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Abstract This paper describes the implementation of Artificial Neural Network
(ANN) as chopper operation controller (COC) that is responsible for selecting the
correct mode for a four quadrants direct current Chopper (FQDC) that drives a dc
series motor. In turn, the direct curent motor propels an electric car (EC). The right
mode of chopper operation is necessary for optimum performance and maximum
battery power utility. The process starts with preparing the data for training the
ANN controller. Then a MATLAB/Simulink model is established to test the per-
formance of the trained ANN. The results show the ANN can perform the tasks of a
COC successfully.
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1 Introduction and Review

The advancement of super capacitors as a power storage medium and the intro-
duction of efficient low voltage direct current motors have motivated researchers to
develop direct current drive suitable for electric vehicle or hybrid electric vehcle
(HEV) application [1–4].

1.1 Four Quadrants Drive DC Chopper and Chopper
Operation Controller

The common half-bridge direct current chopper for direct current series motor is not
suitable for electric vehicle or hybrid electric vehicle application as it cannot per-
form reverse driving, field weakening and resistive braking [5–8]. Therefore, a new
four quadrants direct current drive chopper (FQDC) that offers a complete set of
modes in forward and reverse driving, field weakening, parallel driving, generator,
regenerative braking and resistive braking is needed. The FQDC is shown in
Fig. 1 [9].

1.2 Chopper Operation Controller

The FQDC uses three controllers to select the right mode of operation, fire IGBTs,
and delay the interchange of contactors. The controller that selects the mode of
operation is called the chopper operation controller (COC). It contains an expert
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system, fuzzy logic, self tuning fuzzy logic or neural network algorithm that pro-
cesses the input signals and determines the best operating mode to execute [10–12].

1.3 Neural Network as Chopper Operation Controller

A multilayer perceptron shown in Fig. 2 is a feedforward neural network with one
or more hidden layers. It consists of input layer of source neurons, at least one
middle or hidden layer and an output layer. The input layer accepts input signals
and redistribute them to all neurons in the hidden layers. The output layer accepts
output signals from hidden layer and establishes the output pattern. The weight of
the neurons represent the features hidden in the input pattern. This multilayer
feedforward neural network can be trained with back propagation algorithm such as
Lavenberg–Marquardt (LM) technique [13].

2 Methodology

An electric car usually comes with some preset parameters such as maximum
torque, speed and expected distance traversed when fully charged. In general, the
performance of a particular EC is measured based on these parameters [11, 12, 14].
However, there are other factors that influence its performance like load and the
profile of the route such as climbing up a steep hill, negotiating traffic jam, going
downhill, etc. If a fully loaded EC climbs up a steep hill its speed will drop and a lot
of energy is expended.

Fig. 2 Multilayer perceptron
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2.1 Proposed Control Strategy

The FQDC requires three controllers to support its operations and they are the
chopper operation controller (COC), subsequent and delay controller (SAD) and
IGBT firing controller (IFC) [15–17]. In this study, an ANN algorithm is imple-
mented as the COC of the FQDC to choose the most suitable mode of operation in
response to signals from accelerator pedal, brake pedal, speed, error, etc. Failure to
choose the right mode is unacceptable and will be downright dangerous. Figure 3
shows the flow of determining the most suitable chopper operation for the EV by
the ANN controller. When accelerator or brake pedal signal is received, relevant
data such as speed, torque, error, rate of error, load and current mode are passed to
the ANN controller and processed based on the inputs. The ANN operator generates
an output value for each mode of operation. The output value indicates the fitness of
each mode and the one with the highest output will be selected as the most suitable
mode to be executed.

2.2 Neural Network Data Training Preparation Process

2.2.1 Neural Network Data Preparation

To train the ANN controller, sufficient data, which include the input and output
signal must be available. In preparing the needed data, the first step is to choose the
profile of the route also known as the earth profile. Figure 4 shows examples of
different earth profiles that can be used to test the EC. Each profile should comprise
different driving conditions such as flat driving, going downhill and uphill, so
that different modes of the controller are invoked.
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2.2.2 Accelerator and Brakes Signals

In the second step, the expected accelerator and brake pedal signals that accompany
each earth profile are prepared. The accelerator pedal and brake pedal signals for
earth profile 1 in Fig. 4, are shown in Figs. 5 and 6 respectively.

2.2.3 Predetermined Chopper Operation

The output data set is the sequence of the chopper operation modes. It must be
made available for the ANN training together with the input data. So first, raw input
data are estimated logically using simple physics rule based on the earth profile,
accelerator and brake pedal signals. Then, using the raw input data, the earth profile
and the accelerator and brake signals, the sequence of the operation modes is
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determined. Figure 7 shows an example of the predetermined chopper mode
sequence for a test earth profile. At any instance, only one mode is activated. In the
figure, signal 9 is the accelerator pedal, signal 8 is the earth profile, signal 7 is the
brake pedal and signals 1–6 are the chopper operation modes. During start up,
the driving mode is selected. As the EC reaches a sufficient speed level, the mode
switches to the field weakening as more speed is needed due to the high accelerator
signal. When the EC attains the desired speed and the accelerator signal turns low,
the generator mode is selected to recover the kinetic energy. When a normal brake
command is detected at a high speed, the regenerative mode is activated. As the
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vehicle speed drops to a certain value while the brake signal is still high, the
resistive braking mode is triggered. However when brake command is replaced by a
low acceleration command at low vehicle speed, the driving mode is activated
again. When the vehicle moves downhill while the accelerator signal is low, the
generator mode should be selected. However, if the accelerator signal is high, the
field weakening mode should be engaged. As the vehicle climbs a steep hill,
the speed is expected to drop. Hence, as more torque is required the parallel mode is
selected. Finally, as the vehicle gains more speed with the accelerator signal still
high, the field weakening mode is selected.

2.2.4 Matlab/Simulink Simulation Model

Once the raw data and the mode sequence are available, a simulation model of the
FQDC [12] and the dynamic model of the EC are established using MATLAB/
Simulink. Details of the EC vehicle dynamic model are not in the scope of this
paper. The simulation model is prepared to obtain more realistic input and output
data signals and to correct the data used earlier. Figure 8 below shows the
MATLAB/Simulink model for the data collection.

In this step, the data used for the ANN training are adjusted in case they appear
illogical or they disregard the influence of intra-variables. As a result, an operation
mode can be deleted, delayed or replaced in the mode sequence. Figure 9 shows
delay adjustments to a set of modes.
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2.2.5 Gathering Data for NN Training

After the data adjustment step, the MATLAB/Simulink model is run again. This
time, the generated data such as speed, error, rate of error, voltage, acceleration
signal, brake signal, etc. are recorded. The data will be used as inputs while the
chopper modes are used as outputs when training the ANN. Figures 10 and 11
show examples of the signals (normalized) and three different chopper modes.

2.2.6 Target Output Signals for ANN Training

If a single ANN is used, the number of its output nodes can be one or equal to the
number of modes. If the number of output node is one, it generates a real value. In
this case, each mode is represented by a value within an interval as shown in Table 2.
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Note that the values representing the modes are equally separated. However, if the
output nodes are as many as the modes, each output node can take a binary or real
value as shown in Table 1.

Another approach is to use as many ANNs as the number of modes. Thus each
ANN has a single output as shown in Fig. 12. In this study, only one ANN is used
and it has 6 output nodes as shown in Fig. 13. Each output node has a binary
output.
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Table 1 Target of NN controller

Neural network output data to represent chopper operation modes in binary
Selected mode DRV FW PAR GEN RGB RSB
DRIVING 1 0 0 0 0 0

FW 0 1 0 0 0 0

PAR 0 0 1 0 0 0

GEN 0 0 0 1 0 0

RGB 0 0 0 0 1 0

RSB 0 0 0 0 0 1

Neural network output data to represent chopper operation modes in integer
Selected mode DRV FW PAR GEN RGB RSB
DRIVING 0.15 0 0 0 0 0

FW 0 0.3 0 0 0 0

PAR 0 0 0.4 0 0 0

GEN 0 0 0 0.6 0 0

RGB 0 0 0 0 0.75 0

RSB 0 0 0 0 0 0.9
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2.3 Neural Network Training

The input and output data sets previously collected, are used to train the ANN
controller in a supervised learning. MATLAB/Simulink neural network tool is used
for this purpose (Fig. 14).

The number of nodes in the hidden layer and the number of iteration are adjusted
during training to get the lowest error rate. Figure 15 shows the flow of training the
ANN.

Table 2 Target of NN controller in single value integer

Neural network output data to represent chopper operation modes
one single integer

Chopper operation Integer value

Driving 1.5

Field weakening 3.0

Generator 4.5

Regenerative braking 6.0

Resistive braking 7.5

Parallel mode 9.0

Fig. 12 Six NN controllers with single output
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2.3.1 NN Training Results

The performance of the ANN controller is tabulated in confusion matrices of
Figs. 16, 17, 18 and 19. The training, validation, testing and overall confusion
matrices are given in Fig. 16. As seen, the number of incorrect responses for each
mode is low, and thus the overall accuracy is high. In Fig. 17, the error histogram
indicates that the distribution of errors for training, validation and test phases is
almost at −0.033 and this is considered acceptable. Figure 18 shows the relation-
ship between the outputs of the network and the targets. The training, validating and
testing curves look similar indicating a good condition. In Fig. 19, the regression
result is as expected result due to binary output target and this is acceptable. In
Fig. 20, the receiver operating characteristics (ROC) is shown. The colored lines in
each axis represent the ROC curves. The ROC curve is a plot of the true positive
rate (1—sensitivity) versus the false negative rate (1—specificity) as the threshold
is varied. A perfect test is shown in the figure in the left upper corner, with 100%
sensitivity and 100% specificity [18].

Fig. 13 One single NN controller with six output nodes
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Fig. 14 Matlab/Simulink tool for NN training
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2.4 Testing the ANN

The ANN controller is tested with a new set of input signals to test its response.
Figure 21 shows the simulation model and Fig. 22 shows the chopper operation
controller (COC) responses.

3 Neural Network Controller Final Testing and Results

3.1 Development of Complete Simulation Model

Computer simulation using MATLAB/Simulink as shown in Fig. 23 is used to test
the Neural Network chopper operation controller (COC) and to study its effec-
tiveness in a complete system that represents an EC. Some parameters value that are
required by the simulation software such as car weight, voltage supply, max power,
etc. must be provided by the user.
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3.2 Performance Index (PI)

As the ANN controller for this study has six outputs, a performance index(PI) is
needed to compare each output of the ANN. The rule to follow is that the output
node with the highest value represents the mode to be executed. A PI with “if then
rules” is used in this study and in Fig. 24, the associated ANN controller is shown.

Such “if then rules” example is If O1 > O2 && O1 > O3 && O1 > O4 && O1
& O5 && O1 > O6, then selected mode is O1.

3.3 Results

The results of implementing the MATLAB/Simulink model are shown in Figs. 25,
26, 27, 28 and 29. Figure 25 shows a sequence of FQDC modes chosen by the
ANN controller. Overall, the ANN picks the right mode of operation most of the
time except where glitches occur at the end of the test. Figure 26 shows an enlarged
view of the part where the glitches are. This is due to a slight confusion when the
ANN controller is not sure whether to choose the field weakening or parallel mode.
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But eventually it picks the parallel mode, which is the correct decision. In Fig. 27
the motor speed is shown. The maximum acceleration and speed are restricted by
the state of charge (SOC) of the battery and the remaining distance traverse shown
in Fig. 28. The SOC is shown in Fig. 29.
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Fig. 21 NN COC testing simulation model
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Fig. 23 MATLAB/Simulink model
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Fig. 24 PI with NN controller
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4 Conclusion

ANN has a high potential to be utilized as the chopper operation controller
(COC) for electric vehcile. In summary, the performance of the ANN, which
operates as a COC with six outputs, is satisfactory. The results vindicate that the
technique, which starts with preparing the input-output data for training the ANN
controller and establishing the MATLAB/Simulink model, is successfully imple-
mented. Retraining the network, increasing the number of hidden neurons, training
vectors, input-output data, or trying different training algorithms may improve the
performance of the system. The SOC, DT and speed may also influence its per-
formance. The effects of adjusting these parameters will be discussed in another
paper.
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