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Abstract This chapter describes efforts to enable multiscale modeling of energetic
material response to insult through a concurrent hierarchical multiscale framework.
As a demonstration, a quantum-derived, particle-based coarse-grain model of an
energetic material is used to provide part of the constitutive response in a finite ele-
ment multiphysics simulation. Bottom-up coarse-grain models of hexahydro-1,3,5-
trinitro-s-triazine (RDX) and the methods used to perform reactive simulations at the
microscale will be described. Simulations demonstrating microstructure-dependent
initiation are also presented. Research opportunities addressing the remaining chal-
lenges related to detonation are discussed.
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10.1 Introduction

Agrand challenge formodeling and simulation (M&S) of the properties and response
of energetic materials (EM) is virtual assessment of EM performance in munitions,
providing a substantial time and monetary savings in the development of materials
for next-generation weapons. Current M&S capabilities have numerous shortfalls
that do not yet allow accurate, predictive in silico assessment, or even reliable suc-
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cess in virtual design or screening of new EM. These include a lack of micro- and
mesoscalemodeling capabilities necessary to represent salient physical and chemical
features of the materials, deficiencies in multidisciplinary linkages of the relevant
scales, and the existence of high levels of empiricism in continuum simulations.
Furthermore, the inaccuracy and uncertainty in the descriptions of energetic material
response at the microscale and beyond are problematic, especially in the treatment of
chemical reactivity. In light of these shortfalls, vigorous research efforts have been
pursued by us and others [1–8] to develop simulation capabilities to adequately cap-
ture microstructural dependencies on macroscopic events—a simulation challenge
for many materials [9–16] and inherent to the initiation of EMs [17].

Our efforts in this area focus on the development of a multiscale M&S frame-
work to predict EM response when subjected to thermal or mechanical insults.While
particle-based and continuum level simulation methodologies and models have been
extensively studied and advanced [18, 19], the coupling of grain-scale, nonequilib-
rium microstructural changes between the microscale and macroscale is not com-
monly realized due in part to methodological challenges [20] in multiscale model-
ing, as well as computational limitations of mesoscale modeling. As an illustration,
consider the case of plate impact on either a single-crystal or formulated energetic
material. Classical molecular simulations of one-dimensional (1D) impact under
boundary conditions of uniaxial strain typically involve 104–107 particles (reach-
ing up to micron length scales in one dimension) for durations reaching hundreds
of picoseconds. However, experimental setups may be measured in centimeters or
larger, in all dimensions, while observations occur over microseconds. Direct molec-
ular simulation of these macroscale systems is simply unfeasible. Current engineer-
ing or continuum models used by most in the EM community are parameterized
against macroscale experimental data for particular materials, where any atomistic or
mesoscalemechanisms affectingmaterial response are implicitly present, as opposed
to naturally emerging via models that represent microstructural features as statistical
distributions or material history variables. Reaction models used at the continuum
level, whether based on matching a specific set of experiments or analysis of atom-
istic simulations, rarely incorporate explicit dependencies of the reaction chemistry
on evolving microstructure, particularly under extreme temperatures and pressures.
Furthermore, the role of initial reaction chemistry in changing mechanical constitu-
tive behavior for the interactions ofmaterials at the grain level is not typically utilized
in continuum models.

For these reasons, some of our recent efforts have been focused on advancing the
nascent microscale models/methods and scale-bridging approaches required for the
multiscale M&S framework. Our overall long-term goals have been to develop the
appropriate models and approaches that will overcome these gaps, leading to a pre-
dictive capability to simulate the coupled thermophysical, chemical and mechanical
material processes that affect material response.Within this chapter, we will describe
our efforts to properly depict microstructural features in continuum simulations of
EM via a multiscale hierarchical approach that bridges higher resolution modeling
and the continuum.
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We will first describe the higher resolution model and method development at
the coarse-grain (CG) level that enables particle-based reactive simulations at the
microscale. Particle-based microscale simulation methods utilizing CG models cur-
rently offer a promising route for extending atomisticmodeling toward themicroscale
with a significant gain in computational efficiency. CG models, generated by group-
ing a set of smaller entities (e.g., atoms or molecules) into a single larger entity, are
built in a bottom-up fashion, such that they incorporate the key underlying physics
from the higher resolution scale. During this coarse-graining process, the reduc-
tion in molecular degrees-of-freedom (d.o.f.) provides a gain in computational effi-
ciency; however, the loss of information must be adequately recovered through the
CG methodology. Furthermore, at the atomistic scale, the formation and breaking
of chemical bonds is treated explicitly, while at the microscale, the CG models and
methods must collectively capture and recover the relevant chemical features lost
during coarse-graining.

We will then discuss our efforts to understand condensed phase chemistry under
extreme temperature and pressure, and provide perspectives regarding realistic chem-
istry that is to be included into a CG model that treats chemical reactivity. This will
be followed by an overview of multiscale approaches for continuum simulations
that make use of information from particle-based simulations, including our cho-
sen approach, a concurrent hierarchical multiscale simulation method (HMS) that
couples continuum and particle-based CG simulations. Finally, we will describe our
scale-bridging and algorithmic research efforts within HMS, including the use of
machine learning to increase computational efficiency, and provide demonstrations
of the HMS approach using our CG models and methods. The chapter will conclude
with a discussion of new research opportunities and future directions.

10.2 Coarse-Grain Models

Simulation of the complete range of EM responses, including the competing mecha-
nisms of energy flow, mass flow, and chemical reactivity, requires modeling at length
and timescales that are far beyond those amenable to atomistic-scale approaches.
Quantum chemical approaches based on ab initio, density functional theory (DFT)
or semiempirical calculations can provide detailed information about chemical reac-
tions and transition state structures, but tend to be limited in the number of atoms
that can be treated; thus, they are unable to capture the full extent of heterogeneity
present in real microstructured materials. Classical reactive potentials that describe
the energy landscape and barriers between initial material, the reaction products,
and the relevant transition states are available [21], for example, ReaxFF [22, 23]
is a commonly employed atomistic force field for modeling EMs. All-atom reactive
molecular dynamics (MD) simulations of EMs have been applied to examine the
initiation and growth of hot spots created near a single microstructural heterogene-
ity [24], when the material is subjected to thermal and mechanical loading. How-
ever, these simulations of an isolated, nanometer-sized heterogeneity still required
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petascale computational resources. As such, the computational expense quickly
becomes impractical, requiring years of wall clock time when attempting to simulate
realistic samples containing a collection of microscale heterogeneities. These well-
recognized limitations of modeling at the atomistic scale provided the motivation
for the work described here: the development of microscale models and methods
to bridge these spatial and temporal modeling regimes while ensuring multiscale
consistency. Until recently, the requisite microscale computational capabilities were
either nonexistent or lacking. In this section, we will describe our efforts in develop-
ing tools for building CG models, while our efforts in developing the necessary CG
methodologies will be described in the following section.

Discrete particle-like descriptions for computationally feasible modeling of EM
at the microscale can be obtained through two distinct approaches. One is derived
from macroscale data and governing equations (discretization of continuum mod-
els), which has demonstrated success in going beyond simple homogeneous systems,
but still remains within an essentially macroscopic phenomenological framework,
thereby severely limiting its predictive capability [25]. The second approach, which
wewill discuss in detail, is bottom-upparticle-based coarse-graining, inwhichgroups
of atoms aremapped into a statistically equivalent ensemble of structure-less CG par-
ticles interacting via CG force fields derived from microscopic information [26–29].

In this approach, the atomistic coordinate space is reduced to a smaller space
of CG coordinates commonly associated with center-of-mass (CoM) coordinates of
molecular clusters representing the CG particles, while the CG dynamics is consid-
ered to be Newtonian. Considerable efforts have been expended in the search for CG
conservative force fields that lead to a correct representation of equilibrium atomistic
statistics and, hence, correct thermodynamics of the CG ensemble [30]. Among the
growing efforts to develop conservative force fields for CG models, of particular
interest for the work presented here were efforts to generalize CG models for flu-
ids with complicated EOS. These efforts resulted in the development of many-body
interaction models [31–33]. Conservative forces in such models can be viewed as
effective (mean) forces, where these forces arise due to changes in a many-body
potential of mean force (PMF). Approximations to the CG PMF energy surface can
be obtained from microscopic data with a number of bottom-up methods such as
structure inversion [34], force-matching [35–41], or entropy-matching approaches
[42].

One efficient technique for producingwell-performing bottom-up approximations
to the CG PMF is the multiscale coarse-graining (MS-CG) method [35–38, 43–50].
The MS-CG method has been described elsewhere [36, 40, 41, 51] as a parameter-
free force-matching approach that yields an optimal pairwise decomposition of CG
conservative forces, and therefore of the associated CG PMF. Consequently, theMS-
CG approach is our method of choice for parameterization of the CGmodels for EM.
The MS-CG method can be naturally extended to include a dependence on thermo-
dynamic state variables such as density or temperature, which further enhances the
transferability of the CG models [39, 41, 52]. This is important for simulations of
shocked EM, where an exceptionally broad spectrum of thermodynamic conditions
ranging from ambient to extreme temperatures and pressures may be sampled.
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For realistic molecular environments found in condensed-matter systems such as
EM, however, the CG conservative models typically fail to yield correct time corre-
lations of the CG dynamical variables leading to accelerated dynamics and affecting
the corresponding transport properties. This failure has been attributed to the absence
of interparticle friction and thermal noise in the CG description, both of which lead
to energy dissipation due to the coupling to the atomistic intraparticle (irrelevant)
dynamics with the surroundings. Consequently, bottom-upmodeling of both thermo-
dynamic and transport properties require thermodynamically consistent modeling of
both the CG conservative (PMF) and nonconservative (dissipative) interactions.

In developing a bottom-up description of the CG nonconservative interactions,
we have capitalized on recent advances in formulating the CG dynamics from first
principles [51, 53–55]. In these works, the CG equations of motion in the form
of generalized Langevin equations (GLE) have been derived from the microscopic
Newtonian equations by means of the Mori-Zwanzig formalism. The Mori-Zwanzig
formalism leads to the thermodynamically consistent decomposition of the micro-
scopic forces into CG conservative and nonconservative contributions. Within the
pairwise and Markovian limits, which are always valid for systems interacting with
nonlinear potentials at sufficiently aggressive coarse-graining, the GLE dynamics
acquires a classical Galilean invariant form of the Dissipative Particle Dynamics
(DPD) [56, 57] equations with the conservative forces precisely prescribed by the
MS-CG approach. Initially, the DPD equations were introduced phenomenologically
to describe the hydrodynamics of simple liquids using a particle-based approach.
The derivation of the DPD equations from first principles in this fashion provides
one with a recipe to parameterize the CG models in a fully bottom-up fashion and
has led to new systematic approaches to extract the distance-dependent radial and
shear dissipative and random forces directly from the atomistic data [51, 58–60].
Our recently proposed multiscale methodology [51, 60] to extract nonconservative
interactions from atomistic interactions and dynamics data complements theMS-CG
approach to provide a robust framework for bottom-up parameterization of both the
conservative and nonconservative forces used in the DPD methodology.

In the following sections, we briefly review the basics of the approaches for first
principles parameterization of the conservative and nonconservative force fields for
use in the DPD equations of motion and then discuss their applications to two well-
studied energetic materials, hexahydro-1,3,5-trinitro-s-triazine (RDX, C3H6N6O6)
and nitromethane (NM, CH3NO2).

10.2.1 Conservative DPD Force Fields

10.2.1.1 The MS-CG Method

The MS-CG method is described [35–37, 40, 47, 51] as a force-matching-based
approach for constructing a least-squares optimal pairwise decomposition of a (con-
servative) force field

(
FC
I

)
and corresponding many-body CG PMF

(
W PMF

)
. In the
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MS-CG approach, the intrinsic many-body force FC
I is approximated by a pairwise

and central force field FC,2b
I . The latter force field is determined using a database of

the microscopic forces FI associated with the CG coordinates RI by minimizing the
merit function
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(10.1)

with respect to spline parametersα used to represent each pair term in the FC,2b
I . In the

atomistic system, the CG coordinates RI are located at the CoM of an atomic group
mapped into a CG particle. The optional pressure constraint introduced by the second
term in (10.1), where T atm and Patm are, respectively, the atomistic temperature and
pressure, leads to a CG model suitable for NPT simulations [36, 39, 45].

One approach to account for, on average, the many-body interactions within the
two-body representation is to use pair terms f C(RI J , ρ) in FC,2b

I (α) that are functions
of a particle number density distribution,ρ, andwhere RI J is the interparticle distance
[39, 41, 52]. This density dependency is not merely an abstract construction, but
realistically describes the EOS-dependent interactions at the CG scale. As matter of
fact, the force-matching expressed by (10.1) yields a different force f C(R, ρ, T ) at
each thermodynamic state point (e.g., density ρ and temperature T ), when applied
to the atomistic system at different state points. In general, both the density ρ and
temperature T dependency are needed to ensure a correct EOS for the CG system.

For a homogeneous, single component system, the particle density could be
defined based on the global density ρ ≡ 〈ρ〉 � N/V , while alternatively, the
notion of a local particle density ρ(RI ) associated with the Ith particle could also be
implemented. In the latter approach, the PMF remains a regular function of particle
position, and therefore, this approach avoids the issues that otherwise plague global
density-dependent interactions [61]. A local particle density definition ismore appro-
priate for systems whose local structure may dramatically vary, such as a microstruc-
tured material under thermal or mechanical loading. A consistent approach for defin-
ingρ(RI ) fromadiscrete set ofmasses is to useweight functions centered on particles
ρ(RI ) � ∑

J ��I ωρ(RI J ), where the density weight function ωρ(RI J ) has compact
support [52]. Neglecting the explicit temperature dependency of f C(RI J , ρ, T ), an
assumption that often is justified, the density dependency can be introduced numer-
ically via interpolation of f C(RI J , ρ) to a set of forces

{
f C(RI J , ρ

s)
}
calculated

for a reference system at a set of specific thermodynamic densities {ρs}. Although
linear interpolation is considered to be adequate [39, 41] in most DPD applications,
it leads to unacceptable energy conservation in the energy-conserving DPD method
(DPD-E), described hereafter. A computationally efficient density dependency that
results in an exactly integrable force field (and hence better energy conservation) can
be written as [52, 62]

f C(RI J , ρI , ρJ ) � f C0 (RI J ) +
1

2
ωD(RI J )[A(ρI ) + A(ρJ )] (10.2)
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where f C0 (R) � f C
(
R, ρ0

)
is the MS-CG pair term for the density ρ0 at ambient

conditions, ωD(R) is a preselected distance weighting function, and A(ρ) is chosen
to generate the desired EOS. Integrating the density-dependent MS-CG force field
with pair terms given by (10.2) results in the pairwise decomposition of the CG PMF
into a sum of potentials wPMF(RI J , ρ).

10.2.1.2 Application to RDX and NM: Parameterization
of Conservative MS-CG Models

The MS-CG methodology has been applied to derive accurate and transferrable CG
conservative force fields for RDX [41, 52, 63] and NM [39, 51, 60]. The map-
ping of the atomistic RDX and NM structure into a one-bead CG representation is
displayed in Fig. 10.1a. The performance of the MS-CG approach for aggressive
coarse-graining where clusters of many molecules mapped into a CG particle was
explored for liquid NM and proved to be successful [60]. Specifically, a hierarchy
of MS-CG models starting with one NM molecule per Voronoi cell (Fig. 10.1a) and
up to 64 NM molecules per cell (Fig. 10.1b) was able to accurately describe the
structure and density of the atomistic liquid NM under constant NPT conditions.

Calculated MS-CG potential terms wPMF(R, ρ) for different pressures (densities)
for the density-dependent MS-CG models of RDX and NM are shown in Fig. 10.2
[39, 41, 52]. The density dependency for the NM model was introduced through
linear interpolation of MS-CG potentials for different densities. For RDX, the model
with local density dependency using the representation in (10.2) (referred to as the

(a) (b)

Fig. 10.1 Panel a: Mapping of RDX (top) and NM (bottom) into a one-site representation. Panel
b: Visualization of partitioning of liquid NM (3840 molecules) into centroidal Voronoi cells with
64 molecules per cell. The large balls represent CoMs (centroids) of the Voronoi cells, while the
lines shown connect the Voronoi cell centroids to the molecular CoM that are associated with the
cell. Colors are used to visually delineate individual clusters (reprinted from Izvekov, S.; Rice, B.
M., J. Chem. Phys. 2014, 140 (10), 104104, with the permission of AIP Publishing)
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Fig. 10.2 One-site density-dependent MS-CG models of RDX (Panel a) and NM (Panel b). The
scaled CoM RDFs are shown by the dot-dashed and dotted lines (Reprinted from (a) Izvekov, S.;
Chung, P. W.; Rice, B. M., J. Chem. Phys. 2011, 135 (4), 044112 and (b) Izvekov, S.; Chung, P. W.;
Rice, B. M., J. Chem. Phys. 2010, 133 (6), 064109, with the permission of AIP Publishing.)

MS-CG-D(E) model) was introduced to achieve the energy conservation required
for DPD-E simulations of RDX [52].

Due to the systematic representation ofmicroscopic interactions, theMS-CG con-
servative models describe the equilibrium properties of these explosives reasonably
well under different thermodynamic conditions and in different phases. In particu-
lar, the MS-CG model of RDX well describes various material properties, including
the structure of the ideal RDX crystal [52]. A summary of key thermodynamic and
mechanical properties for crystalline RDX from (i) experiment, (ii) atomistic sim-
ulations using the reference atomistic force field of Smith and Bharadwaj (the SB
model) [64], and (iii) MD simulations of the MS-CG model at ambient pressure is
given in Table 10.1.
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Table 10.1 Lattice constants a, b, c, density ρ, volumetric thermal expansion coefficient αV ,
isothermal bulk modulus BT , and atmospheric melting temperature Tmelt of crystalline RDX, from
experiment, the atomistic reference and the MS-CG model

Property Experiment Atomistic MS-CGa

a (Å) 13.18b 13.45c 13.37

b (Å) 11.57b 11.53c 11.58

c (Å) 10.71b 10.53c 10.59

ρ (kg/m3) 1806b 1805c 1801

αV (10−5 1/K) 19.34d 16.38c, 10.94e 8.32

BT (GPa) 12.1f, 11.99g 13.0c 13.17

Tmelt (K) 478.6h 488.5i 468.8

aMoore et al. [52]
bChoi and Prince [65] 300 K
cMunday et al. [66] 300 K
dCady [67]
ePodeszwza et al. [68]
fOlinger et al. [69] 293 K
gHaycraft [70] 295 K
hHall [71]
iSellers et al. [72]

The elastic stiffness constants Ci j are compared in Table 10.2 to the results for
the reference atomistic model, density functional theory (DFT) calculations, and to
experiment. The table also reports Cauchy pressures for an MS-CG model crystal,
which are measures of the deviation from purely two-body interactions. A similar or
better level of agreement is achieved for MS-CG models of NM [39].

Introducing density dependency into the MS-CG potentials leads to significantly
improved mechanical properties of the materials under elevated pressures. This is
particularly challenging due to the well-known problem of representability, i.e., at a
given state point, no single pair potential may exist that can capture all the properties
of a given material [61]. The exceptional transferability of the MS-CG models make
them suitable for application to systems under thermal and mechanical loading [75].
The level of accuracy and transferability achieved with the MS-CG approach would
be difficult to reproduce using the conventional top-down approaches [29, 76, 77].

10.2.2 Nonconservative DPD Force Fields

10.2.2.1 Multiscale Coarse-Graining of Nonconservative Interactions

A characteristic feature of the DPD methodology is the dissipative force that acts
between particles,which provides ameans of depicting the atomisticmodel dynamics
with a CGmodel.We have refined the standard dissipative contributions and incorpo-
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Table 10.2 Stiffness constants Ci j for the MS-CG model of crystalline RDX compared to experi-
mental, ab initio, and empirical atomistic model data

Ci j (GPa) Experimentd,e ab initioc Atomistica,b MS-CGa

C11
36.67d, 25.02e 29.96 30.64a, 25.00b 21.03

C12
1.38, 8.21 7.48 12.68, 10.60 10.06

C13
1.67, 5.81 4.52 7.92, 7.60 11.49

C22
25.67, 19.60 25.51 29.41, 23.80 20.98

C23
9.17, 5.90 5.28 10.64, 8.80 11.50

C33
21.64, 17.93 23.61 30.23, 23.40 23.53

C44
11.99, 5.17 5.34 4.16, 3.10 6.11

C55
2.72, 4.07 4.83 6.54, 5.20 6.10

C66
7.68, 6.91 8.59 10.03, 7.70 5.23

C13–C14 N/A N/A N/A 5.38

C12–C66 N/A N/A N/A 4.83

aMoore et al. [52] 0 K
bMunday et al. [66] 300 K
cTaylor [73] 0 K, DFT-D3
dHaycraft [70] 295 K
eHaussuhl [74] 293 K

rated them into the DPD-RX framework, includingmultidirectional dissipative inter-
actions [78, 79] that are both parallel and perpendicular to the interparticle separation
axis. Directional dissipative force contributions attempt to capture the CG d.o.f. that
contribute to the molecular shape or polarity. The multiscale bottom-up approach
to derive the radial (parallel)

[
γ ||(R)

]
and shear (perpendicular)

[
γ ⊥(R)

]
friction

functions dependent on the interparticle separation R is proposed and described in
detail elsewhere [60]. The friction functions γ ||(R) and γ ⊥(R) describe the ampli-
tudes of the nonconservative force components that are parallel and perpendicular to
the interparticle separation, respectively. The approach exploits the statistical inde-
pendence of the random forces and the initial particle velocities, which is a generic
property of the GLE dynamics, and hence the DPD method. This property allows a
unique relationship between the friction functions, and both the three-body veloc-
ity–velocity correlation functions cαβ

VV , α, β ∈ {||,⊥} and the two-body correlation
functions

[
cα
�FV

]
of residual force, �FI � FI − FC

I , with velocity. By introducing
the mesh {Rl , l � 1, . . . , Nbin} of interparticle distances and considering the corre-
lation functions at a sufficiently large moment of time TM , the orthogonality relation
leads to the following linear system of equations

Nbin∑

l̄�1

[
cα||
VV

(
TM , Rl , Rl̄

)
γ ||(Rl̄

)
+ cα⊥

VV
(
TM , Rl , Rl̄

)
γ ⊥(

Rl̄
)] � −cα�FV (TM , Rl ), α � ||, ⊥ (10.3)
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Equation (10.3) allows the friction functions γ ||(R), γ ⊥(R) to be uniquely deter-
mined on the distance mesh. The friction functions are thermodynamically consis-
tent with the MS-CG conservative force used to compute the correlation functions
cα
�FV . Following the standard DPD formalism, the random forces for both the par-
allel and perpendicular contributions are modeled a priori with fluctuation–dissipa-
tion theorem-compliant white noise (uncorrelated in time). The appropriate fluctu-
ation–dissipation relations for both the parallel and perpendicular contributions can
be found elsewhere [75].

10.2.2.2 Application to RDX and NM: Parameterization
of Nonconservative Forces

The accurate description of transport phenomena, such as diffusion and viscosity,
with the DPD approach, requires the parameterization of radial, γ ||(R), and shear,
γ ⊥(R), friction functions. The application of the multiscale methodology presented
in Sect. 10.2.2.1 for RDX [63] and NM [51, 60] leads to accurate γ ||(R) and γ ⊥(R)

friction functions that are thermodynamically consistent with the conservative inter-
actions (Fig. 10.3). The radial friction function γ ||(R) for NM was found to exhibit
a typical form at fine coarse-graining [51, 60]. In contrast to this and to bottom-up
nonconservative DPD forces of real molecular liquids discussed in the literature,
the dissipative dynamics of RDX is dominated by the shear friction γ ⊥(R), and
hence cannot be accurately simulated using standard DPD, which accounts for only
the radial friction γ ||(R). The analysis of DPD simulations using MS-CG forces
for RDX highlights the importance of the perpendicular friction on the short-time
dynamics and transport properties. Evidently, the way in which the dissipation in
molten RDX is partitioned (with the shear component being dominant) is a result
of concerted translational and intramolecular conformational dynamics of the RDX
molecules. Therefore, the RDX dissipation dynamics is distinctly different from
those observed in liquid NM and other molecular liquids [41, 51], which are well
described by nonconservative DPD forces with dominant radial friction. We note in
the DPD methods described below, both shear and radial friction terms have been
included.

10.2.3 Outlook

Our future efforts are directed toward formulating novel extensions of the MS-CG
method to create a hierarchy of high-fidelity bottom-up CGmodels for explosive for-
mulations.We intend to createCGparticle interactions (potentials) that are dependent
upon other aspects of the particle’s local environment beyond local density, such as
the three-body local arrangement or more complex order parameters. We also intend
to incorporate a wide range of multibody interactions as well as dipolar and higher
order electronic polarizability interactions that are pertinent to EM composites. For
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Fig. 10.3 Histogramdata (thin noisy) andGaussianfilter smoothing [51, 63] (thick) of friction func-
tions γ ||(R), γ ⊥(R) for the one-site MS-CG models of RDX (Panel a) and NM (Panel b) obtained
by solving (10.3). The scaled CoM radial distribution functions (RDFs) are shown by dot-dashed
lines. For the MS-CG-D(E) model for RDX, the vertical line and arrow show the choice of cutoff

distance
(
R f
cut

)
for the frictions, and γ eff(R) is the effective friction [34]. (From Izvekov, S.; Rice,

B. M., Phys. Chem. Chem. Phys. 2015, 17 (16), 10795–804.)

example, we believe that noncentral three-body interactions might play an important
role in the microstructure evolution of EMs under shock, particularly in the molecu-
lar level plastic response, while the dipolar and higher order electronic polarizability
interactions have longer range effects that will influence the structural response at
longer scales. In order to have thermodynamically consistent capabilities to model
themicroscale, however, coarse-grainedmodels cannot be generated separately from
the development of the methods that use them, since features lost during the required
process of coarse-graining will not be adequately recovered unless reintroduced in
some fashion, namely the simulation method. Thus, we now turn our attention to the
DPD-based methodologies used to simulate solid EM under a range of threats.
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10.3 Coarse-Grain Methods

Computationally reasonable particle-based simulations of material behavior gov-
erned by micro- and mesoscale structural heterogeneities require the development
of CG models such as those just described. However, careful consideration must be
taken for the choice of not only a CG model, but as critically, for the choice of an
appropriate CG methodology, especially since the use of their results in higher scale
simulations will strongly influence the outcome. To determine properties other than
static (equilibrium) properties, the CG-molecular dynamics (CG-MD) approach is
not adequate due to the well-known speedup of the dynamics of CG models com-
pared to their atomistic model counterparts, which is a direct consequence of losing
d.o.f. during coarse-graining [80, 81]. Moreover, at the atomistic scale, the formation
and breaking of chemical bonds is treated explicitly and is conceptually intuitive, but
at the microscale, the CGmodels and methods must collectively capture and recover
the relevant physics and chemistry lost during coarse-graining.

The development of CG modeling methods is an active field, where most of the
attention has been given to treating the static behavior of soft matter (see e.g., [82,
83]). These systems are amenable to coarse-graining because some atomic motions
(e.g., hydrogen vibrations) contributeminimally to the backbone behavior and result-
ing equilibrated microstructure. Further, the weakly repulsive interaction potentials
for such systems allow on the order of 10−13 s time steps to be used, providing access
to phenomena that occur on microsecond timescales. However, only a relatively lim-
ited number of CGmodel studies have attempted to reproduce nonequilibriumbehav-
ior [84–92], in part due to the challenge of mapping the CG and atomistic model
dynamics. Thus, we have made significant investments in CG methods development
to describe nonequilibrium behavior.

An overview of our efforts described here has entailed creating computational
capabilities targeting the microscale that allow for physically realistic simulations
of the thermomechanical response of EM composites with microstructure. Particle-
basedmicroscale simulationmethods utilizingCGmodels currently offer a promising
route into and beyond the microscale, the critical time and spatial regime that cannot
be accessed with atomistic MD. We have chosen microscale methods that are built
upon the DPD method [56, 57], a technique initially developed for the simulation of
soft matter, but recently applied to condensed phase matter [75, 92]. Our microscale
approach, which incorporates the salient physics, couples CG models with reactive
microscale methods, where both are described within this chapter. These efforts are
designed to provide predictive capabilities that are amenable to direct coupling with
continuum level models in a multiscale modeling framework, or to provide crucial
information for development of higher fidelity continuummaterialmodels. The direct
coupling efforts are described in Sect. 10.5.
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10.3.1 CG Method: Variants of DPD

10.3.1.1 General Description

The DPD method is now a well-established CG particle simulation method that
has evolved substantially since its inception in 1992 [56, 57]. Advances in both
method and model development now allow DPD simulation of a wide range of
material classes from soft matter, such as polymers and biomolecules, to condensed
matter, such as metals and crystals [52, 89, 93]. DPD is well grounded in statistical
mechanics and stochastic dynamics, allowing for a physics-based interpretation of
the parameters and their determination from higher resolution models. Advances in
the method continually arise from work in various material communities, further
extending its potential applicability and utility.

The original formulation of the DPDmethod conserves total momentum only and
thus is limited to modeling isothermal processes. For the purpose of simulating EM
composite response, the energy-conservingDPDmethod (DPD-E) [92, 94–96] is par-
ticularly critical since it enables nonequilibrium simulation scenarios and thermally
variant conditions. DPD-E uniquely treats the CG d.o.f. through both the dissipative
forces and a particle internal energy term. The particle internal energy term plays
two roles within the DPD-Emethod. First, it provides a numerical means of ensuring
energy conservation during the simulation. Moreover, the particle internal energy
term provides an additional mechanism to recover the coarse-grain d.o.f., which is
essential for accurately reproducing the atomistic model behavior [75].

Building upon the ideas of Maillet and co-workers [86, 91], we recently devel-
oped a general DPD framework that incorporates chemical reactivity (DPD-RX)
[75]. Originally constructed for DPD-E, the DPD-RX method can be formulated
upon either this variant or the constant-enthalpy DPD variant (DPD-H) [92], notated
as DPD-RX-E and DPD-RX-H, respectively. In either variant, a reaction progress
variable is assigned to each particle that monitors the time evolution of an extent-
of-reaction associated with each of the prescribed reactions that may occur within
each particle. As such, the DPD-RX approach does not necessitate a reactive poten-
tial that involves explicit bond breaking and bond forming. The chemical reactivity
can be modeled using complex or reduced reaction mechanisms and allows for both
unimolecular and multimolecular collision reactions to be simulated via both direct
and indirect approaches. Aside from including the extent-of-reaction and introduc-
ing an additional term to the particle internal energy (uchem), the DPD-E and DPD-H
formalisms do not change. In practice, for every time step, DPD-RX dynamics are
separated into three elementary, physical processes: (1) inert dynamics—execution
of the DPD-E (or DPD-H) equations of motion; (2) CG-reactor chemistry—extent-
of-reaction change within each CG particle based upon the prescribed chemistry;
and (3) reaction energy update—partitioning of the chemical energy release or gain
by updating the CG particle internal energy, during which the total energy of the
given CG particle does not change. As the chemistry of a CG particle changes, so
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does its interaction potential. The interaction potential changes in such a way that it
captures both heat exchange and pressure–volume work due to chemical reactivity.

10.3.1.2 Equations of Motion

In the DPD-E method, at any time t, a particle I is specified by its mass mI , position
rI , momentum pI , and internal energy uI . The particle internal energy accounts for
the energy absorbed or released by the d.o.f of the higher resolution model that are
unresolved as a result of coarse-graining; uI is coupled to the internal temperature
θI through a CG equation of state (CG-EOS) typically defined as, uI � uI (θI ).
The variation of the internal energy duI can be written as the sum of contributions
that correspond to the mechanical work done on the system, dumech

I , and the heat
conduction between particles, ducondI , i.e., duI � dumech

I + ducondI . In DPD-E, two
types of temperatures are defined, a kinetic temperature, T kin, which is associated
with the external d.o.f., and the internal temperature, θI , which is associated with the
internal d.o.f. At equilibrium conditions, these two temperatures will be statistically
equivalent, but not necessarily under nonequilibrium conditions.

Extending the DPD-E method to the reactive case requires the variance of the
particle internal energy duI to include an additional contribution that corresponds to
the energy associated with changes in chemistry, duchemI . The total variance is given
by duI � dumech

I +ducondI +duchemI , where the total energy of the system is assumed to
remain constant during changes in duchemI . The set of equations of motion for DPD-E
is accompanied by an update of uchemI specified as

duchemI � −duCGI (I � 1, . . . , N ) (10.4)

where uCGI is the CG interaction energy of particle I . Equation (10.4) follows from
the requirement of total system energy conservation, such that the total energy of
each particle is assumed to be conserved upon any concentration change due to
the reaction. Analogous to the nonreactive DPD-E approaches, conservation of the
total momentum and the total system energy, E � UCG + K +

∑
I u I , is satisfied,

where K � ∑
I
pI · pI

2mI
is the total kinetic energy and UCG is the total CG interaction

energy. For the DPD-RX approach presented here, any change in the CG particle
chemistry is also reflected through a species-dependent CG-EOS, uI � uI

(
θI , Nξ

)
,

where Nξ is the number of molecular species ξ in the product gas mixture. The
choice of uI

(
θI , Nξ

)
is a modeling decision, where a possible formulation is to

consider the isolated molecule contributions based upon the molar heat of formation,
�Hf,ξ (Tr ), and the isobaric heat capacity of eachmolecular speciesC0

P,ξ (θI ), taken at
some reference state [75]. The development of alternative formulations is an ongoing
pursuit by our group.
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10.3.1.3 Reaction Model

TheDPD-RX framework presented here builds upon the treatment of theCGparticles
seemingly as interacting continuous-stirred tank reactors [97] or CG-reactors. The
CG-reactor depicts temporal changes in the species type and concentration of the
molecules representing the CG particle, where these changes in chemistry are gov-
erned by the prescribed set of reaction mechanisms and kinetics, termed the reaction
model. For further illustration of the DPD-RXmethodology, consider a specific reac-
tion model, namely, the thermal decomposition of crystalline RDX into a mixture
of product gases. From global reaction rate models of high-temperature combustion
of nitramines, a reduced reaction mechanism was determined, where the resulting
RDX decomposition pathway is a four-step reaction rate model [75] consisting of a
unimolecular, irreversible reaction:

RDX → 3HCN +
3

2
(NO2 + NO + H2O) (10.5)

and three bimolecular, irreversible reactions:

HCN + NO2 → NO +
1

2
(N2 + H2) + CO

HCN + NO → CO + N2 +
1

2
H2 (10.6)

NO + CO → 1

2
N2 + CO2

Each reaction rate constant is modeled by a standard temperature-dependent Arrhe-
nius expression, where the temperature used is a local weight-average internal tem-
perature of CG particle I , defined as

θ̄−1
I �

∑
J�1 ωLucy(rI J ) θ

−1
J∑

J�1 ωLucy(rI J )
(10.7)

where J includes the neighboring particles of I and itself, and ωLucy(rI J ) is the Lucy
function [98]. A local-average particle internal temperature used in the reaction rate
expressions implicitly depicts multimolecular conditions and the local environment
of a chemically reactingmixture.Nevertheless, the formsof θI andωLucy aremodeling
choices, where alternative forms are possible. Further discussion of the choice of the
reaction model specifically for EM simulations is given below in Sect. 10.4.

10.3.1.4 Particle Model

In the DPD-RXmethod, the particle interaction potential is not a reactive type poten-
tial that mimics chemistry through bond breaking and subsequent formation of tran-
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sition structures and reaction products (e.g., [23, 99]). Rather, the evolving chemistry
modeled by theCG-reactor depiction is directly coupled to the interaction potential of
the CGparticle. In the application presented here, the chemical character of any parti-
cle can vary between two end states, unreacted RDX and a final product gas mixture,
with many continuous chemical states in between. An RDX molecule is represented
by the isotropic one-site CG model (CG-RDX) [52] obtained by the MS-CGmethod
described above, while the product gas mixture is modeled using the exponential-six
interaction potential [100]. A notable feature of this model is that the expansion of
hot product gases is inherently captured through the chemistry-dependent particle
interactions via changes in the particle excluded volumes.

10.3.1.5 Practical Aspects

Beyond attempting to reproduce the correct physics, the development and imple-
mentation of the CG framework requires several practical considerations. A plethora
of numerical integration schemes have been extensively explored (e.g., [85, 92,
101–106]), allowing for stable, accurate, and efficient simulations. Recently our
group has adopted an efficient integration scheme for the DPD variants based on the
Shardlow-splitting algorithm (SSA) [92, 104, 107]. Compared to the traditional DPD
integrators, the SSA allows for larger time steps, on the order of 103, making simula-
tions of CG models of EM composites possible for the DPD-E and DPD-H variants.
Advancements to the DPD methods and algorithms are continually incorporated
within the highly-scalable open-source LAMMPS (Large-scale Atomic/Molecular
Massively Parallel Simulator) simulation package [108] to provide a long-term, sus-
tainable modeling framework that can readily leverage high-performance computing
resources. Such practical considerations are critical for enabling simulations with
107–109 particles at the relevant time and length scales for EM composite models.

10.3.2 Sample Applications

The DPD variants can be applied to gain a fundamental understanding of the ener-
getic material response to shock. Consider the shock profiles of the CG-RDX model
with those of a nonreactive atomistic model [64] at conditions under which reactions
are not expected to occur (see Fig. 10.4). Clearly, theMD simulation of the CG-RDX
model significantly overpredicts the thermal response, due to improperly accounting
for the energy and momentum exchange. This leads to a kinetic temperature increase
that is significantly higher than the atomistic model temperature at and behind the
shock front. In the DPD-E simulation, the transfer of mechanical energy from the
plate impact into the CG d.o.f. has appropriately occurred via the heat and momen-
tum exchange between the particle internal energies. In the CG-MD simulation, the
particles behave effectively as hard spheres, while the DPD-E simulation allows for
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Fig. 10.4 Comparison of the
nonequilibrium, nonreactive
response of pure crystalline
RDX: (atomistic MD) fully
atomistic model using MD;
(CG-MD) one-site CG-RDX
model using MD; and (CG
DPD-E) due to mechanical
shock generated by plate
impact at u p � 0.5 km/s.
Kinetic temperature and
density profiles are snapshots
taken 15.0 ps after impact
(Adapted with permission
from Brennan et al., J. Phys.
Chem. Lett., 2014, 5 (12), pp
2144–2149. Copyright 2014
American Chemical Society.)

some of the momentum exchange to be absorbed into the particle internal energies
via the CG-EOS.

Next, consider applications of the DPD-RX-E method to examine the effects of
microstructural heterogeneities on the material response to mechanical shock. Vari-
ations in the local geometry and density may lead to significantly different hotspot
formation, which dictates the macroscopic material response. In the examples below,
several microstructures are generated to examine the role that defects and complex
grain boundaries play in the material response. In the first scenario, 10-nm spherical
inclusions are randomly distributed throughout the 2.5 μm sample. The sample is
slammed into a reflective wall in the −z-direction, generating a shock compression
wave that propagates through the sample in the +z-direction. As the shock front
passes through the material, the spherical inclusions collapse, transferring mechani-
cal energy to heat the particles and initiating chemical reactions. The particle internal
temperature and reaction progress (defined as the fraction of RDX that is present in
the particle) is shown in Fig. 10.5, where after approximately 0.5 ns, the shock front
reaches the end of the 2.5μm sample. In cases with sufficiently large shock velocities
and/or defect sizes, the spherical inclusions are observed to combine and coalesce
into larger reaction zones.

To examine the effects of grain boundaries on material response, a polycrystalline
RDX microstructure geometry is constructed using a Voronoi tessellation method,
where the polyhedra are treated as individual grains (Fig. 10.6a). The particle-based
model of each grain is subsequently grown as a perfect crystal that is free of any
intragranular defects. The resulting structure is a large polycrystalline network of ran-
domly oriented HCP-like ordered grains with complex, planar interfaces and inter-
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Fig. 10.5 Snapshots along the sample for the reaction progress (top) and particle internal temper-
ature (bottom) at various positions along the z-axis of a 2.5 μm shocked RDX sample. The initial,
unshocked sample included a random distribution of 10-nm spherical inclusions that collapse, cre-
ating localized hot spots that initiate chemistry. The unreacted material in the sample is not shown
for visual clarity and to depict the surface area of the reaction zones

Fig. 10.6 a The initial, unshocked polycrystalline RDX sample. b Snapshots along the sample for
the common neighbor analysis (top), reaction progress (middle), and internal temperature (bottom)
at various positions along the z-axis of the 2.5 μm sample. For the reaction progress snapshots, the
unreacted material in the sample is not shown for visual clarity and to depict the surface area of the
reaction zones. The common neighbor analysis uses the following coloring scheme: HCP � pink,
FCC � Green, BCC � Blue, ICO � Yellow, and White � Other

granular voids. As the material undergoes shock compression, a common neighbor
analysis is performed to highlight the initial, unshocked HCP-like grains and the
resulting microstructure that evolves due to shock (see Fig. 10.6b). These particle-
based methods are able to capture the microstructural heterogeneities and short-time
physics that evolve immediately after the shock wave passes through the sample,
enabling the exploration and understanding of the fundamental mechanisms that
influence material performance. In this particular microstructure, energy localizes at
the inter-granular voids, creating localized hot spots where chemical reactions begin
to evolve. The behavior of the void collapse differs from the previous microstructure
due to the varying volume sizes, shapes, and locations.
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10.3.3 Outlook

For the goal of understanding EM composite performance, we developed a CG
method framework that allows us to begin exploring the role of explicit microstruc-
tural heterogeneities in thesematerials.While numerous atomic-scale reactive poten-
tials are available within the literature (e.g., [23, 99, 109]) that also allow the explo-
ration of the effects of microstructure, they are limited to studies of single, isolated
defects due to computational cost [110]. CG approaches such as those presented here
allow exploration into previously unattainable temporal scales. Given that the time
step in a particle simulation is dictated by the highest frequency modes, which are
coarsened away in a CG model, time steps that are thousands of times larger may be
taken [92, 104]. Application of CGmodels andmethods that treat chemical reactivity
extend the length and timescales well beyond those currently realizable in atomistic
simulations, enabling exploration of microstructure-dependent material systems that
was not previously possible.

While the DPD-RX framework enables simulations at vastly different length and
timescales as compared to atomistic-scale simulations, the computational speedup
comes at the cost of losing atomistic detail. By design, the CGmodel behavior cannot
replicate the total fidelity of the atomistic model behavior. Rather, the intent is for the
CG model simulation to produce results of sufficient accuracy across a broad range
of material properties and behavior for the problem of interest, but for considerably
less computational expense. In other words, efforts are made to strike a balance
between maintaining the d.o.f. that reproduce the key atomistic model behavior,
while decreasing the overall computational cost. To this end, we continue to optimize
the recovery of the salient d.o.f. through improvements and refinements of the CG
model development and the DPD-RX framework. Several possible refinements and
future research directions for the DPD-RX framework are highlighted next.

The particle interaction model for the product gas mixture (pgm) is a first-
generation model, where an assortment of modifications for extending the trans-
ferability of the model to describe a wider range of chemical states typically present
under the extreme conditions of shock and thermal loading is needed. In deter-
mining the interaction potential for the pgm model, significant effort is required to
adequately sample the reacting environment in a statistically reliable manner, which
is dependent upon both the density and species concentrations. Simulation data from
finer-scale models, as well as an analytical EOS for the exponential-6 potential may
reduce some of the burdens. Furthermore, to minimize the limitations of the single-
site exponential-6 interaction potential currently being used for the pgm model, the
development of a density-dependent model is under consideration.

Some further refinements that would make the method framework more gener-
ally applicable are possible. For example, the DPD-RX framework can be extended
to permit intra- as well as interparticle reactions, i.e., reactions influenced by the
composition and temperature of either the particles themselves solely, or also the
surrounding particles, respectively. The intraparticle approach implicitly accounts
for mass diffusion of the reacting species, which under certain circumstances (e.g.,
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short timescales) may be sufficient to accurately represent the salient behavior, but
in other scenarios, mass diffusion may play a key role. The interparticle approach
more directly mimics multimolecule reactions, where explicit treatment of mass dif-
fusion can occur via species transfer between CGparticles. Further work is underway
to extend the DPD-RX framework to allow other variations of reactions, including
non-bond breaking reactions such as molecular conformational transitions [111].

Finally, specific to understanding the reactive behavior of EMs under extreme
conditions, improvements to the reaction model itself are needed. Currently, the
four-step reduced kinetics model for RDX decomposition described above is used,
where this reactionmodel exhibits density-dependence consistentwith the condensed
phase. Moreover, the DPD-RX framework ensures that the chemical energy content
from the reaction model, starting with pure RDX and ending with product gases,
is thermodynamically consistent through the use of standard state data taken from
either thermochemical data tables or ab initio calculations. Simulation studies using
the current reaction model are expected to provide reliable qualitative trends, as a
means of mapping the relative roles of various types of microstructure heterogeneity
in EM composites. Nonetheless, much is unknown about the condensed phase chem-
istry of EM, so uncertainty remains regarding the accuracy of our particular reduced
reaction model. Hence, more investigation and development is needed to provide the
most accurate depiction of the condensed phase chemistry. The DPD-RX framework
is sufficiently general such that it allows any (practical) number and type of reac-
tions and the associated species to be implemented, including pressure-dependent
reaction models. Therefore, if new insight gained from higher resolution simulation
techniques, such as those described in the next section, or novel experiments lead to
the development of more accurate reaction models, then these models can be readily
implemented.

10.4 Condensed Phase Chemistry Under Extreme
Conditions

10.4.1 Development of Reaction Models for DPD-RX

A description of the chemical reactivity is needed to complete our approach to model
the microscale response. As indicated above, this description must be amenable for
use at the CG scale within the DPD-RX methodology. In this CG representation,
the description of the interparticle interactions is dependent on the CG material
state whether unreacted, partially reacted, or fully reacted. As described earlier, the
current DPD-RX methodology assumes each CG particle behaves as a well-stirred
reactor [75], whose chemical composition is governed during the simulation by a
corresponding extent-of-reaction variable for each reaction in a prescribed chemical
kinetics mechanism. In its current form, the DPD-RX method requires a description
of the chemical composition of the CG-reactor during the decomposition of the
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solid EM to gaseous products, which in turn is dependent on the chemical kinetics
mechanism.

Derivations of full chemical kinetics mechanisms based on elementary reactions
[112] and subsequent reduction to computationally tractable reduced-order chemical
kineticsmodels (ROM) are conceptually straightforward and have been very success-
ful when used in numerous applications including combustion modeling [113]. The
DPD-RXmethodology demonstrated above for shock loading of theCG-RDXmodel
uses such a reduced four-step chemical kinetics model [75], which was based on gas-
phase reaction mechanisms for nitramine combustion [114] combined with a single-
step rate of RDX decomposition above the melting temperature [115]. However,
while this chemical kinetics model qualitatively exhibits the expected behavior, it
may not properly represent the actual condensed phase reactivity in extreme nonequi-
librium conditions, such as those associated with high-pressure, high-temperature
shock states (>10 GPa and >1000 K). The material environment in these highly
dense conditions (>2.0 g/cm3) allows for different chemistries that would not be
accessible at less extreme conditions. Thus, because a reaction model is required in
the DPD-RX framework, it is necessary to obtain an accurate microscale descrip-
tion of the extent of chemical reaction of an energetic material subjected to insult,
whether a detonation or a sub-detonative response (often even more challenging to
model) is the final result. Some of the challenges that exist for transitioning the con-
densed phase chemistry behavior into the DPD-RX framework will be considered
at the end of this section. However, prior to that, we will describe the challenges in
first determining just the reaction mechanism for chemistry occurring under these
extreme conditions, where consideration for determining the associated kinetics are
left for discussion elsewhere.

10.4.2 Scope of the Problem and Challenges

As chemical reactions are inherently atomistic processes, the proper simulation
methodology to obtain rate information is through atomistic approaches, prefer-
ably using accurate quantum mechanical (QM) methods. QM methods applied to
the systems at hand, are typically limited to simulations of a few picoseconds using
<105 atoms. Numerous classical and quantum-mechanically based MD simulations
of thermally and mechanically initiated energetic materials have been published
[116–153], some of which attempt to describe reaction rates and mechanisms of the
material in extreme conditions. However, as nicely detailed in a review byManaa and
Fried [117], determination of accurate rate information from atomistic simulations of
energetic materials in highly nonequilibrium high-density states is a daunting under-
taking. The most obvious challenges pertain to the complexity of the event, spawn-
ing several questions that must be considered: Is it possible to unravel the complex
dependence of concurrent reactive processes occurring in a heterogeneously dense
environment under extremely nonequilibrium conditions into a series of individual
reaction steps? Does the simulation adequately sample the phase space for a suf-



10 Toward a Predictive Hierarchical Multiscale Modeling Approach … 251

ficiently long time to observe all important reactions? Is all relevant phase space
represented in the simulation? Is the level of theory adequate to properly describe
the material state under these extreme conditions? Do computational tricks imposed
for simulation efficiency [18] introduce artifacts that might influence outcomes?

Provided these questions can be adequately addressed, there are additional con-
cerns as to whether chemical species can be properly identified for monitoring
throughout a simulation, the most direct manner in which to determine the extent
of reaction. Using empirical classical reactive models, assignment of bonds can be
readily accomplished, thus allowing for monitoring species evolution throughout a
trajectory. However, there is always the question whether the material states, which
might be far from those of the training set used to parameterize the empirical model,
are properly described. Thus, a more predictive, less empirical quantum-based level
of theory is appropriate for use in these simulations. This leads to questions about the
adequacy of the QM method. At what conditions do approximations in the chosen
QM theory [116] break down? Furthermore, within a QM representation, there is no
unique way to define electron localization and therefore, no unique way of defining
whether atom pairs are bonded, or whether species are radicals or ions. For example,
species may be identified based on bond distance and lifetime criteria, a reasonable,
but nonunique scheme to determine chemical moieties [117]. However, different sets
of bond distance and lifetime criteria could result in different sets of observed chem-
ical moieties. Without a unique means of identifying species, individual reaction
steps, the key to the classical chemical kinetics mechanisms, cannot unambiguously
be determined and monitored to measure lifetimes.

Perhaps the single most difficult challenge is accurately simulating the overall
event. Current computational capabilities allow for certain QMmethods (e.g., DFT)
to simulate systems under extreme conditions, thus reducing reliance on empirical
models but at an increased computational expense. It would be desirable to use highly
accurate QMmethods, such as the “gold standard” of QM (coupled cluster with sin-
gles, double, and perturbative triples excitations [CCSD(T)]) [116]; however, this
method is extremely computational intensive and is limited to approximately 20–40
atoms for a single time step. Outside of this consideration of accuracy versus compu-
tation time, the simulations suffer from several other deficiencies thatmight introduce
error into the results. First, the systems being simulated are highly idealized, and a
realistic material environment is inadequately described. The computational require-
ments for QM simulations of this type preclude inclusion of material heterogeneities
in the simulation cell and do not allow for simulations of processes that go beyond a
few picoseconds (assuming system sizes no larger than 105 atoms). For some simula-
tions, selection of appropriate initial conditions is tricky and fraught with opportunity
to introduce bias. For example, in quantum molecular dynamics (QMD) simulations
that target a specific thermodynamic state at an extreme temperature and/or pressure
(such as Wu et al. [154] and Rice and Byrd [155]), equilibrating the system might
result in chemical reactions occurring before the desired thermodynamic state is
reached. This, in turn, could influence subsequent chemistry once the targeted ther-
modynamic state is reached. Thus, it must be considered whether the initial state and
subsequent equilibration protocol had biased the resulting chemistry as the desired
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thermodynamic state was approached. Rice and Byrd attempted to address these
issues by performing two isothermal–isobaric QMD simulations of formic acid at
extreme conditions in which chemistry was observed, and for which the initial con-
ditions were dramatically different [155]. In these two simulations, densities and
potential energies converged to the same values on the time scale of the simulations.
This information was used to predict a shock Hugoniot point using assumed final
thermodynamic states. However, due to the limited simulation time, it could not be
determined whether full chemical equilibrium was reached, thus potentially influ-
encing the predicted shock Hugoniot point. Furthermore, in simulations of this kind,
the equations of motion are coupled to a thermostat and/or barostat, which could
influence chemical reactions as energy is adjusted to achieve the desired temperature
and pressure. For example, the dissipation rate of thermal energy originating from
exothermic reactions will depend on a thermostat’s damping parameter.

Simulations other than those that target-specific thermodynamic states, such as
the aforementioned examples [154, 155], are also susceptible to potential errors by
virtue of their simulation protocol or process. For example, in some simulations to
explore onset of thermal decomposition [117, 126, 130, 131, 140, 142, 151, 156], a
system is first optimized or equilibrated to a state in which reaction does not occur
and is then heated, leading to the question of how the heating rate is influencing
the chemistry, and whether the heating rate is realistic. For shock simulations, two
approaches are used to explore shock-initiated chemistry: direct mechanical shock
simulation or the multiscale shock technique (MSST) [157, 158]. For the former
approach, of which there are multiple schemes available for mechanically generat-
ing a shocked sample, the system is often overdriven in order to observe chemical
reaction within a computationally feasible time frame. The question is raised as to
whether the chemistry resulting from the overdriven shock (leading to a higher degree
ofmaterial compression) is relevant to the chemistry associatedwith steady-state det-
onation or that initiated by a weaker shock. On the other hand, while several studies
[118, 119, 121–124, 132, 133, 135, 136, 145] have been used to explore the chemistry
resulting from a shock using the MSST approach (which allows for smaller simula-
tion sizes, and thus longer times), the inherent assumptions within MSST regarding
stress gradients and thermal gradients limit its accuracy in describing material states
immediately behind the shock front. Thus, it is unlikely that direct mechanical shock
and MSST simulations would yield the same initial chemistries directly behind the
shock front. This, in turn, could influence subsequent chemistry across the reaction
zone. An example limitation of MSST is that it does not explicitly model a wave
traveling through the sample. As such, some aspects of anisotropic material response
cannot be captured, as microstructural features (e.g., voids, grain boundaries) will
not experience a directional shock wave moving through them. Another advantage
of MSST over direct shock simulation is that it allows for the convenient inclusion of
quantum nuclear effects [159, 160], which may decrease the shock strength neces-
sary to observe the onset of reactions. For both MSST and direct mechanical shock
simulations, it is possible that the chemistry is biased due to the initial conditions,
equilibration protocol, and simulation process.
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Furthermore, these nonequilibrium simulations are performed within the con-
straints of periodic boundary conditions, which can be problematic if the material’s
thermodynamic properties or local structure becomes significantly inhomogeneous
within the simulation cell (such as conditions under mechanical loading). These
local variances (which may further increase with reaction during the simulation)
could interact with the periodic images and adversely influence the outcome. Some
of these errors are introduced because of system size and time limitations; they can be
somewhat mitigated by using empirical or semiempirical approaches, such as reac-
tive force fields [22, 23] or tight-binding DFT (DFTB) [161] to perform substantially
larger and longer simulations [117]. However, the accuracy of these methods cannot
be assumed for conditions beyond those used for parameterization.

Evenwhen using DFT, the accuracy of themethods at extreme conditions is a lim-
iting factor. As opposed to gas-phase processes, the highly accurate multi-reference
QM approaches used in the evaluation of elementary reaction rates cannot be applied
to the condensed phase, due to computational costs. (For a further discussion of
quantum mechanical methods, see Taylor and Rice [116]). Additionally, at extreme
conditions, electronic excited states might play a role in chemistry; these could not be
treated by single-reference DFT. Furthermore, pseudopotentials used for computa-
tional efficiency might introduce errors for highly compressed material. However, as
DFT is the most reasonably accurate ab initio approach available to predict reactions
in a shocked condensed phase system at this time [116, 117], we consider it the best
approach to model chemistry of an energetic material under extreme conditions, and
thus, DFT is being used in our attempts to determine a condensed phase reaction
model for use in DPD-RX.

10.4.3 Some Illustrations of the Challenges

An illustration of some of the difficulties associated with DFT simulations described
above is evident in a heroic study by Wu and co-workers [154], in which they
attempted to examine the chemistry of solid PETN compressed to the estimated
Chapman–Jouguet (CJ) density of 2.38 g/cm3 and heated to temperatures of 3,000
and 4,200 K (the estimated CJ temperature) using DFT isothermal–isochoric (NVT)
simulations. By “painstakingly” tracking reactions during the simulations, Wu et al.
found, for example, “over 3,000 unique reactions, 78% of which only occur once in
the simulation” in a periodic simulation cell containing only four molecules [154].
With computational platforms and algorithms substantially improved since the 2009
Wu et al. study [154] that allow for system sizes and simulation times of 105 atoms
and picosecond timescales, respectively, using DFT, the complexity and number of
the reactions discovered are expected to increase. Wu et al. were able to determine
that material conversion under these conditions involved catalysis by water and its
decomposition products, a distinctly different process than those assumed in more
traditional proposed decomposition mechanisms [154]. The catalytic process is pos-
sible due to the extreme conditions, in which water rapidly dissociates and provides
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a continual source of OH and H. By virtue of this ease of dissociation, Wu et al.
suggest that “bonds containing hydrogen are inherently nonmolecular, and thus the
CJ state should not be treated as a mixture of conventional molecules” [154].

Likewise, our own forays into large-scale QM studies of materials under shock
conditions have shown us that unusual chemistries can occur. For example, we per-
formedQMDNVT simulations of formic acid at shock conditions [155], a detonation
product for which there was conflicting experimental information regarding its reac-
tivity at high shock pressures, and is a standard species considered in thermochemical
code calculations. QMD NVT simulations at a state point well above the purported
transition pressure for reaction showed chemical reactivity, determined from time
traces of all original covalent bonds in parent formic acid, the nearest-neighbor
hydrogen atom from each of the oxygen atoms in the parent molecule, as well as
nearest-neighbor distances between heavy atoms in adjacent molecules. The simula-
tions showed that hydrogens exhibited extensive mobility, migrating back and forth
among species, resulting in hydrogen exchange reactions to reform formic acid or
forming protonated formic acid or formate moieties. Also observed were long-lived
extended networks composed of fragments and atoms fromvarious parentmolecules,
which might be the early stages of polymerization under these conditions.

Other quantum-based simulation studies of materials under high temperature and
pressure states also have shown similar mobility of hydrogen atoms [133–135, 162,
163], as well as charge transfer [118, 136, 164]. Similarly, we have observed “non-
molecular” hydrogen behind the shock front in overdriven shock simulations of
PETN using large-scale, DFT, Born–Oppenheimer MD simulations. For example,
we followed a hydrogen atom propelled forward toward the shock front, weaving
through free space among a tangled mass of atoms so densely packed that chem-
ical speciation would require a herculean effort, and would rely on a certain level
of empiricism. This atom quickly migrated forward ahead of the mass flow, before
it was subsequently captured by a different moiety closer to the shock front, thus
arresting its free motion. In this shock simulation using QM forces, it appears to
be impractical (or impossible) to define the chemistry in terms of unimolecular or
bimolecular mechanisms.

While the material state in the overdriven shock simulations of PETN is at higher
compression and temperature than the Wu et al. simulation of PETN at a single ther-
modynamic state corresponding to the experimental CJ condition [154], it is notable
that a few features are similar, such as the presence of nonmolecular hydrogens. It
is unfortunate that current state of the art precludes QMD simulation for sufficiently
long times to simulate a steady-state detonation of an EM; thus, the material state
in the reaction zone of a steady-state detonation remains to be discovered. Until
novel algorithms and computational resources allowing for realistic atomistic simu-
lations of shock initiation leading to steady-state detonation are available or advanced
experimental methods are developed to interrogate the reaction zone, that question
will remain unanswered. These and other studies of chemistry of materials under
extreme conditions clearly support the conclusion of Wu et al. that “the traditional
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approach based on molecular reactions that is commonly applied in gas-phase com-
bustion chemistry is no longer adequate for describing chemical reactions under these
extreme conditions [154].”

10.4.4 Outlook

Due to the lack of understanding of the material state and the complex chemical
conversion occurring behind the shock front of a reacting EM, we argue that the
most immediate need at present is to perform an extensive series of quantum-based
(either DFT or DFTB) MD simulations of an EM subjected to shocks of different
strengths to monitor emergent material response, specifically identifying features
behind the shock front in which molecularity is retained or lost, and where chemical
speciation can or cannot be determined. A lofty goal would be to compare the het-
erogeneous material state within a simulated detonation reaction zone against that
proposed in the Nonequilibrium Zeldovich–von Neumann–Doring (NEZND) model
of detonation for condensed phase explosives [165]. Pursuit of this goal is facilitated
by the emergence of exascale computing [166–168], novel computational methods
that will allow for QM simulations with larger system sizes and longer times (e.g.,
[169]), and data mining approaches [170–174] to cull crucial information directly
from these atomistic simulations leading to the much-needed understanding.

Clearly, both the time and financial commitment and resources required to achieve
an understanding of condensed phase chemistry is daunting. Moreover, the path for-
ward is speculative, where we have described a possible approach for determining
only the reaction mechanisms. Even more daunting is the task of determining the
reaction kinetics associated with the reaction pathways. Still further, there are con-
siderations for transitioning this information into generating a reaction model that is
of practical use in the DPD-RX framework. For example, a complete reaction mech-
anism is required that encapsulates the reactive behavior from the initial unreacted
EM through to the final product gas species. Thus, research is needed to formulate
ROM for use in the DPD-RX framework that captures the important features of
the detailed chemical kinetics mechanisms obtained from the atomistic simulations.
Still other open-ended questions remain. If radicals, polyradicals [175], or transient
states are part of the reaction mechanism, can the required input for the CG-EOS
for each species be readily determined (i.e., a reference state heat of formation and
temperature-dependent constant-pressure heat capacity)? Will these transient states
be so short-lived that they won’t play a role within the time scale of the DPD-RX
time step (~5–20 fs)? If they are sufficiently long-lived, can CG models be readily
developed for these species? If we develop a highly-detailed reaction mechanism,
will these details be significant on the time scale of the DPD-RX simulation?

These questions provide ample opportunities for research investigations designed
to afford a multiscale description of condensed phase chemical reactivity of EM at
extreme conditions. Our expectation is that the ROMswill be progressively enhanced
as the condensed phase reactionmodeling efforts evolve. These reactionmodel devel-



256 B. C. Barnes et al.

opments will be complemented by any necessary coinciding adaptions of DPD-RX.
This complementary approach provides a convenient and natural framework to incor-
porate the complexities arising from the coupling of microstructure with a quantum
mechanical understanding of chemistry.

10.5 Hierarchical Multiscale Simulation: Reaching
the Experimental Scale

Prediction of the macroscale response of energetic material, including all aspects
of chemical reactivity, provides a significant motivation for continued research in
multiscale modeling. Continuum “burn” (chemistry) models may often reproduce
shock-to-detonation transitions when parameterized using sufficient experimental
data, or when using chemical equilibrium approaches for ideal explosives, but sub-
detonative reactivity and deflagration-to-detonation remain difficult to predict for
many systems. As chemical reactivity may be influenced by many factors, such as
material EOS or microstructure, our research plan involves systematically increas-
ing the complexity of our multiscale simulations. In this section, we will discuss:
(a) common multiscale approaches, (b) properties of constitutive models for ener-
getic materials that are currently addressed by multiscale simulation, (c) our current
hierarchical multiscale approach and implementation, (d) a demonstration of our
concurrent hierarchical approach, and (e) future research opportunities.

10.5.1 Multiscale Approaches

Information from particle-based simulations, such as those using the DPD-RX
method, can be utilized in continuum simulations through a variety of modern mul-
tiscale approaches. We will briefly survey common multiscale approaches, gener-
ally following the taxonomy described by Tadmor and Miller [20]. In describing
multiscale approaches, we will typically be describing a continuum, or macroscale,
simulation that leverages information from high-fidelity, smaller length-scale calcu-
lations. In the literature, these may also be referred to as upper and lower scales, or
alternatively as coarse and fine scales. We will avoid referring to the fine scale as the
“microscale” in order to avoid confusion of the term with micron length scales or
microsecond timescales, which nevertheless may be present in particular multiscale
approaches.
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10.5.1.1 Sequential Upscaling

Fast-running constitutive material models for continuum simulations may be directly
parameterized from the results of fine scale simulations, much like how CG models
maybe constructed from the results of atomistic simulations. Examples of this include
construction of an EOS for a pure material from rigorous first principles calculations
[176], calculation of elastic constants for use in a continuum model [177], or the
fitting of a chemistry model to a numerical description of molecular simulation
results [175].Wewill not discuss the sequential approach in detail; it is historically the
most common approach for transferring information between scales. When carefully
applied by a subject matter expert, it may provide good results for the selected
problem. It is often the case that a particular upscaled material property is understood
to only be applicable within a constrained range of states, i.e., the transferability
problem (particularly important in force field development [178]).

10.5.1.2 Concurrent

Concurrent approaches involve performing simulations with both macroscale and
fine scale methods at run time [20]. This allows for a higher fidelity description of
phenomena of interest than sequential upscaling, but with increased computational
expense. Fracture, for example, is difficult to realistically model at the continuum
scale, but one approach is the embedding of an atomistic domain in a continuum
simulation [179]. A particular property’s response may be dependent upon a large
number of variables, making generation of an upscaled model in advance prohibitive
due to the “curse of dimensionality [14, 180].” Microstructural effects that give
rise to emergent behavior may be difficult to “build in” to a predictive constitutive
model [11]. In each of those cases, a concurrent multiscale approach able to directly
query the results of a high-fidelity model may provide an accurate solution. Note,
the nomenclature for describing concurrent simulation is highly inconsistent across
the open literature. We follow Tadmor and Miller’s [20] usage and further categorize
concurrent multiscale simulation as “partitioned-domain” or “hierarchical”.

Partitioned-Domain

Partitioned-domain approaches involve a decomposition of the simulation into mul-
tiple spatial domains, which may be overlapping. An inexpensive, less computa-
tionally costly model is used in the larger domain(s), and an expensive, more com-
putationally costly model is used in the smaller region of critical interest [181].
Examples of this include a QM/MM simulation for modeling the active site of pro-
teins [182], or an embedded atomistic domain in a continuum finite element mesh.
Challenges for partitioned-domain approaches involve describing the “handshaking”
region between different methods/models, and the accessible simulation timescales
being limited by the computationallymost expensive per-time-step domain (typically
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also the domain requiring the smallest time step). While quite successful in solving
some problems, partitioned-domain approaches may not be applicable to problems
where the domain requiring high-fidelity information is itself macroscale in size; the
high-fidelity, expensive model could consume nearly the entire extent of the system
being simulated. Another limitation is when long timescales need to be accessed.
For example, some partitioned-domain methods are limited by the timescale of the
step size in the expensive simulation (e.g., continuum cycles operating at MD time
steps, roughly ~1 fs), although recent research has attempted to address this issue
[179].

Hierarchical

Hierarchical approaches often involve the interleaving of macroscale and fine scale
simulations [13, 183–185]. A macroscale simulation, such as a continuum finite
element simulation, may require information about its elements from the fine scale
at each time step [186]. This information may be provided from constrained fine
scale simulations run in-between continuum time steps. This information exchange
between scales characterizes a hierarchical approach. An example of this from the
field of computationalmechanics is the FE2 simulation,where twofinite element sim-
ulations are performed, with the fine scale being amuchmore highly resolved “repre-
sentative volume element” (RVE) [187]. Intensive properties of the RVEmay be used
at the macroscale in a technique called computational homogenization [188]. More
general mathematical frameworks for hierarchical simulation include the “equation-
free” approach and heterogeneous multiscale method (HMM) [184, 189, 190]. In
HMM calculations, generalized macroscale governing equations that rely upon a set
of variables may have missing variables provided by constrained fine scale calcu-
lations. The constraints and simulations necessary at the fine scale are application-
specific, and left for the subject matter expert to determine [189]. Using an HMM
approach, one may calculate many different material properties across the entire
macroscale domain using high-fidelity fine scale simulations. An example we will
describe later in this section is calculating EOS response from particle-based simu-
lations.

10.5.2 Constitutive Material Models

We briefly describe two common components of a constitutive model for energetic
materials, which may be described by a multiscale model. Other possible compo-
nents of a material model may include (but are not limited to) models for failure,
elasticity, plasticity, yield strength, hardening, as well as properties such as thermal
conductivity, melt curves, heat capacity, or viscosity. In a shock-to-detonation tran-
sition, brittle failure or thermal conductivity may not be a concern for modeling;
the material will detonate on a short timescale and those properties may not affect
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the transition. However, every continuum simulation for energetic material response
requires an EOS, even if the material does not undergo reaction. Therefore we start
with a discussion of the material EOS, and then discuss chemistry, since energetic
materials will eventually leverage their energy-releasing chemistry during physically
relevant simulations.

10.5.2.1 Equation of State

First and foremost for our application is the material EOS. This is the relationship
betweenmaterial energy, density, temperature, and pressure. A simple example is the
ideal gas law for a gaseous EOS. Pressure is often calculated through an analytical
EOS such as the Mie-Grüneisen equation, Jones–Wilkins–Lee EOS, or a number
of other forms [191]. More complicated recent examples include the use of the
Peng–Robinson EOS formultiphasemixtures [192], or construction of a free energy-
based EOS for solid RDX [176]. In many material models, the temperature may not
actually be calculated and is not present in the continuum governing equations. The
temperaturemay be calculated if a cold curve, or the static lattice energy as a function
of volume, is available. Tabulated forms such as Livermore EOS tables or SESAME
tables are also used in modern hydrocodes, which may include data for all relevant
state variables (including temperature). An accurate EOS is critical for calculation
of peak shock pressure and related state variables in a continuum simulation, or for
stress–strain response at a variety of strain rates. Calculation of realistic stress–strain
curves requires both accurate elasticity and plasticity models before the onset of
failure. Calculation of the EOS is particularly challenging for energetic materials,
as chemical composition will change over the course of a reactive event, such as a
detonation. An ideal steady-state detonation described by Chapman–Jouguet theory
is at the state point where the Rayleigh line of the unreacted products is tangent
to the shock Hugoniot for the product gas [193]. Calculation of those states, and
therefore the detonation properties of an energetic material, requires an accurate
EOS for unreacted material and any species in the reaction mechanism leading to
the final products.

10.5.2.2 Chemistry

While continuum simulations of metals, ceramics, or some composites (e.g., fiber
composites at low strain rate) may not need to consider chemical reactivity, energetic
materials release stored energy through chemical reactions. When modeling explo-
sives, phenomenological models such as the Tarver “ignition and growth” reactive
flow model [165, 194] are often used to describe detonation kinetics. In that model,
progress from reactants to products depends upon material density, pressure, and
amount previously reacted. The reactants and products are described by separate
EOSmodels. Complex hydrocodes also have support for advanced chemistrymodels
that may explicitly account for many chemical compounds and complicated chemi-
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cal kinetics, including chemical equilibrium detonation models [195]. In the absence
of robust experimental data, it may be difficult to parameterize any type of chem-
istry model, motivating the need for multiscale modeling. Further, phenomenologi-
cal models such as the ignition and growth model are less useful for some problem
domains; for example, a model that describes shock-to-detonation may not pro-
vide predictive physical insight regarding the effects of low-velocity sub-detonative
impacts on an energetic material. Therefore, phenomenological models are devel-
oped to model particular classes of problems. Significant progress has been made
in developing models for thermal cook-off [8, 196] or reactions due to low-speed
impact [197]. In principle, a high-fidelitymultiscalemodel can be used to describe the
response to loading at a variety of conditions, including the key chemical processes
in a material [171, 198]. Advances in the DPD-RXmethodology (Sect. 10.3) provide
a path forward for high-fidelity modeling at micron length scales that may address
conditions ranging from nonreactive, low-speed impact to shock-to-detonation tran-
sitions.

10.5.3 Hierarchical Multiscale Simulation

10.5.3.1 Definition of Scales

In this section, we will describe our particular approach for bridging to continuum,
which we refer to as “hierarchical multiscale simulation” (HMS). The macroscale
in our work is a continuum, Lagrangian finite element simulation in ALE3D [171,
199]. The fine scale in our work generates results from the set of DPD variants
implemented in LAMMPS and the CG-RDX model described above. The constitu-
tive material model in ALE3D receives its EOS information from these fine scale
simulations. We will also describe results where chemistry is provided from fine
scale simulations. This combination of macroscale and fine scale defines a concur-
rent, hierarchical approach using the Heterogeneous Multiscale Method. A software
framework, referred to as the HMS framework, handles communication and transfor-
mation of information between the macroscale and fine scale [200, 201]. The HMS
framework also handles computational aspects of the multiscale implementation,
such as queuing of the fine scale calculations and storage of the fine scale results.
Figure 10.7 provides a conceptual representation of the connection between scales,
with the HMS framework handling communication between the macroscale and fine
scale, and requests being dispatched from the macroscale on a per-element basis.

10.5.3.2 Machine Learning

In some cases, direct evaluation of the fine scale for every element at every continuum
time step (or “cycle”) may be prohibitively expensive for simulations with millions
of finite elements, over many hundreds of continuum cycles. Consider the case of a 1
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Fig. 10.7 Conceptual representation of the connection between the macroscale, the HMS frame-
work, and the fine scale

million element simulation run for 7000 cycles, with a fine scale that requires 3 min
and 64 cores for solution (for one element, at one cycle). On a 100,000 core machine,
completion of that simulation would take over 25 years. In order to make our HMS
approach computationally tractable, the HMS framework implements a feature to
leverage previously computed fine scale results. The central idea is that a set of such
previously computedfine scale resultsmaybe used to approximate the result for a new
property calculation, if the new fine scale state is easily interpolated from previously
computed states. Interpolation may be many orders of magnitude faster than an
actual fine scale evaluation. Publications variously describe this general approach as
surrogate modeling, adaptive sampling, or machine learning [180, 200, 202–209].
When used with a database managed by the HMS framework that is expanding over
time (i.e., over the course of themacroscale simulation),where additional information
in the database improves interpolation efficiency and accuracy, we consider this to be
regression via supervised machine learning. HMS applications requiring millions of
elements and hundreds of cycles become computationally tractable with an efficient
machine learning implementation. It is critical that the development of this data-
driven model is done in close coordination with a subject matter expert for the
underlying physics-driven model, otherwise unphysical results may go unnoticed. In
short, theory and data should work hand in hand [172].

10.5.3.3 Speculative Evaluations

The use of machine learning to make problems tractable introduces a new challenge
for HPC environments, where the number of cores available is not a severe constraint.
As the efficiency of the machine learning algorithm (i.e., its interpolation rate) may



262 B. C. Barnes et al.

vary from cycle to cycle, the number of required fine scale evaluations will fluctuate.
If the number of cores requested for the job exceeds the number of cores necessary
for fine scale evaluations, then some remaining cores may be idle. This inefficiency
may be overcome through the launching of “speculative” evaluations of the fine scale
model on those otherwise idle cores. While not directly used in constitutive model
evaluations for the current cycle, these speculative evaluations may be added to the
HMS framework database of fine scale results. Additional data in that database will
improve the efficiency and accuracy of future machine-learned model evaluations,
therefore potentially decreasingwall clock run time and increasing the overall fidelity
of the simulation. This is particularly important, as wall clock run time may be
determined by the slowest element; improvement of the fine scale database to a point
where no fine scale evaluations are needed for a particular cycle results in impressive
wall clock speedups. Speculative HMSmay also leverage batch schedulers that allow
changes in the number of cores available for jobs that are currently running; additional
speculative evaluations could be initiated if there are idle nodes on a supercomputer,
or the number of speculative evaluations was lowered for the case in which a higher
priority job is needed to acquire additional batch nodes. The inherently parallel nature
of fine scale evaluations—eachfine scale simulation is independent of others—makes
speculative HMS easily amenable to full utilization of petascale and potentially even
exascale HPC resources, given a sufficiently complicated problem and expensive
fine scale evaluations.

10.5.3.4 The HMS Framework

Key to the effective execution of this HMS strategy is the software framework that
interfaces the macroscale and fine scale [200, 201]. Typically, simulation software is
not written with concurrent, hierarchical multiscale coupling in mind. The software
is most often run in a standalone manner using well-documented material models,
such as analytical forms available in hydrocodes or empirical potential forms built-in
to MD programs. Therefore, communicating constraints and results between those
programs is a software engineering task. This framework is also responsible for the
machine learning (or surrogatemodel) and scheduling of fine scale evaluations,which
are computational science problems. While not adding significant computational
overhead, the HMS framework is responsible for handling the parallel execution
of the updates to the fine scale database (evaluations necessary for the macroscale
model), as well as the updates to the machine-learned model. It should be sufficiently
general that if the HMS requirements change, e.g., additional macroscale variables
are requested for evaluation in a more complicated fine scale model, then large
parts of the software framework do not need to be rewritten. Similarly, it should
be flexible enough to allow for easy changes to the machine learning method or
its hyperparameters and to accommodate restarts to simulations that are terminated
due to hardware error or queue run time limitations. In general, the design and
implementation of the HMS framework is an effort that is distinct from, but as
important as, the design and implementation of the fine scale model.
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10.5.4 HMS with LIME as the Fine Scale

In this final section, we describe HMS results using a fine scale model for RDX. The
fine scale solver we use is the LAMMPS Integrated Materials Engine (LIME) [210],
an automation and analysis tool written in Python, and developed specifically for our
HMS effort. LIME instantiates, executes, and returns results from DPD simulations
using our CGmodel for RDX. In an HMM review article, E. and co-workers describe
the design of the fine scale solver as “often the most difficult step, and is subject to
continuous improvement [189].” Fine scale solvers must reliably return an accurate
result to the HMS framework without human intervention in a minimal amount
of time, over any range of inputs that may be encountered during the macroscale
simulation. Further, execution ofmany fine scale solversmust effectively scale—task
parallelism leads to efficient leveraging of supercomputing resources [186]. If the
fine scale solver is extremely costly for reading or writing many files or large files
to a shared file system, i.e., input and output (I/O) intensive, then simultaneous
execution of thousands of fine scale solvers may degrade HMS performance. This
may also occur for MPI initialization of programs [211]. Further, jobs unrelated to
the multiscale simulation may also be degraded. As such careful design of the fine
scale solver is necessary.

10.5.4.1 Nonreactive Case

The nonreactive case of HMS using LIME utilizes a CGmodel for RDX and DPD-E.
In this simulation, the macroscale requires EOS information from the fine scale. In
particular, it needs temperature and pressure (T , P) as a function of energy and den-
sity (E, ρ). The pressure desired is the hydrostatic component of the stress tensor. The
hydrostatic nature of the response and the two input state variables provide sufficient
constraints to allow for the construction of the fine scale problem. The temperature
and pressure returned may be considered to be equilibrium values. This allows for
decoupling of the macroscale and fine scale in both length (the fine scale simula-
tion will have a smaller volume than the macroscale element) and time (equilibrium
simulations at the fine scale may have a smaller simulation time than the duration
of macroscale time steps). The fine scale solver must instantiate a DPD simulation
with the same energy and density as the macroscale inputs. It must then equilibrate
the simulation cell. Although equilibration may be assumed for sufficiently long
equilibration periods, properly detecting equilibration is nontrivial and extremely
useful for performing fine scale simulations in minimal amounts of wall clock time.
After the cell is equilibrated, the solver must collect enough data to produce accurate
ensemble averages for temperature and pressure, and return those averages to the
HMS framework. Additional data, such as the standard error and variance of the
ensemble averages, may also be returned. Those values may be used for uncertainty
quantification at the macroscale. When information frommicroscale/mesoscale sim-
ulations is used to determine material response in continuum simulations, the ideal
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continuum model would reproduce the exact result of the fine scale model, if the
two models/methods were used to simulate the same physical system over the same
amount of time. In general, correspondence of observable properties between scales
is a key component of validating a multiscale model.

In Fig. 10.8, we demonstrate this correspondence of results for the P-V and T -
V planes of the Hugoniot with our CG-RDX model. The sets compared are data
provided by LIME and used in an ALE3D plate impact simulation, and data from
longer duration results purely from DPD-E simulation in LAMMPS. The T-V plane
is particularly sensitive to error. For example, if the simulation cell does not have
approximately equal pressure in each cardinal direction when generating data to
be used in ALE3D, then the LAMMPS and ALE3D results will diverge by several
Kelvin. LIME carefully monitors the normal directions of the pressure tensor in
order to ensure they are roughly equal, therefore that error is not present in Fig. 10.8.
Additionally, a very small difference is observed when a yield stress (strengthmodel)
is present in the ALE3D simulation. Disabling this restores near exact agreement
between the sets.

Because temperature determines chemistry in our fine scale model and is the
more sensitive property for bridging scales, it is prudent to investigate the accuracy
of temperature calculations in further detail. Figure 10.9 demonstrates the standard
error of the mean, or the sampling accuracy, of temperature for our fine scale model
using LIME. The axes in Fig. 10.9 reflect the inputs to LIME: finite element energy

Fig. 10.8 P-V and T -V planes of the Hugoniot for particle-based simulations (LAMMPS) and
continuum simulations (ALE3D) driven by LIME EOS tables
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Fig. 10.9 Standard error of the mean for temperature over a range of LIME EOS calculations

and density. In general, LIME provides results with 0.5 K or better accuracy in
temperature for a given state point. As would be expected, systems that are higher in
energy (hotter) have larger error, since we are demonstrating absolute error and not
relative error.

Understanding the efficiency of fine scale simulations across a wide variety of
state points is important, in that it determines both a limiting factor for wall clock
time of the macroscale simulation, and may reveal a challenge for automation of fine
scale calculations. In Fig. 10.10 we examine the total number of DPD-E time steps
(equilibration and production, combined) performed during state point evaluations
across the wide-ranging surface of energy and density. While the vast majority of
state point evaluations using LIME require fewer than ~9000 total DPD-E time steps,
there is a significant cluster in the 1.85–2.15 g/cm3 range at energies corresponding
to temperatures of over 500 K, where many more time steps are needed in order to
converge LIME. If it would be common for simulations to explore that part of state
space, then the algorithms and heuristics in LIME could be further tuned in order to
accelerate convergence for those state points.

Putting it all together for the nonreactive case, we demonstrate a Lagrangian finite
element Taylor anvil impact simulation using ALE3D as the macroscale and LIME
as the fine scale for the material EOS. In Figs. 10.11 and 10.12, snapshots from
2D axisymmetric impact simulations are shown with elements colored by pressure,
demonstrating pressure waves traveling through the material and deformation at



266 B. C. Barnes et al.

Fig. 10.10 Total number of DPD-E time steps necessary for LIME convergence over a range of
state point calculations

material edges that are impacting the hard wall. The simulation in Fig. 10.11 used
LIME for EOS calculations in each of the 1600 elements. These calculations were
performed “on the fly”, meaning that LIME was called during the HMS simulation,
for each element, at each cycle. The simulation in Fig. 10.12 also used LIME as the
fine scale, but used a machine learning method for statistical regression in the HMS
framework in order to provide estimates of LIME response within a controllable
error tolerance. The regression method of choice for our HMS framework is kriging,
also known as Gaussian process regression, and was previously demonstrated in a
study examining a two-scale model for crystal plasticity [200]. This allowed the
simulation in Fig. 10.12 to use one million elements for its mesh (a 625× increase
in mesh size), without needing to explicitly call LIME for each of those elements
at every cycle. Comparing the figures, for this case, it is evident that higher mesh
resolutions are critical for resolving physical phenomena in continuum simulations,
where the separation of elastic and plastic waves is visible in Fig. 10.12, while not
visible in Fig. 10.11.

10.5.4.2 Reactive Case

The second example of HMS using LIME is that of a plate impact test using the
CG-RDX model and DPD with reactions (DPD-RX) method described above in
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Fig. 10.11 Taylor impact test simulation, colored by pressure, with 1600 elements. EOS response
for each element was calculated with LIME “on the fly” every cycle. Time units are microseconds
and pressure units are megabar

Fig. 10.12 Taylor impact test simulation, colored by pressure, with one million elements. EOS
response for each element was calculated using a combination of LIME “on the fly” and machine-
learned responses. Time units are microseconds and pressure units are megabar
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Sects. 10.2 and 10.3, respectively. In this simulation, the macroscale requires not
only EOS information from the fine scale, but also chemical species information, an
additional nine variables given our reaction model described in Sect. 10.3. However,
the time evolution of chemical kinetics under shock infers that the fine scale may no
longer be assumed to be in an equilibrium state. Therefore, a similar instantiation
and equilibration scheme may be followed in LIME (adjusted for input chemical
species from the macroscale), but production data is collected in “lock step” with the
macroscale; in particular, the fine scale solver covers the same production simulation
time as themacroscale time step. HMS plate impact simulations, such as the snapshot
in Fig. 10.13, demonstrate the consumption of RDX and temperature rises similar
in magnitude to those observed in DPD-RX simulation, but systematically lower.
This is believed to be in part due to the effects of computational homogenization
when a wave has only partially passed through a many-micron wide finite element.
Resolving differences between reactions at the macroscale and fine scale and solving
the “scale-bridging in time” problem for the nonequilibrium case are active areas of
research for us.

Fig. 10.13 Plate impact simulation, colored by amount of RDX consumed (red scheme, 1.0 �
pure RDX, 0.0� all RDX consumed) and material type (gray, aluminum). This demonstrates direct
use of chemistry from fine scale simulations during a continuum shock impact simulation. Only
elements near where chemistry is occurring are displayed. Time units are microseconds and length
units are centimeters
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10.5.5 Outlook

Going forward, many challenges need to be overcome for our HMS approach applied
to energetic materials. Simulations to date have relied on an idealized description of
RDX as a homogenous, defect-free single-crystal material. However, as described at
the beginning of this chapter, it is known that for real energetic materials, initiation
thresholds are determined by a number of factors such as polycrystalline grain size,
shear, porosity, amount and types of binder or plasticizer present, or more broadly,
any inhomogeneities present [1, 2, 6, 117, 194, 212–220]. Incorporating those effects
into an HMSmodel will require continued research and development of the fine scale
particle-based models, and then leveraging of those models in an HMS scheme that
utilizes additional history variables to describe each of those components of themate-
rial microstructure. Capturing all of those effects in a single microscale RVE may be
difficult or impossible, requiring use of several statistical volume elements to capture
a variety of effects and then return weighted results to the macroscale [221–224].
Including over a dozen history variables for descriptions ofmicrostructure and chem-
istry in an automated fine scale calculation also leads to new challenges for machine
learning in a high-dimensional space, the so-called “curse of dimensionality [14,
180, 225–229].” Regardless of the multiscale approach chosen, currently there is no
immediately apparent approach to model the complex reactive response of energetic
materials across all possible insults. However, with further developments, HMS pro-
vides a viable and promising path forward for accurate, high fidelity simulations in
the future.

10.6 Concluding Remarks

Advances in multiscale modeling and simulation methodologies are beginning to
make possible virtual design and performance assessment of EM, before actual pro-
duction, enabling modeling and analysis of complex phenomena across multiple
time and length scales. We have described our own developmental efforts to predict
the dynamic behavior of EM at all relevant length scales that will lead to under-
standing of the various dynamic processes, properties, and mechanisms for energetic
material response under the full range of conditions. Microstructure plays a domi-
nant role in the macroscale response of the EM, however, computational capabilities
have been lacking at the microscale. We described our efforts to fill this computa-
tional capability gap through the development of CG models and methods that can
simulate microstructure evolution (including effects of chemistry) in response to var-
ious stimuli. Upon upscaling of these microscale tools into the macroscale models,
the effects that microstructural heterogeneities impose on macroscopic events can
be captured. We described multiscale modeling methodologies capable of coupling
behaviors from the fine scale to the macroscale, including our choice of a concurrent,
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hierarchical multiscale approach, and the computational simulation framework into
which simulations at the various scales are effectively integrated.

Relative to atomistic and continuum approaches used to simulate EMs, our
microscale and hierarchical multiscale efforts are in the nascent stage of develop-
ment. Currently, we have demonstrated proof of concept calculations and provided
paths forward for advancing the methodologies. We are proceeding in a straightfor-
ward methodical manner, and while much more work is needed, our efforts continue
to evolve, where progress continues to be promising. Although the effects of the loss
of fidelity due to coarse-graining have yet to be rigorously quantified for our models,
estimates of the computational gains are encouraging. If we consider MD using the
ReaxFF force field as the most viable model comparison for the detailed simulation
of microstructure evolution with chemistry, estimates of the computational costs
savings of our microscale approaches are on the order of 104 in speedup. Such gains
allow us to move beyond the simulation of isolated ideal microstructure and begin
simulating microstructure typically found in actual EM composites.

We described deficiencies of various components of our efforts, with an emphasis
on the reaction models.We believe that future work should focus on the development
of reduced-ordermodels that properly depict chemistry of condensed phasematerials
under extreme temperatures and pressures. Key development needed for our CG
models is a more accurate modeling of the plastic response and improvement in the
transferability of the product gas mixture model. A next stage development for our
CGmethods will focus on a more complete representation of species mass diffusion.
For the multiscale hierarchical tools, further work is needed on novel statistical
sampling of microstructural features at the fine scale, and obtaining an understanding
of error propagation and uncertainty quantification across the scales. This includes
uncertainties on dynamic yield behavior, fracture behavior, mechanical/chemical
physics at extreme states, plastic deformation, anisotropic crystal properties, material
slip, and contact behavior—all of which affect the behavior of an EM.

We hope that the description of the research challenges will inspire further devel-
opment of innovative models and methods, leading to a robust predictive multiscale
modeling and simulation capability that will describe EM response under the full
range of conditions. Our tools are built around a general computational framework,
so that they can be extended to other material systems with moderate modification.
Therefore, while we hope our efforts will advance EM design, we also hope that they
will be used to study materials beyond EM.
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