≤ Dyn(q) for any 1 ≤ i ≤ n such that q(i) is
still connected (see Exercise 6 below). For simplicity we take i = n.

Suppose first that cork(q(n)) = c = cork(q). Using Theorems 3.8 and 2.20 there
is an iterated flation T : Zn−1 → Z

n−1 such that q(n)T = ξc ⊕ qΔ′ where Δ′ =
Dyn(q(n)). Consider the linear transformation T̃ = T ⊕[1] : Zn → Z

n, and observe
that qT̃ = ξc ⊕ q̃ with q̃ a positive unit form (for cork(qT̃ ) = cork(q) = c). Let
v = pΔ′ be the maximal positive root of qΔ′ (see Table 2.1) and take vn = 0, so that
we may view v as a positive root of q̃ . If Dyn(q) = Δ, then Dyn(̃q) = Δ and we
have

rΔ′ = max
i=1,...,n

(|vi |) ≤ rΔ,

where the last inequality follows from Proposition 2.22. Since the number of
vertices of Δ′ is n− 1 − c, and that of Δ is n− c, we get |Δ′

0| < |Δ0| and rΔ′ ≤ rΔ.
Thus by Remark 2.24 we have Δ′ ≤ Δ.

Suppose now that cork(q(n)) �= cork(q) hence by Lemma 3.17 we have
cork(q(n)) = cork(q) − 1. Taking Dyn(q(n)) = Δ′ and Dyn(q) = Δ, we notice
as above that |Δ′

0| = |Δ0|. As in the proof of Theorem 3.15, the inclusion σ :
Z
n−1 → Z

n induces an injection σ : Zn−1/rad(q(n)) → Z
n/rad(q). If q and q(n)

are the induced positive unit forms of Theorem 3.15, then σ determines an inclusion
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R(q(n)) → R(q). Observe finally that if |Δ′
0| = |Δ0| and |R(qΔ′)| ≤ |R(qΔ)|, then

Δ′ ≤ Δ, which completes the proof. ��
In what follows we give conditions on an index 1 ≤ i ≤ n and a nonnegative

semi-unit form q ensuring that the restriction qi and q have same Dynkin type. We
say that an index i ∈ {1, . . . , n} is an omissible point (or an omissible variable) for
a nonnegative semi-unit form q : Zn → Z if q(ei) = 1 and there is a radical vector
v of q with vi = 1. In Example 3.10, for instance, indices 2, 4 and 5 are omissible
points.

Example 3.19. Let q be the quadratic form associated to the following bigraph:

•b

•
a• • • • • • • •d

•c

Then q is nonnegative, Dyn(q) = E8 and cork(q) = 3. Moreover, vertices a and
d are omissible points, Dyn(q(b)) = D7 and Dyn(q(c)) = E7 with cork(q(b)) =
cork(q(c)) = 3.

Proposition 3.20. Let q : Zn → Z be a connected nonnegative semi-unit form.

a) For any omissible variable i for q , the restriction q(i) is connected and satisfies
Dyn(q(i)) = Dyn(q).

b) If q is unitary and cork(q) > 0, then q admits an omissible variable.

Proof. Let i be an omissible point of q and v ∈ rad(q) with vi = 1. Consider
x = {x1, . . . , x�} a Z-basis of Zn/rad(q) (recall that rad(q) is a pure subgroup
of Z

n) and take a representative xj ∈ Z
n of xj with x

j

i = 0 for j = 1, . . . , �
(which is possible since vi = 1). Denote by σ : Zn−1 → Z

n the canonical inclusion
with q(i) = qσ , and take yj ∈ Z

n−1 with xj = σ(yj ). Since rad(q(i)) ⊂ rad(q)
(Theorem 3.14), the set y = {π(y1), . . . , π(y�)} is linearly independent, where
π : Z

n−1 → Z
n−1/rad(q(i)) is the canonical projection. Since cork(q(i)) =

cork(q) − 1 (Lemma 3.17), the rank of Zn−1/rad(q(i)) is �, thus y is a Z-basis
of Zn−1/rad(q(i)). If T denotes the change of basis transformation between x and
y, we have q = q(i)T .

Since q is connected, this implies first that q(i) is connected, thus q(i) is also
connected. Moreover, we have Dyn(q) = Dyn(q(i)), which shows (a).

Assume now that cork(q) > 0 and that q is unitary. By Lemma 3.17, and
restricting q to a subset of vertices if necessary, we may assume that cork(q) = 1
and that rad(q) is generated by a sincere vector v. Moreover, composing with
a point inversion S we get a nonnegative quadratic form q ′ = qS with radical
generated by a positive sincere vector v′ = Sv. By Theorem 3.5, there is an iterated
flation T such that q ′T is the quadratic form associated to an extended Dynkin
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graph. All these forms have an omissible point (cf. Table 2.2), hence the same is
true for q ′. Since |vi | = |v′

i | for i = 1, . . . , n, the form q admits an omissible
variable. ��
Remark 3.21. As a consequence of Proposition 3.20, for any nonnegative semi-unit
quadratic form q and any c ≤ cork(q), there exists a restriction q ′ of q such that
cork(q ′) = c and Dyn(q ′) = Dyn(q).

In particular, taking c = 0 in the last remark, there is a positive restriction q ′
of q with Dyn(q ′) = Dyn(q), called a core of q . The form q in Example 3.10 has
exactly three cores, namely q(2), q(4) and q(5).

Exercises 3.22.

1. Give an example of a semi-unit form q and a flation T for q such that qT is no
longer semi-unitary.

2. Determine which of the following quadratic forms are nonnegative:

i) q1 = x2
1 + x2

2 + x2
3 + x2

4 − x1x2 + x1x3 − x1x4 + x2x3 + x2x4 − 2x3x4.
ii) q2 = x2

1 + . . . + x2
6 − (x1 + x4)(x2 + x3) − x3x5 − x4x6 + x2x3 + x4x5.

iii) q3 = x2
1 + . . . + x2

4 − x1(x2 + x3 + x4) − x2x4 + x3x4.

3. Prove that if q is a nonnegative unit form then q is connected if and only if the
induced quadratic form q given in Theorem 3.15 is connected.

4. Show that if the quadratic form q associated to a complete bigraph with at least
four vertices is nonnegative, then q is a positive form.

5. Let q be a nonnegative unit form such that Dyn(q) = Dyn(q(i)). Is i necessarily
is an omissible variable for q?

6. Show that if q is a connected nonnegative unit form and q ′ is a connected
restriction of q , then there is a sequence of indices i1, . . . , ir with q ′ = q(i1)···(ir )
and such that q(i1)···(is ) is connected for any s = 1, . . . , r .

3.5 Root Induction and One-Point Extensions

Let q : Zn → Z be a semi-unit form. Following [9], for a finite collection of q-roots
r = (rj )j∈J define the quadratic form induced by r, denoted by qr : ZJ → Z, to
be the form

qr(y) = q

⎛
⎝∑

j∈J
yj r

j

⎞
⎠ .

Notice that qr(ej ) = q(rj ) = 1 for any j ∈ J , that is, qr is a unit form. Moreover,
if q is nonnegative then qr is again nonnegative. Observe also that if I ⊂ {1, . . . , n}
and r = (ei)i∈I , then the root induction qr is precisely the restriction qI . We say
that two unit forms q and q ′ are root equivalent if q is root induced from q ′, and q ′
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is root induced from q . First we show that root equivalence is indeed an equivalence
relation in the set of unit quadratic forms. Clearly we only need to prove transitivity.

Lemma 3.23. Let r = (ri)i∈I and s = (sj )j∈J be finite collections of q-roots
and qr -roots respectively, where q is a unit form. Then there exists a collection t of
q-roots such that (qr)s = qt .

Proof. Take tj = ∑
i∈I s

j
i r

i for j ∈ J . Observe that q(tj ) = q
(∑

i∈I s
j
i r

i
)

=
qr(s

j ) = 1, thus t = (tj )j∈J is a collection of q-roots. Then we have

(qr)s(x) = qr

⎛
⎝∑

j∈J
xj s

j

⎞
⎠ = q

⎛
⎝∑

i∈I

⎛
⎝∑

j∈J
xj s

j

⎞
⎠

i

ri

⎞
⎠

= q

⎛
⎝∑

j∈J
xj

(∑
i∈I

s
j
i r

i

)⎞
⎠ = q

⎛
⎝∑

j∈J
xj t

j

⎞
⎠ = qt (x). ��

We now show how root induction behaves with respect to connectivity. For
convenience, for an empty collection of q-roots r we denote by qr the trivial
quadratic form in zero variables. Let us first analyze the positive case.

Remark 3.24. Consider a positive unit form q that decomposes as q = q1 ⊕q2, and
take a finite collection r = (rj )j∈J of q-roots. There is a partition J = J 1 ∪ J 2

such that q1(rj ) = 1 for j ∈ J 1 and q2(rj ) = 1 for j ∈ J 2, where rj is obtained
from rj by extending by zeros. Take collections r ′ = (rj )j∈J 1 and r ′′ = (rj )j∈J 2 .
Then

qr(x) = q

⎛
⎝∑

j∈J
xj r

j

⎞
⎠ = q1

⎛
⎝∑

j∈J 1

xjr
j

⎞
⎠+q2

⎛
⎝∑

j∈J 2

xj r
j

⎞
⎠ = q1

r ′(x ′)⊕q2
r ′′(x ′′),

where x ′ and x ′′ are the restrictions of x to the entries indexed by J 1 and J 2

respectively.

Lemma 3.25. Let p : ZJ → Z and q : ZI → Z be root equivalent positive unit
forms. If p = p1 ⊕ · · · ⊕ pm and q = q1 ⊕ · · · ⊕ qn are decompositions with pa

and qb connected for a = 1, . . . ,m and b = 1, . . . , n, then m = n and there is a
permutation π such that pk is root equivalent to qπ(k) for k = 1, . . . , n.

Proof. Let r = (rj )j∈J and s = (si )i∈I be finite collections of q-roots and p-roots
respectively with p = qr and q = ps . Using Remark 3.24, we have a partition
I = ⋃m

a=1 Ia such that si is a pa-root for i ∈ Ia , where si is obtained from si by
extending by zeros. Take s(a) = (si )i∈Ia for a = 1, . . . ,m.

Observe first that |I | = |J |. Indeed, if there is an integral linear dependence in
the collection s, say

∑
xj s

j = 0, then taking x = (xj ) we have q(x) = ps(x) =
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p(
∑

i∈I xj sj ) = p(0) = 0, contradicting the positivity of q . Then s is a linearly
independent set, and |I | ≤ |J |. Exchanging positions of p and q we get |J | ≤ |I |.

Now we have

q = ps = p1
s(1)

⊕ . . .⊕ pa
s(a)

⊕ . . .⊕ pm
s(m),

and from |I | = |J | it follows that s(a) is a Q-basis in the domain of pa . In particular,
m ≤ n. Exchanging the roles of p and q we get n ≤ m. Hence m = n and there is
a permutation π of the set {1, . . . , n} such that pa is root equivalent to qπ(a) using
the Remark above. ��

Assume that q : Z
n → Z is a nonnegative semi-unit form for which the last

variable n is omissible, and take a radical vector v of q with vn = 1. As shown
before, the restriction q(n) has the same Dynkin type as q . We want to recover q from
its restriction q(n). With that purpose define the one-point extension p[v] : Zn → Z

of a semi-unit form p : Zn−1 → Z with respect to a p-root v as

p[v] = pe(v), where e(v) = (e1, . . . , en−1,−v).

Lemma 3.26. Let q : Zn → Z be a nonnegative semi-unit form such that n is an
omissible point for q , and take p = q(n). Then there exists a p-root v ∈ Z

n−1 such
that q = p[v] and such that v + en is a radical vector for q .

Proof. Take v a radical vector for q such that vn = 1, and let v ∈ Z
n−1 with

v = v + en. Then

p(v) = q(v − en) = q(v) + q(en) + q(v|en) = 1,

since q(en) = 1. Observe that the coefficients of p[v] are given as follows,

p[v](ei |en) = p[v](ei + en) − p[v](ei) − p[v](en)
= p(ei − v) − p(ei) − p(−v)

= −p(ei |v).

Notice now that q(ei|en) = q(n)[v](ei |en) for i = 1, . . . , n − 1. Since v is a radical
vector for q we have

0 = q(ei |v) = q(ei|v + en) = q(n)(ei |v) + q(ei |en) = q(ei|en) − q(n)[v](ei |en),

which completes the proof. ��
Proposition 3.27. Let q be a nonnegative quadratic unit form, and consider a core
p of q . Then q and p are root equivalent forms.
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Proof. Being a restriction of q , the core p is the root induced from q . For the
converse we proceed by induction on c = cork(q). If c = 0 then p = q and
there is nothing to prove. Assume that c > 0 and take an omissible variable i

(using Proposition 3.20(b)) such that p is a restriction of q(i) (written p ⊂ q(i)).
By Proposition 3.20 we have Dyn(q(i)) = Dyn(p), thus p is a core of q(i). By
induction there is a collection r of p-roots such that q(i) = pr . By Lemma 3.26
there is a q(i)-root v such that q = q(i)[v] = (pr)e(v), and by the Transitivity
Lemma 3.23, q is root induced from p. ��

We proceed now to prove the main result of this section, as provided in [9].

Theorem 3.28 (Barot-de la Peña). Two nonnegative unit forms have the same
Dynkin type if and only if they are root equivalent forms.

Proof. Assume first that p : ZI → Z and q : ZJ → Z are root equivalent forms. By
Proposition 3.27, p and any of its cores are root equivalent, as well as q and any of
its cores. Thus we may assume that both p and q are positive unit forms. In this case
we have shown that root induction preserves connected components (Lemma 3.25),
therefore we may also assume that p and q are connected.

Take a collection of q-roots r = (ri)i∈I with p = qr and a collection of p-roots
s = (sj )j∈J with q = ps . Consider the linear maps

Z
I ϕ

Z
J

x i∈I xir
i

and Z
J ψ

Z
I

y j∈J yj s
j .

Since p(x) = qr(x) = q(ϕ(x)) and q(y) = ps(y) = p(ψ(y)) and p, q are positive
unit forms, both ϕ and ψ are injective maps, which implies |I | = |J |. Moreover,
ϕ and ψ induce respectively injective functions p−1(1) → q−1(1) and q−1(1) →
p−1(1), and by Proposition 2.3 both sets p−1(1) and q−1(1) are finite. Hence p

and q are connected positive unit forms in the same number of variables and with
the same number of roots. This implies that p and q have the same Dynkin type
(cf. Table 2.1).

Assume now that Dyn(p) = Dyn(q), and take cores p′ and q ′ of p and q

respectively. By Proposition 3.20 we have Dyn(p′) = Dyn(q ′). Since p′ and q ′
are positive unit forms, they are equivalent by Corollary 2.21. Take a matrix T with
columns r1, . . . , rm such that p′ = q ′T . Then ri is a q ′-root for i = 1, . . . ,m
(for p′ is unitary) and the collection r = (r1, . . . , rm) of q ′-roots clearly satisfies
p′ = q ′

r , that is, p′ and q ′ are root equivalent unit forms. By Proposition 3.27, p is
root equivalent to p′ and q is root equivalent to q ′, hence by transitivity we conclude
that p and q are root equivalent forms. ��

As an interesting consequence of the result above, we show that the number of
nonnegative unit forms q without double edges (that is, such that |qij | < 2 for all
i < j ) of fixed Dynkin type is bounded.
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Proposition 3.29. Let q be a nonnegative unit form of Dynkin type Δ, and take
p = qΔ. Then q has no double edge if and only if there exists a collection of p-roots
r such that r ∩ −r = ∅ and q = pr .

Proof. From Theorem 3.28 we know that there is a finite collection r of p-roots
such that q = pr . Assume first that there are ri = εrj in the collection r with i �= j

and ε = ±1. Then

εqij = pr(ei |εej ) = pr(ei + εej ) − pr(ei) − pr(ej ) = p(ri + εrj ) − 2 = 2,

that is, q has a double edge. On the other hand, if ri �= rj and ri �= −rj for any
i �= j , then

0 < p(ri ± rj ) = pr(ei ± ej ) = 2 ± q(ei |ej ) = 2 ± qij ,

that is, q has no double edge. ��
Proposition 3.29 yields the following immediate consequence.

Corollary 3.30. There are only finitely many nonnegative unit forms without
double edges of a given Dynkin type.

We end this section with a result necessary for Chaps. 5 and 6.

Corollary 3.31. Let q : Zn → Z be a nonnegative unit form with radical generated
by a vector v ∈ Z

n. Then |vi | ≤ 6 for i = 1, . . . , n.

Proof. Consider a core p : Zn−1 → Z of q and take a p-root w such that q = p[w].
By Proposition 2.22 we have |wi | ≤ 6 for i = 1, . . . , n − 1, and the result follows
since v = ±(w + en), see Lemma 3.26. ��
Exercises 3.32.

1. Find all nonnegative unit forms of Dynkin type A3 without double edges.
2. Find a bound for the number of connected nonnegative unit forms of a given

Dynkin type Δ without double edges.
3. Let q : Zn → Z be a unit form with a root u, and consider a flation T : Zn → Z

n

for q . Show that T −1u is a qT -root, and that q[u]T = (qT )[T −1u], where
T = T ⊕ [1].

4. Doubling vertices. Let q : Zn → Z be a unit form. For an index i ∈ {1, . . . , n}
the one-point extension q[i] = q[−ei] = qvi , where vi = (e1, . . . , en, ei), is
called the doubling of the vertex i. Consider the morphism π : Zn+1 → Z

n given
by π(ek) = ek if k ≤ n and π(en+1) = ei . Show that:

a) The mapping π is order preserving.
b) For all x, y ∈ Z

n+1 we have q[i](x, y) = q(π(x), π(y)).
c) rad(q[i]) = rad(q) ⊕ Z(en+1 − ei).
d) A vector x ∈ N

n+1 is a maximal positive root of q[i] if and only if π(x) is a
maximal positive root of q .
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5. Considering Exercise 4 above, show that for any pair of vertices i �= j in I and
q : ZI → Z a unit form we have q[i][j ] = q[j ][i].

6. Show that if q : Zn+1 → Z is a semi-unit form such that en+1 − ei ∈ rad(q),
then q = q(n+1)[i].

3.6 Order of Dynkin Types

With the above analysis of root induction we may generalize the partial order within
Dynkin diagrams studied in Proposition 3.18. As defined in [9], for two Dynkin
types Γ and Δ we set Γ ≤ Δ if there is a nonnegative unit form q such that
Dyn(q) = Δ and a q-root induced form p with Dyn(p) = Γ . In what follows
an empty graph will be considered as a Dynkin type, corresponding to the form qr
for an empty set of q-roots r .

Lemma 3.33. Let Γ and Δ be Dynkin types such that Γ is an immediate predeces-
sor of Δ. Then either Δ = Γ � A1 or there is a Dynkin type Θ with Γ = Θ � Γ ′
and Δ = Θ �Δ′, where Δ′ is connected and Γ ′ is an immediate predecessor of Δ′.

Proof. Notice first that for Dynkin types Δ1 and Δ2, any predecessor of Δ1 � Δ2
has the shape Γ1 � Γ2 where Γi ≤ Δi for i = 1, 2. Indeed, suppose that q is a
nonnegative unit form with Dynkin type Δ := Δ1 � Δ2. By Theorem 3.28 there is
a collection of qΔ-roots s such that q = (qΔ)s . Thus for any q-root induced form
qr (where r is a collection of q-roots), using Lemma 3.23 we have qΔ-roots t with
qr = ((qΔ)s)r = (qΔ)t . Since qΔ = qΔ1 ⊕ qΔ2 and qΔ is a positive unit form, by
Remark 3.24 we have

qr = (qΔ1 ⊕ qΔ2)t = (qΔ1)t ′ ⊕ (qΔ2)t ′′,

for appropriate collections of qΔi -roots t ′ and t ′′. This shows that any predecessor
of Δ1 � Δ2 has the shape Dyn(qr) = Γ1 � Γ2 with Γi ≤ Δi for i = 1, 2.

Now, if Δ is connected, taking Θ = ∅ there is nothing to prove. Otherwise there
is a Dynkin type Θ such that Δ = Θ � Δ′ with Δ′ connected. By the above we
have Γ = Θ ′ � Γ ′ with Θ ′ ≤ Θ and Γ ′ ≤ Δ′, with exactly one strict inequality
since Γ is an immediate predecessor of Δ (see Exercise 1 below). If Γ ′ = Δ′ then
we apply the result to Θ (using induction on the number of connected components)
and rearrange components. If Θ ′ = Θ then Γ ′ is an immediate predecessor of Δ′,
which completes the proof (observe that Γ ′ is empty if and only if Δ′ = A1). ��

In order to understand the partial relation in Dynkin types determined by
root induction, using Lemma 3.33 it is sufficient to determine the immediate
predecessors of all (connected) Dynkin diagrams. This is done in the following
result, given in [9], which is used below in Table 3.1 to compute immediate
predecessors of Dynkin graphs.
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Table 3.1 Immediate predecessors of a Dynkin diagram Δ

Immediate predecessors Immediate predecessors

Dynkin diagram Δ Γ of Δ with |Γ | = |Δ| Γ of Δ with |Γ | < |Δ|
An (n ≥ 1) An−1

Ai � An−i−1

(i = 1, . . . , n − 2)

D4 A
4
1 A3

D5 A
2
1 � A3 A4

D4

D6 A
2
1 � D4 A5

A
3
2 D5

Dm (m > 6) A
2
1 � Dm−2 Am−1

A3 � Dm−3 Dm−1

Di � Dm−i

(i = 4, . . . , m − 4)

E6 A1 � A5 D5

A
3
2

E7 A7 D6

A1 � D6

A2 � A5

E8 A8

D8

A1 � E7

A2 � E6

A3 � D5

A
2
4

The notation Σm indicates the disjoint union of m copies of a Dynkin type Σ

Theorem 3.34. Let Γ be an immediate predecessor of a Dynkin diagram Δ. Then
Γ is a restriction (by either one or two points) of the extended Dynkin diagram Δ̃.

Proof. Take a nonnegative unit form q : ZJ → Z with Dyn(q) = Δ, and consider
a collection r = (ri )i∈I of q-roots such that p = qr has Dynkin type Dyn(p) = Γ .
The multi-point extension q[r], defined by the root induction qe(r) where e(r) =
(ej )j∈J � (−ri)i∈I (see Exercise 4 below), also satisfies Dyn(q) = Δ, and clearly
p is equal to the restriction q[r]I . Thus substituting q by q[r] we may assume that
p = qI for some subset of indices I ⊂ J .

Take j1, . . . , jt such that J = I � {j1, . . . , jt }, and for 0 ≤ a ≤ t define Ia =
I � {j1, . . . , ja}. Then we have

Γ = Dyn(qI0) ≤ Dyn(qI1) ≤ . . . ≤ Dyn(qIt−1) ≤ Dyn(qIt ) = Δ,
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and since Γ is an immediate predecessor of Δ, there is exactly one a for which
Dyn(qIa−1) �= Dyn(qIa ). Of course we may substitute q by qIa and p by qIa−1 ,
so that there is a vertex i ∈ J such that p = q(i). Observe that Lemma 3.2(a)
implies that any omissible vertex j for p is also omissible for q , therefore if
the restriction pI ′

is a core of p, then the restriction qI
′

has Dynkin type Δ

(by Proposition 3.20(a)) and qI
′ = (qI

′
)(i). Hence we may assume from the

beginning that p is a positive unit form with Dyn(p) = Γ such that p = q(i)

for a nonnegative unit form q with Dyn(q) = Δ. Take for simplicity i = n. By
Theorem 2.20 there is an iterated inflation T for p such that pT = qΓ , and clearly
qΔ = (q(T ⊕ [1]))(n). Replacing q by q(T ⊕ [1]), altogether we get a nonnegative
unit form q with Dyn(q) = Δ such that q(n) = qΓ . In particular by Lemma 3.17
we have cork(q) = 0 or cork(q) = 1.

By construction we have qij ≤ 0 for all i �= j in J − {n}. If qni > 0 for some
i �= n then the inflation T +

ni does not modify the restriction q(n) and takes q into a
root equivalent unit form q ′ = qT +

ni . Iterating this process we consider two cases,
when q is positive and when q has corank one. In the first case take a q-root w with
wn > 0 and observe that w′ = T −

ni (w) = w + wnei is a q ′-root with w′
n > 0. Since

the entries of all roots of a positive unit form are bounded in absolute value by 6
(Proposition 2.22), the process must stop after finitely many steps. Similarly, if q
has corank one, take v to be the radical vector with rad(q) = Zv and vn > 0. Then
v′ = T −

ni v = v+vnei is a generator of rad(q ′) with v′
n > 0. Now by Corollary 3.31,

all entries of these generators are bounded in absolute value by 6, thus the process
must be finite again.

Then we may assume that the associated bigraph G of q has no dotted edges,
and by Propositions 2.2 and 3.1 we conclude that G is either Δ or the corresponding
extended Dynkin diagram Δ̃, hence the result. ��
Exercises 3.35.

1. Show that if Γ is an immediate predecessor of a Dynkin type Δ, then for any
Dynkin type Σ we have that Σ � Γ is an immediate predecessor of Σ � Δ.

2. Let q be a nonnegative unit form with finite collections of roots r = (ri)i∈I and
s = (si)i∈I . Prove that qr = qs if and only if r − s is a collection of radical
vectors for q .

3. Show that if Γ � Σ ≤ Δ � Σ then Γ ≤ Δ.
4. For a collection of q-roots r = (r1, . . . , rm) where q : Zn → Z is a nonnegative

unit form, define q[r] as qe(r) where e(r) = (e1, . . . , en,−r1, . . . ,−rm), called
the multi-point extension of q by the collection r . Show that the iterated one-point
extension q[r1][r2] · · · [rm] is a multi-point extension.

5. Prove or give a counterexample: A quadratic unit form q with |qij | ≤ 2 for i < j

is nonnegative if and only if q−1(0) is an abelian group.



Chapter 4
Concealedness and Weyl Groups

Consider the quadratic form q(x1, x2, x3) = 5x2
1 +9x1x2+7x2

2 +5x2x3+x2
3 +4x1x3,

which is far from being a unit quadratic form. Nevertheless, the vectors v1 =
(1, 0,−2), v2 = (0, 1,−3) and v3 = (0, 0, 1) form a basis in Z

3, and the
corresponding change of basis transformation T takes q into a unitary form,

qT (x1, x2, x3) = x2
1 − x1x2 + x2

2 − x2x3 + x2
3 ,

which is the positive unit form associated to Dynkin graph A3. The purpose of the
first part of this chapter is to find criteria to ‘uncover’ unitary forms after a change
of basis, with special interest in the positive case.

4.1 Completing Bases of Zn

In this section we consider conditions ensuring that a set of vectors v1, . . . , vr in
Z
n may be completed to a basis v1, . . . , vr , vr+1, . . . , vn of Zn. Recall that if S is

a finitely generated free abelian group (written additively), then a subgroup S′ of S
is called a pure subgroup of S if the condition ns ∈ S′ for some s ∈ S and nonzero
n ∈ Z implies that s belongs to S′. We say that a vector v in Z

n is irreducible if
its entries are relatively prime. Recall that in this case there are integers λ1, . . . , λn
such that

∑n
i=1 λivi = 1.

Proposition 4.1. Let v1, . . . , vr be linearly independent vectors in Z
n. Then the

following are equivalent:

a) There exists a Z-basis {v1, . . . , vr , vr+1, . . . , vn} of Zn.
b) If λ1, . . . , λr are integers with gcd(λ1, . . . , λr ) = 1, then

∑r
i=1 λiv

i is an
irreducible vector in Z

n.
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c) For each linear combination
∑r

i=1 λiv
i in Z

n with λ1, . . . , λr ∈ Q, we have
λ1, . . . , λr ∈ Z.

d) The subgroup S of Zn generated by v1, . . . , vr is a pure subgroup of Zn.

Proof. Assume that (a) holds and take integers λ1, . . . , λr such that x :=∑r
i=1 λiv

i is nonzero and not irreducible. Then there is a vector y ∈ Z
n and

an integer m �= 1 with x = my. Since {v1, . . . , vn} is a basis, there are integers
μ1, . . . , μn such that

∑n
i=1 μiv

i , therefore

0 = x − my =
r∑

i=1

(λi − mμi) +
n∑

i=r+1

μiv
i .

Then μi = 0 for i = r + 1, . . . , n and λi = mμi for i = 1, . . . , r which shows that
m divides gcd(λ1, . . . , λr ) and (b) holds. That (b) implies (c) can be verified easily
and is left as en exercise.

Assume (c) holds, and take a vector x in Z
n and a nonzero integer m with mx ∈

S. Then mx = ∑r
i=1 λiv

i for some integers λ1, . . . , λr , that is, x = ∑r
i=1

λi
m
vi . By

assumption in (c), the rational numbers λi
m

are actually integers, hence x ∈ S, that
is, S is a pure subgroup of Zn.

Assume finally that S is a pure subgroup of Z
n, and consider the canonical

projection π : Z
n → Z

n/S. Since S is pure, then Z
n/S is a (finitely generated)

torsion free abelian group, therefore it is a free group with rank n − r . Take a
basis wr+1, . . . , wn of Z

n/S and consider vectors vi in Z
n with π(vi) = wi

for i = r + 1, . . . , n. We show that v1, . . . , vn is a Z-basis of Z
n. Indeed, if

0 = ∑n
i=1 λiv

i then

0 =
n∑

i=1

λiπ(v
i) =

n∑
i=r+1

λiw
i,

hence λi = 0 for i = r + 1, . . . , n. This yields 0 = ∑r
i=1 λiv

i , which shows that
λi = 0 for i = 1, . . . , n, that is, v1, . . . , vn are linearly independent vectors. Now,
for x ∈ Z

n arbitrary, there are integers ar+1, . . . , an with
∑n

i=r+1 aiw
i = π(x).

Since y := x − ∑n
i=r+1 aiv

i is a vector in S (for π(y) = 0), there are integers
a1, . . . , ar with y = ∑r

i=1 aiv
i , that is, x = ∑n

i=1 aiv
i , and v1, . . . , vn is a Z-basis

of Zn. ��
The following observation is direct consequence of the definition of pure

subgroup.

Remark 4.2. Let S′ be a pure subgroup of Z
n. Then for any subgroup S of Z

n

containing S′, the group S′ is pure in S.

Lemma 4.3. For a nonzero vector v in Z
n the following hold:

a) The vector v is irreducible if and only if Zv is a pure subgroup of Zn.
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b) If q : Zn → Z is an integral quadratic form with q(v) = 1, then v is irreducible.

Proof. Consider the set {v}, which is linearly independent for v �= 0. In this case,
the equivalence of (b) and (d) in Proposition 4.1 is part (a) of the claim, and part
(b) is immediate since q(αv′) = α2q(v′) for any integer α and any v′ in Z

n. ��
Proposition 4.1 is now used to provide a criterion for the completion to a basis of

certain sets of vectors.

Proposition 4.4. Let v be a vector in Z
n with vr+1 �= 0 for some index 1 ≤ r < n.

Then the set of vectors {v1 = e1, v
2 = e2, . . . , v

r = er , v
r+1 = v} can be completed

to a basis of Zn if and only if gcd(vr+1, . . . , vn) = 1.

Proof. Consider the restriction π : Zn → Z
n−r to the last n − r entries of vectors

in Z
n and the inclusion σ : Z

n−r → Z
n with π ◦ σ = IdZn−r . Then clearly

we have a basis {v1, . . . , vr , vr+1, . . . , vn} of Z
n if and only if we have a basis

{v1, . . . , vr , σ (π(vr+1)), . . . , σ (π(vn))} of Zn, and since Zn = Z
r ⊕ Z

n−r and the
set {v1, . . . , vr } is basis of Zr , this happens if and only if σ(π(vr+1)) = σ(π(v))

can be extended to a basis of Zn−r .
Hence {v1, . . . , vr+1} can be extended to a basis of Zn if and only if σ(π(v)) =

(vr+1, . . . , vn) can be extended to a basis of Zn−r , which is equivalent by Proposi-
tion 4.1 to the vector σ(π(v)) being irreducible (that is, gcd(vr+1, . . . , vn) = 1).

��
Proposition 4.4 provides a theoretical criterion for completion of certain sets of

vectors to Z-bases of Z
n, but the result does not provide a concrete constructive

method. We will develop in the following result an explicit algorithm for the
construction of a basis containing a given irreducible vector.

Algorithm 4.5 (Completing Bases). Let v = (v1, . . . , vn) be an irreducible
vector. We will produce a Z-invertible matrix Mn having the vector v as first column.
For a vector x ∈ Z

i denote by x| the vector in Z
i−1 obtained from x by deleting the

last entry xi . Take also gcd(x) = gcd(x1, . . . , xi).

Step 1. Define recursively irreducible vectors v(n) = v, v(n−1), . . . , v(2), v(1) with
v(i) ∈ Z

i , and integers λi , μi and ci−1 for i = n, n − 1, . . . , 2 satisfying the
following equations,

v(n) = v; cn−1 = gcd(v(n)|); 1 = μncn−1 + λnvn;
cn−1v

(n−1) = v(n)|; cn−2 = gcd(v(n−1)|); 1 = μn−1cn−2 + λn−1v
(n−1)
n−1 ;

cn−2v
(n−2) = v(n−1)|; cn−3 = gcd(v(n−2)|); 1 = μn−2cn−3 + λn−2v

(n−2)
n−2 ;

· · · · · · · · ·
c2v

(2) = v(3)|; c1 = gcd(v(2)|); 1 = μ2c1 + λ2v
(2)
2 ;

c1v
(1) = v(2)|.
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Step 2. Define recursively (j) by (j −1) matrices M ′
j (for j = n, n−1, . . . , 2, 1)

as

M ′
i =

[
M ′

i−1 −λiv
(i−1)

0 . . .0 μi

]
.

Consider also the j by j matrices Mj =
[
v(i) M ′

j

]
for j = 1, . . . , n.

Then for j = 1, . . . , n there exists a matrix Yj such that MjYj = Idj .

Proof. Define cn−1 := gcd(v|) = gcd(v1, . . . , vn−1). Since cn−1 and vn are
coprime, we find numbers μn, λn ∈ Z such that

μncn−1 + λnvn = 1.

Define a new vector v(n−1) ∈ Z
n−1 by v

(n−1)
j cn−1 = vj for j = 1, . . . , n− 1. Then

gcd(v(n−1)
1 , . . . , v

(n−1)
n−1 ) = 1 and we introduce

cn−2 = gcd(v(n−1)
1 , . . . , v

(n−1)
n−2 ), μn−1cn−2+λn−1v

(n−1)
n−1 = 1, and v(n−2) ∈ Z

n−2,

with v(n−2)cn−2 = v(n−1) for j = 1, . . . , n − 2. By descending induction we
suppose that v(n) := v, v(n−1), . . . , v(1), cn−1, . . . , c1, μn, . . . , μ2 and λn, . . . , λ2
are well-defined with the corresponding properties.

We show inductively the existence of a j × j matrix Yj such that MjYj = Idj .
Since M1 = [1], take Y1 = [1]. Assume there exists a Yn−1 with Mn−1Yn−1 =

Idn−1 and consider the matrix Bn =
⎡
⎣
μn 0 λn

0 Idn−2 0
vn 0 cn−1

⎤
⎦. Then

MnBn =
[
v| M ′

n−1 −λnv
(n−1)

vn 0 . . .0 μn

]⎡
⎣
μn 0 λn

0 Idn−2 0
vn 0 cn−1

⎤
⎦

=
[
v(n) M ′

n−1 0
0 0 1

]
=
[
Mn−1 0

0 1

]
,

since the first column is determined by

μnvi − λncn−1v
(n−1)
i = (μncn−1 + λnvn)v

(n−1)
i = v

(n−1)
i ,

while the last column is determined by

λnvi − λncn−1v
(n−1)
i = 0 (for 1 ≤ i ≤ n − 1) and λnvn + μncn−1 = 1.
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Consider the matrix Yn = Bn

[
Yn−1 0

0 1

]
and verify that

MnYn =
[
Mn−1 0

0 1

] [
Yn−1 0

0 1

]
=
[

Idn−1 0
0 1

]
= Idn.

This completes the proof of the claim. ��

4.2 Concealed Forms

An integral quadratic form q : Z
n → Z is called concealed if there exists a Z-

basis β = (v1, . . . , vn) of Zn such that qβ := qTβ is a unit form, where Tβ =
(v1 | · · · | vn) is the matrix with columns given by vectors v1, . . . , vn.

Proposition 4.6. Let q be an integral quadratic form, and take a Z-basis β =
(v1, . . . , vn) of Zn. Then qβ is a unit form if and only if the basis β consists of
roots of q (that is, q is a concealed form if and only if there exists a Z-basis of Zn

consisting of q-roots).

Proof. Take qβ = qTβ where Tβ has as columns the vectors in β. The claim follows
from equation

(qβ)ii = qβ(ei) = q(Tβei) = q(vi),

for 1 ≤ i ≤ n. ��
Keeping in mind Proposition 4.6 we will consider the following problems:

1. Given an integral quadratic form q : Z
n → Z, when is it possible to find a

Z-basis of roots of q?
2. In special cases (the positive case, for instance), determine procedures to decide

whether the form q is concealed.

We start with an inductive criterion to decide whether an integral quadratic form
is concealed.

Lemma 4.7. Let q : Zn → Z be an integral quadratic form with a root v1. Then v1

may be completed to a Z-basis β = (v1, . . . , vn) of Zn. Moreover, if the restriction
q
(1)
β : Zn−1 → Z is concealed, where qβ := qTβ is the form in the basis β, then q

itself is a concealed form.

Proof. The first claim is consequence of Lemma 4.3 and Proposition 4.1.
Take Tβ = (v1| · · · |vn) and assume that q(1)β is concealed. By Proposition 4.6

we may consider a Z-basis {w2, . . . , wn} of Zn−1 consisting of q(1)β -roots. Taking

w1 = e1 in Z
n and setting wi as the vector in Z

n obtained from wi by adding an
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entry zero in the first coordinate for i = 2, . . . , n, then γ = (w1, . . . , wn) is a
Z-basis of Zn. Actually, γ is a basis of Zn formed by qβ -roots, since

qβ(w
1) = qβ(e1) = q(Tβ(e1)) = p(v1) = 1,

and qβ(w
i) = q

(1)
β (wi) = 1 for i = 2, . . . , n. Hence qβ is a concealed form by

Proposition 4.6.
Now, the set {Tβw1, . . . , Tβw

n} is a Z-basis of Zn (since Tβ is Z-invertible and
γ is a basis), consisting of q-roots, therefore q is a concealed form. ��

The converse of Lemma 4.7 is false. Consider the quadratic form q(x1, x2) =
x2

1 + 2x1x2 + 2x2
2 . The root v1 = e1 of q can be completed to a Z-basis β = (v1 =

e1, v
2 = e2) of Z2. Observe that q(1)β = q(1) = 2x2

2 is not concealed. However,

q is a concealed form, since we have a Z-basis (w1 = e1, w
2 = (−1, 1)) of Z2

consisting of q-roots.

Exercises 4.8.

1. In the proof of Algorithm 4.5 give an explicit construction of the inverse matrix
Yn as a function of the numbers v(j)j , μj , λj and cj−1 for j = 2, . . . , n.

2. Find a Z-basis of Z4 containing the vector v = (3, 4, 6, 10). Do the same for the
vector w = (5, 2, 4, 6). Is it possible to find a basis containing both v and w?

3. Let q : Zn → Z be an integral quadratic form with coefficients qii ≥ 1 for each
1 ≤ i ≤ n. Suppose that for indices 1 ≤ i < j ≤ n we have qii < |qij | <
qii + qjj . Show that we may apply a flation T ε

ij = Idn + εEij (with ε = ±1) in
such a way that q ′ = T q has coefficient q ′

ii < qii .
4. The reduction algorithm given in Exercise 3 is usually quite efficient, but stops

when |qij | ≤ qii , for all 1 ≤ i, j ≤ n. Show that:

i) The following form is concealed:

q(x1, x2, x3) = 3x2
1 − 18x1x2 + 31x2

2 + 9x1x3 − 33x2x3 + 9x2
3 .

ii) The form

q(x1, x2, x3) = 2x2
1 − 2x1x2 + 2x2

2 − 2x1x3 − 2x2x3 + 3x2
3

cannot be further reduced using the procedure in Exercise 3.

4.3 Positive Concealed Forms

Let Δ be a graph with n vertices, no loop and no dotted edge. Let AΔ be the
symmetric matrix associated to qΔ (that is, xtAΔx = qΔ(x) for any vector x in
Z
n). Recall that the (symmetric) adjacency matrix MΔ of Δ is defined by taking
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Mij as the number of edges between i and j (thus we have AΔ = Idn − 1
2MΔ). We

say that Δ is a tree if Δ is connected and |Δ0| = |Δ1| + 1.

Lemma 4.9. Taking a tree graph Δ with n vertices and matrices AΔ and MΔ as
above, the following are equivalent:

a) The tree Δ is a Dynkin diagram.
b) Spec(MΔ) ⊂ (−2, 2).
c) Spec(AΔ) ⊂ (0, 2).

In particular, if Δ is a Dynkin diagram, then 0 < det(AΔ) ≤ 1 with equality if and
only if n = 1.

Sketch of Proof. Take for simplicity A = AΔ and M = MΔ. Observe that there is
a correspondence Spec(M) → Spec(A) given by λ → 1 − 1

2λ. Recall that Δ is a
Dynkin diagram if and only if qΔ is a positive form (Proposition 2.2), that is, if and
only if Spec(A) is contained in the set of positive real numbers (Proposition 1.32),
or equivalently, if and only if λ < 2 for all λ in Spec(M).

It can be shown that if Δ is a tree, then the coefficients b2s+1 of the characteristic
polynomial pM(t) = det(tIdn − M) = ∑n

i=0 bit
i are all zero. In other words,

pM(t) = p′(t2) for a polynomial p′ of degree n
2 if nis even, or pM(t) = tp′(t2)

for a polynomial p′ of degree n−1
2 if n is odd (see Exercise 10 below). In this case,

Spec(M) is symmetric with respect to 0 (i.e. −λ ∈ Spec(M) if and only if λ ∈
Spec(M)).

This already shows that (a) implies (b), and that (b) implies (c). If Δ is not
a Dynkin diagram, then Δ contains a full subgraph which is an extended Dynkin
diagram Δ′ (see Exercise 2.10.5). However, it is known that the adjacency matrix of
any extended Dynkin graph Δ′ has spectral radius ρΔ′ = 2 (cf. Theorem 3.11.1
in [20], see also Exercise 7 below). It is also known that ρΔ′ < ρΔ (see
Propositions 1.3.9 and 1.3.10 in [20], or Exercises 6 and 9 below). We conclude
that Spec(M) �⊂ (−2, 2), and by the above correspondence, that Spec(A) �⊂ (0, 2).

Finally, if Δ is a Dynkin graph and λ1, . . . , λm are the positive eigenvalues of M
(for m ≥ 0), then Spec(A) ⊂ {1, 1 − 1

2 λi, 1 + 1
2 λi | 1 ≤ i ≤ m}. Since 0 < λi < 2

for 1 ≤ i ≤ m, then by the above correspondence we have

0 < det(A) =
m∏
i=1

(1 − 1

2
λi)(1 + 1

2
λi) =

m∏
i=1

(1 − 1

4
λ2
i ) ≤ 1,

with equality only if m = 0 (that is, only if M has no nonzero eigenvalue). However,
it is easy to show that a symmetric matrix M has no nonzero eigenvalue only when
M is the zero matrix (see Exercise 4), which by connectedness happens only when
Δ consists of a single isolated vertex. ��

Using Proposition 4.9 we get a handy criterion to verify the concealedness of
positive forms.
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Proposition 4.10. Let q : Zn → Z be a concealed positive integral form. Consider
the associated symmetric matrix Aq such that xtAqx = q(x) for any vector x in
Z
n. Then 0 < det(Aq) ≤ 1.

Proof. Since q is concealed, there exists an invertible Z-matrix S such that q ′ = qS

is a unitary form. Reducing by inflations, as in Theorem 2.20, we get an invertible
Z-matrix T and a family of Dynkin graphsΔ1, . . . ,Δs such that q ′T = qΔ1 ⊕· · ·⊕
qΔs . Since det(Aq) is positive and det(T ) = ±1 = det(S) then

0 < det(Aq) = det(T )2 det(S)2
s∏

i=1

det(AΔi ) =
s∏

i=1

det(AΔi ),

where AΔi is the symmetric matrix such that xtAΔix = qΔi (x). Then the result
follows from the last claim in Lemma 4.9. ��
Remark 4.11. An alternative proof of Proposition 4.10 uses Hadamard’s Theorem
(see Exercises 2 and 3 below).

Recall that a positive form q(x1, . . . , xn) = ∑n
i=1 qiix

2
i +∑

i<j qij xixj can be
written by Lagrange’s Method 1.30 as

q(x1, . . . , xn) =
n∑

i=1

biX
2
i ,

where b1, . . . , bn are positive rational numbers and Xi = ∑n
j=i cij xj for certain

cij ∈ Q. Moreover, these numbers can be inductively defined for 1 ≤ i < j ≤ n as

bi = qii −
∑
k<i

bkc
2
ki,

cii = 1, and cij = 1

2
b−1
i

[
qij −

∑
k<i

2bkckickj

]
.

As an application we get the following simple bound for the coordinates of roots
of positive forms.

Proposition 4.12. Let q(x1, . . . , xn) be a positive integral quadratic form and
define bi (for 1 ≤ i ≤ n) and cij (for 1 ≤ i ≤ j ≤ n) as above. Let v ∈ Z

n

be a root of q . Then the following holds for 1 ≤ i ≤ n,

|vi | =
⎢⎢⎢⎣∑

i<j

|cij vj | + 1√
bi

⎥⎥⎥⎦ ≤
⎢⎢⎢⎣ ∑
i≤j1<j2<···<js≤n

|cij1cj1j2 . . . cjs−1,js |√
bjs

+ 1√
bi

⎥⎥⎥⎦ ,

where �α� denotes the greatest integer m smaller than or equal to a real number α.
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Table 4.1 Determinant of
the symmetric matrix
associated to the quadratic
form of Dynkin diagrams

Δ An Dm (m ≥ 4) E6 E7 E8

det(AΔ)
n+1
2n

m−1
2m−2

3
16

1
16

1
64

Proof. For i = n we have bnv2
n ≤ 1. By descending induction, assume that

|vk| ≤
⎢⎢⎢⎣

n∑
j=k+1

|ckj vj | + 1√
bk

⎥⎥⎥⎦ , for k ≥ i + 1.

Since bi(vi + ∑
j>i cij vj )

2 ≤ 1, we have − 1√
bi

− ∑n
j=i+1 cij vj ≤ vi ≤ 1√

bi
+∑n

j=i+1 cij vj and the claimed inequalities follow. ��
Exercises 4.13.

1. Let AΔ be the symmetric n by n matrix associated to qΔ (that is, such that
xtAΔx = qΔ(x) for any vector x in Z

n) where Δ is a Dynkin diagram.
Determine the determinant of AΔ. [Hint: see Table 4.1.]

2. Prove Hadamard’s Theorem:
Let S be a symmetric positive real n by n matrix. Show that det(S) ≤ ∏n

i=1 Sii ,

with equality if and only if S is a diagonal matrix. [Hint: Define di = S
− 1

2
ii

and let D = diag (d1, d2, . . . , dn). Therefore det(DSD) ≤ 1 if and only if
det(S) ≤ ∏n

i=1 Sii and thus we may assume that all diagonal entries of S

are equal to 1. If 0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λn are the eigenvalues of S, we
have

det(S) =
n∏

i=1

λi ≤
(

1

n

n∑
i=1

λi

)n

=
(

1

n
tr(A)

)n
= 1,

applying the generalized arithmetic-geometric mean inequality for nonnegative
real numbers.]

3. Prove Proposition 4.10 as a consequence of Hadamard’s Theorem.
4. Let M be a real square matrix. Show that

i) M is nilpotent if and only if M has no nonzero eigenvalue.
ii) If M is symmetric, then M is nilpotent if and only if M is the zero

matrix.

5. Characteristic polynomial and spectral radius of a graph. Consider a
connected graph G1 and a selected vertex x2. Construct a new graph G by
adding a vertex x1 to G1 and a single edge joining x1 and x2.
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G= x1• •x2 ··· G2

Show that the characteristic polynomial pG of the graph G can be given as
follows, pG(z) = zpG1(z)−pG2(z), where G2 is obtained from G1 by deleting
the vertex x2 (and all edges involving x2).

6. Use Exercise 5 and the recursion formulas for Chebyshev polynomials given in
Sect. 1.5 to complete and verify the contents of Table 4.2.

7. Let ρ(Δ) denote the spectral radius of the characteristic polynomial χΔ.

a) Verify that for an extended Dynkin diagram Δ̃ we have ρ(Δ̃) = 2.
b) Verify that for a Dynkin diagram Δ we have ρ(Δ) < 2.

8. Show that ρ(G) = lim sup k

√
a
(k)
ij , where Ak = (a

(k)
ij )ni,j=1 are the powers

of A = AG, the adjacency matrix of a connected graph G. [Hint: Take
ρ = ρ(G). There exists a c > 0 such that a(k)ij ≤ cρk . Use this to show

that lim sup a(k)nn = ρ. Then by connectivity show that lim sup a(k)in = ρ.]
9. Use Exercise 8 to prove that ρ(Δ′) ≤ ρ(Δ) for a full subgraph Δ′ of Δ. [Hint:

show that a(k)ij is the number of walks of length k from i to j .]
10. Let G be a tree graph. Show that the characteristic polynomialpG has the shape

pG(t) = q̃(t2) if pG has even degree, or pG(t) = t q̃(t2) if pG has odd degree,
for some polynomial q̃ . [Hint: observe that any tree G is a bipartite graph (that
is, its vertex set G0 can be partitioned into disjoint sets G′

0 and G′′
0 such that

all edges in G have an end-point in G′
0 and an end-point in G′′

0). Those graphs
admit an ordering of vertices such that their adjacency matrix has the shape(

0 N

Nt 0

)
for some matrix N , see [16, 1.3.6].]

11. Prove or give a counter-example: for Δ a tree graph, det(AΔ) = 0 if and only
if Δ is an extended Dynkin diagram.

Table 4.2 Characteristic
polynomials of Dynkin
diagrams for n ≥ 1, m ≥ 4
and p = 6, 7, 8, where Tn and
Un are the Chebyshev
polynomials of the first and
second kind

Graph Characteristic polynomial

An Un(t/2)

Dm Um(t/2) −Um−4(t/2)

Ep ?

Ãn 2[Tn(t/2) − 1]
D̃m ?

Ẽp ?
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4.4 The Weyl Group of a Unit Form

For an integral quadratic form q : Z
n → Z we denote by O(q) the group of

isometries of q , that is, the set of linear Z-invertible transformations T : Zn → Z
n

(with product given by composition) such that q(x) = q(T x) for any vector x in
Z
n. For instance, if v is a reflection vector of q (see Sect. 1.2) then the reflection

σv : Z
n → Z

n given by σv(x) = x − q(x|v)
q(v)

v is an isometry for q where
q(−|−) : Z

n × Z
n → Z is the (symmetric) bilinear form associated to q (cf.

Lemma 1.5(c)). Recall that for q a unit form the subgroup of O(q) generated by
simple reflections, denoted W(q), is called the Weyl group of q .

In what follows we identify linear transformations from Z
n to Z

n with the n × n

matrix corresponding to the canonical basis. If T : Z
n → Z

n is a Z-invertible
linear transformation and q ′ = qT , then the function ΦT : O(q ′) → O(q) given by
B → T BT −1 is an isomorphism of groups. Indeed, if Aq and Aq ′ are the symmetric
matrices associated to q and q ′ and B ∈ O(q ′), then Aq ′ = T tAqT and BtAq ′B =
Aq ′ , thus we have

(T BT −1)tAq(T BT
−1) = T −tBtAq ′BT −1 = T −tAq ′ = T −1 = Aq,

that is, ΦT (B) is an isometry of q . That ΦT is a morphism of groups with inverse
ΦT −1 is clear. In particular, if q is a concealed form then the Weyl group W(q)

is defined up to isomorphism (depending on the chosen basis of q-roots, see
Proposition 4.6).

Proposition 4.14. Assume that q : Zn → Z is a positive integral quadratic form.
The following hold:

a) For B ∈ O(q) the set of eigenvalues of B is contained in the set {1,−1}.
b) The group of isometries O(q) is generated by the reflections σv with v a

reflection vector.
c) If q is a concealed form then O(q) is a finite group.

Proof. (a) Let A = Aq be the symmetric matrix associated to q . For B ∈ O(q) we
have BtAB = A. As in Sect. 1.6 there is a unitary matrix (that is, U−1 = Ut ) such
that

UAUt = D := diag(λ1, λ2, . . . , λn),

where 0 < λ1 ≤ λ2 ≤ · · · ≤ λn are the eigenvalues of A (all of them positive
by Proposition 1.32). Hence (UBUt )tD(UBUt ) = D, and for any eigenvector
0 �= x ∈ C

n of B with Bx = μx, we get an eigenvector y = Ux of UBUt with
eigenvalue μ. Using complex conjugation x → x in C

n we get,

0 <

n∑
i=1

λi |yi |2 = ytDy = μ2yt (UBUt )tD(UBUt )y = μ2xtAx,

and μ2xtAx = xtBtABx = xtAx implies that μ2 = 1. Hence μ = ±1.
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(b) Let B be an isometry of q , and take 0 �= v ∈ Q
n with Bv = εv and ε ∈

{1,−1}. Clearly we may assume that v ∈ Z
n. Consider the lattice v⊥ = {w ∈

Z
n | q(v|w) = 0}, which is a pure subgroup of Z

n isomorphic to Z
n−1 since

v /∈ v⊥ and q(−|−) is an inner product in Q
n (for q is a positive form). Let y ∈ Z

n

be such that Zn = Zy ⊕ v⊥. Consider a basis y1 = y, y2, . . . , yn of Z
n with

v⊥ = ⊕n
i=2 Zy

i .
Notice that Bv⊥ ⊂ v⊥, since q(v|Bw) = εq(Bv|Bw) = εq(v|w) = 0 for

w ∈ v⊥. Therefore, in the basis y2, . . . , yn, the restriction B ′ of the matrix B is an
isometry of the restriction q ′ of q to v⊥, that is, B ′ ∈ O(q ′). Since q ′ is positive, by
induction B ′ = σ ′

v1
. . . σ ′

vm
for some reflection vectors v1, . . . , vm ∈ v⊥, where σ ′

vi

denotes the corresponding reflection in v⊥.
Observe that the matrix B and all reflections σw with w ∈ v⊥ have the following

shape,

B =
[
ε 0
w B ′

]
, σw =

[
1 0
w′ σ ′

w

]
,

since ε detB ′ = detB = B11 detB ′.
Assume ε = 1. Then B and the composition σv1 · · · σvm are n by n matrices X

satisfying

X =
[

1 0
x B ′

]
, and XtAX = A =

[
a11 at

a A′
]
,

hence x = (B ′tA′)−1(IdZn−1 − B ′t )a. This implies that B = σv1 · · · σvm .
Assume ε = −1. Then Y = B(σv1 . . . σvm)

−1 is an integral n by n matrix with
shape

Y =
[−1 0
y Idn−1

]
, and Y tAY = A.

Therefore y = 2A′−1a and we may consider the vector v0 =
[

1
−A′−1a

]
in Z

n

satisfying

q(x|v0) = [
x1 x ′]

[
a11 at

a A′
] [

1
−A′−1a

]
= x1(a11 − atA′−1a).

This shows that q(x|v0)
q(v0)

= 2x1 is always an integer, thus v0 is a reflection vector.

Finally, σv0

[
x1

x ′
]

=
[
x1

x ′
]

− 2x1

[
1

−A′−1a

]
=
[ −x1

x ′ + x1y

]
= Y

[
x1

x ′
]

, which

means that B = σv0σv1 . . . σvm . This completes the proof of (b).
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(c) Let R(q) be the set of q-roots, and denoted by Perm(R(q)) the group
of permutations of R(q). Then we have a function O(q) → Perm(R(q)) since
any element in O(q) preserves the roots of q . If two elements B,B ′ in W(q)

satisfy Bvi = B ′vi for a Z-basis v1, . . . , vn of Zn, then obviously B = B ′. By
Proposition 4.6 the set R(q) contains a Z-basis (for q is concealed), therefore O(q)

may be seen as a subset of Perm(R(q)) (actually a subgroup). Since q is positive,
the set R(q) of q-roots is finite (Proposition 2.3) and so is Perm(R(q)), which
completes the proof. ��

Let q : Zn → Z be a unit form. A root v ∈ R(q) is called a real root of q if there
exists an element w in the Weyl group W(q) of q such that w(ei) = v for some
1 ≤ i ≤ n. Nonreal roots are also called imaginary.

Proposition 4.15. Let q : Z
n → Z be a unit form and v be a root of q . The

following hold:

a) If q is positive then v is a real root of q and σv ∈ W(q).
b) If q is weakly positive and v ∈ R+(q) is a positive root of q , then there is a

sequence of indices i1, . . . , is and some 1 ≤ j ≤ n such that

ej < σi1(ej ) < σi2σi1(ej ) < · · · < σis · · · σi2σi1(ej ) = v.

In particular v is a real root of q and σv ∈ W(q).

Proof. (a) Assume that q is positive. By induction on the weight |v| = ∑n
i=1 |vi |

of v we construct an isometry w ∈ W(q) such that w(ej ) = v for some 1 ≤ j ≤ n.
If |v| = 1, then v = ±ej for some 1 ≤ j ≤ n (notice that if v = −ej then
v = σj (ej )). Suppose |v| > 1. Then

2 = q(v|v) =
n∑

i=1

viq(ei|v),

and there is some index 1 ≤ k ≤ n with vkq(ek|v) > 0. Assuming that vk > 0 then
q(ek|v) > 0 and

0 < q(v − ek) = 2 − q(v|ek),

implies that q(ek|v) = 1. Hence σk(v) = v − ek satisfies |σk(v)| = |v| − 1, and by
induction hypothesis, σk(v) = w(ej ) for some w ∈ W(q) and 1 ≤ j ≤ n. Then
v = σkw(ej ) with σkw ∈ W(q), for σk is an involution (Lemma 1.5(b)). If vk < 0
we get similarly q(ek|v) = −1 and σk(v) = v + ek with |σk(v)| = |v| − 1, and the
proof continues as in the first case.

To show that σv ∈ W(q) we proceed again by induction on the weight of v. If
v = ±ej for some j ∈ {1, . . . , n}, then σv is the simple reflection σj . If |v| > 1 then
as before there is an index 1 ≤ k ≤ n such that |σk(v)| = |v| − 1, and by induction
hypothesis we have w′ := σσk(v) ∈ W(q). Then w′ = σσk(v) = σkσvσ

−1
k = σkσvσk
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(see Lemma 1.5 and Exercise 1.7.4), which means that σv = σkw
′σk ∈ W(q) as

claimed.
(b) Both statements may be proved as in (a), following Proposition 2.5 and

Remark 2.6. ��
As direct consequence, if q is a positive concealed form then the Weyl group

W(q) of q is uniquely determined, namely W(q) = O(q).

Examples 4.16. The description of Weyl groups for some quadratic forms is known.
Let us consider a few examples.

a) Consider q = qAn the form associated to the Dynkin diagram An for n ≥ 1.
Define a group homomorphism from the Weyl group W(q) to the group of
permutations of n + 1 elements Sn+1, sending σi to the transposition (i, i + 1).
As an orthogonal transformation of Zn+1 the matrix associated to (i, i + 1) is
the reflection at the vector ei − ei+1. Hence W(q) is isomorphic to the group
generated by (i, i + 1), 1 ≤ i ≤ n, that is, to the group of permutations Sn+1. In
particular W(q) has (n + 1)! elements.

b) Let qm(x1, x2) = x2
1 + x2

2 − mx1x2 be the m-Kronecker form. Clearly,

σ1 =
[−1 0
m 1

]
, σ2 =

[
1 m

0 −1

]
and w = σ1σ2 =

[−1 −m

m m2 − 1

]
,

(the matrix on the right is called Coxeter matrix corresponding to the Kronecker
form qm, see Theorem 4.31 below). For |m| > 1, the subgroup of W(qm)

generated by w is cyclic of infinite order, and since σ1wσ1 = σ2wσ2 = σ2σ1 =
(σ1σ2)

−1, it is a normal subgroup. Moreover, σ1w = σ2, which shows that
W(qm) is isomorphic to the semi-direct product of 〈σ2〉 ∼= Z/2Z with 〈w〉 ∼= Z

(written W(qm) ∼= (Z/2Z)� Z).
c) Let Δ̃ be an extended Dynkin graph with n vertices and take q̃ = qΔ̃ : Zn →

Z the corresponding unit form. Consider the positive generator δ ∈ Z
n of the

radical of q̃ (see Table 2.2). The corresponding Dynkin graph Δ with n − 1
vertices can be seen as a subgraph of Δ̃ such that, taking i the additional vertex,
we have δi = 1 and w := δ − ei , as a vector in Z

n−1, is the maximal positive
root of the restriction q̃(i) = qΔ (see Table 2.1). Hence

0 = q̃(δ) = q̃(w) + q̃(ei) + q̃(w|ei), that is, q̃(w|ei) = −2.

As indicated in Exercise 4, the element σwσi has infinite order in O(q̃).
Moreover, since W(qΔ) is a finite group (Proposition 4.14), Proposition 4.15
yields σw ∈ W(qΔ) ⊂ W(q̃). Hence σwσi ∈ W(q̃), which is an infinite
group.

Lemma 4.17. Let q and q ′ be non-negative unit forms such that there is an iterated
flation T : Zn → Z

n for q with q ′ = qT . Then the isomorphism ΦT : O(q ′) →
O(q) given by B → T BT −1 restricts to an isomorphism ΦT : W(q ′) → W(q).
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Proof. Assume first that T is a Gabrielov transformation, that is, there are vertices
i �= j such that T (x) = x − qij xiej for any vector x in Z

n. Then T (ek) = ek if
k �= i and T (ei) = σj (ei), thus for any 1 ≤ k ≤ n there is an element wk in W(q ′)
with T (ek) = wk(ek). Using Lemma 1.5 and Exercise 1.7.4 we have

ΦT (σ
′
k) = T σ ′

kT
−1 = σT (ek) = σwk(ek) = wkσkw

−1
k ,

which is an element in W(q), where σ ′ and σ denote reflections of q ′ and q

respectively. Since T is invertible and its inverse is a Gabrielov transformation, by
the above arguments ΦT −1 is inverse of ΦT .

Using now that q is nonnegative, then any iterated flation T for q such that qT is
unitary is a composition of Gabrielov transformations (see Lemma 3.4), hence the
result follows from the above. ��
Theorem 4.18. Let q : Z

n → Z be a unit form. Then W(q) is a finite group
if and only if q is a positive form. In this case there is a finite collection of
Dynkin diagrams Δ1, . . . ,Δs such that W(q) is isomorphic to the direct product∏s

i=1 W(qΔi ) (where the disjoint union Δ1 � . . . � Δs is the Dynkin type of q as
defined in Sect. 2.4).

Proof. In Proposition 4.14 we already showed that if q is positive then W(q) =
O(q) is a finite group. For the converse assume that W(q) is finite and that q is
connected and nonpositive (see Exercise 2 below). Since for any restriction q(i) the
Weyl group W(q(i)) of q(i) may be seen as a subgroup of W(q), we may assume by
induction on n that q(i) is positive for 1 ≤ i ≤ n.

Hence q is critical nonpositive, and by Theorem 2.12, since q is not the
Kronecker form qm for any integer m with |m| ≥ 3 (by Example 4.16(b)), then q is
nonnegative of corank one with a sincere radical vector. As shown in Theorem 3.5
(see also Step 1 in the proof of Theorem 3.8), there is an iterated flation T such that
qT = qΔ̃ for some extended Dynkin diagram Δ̃. Then by Lemma 4.17 we have
W(q) ∼= W(qΔ̃), which is impossible since W(qΔ̃) is an infinite group as shown in
Example 4.16(c).

For the second claim, if q is a positive unit form then by Theorem 2.20 there
is an iterated flation T and a Dynkin type Δ (disjoint union of Dynkin diagrams
Δ1, . . . ,Δs) such that qT = qΔ. Again by Lemma 4.17 and using Exercise 2 we
conclude that

W(q) ∼= W(qΔ) = W(qΔ1 ⊕ · · · ⊕ qΔs ) =
s∏

i=1

W(qΔi ).

��
Exercises 4.19.

1. Let q : Zn → Z be a unit form and take indices 1 ≤ i < j ≤ n. Consider the
simple reflections σj and σi in the Weyl group W(q) of q . Show that
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a) σiσj = σjσi (that is, (σiσj )2 = 1) if and only if qij = 0.
b) (σiσj )

3 = 1 if and only if qij ∈ {1,−1}.
In general, let m(i, j) be the minimal number m with (σiσj )

m = 1. Calculate
m(i, j) when |qij | ≥ 2.

2. Show that if q is a unit form and q = q1 ⊕ q2 then W(q) = W(q1) × W(q2).
3. Let q : Zn → Z be a unit form and take i0, i1, . . . , is a sequence of indices such

that

ei0 < σi1(ei0) < . . . < σis · · · σi1(ei0) =: v.

Show that σv ∈ W(q). Is the converse true?
4. Let v be a positive root of the unit form q : Zn → Z, and assume that q(v|ei) ≤

−2 for some index i. Show that σvσi has infinite order as an element of O(q).
[Hint: Let ϕ = σvσi and consider ϕk(ei) = a

(k)
11 ei + a

(k)
21 v and ϕk(v) = a

(k)
12 ei +

a
(k)
22 v. Show that integers a(k)11 , a(k)12 , a(k)21 and a

(k)
22 can be found as the coefficients

of the k-th power of the following matrix,

B =
[ −1 −q(v|ei)
q(v|ei) q(v|ei)2 − 1

]
.

For q(v|ei) ≤ −3, the entries of Bk grow exponentially with k. For q(v|ei) =
−2, the matrix B is equivalent to a Jordan block J2(1).]

4.5 Cyclotomic Polynomials

We now prove a celebrated and useful result of Kronecker in number theory (1857),
see for instance [45, Theorem 4.5.4(a)].

Theorem 4.20 (Kronecker). Let f be a monic polynomial with integer coeffi-
cients. If every root λ of f lies in the unit disc {z ∈ C | |z| ≤ 1}, then any nonzero
root of f is a root of unit.

Sketch of Proof. Let n be the degree of f . The set of all monic polynomials of
degree n with integer coefficients having all their roots in the unit disc is finite. To
see this we write

f (z) = zn + a1z
n−1 + a2z

n−2 + . . . + an =
n∏

j=1

(z − zj ),
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where aj ∈ Z and zj are the roots of the polynomial f for j = 1, . . . , n. Using the
hypothesis |zj | ≤ 1 we obtain

|an−1| = |z1 + . . . + zn| ≤ n =
(
n

1

)
,

|an−2| = |
∑

1≤i,j≤n

zizj | ≤
(
n

2

)
,

· · ·
|a0| = |z1z2 · · · zn| ≤ 1 =

(
n

n

)
.

Hence the claim follows since the coefficients aj are integers.
Define for � ≥ 1 the polynomial

f�(z) =
n∏

j=1

(z − z�j ) =
n∑

i=0

(−1)i+nen−i,�z
i,

where en−i,� is the elementary symmetric polynomial of degree n − i in variables
z�1, . . . , z

�
n (cf. Exercises 1 and 2 below for the definition of elementary symmetric

polynomials and Newton’s identities, see also [45, 3.1.1]). Using Newton’s iden-
tities, the values n!ei,� are integers for i = 0, . . . , n, thus as before the set of
polynomials {f1, f2, f3, . . .} is finite.

Therefore there exist 1 ≤ k < m such that fk = fm. Since the roots of fk are
zk1, . . . , z

k
n and those of fm are zm1 , . . . , z

m
n , then there is a permutation σ in Sn (the

symmetric group in n letters) such that zkr = zmσ(r) for r = 1, . . . , n. Let s be the
order of σ in Sn. Then we have for a nonzero root λ = zr of f ,

λk
s = zkk

s−1

r = zmk
s−1

σ(r) = zm
2ks−2

σ 2(r)
= . . . = zm

s

σ s(r) = λm
s

.

It follows that λk
s−ms = 1, that is, λ is a root of unity. ��

By the proof above, there are only finitely many monic polynomials of a fixed
degree with integer coefficients and with roots lying in the unitary disc. For n = 2,
for instance, f (z) = z2 − az + b implies |a| ≤ 2 and |b| ≤ 1, giving rise to 15
polynomials. Among them nine have their roots in the unitary disc:

z2, z2 −z, z2 +z, z2 −1, z2 +z+1, z2 +1, z2 −z+1, z2 −2z+1, z2 +2z+1.

By cyclotomic polynomial we mean a monic polynomial with integer coefficients
f (z) that divides (zk−1)m for some k,m ≥ 1 (that is, such that there is a polynomial
g(z) with integer coefficients and with f (z)g(z) = (zk − 1)m).
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Corollary 4.21. Let f (z) be a monic polynomial with integer coefficients. Then f

is a cyclotomic polynomial if and only if |λ| = 1 for any (complex) root λ of f .

Proof. Let f be cyclotomic. Then there are k,m ≥ 1 such that (λk − 1)m = 0 for
any root λ of f , thus in particular |λ| = 1. For the converse take λ1, . . . , λr the
different complex roots of f , with multiplicities mi for i = 1, . . . , r .

By Kronecker’s Theorem 4.20 all λi are roots of unity, thus there exists k ≥ 1
such that λki = 1 for i = 1, . . . , r . Taking m = max(m1, . . . ,mr) we may factor
the polynomial (zk − 1)m as f (z)g(z) = (zk − 1)m for some complex polynomial
g(z). It can be shown that g(z) has integer coefficients (Exercise 5 below), that is,
f is cyclotomic. ��

We recall some facts on cyclotomic polynomials (see for instance [39] or [45]
for more on this topic). The n-th cyclotomic polynomial Φn is inductively defined
by the formula

zn − 1 =
∏
d |n

Φd(z),

where the product runs over all divisors d of n (in particular Φ1(z) = z − 1 and
Φ2(z) = z+1). Observe that all Φn are monic polynomials with integer coefficients
(Exercise 5) and that the roots of Φn are primitive n-roots of unity, thus if φ(−)

denotes Euler’s totient function

φ(n) =
∑

1≤�≤n
gcd(�,n)=1

1,

then the n-th cyclotomic polynomial Φn has degree φ(n). It is known that Φn(z)

is irreducible in Z[z] (see [45, 3.3.3]), and that any cyclotomic polynomial
f (z) decomposes as product of irreducible cyclotomic polynomials f (z) =
Φn1(z) · · ·Φnr (z) for 1 ≤ n1 ≤ . . . ≤ nr . For instance, the nine polynomials above
factor as follows,

z2, zΦ1(z), zΦ2(z), Φ1(z)Φ2(z), Φ3(z), Φ4(z), Φ6(z), Φ1(z)
2, Φ2(z)

2,

and in particular only the last six of them are cyclotomic.
Recall that a matrix X is called weakly periodic (resp. periodic) if the difference

Id − Xk is a nilpotent matrix (resp. zero matrix) for some positive integer k.

Theorem 4.22. Let X be an integral matrix and p(z) = |Idz−X| its characteristic
polynomial. The following statements are equivalent:

a) The matrix X is weakly periodic.
b) The characteristic polynomial p(z) is cyclotomic.
c) For any eigenvalue λ of X we have |λ| = 1.
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Proof. Let q(z) be the minimal polynomial of X (with coefficients in Q) and recall
that there is an integer � > 0 such that p divides q� (for every divisor of p is a
divisor of q). Then p is cyclotomic if and only if q is cyclotomic.

Take k,m ≥ 0 and f (z) = (zk − 1)m. Then f (X) = 0 if and only if the
minimal polynomial q(z) divides f (z), that is, X is weakly periodic if and only if
q is cyclotomic. This and the above show the equivalence of (a) and (b), and their
equivalence with (c) follows from Corollary 4.21. ��

The following corollary describes a particular case of Theorem 4.22. Its proof is
left as an exercise.

Corollary 4.23. LetX be an integral matrix and p(z) = |zId−X| its characteristic
polynomial. The following statements are equivalent:

a) The matrix X is periodic.
b) The matrix X is diagonalizable and p(z) is a cyclotomic polynomial.
c) The matrix X is diagonalizable and |λ| = 1 for any eigenvalue λ of X.

We give now more explicit expressions for cyclotomic polynomials. Recall that
the Möbius function is defined as follows (cf. [45, 3.3.2])

μ(n) =
⎧
⎨
⎩

1, if n = 1,
0, if n > 1 is divisible by a square,
(−1)r , if n = p1 · · ·pr is a factorization into distinct primes.

For the rest of the chapter we set vn = 1 + z + z2 + . . . + zn−1 (notice that vn has
degree n − 1).

Lemma 4.24. For each n ≥ 2 we have

Φn(z) =
∏
d |n

(zn/d − 1)μ(d) and Φn(z) =
∏
d |n

vn/d(z)
μ(d).

Proof. The identity on the left follows directly from the definition of Φn and the
Möbius inversion formula (see Exercise 4). For the identity on the right use that∑

d |n μ(d) = 0 (Exercise 3) to get

∏
d |n

vn/d(z)
μ(d) =

∏
d |n

[vn/d(z)(z − 1)]μ(d) =
∏
d |n

(zn/d − 1)μ(d) = Φn(z),

which shows our claim. ��
Let s(j) denote the number of irreducible cyclotomic polynomials of degree j ,

that is, for each j ≥ 1 the number s(j) is equal to the number of solutions x to the
equation φ(x) = j (in other words, the cardinality of the set φ−1(j)). For example,
s(8) = 5 since the equation φ(x) = 8 has the following five solutions: 15, 16,
20, 24 and 30. We may have s(j) = 0, for instance if j is any odd integer greater
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than 1 (see Exercise 9), but also for some even integers such as 14, 26, 34, 38,
50 . . . Carmichael conjectured in 1922 that s(j) �= 1 for all j , that is, that equation
φ(x) = j has either no solution or has at least two solutions. Schlafly and Wagon
showed in [48] the validity of Carmichael’s conjecture for all j below 10107

. An old
conjecture of Sierpiński asserts that for each integer k ≥ 2 there is an integer j for
which s(j) = k. This conjecture was proved recently by Ford [25], while Erdös has
shown that any value of the function s appears infinitely often [24].

A polynomial p(z) of degree n is said to be self-reciprocal if p(z) = znp( 1
z
). In

the following table a(n) is the number of cyclotomic polynomials p of degree n for
small n, the number of such polynomials which are additionally self-reciprocal is
indicated by b(n), and c(n) is the number of those which are self-reciprocal and
where p(−1) is the square of an integer. Our interest in such polynomials will
become clear below (see Lemma 4.28). There is an efficient algorithm to determine
such polynomials of given degree n, based on a quadratic bound for n ≤ 4φ(n)2 in
terms of Euler’s totient function, see [49, p. 248].

n 1 2 3 4 5 6 7 8 9 10 11 12

a(n) 2 6 10 24 38 78 118 224 330 584 838 1420

b(n) 1 5 5 19 19 59 59 165 165 419 419 1001

c(n) 1 3 5 12 19 34 59 99 165 244 419 598

Cyclotomic polynomials Φn and their products are a natural source of self-
reciprocal polynomials. Clearly, Φ1(z) = z − 1 is not self-reciprocal, but all
remaining Φn (with n ≥ 2) are. Hence, exactly the polynomials (z−1)2k∏

n≥2 Φ
en
n

with natural numbers k and en are self-reciprocal with spectral radio one and without
eigenvalue zero.

n 15 20 25

a(n) 4514 30,532 152,170

b(n) 2257 20,399 76,085

c(n) 2257 12,526 76,085

It is not a coincidence that in the above tables we have b(n) = c(n) = b(n − 1)
for n > 1 odd. Indeed, p is cyclotomic self-reciprocal of odd degree if and only
if p(z) = (z + 1)q(z) for some cyclotomic self-reciprocal polynomial q of degree
n − 1, and in that case p(−1) = 0.

Exercises 4.25. One can see directly that for complex numbers z1, . . . , zn, the
following polynomial expansion holds,

n∏
i=1

(z − zi) =
n∑

i=0

(−1)n+ien−i (z1, . . . , zn)z
i,
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where ei(z1, . . . , zn) denotes the elementary symmetric polynomial in n variables

ei(z1, . . . , zn) =

⎧
⎪⎪⎨
⎪⎪⎩

1, if i = 0,∑
1≤j1<...<ji≤n

zj1 · · · zji , if 1 ≤ i ≤ n,

0, if i > n.

For � ≥ 1 define ei,� = ei(z
�
1, . . . , z

�
n) and consider the �-th power sum:

p� =
n∑

i=1

z�i .

The equations in Exercises 1 and 2 are known as Newton’s identities.

1. Show that for any k ≥ 1 we have kek,1 = ∑k
i=1(−1)i−1ek−i,1pi , and conclude

that for � ≥ 1 we have

kek,� =
k∑

i=1

(−1)i−1ek−i,�p(i�).

[Hint: Take the sum over i = 1, . . . , k of the substitutions z = zi in the
polynomial

∏n
i=1(z − zi), and consider its expansion as above.]

2. Show that for � ≥ 1 we have

p� = (−1)�−1ke�(z1, . . . , zn) +
�−1∑
i=1

(−1)�+i−1e�−i (z1, . . . , zn)pi.

3. Prove that the Möbius function μ satisfies

∑
d |n

μ(d) =
{

1, if n = 1,
0, if n ≥ 2.

[Hint: Take the product x of all primes dividing n and notice that

∑
d |n

μ(d) =
∑
d |x

μ(d).

Show the sum on the right must be zero for n > 1 (cf. [45, 3.3.2]).]
4. Möbius inversion formula. Let G be an abelian group (with multiplicative

operation) and consider functions f, g : N → G such that f (n) = ∏
d |n g(d) for

any n ∈ N. Show that

g(n) =
∏
d |n

f (n/d)μ(d),
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where μ is the Möbius function. [Hint: Show that

∑
d |n

μ(d)
∑

t |(n/d)
g(t) =

∑
t |n

g(t)
∑

d |(n/t)
μ(d),

since if d and t divide n then d divides n/t if and only if t divides n/d . Then use
Exercise 3.]

5. Let a(z) = ∑
i≥0 aiz

i and c(z) = ∑
i≥0 ciz

i be polynomials with integer
coefficients (thus ai = 0 = ci for almost all i).

i) Show that if a �= 0 and a(z)b(z) = c(z) for some complex polynomial b(z),
then b(z) has rational coefficients.

ii) Assume that b(z) = ∑
i≥0 biz

i is a polynomial with integer coefficients such
that a(z)b(z) = c(z). Show that if gcd({ai}i≥0) = 1 = gcd({bi}i≥0) then
gcd({ci}i≥0) = 1.

Conclude that if a is monic and a(z)b(z) has integer coefficients for some
complex polynomial b(z), then b has integer coefficients.

6. Prove that there is no linear bound for n in terms of the totient function φ(n).
7. Show that the polynomials fi in the proof of Theorem 4.20 actually have integer

coefficients.
8. Give a proof of Corollary 4.23.
9. Show that if n > 2 then the n-th cyclotomic polynomial Φn has even degree.

4.6 Coxeter Matrices

Let 〈−,−〉 : Zn×Z
n → Z be a bilinear form. A linear transformationX : Zn → Z

n

satisfying

〈v,w〉 = −〈w,Xv〉, for all v and w in Z
n,

is called a Coxeter transformation for 〈−,−〉 (see for instance [34, 38] or [47]).
If the bilinear form is nondegenerate then it has a unique Coxeter transformation.
Indeed, if X and X′ satisfy the above conditions, then for any v and w in Z

n we
have

〈w,X′v − Xv〉 = 〈v,w〉 − 〈v,w〉 = 0,

therefore X′w = Xw. Fixing the canonical basis e1, . . . , en of Z
n consider the

matrix T = SM〈−,−〉 satisfying 〈v,w〉 = vtT w, with coefficients given by 〈ei , ej 〉
for 1 ≤ i, j ≤ n. In particular det(T ) �= 0 if the bilinear form is nondegenerate, and
taking X = −T −1T t we have

−〈w,Xv〉 = wtT (T −1T t )v = wtT tv = vtT w = 〈v,w〉.
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The matrix X = −T −1T t is called Coxeter matrix of T , and corresponds to
the Coxeter transformation of 〈−,−〉 with respect to the canonical basis. Observe
that in the nondegenerate case, Coxeter transformations are Z-invertible (in fact
det(X) = (−1)n), and that X = −Idn if and only if 〈−,−〉 is symmetric.
Observe also that if 〈−,−〉′ is a bilinear form equivalent to 〈−,−〉 (that is,
T := SM〈−,−〉 and T ′ := SM〈−,−〉′ are congruent matrices, say T ′ = StT S for
some Z-invertible matrix S) then we have similar corresponding Coxeter matrices
X and X′,

X′ = −(T ′)−1(T ′)t = −(S−1T −1S−t )(StT tS) = S−1(−T −1T t )S = S−1XS,

where S−t denotes the inverse of the transposed matrix St , which is just another
way of expressing the uniqueness of the transformation defined by X. Conditions
on the quadratic form q(x) = 〈x, x〉 impose severe restriction on the Coxeter matrix
X, as we show next.

Theorem 4.26. Let X be the Coxeter transformation of a nondegenerate bilinear
form 〈−,−〉 : Zn × Z

n → Z and assume that the integral quadratic form q(x) =
〈x, x〉 is positive. Then X is periodic and |λ| = 1 with λ �= 1 for any eigenvalue λ
of X.

Proof. Notice first that for v ∈ Z
n we have

q(Xv) = 〈Xv,Xv〉 = 〈v, v〉 = q(v).

By Remark 2.4 the set {Xkei}k≥0 is finite for the canonical vectors e1, . . . , en,
since q(Xkei) is constant for all k ≥ 0. Then there exists ki > 0 with
Xki ei = ei for i = 1, . . . , n. Take a common multiple k of k1, . . . , kn and observe
that Xk = Id.

Now, by Theorem 4.22 (see also Corollary 4.23) every eigenvalue λ of X

satisfies |λ| = 1. That 1 is not an eigenvalue of X will be shown below in
Lemma 4.28(c).

��
The hypothesis that q is positive in Theorem 4.26 cannot be weakened, as shown

by the following example given in [47]. Consider the matrix T with det(T ) = 1 and
its associated Coxeter matrix X = −T −1T t as given below,

T =
(

2 3
1 2

)
and X =

(
5 4

−4 −3

)
.

Then the quadratic form q(v) = vtT v = 2(v1 + v2)
2 is nonnegative, and one can

easily verify that X is not periodic. However (X − Id)2 = 0, as expected from the
following generalization of Theorem 4.26 for nonnegative quadratic forms, given
by Sato in [47] (the assertion on the eigenvalues of X is shown in Theorem 4.22).
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Theorem 4.27. Let X be the Coxeter transformation of a nondegenerate bilinear
form 〈−,−〉 : Zn × Z

n → Z and assume that the integral quadratic form q(x) =
〈x, x〉 is nonnegative. Then X is weakly periodic and |λ| = 1 for any eigenvalue λ
of X.

The converse of Theorems 4.26 and 4.27 does not hold in general (the Coxeter
transformation X of any symmetric bilinear form satisfies X2 = Id). A similar
example with T upper triangular and with ones on the main diagonal is given in [38],
correcting an erroneous claim in [21].

T =

⎛
⎜⎜⎜⎝

1 0 −1 −1 −1 2 2 2
0 1 −1 −1 −1 2 2 2
0 0 1 0 0 −1 −1 −1
0 0 0 1 0 −1 −1 −1
0 0 0 0 1 −1 −1 −1
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎠ and X =

⎛
⎜⎜⎜⎝

−4 −3 2 2 2 −1 −1 −1
−3 −4 2 2 2 −1 −1 −1
−5 −5 2 3 3 −1 −1 −1
−5 −5 3 2 3 −1 −1 −1
−5 −5 3 3 2 −1 −1 −1
−2 −2 1 1 1 −1 0 0
−2 −2 1 1 1 0 −1 0
−2 −2 1 1 1 0 0 −1

⎞
⎟⎟⎟⎠ .

The upper triangular matrix T above has determinant one, and its Coxeter matrix
X = −T −1T t satisfies X3 = −Id, that is, the Coxeter transformation associated
to the bilinear form determined by T is periodic. However, if v is the vector
(1, 1, 1, 1, 1, 0, 0, 0) then q(v) = vt T v = −1.

The characteristic polynomial of X is usually known as Coxeter polynomial of
the bilinear form, and by the above it is an invariant of the equivalence class to
which 〈−,−〉 belongs. Some general properties of Coxeter polynomials are easy to
determine.

Lemma 4.28. Consider a Coxeter matrix X = −T −1T t and its Coxeter polyno-
mial χ(z) = det(Idz − X). The following assertions hold:

a) The polynomial χ is self-reciprocal.
b) If det(T ) = 1 then χ(−1) is the square of an integer.
c) χ(1) = 0 if and only if the integral quadratic form q(x) = xtT x has nontrivial

corank cork(q) �= 0.

Proof. Point (a) is a direct calculation:

znχ

(
1

z

)
= det(Idz) det(Id

1

z
+ T −t T )

= det(Id + T −t T z) = det[T −t (T tT −1 + Idz)T ]
= det(Idz + T tT −1) = det(Idz + T −t T )

= χ(z).

Assume now that det(T ) = 1. Then

χ(z) = det(Idz + T −t T ) = det(T −t ) det(zT t + T ) = det(T + zT t ).
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Hence χ(−1) is the determinant of a skew-symmetric matrix S := T −T t . Using the
skew-normal form of S (see for instance [41, Theorem IV.1]), we obtain S′ = UtSU

for some Z-invertible matrix U , where S′ is a block diagonal matrix whose first
block is the zero matrix of certain size and the remaining blocks have the shape[

0 mi

−mi 0

]
with integers mi . Thus the claim (b) follows. For (c) observe simply

that, since T is invertible, for any nontrivial v in cork(q) we have

0 = T −1(T + T t )v = (Id + T −1T t )v = (Id − X)v,

that is, v is an eigenvector of X with eigenvalue 1. Conversely, if 1 is an eigenvalue
of X then det(Id − X) = 0 = det(T + T t ) and we may find a vector v in Q

n with
(T + T t )v = 0(using for instance the Gauss elimination process), and multiplying
by an integer if necessary we may assume that v has integer entries. Therefore v ∈
cork(q). ��

We associate a Coxeter matrix Xq to a given quadratic unit form q by means
of the Gram matrix Tq and the bilinear form it determines (x, y) → vtTqw

(that is, we define Xq := −T −1
q T t

q ), and take the Coxeter polynomial of q to
be the characteristic polynomial χq(z) of Xq . This choice is somehow arbitrary,
for equivalent unit forms q and q ′ might have different Coxeter polynomials χq
and χq ′ (since the Gram matrices Tq and Tq ′ need not be congruent even if q

and q ′ are equivalent forms). Below we give an alternative construction of T −1
q

using the simple reflections σ1, . . . , σn associated to a unit form q . Consider the
coefficients

γ (i, j) :=

⎧
⎪⎪⎨
⎪⎪⎩

∑
0≤s

(−1)s+1γs(i, j), if i < j,

1, if i = j,

0, if i > j,

where for i < j and 0 ≤ s we define

γs(i, j) :=

⎧⎪⎪⎨
⎪⎪⎩

∑
i<k1<...<ks<j

qik1 . . . qkrj , if 0 < s < j − i,

qij , if s = 0,
0, if s ≥ j − i.

and take the (upper triangular) matrix Cq = (γ (i, j))ni,j=1. First we verify that Cq

is indeed the inverse of Tq .

Lemma 4.29. Let Tq be the Gram matrix associated to a unit form q : Zn → Z as
defined in Sect. 1.1. Then TqCq = Id.
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Proof. We proceed by induction on n > 1 (for n = 1 the claim is clear). Define the
matrices T ′

q and C′
q by deleting both the last column and the last row from Tq and

Cq respectively. Take q ′ = q(n) and observe that T ′
q is the Gram matrix Tq ′ of q ′,

and similarly C′
q is the matrix Cq ′ constructed above corresponding to q ′. Then by

induction, and since qnnγ (n, n) = 1, we only need to verify that for 1 ≤ i < n we
have

n∑
r=i

qirγ (r, n) = 0.

Observe first that by definition, for s ≥ 0 we have

∑
i<r<n

qirγs(r, n) =
∑

i<r<n

qir

⎡
⎣ ∑
r<k1<...<ks<n

qrk1 . . . qkrn

⎤
⎦ = γs+1(i, n).

Then

n∑
r=i

qirγ (r, n) = qin +
n−1∑
r=1

∑
s≥0

(−1)s+1qirγs(r, n)

= qin +
∑
s≥0

(−1)s+1

[
qiiγs(i, n) +

∑
i<r<n

qirγs(r, n)

]

= qin +
∑
s≥0

(−1)s+1 [γs(i, n) + γs+1(i, n)]

= qin − γ0(i, n) = qin − qin = 0,

which completes the proof. ��
Lemma 4.30. Consider the simple reflections σ1, . . . , σn associated to a unit form
q : Zn → Z for 1 ≤ i ≤ j ≤ n and define the vectors αi,j := σi · · · σj−1(ej ) and
βi,j := σj · · ·σi+1(ei) in Z

n. Then

αi,j =
j∑

r=i

γ (r, j)er and βi,j =
j∑

r=i

γ (i, r)er ,

where γ (i, j) are the coefficients of the matrix Cq as defined above.

Proof. We show the claim for βi,j , the proof for αi,j goes similarly. Fix 1 ≤ i ≤ n

and notice that βi,i = ei = γ (i, i)ei . Assume the claim holds for i ≤ j < n and
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observe by induction that

βi,j+1 = σj+1(βi,j ) = σj+1

⎛
⎝

j∑
r=i

γ (i, r)er

⎞
⎠

=
j∑

r=i

γ (i, r)[er − qr,j+1ei+1]

=
j∑

r=i

γ (i, r)er +
⎡
⎣−

j∑
r=i

γ (i, r)qr,j+1

⎤
⎦ ej+1.

Now, since i �= j + 1 and CqTq = Id by Lemma 4.29, the product of the i-th row
of Cq with the j + 1-th column of Tq is zero, that is,

0 =
j+1∑
r=i

γ (i, r)qr,j+1 =
j∑

r=i

γ (i, r)qr,j+1 + γ (i, j + 1),

which shows that

βi,j+1 =
j∑

r=i

γ (i, r)er +
⎡
⎣−

j∑
r=i

γ (i, r)qr,j+1

⎤
⎦ ej+1 =

j+1∑
r=i

γ (i, r)er .

��
For 1 ≤ i ≤ n define the (column) vectors

αi = σ1 · · · σi−1(ei), and βi = σn · · · σi+1(ei),

or using the notation of Lemma 4.30, αi = α1,i and βi = βi,n. When coming from
certain algebraic settings (see for example [2] or [37]) αi and βi are called projective
and injective vectors. The correspondence of Coxeter matrices with the product of
simple reflections (in some order) was first observe by Howlett in [34] (see [38,
Corollary 2.11]). In what follows we identify a transformation from Z

n to Z
n with

its associated n by n matrix with respect to the canonical basis of Zn. Recall that
the square matrix having as columns the vectors x1, . . . , xn in Z

n is denoted by
(x1| · · · |xn).
Theorem 4.31. For a unit form q : Zn → Z we have

Cq = (α1| . . . |αn) and Ct
q = (β1| . . . |βn).
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In particular Xq = −CqC
−t
q = σ1 · · · σn, therefore the Coxeter transformation Xq

is an isometry for q belonging to the Weyl group W(q).

Proof. The first assertions follow directly from Lemma 4.30. For the second claim
observe that both Xq and σ1 · · ·σn are linear transformations that send the vector βi
to the vector −αi for i = 1, . . . , n. Thus the result follows since clearly both sets
{α1, . . . , αn} and {β1, . . . , βn} are Z-basis of Zn. ��

Which self-reciprocal polynomials are Coxeter polynomials (of unitary forms)?
Notice that the request for p(−1) to be a square number discards many self-
reciprocal polynomials (for instance Φ4,Φ6,Φ8 and Φ10 in the cyclotomic case).
What about the cyclotomic case? For example, the cyclotomic polynomial p(z) =
Φ2(z)Φ6(z) = z3 + 1 does not appear as a Coxeter polynomial Xq of any unitary

form q , despite the fact thatp(−1) = 0 is a square. Indeed, the matrix T =
⎡
⎣

1 a b

0 1 c

0 0 1

⎤
⎦

yields the Coxeter matrix

X =
⎡
⎣
a2 + b2 − abc − 1 a − ac2 + bc b − ac

bc − a c2 − 1 c

−b −c −1

⎤
⎦ ,

with Coxeter polynomialχ(z) = z3+αz2+αz+1, where α = −a2−b2c2+abc+3.
Therefore we look for integral solutions to the Markov–Hurwitz type equation

3 = a2 + b2 + c2 − abc.

Any such solution, if exists, must satisfy a, b, c ≡ 0 mod 3. Thus the right side of
the equation is divisible by 9, which is impossible (see Exercise 2).

We now consider the bilinear form 〈−,−〉−→
G

determined by a directed graph (also

known as quiver)
−→
G , where every edge has a fixed ordering. In this case directed

edges are called arrows and are depicted as such. The adjacency matrix A−→
G

of a

directed graph
−→
G has as coefficients the integers

(A−→
G
)ij = Number of arrows from i to j.

Then for vectors v and w in Z

−→
G 0 we take 〈v,w〉−→

G
= vt (Id − A−→

G
)w. Observe that

if G is the underlying graph of
−→
G (the graph obtained by ignoring the orientation of

all edges), then qG(v) = 〈v, v〉−→
G

for any v in Z
G0 . Recall that by a path in

−→
G we

mean a walk such that all directed edges point in the same direction (trivial walks

are also paths). An oriented cycle in
−→
G is a closed path, and a digraph without

oriented cycles is called acyclic. In what follows we will assume that
−→
G is acyclic,

thus in particular
−→
G has no loop. We will say that the ordering of vertices in

−→
G
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is admissible if the existence of an arrow i → j implies that i < j . Notice that

the ordering of
−→
G 0 is admissible if and only if the adjacency matrix A−→

G
is upper

triangular.

Lemma 4.32. Let
−→
G be a directed graph with adjacency matrix A−→

G
. The number

of paths in
−→
G of length k ≥ 0 from vertex i to vertex j is given by the (i, j)-th entry

in the matrix Ak−→
G

.

Proof. We proceed by induction on k ≥ 0. The claim is evident for k = 0 and
k = 1, and assume it holds for k > 1. Every path w of length k + 1 from i to j

is the concatenation of a path w′ of length k from i to some vertex �, and an arrow
α : � → j . By induction the number of paths of length k + 1 from i to j is given by

∑

�∈−→
G 0

(Ak−→
G
)i�(A−→

G
)�j = (Ak+1−→

G
)ij .

��
In particular, if

−→
G is acyclic then the matrixA−→

G
is nilpotent, therefore (Id−A−→

G
)

is an invertible matrix with inverse given by Id + A−→
G

+ A2−→
G

+ A3−→
G

+ . . . We also

have

(Id − A−→
G
)−1
ij = Number of paths from i to j.

The Coxeter matrix X−→
G

associated to an acyclic directed graph
−→
G is the Coxeter

matrix of the nondegenerate bilinear form 〈−,−〉−→
G

. It has the following explicit
shape

X−→
G

= −(Id − A−→
G
)−1(Id − A−→

G
)t = −

⎛
⎝∑

�≥0

A�−→
G

⎞
⎠ (Id − At−→

G
).

Remark 4.33. The following interpretation of the coefficients in the Coxeter matrix

associated to an acyclic directed graph
−→
G can be verified directly (cf. A. Boldt [13]).

By a twisted path from i to j we mean a path of length � ≥ 0 from i to k for some
vertex k, followed by a directed edge from k to j . Then we have

(X−→
G
)ij =

(
Number of twisted paths

from i to j

)
−
(

Number of (nontwisted) paths
from i to j

)
,

for any pair of vertices i and j .

The Coxeter polynomial of the bilinear form associated to an acyclic directed

graph
−→
G is denoted by χ−→

G
. Recall that

−→
G is a forest if its underlying graph G is
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disjoint union of tree graphs. The following are well-known properties of Coxeter
polynomials of directed graphs (see for instance [40]).

Proposition 4.34. Let
−→
G be an acyclic directed graph.

a) The Coxeter polynomial χ−→
G

does not depend on the ordering of vertices in
−→
G .

b) If
−→
G is a forest, then the Coxeter polynomial χ−→

G
does not depend on the

orientation of the arrows in
−→
G .

Proof. Let {1, . . . , n} be the set of vertices of
−→
G , and take

−→
G ′ to be the directed

graph obtained after a permutation π of the set of vertices. The adjacency matrix
A−→

G ′ is given by the coefficients (A−→
G ′)ij = (A−→

G
)π(i)π(j), that is, the permutation

matrix P = (eπ(1)| · · · |eπ(n)) yields a congruence

A−→
G ′ = P tA−→

G
P.

Since P tP = Id we have equivalent bilinear forms 〈−,−〉−→
G ′ and 〈−,−〉−→

G
, hence

similar Coxeter matrices X−→
G ′ and X−→

G
. Then χ−→

G ′ = χ−→
G

.
The proof of (b) can be found in [40]. It uses a special type of transformation

on directed graphs (sink-source reflections) as used by Bernstein, Gelfand and
Ponomarev in the context of representations of algebras [10]. ��
Lemma 4.35. Consider an acyclic directed graph

−→
G 1 with source x2, and let

−→
G

be the directed graph obtained from
−→
G 1 by adding a vertex x1 and an arrow from

x1 to x2. The subgraph of
−→
G

1
obtained by deleting vertex x2 is denoted by

−→
G

2
.

−→
G = x1• •x2 ···

−→
G

2

Then the Coxeter polynomial of
−→
G is given by

χ−→
G
(z) = (z + 1)χ−→

G
1(z) − zχ−→

G
2(z).

Proof. Let n be the number of vertices in
−→
G

1
. Enumerate the vertices of

−→
G taking

x1 = n + 1 and x2 = n. By the description of the coefficients of the Coxeter matrix
X−→

G
as a difference of twisted minus nontwisted paths (Remark 4.33), we have

X−→
G

=
⎡
⎢⎣
X−→

G
2 b 0

at λ 1
at λ 0

⎤
⎥⎦ ,
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where a and b are column vectors with n − 1 entries, λ ∈ Z and 0 is a zero matrix
of appropriate size. Expanding det(zId − X−→

G
) by minors along the last column we

get

χ−→
G
(z) = zχ−→

G
1(z) + det(B),

where B =
[

Idz − X−→
G

2 −b

−at −λ

]
. Since χ−→

G
1(z) = det

[
Idz − X−→

G
2 −b

−at z − λ

]
(for x2 is

a source of
−→
G

1
), we conclude that

χ−→
G

1(z) = zχ−→
G

2 + det(B),

that is,

χ−→
G
(z) = (z + 1)χ−→

G
1(z) − zχ−→

G
2(z).

Hence the result. ��
Recall that a directed graph

−→
G is called bipartite if there is a partition of the

vertex set
−→
G 0 = P1 � P2 such that every arrow in

−→
G starts at a vertex belonging

to P1 and ends in a vertex in P2. Many important (spectral) properties of Coxeter
matrices for bipartite directed graphs (a family of graphs that includes all trees) are
consequences of A’Campo’s Theorem [1], which describes Coxeter polynomials in

terms of the characteristic polynomial associated to the underlying graph G of
−→
G .

Theorem 4.36 (A’Campo). Let
−→
G be a connected bipartite directed graph with n

vertices. Then the Coxeter polynomial χ−→
G

of
−→
G satisfies

χ−→
G
(z2) = znpG(z + z−1),

where G is the underlying graph of
−→
G and pG denotes the characteristic polynomial

of the (symmetric) adjacency matrix of G.

Proof. By Proposition 4.34(a) we may enumerate the vertices of
−→
G in such a way

that vertices 1, . . . ,m are the sources of all arrows in
−→
G , while m+1, . . . , n are the

targets of all arrows, for some 1 < m < n. Then the adjacency matrix A−→
G

of the

directed graph
−→
G is given as follows,

A−→
G

=
(

0m M

0 0n−m

)
,
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while the adjacency matrix AG of its underlying graph G is AG = A−→
G

+ At−→
G

,

where 0m denotes the zero m by m matrix. Since
−→
G has no path of length 2, by

Lemma 4.32 we have A2−→
G

= 0. Since bipartite graphs have no oriented cycle, by

Remark 4.33 the Coxeter matrix of
−→
G is given by

X−→
G

= −(Id + A−→
G
)(Id − At−→

G
).

Taking A = A−→
G

and considering again that A2 = 0, we have

χ−→
G
(z2) = det(z2Id − X−→

G
) = det(z2Id + (Id + A)(Id − At))

= det(z2Id + (Id + A)(Id − At)) det(Id − A)

= det(z2(Id − A) + (Id − A2)(Id − At))

= zn det((z + z−1)Id − z−1At − zA)

= zn det((z + z−1)Id − (At + A)),

where the last equality follows from the specific shape of the matrix zA + z−1At ,

zA + z−1At =
(

0 zM

z−1Mt 0

)
.

This completes the proof. ��
As consequence of Theorem 4.36 it can be shown that the eigenvalues of the

Coxeter matrix X−→
G

, for
−→
G a bipartite directed graph, are either positive real

numbers, or complex numbers with modulus one (cf. [1] and Exercise 7 below).
The formula in Lemma 4.35 can be used to find the Coxeter polynomials of a

wide variety of oriented graphs. Take for instance the star graph [p1, . . . , pt ] with
t branches of length p1, . . . , pt and the following orientation of arrows

[2, 2, 3, 3, 4] = •

•

•

•

• • ••

•

•

The sequence of numbers (p1, . . . , pt ) is referred to as the star type of the star.
By Lemma 4.35 (see Exercise 3) we find that the Coxeter polynomial of a star
[p1, . . . , pt ] has the form

χ[p1,...,pt ](z) =
[
(z + 1) − z

t∑
i=1

vpi−1(z)

vpi (z)

]
t∏

i=1

vpi (z),
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which gives an explicit formula for the sum of coefficients of χ[p1,...,pt ] as follows,

χ[p1,...,pt ](1) =
[

2 − t +
t∑

i=1

1

pi

]
t∏

i=1

pi.

Remark 4.37. The special value χ(1) = χ[p1,...,pt ](1) has a specific combinatorial
meaning, which can be directly verified:

1) χ(1) > 0 if and only if the star [p1, . . . , pt ] is of Dynkin type.
2) χ(1) = 0 if and only if the star [p1, . . . , pt ] is of extended Dynkin type.
3) χ(1) < 0 if and only if the star [p1, . . . , pt ] is neither of Dynkin nor extended

Dynkin type.

In particular, Tables 4.3 and 4.4 show factorizations of the Coxeter polynomial
associated to Dynkin and extended Dynkin diagrams without oriented cycles.
Observe that, for the extended Dynkin graph Ã, the Coxeter polynomial depends on
the orientation of arrows: If a (resp. b) denotes the number of arrows in clockwise

Table 4.3 Coxeter polynomials of Dynkin diagrams, expressed with a v-factorization and a
cyclotomic factorization

Dynkin Star Cyclotomic Coxeter
diagram symbol v-Factorization factorization number

An [n] vn+1
∏

d|n+1
d>1

Φd n + 1

Dm [2, 2,m − 2] v2
v2(m−1)
vm−1

Φ2
∏

d|2(m−1)
d>m−1

Φd 2(m − 1)

E6 [2, 3, 3] v2v3
v4v6

v12 Φ3Φ12 12

E7 [2, 3, 4] v2v3
v6v9

v18 Φ2Φ18 18

E8 [2, 3, 5] v2v3v5
v6v10v15

v30 Φ30 30

Table 4.4 Coxeter polynomials of extended Dynkin diagrams

Extended Dynkin Star Coxeter Cyclotomic
diagram type polynomial factorization

Ãp,q − (z − 1)2vpvq

(∏
d|p Φd

)(∏
d|q Φd

)

D̃m − (z − 1)2v2
2vm−2 Φ1Φ

2
2

∏
d|m−2 Φd

Ẽ6 [3, 3, 3] (z − 1)2v2v
2
3 Φ2

1Φ2Φ
2
3

Ẽ7 [2, 4, 4] (z − 1)2v2v3v4 Φ2
1Φ

2
2Φ3Φ4

Ẽ8 [2, 3, 6] (z − 1)2v2v3v5 Φ2
1Φ2Φ3Φ5
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(resp. anti-clockwise) orientation (thus a, b ≥ 1 and a + b = n + 1), that is, the
quiver has type Ãa,b, the Coxeter polynomial is χa,b(z) = (z − 1)2vavb .

In a slightly different context, in 1982 Howlett [34] gave further properties on
the spectrum of Coxeter matrices. Recall that an M-matrix C is a square matrix
with nonpositive off diagonal coefficients such that each of its principal minors is
positive. For the proof of the following result we refer interested readers to [34].

Theorem 4.38 (Howlett). Let T be an M-matrix and assume that the quadratic
form q(v) = vtT v is not positive. Then the Coxeter matrix X = −T −1T t has a real
eigenvalue λ with λ ≥ 1. Moreover,

a) If q is not nonnegative then λ > 1.
b) If q is nonnegative then all eigenvalues of X have modulus one, the real number

1 is a repeated eigenvalue and X is not diagonalizable.

Exercises 4.39.

1. Find the Coxeter matrix and Coxeter polynomial of the Kronecker form qm and
the Pell form q[d].

2. Show that the equation a2 + b2 + c2 ≡ abc mod 3 has only trivial solutions in
the finite field F3.

3. Let
−→
G be a directed graph without oriented cycle. Show that the Coxeter

polynomial of the directed graph
−→
Gop (obtained by changing the orientation

of all directed edges) is equal to the Coxeter polynomial of
−→
G .

4. Let q ′ be a unit form obtained from a quadratic unit form q after a point
inversion. Show that χq = χq ′ .

5. Find the Coxeter polynomial of the maximal star Sm (of type [2, 2, . . . , 2] with
m entries).

6. Let C be the companion matrix of a monic polynomial p. Find the inverse of C
if p is self-reciprocal.

7. Use A’Campo’s Theorem 4.36 to show that for any bipartite directed graph−→
G , all eigenvalues of Coxeter matrix X−→

G
are either positive real numbers or

complex numbers with modulus one.
8. Give an example of a tree graph T that is not an extended Dynkin graph and

such that 1 is a root of the Coxeter polynomial χqT associated to the quadratic
form qT .

9. Prove the statements in Remark 4.37.
10. Show that the matrix X = (

5 4−4 −3

)
is not periodic.

11. Let
−→
G be an acyclic directed graph, with adjacency matrix A−→

G
. Show that if

the order of vertices in
−→
G is admissible, then Id − A−→

G
is an M-matrix. Is it

true in general?
12. Let X be the Coxeter transformation of a nondegenerate bilinear form 〈−,−〉,

and let v and w be eigenvectors of X with eigenvalues λ and μ such that λμ �=
1. Show that 〈v,w〉 = 0.



Chapter 5
Weakly Positive Quadratic Forms

Consider the quadratic form q associated to the bigraph G below (left). On one
hand we observe that q is not a positive form, since T = T −

12T
−

13T
+

31 is an iterated
flation for q such that qT is the form associated to extended Dynkin diagram D̃4
(alternatively calculate q(−1, 0, 1, 1, 1) = 0). In particular q has infinitely many
roots (Theorem 2.16).

G •4
•3 •2 •1

•5

On the other hand, the positive roots R+(q) of q are contained in the set of positive
qΔ-roots R+(qΔ), where Δ is the Dynkin diagram D5. Indeed, for a vector x ∈
Z

5 we have q(x) = qΔ(x) + x1(x4 + x5), and if x is a positive root of q , then
x1(x4 + x5) = 0 and x is a positive root of qΔ. Hence the set of positive roots
R+(q) of q is finite. The equality q(x) = qΔ(x) + x1(x4 + x5) also shows that if
x ∈ Z

5 is a positive vector, then q(x) > 0.
A semi-unit form q : Zn → Z is said to be weakly positive if q(x) > 0 for every

positive vector x ∈ Z
n (recall that a vector x ∈ Z

n is positive given x �= 0 and
xi ≥ 0 for i = 1, . . . , n).

Examples 5.1. The following are examples of weakly positive unit forms.

a) A positive unit form is weakly positive.
b) Let B be a bigraph with only dotted edges, and take qB to be its associated

quadratic form (that is, qB is a unit form with (qB)ij ≥ 0 for i �= j ). Then qB is
weakly positive.
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c) Consider the quadratic form qa,b associated to the following bigraph, with
integers a, b ≥ 1

y1 y2 ··· ya

x0

z1 z2 ··· zb

Then qa,b is a unit form in a + b + 1 variables which is weakly positive exactly
when a ≤ 3. Indeed, we may write

q(x0, y1, . . . , ya, z1, . . . , zb) =
a∑

i=1

(
yi − 1

2
x0

)2

+ 4 − a

4
x2

0 +
b∑

j=1

(z2
j + x0zj ),

and verify the claim.

5.1 Critical Unit Forms

A unit form q is called critical nonweakly positive, or for short just critical,
if every proper restriction of q is weakly positive, but the form q itself is not
weakly positive (compare with critical nonpositive forms defined in Sect. 2.3). The
following characterization of critical forms was shown by Ovsienko in [43] (see
also [52]). For the proof we follow Ringel in [46].

Theorem 5.2. Let q be a unit form. Then q is critical if and only if q is the
Kronecker form qm(x1, x2) = x2

1 −mx1x2 +x2
2 for some m ≥ 3, or q is nonnegative

of corank one with radical generated by a sincere positive vector (referred to as a
critical vector of q).

Proof. Clearly the stated conditions are sufficient (see proof of Theorem 2.12). For
the converse let q : Zn → Z be a critical form and v > 0 a positive vector with
minimal weight |v| := ∑n

i=1 |vi | such that q(v) ≤ 0.
Since any proper restriction of q is weakly positive, the vector v is sincere. Then

for each vertex i ∈ {1, . . . , n} we have by minimality

0 < q(v − ei) = q(v) + 1 − q(v|ei),

and therefore q(v|ei) ≤ q(v) for all i.
If q(v) = 0 then it follows from q(v) = 1

2

∑n
i=1 viq(v|ei) that q(v|ei) = 0

for all i (since v is sincere and positive), that is, v is a radical vector. For any other
positivew with q(w) ≤ 0 we choose an index a such that wa

va
≤ wi

vi
for all 1 ≤ i ≤ n.
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Take z := vaw −wav and notice that z is a positive vector in Z
n with za = 0. Then

0 ≤ q(a)(z) = q(vaw − wav) = v2
aq(w) ≤ 0,

and since q(a) is weakly positive, q(a)(z) = 0 implies vaw = wav. Again by
minimality of v all its entries are mutually coprime, therefore va divides wa , that
is, w is an integral multiple of v. This shows that if q(v) = 0 then q is nonnegative
with radical generated by v.

If q(v) < 0 then we proceed as in the proof of Theorem 2.12 to obtain n = 2 and
q(x1, x2) = x2

1 + q12x1x2 + x2
2 with q12 ≤ −3. ��

In particular notice that all critical forms q in n ≥ 3 variables are nonnegative
with radical generated by a sincere positive vector. Using Theorem 3.5, if q is
connected there exists an iterated inflation T for q and an extended Dynkin graph
Δ̃ such that qT = qΔ̃.

Corollary 5.3. A critical unit form is always critical nonpositive, that is, any
proper restriction of a critical unit form is positive.

Proof. The claim is clear for critical forms q : Zn → Z with n = 2 (Kronecker
forms qm with m ≥ 2). If n > 2, it follows from Theorem 5.2 that a critical unit
form is nonnegative with radical generated by a sincere vector. Therefore any proper
restriction of q is positive, that is, q is critical nonpositive. ��

Using Corollary 5.3 we are ready now to correct the picture drawn in Sect. 2.3.

nonpositive
but weakly positive

positive and weakly positive
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�
�
�
�
�
�
�
�
�
�
�
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�
�
�
�
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�
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�

���������
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Recall that the one-point extension q[v] : Zn+1 → Z of a unit form q : Zn → Z

with respect to a q-root v is defined as

q[v](x1, . . . , xn, xn+1) = q

(
n∑

i=1

xiei − xn+1v

)
,

which is again unitary, see Lemma 3.26.
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Proposition 5.4. Let q be a unit form in more than two variables.

a) The form q is critical nonpositive if and only if q = p[v], where p is a positive
unit form and v is a sincere root of p.

b) The form q is critical if and only if q = p[v], where p is a positive unit form
and v is a positive sincere root of p.

In both cases the radical rad(q) of q is generated by a vector z having a vertex i

with zi = 1, while for all vertices j we have |zj | ≤ 6.

Proof. This is a direct consequence of Theorems 2.12 and 5.2, since q[v] is
a nonnegative unit form with rad(q[v]) generated by the vector v + en (cf.
Lemma 3.26).

For the last statement, see Corollary 3.31. ��
The following technical lemma will be widely used throughout this chapter.

Recall that for v ∈ Z
n, the support of v is given by supp(v) = {i ∈ {1, . . . , n} |

vi �= 0}.
Lemma 5.5. For a weakly positive semi-unit form q : Z

n → Z the following
statements hold:

a) The form q is a unitary.
b) For every pair of indices i �= j with qij < 0 we have qij = −1.
c) If v ∈ Z

n is a positive q-root then −1 ≤ q(v|ei). Moreover, if i and j are
different indices in the support of v, then q(v|ei) ≤ 1 and qij ≤ 2.

Proof. Point (a) is clear. For (b) we evaluate q at the vector ei + ej to get

0 < q(ei + ej ) = q(ei) + q(ej ) + q(ei|ej ) = 2 + q(ei |ej ) = 2 + qij .

To show (c) notice that the inequality −1 ≤ q(v|ei) holds in general (evaluate
q at v + ei). Now, if i, j ∈ supp(v), the nonzero vector v − ei has no negative
coordinates, therefore 0 < q(v − ei) = 2 − q(v|ei). For the second inequality
assume that qij ≥ 3, and notice that

q(ei − ej ) = q(ei) + q(ej ) − q(ei|ej ) = 2 − qij < 0.

Since we may assume that q(v|ei − ej ) ≤ 0 (change the roles of i and j otherwise),
for y = v + ei − ej we have

q(y) = q(v) + q(ei − ej ) + q(v|ei − ej ) ≤ 0,

a contradiction since y is a positive vector. ��
We say that a weakly positive unit form q : Zn → Z is sincere if there exists a

positive sincere root v of q .
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Corollary 5.6. For n ≥ 1 there are finitely many sincere weakly positive unit forms
in n variables.

Proof. If q : Zn → Z is a sincere weakly positive unit form, then by Lemma 5.5
we have −1 ≤ qij ≤ 2 for all 1 ≤ i �= j ≤ n. Thus the result follows. ��

In Sect. 1.2 we have defined, for a quadratic unit form q , the i-th simple reflection
σi : Z

n → Z
n given as σi(x) = x − q(x|ei)ei for x in Z

n. In the following
Proposition we resume some basic facts related to reflections when applied to
weakly positive unit forms. We need some preliminary observations.

Lemma 5.7. Let q be a unit form.

a) If v is a q-root, then
∑n

i=1 viq(v|ei) = 2q(v) = 2.

If moreover q is a weakly positive form and v is a nonsimple positive root, then:

b) For all i ∈ supp(v) we have |q(v|ei)| ≤ 1.
c) There exists an i ∈ supp(v) with q(v|ei) = 1.

Proof. Part (a) is a direct calculation. For (b), by hypothesis we have v ± ei > 0.
Therefore 0 < q(v ± ei) = 2 ± q(v|ei), which implies that |q(v|ei)| ≤ 1. Part (c)
follows directly from (b) and (c). ��

Let q be a unit form. Recall that a positive q-root v is called maximal if for any q-
root w with w ≥ v (that is, such that w− v is a nonnegative vector) we have w = v.
Maximal roots play a key role in understanding weakly positive roots. Furthermore,
since the restriction of a weakly positive unit form is again weakly positive, we may
want to first understand those forms which are sincere.

Proposition 5.8. The following are equivalent for a positive root v of a weakly
positive unit form q : Zn → Z.

a) The q-root v is maximal.
b) We have σi(v) ≤ v for all i = 1, . . . , n.
c) We have q(v|ei) ≥ 0 for all i = 1, . . . , n.

Proof. Assume (a) holds. By definition σi(v) = v − q(v|ei)ei , thus we have either
σi(v) ≤ v or σi(v) > v. Since σi(v) is also a root of q (Lemma 1.5(c)), by
maximality of v we have σi(v) ≤ v, therefore (b) holds.

That (b) implies (c) is obvious. We show that (c) implies (a). Let w be a q-root
with w ≥ v. Then wi ≥ vi and q(v|ei) ≥ 0 for any index i, therefore

0 ≤ q(w−v) = q(w)+q(v)−q(w|v) = 2−
n∑

i=1

wiq(v|ei) ≤ 2−
n∑

i=1

viq(v|ei) = 0,

showing that q(w − v) = 0, that is, w = v since q is weakly positive. ��
The hypothesis that q is weakly positive is essential to show that (c) implies

(a) in Proposition 5.8, as the following example shows. Let q = qB be the form
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associated to the bigraph B below and take v and w to be the vectors as indicated
by the integers at the vertices.

B : • • •
•

• •
•

• • • •

v : 1 1 1

1

2 2

1

3 2 1 1

w : 17 1 5

9

34 26

17

51 42 33 25

Then it is easy to show that in fact q(v) = q(w) = 1 and q(v|ei) ≥ 0 for any vertex
i, but clearly v < w. It also clear that q is not weakly positive since q(w−v) = −16.

In view of the preceding result, for a maximal q-root v it is natural to distinguish
between vertices i for which q(v|ei) > 0 and those vertices j where q(v|ej ) = 0. A
vertex i is called exceptional for the maximal q-root v if q(v|ei) > 0. The following
result was observed by Ringel [46] in the context of sincere representation finite
algebras.

Lemma 5.9. Let v be a sincere maximal positive root of a weakly positive unit
form. If v �= ei for 1 ≤ i ≤ n then either there exist exactly two exceptional vertices
i �= j with vi = vj = 1, or there is exactly one exceptional vertex i with vi = 2.

Proof. By Proposition 5.8(c) and Lemma 5.7(b) we have q(v|ei) = 0, 1 for any
vertex i. Hence the result follows from

∑n
i=1 viq(v|ei) = 2, see Lemma 5.7(a). ��

Notice that a vertex is exceptional with respect to a maximal root. Since there
might exist several maximal roots, exceptional vertices are in general not inherent
to unit forms (but to specific maximal roots), as the following example shows.

Example 5.10. Consider the quadratic form qB associated to the bigraph depicted
below.

• • •
B : • •

• •

Then there are two maximal roots (indicated by the numbers at the vertices)

1 2 1

1 2

2 2

and 2 3 2

1 2

1 2

where encircled numbers indicate the exceptional vertex in each case.

The following important result will be used below in Theorem 5.13.
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Corollary 5.11. For any critical unit form q : Zn → Z and any positive q-root v
there is a vertex i ∈ {1, . . . , n} with q(v|ei) < 0. In particular q has infinitely many
positive roots.

Proof. By Theorem 5.2, if q is critical then either q is the Kronecker form
qm(x1, x2) = x2

1 + x2
2 − mx1x2 with m ≥ 3, or q is nonnegative with radical

generated by a positive vector z.
Consider first the former case, and take v = (v1, v2) a positive root of qm, thus

in particular v2
1 + v2

2 = 1 + mv1v2. Then

q(v|e1)q(v|e2) = (2v1 − mv2)(2v2 − mv1) = (4 + m2)v1v2 − 2m(v2
1 + v2

2)

= (4 + m2)v1v2 − 2m(1 + mv1v2)

= (2 + m)(2 − m)v1v2 − 2m,

and since v is positive and m > 2 we have q(v|e1)q(v|e2) < 0.
Now, for the second case consider a positive root v with q(v|ei) ≥ 0 for all i

and take w := v + z. Since z is positive and sincere we have wi > vi > 0 for
i = 1, . . . , n. Then

q(z) = q(w−v) = q(w)+q(v)−q(w|v) = 2−
n∑

i=1

wiq(v|ei) < 2−
n∑

i=1

viq(v|ei) = 0,

which is a contradiction. We conclude in any case that there is an index i with
q(v|ei) < 0. For the last claim, for any positive root v with q(v|ei) < 0 we have
that σ(v) is a positive root larger than v, thus the assertion follows. ��

If q is a critical unit form in more than two variables, then q is connected and
nonnegative by Theorem 5.2. As defined in Sect. 3.2 the Dynkin type Dyn(q) of q
is a Dynkin graph. For instance, in Table 5.1 we exhibit all critical forms of Dynkin
type E6.

5.2 Checking for Weak Positivity

As a first (rather obvious) criterion to verify weak positivity notice that a unit form q

is weakly positive if and only if it does not contain as a restriction any critical form.
The following nontrivial characterization is due to Drozd and Happel (cf. [30]). We
need a preliminary observation.

Lemma 5.12. Let v1, v2, v3, . . . be an infinite sequence of different positive vectors
in Z

n. Then there exist 0 < s < t such that vs < vt (in other words, the poset of
positive vectors in Z

n has finite width).
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Table 5.1 Critical forms of type E6

1

1 2 1

2 3 2

1

1 1 1

2 3 2

1

1 2 1

1 3 1

3

1 1 1

1 1 1

1

2 2 2

1 1 1

1

2 1 2

1 1 1

1

2 2 1

1 1 1

1

2 2 1

1 1 1

1

1 2 1

1 1 1

1

1 2 1

1 1 1

1

1 2 1

1 1 1

1

1 1 2

1 1 1

1

1 1 1

1 1 1

1

1 1 1

1 1 1

1

1 1 1

1 1 1

1

1 1 1

1 1 1

1

1 1 1

1 1 1

Proof. We proceed by induction on n > 0 (the case n = 1 is evident). Consider
the nonnegative integer mk := min(vk1 , . . . , v

k
n) for k ≥ 1. If the sequence {mk}k≥1

is unbounded the claim is clear (taking t such that mt > max(v1
1, . . . , v

1
n) then we

guarantee that v1 < vt ), hence we may assume that {mk}k≥1 is bounded.
Taking subsequences if necessary, we may further assume that there is an

index 1 ≤ i ≤ n such that the sequence {vki } is bounded, thus we may
actually assume that the integer vki is fixed for all k ≥ 1. Consider the vector
v̂k = (vk1, . . . , v

k
i−1, v

k
i+1, . . . , v

k
n) in Z

n−1 for k ≥ 1, and observe that {̂vk}k≥1

is a sequence of different positive vectors in Z
n−1. Hence the result follows by

induction. ��
Theorem 5.13 (Drozd–Happel). Let q : Z

n → Z be a unit form. Then q is
weakly positive if and only if q accepts only finitely many positive roots. Moreover,
in this case there is an iterated deflation T such that qT = qG where G is a bigraph
with only dotted edges and no loop.

Proof. We start by proving the last statement. Suppose that R+(q) is a finite set
and that q is weakly positive. If qij < 0 for some i �= j then qij = −1 by
Lemma 5.5(b). Consider the deflation T = T −

ij for q and take q1 = qT (which is a
unit form by Proposition 2.17). Then T : R+(q1) → R+(q) is a proper embedding
(Lemma 2.19) thus R+(q1) is a finite set. To continue we will look for indices k �= �



5.2 Checking for Weak Positivity 143

such that (q1)k� < 0. Since this procedure may be iterated only a finite number of
times, we get a composition of deflations T taking q to qG where G has only dotted
edges.

Assume first that q is not weakly positive. Then there exists a critical restriction
qI of q , and by Corollary 5.11 the forms qI and q have infinitely many positive
roots.

Assume now that q : Zn → Z is a weakly positive unit form such that R+(q)
is an infinite set. Let n be minimal with this property, so that for each index i the
weakly positive unit form q(i) has finitely many positive roots. In particular, q has
infinitely many sincere positive roots, and by Lemma 5.5(c), for any such root v we
have q(v|ei) ∈ {−1, 0, 1}. Therefore there should be an infinite sequence {vk}k≥1
of positive q-roots with (q(vk|ei))ni=1 a fixed vector in Z

n. By Lemma 5.12 we can
find two comparable roots vs < vt , and we have

0 < q(vt − vs) = 1

2
q(vt − vs |vt − vs)

= 1

2

n∑
i=1

(vti − vsi )[q(vt |ei) − q(vs |ei)] = 0,

which is impossible. Therefore R+(q) is a finite set. ��
The iterated simple reflections of a unit form q may also be used to check for

weak positivity of q (cf. Proposition 2.5 and Remark 2.6).

Proposition 5.14. A unit form q : Zn → Z is weakly positive if and only if there
exists N > 0 such that for every sequence of q-roots with the shape

ei < σ�1(ei) < σ�2σ�1(ei) < . . . < σ�r · · · σ�1(ei),

we have r < N .

Proof. For q weakly positive the condition is necessary since R+(q) is a finite set
(Theorem 5.13).

If q is not weakly positive then there is a critical restriction q ′ of q . By
Corollary 5.11, for any positive q ′-root v there is a vertex � such that q ′(v|e�) =
q(v|e�) < 0. In particular, if v = σ�r · · · σ�1(ei) is a positive root, then v < σ�(v)

which completes the result. ��
Ovsienko’s Theorem (see Theorem 5.25 below) claims that if v ∈ Z

n is a positive
root of a weakly positive unit form q : Zn → Z, then vi ≤ 6 for i = 1, . . . , n. This
establishes a priori the bound N = 6n in the algorithm of Proposition 5.14.

Recall from Proposition 2.5 and Remark 2.6 that we may construct all positive
roots (inductively using reflections) for a unit form q known to be weakly positive.
However, we usually do not know beforehand that q is weakly positive. Still, we
could start to construct q-roots inductively using reflections, and find a way to stop
the process using the following simple criterion.
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Proposition 5.15. If q : Zn → Z is a nonweakly positive unit form with qij ≥ −2
for 1 ≤ i, j ≤ n, then there exists a positive q-root w and a vertex i such that
q(w|ei) ≤ −2.

Proof. Since q is not weakly positive there exists a critical restriction qI of q which,
by the hypothesis qij ≥ −2 and Theorem 5.2, has a positive sincere radical vector
z. For an index i in I and identifying z ∈ Z

I with its inclusion in Z
n, we have

q(z|ei) = qI (z|ei) = 0. Take w = z − ei ∈ Z
n which is a positive root of q , and

calculate

q(w|ei) = q(z|ei) − q(ei|ei) = 0 − 2. ��

Algorithm 5.16. By iteratively calculating positive q-roots using reflections one of
the following two situations appear after a finite number of steps: either one finds a
positive root w and a vertex i such that q(w|ei) ≤ −2 and conclude that the form
was not weakly positive, or we end up with a finite number of positive roots unable
to produce any new positive roots using reflections, hence concluding that the form
is weakly positive (and we have reached all positive roots).

The last result of this section will be heavily used in the rest of this chapter.

Lemma 5.17. Let q be a sincere weakly positive unit form and consider its
associated bigraph Bq . Then the subgraph of Bq determined by all solid edges is
connected.

Proof. Suppose that the opposite holds, namely, that the set of vertices may be
divided into two disjoint subsets I and J such that qij ≥ 0 whenever i ∈ I and
j ∈ J . Consider a positive sincere root v and write v = vI+vJ where supp(vI ) = I

and supp(vJ ) = J . Then each summand on the right side of the following equation
is nonnegative,

1 = q(vI + vJ ) = q(vI ) + q(vJ ) +
∑

i∈I, j∈J
vIi v

J
j qij ,

hence we must have q(vI ) = 0 or q(vJ ) = 0, that is, either I = ∅ or J = ∅. ��
Exercises 5.18.

1. Find the exceptional vertices of the maximal positive root of the quadratic form
associated to each Dynkin diagram.

2. Calculate the root-picture for qB (that is, the Hasse diagram of the poset of
positive qB-roots) where B is the following bigraph,

• • •
B : • •

• •
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3. Find all the maximal roots of qB and their exceptional vertices, where

• •

B : • •

• •

• •

4. Determine which of the following bigraphs correspond to a weakly positive unit
form.

• •

• •

• •

• •

• •

• •

• •

• •

• •

Which of these forms is sincere?
5. Give an iterated deflation T such that the bigraph associated to the form qT has

no dotted edges, where q is the following weakly positive unit form,

q(x) = x2
1 + . . .+x2

7 −x2(x1 +x3 +x4)−x3(x5 +x6)+x4(x1 +x6 −x7)−x6x7.

5.3 Edge Reduction

Let q : Zn → Z be a semi-unit form and take different indices i and j such that
qij < 0. Define a new unit form q ′ : Zn+1 → Z by the formula

q ′(x) = q(ρ(x))+ xixj , where ρ(ek) =
{
ek, if 1 ≤ k ≤ n;
ei + ej , if k = n + 1.

We say that q ′ is obtained from q by edge reduction with respect to indices i and j

(see [53]). The quadratic form q can be recovered from q ′ using the nonlinear map
π : Zn → Z

n+1 defined as

π(x)k = xk, for k /∈ {i, j, n + 1} and

(π(x)i, π(x)j , π(x)n+1) =
{
(0, xj − xi, xi), if xi ≤ xj ;
(xi − xj , 0, xj ), if xi > xj .

Indeed, we have ρ ◦π = IdZn and q(x) = q(ρ(π(x))) = q ′(π(x))−π(x)iπ(x)j =
q ′(π(x)) for every x ∈ Z

n.
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Lemma 5.19. If q is a unit form and q ′ is an edge reduction of q with respect to i

and j , then q ′ is again a unit form if and only if qij = −1.

Proof. The claim follows from the observations q ′(ek) = q(ρ(ek)) = q(ek) = 1
for 1 ≤ k ≤ n, and

q ′(en+1) = q(ρ(en+1)) = q(ei + ej ) = 2 − qij . ��

Proposition 5.20. Let q : Zn → Z and q ′ : Zn+1 → Z be unit forms such that q ′
is obtained from q by edge reduction with respect to vertices i and j . The following
hold:

a) The function π : Zn → Z
n+1 induces an injection π : R+(q) → R+(q ′).

b) The form q is weakly positive if and only if q ′ is weakly positive. In this case
π : R+(q) → R+(q ′) is a bijection.

Proof.

(a) If x is a positive q-root then

q ′(π(x)) = q(ρ(π(x)))+ π(x)iπ(x)j = q(x) = 1,

since by definition either π(x)i = 0 or π(x)j = 0. Clearly π is an injection.
(b) Assume q is weakly positive and take y to be a positive vector in Z

n+1. Then
clearly ρ(y) is a positive vector in Z

n and q ′(y) = q(ρ(y)) + yiyj , where the
first summand is strictly positive and the second nonnegative. Hence q ′(y) > 0.

For the converse, assume that q ′ is weakly positive and take x a positive vector
in Z

n. By construction π(x) is a positive vector in Z
n and q(x) = q ′(π(x)) > 0.

Finally suppose q is weakly positive and take a positive root y ∈ R+(q ′). Then
1 = q ′(y) = q(ρ(y)) + yiyj > yiyj ≥ 0, which means that yiyj = 0 and
ρ(y) ∈ R+(q) with π(ρ(y)) = y, that is, π : R+(q) → R+(q ′) is a bijection ��
Examples 5.21. Next we illustrate graphically the edge reduction procedure.

a) Consider q1 = qB1 , where B1 is the bigraph

1 2

0

3 4

B1
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Reducing q1 with respect to 0 and 1 yields q2 = qB2 , where B2 is the bigraph
below (and the added vertex is labeled 5).

1 2

5 0

3 4

1 2

5 0

3 6 4

1 2

5 0 7

3 6 4

B 2 B 3 B 4

Reduce q2 with respect to 0 and 3 to get q3 = qB3 , after reducing bigraph B3 to
avoid both types of edges between two vertices (regularization). Continue with
edge 0 and 4 to get B4, and similarly as indicated below:

1 2

5 0 7

8 3 6 4

1 2

5 0 7

8 3 6 4

9

1 2 10

5 0 7

8 3 6 4

9

B5 B6 B7

At the end we get a bigraph B7 containing only dotted edges, hence we cannot
continue to perform reductions. According to Proposition 5.20, all quadratic forms
q7, q6, . . . , q1 are weakly positive. Observe also that B7 has a double dotted edge
between a pair of vertices (0 and 10).

b) As an illustration of Lemma 5.19, consider the unit form q = qC1 where C1 is
the bigraph

1 2

3

C1

After applying edge reduction with respect to 1 and 2 we get q2 = qC2 , where
C2 is the bigraph below

4

1 2

3

4

1 2 5

3

C2 C3
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Now we get the following interesting situation: Reduction with respect to
vertices 3 and 4, which are joined by a couple of solid edges. This reduction
yields quadratic form q3 = qC3 , where C3 is (the regularization of) the bigraph
above, which has an isolated loop. Hence q3 is not a unit form, and therefore
none of the forms q , q2 and q3 is weakly positive.

The following reduction procedure for weakly positive unit forms is presented
by von Höhne in [53], and it forms the basis of the algorithm described below.

Theorem 5.22. Let q : Z
n → Z be a weakly positive unit form and consider a

sequence of forms q = qn, qn+1, . . . , qs such that qi is obtained from qi−1 by edge
reduction (hence qi : Zi → Z) for i > n. The following hold:

a) Each qi is a weakly positive unit form for i ≥ n.
b) We have s ≤ |R+(q)| and if s = |R+(q)| then qs has coefficients qsij ≥ 0 for

every pair of indices 1 ≤ i, j ≤ s.

Proof. By Proposition 5.20 each qi is a weakly positive unit form, and the mapping
πi : Zn+1 → Z

i+1 induces a bijection πi : R+(qi − 1) → R+(qi) for every i > n.
Since each canonical vector ej is a positive qi-root, we have

i ≤ |R+(qi)| = |R+(q)|.

If s = |R+(q)| and if for some pair of indices i < j we have qsij < 0, then qsij = −1

by Lemma 5.5, hence qs(ei + ej ) = 1, which is impossible since R+(qs) = {ei |
1 ≤ i ≤ n + s}. ��

As consequence of Theorem 5.22, if q is a weakly positive unit form there is a
bound for the length of any possible iterated edge reduction for q , namely |R+(q)|−
n where n is the number of variables of q . The converse is false. For instance, the
(classical) Kronecker unit form q2 admits iterated edge reductions of length at most
two, although q2 is not weakly positive. Now we describe an algorithm to verify
weak positivity for a unit form q : Zn → Z, constructing on the way all positive
q-roots.

Algorithm 5.23. Let q : Zn → Z be a unit form.

Step 1. Construct a sequence of quadratic forms qn, qn+1, . . . , qN , where qn = q

and qk+1 is obtained from qk by edge reduction with respect to vertices ik and jk
(in particular, qk+1 : Zk+1 → Z is a quadratic form), for n ≤ k < N .

Step 2. Define the sequence of vectors z1, . . . , zN in Z
n as follows: For k =

1, . . . , n take zk = ek the canonical vector, and for k ≥ n define

zk+1 = zik + zjk .



5.3 Edge Reduction 149

Step 3. For each N ≥ n verify the following stopping conditions:

a) qNij ≥ 0 for all 1 ≤ i, j ≤ N .

b) qNij ≤ −2 for some i �= j .
c) N > 6n.

Then the algorithm must stop after finitely many steps, and the unit form q is weakly
positive if condition (a) in Step 3 is satisfied at some point.

Proof. First, if case (a) arises for some N ≥ n, then qN is weakly positive with
R+(qN) = {e1, . . . , eN }. By Theorem 5.22 we conclude that q itself is a weakly
positive unit form and |R+(q)| = N . Moreover, it can be shown that

R+(q) = {z1, . . . , zN }.

If one of the cases (b) or (c) holds, the form qN is not weakly positive (respectively
by Lemma 5.5(b) and Ovsienko’s Theorem 5.25 below). In any case, q is not weakly
positive. ��

In practice it is never necessary to go so far as the bound 6n in the algorithm
above, and in the next chapter we will review this algorithm and see how to improve
it to make it one of the fastest of all.

Theorem 5.24. A unit form q is weakly positive if and only if any iterated edge
reduction q ′ of q is unitary.

Proof. The necessity is a consequence of Theorem 5.22(a). Let us assume that the
quadratic form q : Zn → Z is unitary, but not weakly positive.

Assume first that there are vertices i �= j such that qij ≤ −3. If q ′ is edge
reduction of q with respect to i and j , then clearly q ′(en+1) = 2 −m ≤ −1, that is,
q is a nonunitary form.

Assume now that qij ≥ −2 for all indices i and j , and take a critical restriction
qI of q . By Theorem 5.2 the restriction qI is nonnegative and has a critical vector
z in Z

I (which will be identified with its inclusion in Z
n). Since q is unitary the

weight |z| = ∑n
i=1 zi of z is larger than 1. Consider the following evident facts:

i) If |v| > 1 for a positive vector with q(v) = 0, then there are vertices i �= j in
the support supp(v) of v such that qij < 0.

ii) If moreover q ′ is the edge reduction of q with respect to vertices i and j , and
v′ = π(v) ∈ Z

n+1, then v′ is a positive vector with q ′(v′) = 0 and |v′| < |v|.
Starting with the critical vector z, the result follows by induction using points (i)
and (ii) above. ��

It follows from the proof of Theorem 5.24 that in the reduction process we may
find quadratic forms q with qii ≤ 1 for some vertex i. These are called pre-unit
forms, and will be considered again in next chapter when addressing the weakly
nonnegative setting.
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5.4 Ovsienko’s Theorem

As shown in Proposition 2.22, the absolute values of the entries of any root v of
a positive unit form are bounded by 6. This is now extended to positive roots of
weakly positive unit forms, the celebrated Ovsienko’s Theorem. The proof given
closely follows Ringel in [46] (see also Gabriel and Roiter [26]).

Theorem 5.25 (Ovsienko). For any vertex i ∈ {1, . . . , n} and any positive root
v ∈ Z

n of a weakly positive unit form q : Zn → Z we have vi ≤ 6.

Proof. The proof is combinatorial and done in several steps. We have already seen
a positive (hence weakly positive) unit form with a root having an entry 6, namely
qE8 (see Table 2.2).

Let s ≥ 6 be an integer. Among those weakly positive unit forms q with

s = M(q) := max{vi | i is an index of q and v is a positive root of q},

we choose one, say q , having minimal number of positive roots. Fix a maximal
positive q-root v such that vk = s for some index k. By minimality, v is a sincere
root.

Step 1. We show that qij ≥ 0 for all i, j �= k.
Suppose vi ≤ vj . We see from 0 < q(ei + ej ) = 2 + qij that qij ≥ −1. If
qij = −1 then we know from Lemma 2.19 that q− = qT −

ij has fewer positive

roots than q . Take v′ = (T −
ij )

−1v = v − viej , which is a positive root of q−
satisfying v′

k = vk = s. This contradicts the assumed minimality of q , since
M(q−) = M(q).

Step 2. We show that qij ≤ 1 for all i, j �= k.
It follows from Lemma 5.5(c) that qij ≤ 2. If qij = 2, assuming that q(v|ei) ≤
q(v|ej ) and taking the positive vector w = v − vj ej + vj ei , we obtain

1 ≤ q(w) = q(v) + 2v2
j − vj [q(v|ej ) − q(v|ei)] − v2

j qij ≤ 1.

Hence w is a positive root of the restriction q(j) with wk = s. But q(j) certainly
has fewer positive roots than q , again in contradiction to minimality.

Step 3. We have qki = −1 for every vertex i �= k. This is a direct consequence of
Steps 1 and 2, and Lemma 5.17.

Step 4. The root v has exactly one exceptional vertex � and v� = 2.
Otherwise Lemma 5.9 implies that there are precisely two exceptional vertices
� and �′ with q(v|e�) = q(v|e�′) = 1 and v� = v�′ = 1. But in that case,
σ�(v) = v− e� is a sincere positive root of q(�) with σ�(v)k = s, in contradiction
to the assumed minimality of q .

Step 5. Define the sets of vertices I = {i �= � | qi� = 1} and J = {i �= � | qi� =
0}, where � is the exceptional vertex for v. Then we have qij = 1 for all i, j in I .
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Indeed, consider the positive vector w = v + ek − e� + ei + ej . Since � is the
unique exceptional vertex for v we have

q(v|ek) = q(v|ei) = q(v|ej ) = 0, and q(v|e�) = 1,

thus we deduce from wk = vk + 1 > s that

2 ≤ q(w) = 5 − q(v|e�) − qk� + qki + qkj − q�i − q�j + qij = 1 + qij .

Hence qij = 1 by Step 2.
Step 6. We have vk = 3 +∑

i∈I vi = −1 +∑
i∈J vi .

Indeed, from 1 = q(v|e�) = 2v� − vk +∑
i∈I vi we get vk = s = 3 +∑

i∈I vi ,
while from

0 = q(v|ek) = 2s −
∑
i �=k

vi

= s +
(
vk −

∑
i∈I

vi

)
−
∑
i∈J

vi − v� = s + 3 −
∑
i∈J

vj − 2,

we obtain s = −1 +∑
i∈J vi .

Step 7. For all i ∈ I and j ∈ J we have vi = 1 and qij = 0.
Indeed, we calculate

0 = q(v|ei)
= 2vi +

∑
m�=i

qimvm

= vi +
∑
m∈I

vm +
∑
j∈J

qij vj + v� − vk

= vi + (vk − 3) +
∑
j∈J

qij vj + 2 − vk

= −1 + vi +
∑
j∈J

qij vj .

Since qij ≥ 0 for all j ∈ J we must have vi = 1 and qij = 0.
Step 8. Let z ∈ J be such that vz ≥ vj for all j ∈ J . Then there exist two vertices

j1 �= j2 in J with qzj1 = qzj2 = 0.
By Step 7 we have

0 = q(v|ez) = 2vz +
∑

j∈J, j �=z

qzj vj − vk = vz +
∑
j∈J

qzj vj −
∑
j∈J

vj + 1.
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Thus we infer that

vz <
∑
j∈J

(1 − qzj )vj ≤
∑
j∈J

(1 − qzj )vz,

hence 2 ≤ ∑
j∈J (1 − qzj ), which implies the claim.

Step 9. For vertices j1 and j2 as in Step 8 we have qj1j2 = 1.
Otherwise the restriction of q to vertices {k, �, z, j1, j2} equals qD4 in contradic-
tion to the weak positivity of q .

We have now collected enough information to conclude the proof. Assume s ≥
7. Then by Steps 6 and 7 the set I has at least four vertices i1, i2, i3, i4. Hence
the restriction of q to the set {k, �, i1, i2, i3, i4, z, j1, j2} has exactly the following
associated bigraph (left)

k



i1 j1

i2 i3 i4 z j2

6

1

1 2

1 1 1 3 2

But q evaluates to zero at the positive vector indicated by the number on the vertices
in the figure above (right), a contradiction (the bigraph above corresponds to a
critical unit form, see figure C (6) in Table 5.3). ��

We now present a suitable generalization of Proposition 1.32 to the weakly
positive case due to Zeldych [55] and based on unpublished notes by S. Brenner,
where the assumption of q being unitary is dropped. Recall that the adjugate ad(B)
of a square matrix B is the transpose of the matrix of cofactors of B.

Theorem 5.26 (Zeldych). Let A be the associated symmetric matrix of an integral
quadratic form q : Zn → Z (that is, q(x) = xtAx for any vector x in Z

n). Then the
following conditions are equivalent:

a) The form q is weakly positive.
b) For each principal submatrix B of A we have either det(B) > 0, or ad(B) is not

positive (that is, ad(B) has a nonpositive entry).

Proof. Assume (a) holds, let B be a principal submatrix of A and suppose that
ad(B) is a positive matrix. By the Perron–Frobenius Theorem 1.36 there exists a
positive eigenvector v ∈ R

n of ad(B) with eigenvalue ρ > 0. Considering q as a
real function qR : Rn → R it is clear that qR(x) ≥ 0 for any positive vector x in
R
n. That actually qR(x) > 0 can be argued as in the proof of Proposition 2.3. Then
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the inequality det(B) > 0 is deduced from

0 < qR(v) = vtBv = 1

ρ
vtB(ad(B)v) = 1

ρ
det(B)‖v‖2,

since we have (B)ad(B) = det(B)Id.
For the converse we assume that q satisfies (b) but is not weakly positive. Take

such a form minimal in the number of variables. Since taking principal submatrices
corresponds to restrictions, we infer from minimality that q is critical. Hence each
proper restriction of q is positive (see Corollary 5.3), and thus by Proposition 1.32
we have det(B) > 0 for each proper principal submatrix B of A.

Thus det(A) ≤ 0 since otherwise q would be positive (again by Proposi-
tion 1.32). Take ad(A) = (vij )

n
i,j=1, thus by hypothesis there must exist i, j

with vij ≤ 0. Let v be the j -th column of ad(A), so that Av = det(A)ej and
q(v) = det(A)vjj . Further, let w > 0 be a sincere positive vector with q(w) ≤ 0.
For λ = − vij

wi
≥ 0 we have (v+λw)i = 0 and (since the restriction q(i) is a positive

form)

0 < q(v + λw)

= q(v) + 2λwtAv + λ2q(w)

≤ det(A)[vjj + 2λwj ]

= det(A)

wi

[vjjwi − 2vijwj ].

If vjj < 0 (thus we may take i = j ) then

0 < q(v + λw) ≤ det(A)(−vjj ) ≤ 0,

a contradiction. If vjj ≥ 0 then vjjwi − 2vijwj ≥ 0 and the following equation
yields another contradiction

0 < q(v + λw) ≤ det(A)

wi

[vjjwi − 2vijwj ] ≤ 0,

which completes the proof. ��
For convenience in what follows we collect the different Criteria for Weak

Positivity shown in this chapter.

Theorem 5.27. For a quadratic unit form q : Z
n → Z the following claims are

equivalent:

a) The form q is weakly positive.
b) The form q admits only finitely many positive roots.
c) For any positive root v and any vertex i we have vi ≤ 6.
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d) For any positive nonsimple root v and any vertex i we have q(v|ei) ≥ −1.
e) For each principal submatrix B of Aq we have det(B) > 0 or ad(B) is positive.
f) For all vertices i �= j we have qij ≥ −2 and q−1(0) ∩ N

n
0 = {0}.

g) For all vertices i �= j we have qij ≥ −2 and for all subset of vertices I we have
rad(qI ) ∩ N

n
0 = {0}.

Proof. The equivalence of (a) and (b) was shown in Theorem 5.13, that of (a) and
(e) in Proposition 5.26, that (a) implies (c) is Ovsienko’s Theorem 5.25 and that (c)
implies (b) is obvious. That (a) implies (d) is shown in Lemma 5.5(c) and that (d)
implies (a) is Proposition 5.15. This already show the equivalence of (a − e).

Now, (f ) and (g) are reformulations of the fact that no critical form can be
contained in a weakly positive unit form: Suppose q is not weakly positive. Then
there exists a restriction p = qI which is critical, that is, p is either an m-Kronecker
form p(xi, xj ) = x2

i − mxixj + x2
j for some −m = pij < −2, or p is nonnegative

with a positive sincere radical vector. Therefore (f ) and (g) imply (a). Conversely,
if (f ) or (g) do not hold then q admits a critical restriction, which completes the
proof. ��
Exercises 5.28.

1. Consider a sequence of quadratic forms qn, qn+1, . . . , qN , where qn = q and
qk+1 is obtained from qk by edge reduction with respect to vertices ik and jk , as
in Algorithm 5.23. Also take vectors z(k) = ek for k = 1, . . . , n and z(k+1) =
z(ik)+z(jk) for k ≥ n. For k > n define recursively transformations ρk−n : Zk →
Z
n as

ρ1 = ρin,jn and ρk+1−n = ρk−n ◦ ρin+k ,jn+k ,

where ρij is the transformation associated to the edge reduction with respect to
vertices i and j .

a) Show that z(k) = ρN−n(ek) for k = 1, . . . , N .
b) Conclude that if qNij ≥ 0 for all 1 ≤ i, j ≤ N , then

R+(q) = {z(1), . . . , z(N)}.

2. Give an example of a weakly positive unit form with corank two.
3. Find an iterated edge reduction σ for the following forms q such that the bigraph

associated to qσ has no solid edge.

i) q(x) = x2
1 + . . . + x2

4 − x1(x2 + x3 + x4).
ii) q(x) = x2

1 + . . . + x2
5 − x1(x2 + x3 + x4 + x5) + x2x3.

4. Give a weakly positive unit form q such that M(q) = 5 (see proof of
Theorem 5.25).

5. Provide an example of a weakly positive unit form that fails to be nonnegative.
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6. Consider the quadratic form q associated to the following bigraph, and show that
q is weakly positive.

•

• • •

•

• • •

5.5 Explosions and Centered Forms

Let q : Zn → Z be a unit form. We say that a unitary form q is a (radical) explosion
of q if q is a particular type of restriction of q, namely: There is a vector s =
(s1, . . . , sn) in N

n such that the set

Is = {(i, k) | 1 ≤ i ≤ n and 1 ≤ k ≤ si},

is an index set for q satisfying ei,k − ei,1 ∈ rad(q) for 1 < k ≤ si (where
{ei,k}(i,k)∈Is denotes the canonical basis of ZIs ) and q is the restriction of q to the
indices (1, 1), . . . , (n, 1). If si > 1 for some index i we will say that the vertex i is
exploded si − 1 times. If sω = 1 we say that q is an explosion of q with respect to ω,
for ω ∈ {1, . . . , n}. If sj = 1 for j �= i and si = 2, then we say that q is obtained
from q by doubling vertex i (cf. Exercise 3.32.4). Below we show a small example,
doubling vertex 2 in the Dynkin graph A3.

•(2,1)

•1 •2 •3 •(1,1) •(3,1)

•(2,2)

The following result collects some elementary properties of explosions of weakly
positive unit forms. For instance, it shows that the new quadratic form in the example
above has no sincere root.

Proposition 5.29. Let q : Z
n → Z be a weakly positive unit form and q an

explosion of q with index set Is for s = (s1, . . . , sn). The following hold:

a) The form q is weakly positive.
b) If q has a maximal sincere root, then q has a maximal sincere root z if and only

if s ≤ v for a sincere maximal positive root v of q . Moreover:

i) If s = v then z = ∑
(i,k)∈Is

ei,k .
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ii) If sω = 1 for some ω in {1, . . . , n} and si = vi for i �= ω, then

z = vωeω,1 +
∑

(i,k)∈Is
(i,k) �=(ω,1)

ei,k.

In both cases z is uniquely determined.

In situation (i) we say that q is a full explosion of q (with respect to the maximal
root v). In situation (ii) we say that q is a full explosion of q with respect to vertex
ω (and the maximal root v).

Proof. Consider ri,k = ei,k − ei,1 ∈ rad(q) for k = 1, . . . , si (notice that ri,1 = 0
for i = 1, . . . , n), and the function Φ : ZIs → Z

n given by

z → Φ(z) = z −
∑

(i,k)∈Is
zi,krr,k.

Considering Z
n as a subgroup of Z

Is by means of the inclusion ei → ei,1, we
observe that Φ is a projection of ZIs onto Z

n satisfying q(z) = q(Φ(z)), and that
z > 0 implies Φ(z) > 0. Therefore q is weakly positive if so is q .

Assume now that z ∈ Z
n is a sincere positive vector. Clearly there is a sincere

positive vector z ∈ Z
Is such that Φ(z) = z if and only if s ≤ v. In this case z is

a maximal sincere root of q if and only if z is a maximal sincere root of q , which
shows (b). The description of z can be easily verified. ��

For instance, the full explosion of qE6 with respect to the star center is given by

1 1

1 1

1 3 1

1 1

where the numbers at the vertices indicate the maximal positive root.
A unit form q is said to be centered at vertex c if qci = −1 for all i �= c and

qij ≥ 0 for all i, j �= c. The importance of centered forms (already used in the proof
of Theorem 5.25) relies on the following result. Recall that

M(q) := max{vi | i is an index of q and v is a positive root of q}.
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Proposition 5.30. For each S ∈ {2, . . . , 6} let qS be a weakly positive unit form
with M(qS) = S such that

|R+(qS)| = min{|R+(q)| such that q is weakly positive with M(q) = s}.

Then qS is a centered form, with a maximal sincere positive root having a unique
exceptional vertex.

Proof. Arguing as in Steps 1 and 2 of Ovsienko’s Theorem 5.25, we see that there
exists a vertex c such that 0 ≤ qij ≤ 1 for all i, j �= c. Let v be a root with
vc = M(q).

Since for each i /∈ supp(v) the restriction q(i) has fewer roots than q , but still
M(q(i)) = M(q), we deduce from the minimality in the number of positive roots
of q that v is sincere. As a consequence of Lemma 5.17,we obtain qci = −1 for all
i �= c.

If v has two exceptional vertices i �= j then vi = 1 and q(v|ei) = 1. Hence
σi(v) = v− ei is a sincere root of q(i) and again q(i) has fewer roots than q , but still
M(q(i)) = M(q), contradicting minimality. Thus the result. ��

It is important to observe that the maximal value M(q) may not be attained at a
sincere root of q . To see this, define

Msin(q) := max{vi | i is an index of q and v is a positive sincere root of q},

and observe that Msin(q) ≤ M(q). Let us consider some examples where the
inequality is strict. For each bigraph B in Table 5.2 observe that there is a unique
sincere root v of qB , the one displayed by the integers at the vertices. However, there
exists another positive root w satisfying

max{wi | i ∈ supp(w)} > max{vi | i ∈ supp(v)}.

Indeed, the bigraph on top fully contains the Dynkin graph D4, those in the middle
fully contain Dynkin graphs E6 and E7, and both in the bottom fully contain E8.

The unit forms q in Table 5.2 are examples of the situation Msin(q) < M(q)

for Msin(q) = 1, . . . , 5. By Ovsienko’s Theorem we cannot expect to find a similar
example for Msin(q) = 6.

We will now determine those centered forms which are critical (nonweakly
positive). Since critical Kronecker forms are not centered, by Theorem 5.2 any
critical centered form q is nonnegative of corank one with a sincere positive radical
vector. We can say even more:

Proposition 5.31. If q is a critical centered unit form then q = p[w] where p is a
positive centered unit form and w is a sincere positive root of p.

Proof. Denote by c the center of q , and let v be a sincere positive radical vector
of q with mutually coprime entries. Then there exists an index i with vi = 1 (an
omissible vertex, see Proposition 3.20).
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Table 5.2 Some examples of weakly positive unit forms q with Msin(q) ∈ {1, . . . , 5} and
satisfying Msin(q) < M(q)

1 1 1

1

1 1 1

1 2 1

1 2 1 1

2 3 2 1 1

1 1 1

2 4 3 2

3 1 1

1 1

1 1

3 2

1 3 5 4 3

Encircled numbers correspond to exceptional vertices of the displayed maximal root

For j �= c we have 0 = q(v|ej ) = 2vj + ∑
� �=j,c qj�v� − vc, that is, vc =

2vj+∑� �=j,c qj�v� > 1, therefore i �= c. Hence q(i) is a positive connected centered

unit form with Dyn(q(i)) = Dyn(q) (again by Proposition 3.20) and v′ = v − ei

may be seen as a positive sincere q(i)-root. From Lemma 3.26 we have q = q(i)[v′],
thus the result. ��

Since any root of a positive connected unit form of Dynkin typeAn has as support
a line (see Proposition 2.39), there are only two positive centered unit forms p of
Dynkin type An which admit a sincere positive root v, namely qA2 and qA3 ,

A2 : c
1

1

A3 : c
1

1 1

In any case, however, the form p[v] is not centered.
In order to ensure that p[v] is centered again we need the condition p(v|ec) = 1

and p(v|ei) ≤ 0 for all i �= c. From Lemma 5.9, the only possibility for a centered
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positive form of type Dm is D4, with centered critical extension D̃4,

D4 : c
2

1 1 1

D4 : c
2

1 1 1 1

In a similar way, we calculate all cases for Ep and obtain the list in Table 5.3.
Since the approach in this book is based on algorithms, we do not present a

‘paper proof’ of the fact that Table 5.4 contains all weakly positive centered forms
q admitting a sincere positive root and satisfying qij ≤ 1 for all vertices i �= j

(graphical forms). By induction any sincere weakly positive centered form admits a
restriction to a sincere weakly positive centered form in one less variable. Hence a
paper proof could show that no form q in the list admits an extension to a centered
form q by a vertex k with q(w|ek) = −1 for any sincere q-root w not containing
any of the critical centered forms above.

Our list is not entirely complete, since we removed from it all forms which can be
obtained by explosions of noncentered vertices. For a weakly positive unit form q

with associated bigraph belonging to Table 5.3, and vector v with entries as indicated
in the vertices, the maximal number of times a noncentered point may be exploded
is vi − 1. This is due to the fact that this number is the corresponding entry of the
(unique) maximal sincere positive root of (any) restricted centered form q(k) with
vk = 1, cf. Proposition 5.29(b).

Table 5.3 Critical centered forms

(2) (3) (4)

(4 ) (5) (6)

2

1 1 1 1

3

1 1

1 1 1 1

4

1 1

1 1 2 1 1

4

1

1 1

1 1 1 1 1

5

1 2

1 1

1 1 2 1

6

1

1 2

1 1 1 3 2

The minimal positive radical vector is indicated by the values at the vertices
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Table 5.4 Sincere weakly positive centered forms without multiple edges (graphical forms)

1

1

1

1 1

2

1 1 1

2

1 1 1 1

3

1 1 2 1 1

3

1

1 1 1 1 1

4

1

1 1 2 1 2

4

1 1

1 1 2 1 1

4

1

1

1 1 1 1 2

4

1

1 1

1 1 1 1 1

4

1

1 1

1 1 1 1 1

5

2

1 2

1 2 1 1

5

1

1 2 2

1 1 1 1

5

1 1 2

1 1 1

1 1 1

6

2

1 2

1 1 3 2

5.6 Roots with an Entry 6

By direct inspection of the list of sincere centered weakly positive unit forms
(Table 5.4), we observe that some of these forms are indefinite. However, there need
not exist an indefinite weakly positive form q with M(q) = s for all possible values
s = 1, . . . , 6. In fact, in the following we will prove that if q is a weakly positive
unit form having a sincere positive root v with vω = 6 for some vertex ω, then q is
a nonnegative unit form (Theorem 5.38 due to Ostermann and Pott [42]).

A brief description of the proof is in order. The starting point is Ringel’s
Lemma 5.32 below, where centered weakly positive unit forms having a positive
root v with an entry vi = 6 for some vertex i (plus certain additional properties) are
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described. One of these properties, indicating that all other entries vj for j �= i are
equal either to 1 or 0, is the main technical condition of so-called regular pairs. This
definition is meant to keep track of forms having positive roots with this particular
shape. In Lemmas 5.33, 5.34 and Proposition 5.35 it is shown how iterated deflations
can be used to reduce our problem to centered forms. With the help of Lemma 5.36
we prove the main technical result in [42] (Theorem 5.37 below), ensuring the
existence of radical vectors that somehow control vertices outside the support of
the maximal root in a centered regular pair. This result is used to sketch the proof of
Ostermann and Pott’s Theorem 5.38.

Let q be a weakly positive unit form and v a maximal sincere positive q-root
with vω = 6 for some vertex ω. Denote by q̃ the unit form obtained from q by
exploding each vertex i �= ω exactly vi times (that is, a full explosion with respect
to vertex ω as in Proposition 5.29) and let ṽ be the maximal root of q̃ given in
Proposition 5.29(b)(ii). Notice that ṽω = 6 and ṽx = 1 for any other vertex x.
Since q is nonnegative if and only if so is q̃, we can restrict our attention to the
case where vi = 1 for any i �= ω. Explosion was our first reduction step. Our
second step will be reduction to centered forms by means of deflations for full edges
i − j with i �= ω �= j . After each such deflation T −

ij , the corresponding vector

(T −
ij )

−1v = T +
ij v will have smaller support than v, so we have to keep track of the

points running out of the support of v. This motivated the definition of regular pairs
as given in [42]. For simplicity, for the rest of this chapter we consider pairs (q, v)
where q is a unit form and v is a root of q , and referred to them simply as (unit)
pairs. The following terminology will be useful for the technical results below.

a) A pair (q, v) is weakly positive if q is a weakly positive form and v is a positive
root.

b) A pair (q, v) is sincere if v is a sincere root.
c) A weakly positive pair (q, v) is centered if q is a centered form.
d) A weakly positive pair (q, v) is regular if

i) v is a maximal q-root.
ii) vω = 6 and 0 ≤ vi ≤ 1 for all i �= ω.

iii) qij ≤ 2 for all i �= j .
iv) qωi = −1 and q(v|ei) = 0 for all i /∈ supp(v).

Notice that a pair (q, v) is regular and sincere if and only if v is a maximal root of
q with vω = 6 and vi = 1 for i �= ω (cf. Lemma 5.5(c)). In view of Lemma 5.7
and Proposition 5.8, for a positive q-root v condition (i) is equivalent to having
0 ≤ q(v|ei) ≤ 1 for all i ∈ supp(v). By an exceptional vertex of a regular pair
(q, v) we mean an exceptional vertex of the maximal q-root v, that is, a vertex
i ∈ supp(v) such that q(v|ei) = 1 (cf. Lemma 5.9).

Proposition 5.29(b) may be reinterpreted as follows: To any sincere positive
maximal q-root z with zω = 6, where q is a weakly positive unit form q , we can
assign a regular sincere pair (q, z) where q is a full explosion of q with respect to
vertex ω.
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Table 5.5 Weakly positive centered forms g(8) = qG (8) and g(13) = qG (13) having a maximal
sincere positive root z(8) and z(13) with an entry 6

1

1 1

2

2

2

3 6

•7

•5 •6

•4 •4

•3 •1 •1

•3 •ω

•3 •2 •2
On the left we have |(g(8))ij | ≤ 1 for all 1 ≤ i, j ≤ 8 (numbers on the vertices indicate vector
z(8)). On the right the pair (g(13), z(13)) is regular. Encircled points indicate exceptional vertices

The following lemma, whose proof we skip (Part (a) is shown by Ovsienko
in [43] whereas Part (b) is Lemma 4.2 in [42]), is a fundamental part of (and perhaps
the inspiration behind) Ostermann and Pott’s results concerning weakly positive unit
forms having a positive root with entry 6.

Lemma 5.32. Let (q, v) be a sincere maximal centered pair with vω = 6 for ω the
center vertex of q .

a) If |qij | ≤ 1 for all i, j then (q, v) is, up to a permutation of vertices, the pair
(g(8), z(8)) given in Table 5.5.

b) If (q, v) is a regular pair then (q, v) is, up to a permutation of vertices, the pair
(g(13), z(13)) given in Table 5.5.

Next we prove the basic results for our second reduction step. Notice that
Lemma 5.32 plays a key role in the proof of Lemma 5.34. If (q, v) is a unit form
and T is a flation for q such that qT is a unit form, then we denote by (q, v)T the
unit pair (qT , T −1v).

Lemma 5.33. Let (q, v) be a regular pair and i, j ∈ supp(v) − {ω} two different
vertices with qωj = qij = −1.

a) Then the restriction of qT −
ij and T +

ij v to supp(T +
ij v) is a sincere regular pair.

b) If moreover q(v|ej ) = 0, then (q, v)T −
ij is a regular pair.

Proof. Let q ′ = qT −
ij and v′ = T +

ij v = v − viej . If v′ is not maximal then there

exists a root w > v′ and hence T −
ij w = w+wiej > v′ + viej = v, in contradiction
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to the maximality of v. This shows point (i) in the definition of a regular pair for
both (a) and (b), whereas (ii) is obvious, since v′

� = v� for all � �= j and 0 = v′
j =

vj − vi . Hence (a) holds by the discussion after the definition of a sincere pair.
Let us assume now that q(v|ej ) = 0 to show (b). For (iii), observe that q ′

�k = q�k
for all �, k �= i. Now, for � /∈ supp(v′) we have

1 ≤ q ′(v′ + e� − ei) = 3 − q ′(v′|ei) − q ′
i�

≤ 3 − q ′
i�,

where the last inequality is due to the maximality of v′. Therefore q ′
i� ≤ 2, and for

� ∈ supp(v′) the same inequality holds by Lemma 5.5(c).
Finally, for (iv) observe that supp(v′) = supp(v)−{j }. So, if � /∈ supp(v′) then

� �= i and we have q ′
ω� = qω� and q ′(v′|e�) = q(v|e�). For � �= j , we use that (q, v)

is regular whereas for � = j , it follows directly from the hypothesis that q ′
ω� = −1

and q ′(v′|e�) = 0. ��
The previous result gives an inductive tool as long as we can find different

vertices i, j ∈ supp(v) − {ω} with qωj = qij = −1 and q(v|ej ) = 0. Now, if
q is not centered, then it follows from Lemma 5.17 that there exist different vertices
i, j ∈ supp(v) − {ω} with qωj = qij = −1. So the question is whether we can
always find such vertices for which, in addition, q(v|ej ) = 0. This is affirmatively
shown in the following lemma.

Lemma 5.34. Let (q, v) be a regular, noncentered pair. Then there exist i, j ∈
supp(v) − {ω} with qωj = −1 = qij such that q(v|ej ) = 0.

Proof. Assume that v is a sincere q-root. Since v is a maximal positive root, recall
from Lemma 5.9 that v has exactly two exceptional vertices, say k and k′. Assume
on the contrary that (q, v) satisfies the following:

[∗] The pair (q, v) is a sincere regular noncentered pair such that for any i, j �=
ω with qωj = −1 = qij we have q(v|ej ) = 1.

Consider the set A(q,v) = {� ∈ supp(v)−{ω} | q�ω ≥ −1}, which by hypothesis
is nonempty. Since the bigraph of q is connected by solid walks (cf. Lemma 5.17),
there are � ∈ A(q,v) and k′′ ∈ supp(v)−{ω} with qk′′� = −1 = qωk′′ . By hypothesis
q(v|ek′′) = 1, therefore k′′ ∈ {k, k′}. Let us say that �, �′ ∈ A(q,v) are such that
qk� = −1 and qk′�′ = −1 (possibly � = �′).

Take q̃ = (qT −
�k)|supp(T+

�kv)
and ṽ = (T +

�kv)|supp(T +
�k v)

, and notice by Lem-
ma 5.33(a) that (̃q, ṽ) is a sincere regular pair.

Step 1. The sincere regular pair (̃q, ṽ) satisfies condition [∗] above.
Take p, r ∈ supp(̃v) − {ω} with q̃ωp = −1 = q̃pr .
If p = � then

q̃ (̃v|e�) = q(v|T −
�ke�) = q(v|e�) + q(v|ek) = q(v|ek) = 1.
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If p �= �, assume first that r �= �. Then qωp = q̃ωp = −1 = q̃pr = qpr , and by
hypothesis [∗] we have p = k′. Calculate

q̃ (̃v|ep) = q(v|T −
�kep) = q(v|k′) = 1.

Assume finally that p �= � and r = �. Since −1 = q̃p� = qp� + qpk , and
qωp = qωk = −1, we must have qp� = −1. Hence p = k′ and

q̃ (̃v|ep) = 1.

Step 2. The vertex � is exceptional for (̃q, ṽ). In particular q̃ω� = 1, thus qω� = 0.
We calculate

q̃ (̃v|e�) = (qT −
�k)(T

+
�kv|e�) = q(v|T −

�ke�) = q(v|e�) + q(v|ek) = 1.

Consider now k′′, the second exceptional vertex of ṽ, and take w = σk′′ (̃v) =
ṽ − ek′′ . By connectedness with solid walks (Lemma 5.17), and the fact that [∗]
holds for (̃q, ṽ), we notice that if qω� ≥ 0 then there is a solid walk from � to
ω that does not pass through the exceptional vertex k′′. Hence [∗] implies that
there must be a third exceptional vertex, a contradiction. Then q̃ω� = −1, and
therefore qω� = 0.

Step 3. We have |A(̃q,̃v)| = |A(q,v)| − 1.
This follows from Step 2 considering that after applying a flation T ε

ij to a
quadratic form q , all modified edges in the bigraphBqT ε

ij
have as end-point vertex

j .

Using Steps 1–3 as many times as necessary we may assume that (q, v) is a
sincere regular and centered pair satisfying [∗] with A(q,v) = {�}. We next observe
that qkk′ = 2, and deduce from qωk = qωk′ = −1 = qk� = qk′� and qω� = 0
(by Step 2) that 0 < qkk′ ≤ 2. Assume that qkk′ = 1, and notice that σω(σk(v)) =
v − ek − eω (for q(σk(v)|eω) = q(v − ek|eω) = −qωk = 1). Moreover, we have

q(σωσk(v)|ek′) = q(v − ek − eω|ek′) = q(v|ek′) − qkk′ − qωk′ = 1,

and therefore w := σk′σωσk(v) = v − ek − eω − ek′ . Since k, k′ /∈ supp(w), there
must exist a vertex k′′ ∈ supp(w) − {ω} connecting � with ω, that is, qωk′′ = −1.
However, by [∗] the vertex k′′ is exceptional for (q, v), a contradiction.
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So far we have shown that we may assume that the restriction of q to the set
{ω, k, k′, �} has the following associated bigraph (left):

ω

k k



ω

k k



Apply once more deflation T −
�k to the pair (q, v) and restrict to the support of T +

�kv to
obtain a sincere regular pair (̃q, ṽ) as before (bigraph on the right above), which is
centered by Step 3. The same step shows that k′ and � are the exceptional vertices of
(̃q, ṽ). But notice that in this case we have q̃k� = 1 (since qk′k = 2 and qk′� = −1).

On the other hand, by Lemma 5.32(b) the pair (̃q, ṽ) coincides with the pair
(g(13), z(13)), where (g(13))k′� = 2 (the exceptional vertices of the maximal g(13)-
root z(13) are joined by a double dotted edge, see Table 5.5). This is a contradiction,
which completes the proof. ��
Proposition 5.35. Let q be a weakly positive unit form and v a maximal positive
q-root such that vω = 6 and vi = 1 for i �= ω. Then there is an iterated deflation T

for q such that (q, v)T := (qT , T −1v) is a regular centered pair.

Proof. Since v is a sincere vector, by assumption (q, v) is a regular pair. If (q, v) is
a noncentered pair, use Lemmas 5.33(b) and 5.34 to find a deflation T −

ij such that

(qT −
ij , T

+
ij v) is a regular pair. This process has to stop, since

|v| =
∑
i

vi >
∑
i

vi − 1 = |T +
ij v|.

Hence the result. ��
We need a final preliminary result.

Lemma 5.36. Let (q, v) be a regular centered pair, and take j ∈ supp(v) and
k /∈ supp(v) such that qjk = 2. Then

a) Vertex j is nonexceptional for v.
b) Vector ej − ek is radical for the form q|supp(v)∪{k}.
c) For � /∈ supp(v) ∪ {k} we have qj� ≤ qk�.

Proof. For (a) we have

0 < q(v − ej + ek) = 3 − q(v|ej ) + q(v|ek) − qjk = 1 − q(v|ej ),

therefore q(v|ej ) = 0.
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Notice now that y = v − ej + ek is a positive q-root. Let a and a′ be the
exceptional vertices of v, and observe that they are also the exceptional vertices
for y (indeed, by Lemma 5.32(b) the restriction of q to the support of y is g(13), and
in this form the exceptional vertices are characterized as the unique pair of vertices
with qaa′ = 2 in the component of G (13)(ω) with five vertices, cf. Table 5.5).

Thus if � ∈ supp(y) − {a, a′} then

0 = q(y|e�) = q(z|e�) − qj� + qk� = qk� − qj�,

and if � ∈ {a, a′} then

1 = q(y|e�) = q(z|e�) − qj� + qk� = 1 + qk� − qj�.

In any case, if � ∈ supp(y) = (supp(v) ∪ {k}) − {j }, we have qj� = qk�, and the
same equality holds for � = j by hypothesis. This shows (b).

Take now � /∈ supp(v)∪{k} and observe by Ovsienko’s Theorem 5.25 that y+e�
is not a root of q , since otherwise

(σω(y + e�))ω = yω − q(y + e�|eω) = 6 − q�ω = 7.

Hence

2 ≤ q(y + e�) = 2 + q(y|e�) = 2 + q(v) − qj� + qk�,

which shows (c). ��
Theorem 5.37. Let (q, v) be a regular centered pair, and consider vertices i ∈
supp(v) and k /∈ supp(v) such that qik = 1 and such that qT +

ik is a weakly positive
unit form. Then there exists a j ∈ supp(v) such that ej − ek ∈ rad(q).

Proof. Take q+ = qT +
ik and v+ = T −

ik (v) = v + ek.

Step 1. There is a j ∈ supp(v) with qjk = 2.
Assume on the contrary that qjk < 2 for all j ∈ supp(v). It can be shown
(Exercise 7 below) that in this case the set

N (k) = {j ∈ supp(v) | qjk = 1}

coincides, up to symmetries of vertices, with one of the sets {1, 1′, 3, 3′, 3′′, 5}.
{3, 3′, 3′′, 5, 6, 7} or {1, 1′, 2, 2′, 5, 6} in the following figure (the connected
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components of the restriction G (13)(ω) of bigraph G (13) in Table 5.5).

•3 •1 •1
•3

•3 •2 •2

•7
•5 •6

•4 •4

Assume N (k) = {1, 1′, 3, 3′, 3′′, 5} and take a′, a′′ ∈ N (k) such that i, a′
and a′′ belong to different components K , K ′ and K ′′ of G (13)(ω). Then the
restriction of q and q+ to the set of vertices {ω, i, a′, a′′, k} have the following
forms

•ω

•i •a •a

•k

•ω

•i •a •a

•k

hence the restriction of q+ to the set {ω, i, a′, a′′} has the form Ã3, contradicting
the weak positivity of q+.
Assume N (k) = {3, 3′, 3′′, 5, 6, 7} and i = 3. Then the restriction of q+ to the
set {1, 2, 3, 3′, 5, 6, 7} has the following shape,

•ω

•1 •7
•2 •3 •3 •5 •6

3

1

1 1 1 1 1

1

where the positive vector z indicated on the right satisfies q+(z) = 0, a
contradiction. Up to symmetry the remaining case is i = 5, in which case the
restriction of q+ to the set of vertices {ω, 1, 2, 3, 5, 6, 7} has the shape

•ω

•1 •7
•2 •3 •5 •6

3

1 1

11 2 1

where again the positive vector on the left is radical.
Assume N (k) = {1, 1′, 2, 2′, 5, 6}. Then vertex i is (up to symmetry of vertices)
one of vertices i = 1 or i = 5. In any case the restriction of q+ to the set
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{ω, 1, 1′, 2, 2′, 5, 6} has the shape

•ω

•1
•2 •3 •5 •6

2

1 1 1 1

1

where again on the left we exhibit a positive radical vector. In any case we reach
a contradiction, completing the proof of Step 1.

Step 2. For every � we have q(ej − ek|e�) = 0.
Take z = ej − ek and let us assume that q(z|e�) �= 0 for some �. By
Lemma 5.36(b) and (c) we have � /∈ supp(v)∪{k} and q(z|e�) = qj� − qk� < 0.
Consider the following facts:

i) supp(v+) = supp(v) ∪ {k}.
ii) q+

jk = 2.
iii) q+(v+|e�) = q(v|e�) = 0.
iv) q+(v+|ek) = q(v|ek) = 0.

Take now y = v+ − ek + ej and observe that y is a positive root of q+. Indeed,
since q(v|ej ) = 0 by Lemma 5.36(a), we have

q+(y) = q+(v+ − ek + ej ) = 3 − q+(v+|ek) + q+(v+|ej ) − q+
kj

= 1 + q+(v+|ej ) = 1 + q(v|ej ) = 1.

Moreover, q+(y|e�) = q+
j� −q+

k� < 0. Therefore σ�(y) is a positive q+-root with
� ∈ supp(σ�(y)), and also

q+(σ�(y)|eω) = q+(y − q+(y|e�)e�|eω) = q+(y|eω) − q+(y|e�)q+
�ω

= q+(v+|e�) − q+
k� + q+

j� = qj� − qk� < 0,

since q+(y|eω) = 0. Hence σω(σ�(y)) is a positive q+-root with σω(σ�(y))ω =
vω − (qj� − qk�) > 6, contradicting Ovsienko’s Theorem 5.25.

This completes the proof. ��
Before we can prove the main result of this section we have to analyze another

extreme situation. Let q : Z8 → Z be a connected positive unit form of Dynkin type
E8 having a maximal positive root v with vω = 6. By Theorem 2.20 there exists an
iterated inflation T such that qT = qE8 and T −1v is the maximal root v8 of qE8 .
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Hence |v| =
8∑

i=1
≤

8∑
i=1

(v8)i = |v8| = 29.

3

2 4 6 5 4 3 2

Therefore, if q∗ : Zn → Z and q∗
E8

: Zm → Z are respectively the full explosion of
q and qE8 with respect of vertex ω, then n ≤ m and m = 8 + 16 = 24. The bigraph
associated to q∗

E8
is shown in Fig. 5.1.

Theorem 5.38. Let q : Zn → Z be a weakly positive unit form having a sincere
positive root v and a vertex ω ∈ {1, . . . , n} with vω = 6. Then q is a nonnegative
unit form with Dynkin type Dyn(q) = E8 and corank n − 8. In particular

8 ≤ n ≤ 24 and 113 ≤ |R+(q)| ≤ 418 923 665 = 5 · 83 784 733

where the last equality is a prime factorization.

Sketch of Proof. Assume that v is a maximal sincere q-root and take the full
explosion q ′ : Z

m → Z of q with respect to vertex ω (and maximal root v). By
Proposition 5.29, the pair (q ′, v′) is sincere and regular, where v′ is the root given
in Proposition 5.29(b(ii)).

We proceed by induction on m. If m ∈ N is minimal such that there is
a sincere regular pair (q ′, v′), then (q ′, v′) is a centered pair (for otherwise by
Proposition 5.35 there is a deflation T such that the restriction of (q ′T , T −1v′) to
the support of T −1v contradicts the minimality of m). Hence by Lemma 5.32(b) we
have q ′ ∼= g(13), which is nonnegative of Dynkin type E8.

Now, for nonminimal m we have, by Proposition 5.35, an iterated deflation T

such that (q ′T , T −1v′) = (q ′′, v′′) is a centered regular pair. Then T is nontrivial,
thus there exist i ∈ supp(v′′) and k /∈ supp(v′′) such that q ′′

ik = 1 and qT+
ik is

weakly positive. By Theorem 5.37 there is a j ∈ supp(v′′) with ej − ek ∈ rad(q ′′).
Consequently q ′′ is an explosion of the restriction (q ′′)(k), which by induction is
nonnegative of Dynkin type E8. Then by Proposition 5.29 q ′′ is nonnegative of
Dynkin type E8, and so are q ′ (since q ′ ∼= q ′′) and q (cf. Theorem 3.28). In
particular, Dyn(q) = E8 and cork(q) = n − 8.

For the last claim it is clear that 8 ≤ n. The proof of n ≤ 24 is briefly sketched:
Take n maximal such that a weakly positive unit form q : Zn → Z has a maximal
sincere positive root v with vω = 6. By maximality of n the sincere pair (q, v) is
regular. By the above, q is a full explosion of a positive unit for q̃ of Dynkin type
E8 with respect of ω and a maximal q̃-root ṽ. But a positive unit form with a sincere
maximal positive root ṽ that maximizes the weight |̃v| = ∑n

i=1 ṽi must be precisely
q̃ = qE8 . Therefore q = q∗

E8
, the full explosion of qE8 with respect of the star center
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1 1

1 1 1

1 1 1 1

1 1 1 1 1

1

1

1 1

1 6

1 1

1

1

Fig. 5.1 Full explosion qG (24) = q∗
E8

of qE8 with respect to the star center. Encircled vertices
correspond to exceptional vertices of the indicated (maximal) positive root
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(see Fig. 5.1). This shows that n ≤ 24. The bound for the number of positive roots
of q is computed by Ostermann and Pott in [42]. ��
Exercises 5.39.

1. Show that if q is a positive centered form with a positive root w, then q[w] is a
critical centered form.

2. Determine which of the bigraphs in Table 5.4 correspond to nonnegative forms.
3. How many centered regular pairs (q, v) are there (up to permutation of vertices)

with associated bigraph Gq having exactly one double dotted edge?
4. Show that the encircled vertices in the bigraphs of Table 5.5 are in fact

exceptional vertices of the corresponding quadratic forms.
5. With the notation of Table 5.5, show that g(13) is a full explosion of g(8) with

respect to vertex ω.
6. Prove that if q : Z24 → Z is a weakly positive unit form having a sincere root v

with vω = 6 for some 1 ≤ ω ≤ 24, then q = q∗
E8

as in Fig. 5.1.
7. Let (q, v) be a regular centered pair. Show that if k /∈ supp(v) and qjk ≤ 1 for

all i ∈ supp(v), then the set {i ∈ supp(v) | qik = 1} is (up to symmetry of
supp(v)) one of the following subsets of vertices of g(13) (cf. Table 5.5):

i) {1, 1′, 3, 3′, 3′′, 5};
ii) {3, 3′, 3′′, 5, 6, 7};

iii) {1, 1′, 2, 2′, 5, 6}.
[Hint: Show that otherwise one of the critical centered forms C (2) − C (6) in
Table 5.3 is a restriction of q .]

5.7 Thin Forms

In this section we further reduce weakly positive unit forms, following Dräxler,
Drozd, Golovachtchuk, Ovsienko and Zeldych [22], to get a so-called good thin
weakly positive unit form. Since this reduction process is reversible, a classification
of such forms determines, in principle, all weakly positive forms. This classification
(partially achieved computationally) is presented in [22], cf. Theorem 5.46 and
Tables 5.6, 5.7 and 5.8.

A unit form q : Zn → Z is called thin if q((1, . . . , 1)) = 1, that is, if the sincere
vector τ (n) with τ

(n)
i = 1 for i = 1, . . . , n (called the thin vector of Zn) is a q-root.

In particular, weakly positive thin forms are sincere. In the following we write τ

instead of τ (n) if no confusion arises.

Proposition 5.40. For any weakly positive sincere unit form q : Zn → Z there is
an iterated deflation T such that qT is a thin weakly positive unit form having thin
vector τ (n) as unique (thus maximal) sincere root.
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Proof. Let v be a maximal sincere q-root and τ = τ (n) the thin vector. We prove the

result by induction on |v| =
n∑

i=1
vi . If |v| = n then v = τ and we have nothing to

do, so assume v > τ . Since v is a root, v cannot be a multiple of τ , and thus using
Lemma 5.17 we may find vertices 1 ≤ i �= j ≤ n with qij < 0 and vi < vj . By
Lemma 5.5(b) we have qij = −1.

Take q ′ = qT −
ij and v′ = T +

ij v = v − viej > 0. Then q ′ is a weakly positive

unit form (for if x > 0 then T −
ij x > 0) and has a maximal sincere root v′ with

|v′| < |v|. By the induction hypothesis there is an iterated deflation T ′ such that
q ′T ′ is a weakly positive thin unit form having the thin vector as unique (maximal)
sincere root. Take T = T −

ij T
′ to complete the proof. ��

We now restrict our attention to deflations that preserve the thin property. If q :
Z
n → Z is a thin weakly positive unit form with τ (n) a nonmaximal root, then

there is a vertex j ∈ {1, . . . , n} such that q(τ (n)|ej ) = −1 (see Lemma 5.7 and
Proposition 5.8). In this case, a deflation T −

ij for q is called a τ -deflation. Notice

that if y := σj (τ
(n)) = τ (n) + ej , then T +

ij (y) = y − yiej = τ (n). Therefore qT −
ij

is again a thin form. An iterated deflation consisting of corresponding τ -deflations
will be referred to as an iterated τ -deflation. For a τ -deflation T −

ij for q , taking

q− = qT −
ij , the inflation T +

ij for q− is called a τ -inflation, and iterated τ -inflations
are defined similarly. The following result is evident from the discussion above.

Lemma 5.41. Let q be a thin weakly positive unit form. Then there is an iterated
τ -deflation T such that the thin vector τ (n) is maximal for the thin weakly positive
unit form qT .

In order to have at hand an effective inductive tool to construct weakly positive
unit forms, we define following [22] a new type of extension on weakly positive
pairs (q, v). We call a weakly positive pair (q ′, v′) a reflection-extension of (q, v)
if there exists a vertex i of q (the extension vertex) such that (q ′)(i) = q and
q ′(v′|ei) = v′

i , and if σ ′
i denotes the reflection with respect to the unit form q ′

and v is identified with its inclusion in Z
n, then σ ′

i (v
′) = v. If furthermore v′ is a

maximal q ′-root with two exceptional vertices (cf. Lemma 5.9), we say that (q ′, v′)
is a main reflection-extension of (q, v).

A sincere pair (q, v) is called bad if there is a radical vector μ ∈ rad(q) such
that both v + μ and v − μ are positive q-roots. Otherwise (q, v) is called a good
pair. Recall that, for a unit form q : Zn → Z and a q-root z, the one point extension
q[z] is defined as the root-induced form qe(z) where e(z) = (e1, . . . , en,−z) (cf.
Sect. 3.5), that is

q[z](y1, . . . , yn, yn+1) = q(y1e1 + . . .+ ynen − yn+1z).

Proposition 5.42. Let q : Zn → Z and q ′ : Zn+1 → Z be weakly positive unit
forms, and assume that q is a thin form.
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a) The pair (q ′, τ (n+1)) is a main reflection-extension of (q, τ (n)) if and only if there
is an i ∈ {1, . . . , n} such that q ′(x) = q[τ (n)](x)+ xixn+1.

b) If (q, τ (n)) is a bad pair and (q ′, τ (n+1)) is a reflection-extension of (q, τ (n)),
then (q ′, τ (n+1)) is a bad pair.

c) If (q, τ (n)) is a good pair, then (q ′, τ (n+1)) is reflection-extension of (q, τ (n))
and is a bad pair if and only if there is a q-root with |zi | ≤ 1 for i = 1, . . . , n
such that q(z|τ (n)) = −1 and q ′ = q[−z].

Proof.

(a) By definition of reflection-extension we have q ′(τ (n+1)|en+1) = 1. By max-
imality of τ (n+1) there is exactly one other exceptional vertex for τ (n+1), say
i ∈ {1, . . . , n}, that is, q ′(τ (n+1)|ej ) = δij for j ∈ {1, . . . , n}. Therefore

q ′(en+1|ej ) = q ′(τ (n+1) − τ (n)|ej ) = q(−τ (n)|ej ) + δij ,

that is, q ′(x) = q[τ (n)](x) + xixn+1. Conversely, since (q ′)(n) = q notice that

q ′(τ (n+1)|en+1) = q ′(τ (n+1)) + q ′(en+1) − q ′(τ (n+1) − en−1) = 2 − 1 = 1.

Now, for j ∈ {1, . . . , n} and j �= i we have

q ′(τ (n+1)|ej ) = q ′(τ (n)|ej ) + q ′(en+1|ej ) = q(τ (n)|ej ) − q(τ (n)|ej ) = 0,

whereas q ′(τ (n+1)|ei) = q(τ (n)|ei) − q(τ (n)|ei) + 1 = 1. Hence τ (n+1) is a
maximal q ′-root and (q ′, τ (n+1)) is a reflection-extension of the pair (q, τ (n)).

(b) Take μ ∈ rad(q) with μi ∈ {1, 0,−1} for i = 1, . . . , n and define μ′ ∈ Z
n+1

with μ′
i = μi for i = 1, . . . , n and μ′

n+1 = 0. We show that μ′ ∈ rad(q ′).
Since q ′(μ′, ei) = q(μ, ei) = 0 for i = 1, . . . , n, let us assume that

q ′(μ′|en+1) > 0 (multiplying μ′ by −1 if necessary). Then

q ′(μ′|τ (n+1)) = q ′(μ′|en+1) ≥ 1,

and therefore for the positive vector τ (n+1) − μ′ in Z
n+1 we have

q ′(τ (n+1)−μ′) = q ′(τ (n+1))+q ′(μ′)−q ′(μ′|τ (n+1)) = 1−q ′(μ′|τ (n+1)) ≤ 0,

a contradiction.
(c) Assume first that (q ′, τ (n+1)) is a bad extension of (q, τ (n)), and take μ ∈

rad(q ′) with |μi | ≤ 1. If μn+1 = 0 then (q, τ (n)) is itself a bad pair, therefore
we may also assume that μn+1 = 1. Then z := en+1 −μ is a q-root with entries
zi ∈ {1, 0,−1} such that

q(z|τ (n)) = q ′(en+1 −μ|τ (n)) = q ′(en+1|τ (n+1))−q ′(en+1|en+1)=1−2 =−1.
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By definition of z we have q ′ = q[−z], since for x1, . . . , xn, xn+1 ∈ Z, taking

x =
n∑

i=1
xiei , we have

q ′(x + xn+1en+1) = q ′(x) + x2
n+1 + xn+1q

′(x|en+1)

= q ′(x) + x2
n+1 + xn+1q

′(x|z + μ)

= q(x) + q(xn+1z) + q(x|z)
= q(x + xn+1z).

Conversely, since q ′ = q[−z], the restriction of q ′ to the first n variables is q .
Moreover,

q ′(τ (n+1)|en+1) = q ′(en+1|en+1) + q ′(τ (n)|en+1)

= 2 + q(τ (n)|z) = 1.

Hence (q ′, τ (n+1)) is reflection-extension of (q, τ (n)). ��
A small example is in order. Consider the thin unit form q = qD4 , which

is positive, hence weakly positive. The thin vector τ (4) is nonmaximal (we have
q(τ (4)|e1) = −1, see the figure on the left below). The bigraph associated to the
one-point extension q[τ (4)] has the following shape (center):

•4

•2 •1 •3

•4 •5

•2 •1 •3

•4 •5

•2 •1 •3

The figure on the right corresponds to a reflection-extension (q ′, τ (5)) of (q, τ (4))
satisfying both point (a) and (b) of Proposition 5.42. That is, the pair (q ′, τ (5)) is a
bad main reflection-extension of (q, τ (4)), with both q and q ′ weakly positive unit
forms.

Lemma 5.43. Let q : Zn → Z be a thin weakly positive unit form. Then there is a
sequence of thin weakly positive unit forms qi : Zi → Z for i = 1, . . . , n such that
qn = q and (qi+1, τ

(i+1)) is a reflection-extension of (qi, τ (i)) for 1 ≤ i < n.

Proof. We proceed by induction on n ≥ 1. For n = 1 there is nothing to show. For
n > 1 consider the (nonsimple) thin vector τ (n) ∈ Z

n and apply Lemma 5.7(c) to
get a vertex i ∈ {1, . . . , n} with q(τ (n)|ei) = 1. Then σi(τ

(n)) = τ (n) − ei , which
is the thin vector τ for the restriction q(i). Then (q, τ (n)) is a reflection-extension of
(q(n), τ ), and the result follows by induction. ��
Theorem 5.44. Let (q ′, τ (n+1)) be a reflection-extension of (q, τ (n)) with both q

and q ′ weakly positive unit forms. Then there exist an iterated τ -deflation T for q
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and an iterated τ -deflation T ′ for q ′ such that (q ′T ′, τ (n+1)) is a main reflection-
extension of (qT , τ (n)).

Proof. We proceed by induction on the number |R+(q ′)| of positive roots of
q ′. If τ (n+1) is a maximal q ′-root there is nothing to show (in particular if
|R+(q ′)| = 1). Assume now that τ (n+1) is a nonmaximal q ′-root. By Lemma 5.7
and Proposition 5.8 there is a vertex j ∈ {1, . . . , n} such that q ′(τ (n+1)|ej ) = −1.
Since q ′ is weakly positive we get

0 < q ′(ej + τ (n)) = 2 + q ′(τ (n+1) − en+1|ej ) = 1 − q ′
j,n+1,

therefore q ′
j,n+1 ≤ 0.

If q ′
j,n+1 = 0, then by Lemma 5.17 there is a vertex i ∈ {1, . . . n} such that

q ′
ij = −1 (hence i �= j ). Since q(τ (n)|ej ) = q ′(τ (n+1)|ej ) − q ′

j,n+1 = −1, the

deflation T −
ij is a τ -deflation for both q ′ and q . Observe also that the restriction of

q ′T −
ij to Z

n coincides with qT −
ij . Moreover, (q ′T −

ij , τ
(n+1)) is a reflection-extension

of (qT −
ij , τ

(n)), since

(q ′T −
ij )(τ

(n+1)|en+1) = q ′(T −
ij (τ

(n+1))|T −
ij (en+1))

= q ′(τ (n+1) + ej |en+1)

= q ′(τ (n+1)|en+1) + q ′
j,n+1 = 1.

If q ′
j,n+1 < 0 then q ′

j,n+1 = −1 (by Lemma 5.5(b)). Then T −
n+1,j is a τ -deflation

for q ′ and the restriction of q ′T to Z
n is q . Again we have

(q ′T −
n+1,j )(τ

(n+1)|en+1) = q ′(T −
n+1,j (τ

(n+1))|T −
n+1,j (en+1))

= q ′(τ (n+1) + ej |en+1 + ej )

= q ′(τ (n+1)|en+1) + q ′(τ (n+1)|ej ) + q ′
j,n+1 + q ′(ej |ej )

= 1 − 1 − 1 + 2 = 1,

therefore (qT −
n+1,j , τ

(n+1)) is reflection-extension of (q, τ (n)).
To complete the proof we use induction observing that in both cases the number

of positive q ′-roots decreases (see Lemma 2.19). ��
Algorithm 5.45. Theorem 5.44 is used in [22] to sketch a four step algorithm to
produce all good thin weakly positive unit forms in n + 1 variables starting from
those forms in n variables.

Step 1. Apply all possible iterated τ -deflations to the good thin weakly positive
unit forms in n-variables.
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Step 2. Construct all main reflection-extensions (using Proposition 5.42(a)) of the
obtained forms.

Step 3. Apply all possible iterated τ -inflations to the list obtained in Step 2.
Step 4. Filter the final list to sort out any bad thin forms.

From Theorem 5.44 it is clear that every good thin weakly positive unit form
in n + 1 variables belongs to the list obtained in Step 4 of Algorithm 5.45. For
instance, in n = 1, 2, 3 variables there is exactly one good thin weakly positive unit
form, namely qA1 , qA2 and qA3 respectively. For n = 4 apply Step 2 to qA3 to get
the two forms on the left below

•4

•1 •2 •3

•4

•1 •2 •3

•4

•1 •2 •3

The third form on the right (for which the thin vector τ (4) is nonmaximal) is obtained
after applying Step 3. Case n = 5 is sketched in Exercise 4 below.

Before we can state the main classification result of this section we consider
yet another construction of unit forms. We say that a point i in a bigraph B is
a linking vertex if it has exactly two neighbors and is joint to them by simple
solid edges. A linking vertex of a unit form q is a linking vertex of its associated
bigraph. By a chain in a bigraph (or unit form) we mean a sequence of vertices
a−1, a0 . . . , ak, ak+1 where ai is a linking vertex for i = 0, . . . , k joined precisely
to ai−1 and ai+1. The number k + 1 will be referred to as the length of the chain.

For u ≥ 1, the u-blow up q(a�u) of a unit form q with respect to a linking vertex
a is the form with bigraph B� obtained by replacing vertex a by a chain of length
u. To be precise, if a is joined to vertices a−1 and au+1 in Bq , we get B� from the

restriction B
(a)
q , by adding vertices a0, . . . , au such that ai is joined by solid simple

edges only to ai−1 and ai+1, for i = 1, . . . , u. Now, if Λ is a set of linking vertices
of q and u = (uλ)λ∈Λ is a vector of natural numbers, then the blow up of q with
respect to (Λ, u) is the unit form q(Λ�u) defined recursively as

q(Λ�u) = (q(Λ−{λ}�u−{uλ}))(λ�uλ),

for some λ ∈ Λ. This procedure yields, for a unit form q with a set of linking
vertices Λ, a series of unit forms {q(Λ�u)} indexed by u ∈ N

Λ. Whether the forms in
the series associated to q and Λ are (good and thin) weakly positive, assuming that q
is (good and thin) weakly positive, is the subject of investigation in [22, Section 5].
Their outcome leads to the following classification result.

Theorem 5.46. Every good thin weakly positive unit form in n ≥ 15 variables is a
blow up of one of the 63 unit forms in Tables 5.6, 5.7 and 5.8, referred to as basic
good thin weakly positive unit forms.
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Table 5.6 Basic good thin weakly positive unit forms in n variables for n = 3, 4, 5, 6

•

• •

• •

• •

•

• •

• •

•

• •

• •

•

• •

• •

•

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

a1 a2 a3 b1 b2 b3

c1 c2 c3 d1 d2 d3

e1 e2 e3 f1 f2 f3

The distinguished set of linking points Λ is denoted by encircled vertices
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Table 5.7 Basic good thin weakly positive unit forms in n = 7 variables

•
•

•
•

•
•

•

•
•

•
•

•
•

•

•
•

•
•

•
•

•

•
•

•
•

•
•

•

•
•

•
•

•
•

•

•
•

•
•

•
•

•

•
•

•
•

•
•

•

•
•

•
•

•
•

•

•
•

•
•

•
•

•

•
•

•
•

•
•

•

•
•

•
•

•
•

•

•
•

•
•

•
•

•

•
•

•
•

•
•

•

•
•

•
•

•
•

•

•
•

•
•

•
•

•

•
•

•
•

•
•

•

•
•

•
•

•
•

•

•
•

•
•

•
•

•

•
•

•
•

•
•

•

•
•

•
•

•
•

1

•
•

•
•

•
•

•

•
•

•
•

•
•

•

•
•

•
•

•
•

•

•
•

•
•

•
•

•

•
•

•
•

•
•

•

•
•

•
1

•
•

•

•
•

•
•

•
•

•

g1 g2 g3

h1 h2 h3 i1 i2 i3

j1 j2 j3 k1 k2 k3

l1 l2 l3 m1 m2 m3

n1 n2 n3 o1 o2 o3

The distinguished set of linking points Λ is denoted by encircled vertices
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Table 5.8 Basic good thin weakly positive unit forms in n variables for n = 8, 9, 10, 11

• • •

• •

• • •

• • •

• •

• • •

• • •

• •

• • •

• • •

• •

• • •

• • •

• •

• • •

• • •

• •

• • •

• • •

• •

• • •

• • •

• •

• • •

• • •

• •

• • •

• • •

• •

• •

• •

• • •

• •

• •

• •

• • •

• •

• •

• •

• • •

• •

• •

• •

• • •

• •

• •

• •

• • •

• •

• •

• • •

• • •

• •

• •

• • •

• • •

• •

• •

• • •

• • •

• •

• •

• •

• •

p1 p2 p3 q1 q2 q3

r1 r2 r3 s1 s2 s3

t1 t2 t3 u1 u2 u3

The distinguished set of linking points Λ is denoted by encircled vertices
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Exercises 5.47.

1. Show that if (q, v) is a bad sincere pair and (q ′, v′) is a reflection-extension of
(q, v), then (q ′, v′) itself is a bad pair.

2. Find a thin weakly positive unit form q : Z
n+1 → Z with τ (n+1) a maximal

root such that (q, τ (n+1)) is a reflection-extension of (q(n), τ (n)) and τ (n) is a
nonmaximal q(n)-root.

3. Give an example of a good thin weakly positive unit form q and a τ -deflation T −
ij

for q such that qT −
ij is thin weakly positive but not good.

4. Consider the three good thin weakly positive unit forms in 4 variables qA4 , qD4

and q ′ with associated bigraph as below.

•4

•1 •2 •3

i) Determine all five main reflection-extensions of the forms qA4 , qD4 and q ′.
ii) Using τ -inflations determine two remaining good thin weakly positive unit

forms in five variables.
iii) From the seven obtained forms, how many are bad?

5. Use Algorithm 5.45 to produce the complete list of good thin weakly positive
unit forms in 6 variables. [Hint: There are exactly 26 such forms.]

6. From the lists obtained in Exercises 4 and 5, how many good thin forms are blow
ups of one of the 63 unit forms in Tables 5.6, 5.7 and 5.8 (cf. Theorem 5.46).

7. Show that the quadratic form associated to the following bigraph is a good
thin weakly positive unit form which is not blow up of one of the 63 forms in
Tables 5.6, 5.7 and 5.8.

• • • • • • •

• • • • • • •



Chapter 6
Weakly Nonnegative Quadratic Forms

In the previous chapters we met notions like positivity, nonnegativity and weak
positivity, and applied to them various techniques like deflations, inflations, one-
point extensions, reflections and edge reductions. Here we turn our attention to
weakly nonnegative forms, that is, semi-unit quadratic forms q : Zn → Z such that
q(v) ≥ 0 for all positive vector v in Z

n. The above-mentioned methods are used to
extend earlier results and algorithms to the weak nonnegative context, where now
the existence of maximal sincere q-roots plays a key role, and hypercritical forms
take the place of critical forms.

6.1 Hypercritical Forms

A quadratic semi-unit form q : Zn → Z is called hypercritical if it is not weakly
nonnegative, but every proper restriction qI is. For instance, the m-Kronecker
form qm(x1, x2) = x2

1 + x2
2 − mx1x2 is weakly nonnegative if and only if

m < 3, and is hypercritical exactly when m ≥ 3. Theorem 5.2 tells us that if
the number of variables is at least three, then a critical (nonweakly positive) form is
nonnegative with radical generated by a positive vector z, called a critical vector. In
Proposition 6.2 below we give an analogous result for hypercritical forms.

Lemma 6.1. Let q : Zn → Z be a hypercritical semi-unit form.

a) If q is also critical, then n = 2 and q is the Kronecker form qm = x2
1+x2

2−mx1x2
for some m ≥ 3. In particular, q has no critical vector.

b) If q is nonunitary then n = 2 and q is (up to order of variables) one of the forms
q ′
m or q ′′

m below, with m > 0,

q ′
m(x1, x2) = x2

1 − mx1x2 and q ′′
m(x1, x2) = −mx1x2.
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Proof. If q is also critical and n ≥ 3, by Theorem 5.2 the form q is nonnegative, in
particular weakly nonnegative. This is impossible since q is hypercritical.

Then n = 2, that is, q(x1, x2) = x2
1 + x2

2 − mx1x2 for some m ∈ Z (since q is
unitary by Lemma 5.5(a)). Observe that if m ≤ 2 then q is weakly nonnegative, and
see Proposition 1.23 for the claim on critical vectors.

To verify (b) observe first that the forms q ′
m and q ′′

m are hypercritical precisely
when m > 0. Consider a vertex c ∈ {1, . . . , n} such that q(ec) = 0, and take x(c) to
be the vector in Z

n−1 obtained by deleting the variable xc. Then

q(x) = q(c)(x(c)) + xc

⎛
⎝∑

i �=c

qicxi

⎞
⎠ .

Now, if q is hypercritical then there is a positive sincere vector x such that q(x) <
0. Moreover, q(c)(x(c)) ≥ 0 implies that the second summand above is negative.
Since x is a positive vector, there must be a d �= c such that qcd < 0. Then the
restriction q ′ = q{c,d} is one of the hypercritical forms q ′

m or q ′′
m above. Since q is

itself hypercritical, then q = q ′ and the result follows. ��
By Lemma 6.1(b) we may focus only on hypercritical unit forms, which can be

characterized as follows.

Proposition 6.2. For a unit form q : Z
n → Z with n ≥ 3 the following are

equivalent.

a) The form q is hypercritical.
b) The form q is not weakly nonnegative, and for every critical restriction qI of q

there is an index i with I = {1, . . . , n} − {i}, and a positive critical vector z of
qI such that q(z|ei) < 0.

Proof. Assume q is hypercritical and consider a positive vector v with q(v) < 0.
Since any proper restriction qI is weakly nonnegative, the vector v is sincere. If
qI is critical, since n ≥ 3 then qI is a proper restriction of q by Lemma 6.1(a).
Moreover, since qij ≥ −2 for all i �= j (for q does not contain any Kronecker form
qm with m > 2) by Theorem 5.2 we may take a critical positive vector z for qI ,
which we identify with its inclusion in Z

n.
Take positive numbers m and k such that kv − mz is a positive but nonsincere

vector, say (kv−mz)j = 0. (Such numbers exist: take an index j ∈ {1, . . . , n} such
that zi

vi
≤ zj

vj
for all i ∈ {1, . . . , n} and take k := zj and m := vj .) Therefore

0 ≤ q(j)(kv − mz) = k2q(v) − kmq(z|v) + m2q(z) < −km
∑
i /∈I

viq(z|ei),

and since vi > 0 for all i ∈ {1, . . . , n} there must exist an i /∈ I with q(z|ei) < 0.
Observe now that 2z + ei is a sincere vector for q is hypercritical and

q(2z + ei) = 4q(z)+ 2q(z|ei) + 1 = 2q(z|ei) + 1 < 0.
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Hence I = {1, . . . , n} − {i}. For the converse assume that q(i) is not weakly
nonnegative for some i ∈ {1, . . . , n} and take I ⊂ {1, . . . , n} − {i} such that qI

is a critical restriction of q(i) (thus a critical restriction of q). By hypothesis (b) we
have qI = q(i). Therefore q(i) is hypercritical as well as critical, and by Lemma 6.1,
it is the Kronecker form qm for some m ≥ 3, which contradicts the existence of a
critical vector for q(i). Then q(i) is weakly nonnegative for all i ∈ {1, . . . , n}, that
is, q is a hypercritical form. ��
Lemma 6.3. Let q : Zn → Z be a hypercritical unit form with at least three indices
i, j, k.

a) If qij = −2 then n = 3. In particular, the bigraph Bq associated to q is one of
the following six bigraphs:

1 3

2

1 3

2

1 3

2

1 3

2

1 3

2

1 3

2

T5 T6T4

T1 T3T2

b) If qij = qik = qjk = −1 and q(k) is critical, then n = 4 and the bigraph of q is
one of:

1 3

2 4

1 3

2 4

1 3

2 4

N1 N2 N3

Moreover, the quadratic form qΔ represents numbers −1 and −3 for

Δ ∈ {T3, T4, T5, T6, N2, N3}.
Proof. Since q has at least three vertices, Bq does not contain any Kronecker form
qm as a restriction for m ≥ 3, that is, qrs ≥ −2 for all vertices r < s.

Assume first that qij = −2 for some vertices i < j . Then q{i,j} is a critical
restriction of q . By Proposition 6.2 we have n = 3. Set (i, j, k) = (1, 2, 3) and
notice that z = (1, 1) is a critical vector of q(3), thus again by Proposition 6.2 we
have

0 < q(z|e3) = q13 + q23.
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This implies that Bq is one of the bigraphs T1, . . . , T6. Moreover, the forms qTi for
i = 1, . . . , 6 are all hypercritical (Exercise 1 below).

Assume now that qij = qik = qjk = −1. Then q{i,j,k} is a critical restriction of
q , hence n = 4 and we may take (i, j, k, �) = (1, 2, 3, 4). Since q(3) is critical (with
critical vector e1 + e2 + e4), we have q14 = q24 = −1 and 0 > q(e1 + e2 + e3|e4) =
−2 + q34. Therefore q34 ∈ {−1, 0, 1}, with corresponding cases N1, N2 and N3.

For the last claim simply verify qTi (vi) = −1 = qNj (v
′
j ) and qTi (wi) = −3 =

qNj (w
′
j ) for the vectors in the following list (for i = 3, . . . , 6 and j = 2, 3)

v3 = (1, 2, 1) and w3 = (2, 5, 2),

v4 = (1, 1, 1) and w4 = (2, 3, 2),

v5 = (2, 2, 1) and w5 = (4, 4, 1),

v6 = (1, 1, 1) and w6 = (2, 2, 1),

v′
2 = (1, 1, 1, 1) and w′

2 = (2, 2, 2, 1),

v′
3 = (2, 2, 2, 1) and w′

3 = (4, 4, 4, 1). ��

We now show that almost all hypercritical forms represent numbers −1 and −3.
The importance of these two numbers will be clear in the proof of Theorem 6.16. In
what follows, by a slender quadratic form we mean a unit form q with qij ≥ −1 for
all i < j . The bigraph associated to the Kronecker form qm is denoted by Km for
m �= 0.

Proposition 6.4. Let q : Zn → Z be a hypercritical unit form whose associated
bigraph is not Km (m ≥ 3), T1, T2 or N1 (see Lemma 6.3 for notation). Then there
are positive (sincere) vectors v and w such that q(v) = −1 and q(w) = −3.

Proof. Consider Bq , the bigraph associated to q . Since Km is not contained in Bq

for m ≥ 3 we have qij ≥ −2 for all i < j . If qij = −2 for some i < j , by
Lemma 6.3(a) the bigraph Bq is one of T3, . . . , T6, which represent −1 and −3.
Therefore we may assume that q is a slender form. We may also assume, using
Proposition 6.2, that q(n) is a critical form with critical vector z, and q(z|en) =
−s < 0. Moreover, by Proposition 5.4 we may take z1 = 1.

First we show that 0 < s ≤ 3. By the above assumptions, the vector x :=
z − e1 + en is positive and not sincere. Thus, since q(e1|en) = q1n ≥ −1,

0 ≤ q(x) = q(z)+ 2 − q(z|e1) + q(z|en) − q(e1|en) = 2 − q1n − s < 4 − s.

Notice now that s �= 3. Indeed, for s = 3 and x = z − e1 + en we have 0 ≤
q(x) = 2 − q(e1|en) − 3, that is, q1n = −1 and q(x) = 0. Then q(1) is not weakly
positive, and again by 6.2, the form q(1) is critical. Since xn = 1 the vector x is
critical for q(1). We may assume that q2n = −1, therefore

0 = q(x|e2) = q(z|e2) − q12 + q2n = −q12 − 1,
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that is, q12 = −1. Now use Lemma 6.3(b) to conclude that Bq = N1, which is
impossible.

The proof is completed by showing that in cases s = 1, 2 such vectors v and w

may be given explicitly:
Case s = 1.

q(2z + en) = 1 + 2q(z|en) = −1 and q(4z + en) = 1 + 4q(z|en) = −3.

Case s = 2.

q(z + en) = 1 + q(z|en) = −1 and q(2z + en) = 1 + 2q(z|en) = −3. ��

As an immediate consequence we have:

Corollary 6.5. Let q : Zn → Z be a hypercritical unit form with n ≥ 5. Then q

represents numbers −1 and −3.

For integers a ≤ b denote by [a, b] the set of integers � with a ≤ � ≤ b.

Lemma 6.6. For any hypercritical unit form q : Zn → Z there is a (sincere) vector
v ∈ [0, 12]n such that q(v) < 0.

Proof. The statement is clear for Kronecker forms qm = qKm with m ≥ 3, and for
the forms with associated bigraphs T3, T4, T5, T6, N2, N3 by simple inspection of
the proof of the last claim in Lemma 6.3.

If q is not the form associated to graphs T1, T2, then by Proposition 6.4 we may
assume that q(n) is a critical restriction with positive critical vector z, and −1 is
either represented by 2z + en or by z + en. Since by Corollary 3.31 we have zi ≤ 6
for all i (cf. also Proposition 2.22), then both 2z+ en and z + en belong to [0, 12]n.

To deal with cases T1, T2 (resp. N1) evaluate at the vector v = (1, 1, 1) (resp.
v = (1, 1, 1, 1)) to get qT1(v) = −2, qT2(v) = −3 (resp. qN1(v) = −2). ��
Exercises 6.7.

1. Show that all bigraphs in Lemma 6.3 correspond to hypercritical forms.
2. Prove that the form qm = qKm does not represent the number −3 for any m ≥ 2.
3. Show that the form qΔ does not represent the number −1 for any

Δ ∈ {Km, T1, T2, N1}m≥4.

4. Which of the forms associated to T1, T2 or N1 represents the number −3?

6.2 Maximal and Locally Maximal Roots

For a weakly nonnegative semi-unit form q : Zn → Z denote by rad+(q) the set of
positive vectors x with q(x|ei) = 0 for i = 1, . . . , n (called the positive radical of
q). Observe that if x ∈ rad+(q) then q has no maximal positive root (with partial
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order x ≥ y if x − y ∈ N
n
0), since 1 = q(v) = q(v + mx) for any positive q-root

v and any m ∈ N. As in the weakly positive case, we say that a weakly nonnegative
semi-unit form q is sincere if it has a sincere positive root.

Proposition 6.8. Let q : Zn → Z be a sincere weakly nonnegative unit form. The
following are equivalent.

a) There are finitely many sincere positive roots of q (and we call q finitely sincere).
b) There is a maximal sincere positive root of q .
c) rad+(q) = ∅.

Proof. Clearly we have that (a) implies (b) and that (b) implies (c). To show that
(c) implies (a) let us assume that q has infinitely many sincere positive roots. Then
we may take a sequence of sincere positive q-roots y1, y2, . . . with ym < ym+1 for
m = 1, 2, . . . (see Lemma 5.12). Notice that |q(ym|ei)| ≤ 2 for all i = 1, . . . , n and
m ≥ 1. This follows from the sincerity of ym and the inequality

0 ≤ q(ym ± ei) = 2 ± q(ym|ei).

Hence there are y� < ym with q(y�|ei) = q(ym|ei) for all i = 1, . . . , n and 0 �=
ym − y� ∈ rad+(q). ��

A positive root v of a semi-unit form q is said to be locally maximal if q(v|ei) ≥ 0
for all i = 1, . . . , n. For v a maximal positive q-root, since σi(v) = v− q(v|ei)ei is
again a q-root where σi is the i-th reflection for q (Sect. 1.2), v is a locally maximal
root. The converse is false in general, as the following example shows.

Example 6.9. Consider the quadratic form q given by the following bigraph, and
selected vectors u and v.

u : 1 1

2

11

2 4 2

1 1

2

1 1

v : 2 2

4

21

2 6 4

1 2

2

1 1

Then q is weakly nonnegative and u < v are positive q-roots with u a locally
maximal root.

Proposition 6.10. Let q : Zn → Z be a finitely sincere weakly nonnegative unit
form. Then a sincere positive root y of q is maximal if and only if y is locally
maximal.
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Proof. We only need to show that local maximality implies maximality. Assume y

is a locally maximal sincere positive root of q , and that x is a root with y < x. Then

q(y|x) =
n∑

i=1

xiq(y|ei) ≥
n∑

i=1

yiq(y|ei) = q(y|y) = 2.

Thus 0 ≤ q(x− y) = 2 − q(y|x) ≤ 0, that is, q(x− y) = 0. Notice that v := x − y

satisfies q(v|ei) ≥ 0 for all i = 1, . . . , n (for if q(v|ei) < 0 then q(2v + ei) =
4q(v) + 1 + 2q(v|ei) < 0). We also have q(v|y) = q(x|y)− 2 = 0, therefore

0 = q(v|y) =
n∑

i=1

yiq(v|ei),

which implies that v ∈ rad+(q), in contradiction with Proposition 6.8. ��
A vertex i such that q(y|ei) > 0 for a locally maximal positive q-root y of a

weakly nonnegative semi-unit form q is called an exceptional index (or vertex) for
y (cf. Lemma 5.9).

Lemma 6.11. For a locally maximal positive root y of a weakly nonnegative semi-
unit form q , one of the following situations occur:

a) There are exactly two exceptional indices i �= j and q(y|ei) = yi = 1 = yj =
q(y|ej).

b) There is only one exceptional index i, and q(y|ei) = 1 and yi = 2.
c) There is only one exceptional index i, and q(y|ei) = 2 and yi = 1.

Furthermore, if y is also maximal then situation (c) never occurs.

Proof. Let y be a sincere locally maximal positive q-root. Then we have

2 = q(y|y) =
n∑

i=1

yiq(y|ei),

thus clearly one of (a), (b) or (c) occurs. If (c) holds then q(2y − ei) = 5 −
2q(y|ei) = 1 and 2y − ei > y, therefore y is not a maximal root. ��

The following lemma will be useful to determine the maximality of positive
sincere roots. For instance, this criterion is used below in the proof of Lemma 6.13.

Lemma 6.12. Let q : Zn → Z be a semi-unit form with a maximal sincere positive
root y. Then for any positive vector v with q(v) = −1 we have q(y|v) = 0.

Proof. Since v is positive and y is locally maximal we have q(y|v) ≥ 0. Then

σv(y) = y − q(y|v)
q(v)

v = y + q(y|v)v,

which is a positive q-root with y ≤ σv(y). By maximality q(y|v) = 0. ��
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Lemma 6.13. Let q : Zn → Z be a unit form such that there are indices 1 ≤ i <

j ≤ n with −5 ≤ qij ≤ −3. Then q has no maximal sincere positive root.

Proof. Let us assume that y is a sincere maximal positive root of q (hence locally
maximal). Consider the triple r = (ei, ej , y) and the root induced unit form qr given
by

qr(x1, x2, x3) := q(x1ei + x2ej + x3y)

= x2
1 + x2

2 + x2
3 + x1x3q(y|ei) + x2x3q(y|ej ) − sx1x2,

where qij = −s for some integer s. Let B be the bigraph associated to qr . The shape
of B depends on the values of q(y|ei) and q(y|ej ). Since y is a root we have

2 = q(y|y) =
n∑

k=1

ykq(y|ek),

and since y is sincere, positive and locally maximal then q(y|ek) > 0 for at most
two vertices k (and q(y|ek) = 0 for the rest), and in particular m := q(y|ei + ej ) ∈
{0, 1, 2}. Thus we consider four cases: Case 1) m = 0; Case 2) m = 1; Case
3) m = 2 and q(y|ei)q(y|ej) = 0, and Case 4) q(y|ei) = 1 = q(y|ej ). These
cases correspond to the four possibilities for B as depicted below (from left to right,
observe that in all cases we have (qr)12 = q12 = −s).

9
3
7

8
2
4

···
s edges

12
2
4

1
4
4

1
3
3

···
s edges

1
6
3

1
1
3

2
1
2

···
s edges

1
1
4

1
1
6

2
1
5

···
s edges

3
1
10

Each vertex of B contains a column with three natural numbers, corresponding to
three vectors in Z

B0 which are, from top to bottom, sincere positive roots of qr for
s = 3, 4, 5 respectively. Then qr has a sincere positive root x = (x1, x2, x3) and
y ′ := x1ei + x2ej + x3y is a root of q with y ′ > y, which is impossible. ��

The following technical lemma imposes restrictions on sincere weakly nonnega-
tive unit forms which fail to be unitary.

Lemma 6.14. Let q : ZI → Z be a weakly nonnegative semi-unit form, and x ∈ Z
I

a positive sincere root. For r = 0, 1 take I r = {i ∈ I | qii = r} and consider the
restriction xr = x|I r in Z

I r . Then one and only one of the following assertions
holds:

a) q(x1) = 1 and qij = 0 for any i ∈ I 0 and j ∈ I .
b) q(x1) = 0 and there exist i �= j in I 0 such that xi = xj = qij = 1. Moreover, if

s ∈ I 0 and t ∈ I is a different index satisfying qst �= 0 then {s, t} = {i, j }.
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c) q(x1) = 0 and there exist i in I 0 and j ∈ I 1 such that xi = xj = qij = 1.
Moreover, if s ∈ I 0 and t ∈ I is a different index satisfying qst �= 0 then
{s, t} = {i, j }.

Furthermore, if x is maximal and I 0 �= ∅ �= I 1, then (c) holds and I 0 contains
exactly one element.

Proof. Let us suppose that I = {1, . . . , n} and I 0 = {1, . . . ,m} for m ≤ n. Then

1 = q(x) = q(x1) + q(x0) + q(x1|x0), where q(x1|x0) =
∑

i∈I 1

j∈I 0

qij xixj .

Now, by Lemma 6.1 we have qij ≥ 0 for i ∈ I 0 and j ∈ I (for q ′
m and q ′′

m are
hypercritical if m > 0). Hence the three summands on the right of the equation
are nonnegative, therefore exactly one of them is nonzero. This leads to the three
assertions above, since x is sincere.

For the last claim we give a root y > x for both cases (a) and (b). For (a) take
y = 2x0+x1, whereas for (b) take y = x0+2x1. Notice that y > x since I r �= ∅ for
r = 0, 1. Thus if x is a maximal root then (c) holds, that is, 1 = q(x) = q(x1|x0).
Further, if k ∈ I 0 with k �= i then

q(x + ek) = q(x1|x0) + q(x1|ek) + q(x0|ek) = q(x1|x0) = 1,

that is, x + ek is a root of q larger than x. ��
Exercises 6.15.

1. Do hypercritical unit forms have to be connected?
2. Show that the quadratic form q in Example 6.9 is weakly nonnegative.
3. Show that if q contains a bigraph with shape T1, T2 or N1 (as in Lemma 6.3),

then q does not have a maximal sincere positive root.
4. In Example 6.9, verify that u and v are roots of q .
5. For a weakly nonnegative semi-unit form q , a positive q-root x and a positive

isotropic vector z of q , show that the following assertions hold:

i) q(x|ei) ≥ −2 and q(z|ei) ≥ −1 for i = 1, . . . , n.
ii) If xi > 0 then q(x|ei) ≤ 2, and if zi > 0 then q(z|ei) ≤ 1.

iii) qij ≤ 3 if xi �= 0 �= xj , and qij ≤ 2 if zi �= 0 �= zj .

6. Let q be a nonzero connected weakly nonnegative semi-unit form. Must q be
unitary?

7. Consider the unit form in three variables q(x1, x2, x3) = x2
1 + x2

2 + x2
3 − sx1x2.

Show that if s ≥ 3 and s − 2 is not the square of an integer, then q has a sincere
positive root.
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6.3 Criteria for Weak Nonnegativity

Here we prove a Weak Nonnegativity Criterion due to Happel and de la Peña
in [31]. Ovsienko showed in [44] that this result also holds without the condition
qij ≥ −5 for all i < j .

Theorem 6.16 (Happel–de la Peña). Let q : Zn → Z be a unit form with qij ≥
−5 for all 1 ≤ i < j ≤ n. If q has a maximal sincere positive root, then q is weakly
nonnegative.

Proof. Let y be a maximal sincere positive root of q . By Lemma 6.13 and
Exercise 6.15.3, the form q does not contain bigraphs of type N1, T1, T2, K3, K4,
K5, nor, by assumption, bigraphs Km for m ≥ 6. If q is not weakly nonnegative,
there is a hypercritical restriction qI of q , and by Proposition 6.4 there exist positive
vectors v and w with support I and with q(v) = −1 and q(w) = −3. It follows
from Lemma 6.12 that q(y|v) = 0. Since v and w are positive vectors with same
support and y is locally maximal, then q(y|w) = 0. Therefore

q(2y + w) = 4q(y)+ q(w) = 1,

in contradiction with the maximality of y. ��
Lemma 6.17. Let q be a hypercritical unit form and i an index such that q(i) is not
critical. Then q(i) is a positive form.

Proof. Observe first that q(i) is weakly positive, since otherwise it would contain a
critical restriction qI , contradicting Proposition 6.2. Again by Proposition 6.2 there
must exist a vertex c such that q(c) is a critical restriction of q (hence c �= i), with
critical positive vector z such that q(z|ec) < 0. Then q(c)(i) is a positive unit form
by Corollary 5.3.

If q(i) is not positive, there is a nonzero vector v such that q(i)(v) ≤ 0. In
particular vc �= 0 since q(c)(i) is positive, so we may assume that v = v′ + vcec
with v′

c = 0 and vc > 0. Notice that for α, β > 0 we have

q(αv + βz) = α2q(i)(v) + αβq(z|v′ + vcec) ≤ αβvcq(z|ec) < 0.

Since q(i) is weakly positive the vector v′ has a negative entry. But z is a critical
positive vector of q(c), therefore we may find α, β > 0 such that αv+βz is a positive
nonsincere vector (take for instance α = za and β = −va where a is an index such
that va

za
is minimal among all fractions

vj
zj

for j ∈ supp(z) = {1, . . . , n}− {c}). This

is impossible since q(αv + βz) < 0 and q is hypercritical, hence q(i) is a positive
unit form. ��

The following immediate consequence may be considered as a partial analogue
of Theorem 5.2 (see also Corollary 5.3).

Corollary 6.18. Any proper restriction of a hypercritical unit form is nonnegative.
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Proof. The result is clear for Kronecker forms qm with m ≥ 3. Therefore we may
assume the hypercritical form q has at least three vertices (in particular qij ≥ −2
for all i < j ). By Lemma 6.17, if q(i) is not positive then q(i) is critical, thus
nonnegative by Theorem 5.2. ��

We now prove a generalization of the (Jacobi-like) Zeldych Criterion 5.26 given
in [55]. Again we do not assume the quadratic form to be unitary. Let ad(B) denote
the adjugate of a square matrix B.

Proposition 6.19. Let q : Zn → Z be an integral quadratic form with associated
symmetric matrix A (that is, q(x) = xtAx for any x ∈ Z

n). The following assertions
are equivalent:

a) The form q is weakly nonnegative.
b) For every principal submatrix B of A we have either det(B) ≥ 0, or ad(B) has

a negative entry.

Proof. Let B be a principal submatrix of A and assume that ad(B) is nonnegative
(that is, it has no negative entry). By Perron–Frobenius Theorem 1.36 there exists a
positive eigenvector v ∈ R

n of ad(B) with eigenvalue ρ > 0. Assuming that q is
weakly nonnegative and considering q as a real function qR : Rn → R we have by
continuity

0 ≤ qR(v) = vtBv = 1

ρ
vtB(ad(B)v) = 1

ρ
det(B)‖v‖2,

and therefore det(B) ≥ 0.
Suppose now that q satisfies (b) but is not weakly nonnegative. Since property

(b) is preserved by principal minors, by induction on n we may assume that q
is hypercritical. By Corollary 6.18, every proper restriction of q is nonnegative,
therefore by Proposition 1.33 we have det(B) ≥ 0 for each proper principal
submatrix B of A.

Thus det(A) < 0 since otherwise q would be nonnegative. Take ad(A) = (vij ).
By hypothesis there must exist i, j with vij < 0. Let v be the j -th column of ad(A),
so that Av = det(A)ej and q(v) = det(A)vjj . Further, let w > 0 be a sincere
positive vector with q(w) < 0. For λ = − vij

wi
> 0 we have (v + λw)i = 0 and

(since the restriction q(i) is nonnegative)

0 ≤ q(v + λw)

= q(v) + 2λwtAv + λ2q(w)

< det(A)[vjj + 2λwj ]

= det(A)

wi

[vjjwi − 2vijwj ].
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As in the proof of Proposition 5.26, if vjj < 0 we take i = j , thus

0 ≤ q(v + λw) < det(A)(−vjj ) ≤ 0,

and if vjj ≥ 0 then vjjwi − 2vijwj ≥ 0 and we have

0 ≤ q(v + λw) <
det(A)

wi

[vjjwi − 2vijwj ] ≤ 0.

Both cases yield a contradiction. ��
The following practical criterion is useful for the computational verification of

weak nonnegativity.

Theorem 6.20. A semi-unit form q : Zn → Z is weakly nonnegative if and only if
q(z) ≥ 0 for every z ∈ [0, 12]n.

Proof. If q is weakly nonnegative then q(z) ≥ 0 for all z ∈ [0, 12]n. If q is
not weakly nonnegative, then there is a hypercritical restriction q ′ of q , and by
Lemmas 6.1 and 6.6 there is a vector z ∈ [0, 12]n with q(v) < 0. ��

We say that a weakly nonnegative semi-unit form q is 0-sincere if there exists
a sincere vector y ∈ rad+(q). We point out that in this case any isotropic vector
y ∈ N

n
0 belongs to the positive radical rad+(q) of q . In fact, we have the following

more general result.

Lemma 6.21. Let q : ZI → Z be a weakly nonnegative semi-unit form and take
μ ∈ q−1(0).

a) If x ∈ rad+(q) and supp(μ) ⊂ supp(x), then μ ∈ rad(q).
b) If μ is positive and z ∈ Z

I is such that q(z|μ) = 0 and z + nμ is a positive
sincere vector for some n ≥ 0, then μ ∈ rad+(q).

Proof. Assume there is an index i ∈ I such that q(μ|ei) �= 0 and take ε = ±1 such
that εq(μ|ei) > 0. Taking y = ei − 2εμ, we observe that

q(y) = q(ei) − 2εq(μ|ei) ≤ −1.

By the requirement on the supports in (a), notice that there exists a k ≥ 0 such that
y + kx is a positive vector, thus we arrive at the contradiction

0 ≤ q(y + kx) = q(y) ≤ −1.

This shows (a). For (b) assume that μ /∈ rad(q), thus there exists i ∈ I with
q(μ|ei) > 0 (for μ is a positive vector). In particular, there is k ≥ 0 such that

q(z + kμ|ei) = q(z|ei) + kq(μ|ei) ≥ q(z) + 2.
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Take m := max(k, n) and y := z + mμ. Then q(y|ei) ≥ q(z)+ 2 and q(y) = q(z)

since q(z|μ) = 0 and q(μ) = 0. Therefore

q(y − ei) = q(y) + q(ei) − q(y|ei) = q(z)+ 1 − q(y|ei) ≤ −1,

which is impossible since y ≥ z + nμ is positive and sincere. ��
For a semi-unit form q with a sincere positive radical vector z, we trivially

observe that any vector x may be taken into a positive vector x + kz with k ∈ N, so
that q(x) = q(x + kz). This proves the following lemma.

Lemma 6.22. Any 0-sincere form is nonnegative.

6.4 Iterated Edge Reductions

Recall from Sect. 5.3 that for a unit form q : Zn → Z and indices i �= j with qij < 0
we construct a quadratic form q ′(x) = q(ρ(x))+ xixj , with ρ : Zn+1 → Z

n given
by

ρ(ek) =
{
ek, if 1 ≤ k ≤ n;
ei + ej , if k = n + 1,

called the edge reduction of q with respect to i and j. The same construction can be
performed when q is a semi-unit form (or even a pre-unit form, that is, an integral
quadratic form q with q(ei) ≤ 1 for all indices i) satisfying q(ei) = 1 = q(ej ) and
qij < 0.

The quadratic form q can be recovered from q ′ using the nonlinear map π :
Z
n → Z

n+1 defined as follows,

π(x)k = xk, for k /∈ {i, j, n + 1} and

(π(x)i, π(x)j , π(x)n+1) =
{
(0, xj − xi, xi), if xi ≤ xj ,

(xi − xj , 0, xj ), if xi > xj .

Since ρ ◦ π = Id we have q(x) = q ′(π(x)) for any vector x ∈ Z
n.

Example 6.23. Consider the unit form q with associated bigrah Bq as shown below
(left). Its edge reduction with respect to vertices a, b is the form q ′ with bigrah Bq ′
(right).
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Bq = •a

• • •

• • •
•b

Bq = •a

• • •
•

• • •
•b

For a quadratic form q denote by Σ+(q) the set of isotropic vectors of q with
nonnegative entries.

Proposition 6.24. Let q : Zn → Z be a semi-unit form and q ′ : Zn+1 → Z be
obtained from q by edge reduction with respect to indices i and j . Then q is weakly
nonnegative if and only if q ′ is weakly nonnegative. In this case the maps ρ and π

are bijections (inverse to each other) between the sets Σ+(q) and Σ+(q ′).

Proof. Take a positive vector y in Z
n+1. If q is weakly nonnegative, since ρ(y) > 0

we have

q ′(y) = q(ρ(y))+ yiyj ≥ 0.

Conversely, if 0 < x ∈ Z
n and q ′ is weakly nonnegative, then π(x) > 0 and

q(x) = q ′(π(x)) ≥ 0.

Assume that q and q ′ are weakly nonnegative. By the identity q(x) = q ′(π(x)) the
mapping π restricts to a function π : Σ+(q) → Σ+(q ′). If y ∈ Σ+(q ′) then

0 = q ′(y) = q(ρ(y)) + yiyj .

Since both summands on the right are nonnegative, it follows that yiyj = 0 (thus
y ∈ Im(π)) and that ρ(y) ∈ Σ+(q). In particular, π : Σ+(q) → Σ+(q ′) is a
surjective mapping, and the result follows since ρ ◦ π = Id. ��

Even though there is a bijection between Σ+(q) and Σ+(q ′) when q is a weakly
nonnegative semi-unit form and q ′ is an edge reduction of q , it is not always true that
q and q ′ have the same number of critical vectors (a vector z is critical for q if the
restriction of q to the support supp(z) of z is critical having z has positive generator
of its radical). For instance, if q and q ′ are the forms shown in Exercise 6.23, then
the following vectors v1 and v2 are critical vectors for q ,

2

1 1 1

0 0 0

1

1

0 0 0

1 1 1

2
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while q ′ has the following different critical vectors, π(v1), π(v2) and a third vector
w with an entry 3.

1

1 1 1

1

0 0 0

0

0

0 0

1

1 1 1

1

0

1 1 1

3

1 1 1

1

This behavior, along with notions like positive corank and conformality for edge
reductions, are further explored in [54].

For a unit form q which is not weakly positive there might be an arbitrarily long
iterated edge restriction for q , which is evident from the following example,

Bq = •1 •2

•3

Bq = •1 •2
•4

•3

where Bq is a subbigraph of the bigraph Bq ′ associated to the edge reduction q ′ of
q with respect to the vertices 2 and 3. Notice that this example is actually weakly
nonnegative.

An iterated edge reduction for a semi-unit form q ′ : Zn → Z is a quadratic form
q : Zm → Z with m ≥ n that is obtained iteratively from q by a sequence of edge
reductions. For instance, for the example in three variables q above, consider the
iterated edge reductions q ′′ by edges {1, 2}, {1, 2} and {2, 3}, and the reduction q ′′′
by edges {2, 3}, {1, 2} and {1, 2} respectively, as shown below.

Bq = •4
•1 •5 •2

•6
•3

Bq = •5
•1 •6 •2

•4
•3

The following is a suitable generalization of Theorem 5.24 to the weakly nonnega-
tive setting.

Theorem 6.25. A semi-unit form q : Zn → Z is weakly nonnegative if and only if
any iterated edge reduction q ′ of q is semi-unitary.

Proof. The necessity follows from Proposition 6.24.
For the converse assume that q is a semi-unit form which is not weakly

nonnegative. If there are vertices a �= b with qab < −2, then the edge reduction
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of q with respect to a and b is not semi-unitary. Therefore we may assume that
qab ≥ −2 for all vertices a �= b. By Proposition 6.2 there is a critical vector z and
i /∈ supp(z) such that q(z|ei) < 0. In particular,

q(2z + ei) = qii + 2q(z|ei) < 0.

Take vertices a and b with qab < 0 and consider the reduction q ′ of q with respect
to a, b. First we notice that there exists a j /∈ supp(z) such that

q ′(2π(z)+ ej ) < 0.

If a = i and b ∈ supp(z) then take j = n + 1, so that

q ′(2π(z)+ en+1) = q(ρ[2π(z)+ en+1]) = q(2z + ei + eb) ≤ q(2z + ei) < 0.

If i /∈ {a, b} or {a, b} ∩ supp(z) = ∅ then take j = i and observe that

q ′(2π(z) + ei) = q(2z + ei) < 0.

Now, if the weight |z| = ∑
i |zi | of z is greater than one, taking a, b ∈ supp(z)

we have |π(z)| < |z|. By the above argument, replacing q for some iterated
reduction of q , we may assume that |z| = 1, that is, z = ek for some k ∈ {1, . . . , n}.
Hence

0 > q(2ek + ei) = 4qkk + qii + 2qki.

Since qii, qkk ∈ {0, 1} we have qkk = 0 > qki . Then the bigraph B associated to the
restriction q{k,i} has one of the following forms,

•k
··· •i •k

··· •i

corresponding to cases qii = 0 (left) and qii = 1 (these restrictions are the
hypercritical semi-unit forms q ′

m and q ′′
m from Lemma 6.1). For the reduction q ′

of q with respect to k and i we have

q ′
n+1,n+1 = qkk + qii + qki = qii + qki,

thus q ′ is not a semi-unit form unless B has the form •k •i. In this case
the restriction (q ′){k,i,n+1} has the following associated bigraph,

•n+1

•k •i
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hence the reduction of q ′ with respect of k and n+ 1 is not a semi-unit form, which
completes the proof. ��

Following [54], by an exhaustive reduction for a semi-unit form q : Zn → Z we
mean an iterated edge reduction q ′ of q satisfying the following conditions:

i) Every edge reduction involved in the construction of q ′ is with respect to vertices
i and j satisfying 1 ≤ i < j ≤ n.

ii) For any 1 ≤ i < j ≤ n we have q ′
ij ≥ 0.

Notice that all exhaustive reductions involve the same numberK of edge reductions,
namely

K = (−1)
∑

i<j and qij<0

qij .

The forms q ′′ and q ′′′ right before Theorem 6.25 are examples of exhaustive
reductions of the quadratic form

q(x1, x2, x3) = x2
1 + x2

2 + x2
3 − 2x1x2 + x1x3 − x2x3.

Furthermore, we may consider a sequence q0, q1, q2, . . . of semi-unit forms such
that q0 = q and for k > 0 the form qk is obtained from qk−1 by an exhaustive
reduction. Then we say that qk is obtained from q by an iterated exhaustive
reduction (of length k). Notice that there is a sequence of integers

n = n0 < n1 < n2 < . . . < nk

such that qi is a semi-unit form in ni variables for i = 0, . . . , k. It is not known
whether a semi-unit form q is weakly nonnegative if and only if any iterated
exhaustive reduction of q stops, after finitely many steps, in a quadratic form
having only nonnegative coefficients. However, the following criterion (which is
an alternative version of Theorem 6.25) was proved in [54].

Remark 6.26. Let q : Z
n → Z be a semi-unit form, and qk : Z

nk → Z be a
sequence of iterated exhaustive reductions of q for k = 0, 1, 2, . . . Then q is weakly
nonnegative if and only if qk is semi-unitary for all k ≤ 31.

6.5 Semi-Graphical Forms

The following result, known as the reduction theorem by deflations of weakly
nonnegative forms, gives the main procedure to obtain graphical forms from weakly
nonnegative semi-unit forms, which is one of the main tools in next section. We
present a useful generalization.
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Theorem 6.27. Let q : ZI → Z be a weakly nonnegative semi-unit form with a
maximal sincere positive root x. If I = J ∪ K is a nontrivial partition of the index
set I , then there is an iterated deflation T for q concentrated in J such that the form
q ′ = qT satisfies the following.

a) The form q ′ is a weakly nonnegative semi-unit form.
b) The form q ′ has a maximal positive root x ′ with x = T (x ′).
c) We have q ′

ij ≥ 0 for all i, j ∈ J ∩ supp(x ′).
d) There are inclusions,

R+(q )
T

R+(q) and Σ+(q )
T

Σ+(q).

Proof. Take a deflation T −
ij for q and the form q− = qT −

ij . Consider a positive

vector y ∈ Z
n and take y− = T −

ij (y) = y + yiej . Then y− is a positive vector and

q−(y) = q(T −
ij y) = q(y−) ≥ 0,

which shows (a). For (b) we take i and j with xj ≥ xi so that x− := (T −
ij )

−1x is

a positive q−-root. If y− is a positive q−-root with y− ≥ x−, then y := T −
ij (y

−) is
a positive q-root with y ≥ x. Hence y = x, that is, the vector x is a maximal root.
The claim (d) follows as in Lemma 2.19. Therefore points (a), (b) and (d) hold for
iterated deflations.

For (c), as long as there are vertices i and j such that qij < 0 we may take a
deflation T −

ij or T −
ji and continue with the reduction. The process must stop since in

each step the weight |x−| = ∑
i x

−
i of x− is smaller than the weight |x| of x. ��

Following Dräxler, Golovachtchuk, Ovsienko and de la Peña [22], we say that
a semi-unit form q : Z

I → Z is semi-graphical if there exists a vertex ω ∈ I

such that qωi < 0 for all i �= ω, and qij ≥ 0 for all i, j �= ω. As defined by
Ringel [46], a graphical form is a semi-graphical unit form q such that |qij | ≤ 1 for
all i �= j . According to Sect. 5.5, a centered form q is a semi-graphical unit form
with qωi = −1 for all i �= ω. Therefore graphical forms are centered.

Lemma 6.28. Let q be a finitely sincere weakly nonnegative semi-unit form. Then
Bq is a connected bigraph. Moreover, qii = 0 for a vertex i if and only if qij ≥ 0
for all j �= i.

Proof. If Bq has a nontrivial partition supported by the sets of vertices I 1 and I 2,
and x is a sincere positive q-root, then x = x1 +x2 with supp(xi) = I i for i = 1, 2.
Since 1 = q(x1) + q(x2) we may assume that q(x1) = 1 and q(x2) = 0, and
thus conclude that all vectors x1 + mx2 are sincere positive q-roots for m > 0, in
contradiction with q being finitely sincere.

For the second assertion notice that if qii = 0 and qij < 0, then q(2ei + ej ) =
qjj + 2qij < 0. Conversely, assume that qij ≥ 0 for all j �= j and that qii = 1.
Since Bq is connected, there exists j �= i such that qij > 0. Then for any sincere
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positive root x we have

q(x|ei) = 2xi +
∑
k �=i

xkqki ≥ 3,

which is impossible since 0 ≤ q(x − ei) ≤ 2 − q(x|ei). ��
The Kronecker form qm for m ≥ 2 is a semi-graphical form which is critical

and hypercritical for m ≥ 3. All other critical semi-graphical forms are actually
graphical.

Lemma 6.29. Any critical semi-graphical form q in n ≥ 3 variables is a graphical
form.

Proof. Since n ≥ 3 we have qij ≥ −1 for all i, j �= ω. We show that qij ≤ 1 for
i, j �= ω. Since the vector ei − ej is not sincere, and proper restrictions of critical
forms are positive (cf. Corollary 5.3), we have

0 < q(ei − ej ) = 2 − qij ,

thus the result. ��
The list of critical semi-graphical forms with n ≥ 3 is precisely that of Table 5.3.

It will be useful to have a classification of centered hypercritical forms (equivalently,
hypercritical semi-graphical forms with n > 3 variables). In Table 6.1 we exhibit
such forms.

Recall that by a 0-sincere form we mean a weakly nonnegative semi-unit
form q having a sincere positive radical vector. We say that a 0-sincere (weakly
nonnegative) unit form is reduced provided qij ≤ 1 for all vertices i, j (compare to
slender forms). The following lemma justifies this definition. Recall from Sect. 5.5
that a unit form q is obtained from q ′ by doubling a vertex k if q is the one-point
extension q = q ′[−ek] (cf. also Exercise 3.32.4).

Lemma 6.30. Let q be a 0-sincere (weakly nonnegative) unit form. Then q is not
reduced if and only if there is a vertex i such that q can be recovered from the
restriction q(i) by doubling a vertex.

Proof. Assume q : Z
n → Z and take for simplicity i = n and q ′ = q(n). Then

clearly q ′[−ek]kn = 2, thus q = q ′[−ek] is not reduced.
For the converse assume that qij > 1 for some vertices i �= j , and take z to be a

sincere positive radical vector of q . Then we have

0 ≤ q(z + ei − ej ) = q(ei − ej ) = 2 − qij ,

that is, qij = 2. In particular q(ei − ej ) = 0, and since q is a nonnegative unit form
(Lemma 6.22), by Lemma 3.2(a) the vector ei − ej is radical, that is, q is obtained
from q ′ by doubling vertex j . ��
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Table 6.1 Hypercritical graphical forms

•

• • • • •

•

• • • • •

•

• • •

• • • •

•

• •

• •

• • • •

•

• •

• • •

• • • •

•

• •

• •

• • • • •

•

• • •

• • •

• • •

In the last part of this section we begin with technical preparations to end
our discussion on integral quadratic forms with a generalization of Ovsienko’s
Theorem 5.25 to the weakly nonnegative context. In Table 6.2 we show some 0-
sincere forms of small corank. The reason why we exclude those forms associated
to bigraphs C (1), C (2), C (3) and C (4′) is the content of the following result (cf.
Table 5.3 and the figure below).

2

2

2

1 1 1 1

3

1 1

1 1 1 1

4

1

1 1

1 1 1 1 1

The following classification result of graphical weakly nonnegative unit forms of
small corank, due partially to Ringel [46] (cf. [23] for comments and proofs), will
be used in the last steps in the proof of our last result Theorem 6.37.

We say that a 0-sincere graphical form q is triangular if there are precisely three
critical restrictions qI1 , qI2 and qI3 of q such that for any i �= j in {1, 2, 3} the
restriction qIi∪Ij is a 0-sincere form of corank 2.
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Table 6.2 Reduced 0-sincere semi-graphical forms of corank one or two, without the forms
associated to C (1), C (2), C (3) and C (4′) appearing as critical restrictions

A10 A11

Ψ15 Ψ16 Ψ17

Ψ18 Ψ19 Ψ20

4

2

1 1 1

1 0 1 1

4

2

0 1 1

1 1 1 1

•

•

• •i •i •

• •i •i •

•

• • •j

•j • • •

•

•

•i • • j •

• •

•

•i •

• •

• • •i • •

•

• • • •

• •

• •

• •

• • •

•

•

• • •

• • • • •

In cases A10 and A11 the vector shown as integers at the vertices is the positive generator of the
radical. A vertex marked as •i or •j represents a critical restriction q(i) or q(j) of shape A10 or
A11, respectively

Theorem 6.31. Let q : Z
I → Z be a 0-sincere graphical form without critical

restrictions having associated bigraph of the shape C (1), C (2), C (3) or C (4′).

a) If cork(q) = 3 then q is either triangular or one of the forms associated to Θ1
or Θ2 (see Table 6.3).

b) cork(q) = 2 if and only if q = qΨ� for � = 15, . . . , 20 (see Table 6.2).

Remark 6.32. Let q be one of the forms qΦ� for � = 15, . . . , 20. If μ(1) and μ(2)

are critical vectors of q one can show by inspection that there are vertices i and j

such that μ(1)
i = 1 and μ

(1)
j = 0, and μ

(2)
i = 0 and μ

(2)
j = 1. In particular, for

any positive radical vector μ of q , there are positive numbers m1 and m2 such that
μ = m1μ

(1) + m2μ
(2).

Similarly, it can be shown that if q is a triangular 0-sincere form, then there
are vertices {i, j, k} such that the restriction of the critical vectors μ(1), μ(2) and
μ(3) are the canonical vectors with three entries. Therefore, for any sincere positive
radical vector μ there are positive numbers m1, m2 and m3 such that μ = m1μ

(1) +
m2μ

(2) + m3μ
(3).
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Exercises 6.33.

1. Show that the solid star Tr1,...,rs is equivalent to the centered form q where q(ω)

has associated bigraph B = �I (ri − 1) and where I (m) is the complete dotted
bigraph on m vertices.

2. Let q : ZI → Z be a weakly nonnegative centered unit form with center ω, and
for i ∈ I consider the set Si = {j ∈ I | qij > 0}. Show that if x is a positive
sincere vector, S ⊂ Si with i �= ω and

xi − q(x|ei) ≥ xω −
∑
j∈S

xj ,

then S = Si and qij = 1 for all j ∈ Si .
3. Let q : ZI → Z be a weakly nonnegative semi-graphical form with center ω.

Suppose that x is a maximal sincere positive root with xω ≥ 7 and only one
exceptional vertex.

a) Show that q is a centered form, and that qij ≤ 1 for all j �= ω.
b) Set S′

i = {j �= i | qij > 0} and show that the restriction of Bq to S′
i is a

complete graph with dotted edges. Moreover, xj = 1 for all j ∈ S′
i and if

j ∈ Si and k ∈ I satisfy qjk > 0, then k ∈ Si .
c) Prove that Si has exactly xω − 2 elements.
d) Notice that q is not weakly positive (why?) and show that if J ⊂ I and the

restriction qJ is critical, then Si ⊂ J .
e) Conclude that xω = 7. [Hint: use (c) and (d) to verify that the restriction qI

may be identified with the critical form qC (6), see Table 5.3].

4. Which of the hypercritical centered forms in Table 6.1 have as restriction the
following bigraphs?

•

• • • •

•

• • •

• • • •

6.6 Generalizing Ovsienko’s Theorem

Our objective in this section is to show that any maximal positive root x of a weakly
nonnegative unit form q satisfies xi ≤ 12 for any index i, following arguments by
Dräxler, Golovachtchuk, Ovsienko and de la Peña in [23]. We say that x ∈ Z

n is a
2-layer root of an integral quadratic form q : Zn → Z if x is a positive q-root and
there exist positive isotropic vectors μ and μ′ such that x = μ + μ′ (in particular
1 = q(x) = q(μ|μ′)).
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Theorem 6.34. Let q : Zn → Z be a weakly nonnegative semi-unit form with a
maximal positive root x.

a) If there is a positive isotropic vector μ with μ < x then x is a 2-layer root.
b) If x is a 2-layer root then xi ≤ 12 for all i = 1, . . . , n.

Proof. Without loss of generality we may assume that x is a sincere vector. To
show (a), by maximality of x we have μ /∈ rad(q), and therefore q(x|μ) �= 0 by
Lemma 6.21(b). That q(x|μ) = 1 follows from the equations

0 ≤ q(x − μ) = q(x)− q(x|μ) = 1 − q(x|μ),
0 ≤ q(x + mμ) = q(x)+ mq(x|μ) = 1 + mq(x|μ), for all m ≥ 0.

Hence q(x − μ) = q(x)− q(x|μ)+ q(μ) = 0, that is, μ′ := x − μ is an isotropic
vector.

We now turn to the proof of (b), which we illustrate with an example. Take
x = μ + μ′ with μ and μ′ positive isotropic vectors of q .

•2 •1

•4 •3

x = 1 1
1 0 + 1 0

1 1 .

Step 1. First we double all vertices I = {1, . . . , n} of the form q : Z
n → Z

(cf. Exercises 3.32.4 and 5) to get a weakly nonnegative form q : ZI∪J → Z,
where J = {n + 1, . . . , 2n}. Consider μ as a vector in Z

I∪J and define μ =∑n
i=1 μ

′
iei+n. Then the projection π : ZI∪J → Z

I given by π(ei+n) = ei =
π(ei) for i ∈ I satisfies π(x) = x where x = μ + μ is a maximal positive root
of q (see Exercise 3.32.4(d)).
Take I ′ = supp(μ) and J ′ = supp(μ), and replace q by its restriction to I ′ ∪ J ′
(figure below for our example).

2

4 1

2

4 3

Step 2. Apply now the Reduction Theorem 6.27 to q with respect to I ′ to get an
iterated deflation T (concentrated in I ′) and a weakly nonnegative quadratic form
q ′ = qT with a positive maximal root η such that T (η) = x, and q ′

ij ≥ 0 for all
i, j ∈ I ′ ∩ supp(η).
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By Lemma 6.14, there is a vertex ω ∈ I ′ such that the support of η is J ′ ∩ {ω},
q ′
ωω = 0 and the restriction q ′ of q ′ to J ′ is a unit form (in the example below

the iterated flation is T = T −
12T

−
14). Moreover, there exists a j ∈ J ′ such that

ηω = ηj = q ′
ωj = 1 (in particular η = μ + eω), and j is the unique element in

J ′ satisfying q ′
ωj �= 0.

2 ω

4 3

Step 3. By Lemma 6.21(b) we have μ ∈ rad+(q ′), thus μ belongs to the set

U = {y ∈ rad+(q ′) | yj = 1}.

If U has infinitely many elements, there exist y ′ < y ∈ U , therefore y − y ′ ∈
rad+(q ′). This contradicts the maximality of η.

We conclude by pointing out that U is a finite set, thus by Lemma 6.35 below we
have μi ≤ 6 for i ∈ I . Since by symmetry we also have μi ≤ 6, then xi ≤ 12 for
all i ∈ I . ��
Lemma 6.35. Suppose q : ZI → Z is a (weakly nonnegative) 0-sincere semi-unit
form such that there is an index i ∈ I with q(i) unitary. If the set U of positive
radical vectors y of q with yi = 1 is finite, then yi ≤ 6 for any y ∈ U and i ∈ I .

Proof. We claim that the restriction q(i) is a weakly positive unit form. Otherwise
there exists a positive isotropic vector μ with i /∈ supp(μ). By Lemma 6.21(a) the
vector μ is radical, contradicting the finiteness of U .

If y ∈ U then q(y − ei) = q(ei) = 1, thus y − ei is a positive root of the weakly
positive form q(i). The result follows from Ovsienko’s Theorem 5.25. ��

The following example shows that the bound 12 in Theorem 6.34 is optimal.
The example is constructed by identifying all but the exceptional vertices of two
copies of q

Ẽ8
, where the vector shown (a maximal positive root) is the sum of the

corresponding positive generators of the radicals of q
Ẽ8

(one for each copy).

6 1

4 8 12 10 8 6 4

1

The example above is not a 0-sincere form, which is a direct consequence of the
following lemma.
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Lemma 6.36. Suppose q : Zn → Z is a (weakly nonnegative) 0-sincere unit form.
Then qij > 1 if and only if q is obtained from q(i) by doubling vertex j .

Proof. Assume that qij > 1. By Exercise 6.15.5 we have qij = 2. Since ei − ej
is an isotropic vector (0 = 2 − qij = q(ei − ej )), by Lemma 6.21(a) the vector
ei − ej is radical. Therefore by Exercise 3.32.6 the form q is equal to q(i)[j ] (up to
a reordering of vertices if necessary). The converse is evident. ��

The following generalization of Ovsienko’s Theorem is the main result in [23].

Theorem 6.37. Let q : Zn → Z be a weakly nonnegative semi-unit form with a
maximal positive root x. Then xi ≤ 12 for all i = 1, . . . , n.

Sketch of Proof. Suppose on the contrary that x is a maximal positive root of q with
xω > 12 for some ω ∈ {1, . . . , n}.
Step 1. We may assume that q : ZI → Z is a weakly nonnegative centered form

without critical restriction of shape C (1), C (2), C (3) or C (4′). In this case, the
maximal root x has two exceptional vertices. We may further assume that the
cardinality |I | is minimal among all such forms.
Apply the Reduction Theorem 6.27 with respect to the set I ′ = I − {ω} and the
maximal root x to get an iterated deflation T concentrated in I ′ and a maximal
positive root x ′ of q ′ = qT such that x = T (x ′). Deleting some vertices if
necessary, we may assume that x ′ is sincere, thus q ′

ij ≥ 0 for all i, j �= ω.
If there exists an i �= ω such that q ′

iω ≥ 0 then by Lemma 6.28 we have q ′
ii = 0.

In particular ei is a positive isotropic vector of q ′ with ei < x ′, therefore by
Theorem 6.34, x ′ is a 2-layer root and xω = x ′

ω ≤ 12, a contradiction.
Moreover, if q ′

iω < −1 then qiω = −2 and the vector eω + ei is isotropic for q ′
with eω + ei < x ′, which is again impossible. Hence q ′ is a centered form.
Observe from Table 5.3 (see also the graphs after Lemma 6.30) that if qJ is a
critical restriction of q ′ with associated bigraph C (2), C (3) or C (4′), then there
is a positive isotropic vector μ < x, which once more by Theorem 6.34 yields a
contradiction.
Finally, the statement about the exceptional vertices of x ′ is worked out in
Exercise 6.33.3. Write q for q ′ and x for x ′.

Step 2. Let i and j be the exceptional vertices of x and consider the quadratic form
q(y) = q(y) − yiyj . Then q is a 0-sincere centered form with sincere positive
radical vector x.
By Lemma 6.11 we have xi = 1 = xj , therefore i, j �= ω.
First notice that the restriction q(i)(j) is weakly positive (otherwise there is a
critical restriction with a critical positive vector μ, and q(μ + x) = q(x) =
1 since i, j /∈ supp(μ), contradicting the maximality of x). This implies that
2 ≤ qij ≤ 3. Indeed, by Exercise 6.15.5 the inequality 0 ≤ qij ≤ 3 holds. If
qij ≤ 1 then q(ei + ej + eω) ≤ 2 and the claim below yields a contradiction with
z = ei + ej + eω.

Claim. If z is a positive vector with q(z) ≤ 2 satisfying zk ≤ 1 for all k �= ω

and zi = 1 = zj , then zω > 6.
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Proof. If zω ≤ 6 then x − z is a positive vector and since q(i)(j) is weakly
positive we have

0 < q(i)(j)(x − z) = q(x − z) = q(x) + q(z)− q(x|z)
= 1 + q(z)− (ziq(x|ei) + zj q(x|ej)) = q(z) − 1 ≤ 1.

Then x−z is a positive root of q(i)(j), and by Theorem 5.25 we have xω−zω ≤ 6,
in contradiction with xω > 12. ��
Observe that the bilinear form associated to q has the following shape,

q(v|w) = q(v|w) − viwj − vjwi,

hence q(x|ek) = 0 for all k since q(x|ek) = xk = 1 for k = i, j . Then x

is a sincere positive radical vector for q, and we only need to show that q is
weakly nonnegative. Observe that q(i) = q(i) and q(j) = q(j). If q is not weakly
nonnegative, then there is a hypercritical restriction qJ where J ⊂ I contains
both i and j . From Table 6.1 we see that qij �= 3. Furthermore, if qij = 2 then
qJ has a restriction including i and j with one of the following bigraphs (see
Exercise 6.33.4)

2

1 1 1 1

4

1 1 1

1 1 1 1

Using the claim above with the vector z as indicated by the vertices in the figure,
which satisfies q(z) ≤ 2, we get a contradiction. Then q is a 0-sincere form with
sincere positive radical vector x.

Step 3. If for some vertices s, t ∈ I we have qst > 1, then {s, t} = {i, j }.
Assume on the contrary that i does not belong to the set {s, t} and consider the
restriction q ′ = q(i), which has the vector y = x − ei as positive root. If q ′ is
weakly positive, then yω = xω ≤ 6, contradicting Ovsienko’s Theorem. Then
there is a critical restriction (q ′)J of q ′ with critical positive vector μ.
Since qst = qst > 1, by Lemma 6.36 the 0-sincere form q is obtained from its
restriction q(t) by doubling vertex s. Consequently the vector w = μ − μtet +
μtes is a positive isotropic vector for q ′ (thus also for q). Since i, j /∈ supp(w)
implies that q(w|x) = 0 we get the equation

q(x + w) = q(x) = 1,

which contradicts the maximality of x.
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For a weakly nonnegative unit form q : Z
I → Z consider the union I+ of

the supports of all positive radical vectors of q . By Lemma 6.21, the restriction
q+ := qI

+
is a 0-sincere form, called the 0-sincere kernel of q .

Step 4. Let ξ+ : ZK → Z be the 0-sincere kernel of the restriction q(i). Then ξ+
is nontrivial and satisfies cork(ξ+) ≤ 2.
Notice that y = σi(x) = x − ei is a sincere positive root of q ′ := q(i). Since
yω > 12, the form q ′ is not weakly positive, thus the 0-sincere kernel ξ+ is
nontrivial.
Now, since q ′ = q(i), by Step 3 the form q ′ is graphical. Assume that cork(ξ+) ≥
3. Then we may take a 0-sincere restriction ξ of ξ+ such that cork(ξ) = 3 (cf.
Lemma 6.22 and Remark 3.21).
Apply Theorem 6.31 to the form ξ , and notice first of all thatΘ1 is not the bigraph
associated to ξ (by Theorem 6.34, since the vector z with zω = 5 and zk = 1 for
all other vertices is isotropic with z < x). Thus if ξ is triangular or Bξ is Θ2, it
can be seen that there exist critical vectors μ1, μ2 and μ3 of ξ such that

|(μs − μt )ω| ≤ 2, and |(μs − μt)k| ≤ 1 for k �= ω,

for any s �= t in {1, 2, 3} (see Exercise 2 below). Hence x − (μs − μt) > 0.
Suppose that there are s �= t such that q(x|μs − μt) ≥ 2. Then

q(x|μs − μt ) = q(y + ei |μs − μt) = q(ei |μs − μt ) ≥ 2,

and since x − (μs − μt) > 0, we get the contradiction

0 ≤ q(x − (μs − μt )) = q(x)+ q(μs − μt ) − q(x|μs − μt) < 0.

In particular, in the set {q(ei|μk)}k=1,2,3 there are at least two equal elements,
say q(ei|μ1) = q(ei |μ2). We may also assume that (μ1 − μ2)ω ≥ 0. Then
μs − μt is a radical vector of q , and taking d = min(xk | (μs − μt)k = −1)
we get a nonsincere positive q-root z = x + d(μs − μt) satisfying zω > 12.
Using Exercise 1 below, the vector z is a sincere maximal positive root of the
restriction of q to the (proper) support of z, obtaining in this way a contradiction
to the minimal choice of |I | established in Step 1.

Step 5. The form q admits no critical restriction with associated bigraph of shape
C (1), C (2), C (3) or C (4′).
Since the form q is centered (Step 2), its bigraph does not contain the bigraph
C (1) as a restriction. In all other cases notice that the support of the critical vector
μ must contain both i and j (otherwise it would be a critical vector for q). Thus
μ would be a positive root of q , and using the claim in Step 2 we get μω > 6, a
contradiction.

Step 6. Final analysis of the case cork(ξ+) = 2.
Consider that ξ+ : ZK → Z is a 0-sincere graphical form with cork(ξ+) = 2,
which is by construction a restriction of the quadratic form q(i) = q(i) where
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q : ZI → Z is our original form. First we notice that K = I − {i}, that is, that
ξ+ = q(i). Indeed, if there is a k �= i in I − K then the restriction of q(i) to the
set K ∪ {k} has corank 3 by Exercise 5 below. This is impossible since ξ+ has
corank 2. Hence K = I − {i}. We will reach a contradiction by considering two
cases.
Case qij = 2. By Lemma 6.30 the form q is obtained from ξ+ = q(i) by doubling
vertex j . Define the vector u := x − ei + ej , which can be shown to be a sincere
isotropic vector for ξ+ with uj = 2. Indeed, we have

ξ+(u) = q(x − ei + ej ) = q(x) = q(x)− xixj = 0.

Taking μ(1) and μ(2) to be critical vectors of the two critical restrictions of ξ+,
there are positive integers m1 and m2 such that u = m1μ

(1) + m2μ
(2) (see

Remark 6.32). Since uj = 2, up to exchanging the roles of μ(1) and μ(2) we

may suppose that μ(1)
j = 0 or μ(1)

j = 1. But notice that in both cases we have

μ(1) < x, therefore x is a 2-layer root by Theorem 6.34(a). This contradicts
xω > 12 by part (b) of that theorem.
Case qij = 1. Again by Exercise 5 and Theorem 6.31, either q is a triangular
form, or the form associated to one of the bigraphs Θ1 or Θ2. If q is triangular,
then by Remark 6.32 there are positive integers m1, m2, m3 such that

x = m1μ
(1) + m2μ

(2) + m3μ
(3),

where m1μ
(1), m1μ

(2) and m1μ
(3) are critical vectors of q. Since xi = 1 we

may assume that μ(1)
i = 0, therefore μ(1) < x. This is again impossible by

Theorem 6.34. A similar argument can be formulated for case Θ2 (see Exercise 3
below). Finally, if q = qΘ1 , then the vector z given by zω = 5 and zi = 1 for
i �= ω is a positive q-root, contradicting the claim in Step 2 (see Table 6.3 and
Exercise 4).

Step 7. Final analysis of the case cork(ξ+) = 1.
We assume now that ξ+ is itself a critical form, and let μ be its critical vector.
Suppose first that ξ+ is the form associated to one of the graphs C (5) or C (6).
It can be shown then (see Exercise 6(b) and (c) below) that ξ+ is the (one-point)
restriction of a form of corank 2. Therefore we have again ξ+ = q(i) = q(i). As
before we consider separately the cases qij = 2 and qij = 1.
Case qij = 2. By Lemma 6.30 the form q is obtained from ξ+ by doubling
vertex j . Hence u := x − ei + ej is a sincere positive radical vector of ξ+.
Because uj = 2 we have u = mμ for some m ∈ {1, 2}. However, recall from
Proposition 5.4 that μω ≤ 6, therefore xω ≤ 2μω ≤ 12, a contradiction.
Case qij = 1. A direct inspection of the bigraphs Ψ17, . . . , Ψ20 given in
Exercise 6 shows that, since xi = 1, we may find a critical restriction of q

avoiding vertex i, and such that its critical vector μ satisfies μ < x. The
contradiction is again derived from Theorem 6.34.
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By Step 5 and the discussion above we may finally suppose that ξ+ is the form
associated to the graph C (4). Let us first assume that K = I − {i} (that is, that
ξ+ = q(i)). Then if qij = 2 we can argue as above, while if qij = 1 then by
Exercise 6(a) the form q fails to be 0-sincere, in both cases a contradiction.
Therefore we may fix a vertex k �= i in the set I − K . Let us now assume
that I − K = {i, k}. If qij = 2 then one can check that q is not 0-sincere,
and if qij = 2 then by Exercise 6(d) the form q is associated to one of the
bigraphs Ψ15, . . . , Ψ18, and one can proceed as above to find a critical vector μ
with μ < x, obtaining a contradiction using Theorem 6.34.
Assume now that we can find a second vertex � �= i, different from k, in the
set I − K . Consider the restriction q̃ = qK∪{k,�}, and take q ′ = q̃(�). Hence
(q ′)(k) = ξ+, which is the form associated to the graph C (4). By Exercise 6(a),
the graph associated to q ′ has shape A10 or A11. By Exercise 6(d), the form q̃

is either not 0-sincere, or is associated to one of the bigraphs Ψ15, Ψ16, Ψ17 or
Ψ18. It is shown in [23, Sect. 9.9] that all these cases imply that q itself is not
0-sincere, a contradiction.

This completes the proof. ��
Exercises 6.38.

1. Let q : ZI → Z be a weakly nonnegative semi-unit form with a maximal sincere
positive root x. If μ ∈ rad(q) and x + μ is a positive vector, show that x + μ is
a maximal sincere positive root of the restriction of q to the support of x + μ.

2. Let q be a 0-sincere graphical form of corank 3 without having as restriction a
form associated to the bigraphs C (1), C (2), C (3) or C (4′).

a) If q is a triangular form, let μ1, μ2 and μ3 be the positive critical vectors of
q . Show that for s �= t in {1, 2, 3} we have

|(μs − μt)ω| ≤ 2, and |(μs − μt)k| ≤ 1, for k �= ω.

[Hint: Use Theorem 6.31.]
b) If Bq = Θ2 consider the vectors

μ1 4

0 1 2

1 1 0

1 1 0 1

μ2 5

1 0 2

1 2 1

1 1 0 1

μ3 5

0 1 2

1 2 1

1 1 1 0

Show that μ1, μ2 and μ3 are critical vectors of q , and that for s �= t in {1, 2, 3}
we have

|(μs − μt )k| ≤ 1, for all k.

Why is q not a triangular form?
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Table 6.3 Some 0-sincere semi-graphical forms of corank 3

•

• • •

• • •

• • • •

•

• • •

• • •

• • • •

Θ1 Θ2

3. Show that if q is the quadratic form associated to Θ2 (Table 6.3), and μ(1),
μ(2), μ(3) and μ(4) are its critical vectors, then there are nonnegative integers
m1, . . . ,m4 such that any sincere positive radical vector μ can be written as

μ = m1μ
(1) + m2μ

(2) + m3μ
(3) + m4μ

(4).

Show also that we may assume, up to a reordering of variables, that m1 and m2
are positive integers.

4. Consider the quadratic form q with bigraph Θ1 with center ω (Table 6.3), and let
z be the vector with zω = 5 and zi = 1 for all other vertices. Show that z is an
isotropic vector for q . Is it a radical vector?

5. Let q : Z
K → Z be a 0-sincere graphical form without critical restriction of

shape C (1), C (2), C (3) or C (4′), and take k ∈ K .

a) Show that if the restriction q(k) is a 0-sincere form of corank 2, then q is
0-sincere of corank 3.

b) Show that in the situation of point (a), either q is a triangular form, or q is
one of the forms Θ1 or Θ2 shown in Table 6.3.

6. Let q : Z
J → Z be a weakly nonnegative graphical form having no critical

restriction of shape C (1), C (2), C (3) or C (4′). Consider a vertex j ∈ J .

a) Show that if q(j) = qC (4), then q is the form associated to one of the bigraphs
A10 or A11 below, and cork(q) = 1.

b) Show that if q(j) = qC (5), then q is the form associated to Ψ17, Ψ19 or Ψ20,
and cork(q) = 2 (see Table 6.2).

c) Show that if q(j) = qC (6), then q is the form associated to Ψ18 or Ψ20, and
cork(q) = 2 (see Table 6.2).
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d) Show that if q(j) = qA10 or q(j) = qA11 , then either q is the form associated
to Ψ15, Ψ16, Ψ17 or Ψ18, or q is not 0-sincere.

4

2

1 1 1

1 0 1 1

4

2

0 1 1

1 1 1 1

A10 A11

7. Let q : ZJ → Z be a graphical 0-sincere form having no critical restriction of
shape C (1), C (2), C (3) or C (4′). Show that if there is a vertex j ∈ J such
that q(j) has associated bigraph A10 or A11, then Bq is Ψ15, Ψ16, Ψ17 or Ψ18. In
particular q has corank 2.
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0-sincere form, 192, 199
reduced, 199

0-sincere kernel, 207
2-layer root, 202
Aq symmetric matrix associated to q, 2
B1 � B2 disjoint union, 10
Bq bigraph associated to q, 5
D-approximation, 28
DZ(q) integers represented by q, 10
e1, . . . , en canonical basis of Zn, 3
M ⊕ N for matrices M and N , 4
M-matrix, 134
M(q) maximal entry among roots of q, 150
pΔ; maximal root of qΔ, 44
q-root, 9
q(− | −) bilinear form, 3
q = (a, b, c) binary form, 12
qJ , q(i) restrictions, 6
q1 ⊕ q2 for quadratic forms q1 and q2, 4
qB form associated to bigraph B, 5
qm Kronecker form, 12
q[r] Pell form, 12
rΔ largest entry of pΔ, 44
R(q), Σ(q) roots, isotropic vectors of q, 9
R+(q); positive q-roots, 45
T ε
ij , T +

ij , T −
ij flations, 58

Tq Gram matrix, 3
Σ+(q); positive isotropic vectors of q, 194
det(q) determinant of form q, 3
Km Kronecker bigraph, 24
supp(v) support of vector v, 49
∂iq, q(− | ei) partial derivative, 3
σv , σi reflections, 7
τ -deflation, 172

iterated, 172

τ -inflation, 172
iterated, 172

Δ̃n, 45

A’Campo’s Theorem, 131
Adjacency matrix, 128

symmetric, 5, 106
Adjugate, 31, 152, 191
Anisotropic form, 10
Anisotropic vector, 10
Assembler, 66, 68

Bigraph, 5
(upper) adjacency matrix of a, 5
associated to a quadratic form, 5
quadratic form associated to a, 5
regular, 5

Binary form, 12
cyclic, 19
definite, 12
indefinite, 12
negative, 13
positive, 13
primitive, 21
reduced, 14, 22
semi-definite, 12

Binary reduced form, 14
Bipartite graph, 110, 131
Birkhoff–Vandergraft Theorem, 37
Block, 73
Blow up, 176

Centered form, 156
Chain of linking vertices, 176
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length of a, 176
Characteristic polynomial, 109
Chebyshev polynomial, 27, 110
Concealed form, 105

positive, 107
Cone, 36

proper, 36
solid, 36

Connected quadratic form, 5
Connecting valence, 73
Conway–Schneeberger Fifteen Theorem, 10
Corank, 4, 30, 54, 83

positive, 195
Core, 92, 94
Coxeter matrix, 114, 123
Coxeter polynomial, 129
Coxeter transformation, 122
Criteria for Weak Positivity, 153
Criterion

nonnegativity, 82
positivity, 55
weak nonnegativity, 190
weak positivity, 153

Critical form, 136
Critical nonpositive form, 52
Critical vector, 86, 136, 181, 194
Cycle, 63

condition, 64
Cyclotomic polynomial, 117

Deflation, 58, 77
Determinant, 2
Diagram, 43
Disconnected quadratic form, 4
Discriminant, 12
Doubling vertices, 96, 155, 199, 205
Drozd–Happel Theorem, 142
Dynkin graph, 43
Dynkin type, 65, 84

Edge reduction, 145, 193
iterated, 195

Eigenvalue
degree of, 37

Elementary symmetric polynomial, 121
Escalation, 11
Escalator form, 11
Euler’s totient function, 118
Exceptional vertex (index), 140, 161, 187
Exhaustive reduction, 197

iterated, 197
Explosion, 155

full, 156
radical, 155

Extended Dynkin graph, 75
Extension vertex, 172

Finitely sincere form, 186
Flation, 58, 77, 106

assembler, 66
equivalence, 63
iterated, 58, 77

Frame, 62
Full subbigraph, 6
Fundamental solution, 26

Gabrielov transformation, 56
Gram matrix, 3, 125
Graph, 5

directed, 128
flation, 62
positive admissible, 63
signed, 5

Graphical form, 159, 198
Group of isometries, 9, 111

Hadamard’s Theorem, 108, 109
Happel–de la Peña Criterion, 190
Howlett’s Theorem, 134
Hypercritical form, 181
Hypercritical nonnegative form, 85

Incidence graph, 66
of bigraphs, 68

Incidence vector, 70
Incident edges, 66
Inflation, 58, 77
Irreducible vector, 101
Isometry, 9, 111
Isotropic vector, 9, 10
Iterated shift, 14

Jacobi’s Formula, 32
Jordan block

multiplicity of, 37
Jordan form, 37

Kronecker bigraph, 24
Kronecker form, 24, 54, 82, 114, 115, 136,

141, 181
Kronecker quadratic form, 12



Index 219

Lagrange’s Method, 30
Line, 71
Linking vertex, 176
Locally maximal root, 82, 186

Möbius function, 119
Möbius inversion formula, 121
Matrix

adjugate, 31
integral form, 10
nonnegative, 38
reducible, 39

Minor, 31
principal, 31

Multi-point extension, 99

Newton’s identities, 117, 121
Nonnegativity Criterion, 82

Omissible point, 91
One-point extension, 94, 137
Order of Dynkin types, 97
Ovsienko’s Theorem, 150

generalized, 205

Pair, 161
bad, 172
centered, 161
good, 172
regular, 161
sincere, 161
unit, 161
weakly positive, 161

Parallel edges, 5
Path, 128
Pell equation, 24, 25
Pell quadratic forms, 12
Periodic matrix, 118

weakly, 118
Point inversion, 62, 64
Positive radical, 185
Positive unit form, 43
Positive vector, 43, 75
Positivity Criterion, 55
Pre-unit form, 149
Primitive form, 21
Pseudotree, 68
Pure subgroup, 7, 88, 101

Quadratic form, 2
balanced, 82
binary, 12

concealed, 105
equivalent, 4
integral, 2
isotropic, 10
nonnegative, 34
positive, 34, 43
pre-unitary, 76
regular, 4
restriction, 6
root induced, 92
signature of a, 30
slender, 184
symmetric matrix of a, 2
thin, 171
triangular, 200
unit, 43
unitary, 6
universal, 10
weakly nonnegative, 181
weakly positive, 135

Quiver, 128

Radical, 4
extension, 88
positive, 185
vector, 53

Rank, 30
Reduction procedure, 148
Reduction theorem, 197
Reflection, 7, 47, 139, 186

simple, 7, 111
vector, 7

Reflection-extension, 172
main, 172

Regular form, 85
Regularization, 5
Regular pair, 161
Represented element, 10
Restriction, 6

of a quadratic form, 6, 73
Right shift, 13
Root, 9

2-layer, 202
connected, 49
equivalence, 92
imaginary, 113
induction, 92
locally maximal, 82, 186
maximal, 60, 139
positive, 45
real, 9, 113
simple, 9
sincere, 49
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Self-reciprocal polynomial, 120
Semi-graphical form, 198
Semi-unit form, 55, 75

nonnegative, 75
Sincere form, 138, 186
Sincere vector, 45
Snake edge, 71
Spectral radius, 109
Spectrum, 37
Star graph, 87, 132
Star type, 132
Subbigraph, 6, 64
Support, 49, 75, 138
Sylvester’s Law of Inertia, 30

Thin form, basic, 176
Thin vector, 49, 171
Tree graph, 49, 68, 107
Trivial solution, 25
Truant, 11
Twisted path, 129

Unit form, 6

Vector
critical, 136, 181
incidence, 70
irreducible, 101
positive, 43
radical, 53
sincere, 45, 79
thin, 49, 171

Vertex, 5

Walk, 64
minimal, 70
open, 64

Weakly nonnegative semi-unit form, 181
Weakly periodic matrix, 118
Weakly positive unit form, 47
Weight, 83
Weyl group, 9, 111

Zeldych Criterion, 152, 191
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