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Abstract We present methods for the creation of semi-empirical quantum
approaches and reactive force fields through force matching to quantum simula-
tion data for materials under reactive conditions. Our methodologies overcome the
extreme computational cost of standard Kohn–Sham Density Functional Theory
(DFT) by mapping DFT computed simulation data onto functional forms with lin-
ear dependence on their parameters. This allows for quick parameterization of our
models by avoiding the nonlinear fitting bottlenecks associated with most molec-
ular dynamics model development. We illustrate our approach with two different
systems: (i) determination of density functional tight binding models for aqueous
glycine dimerization, and (ii) determination of the Chebyshev Interactional Model
for Efficient Simulation (ChIMES) reactive force field for metallic liquid carbon. In
each case, we observe that our approach is easy to parametrize and yields a model
that is orders of magnitude faster than DFT while largely retaining its accuracy.
Overall, our methods have potential use for studying complex long time and length
scale chemical reactivity at extreme conditions, where there is a significant need for
computationally efficient atomistic simulations methods to aid in the interpretation
and design of experiments.
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4.1 Introduction

Elucidating the chemistry of reactive materials under extreme conditions in the lab-
oratory can require the investigation of a great number of permutations of different
starting materials, thermodynamic conditions, and catalysts. The number of possible
combinations can frequently be too numerous and costly to addresswith experimental
trial and error alone. Experiments frequently rely on theoretical studies to elucidate
measured data, including kinetic and spectroscopic properties. Nonetheless, in many
cases, insufficient data exists for the equation of state and chemical reactivity of these
materials under the extreme pressures attained during experiments [1]. For example,
studies on carbon-rich materials under pressures up to 30 GPa (1 GPa = 10 kbar)
suggest that slow chemical kinetics can extend beyond the timescales of nanosecond
laser-driven compression experiments, even at temperatures of thousands of Kelvin
[2]. Reported experimental temperatures can contain large uncertainties, making it
difficult to adequately constrain the equation of state on the basis of experiment
alone [3, 4]. Furthermore, low-resolution mesoscale simulations frequently require
chemical kinetic input parameters that are challenging to obtain experimentally (e.g.,
due to difficulties obtaining atomic-scale resolution in experiments on bulk material
synthesis) but can be readily computed via higher-resolution particle-based simula-
tions [5–7].

Computer simulations such as molecular dynamics (MD) hold promise as an
independent route to determining the equation of state and chemical reactivity dur-
ingmaterials synthesis. Such studies can provide simple chemical pictures of ionized
intermediates and reaction mechanisms, and can help identify atomic-scale proper-
ties that determine observed macroscopic kinetics (e.g., descriptors). These types
of results can make experiments more tractable by aiding in their interpretation,
and helping to narrow the number of different materials and reactive conditions to
investigate.

Accurate modeling of the breaking and forming of bonds in condensed phases
frequently requires the determination of many nuclear-body effects [8, 9], which
are included in quantum theories such as Density Functional Theory (DFT). DFT
remains one of the most popular and widely used modeling methods in condensed
matter physics, computational chemistry, and materials science for predicting mate-
rial properties and chemical reactivity. It has been shown to accurately reproduce
the phase boundaries and thermal decomposition of many materials [10–13], par-
ticularly at extreme thermodynamic conditions such as planetary interiors [10, 11,
13], where long-range effects such as dispersion are less important. DFT-MD simu-
lations, though, require immense computational effort per simulation time step and
consequently are usually limited to picosecond time scales and nanometer system
sizes. In contrast, many chemical events can occur over nanosecond timescales or
longer [2, 11], and experiments can probe micron length scales or beyond [14–16].

Difficulty thus generally arises in determining models for chemical bonding
that are both accurate and computationally efficient. Empirical models (e.g., [17]),
where atomic forces are computed from parameterized potential energy surfaces, are
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generally fit to properties of specific chemical reactants over a narrow range of ther-
modynamic conditions. These approaches are usually highly computationally effi-
cient, but tend to contain numerous nonlinear parameters that can be time-consuming
to optimize, and can also suffer from poor transferability. In contrast, semi-empirical
quantum theories such as density functional tight bindingwith self-consistent charges
(DFTB) retain some level of computational efficiency and tend to have a higher degree
of transferability to different starting materials and reaction conditions. However,
standard forms of these models are parameterized to gas phase quantum chemical
calculations, and consequently can result in overbinding of reactants, e.g., reaction
enthalpies that are up 20 kcal/mol too high for simple hydrogenation reactions [18]
and somewhat poor representation of condensed phase reactivity [19]. Thus, there
exists a great need to explore novel methods for atomistic simulations of reactive
materials that are computational efficient while retaining the accuracy of higher order
quantum methods.

In this chapter, we demonstrate how force matching can be used to determine both
classical reactive MD and DFTB models through use of functional forms that are
strictly linear in their parameters. Force matching maximizes the data set that can
be obtained from DFT by fitting parameters of a potential energy function to each
individual atomic force in an MD trajectory [20, 21], yielding a large quantity of
data points for determining atomistic models (i.e., 3N data points per configuration,
where N is the number of atoms in the system). It thus has potential to systematically
determineMDmodels that yield highly accurate predictions of chemical reactivity for
a given material or mixture and set of thermodynamic conditions. The use of linearly
parametrized models allows for use of linear least-squares fitting, whereby optimum
parameter values are rapidly determined in a single step. This removes the need
for direct gradient minimization or iterative techniques (e.g., Levenberg–Marquardt)
which can become trapped in a local minimum, or computationally intensive global
energy minimum searches (e.g., simulated annealing). In this work, we discuss two
application areas for this method: parameterization of a semi-empirical quantum
model for glycine dimerization under ambient aqueous conditions, and generation
of a reactive force field for molten carbon. Our intent is to provide a general overview
of how these classes of MD models can be rapidly determined for reactive materials
under a broad range of conditions.

4.2 Force Matching Overview

The force matching method (FM) was first developed by [20] for generation of an
aluminum force field based on a repository of atomic configurations and correspond-
ing ab initio forces [20]. This framework usually requires the generation of an MD
training data set for given material at a specific set of state points, often through the
use ofDFT simulations. A force field functional form is then selected, e.g.,φ(x; {p}),
which depends on interatomic distances x , and is subject to a set of parameters {p}.
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Model parameters are then obtained by minimizing the following objective function:

RMSE =
√
√
√
√
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Fimα ,DFT − Fimα ,φ{p}
)2

, (4.1)

where RMSE is the root-mean-squared error, the subscript imα
indicates the αth

Cartesian component of the force on atom i in MD configuration m, and FDFT are
the forces to which model φ(x; {p}) is to be fit.

As mentioned previously, generation of fitted parameters can be time consuming
for complex target models due to the need for slow to converge nonlinear approaches
such as Levenberg–Marquardt [22, 23] or global search methods such as simulated
annealing [24]. If the target model is linear in fitted parameters, however, the FM
optimization problem reduces to the following matrix equation: Mp = Ftrain. The
elements of M are given as Mrc = ∂Fr,φ{p}/∂pc, where r represents the combined
index over Cartesian components of the force on each atom in the training trajectory
(i.e., matrix rows), and c the combined index over coefficients in the model (i.e.,
matrix columns), while p and Ftrain are the vector of target model parameters and
vector of training forces, respectively. Standard methods such as Singular Value
Decomposition [25], ridge [26, 27], or LASSO regression [28] can then be leveraged
to solve for a unique set of model parameters in a matter of minutes. Well-developed
procedures exist for determining the robustness of regression problems, such as
cross-validation [29].

Though force matching was originally developed for generation of atomic poten-
tials based on DFT data, we note that the approach is flexible and can be expanded to
include other features including the system stress tensor (to tune model pressure) and
energy. Furthermore, the force matching approach can be used to generate coarse-
grained models from all-atom force fields (e.g., [30]) by mapping forces arising from
several atoms to specific coarse grain interaction sites.

4.3 DFTB: Rapidly Tunable Models for High Throughput
Quantum Molecular Dynamics

The density functional tight binding method (DFTB) [18, 31, 32] is a semi-empirical
quantum simulation approach that yields a high degree of computational efficiency
while potentially retaining the accuracy of the computationally intensive Kohn–
Sham density functional theory (DFT). The formalism for DFTBwith self-consistent
charges (SCC)has beendiscussed in detail elsewhere [32–37, 40].Briefly, themethod
assumes neutral, spherically symmetric charge densities on the atoms and expands
the DFT Hamiltonian to second-order in charge fluctuations. The DFTB total energy
is expressed as

EDFTB = EBS + ECoul + ERep. (4.2)
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The first term, EBS, corresponds to the band structure energy computed via sum over
occupied electronic states from the approximate DFTB Hamiltonian. EBS is usually
computed from pre-tabulated Slater–Koster tables derived from DFT calculations
with a minimal basis set, where both the electronic wave functions and electron den-
sity are subjected to separate confining or compression potentials. The compression
potentials force the wavefunction/electron density to zero at relatively large distances
from the nuclei, which has been shown to improve transferability of the Slater–Koster
tabulations [31]. The precalculation ofmatrix elements inDFTByields several orders
of magnitude increase in computational efficiency over most DFT implementations,
which project the electronic density onto a fine grid, and then use Fourier transforms
to compute the Hartree potential and other terms. However, standard forms of DFTB
still require calculation of eigenstates, which scales as O(N 3), where N is equal to
the number of orbitals in the system. This generally remains the bottleneck of DFTB
calculations, limiting the approach to system sizes of several hundred to thousands,
e.g., far below the capabilities of classical MD codes.

The second term in (4.2), ECoul, corresponds to a charge fluctuation term which is
computed self-consistently. The third term, ERep (the repulsive energy), corresponds
to ion–ion repulsions, as well as Hartree and exchange-correlation double counting
terms. In practice, ERep is expressed as a short-ranged empirical function whose
parameters are fit to reproduce DFT or experimental data, and can be either pair-
wise [13, 40] or contain multicenter interactions [37, 38]. This balance in DFTB of
approximate quantum mechanics and short-ranged empiricism allows for the simul-
taneous interrogation of electronic states and ion dynamics over temporal scales that
can approach those of many high temperature–pressure experiments (e.g., [39]). We
note that the short-ranged nature of ERep generally allows for strong transferability of
DFTB models (applicability to different materials and thermodynamic conditions),
since the bulk of the interaction energy is computed though the quantum-mechanical
EBS and ECoul terms.

Determination of an optimum ERep requires training data generation, which is a
relatively straightforward endeavor for systems exhibiting rapid chemistry. Extract-
ing uniformly spaced frames from an unbiased DFT-MD trajectory of a highly reac-
tive system is likely to yield a training set with configurations corresponding to reac-
tants, products, and various intermediates and transition states. In fact, this approach
was shown to improve DFTB predictions for small species production during the
rapid combustion of phenolic polymer resin [40]. However, in cases where chem-
istry is slow to either initiate or equilibrate, short unbiased DFT-MD simulations
might not sample relevant intermediate or product configurations. Accelerated MD
techniques such as umbrella sampling [41] or metadynamics [42] provide alterna-
tive approaches to training trajectory generation. In each of these methods, a bias-
ing potential is applied to help escape local free energy minima and thus enhance
sampling of configurational space. The biasing potential is typically applied to one
or more “collective variables” that mathematically describe characteristic changes
in system structure as the target process progresses. Optimal choice of collective
variables is highly dependent on the situation and numerous kinds have been used
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includingbond separationvectors and/or coordinationnumbers [43], crystalline order
parameters [44], and path variables [45] to name only a few.

Given these issues, force matching provides a systematic way to generate DFTB
ERep parameters that can recover DFT-level accuracy for systems and states not
considered in standard DFTB parameterizations. For this approach, the objective
function is given as follows:

RMSE =
√
√
√
√

1

3MN

N
∑

m=1

M
∑

i=1

3
∑

α=1

[

Fimα ,DFT − (

Fimα ,ERep{p} + Fimα ,BS + Fimα ,Coul
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(4.3)
In this case, Fimα ,ERep{p} (the forces arising from the repulsive energy term ERep subject
to a set of model parameters {p}) are tuned to the values from the DFT training set
with the DFTB forces from EBS and ECoul precomputed and subtracted out. We
model the repulsive potential as a pairwise interaction between atom i of element ei
and atom j of element e j that takes the form of the power series:

E
ei e j
Rep (ri j ) =

{∑9
n=2 c

ei e j
n (r

ei e j
c − ri j )n ri j ≤ r

ei e j
c ,

0 otherwise.
(4.4)

Here, ri j is the interatomic separation distance, r
ei e j
c is a radial cutoff distance, and

c
ei e j
n are parameters to be determined. Summing over all-atom pairs in the system
gives the total repulsive energy ERep. Because (4.4) is linear in c

ei e j
n , the parameters

can be determined from a simultaneous least-squares fit over all ei e j pair types.
Furthermore, selected ei e j pair types can be excluded from the fit and substitutedwith
some other interaction potential if desired, provided that corresponding contributions
to the atomic forces are subtracted from the FDFT values in (4.3).

4.3.1 Application to Glycine Dimerization: Computational
Details

As an example of creating a DFTB for model of long timescale chemistry, we inves-
tigate the condensation reaction 2Gly → Gly-Gly + H2O in which two glycine
molecules react to form diglycine and water. We begin by generating DFT training
data via umbrella sampling along path collective variables, which are well-suited
because the reactant and product species are known. Two path collective variables,

s(t) =
∑

k k exp(−λD[R(t),Rk])
∑

k exp(−λD[R(t),Rk]) , (4.5)

and
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z(t) = −1

λ
ln

{
∑

k

exp(−λD[R(t),Rk])
}

, (4.6)

were used that respectively measure the progress along and distance from the
path defined by reference configurations indexed by k at time t [45]. The variable
D[R(t),Rk] is the “distance” from the kth reference configuration and λ is a constant
to be determined later. The path was defined with respect to two reference configura-
tions, namely k = 1 for the two glycine reactant molecules and k = 2 for the single
diglycine product molecule. We used the “distance” metric developed by Pietrucci
and Saitta [46]:

D[R(t),Rk] =
∑

i,ei

[Ci,ei (t) − Ck
i,ei ]2, (4.7)

whereCi,ei (t) is the number of atomsof type ei coordinated to atom i at time t andCk
i,ei

is the corresponding value in reference frame k. We tracked the coordination of the
fourCand twoNatoms that form thediglycine backbone to allC,N,O, andHatoms in
the system. The specific equations and parameters for computing Ci,ei (t) were taken
from [46] and the referenceCk

i,ei
were obtained from short DFTB-MD simulations of

neutral glycine and diglycine in explicit H2O solvent. Following [46], we chose λ so
that λD[Rk,Rk+1] ≈ 2.3, which for the present case was λ = 0.70. One particular
advantage of using path collective variables to generate a DFT training set is that
the resolution for sampling the reaction path can be controlled, which facilitates
extracting important intermediate configurations and forces. The free energy surface
F(s, z) was computed as a function of s and z using umbrella sampling [41] and the
weighted histogram analysis method (WHAM) [47, 48].

Simulations of glycine condensation were performed at T = 300 K for two
glycine molecules solvated by 55 H2O molecules, yielding a total of 185 atoms
and a density of ρ = 1 g cm−3. Deuterium masses were substituted for hydrogen
masses to allow for a longer time step. No empirical dispersion corrections were
applied in our DFT-MD or DFTB-MD simulations of glycine. Umbrella sampling
simulations were performed using the PLUMED 1.3 plugin [49, 50].

Car–Parrinello [51] DFT-MD simulations were performed using the Quantum
Espresso ab initio simulation package [52, 53]. We closely followed the simulation
protocol of [43] for simulations of glycine condensation. Three differences between
[43] and the present work are the DFT software package, the choice of collective
variables, and that the former usedmetadynamics [42] rather than umbrella sampling.
Trajectorieswere integratedwith a 0.145 fs (6.0 au) time step and electronmass of 700
au with a Nosé-Hoover thermostat [54, 55] applied to both the ionic and electronic
degrees of freedom. Reducing the time step by a factor of four was necessary to
conserve the Hamiltonian in some umbrella sampling simulations due to the strong
bias potentials that were required to ensure adequate sampling of s and z space.
The electronic structure was evaluated using the Perdew–Burke-Ernzerhof (PBE)
functional [56] and ultrasoft pseudopotentials [57] with a planewave cutoff of 25 Ry.
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Born–Oppenheimer DFTB-MD simulations were performed using LAMMPS
[58, 59] with forces and stresses evaluated by the DFTB+ code [33, 60]. Isothermal-
isochoric (NVT) trajectories were integrated with a 0.20 fs time step and a Nosé-
Hoover-style thermostat [54, 55]. The electronic structure was computed with a min-
imal basis and with Fermi–Dirac thermal smearing with the electronic temperature
set equal to the instantaneous ionic kinetic temperature at each time step. Electronic
degrees of freedomwere propagated using an extendedLagrangian approach [61–64]
with four self-consistent charge cycles per time step. DFTB simulations were per-
formed using the mio-1-1 parameter set (available at http://www.dftb.org), which is
a typical off-the-shelf parameter set for CNHO systems. Selected mio-1-1 Eαβ

Rep(ri j )
potentials were replaced with fitted ones for the force-matched DFTB simulations,
discussed below.

4.3.2 ERep Parameterization and Benchmarking

We begin with generation of the DFT training trajectory via umbrella sampling
along “path progress” collective variable s, at fixed “path deviation” collective
variable, z. Collective variables are constrained by the harmonic bias potential
VBias(s, z) = 1

2Ks(s − s0)2 + 1
2Kz(z − z0)2, where z0 is fixed at−0.10, correspond-

ing to the location of the two reference configurations and their associated local
free energy minima, in z-space. A total of 37 umbrellas are utilized, evenly spaced
between 1.050 ≤ s ≤ 1.950, by increments of 0.025, where initial configurations
were taken from 5 ps long unbiased simulations at s = 1.950.We note that the s coor-
dinates for glycine and diglycineminima are approximately 1.1 and 1.9, respectively.
Each of the 37 umbrella simulations were run for 2 ps, where the first picosecond
was reserved for construction of the training trajectory, and the second half, for free
energy calculation. The training trajectory was extracted by taking configurations at
t = 250 and 500 fs from each umbrella, resulting in a total of 74 frames, and DFT
forces were evaluated at the electronic ground state.

Because the ratio of C, N, O, and H atoms was highly uneven (4:2:59:120 for
C:N:O:H, respectively), target training forces and design matrix elements Mri ,c for
atom i were weighted by 1/Nei where the subscripts ri and c of the design matrix
represents the combined index overCartesian values of the force on each atomand the
combined index over model coefficients, respectively, and Nei is the number of atoms
of type ei . This reduces the contribution from interactions between the solvent H2O
molecules, which significantly outnumber the C–N, C–O, and N–H interactions that
are more important in the condensation reaction. Repulsive potentials of the form in
(4.4) were obtained for C–C, C–N, C–O, C–H, N–H, and O–H interactions using the
weighted DFT training set with radial cutoffs r

ei ,e j
c set to mio-1-1 defaults. The N–N,

N–O, O–O, and H–H repulsive potentials were taken from the mio-1-1 parameter set
because those interactions were not well-sampled within their corresponding cutoffs.

In order to evaluate performance of the resulting model, simulations analogous to
those described above (except using a 10 ps unbiased simulation and 20 ps umbrella

http://www.dftb.org


4 Force Matching Approaches to Extend Density Functional Theory … 79

Fig. 4.1 Glycine
condensation free energy
surfaces F(s, z = −0.10)
predicted by DFTB with
mio-1-1 and force-matched
parameters, and DFT

simulations) were run for the resulting force-matched DFTBmodel, as well as for the
standard mio-1-1 DFTB parameter set. A slice of the free energy surface F(s, z =
−0.10)was computed from histograms of s and z extracted from the last 10 ps of the
force-matched andmio-1-1DFTBand the last 1 ps ofDFTusing the two-dimensional
WHAM equations (Fig. 4.1).

Beginning with results obtained from mio-1-1 DFTB calculations, we find the
lowest free energy configuration in all three independent simulations is diglycine,
so we chose those minima as the reference energy. We performed three independent
sets of umbrella sampling simulations with this model as a means to assess the uncer-
tainty in our calculations. The relative free energy differences from two unreacted,
solvated glycine molecules were 12, 22, and 27 kcal mol−1 across the three inde-
pendent simulations, with maximum barrier heights of 41, 44, and 48 kcal mol−1,
respectively. The WHAM solution computed using histograms from all three inde-
pendent runs combined yields a free energy of reaction of �F = 21 kcal mol−1

and an approximate free energy barrier of �Fbarrier = 44 kcal mol−1 (for the back
reaction). Determination of a free energy of activation (�F‡) and transition state
would require a committor-style trajectory analysis [65], which is beyond the scope
of the current study. We compute the uncertainties in �F and �Fbarrier to be 8 and
3 kcal mol−1, based on the standard deviation of these calculations.

Figure 4.1 also provides the free energy slices for the presently force-matched
DFTB model as well as DFT. We note that DFT results should be viewed as an
estimate, as the free energy calculations are not necessarily converged after one
picosecond of averaging. We observe that the force-matched DFTB model predicts
a significantly lower barrier height (�Fbarrier = 28 kcal mol−1) than mio-1-1, which
is much closer to the DFT prediction (�Fbarrier = 20 kcal mol−1). It is unclear from
this comparison whether �F is improved through force matching. The mio-1-1 and
force-matchedDFTB results respectively predict�F = 21 and 5 kcal mol−1, both of
which are close to the DFT prediction �F = 11 kcal mol−1 within uncertainty. The
topology of F(s, z = −0.10) is qualitatively different between the DFTB and DFT
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Fig. 4.2 Reaction paths expressed in terms of time-averaged coordination numbers for the dipeptide
bond atoms C* and N* extracted from the umbrella sampling simulations used to compute the
free energy surfaces in Fig. 4.1. Data points correspond to independent umbrella trajectories with
1.1 ≤ s0 ≤ 1.9 spaced in 0.1 increments. Uncertainties for the DFT and force-matched DFTB paths
are standard deviations of the respective coordination numbers and uncertainties for the mio-1-1
DFTB path are standard errors computed over the paths predicted by three independent realizations

results, but the two DFTB predictions exhibit significant similarities aside from the
numerical values for �F and �Fbarrier. One possibility is that topological features
for F(s, z) are largely determined through water solvation interactions, for which
some second-order DFTB parameter sets are known to have significant errors [66].

All three models yield free energy surfaces that are in qualitative agreement with
theDFT results for glycine condensation bySchreiner et al. [43]whopredicted�F =
20 kcal mol−1 and �Fbarrier = 33 kcal mol−1 at the same density and temperature.
Quantitative differences between the Schreiner et al. and present (unconverged) DFT
results are possibly due to the previously discussed differences in the free energy
calculation protocols. Experiments [67, 68] and equation of state models [68, 69]
suggest that glycine is slightly lower in free energy than diglycine by approximately
3 kcal mol−1, which is in stark contrast to the mio-1-1 results and the results of
Schreiner et al. The nominal equivalence in free energy for the reactants and products
predicted by force-matched DFTB is generally more consistent with experiments.

To further assess the accuracy of our force-matched DFTB models for glycine
condensation chemistry, we recast the reaction path in terms of the coordination
between the atoms that form the dipeptide bond, namely the C* to O atoms and N*
to H atoms with the same coordination number functions used to compute the matrix
elements of (4.7). Reaction paths expressed in terms of these coordination numbers
are shown in Fig. 4.2. We observe stark differences between mio-1-1 and DFT, with
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agreement only at the end points. The mio-1-1 calculations yield a concerted mech-
anism with near simultaneous coordination of the O–H and H groups to C* and N*,
resulting in a monotonically increasing linear form in its mapping. In contrast, DFT
predicts a sequential process wherein H first coordinates to N* in diglycine followed
by O–H coordinating to C*, resulting in the plateau shown in the middle of the plot.
Force-matched DFTB also predicts a sequential process that is nearly identical to the
DFT one within uncertainty. Similarities between the DFT and force-matched DFTB
paths indicate that those two models likely have similar local minima in the regions
of R-space that map to these particular path-dependent coordinates. The computed
uncertainties in the three reaction paths presented here indicate that care should be
exercised when interpreting chemistry from subtleties in path coordinates, as they
are not necessarily able to differentiate between chemically distinct configurations.
Nevertheless, force-matchedDFTBprovides a straightforwardmeans of accelerating
predictive simulations of long timescale chemistry when combined with enhanced
sampling methods such as Umbrella Sampling, as shown here.

4.3.3 The Total Free Energy surface for Glycine
Dimerization: Insights from Force-Matched DFTB

The computational efficiency of DFTB allows for a more thorough exploration and
convergence of long timescale chemical reactivity than is currently practical with
DFT. The z-dependent free energy surface was determined for both mio-1-1 and
force-matched DFTB over an interval that captures neutral reactant and product
species. A total of 259 independent 20 ps umbrella sampling simulations were per-
formed to generate each surface, which corresponds to a combined simulation time
of 5.18 ns each. As before, the s0 were set in 0.025 increments and the z0 were evenly
spaced in 0.05 increments in the interval −0.15 ≤ z0 ≤ 0.15. Note that zwitterionic
configurations map to z > 0.2 with the chosen parameters and reference configura-
tions for (4.7). Free energy surfaces were computed following the same protocol as
previously discussed and are shown in Fig. 4.3.

The total changes in free energy predicted by mio-1-1 and the force-matched
model (vs. the free energy slices, discussed previously) are respectively �F = 20.7
and 4.5 kcal mol−1, which are both within uncertainty of the results for the surface
section F(s, z = −0.10) shown in Fig. 4.1. It is apparent that the F(s, z = −0.10)
section does not capture the minimum free energy barrier for either model. The mio-
1-1 results predict the reaction barrier to be 40.5 kcal mol−1, compared to the force-
matched model minimum barrier is 16.7 kcal mol−1. Comparing the two surfaces
reveals different z-coordinates for theminimum barrier, with the location formio-1-1
being at z = 0.02 and for the force-matched model at z = 0.17. The force-matched
model minimum barrier is located much closer to the zwitterionic region of the
surface (z > 0.20). We note that the variation in F(s, z) with z is generally greater
for the force-matched model than for mio-1-1. Significant z-dependency highlights
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(a)

(b)

Fig. 4.3 Glycine condensation free energy surface F(s, z) predicted by DFTB with a mio-1-1 and
b force-matched repulsive potentials

the importance of extensively exploring the collective variable spacewhen estimating
the free energy and underscores the necessity for extending simulation times beyond
those that can be practically reached with DFT.
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4.3.4 DFTB Force Matching: Outlook

Accessing long timescales and performing large-scale ensemble studies beyond those
that can be practically performed with DFT is critical for accurate determination of
many condensed phase chemical reactions [40, 70]. We have shown that force-
matched DFTB models hold promise as one avenue to extend quantum simulations
to more realistic timescales while retaining much of the accuracy of DFT [40]. In
particular, combining force-matched DFTBwith accelerated sampling allows for the
rapid generation of converged and accurate free energy surfaces for chemical reac-
tions (discussed in further detail in recently published work [19]). This significantly
expands the range of states that can be feasibly considered within the scope of a
single study and allows for accurate quantum simulations that approach experimen-
tal time scales for reactivity. Our approach can help in the design and interpretation
of laboratory synthesis studies, where there is a strong need for knowledge of the
kinetics of chemical bond formation and breaking over extended periods of time.

4.4 ChIMES: Fast, Scalable Machine-Learned Reactive
Force Fields

In this section, we discuss the problem of how to leverage force matching for ground-
up construction of classical reactive MDmodels based on the Chebyshev Interaction
Model for Efficient Simulation (ChIMES). ChIMES models are computationally
efficient, fast to parameterize due to linear parameterization, and have the potential
tomaintain the accuracy of first principlesmethods across the large range of tempera-
tures and pressures of interest for materials under extreme conditions. ChIMES does
not include any explicit quantum-mechanical components, which affords significant
gains in computational efficiency but can simultaneously complicate the develop-
ment of transferable models relative to DFTB. Nonetheless, ChIMES can allow for
large-scale million atom simulations where precise knowledge of electronic states
might not be necessary for a specific research problem. We have applied ChIMES to
water under ambient and high pressure–temperature conditions [71, 72], andmetallic
liquid carbon [73]. Here, we will focus on simple ChIMES force field development
for metallic liquid carbon near the graphite–diamond–liquid triple point (e.g., ∼15
GPa, 5000 K) as an illustrative example.

4.4.1 The ChIMES Force Field

There are numerous force fields designed to describe the physics governing chemical
reactivity and metallic nature. For example, there are the ReaxFF [17], REBO [74],
and COMB [75] potentials that leverage a reactive bond order description for bond
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formation and breaking, the more general GAP [76, 77] and SNAP [78], methods
which describe atomic environments through use of bispectrum components, and
the EAM [79], and MEAM [80] embedded atom models. While highly successful
in their intended applications, these models are not available for a large variety of
systems or conditions, and thus frequently require reparameterization.Unfortunately,
the complex nature of these reactive force fields combined with the large ab initio
training data they frequently require can make their tailored parametrization for
specific systems a challenging task.

ChIMES models are comprised of explicit n-body interatomic energy terms,
which themselves, are constructed from linear combinations of Chebyshev poly-
nomials. Resulting models are highly flexible and thus well suited for materials
under extreme conditions. This allows for rapid parameterization of any number
of new MD models through linear least-squares approaches like the singular value
decomposition (SVD) [25].

To date, the ChIMES total energy of interaction has been described as the follow-
ing sum of two- and three-body terms:

EChIMES =
N

∑

i

∑

j>i

Ei j +
N

∑

i

∑

j>i

∑

k> j

Ei jk . (4.8)

Here, N is the total number of atoms in the system, Ei j is the pairwise interaction
energy, and Ei jk is the energy between triplets of atoms. The two-body energy is
expressed as follows:

Ei j = f
ei e j
p

(

ri j
) + f

ei e j
c

(

ri j
)

O2∑

n=1

C
ei e j
n Tn(si j ). (4.9)

In this case, Tn
(

si j
)

represents a Chebyshev polynomial of order n, si j is the pair
distance transformed over the interval [−1, 1] (discussed below), andCei e j

n is the cor-
responding coefficient for the interaction between atom types ei and e j . Permutational
invariance of the polynomials is enforced for all interactions, e.g.,C

ei e j
n ≡ C

ej ei
n . The

term f
ei e j
c (ri j ) is a smooth cutoff function which is set to zero beyond a maximum

distance defined for a given atom pair type, i.e., f
ei e j
c (ri j ) = (1 − ri j/r

ei e j
max)

3. In order
to prevent sampling of ri j distances below what is present in our DFT training set,
we introduce a penalty function f

ei e j
p (ri j ), which we define as follows [71]:

f
ei e j
p = Ap (r

ei e j
p )3 (4.10)

r
ei e j
p =

{

r
ei e j
min + dp − ri j , ri j − dp < r

ei e j
min

0, otherwise.
(4.11)

The parameter Ap is a penalty function scaling factor and dp is the penalty distance,
which are preset to specific values. This allows for atoms to be “pushed” to larger
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distances to avoid unphysical regions of the potential. We note that the penalty
function was not sampled for any of the MD calculations presented here.

Wemap the interatomic distances over the interval of [−1,1] by first transforming
the internuclear distance ri j to the Morse variable, xi j = exp(−ri j/λei e j ), where the
λ parameter is the Morse variable range parameter [81–83], defined individually for
each type of atomic pair interaction. The Morse variables lead to a natural decrease
in the interaction strength as distance is increased. As a rule of thumb we set these
values to correspond approximately to the nearest neighbor distance for each atom
pair type from our fitting set, though in general we find that the results of our fit are
relatively insensitive to these values. We then define the variable si j to be within the
range [−1, 1] through the operation si j ≡ (xi j − x

ei e j
avg )/x

ei e j
diff where:

x
ei e j
avg = 0.5(x

ei e j
max + x

ei e j
min ) (4.12)

x
ei e j
diff = 0.5(x

ei e j
max − x

ei e j
min ) (4.13)

x
ei e j
max = exp(−rmin

ei e j /λ
ei e j ) (4.14)

x
ei e j
min = exp(−rmax

ei e j /λ
ei e j ). (4.15)

In this work, we will focus on development and application of a ChIMES model
for two-body interactions, only, for the sake of simplicity. However, for completeness
we include discussion of higher-body ChIMES terms as well. Similar to the two-
body representation, the three-body energy is given as the product of Chebyshev
polynomials for each of the three constituent atomic pairs:

Ei jk = f
ei e j
c

(

ri j
)

f ei ekc (rik) f
e j ek
c

(

r jk
)

O3∑

m=0

O3∑

p=0

O3∑

q=0

′
C

ei e j ek
mpq Tm

(

si j
)

Tp (sik) Tq
(

s jk
)

.

(4.16)
The single sum given for the two-body energy is now replaced with a triple sum for
the i j , ik, and jk polynomials, yielding a single permutationally invariant coefficient
for each set of powers and atom types, C

ei e j ek
mpq . The primed sum indicates that only

terms for which two ormore of them, p, q indicies are greater than zero are included,
which guarantees that three bodies i, j, k enter into the expression. The expression
for Ei jk also contains the fc smoothly varying cutoff functions for each constituent
pair distance. Penalty functions are not included for three-body interactions and are
instead handled by the two-body EChIMES terms.We note that the ChIMES functional
form can readily be extended to higher-body terms, e.g., four-body energies, by
expanding (4.16) to include a multiplication of all

(n
2

)

pairwise interactions for that
set (i.e., six total for four-body terms). Determination of greater than three-body
ChIMES models is the subject of future work.
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4.4.2 Application to Molten Carbon: Computational Details

In our efforts discussed here, ChIMES models can be viewed as “cooked to order,”
where transferability is not considered an inherent feature of the force field. Instead,
models are generated for a target region of state point space by force matching to one
or more short DFT simulations (O 5–10 ps) for the system of interest. Self-consistent
refinement can be used for systems expected to undergo significant changes (i.e., as
for formation of new phases) [73]. Here, we generate 2-body ChIMES models for
molten carbon at 5000 K and 2.43 g/cm3. This system is particularly well-suited
for demonstrative purposes as it is monoatomic and exhibits fast dynamics. Model
sensitivity to user-specified parameters including polynomial order, outer cutoff, and
Morse transformation variablewill be discussed, and resultswill be compared against
those from popular reactive carbon models LCBOP [84] and REBO [85].

We obtain a NVT -MD trajectory for 256 carbon atoms at our target state point via
DFT-MD simulations utilizing the VASP software package [86–89]. The Perdew–
Burke–Ernzerhof generalized gradient approximation functional (PBE) [90, 91]
and projector-augmented wave pseudopotentials [92, 93] were used, along with a
planewave cutoff of 1000 eV, a 0.5 fs time step, and a global Nose–Hoover thermo-
stat [54, 55]. A total of 20 evenly spaced frames are selected from the resulting DFT
trajectory, resulting in 250 fs between frames. Chebyshev polynomial coefficients
are then obtained by minimizing the objective function shown in (4.1). We note
that this step generally takes from a few seconds to several minutes to yield optimal
parameter values.

Simulations using the presently developed ChIMESmodels are run with in-house
developed MD software and a 0.25 fs time step, whereas LCBOP and REBO sim-
ulations are run with the LAMMPS suite [59] and a 0.5 fs time step. An atomic
configuration from our DFT-MD training trajectory was used as the starting point
for all simulations. All classical MD simulations are in the canonical ensemble at
5000 K and 2.43 g/cm3, and utilize a global Nose–Hoover thermostat.

4.4.3 ChIMES Sensitivity to User-Specified Parameters

A total of nine ChIMES models were fit, which varied by polynomial order O2B =
4, 8, or 12, outer cutoff distance rCCmax = 2.00, 3.15, 4.25, or 5.00 Å, and Morse
variable λCC = 1.25, 2.25, and 3.25 Å. The remaining model parameters, ACC

p , dCC
p

and rCCmin were fixed at values of 108 kcal/mol ·Å3, 0.01 Å, and 1.0 Å, respectively,
where the inner cutoff was set to the minimum distance observed in the training
configurations, and ACC

p and dCC
p were selected to yield a penalty function strong

enough to prevent the system from exploring distances smaller than rCCc,in, while
otherwise having minimal influence on dynamics. Models have a total of nusrpar +
O2B parameters, where nusrpar is the number of user defined parameters, and for the
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Fig. 4.4 Sensitivity of system structure to user-defined model parameters. Radial distribution func-
tions have been offset by 0.05 Å for clarity. ESFM is the 2-body potential function derived from
force matching

present work, encompasses the 6 parameters {O2B, rCCmin, r
CC
max, λ

CC, ACC
p , ACC

p }. Thus,
a model with O2B = 10 would have 16 parameters.

Figure 4.4 demonstrates how the potential energy surfaces (PESs) and subsequent
radial distribution functions (RDFs) are altered as the Chebyshev polynomial order,
outer cutoff distances, and Morse variable are increased. The results indicate that
for both order and outer cutoff, some threshold value must be surpassed to obtain
reasonable results, but beyond that value, the predicted system structures are indistin-
guishable fromone another. Specifically, simulations usingmodelswith eitherO = 4
or an rCCmax of 2.0 solidify while all remaining simulations (using larger order and rCCmax
values) yield RDFs that are in agreement with one another. Decreasing polynomial
order limits model flexibility, and, as shown for theO = 4 case, under-structuring of
the PES (i.e., as compared toO = 8 and 12, between 1.5 and 2.25 Å). The case with
rCCmax = 2.0 Å, on the other hand, fails because the cutoff distance forces the potential
to zero where it would otherwise contain a maximum. Furthermore, the data suggests
that a reasonable choice for selection of rCCmax would be the location of the second
nonbonding minimum for a given g(rCCmax). The data also indicate that the choice
of λCC has little influence on resulting system structure. Nevertheless, a reasonable
selection would be some characteristic “bonding” distance for the system, such as the
location of the first peak in the pair RDF. An additional and pertinent user-specified
aspect of the fit is the number of training frames utilized. For the present model prob-
lem, 20 frames were found to be sufficient for good fits, as including more did not
yield significantly improved RMS errors or RDF predictions. In practice, one should
consider the influence of training database size on a case-by-case basis, particularly
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when increasing bodiedness of the ChIMES potential, and when targeting systems
of multiple atom pair types and/or a variety of state points or phases.

4.4.4 Molten Carbon: Comparing ChIMES and Existing
Reactive Models

Performance of the force-matched model with O2B, rmax, and λ = 12, 3.15, and
1.25 Å, respectively [73] is compared to two existing reactive bond order carbon
models, LCBOP and the 2002 parameterization of REBO [84, 85]. Both of these
models contain numerous nonlinear parameters that are fit by iterative adjustment
to either experimental or first-principles reference data. Notably, both models are fit
to solid phase carbon data (i.e., graphite and diamond), and are designed to repro-
duce these corresponding material properties. Figure 4.5 presents the distribution of
forces predicted from DFT, the present force-matched model, LCBOP, and REBO
for a given set of configurations. Not surprisingly, the force-matched model yields
significantly better agreement with DFT across the range of predicted values. Both
LCBOP and REBO exhibit poor reproduction of the DFT force distribution; REBO
overestimates the probability of observing low-lying forces, while LCBOP yields
too high of a distribution of large magnitude forces.

The improved description of forces presented by the ChIMES model leads to
more accurate system structure and dynamics, as is shown in Fig. 4.6. Both LCBOP
and REBO predict overly ordered systems, with the first minimum in each RDF at
nearly zero. REBO yields a better estimate of first peak height and recovers the DFT
structure by the third peak, while LCBOP maintains solid-like structure over the

Fig. 4.5 Normalized
distribution of forces acting
on carbon at 5000 K and
2.43 g/cm3
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Fig. 4.6 Radial distribution
functions (top) and
vibrational power spectra
(bottom) for carbon at
5000 K and 2.43 g/cm3.
Self-diffusion constants are
given in the legend for each
model
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range of distances presented. In contrast, the ChIMES model exhibits a reasonable
description of the structure predicted by DFT over the entire range of distances. The
overly-solid nature of the LCBOP and REBO systems is also reflected in the power
spectra and self-diffusion constants. Both of these models yield peak intensities of
nearly zero at low frequency, and accordingly, and predict diffusion constants that are
several orders of magnitude smaller than the DFT result. Furthermore, the LCBOP
and REBO power spectra do not capture the shape predicted by DFT, resulting in
a broad distribution of high-intensity frequencies between 250 and 1500 cm−1. In
contrast, the ChIMESmodel captures the overall DFT power spectrum shape (a peak
near 500 cm−1 and a shoulder near 1000 cm−1) and exhibits a significantly improved
diffusion constant, which is of the same order of magnitude as that from DFT. These
results are particularly illustrative of the capability of ChIMES, given the exceedingly
small training set and low-order functional form used here. We note, however, that
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LCBOP and REBO are likely to be accurate over a wider range of conditions than the
simple 2-body ChIMES model considered here. Better transferability with ChIMES
can be obtained by adding many-body interactions and using more diverse training
sets [73].

4.4.5 ChIMES: Outlook

Further ChIMES refinements of all of these properties have been determined though
creation of three-body forcefields, discussed in detail in recently publishedwork [73].
Many-body effects can additionally be included in a number of ways such as explicit
polarizability, or over-bonding terms (as in [71]). Our model problem discussed
here demonstrates that the ChIMES force field and fitting framework provides a
convenient approach for rapid generation of accurate DFT-informed reactive force
fields. The utility of ChIMES extends far beyond the present application; in addition
to use as a standalone molecular mechanics force field, three-body ChIMES models
has been successfully leveraged as the repulsive term in DFTB for surface corrosion
studies on plutonium [36].

4.5 Conclusions

Coupled advances in computing hardware and algorithms have enabled particle-
based simulations to play an increasingly critical role in reactive materials research.
Nevertheless, computer experiments based on quantum-mechanical methods remain
too costly for many problems of interest. In this chapter, we have discussed two
methods to force match models capable of extending the predictive power of quan-
tum mechanics to larger scales. In the first, the repulsive term in the semi-empirical
DFTBmethodwas force-matched toDFT, to study glycine dimerization at low T and
p conditions. Our model was found to yield a strong refinement of standard DFTB
parameterizations, allowing for accurate determination of the diglycine formation
free energy surface. In the second, force matching was used to construct a fully reac-
tive ChIMES force field for moltenmetallic carbon, which is 105 timesmore efficient
than DFT while retaining most of its accuracy. In general, our force-matched models
are capable of serving as a high-fidelity proxy for obtaining DFT-quality forces on
large time and length scales. There are any number of research areas that require
atomic level knowledge of material reactivity, including studies of planetary interi-
ors [94, 95], organic polymers subject to radiation and heat damage [96, 97], and
the synthesis of materials with tailored properties [70]. The computationally effi-
cient methods discussed in this chapter will have particular impact in these types
of research areas, where there is traditionally a reliance on expensive DFT calcula-
tions for interpretation of imaging and spectroscopy experiments, and prediction of
properties to guide materials synthesis.
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