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Preface

This book presents recently developed computational approaches for the study of
reactive materials under extreme conditions, with an emphasis on atomistic meth-
ods or those derived from atomistic calculations. Our intention is to include
state-of-the-art developments in a single source, spanning high pressures (e.g., 10s
to 100s of GPa), high temperatures (up to 1000s of degrees Kelvin), and even
strong electrical fields. The methods presented here include ab initio approaches
such as Density Functional Theory (DFT) and semi-empirical quantum simulation
methods (spanning nanometer length scales and picosecond timescales) as well as
reactive force field and coarse-grained approaches (spanning microns, nanoseconds,
and beyond). These approaches are readily applied across a broad range of fields,
including prebiotic chemistry in impacting comets, studies of planetary interiors,
high-pressure synthesis of new compounds, and detonations of energetic materials.
We have aimed to emphasize the strong connection with experiments throughout
the book. Our hope is that this will prove to be a useful reference for both com-
putational scientists wishing to learn more about specific subfields in this area as
well as experimental scientists wishing to gain familiarity with well-known com-
putational approaches for simulation of their experiments.

The book can be subdivided into a number of ways that will hopefully prove
instructive to both experts and the uninitiated. Broadly speaking, Chaps. 1–5 have
focused on some sort of quantum simulation approach, mainly with Kohn–
Sham DFT as the starting point. Chapters 1, 4, 6, 7, and 8 discuss force field
simulation and development for classical molecular dynamics calculations.
Chapters 8, 9, and 10 discuss coarse-graining approaches to extend prediction of
physical and chemical properties to closer to experimental time and length scales. In
more detail, Chap. 2 focuses on crystal composition and structure prediction
through evolutionary algorithms. Chapters 3 and 4 discuss semi-empirical quantum
method developments, which can yield significantly longer timescales for molec-
ular dynamics simulations while still providing information about electronic states.
Chapter 4 places an emphasis on refining both semi-empirical and classical
molecular dynamics simulations through force matching to DFT-MD trajectories,

v



including approaches for speeding up the fitting process through linear least-squares
fitting. Chapters 4, 5, and 6 discuss extending quantum simulations to long time-
scales through free energy calculations and accelerated simulation approaches.
Chapter 8 has some focus on novel reactive coarse-graining approaches for
shock-induced volume collapsing reactions. Chapters 9 and 10 place additional
emphasis on use of machine-learning methods to extend physical–chemical simu-
lation approaches to closer experimental time and length scales.

The chapters in this book can also be neatly subdivided by application area.
Chapter 1 discusses hydrocarbon polymers under extremely high pressures and
temperatures. Chapters 2, 8, and 10 explore energetic materials, with Chaps. 8 and
10 exploring reactive conditions. Chapters 4, 5, and 6 explore prebiotic chemistry,
and the role extreme conditions can play in the synthesis of simple, life-building
precursors. Chapters 3 and 8 focus on the chemistry of simple organics under shock
compression conditions. Chapter 9 investigates the reactivity of jet fuels under
combustion (high temperature) conditions.

Ultimately, we wish for this volume to be a useful pedagogical tool for a wide
variety of researchers in extreme physics and chemistry. Though our specific
emphasis has been on elevated conditions, the work presented here can be gener-
alized very easily to other materials, pressures, and temperatures. Our collective
efforts can be broadly applied to any number of scientific efforts spanning many
different types of compounds and reactive conditions. Thus, the aim for our book is
to be impactful for any research area that relies on atomistic simulation approaches
to guide and elucidate experimental studies and materials discovery.

Livermore, USA Nir Goldman
October 2018
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Chapter 1
Simulations of Hydrocarbon Polymers
Related to Compression Experiments
on Sandia’s Z Machine

Thomas R. Mattsson, Kyle R. Cochrane, J. Matthew D. Lane and Seth Root

Abstract High-fidelity modeling of hydrocarbon polymers is important for gaining
fundamental understanding of the underlyingmaterial behavior as well as for design-
ing high energy density (HED) experiments. In this chapter, we describe multi-scale
modeling/simulation of hydrocarbon polymers done at Sandia and corresponding
experiments on Sandia’s Z machine. For polymers, a combination of first-principles
simulations using density functional theory (DFT) and atomistic simulations using
classical molecular dynamics has proven to effectively model different aspects of
the system and we will present both. Throughout, we find that the simulations are
in qualitative and quantitative agreement with experiments, suggesting that the hier-
archy of simulations can be used to increase our understanding of polymers under
dynamic loading conditions.

1.1 Introduction

Hydrocarbon polymers are versatile and therefore ubiquitousmaterials in experimen-
tal loads on high energy density (HED) facilities like the National Ignition Facility
(NIF), the Omega laser facility at Laboratory for Laser Energetics (LLE), and the
Z machine at Sandia National Laboratories. The physics of polymers span large
length- and timescales and the way of modeling polymers has to change to match
the different physics. For example, under successively stronger shock compression,
polymers melt and dissociate into a hydrogen and carbon fluid/dense plasma. For
strong shocks, an accurate modeling of atomic dissociation is important, suggesting
that atomistic simulations based on quantummechanics are the appropriate approach.
Polymers are also the building blocks of different types of foams, which have poros-
ity and other internal structure. Foams are extensively used to tailor the behavior in
high-pressure experiments not only on a pulsed power driver like the Z machine [41]
but also on laser drivers [45]. For foams, an additional scale enters, the scale of pores.

T. R. Mattsson (B) · K. R. Cochrane · J. M. D. Lane · S. Root
Sandia National Laboratories, Albuquerque, NM 87185, USA
e-mail: trmatts@sandia.gov

© Springer Nature Switzerland AG 2019
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2 T. R. Mattsson et al.

For foams, the use of classical molecular dynamics (MD) simulations using reactive
force fields has given new insights into formation of hotspots and other aspects of
shock dynamics in heterogeneous materials.

The outline of the chapter is as follows. The first section is a discussion on
first-principles simulations using density functional theory (DFT), including post-
processing to analyze the chemical composition of the material. The second section
presents classical MD simulations of hydrocarbon polymers and—foams, we show
how the shock propagates in the foam and how local hotspots are formed. In the third
section, we discuss Z experimental results on PMP plastic and demonstrate how Z
and simulations give a complete picture of the PMP shock response. The chapter
concludes with a summary and conclusions.

1.2 First-Principles Simulations of Shocked Polymers

First-principles simulations usingDensity Functional Theory have brought important
insights into howmatter behaves under extreme conditions and, importantly, key pre-
dictions of thermodynamic properties from DFT simulations have been confirmed
experimentally. For example, Sandia’s Z machine has been employed to experi-
mentally determine the shock Hugoniot of a number of elements and compounds,
including carbon/diamond [25], xenon [47], water [28], carbon dioxide [48], hydro-
gen [23, 26], krypton [39], and quartz [27]. For these elements and compounds,
DFT simulations have been shown to predict the behavior with high fidelity. The
DFT modeling of shock compression of hydrogen, carbon, water, carbon dioxide
strongly suggests that it is possible to use DFT to successfully simulate hydrocarbon
polymers as well. That said, polymers add complexity and the excellent agreement
between DFT simulations and experiments demonstrated in 2015 [50] was far from
a foregone conclusion.

Density functional theory is based on a theoretical discovery byWalter Kohn [18,
29] that the energy of the electron gas of N electrons can be formulated as a functional
of the electron density in real space (3 spatial coordinates) without an explicit use
of the wave functions (3 N spatial coordinates, one for each electron). The resulting
simplification is tremendous since the problem is reduced from 3 N dimension to 3.
The discovery soon resulted in practical quantum simulations of electronic structures
of solids, atoms, andmolecules. Thefield has expanded, andDFTsimulations are now
commonplace across physics, chemistry, biology, and materials science. Although
a review of applications of DFT is well outside the scope of this chapter, we will
discuss themost important factors of applyingDFT to high energy density conditions
in general and post-processing for polymers in particular. For amore thorough review
on designingDFT calculations for materials science, includingHED, please see [37].
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1.2.1 First-Principles Thermodynamics of Shock
Compression

DFT is applied to problems in physics, material science, and chemistry to calculate
the energy in atomic systems. DFT calculations are used to compare energy differ-
ences between structures and determine energy barriers between transitions. One of
the most common DFT calculations is ionic position optimizations to minimize the
system energy and to determine transition paths in the energy landscape. The elec-
tronic structure is mostly sought for the lowest, zero Kelvin, energy state, where the
Fermi distribution is a step function. The discontinuous Fermi distribution requires
extensive k-point sampling of reciprocal space in order to capture the behavior well.
Shock compression, on the other hand, involves a discontinuous jump from an initial
state to a final state that often is at very high temperature (Fig. 1.1).

Shock physics is driven by the Rankine–Hugoniot (RH) jump conditions, which
link the initial and final states for a system with a propagating shock wave of speed
us and particle velocity after the shock up. The RH equations are derived from the
conservation of mass, momentum, and energy across the front discontinuity:

(P2 − P1) � ρ1(us − u1)(u2 − u1) (1.1)

ρ2/ρ1 � (us − u1)/(us − u2) (1.2)

(e2 − e1) � 1

2
(P2 + P1)(v1 − v2) (1.3)

where e is the specific internal energy, P is pressure, and ρ is the density. The
subscripts 1 and 2 designate the initial and final states, respectively. The result is a
thermodynamics relationship between pressure, specific volume (v� 1/ρ), and inter-
nal energy of the final and initial states, the so-called Rankine–Hugoniot relationship
(1.3) [6].

u
s

u
2

12

u
1

Fig. 1.1 Shock wave in a material, the shock is supersonic and causes a discontinuous transition
from thermodynamic state 1 to state 2. The shock velocity is us and the net particle velocities before
and after the shock are u1 and u2. The initial and final states are linked by conservation laws. The
analysis can, for example, be made as a thermodynamic control volume
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Fig. 1.2 The end states of shock compression of polyethylene [9] (black) and three release paths
from different initial shock pressures. Note the shoulder in the Hugoniot between 100 and 150
GPa caused by dissociation of the polymer. Above 150 GPa, there are no longer any molecular
fragments, see Fig. 1.7

In thermodynamic space, the loci of end states generated from successively
stronger shocks starting from a common initial state are called the Hugoniot.
Figure 1.2 shows the polyethylene Hugoniot in density–temperature space (ρ–T )
and pressure–temperature (P–T ). Figure 1.2 also shows release isentropes: the path
the initial shock state relaxes fromwhen the driving pressure is released. Note that the
RH equations do not depend on the temperature except via the internal energy. Tem-
perature is extremely difficult tomeasure experimentally, so there ismore uncertainty
involving temperature than pressure and density.

The RH energy relationship points toward the need for high accuracy calculations
of internal energy and pressure in simulations of shock compression. It is evident that
temperature plays a key role, making molecular dynamics (MD) simulations appro-
priate for sampling the thermodynamics ensemble [1]. At the high temperatures of
shock compression, MD is a highly efficient method of sampling the thermodynamic
phase space [1].

Importantly, temperature also affects the electronic structure making it necessary
to use the Mermin finite-temperature formulation of DFT [42] which involves cal-
culating the full Fermi distribution of electronic states. At high temperature, the full
Fermi distribution includes many partially occupied continuum states, requiring sig-
nificantly more electronic bands than a normal “cold” DFT calculation does. The
consistent use of finite-temperature DFT is one of the most important aspects of
performing high-fidelity simulation in the HED regime.

While the thermal–structural disorder at high temperature relaxes the demands
for using a dense k-point sampling compared to that required for calculations of
ordered solids at zero Kelvin, it is necessary to apply a high plane-wave cutoff
energy in order to converge the electronic pressure [37]. The pressure is calculated
with derivatives of the electronic structure and hence converges more slowly than the
internal energy. The use of finite-temperature and systematic convergence were two
main reasons behind the first high-precision calculations of the deuterium Hugoniot
[11]. To summarize, DFT-based molecular dynamics calculations, often referred
to as QMD—quantum molecular dynamics—of shock compression requires high
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Fig. 1.3 Obtaining thermodynamic information from a long MD simulation. The moving average
is a useful measure for when the periodic oscillations in the simulation no longer influence the
result. A drift toward lower pressure during the simulation, for example, would indicate relaxation
in the system and a longer simulation time is needed

plane-wave cutoff energies, finite-temperature DFT using many partially occupied
bands, and the use of pseudo-potentials that are of high quality for normal conditions
as well as high-pressure and high-temperature conditions.

Figure 1.3 shows the electronic pressure for a polystyrene simulation at 1.05 g/cc
and 300 K. The time step is 0.5 fs. The red line is the moving average of the pressure
and is strongly influenced by the correlation between atom positions. In this plot, the
initial time for starting the moving average was picked to be close to the estimated
mean pressure, so, while the mean of the electronic pressure is 0.67 ± 0.015 GPa,
this is misleading as picking a different starting position will yield the same standard
deviation but a different mean until many more time steps. Block averaging is a
powerful way of extracting uncertainties from correlated data [1]. In this case, the
block size used was 37 but made little difference between 20 and 45. The block
averaged mean is 0.70 ± 0.08 GPa.

1.2.2 Analysis of Chemical Composition—Tracking Bonds

Of particular importance to simulation of polymers compared to elements is the pres-
ence of covalent bonds and the energy associated with bond breaking. The breaking
of covalent bonds takes energy, energy that otherwise would be available for increas-
ing the temperature of the shocked material. The result on the Hugoniot curve is the
shoulder in temperature evident in Fig. 1.2 at 2.25 g/cm3 / 120GPa. In this section, we
present a way of identifyingmolecular structure and apply it to conditions commonly
created by strong shock waves in polymer systems.
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Fig. 1.4 Species-dependent pair correlation function for ethane at 0.571 g/cm3 and 300 K. The
pair correlation plateaus at 1.00 since the pair correlation function is normalized to the random
probability of finding an atom in space, hence without any correlation the value is 1.00

Tracking bonds in a simulation is a three-step process.We determine bond lengths,
determine bond times, and then, based on those lengths and times, identify and track
the bonded atoms. Atoms are considered bonded if they stay within a given distance
of each other for a defined amount of time. If, at any time, one of the atoms drifts
outside of the prescribed distance and then drifts back in, the time is reset to zero
and must again be satisfied.

To determine bond length, we use the species-dependent pair correlation function
g(r) to find the distribution of distances between atoms in the reference system,
usually at ambient density and temperature. Figure 1.4 shows the pair correlation
function of carbon to carbon, carbon to hydrogen, and hydrogen to hydrogen for
ethane at 0.571 g/cm3 and 300 K. These simulations are several picoseconds long,
so we use multiple averaging times to obtain different samplings which allow us to
check that we do not have a large variation between each averaging time. We then
use these values in the bond tracking method on the reference system to confirm that
it yields the species of the initial state. Because we use a finite time step and have a
small number of atoms, we find that first minimum of the pair correlation for each
species is the best choice for bond lengths.

For the following example, we incremented the density of ethane from 0.6 to
4.0 g/cm3 by 0.1 g/cm3 and equilibrated each simulation at that density and constant
temperature in order to map out the Hugoniot locus points. When the Hugoniot
developed a slope inflection, which is often indicative of the onset of dissociation,
we calculated the pair correlation on the simulation just prior to the inflection density
to confirm that the molecules were still intact. This can be seen in Fig. 1.5. The
carbon–carbon bond length is the same. However, the carbon–hydrogen bond is
slightly longer, changing from 1.19 to 1.28 Å. Because these values are taken from
simulations closer to the dissociation regime in question, these are the values that
would be used for the bond tracking.
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Fig. 1.5 Species-dependent
pair correlation function for
ethane at 1.2 g/cm3 and
1050 K. The probability
approaches the random value
1.00 at a shorter
distance—reflecting less
correlation in the positions of
atoms than at lower
temperature

The next step is to determine the amount of time atoms must be in close proximity
to each other to be considered bonded. To start, we run the tracker on the simulation
in question and vary the C–C bond distance, C–H bond distance, H–H bond distance,
and time requirement.

At 1.5 g/cm3, 3100 K, we varied the required bond lengths and times in order to
determine that there is no sensitive dependence on a particular cutoff parameter. The
results from this sensitivity study are shown inFig. 1.6.Thehydrogen–hydrogen is not
shown as it made no difference. Each plot uses different carbon–carbon bond lengths,
varied between 1.60 and 1.72 Å. The abscissa is the carbon–hydrogen bond length
and is the same for all figures. Finally, the different colored lines denote different
proximity time requirements from 60 to 120 fs. In a transient system such as this,
as time goes to infinity, we expect the free carbon and free hydrogen to approach
their atomic ratios (carbon to 33% and hydrogen to 66%). It can also be seen that
there appear to be no clear breakpoints for picking one bond distance over another,
hence using the pair correlation functions as a guide. If there were distinct features
in Fig. 1.6, we would need to investigate the cause for them before continuing.

We use atom velocity as a guide to select a suitable duration. For this example,
we used the kinetic theory of gasses and ideal gas law as a crude approximation to
the velocity.

1

2
mv2 � 3

2
kBT

where kB is the Boltzmann’s constant, T is the absolute temperature, m is the mass
(in our case of a single atom), and v is the average Maxwellian velocity. With T �
3100 K, for carbon, we get a velocity of 2538 m/s or 0.02538 Å/fs. Therefore, over
100 fs, we can expect a single atom to move about 2.5 Å. For hydrogen, this would
be about 25 Å. We assume that for C–H, the atoms must be bonded if the hydrogen
does not rapidly move away from the carbon. Similarly, unless both carbons are
moving parallel, they would still drift apart quickly enough to fail the time/distance
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Fig. 1.6 Change in perceived composition as a function of bond distances for ethane at 1.5 g/cm3

and 3100 K. The changes are smooth, so the selection of a particular bond cutoff does not change
qualitative behavior

constraint. We use the vibrational period as a reference for our bond time calculation.
A carbon–carbon triple bond has a full period of about 18 fs. For a double bond such
as ethylene, the period is about 21 fs, and the period for a single bond in ethane
is about 33 fs. The 100 fs time cutoff was chosen to be significantly longer than
multiple vibration periods. The tracking method has a hard reset to a given molecule
interaction meaning if two atoms move apart farther than the distance cutoff, they
must satisfy the distance constraint for the entire time constraint again before they are
considered bonded. This allows us to better distinguish between a scattering event
and a bond.
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After identifying all of the bonded atoms, we can begin to identify molecules. Our
method uses a recursive algorithm capable of identifying branchedmolecules beyond
a nearest-neighbor picture. One way to conceptualize this information is by building
a three-dimensional construct where the first two dimensions are a matrix of atom-
to-atom bonds (designated by either a 0 or 1 but more information can be stored)
and the third dimension is time. The algorithm walks through the time-dependent
upper diagonal, following all bonded pairs until no more bonds are found in that
chain (at which point it starts with the next atom not in that chain) or until all atoms
are accounted for.

The recursive nature of the algorithm makes it fast and reliable. The ability of
looking beyond nearest neighbor is particularly important for the purpose of changing
chemistry. In the case of polyethylene, the polymer structure is never recovered if
cooled, but other species may be formed which helps us to understand how the
system evolves from a metastable polymer to thermodynamic equilibrium along a
given trajectory in a phase diagram.

Figure 1.7 shows the stoichiometry for four strands of polyethylene along the
principle Hugoniot calculated according to the method described above. This series
of simulations was performed with four strands of CH2, 16 carbon atoms long and
with an extra hydrogen atom at each end to cap the chain and prevent cross bonding
(for a total of 200 atoms). For densities of 1.1 to 1.7 g/cm3, all four strands are intact.
At 2.6 g/cm3, the system is almost entirely an atomic gas. Between 1.7 and 2.7 g/cm3

is the dissociation regime responsible for the inflection in the Hugoniot. Outside of
this regime, the stoichiometry is easy to calculate, but inside the variety and species of
molecules is much harder to understand and additional constraints are often required,
not on the bond tracking program itself but on the results. For example, one might

Fig. 1.7 Polyethylene stoichiometry along the principalHugoniot. These simulations used4 strands
of 16 carbons and 32 hydrogens along the chain plus 2 hydrogens (one at each end) to cap the strand
and prevent cross bonding. 1.1 g/cm3 through 1.7 g/cm3 show only C16H34 which indicates that all
four strands are intact. At 2.6 g/cm3 the system is almost entirely an atomic gas



10 T. R. Mattsson et al.

see a C1 and C7H5 for a few time steps and then see a C2 and C6H5 for a few time
steps. These are transients that do exist but are difficult to quantify in a meaningful
way given the very small number of atoms present in a DFT simulation. Figure 1.7
shows only the most persistent of the species.

With this tool, we are able to carefully follow the dynamic chemistry of poly-
mer dissociation as a function of shock strength. Accurate accounting of species is
important for understanding the role of bond breaking in release of internal energy,
for comparisons with classical molecular dynamics simulations using reactive force
fields, and for comparison with chemical reactivity models.

1.3 Classical Molecular Dynamics Simulations of Polymers
Under Shock Compression

DFT allows extremely high-fidelity descriptions of chemistry over a huge range of
compressions; however, its system sizes are computationally constrained to just a few
hundred atoms. This can be a significant obstacle, particularly in polymeric systems,
where even single chains can easily exceed this number of atoms. Furthermore, in
the case of structured polymers and foams, nanoscale features cannot be captured
on length scales available to DFT. Thus, for the study of void collapse and hotspot
heating, another simulation tool is required.

Classical molecular dynamics (MD) can extend the accessible simulation length
scales to tens or hundreds of nanometers (and many millions to billions of atoms),
by eliminating the electronic degrees of freedom and reducing quantum mechanical
interactions into a classical ion–ion interatomic potential. These potentials are gen-
erally quantitatively accurate over smaller compression ranges than DFT, but can be
highly accurate within these ranges.

Our classical MD simulations are run with Sandia’s LAMMPS parallel molecular
dynamics code [44]. LAMMPS allows highly efficient large-scale calculation and
offers a broad library of established interaction potentials. For hydrocarbons, we have
taken advantage of this library to compare the shock response of several published
potentials under identical loading conditions.

In Mattsson et al. [38], we compared the results of two reactive and two bonded
interatomic potentials. The reactive force fields, ReaxFF [7] and AIREBO [53] allow
for chemical reactions and dissociation. The bonded force fields, OPLS-AA [21] and
the Borodin et al. exponential-6 [4, 5] are computationally much more efficient but
cannot capture dissociation reactions.

It had been expected that the reactive potentials would do better than the less
sophisticated bonded potentials. However, we found that core stiffness was a stronger
predictor of a potential’s accuracy than its reactivity. Specifically, we found that the
AIREBO and OPLS potentials were both too stiff in compression, and diverged from
DFT and experiments well before the onset of dissociation chemistry. Since our 2010
study, however, both the AIREBO and OPLS potentials have been reworked to sig-
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nificantly address the observed shortcomings in their high compression response.
AIREBO-M [43] was refit to high-pressure graphene and polyethylene data, and
now reproduces DFT results for shocked PE at least up to 40 GPa. Similarly,
Sewell, Frohlich, and Thompson [13] showed how OPLS-AA can be refit to use
exp-6 Buckingham-style interactions to replace the stiffer 12–6 Lennard-Jones cores.
Given these improvements since our last comparison, we focus our discussion on the
ReaxFF and Borodin potentials.

Shock compression states were produced using two MD methodologies. In the
case of homogeneous full-dense polymer studies, the Hugoniostat [46] method was
used to homogeneously bring the material to the final shock state. This equilibrium
approach uses modified equations of motion to correlate the system compression to
the internal energy thermostat, so as to enforce the RH relation, (1.3). For shocked
foams, we used a full nonequilibrium (NEMD) propagating wave approach [20,
22] in order to capture the nonuniform dynamical collapse around the void spaces.
NEMD uses a piston driver on one end of the system, to provide a sustained drive
into the sample, producing a shock front, which then propagates across the system.
Three representative ambient-density polymer systems are shown in Fig. 1.8. For
these studies, we built polymeric systems from either polyethylene (PE) or poly(4-
methyl 1-pentene) (PMP). While both materials have the same monomer C:H ratio
of 1:2, and nearly identical local structure, they differ in extended structure. PE
has a linear backbone, while PMP has a branched structure. Full-density systems
for PE (0.930 g/cm3, Fig. 1.8a), and PMP (0.801 g/cm3, Fig. 1.8b) were built and
equilibrated. In addition, the amorphous PMP was conducive to building distended
foam systems (0.30 g/cm3, Fig. 1.8c) aswell. Details of the building and equilibration
have been published [38, 49].

Figure 1.9 shows two plots of polymer Hugoniot response from Z experiments,
DFT, and MD simulations. The MD simulations shown are for the ReaxFF and
Borodin et al. potentials. We note that DFT best reproduces experiments over the full
range of compression. TheMDdoes reasonablywell at lower compression but is gen-
erally stiffer than experimental measurements as pressure increases. In both the PE
and PMP, the ReaxFF potential gives the better agreement with experiment between
the twoMD potentials shown. To within experimental uncertainty, it is accurate from
ambient density up to approximately 2× ambient density. The Borodin potential is
good from ambient up to ~1.6 g/cm3. Moreover, the ReaxFF potential shows good
agreement with DFT dissociation onset, as shown in Fig. 1.10, which begins at just
above 1.8 g/cm3 (vertical dashed line) in polyethylene. Figure 1.10 plots the percent-
age of carbon atoms bonded to two other carbons as a function of compression. This
simple measure of polymer chemistry shows agreement between DFT and ReaxFF
MD in both onset density and density trend to complete vaporization.

Based on Hugoniot response and dissociation, we conclude that MD with the
ReaxFF potential gives comparable quantitatively accurate hydrocarbon simulations
to DFT under compression up to ~1.8 g/cm3. This validation allows us to extend
atomistic simulations to length scales which are amenable to study of nanoscale
foams.
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Fig. 1.8 Snapshots from initial configurations of molecular dynamics simulations for semicrys-
talline polyethylene (top left), poly(4-methyl 1-pentene), i.e., PMP (top right), and a model PMP
foam with density of 0.30 g/cm3 (bottom)

Fig. 1.9 Classical molecular dynamics Hugoniot response compared to experiments [36] and DFT
data for full-density polyethylene (left) and Poly(4-methyl 1-pentene) (right) [38]



1 Simulations of Hydrocarbon Polymers Related … 13

Fig. 1.10 Dissociation, as percent carbon chain, for DFT (20 and 50 fs bond criteria are blue and
red, respectively) and ReaxFF classical MD (green) [38]. Maximum percent fraction is 87.5% for
the C16 polyethylene chains, and 95% for the C44 chains, shown

While foams and porous materials are frequently useful and necessary in shaping
high-pressure waves, their response is notoriously difficult to characterize. Experi-
mental error bars are usually large due to sample-to-sample foam variation, as well
as to inhomogeneities within individual samples. Issues of sample control combined
with a lack of direct experimental measures of temperature and chemistry make anal-
ysis difficult. Root et al. conducted Z machine shock experiments on PMP foams
with average density of 0.3 g/cm3 [49]. The experimental results were published with
extensive atomistic, and continuum simulations exploring the effects of porosity on
average temperature, vaporization/ejecta, andwave propagation profiles. Subsequent
work [30, 31] explored the temporal evolution of void collapse and local temperature
hotspot formation.

A foam Hugoniot comparison between Z machine experiments, MD simulation,
and Equation of State (EOS) calculations are shown in Fig. 1.11a. These results show
that the final densities of these compressed systems do not reach nearly the com-
paction that the fully dense polymer samples reach these pressures. This is because
the void collapse in foams leads to significant heating, which causes expansion in
the final states. Because of this, we remain well within the density range for which
ReaxFF has been shown to be reliable.

The Hugoniot curves for PMP foam have two distinct regions. At low pressures,
the foam compacts to approximately four times its initial density, at which point
the curve turns steeply vertical, with little increased density for large increases in
pressure. In both the EOS calculations and the MD simulations, the data is tightly
aligned along near-vertical lines. The experimental data, colored to match the same
initial densities of MD and EOS data, have significant horizontal variation. The
simulations help to build confidence for this being due to variation in foam density
across different samples.
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Fig. 1.11 Comparison of the shock Hugoniot from classical MD and experiments on Z [48, 49].
Equation of state results are also shown for SESAME 7171 [12, 19]

Figure 1.11b shows the final average temperatures for the same shot data. Exper-
imental temperatures are not available. The data shows the strong dependence of
final temperature on the initial density of the foam. The fully dense polymer tem-
peratures are almost an order of magnitude lower than the foams. And the slope of
increased temperature with pressure increases with decreasing initial density. This
is consistent with the conclusion that increased void size/number leads to increasing
hotspots and higher temperatures. One also sees in the plots that the MD tempera-
tures show the same trends as the EOS temperatures and agree at lower pressures.
However, at higher pressures, the SESAME 7171 values are consistently lower than
MD temperatures, even when the pressure vs. density values agree. This is likely a
result of the fact that the EOS model does not account for the polymer dissociation,
which would indicate that the MD temperatures are more dependable. It should,
however, be noted that these temperatures are well above the range usually explored
with classical molecular dynamics.

Themolecular dynamics snapshots in Fig. 1.12 demonstrate one significantmech-
anism, which was not observed in full-density polymer shock studies. We see sig-
nificant vaporization and ejecta within the collapsing void. This vaporized material
is produced at pressures and densities well below the onset of dissociation in dense
polymer, because the temperatures in the collapsing voids are high enough to break
bonds. Once the material is volatized, it can travel ballistically ahead of the shock
front. In closed foams, these ejected particles impact the far side of the void, pre-
heating the un-shocked material. In an open foam, the vaporized particles can travel
far ahead of the shock front through the interconnected void space. The ejected par-
ticles travel at velocities as high as twice the bulk particle velocity. This observation
explains features seen in the wave profiles. In both simulation and experiment, shock
fronts are broader than expected, and the rise time of the front appears to be correlated
to the void size.

These results indicate that classical molecular dynamics can be used effectively
to model Z machine experiments in polymer shock compression. Specifically, with
the right potentials, quantitative agreement can be made with DFT and experimental
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Fig. 1.12 Snapshots of a propagating shock front showing vaporized ejecta from the collapsing
void. Atoms are colored by velocity in the shock direction. (left) piston velocity of 10 km/s, giving
pressure of ~40 GPa (right), piston velocity of 25 km/s, giving pressure of ~240 GPa. Dissociated
polymer is seen extending ahead of the shock front [31]

results over a useful range of compression. Moreover, because MD allows for the
simulation of much larger features than those which can be captured with DFT, it
can explore the mechanisms and processes associated with larger length scale struc-
ture in polymers (i.e., long-range order, defects, or voids). Moreover, aspects of the
compression which are difficult or impossible to observe experimentally, including
void collapse and temperature production, are readily studied with MD. For these
reasons, classical molecular dynamics has proven to be a useful tool to augment our
analysis and understanding of Z machine experiments.

1.4 Z Experiments on Polymer Materials

In the 1990s, Sandia researchers developed the Z machine as a pulsed power source
for generating X-rays for radiation–material interaction studies and as an X-ray drive
for experiments relevant for inertial confinement fusion studies [40, 52]. In 2007,
the Z machine was refurbished [51] increasing the maximum current delivered to a
target to approximately 20 MA in a pulse length of 100–600 ns making Z capable of
producing magnetic pressures up to 600 GPa. Early on, researchers [15] determined
that the current pulse could be used to drive a smoothly increasing compression
wave into a target load where the time-dependent magnitude of the pressure loading
is given as

P(t) � B2(t)

2μ0
� μ0

J 2(t)

2
� μ0 I 2(t)

2W (t)2
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Fig. 1.13 Illustration of the current drive on the anode. Themagnetic field penetrates only a fraction
of the flyer, the shockless compression front outruns the magnetic field

where P is the pressure, B(t) is the time-dependent magnetic field, J(t) is the time-
dependent current density in units of (amps/unit length), I(t) is the time-dependent
current, andW (t) is a time-dependent scaling factor that depends on the load geom-
etry. This led to the first shockless compression experiments to measure quasi-
isentropes inmaterials [15]. Frompriorwork at Sandia on the hyper-velocity launcher
(HVL) gun using a shockless compression wave to launch flyer plates [8], the idea
to use the Z machine to launch flyer plates was quickly conceived [16, 24].

Figure 1.13 shows the basic concept for either shockless compression or flyer plate
experiments on Z. Current is driven in a loop along the anode and cathode through a
shorting cap on the target’s top. This current loop generates a magnetic field between
the cathode and the anode. The combination of current and magnetic field creates a
Lorentz force ( �F � �J × �B) that drives a shockless compression wave through the
anode. A sample directly mounted to the anode will be shocklessly compressed as
the compression wave transits into it. If the anode is left with a free surface, just as
in the HVL, when the shockless compression wave reaches the anode free surface,
the anode is accelerated outward from the cathode. Using a shockless compression
wave minimizes the temperature rise in the anode, however, the high current causes
Joule heating on the inner surface of the anode. This causes the conductivity to drop
and the current begins to diffuse into the anode, which creates a magnetic diffusion
front that propagates behind the compression wave front. The Joule heating melts
and vaporizes the inner surface of the anode [10].
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Fig. 1.14 Illustration of a Z coaxial geometry flyer plate experiment. The load is about 5 cm tall
and 1 cm wide

The ability to shape the current pulse along with developments in 1D and 2D
magnetohydrodynamics (MHD) simulations greatly improved the capabilities to use
the Z machine for quasi-isentropic compression experiments [10] and for flyer plate
experiments [32, 33]. By proper tailoring of the current pulse, the flyer plate is
shocklessly accelerated to the desired velocity. Experiments are designed to ensure
a steady shock through the sample and to avoid contamination in the measurement
from release waves reflecting from Joule heated, melted portion of the flyer. Fur-
ther refinements to the Z target geometry and improvements in MHD and Z circuit
modeling have led to the successful launching of aluminum flyer plates up to around
40 km/s [34].

Figure 1.14 illustrates a rectangular target geometry used for flyer plate experi-
ments. In this geometry, rectangular flyer plates are placed on opposite sides of the
cathode. The flyer plates are typically aluminum, but Z has also used Al/Cu layered
flyers where Cu is the impactor. The distance between the flyer plates and cathode,
called the AK gap, is asymmetric—one side has a larger AK gap than the other
side. This results in two different magnetic pressures that create two different flyer
velocities on each side of the target, and thus, two different Hugoniot states in one
experiment. MHD simulations are used to determine the flight gap so that the flyer
plate reaches a terminal velocity prior to impact with the samples with a few hundred
microns of solid density on the impact face [32, 33]. The target frame is designed to
hold as many samples as possible to maximize the data return.
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The Zmachine has been used to study the high-pressure response of the hydrocar-
bon polymer: poly(4-methyl-1-pentene) plastics up to 985 GPa [50]. Poly(4-methyl-
1-pentene) plastic (PMP) is a CH-based plastic in which the carbon atoms are sp3-
hybridized. PMP is often referred to by its trade name TPX® (Mitsui Chemicals,
Inc.) and is available in several different variations. PMP is possible to machine and
is transparent, which makes it a valuable window material for shock-release studies
on the Z machine. For the work in [50], the PMP samples were the DX845 variant of
TPX® with a density of 0.833 g/cm3 and a melting temperature of 232 °C. The index
of refraction of PMP is relatively constant over a large range of wavelengths. For the
Z experiments, we use a 532 nm wavelength for our laser interferometry system. At
that wavelength, PMP has an index of 1.461 ± 0.001.

The laser interferometry system at Z is a velocity interferometer system for any
reflector (VISAR) that was originally developed at Sandia National Laboratories in
the late 1960s and early 1970s. Details of the VISAR technique for shock wave
research are found in [2, 3, 14, 17]. The VISAR measures flyer plate velocities and
shock velocities during the Z experiment.

Figure 1.15 shows a schematic illustration of the experimental configuration
along with two sample VISAR measurements. An aluminum flyer plate is accel-
erated toward the PMP samples. Two different sample configurations were used
for measuring the high-pressure response of PMP (inset): the top configuration is a
thick sample of PMP used to measure the Hugoniot. The bottom configuration is a
PMP/quartz window stack used to measure the Hugoniot and the reshock state in
PMP. In the experiment, VISAR tracks the flyer plate trajectory, directly measuring
the flyer plate velocity up to impact. The flyer plates are shocklessly accelerated
to the desired velocity. At impact, a shock is produced in the PMP sample. The
shock strength is high enough that the shock front in the PMP becomes reflective
and the VISAR laser reflects off the shock front. This allows for a direct, precise
measurement of the shock velocity as the shock wave travels through the sample.

Figure 1.15 (red) shows the shock through the PMP is steady for 10 s of ns. At
late times in the single PMP sample, the velocity begins to decrease. The velocity
decrease is caused by reflected release waves from the melted portion of the flyer
(Fig. 1.13). In the quartz backed PMP configuration, a steady wave is observed in
the quartz for 10 s of ns as well. At later times, a second shock is observed in the
quartz. This is caused by the reflected shock from the PMP/quartz interface and the
PMP/aluminum impactor interface. Again, release waves from the melted portion of
the flyer cause the decrease in the shock velocity.

The advantage to using the Z machine is that it launches solid density flyers at
the targets. Thus, the flyer plate is well characterized at impact. Combined with
the direct measurement of the shock velocity in the PMP, the Hugoniot state is
easily and accurately determined through impedance matching [6]. A Monte Carlo
impedancematching (MCIM)method [50] is used to calculate theHugoniot state and
uncertainty. TheMCIMmethod accounts for uncertainty in themeasurements, initial
densities, and the uncertainty in the Hugoniot of the flyer plate. Figure 1.16 shows
the compiled Hugoniot data for PMP along with the QMD calculated Hugoniot for
PMP discussed earlier in the chapter.
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Fig. 1.15 VISARmeasured velocity traces from two different experiments on PMP plastics show-
ing the flyer velocity, PMP shock velocity, and the quartz shock velocity. Inset: Configuration for
experiments using the direct shock experiment (top sample) and the shock—reshock experiment
(bottom sample)

Fig. 1.16 Hugoniot of PMPplastic in density–pressure space. The left panel shows the low-pressure
range where there was previous data. The QMD simulations are in excellent agreement with data
over a large range

Figure 1.16 shows the Z experimental data range from 100 to 550 GPa along the
principal Hugoniot. The QMD calculations are in good agreement up to 400 GPa.
Starting at about 150 GPa, the principal Hugoniot steepens dramatically compared to
theHugoniot below100GPa. The sharp upturn suggests dissociation of themolecular
system into an atomic system. This similar behavior along theHugoniotwas observed
in the molecular systems of CO2 [48, 49] and ethane (C2H6) [35].

The bond tracking analysis method discussed earlier was used to assess dissocia-
tion along the Hugoniot. Figure 1.17 shows the results of the bond tracking analysis.
At low shock pressures of approximately 20 GPa, the polymer chain begins to break



20 T. R. Mattsson et al.

Fig. 1.17 Analysis of the
atomic species of shocked
PMP using the bond tracking
analysis method

down and complex CxHy constituents are observed. Increasing the shock pressure
increased the amount of free hydrogen. At a shock pressure of approximately 150
GPa, all H atoms have dissociated from the C chains and the number of free C
atoms begins to increase. Complete dissociation into C and H atoms requires a shock
pressure of approximately 315 GPa.

At 315 GPa, the compression factor μ � 1 − ρ0/ρ is μ � 0.68. At 160 GPa
where the system is primarily atomic C and H with a small percentage (~6%) of
C–C clusters, μ � 0.66. Interestingly, this compression factor of μ � 0.66–0.68
for complete dissociation is consistent with other C–H systems with sp3-hybridized
bonded carbon. Complete dissociation for ethane (C2H6) occurs at μ � 0.69 [35],
for polyethylene μ � 0.62 [9], and polystyrene μ � 0.62 [54]. For each system, the
pressure and temperature at complete dissociation are different, but the compression
factors are all similar. This suggests that the C–C bonds are more affected by com-
pression than pressure or temperature since compression reduces the gap between
bonding and anti-bonding orbitals making it easier to occupy the anti-bonding states
in the C.

1.5 Summary and Conclusions

Hydrocarbon polymers are commonly used in shock physics research, and their
behavior is complex. Strong compression of hydrocarbon polymers involves a series
of physical mechanisms, together resulting in the Hugoniot response shown in
Fig. 1.2. Under progressively stronger shock loading, the hydrocarbon polymers dis-
cussed in this chapter (linear polyethylene and polymethylpentene with side chains)
first respond softly as the void space between polymer chains is compressed resisted
only by the relatively weak inter-molecular Van der Waals interaction. During this
phase, the covalent bonds of the polymer remain intact (Fig. 1.7). Once the voids
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space has been removed, the atomic repulsion becomes progressively stronger, the
temperature continues to increase, and the polymermelts. Upon further compression,
dissociation of the polymer occurs over a range in density, pressure, and temperature
(Fig. 1.7). The breaking of covalent bonds cost significant energy, resulting in a dis-
tinct plateau in the Hugoniot (Figs. 1.2 and 1.16). As the pressure, temperature, and
density increase even further, dissociation is complete with the system now being
comprised of free atoms. Beyond dissociation, the pressure and temperature of the
final shock state rise very steeply with increased shock strength and the state turns
into a dense strongly coupled plasma of hydrogen and carbon.

In this chapter, we have shown how to utilize different simulation techniques to
interrogate and understand the behavior of two polymers under shock compression.
The results from simulations are compared to experimental data from Sandia’s Z
machine and found to be in qualitative and quantitative agreement. First, molecular
dynamics based on density functional theory is used to calculate thermodynamic final
states that are in quantitative agreement with high-precision experiments executed
on Sandia’s Z machine; second, the DFT/QMD simulations are employed to analyze
how themolecular structure changeswith increasing shockpressure; thirdDFT/QMD
simulations are used to determine the range of validity ofmodel potentials commonly
used in classical MD simulations; and fourth classical MD simulations are applied
to nonequilibrium conditions to explore the effect of structure like voids.

We conclude that it is possible to model shock compression of polymers with
high fidelity for a range of shock strengths when using DFT/QMD and that classical
MD simulations provide valuable insights into the shock compression dynamics of
mesoscale materials like polymer foams.
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Chapter 2
Computational Discovery of New
High-Nitrogen Energetic Materials

Brad A. Steele and Ivan I. Oleynik

Abstract High-nitrogen-content energetic compounds containing multiple N–N
bonds are an attractive candidate for new generation of environmentally friendly,
and more powerful energetic materials. High-N content translates into much higher
heat of formation resulting in much larger energy output, detonation pressure, and
velocity upon conversion to large amounts of non-toxic, strongly bondedN2 gas. This
chapter describes recent advances in the computational discovery of a new family
of polynitrogen pentazolate compounds using powerful first-principles evolutionary
crystal structure prediction methods. After description of the methodology of the
first-principles crystal structure prediction, several new high-nitrogen-content ener-
getic compounds are described. In addition to providing information on structure
and chemical composition, theory/simulations also suggests specific precursors, and
experimental conditions that are required for experimental synthesis of such high-N
pentazolate energetic materials. To aid in experimental detection of newly synthe-
sized compounds, XRD patterns and corresponding Raman spectra are calculated
for several candidate structures. The ultimate success was achieved in joint theoret-
ical and experimental discovery of cesium pentazolate, which was synthesized by
compressing and heating cesium azide CsN3 and N2 precursors in diamond anvil
cell. This success story highlights the key role of first-principles structure prediction
simulations in guiding experimental exploration of new high-N energetic materials.

2.1 Introduction

Energetic materials (EMs) are condensed phase compounds that are used as explo-
sives, propellants and pyrotechnics [1]. Although their development can be traced
back to ancient times, commercial large-scale production of EMs began only in
nineteenth century when Alfred Nobel introduced nitroglycerin-based explosive
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Dynamite in 1867 [2]. Since then, several more powerful EMs were developed at
the end of nineteenth and in twentieth centuries that are currently used in muni-
tions, rocket propulsion, mining, construction, and demolition [1]. These EMs
are molecular crystals such as trinitrotoluene (TNT), pentaerythritol tetranitrate
(PETN), cyclotrimethylenetrinitramine (RDX), cyclotetramethylene tetranitramine
(HMX), and triaminotrinitrobenzene (TATB) [1]. They consist of organic C–H–N–O
molecules, which combine both fuel (C–H backbone) and oxidizer (nitro (NO2) or
nitrate (NO3) groups within a single molecule. Upon initiation by impact or heating,
such compounds react violently and release energy due to exothermic conversion of
the constituent molecules in condensed phase to gas phase products such as CO/CO2,
H2O, N2 and solid carbon. The amount of energy released depends on the effective-
ness of the C–H oxidation byNO2 andNO3 and the amount of nitrogen in constituent
molecules. In particular, the conversion of nitrogen to very strong triply bonded N2

results in an enormous release of energy. These factors are quantified by the notions
of oxygen balance and nitrogen content.

Development of traditional C–H–N–Oenergeticmaterials faces a stumbling block
as their poor oxygen balance and low nitrogen content cannot be further improved
[1]. Moreover, their high initiation sensitivity resulting to accidental explosions and
their toxicity are of great concern. High-nitrogen-content (high-N) energetic com-
pounds with multiple N–N bonds are attractive alternative towards developing new
generation of environmentally friendly, and more powerful EMs. High-N content
translates into much higher heat of formation resulting in much larger energy output,
detonation pressure and velocity upon conversion to large amounts of non-toxic,
strongly bonded N2 gas.

Compared to carbon, nitrogen is a unique element: N–N double bond is more
than twice strong as single N–N bond and triple bond—more than three times strong
as single N–N bond, which is not the case for the C–C bonds. As a result, carbon
prefers to formextended compoundswithmostly singleC–Cbonds,whereas nitrogen
prefers to be in molecular triply bonded N≡N form. Due to this energetic preference,
most of double- and single-bonded high-nitrogen compounds, if they exist, should
be metastable at ambient pressure and temperature, i.e., their structure is locked in
one of the energy minima separated from N≡N global minimum by an appreciable
energy barrier. Application of high pressure and temperature (high-P-T) facilitates
the efficient synthesis of such high-N compounds, by providing additional stimuli
for breaking the strong intramolecular bonds of the original molecular precursors
and forming new N–N bonds of the high-N products.

These single- and double-bonded metastable forms of pure nitrogen, if synthe-
sized, are ultimate energetic materials as their conversion to N2 would result in up to
ten times increase in detonation pressure [3]. In 1992 Mailhiot et al. predicted the
existence of such single-bonded pure nitrogen cubic gauche (cg-N) crystal structure
and showed it is thermodynamically stable over N2 molecular solid above 50 GPa
[4]. Motivated by this theoretical prediction, in 2004 Eremets et al. successfully syn-
thesized the cg-N at 110 GPa and 2,000 K [5]. Unfortunately, the cubic cg-N phase
of nitrogen reverts to the molecular form around 40 GPa [6]. Subsequent attempts to
recover cg-N at ambient conditions were unsuccessful [6–8].



2 Computational Discovery of New High-Nitrogen Energetic Materials 27

One of the alternative routes towards synthesis of metastable poly-nitrogen EMs
includes stabilization of single and double N–N bonding via addition of small
amounts of atoms of other elements into pure nitrogen subsystem to cause the redistri-
bution of electrons in the system resulting in change in character of chemical bonding.
The competition between ionic and covalent bonding might promote new nitrogen
phases other than triply bondedN2. Then, the fundamental questions arewhether such
addition would result in stabilization of novel forms of single and double-bonded
nitrogen in condensed phase, what is the role of pressure in overcoming energy bar-
riers associated with such transformations, and what are the suitable precursors and
optimal conditions for their synthesis?

To answer these questions, an extensive exploration of bonding and structure is
required as a function of pressure, temperature, and chemical composition. A purely
experimental approach would be extremely time-consuming and less certain as there
are many unknowns at the molecular and atom-scale levels that cannot be uncovered
due to limitation of experimental capabilities. Although theory/simulation does have
its own limitations, in most cases it can answer the questions that are difficult or even
impossible to address using experimental techniques especially those dealingwith the
atomic scale. Therefore, computational exploration of novel high-N compounds is an
attractive alternative that allows for systematic investigation of these new compounds
at the atomic scale. The ultimate goal of theory/modeling is to guide experiment
by predicting composition-structure phase diagrams of novel high-N compounds,
characterize the most energetically preferredmaterials and suggest specific synthesis
routes towards realization of high-PT synthesis. However, to be successful in this
formidable endeavor efficient methods for crystal structure prediction are required
to make meaningful predictions.

This chapter describes recent advances that were made recently in computational
discovery of a new family of polynitrogen alkali and hydronitrogen pentazolate com-
pounds, all of them containing pentazolate N−

5 anion, the last all-nitrogen member
of the azole series. Such discovery was made possible through application of pow-
erful first-principles evolutionary crystal structure prediction methods. Importantly,
theory/simulations also suggested specific precursors, and experimental conditions
that are required for experimental synthesis of high-N pentazolate EMs. To aid in
experimental detection of newly synthesized compounds, XRD patterns and corre-
sponding Raman spectra were calculated for several candidate structures. The ulti-
mate success was achieved in joint theoretical and experimental discovery of cesium
pentazolate, which was synthesized by compressing and heating cesium azide CsN3

and N2 precursors in diamond anvil cell. This success story highlights the key role of
first-principles structure prediction simulations in guiding experimental exploration
of new high-N energetic materials.
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2.2 First-Principles Crystal Structure Prediction

The crystal structure prediction problem is formulated as follows: given a set of spe-
cific chemical elements, determine all stable crystal phases and stoichiometries of all
chemically stable compounds consisting of these elemental species at specified pres-
sure and temperature. Mathematically, such a problem involves determination of the
local and global minima as a function of atomic coordinates of multi-dimensional
free energy surface. The solution of this problem is being considered as a grand
challenge of theoretical materials chemistry [9]. The brute-force approach to crystal
structure prediction would involve generation of all possible atomic arrangements in
all possible crystals, optimization of geometrical parameters to get the free energy for
each structure, and then determination of the structure at the lowest energyminimum.
It is possible to show that the computational expense of such calculation scales expo-
nentially with the number of atoms in the system. For example, finding the energy
minimum of the system consisting of 10 atoms would involve 1011 combinations of
different arrangements of the atoms, which will require the total computational time
∼103 years, thus making this approach impractical [10].

In spite of the enormous complexity of the problem, there are several key features
of the energy landscape of a complex systemof atoms arranged in the crystal structure
that make theoretical structure prediction possible [11, 12]. The simplification of the
structure search problemoccurswhen each crystal is optimized, i.e., brought to a local
minimum. Such optimization introduces chemical constraints on bond lengths, bond
angles, resulting in avoidance of unfavorable contacts between atoms and overall
reduction of dimensionality of the potential energy surface.

Another important feature simplifying the global energy landscape is clustering
of several structures into basins of attraction (i.e., the same energy minimum) upon
their geometry optimization [11]. The basins are typically arranged such that if one
hops from one basin to another one, it is more likely the neighboring basin will
have a lower energy and the energy barrier between them is small. It turned out that
the low-energy basins tend to occur near each other, although they can be widely
separated in clumps of low-energy basins. These basics facts tremendously simplify
the complexity, thus making the crystal structure prediction possible.

There are several popular state-of-the-art structure prediction codes including ran-
dom structure searching AIRSS [11], particle swamp optimization code CALYPSO
[13] and universal structure predictor method USPEX [10]. The research on com-
putational prediction of high-N EMs reviewed in this chapter has been performed
using USPEX, which covers basic functionalities of the first two search methods,
AIRSS and CALYPSO. The efficiency of USPEX is based on its carefully designed
set of variation operators that allow to produce increasingly lower energy structures
in subsequent generations. The USPEX method has been successfully applied to
predict several novel crystal structures at high pressures that have been confirmed
by experiment such as layered polymeric nitrogen [14, 15], a sodium chloride com-
pound with unexpected Na3Cl stoichiometry [16], superconducting H3S [17, 18],
and an ionic form of boron [19], to mention a few.
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Create Structures: 100% of structures are random on 
1st generation, 20-50% for following generations, the 

rest are from variation operators applied to best 
structures

Energy Minimization using Density Functional Theory 
for each structure

Convex Hull is Constructed: Structures on, or close to 
the hull survive to next generation

Does convex hull change for 10 generations?

No

Yes

Search is completed

Fig. 2.1 Calculation flow diagram of the crystal structure prediction method USPEX

In the USPEX method, the structure search algorithm deals with generations—a
set of crystal structures (individuals), that evolve from generation to generation. The
overall schematic of the crystal structure search as implemented in USPEX code
is given in Fig. 2.1. The search begins by creating the first generation consisting
of random crystal structures with random atomic positions and lattice parameters,
followed by the structure optimization of each individual from the first generation.
This involves optimization of the atomic positions and lattice parameters at a given
pressure of each individual to achieve the minimum of its total enthalpy at a given
pressure. The total energy and enthalpy are calculated using first-principles density
functional theory.

The computational time is saved by imposing distance constraints that prevent the
atoms from being nonphysically close to each other. Constraints are also imposed on
theminimum length of all the lattice parameters to prevent them frombeing too small.
In addition, an initial guess for the volume is made based on values of the atomic
volumes at a given pressure. The population size, i.e., a fixed number of individuals
in each generation, is an important parameter, which is chosen to ensure structural
and chemical diversity in each generation. Otherwise, the structure search will get
trapped. The number and chemical nature of the atoms in each generated crystal are
randomly sampled within a specified range as well as a given set of specific elements.
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Fig. 2.2 Schematic of a
convex hull for a binary
system that consists of
elements A and B. There are
two metastable compounds
A2B and AB4, their fitness
being defined by the vertical
distance from the convex
hull. Both A2B and AB4 are
thermodynamically unstable
as they may decompose into
a mixture of AB+A and
AB+B compounds
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The complexity, which is defined as a total number of possible structures in a fixed
volume, increases rapidly with the number of atoms. This is why using more atoms
in the unit cell requires much larger population size.

USPEX can be used to search for binary (AxBy), ternary (AxByCz), and higher
compositional dimensionality structures, by varying the number of atoms of type
A, B, C, … in the unit cell. In the case of a binary search AxBy with the number of
atoms restricted to be within the range of∼8−20 atoms per unit cell, a combinatorial
calculation gives the estimate for the total number of possible chemical compositions
∼150. Typical structure search involves about two to three structures per composition
on the first generation (random structures only in the first generation and about
one random structure per composition in each subsequent generation). By including
additional random structures in each generation, trapping in one of the local potential
energy minima is avoided.

The algorithm of structure search at a given pressure requires construction of the
so-called convex hull for each generation. The convex hull is the convex envelope
in the stoichiometry-formation enthalpy space, which is constructed by plotting data
points corresponding to each optimized individual of the generation, see Fig. 2.2. In
the case of a binary search AxBy, the lowest enthalpy data points are connected by
line segments, starting from the pure elemental structure A all the way to B, avoiding
the stoichiometries that would violate the convex nature of this envelope, see Fig. 2.2.

The formation enthalpy ofAxBy compound is defined asH f (AxBy) = (
H(AxBy)

−xH(A) − yH(B)) /(x + y), where H() is the enthalpy of the corresponding mate-
rial. The convex hull represents the set of thermodynamically stable compounds
(AxBy) at a given pressure and temperature, Fig. 2.2. Lines connecting each pair
of binary compounds represent the mixture of the two compounds: the formation
enthalpy of each mixture represented by a point on a line is calculated using for-
mation enthalpies of constituent compounds assuming that the interaction energy
between two phases is negligible. If a compound is represented by a data point above
the convex hull line, then it is thermodynamically unstable and will decompose into
the two compounds at the ends of the corresponding line segment of the convex
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Fig. 2.3 Typical evolution of the calculated convex hull from the first generation to the last genera-
tion. The filled squares represent stable compounds on the convex hull. They change fromgeneration
to generation until the convex hull is converged

hull. For example, thermodynamically unstable compounds A2B and AB4 in Fig. 2.2
may decompose into a mixture of AB+A and AB+B compounds respectively. The
compounds represented by the vertices of the convex hull constitute the full set of
thermodynamically stable compounds at a given pressure.

To build the next generation, the structures in the previous generation are opti-
mized by DFT and then ranked based on their fitness, which is referred to as the
distance from the convex hull line (for binary systems) or from the convex plane
(for ternary systems). The fittness is the major descriptor of the evolutionary crystal
structure search. In the case of a single element compound, the structures are ranked
by their enthalpy per atom (from the lowest to the highest). Then, a fraction of the
best structures (typically 60%) from previous generation is selected and variation
operators are applied to produce a subset of structures for a new generation. The
kind of variation operators varies but it usually involves displacing the atoms and
changing lattice parameters by a random value, merging two structures together,
swapping atoms, transmutation of atoms into other atoms, etc. In addition, a pre-
scribed fraction (typically 20–50%) of randomly generated structures are also added
to every generation. Once the new generation is created, the search cycle is repeated
by optimizing every individual of the new generation, constructing the convex hull,
ranking individuals and building a new generation, see Fig. 2.1.

A typical evolution of the convex hull from the first generation to the last is shown
in Fig. 2.3. With each generations new structures and stoichiometries may appear on
the hull. The structures with stoichiometries that lie closer to the hull (a small fitness
value) are given higher priority in the evolutionary algorithm designed by USPEX
and variation operators are applied to them more often. One desirable feature that
can bee seen in Fig. 2.3 is that the first generation is not dramatically different than
the last generation, which implies that the first generation has enough individuals to
produce a diverse and somewhat high-quality hull. In fact some of the compounds on
the hull in the first generation are still on the hull in the final generation, see Fig. 2.3.

The structure search stops under assumption that the entire energy landscape is
covered. In practice, it runs until it does not produce any new structures for several
generations. Then, it is advisable to rerun the search again with differently generated
random structures in the first generation, to make sure that the same structures are
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Fig. 2.4 Schematic of combined experimental and theoretical approaches for materials discovery
at high pressures. The theoretical thrust involves searching the energy landscape, identifying new
crystalline materials as the minima of the multi-dimensional potential energy surface, and calcu-
lating corresponding XRD patterns and Raman spectra. Experimental thrust includes compressing
and heating the material in a diamond anvil cell (DAC), followed by characterizing the reaction
products using Raman spectra and X-Ray diffraction patterns. The two methods come together
when comparing the calculated and experimental spectra

found. An additional validation of the search involves predicting a crystal that is
already known to exist from experiment: if the structure search finds this structure
without any experimental input then the search may be considered to be performed
adequately. Care must be taken when the experimental structure is complex (i.g.
consists of a large number of atoms), as it may not be found due to system size
limitations of DFT calculations.

The typical research project focusing on a discovery of a new high-N EM involves
the following stages, see Fig. 2.4. At the very beginning, the elemental composition
is specified (A, B, C, …), followed by USPEX variable stoichiometry crystal struc-
ture search at several pressures covering the interval of experimentally accessible
pressures. The goal is to search a large fraction of the full energy landscape and find
the global energy minimum structures for each stouchiometry, as well as energeti-
cally competitive local minima. Once the structure search at each pressure is com-
pleted, the final convex hulls, representing all thermodynamically stable compounds
at each pressure, are constructed. Several structures at the vicinity of the convex hull
might also be retained to represent possible candidates of metastable compounds.
The degree of metastability is defined by the distance from the convex hull for each
dynamically stable compound. The dynamical stability is assessed by calculating
the phonon spectrum and making sure that there are no imaginary frequency modes
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Fig. 2.5 Dynamical stability from phonon spectra: a negative/imaginary bands depicted by the
red curve signify that this compound is dynamically unstable and is actually a saddle point on the
potential energy surface at 0 GPa; b phonon spectrum does not have negative/imaginary bands,
therefore, this compound is dynamically stable at 50 and 100 GPa

present in the spectrum, see Fig. 2.5. An additional dynamical stability test can be
performed by running molecular dynamics simulations at sufficiently-high temper-
atures and checking whether chemical decomposition of constitutive molecules is
observed or not.

Once the stable and metastable compounds are found, their pressure-dependent
evolution is investigated to determine the conditions when each of them becomes
stable, metastable, or unstable. Then, the possible synthesis routes and mechanisms
are explored by identifying specific precursor compounds found during the search
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that can be combined in corresponding proportions to produce a specific target com-
pound. To understand whether synthesis can be accomplished by compressing and
heating precursors to initiate the high-PT transformations, the evolution of the Gibbs
free energy difference between reactants and products is followed as a function of
applied pressure to determinewhether there is a thermodynamic driving force towards
such transformation and at what pressure the target compound becomes energetically
preferred in respect to a mixture of the precursor compounds.

The final step of first-principles structure prediction involves calculation of pow-
der X-ray diffraction (XRD) patterns and Raman spectra of the predicted high-N
compounds. The XRD patterns (intensity versus 2θ plots) are obtained from known
crystal structure by using standard crystallographic XRD software such as POWDER
CELL [20] or VESTA [21]. The calculation of Raman spectra is more involved: off-
resonant Raman frequencies are obtained within frozen phonon approximation by
calculating phonons at the gamma point using DFT, and their intensities are obtained
by calculating the derivatives of macroscopic dielectric polarizability tensor along
the normal mode eigenvectors.

The crystal structure prediction can only be successful if the results of the
search are validated by experimental discovery of the predicted compounds. A com-
bined experimental and theoretical approach involves two interdependent thrusts,
see Fig. 2.4. The theory/simulation thrust focuses on searching the energy landscape
and eventual prediction of the new stable and metastable compounds. Experimental
thrust focuses on high pressure/temperature synthesis of these new compounds by
compressing and heating precursors suggested by theory in a diamond anvil cell
(DAC) and characterizing the resultant materials using Raman and X-Ray diffrac-
tion measurements. The two methods come together by comparing the calculated
and experimental XRD patterns and Raman spectra, thus confirming synthesis of
new compounds.

2.3 Computational Discovery of High-N Pentazolate
Energetic Materials

Although synthesis of cyclo-N5 pentazolate, an energetic nitrogen oligomer, was
attempted since the end of nineteenth century, it was discovered only in themid-1950s
as a part of an aryl pentazole molecule [22, 23] using synthetic organic chemistry
methods. This last elusive member of azole series was shown to be aromatic with
N–N bond lengths 1.3−1.35 Å, intermediate between single (hydrazine, 1.45 Å)
and double (trans-diimine, 1.25 Å) bonds [24]. The pentazole (HN5) or the N−

5
anion [25–30] were not isolated until Vij et al. produced N−

5 in the gas phase in
2002 by cleaving the C–N bond in substituted phenylpentazoles [31, 32]. These
pentazolates are important components of high-N energetic materials as they can
release a large amount of energy upon conversion of the single-double N–N bonds in
theN−

5 aromatic ring to tripleN–Nbonds in theN2 molecule. Thismakes pentazolates
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potentially important components for the development of new, green, high-energy-
density materials.

Although there exist several metastable nitrogen species, such as linear N−
3 anions

[33–35], gas phase pentazolate N−
5 anions [31], N+

5 chain cations [36], and gas phase
N4 [37], the only other experimentally observed all-nitrogen compounds are cova-
lently bonded non-molecular crystalline phases of nitrogen, which were synthesized
at very high pressures (>120GPa) and temperatures (>2000K) [4, 5, 15]. We have
recently predicted several condensed phase pentazolates [38–40] in an attempt to
extend the range of metastability of high-N compounds with the ultimate goal of
their recovery at ambient conditions.

Here we review the work directed towards predicting the new pentazolate com-
pounds and suggesting viable transformation pathways of their synthesis from pre-
cursor mixtures at high pressures in order to guide experimental synthesis efforts.
The idea we pursued in this work is to explore additions to pure nitrogen system,
such as alkali metals or hydronitrogens, to achieve enhanced stability and metasta-
bility of pentazolates in the solid phase. It was found that the electron-donating
species such as alkali metals, ammonium, and hydrogen transfer appreciable negative
charge to the N5 rings, thus enabling both aromaticity in the isolated N−

5 and ionic
bonding between non-N cations and pentazolate N−

5 anions within the crystalline
environment.

2.3.1 Sodium Pentazolates

Sodium is one of the alkali metals that might be effective in transferring electrons
frommetallic atoms to nitrogen oligomers. In addition, there is an experimental indi-
cation that new high-N compounds containing Na are formed at high pressures and
temperatures. In fact, Eremets et al. in 2004 performed experiments by compressing
and laser heating sodium azide (NaN3) precursor to high pressures [35], and observed
new peaks in the Raman spectra in the 700–800 cm−1 and 1,000–1,300cm−1 range,
which can not be attributed to molecular vibrations of the initial azide precursor
[41]. They assumed that these new peaks originate from either polymeric nitrogen
or a compound containing nitrogen molecular clusters [35]. However, it was impos-
sible to reach an unambiguous conclusion on the nature of the Raman peaks without
knowing the structure and composition.

Beingmotivated by previous experimental attempts, a systematic search of NaxNy

materials has been attempted using structure prediction method USPEX [38]. The
number of atoms in the unit cell in the structure search was varied between 6–16
atoms. To evaluate enthalpies of individuals in USPEX generations, first-principles
calculations were performed using the Perdew–Burke–Ernzerhof (PBE) general-
ized gradient approximation (GGA) functional [42] within density functional theory
(DFT) implemented in VASP [43]. The PBE functional was shown to give reliable
results for sodium azide [41]. The calculated enthalpies of the predicted structures
are used to determine themost stable compounds at a given pressure, thus allowing us
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Fig. 2.6 a Pressure-composition phase diagram of new Na–N crystal phases discovered in simula-
tions. b Convex hull diagram at pressures 0.5, 10, 20, 30, 50, and 100 GPa. Solid squares represent
thermodynamically stable phases, open circles—metastable phases. Reprinted with the permission
from [38]. Copyright 2016, with permission from Elsevier

to construct the phase diagram of the materials of varying stoichiometry. The crystal
structure search methodology is validated by predicting known phases of sodium
azide (NaN3) without any input from experiment. The α-phase of NaN3 with the
symmetry C2/m is found to be the most stable at 0.5 GPa in agreement with experi-
ment, while at 30 GPa the I4/mcm polymorph of NaN3 appear [44, 45]. At 60 GPa,
the P6/m-Na2N6 structure containing N6 rings is found to be the lowest enthalpy
phase with a 1:3 sodium to nitrogen ratio.

The convex hull at a range of pressures up to 100 GPa for the NaxNy system is
given in Fig. 2.6a. The reference structures for the convex hull are α-N2, ε-N2, and
cg-N for nitrogen and bcc-Na and fcc-Na for sodium each taken at corresponding
pressure of their stability. Snapshots of several crystal structures found during the
search are given in Fig. 2.7.

In order to further justify the adequate accuracy of calculated formation enthalpies
using the PBE functional, the convex hull at 50 GPa has been calculated using both
PBE functional and the hybrid HSE06 functional [46], see comparison in Fig. 2.8.
Overall, both HSE06 and PBE convex hulls are very similar, although the HSE06
formation enthalpies are slightly higher than those calculated using PBE functional,
with exception of Na3N. The HSE06 functional is considered to be state-of-the-art
and gives formation enthalpies and atomization energies close to experiment across a
wide range of molecules and crystals [47]. Therefore, the similarity of the two curves
demonstrates a good accuracy of the PBE calculations of the pentazolate systems
reviewed in this chapter.

One interesting result from the structure search was that NaN3 no longer resides
on the convex hull above 50 GPa, thus implying it is thermodynamically unstable
beyond this pressure. This results is also reproduced with the HSE06 functional, see
Fig. 2.8. Therefore, upon compression in a diamond anvil cell (DAC) above 50 GPa,
NaN3 will transform into a combination of NaxNy phases.
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Fig. 2.7 Several newly predicted NaxNy crystals at pressures corresponding to where they are
thermodynamically stable, or in the case of P2/c-NaN5 and Pbam-Na2N5 metastable at 0 GPa. The
space group composition of each structure is shown as well as the N bond length. Reprinted with
the permission from [38]. Copyright 2016, with permission from Elsevier

Fig. 2.8 A comparison
between the convex hull’s
calculated with PBE and
HSE06 at 50 GPa with
zero-point energies (ZPE)
included. Reprinted with the
permission from [38].
Copyright 2016, with
permission from Elsevier
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Our search found several high-N crystals containing cyclo-N5 pentazolate: P2/c-
NaN5, Cm-NaN5, and Pbam-Na2N5, shown in Fig. 2.7a–c. They are found to be on
the convex hull from 20 GPa for NaN5 and 30 GPa for Na2N5 up to 100 GPa see
Fig. 2.6b. These newly discovered materials can be potential sources of unidentified
Raman peaks in experiments on compression of NaN3 at high pressures [35]. We
predict that NaN5 may be synthesized by compressing NaN3 above 50 GPa, since
NaN3 becomes unstable above this pressure. Alternatively, direct synthesis of NaN5
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Fig. 2.9 The relative
enthalpy of the two phases
with NaN5 stoichiometry.
Reprinted with the
permission from [38].
Copyright 2016, with
permission from Elsevier
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can be facilitated by heating and compressing NaN3 in a DAC using a nitrogen-rich
pressure medium via the following chemical reaction, N2 + NaN3 → NaN5.

To investigate the metastability of new EM materials at ambient conditions, the
most energetically preferred polymorphs of NaN5 and Na2N5 are determined by
performingfixed composition search at 0GPa.Anewpolymorph, P2/c-NaN5 is found
to be the lowest enthalpy structure compared to Cm-NaN5, see Fig. 2.7a, while Pbam-
Na2N5, see Fig. 2.7c, remains the only polymorph of Na2N5, metastable at ambient
conditions as well as at higher pressures. The transition pressure between the high-
pressure Cm phase of NaN5 (Cm-NaN5) and the zero pressure phase (P2/c-NaN5) is
calculated to be 16.5 GPa, see Fig. 2.9.

To be useful as emergent EMs, the predicted sodium pentazolates must be
metastable at ambient conditions. Metastable high-N structures are those that are
slightly above the convex hull and dynamically stable, see Sect. 2.2. The dynamical
stability of the crystal phases P2/c-NaN5 and Pbam-Na2N5 is determined by checking
the absence of any imaginary frequencies in the phonon spectra at 0 GPa in the entire
Brillouin zone. Independent check of the dynamical stability of these two phases at
0 GPa is performed by running DFT molecular dynamics simulations at 1,000 K in
the NVT ensemble, which displayed no chemical decomposition in the system, thus
confirming that both of these phases are dynamically stable at 0 GPa.

To identify the appearance of these newly predicted phases during their syn-
thesis, the Raman and infrared spectroscopy characterization is performed, which
includes calculation of the phonon frequencies at the gamma point, followed by the
mode assignments. Both structures contain modes in the interval 80–250cm−1 that
are lattice modes as well as pentazole librational modes in both phases. Bending
modes of the pentazolate molecules have frequencies at 635cm−1 in Pbam-Na2N5

and 766cm−1 in P2/c-NaN5. Deformational modes of the pentazolate molecule have
frequencies 900cm−1 in Pbam-Na2N5 and 990cm−1 in P2/c-NaN5. The frequency
of the symmetric stretching modes of the pentazolate molecule is at 1,050cm−1 in
Pbam-Na2N5 and 1,170cm−1 in P2/c-NaN5.
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Table 2.1 Calculated Mulliken charges and Mayer Bond Orders for the nitrogen atoms and bonds
in each new crystal at 0 GPa. Reprinted with the permission from [38]. Copyright 2016, with
permission from Elsevier

Structure N-cluster Charge Bond order

P2/c-NaN5 N5 −0.166 1.42

Pbam-Na2N5 N5 −0.306 1.20

P4/mmm-NaN2 N2 −0.340 2.09

Cmmm-NaN2-II N-chain −0.320 1.17

Cmcm-NaN N2 −0.630 1.46

Fig. 2.10 Comparison of
theoretical (red dashed line)
and experimental (black
solid line) [35] Raman
spectra of Cm-NaN5.
Reprinted with the
permission from [38].
Copyright 2016, with
permission from Elsevier
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To determine the character of chemical bonding, bond lengths and bond orders
are calculated. It was found that the pentazole anions in the NaN5 and Na2N5 crystal
phases are aromatic. The N–N bond lengths in the pentazoles are between the N–N
single bond (1.449 Å as in hydrazine [48]) and double bond (1.252 Å as in trans-
diimine, [49]); see Fig. 2.7a–c. The calculated bond orders are also between the
single (1.0) and double (2.0) bond; see Table2.1. The charge (−0.83 e) and the bond
order (1.42) are also close to those found in the gas phase N−

5 anion (−1 e and
1.45 respectively), which displays the structural and chemical similarity of the N−

5
anion in both gas phase and crystalline NaN5 environments. The calculated band
structure demonstrates that P2/c-NaN5 is an insulator with a band gap of 5 eV while
Pbam-Na2N5 is metallic.

It is likely that the new sodium pentazolate structures might appear in exper-
iments by Eremets et al. [35]. At pressures above 80 GPa, and a temperature of
about 3,000 K, the peaks in the Raman spectrum associated with sodium azide were
found to disappear. This is in agreement with the theoretical prediction that sodium
azide becomes thermodynamically unstable at high pressures. In addition, the Raman
spectrum of the newly predicted sodium pentazolate phase Cm-NaN5 shows good
agreement with that in experiment; see Fig. 2.10. In particular, the agreement is
best near 760cm−1 (the pentazole bending mode) and near 1,150cm−1 (the penta-
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Fig. 2.11 Theoretical NaN5
and NaN3 Raman active
(solid lines) and IR active
(dashed lines) modes as a
function of pressure
compared to those measured
in experiment [35] (black
open squares). Reprinted
with the permission from
[38]. Copyright 2016, with
permission from Elsevier
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zole deformation mode). Also, in agreement with experiment, the Cm-NaN5 phase
has two lattice modes with appreciable intensity at 307 and 440cm−1 compared to
the experimental frequencies at 320 and 580cm−1. The relatively large difference
between the experimental and theoretical frequencies of the second peak may be
due the non-hydrostatic effects at 80 GPa which are not considered in our calcula-
tions. In addition, it is highly unlikely that NaN3 will be fully converted into the pure
NaN5 compound. Therefore a one-to-one correspondence between theory and exper-
iment is not expected due to possible appearance of unidentified nitrogen-containing
species as well as bulk sodium upon compression and heating of NaN3.

The theoretical and experimental frequencies of the Raman-activemodes of NaN5

at room temperature as a function of pressure also agree remarkably well, see
Fig. 2.11. As shown in Fig. 2.11, the internal Raman-active modes of the pentazole in
NaN5 with frequencies 760 and 1,150cm−1 appear in the experimental spectra above
50 GPa that are not from the initial azide compound. This is in agreement with the
prediction that NaN5 becomes stable above 20 GPa. Since these measurements are
performed by compressing NaN3 at room temperature without additional heating, it
expected that complete conversion of NaN3 into NaN5 is not achieved. That is why
the peaks from sodium azide (NaN3) are still present in the experimental spectrum
up to 100 GPa, see Fig. 2.11. Overall, the agreement between theory and experiment
suggests the synthesis of the predicted NaN5 compound.

2.3.2 Cesium Pentazolates

Although the discovery of NaN5 consisting of N
−
5 was interesting, the experimental

evidence for its existence was solely relying on the Raman spectra, which does not
directly probe the crystal structure. In order to provide a more definitive conclusion
whether alkali pentazolates exist at high pressures, another structure search was
performed for cesium polynitrogen compounds at high pressures [39]. The cesium
atoms scatter X-rays much more strongly than sodium atoms, therefore it is expected
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Fig. 2.12 a Convex hull diagram at pressures up to 60 GPa. Solid squares represent stable phases,
open circles—metastable phases, large red circles—stable CsN5 phase on the convex hulls. b Rel-
ative enthalpy difference between two cesium pentazolate (CsN5) polymorphs and the ε-N2 phase
of solid nitrogen plus the C2/m-CsN3 phase of cesium azide as a function of pressure. Reprinted
with permission from [39]. Copyright (2017) American Chemical Society

that the XRD diffraction pattern would be of much higher quality, thus allowing to
unambiguously confirm the experimental synthesis of the new compound.

Therefore, variable composition structure searchwas performed using theUSPEX
code for a system consisting of a variable number of cesium and nitrogen atoms
(CsxNy) at several pressures up to 60 GPa [39]. The convex hull is first constructed
during variable composition search at several pressures, 0, 30, and 60 GPa, followed
by fixed stoichiometry crystal structure searches using up to 8 formula units per unit
cell. The dispersive correction due to Grimme [50] is added toDFT energy and forces
to take into account the long-range van der Waals forces, which are significant in the
system under investigation due to the large polarizability of Cs atoms.

The convex hull for the CsxNy system is given in Fig. 2.12a. The reference struc-
tures for calculating the formation enthalpy are theα-N2, ε-N2, and cg-N [4, 7] crystal
phases for nitrogen, and the bcc-Cs and Cmca-Cs (Phase V) phases for Cs [51], each
taken at its corresponding pressure of stability. The calculations demonstrate that
cesium pentazolate salt CsN5, consisting of pentazolate anion rings (N

−
5 ) and cesium

cations, is on the convex hull at just 15 GPa (Fig. 2.12a). The relative enthalpy differ-
ence between themixture of cesium azide plus dinitrogen (CsN3 + N2) and reference
pentazolate phase Pbca-CsN5, plotted in Fig. 2.12b, indicates that CsN5 is energeti-
cally preferred above a relatively low pressure of 9.1 GPa. The latter pressure is about
41 GPa lower than the predicted transition pressure of molecular nitrogen to single-
bonded threefold coordinated cubic gauche phase of nitrogen (cg-N) in condensed
phase [4]. This indicates that the synthesis of CsN5 requires much lower pressure
and temperature stimuli than is needed to synthesize cg-N (over 100 GPa and 2,000
K) [5].

As in case of sodium, discussed in Sect. 2.3.1, CsN5 consists of isolated N5 penta-
zolate anions and Cs cations, see predicted crystal structures in Fig. 2.13. The other
compounds discovered during the search are: Cs2N5 also consisting of pentazolate
molecules; CsN3 consisting of N3 azides at pressures from 0–50 GPa and then N6
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Fig. 2.13 Two energetically
competitive cesium
pentazolate (CsN5)
polymorphs at 60 GPa
discovered during the
structure search: a
Pbca-CsN5; b P-1-CsN5.
Reprinted with permission
from [39]. Copyright (2017)
American Chemical Society

- N
- Cs

a

b

(a)  Pbca-CsN5 60 GPa

(b)  P-1-CsN5 60 GPa

Fig. 2.14 Predicted phase
diagram for CsxNy system
which contains several novel
crystal structures. Reprinted
with permission from [39].
Copyright (2017) American
Chemical Society
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rings at pressures above 50 GPa; CsN2 consisting of diatomic N2 anions from 0–40
GPa and then infinite chains of nitrogen above 40 GPa, Cs4N6 which consist of N6

rings from 30 to 60 GPa, CsN which also consist of diatomic N2 anions from 0–40
GPa and then N4 chains above 40 GPa; Cs3N2 and Cs2N also containing N2 anions;
and finally Cs3N consisting of of isolated nitrogen atoms. The summary of the sta-
bility pressures for each compound is given in the phase diagram in Fig. 2.14. Note
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that although Cs2N5 and CsN3 are not on the hull at 60 GPa, see Fig. 2.12, the R2N5

stoichiometry is on the hull for R=Na, and RN3 is on the hull at lower pressures
for both R=Cs and R=Na as shown in Fig. 2.6 [38, 39]. Similar poly-nitrogen com-
pounds have been predicted for other group-I alkali metals [38, 40, 52–54], which
implies that nitrogen rings and chains are energetically favorable at high pressures
when doped with an alkali metal.

2.3.3 Pentazole and Ammonium Pentazolate

Several group-I alkali pentazolates (RN5) were predicted to be thermodynamically
stable at high pressures, but one material that had yet to be found is pentazole HN5.
Hydrogen is unique among group-I elements because it is a gas at ambient conditions
and does not becomemetallic until much higher pressures. In addition, hydrogen can
covalently bond to nitrogen to create a rich variety of compounds including ammo-
nia (NH3), hydrazine (N2H4), diimine (N2H2), triazene (N3H3), tetrazene (N4H4),
hydrogen azide (N3H), and ammonium azide (NH4)(N3) [55]. The latter compound
contains an ammonium cation NH+

4 , which is chemically similar to heavy alkali
cations [55–57]. In an analogy with alkali pentazolates, one can also envision the
existence of ammonium pentazolate (NH4)(N5). Metallic ammonium consisting of
NH+

4 cations glued together by the sea of free electrons has been hypothesized to
exist at high pressures inside giant planets such as Uranus and Neptune [56, 57]. It is
therefore possible that the high-pressure chemistry of hydronitrogens may be much
different than alkali poly-nitrogen compounds.

The high-pressure chemistry of hydronitrogen systems has been recently in the
focus of experimental and theoretical investigations [58–64]. The experiments using
the mixture of standard precursors, such as molecular N2 and H2, with nitrogen con-
tent ranging from 5 to 80% suggest the formation of hydronitrogen compounds as
evidenced by the disappearance of N2/H2 vibrons and the simultaneous appearance
of N–H stretching modes [58, 59]. However, a conclusive identification of the type
of new nitrogen oligomers or extended networks as well as the determination of the
crystal structure have not been made. A hydronitrogen precursor ammonium azide
(NH4)(N3), containing both H and N, has not shown any signs of chemical transfor-
mation upon compression up to 70 GPa [62, 65]. Although theoretical calculations
indicate the appearance of polymeric hydronitrogen compounds at a relatively low
pressure in a variety of H–N stoichiometries [60, 63, 64], no such transformationwas
observed in experiment when hydrogen azide is compressed to high pressures [66].

To bridge the bap between experiment and theory, novel hydronitrogen crystalline
compounds have been searched at high pressure using first-principle crystal struc-
ture prediction [40]. The goal is to understand whether pentazolate compounds such
as pentazole N5H and ammonium pentazolate (NH4)(N5) do exist and to identify
specific conditions needed for their synthesis. Variable composition USPEX cal-
culations are performed at 30 and 60 GPa. After the variable composition search
is completed, fixed-compositions structure searches with larger number of atoms
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(b) P2 /c-HN5 50 GPa(a) Pbcm-(NH4)N5 30 GPa

c

b

- N
- H

Fig. 2.15 New hydronitrogen pentazolate compounds discovered during NxH structure search: a
ammonium pentazolate (NH4)(N5), and b pentazole N5H. Reprinted with permission from [40].
Copyright (2017) American Chemical Society

Fig. 2.16 Hydronitrogen phase diagram: a formation enthalpy-composition convex hull, and b the
crystal structure/pressure stability diagram. At 15 and 30 GPa the elemental N structure is ε-N2
and at 60 GPa—cg-N. For all pressures the elemental hydrogen crystal structure has space group
P63/m [67]. Reprinted with permission from [40]. Copyright (2017) American Chemical Society

(up to 40 atoms/unit cell) are performed to find the lowest enthalpy structure for
each composition.

Two new crystalline materials, ammonium pentazolate (NH4)(N5), and pentazole
N5H, are found, featuring all-nitrogen cyclic pentazoles, see Fig. 2.15a, b. The first
crystal, (NH4)(N5), containing isolated ammonium cations NH+

4 and pentazolate
anions N−

5 (Fig. 2.15a), appears on the convex hull at 30 GPa (Fig. 2.16). The second
crystal, N5H, consists of cyclo-N5 covalently bonded to a H atom (Fig. 2.15b), and
appears on the convex hull at 50 GPa. Both structures are predicted to be dynamically
stable at 50 GPa for N5H and 30 GPa for (NH4)(N5) as they lack any imaginary
frequencies in the phonon spectrum in the entire Brillioun zone.

The appearance of these two new compounds dramatically modifies the convex
hulls at lower pressures. In particular, the only thermodynamically stable crystals at
60 GPa are pentazole N5H, ammonium pentazolate (NH4)(N5), ammonia NH3, and
a crystal containing a mixture of NH3 and H2 molecules with net stoichiometry NH4
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(Fig. 2.16a). The formation enthalpy of hydrazine N2H4 [68] is also calculated to be
above the convex hull, therefore it is also metastable. At a lower pressure of 30 GPa,
ammonium pentazolate (NH4)(N5) is still thermodynamically stable, whereas pen-
tazole N5H is not. At 15 GPa, (NH4)(N5) is marginally metastable, leaving only one
stable compound—ammonia (NH3) (Fig. 2.16a). Another known metastable com-
pound, ammonium azide (NH4)(N3) with symmetry P2/c [69] (and stoichiometry
N4H4) is also displayed at 15 and 30 GPa. Ammonium azide is predicted to undergo
the phase transition to trans-tetrazene (TTZ) at 42 GPa [62], followed by another
transition at higher pressure to a crystal that consists of N2H5 molecules and infinite
nitrogen chains (N4H) [64] therefore, the lowest enthalpy polymorph of metastable
(N4H4) with P1 space group is shown at 60 GPa as well.

Both pentazole and ammonium pentazolate crystals contain aromatic cyclo-N5

with the N–N bond lengths 1.30–1.35 Å, which are intermediate between single
N–N (1.45 Å) and double N=N (1.25 Å) bonds. The strength of the aromatic N–N
bond in the N−

5 ring in the predicted crystals P21/c-N5H and Pbcm-(NH4)(N5) is
approximately the same as that in the gas phase. To quantify this conclusion, the
total Mulliken charges, Mayer bond orders, and bond lengths in the N−

5 ring in both
the crystalline environment and the gas phase are calculated at 0 GPa and reported in
Fig. 2.17. In the case of N5H this comparison is straightforward as the structural unit

Fig. 2.17 Total Mulliken charges, Mayer bond orders, and bond lengths in the N−
5 ring in P21/c-

N5H and Pbcm-(NH4)(N5) crystals compared to those in gas phase N5H and N5. The N· · ·H,
hydrogen bonds are also shown in both crystalline environments. Reprinted with permission from
[40]. Copyright (2017) American Chemical Society
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Fig. 2.18 The enthalpy
difference between the
predicted ammonium
pentazolate
(Pbcm-(NH4)(N5) crystal
and ammonium azide
(P2/c-(NH4)(N3)) plus
dinitrogen (R–3c–N2). The
predicted transition pressure
is 12.5 GPa. Reprinted with
permission from [40].
Copyright (2017) American
Chemical Society
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N5H is electrically neutral. The N5 bond lengths and bond orders are mostly the same
in both the gas phase and in the crystalline environments, except for bonds N4–N5
and N5–N1 which have a larger bond order compared to the gas phase, see Fig. 2.17.
The bond lengths of both crystalline and gas phase N5H are in a good agreement
with those calculated by Ferris and Bartlett [25].

To make a unique comparison of bond orders of the N5 ring in crystalline
(NH4)(N5) with those in the gas phase N5, its negative charge (−0.72 e) was fixed
to that in the crystalline (NH4)(N5). The bond lengths (≈1.33Å) and bond orders
(≈1.42) in both environments are very close, the gas phase N−

5 possesses fivefold
D5h symmetry so each bond length and bond order are the same.

Ammonium pentazolate was predicted to become thermodynamically stable at
lower pressure (30 GPa) than pentazole N5H (50 GPa). To achieve its synthesis, the
stoichiometrically balanced mixture of ammonium azide (NH4)(N3) and diatomic
nitrogen (N2) should be compressed to high pressures in a diamond anvil cell to acti-
vate the chemical reaction (NH4)(N3) + N2 → (NH4)(N5). The pressure-dependent
enthalpy difference between the products and reactants for this transformation shown
in Fig. 2.18 displays the possibility of the phase transformation at relatively low pres-
sure of 12.5 GPa. Ammonium azide alone has been reported to be chemically stable
upon compression up to 70 GPa at room temperature [62]. However, setting up the
right stoichiometry in the diamond anvil cell by adding N2 might activate the con-
version of the azide (N−

3 ) anions and N2 molecules to the N−
5 ring at pressures above

12.5 GPa. The higher pressures and temperatures seem to be required to overcome
the significant energy barrier associated with this transformation.

2.4 Comparison of Pentazolate Crystals

The predicted crystal structures, phase transition pressures, and pressure range of
stability of crystal phase pentazolates RN5 are summarized in Table2.2. Their
crystals structures are different: all but a couple possess a different space group
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Table 2.2 Comparison of various pentazolates RN5: the predicted crystallographic space groups,
phase transition pressures, range of stability, charges and bond orders

Stoichiometry Space groups Pressure range of
stability (GPa)

N5 Charge N5 bond order

HN5 P21/c [40] 50–70 −0.31 1.31

(NH4)N5 Pbcm [40] 30–60 −0.72 1.41

LiN5 P21/c 65GPa →
C2/c [54]

15–100 – –

P21 20GPa →
P21/m [52]

10–100 – 1.42

NaN5 Cm: 20–100 GPa
[38]

20–100 −0.83 1.42

CsN5 Pbca 73GPa →
P-1 [39]

15–100 −0.85 1.41

Cmc21 [53] 14–100 −0.85 1.37–1.46

symmetry. Although LiN5 and HN5 crystals have the same space group symmetry
P21/c, molecular constituents are different: N−

5 in LiN5 and HN5 in HN5 crystal.
One possible reason for the diversity of crystal structures is that the steric repulsion
between cations of different alkali atoms varies greatly when moving down the col-
umn of the periodic table. Therefore, as the atomic radius gets larger, the packing
and orientation of the N5 molecules may change resulting in different crystal vol-
umes and different molecular arrangements within the unit cell, especially at high
pressures when the PV term in the enthalpy becomes significant.

The charge transfer from cations to N−
5 ring anions enhances the stability of

crystal phase pentazolates as it enables aromaticity and increases the electrostatic
attraction between ions. The calculated charges and bond orders in the N5 ring are
almost identical among different pentazolate salts, see Table2.2. The main exception
is pentazole (HN5) which has a smaller amount of negative charge on the N5 ring, see
Table2.2. An interesting observation is that there is an inverse relationship between
the amount of charge transfer to N5 ring and the stability pressure of pentazolate
crystals, see Table2.2.HN5 has the smallest charge transferwhich causes the pressure
of stability to increase up to 50 GPa, while (NH4)N5 only has slightly less charge
transfer than the alkali pentazolates so the pressure of stability is reduced to 30 GPa.
In contrast, the pressure of stability decreases down to 10–20 GPa for alkali-metal
pentazolates which also have the largest charge transfer to N5, see Table2.2. The
small charge transfer to N5 in HN5 also lowers the bond order slightly in comparison
to alkali pentazolates as shown in Table2.2, whichmight also play a role in increasing
the stability pressure.

All the alkali pentazolates reviewed in this paper have been predicted to be
metastable at ambient conditions with no imaginary frequencies and no decom-
position observed at high temperature MD simulations [38, 52]. However, pentazole
(HN5) and ammonium pentazolate (NH4)N5 are not dynamically stable at ambient
conditions [40], which seems to be due to reduced charge transfer to N5.
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Fig. 2.19 a Experimental Raman spectra of the CsN3 + N2 mixture at 65 GPa before laser heating
(LH) (black curve), and of CsN5 after LH (red curve) then upon decompression to 55 GPa (green
curve) and 28GPa (amber curve). Theoretical Raman spectrumof P-1-CsN5 polymorph (blue curve)
is also shown for comparison.Arrows indicateN−

5 peaks.bPressure dependence of experimental and
theoretical frequencies of Raman-active modes of CsN5: theory—black lines, experiment—colored
symbols connected by different colored lines for different modes. The light blue line represents the
lower frequency of the first-order Raman scattering of diamond. Reprinted with permission from
[39]. Copyright (2017) American Chemical Society

2.5 Synthesis of Cesium Pentazolate (CsN5)

Theoretical prediction of CsN5 and its enhanced stability at relatively low pressures
stimulated the experimental effort to synthesize this material. It was predicted that
compressing cesium azide in a nitrogen-rich environment might cause simple reac-
tion CsN3 + N2 → CsN5 which is calculated to be energetically favorable above a
pressure of just 9.1 GPa, see Fig. 2.12 [39]. Therefore, experiment was set up to
compress CsN3 in a diamond anvil cell (DAC) filled cryogenically with nitrogen N2,
the latter serving both as a pressure transmitting medium and reagent.

It was observed during the experiment that laser heating (LH) of CsN3 and N2

mixture at 65 GPa results in disappearance of the azide modes and appearance of the
N5 pentazolate modes in the Raman spectra, see Fig. 2.19a. The azide ν1 mode is a
shoulder of the diamond first-order peak at 1,490cm−1 at 65 GPa, which disappears
after LH. The N−

5 breathingmode is also very close to the diamond peak but is visible
in the spectrum at 55 GPa at frequency 1,320cm−1. The other two modes associated
with the azide anion N−

3 also disappear: sharp peaks ν2 at 656cm−1 and the broad
peak in the 1,750–2,000cm−1 frequency range see Fig. 2.19a. New Raman peaks
also appear between 700 and 850cm−1, and at 1,170 and 1,320cm−1 associated with
N5. Both the relative intensities and the frequencies of the experimentally observed
Raman peaks are in agreementwith those of the theoretically predictedRamanmodes
of P-1-CsN5, see Fig. 2.19a. The observed Raman modes at 55 GPa were assigned
as follows: 1,320cm−1 – N−

5 ring breathing; 1,170cm−1 – N−
5 antisymmetric N–

N breathing and angle deformations, and 700–850 cm−1 – N−
5 ring bending and
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Fig. 2.20 a Measured X-Ray diffraction patterns (black circles) after laser heating against the
Le Bail fit (red solid line) using predicted crystal structure of P-1-CsN5. Vertical red ticks mark
positions of Bragg peaks. The blue line is the difference between the measured and fitted intensities.
The inset shows a microphotograph of the sample after heating in transmitted light, indicating the
transparency of the synthesized phase. b Comparison of the measured and calculated pressure
versus volume equation of state (EOS) for the synthesized compound: experimental data are plotted
with solid symbols, whereas theoretical predictions—by open symbols and lines. Also shown are
the experimental (P, V) points corresponding to CsN3 at 33 GPa and the EOS of CsN3 + N2
mixture before laser heating (LH).Reprintedwith permission from [39].Copyright (2017)American
Chemical Society

librational modes. Upon pressure release, the intensity of the Raman modes of CsN5

dropped substantially, and only the most intense internal N5 mode (1,236cm−1) and
the intense broad feature at the low frequency interval (0–550 cm−1) were observed
below 20 GPa, see Fig. 2.19b. Upon further release of pressure below 18 GPa, all
Raman modes other than the one corresponding to high frequency nitrogen vibrons
disappear. The N2 vibrons were always present because nitrogen was the pressure
transmitting medium.

Additional confirmation of CsN5 synthesis comes from XRD measurements dur-
ing the compression experiments which reveal the appearance of new intense and
narrow Bragg peaks with a simultaneous disappearance of the broad CsN3 peaks.
The Bragg peaks of the new phase are well indexed using the theoretically predicted
P-1-CsN5 structure. The resultant Le Bail-fitted and experimental XRD patterns
at 60GPa, shown in Fig. 2.20a, are well-matched. The lattice parameters obtained
from the Le Bail refinement are close to those predicted by theory. The comparison
between the experimental pressure versus volume equation of state (EOS) with the
theoretical EOS of CsN5 and various candidate structures obtained during the evolu-
tionary structure search is shown in Fig. 2.20b. The experimental EOS matches the
theoretical EOSs well for both P-1-CsN5 and Pbca-CsN5 phases in the full range
of applied pressures. In addition, the experimental volume of CsN3 + N2 after laser
heating is 10% less than the sum of volumes of CsN3 and N2 before laser heating at
a given pressure. This provides a strong indication of major atomic rearrangements
to form N5 rings during the conversion of CsN3 + N2 to CsN5.
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2.6 Conclusions

This review of a novel family of poly-nitrogen compounds demonstrates the power
of first-principles crystal structure search methods for the discovery of new mate-
rials. The novelty of this work is in framing the theoretical effort as an integral
part of joint experimental and theoretical exploration of materials chemistry. The-
ory/simulation guidance not only involves the prediction of chemical composition
and crystal structure of new compounds, but it also suggests specific precursors,
and experimental conditions for experimental synthesis of high-N pentazolate EMs.
The ultimate success was achieved in joint theoretical and experimental discovery
of cesium pentazolate, which was synthesized by compressing and heating cesium
azide CsN3 and N2 precursors in diamond anvil cell.

This success story paves the way for synthesis of novel high-N energetic materials
with the promise of quenching their metastable phases at ambient conditions. In fact,
the theoretical work on prediction of new pentazolate compounds inspired a renewed
attempt to synthesize of cyclo-N−

5 compounds using traditional methods of organic
synthesis [70–73]. A breakthrough has been achieved very recently in synthesis of
N−

5 compounds by three independent groups both at ambient pressure and at high
pressures [39, 70–73]. The ambient pressure synthesis involved the cleavage of the
C–N bond in arylpentazoles [72] followed by stabilizing the N−

5 anion with various
cations such as hydronium, ammonium, sodium, chloride, cobalt, iron, or manganese
[70–72, 74]. The computational discovery of alkali and hydronitrogen pentazolates
demonstrates the diversity of metastable high-N compounds, thus opening up new
routes for their synthesis and recovery at ambient conditions.
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Chapter 3
Accelerated Molecular Dynamics
Simulations of Shock-Induced
Chemistry: Application to Liquid
Benzene

E. Martínez, E. M. Kober and M. J. Cawkwell

Abstract Shock-induced phenomena in materials occur on timescales that while
short may still be beyond the reach of traditional molecular dynamics simulations.
The shock-induced chemistry of liquid benzene provides an excellent example of
the importance of timescale in shock experiments; reactions are seen at about 13.3
GPa on microsecond timescales in plate impact experiments but it appears inert at
up to 20 GPa over 100s of picoseconds during laser-driven shock experiments. We
have studied the shock-induced chemistry of liquid benzene using a semiempirical
reactive interatomic potential at timescales beyond those routinely accessible to tra-
ditional molecular dynamics simulations. We have applied replica-based accelerated
molecular dynamics to this system because the initial chemical reactions themselves
can be viewed as rare, state-to-state transitions that take place under thermal acti-
vation. Replica-based accelerated molecular dynamics enables us to parallelize the
simulations in time with no loss of accuracy, provided that transitions (reactions) can
be detected reliably. We have simulated the shocked chemical dynamics of benzene
on timescales up to 7.7ns with high parallel efficiency. The simulations show the
formation dimers through Diels–Alder condensation. The dimers subsequently con-
dense into larger polymeric structures, in good accordwith experiments and quantum
chemical data.
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3.1 Introduction

The shock compression ofmaterials generates thermodynamic states of elevated tem-
perature and stress. Out-of-equilibrium vibrational populations and stress states in
the vicinity of the shock front are responsible for a rich set of material responses that
include intense plastic flow and phase transformations. The combined high temper-
ature, high-pressure states can also give rise to the making and breaking of covalent
bonds in nonmetallic materials. The most notable example of such shock-driven
chemical changes in materials is the cascade of reactions that occur on the path
to detonation in energetic materials [11]. The topic of shock-driven chemistry is
broader than just detonation. Reactions that lead to an increase in density are of
course favored by the compression imparted by the shock, and shock heating can
provide the necessary thermal activation for the reactions to occur on the required
timescales.

Molecular dynamics (MD) simulations have been crucial for identifying and char-
acterizing the atomic-scale phenomena that occur in materials under shock com-
pression for close to 50 years [20–22, 47]. The MD simulation of shock-induced
phenomena such as plasticity and phase transformations in crystalline materials has
been successful mainly because they occur on timescales commensurate with those
accessible to classical MD. The timescales accessible to classical MD simulations
are controlled principally by the size of the time step used in the integration of
nuclear degrees of freedom. In turn, the size of the time step is determined by period
of the fastest vibrational mode in the material under study [2]. High- performance
computing has made significant advances in increasing the size of simulations in
terms of the number of atoms and/or the sophistication of the interatomic potentials.
However, despite the advances in computational power over the 50-year history of
the MD simulation of shock waves, the accessible timescales have not kept pace and
have remained fairly static. MD simulations are inherently serial whereby each time
step is calculated in sequence. Parallel processing has undeniably led to simulations
on ever larger systems, but in traditional, classical MD, it does not affect the serial
propagation of the nuclear coordinates in time.

Despite the undisputed success that MD simulations have had in furthering our
understanding of shock-induced processes in materials there remains much work
to be done. One of the primary limitations of MD remains the timescale problem,
especially for processes characterized by rare transitions between different states.
The application of MD to shock-induced reactions in prototypical or chemically
realistic systems has been pursued heavily [4, 31, 46, 51]. However, the initial
thermodynamic conditions for this type of simulation are typically chosen so that the
reactions of interest will occur on the timescale of the simulation. This has limited
applications to strongly overdriven regimes where reactions occur promptly behind
the shock front, that is, within a few picoseconds.

Since the rates of chemical reactions depend on both temperature and pressure it
is not guaranteed that the chemical reactions seen in the overdriven regime are the
same as those seen under the milder conditions achieved in gas gun or laser-driven
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shock compression experiments. In order to better resolve and understand the chem-
ical reactions that occur in laboratory experiments and to quantify reaction rates for
continuum-scalemodels, it is necessary to greatly extend the timescales achievable in
reactive MD. Here we report the application of the parallel replica dynamics method
[48], one of the accelerated molecular dynamics (AMD) formalisms developed orig-
inally by Voter, to shock-induced chemistry. Parallel replica dynamics brings parallel
processing to bear on the propagation of nuclear degrees of freedom. It is capable
of extending the timescales achievable in MD simulations of infrequent events by
orders of magnitude while keeping the chemical fidelity of the underlying simulation
and interatomic potential intact [38]. In this case, the infrequent events we seek to
accelerate are changes in the intramolecular covalent bonding in a shock-compressed
organic liquid.

Parallel replica dynamics has been applied most frequently to the simulation of
diffusional processes in crystallinematerials where the thermally activatedmigration
of defects is the accelerated rare event. These systems are well suited to the parallel
replica method since diffusional processes can be considered rare events with an
intrinsic frequency much slower than atomic vibrations and the diffusional events
themselves can be detected with little ambiguity. Nevertheless, several groups have
applied the method to “soft” chemical systems including the conformational changes
of molecules and the pyrolysis of organic compounds [24, 27]. These soft systems
present additional challenges owing to the practical difficulties of defining states and
detecting events.

In this work, the parallel replica dynamics method has been applied to the sim-
ulation of shock-induced reactions in liquid benzene on timescales beyond those
routinely accessible to traditional MD. This has enabled us to examine chemistry
under thermodynamic conditions that can be compared directly with experiments
instead of the heavily overdriven regime. Liquid benzene was selected as a test case
owing to its relative simplicity and the wealth of data available in the literature from
the both µs gas gun and sub-ns laser-driven shock experiments. Interatomic interac-
tions in the liquid benzene were described using an accurate and transferable density
functional tight binding (DFTB) parameterization for hydrocarbons.

3.2 Shock Compression of Liquid Benzene

The response of benzene, C6H6, to static high-pressure and high-temperature con-
ditions and shock compression is rich and has been studied intensively both exper-
imentally and theoretically. Benzene melts at −3 ◦C at ambient pressure and its
equilibrium pressure–temperature phase diagram shows three molecular crystalline
phases in addition to an amorphous carbon–hydrogen phase and a potential poly-
meric structure under high-pressure and high-temperature regimes [8]. Ciabini et
al. showed that a transition from crystalline polymorphs to an amorphous carbon–
hydrogen-based structure is triggered by the length of intermolecular C–C bonds
decreasing to a critical value of 2.6Å [8].
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The single shock Hugoniot of liquid benzene was measured up to a pressure of
43.2GPa by Dick [12] andWalsh and Rice [49] using explosively driven flyer plates.
Cusps in the principal Hugoniot were reported at 13.3 and 19.4 GPa. The abrupt
decrease in slope of the shock velocity, Us, versus particle velocity, Up, Hugoniot at
13.3 GPa is accompanied to a volume decrease of about 16%. In the original work,
Dick suggested that the cusp in the Hugoniot at 13.3 GPa corresponds to the onset
of an instantaneous (sub-µs) volume-decreasing transformation. The possibility of
a freezing transition was discounted owing the (over)estimate of the shocked state at
13.3 GPa of T = 2300 K. As a result, Dick suggested that a polymerization reaction
takes place at the cusp. Amore recent estimate of the shock heating in liquid benzene
at 13.3 GPa by Lacina and Gupta that accounts for the temperature dependence of
the heat capacity gives instead a temperature of T = 1485 K [28]. More recently,
Dattelbaum and co-workers performed light gas gun experiments with embedded
electromagnetic gauges to resolve the temporal evolution of the wave structure in
reacting, shocked liquid benzene [10].

Changes in optical absorption have been measured in liquid benzene singly
shocked up to around first transition pressure. Yakusheva et al. [52] and Holmes
et al. [23] attributed significant losses of light transmission to the formation of car-
bon particles upon the decomposition of the benzene molecules. However, Akin and
Chau showed that liquid benzene becomes 100% absorbing at 523 nm within 300 ns
of shock compression even when it is shocked to 12 GPa, i.e., below the first trans-
formation at 13.3 GPa [1]. Hence, the changes in the optical properties of benzene
upon shock compression may not depend on dramatic changes in interatomic bond-
ing such as polymerization or decomposition but instead may rise from interactions
between delocalized π orbitals on neighboring molecules. Moreover, laser-driven
shock experiments by Dang et al. detect no changes in the absorption spectra of
liquid benzene in spectral region from 440 to 780 nm over the first 350 ps during
impacts up to 20 GPa [9]. While Dang et al. derive traditional wave speed data from
their experiment, it is difficult to resolve from these results whether cusps exist in
the principal Hugoniot.

Reactive molecular dynamics simulations of the shock compression of liquid ben-
zene have yielded contradictory results. Molecular dynamics simulations by Bick-
ham, Collins, and Kress using a semiempirical, orthogonal, non-charge-dependent
tight binding model showed polymerization reactions within 7 ps of simulation
time for shock pressures in excess of about 24.6 GPa and temperatures exceeding
2840 K [3]. Maillet and Pineau performed molecular dynamics simulations of ben-
zene decomposition in the canonical (constant NVT ) ensemble using an empirical
ReaxFF force field at selected states on the experimental principal Hugoniot [30].
Simulations at a volumetric compression of v/v0 ≈ 0.44, where v and v0 are the
shocked and initial volumes, respectively, and a temperature of 2350 K, correspond-
ing to a Rankine–Hugoniot shock pressure p ≈ 19 GPa showed the decomposition
of benzene molecules, the formation of polymeric structures, and a decrease in pres-
sure. Maillet and Pineau did not present data on possible reactions in benzene under
thermodynamic conditions corresponding to the first cusp in the principal Hugo-
niot at 13.3 GPa. First principles molecular dynamics simulations of benzene by
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Wang and Zhang examined Hugoniot conditions in the range 4.3 ≤ p ≤ 67.2 GPa
and 598 ≤ T ≤ 4334 K and revealed decomposition reactions starting at p = 11
GPa [50]. However, while first principles-based descriptions of interatomic bonding
are generally more accurate than empirical or semiempirical models, the fidelity of
the NVT molecular dynamics simulations presented by the authors is questionable
owing to their use of a time step for the integration of the equations of motion for
the nuclei of 2 fs. This is a factor of 8 and 20 larger than those used by Bickham
et al. [3] and Maillet and Pineau [30], respectively. Indeed, a time step in the range
0.4–0.5 fs is typically around the upper limit to capture C–H stretch vibrational mod-
els at about 3000 cm−1 even under ambient conditions. Hence, the decomposition
reactions reported in [50] at relatively low pressures might be viewed with caution.

3.3 Density Functional Tight Binding for Hydrocarbons

We have represented the interatomic bonding in benzene using the semiempirical
density functional tight binding model developed by Krishnapriyan et al. [26]. DFTB
is a fast, parameterized electronic structure model that captures the formation of
covalent bonds and charge transfer between elements of different electronegativity
[13, 14, 18, 19, 25, 44]. The potential energy in DFTB theory is,

u = 2Tr
[
(P − P0)H

0] + 1

2

N∑

i=1

N∑

j �=i=1

γi j qiq j + Epair, (3.1)

where Tr[X ] denotes the trace of matrix X , P the self-consistent density matrix, P0
the density matrix for noninteracting atoms, H 0 the charge-independent, two center
Slater–Koster tight binding Hamiltonian [45], γi j a screened electrostatic potential,
andqi an atom-centeredMulliken charge. Epair a sumof atom-centered pair potentials
that provide mainly short-range repulsion, i labels atoms, and N is the total number
of atoms. The density matrix, P , is computed from the electronic occupancy and the
DFTB Hamiltonian

H = H 0 + H 1, (3.2)

where H 1 depends on the electrostatic potential due to charge transfer,

H 1
iα, jβ = 1

2
Siα, jβ(Vi + Vj ). (3.3)

Here, S is the overlap matrix, α = s, px , etc., labels orbitals, and,

Vi = U(i)qi +
N∑

k �=i=1

γikqk, (3.4)
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where U(i) is the Hubbard U for the element at site i . The electrostatic potentials,
(3.4), are evaluated by Ewald summation. Since the DFTB Hamiltonian depends on
the density matrix through the Mulliken charges,

qi =
∑

α∈i

(
Siα, jβ Pjβ,iα + Piα, jβ Sjβ,iα

) − nei , (3.5)

where nei is the number of valence electrons on the neutral atom; the density matrix
must be solved self-consistently.

Our DFTB model for hydrocarbons uses a minimal basis of one s and three p
orbitals on carbon and one s orbital on hydrogen. The dependences of Hamiltonian
and overlap matrix elements on the bond angles are determined by the angular char-
acter of the valence orbitals and are prescribed. The radial dependences of the pair
potentials that contribute to Epair and the bond and overlap integrals are parameter-
ized with the aim that the complete DFTB model reproduces experimental and/or
ab initio calculated data as accurately as possible. The radial dependences of the
bond and overlap matrix elements, h(R) and s(R), respectively, are represented by
an exponential function,

hll ′τ (R) = hll ′τ (R0)ζll ′τ (R, R0) (3.6)

sll ′τ (R) = sll ′τ (R0)ζll ′τ (R, R0) (3.7)

ζ(R, R0) =
M∏

k=1

exp(Ak(R − R0)
k), (3.8)

where l labels the orbital angular momentum (l = s, p) and τ the bond type
(τ = σ, π ). R0 is a reference bond distance, and h(R0), s(R0), {A} are adjustable
parameters for each integral [7, 26]. The product extends to M = 2 for the bond
integrals and M = 4 for the overlap integrals. The radial dependence of the pair
potentials, 	(R), where

Epair = 1

2

N∑

i=1

N∑

j �=i=1

	(Ri j ), (3.9)

take a similar form to the bond and overlap integrals where

	(R) = 	0

4∏

k=1

exp(Bk R
k), (3.10)

and 	0 and {B} are adjustable parameters. The remaining terms requiring parame-
terization are the energies of the valence orbitals on noninteracting, neutral atoms,
εl , and the Hubbard Us for each element.
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The DFTB parameters for hydrocarbons were determined by a series of numer-
ical optimizations that minimized the value of an objective function that measures
the error in the predicted atomization energies and interatomic forces of small, dis-
torted molecules with respect to identical density functional theory calculations at
the B3LYP/cc-pVTZ level. The optimized parameter set is presented in [26]. Careful
testing of the DFTB model showed that it is both accurate and transferable since the
root mean square errors in the bond lengths, �dCC = 0.01 and �dCH = 0.002 Å,
and atomization energies, �E = 0.016 eV/atom, computed from the model for both
the molecules used to train the model and a separate set of test molecules are almost
indistinguishable.

3.4 Extended Lagrangian Born–Oppenheimer Molecular
Dynamics

The MD trajectories that underpin the parallel replica AMD simulations were com-
puted using the extended Lagrangian Born–Oppenheimer MD (XLBOMD) formal-
ism of Niklasson and co-workers [34–37]. The XLBOMD method is an elegant and
powerful solution to the systematic energy drift seen in microcanonical trajectories
(constant number of particles, volume, and total energy, NV E) in traditional Born–
Oppenheimer MD. It was demonstrated that broken time-reversal symmetry due to
the approximate, incomplete self-consistent field (SCF) optimization of the electronic
degrees of freedom in traditional Born–Oppenheimer MD, in combination with ad
hoc extrapolation of the electronic degrees of freedom from one time step to the next,
were responsible for systematic energy drifts during NV E dynamics [39]. The elec-
tronic degrees of freedom are propagated with a time-reversible integrator like the
nuclear degrees of freedom inXLBOMDwhich restores time- reversal symmetry and
provides precise, long-term energy conservation. The XLBOMD propagation of the
electronic degrees of freedom has the additional and significant benefit of speeding
up the calculation of the trajectories by about an order of magnitude. The integration
of the electronic degrees of freedom generates initial guesses for the SCF procedure
that are very close to the self-consistent ground state. Hence, in XLBOMD stable
integration can be obtained with only one SCF cycle per MD time step rather than
the 5–10 cycles that might be required in traditional BOMD.

The XLBOMD method is applied with DFTB-based MD to propagate the set of
Mulliken charges and the chemical potential [6, 7, 53]. Our simulations of shock-
compressed liquid benzene each used a time step for the integration of the equation
of motion of δt = 0.25 fs. The making and breaking of covalent bonds can lead to
numerical instabilities that manifest themselves as spurious forces and poor energy
conservation. In order to avoid these events in our reactive simulations, we thermally
smeared the occupation of states around the chemical potential when calculating the
density matrix using the Fermi–Dirac distribution with an electronic temperature
corresponding to 0.2 eV. Furthermore, to avoid SCF instabilities, we increased the
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number of SCF cycles to 2 per time step with a linear mixing coefficient for the
Mulliken charges of 0.1. Finally, the parallel replica dynamics simulations were per-
formed in the canonical ensemble using a Langevin thermostat with 1 ps−1 damping.

3.5 Parallel Replica Dynamics

Parallel replica dynamics [38, 48] exploits the fact that for many physical processes
the system trajectory executes transitions from state to state on timescales orders
of magnitude larger than the atomic vibrations; i.e., the dynamics of the system are
dominated by infrequent events. It can be shown that in these cases the process can
be parallelized in time, in a manner complementary to the spatial parallelization of
MD, with full accuracy [5, 48]. Information about exactly where the trajectory is
inside each state is lost (although it can be recovered if desired), but the state-to-state
trajectory can be made as accurate as in direct MD.

The parallel replica method is derived from the exponential distribution of escape
times, px (t), from a given state, x ,

px (t) = kx exp(−kx t), (3.11)

where kx is the escape rate over all possible escape paths, y, i.e., kx = ∑
y kxy . By

running Nr statistically independent replicas of the trajectory, the probability that
any of them escape in the interval t → t + dt is,

prx (t)dt = Nrkx exp(−Nrkx t)dt. (3.12)

Defining the time accumulated over the Nr replicas as tr = Nrt , we obtain,

px (tr)dtr = kx exp(−kx tr)dtr. (3.13)

Hence, the probability of any of the replicas escaping state x in time t is the same as
that for the serial, nonparallel system in time tr = Nrt [48].

In practice, the boost factor obtained from parallel replica dynamics can be con-
siderably less than Nr owing to overheads that are inherent to the method. Since the
replicas must be statistically independent, each must be carefully dephased before
the parallel simulation time is accumulated. In this work, the replicas were dephased
by coupling to a stochastic, Langevin thermostat [32] with different random number
sequences. Each replica was dephased for 5 ps before accumulating simulation time.
We assume that the system is in a quasi-stationary distribution after each dephasing
time. Another overhead in the parallel replica dynamics method arises from moni-
toring those replicas where a transition has occurred for the correlation time. Parallel
time is not accumulated over this interval. Since a transition to a new state might be
transient, either because it quickly returns to its original state or undergoes a series
of further escapes, by ensuring that the system remains in a new state for at least the
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correlation time any subsequent states are uncorrelated and we return to a system of
rare-event dynamics. Upon establishing that a replica has settled into a new state,
its configuration generates a new set of replicas, each of which is dephased for the
process to start again. A system that undergoes frequent transitions owing to high
rates and/or large numbers of parallel replicas will have low parallel efficiency since
the overheads arising from dephasing and the correlation time are linked with the
escapes.

State-to-state transitions in parallel replica dynamics have been detected tradition-
ally byperiodically ‘quenching’ each trajectory through amolecular statics relaxation
after which the atomic positions are compared to those at the start of the trajectory
[48]. While this approach is reliable for crystalline materials, its efficacy for soft
materials and liquids is very limited. We instead interrogate the network of inter- and
intramolecular covalent bonding in liquid benzene directly during the trajectories.
The nearest neighbor bonds were reevaluated every 1 ps and without quenching, and
changes in the nearest neighbor bonding were used to identify chemical events. The
scission of a C–C bond is defined to have occurred when the following condition is
satisfied:

dnew − dold
dold

> fcut = 0.3, (3.14)

where dnew and dold are the current and reference bond lengths in the hot state,
respectively. A new C–C is defined to have formed if carbon atoms come within
2Å for at least 1 ps. The correlation time was taken as 5 ps. We ignore changes in the
C–H and H–H bonding in the simulations since the dynamics of these transitions are
fast compared to the rate of transitions in the C–C bonding. The parallel efficiency
of our simulations would be greatly reduced if events involving H were tracked
explicitly.

3.6 Calculation of the Unreacted Hugoniot of Liquid
Benzene

Since DFTB is computationally expensive compared with empirical reactive or unre-
active force fields, it is still not feasible to employ it in direct simulations of the shock
compression of materials. Instead, the thermodynamic conditions that correspond to
states on the principal, or single shock Hugoniot have been computed through the
use of a simple Hugoniostat [17, 29, 41, 42]. Those material states were used as the
initial conditions for a series of AMD trajectories. Hence, we prepare systems on the
principal unreacted Hugoniot and through MD or AMD simulations allow them to
evolve in time.

Hugoniostats enable the computation of shocked states by self-consistently updat-
ing the temperature and pressure or density until the Hugoniot equation is satisfied,
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E − E0 = 1

2
(p + p0)(v0 − v), (3.15)

where E is the total energy, p the pressure, and v the system volume [17]. The
subscript 0 refers to those quantities of the system in its initial, pre-shocked state.
The initial conditions for our simulations comprised a cubic, periodic simulation
cell containing 20 benzene molecules at temperature of 300 K at its experimental
density, ρ0 = 0.876 g/cm3. For a series of target pressures, 2 < p < 30 GPa, the
specific volume v was updated incrementally using a simple volume rescaling baro-
stat and the temperature by updating the target temperature of a Langevin thermostat
to satisfy (3.15). The initial conditions for the subsequent AMD simulations were
determined by time averaging the temperature and specific volume once the system
reached a fluctuating steady state. The calculated temperatures along the unreacted
Hugoniot as a function of specific volume and pressure are presented in Figs. 3.1
and 3.2, respectively. The temperatures predicted by the DFTB model using (3.15)
underestimate those calculated by Lacina and Gupta. For instance, at 13.3 GPa our
calculations give a temperature of 1161 K on the unreacted Hugoniot whereas the
equations of state of Root [43] and Lacina and Gupta [28] give 1315 and 1485 K,
respectively. The shock temperatures predicted by Nellis et al. are marginally lower
than those of Root and hence are in better accord with our predictions [28, 33]. Nev-
ertheless, our predicted shock temperatures appear to be in much better agreement
with estimates derived from equations of state than those obtained from earlier MD
simulations [3].

The unreacted Hugoniot of liquid benzene in the particle velocity-shock velocity
and pressure-specific volume planes calculated with the DFTB model for hydrocar-
bons are presentedwith experimental data fromDick in Figs. 3.3 and 3.4, respectively
[12]. Figure 3.4 illustrates clearly that the DFTB model overestimates the compress-
ibility of liquid benzene at low shock pressures. The discrepancies in the experimental
and predicted Hugoniots at higher compressions are due to the volume-decreasing
reactions that are not captured in the nonreactive MD simulations. The gradient of
the calculated Hugoniot in theUs −Up plane is in excellent accord with experiment.
The predicted and experimental unreacted Hugoniots, i.e., including experimental
data up to 13 GPa, are offset by about 0.5 km/s. This result implies that the DFTB
model underestimates the sound velocity of liquid benzene under ambient conditions
by about the same amount.

3.7 Results

Five states on the unreacted Hugoniot of liquid benzene from 20 to 28 GPa were
used as the initial conditions for the parallel replica dynamics. The corresponding
specific volumes and temperatures are summarized in Table 3.1. Each simulation
used 60 replicas where each DFTB MD simulation ran on 16 cores of one compute
node for a total of 960 CPU cores per simulation.
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Fig. 3.1 Locus of the temperatures and specific volumes on the unreacted principal Hugoniot for
liquid benzene computed from DFTB-based MD

Table 3.1 Initial conditions
on the liquid benzene
principal Hugoniot for the
AMD simulations

Pressure (GPa) Temperature (K) Specific volume (cm3/g)

20 1613 0.551

22 1751 0.542

24 1897 0.537

26 2031 0.526

28 2207 0.520

Dimer- or polymerization reactions between benzene molecules were seen for all
of the initial conditions. The reactions were more frequent at higher shock pressures
leading to lower parallel efficiencies owing to the overheads arising from the dephas-
ing and correlation times. The accumulated simulations times and efficiencies are
presented in Table 3.2. Our simulations at 20, 22, and 24 GPa each exceeded 1 ns of
simulation time. To put these values in better context, on identical hardware a serial
DFTB MD simulation of the same systems yields only 40 ps per 24 hours.

The dimerization reactions seen at 20, 22, and 24 GPa are consistent with Diels–
Alder reactions between benzene molecules. The formation of benzene dimers by
a Diels–Alder reaction is endothermic but it has a low barrier and is promoted by
pressure. Detailed calculations of the reaction pathways were presented recently by
Quenneville and Germann [40]. Similar Diels–Alder reactions have been inferred in
other shocked aromatic compounds [15, 16].
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Fig. 3.2 Calculated temperatures on the unreacted Hugoniot of liquid benzene as a function of
shock pressure
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Fig. 3.3 Shock velocity versus particle velocity Hugoniot of liquid benzene fromDFTB-basedMD
and experiment [12]. Experimental data for Up < 2.8 km/s correspond to unreacted material
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Fig. 3.4 Locus of pressure and specific volume on the principal Hugoniot for liquid benzene from
DFTB-based MD simulations and experiment [12]. Experimental data at specific volumes greater
than 0.6cm3/g correspond to unreacted material

The reactions were analyzed by employing simple cutoff distances to determine
whether pairs of atoms are bonded together or not. The values used in this study
were: C–C 2.00Å, C–H 1.45Å, and H–H 1.00 Å. The atoms were also classified
according to their coordination geometries as a means of tracking the reaction types.
For example, benzene contains C atoms that are bonded to one H and two other
C atoms: C[HCC]. For the Diels–Alder condensation reaction, four C atoms (two
each from the two benzenes) will be transformed into C atoms that are bonded to
one H and three other C atoms: C[HCCC]. The condensations observed here are all

Table 3.2 Summary of the accumulated time, parallel efficiency, and reactions seen in the AMD
simulations as a function of the initial pressure

Pressure (GPa) Reaction Stability Total time (ns) Parallel efficiency (%)

20 Diels–Alder dimer Metastable 7.70 75.9

22 Diels–Alder dimer Metastable 4.08 57.0

24 Diels–Alder dimer Metastable 2.08 32.4

26 Polymerization Stable 1.27 25.4

28 Polymerization Stable 0.27 15.2
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Fig. 3.5 Snapshots of polymerization reactions in benzene and the time history number of non-
reacted benzene molecules as a function of temperature and pressure. a and b 20 GPa and 1613 K,
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concerted (four C atoms change their coordination environments simultaneously),
which is expected for the ground state reactions. Quenneville and Germann had also
considered stepwise reactions from the ground and excited states, but these were not
observed here [40].

The covalent dimers seen at 20, 22, and 24 GPa are metastable and decompose
to benzene during the AMD simulations. The formation and decomposition of the
Diels–Alder dimers are illustrated in Fig. 3.5 where we plot the time history of
the number of benzene molecules in the simulation cell. The number of benzene
molecules alternates between 20 (no dimers) and 18 (one dimer) in the AMD sim-
ulations performed at 20, 22, and 24 GPa. The dimer- and polymerization reactions
observed in our AMD simulations at 26 and 28 GPa are more extensive. Figure 3.5
shows clearly that more benzene molecules take part in the reactions. At later times
in those two cases, the transfer of H from the tertiary carbons over to a secondary
C is also observed, where this is presumably accompanied by shifting the isolated
double bond over to the tertiary C. Such reactions should likely render the conden-
sation reactions irreversible, forming stable oligomers that could undergo further
rearrangements or decomposition.

3.8 Discussion and Summary

The application of parallel replica dynamics with an accurate, reactive interatomic
potential based explicitly on electronic structure has enabled us to identify and char-
acterize shock-induced chemical reactions at timescales far in excess of those that
can be obtained practically in traditional MD. We obtained nearly 80% parallel effi-
ciency for our simulations at 20 GPa and 1613 K. Owing to the high efficiency,
further increases in the number of replicas are both feasible and desirable so that
chemistry can be studied at longer timescales and under weaker shocks.

The reactions observed in shock-compressedbenzene are consistentwith endother-
mic, pressure-assisted Diels–Alder reactions. The product dimers appear to be
metastable at the lower shock pressures studied in this work. However, by extending
the duration of the simulations further it may be possible to observe additional poly-
merization steps which stabilize the products further. Crucially, we observe reactions
that lead to an increase in density, which is fully consistent with the results of shock
compression experiments.

The μs-duration explosively driven flyer plate experiments of Dick identified a
cusp in the principal Hugoniot at about 13 GPa [12]. The more recent laser-driven
shock experiment of Dang and co-workers detected no reactions up to about 20 GPa
[9]. Their observations are fully consistent with our AMD simulations since at 20
GPa we find only a handful of reactions over a timescale of nearly 8 ns. Hence,
the reaction rates at 20 GPa are such that very little chemistry can occur over the
300 ps duration of the experiments. Similarly, the much longer duration of gas gun
and explosively driven flyer experiments find evidence of significant densification
reactions down to 13 GPa.
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In summary, we have applied an accelerated MD method to a relatively simple
system, albeit one with rich chemistry, that has enabled the analysis of chemical
reactions under input conditions that can be compared directly with experiments.
These techniques provide a tractable route for the study of shock-induced chemistry
in organic materials under less overdriven conditions than have been used to date.
The dividing surfaces that characterize events in hot organic materials should be
defined with care and reliable event detection is an important consideration. Never-
theless, there is no practical reason why AMD methods cannot be applied to study
the relatively slow, endothermic reactions that occur on route to the rapid, exothermic
chemistry that occurs during detonation.
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Chapter 4
Force Matching Approaches to Extend
Density Functional Theory to Large
Time and Length Scales

Rebecca K. Lindsey, Matthew P. Kroonblawd, Laurence E. Fried
and Nir Goldman

Abstract We present methods for the creation of semi-empirical quantum
approaches and reactive force fields through force matching to quantum simula-
tion data for materials under reactive conditions. Our methodologies overcome the
extreme computational cost of standard Kohn–Sham Density Functional Theory
(DFT) by mapping DFT computed simulation data onto functional forms with lin-
ear dependence on their parameters. This allows for quick parameterization of our
models by avoiding the nonlinear fitting bottlenecks associated with most molec-
ular dynamics model development. We illustrate our approach with two different
systems: (i) determination of density functional tight binding models for aqueous
glycine dimerization, and (ii) determination of the Chebyshev Interactional Model
for Efficient Simulation (ChIMES) reactive force field for metallic liquid carbon. In
each case, we observe that our approach is easy to parametrize and yields a model
that is orders of magnitude faster than DFT while largely retaining its accuracy.
Overall, our methods have potential use for studying complex long time and length
scale chemical reactivity at extreme conditions, where there is a significant need for
computationally efficient atomistic simulations methods to aid in the interpretation
and design of experiments.
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4.1 Introduction

Elucidating the chemistry of reactive materials under extreme conditions in the lab-
oratory can require the investigation of a great number of permutations of different
starting materials, thermodynamic conditions, and catalysts. The number of possible
combinations can frequently be too numerous and costly to addresswith experimental
trial and error alone. Experiments frequently rely on theoretical studies to elucidate
measured data, including kinetic and spectroscopic properties. Nonetheless, in many
cases, insufficient data exists for the equation of state and chemical reactivity of these
materials under the extreme pressures attained during experiments [1]. For example,
studies on carbon-rich materials under pressures up to 30 GPa (1 GPa = 10 kbar)
suggest that slow chemical kinetics can extend beyond the timescales of nanosecond
laser-driven compression experiments, even at temperatures of thousands of Kelvin
[2]. Reported experimental temperatures can contain large uncertainties, making it
difficult to adequately constrain the equation of state on the basis of experiment
alone [3, 4]. Furthermore, low-resolution mesoscale simulations frequently require
chemical kinetic input parameters that are challenging to obtain experimentally (e.g.,
due to difficulties obtaining atomic-scale resolution in experiments on bulk material
synthesis) but can be readily computed via higher-resolution particle-based simula-
tions [5–7].

Computer simulations such as molecular dynamics (MD) hold promise as an
independent route to determining the equation of state and chemical reactivity dur-
ingmaterials synthesis. Such studies can provide simple chemical pictures of ionized
intermediates and reaction mechanisms, and can help identify atomic-scale proper-
ties that determine observed macroscopic kinetics (e.g., descriptors). These types
of results can make experiments more tractable by aiding in their interpretation,
and helping to narrow the number of different materials and reactive conditions to
investigate.

Accurate modeling of the breaking and forming of bonds in condensed phases
frequently requires the determination of many nuclear-body effects [8, 9], which
are included in quantum theories such as Density Functional Theory (DFT). DFT
remains one of the most popular and widely used modeling methods in condensed
matter physics, computational chemistry, and materials science for predicting mate-
rial properties and chemical reactivity. It has been shown to accurately reproduce
the phase boundaries and thermal decomposition of many materials [10–13], par-
ticularly at extreme thermodynamic conditions such as planetary interiors [10, 11,
13], where long-range effects such as dispersion are less important. DFT-MD simu-
lations, though, require immense computational effort per simulation time step and
consequently are usually limited to picosecond time scales and nanometer system
sizes. In contrast, many chemical events can occur over nanosecond timescales or
longer [2, 11], and experiments can probe micron length scales or beyond [14–16].

Difficulty thus generally arises in determining models for chemical bonding
that are both accurate and computationally efficient. Empirical models (e.g., [17]),
where atomic forces are computed from parameterized potential energy surfaces, are
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generally fit to properties of specific chemical reactants over a narrow range of ther-
modynamic conditions. These approaches are usually highly computationally effi-
cient, but tend to contain numerous nonlinear parameters that can be time-consuming
to optimize, and can also suffer from poor transferability. In contrast, semi-empirical
quantum theories such as density functional tight bindingwith self-consistent charges
(DFTB) retain some level of computational efficiency and tend to have a higher degree
of transferability to different starting materials and reaction conditions. However,
standard forms of these models are parameterized to gas phase quantum chemical
calculations, and consequently can result in overbinding of reactants, e.g., reaction
enthalpies that are up 20 kcal/mol too high for simple hydrogenation reactions [18]
and somewhat poor representation of condensed phase reactivity [19]. Thus, there
exists a great need to explore novel methods for atomistic simulations of reactive
materials that are computational efficient while retaining the accuracy of higher order
quantum methods.

In this chapter, we demonstrate how force matching can be used to determine both
classical reactive MD and DFTB models through use of functional forms that are
strictly linear in their parameters. Force matching maximizes the data set that can
be obtained from DFT by fitting parameters of a potential energy function to each
individual atomic force in an MD trajectory [20, 21], yielding a large quantity of
data points for determining atomistic models (i.e., 3N data points per configuration,
where N is the number of atoms in the system). It thus has potential to systematically
determineMDmodels that yield highly accurate predictions of chemical reactivity for
a given material or mixture and set of thermodynamic conditions. The use of linearly
parametrized models allows for use of linear least-squares fitting, whereby optimum
parameter values are rapidly determined in a single step. This removes the need
for direct gradient minimization or iterative techniques (e.g., Levenberg–Marquardt)
which can become trapped in a local minimum, or computationally intensive global
energy minimum searches (e.g., simulated annealing). In this work, we discuss two
application areas for this method: parameterization of a semi-empirical quantum
model for glycine dimerization under ambient aqueous conditions, and generation
of a reactive force field for molten carbon. Our intent is to provide a general overview
of how these classes of MD models can be rapidly determined for reactive materials
under a broad range of conditions.

4.2 Force Matching Overview

The force matching method (FM) was first developed by [20] for generation of an
aluminum force field based on a repository of atomic configurations and correspond-
ing ab initio forces [20]. This framework usually requires the generation of an MD
training data set for given material at a specific set of state points, often through the
use ofDFT simulations. A force field functional form is then selected, e.g.,φ(x; {p}),
which depends on interatomic distances x , and is subject to a set of parameters {p}.
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Model parameters are then obtained by minimizing the following objective function:

RMSE =
√
√
√
√

1

3MN

M
∑

m=1

N
∑

i=1

3
∑

α=1

(

Fimα ,DFT − Fimα ,φ{p}
)2

, (4.1)

where RMSE is the root-mean-squared error, the subscript imα
indicates the αth

Cartesian component of the force on atom i in MD configuration m, and FDFT are
the forces to which model φ(x; {p}) is to be fit.

As mentioned previously, generation of fitted parameters can be time consuming
for complex target models due to the need for slow to converge nonlinear approaches
such as Levenberg–Marquardt [22, 23] or global search methods such as simulated
annealing [24]. If the target model is linear in fitted parameters, however, the FM
optimization problem reduces to the following matrix equation: Mp = Ftrain. The
elements of M are given as Mrc = ∂Fr,φ{p}/∂pc, where r represents the combined
index over Cartesian components of the force on each atom in the training trajectory
(i.e., matrix rows), and c the combined index over coefficients in the model (i.e.,
matrix columns), while p and Ftrain are the vector of target model parameters and
vector of training forces, respectively. Standard methods such as Singular Value
Decomposition [25], ridge [26, 27], or LASSO regression [28] can then be leveraged
to solve for a unique set of model parameters in a matter of minutes. Well-developed
procedures exist for determining the robustness of regression problems, such as
cross-validation [29].

Though force matching was originally developed for generation of atomic poten-
tials based on DFT data, we note that the approach is flexible and can be expanded to
include other features including the system stress tensor (to tune model pressure) and
energy. Furthermore, the force matching approach can be used to generate coarse-
grained models from all-atom force fields (e.g., [30]) by mapping forces arising from
several atoms to specific coarse grain interaction sites.

4.3 DFTB: Rapidly Tunable Models for High Throughput
Quantum Molecular Dynamics

The density functional tight binding method (DFTB) [18, 31, 32] is a semi-empirical
quantum simulation approach that yields a high degree of computational efficiency
while potentially retaining the accuracy of the computationally intensive Kohn–
Sham density functional theory (DFT). The formalism for DFTBwith self-consistent
charges (SCC)has beendiscussed in detail elsewhere [32–37, 40].Briefly, themethod
assumes neutral, spherically symmetric charge densities on the atoms and expands
the DFT Hamiltonian to second-order in charge fluctuations. The DFTB total energy
is expressed as

EDFTB = EBS + ECoul + ERep. (4.2)
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The first term, EBS, corresponds to the band structure energy computed via sum over
occupied electronic states from the approximate DFTB Hamiltonian. EBS is usually
computed from pre-tabulated Slater–Koster tables derived from DFT calculations
with a minimal basis set, where both the electronic wave functions and electron den-
sity are subjected to separate confining or compression potentials. The compression
potentials force the wavefunction/electron density to zero at relatively large distances
from the nuclei, which has been shown to improve transferability of the Slater–Koster
tabulations [31]. The precalculation ofmatrix elements inDFTByields several orders
of magnitude increase in computational efficiency over most DFT implementations,
which project the electronic density onto a fine grid, and then use Fourier transforms
to compute the Hartree potential and other terms. However, standard forms of DFTB
still require calculation of eigenstates, which scales as O(N 3), where N is equal to
the number of orbitals in the system. This generally remains the bottleneck of DFTB
calculations, limiting the approach to system sizes of several hundred to thousands,
e.g., far below the capabilities of classical MD codes.

The second term in (4.2), ECoul, corresponds to a charge fluctuation term which is
computed self-consistently. The third term, ERep (the repulsive energy), corresponds
to ion–ion repulsions, as well as Hartree and exchange-correlation double counting
terms. In practice, ERep is expressed as a short-ranged empirical function whose
parameters are fit to reproduce DFT or experimental data, and can be either pair-
wise [13, 40] or contain multicenter interactions [37, 38]. This balance in DFTB of
approximate quantum mechanics and short-ranged empiricism allows for the simul-
taneous interrogation of electronic states and ion dynamics over temporal scales that
can approach those of many high temperature–pressure experiments (e.g., [39]). We
note that the short-ranged nature of ERep generally allows for strong transferability of
DFTB models (applicability to different materials and thermodynamic conditions),
since the bulk of the interaction energy is computed though the quantum-mechanical
EBS and ECoul terms.

Determination of an optimum ERep requires training data generation, which is a
relatively straightforward endeavor for systems exhibiting rapid chemistry. Extract-
ing uniformly spaced frames from an unbiased DFT-MD trajectory of a highly reac-
tive system is likely to yield a training set with configurations corresponding to reac-
tants, products, and various intermediates and transition states. In fact, this approach
was shown to improve DFTB predictions for small species production during the
rapid combustion of phenolic polymer resin [40]. However, in cases where chem-
istry is slow to either initiate or equilibrate, short unbiased DFT-MD simulations
might not sample relevant intermediate or product configurations. Accelerated MD
techniques such as umbrella sampling [41] or metadynamics [42] provide alterna-
tive approaches to training trajectory generation. In each of these methods, a bias-
ing potential is applied to help escape local free energy minima and thus enhance
sampling of configurational space. The biasing potential is typically applied to one
or more “collective variables” that mathematically describe characteristic changes
in system structure as the target process progresses. Optimal choice of collective
variables is highly dependent on the situation and numerous kinds have been used



76 R. K. Lindsey et al.

includingbond separationvectors and/or coordinationnumbers [43], crystalline order
parameters [44], and path variables [45] to name only a few.

Given these issues, force matching provides a systematic way to generate DFTB
ERep parameters that can recover DFT-level accuracy for systems and states not
considered in standard DFTB parameterizations. For this approach, the objective
function is given as follows:

RMSE =
√
√
√
√

1

3MN

N
∑

m=1

M
∑

i=1

3
∑

α=1

[

Fimα ,DFT − (

Fimα ,ERep{p} + Fimα ,BS + Fimα ,Coul
)]2

.

(4.3)
In this case, Fimα ,ERep{p} (the forces arising from the repulsive energy term ERep subject
to a set of model parameters {p}) are tuned to the values from the DFT training set
with the DFTB forces from EBS and ECoul precomputed and subtracted out. We
model the repulsive potential as a pairwise interaction between atom i of element ei
and atom j of element e j that takes the form of the power series:

E
ei e j
Rep (ri j ) =

{∑9
n=2 c

ei e j
n (r

ei e j
c − ri j )n ri j ≤ r

ei e j
c ,

0 otherwise.
(4.4)

Here, ri j is the interatomic separation distance, r
ei e j
c is a radial cutoff distance, and

c
ei e j
n are parameters to be determined. Summing over all-atom pairs in the system
gives the total repulsive energy ERep. Because (4.4) is linear in c

ei e j
n , the parameters

can be determined from a simultaneous least-squares fit over all ei e j pair types.
Furthermore, selected ei e j pair types can be excluded from the fit and substitutedwith
some other interaction potential if desired, provided that corresponding contributions
to the atomic forces are subtracted from the FDFT values in (4.3).

4.3.1 Application to Glycine Dimerization: Computational
Details

As an example of creating a DFTB for model of long timescale chemistry, we inves-
tigate the condensation reaction 2Gly → Gly-Gly + H2O in which two glycine
molecules react to form diglycine and water. We begin by generating DFT training
data via umbrella sampling along path collective variables, which are well-suited
because the reactant and product species are known. Two path collective variables,

s(t) =
∑

k k exp(−λD[R(t),Rk])
∑

k exp(−λD[R(t),Rk]) , (4.5)

and
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z(t) = −1

λ
ln

{
∑

k

exp(−λD[R(t),Rk])
}

, (4.6)

were used that respectively measure the progress along and distance from the
path defined by reference configurations indexed by k at time t [45]. The variable
D[R(t),Rk] is the “distance” from the kth reference configuration and λ is a constant
to be determined later. The path was defined with respect to two reference configura-
tions, namely k = 1 for the two glycine reactant molecules and k = 2 for the single
diglycine product molecule. We used the “distance” metric developed by Pietrucci
and Saitta [46]:

D[R(t),Rk] =
∑

i,ei

[Ci,ei (t) − Ck
i,ei ]2, (4.7)

whereCi,ei (t) is the number of atomsof type ei coordinated to atom i at time t andCk
i,ei

is the corresponding value in reference frame k. We tracked the coordination of the
fourCand twoNatoms that form thediglycine backbone to allC,N,O, andHatoms in
the system. The specific equations and parameters for computing Ci,ei (t) were taken
from [46] and the referenceCk

i,ei
were obtained from short DFTB-MD simulations of

neutral glycine and diglycine in explicit H2O solvent. Following [46], we chose λ so
that λD[Rk,Rk+1] ≈ 2.3, which for the present case was λ = 0.70. One particular
advantage of using path collective variables to generate a DFT training set is that
the resolution for sampling the reaction path can be controlled, which facilitates
extracting important intermediate configurations and forces. The free energy surface
F(s, z) was computed as a function of s and z using umbrella sampling [41] and the
weighted histogram analysis method (WHAM) [47, 48].

Simulations of glycine condensation were performed at T = 300 K for two
glycine molecules solvated by 55 H2O molecules, yielding a total of 185 atoms
and a density of ρ = 1 g cm−3. Deuterium masses were substituted for hydrogen
masses to allow for a longer time step. No empirical dispersion corrections were
applied in our DFT-MD or DFTB-MD simulations of glycine. Umbrella sampling
simulations were performed using the PLUMED 1.3 plugin [49, 50].

Car–Parrinello [51] DFT-MD simulations were performed using the Quantum
Espresso ab initio simulation package [52, 53]. We closely followed the simulation
protocol of [43] for simulations of glycine condensation. Three differences between
[43] and the present work are the DFT software package, the choice of collective
variables, and that the former usedmetadynamics [42] rather than umbrella sampling.
Trajectorieswere integratedwith a 0.145 fs (6.0 au) time step and electronmass of 700
au with a Nosé-Hoover thermostat [54, 55] applied to both the ionic and electronic
degrees of freedom. Reducing the time step by a factor of four was necessary to
conserve the Hamiltonian in some umbrella sampling simulations due to the strong
bias potentials that were required to ensure adequate sampling of s and z space.
The electronic structure was evaluated using the Perdew–Burke-Ernzerhof (PBE)
functional [56] and ultrasoft pseudopotentials [57] with a planewave cutoff of 25 Ry.



78 R. K. Lindsey et al.

Born–Oppenheimer DFTB-MD simulations were performed using LAMMPS
[58, 59] with forces and stresses evaluated by the DFTB+ code [33, 60]. Isothermal-
isochoric (NVT) trajectories were integrated with a 0.20 fs time step and a Nosé-
Hoover-style thermostat [54, 55]. The electronic structure was computed with a min-
imal basis and with Fermi–Dirac thermal smearing with the electronic temperature
set equal to the instantaneous ionic kinetic temperature at each time step. Electronic
degrees of freedomwere propagated using an extendedLagrangian approach [61–64]
with four self-consistent charge cycles per time step. DFTB simulations were per-
formed using the mio-1-1 parameter set (available at http://www.dftb.org), which is
a typical off-the-shelf parameter set for CNHO systems. Selected mio-1-1 Eαβ

Rep(ri j )
potentials were replaced with fitted ones for the force-matched DFTB simulations,
discussed below.

4.3.2 ERep Parameterization and Benchmarking

We begin with generation of the DFT training trajectory via umbrella sampling
along “path progress” collective variable s, at fixed “path deviation” collective
variable, z. Collective variables are constrained by the harmonic bias potential
VBias(s, z) = 1

2Ks(s − s0)2 + 1
2Kz(z − z0)2, where z0 is fixed at−0.10, correspond-

ing to the location of the two reference configurations and their associated local
free energy minima, in z-space. A total of 37 umbrellas are utilized, evenly spaced
between 1.050 ≤ s ≤ 1.950, by increments of 0.025, where initial configurations
were taken from 5 ps long unbiased simulations at s = 1.950.We note that the s coor-
dinates for glycine and diglycineminima are approximately 1.1 and 1.9, respectively.
Each of the 37 umbrella simulations were run for 2 ps, where the first picosecond
was reserved for construction of the training trajectory, and the second half, for free
energy calculation. The training trajectory was extracted by taking configurations at
t = 250 and 500 fs from each umbrella, resulting in a total of 74 frames, and DFT
forces were evaluated at the electronic ground state.

Because the ratio of C, N, O, and H atoms was highly uneven (4:2:59:120 for
C:N:O:H, respectively), target training forces and design matrix elements Mri ,c for
atom i were weighted by 1/Nei where the subscripts ri and c of the design matrix
represents the combined index overCartesian values of the force on each atomand the
combined index over model coefficients, respectively, and Nei is the number of atoms
of type ei . This reduces the contribution from interactions between the solvent H2O
molecules, which significantly outnumber the C–N, C–O, and N–H interactions that
are more important in the condensation reaction. Repulsive potentials of the form in
(4.4) were obtained for C–C, C–N, C–O, C–H, N–H, and O–H interactions using the
weighted DFT training set with radial cutoffs r

ei ,e j
c set to mio-1-1 defaults. The N–N,

N–O, O–O, and H–H repulsive potentials were taken from the mio-1-1 parameter set
because those interactions were not well-sampled within their corresponding cutoffs.

In order to evaluate performance of the resulting model, simulations analogous to
those described above (except using a 10 ps unbiased simulation and 20 ps umbrella

http://www.dftb.org
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Fig. 4.1 Glycine
condensation free energy
surfaces F(s, z = −0.10)
predicted by DFTB with
mio-1-1 and force-matched
parameters, and DFT

simulations) were run for the resulting force-matched DFTBmodel, as well as for the
standard mio-1-1 DFTB parameter set. A slice of the free energy surface F(s, z =
−0.10)was computed from histograms of s and z extracted from the last 10 ps of the
force-matched andmio-1-1DFTBand the last 1 ps ofDFTusing the two-dimensional
WHAM equations (Fig. 4.1).

Beginning with results obtained from mio-1-1 DFTB calculations, we find the
lowest free energy configuration in all three independent simulations is diglycine,
so we chose those minima as the reference energy. We performed three independent
sets of umbrella sampling simulations with this model as a means to assess the uncer-
tainty in our calculations. The relative free energy differences from two unreacted,
solvated glycine molecules were 12, 22, and 27 kcal mol−1 across the three inde-
pendent simulations, with maximum barrier heights of 41, 44, and 48 kcal mol−1,
respectively. The WHAM solution computed using histograms from all three inde-
pendent runs combined yields a free energy of reaction of �F = 21 kcal mol−1

and an approximate free energy barrier of �Fbarrier = 44 kcal mol−1 (for the back
reaction). Determination of a free energy of activation (�F‡) and transition state
would require a committor-style trajectory analysis [65], which is beyond the scope
of the current study. We compute the uncertainties in �F and �Fbarrier to be 8 and
3 kcal mol−1, based on the standard deviation of these calculations.

Figure 4.1 also provides the free energy slices for the presently force-matched
DFTB model as well as DFT. We note that DFT results should be viewed as an
estimate, as the free energy calculations are not necessarily converged after one
picosecond of averaging. We observe that the force-matched DFTB model predicts
a significantly lower barrier height (�Fbarrier = 28 kcal mol−1) than mio-1-1, which
is much closer to the DFT prediction (�Fbarrier = 20 kcal mol−1). It is unclear from
this comparison whether �F is improved through force matching. The mio-1-1 and
force-matchedDFTB results respectively predict�F = 21 and 5 kcal mol−1, both of
which are close to the DFT prediction �F = 11 kcal mol−1 within uncertainty. The
topology of F(s, z = −0.10) is qualitatively different between the DFTB and DFT
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Fig. 4.2 Reaction paths expressed in terms of time-averaged coordination numbers for the dipeptide
bond atoms C* and N* extracted from the umbrella sampling simulations used to compute the
free energy surfaces in Fig. 4.1. Data points correspond to independent umbrella trajectories with
1.1 ≤ s0 ≤ 1.9 spaced in 0.1 increments. Uncertainties for the DFT and force-matched DFTB paths
are standard deviations of the respective coordination numbers and uncertainties for the mio-1-1
DFTB path are standard errors computed over the paths predicted by three independent realizations

results, but the two DFTB predictions exhibit significant similarities aside from the
numerical values for �F and �Fbarrier. One possibility is that topological features
for F(s, z) are largely determined through water solvation interactions, for which
some second-order DFTB parameter sets are known to have significant errors [66].

All three models yield free energy surfaces that are in qualitative agreement with
theDFT results for glycine condensation bySchreiner et al. [43]whopredicted�F =
20 kcal mol−1 and �Fbarrier = 33 kcal mol−1 at the same density and temperature.
Quantitative differences between the Schreiner et al. and present (unconverged) DFT
results are possibly due to the previously discussed differences in the free energy
calculation protocols. Experiments [67, 68] and equation of state models [68, 69]
suggest that glycine is slightly lower in free energy than diglycine by approximately
3 kcal mol−1, which is in stark contrast to the mio-1-1 results and the results of
Schreiner et al. The nominal equivalence in free energy for the reactants and products
predicted by force-matched DFTB is generally more consistent with experiments.

To further assess the accuracy of our force-matched DFTB models for glycine
condensation chemistry, we recast the reaction path in terms of the coordination
between the atoms that form the dipeptide bond, namely the C* to O atoms and N*
to H atoms with the same coordination number functions used to compute the matrix
elements of (4.7). Reaction paths expressed in terms of these coordination numbers
are shown in Fig. 4.2. We observe stark differences between mio-1-1 and DFT, with
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agreement only at the end points. The mio-1-1 calculations yield a concerted mech-
anism with near simultaneous coordination of the O–H and H groups to C* and N*,
resulting in a monotonically increasing linear form in its mapping. In contrast, DFT
predicts a sequential process wherein H first coordinates to N* in diglycine followed
by O–H coordinating to C*, resulting in the plateau shown in the middle of the plot.
Force-matched DFTB also predicts a sequential process that is nearly identical to the
DFT one within uncertainty. Similarities between the DFT and force-matched DFTB
paths indicate that those two models likely have similar local minima in the regions
of R-space that map to these particular path-dependent coordinates. The computed
uncertainties in the three reaction paths presented here indicate that care should be
exercised when interpreting chemistry from subtleties in path coordinates, as they
are not necessarily able to differentiate between chemically distinct configurations.
Nevertheless, force-matchedDFTBprovides a straightforwardmeans of accelerating
predictive simulations of long timescale chemistry when combined with enhanced
sampling methods such as Umbrella Sampling, as shown here.

4.3.3 The Total Free Energy surface for Glycine
Dimerization: Insights from Force-Matched DFTB

The computational efficiency of DFTB allows for a more thorough exploration and
convergence of long timescale chemical reactivity than is currently practical with
DFT. The z-dependent free energy surface was determined for both mio-1-1 and
force-matched DFTB over an interval that captures neutral reactant and product
species. A total of 259 independent 20 ps umbrella sampling simulations were per-
formed to generate each surface, which corresponds to a combined simulation time
of 5.18 ns each. As before, the s0 were set in 0.025 increments and the z0 were evenly
spaced in 0.05 increments in the interval −0.15 ≤ z0 ≤ 0.15. Note that zwitterionic
configurations map to z > 0.2 with the chosen parameters and reference configura-
tions for (4.7). Free energy surfaces were computed following the same protocol as
previously discussed and are shown in Fig. 4.3.

The total changes in free energy predicted by mio-1-1 and the force-matched
model (vs. the free energy slices, discussed previously) are respectively �F = 20.7
and 4.5 kcal mol−1, which are both within uncertainty of the results for the surface
section F(s, z = −0.10) shown in Fig. 4.1. It is apparent that the F(s, z = −0.10)
section does not capture the minimum free energy barrier for either model. The mio-
1-1 results predict the reaction barrier to be 40.5 kcal mol−1, compared to the force-
matched model minimum barrier is 16.7 kcal mol−1. Comparing the two surfaces
reveals different z-coordinates for theminimum barrier, with the location formio-1-1
being at z = 0.02 and for the force-matched model at z = 0.17. The force-matched
model minimum barrier is located much closer to the zwitterionic region of the
surface (z > 0.20). We note that the variation in F(s, z) with z is generally greater
for the force-matched model than for mio-1-1. Significant z-dependency highlights
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(a)

(b)

Fig. 4.3 Glycine condensation free energy surface F(s, z) predicted by DFTB with a mio-1-1 and
b force-matched repulsive potentials

the importance of extensively exploring the collective variable spacewhen estimating
the free energy and underscores the necessity for extending simulation times beyond
those that can be practically reached with DFT.
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4.3.4 DFTB Force Matching: Outlook

Accessing long timescales and performing large-scale ensemble studies beyond those
that can be practically performed with DFT is critical for accurate determination of
many condensed phase chemical reactions [40, 70]. We have shown that force-
matched DFTB models hold promise as one avenue to extend quantum simulations
to more realistic timescales while retaining much of the accuracy of DFT [40]. In
particular, combining force-matched DFTBwith accelerated sampling allows for the
rapid generation of converged and accurate free energy surfaces for chemical reac-
tions (discussed in further detail in recently published work [19]). This significantly
expands the range of states that can be feasibly considered within the scope of a
single study and allows for accurate quantum simulations that approach experimen-
tal time scales for reactivity. Our approach can help in the design and interpretation
of laboratory synthesis studies, where there is a strong need for knowledge of the
kinetics of chemical bond formation and breaking over extended periods of time.

4.4 ChIMES: Fast, Scalable Machine-Learned Reactive
Force Fields

In this section, we discuss the problem of how to leverage force matching for ground-
up construction of classical reactive MDmodels based on the Chebyshev Interaction
Model for Efficient Simulation (ChIMES). ChIMES models are computationally
efficient, fast to parameterize due to linear parameterization, and have the potential
tomaintain the accuracy of first principlesmethods across the large range of tempera-
tures and pressures of interest for materials under extreme conditions. ChIMES does
not include any explicit quantum-mechanical components, which affords significant
gains in computational efficiency but can simultaneously complicate the develop-
ment of transferable models relative to DFTB. Nonetheless, ChIMES can allow for
large-scale million atom simulations where precise knowledge of electronic states
might not be necessary for a specific research problem. We have applied ChIMES to
water under ambient and high pressure–temperature conditions [71, 72], andmetallic
liquid carbon [73]. Here, we will focus on simple ChIMES force field development
for metallic liquid carbon near the graphite–diamond–liquid triple point (e.g., ∼15
GPa, 5000 K) as an illustrative example.

4.4.1 The ChIMES Force Field

There are numerous force fields designed to describe the physics governing chemical
reactivity and metallic nature. For example, there are the ReaxFF [17], REBO [74],
and COMB [75] potentials that leverage a reactive bond order description for bond
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formation and breaking, the more general GAP [76, 77] and SNAP [78], methods
which describe atomic environments through use of bispectrum components, and
the EAM [79], and MEAM [80] embedded atom models. While highly successful
in their intended applications, these models are not available for a large variety of
systems or conditions, and thus frequently require reparameterization.Unfortunately,
the complex nature of these reactive force fields combined with the large ab initio
training data they frequently require can make their tailored parametrization for
specific systems a challenging task.

ChIMES models are comprised of explicit n-body interatomic energy terms,
which themselves, are constructed from linear combinations of Chebyshev poly-
nomials. Resulting models are highly flexible and thus well suited for materials
under extreme conditions. This allows for rapid parameterization of any number
of new MD models through linear least-squares approaches like the singular value
decomposition (SVD) [25].

To date, the ChIMES total energy of interaction has been described as the follow-
ing sum of two- and three-body terms:

EChIMES =
N

∑

i

∑

j>i

Ei j +
N

∑

i

∑

j>i

∑

k> j

Ei jk . (4.8)

Here, N is the total number of atoms in the system, Ei j is the pairwise interaction
energy, and Ei jk is the energy between triplets of atoms. The two-body energy is
expressed as follows:

Ei j = f
ei e j
p

(

ri j
) + f

ei e j
c

(

ri j
)

O2∑

n=1

C
ei e j
n Tn(si j ). (4.9)

In this case, Tn
(

si j
)

represents a Chebyshev polynomial of order n, si j is the pair
distance transformed over the interval [−1, 1] (discussed below), andCei e j

n is the cor-
responding coefficient for the interaction between atom types ei and e j . Permutational
invariance of the polynomials is enforced for all interactions, e.g.,C

ei e j
n ≡ C

ej ei
n . The

term f
ei e j
c (ri j ) is a smooth cutoff function which is set to zero beyond a maximum

distance defined for a given atom pair type, i.e., f
ei e j
c (ri j ) = (1 − ri j/r

ei e j
max)

3. In order
to prevent sampling of ri j distances below what is present in our DFT training set,
we introduce a penalty function f

ei e j
p (ri j ), which we define as follows [71]:

f
ei e j
p = Ap (r

ei e j
p )3 (4.10)

r
ei e j
p =

{

r
ei e j
min + dp − ri j , ri j − dp < r

ei e j
min

0, otherwise.
(4.11)

The parameter Ap is a penalty function scaling factor and dp is the penalty distance,
which are preset to specific values. This allows for atoms to be “pushed” to larger
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distances to avoid unphysical regions of the potential. We note that the penalty
function was not sampled for any of the MD calculations presented here.

Wemap the interatomic distances over the interval of [−1,1] by first transforming
the internuclear distance ri j to the Morse variable, xi j = exp(−ri j/λei e j ), where the
λ parameter is the Morse variable range parameter [81–83], defined individually for
each type of atomic pair interaction. The Morse variables lead to a natural decrease
in the interaction strength as distance is increased. As a rule of thumb we set these
values to correspond approximately to the nearest neighbor distance for each atom
pair type from our fitting set, though in general we find that the results of our fit are
relatively insensitive to these values. We then define the variable si j to be within the
range [−1, 1] through the operation si j ≡ (xi j − x

ei e j
avg )/x

ei e j
diff where:

x
ei e j
avg = 0.5(x

ei e j
max + x

ei e j
min ) (4.12)

x
ei e j
diff = 0.5(x

ei e j
max − x

ei e j
min ) (4.13)

x
ei e j
max = exp(−rmin

ei e j /λ
ei e j ) (4.14)

x
ei e j
min = exp(−rmax

ei e j /λ
ei e j ). (4.15)

In this work, we will focus on development and application of a ChIMES model
for two-body interactions, only, for the sake of simplicity. However, for completeness
we include discussion of higher-body ChIMES terms as well. Similar to the two-
body representation, the three-body energy is given as the product of Chebyshev
polynomials for each of the three constituent atomic pairs:

Ei jk = f
ei e j
c
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ri j
)

f ei ekc (rik) f
e j ek
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′
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mpq Tm
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Tp (sik) Tq
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s jk
)

.

(4.16)
The single sum given for the two-body energy is now replaced with a triple sum for
the i j , ik, and jk polynomials, yielding a single permutationally invariant coefficient
for each set of powers and atom types, C

ei e j ek
mpq . The primed sum indicates that only

terms for which two ormore of them, p, q indicies are greater than zero are included,
which guarantees that three bodies i, j, k enter into the expression. The expression
for Ei jk also contains the fc smoothly varying cutoff functions for each constituent
pair distance. Penalty functions are not included for three-body interactions and are
instead handled by the two-body EChIMES terms.We note that the ChIMES functional
form can readily be extended to higher-body terms, e.g., four-body energies, by
expanding (4.16) to include a multiplication of all

(n
2

)

pairwise interactions for that
set (i.e., six total for four-body terms). Determination of greater than three-body
ChIMES models is the subject of future work.
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4.4.2 Application to Molten Carbon: Computational Details

In our efforts discussed here, ChIMES models can be viewed as “cooked to order,”
where transferability is not considered an inherent feature of the force field. Instead,
models are generated for a target region of state point space by force matching to one
or more short DFT simulations (O 5–10 ps) for the system of interest. Self-consistent
refinement can be used for systems expected to undergo significant changes (i.e., as
for formation of new phases) [73]. Here, we generate 2-body ChIMES models for
molten carbon at 5000 K and 2.43 g/cm3. This system is particularly well-suited
for demonstrative purposes as it is monoatomic and exhibits fast dynamics. Model
sensitivity to user-specified parameters including polynomial order, outer cutoff, and
Morse transformation variablewill be discussed, and resultswill be compared against
those from popular reactive carbon models LCBOP [84] and REBO [85].

We obtain a NVT -MD trajectory for 256 carbon atoms at our target state point via
DFT-MD simulations utilizing the VASP software package [86–89]. The Perdew–
Burke–Ernzerhof generalized gradient approximation functional (PBE) [90, 91]
and projector-augmented wave pseudopotentials [92, 93] were used, along with a
planewave cutoff of 1000 eV, a 0.5 fs time step, and a global Nose–Hoover thermo-
stat [54, 55]. A total of 20 evenly spaced frames are selected from the resulting DFT
trajectory, resulting in 250 fs between frames. Chebyshev polynomial coefficients
are then obtained by minimizing the objective function shown in (4.1). We note
that this step generally takes from a few seconds to several minutes to yield optimal
parameter values.

Simulations using the presently developed ChIMESmodels are run with in-house
developed MD software and a 0.25 fs time step, whereas LCBOP and REBO sim-
ulations are run with the LAMMPS suite [59] and a 0.5 fs time step. An atomic
configuration from our DFT-MD training trajectory was used as the starting point
for all simulations. All classical MD simulations are in the canonical ensemble at
5000 K and 2.43 g/cm3, and utilize a global Nose–Hoover thermostat.

4.4.3 ChIMES Sensitivity to User-Specified Parameters

A total of nine ChIMES models were fit, which varied by polynomial order O2B =
4, 8, or 12, outer cutoff distance rCCmax = 2.00, 3.15, 4.25, or 5.00 Å, and Morse
variable λCC = 1.25, 2.25, and 3.25 Å. The remaining model parameters, ACC

p , dCC
p

and rCCmin were fixed at values of 108 kcal/mol ·Å3, 0.01 Å, and 1.0 Å, respectively,
where the inner cutoff was set to the minimum distance observed in the training
configurations, and ACC

p and dCC
p were selected to yield a penalty function strong

enough to prevent the system from exploring distances smaller than rCCc,in, while
otherwise having minimal influence on dynamics. Models have a total of nusrpar +
O2B parameters, where nusrpar is the number of user defined parameters, and for the
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Fig. 4.4 Sensitivity of system structure to user-defined model parameters. Radial distribution func-
tions have been offset by 0.05 Å for clarity. ESFM is the 2-body potential function derived from
force matching

present work, encompasses the 6 parameters {O2B, rCCmin, r
CC
max, λ

CC, ACC
p , ACC

p }. Thus,
a model with O2B = 10 would have 16 parameters.

Figure 4.4 demonstrates how the potential energy surfaces (PESs) and subsequent
radial distribution functions (RDFs) are altered as the Chebyshev polynomial order,
outer cutoff distances, and Morse variable are increased. The results indicate that
for both order and outer cutoff, some threshold value must be surpassed to obtain
reasonable results, but beyond that value, the predicted system structures are indistin-
guishable fromone another. Specifically, simulations usingmodelswith eitherO = 4
or an rCCmax of 2.0 solidify while all remaining simulations (using larger order and rCCmax
values) yield RDFs that are in agreement with one another. Decreasing polynomial
order limits model flexibility, and, as shown for theO = 4 case, under-structuring of
the PES (i.e., as compared toO = 8 and 12, between 1.5 and 2.25 Å). The case with
rCCmax = 2.0 Å, on the other hand, fails because the cutoff distance forces the potential
to zero where it would otherwise contain a maximum. Furthermore, the data suggests
that a reasonable choice for selection of rCCmax would be the location of the second
nonbonding minimum for a given g(rCCmax). The data also indicate that the choice
of λCC has little influence on resulting system structure. Nevertheless, a reasonable
selection would be some characteristic “bonding” distance for the system, such as the
location of the first peak in the pair RDF. An additional and pertinent user-specified
aspect of the fit is the number of training frames utilized. For the present model prob-
lem, 20 frames were found to be sufficient for good fits, as including more did not
yield significantly improved RMS errors or RDF predictions. In practice, one should
consider the influence of training database size on a case-by-case basis, particularly
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when increasing bodiedness of the ChIMES potential, and when targeting systems
of multiple atom pair types and/or a variety of state points or phases.

4.4.4 Molten Carbon: Comparing ChIMES and Existing
Reactive Models

Performance of the force-matched model with O2B, rmax, and λ = 12, 3.15, and
1.25 Å, respectively [73] is compared to two existing reactive bond order carbon
models, LCBOP and the 2002 parameterization of REBO [84, 85]. Both of these
models contain numerous nonlinear parameters that are fit by iterative adjustment
to either experimental or first-principles reference data. Notably, both models are fit
to solid phase carbon data (i.e., graphite and diamond), and are designed to repro-
duce these corresponding material properties. Figure 4.5 presents the distribution of
forces predicted from DFT, the present force-matched model, LCBOP, and REBO
for a given set of configurations. Not surprisingly, the force-matched model yields
significantly better agreement with DFT across the range of predicted values. Both
LCBOP and REBO exhibit poor reproduction of the DFT force distribution; REBO
overestimates the probability of observing low-lying forces, while LCBOP yields
too high of a distribution of large magnitude forces.

The improved description of forces presented by the ChIMES model leads to
more accurate system structure and dynamics, as is shown in Fig. 4.6. Both LCBOP
and REBO predict overly ordered systems, with the first minimum in each RDF at
nearly zero. REBO yields a better estimate of first peak height and recovers the DFT
structure by the third peak, while LCBOP maintains solid-like structure over the

Fig. 4.5 Normalized
distribution of forces acting
on carbon at 5000 K and
2.43 g/cm3
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Fig. 4.6 Radial distribution
functions (top) and
vibrational power spectra
(bottom) for carbon at
5000 K and 2.43 g/cm3.
Self-diffusion constants are
given in the legend for each
model
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range of distances presented. In contrast, the ChIMES model exhibits a reasonable
description of the structure predicted by DFT over the entire range of distances. The
overly-solid nature of the LCBOP and REBO systems is also reflected in the power
spectra and self-diffusion constants. Both of these models yield peak intensities of
nearly zero at low frequency, and accordingly, and predict diffusion constants that are
several orders of magnitude smaller than the DFT result. Furthermore, the LCBOP
and REBO power spectra do not capture the shape predicted by DFT, resulting in
a broad distribution of high-intensity frequencies between 250 and 1500 cm−1. In
contrast, the ChIMESmodel captures the overall DFT power spectrum shape (a peak
near 500 cm−1 and a shoulder near 1000 cm−1) and exhibits a significantly improved
diffusion constant, which is of the same order of magnitude as that from DFT. These
results are particularly illustrative of the capability of ChIMES, given the exceedingly
small training set and low-order functional form used here. We note, however, that
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LCBOP and REBO are likely to be accurate over a wider range of conditions than the
simple 2-body ChIMES model considered here. Better transferability with ChIMES
can be obtained by adding many-body interactions and using more diverse training
sets [73].

4.4.5 ChIMES: Outlook

Further ChIMES refinements of all of these properties have been determined though
creation of three-body forcefields, discussed in detail in recently publishedwork [73].
Many-body effects can additionally be included in a number of ways such as explicit
polarizability, or over-bonding terms (as in [71]). Our model problem discussed
here demonstrates that the ChIMES force field and fitting framework provides a
convenient approach for rapid generation of accurate DFT-informed reactive force
fields. The utility of ChIMES extends far beyond the present application; in addition
to use as a standalone molecular mechanics force field, three-body ChIMES models
has been successfully leveraged as the repulsive term in DFTB for surface corrosion
studies on plutonium [36].

4.5 Conclusions

Coupled advances in computing hardware and algorithms have enabled particle-
based simulations to play an increasingly critical role in reactive materials research.
Nevertheless, computer experiments based on quantum-mechanical methods remain
too costly for many problems of interest. In this chapter, we have discussed two
methods to force match models capable of extending the predictive power of quan-
tum mechanics to larger scales. In the first, the repulsive term in the semi-empirical
DFTBmethodwas force-matched toDFT, to study glycine dimerization at low T and
p conditions. Our model was found to yield a strong refinement of standard DFTB
parameterizations, allowing for accurate determination of the diglycine formation
free energy surface. In the second, force matching was used to construct a fully reac-
tive ChIMES force field for moltenmetallic carbon, which is 105 timesmore efficient
than DFT while retaining most of its accuracy. In general, our force-matched models
are capable of serving as a high-fidelity proxy for obtaining DFT-quality forces on
large time and length scales. There are any number of research areas that require
atomic level knowledge of material reactivity, including studies of planetary interi-
ors [94, 95], organic polymers subject to radiation and heat damage [96, 97], and
the synthesis of materials with tailored properties [70]. The computationally effi-
cient methods discussed in this chapter will have particular impact in these types
of research areas, where there is traditionally a reliance on expensive DFT calcula-
tions for interpretation of imaging and spectroscopy experiments, and prediction of
properties to guide materials synthesis.
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Chapter 5
Free Energy Calculations of Electric
Field-Induced Chemistry

Giuseppe Cassone, Fabio Pietrucci, Franz Saija and A. Marco Saitta

Abstract The old and challenging problem of dealing with the interaction between
condensed matter systems and intense external electric fields are currently evolv-
ing in an impressive way. In fact, the growth of the computational resources allows
for accurate first-principles numerical calculations showing unprecedented predic-
tive power. We review the phenomenological evidence that has recently emerged
from state-of-the-art ab initio molecular dynamics simulations in describing how
static electric fields can be exploited to manipulate matter and possibly design novel
compounds or materials, obtain new exotic properties, and achieve more efficient
reaction yields. In particular, we show the microscopic behavior of simple molec-
ular liquids (water, methanol, and simple mixtures), under the action of static and
homogeneous electric fields, showing different shades of the effects produced by
the application of the latter. In addition, ab initio molecular dynamics approaches
are coupled with advanced free energy methods, that currently represents a unique
technique for adequately treating, reproducing, and predicting both molecular mech-
anisms and chemical reaction networks triggeredwhenmatter is exposed to the action
of intense electric fields.
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5.1 Introduction

Among the many possible “extreme conditions” that can drive or facilitate chemical
reactions and transformations of matter, such as pressure, temperature, pH, confine-
ment, bombardments, and so forth and so on, intense electric fields have received
so far little experimental attention and almost no theoretical at all. Thermal effects
induced on matter by electric fields are well-known and largely understood [1].
However, the same is not true for nonthermal effects and for the related microscopic
mechanisms that are triggered by intense electric fields [2, 3]. Our ignorance on
this matter is manifest over different scales. In fact, nonthermal effects are poorly
understood both at a sub-atomic, quantum, level as well as at molecular and macro-
scopic levels. An account of the current state of the art in this specific field has
recently appeared in the literature [4]. Aragones et al. have given the first experi-
mental evidence that an electric field can control chemical reactions, showing that
the field strength, as well as its polarity, can actually drive, enhance, or even inhibit
a given reaction (e.g., a Diels–Alder reaction). In order to explain such a “delay” in
investigating and clarifying phenomenological aspects of materials which, in some
respects, would sound logically plausible—if not absolutely trivial—even to a non-
expert, we should consider some experimental and theoretical boundary conditions
on the nature of the problem. First of all, very intense local electric fields are neces-
sary in order to induce a rearrangement of covalent bonds, definitely not an easy task
on the experimental side. Second, only very recently reliable theoretical approaches
have been implemented and developed, which are capable of treating, in the frame-
work of a quantum description of matter, field-induced effects. Such tools, thanks
to the fast growth of available computing power, have eventually allowed for the
discovery of some fundamental “pieces” of physics and chemistry when matter is
being irradiated with electric fields.

The basic interaction between a stationary, spatially homogeneous, electric field
and one single molecule in the vacuum is well understood over a wide range of
intensities. By resorting to the theoretical tools provided by quantum mechanics and
Density Functional Theory (DFT), in conjunction with advanced computing tech-
niques, it is possible to simulate in a realistic way and, thus, finely describe all the
relevant degrees of freedom of such a simple model system. However, the situa-
tion becomes much more intricate and complicated when dealing with condensed
matter systems, in which also complex interactions between molecules have to be
taken into account. The subtle interplay between field-induced and neighbor-induced
polarization effects, in addition to the role of thermodynamic conditions, makes the
task of the computational physicist much harder. But an even more fundamental
reason has represented, on this side, a tough hurdle when attempting at modeling
and simulating realistic material samples under the effect of static electric fields.
Indeed, typical numerical experiments carried out over homogeneous samples are
ordinarily performed on a cell with Periodic Boundary Conditions; in this way, one
avoids, to a large extent, the effects induced by the artificial spatial confinement of the
elementary interacting constituents, which would obviously inhibit any significant
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comparison of the numerical results with the properties of a real-life homogeneous
material [5]. In classical Molecular Dynamics (MD) simulations the electric field
is implemented as an additional force acting on each particle. However, the seri-
ous problem in dealing with such force fields resides in the effective intermolecular
potential which is not able to account, in a reliable way, for polarization effects as
well as, more importantly, for the very quantum nature of matter.

Since, as previously pointed out, electric fields are able to induce the cleavage
and the formation of (intrinsically quantum) covalent bonds, it is clear that classical
simulations fail to be predictive in this specific context in that they do not provide a
complete physical representation of the involved phenomena. In order to model and
reproduce the whole spectrum of effects induced by the application of an electric
field, ab initio molecular dynamics (AIMD) simulations are mandatory for a twofold
reason. First, they are able to reproduce correctly intra- and intermolecular structural
properties in many disparate systems because of the appropriate, more fundamental
description of the material (see [6] and references contained therein). Second, AIMD
simulations are, by their own nature, intrinsically able to treat, in principle, every
kind of covalent bond rearrangement and, hence to deal with chemical reactions.

Unfortunately, because of the nonperiodic nature of the quantumposition operator,
the implementation of electric fields in ab initio simulation codes are other than easy.
Indeed, only in 2002 Umari and Pasquarello [7] discussed and implemented the first
operational theoretical framework which, upon exploiting Berry’s phases and the
modern theory of polarization [8–10], was able to manage static electric fields in
first-principles simulations under Periodic Boundary Conditions.

In this chapter, we will describe a few recent works and results, capable of under-
lying how valuable electric fields can be used as unexplored tools to manipulate
matter and possibly design novel compounds or materials, obtain new exotic prop-
erties, achieve more efficient yields. In particular, we will review the microscopic
phenomenology of liquid solutions of simple molecular systems under the action
of a static and homogeneous electric field, showing different shades of the effects
produced by the application of the field. Schematically, chemical bonds within these
systems might have fully covalent, partial covalent, electrostatic, H-bond, dispersed,
and polarized character [11], which can be dramatically modified by an external
electric field. Hence, with such multifaceted properties of electronic matrix, their
treatment by means of ab initio techniques is particularly suited. In fact, molecu-
lar dissociations can be induced for high enough field intensities; correspondingly,
related simple and complex chemical reactions can be modeled and investigated.
These latter ones usually have barriers higher than the thermal or thermal+electric
energy. Hence, from a theoretical perspective, AIMD simulations, combined with
advanced free energy methods (metadynamics, committor analysis, umbrella sam-
pling) currently represent a unique technique for adequately treating, reproducing,
and predicting many microscopic and macroscopic phenomena which occur when
matter is exposed to the action of intense electric fields.

The chapter is structured as follows. In the next sections, various effectsmanifested
for increasing field strengths will be treated with a gradual approach: in Sect. 5.1 the
theoretical framework of ab initio calculations in the presence of external electric
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fields and the basic concepts of the free energymethods will be presented; in Sect. 5.2
a few emblematic and barrierless spontaneous chemical reactions induced by very
intense electric fields will be analyzed by AIMD; finally, in Sect. 5.3 more complex
chemical reactions will be studied through ab initio free energy methods.

5.2 Methods

5.2.1 Static and Homogeneous Electric Fields in Ab Initio
Codes

The theoretical development and the implementation of electric fields in ab initio
codes is all other than trivial. A wide literature exists in this field [7, 9, 10, 12–14]
and it is impossible to exhaustively resume all the conceptual steps which started
since the precise definition of polarization.

One of the key points that one has to face in dealing with this delicate aspect is the
ubiquitous presence of Periodic Boundary Conditions. The first problem that arises
is the inherent discontinuity carried by the infinite replication of the simulation box.
In fact, at the edges of the box(es), infinite electric field strengths appear when the
linear electrostatic potential is implemented.

More seriously, the periodicity in the presence of a macroscopic electric field
E leads to a change in the electron potential within each replica of the simulation
box. The origin of this latter problem resides indeed in the nonperiodic nature of the
position operator. In particular, the electric field changes by a factor of eE · R under
a translation by a lattice vector R, and even a small field varies the nature of the
energy eigenstates. Moreover, because the potential is unbounded from below, the
ground state is ill-defined [12, 15, 16].

Many perturbative treatments of the application of an electric field have been
proposed but only within the Modern Theory of Polarization and Berry’s phases this
delicate issue can be efficiently tackled [8–10]. Few of them [12] are founded on a
Wannier-function-based solution to the finite-field problem that was not very useful
in practice [9, 10]. By means of the use of Bloch’s functions, Nunes and Gonze [13]
showed how the common perturbative treatments could be directly obtained from a
variational principle based on minimizing an energy functional F of the following
form

F = EKS({ψkn}) − E · P({ψkn}) . (5.1)

In the latter, EKS({ψkn}) represents the Kohn–Sham (KS) energy per unit volume
as a function of all occupied Bloch’s functions and P({ψkn}) is the usual zero-field
Berry’s phase expression for the electronic polarization. In practical applications,
this equation has to be minimized with respect to all {ψkn} in the presence of the
field. This way also the Bloch’s functions will become functions of E , and F develops
into a function that implicitly depends on the field.
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Within the KS scheme, the Berry’s phase polarization of the noninteracting KS
system is not—in general—the correct one [17, 18]. One way to circumvent this
problem is to consider a generalized Hohenberg–Kohn theorem in which n(r) and
P(r) uniquely determine any ground state property [17, 18]. Moreover, in the corre-
sponding KS scheme one has to find an effective periodic potential and an effective
electric field EKS that yield for a noninteracting system the same n(r) and P(r). In
this theory [17, 18], the polarization is the correct one by construction, whereas a
correction EKS − E has to be introduced. It is thus clear that introducing a sort of
“exchange-correlation electric field” is far from being a satisfactory solution for a
theoretically well-defined problem where a similar approximation holds also for the
energy.

Only in 2002, Umari and Pasquarello [7] demonstrated that the functional (5.1) is
exploitable as energy functional for a variational approach to the finite-field problem
as well. The proof is not obvious since the occupied wavefunctions {ψkn} are not
eigenstates of the Hamiltonian. Hence, the problem of computing the polarization P
in an electric field provides the solution to the problem of computing any property
of an insulator in a finite homogeneous electric field; in fact, it is the introduction
of the Berry’s phase [8] polarization into the functional F of (5.1) that solves the
overall problem. In particular, by considering an electric field along the x direction,
the following variational energy functional can be built

EE [{ψi }] = E0[{ψi }] − E · P[{ψi }] , (5.2)

where E0[{ψi }] is the well-known energy functional in the zero-field system and
P[{ψi }] is the polarization defined by Resta [14]:

P[{ψi }] = − L

π
Im(ln det S[{ψi }]) , (5.3)

where, in turn, L is the periodicity of the cell and S[{ψi }] is the following matrix

Si, j = 〈ψi |e2π i x/L |ψi 〉 (5.4)

for the set of doubly occupied wavefunctions. By comparing their results with other
perturbative approaches [13], Umari and Pasquarello conclude that their method
is applicable “even when the periodic symmetry is relaxed” [7]. In addition, this
formulation can be extended to yield at the same time the atomic forces. Indeed by
adding the following term to the functional (5.2)

EE
ion=−E · Pion , Pion=

Nion∑

i=1

Zi · Ri , (5.5)

where Pion is the ionic polarization, Ri is the position coordinate in the field direction
and Zi is the charge of the ionic core, this definition leads to an extra-term on
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the force acting on the i th atom equal to Fi = EZi . This powerful and reliable
methodology developed byUmari and Pasquarello [7] has been thoroughly employed
in the simulations presented in this chapter when an electric field has been applied.

5.2.2 Free Energy Landscapes: Collective Variables
and Metadynamics

As stated before, ab initio methods are by their nature extremely powerful tools in
predicting and analyzing chemical reactions. One of the most important physical
quantities in describing activated processes is, of course, the free energy surface
(FES). This latter is represented by a function that typically depends on a number of
variables (i.e., collective variables (CV))which can be either one or several depending
on the specific reaction and on the chosen representation.

Let us consider a system in the canonical (NVT) ensemble; let us introduce a
collective variable q(R), a function of the atomic coordinates, that is able to dis-
tinguish the relevant metastable states of the system (i.e., reactants and products).
The probability of finding the system in a specific configuration characterized by the
reaction coordinate s is given by

P(s) = 1

Q

∫
e− U (R)

kBT δ(s(R) − s)dNR , (5.6)

with Q is the partition function. The free energy is related to this quantity by

F(s) = −kBT ln P(s) , (5.7)

and thus P(s) ∝ e− F(s)
kBT . As a consequence, if it were be possible to explore the

entire configuration space of a system, what is in principle feasible by means of
an extremely long equilibrium MD trajectory, it would be straightforward to recon-
struct its FES. Unfortunately, the rates at which chemical reactions evolve are easily
smaller than 1 h−1 making infeasible the application of even classical MD tech-
niques in most cases. However, enhanced sampling algorithms, reviewed in [19],
allow overcoming this hurdle and to reconstruct the FES; among the most employed
methods, metadynamics (MetD) [20] holds a prominent place. This approach biases
the potential energy along a CV to enhance the sampling of the corresponding free
energy landscape. The bias is represented by a history-dependent function which, as
the dynamics evolves, decreases the probability of visiting already explored config-
urations. In particular, by depositing (typically Gaussian) hills of potential energy
centered in the visited points of the CV space,MetD is able to fill and escape the local
free energy minima and, at the end of the simulation, to reconstruct the underlying
FES. At time t , the bias at s is
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W (s, t) =
Nhills(t)∑

i=1

he
− 1

2

(
s−s(ti )

σ

)2

, ti = i · τ , (5.8)

where h is the barrier height and τ is the inverse of the hills deposition rate (i.e., the
MetD time step). Step-by-step, the “valleys” characterizing the FES are filled, and
this latter is flattened, so that—under favorable conditions—the simulation achieves
convergence. In this case:

− lim
t→∞ W (s, t) � F(s) + const. (5.9)

The statistical convergence of MetD calculations is a key aspect for the accurate
reconstruction of the FES, that depends critically upon the choice of CV and the
available computer resources. Although expression (5.9) features an infinite limit,
for practical purposes stationary conditions, if achieved, are observed after a finite
time, when the free energy profile shows a parallel growth of the FES (flattening).
This behavior occurs when fixed-height Gaussian hills of potential are deposited;
on the other hand, it exists also the possibility to employ the well-tempered MetD
variant [21]. In this approach, potential hills of progressively reduced heights are
deposited when the simulation proceeds, becoming almost negligible once conver-
gence is approaching.

In some cases, MetD is more effective for the rapid exploration of reaction path-
ways than for the efficient reconstruction of converged FES. Hence, a convenient
strategy consists in using in tandem MetD and umbrella sampling (US) [22]: the
latter, starting from configurations along transition pathways discovered with MetD,
exploits multiple simulations, each exhaustively sampling a limited portion of con-
figuration space. To this aim, restraining (static) bias potentials are employed, usually
of parabolic form as a function of the CV. A global and accurate FES is finally recon-
structed combining together the probability estimates of all trajectories with, e.g.,
the weighted histogram analysis [23–26].

Finally, the necessity of the a priori choice of a CV driving the reaction is the main
limitation to the applicability of all free energy calculation techniques based on a
bias potential, like MetD and US. In principle, to each reaction A � B corresponds
an ideal reaction coordinate defined as the committor function PB(x), i.e., the prob-
ability to reach B before A for an unbiased trajectory starting from x with velocities
randomly drawn from a canonical distribution [19]. In practice, this huge amount of
information is unavailable before (or even after) the simulation, and one is forced to
postulate—more or less heuristically—one or a few CVs that attempt to capture the
slow degrees of freedom contained in the ideal reaction coordinate. Moreover, since
the volume of the CV space grows exponentially with dimensionality, reconstructing
a FES as a function of more than 2 CV is typically too expensive.
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5.2.3 A New Metric for Free Energy Calculations

When some information is available about the dynamical evolution of a given chem-
ical reaction—i.e., its trajectory—the problem of the predetermination of a set of CV
becomes easier. Branduardi et al. [27] introduced the so-called “path-CV”, which
are constructed from a tentative reaction path {Rk}k=1,...,Nf connecting the reactants
and the products states, according to the following definition:

s(t) =
∑Nf

k=1 ke
−λD(R(t),Rk )

∑Nf
k ′=1 e

−λD(R(t),Rk′ )
(5.10)

z(t) = −1

λ
log

(
Nf∑

k=1

e−λD(R(t),Rk )

)
, (5.11)

where s represents the progress along a pathway defined through an ordered sequence
of atomic configurations R1, R2, …, RNf , while z is a measure of the distance from
the pathway itself. This class of variables proved to be crucial to obtain free energy
landscapes of a variety of processes including gas phase chemical reactions with
concerted mechanisms [28–30], and transformations of carbon nanostructures [31].
The key ingredient of path collective variables, determining their effectiveness in a
given problem, is the definition of distance D(R(t),Rk) between the atomic config-
uration at time t and the kth reference structure. Pietrucci and Saitta [32] introduced
thus the following metric:

D (R(t),Rk) =
∑

IS

(
CIS(t) − Ck

IS

)2
(5.12)

where CIS is the coordination number between atom I of species (element) S′ and
all atoms J of species S, defined by means of a smooth switching function:

CIS(t) =
∑

J∈S

[
1 − (

RIJ(t)/R
0
SS′

)N] / [
1 − (

RIJ(t)/R
0
SS′

)M]
. (5.13)

The parameter R0
SS′ depends on the two species, since, e.g., a C–Hbond is shorter than

a C–C bond. We remark that, apart from the latter parameters, the sole input needed
to construct the CV are the coordination patterns of the reactant and product species
(and possibly other intermediates) as in Fig. 5.1.We performed and thoroughly tested
MetDboth in thefixedGaussian height [32, 33] and in thewell-tempered variants [21,
32, 33]. We estimated that reconstructed free energy surfaces have a statistical pre-
cision, typically, of about ±2 kcal/mol by comparing bias profiles at different times
and across independent simulations.

A particularly convenient feature of the present MetD formulation is that the
detailed geometry of Nf reference structures needs not to be explicitly given. As we
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Fig. 5.1 Construction principle of topological path collective variables. The connectivity patterns
of reactants and products are represented by tables having individual, non-hydrogen atoms on rows
and atomic species (the set of all atoms of a given element) on columns. Arrows indicate changes
of coordination numbers, however, all other matrix elements are free to change as well thanks to
the flexibility of path collective variables (see text). Adapted from [32]

verified in several cases, it is sufficient to provide two reference states (the reactant
and putative product) in the simple form of coordination matrices, and the simulation
is able to discover transition pathways, including possible intermediates, as well as
off-pathway states. The coordination patterns, in turn, can be directly written starting
simply from structural formulas (Fig. 5.1). In practice, employing the Ck

IS entries
obtained from a short MD simulation of the end states can improve the resolution
of intermediate and transition states in the free energy landscape. Another crucial
feature of the new CV space is that it allows to simulate both gas phase and solution
reactions (including possible interfaces with solid surfaces, etc.) within a unified
formalism, as it will be clear from the examples in the following sections.

Note that coordination numbers have been repeatedly employed as an effective
collective variable to study, e.g., (de)protonation reactions in water [34], since they
are well suited to describe the active participation of the solvent. On the other hand,
a typical reaction may require a set of several coordination numbers to be faithfully
described, to track the creation/dissociation of different chemical bonds, with all
the resulting difficulties in reconstructing high-dimensional free energy landscapes.
Combining path-CV with a high-dimensional space of coordination numbers [32]
allows exploiting the best of both worlds, providing a handy two-dimensional space
able to track complex transformations, leaving the system the freedom to depart from
the proposed path, and describing in a seamless way both gas- and condensed phase
chemistry [32, 33].
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5.2.4 Computational Details

As for the technical specific details of the simulations carried out in presence of
progressively increasing electric field strengths and/or under the action of MetD, the
interested reader can refer to the available original literature, e.g., [32, 33, 35–37].
For the sake of completeness, however, here we report on some of the technical
aspects that unite such kind of apparently disparate investigations.

With the exception of the seminal work where a new MetD approach has been
presented [32] in conjunction with typical Born–Oppenheimer Molecular Dynamics
(BOMD), most part of the remainders works has been carried out by means of Car–
Parrinello Molecular Dynamics (CPMD), sometimes along with the assistance of
MetD in order to reconstruct the free energy landscape underlying a given process.
In addition, since the statistical convergence of MetD calculations is sometimes
cumbersome inAIMDcalculations,we exploited for the first time theMetD approach
presented in [32] coupled with Umbrella Sampling [22] in order to obtain well-
converged and hence accurate FESs [33].

In general, the results were obtained using the density functional theory (DFT)-
based software suite Quantum ESPRESSO [38], where the implementation of an
external electric field is achieved by exploiting the modern theory of polarization
and Berry’s phases [8] (see, e.g., [7]). As usual, the structures were always replicated
in space by using Periodic Boundary Conditions.

Before starting each simulation, equilibration runs of at least 5 ns were always
performed by means of specific classical force fields in order to prepare suitable
initial atomic configurations for AIMD. In general, when chemical reactions were
observed to occur “spontaneously” in presence of intense electric fields, several tests
have been performed in independent (parallel) additional CPMD and/or BOMD
where the external electric field was abruptly switched off [33, 36, 37]. This way,
rough but educative information have been gathered on the specific “stability” of
each synthesized species.

As for the simulations where MetD calculations have been performed as the main
calculation [32, 37] or as a coadjuvant to the results stemming from unbiased AIMD
runs [33], MetD simulations have been performed by using the plugin Plumed-
1.3 [39], where some of us [32] implemented our new approach (freely available on
demand and soon in Plumed-1.3 and Plumed-2.0).

In all cases, the core electronic interaction has been depicted through ultra-
soft pseudopotentials (USPP) generated via the Rappe-Rabe-Kaxiras-Joannopoulos
(RRKJ) method [40]. As an approximation of the exchange and correlation func-
tional, the Perdew–Burke–Ernzerhof (PBE) functional [41] has been adopted, which
belongs to the generalized gradient approximation (GGA) but several tests and addi-
tional simulations have been also performed by exploiting the BLYP functional [42],
sometimes in their dispersion-corrected version (i.e., by means of the Grimme D2
method) [43]. The dynamics of ions were simulated classically within a constant
number, volume, and temperature (NVT) ensemble, using the Verlet algorithm and
Nosé-Hoover or Bussi thermostats.
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In order to characterize the transition states of the observed reactions, both from
biased and unbiased calculations, committor analyses [44] have been performed [32,
33, 36, 37]. By choosing dozens of structures that were considered as plausible
candidates for being the transition state of each simulation, more than 50 unbiased
trajectories have been performed starting from each candidate and differing by the
initial random velocities extracted from a Maxwell–Boltzmann distribution at the
given temperature for which the chemical reaction was observed. A configuration
has been identified as belonging to the transition state ensemble when it is committed
to the reactants or products basin with a probability of 50 ± 10%.

Finally, with the aim of tracing the bonds behavior of some of the chemical reac-
tions here presented, also theMaximally LocalizedWannier Functions (MLWF) [45]
as well as their charge centers have been determined [33, 36, 37].

5.3 Chemical Reactions Under Intense Electric Fields

5.3.1 Ab Initio Miller Experiments

Origins of life studies represent an exciting and inherently multidisciplinary research
field that incorporates contributions from biologists, chemists, geologists, physicists,
mathematicians, chemists and computer scientists, among others. In 1953 in a crucial
experiment, Miller reported [46] the surprising results he had achieved by the appli-
cation of an electric discharge on a simple mixture of gases that simulated the atmo-
sphere of the primordial Earth, based on the Oparin-Haldane hypothesis. This way,
he had observed the spontaneous formation of aminoacids. By all means, this finding
gave birth to a new multidisciplinary research field: prebiotic chemistry. Hence, the
role played by electric fields in increasing the reactivity of atoms in matter had been
already ascertained more than 60years ago. However, the chemical reactions lead-
ing to the formation of aminoacids, as those occurring in Miller’s experiments, have
never been studied at the atomic level before the advent of the extremely powerful
computing techniques that have become available in more recent times. Again, ab
initio methods have proven to be particularly suited for this purpose: in 2014 the first
in silico Miller experiments have been reported [35], showing for the first time the
active role of molecules such as formic acid and formamide as direct precursors of
the simplest aminoacid glycine.

A key aspect of the historical Miller experiments was the formation of hydro-
gen cyanide (HCN), aldehydes and ketones, and aminoacids, suggesting that the
experimentally-observed products were obtained through a Strecker-Cyanohydrin
reaction [47]. In the theoretical ab initio study [35], the authors chose to decompose
the study of the full Strecker chemical reactions into more elementary steps, includ-
ing at each one of them the products of the previous one. On this basis, Saitta and
Saija set up three corresponding simulation boxes. In particular, the end products of
the reaction were glycine (NH2CH2COOH) and NH3 in equal proportions, while the
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Table 5.1 Composition of the three Miller–Strecker simulation boxes, and average (over a 5 ps
dynamics) potential energy, relative to the MS03, and expressed in kcal/mol per glycine + ammonia
unit, (i.e. 2:2:2:8 O:C:N:H atoms). Adapted from [35]

System H2O NH3 CH4 CO N2 H2CO HCN glycine �E

MS01 8 8 8 10 5 0 0 0 40.4

MS02 9 9 0 0 0 9 9 0 54.3

MS03 0 9 0 0 0 0 0 9 0.0

intermediate reactants were H2O, NH3, formaldehyde (H2CO), and HCN, in equal
proportions. In other words, both the intermediate and the end products had the same
proportion 1:1:1:4 of O:C:N:H atoms. The authors thus built up a starting Miller’s
sample box (named MS01) containing a mixture of molecules similar to the most
recent experiments performed by Miller and coworkers [48], and bearing the same
atomic species ratios as the two other boxes, that is 8 H2O, 8 NH3, 8 CH4, 10 CO,
and 5 N2 molecules, corresponding to 18:18:18:72 O:C:N:H atoms. Similarly, the
intermediate Miller–Strecker (named MS02) box contained 9 H2O, 9 NH3, 9 H2CO,
and 9 HCN, while the end Miller–Strecker (named MS03) box contained 9 glycines,
and 9 NH3. This way, one could compare in a judicious manner the potential energies
relative to the end products, (i.e., MS03), as shown in Table5.1.

The first important result was that the MS02 system, containing the supposedly
intermediate reactants, i.e., water, ammonia, formaldehyde, and hydrogen cyanide
had a higher internal energy (enthalpy) than both the MS03 and, especially, the
starting MS01 system. In other words, the formation of formaldehyde and HCN
from the Miller molecules are thermodynamically unfavored, and thus very unlikely
to occur in small simulation boxes over short picosecond timescales. Interestingly,
while no chemical reactions were observed in MS01 and MS03, at the end of the
zero-field evolution of MS02, the authors observed that a H2CO and an ammonia
molecule spontaneously combined to yield a formamide molecule (HCONH2).

The MS01 system was then put under a finite electric field, in order to possibly
observe the spontaneous formation of formaldehyde and/or HCN, and thus validate
the suggested Strecker mechanism. However, once the electric field was switched on,
up to 0.25 V/Å the system only exhibited occasional water/ammonia proton dissoci-
ations/jumps/recombinations. At fields around 0.35 V/Å, however, more interesting
chemical reactions occurred. In particular, within 2.1 ps of a 10 ps-long trajectory,
the field-induced formation of two formic acid molecules has been detected. Even
more interestingly, at about 2.4 ps a formamide ion HCONH+

3 , later evolving into a
neutral formamide molecule, formed via the simultaneous association of a Grotthuss
proton and an ammonia molecule on the two available bonds of a carbon atom in a
CO molecule, thus creating the simplest possible O–C–N backbone.

The authors noted that all those reactions, like the ones described in the following,
were not simply due to the presence of reactive charged species in solution, and
that the field is the indispensable driving force. This point was checked by running
zero-field simulations of the same initial set of Miller molecules, but replacing all
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water and ammonia molecules with their ionic OH− and NH+
4 counterparts [35].

Although the proportion of ionic species was thusmuch larger than any instantaneous
one ever observed at finite-field, no reactions other than proton jumps until the full
neutralization of all molecules occurred, thus proving that the presence of ionic
species is not sufficient to promote the Miller reactions without an external field. In
a way, this also confirmed that the electric field is not just a mere source of chemical
energy, and that it plays an “order-maker” role that inherently favors the assembling
of larger chemical units from smaller ones, and thus complexity.

On the basis of the above results and of the absence of Strecker intermediate
products in the MS01 system and, on the contrary, of the spontaneous formation
of formamide in the MS02 system even in the absence of field, the exploration of a
different path to explain theMiller experiments was conducted. In particular, another
system was conceived (Miller-Formamide (MF01)), based on the MS01 one, but
containing from the start 8 molecules of each chemically relevant molecular species
so far identified, i.e., formic acid, formamide,water, ammonia, and carbonmonoxide,
while the inert nitrogen and methane were discarded.

At the intense field strength of∼0.5 V/Å, the most interesting reactions occurred.
In particular, all along the trajectory, the formation of formamide was observed
through the combination of ammonia and carbon monoxide. Formamide then either
formed larger and more complex molecules, or broke down into water and hydrogen
cyanide, possibly after converting into its formimidic acid tautomer, as follows:

NH3 + CO � O=CH−NH2, (5.14)

O=CH−NH2 � H2O + HCN. (5.15)

At the same time, a similar yet less frequent reaction occurred between water/CO
and formic acid:

HCOOH � H2O + CO. (5.16)

Typically, a carbon monoxide then combined with a formamide molecule, a com-
plexwhich dissociated into a hydrogen cyanide and a formate anion, which combined
with a just-formed formamide-proton cation to yield a α-hydroxyglycine, as shown
in the following reaction:

[NH2CHOH]+ + COOH− ⇀ NH2−CHOH−COOH. (5.17)

Even more interestingly, within a short time (0.03 ps) the carbonylic oxygen
bonded to the central α carbon atom, after losing a proton, moved (in the opposite
direction with respect to the field) onto the carboxylic β carbon, to finally bond a
proton moving along the field direction, and dissociate from the rest of the molecule,
thus leaving behind a NH...=CH...−COOH molecule. This molecule is known as
dehydroglycine, an α-aminoacid, which does not belong to the family of the 23
proteinogenic aminoacids, 20 of which are known as the “standard” aminoacids.
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Fig. 5.2 Trajectory snapshots of the electric-field-driven evolution of dehydroglycine into glycine.
At first, a H2 molecule splits, the H atoms bonding with the α-carbon of one dehydroglycine
molecule and with the nitrogen of a nearby one (left panel, shown by arrows). After about 90 fs
the two α-carbon of both molecules approach (middle panel, indicated by the arrow), and the extra
proton jumps from one of the two molecules onto the other one, yielding glycine (right panel,
indicated by the arrow). Adapted from [35]

In order to attempt to findglycine at the end of theMiller chemical path, the authors
first checked that the average energy of a simulation box containing glycine andwater
molecules (named Gly) was about 32kcal/mol lower than the same box containing
equal amounts of dehydroglycine, H2, and water molecules (named DHGW). They
set up then a simulation box containing 10 dehydroglycine, 10 H2, and 10 formic
acids molecules (labeled DHGF). At a field strength of ∼0.5 V/Å, within less than
a picosecond one favorable event was recorded, namely the simultaneous attack of
two hydrogen atoms on a α-carbon atom of one dehydroglycine, and a N atom of
an adjacent one. In addition, within about 100 fs, the two α-carbons approached,
and the hydrogen atom finally jumped from one to another, thus effectively yielding
glycine, as shown in Fig. 5.2.

One of the main aspects emerged from this study is the revelation of a chemi-
cal pathway leading to glycine which is different from the standard interpretation
of Miller experiments. Moreover, it proved that the electric field acts as an order-
maker, promoting the spontaneous assembling of simple Miller molecules into more
complex ones of biochemical interest.

5.3.2 Ab Initio Miller-Like Experiments and the Synthesis
of Simple Sugars

One of the crucial aspects related to the origins of life and thus to the onset of infor-
mational polymers on early Earth—such as RNA—is represented by the formation
of the sugar composing this latter macromolecule (i.e., ribose). However, the for-
mation of the first C–C bonds from very simple molecules such as formaldehyde
represents the rate-limiting step of the so-called formose reaction (i.e., the auto-
catalytic reactions leading to the synthesis of sugars from aldehydes). Only very
recently, the free energy surface associated with such a process has been determined
in condensed phase [37]. In fact, by means of AIMD and MetD techniques, the free
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energy landscape underlying the synthesis of glycolaldehyde from a formaldehyde
aqueous solution has been reported [37]. The latter work quantitatively explained
why the very first step of the formose reaction is kinetically inhibited.

Moreover, in the same work [37], electric fields proved to be dramatically impor-
tant in the complexification of the investigated systems. In fact, numerical samples of
formaldehyde (both neat and in water solution) and of glycolaldehyde (both neat and
in aqueous solution) were exposed to intense electric fields. The application of elec-
trostatic gradients strongly prevented the formaldehyde umpolung and catalyzed the
formation of C–O-bonded polymers in formaldehyde-containing samples. Notwith-
standing this latter finding, when the field was applied on glycolaldehyde aqueous
solutions, newC–C bonds have been formed and (D)-erythrose has been synthesized.
This way, a numerical Miller-like experiment led to the formation of a prebiotically
relevant (D)-tetrose—i.e., a direct precursor to ribose—fromubiquitariousmolecules
such as glycolaldehyde and water [37].

The just described field-driven chemical reactions are the top of the iceberg of
the full chemical landscape that the application of a static electric field can produce
when it is applied to a material. As an example, even in the methanol case, molecular
dissociations are not the only chemical reactionswhich take place. Indeed, depending
on the field strength, a progressive complexification of the system has been recently
emphasized [33, 36], as it will be laid out in the following section.

5.3.3 Field-Induced Chemical Reactions in Energy-Related
Research

The catalytic effects afforded by the application of intense electric fields on con-
densed matter are witnessed by the discovery of novel chemical routes also in the
research for alternative “green” combustion fuels. In this respect, methanol, the sim-
plest alcohol, and dimethyl ether (DME), the simplest ether, are central compounds.
However, despite a massive amount of research in this field, the synthesis of DME
from liquid methanol has just been recently reported [36]. In particular, the conver-
sion of methanol to DME is traditionally achieved at high temperatures (i.e., in the
gas phase) and in presence of very specific catalysts [49–52]. Of course, the impor-
tance of liquid methanol resides inter alia in the fact that it is preferable over highly
volatile and potentially explosive materials (e.g., dihydrogen) for energy storage and
transportation [53]. Based on unbiased AIMD, it has been indicated [36] a novel syn-
thesis route to methanol dehydration—leading thus to the DME synthesis—through
the application of strong electric fields at ambient temperature.

At relatively moderate field strengths (i.e., 0.30 V/Å) it is possible to induce the
cleavage of the O–H covalent bond which results in the concept of generalization of
pH in methanol [54]. This way, molecular dissociations are activated and protons
H+ can migrate via a Grotthuss-like mechanism through the H-bond network. This
process is thus assisted by a certain fraction of ionic species, such as the methanol
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cation CH3OH
+
2 (methyloxonium) and anion CH3O− (methoxide) which are respon-

sible for the ionic charge flow in the system and for enhanced contributions to the
external electrostatic potential. The intensity of the local electric fields—due to the
ions—can be of the order of 1 V/Å [55–57], which strongly increases the overall
molecular reactivity. For external electric field intensities stronger than 0.50 V/Å,
several field-induced chemical reactions have been observed. Indeed, a field strength
of 0.55 V/Å is able to induce the formation of formaldehyde molecules, as well as
of methane and water, according to the following reaction [33].

2CH3OH
E−→ H2CO + CH4 + H2O . (5.18)

Formaldehyde, being an extremely reactive compound, gives rise to a progressive
complexification of the system. First, due to the water production, for field intensities
stronger than 0.55 V/Å formaldehyde hydration takes place as in the following

H2CO + H2O
E−→ CH2(OH)2 , (5.19)

and formaldehyde monohydrate is transiently observed.
More interestingly, at the same field strengths, methanol dehydration also occurs

leading to the synthesis of DME according to:

2CH3OH
E−→ CH3OCH3 + H2O . (5.20)

As shown in Fig. 5.3, the involved field intensities are able to open several reaction
channels that connect the simplest alcohol to the simplest aldehyde on one hand and,
on the other, to the simplest ether. The most direct chemical transformations that join
methanol with formaldehyde (reaction (5.18)) and, separately, with DME (reaction
(5.20)), involve the cation CH3OH

+
2 and the anion CH3O− which act in both cases

as intermediate species. In addition, the produced formaldehyde can either undergo
hydration or yield DME, which represents the most abundant compound that has
been synthesized in the system, as displayed in Table5.2. Indeed, for field strengths
of 0.60 and 0.65 V/Å, the transiently formed formaldehyde molecules have been
readily employed for the synthesis of DME and formaldehyde monohydrate, yield-
ing the molecular fractions shown in Table5.2. For higher field strengths—0.70 and
0.75 V/Å—the system is temporarily characterized by an elevated degree of mixing.
However, after few ps of dynamics performed at these field intensities, only water,
DME, and methane species—in order of decreasing amount—are observed. Instead,
formaldehyde, the most reactive species among the neutral ones, ultimately con-
tributes to the process of molecular complexification of the system. In the end, DME
is the most abundant (nonaqueous) synthesized species which has been accumulated
along the simulation. Incidentally, as shown in Fig. 5.3, the basin of DME in the
field-induced reaction network of methanol is the only one that can be reached by
following two different chemical pathways, and the only one displaying exclusively
incoming “chemical fluxes” (i.e., DME is chemically inert).
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Fig. 5.3 Methanol reaction network in presence of a static electric field. The application of this
latter dissociates some methanol molecules (second panel from the top). Strengths above 0.50 V/Å
are able to recombine the formedmethanol cations and anions both into formaldehyde,methane, and
water, both into DME and water (third panel from the top). Formaldehyde molecules will be further
employed in order to synthesize also formaldehyde monohydrate (which has a strong tendency to
dissociate) and DME. Adapted from [36]

Table 5.2 Total populations (percent fractions) of themolecular species present in the system at the
end of each simulation carried out at field strengths of 0.55, 0.65, and 0.75 V/Å. The fractions are
determined as the ratio between the number of molecules of a given species and the number of total
methanol molecules composing the original sample (i.e., 32). The lack of formaldehyde above the
field threshold which is able to create it (i.e., 0.55 V/Å) is due to its extensive employment in diverse
chemical reactions leading both to formaldehyde hydration both to DME synthesis. Formaldehyde
acts as a reactive intermediate species which contributes to the complexification of the system

Molecular species 0.55 V/Å 0.65 V/Å 0.75 V/Å

Formaldehyde 1 (3%) 0 0

Methane 1 (3%) 2 (6%) 2 (6%)

Water 1 (3%) 3 (9%) 6 (19%)

Formaldehyde
monohydrate

0 1 (3%) 0

Dimethyl ether (DME) 0 2 (6%) 4 (13%)
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As a comparative mention on the involved field strengths, air ionizes at a field
strength of “only” 3 · 10−4 V/Å. Albeit field strengths of the order of 0.50−0.75 V/Å
are clearly of extreme intensity from the macroscopic point of view, it is nowadays
well established that field intensities of (or greater than) 1 V/Å are locally (and
naturally!) found at themicroscopic scale in disparate condensed systems in presence
of simple solvated ionic species [55–57], or even at the proximity of the surface of
clean apolar oxides such as MgO(001) [58]. In field emitter tips experiments, field
strengths of 1−3 V/Å are recorded [59–61] and it has been proven that intensities of
0.30 V/Å are necessary in order to induce water dissociation [62–64] and, in general,
to significantly shift the bonding electrons [65]. Very recently, fields within this order
of magnitude have been again experimentally detected at the tip proximity [66].
All these evidences strongly suggest the experimental feasibility of the proposed
reactions, by exploiting the high field capability of, e.g., field emitter tips.

5.3.4 The Role of Solvation in Presence of an Electric Field

As shown above, field strengths of 0.60 V/Å and higher lead to the synthesis of
DME. The processes synthesizing new species in methanol are always characterized
by instantaneous local molecular frustrations—with respect to the field direction—of
themolecular/ionic configurations in the numerical samples [36]. Indeed, as shown in
Fig. 5.4 (bottom panel), neither methoxide—which has its dipolar axis perpendicular
to the field direction—nor methyloxonium—which, as the result of a proton transfer,
is orientedwith the excess proton in opposition to the field—are arranged as expected
for free dipoles in an electrostatic field. In addition, all the mechanisms giving rise
to the onset of DME species from pure liquid methanol clearly show that the local
environment plays a major role in assisting the chemical reactions by acting inter
alia as a sort of reservoir of proton H+ and hydride H− acceptor/donor sites.

The main intermediate state of the DME synthesis and the basic mechanism of
formation of formaldehyde are characterized by the presence of the two counte-
rions of methanol (Fig. 5.4). However, it is clear that two very different reaction
channels can be undertaken by the system depending on the mutual orientation of
nearby methyloxonium and methoxide ions. At intense field strengths, the head-to-
tail arrangement +H2O–CH3 · · ·−O–CH3 leads to DME and water formation (i.e.,
reaction (5.20)). On the other hand, if the adjacent parts of the methanol counteri-
ons are the respective methyl groups, the reaction evolves towards the synthesis of
formaldehyde, methane, and water (i.e., reaction (5.18)) [33]. These two reaction
channels are shown in Fig. 5.4. By definition, the identification of a transition state
splitting the probability to reach reactants or products imply the existence of a resid-
ual free energy barrier even under the intense electric field triggering the reactions.
It is known, however, that condensed phase reactions involving ionic states (e.g.,
proton transfer) may be described in terms of dynamical barriers, that are modulated
in time by the fluctuations of the environment-induced electrostatic field [67, 68].
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Fig. 5.4 A twofold reaction channel. Depending on the mutual orientation of methoxide CH3O−
and methyloxonium CH3OH

+
2 , the reaction proceeds yielding either formaldehyde, methane, and

water (a) or DME andwater (b). In the central panels, the transition states of both reactions, obtained
by means of a committor analysis performed at 300 K and in presence of field strengths of 0.55 V/Å
(a) and 0.60 V/Å (b), are shown. Adapted from [36]

Since the observed reaction mechanisms are intimately related to the multifaceted
and collective character of the medium, it is to be expected that the chemical path-
ways undertaken by the system in condensed phase are entirely different from any
reproduced gas phase reactions. Indeed, by performing additional simulations start-
ing from the ionic intermediate configurations shown in the left panels of Fig. 5.4
but placed in the gas phase—i.e., by removing the solvent—, it has been observed
that both reactions (5.18) and (5.20) are barrierless and spontaneously proceed even
in absence of any electrical perturbation [36].

Finally, the authors demonstrated that if, on one hand, the local solvation environ-
ment hampers highly polarized—and thus reactive—molecular states, on the other
hand it plays a key role in shaping the final steps of a reaction, orienting it towards
specific channels and hence products, as also shown in Fig. 5.4.

Hence, the field plays a crucial role as it affects the local ionic concentration
of a solution and, as it is well-known, it can create and stabilize ionic transition
states [65]. Moreover, as shown in the central panels of Fig. 5.4, the transition states
characterizing the main reactions here presented are resemblant to the reactants
configurations, proving (e.g., following transition state theory) the decisive energetic
contribution carried by the application of the field (i.e., 30−35 kcal/mol [33]) and
its own natural consequences (i.e., molecular ionizations). Nevertheless, the fate
of a given reaction is dictated by local environment circumstances. In fact, once
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strong local electrostatic contributions are generated by the field action, molecular
correlations are decisive in pushing a given intermediate state into a specific reaction
product (Fig. 5.4).

5.4 Ab Initio Free Energy Methods for Chemical Reactions
in Solution

5.4.1 Free Energy Landscapes of Prebiotic Chemical
Reactions

Understanding the thermodynamics (free energy differences) and kinetics implied
in reactions in solution is a crucial issue in chemistry. For example, it is key to
assess the likelihood of the different prebiotic scenarios put forward in the literature,
and mentioned in the previous section. Computational approaches are a formidable
complement to experiments in this field, as they exploit the fundamental laws of
quantum mechanics to study chemical reactions, interpret experimental results and
predict novel mechanisms.

However, contemporary computational physical chemistry is dominated by gas
phase calculations at zero temperature, with effects due to temperature, pressure and
chemical environment relegated to approximated extrapolations. For instance, our
knowledge of reaction dynamics in condensed phases is far from complete [69, 70],
despite the fact that water is a polyvalent molecule, known to participate also in
formamide chemistry under different roles, including as a stabilizer through hydro-
gen bonds, as an efficient acid–base bifunctional catalyst, and as a co-reactant [71].
Additional effects should also be considered, including vibrational energy dissipa-
tion upon birth of exothermic products, or solute trapping into finite-lifetime cages
affecting its diffusion and reactivity [70, 72, 73]. The large number of possible con-
figurations (already including few water molecules [71]) together with the strong
anharmonicity of liquids naturally calls for methods like MD that include from the
start the finite-temperature dynamics. Particularly in a prebiotic perspective, it is nec-
essary a comparative understanding of reaction networks in different environments
(gas or condensed phase, with different solvents and also interfaces with minerals)
and at different conditions (T, P, irradiation, shockwaves, etc.), eventually embracing
also nonequilibrium scenarios, for their role in the emergence of life.

The overwhelming gap between the (long) time scale of reactive events and the
(short) time scale of ab initioMD simulations can be effectively overcome employing
the available enhanced sampling techniques, includingMetD [20] and transition path
sampling [44]. Despite of this, the widespread adoption of MD simulations in the
study of chemical reactions has so far been slowed down by the lack of standard,
general purpose formulations of reaction coordinates. In particular, it is challenging
to design coordinates that fully include the important role of the solvent degrees of
freedom [74–76] and that are general enough to be applied to a palette of diverse
reaction mechanisms.
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As laid out in the “Methods” section, novel free energy calculation approaches,
able to address in a general way a wide range of chemical reaction mechanisms
in solution, are now available, allowing to unveil reaction networks of remarkable
complexity. As an example, this has been applied to the study of the formamide
decomposition channels in aqueous solutions [32]. In this study, the authors inves-
tigated, in a first set of simulations, the emblematic decarbonylation reactions and
their inverse in formamide:

HCONH2 � CO + NH3 . (5.21)

Within a single gas phase simulation of 170 ps the trajectory explored 7 forward
and 7 backward reactions. In the resulting free energy landscape (Fig. 5.5, top panel)
two basins corresponding to reactants and products were readily identified, differing
by less than 1kcal/mol in stability. Reactants and products were separated by a free
energy barrier�F∗ = 79 kcal/mol, very similar to the barrier of 80.5kcal/mol found
in zero-temperature calculations at CCSD(T)/CBS+ZPE level in [77].

Compared to gas phase, the landscape of the solution resulted significantly mod-
ified in both quantitative and qualitative features (Fig. 5.5, bottom panel). In particu-
lar, besides the reference states used to build the collective variables (formamide and
CO + NH3), the simulation explored a third basin featuring formic acid plus ammo-
nia. This finding was remarkable since the chosen space of collective variables
was not explicitly constructed to take into account formic acid, as shown from the
higher values of the z coordinate with respect to the reference species. Formamide,
CO + NH3 and HCOOH + NH3 showed a similar stability within our statistical
uncertainty (±2 kcal/mol). Inspection of the landscape resulted also in a barrier of
35kcal/mol for the reaction HCONH2 → HCOOH + NH3 and of 40kcal/mol for
the reaction HCONH2 → CO + NH3.

The two decomposition channels, decarbonylation and hydrolysis, have thus quite
similar barriers, confirming the effectiveness of topological path collective variables
in discovering competitive pathways and even relevant chemical species. Addition-
ally, ionic forms NH+

4 and HCOO− were also explored, as expected from the basicity
of ammonia and acidity of formic acid. An advantage of this MD approach is to have
built-in anharmonic temperature effects, so that one can directly break down�F into
energetic and entropic contributions: �E is directly obtained as the average energy
observed in a relatively long equilibrium (unbiased) MD simulation performed in
each metastable state, whereas T�S = �E − �F .

More in detail, all observed reactions began with water donating a proton to the
amino group of formamide as the first step (leaving an OH− species in solution),
overcoming a barrier �F∗ ≈ 35 kcal/mol. The resulting cation, that was identified
as a relevant intermediate for this same reaction in [35], is locally stable only within a
time scale of less than 1 ps, as verified with hundreds of unbiased trajectories started
from 10 different configurations featuring this species. Experimentally, formamide
is a weak base, with the protonated species having a standard free energy almost
equivalent (only 0.1kcal/mol higher) to the neutral species [78], however, the car-
bonyl is expected to be the most probable protonation site [79], in agreement with
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Fig. 5.5 Top panel: free energy lansdcape for interconversion of formamide (a) and CO+NH3 (b)
in the gas phase. Representative atomic configurations of free energy minima and transition states
are shown as insets. Bottom panel: free energy lansdcape for reactions in aqueous solution between
formamide (a), CO + NH3 (b), and HCOOH + NH3 (c). Representative atomic configurations are
shown as insets. Adapted from [32]

the transient nature of the protonated nitrogen in these simulations. Due to the tran-
sient nature and very short lifetime of the HCONH+

3 intermediate, the mechanism
could also be approximately considered as one-step. From HCONH+

3 the system can
evolve either towards carbon monoxide and ammonia or towards formic acid and
ammonia: the authors focused there on the former channel.

The dissociation of the C-N bondwas accompanied by the donation of the carbon-
bound proton towater. Themechanism appeared fully reversible in these simulations,
with backward transitions (formamide formation) featuring a barrier of 40kcal/mol.
The barrier can be flattened by a strong enough electric field as demonstrated in
[35]. The mechanism was validated and the transition state structures assigned by
performing a committor analysis.
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This study showed that a step forward in the study of chemical reactivity, in neutral
conditions or under intense electric fields, treating gas phase and liquid phase on the
same footing, is now possible through the definition of simple, intuitive, and trans-
ferable reaction coordinates (see also the “Methods” section). In combination with
state-of-the-art free energy calculation methods such as MetD, the new coordinates
allow to discover relevant reaction mechanisms and reconstruct the corresponding
free energy landscapes, which can be directly compared between phases and/or at
different thermodynamical conditions. Finally, detailed inspection of trajectories and
committor analysis allow to compellingly identify transition states and reaction path-
ways and mechanisms.

This new approach was applied to the emblematic case of formamide, a cen-
terpiece of many prebiotic scenarios recently put forward to explain the chemical
origins of life on Earth, and observed in the ab initio simulation of Miller experiment
under electric field [35]. On one hand, this method is capable of quantitatively repro-
ducing existing gas phase results. Much more importantly, liquid phase calculations
of all three fundamental reaction channels, i.e., dehydration, decarbonylation, and
hydrolysis, provided novel results of prebiotic significance and implications.

5.4.2 Free Energy of Electric-Field-Driven Chemical
Reactions

Although we have already mentioned somehow en passant the direct conversion of
methanol to formaldehyde, the one-pot synthesis of formaldehyde andmethane stem-
ming from methanol has been just very recently indicated for the first time [33]. In
particular, based on AIMD and free energy methods, the simultaneous oxidation and
reduction (i.e., the disproportionation) of liquidmethanol intomethane and formalde-
hyde has been obtained at ambient temperature through the application of static elec-
tric fields. It has been proven—by means of advanced MetD techniques [32]—that
the chemical pathway connectingmethanol to the detected products in the bulk liquid
phase is very different from its reproduced gas phase counterpart. Moreover, with the
same techniques, it has been demonstrated that switching on an external electric field
drastically modifies the reaction network of methanol, lowering some activation bar-
riers, stabilizing some reaction products, and opening otherwise difficult-to-achieve
chemical routes.

In order to assess the energetic contribution of the field to the reaction and the
field-induced changes in the thermodynamic paths undertaken by the newly revealed
reaction, our own recent method [32] of unbiased exploration of chemical reaction
networks has been employed, capable of revealing unexpected pathways and micro-
scopic mechanisms and, at the same time to provide the free energy landscape of
those reactions, fully including the effect of the explicit solvent and of the ther-
modynamic conditions. This way, the real energetic contribution carried by intense
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external electric fields in assisting a simple chemical reaction has been estimated to
be 30−35 kcal/mol [33] at finite-temperature (i.e., 300 K).

As laid out before, if in neat water, at ambient conditions, fields of ∼0.50 V/Å
can give rise only to an improved proton transfer [80], the reactivity of carbon atoms
in methanol leads to more complex chemical transformations. In fact, it has been
observed that a field strength equal to 0.55 V/Å, assisted by local molecular advan-
tageous circumstances (i.e., nearest neighbors arrangements), is able to break one
of the covalent bonds in some methyl groups of methoxide molecules and to create
formaldehyde. The formation of this species is naturally accompanied by the release
of water and methane (see reaction (5.18)).

In condensedphase, at a given instant, severalmolecules are arranged in such away
that the most electronegative “pole” is oriented towards the field direction (e.g., see
the methoxide CH3O− in Fig. 5.6a). Moreover, also as a consequence of the activated
proton transfer, somemethyloxonium cations may be oriented with the excess proton
in opposition to the electric field direction, as shown in Fig. 5.6a, e. In particular,
during the proton migration process, an oxygen to oxygen intermolecular distance
of ∼2.3 Å with an evenly shared proton can be transiently observed. This represents
the formation of a transient Zundel-like ion [54], shown in Fig. 5.6a, e for two field
intensities (i.e., the [C2H6O2H3]+ complex), that readily leads to the release of a
proton from one donor methanol molecule to an acceptor one. This way, the typical
CO bond length of the just formed methyloxonium cation (Fig. 5.6b, f) becomes
sensibly higher than the one characterizing the neutral molecular state in which this
species lies before accepting the proton from the solvent. The stretch of the CO bond,
if assisted by the local presence of a methoxide anion with its methyl group as first
neighbor, leads to a visible decrease of the CO bond strength (see Fig. 5.6b/c and
f/g). Indeed in few dozens of fs the CO covalent bond of CH3OH

+
2 is broken whereas

the distance between the carbon atom of the newly formed methenium ion CH+
3 (see

Fig. 5.6c, g) and the closest methyl hydrogen atom of CH3O− readily approaches to a
very short value. Thefinal step of this concerted reaction is represented by the ultrafast
release of a hydride H− stemming from the methoxide anion which recombines
with the methenium just after the “umbrella inversion” of the latter (Fig. 5.6d, h).
The transformation of methoxide into formaldehyde is characterized by a drastic
reduction of the relative CO bond length (i.e., ∼1.2 Å) which is the manifestation
of its peculiar double bond formation. The mechanistic pictures described in Fig. 5.6
are in practice stackable and a recurrent pattern can be recognized in the whole
process: the proton transfer that triggers the reaction and the subsequent electrostatic
approach of the two counterions which are arranged in a specific orientation with
respect to each other and with respect to the field.

5.4.2.1 Free Energy Landscapes in the Liquid Phase

Despite the importance of elucidating the microscopic process that characterizes
the above discussed chemical reaction (reaction (5.18)), more fundamental thermo-
dynamic considerations are in order, beyond its mechanistic description. Enhanced
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45 kcal mol-1 

E = 0 V/Å 

(kcal mol-1)

Fig. 5.7 FES of reaction (5.18) in the zero-field regime. The energy scale (depth) is in kcalmol−1

whereas the S-axis and the Z -axis represent the progress along the reaction and a sort of distance
from its ideal path, respectively. Low values of S characterize a system of pure liquid methanol
whereas high values of this parameter describe a sample composed by a formaldehyde, a methane,
and a water molecule in a bath of methanol molecules. In the picture frames are shown the local
structures of reactants, transition state, and products corresponding to their relative location on the
FES in the space spanned by the CV. Adapted from [33]

sampling techniques [20] allow for the evaluation of the FES of disparate processes
and, recently, a path collective variables (path-CV) MetD method has been devel-
oped [32] which is particularly useful for condensed phase reactions. Within this
technique, the portion of the phase space close to the reactants (i.e., 2 neutralmethanol
molecules in a bath of methanol) and the products (i.e., a formaldehyde, a methane,
and a water molecule surrounded by methanol molecules) basins have been at first
explored and consequently sampled in solution and in the gas phase. This way, the
FES of reaction (5.18) has been reconstructed in the zero-field regime and under the
action of a field strength of 0.30 V/Å. The choice of sampling the system under a
lower field intensity than that which renders barrierless the reaction (0.55 V/Å) is
dictated by the necessity of monitoring and quantifying the field-induced changes
on the free energy landscape for field intensities that are not large enough to induce
the barrierless formation of formaldehyde, methane, and water. In Fig. 5.7, the free
energy landscape of reaction (5.18) in the absence of the electric field is shown. The
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(kcal mol-1)

45 kcal mol-1 

30/35 kcal mol-1 

E = 0.30 V/Å 

S 
Z 

Fig. 5.8 FES of reaction (5.18) under a relatively moderate field strength of 0.30 V/Å. The energy
scale (depth) is in kcalmol−1 whereas the S-axis and the Z -axis represent the progress along the
reaction and a sort of distance from its ideal path, respectively. Low values of S characterize a
system of pure liquid methanol whereas high values of this parameter describe a sample composed
by a formaldehyde, a methane, and a water molecule in a bath of methanol molecules and its ionic
equivalents. In the picture frames are shown the local structures of reactants, transition state, and
products corresponding to their relative location on the FES in the space spanned by the CV. For
(S; Z) ∼ (1.45; 0.3 − 0.4), where is located the observed transition state in presence of a field
of 0.55 V/Å, the free energy is ∼30−35 kcalmol−1. This value is not negligibly lower than that
observed for the fieldless case (i.e., ∼45 kcalmol−1) (see Fig. 5.7). Adapted from [33]

chemical transformation is inhibited by the presence of a high free energy barrier of
45 kcalmol−1. The catalysis effects of the external electric field are manifest from
the induced changes on the FES of reaction (5.18), as shown in Fig. 5.8. Even in pres-
ence of a field strength lower than that capable to render barrierless the reaction, the
products are stabilized: a comparable free energy estimate characterizes the initial
and the final states. Another important aspect concerns the field-induced changes in
the transition region (S ∼ 1.45). By comparing the FES evaluated in the zero-field
regime (Fig. 5.7) with that in the presence of a field strength of 0.30 V/Å (Fig. 5.8),
an evident modification of the shape can be recognized. In fact, a field strength that
is roughly a half (0.30 V/Å) of that which is able to overcome the reaction barrier
(0.55 V/Å), definitely lowers a portion of the barrier of approximately a third with
respect to that of the zero-field case, i.e., ∼30 kcalmol−1 versus ∼45 kcalmol−1,
respectively. This finding is not so surprising if one takes into account that the
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solvent is fundamental in assisting this kind of reaction. Indeed, the field strength of
0.30 V/Å represents the known methanol dissociation threshold [54] and the forma-
tion of ionic species such as CH3OH

+
2 and CH3O− produces intense local fields, as

it is usual when dealing with solvated ions [55–57]. Moreover, the region of the free
energy barrier that is significantly modified by the field action corresponds to the
effectively recorded passage in our unbiased AIMD simulation (i.e., it is the natural
reaction pathway when a strong electric field is applied). Hence the external electric
field is able to open reaction pathways that were avoided in the zero-field regime.

5.4.2.2 Free Energy Landscapes in the Gas Phase

Agas phase variant of reaction (5.18) has been also investigated by exploitingBOMD
joined with the previously described MetD protocol. First, a well-tempered path-CV
MetD approach [32] has been carried out.

Generally speaking, the interactions that characterize a bimolecular reaction in
condensed phase are ultimately different with respect to the gas phase counter-

22 CH3OH CH4  H2O   H2CO 

CH4 
                   H2

HCOOH

CH4

CH2(OH) 2

H2CO
H2

CH3OH

Fig. 5.9 “Exploratory” (not converged) FES projected onto the path-CV space of reaction (5.18)
performed in the gas phase and in the zero-field regime. Three basins separate the reactants and
the products. In ascending order of S (progress along the reaction path) we have: (1) reactants: two
methanol molecules; (2) a methanol, a formaldehyde, and a hydrogen molecule; (3) a formaldehyde
monohydrate and a methane molecule; (4) a methane, a hydrogen, and a formic acid molecule; (5)
products: a formaldehdye, a methane, and a water molecule. Adapted from [33]
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part [81]. Indeed the molecules participating in a liquid phase reaction experience
solute–solvent interactions which occur in dozens of femtoseconds [70]. Neverthe-
less, themere study of the features characterizing the field-induced changes in the gas
phase reactions is per se an interesting work station. The first interesting evidence of
the application of an external electric field in the gas is the inducedmanifest enhance-
ment of the selectivity of the reaction. Indeed in absence of the field, an exploratory
MetD simulation displays the presence of at least three different intermediate states
between the reactants and the products basins. By following the reaction progress
(i.e., going in ascending order of the parameter S) the exploredmetastable basins that
the sample explores are associated with formaldehyde, dihydrogen, and methanol at
first, then with methane and formaldehyde monohydrate and, finally, with methane,
dihydrogen, and formic acid (Fig. 5.9).

When a field intensity of 0.25 V/Å is applied, only one of these three basins
survives, as shown in Fig. 5.10. Hence the application of an external electric field to
a gas phase methanol sample induces an enhancement of the selective character of
the reaction.

22 CH3OH CH4  H2O   H2CO 

CH4

CH2(OH) 2

Fig. 5.10 “Exploratory” (not converged) FES of reaction (5.18) performed in the gas phase under
the effect of a field strength of 0.25 V/Å. Two of the three basins previously observed in the absence
of the electrical perturbation are not accessible under such a circumstance. In ascending order of S
we have: (1) reactants: two methanol molecules; (2) a formaldehyde monohydrate and a methane
molecule; (3) products: a formaldehdye, a methane, and a water molecule. Adapted from [33]
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2 CH3OH CH4 H2O H2CO 22 CH3OH CH4 H2O H2CO 

S

(kcal∙mol-1)(kcal∙mol-1)E = 0 V/Å E = 0.25 V/Å 

Fig. 5.11 FESs of the gas phase variant of reaction (5.18) in the zero-field regime (left) and in
presence of a field strength 0.25 V/Å (right). The energy scale (depth) is in kcalmol−1 whereas the
S-axis and the Z -axis represent the progress along the reaction and a sort of distance from its ideal
path, respectively. Low values of S characterize a system of two methanol molecules whereas high
values of this parameter describe a sample composed by a formaldehyde, a methane, and a water
molecule. Adapted from [33]

The characterization of the overall shape of the FES can give information on the
selectivity of the reaction but, in order to accurately evaluate the relative energetics
and compare them also with the condensed phase results, a direct sampling of the
relevant regions of the CV space is mandatory. To this aim a series of Umbrella Sam-
pling [22] simulations partially covering the reaction pathways has been carried out.
By recollecting the independent data by means of the Weighted Histogram Analysis
Method (WHAM) [23–26], estimates of the free energies have been obtained. The
results are shown in Fig. 5.11. Again, the application of a moderate field accounts
for the stabilization of the reaction products since the basin associated with them
shows similar free energies to those of the reactants basin. Finally, it is straightfor-
ward to note that in both cases the involved free energies are sensibly higher than
those characterizing the liquid phase reaction reported in the previous section, high-
lighting again a posteriori the irreplaceable role played by the strong intermolecular
correlations in assisting such a kind of simple chemistry in condensed phase.

5.5 Conclusions

In this chapter, we have reviewed the phenomenological evidence that has recently
emerged from state-of-the-art ab initio simulations on the chemical transformations
of molecular systems under the action of a static and homogeneous electric field,
and on the formulation of advanced free energy schemes capable to deal with the
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complexity of the underlying chemical spaces. In particular, we have shown that
the combination of the latter methods could potentially be of enormous help in
systematically making use of electric fields to develop new chemistries and chemical
routes to the synthesis of novel systems and materials.
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Chapter 6
Force Field Development
and Nanoreactor Chemistry

Lee-Ping Wang

Abstract The application of theory and computation to understand reactivity at
high pressures is beset by several challenges: (1) the nontrivial changes in electronic
structure that take place during the reaction, (2) the many possible initial config-
urations of reacting species, and (3) the simulation timescales needed for reaction
events to occur. In this chapter, we will discuss two methods for meeting these chal-
lenges. The development of accurate molecular mechanics force fields is needed
to sample initial configurations of reactants. This chapter provides a perspective
on the functional forms and parameterization strategies of modern force fields. In
particular, we highlight the ForceBalance parameterization method for optimizing
force fields systematically and reproducibly using a free and open-source code. The
ab initio nanoreactor is a new simulation method for rapidly discovering new reac-
tion pathways from first-principles molecular dynamics. The main components of
the nanoreactor approach include an external time-dependent potential that induces
high-velocity molecular collisions, a trajectory analysis and visualization tool for
identifying and extracting individual reaction events, and a reaction path optimiza-
tion workflow for estimating the reaction energies and barrier heights from a reaction
event.

The Born-Oppenheimer potential energy surfaces (PES) of systems exhibiting reac-
tivity depend on the nuclear positions in a nontrivial way that cannot be concisely
described by simple functions of the molecular structure, as opposed to nonreactive
systems that interact principally through their intermolecular interactions. The most
predictive methods for reactivity under high-pressure, shock conditions, or com-
bustion conditions are in the realm of ab initio quantum chemistry [35, 78, 106],
though reactive force fields have also been used with varying degrees of success.
This reactivity often occurs in disordered media, which presents a major challenge
to modeling the atomic structure of the initial state. Moreover, the timescales of reac-
tivity might be nanoseconds, microseconds, or even longer, which are out of reach
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for traditional ab initio molecular dynamics (AIMD) approaches. These challenges
make it apparent that innovative simulation methods are needed to sample the ini-
tial configurations and discover the possible reaction pathways in a computationally
affordable manner.

In this chapter,wewill discuss twodistinct yet interrelatedmethods formeeting the
aforementioned challenges. (1) The development of accurate molecular mechanics
force fields is an effective way of sampling initial reactive configurations and (2) the
ab initio nanoreactor is a new method for discovering new reaction pathways.

6.1 Force Field Development

Molecular mechanics force fields, also called empirical potentials/force laws in var-
ious research fields, are inexpensive models of the potential energy surface; distinct
from ab initio methods that typically involve solving for the electronic degrees of
freedom, force fields directly approximate the energy as a function of the atomic
positions. This is made possible through the use of chosen analytic functions (i.e.,
functional forms) that describe the shape of the potential surface in terms of atomic
coordinates, as well as tunable parameters that are adjusted to make the potential
energy surface or simulation results conform to some aspect of reality. The empirical
aspect mainly lies in the tuning of these parameters when developing the force field.
In addition, molecular mechanics simulations often proceed from an assumed atomic
connectivity or topology; this is because the potential energy surface behaves very
differently for intramolecular versus intermolecular degrees of freedom. Because
chemical bonding is largely due to quantum mechanical behavior of the electrons,
the assumption of a fixed topology allows one to model the potential energy surface
using rather simple functional forms (the boundaries of this paradigm are somewhat
blurred by reactive and polarizable force fields). The atomic positions are usually
propagated using classical equations ofmotion similar to Born–Oppenheimermolec-
ular dynamics; path integral methods such as ring polymer molecular dynamics may
be used to model nuclear quantum effects.

The earliest examples of force fields were developed to model small organic
molecules [52, 58], biomolecules [16, 105], and water [38, 43]. Following these
initial developments, greater numbers of force fields were introduced for diverse
and increasingly general applications such as hydrocarbons [4]; organic/inorganic
molecules and polymers [87]; organic liquids [44]; and general small molecules [56,
97], even covering the whole periodic table [72].

Computational scientists today may access a vast literature of force fields that
can be used to model almost any imaginable molecular or material substance. It is
impossible to cover the whole field in this book chapter, and the reader is instead
referred to reviews discussing force fields for several important classes of materials:
molecular liquids [17], biomolecules [7, 69], disordered polymers [49, 65]. Despite
the vastness of this field, it is instructive to discuss the general concepts of force
fields using biomolecules and water as a representative example.
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Fig. 6.1 Schematic of a three-point rigid water model showing the atomic sites and parameters.
In the TIP3P model, the (rigid) geometric parameters are set to the gas phase structure as r �
0.9572 Å, θ � 104.52°. The Lennard–Jones (LJ) parameters for oxygen are σ � 3.15075 Å, ε �
0.63597 kJ/mol; the H atoms do not interact via the LJ potential. The charge parameters are qH �
0.417 e, qO � −2qH

One of the simplest force field archetypes is the rigid three-point water model
(Fig. 6.1) with solely intermolecular interactions; these terms are the Lennard–Jones
(LJ, or 6–12) interaction representing dispersion, and the pairwise Coulomb inter-
action between point charges representing electrostatics. The effects of polarization
are included in a mean-field sense, as the molecular dipole moments of these mod-
els (2.3–2.4 D) tend to be larger than the gas-phase dipole moment of water (1.85
D) [83]. Hydrogen bonding is modeled purely using point charge electrostatics and
by omitting the LJ interactions on hydrogen. In the most widely used parameteri-
zations of three-point water models (TIP3P and SPC/E), the geometric parameters
were not optimized, and the charge/LJ parameters were hand-tuned in order to match
simulated observables with experiment [9, 43]. The density and heat of vaporization
were commonly used properties for parameter fitting. Also noteworthy are four-point
water models (TIP4P, TIP4P-Ew, and TIP4P/2005) where the negative charge is not
located on the O atom, but rather on a virtual site located on the HOH angle bisector
on the same side as the H atoms. Because four-point models can describe the molec-
ular quadrupole moment more accurately, they can yield improved agreement with
experimental properties [1, 39].

The most important difference between water and macromolecules is the impor-
tance of intramolecular degrees of freedom. A typical macromolecular functional
form is as follows:

E � Ebond + Eangle + Edihedral + Enonbonded,

Ebond �
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Enonbonded �
∑
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]
+
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Ebond and Eangle are harmonic energy terms for covalent bonds and bond angles; the
equilibrium values and force constants are empirical parameters. Bonds involving
hydrogen are typically constrained to their equilibrium lengths. Edihedral is a periodic
function of the dihedral angle formed by four atoms, and is parameterized as a
Fourier series with adjustable linear coefficients and phase factors. Proper dihedrals
involve four atoms connected in a line (i–j–k–l), and effectively describe steric and
electrostatic contributions to the energy as molecular groups are rotated around the
covalent bond j–k; out of all terms in the force field, these tend to be the most heavily
parameterized [40, 53]. The total energy profile for rotating about the bond contains
proper dihedral contributions from all groups bonded to j and k. By contrast, the atom
ordering of improper dihedral terms does not follow the order of covalent bonds (for
example, three atoms bonded to a central one). Improper terms are meant to describe
the resistance of sp2-hybridized atoms to out-of-plane bending motions. Enonbonded

describes nonbonded interactions as a pairwise sum; these include all atom pairs on
different molecules, as well as pairs within the same molecule separated by more
than three chemical bonds. When calculating a pairwise nonbonded interaction, the
atomic LJ parameters of both atoms are combined using a combining rule, such as
the Lorentz–Berthelot rules which state σ ij �½(σ i + σ j); εij � (εi * εj)½. The atomic
partial charges are multiplied together according to Coulomb’s law for point charges.
In some force fields, LJ and electrostatic interactions between groups separated by
exactly three bonds are scaled by a global factor and are called “1–4” interactions,
(e.g., in AMBER force fields, the scale factors are 5/6 for electrostatics and 1/2 for
Lennard–Jones).

Macromolecular force field parameters must be carefully organized to describe
the diverse chemical environments of the atoms while keeping the number of fitting
parameters withinmanageable limits. The organization of parameters varies between
different force fields and software implementations, and parameterization strategies
vary across different force fields and research groups; however, the overarching con-
cepts are largely the same, and the following discussion uses the AMBER force field
as an example. Central to the organizational framework is a list of atom type defini-
tions; an atom type represents an atom within a specific chemical environment (e.g.,
a carbonyl oxygen atom). List of bond, angle, dihedral, and Lennard–Jones param-
eters are then defined; each parameter is specific to the combination of atom types
involved in the interaction (e.g., equilibrium length and force constant parameters
are defined for the carbonyl C=O bond).

The force field also contains residue definitions, which are templates for small
molecules or pieces of macromolecules. Each residue definition lists the atoms in the
residue and the atompairs connectedbychemical bonds.Each atomwithin the residue
is assigned an atom type based on its chemical environment, enabling the assignment
of bonded and Lennard–Jones parameters. The atomic partial charges are defined
uniquely for each atom within a residue. When the force field and residue definitions
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are loaded, the user may load a coordinate file containing the lists of residues to
be simulated and their initial atomic positions. The residues in the coordinate file
are matched to the local residue definitions to create the topology. Parameters for
individual bond, angle, dihedral, and nonbonded interactions are assigned based on
matching of atom types. After this preprocessing step, the system is specified by
the complete list of particles and nonbonded interaction parameters, as well as the
lists of all bonded interactions and parameters. The system and initial conditions are
provided to initiate the simulation.

It remains to discuss how parameters are fitted. The electrostatic parameters are
often derived by fitting the electrostatic potential from ab initio calculations. The
HF/6-31G* level of theory is a popular choice because it is thought to over-polarize
the system, thus effectively describing some amount of condensed phase polarization
[23, 54]; it is also inexpensive, allowing new charges to be determined easily for
simulating new molecules. The bond and angle parameters are fitted to reproduce
equilibrium geometries and vibrational frequencies from experiment or ab initio
calculations, and the Lennard–Jones parameters are fitted to densities and heats of
vaporization of molecular liquids. The dihedral parameters occupy an intermediate
spacebetweenbonded andnonbonded terms, and are oftenfitted to reproduce ab initio
potential energy profiles. Due to the large amounts of effort involved in parameter
fitting and the interdependence of parameters on the simulation results, modern force
fields often contain subsets of parameters that were fitted at different times.

Given this conceptual framework, it is straightforward to implement higher order
terms such as anharmonic bond and angle potentials, cross terms that couple multi-
ple bonds/bond angles, and modified nonbonded functional forms. These terms can
improve the force field accuracy in terms of fitting ab initio calculations or predict-
ing experimental observables. Some force fields employ atom-centered multipole
expansions, allowing the molecular electrostatic potential to be closely fit [28, 74].
Within the diverse ecosystem of force field functional forms, two families deserve
special mention: polarizable models and reactive models.

Polarizable force fields describe the electronic response to electric fields, and can
employDrude particles/charges on springs [47, 108], point dipoles [5, 25], fluctuating
charges [73, 76], or a combination of these. In these models, calculating the energy
and forces in these models require relaxing the polarizable degrees of freedom at
eachMD step, or propagating them using an extended Lagrangian formalism [3, 90].
A major advantage of polarizable models is they are transferable between the gas
phase and solvent phase; for example, they can be fitted to gas-phase ab initio data
and predict condensed phase properties. However, the increased computational cost
limits the applicability of these models in fields where nonpolarizable models are the
norm. The reader is referred to several reviews discussing the current state-of-the-art
of polarizable models [22, 70]; the AMOEBA model is a particular example where
the ForceBalance software has been used to automatically optimize the model to
improve agreement with ab initio data and experiment [48, 59, 71, 101].

Reactive force fields are designed to describe changes in chemical bondingwithout
the use of quantum mechanical electrons. Because chemical bonding is a quantum
mechanical phenomenon, reactive force fields are much more challenging to develop



132 L.-P. Wang

than their nonreactive counterparts, and their accuracy is limited compared to ab initio
and semiempirical methods described elsewhere in this book. Here, we list three
successful strategies:

• Bond order potentials: This class of models originates in the modeling of solids,
and includes the early models of Tersoff, Brenner, and others [32, 81, 85, 88]. In
simulations employing bond order potentials, there are no predefined topologies.
A common feature of the models is the calculation of an approximate bond order
between each pair of atoms, a function of the interatomic distance. Similar to ab ini-
tio definitions of bond order, these functions are constant at small distances and
decay rapidly to zero at distances corresponding to bond dissociation. Summing
the bond orders involving the same atom as vi � ∑

j bij
(
rij

)
yields the valence of

that atom. The bond orders and valences are important intermediate quantities in
computing the final energy; for example, the energy contribution from a carbon
atom may have a minimum where v � 4 corresponding to four covalent bonds.
Another prominent example of this class is ReaxFF, which has been applied to
model many reactive systems including high-energy materials and combustion
processes [20, 51, 91].

• Empirical valence bond (EVB) potentials: These models employ several prede-
fined topologies and a means for switching between them. Computing the EVB
energy involves diagonalizing an effective Hamiltonian matrix where the diag-
onal elements are MM potentials with distinct topologies and the off-diagonal
elements are couplings [19, 104]. The couplings are modeled as a Gaussian func-
tion of position centered at the transition state structure. Because EVB potentials
require specifying the topology for each chemical state, it is most useful for study-
ing systems where there is a single well-defined reaction of interest. Themultistate
EVB model is a variant of EVB in which new topologies are automatically gen-
erated on-the-fly; this is useful for studying problems where the topologies are
known but too numerous to represent simultaneously, such as the case of proton
transfer in water [26, 80].

• Machine learning (ML) potentials: These models compute the potential energy
using functional forms that does not represent physical interactions, opting instead
for highly flexible models capable of fitting almost any input data. ML potentials
may use a neural network architecture where the inputs are translationally and
rotationally invariant functions of the molecular environments around each atom
(i.e., feature vectors or descriptors), the intermediate variables are passed through
several layers of interconnected nodes, and the final energy is computed as the
output [8, 84, 110]. Kernel ridge regression is another ML technique that has been
applied to build force fields [21].

The existence of many force fields for different molecules and applications speaks
to the major challenge of transferability. Compared to ab initio methods, the accu-
racy of any given force field is not guaranteed when applied across wide regions of
chemical and thermodynamic space; arguably this is intrinsic to the nature of empir-
ical models. Thus, highly transferable and general tools are needed for systematic
development of force fields for target applications.
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Automated parameterization. The parameterization of force fields may incorpo-
rate training data from diverse experimental and ab initio theoretical data sources.
During parameterization, the force field is used to simulate physical quantities that
are directly compared to the reference data. The parameters are then adjusted to
minimize the difference between simulation and reference, and the process repeated
iteratively until convergence.

Any physical property that could be computed from simulations may be fitted
to experimental values. In practice, only properties that are precisely measurable
and easily computable are the ones used for fitting; specific examples for molecular
liquids are the density at constant temperature and pressure, and the heat of vaporiza-
tion. Thermodynamic response properties such as the thermal expansion coefficient,
isothermal compressibility, isobaric heat capacity, anddielectric constant are also eas-
ily computable from equilibrium simulations and comparable to experiment. When
developing force fields intended for classical Hamiltonian simulations, the size of
nuclear quantum effects on different experimental properties must be considered; the
enthalpy of vaporization and isobaric heat capacity have significant quantum effects
requiring ad hoc corrections [9, 39]. These approximate corrections may involve
modeling the high-frequency motions of the system using non-interacting quantum
harmonic oscillators, and calculating the correction using the difference between
the quantum and classical solutions. Path-integral methods simulate the quantum
statistical mechanics directly, and do not require such corrections [18, 24, 37].

Theoretical data sources include ab initio calculated values of total potential ener-
gies, nuclear gradients [29], and interaction energies; electrostatic observables such
as multipole moments and response properties such as vibrational frequencies may
also be used. The approximations in the ab initio method, the empirical model and
the classical approximation imply that the optimized model should deviate some-
what from the training data, and the deviations are expected to increase in size as the
functional form becomes more approximate. Explicit polarization is important for
quantitative comparisons to ab initio data in the gas phase; on the other hand, fixed-
charge models are not expected to closely reproduce gas-phase interactions because
their charges are parameterized to include average condensed-phase polarization.
Successes in developing fixed-charge models have been achieved when performing
the calculations in solvent, such as the adaptive force matching approach that uses a
QM/MM environment [2, 50].

The training data, parameters being adjusted, and the optimization algorithm are
three important choices in the parametrization procedure. Carrying out this proce-
dure involves measuring, calculating or collecting the training data set, running the
corresponding simulations, and tuning parameters; this task hasmany interconnected
components that are arduous to carry out and difficult to reproduce.Automated scripts
are often developed to glue the required components together; an early example is
a tcsh script for simplex optimization [30]. More recently, several parameterization
programs have been made available for further generality and reproducibility; these
include ForceBalance [102], potfit [15], and Wolf(2)Pack [41]. We also note related
research in the AMOEBA, AMBER, and CHARMM simulation communities that
provide automated programs for parameterizing new molecules by following fixed
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workflows [11, 75, 96]; these procedures are designed for consistency with the pub-
lished parameters and are recommended for generating parameters that are “com-
patible” with the existing ones.

ForceBalance is a free and open-source software package for systematic and repro-
ducible model parameterization that has been used to develop a series of force fields
for water [48, 71, 100–102], organic molecules [59], lipid bilayers [57], and proteins
[98]. Going beyond force fields, ForceBalance has also been used to parameterize
atom-centered grids for approximate electronic structure calculations [45]. Three key
abstractions are introduced to accommodate diverse model parameterization work-
flows:

• The force field represents a plain text orXMLfile containing numerical values to be
optimized, and enables writing copies of the filewithmodified values. Importantly,
the force field allows functional relationships between parameters, as well as con-
straints and rescaling factors; these are often needed for parameters with physical
meanings and which may have very different orders of magnitude depending on
the unit system.

• The engine is an interface to the simulation software package that implements the
model and the desired property calculations, which can be done using APIs (when
available) or the operating system. Engine implementations include OpenMM,
AMBER, TINKER, Gromacs, and Psi4; interfaces to CHARMM, and LAMMPS
are under development.

• The target represents an observable that can be calculated using the model and
directly compared to a stored reference value; the objective function is a weighted
sum of least squares errors from multiple targets, plus a regularization term that
penalizes parameter overfitting.

In an optimization cycle (presented graphically in Fig. 6.2), the current values
of optimization parameters are passed to the force field object to create a parameter
file. The targets then call the engine functions (which call external codes) to evaluate
the simulated observables and their parametric first derivatives, which are used to
build the objective function, gradient, and approximate Hessian (the latter is obtained
from the Gauss–Newton approximation). An optimization algorithm then predicts
the next set of optimization parameters to minimize the objective function. ForceBal-
ance implements several optimization algorithms; in practice, the best performance
is obtained from a natively implemented trust-radius Newton–Raphson algorithm.
Gradient-based optimizations have the possibility of getting “stuck” in local minima,
but we have not found this to be a serious issue in practice, and at least one study
has shown that disparate sets of starting values can converge to the same minimum
[102].

In order to use theNewton–Raphson optimizer, ForceBalance requires first deriva-
tives of all calculated properties with respect to the parameters being optimized.
While derivatives of single-point properties (e.g., energies and gradients) are easily
computed via finite difference, simulated thermodynamic properties are more chal-
lenging due to the high computational cost and inherent statistical uncertainty. Force-
Balance implements semi-analytic expressions for efficiently obtaining parametric
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Fig. 6.2 Steps of the
ForceBalance optimization
cycle. The initial force field
parameters (lower left) are
used to perform simulations
using molecular dynamics
(MD) software (upper left).
The objective function is
computed as a least squares
function of the differences
between simulation results
and reference data (upper
right). The optimization
method updates the
parameters in order to
minimize the objective
function (bottom right)

derivatives of many thermodynamic properties without needing to run multiple sim-
ulations. A statistical mechanical fluctuation formula [14] provides the parametric
derivatives of a general thermodynamic property A as

∂〈A〉
∂λ

�
〈
∂A

∂λ

〉
− 1

kBT

(〈
A

∂E

∂λ

〉
− 〈A〉

〈
∂E

∂λ

〉)
(6.2)

where λ is the model parameter, 〈·〉 the ensemble average using the current value
of λ, and E the potential energy. Because A and E can be evaluated individually
for trajectory frames in the simulation, the quantities on the RHS may be evalu-
ated in a post-processing step by evaluating ∂E/∂λ numerically for the trajectory
frames. This differentiation approach is highly effective for accurately fitting many
thermodynamic properties; more recently, pure numerical derivatives have also been
implemented where separate simulations are carried out to get the parametric deriva-
tives of properties.

The least squares objective function being minimized is given by

L[x] �
∑

A∈targets

wA
〈
Aref

〉2
∑

i∈points

(
Ai,MM

[
y(y0;Mx)

] − Ai,ref
)2

+ w0|x|2 (6.3)

where x is the array of independent optimization variables, the sum is taken over the
squared residuals of targets A weighted by wA and data points i within each target,
and the last term is the regularization function with its own weight w0. y represents
the array of physical parameters that are literally written to the force field file—these
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are calculated from the initial values y0 and the rescaled optimization variables Mx
whereM is a diagonalmatrix.A full specification of the calculation requires choosing
the weights w, the rescaling factors (diagonal of M), and the functional relationships
between physical parameters encoded in y(y0;Mx).

Because each target term corresponds to a property with physical units, they
are first normalized to dimensionless values. The normalization scheme generally
depends on the target type, for example single-point energies and forces are automati-
cally normalized by the variance of the ab initio energies/forces 〈Aref〉2. Equation (6.3)
shows that the normalization is mathematically equivalent to an inverse weight. The
dimensionless weights wA have a default value of unity and may be further tuned,
for example, if one target is deemed to be more important than others.

The rescaling factors (diagonal of M) play a dual role in improving conditioning
and controlling regularization. The physical parameters y are unsuitable as opti-
mization variables because they are in the unit system of the underlying simulation
code, they obey physically motivated user-specified constraints (e.g., conditions on
the net charge, traceless quadrupoles, and spatial/geometric relationships), and their
size may vary by several orders of magnitude which can lead to an ill-conditioned
problem. This problem is addressed by using optimization variables x that are dimen-
sionless and order 1; the mapping to y involves rescaling as x′ � Mx, followed by
enforcing the physical constraints by construction as y � f[x′]. In this scheme, all
chain rule terms are automatically included when numerically differentiating AMM

with respect to x.
The regularization term (penalty function) is isotropic in xwith a default quadratic

formgiven asw0|x|2, though other regularizations (such as LASSO)may also be used.
In a simple optimization with no relationships between parameters, the changes in
physical parameters and optimization variables are related as �yi � Mii�xi. The
value of Miithus corresponds to the expected variability of yi, which is why Mii is
also called a “prior width.” Increasing/decreasing the rescaling factor for a parame-
ter will loosen/tighten the variations of the physical parameter in the optimization,
allowing the user to control the optimization results in a qualitative sense. In prac-
tice, rescaling factors are grouped by parameter type and specified using order of
magnitude estimates, and changing these values by successive factors of ½ or 2 can
further fine-tune the optimization results.

As an example, consider a force field model of HCl with three adjustable
physical parameters—the bond force constant and the charges on the H and
Cl atoms. The starting parameter values are y0 � [2.5e5 kJ mol−1 nm−2, +0.25 e,
−0.25 e]. The rescaling factors are chosen as 1.0e5 kJ mol−1 nm−2 for bond force
constants and 0.1 e for charges. The current value of the optimization variables is x
� [+0.6,−0.3]. After rescaling, we haveMx � [0.6e5 kJ mol−1 nm−2, –0.03 e]. The
charge neutrality constraint leads to the following mapping to physical parameters:

y � y0 +
[
0.6e5 kJmol−1 nm−2, −0.03 e,+0.03 e

]
;

y � [
3.1e5 kJmol−1 nm−2,+0.22 e,−0.22e

]
.
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Example application: The iAMOEBA water model was the first force field to
be optimized in the ForceBalance framework. iAMOEBA uses the same functional
form as the existing AMOEBA model, with the approximation that all interactions
between induced dipoles are excluded. This so-called “direct induction” approxi-
mation reduces the many-body polarization energy expression to only three-body
terms, and saves computational time because the self-consistent solution for N-body
“mutual induction” is no longer needed. The iAMOEBA parameterization used the
AMOEBAmodel as a starting point, and 19 of the model parameters were optimized
(5 bonded, 2 vdW, 9 permanent multiple, and 3 polarizability). The number of model
parameters is rather large, implying the need for a large data set. The parameteriza-
tion data sets described below are organized into target folders and included with
the ForceBalance distribution.

1. Six thermodynamic properties—the density, heat of vaporization, thermal expan-
sion coefficient, isothermal compressibility, isobaric heat capacity, and dielectric
constant were collected at 42 thermodynamic phase points; these include 32
points at atmospheric pressure and a temperature range of 249–373 K, and 10
points at 298 K and a pressure range of 20–8000 bar. This data is accurately
measured and widely available due to the universal importance of water [95].

2. The dipolemoment, quadrupolemoment, and vibrational frequencies of thewater
molecule in gas phase were included.

3. Single-point potential energies and gradients were calculated at theMP2/aug-cc-
pVTZ level of theory for 42,000 water cluster structures extracted from liquid-
phase simulations using the original (mutual induction) AMOEBA model. The
simulations spanned a temperature range of 249–373 K (1 atm pressure) and
cluster sizes ranged from 2 to 22 molecules. For the convenience of computation,
this data set was separated into 21 targets, one for each cluster size.

4. Interaction energies for water clusters were calculated at known critical points on
the potential energy surface, with structures taken from the literature. For struc-
tures that correspond to minima on the ab initio potential surface, the energy is
minimized using the force field before calculating the objective function, and the
root-mean-square-deviations (RMSD) from the ab initio structure are included.

a. The global minima of the water dimer, trimer, tetramer and pentamer, and 8
localminima of the hexamer. Theminimumenergy structureswere optimized
at the MP2/heavy-aug-cc-pVTZ level of theory followed by CCSD(T)/CBS
energy calculations.

b. Ten critical points of the water dimer (the “Smith” set) were included; the
energy was calculated using CCSD(T)/CBS without further geometry opti-
mization.

c. Also includedwere localminima of 2 octamer structures, 5 11-mer structures,
5 16-mer structures, 2 17-mer structures, and 4 20-mer structures. These were
also optimized usingMP2/heavy-aug-cc-pVTZ, and energies were computed
at the MP2/CBS level of theory.
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The choice of rescaling factors and weights for the optimization are described in
Wang et al. [101] and also distributed with the ForceBalance code.

The results of the iAMOEBA optimization are shown in Fig. 6.3. The starting
AMOEBA model predicts qualitatively correct behavior of the liquid density with
respect to temperature, with a densitymaximum around 293K (experiment 277K). If
direct polarization is usedwithout parameter optimization, the density dependence on
temperature becomes qualitatively incorrect and there is no density maximumwithin
the temperature range. The final iAMOEBAmodel with optimized parameters gives
very close agreement with both experiment and ab initio calculations. The simulated
density is within 0.1% of experiment across the whole temperature range, and the
temperature of maximum density is correctly reproduced at 277 K. The level of
agreement with the MP2 data also matches the quality of the original AMOEBA
model. This gave a positive indication that the direct polarization approximation is
sufficient for describing electronic polarization effects in water.

The data set for parameterizing iAMOEBA is easily applicable to develop other
water models within the ForceBalance framework. In particular, a three-point water
model (TIP3P-FB) was developed [102] that has the same functional form and
computational cost of TIP3P, but with greatly improved thermodynamic, structural,
and kinetic properties (Fig. 6.4). Although TIP3P-FB is not quite as accurate as
iAMOEBA, it is 50–100 times faster due to its simple functional form; furthermore,
recent studies show TIP3P-FB is compatible with modern biomolecular parameter

Fig. 6.3 Results of iAMOEBAmodel optimization. Left: density dependence on temperature, mea-
sured experimentally (black), calculated using the 2003 AMOEBA mutual induction model (blue),
direct polarization without parameter optimization (dark green), and the optimized iAMOEBA
model (light green). Right: scatter and density plot of ab initio vs. force field single-point energies
for water 7-mer clusters, for the 2003 AMOEBAmodel (top) and 2013 iAMOEBAmodel (bottom).
Error bars indicate one standard error
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Fig. 6.4 Results of TIP3P-FBmodel optimization. Top row: the temperature dependence of thermo-
dynamic properties for experiment (black), TIP3P (gray), and TIP3P-FB (blue), showing improve-
ments in the quality of fit for TIP3P-FB. Bottom row: structural and kinetic properties not fitted
during parameterization: O–O radial distribution function at 298.15 K (bottom left), diffusion coef-
ficient (bottom middle) and shear viscosity (bottom right) as a function of temperature

sets [31, 109]. The good compatibility of TIP3P-FBmay be due to the small changes
in its parameters from TIP3P (all 5% or less). We expect that improved “simple”
water models such as TIP3P-FB may play an important role in developing the next
generation of biomolecular force fields.

Validation of force fields. The validation of a force field is an essential measure of a
force field’s predictive power, and involves assessing the model accuracy for known
properties outside of the training data set. Knowledge gained from validation could
also feed back into the force field development cycle at a high level—for instance, if
evidence of overfitting is found, the model may be refitted using a smaller number
of independent parameters or increasing the regularization strength. With that being
said, validation studies should in principle be kept separate from parameterization.

Pure water is an ideal proving ground for force fields and force field development
methods due to the plentiful experimental data available for training and validation.
Asmentioned previously, the easily computable/precisely known properties are often
used for training; consequently, properties that are more challenging to compute or
less precisely measured are typically reserved for validation.

An example of a validation property for water is the solid–liquid phase diagram,
which is a rather challenging thermodynamic property to compute (Fig. 6.5). Water
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Fig. 6.5 Solid–liquid phase diagram of water. The experimental phase of water contains several
distinct ice phases at high pressures (left). The iAMOEBA water model exhibits the same phase
behavior in simulations, an important validation of the model (middle). The widely used TIP3P
model yields qualitatively incorrect behavior; ordinary ice Ih is stable only at 150 K and negative
pressures (right)

can be found inmany distinct solid states such as ice Ih (ordinary ice), ice Ic, ice II, ice
III, and ice V; many of these states are characterized by distinct crystalline orderings
of theOatoms and randomorientations of the hydrogen bonds consistentwith the “ice
rules” (each water molecule donates two hydrogen bonds and accepts two hydrogen
bonds). The phase diagram may be constructed from the free energies of the water
and ice phases in the relevant temperature and pressure range (150–350 K and 0–20
kbar). Alternatively, one may directly simulate the melting points of different ice
phases at various pressures, then obtain the entire liquid–solid coexistence curve
by means of Gibbs–Duhem integration. When two liquid–solid curves meet at a
triple point, the same procedure may be applied to obtain the solid–solid coexistence
curve, thereby tracing out the entire phase diagram. The final result is a positive one;
iAMOEBA correctly predicts the experimental solid–liquid phase diagram. This
qualitative agreement is also obtained by the TIP4P series of models; notably, the
popular TIP3Pmodel predicts a totally different (and qualitatively incorrect) diagram
where most of the ice phases do not appear.

Conclusions and prospects. Force fields are essential tools for studying atomic and
molecular behavior in the condensed phase. Historically, the major milestones in this
field have arrived as new functional forms and parameter sets for describing different
areas of chemical space. As the field has evolved, the number of functional forms and
amount of experimental/computational data has greatly increased, posing a challenge
for improving force fields due to the complexity of the parameterization problem. A
new generation of methods and software (e.g., ForceBalance) addresses this modern
challenge by allowing complex parameterization workflows to be carried out in an
automatic and reproducible way.

Modern force field development software is expected to contribute to compu-
tational studies of reactivity in two ways: (1) Improved conventional force fields
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(i.e., with fixed topologies) could provide more accurate starting configurations for
reactive simulations employing ab initio or semiempirical methods. (2) Improved
reactive force fields could potentially predict the reaction mechanisms in a complex
chemical system. In what follows, we will describe a method for predicting reaction
mechanisms without presumed reaction coordinates as a possible application for the
reactive force fields of the future.

6.2 Nanoreactor Chemistry

The starting point of computational investigations into mechanistic studies has tradi-
tionally been a mechanistic hypothesis or reaction coordinate. In the simplest proce-
dure, the reaction energy is characterized by energy minimization of the reactant and
product structures. Reaction path optimization methods, such as the string method
and nudged elastic band [82], provide estimates of the minimum energy path and the
transition state (TS) structure. The barrier height is determined by a TS optimiza-
tion calculation [12] that searches for a critical point on the potential surface with
one imaginary frequency. Energy minimization along the directions of the imaginary
mode lead back to the reactant and product [33]. These calculations can estimate the
entropic contribution to the free energy using harmonic or quasi-harmonic approx-
imations, and simple kinetic models such as transition state theory may be used to
estimate reaction rates.

Many research efforts have gone beyond the single-point paradigm to provide
improved estimates of the thermodynamics and kinetics of reactions. Accelerated
sampling methods such as umbrella sampling, adiabatic free energy dynamics [77],
metadynamics [46], and orthogonal space random walk [111] maximize the thermo-
dynamic overlap along a chosen order parameter or reaction coordinate by applying
biases to a molecular dynamics or Monte Carlo simulation. On the other hand, accu-
rate rate calculations require statistical sampling of paths rather than configurations.
The seminal research of Chandler and coworkers on transition path sampling [13]
has led to many subsequent developments that further improve the calculation of
reaction rates for rare events, including transition interface sampling [92, 93], aim-
less shooting [60, 67], and others. Path sampling methods use Monte Carlo methods
to generate a distribution of paths in the local neighborhood of an initial pathway; the
reaction rate is then computed as the fraction of the sampled paths that successfully
complete the reaction.
State-of -the-art methods for generating reaction pathways. The above methods are
designed to quantitatively characterize a reaction pathway, given an initial mecha-
nistic hypothesis. More recently, computational methods have been developed that
explore the possible reaction pathways starting from an initial structure. Broadly
speaking, two kinds of methods have emerged: rules-based methods and dynamics-
based methods. Rules-based methods work by combinatorial application of funda-
mental moves (such as bond breaking, bond forming, and constraints) followed by
reaction path optimization to generate the reaction network. Examples of rules-based
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methods include the ZStruct method [27, 66], the artificial force induced reaction
method [34, 55], the Reaction Mechanism Generator [86], the graph-based reaction
path sampling of Habershon [36], and recent work of Zubarev et al. [112] on the
tricarboxylic acid cycle. Bergeler et al. [10] developed a heuristics-guided approach
that applies conceptual electronic structure theory to identify likely reactive sites.

Methods based on molecular dynamics for exploring reactivity employ various
methods for generating reaction events in the simulation trajectory. Examples of these
methods and applications include the study of comet impacts on the early Earth using
the multiscale shock technique [35], the SPRINT metadynamics of Pietrucci and
Andreoni [68], simulations with strong electric fields to induce reactivity [79], high-
temperature simulations of quantum dot growth [107], and transition state search
using chemical dynamics simulations [94]. The ab initio nanoreactor [99] is part of
this class of simulations, which is described in detail in this chapter. All of these
simulations use various electronic structure methods to explore reactivity, including
HF/DFT and semiempirical models. Reactive force fields such as ReaxFF [20, 91]
and empirical valence bond [80, 103, 104] have contributed significant insights into
reactionmechanisms, but they have not been broadly applied to discover qualitatively
new pathways. In particular, the optimal parameters of ReaxFF-type force fields are
known to depend on the particular system and reaction conditions, which makes
their application to these types of problems very challenging [42]. On the other
hand, EVB-type models are not able to discover new chemical structures because
the possible molecular topologies are “built in” to the functional form.

The literature clearly shows that the computational discovery of reaction pathways
is a field that is rapidly gaining interest. Both the rules-based methods and dynam-
ics-based methods have important roles to play, due to their relative advantages and
disadvantages. The rules-based methods are advantageous in their reduced compu-
tational cost, as they do not require MD simulations to explore the configuration
space; their ability to comprehensively search over the rule set is also an advantage,
but this could become a limitation when the candidate pathways being generated
are too numerous to search over [27]. Importantly, there is always an inherent risk
of missing certain classes of pathways in rules-based methods, because the rules
are fundamental assumptions about what kinds of reactivity are possible. Dynam-
ics-based methods, on the other hand, are able to generate mechanisms free of rules.
For example, the nanoreactor study found numerous cases of proton relays through
watermolecules that reduced the activation barrier inmany of the discovered reaction
pathways, as well as intermolecular reactions that have inspired detailed follow-up
studies [62, 64]; we are not aware of such mechanisms being discovered by the
rules-based approaches. In the future, we anticipate dynamics-based and rules-based
methods will combine forces to further accelerate the understanding of reactivity.

Theab initionanoreactor employs ab initiomolecular dynamics (AIMD) to discover
the reactivity that is possible in a molecular system. The nanoreactor is based on an
AIMD simulation that uses a simple level of theory and basis set, for example,
Hartree–Fock (HF)/3-21G, in order to access longer simulation timescales at the
expense of less accurate energetics. The simulations are carried out using an efficient
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quantum chemistry implementation running on graphics processing hardware [89].
Because the nanoreactor does not assume specific reaction coordinates, the reaction
events occur as a natural consequence of the classical trajectory on the potential
energy surface, which allows for qualitatively new reaction pathways to be observed.
Although the core concept is very simple, the major challenge lies in the high cost
of evaluating the potential energy in ab initio MD simulations. For many systems
of interest, each AIMD time step represents ~1 fs of physical time or even less,
but many reactions of interest occur on nanosecond or longer timescales (106 or
more time steps). This is cost-prohibitive to perform with AIMD simulations, which
generally yield ~1 ps/day in simulation time. Hence, there exists a great need to
explore accelerated methods.

The nanoreactor simulation addresses this challenge by introducing additional
energy via a time-dependent external potential, reducing the simulation time needed
to cross over activation barriers (Fig. 6.6). Importantly, the design of this external
potential should not be biased in favor of specific mechanistic hypothesis or reaction
coordinates, because the main goal for the simulation is to find the possible reaction
pathways. A simple example of such a potential is the spherically symmetric, flat-
bottomed potential where the energy is given as

E �
Natoms∑

i

mik

2
(ri − R)2	(ri − R)

Fig. 6.6 Illustration of
ab initio nanoreactor
simulation. The blue curve
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parameter R as a function of
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where mi is the atomic mass, k the force constant, R the sphere radius that sepa-
rates the flat-bottom and harmonic regions, and 	 the Heaviside step function. The
potential is made time-dependent through the parameters k and R, which oscillate
between values k1, R1 and k2, R2 as a rectangular waveform time intervals of t1 and
t2, respectively. The simulation uses Born-Oppenheimer molecular dynamics with
a small time step of 0.5 fs, chosen to ensure the simulation remains stable when
atomic velocities are high. The molecules diffuse freely in the region r < R1 during
the time interval t1, about 1.0 ps or 2000 time steps; the simulation temperature
is high enough (1500–3000 K) that intermolecular interactions are rapidly dissoci-
ated and the molecules are distributed throughout the spherical region, but not high
enough to dissociate the covalent bonds within the short 1.0 ps window. The tem-
perature controlled using a Langevin thermostat with a time constant of 300 time
steps (0.15 ps). The value of k1 is relatively unimportant, as long as molecules are
prevented from diffusing far beyond R1; we typically choose k1 � 1.0 kcal mol−1

A−2. After this time interval, the sphere radius is switched to R2 (we assume R2 <
R1). At this moment, the atoms located in the region R2 < r < R1 experience a strong
inward force proportional to their mass and distance fromR1 asF � −mk2(r − R2)r̂.
We call this force the “spherical piston.”

This spherical piston will cause all atoms at the same distance from R2 to accel-
erate uniformly toward the center. The force is proportional to the atomic mass and
is intended to accelerate molecules uniformly without dissociating or severely dis-
torting them. As the molecules enter the r < R2 inner region, the spherical piston no
longer applies any forces but the molecules possess a high center-of-mass velocity;
the speed of atoms, if converted to random thermal energy, would correspond to
temperatures of >10,000 K. Shortly after the switching of the potential (i.e., inward
stroke of the piston), the molecules collide near the center of the simulation sphere
with sufficient kinetic energy to cross over many activation barriers. During this time,
the friction term in the Langevin equation rapidly dissipates the energies in excess
of the set temperature, so that newly formed molecules cool to the set temperature
instead of recrossing the energy barriers. At the end of the time interval t2, the sphere
radius is reset toR1, allowingmolecules to freely diffuse throughout the large sphere;
the cycle then repeats.

Conventional molecular simulations produce statistical samples of physical prop-
erties that converge to the thermodynamic distribution given sufficient simulation
time. The behavior of the nanoreactor simulations should be considered on a dif-
ferent footing, because the simulations are not at equilibrium and never reach long
enough times to sample all of the possible connectivities of atoms in the system.
Rather, it is instructive to consider the evolution of chemical species as the simu-
lation evolves toward longer times. Intuitively, the first “products” to appear in the
nanoreactor are chemically close to the “starting materials” and differ in only one
or two chemical bonds. These early products are now available to react with other
species in the simulation, leading to new species that are increasingly chemically dif-
ferent from the starting materials. If the starting materials are highly unsaturated, the
products are generally larger in size—for example, a 500 ps simulation that started
with 39 C2H2 (acetylene) molecules resulted in over half of the atoms belonging
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to a single highly connected species, C46H36 [99]. Because the translational motion
of larger species is slower compared to small species, they are subjected to smaller
boundary forces and the rate of reactivity in the simulation is accordingly reduced. In
mechanistic studies with known starting materials and products, very long nanoreac-
tor simulations (i.e., >100 ps) are not strictly necessary, because promising reaction
intermediates may be identified and used to initiate new simulations.

The nanoreactor discovers a large number of new species and reaction pathways,
but the high-energy and nonequilibrium simulation conditions are not directly rele-
vant to most experiments. In order to obtain mechanistic insights that are transferable
to ambient conditions, a procedure is used to map the reaction events to minimum
energy paths. The two main steps of this procedure—trajectory analysis and energy
refinement—are described in the following two subsections.

Trajectory analysis and visualization. The cyclingof the spherical piston, followed
by the cooling of the Langevin thermostat gives rise to intermittent bursts of reactivity
that follow the inward stroke (i.e., when the sphere radius is switched to R2). Because
the molecules are free to react according to the topography of the potential energy
surface, a wide range of new compounds may be formed that depends on the initial
composition of the simulation. An important step in understanding the simulation
results is to visualize the simulation trajectory, but it is difficult to visually discern
changes in bonding and molecular structure in a high-energy simulation trajectory.
To facilitate the understanding of nanoreactor simulations, we developed analysis
and visualization tools to highlight new molecules that are formed in the simulation
trajectory.

The first step of trajectory analysis is the automatic perception of new molecular
species. Our analysis involves constructing a connectivity graph of each simulation
frame, where nodes and edges represent atoms and bonds, respectively. For each
frame, edges are drawn to connect atom pairs with distances below a threshold cal-
culated from covalent radii as rij < 1.4

(
ci + cj

)
. The factor of 1.4 accounts for the

temporary stretching of bonds beyond their equilibrium length. The connected sub-
graphs are then determined from the total graph using standard approaches; these are
the bonded molecules in a trajectory frame. The most interesting features of nanore-
actor simulations are the reactions that lead to new molecules. To detect interesting
reaction events and new products, the molecules in each trajectory frame are catego-
rized by comparing their connectivity graphs. The nodes are labeled by the atomic
symbol (element), and standard graph isomorphism procedures are used to determine
the chemical equivalence of molecular graphs. We implemented this procedure in
the Python programming language and used the networkx graph library.

One limitation of using purely distance-based criteria is that atom pairs that are
momentarily compressed by the piston to near-bonding distances—but do not expe-
rience any real chemical bonding—are still treated as “connected” by the trajectory
analysis. These transient nonbonding connections are only below the threshold for
a very short time and are filtered out in subsequent analysis steps described below.
Moreover, the graph isomorphism procedure only distinguishes between structural
isomers, but cannot distinguish between geometric isomers (cis/trans) or stereoiso-
mers; if the application requires distinguishing between more subtle isomerization
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Fig. 6.7 Visualization of a nanoreactor simulation trajectory containing a reaction event where an
O atom is transferred from an iron-containing complex (labeled as Fe above) to iminoacetaldehyde
(green) to afford 2-iminoacetic acid (blue, lower right). Molecules that differ from the starting
materials (H2O, NH3, H2, CH4, and CO) are highlighted using colored spheres

events, node-based properties such as chirality may be added to the graph isomor-
phism procedure.

With the graph-based analysis tool, new molecules may be highlighted in distinct
colorings as the trajectory is visualized (Fig. 6.7). This is done by writing out a
file that contains the connectivity and color data of each atom for each frame of the
trajectory; a script in the visualization program (VMD) then updates the colors as the
trajectory is played back. Because every chemically distinct species is highlighted
in a different color, we can readily see the different kinds of compounds that appear.
The analysis capability could be easily used to visually inspect other kinds of reactive
simulations, not just the nanoreactor.

The connectivity graph analysis is also the first step toward more detailed analy-
ses of the individual reaction events. Although the simulation is high-energy and
nonequilibrium, the concept of stable molecules is fairly well-defined as most
molecules remain intact between the periodic compressions of the piston potential. If
we define the following binary time series EA(t) as the existence of a molecular graph
A in the simulation at time t, the time-frame of the reaction event may be defined
as the interval [t* − �, t* + �]; t* is the time where EA(t) switches from “on” to
“off” or vice versa, i.e., EA(t*) �� EA(t* + δ), and � is a user-defined window size,
e.g., 100 frames. In other words, the interval [t* − �, t* + �] is a short length of
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the trajectory where molecule A appears or disappears. If the existence time series
flips several times in rapid succession, we expand the interval to [t*′ − �, t*′′ + �]
where t*′ < t* < t*′′ and no flips are observed in the pre-interval [t*′ − �, t*′] and
post-interval [t*′′, t*′′ + �].

Now that the reaction time interval has been identified, it remains to select the
atoms that participate in the reaction. This concept is intuitive because not all atoms
in the nanoreactor participate in each reaction event; selecting a subset of atoms also
enables higher levels of theory to be used than in the nanoreactor simulation itself.
Because atoms are conserved in the simulation, the disappearance of A simply means
that the nodes of A, denoted as SA, are now connected in a different way and some
other graphs have appeared. The new graphs containingmembers of SA that appear at
the samemoment thatAdisappears are denoted asB,C, etc. (the reactionmayproduce
more than one molecule). The atoms of the new graphs SB ∪ SC …may be a superset
of SA, which indicates thatA is not the only participating reactant molecule. The reac-
tant molecules are now expanded to all graphs that contain members of SB ∪ SC , and
the procedure is iterated back and forth until the reactant and product molecules con-
tain the same set of atoms. As more molecules are included in the reactants and prod-
ucts, the time interval [t*′ − �, t*′′ + �] may be further extended such that no flips
are observed in any of the existence time series for all species in the pre-interval and
post-interval. At the conclusion of this procedure, the final set of atoms Sfinal and the
time interval [t*′ −�, t*′′ +�], are extracted from the trajectory and saved to the disk.

The large-amplitude motions in the nanoreactor simulation can render the extrac-
tion of reaction events challenging, especially when the existence time series under-
goes many rapid flips over long times. This may occur, for example, if a proton
is transferred back and forth across a hydrogen bond. One possible solution is to
rectify the individual existence time series by applying filters to reduce the noise.
We employed a two-state hidden Markov model, which describes the “measured”
existence time series as a noisy observation of an underlying Markov process (MP).
The MP is described by an intrinsic transition (i.e., flipping) probability between the
“on” and “off” states, which we parameterize using a symmetric 2 × 2 matrix as(
1 − ε ε

ε 1 − ε

)
; here ε � 0.001, which roughly corresponds with our expected fre-

quency of reactions from the simulation (roughly once per 1000 frames). The output
probability measures the likelihood of the observed values given the current value of

theMP; this is also parameterized using a symmetric 2× 2matrix as

(
1 − p p
p 1 − p

)
,

where p describes how much the MP is likely to deviate from the observed values.
The initial probability of the Markov process is set to a uniform distribution (0.5,
0.5), and the Viterbi algorithm is used to compute the most likely sequence of states
of the MP; we use this output as the rectified version of the existence time series. An
advantage of this approach is that we gain significant control over the frequency of
flips in the time series, butwemaymiss important reaction events if the rectification is
too strong. Another drawback is that because rectification occurs separately for each
graph, the rectified existence time series no longer satisfy the conditions that (a) the
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nodes of concurrently existing graphs should be nonoverlapping and (b) the union of
all nodes in concurrently existing graphs should be equal to the set of all atoms in the
simulation. Improving the methods of treating the existence time series is currently
a topic we are actively investigating; one possibility is to use ab initio bond orders as
a criterion for determining connectivity, as this may produce molecular graphs that
are more stable over time.

The outputs of the trajectory analysis consist of small “extracts” of the nanoreactor
trajectory, each of which contains an individual reaction event. As described above,
each reaction event contains a subset of atoms Sfinal and the sequence of atomic coor-
dinates over the time interval [t*′ − �, t*′′ + �]. Detailed analysis of these reaction
events is essential for applying the high-energy and high-temperature nanoreactor
simulations to understand reactivity under milder (e.g., standard, 25 °C, 1 atm) con-
ditions. Because the atomic coordinates of the reaction event involve changes in
chemical bonding, it is intuitive to search for corresponding reactant and product
species that are minima on the potential energy surface, as well as a transition state
that connects them through a minimum energy path. A procedure that utilizes auto-
mated quantum chemistry calculations to convert the reaction events into minimum
energy paths is described in the following section, as well as Figs. 6.8 and 6.9.

Energy refinement of nanoreactor pathways. Many analyses of reaction rates begin
with knowledge of the minimum energy path, which connects the reactant, transi-
tion state, and product structures via the pathway of steepest descent. The reactant
and product are local minima on the potential energy surface whereas the transition
state is a saddle point with one imaginary frequency. By contrast, the reaction events
extracted from the nanoreactor trajectory contain large-amplitude displacements in
the orthogonal degrees of freedom. Thus, the analysis of energetics along the reac-
tion pathway should involve relaxing the orthogonal degrees of freedom to obtain a
minimum energy path.

The following procedure is used to obtain minimum energy paths from the
extracted reaction events:

(a) The structures along the path are energy minimized using a small interval (e.g.,
10 trajectory frames/MD steps; Fig. 6.8, top left).

(b) For each energy-minimized structure, a connectivity graph is created to deter-
mine the topology of molecules. A sequence of minimized structures with the
same connectivity is called a segment. Segments are ordered by their corre-
sponding trajectory frames.

(c) For every pair of segmentswith different topologies, an initial pathway is created
that joins the final frame of the earlier segment (the “reactant structure”) with
the first frame of the later segment (the “product structure”). The main goal is
to connect the reactant and product minima with a sequence of closely spaced,
essentially continuous structures (Figs. 6.8 and 6.9, top right).

(i) The sequence of frames resulting from energy minimization of the ini-
tial frame is reversed; thus, the first step is the energy-minimized reactant
structure, and the last step is on the pathway extracted from the nanoreactor
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Fig. 6.8 The stages of processing a nanoreactor pathway are illustrated for a toy example with a
two-dimensional potential energy surface.Upper left the high-energy nanoreactor trajectory (black)
passes through several low-energy regions corresponding to distinct chemical species; this trajectory
segment is first recognized as a reaction event by the trajectory analysis tool. Energy minimization
calculations at evenly spaced frames lead to the local energy minima. Upper right initial path-
ways are created by concatenating structures from energy minimization with trajectory frames to
provide continuous (but not smooth) pathways that connect the local minima. Lower left an internal-
coordinate smoothing procedure produces initial guesses for reaction path optimization. Lower right
application of standard reaction path optimization methods leads to the final results

MD trajectory. This step assumes that the energy minimization calcula-
tion takes sufficiently small steps, such that the sequence of optimization
steps is essentially continuous. Although not rigorous, this is often true in
practice.

(ii) The MD trajectory frames are concatenated to the result from (i), starting
with the final frame of the reactant segment and the first frame of the
product segment.

(iii) The sequence of frames resulting from energyminimization of the product
frame is concatenated to the result from (ii).
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Fig. 6.9 The stages of processing a nanoreactor pathway are shown for a representative example
reaction. The positions of five selected atoms are shown using lines over the whole pathway. The
inset shows the relative energy over the pathway, and the small panels show representative frames.
The reaction involves forming a C–C bond between CO (bottom) and formaldehyde. Dynamics:
the extracted subset of atoms and frames from the nanoreactor simulation trajectory containing
the detected reaction event. Initial pathway: the initial and final structures are energy-minimized;
the sequences of structures from energy minimization are joined with the MD trajectory to create a
continuous path joining the two energyminima. Internal smoothing: the high-frequencymotions are
removed from the initial pathway via a smoothing procedure in the primitive internal coordinates.
Minimum energy path: the final result obtained after traditional reaction path optimization, transition
state search, and intrinsic reaction coordinate calculations are carried out on the “internal smoothing”
pathway
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(iv) The result is a continuous, but not necessarily smooth sequence of struc-
tures connecting the energy-minimized reactant and product.

Segments need not be consecutive in order to be considered as a pathway, and
more than one pathway may be created with the same segment as the initial or
final point.

(d) The initial pathway is smoothed; this step is needed to ensure good behavior of
the reaction path optimizationmethods. This stepmay be carried out by smooth-
ing the primitive internal coordinates (i.e., distances, angles, anddihedral angles)
using a low-pass filter or window function, then fitting the Cartesian coordinates
to maximize agreement with the smoothed internal coordinates (which are not
exactly realizable due to redundancies). The resulting smoothed pathway does
not contain kinks or high-frequency motions of the initial pathway, but traces
out a qualitatively similar path through the configuration space (Figs. 6.8 and
6.9, bottom left).

(e) Reaction path optimization calculations are carried out starting from the
smoothed pathway (Figs. 6.8 and 6.9, bottom right).

(i) A small number of equally spaced frames (typically 11–21) is extracted
from the smoothed pathway as input to the path optimization.

(ii) The path optimization may be carried out using the string method, nudged
elastic band, or other methods within this class. The goal of these methods
is to generate an equally spaced chain of structureswhere the perpendicular
component of the gradient is zero. A transition state structure is estimated
as the highest-energy structure along the path. Some methods such as
climbing image NEB treat the highest-energy structure differently from
the others.

(iii) A transition state (TS) optimization is performed to precisely locate the
TS structure. This optimization calculation is difficult, and is facilitated
by having a good TS estimate from (ii). A calculation of the Hessian
may be provided to further ensure convergence. After TS optimization, a
second Hessian calculation may be performed to verify the existence of
one imaginary mode.

(iv) An intrinsic reaction coordinate (IRC) calculation proceeds from the TS
structure in the forward and backward directions of the imaginary mode;
this is a steepest descent energy minimization that connects the TS back
to the reactant and product. The IRC is the same as the minimum energy
path connecting the reactant and product.
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Fig. 6.10 Several reaction pathways leading to glycine (bottom middle) that were discovered in
the nanoreactor simulations. The reaction energies and activation energies were obtained following
energy refinement of the reaction events, which was carried out at the B3LYP/6-31 + G(d, p) level
of theory

The calculations described above are carried out automatically using a software
package written in Python that executes the workflow automatically by calling exter-
nal quantum chemistry codes. The individual calculations, such as geometry opti-
mization, TS optimization, and IRC calculation are included as standard features in
several quantum chemistry packages such as Gaussian, GAMESS, NWChem, and
Q-Chem.

As an example application, a series of nanoreactor simulations were carried out on
a collection of molecules inspired by the famous Urey-Miller experiment (14 H2O,
14 CH4, 14 NH3, 14 CO, 16 H2) comprising over 1200 ps of total simulation time,
with some individual trajectories over 400 ps in length. The aggregate simulation
data contained over 700 reaction pathways and more than 600 distinct products,
and included the “discovery” of simple amino acids such as glycine and alanine. In
particular, one of the pathways found by the nanoreactor is a previously unreported
mechanism for glycine synthesis (Fig. 6.10) that has inspired further theoretical
mechanistic studies [61, 63].

To summarize the above, the input to the energy refinement procedure is a reaction
event extracted from the nanoreactor trajectory, and the result is one or more intrinsic
reaction coordinates (IRC), or minimum energy paths (MEP) that corresponds to
elementary reaction steps at 0 K. The MEP connects well-defined critical points on
the molecular potential energy surface, and is a useful input to kinetic models for
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estimating the rate constants of elementary steps, such as variational transition state
theory [6]. Thus, the high-energy reaction events in the nanoreactor can be used to
produce elementary reaction steps with quantifiable rates at various experimental
conditions.

6.3 Conclusions

Force fields and the nanoreactor are two complementary approaches for understand-
ing reactivity in the condensed phase and/or under extreme conditions, which are
some of the most interesting and challenging problems in the chemical sciences.
Force fields comprise a broad class of empirical models of the molecular poten-
tial energy surface, and include functional forms that assume fixed chemical bond-
ing topologies as well as reactive force fields that can form and break bonds. The
nanoreactor, on the other hand, is a new simulation method that augments ab initio
molecular dynamics with time-varying external potential to cause a large number
of reaction events in a short time, followed by a detailed trajectory analysis and
energy refinement procedure that produces minimum energy paths corresponding to
the discovered reaction events.

At the intersection of these complementary methods is a modern research field
full of possibilities, including the development and improvement of reactive force
fields using reaction pathways from the nanoreactor, harnessing semiempirical meth-
ods for nanoreactor simulations to discover new mechanisms, and new methods for
the detection and analysis of reaction events in simulation trajectories. These devel-
opments will help theory and computation to become a more predictive partner of
experiment in unraveling complex and elusive reaction pathways.
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Chapter 7
Application of ReaxFF-Reactive
Molecular Dynamics and Continuum
Methods in High-Temperature/Pressure
Pyrolysis of Fuel Mixtures

Chowdhury Ashraf, Sharmin Shabnam, Yuan Xuan and Adri C. T. van Duin

Abstract Rocket engines, gas turbines, HCCI engines, and other such combustion
devices frequently exceed the critical pressure of the fuel or the oxidizer.Modeling of
combustion processes at high-pressure operating condition is required to determine
the reaction rates based onwhich chemical kinetic models are developed. The current
need is to focus on the transfer from low pressure to high-pressure conditions as this
can have a significant effect on the chemistry as well as the reaction rates. The
ReaxFF reactive force field method is a computationally feasible method used to
study the combustion kinetics of fuels and fuel mixtures at supercritical condition. In
this chapter, ReaxFF-MD is used to investigate the effect of a highly reactive fuel on
the properties of a less reactive fuel at different levels of concentration, temperature,
and density/pressure. The activation energies, based on Arrhenius-type rate laws, are
compared with those from Continuum simulations and the limitations of the latter
has been elaborated on. The study reveals a pressure/temperature regime and mixing
conditions, where simple first-order kinetics-based Arrhenius-type relations cannot
be applied. The reason can be attributed to different initial reaction mechanisms
and product distributions of the two fuels considered. These results indicate how
ReaxFF-based molecular dynamics simulations can provide significant atomistic
insights on the combustion properties of fuel mixtures at supercritical conditions,
where experiments are difficult to perform.

Keywords Pyrolysis · Arrhenius parameters · Fuel mixture · Toluene ·
n-Dodecane
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7.1 Introduction

Many combustion devices such as rocket, gas turbines, diesel, and HCCI engines
achieve an operating pressure, which is much higher than the critical pressure of
either the fuel or the oxidizer. For example, rocket engines using H2 as fuel can
achieve a pressure excess of 100 atm [1], while the critical pressure of the fuel
(H2) and oxidizer (O2) is 13 atm and 50 atm, respectively [2]. Similarly, pressure
inside the combustion chamber of diesel engine increases from ~25 atm during
injection to 60 atm [3, 4] after ignition, which is beyond the critical pressure of
any of the components of diesel fuels. The physical and the chemical mechanisms of
combustion at this pressure/temperature condition is drastically different than its low-
pressure counterpart, sincemolecules are densely packed andmay experience van der
Waals interactions and caging effects under high pressure [5]. Therefore, a detailed
understanding of this complex process is important for the further development of
these devices.

When a fuel is sprayed into the combustion chamber, it mixes with a stream of
high-pressure fluid, which is primarily the oxidizer. This molecular mixing process
has a great influence on autoignition and is a strong precursor of combustion. Addi-
tionally, during combustion, the heavier fuel species first undergo chemical decom-
position, i.e., pyrolysis and then oxidation. Due to the nonuniform nature of the
combustion (both pyrolysis and oxidation) reactions, highly active and fast moving
radicals are generated in one location and mix with fuel and oxidizer at a differ-
ent location inside the combustion chamber and significantly alter the combustion
dynamics. Thus, this turbulent mixing of multiple chemical species under high pres-
sure conditions has been an active area of research for the combustion community.
However, despite this great interest, the experimental studies [6–12] are limited to
only single or binary speciesmixing instead ofmulticomponentmixing.Additionally,
most studies are based on qualitative visualization with rare quantitative analysis due
to the difficulties of performing experiments at supercritical conditions, and therefore
cannot be used to validate the proposed kinetic models at high-pressure conditions.
Furthermore, these studies except a few [6, 13, 14] have used simple species like
N2, H2, and O2 in their turbulent mixing study, which require very simple chemical
kinetic models, whereas the real fuels used inside combustion chambers are rather
complex ones.

Since the experiments fail to provide sufficient information regarding the complex
physical (diffusion, turbulence) and chemical (reaction) coupling of turbulent mix-
ing, computational fluid dynamics (CFD) simulations have emerged as a potential
solution to study most of the physical aspects of these problems. Among different
CFD techniques available, direct numerical simulation (DNS) has proved to be a
powerful tool of combustion and turbulence research [15], since it can resolve any
length and timescales of the flow using high order accurate methods. Masi et al. [16]
have developed a DNS model to describe the multi- species high-pressure turbu-
lence mixing. Combining this model with the rate of single-step chemical reaction
consistent with ignition prediction [17], Jossette Bellan from Jet Propulsion Lab
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(JPL) has recently studied both the diffusion [18] and turbulent reaction rate [19]
of high pressure mixing. Additionally, Gnanaskandan et al. [5] studied the length of
the potential core of round fluid jet entering high-pressure chamber using both DNS
and large eddy simulations (LES) methods, and Foster et al. [20] studied the effect
of Soret and Dufor cross diffusions in turbulent mixing. The pressure considered in
these studies typically ranges from 60 to 100 atm.

All the CFD studies mentioned above mainly focused on the physical aspects
of turbulent chemistry; their chemical model was fairly simplistic. For example,
Bellan and coworkers [16, 18, 19] only considered single-step chemical reaction for
n-heptane oxidation, while Foster et al. [20] considered very simple 7-step 10 species
reduced mechanism for a similar problem. However, as mentioned above, a highly
coupled relation between chemical and physical properties governs the turbulent
mixing phenomenon, which cannot be fully captured by the simple chemical kinetic
model.

Chemical kineticsmodels for various hydrocarbons arewell documented in the lit-
erature [21]. However, thesemodels are only developed for low-pressure/temperature
condition. Additionally, these models were developed only considering temperature
dependence on the reaction rates via simple Arrhenius-type rate laws, while neglect-
ing pressure dependence on combustion pathways; which can significantly alter the
chemical properties at high pressure. As experiments are difficult to be conducted at
supercritical pressure and temperature, we need a computationally feasible method,
which can simulate complex combustion reactionswithout requiring any user input of
possible reactions; so that the complete reaction network can be captured. Quantum
mechanical (QM)-based ab initio methods are the best choice for accurately pre-
dicting the reactions for such systems, however, they have serious system size and
simulation time limitation [22]. Since these methods solve the Schrodinger equa-
tion to estimate reaction energies and barriers, they can only be applied to small
systems typically containing a couple of hundred of atoms for a shorter time scale
[22]. Recently, ReaxFF reactive force field method [23] has proven to be a useful
alternative of QM-based methods for combustion chemistry simulations [24–31] as
it can simulate larger systems for a longer time scale.

The focus of this book chapter is to demonstrate how the ReaxFF reactive force
field method can be used as a valuable tool to study combustion kinetics of fuels
and fuel mixtures at supercritical condition. The chapter is organized as follows: in
Sect. 7.2, we will introduce the ReaxFF method itself while mentioning some of its
previous applications in combustion study. In Sect. 7.3, we will elaborate on our sys-
tems and simulation setup. Next, some observations on combustions kinetics based
on our simulations will be made in Sect. 7.4; and results obtained from ReaxFF sim-
ulations will be compared with continuum simulations. Lastly, we will provide some
concluding remarks mentioning the pros and cons of ReaxFF simulation for study-
ing similar problems and challenges and opportunities regarding the development
of a multiscale ReaxFF/continuum simulation capability for high-temperature/high-
density pyrolysis and combustion simulations.
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7.2 ReaxFF Background

Since force field based methods are computationally inexpensive and can provide a
reasonable agreementwith quantummechanical simulations, they are nowbeing used
extensively to get an atomistic insight of complex physical and chemical problems.
While potentials such as DREIDING [32], MM [3, 33–35], MM [4, 36] COMPASS
[37], etc., have been used to perform atomistic scale simulations of hydrocarbon
fuels, mostly to study their thermodynamic properties, due to their rigid connectivity
requirement they cannot be used to simulate chemical reactions. However, potentials
such as first-[38] and second-generation [39] reactive empirical bond order (REBO),
charge-optimized many-body (COMB) potential [40, 41], modified embedded atom
method (MEAM) [42] and reactive force field (ReaxFF) [23] can dynamically sim-
ulate bond formation and bond breaking and capture chemical reactions. In this
chapter, we will keep our discussion limited to the ReaxFF method and its applica-
tion to high-pressure combustion.

ReaxFF adopts the concept of bond order introduced by Tersoff [43] and Brenner
[38] and calculates the bond order of every pair of atoms as a function of their
interatomic distances. Based on a certain cutoff value, ReaxFF finds the connectivity
between atoms at each step, which enables ReaxFF to simulate dynamic bond break-
ing and bond formation during simulation. All the connectivity-dependent terms like
bond, angle, and torsion energies are calculated based on bond order, thus nonbonded
atom pairs do not contribute to these partial energies. Long-range interactions like
van der Waals and Coulomb are not connectivity dependent and calculated between
every pair of atoms, any excessive short-range nonbonded interactions are avoided
by including a shielding term. ReaxFF calculates atomic charges using a geometry-
dependent charge calculation scheme and uses electronegativity equalizationmethod
(EEM) [44] for this purpose. Additionally, for long-range interactions ReaxFF uses
a cutoff distance (which is typically set to 10 Å) to reduce the computational
cost. To eliminate any energy discontinuity and reduce the range of the Coulomb
interactions, a seventh-order Taper function is employed [23]. Equation (7.1) shows
the different energy components of ReaxFF total energy, while Fig. 7.1 demonstrates
the complicated internal scheme of ReaxFF. A more detailed description of the
ReaxFF energy terms can be found in the previous literature [23, 24].

Esystem � Ebound + Eover + Eunder + Elp + Eval + Etor + EvdWaals + Ecoulomb (7.1)

where Ebond, Eover, Eunder, Elp, Eval, Etor, EvdWaals, Ecoulomb represent bond energy,
over-coordination energy penalty, under-coordination stability, lone pair energy,
valence angle energy, torsion angle energy, van der Waals energy, and coulomb
energy, respectively.

ReaxFF force field parameters are trained against QM-calculations in describ-
ing energies and barriers for chemical reactions while solving Newton’s equation
of motion to generate a dynamic description of complex reactive systems. Thus,
ReaxFF-based molecular dynamics (MD) simulations are a number of magnitudes
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Fig. 7.1 Internal scheme of ReaxFF

faster than QM-based simulations while approaching the accuracy of those meth-
ods. Additionally, the inclusion of polarizable charge description and bond-order-
dependent 3- and 4-body terms in ReaxFF makes it uniquely applicable for both
metallic and covalent systems. Thus, ReaxFF has now become a great computa-
tional tool to studymany reactive systems; at the same time, it has enabled researchers
throughout the world to investigate previously inaccessible computational chemistry
problems. Apart from studying combustion problems, ReaxFF method has been
extensively used to investigate a wide range of applications in materials [45–50]
catalysts [51, 52], and other chemical systems [53–57].

Combustion, being a complex reactive system, requires an atomistic-level under-
standing of the intricate details regarding the underlying reactions and species to
facilitate better engine and fuel design. To this end, the first ReaxFF combustion
force field (CHO-2008) was developed by Chenoweth et al. [24] in 2008. Since then,
it has been implemented in a wide range of applications in scientific community
for studying pyrolysis and oxidation of variety of fuels, for example, JP-10 [25] n-
dodecane [58], 1-heptane [30], n-octanol [29], toluene [59], Illinois no. 6 coal [26],
1,6-dicyclopropane-2,4-hexyne [60] and liginin [61], and many more. The recent
development of GPU-enabled ReaxFF [62] has made it suitable to simulate large
complex systems like coal [63] and lignin [64] pyrolysis. Apart from the hydrocar-
bon fuel, this description has also been used to investigate a wide range of aspects
related to carbon-basedmaterials including the oxidation of graphene [65], structural
and chemical properties of graphene oxide [66], chemomechanics of crack propaga-
tion in graphene [67] and dynamics of carbon nano-onion formation [68]. For a more
detailed review of this force field, we refer to the recent paper by Dontgen et al. [31].

Though ReaxFF CHO-2008 description was very good in describing the initial
pyrolysis and oxidation of large hydrocarbons, where the initial combustion process
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is mainly dominated by the pyrolysis process, it failed to describe the chemistry
of smaller hydrocarbon properly [28]. Additionally, CHO-2008 parameter set was
not transferable to study mechanical properties of condensed phase carbons [69].
Furthermore, the O2 in CHO-2008 description is highly reactive, which can abstract
H from hydrocarbon chain at a faster-than-expected rate. This might send us a false
alarm of system initiation during the simulation. Srinivasan et al. [69] derived an
improved set of ReaxFF carbon parameters for describing carbon-condensed phases
and taking those parameters on board, Ashraf et al. [28] have recently published an
extended version of ReaxFF combustion force field (CHO-2016), which addresses
the limitations of CHO-2008 description while retaining the overall quality of CHO-
2008 description for larger hydrocarbon combustion. Thus, a single force field can
now be used to study not only both the condensed and the gas phase carbon, but
also the combustion of any hydrocarbon irrespective of fuel size or structure. This
ensures a greater transferability ofReaxFF force field to study any combustion related
problems.

Chemical reactions occurring in combustion are considered ‘rare events’ in MD
simulations as not every collision betweenmolecules lead to a reaction. Additionally,
reactiveMD simulations are expensive as it needs to calculate the bond order at every
time step, thus the simulations are limited to only a couple of nano-seconds or less,
whereas the timescales associated with combustion reactions at experimental condi-
tions are micro-second-level phenomenon.MD simulations are thus typically carried
out at high temperatures and pressures to accelerate the system dynamics and cap-
ture the appropriate chemical reactions. Therefore, ReaxFF-based MD simulations
are suitable for studying the complex chemistry at high-pressure condition although
sometimes the pressure in ReaxFF simulation may exceed the highest possible pres-
sure that a rocket engine can survive.However, despite this shortcoming, it is arguably
the most appropriate currently available method to study the high-pressure combus-
tion chemistry. Almost all of the ReaxFF combustion studies mentioned above were
performed at very high pressure to study the kinetics of different fuels. Addition-
ally, Ashraf et al. [27] have recently demonstrated that ReaxFF-MD simulations can
also be used to study dynamic properties like ignition front speed at supercritical
conditions.

In this chapter, we will demonstrate how we can use ReaxFF-MD simulations
to calculate Arrhenius parameters for different hydrocarbons at very high pressure
and temperature condition. Since the hydrocarbons do not typically exist in a single-
component form, we will also investigate how the blending of a highly reactive
hydrocarbon with a less reactive one alters the combustion properties of the mixture.
This enabled us to identify pressure/temperature and mixing conditions, where the
simple first-order kinetics and Arrhenius-type relation fails to prevail, indicating
that more complex relationship is required to calculate mixture activation energies.
Since experiments are difficult to conduct and measurements are hard to perform
at very high pressure/temperature condition, these information from ReaxFF-MD
simulationwill certainly openup the possibility to study themixing effects ofmultiple
hydrocarbons at supercritical condition.
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7.3 Simulation Details

Since typical transportation fuels used for combustion are highly complex mixture
of various hydrocarbons, for modeling purpose, Kim et al. [70] developed two dif-
ferent surrogates for diesel so that various physical and chemical processes inside
of a diesel engine can be replicated. The surrogate fuels are either a mixture of
n-dodecane/iso-cetane/methylcyclohexane/toluene or a mixture of n-dodecane/iso-
cetane/decalin/toluene, where n-dodecane is the most reactive one and toluene is the
least. As such, for our study, we decided to investigate the effect of n-dodecane addi-
tion on toluene pyrolysis using the reactive molecular dynamics (RMD) simulations.
We also used two different densities for the overall system, to investigate the effect
of density/pressure on the pyrolysis of the mixtures. All of the MD simulations in
this section were performed employing the ReaxFF method with a constant num-
ber of atoms (N) in a constant volume (V) while keeping the temperature constant
(T) using a thermostat, as described by the NVT-MD ensemble. Also, we used the
recently developed combustion force field by Ashraf et al. [28] in this study.

7.3.1 Single-Component System

First, to determine the applicability of the force field, toluene and n-dodecane
pyrolysis have been investigated independently using homogeneous system. We
placed 40 toluene molecules in two cubic periodic unit boxes of dimension 31.20
Å × 31.20 Å × 31.20 Å and 25.00 Å × 25.00 Å × 25.00 Å, where the overall
system densities are 0.2 kg/dm3 and 0.4 kg/dm3 respectively. Similarly, in case
of n-dodecane, we placed 40 molecules in cubic boxes of dimension 38.39 Å ×
38.39 Å × 38.39 Å and 30.47 Å × 30.47 Å × 30.47 Å, respectively, to generate
systems of similar densities like toluene. Next, each system is energy minimized
and equilibrated using NVT simulation for 10 ps at a temperature of 1500 K. Test
cases has been run beforehand to ensure that no thermal decomposition occurs at
this temperature for both toluene and n-dodecane. After equilibration, 10 different
initial configurations of the system were selected to perform a series of NVT-MD
simulations. For each case, the system temperature was varied from 2000 to 2600 K
at 100 K interval. The average initial pressure of the system for the first 5 ps of the
NVT-MD simulations was in the range of 26–75 MPa. Although the use of such
high temperatures and pressures is rarely seen in experiments, this is essential in
MD simulations to keep the computational time within a reasonable scope. The high
temperature and subsequent high pressure results in a larger number of collisions in
the system and thereby reduces the reaction time (Fig. 7.2).

During all of the simulations, the time step has been kept as 0.1 fs, which is
appropriate for describing hydrocarbon reaction mechanism at high temperatures
[24]. Since n-dodecane is highly reactive, a simulation time of 50 ps was enough
to calculate the Arrhenius parameters. On the other hand, the toluene simulations
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Fig. 7.2 Snapshots of representative single-component system of equilibrated a toluene, and b n-
dodecane with density of 0.2 kg/dm3. The carbon and hydrogen atoms are displayed in cyan and
white, respectively

were run for 200 ps due to the less reactive nature of toluene. The results from the
simulations with 10 different starting configurations were then averaged to obtain
the reactant decomposition and overall product distribution. This information is then
used to get the Arrhenius parameters for individual components.

7.3.2 n-Dodecane and Toluene Mixture (Multicomponent
System)

Once we validated the quality of the force field against the single-component system,
we moved on to explore the effect of n-dodecane presence to the pyrolysis of toluene
at high-pressure/temperature condition which is the main focus of this chapter. To
do this, we performed a series of NVT-MD simulations of toluene and n-dodecane
mixtures, where these two hydrocarbons are introduced in different ratios. Table 7.1
represents a summary of all the input configurations for these systems.

All of the systems studied were equilibrated using NVT-MD after placement
of the molecules at a temperature of 1500 K for 10 ps. Then, 10 different initial
configurations of the molecules were generated and a series of NVT-MD simulation
at temperatures 2000, 2100, 2200, 2300, 2400, 2500, 2600 K were carried out for all
of them. The total simulation time was 200 ps with the time step being 0.1 fs. We
repeated all the simulations changing the system density to 0.4 kg/dm3 to study and
compare the effect of a higher density/pressure of the system.

For all the simulations, whether single-component or multicomponent, the fol-
lowing parameters were the same. To keep the system temperature constant, the
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Table 7.1 Initial configurations of different n-dodecane and toluene mixtures

n-Dodecane:
Toluene

% of
n-dodecane in
the mixture

Density
(kg/dm3)

Temperature range
(interval)

Box dimension

1:40 2.44 0.2 2000 K–2600 K
(100 K)

31.75 Å × 31.75
Å × 31.75 Å

5:40 11.11 0.2 2000 K–2600 K
(100 K)

33.52 Å × 33.52
Å × 33.52 Å

10:40 20.00 0.2 2000 K–2600 K
(100 K)

35.50 Å × 35.50
Å × 35.50 Å

20:40 33.33 0.2 2000 K–2600 K
(100 K)

38.91 Å × 38.91
Å × 38.91 Å

40:40 50.00 0.2 2000 K–2600 K
(100 K)

44.34 Å × 44.34
Å × 44.34 Å

temperature was controlled by the Berendsen thermostat using a temperature damp-
ing constant of 100.0 fs. For molecular recognition, we used a bond-order cut off
of 0.3. The choice of bond-order cutoff does not alter the simulation pathway, but
it is only used to identify the intermediates and products formed during the MD
simulations.

7.3.3 Continuum Simulations

In addition to the ReaxFF-based simulations described above, zero-dimensional
(time-evolving), continuum-scale pyrolysis simulations of the same series of test
cases (see Table 7.1) are performed. The intent is to highlight the deficiency of
Arrhenius-type chemical kinetics in predicting chemical evolutions (e.g., pyrolysis)
under high-pressure high temperature conditions, by comparing the results obtained
from both approaches. For this purpose, the initial temperatures, density, and mole
fractions of n-dodecane and toluene in these continuum simulations are set to be the
same as those used in the molecular dynamics simulations as described in Table 7.1,
and these simulations are performed with constant volume and constant temperature
to best duplicate the same running conditions as for the ReaxFF simulations. In these
simulations, a cubic equation of state is used to account for real gas effects [71], and
a widely used chemical kinetic mechanism [27] with Arrhenius-type rate coefficients
is used. This chemical mechanism contains 179 species and 1895 chemical reactions
(forward and backward reactions counted separately), and it has been extensively
validated for jet fuel surrogate components under lower pressure and temperature
ranges (up to 40 bars and 1250 K) [72].
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7.4 Results and Discussion

7.4.1 Kinetic Analysis of Toluene and n-Dodecane Pyrolysis
as Single-Component System

For single-component systems of toluene and n-dodecane, first-order kinetics has
been used to study the thermal decomposition. We used the consumption rate from
theReaxFF-MDsimulations in this analysis and the number of reactantmolecules has
been chosen to represent the reactant concentration. From the NVT-MD simulations
at different temperatures, the decomposition of toluene and n-dodecane has been
found to change as a function of time and temperature. Using this information, we
used integrated first-order rate law to determine the rate constant at each temperature:

ln(N0)−ln(Nt ) � kt (7.2)

where N0 is the number of molecules initially in the system and Nt is the number of
molecules at any time t. At each temperature, the quantity ln(N0) − ln(Nt) has been
plotted against time and the rate constant has been determined from the slope of the
linear fitting of the plot. We used these rate constants from different temperatures in
the Arrhenius plot of toluene and n-dodecane as shown in Fig. 7.3. The activation
energy (Ea) and the pre-exponential factor (A) were calculated with the help of a
linear fit of the plot and the Arrhenius equation described as

k � A exp(−Ea/RT) (7.3)

Next, we compared the values of Arrhenius parameters obtained from ReaxFF-
MD simulations with their experimental counterparts, which are listed in Table 7.2.

Fig. 7.3 Arrhenius plot for calculated and fitted rate constants of a toluene, b n-dodecane as single-
component systems with density ρ � 0.2 and 0.4 kg/dm3
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Table 7.2 Fitted Arrhenius equation and parameters for n-dodecane and toluene

Molecule ReaxFF Experiment [73, 74]

Density
(kg/dm3)

Ea
(kcal/mol)

A (1/s) Ea
(kcal/mol)

A (1/s)

Toluene 0.2 95.71 28.3 × 1016 88.9–97.0 0.28 −1 ×
10160.4 89.90 11.59 × 1016

n-Dodecane 0.2 60.94 0.95 × 1016 61.32 0.12 × 1016

0.4 63.11 1.53 × 1016

It is important to note that, the experimental values are obtained at a much lower
pressure and temperature condition than ReaxFF simulations. For example, Colket
et al. [73] investigated the pyrolysis of toluene at a temperature range of 1200–1850K
with a total pressure of approximately 1 MPa. According to them, the formation of
benzyl radical is the most dominant reaction pathway, which is also accompanied by
the pathway that leads to phenyl radical formation. The activation energiesmentioned
in Table 7.2 are for these two key reaction pathways.

Liu et al. [74] investigated the supercritical thermal cracking of n-dodecane at
a temperature range 700–800 K and pressure of 3–4 MPa. For both toluene and
n-dodecane, the results obtained in this work shows good agreement with those
obtained from the experiments. Wang et al. [58] investigated the pyrolysis of n-
dodecane using ReaxFF-MD simulations and the force field parameters developed
by Chenoweth et al. [24] using a temperature range of 2100–3000 K. The activation
energies of n-dodecane derived in the study were 63.68 and 66.14 kcal/mol for
densities ρ � 0.17 and 0.33 kg/dm3. The activation energy of n-dodecane derived in
thiswork using the recently developed force field byAshraf et al. [28] showed a better
agreement with the experimental results than those derived byWang et al. [58] using
Chenoweth et al. [24] force field. Though in our simulations pressure and temperature
are much higher than their experimental counterparts, the reasonable agreement with
experimental values indicates that the simple Arrhenius type relation holds good for
single-component system, even at a very high pressure and temperature.

Figure 7.4 shows the evolution of toluene and dodecane molecules as a function
of time for both of the densities 0.2 and 0.4 kg/dm3. At temperatures 2000, 2100,
and 2200 K, the number of toluene decomposed was very low, so the simulation
results are not used in calculations of the Arrhenius parameters since these would
include a significant statistical uncertainty. The figures indicate the reactivity of n-
dodecane as opposed to that of toluene. We observed that at 2000 K, n-dodecane
began to decompose within 5 ps of the simulation time; at temperatures higher than
2000 K the decomposition began in less than 5 ps. While in the case of toluene,
at temperatures 2300, 2400, and 2500 K, the decomposition does not begin before
20 ps. Only at a high temperature of 2600 K, toluene starts to decompose within 5 ps
of the simulation time. The trend of decomposition initiation is observed in both 0.2
and 0.4 kg/dm3 density cases.
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Fig. 7.4 Time evolution of the number of toluene molecules in single-component systems with
density a ρ � 0.2 kg/dm3 and b 0.4 kg/dm3, and n-dodecane molecules in single-component
systems with density c ρ � 0.2 kg/dm3 and d 0.4 kg/dm3

As mentioned above, experimentally, the initiation mechanism for toluene pyrol-
ysis is dominated by decomposition of toluene into benzyl (C7H7) and hydrogen
atom with activation energy 88.9 kcal/mol [71]. The hydrogen atom generated from
this toluene decomposition reacts with another toluene molecule to produce another
benzyl radical and hydrogen molecule. Another reaction pathway is the formation of
phenyl (C6H5) and methyl radical (CH3). A similar initiation mechanism is observed
in ReaxFF simulations shown in Scheme 7.1a. Figure 7.5a demonstrates the distri-
bution of toluene and its major decomposition species at 2600 K. The decomposition
of toluene starting after 10 ps is on the rise accompanied by a gradual rise of both
benzyl and hydrogen molecule.

The pyrolysis of n-dodecane is dominated by radical production in ReaxFF as
shown in Fig. 7.5b. This is in agreementwith experiment [75]. The initiation reactions
principally involve C–C bond fission to produce two alkyl radicals as shown in
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Scheme 7.1 Initiation reaction mechanism and their relative percentages occurred in a toluene,
b n-dodecane pyrolysis in a single-component system revealed by ReaxFF–MD simulations at
2600 K

Fig. 7.5 Time evolution of the major species generated in the pyrolysis of a toluene, b n-dodecane
in single-component systems with density ρ � 0.2 kg/dm3 and temperature T � 2600 K

Scheme7.1b.On rare occasion,weobserve abstraction of hydrogen fromn-dodecane.
As the simulation proceeds, larger alkyl radicals undergo further decomposition,
which increases the number of smaller radicals such as CH3, C2H5, C3H7 and creates
hydrogen molecules and stable double-bond-containing molecules like C2H4 and
C3H6.
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7.4.2 Pyrolysis of Toluene and n-Dodecane
as Multicomponent System

7.4.2.1 Kinetic Analysis

To investigate the change in activation energy of a less reactive fuel component due
to the presence of a more reactive molecule, we analyzed a multicomponent system
of n-dodecane and toluene using ReaxFF NVT-MD simulations. The rate constants
associated with the decomposition of toluene in the mixture are determined using
the first-order kinetics and the number of toluene molecules in (7.3). We derived the
Arrhenius parameters in (7.3) from the fitted plot of these rate constants at various
temperatures.

Figure 7.6 shows the activation energies (Ea) of toluene in the mixtures as a func-
tion of the percentage of n-dodecane introduced in the mixture for both ReaxFF-
MD and continuum simulations. The zero-percentage result indicates the pyrolysis
of toluene as a single component. As the percentage of n-dodecane increases, the
activation energy of toluene decreases rapidly. According to ReaxFF-MD results,
the presence of a single n-dodecane molecule during the thermal decomposition of
toluene reduces the activation energy from 95.69 to 81.68 kcal/mol (14.64% reduc-
tion). If n-dodecane molecule number is increased to 5, the activation energy reduces
further to 66.78 kcal/mol.When the percentage of n-dodecane is 33.33 in the mixture
(n-dodecane and toluene ratio 20:40) we see that the activation energy of toluene
(52.98 kcal/mol) even drops below that of single-component n-dodecane pyrolysis
(52.98kcal/mol)with the samedensity. The results fromcontinuumsimulations show
similar behavior. Both set of results show good qualitative agreement in predicting
the mixture activation energy, when the n-dodecane concentration is low (less than
20%). This suggests the capability of ReaxFF-MD to predict the activation energy of
toluene within this mixing ratio. However, the results show larger deviations when
n-dodecane concentration is higher than 20%. Unlike ReaxFF-MD, the activation
energy of toluene from continuum simulation in all of the mixtures remains higher
than n-dodecane only system. This indicates that with the presence of higher amount
of n-dodecane, the first-order kinetics-based Arrhenius method fails to predict the
mixture activation energy with sufficient accuracy.

7.4.2.2 Effect of Toluene Presence on the Pyrolysis of n-Dodecane

Before investigating what is causing the dramatic decrease of activation energy of
toluene at the presence of n-dodecane, we want to check if the presence of toluene
also affects the activation energy of n-dodecane. To get an overview, here we have
compared the single-component system of n-dodecane and the mixture of 40 toluene
and 40 n-dodecane molecules. The rate constants were determined in this case using
(7.3) and the time evolution of only n-dodecane molecules in the mixture. We calcu-
lated the activation energy similarly using (7.3) and the linear fitting ofArrhenius plot
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Fig. 7.6 Activation energies
of toluene at various
compositions of n-dodecane
and toluene mixture from
ReaxFF-MD simulations and
Continuum simulations. The
green and blue dashed line
represents the activation
energy of n-dodecane
calculated by ReaxFF and
Continuum simulations,
respectively

of rate constants at different temperatures. The value of activation energy is found to
be 58.56 kcal/mol, which is very close to the activation energy 60.94 kcal/mol found
in Sect. 7.4.1. Since the activation energy of n-dodecane in the mixture is close to
that obtained from individual n-dodecane system, we can conclude the pyrolysis of
n-dodecane is mostly independent of the presence of toluene.

Figure 7.7 shows the time evolution of n-dodecane molecules in both single-
component system and a 40:40 mixture of toluene and n-dodecane at 2300 K and
at 2600 K. The time-dependent number of n-dodecane molecules in the system
is averaged from 10 different NVT-MD simulations of the same system but with
different initial configurations. The simulation time of n-dodecane in extended to
100 ps to get a better comparison of n-dodecane decomposition. The figures indicate
that there is no significant change in the pyrolysis of n-dodecane even though the
two systems are different. We can conclude from these results that the initiation
mechanism of n-dodecane pyrolysis is mostly independent and is not affected by the
presence of a less reactive fuel like toluene.

7.4.2.3 Effect of n-Dodecane Presence on the Pyrolysis of Toluene

Although the pyrolysis of n-dodecane is mostly unaffected by the presence of toluene
in the mixture, this is not the case for toluene itself. Figure 7.8 shows the number
of toluene molecules decomposed in the single-component system and the mixtures
with different concentrations of n-dodecane for a total simulation time of 200 ps.

A preliminary analysis of the product distribution observed during the decom-
position of toluene at temperatures from 2000 to 2600 K shows that as the number
of n-dodecane in increased in the mixture, the number of toluene decomposed also
increases, even as the number of toluene molecules introduced initially is constant
(40). This indicates the existence of several simultaneous processes during the ther-
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Fig. 7.7 Time evolution the numbers of n-dodecane molecules at temperatures a T � 2300 K and
b T � 2600 K

mal decomposition of toluene. At low temperatures, since the decomposition of
toluene in single-component system is very low, the role of n-dodecane plays a much
more significant role in further decomposition of toluene.

The Arrhenius plots for the pyrolysis simulations of toluene and n-dodecane mix-
tures with increasing concentration of n-dodecane is shown in Fig. 7.9. According to
this, at high temperature (2500, 2600 K) the rate constant has been mostly unaffected
by the inclusion of n-dodecane in the mixture. However, at low temperatures (2000,
2100, 2200, 2300, 2400 K) the rate constants gradually increase with increasing
number of n-dodecane in the mixture. The result is an overall upward shift of the
Arrhenius plot at lower temperatures. Additionally, with the increase of n-dodecane
molecules in the system, lower temperatures become accessible to calculate the rate
constants. For example, in toluene-only case, enough toluene was not decomposed
to calculate a rate constant at 2200 K, however, with the presence of n-dodecane,
we were able to calculate rate constant even at 2000 K. Thus, the decrease in the
slope of the plot which gives the value of—Ea/R implies lower activation energies
for increasing n-dodecane number in the mixture.

Though further investigation is required, the different mechanism of toluene and
n-dodecane pyrolysis as single-component systems might explain the underlying
mechanism responsible for lowering the activation energies of themixture. Figure 7.4
shows that, at lower temperature (2000 K), roughly 15% of n-dodecane molecules
decompose within the 50 ps simulation time of n-dodecane only system, while it
reaches to over 90% at higher temperature (2600 K). The decomposition behavior
of n-dodecane is observed in the mixtures too; the process is accompanied by the
production of a large radical pool. The main species in the radical pool consists of
a combination of different alkyl radicals ranging from C1–C12 initially and smaller
radicals such as methyl (CH3), ethyl (C2H5), propyl (C3H7) and in the later part of
the simulation, hydrogen (H) radical etc. At low temperatures, the intramolecular
reaction between the small free radicals and toluene molecules cause further decom-
position of toluene into benzyl radical (C7H7) and H. For example, the reaction
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Fig. 7.8 Time evolution the numbers of toluene molecules for single-component system and in
mixtures with various concentrations of n-dodecane at temperatures a T � 2100 K, b T � 2200 K,
c T � 2300 K, d T � 2400 K, e T � 2500 K, and f T � 2600 K
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Fig. 7.9 Arrhenius plot with
the fitted natural logarithm of
rate constant versus the
inverse of temperature for
toluene as single-component
system and in mixtures with
various concentrations of
n-dodecane at densities of ρ

� 0.2 kg/dm3

between methyl (CH3) and toluene (C7H8) to generate methane (CH4) and benzyl
has an energy barrier of only 11.1 kcal/mol [70]. With the presence of n-dodecane,
such reactions with low barriers cause further decomposition of toluene in a shorter
time.

7.4.2.4 Density/Pressure Effect on the Pyrolysis of Toluene
and n-Dodecane Mixture

To investigate the density/pressure effect on the pyrolysis of toluene and n-dodecane
mixture we performed additional simulations for the systems with a high density of
0.4 kg/dm3. The rate constants and the Arrhenius parameters are calculated based
on toluene using the same method in Sect. 7.4.1. Figure 7.10a shows the comparison
of the activation energies from ReaxFF simulations for density 0.2 and 0.4 kg/dm3

with increasing percentage of n-dodecane in the mixture. Overall, the results show
that the activation energy for a system density of 0.4 kg/dm3 is less than that for
a system density of 0.2 kg/dm3 when the percentage of n-dodecane is low in the
mixture (2.34 and 11.11%). For 10 and 20 molecules of n-dodecane in the mixture,
the density/pressure effect is insignificant and the activation energies for both cases
are almost similar. For the high density case, we observe that the presence of only
11.11% n-dodecane in the mixture results in a surprisingly lower activation energy of
toluene than that of n-dodecane as a single-component system. Figure 7.10b shows
results for similar cases obtained through continuum-scale pyrolysis simulations.
At higher density, the activation energy of toluene decreases sharply from 95.17
to just 62.79 kcal/mol (34%) with the addition of only one n-dodecane molecule
in the toluene-only system. After that, the activation energy keeps on increasing
as the percentage of n-dodecane increases. Similar to ReaxFF-Md results, when n-
dodecane number in the mixture is 10 and 20, the results are very similar for the
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Fig. 7.10 Activation energies of toluene at various compositions of n-dodecane and toluenemixture
from a ReaxFF-MD simulations. b Continuum simulations with two different densities. The blue
and red dashed line represents the activation energy of only n-dodecane in a system density of
0.2 kg/dm3 and 0.4 kg/dm3, respectively

two density cases. These results are in qualitative agreement with the ReaxFF-MD
results in the sense that at higher concentrations of n-dodecane in the mixture, the
toluene activation energy does not show any dependency on either the amount of
n-dodecane in the mixture or the overall system density.

These ReaxFF-MD results indicate that apparent first-order kinetics is no longer
suitable for calculation of activation energy of toluene in the mixture at high den-
sity/high pressure system. We can also conclude that when the ratio of n-dodecane
and toluene exceeds a certain threshold (in our case more than 5:40), the method
has limitations in accurately capturing the effect of the n-dodecane in the activation
energy of toluene. It is evident from the results that the decomposition of toluene
follows a more complex mechanism in the mixture in high density/pressure than in
low density/pressure. Therefore, in order to determine the activation energy of a less
reactive component such as toluene in a mixture with a highly reactive molecule
such as n-dodecane, we need to look beyond the simple first-order kinetics and the
Arrhenius equation.

A complete investigation of this surprising behavior of toluene decomposition
with the presence of n-dodecane is beyond the scope of this study, as the purpose of
this book chapter is to demonstrate the capability of ReaxFF-MD simulation for high
pressure/temperature combustion. However, we would like to propose a hypothesis
for this interesting finding, which requires more rigorous studies to confirm. Accord-
ing to our hypothesis, the main reason for low activation energy of toluene in the
presence of n-dodecane ismostly related to the very different initiationmechanism of
toluene and n-dodecane decomposition, when they are studied as a single-component
system. As mentioned several times in this work, n-dodecane decomposition leads to
a large alkyl radical pool build up, and at high density, these radicals can easily find
a toluene molecule to decompose as they are diffusion limited at that density. Since
n-dodecane can generate radicals even at lower temperatures, this leads to higher
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toluene decomposition, which significantly effects toluene activation energy. That
is why, a small amount of n-dodecane can significantly reduce toluene activation
energy when simple first-order kinetics and pressure-independent Arrhenius equa-
tion is used at high density (0.4 kg/dm3). However, at a relatively lower density such
as 0.2 kg/dm3 and lower number of n-dodecane in the system, active alkyl radicals
has more space to move around and it takes longer time for them to find a toluene
molecule to collide with as the alkyl pool build up is not that significant. However,
even at low density, simple Arrhenius equation is not applicable if the initial number
of n-dodecane is high as it significantly increases the number of alkyl radicals in the
system. Since we used first-order kinetics to calculate the rate constant, while the
toluene decomposition is mostly the secondary reaction in the system initiated by
active radicals, our analysis no longer holds at this situation.

Additionally, we hypothesize that, at higher temperatures, toluene decomposition
showsmore temperature dependence than density/pressure dependence.Also, at high
temperature, the presence of n-dodecane does not greatly affect the rate constant of
toluene which is supported in Fig. 7.9 too. At higher temperatures, probably toluene
in mixture decomposes in a similar manner as the toluene-only system as those high
energy decomposition routes become accessible. As these routes no longer require
an effective collision, toluene mainly decomposes in those routes.

As mentioned above, our hypothesis requires further investigation to confirm,
however, with the aid of ReaxFF-MD simulation we were able to gain some useful
information of high pressure system, which was never explored before.

7.5 Conclusions

In this work, we applied ReaxFF method to study the pyrolysis of toluene and n-
dodecane as both single-component systems and mixtures subjected to high temper-
ature and pressure conditions. A series of NVT-MD simulations for a temperature
range of 2000–2600 K has been performed to investigate the decomposition of the
reactant molecules and to calculate the temperature-dependent rate constants. Two
different densities, 0.2 and 0.4 kg/dm3 of the system were used to investigate the
effect of a higher density/pressure on the Arrhenius parameters. First-order kinetics
was used to calculate the Arrhenius parameters based on the toluene decomposition
and corresponding rate constants calculated at different temperatures. In case of mix-
tures of toluene and n-dodecane, zero-dimensional (time-evolving) continuum-scale
pyrolysis simulations for the same tests cases have been performed and the results
were then compared to those obtained from ReaxFF-MD.

For individual systems of toluene and n-dodecane, the activation energy and the
pre-exponential factor calculated in both high- and low-density cases show good
agreement with previous experimental results. For mixtures having relatively lower
density (0.2 kg/dm3) of the system, we observed from both of the methods that
the overall effect of n-dodecane is to reduce the activation energy of toluene. The
two methods showed satisfactory correlation when the n-dodecane concentration
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is below 20%. Overall, for all the cases the two methods showed good qualitative
agreement. In addition, we observed that as the percentage of n-dodecane in the
mixture is increased beyond a threshold value (in our case >11.11%), the ReaxFF-
MD simulations predict an activation energy even lower than that of n-dodecane in
single-component system. This suggests that the pyrolysis of toluene follows a much
more complex mechanism in the presence of a greater concentration of n-dodecane.
In this case, the simple Arrhenius relation based on first-order kinetics does not
hold anymore to accurately predict the activation energy of toluene. A preliminary
investigation of the time evolution of major species generated by n-dodecane showed
that the pyrolysis of n-dodecane is radical dominated. The large alkyl radical pool
generated by the thermal decomposition of n-dodecane are highly reactive and they
cause further dissociation of toluene. This played a critical role in low temperatures
especially, since at low temperatures the toluene decomposition by itself is very
limited.

In the higher density case (0.4 kg/dm3) even small amounts of n-dodecane had
much more significant impact on the decomposition of toluene and its activation
energy. This was observed in both ReaxFF-MD and continuum simulation results.
Beyond a certainmixture ratio, the activation energy did not show any dependence on
the number of n-dodecane in the mixture or the overall system density. We hypoth-
esize that a different initiation mechanism is at work in these cases, which needs
further studies to be confirmed.

These results demonstrate that although ReaxFF-MD is useful in determining the
Arrhenius parameters for single-component systems, in case of mixtures the same
methodology only applies in certain cases of densities and mixture ratios. This is
also confirmed using the results of continuum-scale pyrolysis simulations. When
the overall system density/pressure is high or the concentration of a highly reactive
molecule in the mixture is increased, the simple first-order kinetics-based Arrhenius
equation does not apply. We need to look further into the complex reaction pathways
to determine the effective mixture activation energies in these cases.
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Chapter 8
Shock-Induced Chemistry: Molecular
Dynamics and Coarse Grain Modeling

Md Mahbubul Islam, Mathew Cherukara, Edwin Antillon
and Alejandro Strachan

Abstract The fast loading rates associated with shockwaves in solids make molec-
ular dynamics (MD) a particularly well-suited tool for their study. This chapter
focuses on recent methods to study shock-induced chemistry using all-atom reactive
MD and coarse-grained simulations and their application. We describe insight on
the formation of hot spots formed following the shock-induced collapse of pores
and their transition to a deflagration wave in high energy density materials obtained
from large-scale MD simulations using the reactive force field ReaxFF. Experimen-
tal validation of such simulations is critical to assess the predictive capabilities of
these methods to describe new materials and show how to extract observables from
the simulations that can be directly contrasted with experiments. Such direct com-
parisons are not just critical for validation but also contribute to the interpretation
of the experimental results. We also describe coarse-grained simulations to study
the possibility and effectiveness of shock-induced, endothermic, volume-collapsing
reactions; these simulations quantify how the various characteristics of the chemi-
cal reactions attenuate the propagating shockwave and provide key information to
experimentalists designing and synthesizing such materials.

8.1 Introduction

Shock or dynamical loading of a material causes a sudden increase in pressure and
temperature which, in turn, triggers a wide range of processes through which the
shocked material relaxes after the insult. The response is often a combination of pro-
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cesses including plastic deformation [1–3] to relax the uniaxial compression caused
by the shock, stress-induced phase transformations [4, 5], and chemical reactions
[6, 7]. The fast strain rates involved (approximately 109 1/s) and the extreme pres-
sures and temperatures achieved make shocks an attractive means to study materials
behavior not accessible otherwise and to study materials at extreme conditions. For
example, some crystal structures of certain minerals like silica form only at extreme
conditions but remain in a metastable state after unloading [8]; consequently, their
presence provides unique information about planetary systems. In addition, the fast
loading results in nonequilibriumstates and can result in processes not observedunder
equilibrium of slow-loading conditions. For example, Ravelo and Levitas found “vir-
tual melting” as a new stress relaxation mechanism [9].

In this Chapter, we focus on recent molecular-level simulations of shock-induced
chemical reactions in two classes ofmaterials that, at first sight, appear to be complete
opposites but, upon further analysis, show remarkable similarities. Section 8.3 dis-
cusses reactive atomistic simulations of high energy density (HE)materials, that react
exothermically leading to gaseous products which, under appropriate conditions, can
turn a shock into a detonation. Section 8.4 discusses coarse-grained simulations to
explore materials that can weaken shockwaves via endothermic, volume-collapsing
reactions. In both cases coupling the shock excitation to the degrees of freedom
(DoFs) capable of causing chemical reactions is a complex process and does not
happen instantaneously. Actually, in some cases chemical reactions occur when the
system has not fully relaxed and equilibrated locally after the passage of the shock-
wave. Thus, of the focus areas of this chapter is how the nonequilibrium states
right behind the shock front and the kinetics associated with the chemical reactions
affect materials response. Before discussing the various applications we provide, in
Sect. 8.2, a brief introduction of the simulation methods utilized and the details of the
simulations presented in Sects. 8.3 and 4. A recent review of molecular simulations
of shock processes [10] provides additional details on simulation techniques, appli-
cations to nonreactive systems and tutorials to perform atomistic shock simulations
online using nanoHUB [11] cloud computing.

8.2 Atomistic and Coarse Grain Simulations of Shocks

Molecular dynamics simulations describe the temporal evolution of a group of atoms
by solving classical equations of motion, given in Hamilton’s form by

ṙi � vi

v̇i � fi
mi

where {ri}, {vi}, and {f i} are the set of all atomic positions, velocities, and forces
and {mi} atomic masses. In the absence of external fields, the forces originate from
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atomic interactions and are obtained as the negative gradient of the total potential
energy with respect to atomic positions.

Given initial conditions (atomic positions and velocities), the simulation predicts,
in a deterministic manner, the temporal evolution of the system. When a group of
atoms is evolved in time with realistic interactions, that include anharmonicities,
the equations of motion take the system toward thermodynamic equilibrium; absent
external perturbation the system will satisfy Maxwell–Boltzmann statistics. It is
important to emphasize that while thermodynamic equilibrium is achieved under
the appropriate conditions, it is not assumed in the simulation and nonequilibrium
processes are captured explicitly.

8.2.1 Nonequilibrium Simulations of Shock Loading

Nonequilibrium shock simulations are often set up as an impact simulation between
the previously equilibrated target and piston systems, both described in atomistic
detail. The initial condition for such simulations is obtained by adding the desired
impact velocity to the atoms in the target over the thermal velocities. It is common
practice to zero the c.m. velocity of the entire system to avoid an overall translation
of the systems within the simulation cell. Almost invariably, periodic boundary con-
ditions are imposed in the cross-sectional directions; this mimics the response of a
section of the material of interest away from the lateral free surfaces (far enough that
the waves caused by the lateral expansion do not reach the section of interest during
the simulated time).

With such initial conditions, the dynamical evolution of the system is described
with adiabatic MD simulations (constant energy, number of atoms and volume or
NVE ensemble). The passage of the shock leads to both the compression and heating
of the shocked material and, as discussed above, can result in a plethora of materials
responses to the extreme loads. Shock fronts are locally very sharp (a few atomic
distances) and, thus, materials experience fast deformation and heating rates. These
fast rates, in turn, lead to nonequilibrium thermodynamics states that do not satisfy
equipartition of energy. As will be discussed below, this lack of equilibrium can
affect processes triggered at or near the shock front.

8.2.2 Simulating Shock States Using Equilibrium MD

The main advantage of nonequilibrium shock simulations is that the shock front is
described explicitly and thematerial experiences the ultrafast loading rates character-
istic of shock loading, including the lack of local thermal equilibrium. An important
drawback of such simulations is that the timescales achievable are approximately
limited by the time it takes the shock to travel through the sample since a rarefaction
wave moving back into the sample will be generated when the shock meets a free
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surface. Consider a shockwave propagating through a sample of length L and a speed
up; for a typical velocity of 5 km/s or 5 nm/ps, a simulation cell 100 nm is length will
be traversed in only 20 ps. That is, the regions near the impact would have been in the
shock state for only 20 ps when the rarefaction wave starts moving in. Extending the
simulation a factor of n, requires increasing the simulation cell length by the same
factor, resulting in an n2 increase in computational cost (assuming a linear increase
in cost with system size). In order to address this issue and enable longer simulation
times for shocked systems, two methods have been proposed to simulate the state
after the passage of a shock by modifying the equations of motion of the systems to
compress and heat up the to the state corresponding to the shock state. Reed et al.
proposed the MSST method [12] and Maillet, Ravelo, and collaborators proposed
the Hugoniostat [13] described next.

For a steady-state shock with particle velocity up and shock velocity us, mass,
energy and momentum conservation across the shock front result in the Rank-
ine–Hugoniot jump conditions. These relate the unshocked state (density, energy,
and pressure) with the shocked one. The Hugoniostat method uses a thermostat and
a barostat to take the system from its initial state to the desired shock state for a given
pressure. We note that this method can only be applied for single-wave situations,
see [13, 14]. Multiple wave structures like in the case of plasticity following elastic
loading should be simulated using different initial conditions for each wave.

8.2.3 Reactive MD Simulations

Shock-induced chemical reactions are important in applications ranging from explo-
sives [15] to materials that can undergo volume-collapsing reactions that can be
used for shock attenuation [16]. The development of reactive potentials over the last
decades enabled the simulation of shock-induced chemistry. Here, we use ReaxFF
[17, 18] to predict the decomposition and reaction of high energy density materials,
Sects. 8.3 and 8.4. Building on earlier work [19], ReaxFF uses the concept of par-
tial bond order between atoms to describe covalent interactions. These partial bond
orders are many-body functions of the atomic positions and capture the character of
the bonds (sigma, pi, double pi) and, importantly for MD simulations vary smoothly
and approach zero as a bond is broken. All covalent terms, bond stretch, angles,
and torsions depend on these bond orders which are also used to penalize over and
under coordination. A second key element of ReaxFF is that electrostatic interactions
are calculated using environment-dependent partial atomic charges obtained using
electronegativity equalization method EEM [20].



8 Shock-Induced Chemistry: Molecular Dynamics … 191

8.2.4 Dynamics with Implicit Degrees of Freedom

While MD simulations are a powerful tool to explore dynamical loading, it is also
computationally intensive and coarse grain models capable of capturing longer time
and larger spatial scales are desirable for many applications. Here is use a particle-
based coarse grain ormesoscale description, where particles describe group of atoms.
Over the last decade or so, Strachan and collaborators have been developing the
dynamics with implicit degrees of freedom (DID) family of methods to couple parti-
cle dynamics via MD with an implicit description of additional degrees of freedom.
These implicit degrees of freedom can be atoms internal to the mesoparticles [21,
22], valence electrons [23] or an external electrochemical potential [24, 25].

In Sect. 8.4, we use DID to explore the possibility of volume-collapsing chemical
reactions to weaken shockwaves with the objective of developing materials for pro-
tection against high-velocity impact or blasts. Particles represent a single molecule
or small group of molecules that can undergo a stress-induced chemical reaction. In
order to describe the average effect of the degrees of freedom internal to the particles,
we include two internal variables to the mesoparticles: (i) an average particle radius
to describe the volume collapsing chemistry and (ii) the average temperature of the
remaining internal degrees of freedom. The dynamics of the average molecular radii
is described via the Hamiltonian of the system. As described in Sect. 8.5, we add
a potential energy term that captures how the energy of the molecules depends on
their radius; a two well potential is used to describe the stress-induced phase trans-
formation. The dynamics of the particles and their average radii is governed by the
following Hamiltonian [26, 27]:

H �
∑

i< j

φinter
(�r j − �ri − σ j − σi

)
+

∑

i

φintra(σi ) +
∑

i

p2i
2mi

+
∑

i

π2
i

2m∗
i

where σi and πi are the average molecular radius and momentum associated with
particle i. Interactions between particles are described with a two-body potential,
φinter, that depends on the distance between the particle surfaces. The dynamics of
the particle’s average radii is governed by an intramolecular potential, φintra, the
details of which will be discussed in Sect. 8.4.

The internal degrees of freedomnot described by the radii, are described in an aver-
age manner and their state is governed by the internal temperature of each mesopar-
ticle, that evolves in time using DID equations of motion by exchanging energy with
the local particles [27]:
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where C int
i is the specific heat associated with the internal DoFs, νmeso and νrad

describe the strength of the internal to intermolecular coupling and the internal to
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radial coupling, respectively. �o is a reference temperature, and the ratio |F rad
i |2

m∗
i 〈ω2

rad〉
provides a natural timescale for the corresponding interaction.

Note that energy flow between internal DoF and the particles is determined by the
relative local temperatures. If the local particle temperature around particle i is larger
than its internal temperature, the particles are slowed down and the extra energy is
captured by the internal DoF. Lin et al. [23] provides a detailed description of DID
including its foundation on statistical mechanics. As described there, key features of
themethod include: (i) total energy and linearmomentum are conserved; (ii) Galilean
invariance; (iii) correct description of an isolated particle moving in free flight.

8.3 Shock-Induced Chemistry in High Energy Density
Materials

The ultrafast loading rates associated with shock propagation in materials can reveal
aspects of material behavior and properties that are inaccessible otherwise. Such
nonequilibrium states include metastable phases [28], defect nucleation and multi-
plication [29] and of particular relevance to this section, nonequilibrium chemical
reaction pathways [30]. In general, the process of shock loading a material, trig-
gers a series of material responses that seek to minimize the potential energy in the
system and alleviate the extreme shock-induced conditions of pressure and tempera-
ture. Such material responses include plastic deformation [1], phase transitions [31],
and conformational changes in the case of organic crystals [32]. In each of these,
the material response weakens the shock, as energy from the compressive wave is
diverted to plastically deform the material, drive the material over a phase change or
change the molecular conformation. Another mechanism triggered by shocks, that is
the subject of this section, is chemical reactions. However, unlike the other mecha-
nisms discussed above, not always does this result in a weakening of the shock. In HE
materials, shock loading can trigger a series of net-exothermic reactions that form
gaseous products. The exothermicity and volume expansion strengthens the shock,
accelerates the chemistry and leads to a detonation if the chemical wave catches up
with the shock wave. In a detonation, the wave propagation velocity (chemical and
mechanical waves overlap) depends only on chemical kinetics and is consequently,
independent of the initial piston velocity.

Experimental characterization of all shock-related phenomena is extremely dif-
ficult due to the short spatio-temporal length scales involved (from nm to microns
and from ps to ns), but the problem is exacerbated when chemical reactions that are
induced or assisted by the shock need to be taken into account. Recent progress on
ultrafast spectroscopy coupled to laser shocks [33–37] is providing an unprecedented
picture into chemistry at extreme conditions. Despite the impressive results, these
experiments are not without limitations. For example, it is difficult to perform peak
assignment in spectroscopic studies at extreme conditions. Thus, we believe only the
combination of experiments and atomistic simulationswill provide a definite descrip-
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tion of the detailed chemistry of HE materials at extreme conditions. Interestingly,
computational capabilities and models have matured to the point where it is possible
to simulate large enough system sizes with accurate interatomic potentials, that can
capture complex chemical reactions under nonequilibrium conditions [38]. In this
section, we discuss shock-induced chemistry of poly vinyl nitrate, a high-energy
amorphous polymer, and compare the predictions with ultrafast spectroscopy. Fol-
lowing the discussion of decomposition of a homogeneous, amorphous polymer we
discuss recent results on the coupling of a shock wave with microstructural defects,
the formation of hotspots and their criticality.

8.3.1 Atomistic Modeling of Shocks in HE Materials

Modeling a complete detonation from the initial chemical events to a detonation
wave with all atom simulations remains beyond the scope of current computational
capability. However, reactive MD simulations have provided unique insight into sev-
eral aspects of the shock to detonation cycle, including the initial chemical reactions,
and the role of preexisting material defects in the creation of hotspots.

Limited by the computational resources of the time, early MD work that studied
reactive chemistry was based on the so-called AB system, a simplified representation
of explosives, where diatomic AB molecules transform into A2 and B2 [39]. More
recently, large-scale atomic simulations (up to ~36 million atoms) using a similar
monoatomic model for nitrocubane, showed for the first time how hotspots can
spontaneously form in a homogeneously heated sample, and how “critical” hotspots
transition into a spherical detonation [40]. When a hotspot is formed, a competition
arises between heat conduction away from the hotspot and accelerated kinetics due
to the elevated temperatures. Smaller hotspots that have a larger surface area to
volume quench, while larger hotspots can become self-sustaining giving rise to a
deflagration wave that could eventually transition to a detonation. In their study, Hu
et al. [40] found that for nitrocubane hotspots that reach a critical radius of ~1.5 nm
continue to grow with a radial velocity that becomes supersonic. Figure 8.1 shows
snapshots from the simulation, where only N2 molecules are shown. A multitude
of hotspots form spontaneously during the initial stages (Fig. 8.1a), most of which
quench due to thermal conduction away from the hotspot, while a few larger ones
become self-sustaining, eventually reaching supersonic velocities (Fig. 8.1d).

The presence of material defects have long been thought to play an important
role in the initiation of chemistry and subsequent detonation, and the presence or
absence of defects can have strong repercussions on the sensitivity of an explosive.
For instance, the shock strengths required for the detonation of single-crystal explo-
sives are significantly higher than shocks required to detonate granular powders [41].
Defects in the material such as voids, interfaces, or dislocation localize the energy
from the shock through material jetting and shear into hotspots [42]. As with thermal
hotspots, higher temperatures at hotspots lead to faster chemistry, which, in turn,
increases the likelihood of a self-sustaining chemical wave [43].
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Fig. 8.1 Reaction progression during thermal cookoff of nitrocubane initially at 1160 K leading
to the formation of N2. Only N2 molecules are shown for clarity. Times are a 5.0 ps, b 7.3 ps,
c 11.4 ps, and d 13.2 ps. Reproduced with permission from [40]. Copyright (2011) American
Chemical Society

Early MD work by Holian at Los Alamos and others, using a nonreactive LJ
potential [44], showed significant temperature increase at the far wall of a collapsing
void. The authors attributed this localized heating to recompression of rarified ejecta
at the far wall of the pore, observing that the temperature increase in the collapsed
pore scales with void size, but only up to a point [44]. A few years later, Herring
et al. used the AB model to perform one of the first atomistic simulations of a shock
to detonation transition [45]. Figure 8.2 shows the evolution of a shocked sample of
the model material that initially contained a void of radius 5 nm. Atoms are colored
by the nature of their bond, reactant AB molecules are in blue, products A2 and
B2 are in green, while red atoms denote free radicals, i.e., isolated A or B atoms.
Figure 8.2a shows a snapshot at an early stage, soon after the collapse of the void,
where a deflagration wave starting from the collapsed void can be seen on the far
left (region in green). Subsequently, more hotspots are seen to develop between the
deflagration wave from the collapsed pore and the shock front (Fig. 8.2b). Finally,
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Fig. 8.2 MD snapshots of a shock to detonation transition in a model AB explosive with a 5 nm
radius void shocked at Up � 4 km/s. Shock travels from left to right. Blue atoms denote unreacted
material, green atoms represent product molecules while red atoms are unbonded monoatomic
species. Snapshots show a Collapse of a void and the formation of a deflagration wave, b formation
of hotspots between the deflagrationwave and the shock front that ultimately give rise to a detonation
(c). Reproduced with permission from [45]. Copyright (2010), American Physical Society

Fig. 8.2c shows the formation of a detonation wave that is separated from the original
deflagration wave.

8.3.2 Shock-Decomposition of Poly Vinyl Nitrate
(PVN)—MD Versus Experiments

In this section, we discuss the direct comparison of shock-induced chemistry
between MD simulations and experiments. As discussed above, the microstructure
in plastic-bonded HE systems plays a key role in localizing the energy of the
shockwave in hotspots and in initiation. Such processes invariably complicate com-
parisons between experiments and MD simulations. We believe that homogeneous
materials, including liquid and amorphous materials [46–48] are better choices for
such direct comparisons.

PVN is, a homogeneous amorphous energetic polymer, used as a binder material.
McGrane et al. [33] used ultrafast IR spectroscopy on laser-shocked PVN over a
range of shock pressures and observed chemical reactions in 100s of picosecond
timescales when shocked above a threshold of 18 GPa. The spectra reveal chemical
reaction initiation via the disappearance of theNO2 group stretching frequency; how-
ever, the limited spectral range of the experiments did not enable the characterization
of detailed chemistry. A definitive understanding of the shock-induced chemistry of
PVN requires a synergistic combination of experimental and computational studies,
where experiments validate simulations and simulations help interpret experimental
findings. We carried out shock simulations of PVN to establish a one-to-one com-
parison of the mechanical and chemical response of the material with the laser shock
experiments; these results appeared in [49].
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Fig. 8.3 Evolution of pressure, density, and temperature during shock simulations at various pres-
sures. The sudden decrease in density and increase in temperature is indicative of the rapid chemical
reactions

8.3.2.1 Shock Loading of PVN

A bulk amorphous PVN geometry at a density of 1.33 gm/cm3 and molecular weight
of 17806 gm/mol was used for the study. The shock simulations were performed
utilizing Hugoniostat [13]-based MD simulation method. During shock loading,
the uniaxial compression heats up the system to the final desired shock states. The
ReaxFF-2014 force field [50] was used for all the simulations. The evolution of the
thermodynamic properties such as pressure, density, and temperature was recorded
from the shock simulations, and their temporal evolution is shown in Fig. 8.3. The
applied rapid strain rate is representative to the shock process. The figures exhibit
that the thermodynamic quantities were evolved to their final shocked states within
around 1 ps. The applied compressive loading increases the system temperature, and
for strong shock pressures, the system undergoes a rapid increase in volume and
temperature followed by an induction period. The induction period is contingent on
the applied shock and decreases with the increasing pressure. At 18 GPa shock pres-
sure, the simulation-predicted induction time (~180 ps) is in good agreement with
McGrane et al. [33] data. The rapid decrease in the density, that is, the increase in
the volume is due to the exothermic reactions generated gaseous species.

The pressure–density and temperature–density data were derived from the sim-
ulations and shown in Fig. 8.4a, b. Since explosive materials produce gases upon
exothermic reaction, that is, at a given pressure–temperature state, the products are
less dense than the reactants, as such the products Hugoniot lies above the unreacted
Hugoniot in the P, ρ space. The unreacted Hugoniot dictates the state from which
the rapid chemical reactions start. It can be seen that both P-ρ and T-ρ plots have two
regimes: unreactive Hugoniot for a relatively weak loading and reactive Hugoniot
due to the exothermic volume-expanding reactions. The ReaxFF simulations nicely
capture the shock pressure at which transition occurs and is in excellent agreement
with McGrane et al. [33] reported data. The exothermic chemistry caused the system
temperature to increase up to approximately 2000 K.

The Hugoniot relations [14] were used to calculate shock and particle velocity
values. The data is presented in Fig. 8.4c along with the unreactive experimental
[51] results. The reaction products Hugoniot regime exhibit a sudden increase in
the shock velocities. The trend of a rapid increase of shock velocities at the onset
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Fig. 8.4 Plot of unreacted and reaction products Hugoniots in a P-ρ, b T -ρ space, the product
Hugoniots lies above the unreacted Hugoniots, c shock versus particle velocity data and comparison
with the experimental results [51] (black half-filled circles)

of rapid reactions has also been observed in nitromethane shock experiment [52].
ReaxFF-2014 slightly underestimates the experimental unreactive us–up data. The
simulation exhibit a transition to rapid exothermic chemistry at up� 2.2 km/s and
us� 6.5 km/s. The sound speed (value of us at up � 0) computed from the simulations
is 1.75 ± 0.05. This value is relatively smaller compared with the experimental data
[51] of 3.2 ± 0.3 km/s.

8.3.2.2 Vibrational Analysis and Comparison with Shock Spectroscopy

In order to validate the ReaxFF simulations of shock-induced chemistry in PVN
against the ultrafast spectroscopic experiments in a direct manner, we compute the
time evolution of the vibrational density of states from the Fourier transform of
atomistic velocities in the reactive MD simulations. The signature peaks of the var-
ious chemical groups and their evolution during the shock simulations provide key
information about the reaction mechanisms and the associated time scales. The pre-
dicted time-resolved spectra at a shock pressure of 18 GPa is shown in Fig. 8.5. The
NO2-stretching frequency can be considered as an indicator of the rapid chemical
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Fig. 8.5 Predicted
time-resolved full spectra at
18 GPa shock simulation.
The disappearance of NO2
stretching frequency at
~150 ps is indicative to the
onset of rapid chemical
reactions

decomposition of the PVN. The figure demonstrates the disappearance of nitro group
stretching mode (at ~1900 cm−1) at a time-scale of around 150 ps; this marks the
beginning of rapid exothermic chemistry, see Fig. 8.3. This predicted time scale is
in excellent agreement with the McGrane et al. [33] reported experimental spec-
tra of shocked PVN at 18 GPa. Furthermore, the calculated spectra yield important
information about the evolution of the various intermediates. For example, a peak at
1600 cm−1 starts to develop in the spectra at about 50 ps and completely disappears
at ~200 ps. The spectra calculated for the individual intermediates and the species
analysis during the shock simulations show that the characteristic frequency corre-
sponds to the NO. Thus, spectra capture the entire NO evolution history. Overall,
the results demonstrate that the simulation-predicted spectra can help to unravel the
experimental spectra to illustrate various reaction initiation mechanisms and related
timescales.

8.3.3 Shock to Deflagration Transition and the Role of Hot
Spots

While the studies described in Sect. 8.3.1 in model systems provided a wealth of
information into the formation and criticality of dynamical hotspots, their simple
nature can hide key aspects of the processes that operate in real HE materials where
complex inter- and intramolecular processes are known to play key roles in the
initiation of chemistry. As described earlier in the chapter, ReaxFF simulations can
provide an accurate, all-atom description of the mechano-chemistry in a variety of
nitramines [7, 53]. The prohibitive factor until recently has been the vastly greater
computational cost (10× − 100×) as compared to the reduced models. In recent
years, however, several research groups have performed multimillion atom ReaxFF
simulations on state-of-the-art computational clusters to study hotspot formation
resulting from material inhomogeneities such as voids [54] and the interfaces of
polymer-bonded explosives [55].

More recently, using large-scale ReaxFF simulations, Wood et al. [30] provided
the first atomic picture of a shock to deflagration transition in RDX using a realistic
potential. They observed a crescent-shaped hotspot following pore collapse, that
eventually gives rise to a deflagration wave. The authors observed three distinct
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stages in the formation of the deflagration wave from the hotspot; in the first stage
(up to ~10 ps from the collapse of the pore), the initial crescent-shaped hotspot that
is formed grows until it is ~5 nm in width. Immediately following impact of ejecta
with the far wall of the pore, the molecular center of mass temperature (T com) and
the molecular vibrational temperature or internal temperature (T vib) of the impacted
molecules differ greatly (T com ~ 4000 K and T vib ~ 1500 K at t0). During the first
stage of reaction, these temperatures equilibrate as energy is transferred from the
molecular COM degrees of freedom to internal degrees of freedom. Surprisingly,
within this short period, a few product molecules are also seen to form (Fig. 8.6).

During the second stage of reaction (~10–25 ps), the initial, crescent-shaped
hotspot grows at a rapid rate, faster into the amorphous ejecta within the pore as
compared to the crystalline material ahead of the pore. During this stage, the tem-
perature within the growing hotspot reaches a steady-state value of ~4000 K and two
distinct reaction fronts are seen, each with a surprisingly narrow width of ~5 nm.
The third and final stage as described by the authors involves the steady-state growth
of these reaction fronts at ~250 m/s.

A further surprise from their study was that thermal hotspots that they engineered
to have the same temperature distribution, pressure, and morphology as the dynami-
cally created hotspots showed much slower kinetics than the dynamic hotspot, sug-
gesting that nonequilibrium effects arising from the mechanical impingement and
shear of molecules during pore collapse, plays a vital role in accelerating the kinetics.

8.4 Shock Energy Absorption via Volume-Reducing
Chemical Reactions

Section 8.3 focuses on HE materials where a shock can unleash exothermic, volume
expanding reactions that can cause a detonation. In this section, we focus on explor-
ing the possibility of using endothermic, volume collapsing chemistry to weaken
a shockwave. The motivation of this effort is to contribute to the design of shock
wave energy dissipation (SWED) materials that can be used for protection such as in
traumatic brain injury [56] from impact and blast [57–61]. Our goal is to characterize
how the details of the chemistry (enthalpy of formation, amount of volume reduction
and kinetics) affect the ability of the material to weaken a shockwave. Since we
are interested in general aspects of the problem and not in the detailed chemistry,
we developed a coarse-grained model to describe SWED materials and characterize
what features of its chemical reactions have the largest effort on shock attenuation.
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Fig. 8.6 Center of mass molecular temperatures (T com), molecular vibrational temperatures (Tvib)
and fractions of unreacted RDX, fractions of intermediate species, and fractions of final products
at different stages. Reproduced with permission from [27]. Copyright (2015) American Chemical
Society
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Fig. 8.7 Intramolecular potential for an inert and reactive materials as a function of the coarse-
grained particle radius. For the reactive function, the initial state has a radius of size of 2.5 A while
the final states are equal to 1.75 A; this corresponds to a 35% volume collapse. The final state
can have a variable endothermic state (	H > 0) an activation barrier 	G > 	H . The inert case is
described by a harmonic potential with a stiffness that yields material properties close to molecular
crystals such as HMX and Anthracene

8.4.1 A Family of SWED Materials

As described in Sect. 8.2, ChemDID provides a coarse-grained description of
intramolecular chemistry via a potential energy function that controls the dynam-
ics of the average radius of the particles. The potential energy shown in Fig. 8.7, was
designed to describe endothermic, volume reducing reactions. This model entertains
a specific type of chemistry proceeding via an order parameter (particle size) to tran-
sition from a low-energy high-volume state to a high-energy low-volume state. The
key characteristics of the chemistry are: (i) endothermicity that we will vary between
0 and 30 kcal/mol, (ii) the volume reduction that varies from 10 to 65%, and (iii) the
activation barrier from 0 to 100 kcal/mol.

The interaction between mesoparticles is described using the Morse potential
(two exponentials) with distances measured from the surfaces of the particles, i.e.,
taking into account their radii, see [27]. The parameters of the two-body potential
were chosen to result in density and stiffness comparable to HMX-molecule. The
initial condition for the simulations consist of a target made of an FCC crystal with
a lattice parameter a � 10.1 A and a molecular mass of m � 296.1 g/mol, which
yields a density of 2.0 g/cm3; this is close to the density of a molecular crystals
such as HMX-molecule 1.9 g/cm3. The system consists of 320,000 molecules with
200 lattice units in the z-directions and 20 lattice units along the x- and y-directions.
Periodic boundary conditions are imposed along the x- and y-directions, while the
z-direction has free surfaces. In order to follow the precise energy exchange between
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the intra- and intermolecular DoF, we use an NVE ensemble where the system has
been previously thermalized at 300 K and zero pressure.

8.4.2 Shock Loading and Energy Dissipation

The sample is impacted with a thin (one lattice constant thick), rigid and infinitely
massive piston traveling at a constant speed in the z-direction. The infinitely massive
piston does not slow down due to the interactions with the target, nor rarefaction
waves are generated from its free surface. Thus, this setup generates a sustained
shock where the piston does not slow down but it moves at a constant speed.

While in an inert material, plastic deformation or phase transformations are the
only mechanisms that allow for stress relaxation, in a SWED material volume-
reducing chemical reactions can significantly reduce pressure build up and atten-
uate the leading shock wave. The material under stress will attempt to deform or
rearrange in order to alleviate its local stress build up. The material that is in its
immediate proximity will quickly approach the same velocity and consequently this
region experiences the largest strains rates where chemical reactions start to nucleate.
As the piston is driven into the sample, a two-wave structure emerges separating a
chemical region from the plastic region. Above a critical strain rate (HCL discussed
below), a chemical region close to the piston nucleates and grows at a speed Uc,
followed by a plastic regime growing at speed Us; an elastic precursor to the plastic
wave is present but it is negligible and very close in speed to the plastic wave, and
therefore will be ignored for the rest of the discussion. Figure 8.8a shows the velocity
profiles along the z-direction at various times after the piston impacts the target and
Fig. 8.8b shows the pressure–volume (Hugoniot) curve representing the equation of
state for the two regimes: one where both chemistry and plasticity nucleate (two-
wave region), and one where only plasticity occurs (inert). The transition between
the plastic regime and the chemical regime is denoted as the Hugoniot Chemical
Limit (HCL). At extreme strains, the velocities of the chemical wave and the plastic
wave will converge to the same value, and a single wave structure emerges, this is
the overdriven regime.

The interplay between the various parameters playing a role in the kinetics of the
model is discussed next.

In order to understand the roles that endothermicity, volume change, and the
activation barrier have in the energy dissipation phenomena. We quantify the local
pressure in both the inert and reactive parts of the Hugoniot in Fig. 8.9. Taking as a
base case with an activation barrier ΔG � 30 kcal/mol, volume change � 35% and
endothermicity ΔH � 0 kcal/mol. We see that increasing the activation barrier from
ΔG� 30 kcal/mol (red points) to 60 kcal/mol (blue points) will postpone the critical
transition points (HCL) from about 7 to 17 Gpa, where a two-wave domain will
persist at larger impact speeds until reaching the overdriven regime. Increasing the
change in the volume collapse in the reactive material shifts the Hugoniot toward the
left indicating a larger volume collapse. The pink points show the Hugoniot curve for
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Fig. 8.8 a Progression of velocity profiles (in steps of 10 ps) showing the evolution of a leading
wave traveling at speed Us and a trailing wave (chemical wave) traveling at speed Uc. bAHugoniot
equation of state for reactive and inert materials. The transition from the inert-to-reactive is known
as the Hugoniot Chemical Limit

Fig. 8.9 aHugoniot for variousmodelmaterials for a range of piston speeds betweenUp � 0.25 and
3.0 km/s (in steps of 0.25 km/s). The increase of volume collapse plays a major role in reducing the
pressure until the Hugoniot state reaches the overdriven regime. In this regime, endothermicity only
has a minor effect compared to a material with only volume-reducing properties. Larger activation
barrier postpones the nucleation of chemical nucleation until larger impact speeds are accessible;
For reference, experimental data on Anthracene is also shown

a volume change of 65% illustrating significant lower pressures in both the reactive
and inert parts of the Hugoniot compared to the base case. The effect of endotrmicity
was found to be null except for the overdriven regime. The empty symbols show a
reactive material with endothermicity of ΔH � 30 kcal/mol, which are consistent
with the base case almost everywhere; in the overdriven regime, the pressures are
lower but not significantly smaller.

In order to be have ideal shockwave absorbing properties, we argue that the HCL
pressure needs to be as low as possible. This is because the plastic wave speed will
travel at a fixed value in this two-wave regime independent of the impact speed of
the piston and consequently its pressure will also be constant. Our model shows that
the endothermicity plays a very weak role on the HCL, while the activation barrier
and volume reduction both play a role in the HCL. Volume collapse lower than 20%
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Fig. 8.10 Velocity of the
shocked material (Us) versus
piston impact speed (Up) for
an inert material and three
reactive materials with
activation barriers between
30 and 80 kcal/mol. The
chemical wave speed (Uc) is
also shown in the dashed
lines

are not expected at the molecular level, however, metal–organic frameworks (MOFs)
can show larger volume collapse by breaking the ligands making up the structure
leading to volume changes in the order of 60–80% [62].

The pressure in the shocked region can be related to the velocity of the shock
wave by applying the Hugoniot–Rankine conditions.

Ps � ρus ẋs

where ρ is the density of the unshocked material, us is the velocity of the leading
shockwave, and ẋs is the particle velocity. This last part can be shown to be a fraction
of the velocity of the leading shockwave [27]. Hence, the pressure in the shocked
region is a direct function of the shockwave velocity. Therefore, it is important
to understand how chemical reaction can affect the shockwave velocity. At lower
activation barriers, chemistry starts to nucleate earlier as a function of piston impact
speed. Figure 8.10 shows the shock velocity of the leading wave (solid lines) and the
chemical wave speed (dashed lines) versus the applied piston speed (Up).

Above a critical impact speed, the HCL limits are reached, and a reactive region
is able to grow at a steady rate. Chemistry nucleation helps to absorb the shock
energy and helps to maintain the leading shockwave at a relatively constant speed.
On the other hand, the inert case can only relieve stress through plastic deformations,
and the shockwave velocity bends down slightly with piston speed until reaches the
overdriven regime relatively early at about Up � 1.75 km/s. The reactive model
materials can postpone the overdriven regimes for the reactive materials after Up �
2.25, 2.75, and 3.0 km/s for ΔG � 30, 60, and 80 kcal/mol, respectively. This shows
that while rapid chemistry nucleation rate damps the shockwave energy the most, it
ultimately arrives at the overdriven regime earlier.

In conclusion, endothermic, volume-reducing chemistry can weaken shockwaves
[26, 27, 62, 63]. The role of endothermicity was found to be minimal while the
volume-reducing contribution affects the damping the most. This study focuses on
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sustained shockwaves, where the mass of the piston is assumed to be infinitely mas-
sive, and thus corresponds the extreme values expected during the collision with a
finite piston. Once the local pressure comes down below the HCL, chemical reac-
tions are not expected to nucleate and grow at larger scales. However, for the sizes
considered in this study, the sustained wave simulations represent a realistic scenario
of what might occur during the chemical reactions induced during shock loading
conditions.

8.5 Conclusion and Outlook

This chapter focused on an atomic level and coarse grain studies of shock-induced
chemistry. Initiating chemistry requires for the energy in the initial impact to be trans-
ferred into bond vibrations with characteristic lengths of Angstroms and vibrational
periods on tens of femtoseconds (~10−14 s). In most solid HE materials, microstruc-
tural features like voids, grain boundaries, and cracks help localize the energy of
the shock spatially into hotspots. At the same time, energy is localized in real space
it needs to delocalize (or equilibrate) in the frequency domain. This is because,
the macroscopic shock couples more strongly to long-frequency long-wavelength
modes and inter- and intra-vibrational relaxation processes are responsible to locally
equilibrate the system and transfer energy to high-frequency modes, this is called
up-pumping [36]. A combination of large-scale atomistic simulations and recent
experiments is providing unprecedented detail into these processes.

We described simulations playing various roles. On the one hand, detailed sim-
ulations about dynamical hotspots in RDX provide new insight into the reactivity
of nanoscale hotspots. Specifically, we find that dynamically created hotspots are
more reactive than counterparts with identical size and thermodynamic conditions
by created under equilibrium conditions. On the other hand, coarse grain simulations
can be used to help the design of new materials with the desired response of shock
loading by relating how the characteristics of the chemical reactions affect shock
propagation. Finally, first principles simulations have the potential to help the design
of newmaterials with a reduced set of experiments, but the accuracy of its predictions
must be rigorously quantified. We showed the emerging possibility of direct valida-
tion of predicted shock-induced chemistry against experiments. Ongoing efforts to
achieve ultrafast, broadband spectroscopy in shock experiments will enable a better
comparison and provide definite information about the detailed chemistry of HE
materials under shock loading.
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Chapter 9
Data-Driven Methods for Building
Reduced Kinetic Monte Carlo Models
of Complex Chemistry from Molecular
Dynamics Simulations

Qian Yang, Carlos A. Sing-Long, Enze Chen and Evan J. Reed

Abstract Complex chemical processes such as those found in combustion, the
decomposition of energetic materials, and the chemistry of planetary interiors, are
typically studied at the atomistic level using molecular dynamics (MD) simulations.
A nascent but growing trend in many areas of science and technology is to consider a
data-driven approach to studying complex processes, and molecular dynamics sim-
ulations, especially at high temperatures and pressures, are a prime example of an
area ripe for disruption with this approach. MD simulations are expensive, but each
simulation generates a wealth of data. In this chapter, we discuss a statistical learn-
ing framework for extracting information about the underlying chemical reactions
observed in MD data, and using it to build a fast kinetic Monte Carlo (KMC) model
of the corresponding chemical reaction network. We will show our KMCmodels can
not only extrapolate the behavior of the chemical system by as much as an order of
magnitude in time but can also be used to study the dynamics of entirely different
chemical trajectories. We will also discuss a new and efficient data-driven algorithm
for reducing our learned KMC models using L1-regularization. This allows us to
reduce complex chemical reaction networks consisting of thousands of reactions in
a matter of minutes.

9.1 Introduction

Complex chemical processes such as those found in combustion, the decomposition
of energetic materials and the chemistry of planetary interiors, are typically studied
at the atomistic level using molecular dynamics (MD) simulations. This poses two
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distinct challenges. First, the length and timescales currently available to MD are
generally still too small for meaningful comparison with many experimental mea-
surements. With current algorithms and computational power, molecular dynamics
simulations generally require weeks to run on high-performance parallel machines
for system sizes of only a few thousand atoms and timescales of nanoseconds. Sec-
ond, even though we want to run bigger and longer MD simulations, the ones we
can currently run are already too large and complex to easily interpret. Often, MD
simulations are run and some aggregate property of the system is computed; there
are few existing frameworks for understanding the detailed reactions that are driving
the aggregate property.

To address the first problem, researchers have worked over the past 20 years to
develop a variety of methods for accelerating atomistic simulation, resulting in many
innovative approaches such as hyperdynamics [24], parallel replica methods [25],
temperature-accelerated MD [20], and enhanced sampling [2]. Kinetic Monte Carlo
(KMC)methods have also becomean importantway to speedup atomistic simulation.
In KMC, the system is described by a set of possible states, and rates are given for
the transitions between each pair of states, allowing the algorithm to traverse through
them over time [26]. A key limitation of KMC is that the set of states and transition
rates must be known a priori. Various approaches to get around this problem include
adaptive KMC [28] and coupled KMC/MD [10, 23].

To address the second problem, researchers in the combustion, biochemistry, and
catalysis communities, among others, have worked to develop methods for model
reduction of chemical reaction networks. These approaches include the lumping of
species and reactions, graph theoretic approaches, and quasi-steady-state approxi-
mations [17], as well as sensitivity matrices [12, 22], integer programming [1, 3, 7,
14], and genetic algorithms [19]. A common challenge with these methods is their
dependence on a complex set of parameters, making them difficult to efficiently
generalize across systems. Many are also computationally expensive, making them
undesirable for studying complex systems with hundreds to tens of thousands of
reactions.

These two problems often collide when researchers attempt to build multiscale
models [18]. On the one hand, it is currently extremely difficult to simulate physi-
cal phenomena such as fracture using atomistic methods due to the computational
expense of running simulations at the relevant time and length scales. On the other
hand, there exist mesoscale models that can predict these properties of the system
with the input of a simple model that captures the important chemistry of the system.
This means that researchers often use a combination of physical intuition and data
from MD simulations to build a reduced model of the complex chemistry in the
system, which they then plug into the mesoscale model. Although this approach is
extremely useful and often the only practical way to drive computational predictions
of manymaterials properties, it is ultimately an unsatisfactory process. It is time con-
suming, limited by physical intuition, and impossible to generalize across different
systems. Thus this area is ripe for innovation.

With the increasing availability of large-scale computation, a nascent but grow-
ing trend in many areas of science and technology is to consider a data-driven
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approach. While data from experiments have always played an important part in
the development and parameterization of physical models from the beginning of
scientific history, what has changed in recent years is the vast amount of data that
scientists are now able to work with.Whether through high-throughput computation,
high-throughput experimentation, or data mining of existing literature, researchers
are increasingly working to generate and collect large quantities of data. The avail-
ability of this data enables a paradigm shift in the way we think about building useful
models of physical phenomena.

Atomistic simulation is a prime example of an area ripe for disruption with the
data-driven approach. AlthoughMD simulations are expensive, each simulation gen-
erates detailed data consisting of the atomic positions of every atom in a finely
resolved time series. It is then natural to wonder whether this wealth of data can be
used to do more than simply describe the particular system being studied. In this
chapter, we discuss a framework for extracting information about the fundamental
underlying elementary reactions observed from MD data, and using it to build a
kinetic Monte Carlo model of the corresponding chemical reaction network [30].
We will show that our KMC models can not only extrapolate the behavior of the
chemical system by as much as an order of magnitude in time but can also be used to
study the dynamics of entirely different chemical trajectories. Then, wewill discuss a
new and efficient data-driven algorithm for reducing our learned KMCmodels using
L1-regularization [29, 30].

9.2 Data-Driven Approach

In a typical data-driven learning problem, there is an outcome that we wish to predict
from a set of features that describe an object. This is done by using data consisting
of many observed objects encoded as features and their corresponding outcomes to
learn a model for the relationship between features and outcomes.

The data that underlies our framework is provided by molecular dynamics simu-
lations. The features that we use are a set of elementary reactions, and the outcome
is the probability distribution of concentrations of each molecule over time. We use
the chemical master equation [9], which can be simulated exactly using KMC, to
model the relationship between the features and the outcome. To fit the model to
the data, we learn the statistically optimal reaction rate constant for each elementary
reaction such that the KMC model of the resulting chemical master equation best
corresponds to the observed MD data. We discuss more carefully in later sections
how our framework defines the statistically optimal reaction rate constant, as well as
our metric for how well a given KMC model corresponds to the chemical system as
described by molecular dynamics.

We note that the more features that are used, the more complex the model. A
key aspect of the data-driven learning problem is choosing a model with just the
right amount of complexity: not so few that it is unable to capture important patterns
in the data (underfitting), but not so much that it captures noise from the dataset



212 Q. Yang et al.

as false patterns (overfitting), causing the model to perform poorly on new data. In
statistics and machine learning, this is known as the bias–variance tradeoff [8]. In
our framework, the complexity of the model is given by the number of elementary
reactions that we use to describe the MD data.

We extract elementary reactions from the molecular dynamics dataset by using
bond length and duration criteria. The bond length criteria is chosen to be fixed based
on radial distribution functions. The bond duration criteria, on the other hand, are a
parameter that plays an important role in determining the complexity of the model. If
the bond duration τ is chosen to be too small, then many reactions will be identified,
creating a complex model that is likely to be overfit to noise in the data. In this case,
the noise corresponds to atomic vibrations. If τ is chosen to be too large, then too
few reactions may be identified, creating a model that may not be able to express the
full complexity of the system, underfitting the data. Thus, it is important to choose
τ to optimize the bias–variance tradeoff.

One aspect of our learning problem that is a bit different from the traditional setting
is that both the features and the outcomes have been projected into a different space
from the original data. This is because the bond durations we choose also determine
themolecule concentrations over time in themolecular dynamics simulation, sowhat
we are looking for is a self-consistent model. We will show that these statistically
learned models can successfully extrapolate in both time and chemical space.

9.2.1 Stochastic Model

We use the chemical master equation (CME) as the underlying stochastic model for
describing the complex chemistry in our system. The chemical master equation is a
system of ordinary differential equations (ODEs) that gives the probability P(x, t)
of a system being in a particular state X (t) = x in molecular concentration space
at time t . The chemical master equation can be simulated exactly using Gillespie
stochastic simulation (GSS), which is equivalent to KMC and only requires knowing
the set of reactions and their corresponding rate constants. The model assumes that
the system has constant volume and is well stirred, so that the spatial position of the
molecules does not appreciably affect the rate of reaction between them [9].

We first perform molecular dynamics simulations under high temperature and
pressure conditions. In our work, we use the ReaxFF potential [11] to simulate a
computational cell of 216 methane molecules for approximately half a nanosecond.
This allowed us to observe more reactions in a single MD trajectory within a reason-
able computational time. Note that our algorithm does not depend on the particular
potential being used. It is possible to do the same analysis with a different potential,
for example, using ab initio molecular dynamics.

Our simulations are run using LAMMPS [15] at a temperature of 3300 K and a
pressure of 40.53 GPa. The bond length criteria that we use to determine whether
two atoms are bonded were determined using radial distribution functions taken
from previous work [16]. We say that two atoms are bonded if they are within a bond
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length distance of each other for at least a bond duration of τ timesteps. Similarly,
we say that two atoms that were previously bonded are unbonded only if they remain
beyond a bond length distance from each other for more than τ timesteps. We choose
τ to minimize the error between the stochastic model and the MD data, as described
below. In our optimal model, we find approximately 2000 distinct reactions and 500
distinct molecules.

We treat the reactions as if they are elementary. That is, we assume they have a
single energy barrier with a corresponding rate constant k. We associate with every
reaction j a propensity function a j (x), such that a j (x)dt gives the probability of
that reaction occurring in the time interval [t, t + dt) given the vector of molecular
concentrations X (t) = x at time t . It can be shown that this propensity function is
proportional to the number of possible combinations of the reactantmolecules at time
t [4, 5]. The constant of proportionality (e.g., the reaction rate constant) k j and the
molecular concentrations X (t) give rise to the propensity functions in the following
way:

• Unimolecular reactions Xm → products: a j (X) = k j Xm

• Bimolecular reactions 2Xm → products: a j (X) = k j Xm(Xm − 1)
• Bimolecular reactions Xm + Xm ′ → products: a j (X) = k j Xm Xm ′ .

If necessary, this can be extended naturally to elementary reactions involving more
than two reactants (which are rare). The chemical master equation is fully determined
by the set of all propensity functions that correspond to reactions in the system. The
Gillespie stochastic simulation algorithm can then be used to simulate the evolution
over time of the molecular concentrations in the chemical system [4, 5]. At each
iteration, the algorithm first chooses at random the next reaction to occur based on
the relative probabilities of each reaction given by their propensity functions and
then computes the time until the next reaction. This algorithm is equivalent to KMC.
Each time a reaction occurs, the concentrations of the reactants and products change,
leading to a transition between states defined by the molecular concentration vector.

9.2.2 Maximum Likelihood Estimation

While the propensity functions a j (x) are defined with respect to infinitesimal time
intervals [t, t + dt], molecular dynamics are numerical simulations and have an inte-
gration timestep of�t . Therefore, we cannot estimate the k j for the chemical master
equation directly from molecular dynamics data. However, we can try to get around
this by making the assumption that �t is small enough such that the a j (X (t ′)) is
approximately constant throughout the time interval t ′ ∈ [t, t + �t) for all reactions.
This is known as the tau-leaping approximation [6]. Intuitively, this means that the
molecular concentration X (t ′) does not change appreciably over this interval, which
means that only a few reactions have occurred, and that the molecular concentra-
tions of all reactant molecules are large enough to make any resulting changes in
a j (X (t ′)) relatively small for all reactions j . Although this is a strong assumption,
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we will find that it is sufficient to give us reasonable models. This assumption allows
us to model the number of times n j (t, t + �t) that each reaction j occurs in the
time interval [t, t + �t) as instances of a conditionally independent Poisson random
variable P j |X (t) with mean and variance given by λ j = a j (X (t))τ .

At each timestep, projecting the molecular dynamics simulations via bond length
and duration criteria gives rise to a set of molecular concentrations X (t) and the
number of times n j (t, t + �t) that reaction j has occurred. Each n j (t + �t) is an
observation of P j |X (t), which are all conditionally independent but not identically
distributed Poisson random variables. Then, we can use maximum likelihood esti-
mation [27] to estimate k j from our observations. The likelihood of observing a
particular sequence of n j (t, t + �t) can be given by the equivalent expression

L =
∏

t

Pr(P j = n j (t, t + �t)|X (t))

The log likelihood is then given by

� = log(L) =
∑

t

logPr(P j = n j (t, t + �t)|X (t))

Since the Poisson distribution has a probability density function given by

Pr(P j = n j ) = λ
n j

j e
−λ j

n j !
maximum likelihood estimation over the n j (t, t + �t) gives a simple estimate for
the reaction rates

k∗
j = 1

�t

∑N
t=1 n j (t, t + �t)
∑N

t=1 h j (X (t))

where h j (x) = a j (x)/k j corresponds to the propensity function without the con-
stant factor. For example, for bimolecular reactions Xm + Xm ′ → products, we have
h j (x) = XmXm ′ .

Note that each reaction rate is estimated independently. We can see from Fig. 9.1
that there is good agreement between themolecular concentration trajectory given by
the Gillespie stochastic simulations (colored lines) and molecular dynamics (black
lines). Note that in this figure, we only plot the three molecules with the largest
concentration in the system; there are hundreds of other distinct species in the system
at any given time.
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Fig. 9.1 Two examples of Gillespie stochastic simulations of a learned model of the system from
two independent molecular dynamics simulations that they were trained from. We see that both
achieve reasonable agreement, especially in comparison to fluctuations between independent MD
simulations of the same system. Reproduced from [30] with permission from the Royal Society
of Chemistry

9.2.3 Model Selection via Bond Duration

As described above, we carefully choose bond duration τ to optimize the complexity
of our model. As τ increases, fewer bond formation and bond breaking events are
detected. This also leads to fewer distinct reactions being detected, as depicted in
Fig. 9.2a.

We can see from Fig. 9.2b that our method of extracting reactions from the MD
data results inmostly unimolecular and bimolecular reactions, and a few trimolecular
reactions. There are a negligible amount of reactions that are more complex than
trimolecular, which is reasonable at these high temperatures and pressures. This
suggests that our assumption of elementary reactions with one energy barrier is not
implausible.

The complexity of the stochastic model describing the molecular dynamics data
decreases with increasing bond duration τ . If we choose a model that is too complex,
we might erroneously identify atomic vibrations as elementary reactions. This leads
to a high model error. If we choose a model that is too simple, we might miss true
elementary reactions. This again leads to an increase in model error. The dotted line
near τ = 0.1 ps in Fig. 9.2c indicates the optimal choice of τ for our model of the
methane molecular dynamics simulation.

9.2.4 Error Metric

In an ideal setting, many MD simulations of the same chemical system would be
available, from which a probability distribution of the molecular concentrations of
molecules over time can be constructed, which can then be compared to the probabil-
ity distribution given by the learned stochastic model. However, for many practical
problems, molecular dynamics is too expensive to generate a statistically signifi-
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(a) (b) (c)

Fig. 9.2 aSchematic of howvarying thebondduration τ changes the identificationof bonded atoms.
b The number of elementary reactions extracted from the MD data decreases with increasing bond
duration τ . c Bond durations that are too short erroneously capture atomic vibrations as elementary
reactions; bond durations that are too long miss true elementary reactions. The dotted line near
τ = 0.1 ps indicates the optimal choice of τ for our model of the methane system. Reproduced
from [30] with permission from the Royal Society of Chemistry

cant number of independent simulations. We have thus designed an error metric that
assumes a single MD simulation corresponds to the mean overall independent MD
simulations of a given system. This is usually not a bad assumption, especially if we
are interested in equilibrium properties of the system. Then, we use the root mean
square error between the MD simulation and the mean of S stochastic simulations to
characterize the error between MD and our stochastic model. We find the error for
each molecular species, m, separately:

Errm =
√∑N

t=1 (XMD[t] − ES{XGSSA[t]})2
N

In the above expression, N corresponds to the total number of sampled timesteps of
the molecular dynamics simulation. Gillespie stochastic simulation gives a continu-
ous timemodel, so we sample it at the same times as theMD.We choose S to be large
enough that the error converges. Note that this error should always be compared to
the amount of inherent fluctuation in a single MD trajectory for the corresponding
molecular species.

9.2.5 Extrapolation

The stochastic models that we learn from molecular dynamics data using the frame-
work above can be shown to extrapolate in both time and chemical space. These
extrapolations provide substantive test cases for our model, revealing that the set
of learned elementary reactions and rate constants are truly capturing underlying
information about the chemistry of these systems.
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(a) (b)

Fig. 9.3 Extrapolation in time. The colored lines correspond to Gillespie simulations averaged
over 20 independent runs. The black lines correspond to molecular dynamics. Reproduced from
[30] with permission from the Royal Society of Chemistry

9.2.5.1 Time

One potential application for learning stochastic models from MD is to then use
them to extrapolate forward in time. We find that it is indeed possible for reactions
observed early in ourmolecular dynamics simulations tomodel the largest population
molecules for 10 times longer or more. For example for CH4, we can train on only
25 picoseconds (ps) and extrapolate out to 200 ps. Note that training on only 12
ps, however, was not sufficient. For larger molecule species that first occur in the
system after about 50 ps, we find that training data from times out to 150 ps are
needed to capture their presence and growth in the chemical system over the full half
nanosecond. These results are shown in Fig. 9.3.

9.2.5.2 Chemical Space

Our stochastic model also provides a new way to study-related systems in different
regions of molecular concentration space. We demonstrate this by building a new
stochastic model trained from molecular dynamics simulation of a different sys-
tem, and show that the resulting model is able to successfully predict the molecular
dynamics trajectory of our original methane system.We first simulated 64 molecules
of isobutane C4H10, under the same pressure and temperature conditions as methane.
Next, we trained a stochastic model of the isobutane system using the framework
described above. Then, we used Gillespie stochastic simulation to simulate this
stochastic model but initialized with 216 molecules of CH4. Given that this new
stochastic model was not trained on any of the methane data, this is a true test case.
The comparison between simulation using the new stochastic model and the original
molecular dynamics is shown in Fig. 9.4a.
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(a)

(b) (c)

Fig. 9.4 a Extrapolation from a stochastic model trained on an isobutane system to a methane
system. There is good agreement between the two simulations. b To visualize how the isobutane
and methane systems traverse completely different regions of chemical space, we project their
molecular concentration trajectories onto the first and second principal components of the methane
trajectory. The arrows and shading indicate the direction of increasing time. c Comparison of the
estimated reaction rate constants k j for reactions that appear in both stochastic models trained from
molecular dynamics simulations of the two different chemical systems. Darker colors correspond
to reactions that occur more frequently and thus are expected to have better estimates for k j . Note
that none of the k j differ by more than two orders of magnitude between the stochastic models,
even though the spread of the rate constants is more than twelve orders of magnitude

Whydowebelieve that this extrapolation shouldwork? Ifwe compare theirmolec-
ular concentration trajectories, we see that they traverse completely different regions
of chemical concentration space. We can visualize this by projecting these trajecto-
ries into two dimensions. Consider for convenience projecting onto to the first and
second principal components of themethane dataset.We can see in Fig. 9.4b that their
projections do not intersect. However, our stochastic model is not described in terms
of molecular concentrations, but rather in terms of elementary reactions. When we
consider the set of reactions that are observed in the methane and isobutane datasets,
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we can see that a large portion of the reactions extracted from the methane system
are also extracted from the isobutane system, and furthermore that the reaction rate
constants for these reactions generally differ by no more than one or two orders of
magnitude. This explains the ability of our models to extrapolate—they are capturing
something about the underlying chemistry in the system, rather than only information
specific to the molecular concentration space that they have traversed, which is true
of raw phase space data from molecular dynamics. Note that while each molecular
dynamics simulation required several weeks on high-performance parallel machines,
the Gillespie simulations completed in less than a minute on a standard laptop com-
puter, and were easily and instantaneously initialized to a different system.

9.3 Model Reduction

As noted above, even for a relatively simple hydrocarbon system initialized with 216
molecules of methane run for half a nanosecond, approximately 2000 reactions are
extracted from a single molecular dynamics simulation. In order to understand the
key reactions that drive the underlying dynamics of the most important molecules in
the system, we would like to find a reduced subset of reactions that can model the
system with a minimal loss in accuracy for the important molecules.

Model reduction of complex chemistry with thousands of reactions is a difficult
computational problem. This is in part because the concentration changes nonlinearly
with respect to the current concentration. To see this, consider a toy problem involving
three reactions and three molecular species:

A + B → C with rate constant k1
A → 2C with rate constant k2

2C → A with rate constant k3

Then the corresponding reaction rate equations are given by

d[A]
dt

= −k1[A][B] − k2[A] + k3[C] ([C] − 1)

d[B]
dt

= −k1[A][B]
d[C]
dt

= k1[A][B] + 2k2[A] − 2k3[C] ([C] − 1)

Note that the bimolecular reactions cause the reaction rate equations to be a nonlinear
dynamical system, which greatly increases the computational complexity of many
model reduction algorithms. This is also a feature of the stochastic model based on
the chemical master equation that we described above.
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An important observation from the reaction rate equations, however, is that its
right-hand side is linear in the set of reaction rate constants k j . We have devel-
oped [29, 30] a computationally efficient method for model reduction of chemical
reaction networks that takes advantage of this observation, combined with a data-
driven approach to capture the nonlinearity of the system. Our method is subject to
only one parameter that determines the tradeoff between the amount of reduction in
the model and its corresponding loss in accuracy. We also note that it can be eas-
ily generalized to other nonlinear dynamical systems outside of chemical reaction
networks.

Here, we will describe our model reduction method applied to the stochastic
model based on the chemical master equation described above. At each timestep, the
molecular concentrations change according to the set of reactions that have taken
place. For each reaction j , let the column vector R j represent the stoichiometric
coefficients of the reactant and product molecules. For example, for the toy problem
above, the corresponding R j would be

R1 =
⎡

⎣
−1
−1
1

⎤

⎦ , R2 =
⎡

⎣
−1
0
2

⎤

⎦ , R3 =
⎡

⎣
1
0

−2

⎤

⎦

Then, the change in concentration from one timestep to the next in our stochastic
model is described by

X (t + �t) − X (t) =
r∑

j=1

R jP j (a j (X (t))�t)

where theP j ’s are all independent Poisson randomvariables that describe the number
of times reaction j will occur, and r is the total number of distinct reactions.

We can see that the first and second moments of the change in concentration are
given by

E{X (t + �t) − X (t)} =
r∑

j=1

R ja j (X (t))τ =
r∑

j=1

R jk j h j (X (t))τ

cov{X (t + �t) − X (t)} = R�(X (t))RT

where �(X (t)) is a diagonal matrix whose j th entry is a j (X (t))�t . Consider for
example the simple chemical system described above. Then, the expected value of
the changes in concentration of each molecule is given by
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1

�t
E

⎡

⎣
A(t + �t) − A(t)
B(t + �t) − B(t)
C(t + �t) − C(t)

⎤

⎦

= k1

⎡

⎣
−1
−1
1

⎤

⎦ A(t)B(t) + k2

⎡

⎣
−1
0
2

⎤

⎦ A(t) + k3

⎡

⎣
1
0

−2

⎤

⎦C(t) (C(t) − 1)

=
⎡

⎣
−1 −1 1
−1 0 0
1 2 −2

⎤

⎦

︸ ︷︷ ︸
R

⎡

⎣
A(t)B(t) 0 0

0 A(t) 0
0 0 C(t) (C(t) − 1)

⎤

⎦

︸ ︷︷ ︸
Dt

⎡

⎣
k1
k2
k3

⎤

⎦

︸ ︷︷ ︸
k

We can write the above compactly as

μt+�t |X (t) = RDtk

and a similar expression linear in the vector of rate constants k can be obtained for
the covariance of the changes in concentration:

�t+�t |X (t) = HDtk

Note that both the first and second moments of the change in concentration from any
given point in molecular concentration space X (t) = x can be expressed linearly
in the vector of reaction rate constants k. We thus formulate our model reduction
problem in a moment-matching framework. We seek the smallest subset of reactions
that is able to maximally match the first and second moments of the changes in con-
centration of the full reaction network at any given point in molecular concentration
space.

9.3.1 L1 Regularization

By sampling the molecular dynamics trajectory at different timesteps, we generate
samples of relevant points in molecular concentration space. We can write one linear
system for each sampled point for the first and second moments (expected value and
covariance) of the change in concentration at the next timestep. We can then stack
all of them into one large linear system as follows:
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1

τ

⎡

⎢⎢⎢⎢⎣

μ2|X1

�2|X1

...

μn+1|Xn

�n+1|Xn

⎤

⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎣

RD1

HDt

...

RDn

HDn

⎤

⎥⎥⎥⎥⎦
k

b = Ak

This large stacked linear system captures the nonlinearity of the chemical reaction
network by sampling points in molecular concentration space traversed by the non-
linear dynamical system.

We would like to choose a subset of reactions for the reduced model by setting
as many of the reaction rate constants k j to zero as possible. Note that we first scale
the problem using our estimated k∗

j ’s from the full stochastic model described above,
so that the vector k = 1 is an exact solution of Ak = b. Then to find the reduced
model, we formulate the nonnegative LASSO (least absolute selection and shrinkage
operator) problem [13, 21]:

min
k

‖Ak − b‖2
s.t. k ≥ 0, ‖k‖1 ≤ λ

By expressing our stochastic model in terms of a linear system of equations, our
model reduction problem can be expressed with a simple quadratic objective. This
makes solving the problemvery efficient numerically, in contrast tomanyothermodel
reductionmethods where the optimization objective is expressed in terms of the error
in themolecular concentrations,which are solutions of a nonlinear dynamical system.

Note that we have two constraints in our optimization problem. The first constraint
is a physical one—no reaction rate can be negative. The second constraint is intended
to bias the solution towards one where as many of the k j ’s are zero as possible, i.e.,
to find a sparse k. Note that if we wanted to exactly constrain the solution to have
no more than λ zero entries, the problem would be NP hard. Thus, we use instead
L1-regularization, which allows us to solve the problem for thousands of reactions
in a matter of minutes, scaling polynomially in the total number of reactions r .

To see why L1-regularization promotes sparsity, consider the optimization prob-
lem

min
x

‖aT x − b‖2
s.t. ‖x‖p ≤ λ

For different choices of norm p, the solution will have different characteristics. In
Fig. 9.5, we illustrate a comparison between the commonly used L2-regularization
and the sparsity-promoting L1-regularization. The dotted lines in each case enclose
all solutions that satisfy the corresponding regularization constraint. Due to the shape
of each region, solutions in the case of L1-regularization tend to occur exactly on
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Fig. 9.5 Regularization
using the L2 and L1 norms.
The L1 norm tends to find
solutions with many zero
entries. Reproduced from
[30] with permission from
the Royal Society of
Chemistry

one or several coordinate axes, corresponding to zeros in the solution. In contrast,
solutions in the case of L2-regularization seldom occur exactly on coordinate axes.

Our model reduction method uses the single parameter λ to adjust between the
accuracy of the reduced chemical reaction network and the number of reactions
in the reduced model. This allows us to achieve a high degree of granularity in
finding reduced models of different sizes and enables the method to be uniform
across different chemical reaction networks, since there are no other system-specific
parameters to adjust. In practice, we may add an upper bound on the rate constants
k ≤ 1/ε, where ε ≤ 1 is usually on the order of 0.01, to require that the reaction
rates in the reduced model are not too much larger than estimated physical rates,
although we have found the reduced models to usually be quite similar whether or
not we include this upper bound.

9.3.2 Results

In Fig. 9.6, we show the results of applying our model reduction method to the
methane system. Each colored line corresponds to Gillespie stochastic simulations
of a reduced model, for different values of λ and thus different size chemical reaction
networks. The full stochastic model consists of 2000 reactions. Using only about
7.1% of those reactions, we can model the number of CH4 molecules over time
with an error of less than 10%, compared to a baseline fluctuation of about 7%
in CH4 concentrations between independent molecular dynamics simulations. This
corresponds to an increase in error of just 3% after removing 93% of reactions from
the network. We note however that more reactions are needed to simultaneously
model the number of molecules of H2 and C2H6 over time with similar accuracy.

Since L1-regularization does not require that the k j ’s in the solution to be either
0 or 1, the reduced model will allow the k j ’s to be somewhat different from that
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estimated from the data. However, we would like to ensure that the reduced k j ’s are
still physically meaningful. It would be unreasonable, for example, if a reaction in
the reducedmodel has a reaction rate that is a significant order of magnitude different
from physically reasonable rates. Since we do not actually know the true physical
rates for most reactions, we consider instead the estimated rates obtained from our
molecular dynamics data. By comparing themwith the reduced solution, we find that
the structure of our problem is such that most of the reduced k j ’s are either 0, or no
more than two orders of magnitude different from the estimated k j ’s. See Fig. 9.7.

Finally, we compare our L1-regularization based model reduction method and a
more naive method such as simply removing the most infrequent reactions from the
system, which we will call count-based reduction. The differences are illustrated in
Fig. 9.8. In this example, we use the first 200 ps of a molecular dynamics simulation
of the methane system to train a stochastic model consisting of 629 reactions. We
then reduce this model using both L1 regularization and count-based reduction. We
use these reduced models to extrapolate the system out to 500 ps and compare their
accuracy. At first glance, it seems that the system can be reduced to about only

Fig. 9.6 Gillespie stochastic simulations using reduced models determined by L1-regularization.
Reproduced from [30] with permission from the Royal Society of Chemistry

Fig. 9.7 The reducedmodel reduction rates compared with the estimated physical reaction rates for
one choice of λ, here λ = 125 where 7.1% of reactions are retained. All reaction rates falling within
the region highlighted in yellow are no more than two orders of magnitude different from their
estimated physical rate in the reduced model determined by L1-regularization. Note that almost all
reduced reaction rates either fall within the yellow region or are approximately numerically zero.
This phase transition in the reduced rates is typical over different choices of λ
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Fig. 9.8 L1-regularization based model reduction (upper right, lasso) appears to require more
reactions to model the largest population molecules for the same amount of error than count-
based reduction (upper left, count). However, count-based reduction has in comparison very little
granularity in finding reduced models of different sizes and performs poorly on smaller population
molecules of importance, such as the growth of carbon clusters in the methane system (bottom).
Reproduced from [30] with permission from the Royal Society of Chemistry

100 reactions before incurring significant growth in error for the largest population
molecules in the system, CH4, H2, and C2H6. In contrast, the optimal reduced model
found using the L1-regularization method seems to require approximately 350–450
reactions. However, in our methane system, one property of interest is the growth of
carbon clusters in the system. In correspondence with the size of the computational
cell and the total simulation time, we characterize any molecules with more than 5
carbons as carbon clusters. Note that the count-based reductionmethod is completely
unable to find a reduced reaction network that can correctly capture the average
number of carbon clusters at the end of 500 ps. After the full stochastic model,
the next largest reduced model consists of only 247 reactions and overestimates the
number of carbon clusters. The L1-regularization method, on the other hand, can
achieve fine granularity in the size of the reduced reaction networks that it finds. In
particular, a reduced model with approximately 450 reactions, which is also among
the best reduced models for capturing the large population molecules, also captures
the average number of carbon clusters after 500 ps.
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9.4 Conclusions

In conclusion, we discover that MD simulations contain a lot of useful underlying
information that can be exploited using statistical learning to build models of com-
plex chemistry. We use a data-driven method to build stochastic models from slow
MD simulations that can be rapidly simulated using KMC. These models have the
potential to extrapolate more than an order of magnitude in time, and furthermore can
be used to simulate systems in different regions of chemical space. We also develop
a new data-driven method for model reduction of chemical reaction networks. We
show that by using data to sample the nonlinearities in the system and using L1-
regularization to relax the sparsity constraint, we can express model reduction very
simply as a quadratic program with simple linear and bound constraints. This allows
us to reduce complex chemical reaction networks consisting of thousands of reactions
in a matter of minutes.

One can easily imagine a future in which MD simulations used for research on
many different chemical systems are routinely archived and analyzed in order to add
to and modify an existing repository of elementary chemical reactions and reaction
rates. This repository would form a chemical genome that can then be used to quickly
simulate all kinds of new chemical systems.
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Chapter 10
Toward a Predictive Hierarchical
Multiscale Modeling Approach
for Energetic Materials

Brian C. Barnes, John K. Brennan, Edward F. C. Byrd, Sergei Izvekov,
James P. Larentzos and Betsy M. Rice

Abstract This chapter describes efforts to enable multiscale modeling of energetic
material response to insult through a concurrent hierarchical multiscale framework.
As a demonstration, a quantum-derived, particle-based coarse-grain model of an
energetic material is used to provide part of the constitutive response in a finite ele-
ment multiphysics simulation. Bottom-up coarse-grain models of hexahydro-1,3,5-
trinitro-s-triazine (RDX) and the methods used to perform reactive simulations at the
microscale will be described. Simulations demonstrating microstructure-dependent
initiation are also presented. Research opportunities addressing the remaining chal-
lenges related to detonation are discussed.

Keywords Hierarchical multiscale modeling · Energetic materials · Dissipative
particle dynamics · Bottom-up coarse-grain models · Condensed phase chemistry ·
Quantum mechanics

10.1 Introduction

Agrand challenge formodeling and simulation (M&S) of the properties and response
of energetic materials (EM) is virtual assessment of EM performance in munitions,
providing a substantial time and monetary savings in the development of materials
for next-generation weapons. Current M&S capabilities have numerous shortfalls
that do not yet allow accurate, predictive in silico assessment, or even reliable suc-
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cess in virtual design or screening of new EM. These include a lack of micro- and
mesoscalemodeling capabilities necessary to represent salient physical and chemical
features of the materials, deficiencies in multidisciplinary linkages of the relevant
scales, and the existence of high levels of empiricism in continuum simulations.
Furthermore, the inaccuracy and uncertainty in the descriptions of energetic material
response at the microscale and beyond are problematic, especially in the treatment of
chemical reactivity. In light of these shortfalls, vigorous research efforts have been
pursued by us and others [1–8] to develop simulation capabilities to adequately cap-
ture microstructural dependencies on macroscopic events—a simulation challenge
for many materials [9–16] and inherent to the initiation of EMs [17].

Our efforts in this area focus on the development of a multiscale M&S frame-
work to predict EM response when subjected to thermal or mechanical insults.While
particle-based and continuum level simulation methodologies and models have been
extensively studied and advanced [18, 19], the coupling of grain-scale, nonequilib-
rium microstructural changes between the microscale and macroscale is not com-
monly realized due in part to methodological challenges [20] in multiscale model-
ing, as well as computational limitations of mesoscale modeling. As an illustration,
consider the case of plate impact on either a single-crystal or formulated energetic
material. Classical molecular simulations of one-dimensional (1D) impact under
boundary conditions of uniaxial strain typically involve 104–107 particles (reach-
ing up to micron length scales in one dimension) for durations reaching hundreds
of picoseconds. However, experimental setups may be measured in centimeters or
larger, in all dimensions, while observations occur over microseconds. Direct molec-
ular simulation of these macroscale systems is simply unfeasible. Current engineer-
ing or continuum models used by most in the EM community are parameterized
against macroscale experimental data for particular materials, where any atomistic or
mesoscalemechanisms affectingmaterial response are implicitly present, as opposed
to naturally emerging via models that represent microstructural features as statistical
distributions or material history variables. Reaction models used at the continuum
level, whether based on matching a specific set of experiments or analysis of atom-
istic simulations, rarely incorporate explicit dependencies of the reaction chemistry
on evolving microstructure, particularly under extreme temperatures and pressures.
Furthermore, the role of initial reaction chemistry in changing mechanical constitu-
tive behavior for the interactions ofmaterials at the grain level is not typically utilized
in continuum models.

For these reasons, some of our recent efforts have been focused on advancing the
nascent microscale models/methods and scale-bridging approaches required for the
multiscale M&S framework. Our overall long-term goals have been to develop the
appropriate models and approaches that will overcome these gaps, leading to a pre-
dictive capability to simulate the coupled thermophysical, chemical and mechanical
material processes that affect material response.Within this chapter, we will describe
our efforts to properly depict microstructural features in continuum simulations of
EM via a multiscale hierarchical approach that bridges higher resolution modeling
and the continuum.
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We will first describe the higher resolution model and method development at
the coarse-grain (CG) level that enables particle-based reactive simulations at the
microscale. Particle-based microscale simulation methods utilizing CG models cur-
rently offer a promising route for extending atomisticmodeling toward themicroscale
with a significant gain in computational efficiency. CG models, generated by group-
ing a set of smaller entities (e.g., atoms or molecules) into a single larger entity, are
built in a bottom-up fashion, such that they incorporate the key underlying physics
from the higher resolution scale. During this coarse-graining process, the reduc-
tion in molecular degrees-of-freedom (d.o.f.) provides a gain in computational effi-
ciency; however, the loss of information must be adequately recovered through the
CG methodology. Furthermore, at the atomistic scale, the formation and breaking
of chemical bonds is treated explicitly, while at the microscale, the CG models and
methods must collectively capture and recover the relevant chemical features lost
during coarse-graining.

We will then discuss our efforts to understand condensed phase chemistry under
extreme temperature and pressure, and provide perspectives regarding realistic chem-
istry that is to be included into a CG model that treats chemical reactivity. This will
be followed by an overview of multiscale approaches for continuum simulations
that make use of information from particle-based simulations, including our cho-
sen approach, a concurrent hierarchical multiscale simulation method (HMS) that
couples continuum and particle-based CG simulations. Finally, we will describe our
scale-bridging and algorithmic research efforts within HMS, including the use of
machine learning to increase computational efficiency, and provide demonstrations
of the HMS approach using our CG models and methods. The chapter will conclude
with a discussion of new research opportunities and future directions.

10.2 Coarse-Grain Models

Simulation of the complete range of EM responses, including the competing mecha-
nisms of energy flow, mass flow, and chemical reactivity, requires modeling at length
and timescales that are far beyond those amenable to atomistic-scale approaches.
Quantum chemical approaches based on ab initio, density functional theory (DFT)
or semiempirical calculations can provide detailed information about chemical reac-
tions and transition state structures, but tend to be limited in the number of atoms
that can be treated; thus, they are unable to capture the full extent of heterogeneity
present in real microstructured materials. Classical reactive potentials that describe
the energy landscape and barriers between initial material, the reaction products,
and the relevant transition states are available [21], for example, ReaxFF [22, 23]
is a commonly employed atomistic force field for modeling EMs. All-atom reactive
molecular dynamics (MD) simulations of EMs have been applied to examine the
initiation and growth of hot spots created near a single microstructural heterogene-
ity [24], when the material is subjected to thermal and mechanical loading. How-
ever, these simulations of an isolated, nanometer-sized heterogeneity still required
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petascale computational resources. As such, the computational expense quickly
becomes impractical, requiring years of wall clock time when attempting to simulate
realistic samples containing a collection of microscale heterogeneities. These well-
recognized limitations of modeling at the atomistic scale provided the motivation
for the work described here: the development of microscale models and methods
to bridge these spatial and temporal modeling regimes while ensuring multiscale
consistency. Until recently, the requisite microscale computational capabilities were
either nonexistent or lacking. In this section, we will describe our efforts in develop-
ing tools for building CG models, while our efforts in developing the necessary CG
methodologies will be described in the following section.

Discrete particle-like descriptions for computationally feasible modeling of EM
at the microscale can be obtained through two distinct approaches. One is derived
from macroscale data and governing equations (discretization of continuum mod-
els), which has demonstrated success in going beyond simple homogeneous systems,
but still remains within an essentially macroscopic phenomenological framework,
thereby severely limiting its predictive capability [25]. The second approach, which
wewill discuss in detail, is bottom-upparticle-based coarse-graining, inwhichgroups
of atoms aremapped into a statistically equivalent ensemble of structure-less CG par-
ticles interacting via CG force fields derived from microscopic information [26–29].

In this approach, the atomistic coordinate space is reduced to a smaller space
of CG coordinates commonly associated with center-of-mass (CoM) coordinates of
molecular clusters representing the CG particles, while the CG dynamics is consid-
ered to be Newtonian. Considerable efforts have been expended in the search for CG
conservative force fields that lead to a correct representation of equilibrium atomistic
statistics and, hence, correct thermodynamics of the CG ensemble [30]. Among the
growing efforts to develop conservative force fields for CG models, of particular
interest for the work presented here were efforts to generalize CG models for flu-
ids with complicated EOS. These efforts resulted in the development of many-body
interaction models [31–33]. Conservative forces in such models can be viewed as
effective (mean) forces, where these forces arise due to changes in a many-body
potential of mean force (PMF). Approximations to the CG PMF energy surface can
be obtained from microscopic data with a number of bottom-up methods such as
structure inversion [34], force-matching [35–41], or entropy-matching approaches
[42].

One efficient technique for producingwell-performing bottom-up approximations
to the CG PMF is the multiscale coarse-graining (MS-CG) method [35–38, 43–50].
The MS-CG method has been described elsewhere [36, 40, 41, 51] as a parameter-
free force-matching approach that yields an optimal pairwise decomposition of CG
conservative forces, and therefore of the associated CG PMF. Consequently, theMS-
CG approach is our method of choice for parameterization of the CGmodels for EM.
The MS-CG method can be naturally extended to include a dependence on thermo-
dynamic state variables such as density or temperature, which further enhances the
transferability of the CG models [39, 41, 52]. This is important for simulations of
shocked EM, where an exceptionally broad spectrum of thermodynamic conditions
ranging from ambient to extreme temperatures and pressures may be sampled.
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For realistic molecular environments found in condensed-matter systems such as
EM, however, the CG conservative models typically fail to yield correct time corre-
lations of the CG dynamical variables leading to accelerated dynamics and affecting
the corresponding transport properties. This failure has been attributed to the absence
of interparticle friction and thermal noise in the CG description, both of which lead
to energy dissipation due to the coupling to the atomistic intraparticle (irrelevant)
dynamics with the surroundings. Consequently, bottom-upmodeling of both thermo-
dynamic and transport properties require thermodynamically consistent modeling of
both the CG conservative (PMF) and nonconservative (dissipative) interactions.

In developing a bottom-up description of the CG nonconservative interactions,
we have capitalized on recent advances in formulating the CG dynamics from first
principles [51, 53–55]. In these works, the CG equations of motion in the form
of generalized Langevin equations (GLE) have been derived from the microscopic
Newtonian equations by means of the Mori-Zwanzig formalism. The Mori-Zwanzig
formalism leads to the thermodynamically consistent decomposition of the micro-
scopic forces into CG conservative and nonconservative contributions. Within the
pairwise and Markovian limits, which are always valid for systems interacting with
nonlinear potentials at sufficiently aggressive coarse-graining, the GLE dynamics
acquires a classical Galilean invariant form of the Dissipative Particle Dynamics
(DPD) [56, 57] equations with the conservative forces precisely prescribed by the
MS-CG approach. Initially, the DPD equations were introduced phenomenologically
to describe the hydrodynamics of simple liquids using a particle-based approach.
The derivation of the DPD equations from first principles in this fashion provides
one with a recipe to parameterize the CG models in a fully bottom-up fashion and
has led to new systematic approaches to extract the distance-dependent radial and
shear dissipative and random forces directly from the atomistic data [51, 58–60].
Our recently proposed multiscale methodology [51, 60] to extract nonconservative
interactions from atomistic interactions and dynamics data complements theMS-CG
approach to provide a robust framework for bottom-up parameterization of both the
conservative and nonconservative forces used in the DPD methodology.

In the following sections, we briefly review the basics of the approaches for first
principles parameterization of the conservative and nonconservative force fields for
use in the DPD equations of motion and then discuss their applications to two well-
studied energetic materials, hexahydro-1,3,5-trinitro-s-triazine (RDX, C3H6N6O6)
and nitromethane (NM, CH3NO2).

10.2.1 Conservative DPD Force Fields

10.2.1.1 The MS-CG Method

The MS-CG method is described [35–37, 40, 47, 51] as a force-matching-based
approach for constructing a least-squares optimal pairwise decomposition of a (con-
servative) force field

(
FC
I

)
and corresponding many-body CG PMF

(
W PMF

)
. In the
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MS-CG approach, the intrinsic many-body force FC
I is approximated by a pairwise

and central force field FC,2b
I . The latter force field is determined using a database of

the microscopic forces FI associated with the CG coordinates RI by minimizing the
merit function

χ2(α) �
〈
1

N

N∑

I�1

∣∣
∣FI − FC,2b

I (α)
∣∣
∣
2
+

∣∣
∣∣∣
∣
3V Patm − 3NkBT

atm −
N∑

I�1

FC,2b
I (α) · RI

∣∣
∣∣∣
∣

2〉

(10.1)

with respect to spline parametersα used to represent each pair term in the FC,2b
I . In the

atomistic system, the CG coordinates RI are located at the CoM of an atomic group
mapped into a CG particle. The optional pressure constraint introduced by the second
term in (10.1), where T atm and Patm are, respectively, the atomistic temperature and
pressure, leads to a CG model suitable for NPT simulations [36, 39, 45].

One approach to account for, on average, the many-body interactions within the
two-body representation is to use pair terms f C(RI J , ρ) in FC,2b

I (α) that are functions
of a particle number density distribution,ρ, andwhere RI J is the interparticle distance
[39, 41, 52]. This density dependency is not merely an abstract construction, but
realistically describes the EOS-dependent interactions at the CG scale. As matter of
fact, the force-matching expressed by (10.1) yields a different force f C(R, ρ, T ) at
each thermodynamic state point (e.g., density ρ and temperature T ), when applied
to the atomistic system at different state points. In general, both the density ρ and
temperature T dependency are needed to ensure a correct EOS for the CG system.

For a homogeneous, single component system, the particle density could be
defined based on the global density ρ ≡ 〈ρ〉 � N/V , while alternatively, the
notion of a local particle density ρ(RI ) associated with the Ith particle could also be
implemented. In the latter approach, the PMF remains a regular function of particle
position, and therefore, this approach avoids the issues that otherwise plague global
density-dependent interactions [61]. A local particle density definition ismore appro-
priate for systems whose local structure may dramatically vary, such as a microstruc-
tured material under thermal or mechanical loading. A consistent approach for defin-
ingρ(RI ) fromadiscrete set ofmasses is to useweight functions centered on particles
ρ(RI ) � ∑

J ��I ωρ(RI J ), where the density weight function ωρ(RI J ) has compact
support [52]. Neglecting the explicit temperature dependency of f C(RI J , ρ, T ), an
assumption that often is justified, the density dependency can be introduced numer-
ically via interpolation of f C(RI J , ρ) to a set of forces

{
f C(RI J , ρ

s)
}
calculated

for a reference system at a set of specific thermodynamic densities {ρs}. Although
linear interpolation is considered to be adequate [39, 41] in most DPD applications,
it leads to unacceptable energy conservation in the energy-conserving DPD method
(DPD-E), described hereafter. A computationally efficient density dependency that
results in an exactly integrable force field (and hence better energy conservation) can
be written as [52, 62]

f C(RI J , ρI , ρJ ) � f C0 (RI J ) +
1

2
ωD(RI J )[A(ρI ) + A(ρJ )] (10.2)
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where f C0 (R) � f C
(
R, ρ0

)
is the MS-CG pair term for the density ρ0 at ambient

conditions, ωD(R) is a preselected distance weighting function, and A(ρ) is chosen
to generate the desired EOS. Integrating the density-dependent MS-CG force field
with pair terms given by (10.2) results in the pairwise decomposition of the CG PMF
into a sum of potentials wPMF(RI J , ρ).

10.2.1.2 Application to RDX and NM: Parameterization
of Conservative MS-CG Models

The MS-CG methodology has been applied to derive accurate and transferrable CG
conservative force fields for RDX [41, 52, 63] and NM [39, 51, 60]. The map-
ping of the atomistic RDX and NM structure into a one-bead CG representation is
displayed in Fig. 10.1a. The performance of the MS-CG approach for aggressive
coarse-graining where clusters of many molecules mapped into a CG particle was
explored for liquid NM and proved to be successful [60]. Specifically, a hierarchy
of MS-CG models starting with one NM molecule per Voronoi cell (Fig. 10.1a) and
up to 64 NM molecules per cell (Fig. 10.1b) was able to accurately describe the
structure and density of the atomistic liquid NM under constant NPT conditions.

Calculated MS-CG potential terms wPMF(R, ρ) for different pressures (densities)
for the density-dependent MS-CG models of RDX and NM are shown in Fig. 10.2
[39, 41, 52]. The density dependency for the NM model was introduced through
linear interpolation of MS-CG potentials for different densities. For RDX, the model
with local density dependency using the representation in (10.2) (referred to as the

(a) (b)

Fig. 10.1 Panel a: Mapping of RDX (top) and NM (bottom) into a one-site representation. Panel
b: Visualization of partitioning of liquid NM (3840 molecules) into centroidal Voronoi cells with
64 molecules per cell. The large balls represent CoMs (centroids) of the Voronoi cells, while the
lines shown connect the Voronoi cell centroids to the molecular CoM that are associated with the
cell. Colors are used to visually delineate individual clusters (reprinted from Izvekov, S.; Rice, B.
M., J. Chem. Phys. 2014, 140 (10), 104104, with the permission of AIP Publishing)
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Fig. 10.2 One-site density-dependent MS-CG models of RDX (Panel a) and NM (Panel b). The
scaled CoM RDFs are shown by the dot-dashed and dotted lines (Reprinted from (a) Izvekov, S.;
Chung, P. W.; Rice, B. M., J. Chem. Phys. 2011, 135 (4), 044112 and (b) Izvekov, S.; Chung, P. W.;
Rice, B. M., J. Chem. Phys. 2010, 133 (6), 064109, with the permission of AIP Publishing.)

MS-CG-D(E) model) was introduced to achieve the energy conservation required
for DPD-E simulations of RDX [52].

Due to the systematic representation ofmicroscopic interactions, theMS-CG con-
servative models describe the equilibrium properties of these explosives reasonably
well under different thermodynamic conditions and in different phases. In particu-
lar, the MS-CG model of RDX well describes various material properties, including
the structure of the ideal RDX crystal [52]. A summary of key thermodynamic and
mechanical properties for crystalline RDX from (i) experiment, (ii) atomistic sim-
ulations using the reference atomistic force field of Smith and Bharadwaj (the SB
model) [64], and (iii) MD simulations of the MS-CG model at ambient pressure is
given in Table 10.1.



10 Toward a Predictive Hierarchical Multiscale Modeling Approach … 237

Table 10.1 Lattice constants a, b, c, density ρ, volumetric thermal expansion coefficient αV ,
isothermal bulk modulus BT , and atmospheric melting temperature Tmelt of crystalline RDX, from
experiment, the atomistic reference and the MS-CG model

Property Experiment Atomistic MS-CGa

a (Å) 13.18b 13.45c 13.37

b (Å) 11.57b 11.53c 11.58

c (Å) 10.71b 10.53c 10.59

ρ (kg/m3) 1806b 1805c 1801

αV (10−5 1/K) 19.34d 16.38c, 10.94e 8.32

BT (GPa) 12.1f, 11.99g 13.0c 13.17

Tmelt (K) 478.6h 488.5i 468.8

aMoore et al. [52]
bChoi and Prince [65] 300 K
cMunday et al. [66] 300 K
dCady [67]
ePodeszwza et al. [68]
fOlinger et al. [69] 293 K
gHaycraft [70] 295 K
hHall [71]
iSellers et al. [72]

The elastic stiffness constants Ci j are compared in Table 10.2 to the results for
the reference atomistic model, density functional theory (DFT) calculations, and to
experiment. The table also reports Cauchy pressures for an MS-CG model crystal,
which are measures of the deviation from purely two-body interactions. A similar or
better level of agreement is achieved for MS-CG models of NM [39].

Introducing density dependency into the MS-CG potentials leads to significantly
improved mechanical properties of the materials under elevated pressures. This is
particularly challenging due to the well-known problem of representability, i.e., at a
given state point, no single pair potential may exist that can capture all the properties
of a given material [61]. The exceptional transferability of the MS-CG models make
them suitable for application to systems under thermal and mechanical loading [75].
The level of accuracy and transferability achieved with the MS-CG approach would
be difficult to reproduce using the conventional top-down approaches [29, 76, 77].

10.2.2 Nonconservative DPD Force Fields

10.2.2.1 Multiscale Coarse-Graining of Nonconservative Interactions

A characteristic feature of the DPD methodology is the dissipative force that acts
between particles,which provides ameans of depicting the atomisticmodel dynamics
with a CGmodel.We have refined the standard dissipative contributions and incorpo-



238 B. C. Barnes et al.

Table 10.2 Stiffness constants Ci j for the MS-CG model of crystalline RDX compared to experi-
mental, ab initio, and empirical atomistic model data

Ci j (GPa) Experimentd,e ab initioc Atomistica,b MS-CGa

C11
36.67d, 25.02e 29.96 30.64a, 25.00b 21.03

C12
1.38, 8.21 7.48 12.68, 10.60 10.06

C13
1.67, 5.81 4.52 7.92, 7.60 11.49

C22
25.67, 19.60 25.51 29.41, 23.80 20.98

C23
9.17, 5.90 5.28 10.64, 8.80 11.50

C33
21.64, 17.93 23.61 30.23, 23.40 23.53

C44
11.99, 5.17 5.34 4.16, 3.10 6.11

C55
2.72, 4.07 4.83 6.54, 5.20 6.10

C66
7.68, 6.91 8.59 10.03, 7.70 5.23

C13–C14 N/A N/A N/A 5.38

C12–C66 N/A N/A N/A 4.83

aMoore et al. [52] 0 K
bMunday et al. [66] 300 K
cTaylor [73] 0 K, DFT-D3
dHaycraft [70] 295 K
eHaussuhl [74] 293 K

rated them into the DPD-RX framework, includingmultidirectional dissipative inter-
actions [78, 79] that are both parallel and perpendicular to the interparticle separation
axis. Directional dissipative force contributions attempt to capture the CG d.o.f. that
contribute to the molecular shape or polarity. The multiscale bottom-up approach
to derive the radial (parallel)

[
γ ||(R)

]
and shear (perpendicular)

[
γ ⊥(R)

]
friction

functions dependent on the interparticle separation R is proposed and described in
detail elsewhere [60]. The friction functions γ ||(R) and γ ⊥(R) describe the ampli-
tudes of the nonconservative force components that are parallel and perpendicular to
the interparticle separation, respectively. The approach exploits the statistical inde-
pendence of the random forces and the initial particle velocities, which is a generic
property of the GLE dynamics, and hence the DPD method. This property allows a
unique relationship between the friction functions, and both the three-body veloc-
ity–velocity correlation functions cαβ

VV , α, β ∈ {||,⊥} and the two-body correlation
functions

[
cα
�FV

]
of residual force, �FI � FI − FC

I , with velocity. By introducing
the mesh {Rl , l � 1, . . . , Nbin} of interparticle distances and considering the corre-
lation functions at a sufficiently large moment of time TM , the orthogonality relation
leads to the following linear system of equations

Nbin∑

l̄�1

[
cα||
VV

(
TM , Rl , Rl̄

)
γ ||(Rl̄

)
+ cα⊥

VV
(
TM , Rl , Rl̄

)
γ ⊥(

Rl̄
)] � −cα�FV (TM , Rl ), α � ||, ⊥ (10.3)
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Equation (10.3) allows the friction functions γ ||(R), γ ⊥(R) to be uniquely deter-
mined on the distance mesh. The friction functions are thermodynamically consis-
tent with the MS-CG conservative force used to compute the correlation functions
cα
�FV . Following the standard DPD formalism, the random forces for both the par-
allel and perpendicular contributions are modeled a priori with fluctuation–dissipa-
tion theorem-compliant white noise (uncorrelated in time). The appropriate fluctu-
ation–dissipation relations for both the parallel and perpendicular contributions can
be found elsewhere [75].

10.2.2.2 Application to RDX and NM: Parameterization
of Nonconservative Forces

The accurate description of transport phenomena, such as diffusion and viscosity,
with the DPD approach, requires the parameterization of radial, γ ||(R), and shear,
γ ⊥(R), friction functions. The application of the multiscale methodology presented
in Sect. 10.2.2.1 for RDX [63] and NM [51, 60] leads to accurate γ ||(R) and γ ⊥(R)

friction functions that are thermodynamically consistent with the conservative inter-
actions (Fig. 10.3). The radial friction function γ ||(R) for NM was found to exhibit
a typical form at fine coarse-graining [51, 60]. In contrast to this and to bottom-up
nonconservative DPD forces of real molecular liquids discussed in the literature,
the dissipative dynamics of RDX is dominated by the shear friction γ ⊥(R), and
hence cannot be accurately simulated using standard DPD, which accounts for only
the radial friction γ ||(R). The analysis of DPD simulations using MS-CG forces
for RDX highlights the importance of the perpendicular friction on the short-time
dynamics and transport properties. Evidently, the way in which the dissipation in
molten RDX is partitioned (with the shear component being dominant) is a result
of concerted translational and intramolecular conformational dynamics of the RDX
molecules. Therefore, the RDX dissipation dynamics is distinctly different from
those observed in liquid NM and other molecular liquids [41, 51], which are well
described by nonconservative DPD forces with dominant radial friction. We note in
the DPD methods described below, both shear and radial friction terms have been
included.

10.2.3 Outlook

Our future efforts are directed toward formulating novel extensions of the MS-CG
method to create a hierarchy of high-fidelity bottom-up CGmodels for explosive for-
mulations.We intend to createCGparticle interactions (potentials) that are dependent
upon other aspects of the particle’s local environment beyond local density, such as
the three-body local arrangement or more complex order parameters. We also intend
to incorporate a wide range of multibody interactions as well as dipolar and higher
order electronic polarizability interactions that are pertinent to EM composites. For
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Fig. 10.3 Histogramdata (thin noisy) andGaussianfilter smoothing [51, 63] (thick) of friction func-
tions γ ||(R), γ ⊥(R) for the one-site MS-CG models of RDX (Panel a) and NM (Panel b) obtained
by solving (10.3). The scaled CoM radial distribution functions (RDFs) are shown by dot-dashed
lines. For the MS-CG-D(E) model for RDX, the vertical line and arrow show the choice of cutoff

distance
(
R f
cut

)
for the frictions, and γ eff(R) is the effective friction [34]. (From Izvekov, S.; Rice,

B. M., Phys. Chem. Chem. Phys. 2015, 17 (16), 10795–804.)

example, we believe that noncentral three-body interactions might play an important
role in the microstructure evolution of EMs under shock, particularly in the molecu-
lar level plastic response, while the dipolar and higher order electronic polarizability
interactions have longer range effects that will influence the structural response at
longer scales. In order to have thermodynamically consistent capabilities to model
themicroscale, however, coarse-grainedmodels cannot be generated separately from
the development of the methods that use them, since features lost during the required
process of coarse-graining will not be adequately recovered unless reintroduced in
some fashion, namely the simulation method. Thus, we now turn our attention to the
DPD-based methodologies used to simulate solid EM under a range of threats.
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10.3 Coarse-Grain Methods

Computationally reasonable particle-based simulations of material behavior gov-
erned by micro- and mesoscale structural heterogeneities require the development
of CG models such as those just described. However, careful consideration must be
taken for the choice of not only a CG model, but as critically, for the choice of an
appropriate CG methodology, especially since the use of their results in higher scale
simulations will strongly influence the outcome. To determine properties other than
static (equilibrium) properties, the CG-molecular dynamics (CG-MD) approach is
not adequate due to the well-known speedup of the dynamics of CG models com-
pared to their atomistic model counterparts, which is a direct consequence of losing
d.o.f. during coarse-graining [80, 81]. Moreover, at the atomistic scale, the formation
and breaking of chemical bonds is treated explicitly and is conceptually intuitive, but
at the microscale, the CGmodels and methods must collectively capture and recover
the relevant physics and chemistry lost during coarse-graining.

The development of CG modeling methods is an active field, where most of the
attention has been given to treating the static behavior of soft matter (see e.g., [82,
83]). These systems are amenable to coarse-graining because some atomic motions
(e.g., hydrogen vibrations) contributeminimally to the backbone behavior and result-
ing equilibrated microstructure. Further, the weakly repulsive interaction potentials
for such systems allow on the order of 10−13 s time steps to be used, providing access
to phenomena that occur on microsecond timescales. However, only a relatively lim-
ited number of CGmodel studies have attempted to reproduce nonequilibriumbehav-
ior [84–92], in part due to the challenge of mapping the CG and atomistic model
dynamics. Thus, we have made significant investments in CG methods development
to describe nonequilibrium behavior.

An overview of our efforts described here has entailed creating computational
capabilities targeting the microscale that allow for physically realistic simulations
of the thermomechanical response of EM composites with microstructure. Particle-
basedmicroscale simulationmethods utilizingCGmodels currently offer a promising
route into and beyond the microscale, the critical time and spatial regime that cannot
be accessed with atomistic MD. We have chosen microscale methods that are built
upon the DPD method [56, 57], a technique initially developed for the simulation of
soft matter, but recently applied to condensed phase matter [75, 92]. Our microscale
approach, which incorporates the salient physics, couples CG models with reactive
microscale methods, where both are described within this chapter. These efforts are
designed to provide predictive capabilities that are amenable to direct coupling with
continuum level models in a multiscale modeling framework, or to provide crucial
information for development of higher fidelity continuummaterialmodels. The direct
coupling efforts are described in Sect. 10.5.
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10.3.1 CG Method: Variants of DPD

10.3.1.1 General Description

The DPD method is now a well-established CG particle simulation method that
has evolved substantially since its inception in 1992 [56, 57]. Advances in both
method and model development now allow DPD simulation of a wide range of
material classes from soft matter, such as polymers and biomolecules, to condensed
matter, such as metals and crystals [52, 89, 93]. DPD is well grounded in statistical
mechanics and stochastic dynamics, allowing for a physics-based interpretation of
the parameters and their determination from higher resolution models. Advances in
the method continually arise from work in various material communities, further
extending its potential applicability and utility.

The original formulation of the DPDmethod conserves total momentum only and
thus is limited to modeling isothermal processes. For the purpose of simulating EM
composite response, the energy-conservingDPDmethod (DPD-E) [92, 94–96] is par-
ticularly critical since it enables nonequilibrium simulation scenarios and thermally
variant conditions. DPD-E uniquely treats the CG d.o.f. through both the dissipative
forces and a particle internal energy term. The particle internal energy term plays
two roles within the DPD-Emethod. First, it provides a numerical means of ensuring
energy conservation during the simulation. Moreover, the particle internal energy
term provides an additional mechanism to recover the coarse-grain d.o.f., which is
essential for accurately reproducing the atomistic model behavior [75].

Building upon the ideas of Maillet and co-workers [86, 91], we recently devel-
oped a general DPD framework that incorporates chemical reactivity (DPD-RX)
[75]. Originally constructed for DPD-E, the DPD-RX method can be formulated
upon either this variant or the constant-enthalpy DPD variant (DPD-H) [92], notated
as DPD-RX-E and DPD-RX-H, respectively. In either variant, a reaction progress
variable is assigned to each particle that monitors the time evolution of an extent-
of-reaction associated with each of the prescribed reactions that may occur within
each particle. As such, the DPD-RX approach does not necessitate a reactive poten-
tial that involves explicit bond breaking and bond forming. The chemical reactivity
can be modeled using complex or reduced reaction mechanisms and allows for both
unimolecular and multimolecular collision reactions to be simulated via both direct
and indirect approaches. Aside from including the extent-of-reaction and introduc-
ing an additional term to the particle internal energy (uchem), the DPD-E and DPD-H
formalisms do not change. In practice, for every time step, DPD-RX dynamics are
separated into three elementary, physical processes: (1) inert dynamics—execution
of the DPD-E (or DPD-H) equations of motion; (2) CG-reactor chemistry—extent-
of-reaction change within each CG particle based upon the prescribed chemistry;
and (3) reaction energy update—partitioning of the chemical energy release or gain
by updating the CG particle internal energy, during which the total energy of the
given CG particle does not change. As the chemistry of a CG particle changes, so
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does its interaction potential. The interaction potential changes in such a way that it
captures both heat exchange and pressure–volume work due to chemical reactivity.

10.3.1.2 Equations of Motion

In the DPD-E method, at any time t, a particle I is specified by its mass mI , position
rI , momentum pI , and internal energy uI . The particle internal energy accounts for
the energy absorbed or released by the d.o.f of the higher resolution model that are
unresolved as a result of coarse-graining; uI is coupled to the internal temperature
θI through a CG equation of state (CG-EOS) typically defined as, uI � uI (θI ).
The variation of the internal energy duI can be written as the sum of contributions
that correspond to the mechanical work done on the system, dumech

I , and the heat
conduction between particles, ducondI , i.e., duI � dumech

I + ducondI . In DPD-E, two
types of temperatures are defined, a kinetic temperature, T kin, which is associated
with the external d.o.f., and the internal temperature, θI , which is associated with the
internal d.o.f. At equilibrium conditions, these two temperatures will be statistically
equivalent, but not necessarily under nonequilibrium conditions.

Extending the DPD-E method to the reactive case requires the variance of the
particle internal energy duI to include an additional contribution that corresponds to
the energy associated with changes in chemistry, duchemI . The total variance is given
by duI � dumech

I +ducondI +duchemI , where the total energy of the system is assumed to
remain constant during changes in duchemI . The set of equations of motion for DPD-E
is accompanied by an update of uchemI specified as

duchemI � −duCGI (I � 1, . . . , N ) (10.4)

where uCGI is the CG interaction energy of particle I . Equation (10.4) follows from
the requirement of total system energy conservation, such that the total energy of
each particle is assumed to be conserved upon any concentration change due to
the reaction. Analogous to the nonreactive DPD-E approaches, conservation of the
total momentum and the total system energy, E � UCG + K +

∑
I u I , is satisfied,

where K � ∑
I
pI · pI

2mI
is the total kinetic energy and UCG is the total CG interaction

energy. For the DPD-RX approach presented here, any change in the CG particle
chemistry is also reflected through a species-dependent CG-EOS, uI � uI

(
θI , Nξ

)
,

where Nξ is the number of molecular species ξ in the product gas mixture. The
choice of uI

(
θI , Nξ

)
is a modeling decision, where a possible formulation is to

consider the isolated molecule contributions based upon the molar heat of formation,
�Hf,ξ (Tr ), and the isobaric heat capacity of eachmolecular speciesC0

P,ξ (θI ), taken at
some reference state [75]. The development of alternative formulations is an ongoing
pursuit by our group.
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10.3.1.3 Reaction Model

TheDPD-RX framework presented here builds upon the treatment of theCGparticles
seemingly as interacting continuous-stirred tank reactors [97] or CG-reactors. The
CG-reactor depicts temporal changes in the species type and concentration of the
molecules representing the CG particle, where these changes in chemistry are gov-
erned by the prescribed set of reaction mechanisms and kinetics, termed the reaction
model. For further illustration of the DPD-RXmethodology, consider a specific reac-
tion model, namely, the thermal decomposition of crystalline RDX into a mixture
of product gases. From global reaction rate models of high-temperature combustion
of nitramines, a reduced reaction mechanism was determined, where the resulting
RDX decomposition pathway is a four-step reaction rate model [75] consisting of a
unimolecular, irreversible reaction:

RDX → 3HCN +
3

2
(NO2 + NO + H2O) (10.5)

and three bimolecular, irreversible reactions:

HCN + NO2 → NO +
1

2
(N2 + H2) + CO

HCN + NO → CO + N2 +
1

2
H2 (10.6)

NO + CO → 1

2
N2 + CO2

Each reaction rate constant is modeled by a standard temperature-dependent Arrhe-
nius expression, where the temperature used is a local weight-average internal tem-
perature of CG particle I , defined as

θ̄−1
I �

∑
J�1 ωLucy(rI J ) θ

−1
J∑

J�1 ωLucy(rI J )
(10.7)

where J includes the neighboring particles of I and itself, and ωLucy(rI J ) is the Lucy
function [98]. A local-average particle internal temperature used in the reaction rate
expressions implicitly depicts multimolecular conditions and the local environment
of a chemically reactingmixture.Nevertheless, the formsof θI andωLucy aremodeling
choices, where alternative forms are possible. Further discussion of the choice of the
reaction model specifically for EM simulations is given below in Sect. 10.4.

10.3.1.4 Particle Model

In the DPD-RXmethod, the particle interaction potential is not a reactive type poten-
tial that mimics chemistry through bond breaking and subsequent formation of tran-
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sition structures and reaction products (e.g., [23, 99]). Rather, the evolving chemistry
modeled by theCG-reactor depiction is directly coupled to the interaction potential of
the CGparticle. In the application presented here, the chemical character of any parti-
cle can vary between two end states, unreacted RDX and a final product gas mixture,
with many continuous chemical states in between. An RDX molecule is represented
by the isotropic one-site CG model (CG-RDX) [52] obtained by the MS-CGmethod
described above, while the product gas mixture is modeled using the exponential-six
interaction potential [100]. A notable feature of this model is that the expansion of
hot product gases is inherently captured through the chemistry-dependent particle
interactions via changes in the particle excluded volumes.

10.3.1.5 Practical Aspects

Beyond attempting to reproduce the correct physics, the development and imple-
mentation of the CG framework requires several practical considerations. A plethora
of numerical integration schemes have been extensively explored (e.g., [85, 92,
101–106]), allowing for stable, accurate, and efficient simulations. Recently our
group has adopted an efficient integration scheme for the DPD variants based on the
Shardlow-splitting algorithm (SSA) [92, 104, 107]. Compared to the traditional DPD
integrators, the SSA allows for larger time steps, on the order of 103, making simula-
tions of CG models of EM composites possible for the DPD-E and DPD-H variants.
Advancements to the DPD methods and algorithms are continually incorporated
within the highly-scalable open-source LAMMPS (Large-scale Atomic/Molecular
Massively Parallel Simulator) simulation package [108] to provide a long-term, sus-
tainable modeling framework that can readily leverage high-performance computing
resources. Such practical considerations are critical for enabling simulations with
107–109 particles at the relevant time and length scales for EM composite models.

10.3.2 Sample Applications

The DPD variants can be applied to gain a fundamental understanding of the ener-
getic material response to shock. Consider the shock profiles of the CG-RDX model
with those of a nonreactive atomistic model [64] at conditions under which reactions
are not expected to occur (see Fig. 10.4). Clearly, theMD simulation of the CG-RDX
model significantly overpredicts the thermal response, due to improperly accounting
for the energy and momentum exchange. This leads to a kinetic temperature increase
that is significantly higher than the atomistic model temperature at and behind the
shock front. In the DPD-E simulation, the transfer of mechanical energy from the
plate impact into the CG d.o.f. has appropriately occurred via the heat and momen-
tum exchange between the particle internal energies. In the CG-MD simulation, the
particles behave effectively as hard spheres, while the DPD-E simulation allows for
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Fig. 10.4 Comparison of the
nonequilibrium, nonreactive
response of pure crystalline
RDX: (atomistic MD) fully
atomistic model using MD;
(CG-MD) one-site CG-RDX
model using MD; and (CG
DPD-E) due to mechanical
shock generated by plate
impact at u p � 0.5 km/s.
Kinetic temperature and
density profiles are snapshots
taken 15.0 ps after impact
(Adapted with permission
from Brennan et al., J. Phys.
Chem. Lett., 2014, 5 (12), pp
2144–2149. Copyright 2014
American Chemical Society.)

some of the momentum exchange to be absorbed into the particle internal energies
via the CG-EOS.

Next, consider applications of the DPD-RX-E method to examine the effects of
microstructural heterogeneities on the material response to mechanical shock. Vari-
ations in the local geometry and density may lead to significantly different hotspot
formation, which dictates the macroscopic material response. In the examples below,
several microstructures are generated to examine the role that defects and complex
grain boundaries play in the material response. In the first scenario, 10-nm spherical
inclusions are randomly distributed throughout the 2.5 μm sample. The sample is
slammed into a reflective wall in the −z-direction, generating a shock compression
wave that propagates through the sample in the +z-direction. As the shock front
passes through the material, the spherical inclusions collapse, transferring mechani-
cal energy to heat the particles and initiating chemical reactions. The particle internal
temperature and reaction progress (defined as the fraction of RDX that is present in
the particle) is shown in Fig. 10.5, where after approximately 0.5 ns, the shock front
reaches the end of the 2.5μm sample. In cases with sufficiently large shock velocities
and/or defect sizes, the spherical inclusions are observed to combine and coalesce
into larger reaction zones.

To examine the effects of grain boundaries on material response, a polycrystalline
RDX microstructure geometry is constructed using a Voronoi tessellation method,
where the polyhedra are treated as individual grains (Fig. 10.6a). The particle-based
model of each grain is subsequently grown as a perfect crystal that is free of any
intragranular defects. The resulting structure is a large polycrystalline network of ran-
domly oriented HCP-like ordered grains with complex, planar interfaces and inter-
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Fig. 10.5 Snapshots along the sample for the reaction progress (top) and particle internal temper-
ature (bottom) at various positions along the z-axis of a 2.5 μm shocked RDX sample. The initial,
unshocked sample included a random distribution of 10-nm spherical inclusions that collapse, cre-
ating localized hot spots that initiate chemistry. The unreacted material in the sample is not shown
for visual clarity and to depict the surface area of the reaction zones

Fig. 10.6 a The initial, unshocked polycrystalline RDX sample. b Snapshots along the sample for
the common neighbor analysis (top), reaction progress (middle), and internal temperature (bottom)
at various positions along the z-axis of the 2.5 μm sample. For the reaction progress snapshots, the
unreacted material in the sample is not shown for visual clarity and to depict the surface area of the
reaction zones. The common neighbor analysis uses the following coloring scheme: HCP � pink,
FCC � Green, BCC � Blue, ICO � Yellow, and White � Other

granular voids. As the material undergoes shock compression, a common neighbor
analysis is performed to highlight the initial, unshocked HCP-like grains and the
resulting microstructure that evolves due to shock (see Fig. 10.6b). These particle-
based methods are able to capture the microstructural heterogeneities and short-time
physics that evolve immediately after the shock wave passes through the sample,
enabling the exploration and understanding of the fundamental mechanisms that
influence material performance. In this particular microstructure, energy localizes at
the inter-granular voids, creating localized hot spots where chemical reactions begin
to evolve. The behavior of the void collapse differs from the previous microstructure
due to the varying volume sizes, shapes, and locations.
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10.3.3 Outlook

For the goal of understanding EM composite performance, we developed a CG
method framework that allows us to begin exploring the role of explicit microstruc-
tural heterogeneities in thesematerials.While numerous atomic-scale reactive poten-
tials are available within the literature (e.g., [23, 99, 109]) that also allow the explo-
ration of the effects of microstructure, they are limited to studies of single, isolated
defects due to computational cost [110]. CG approaches such as those presented here
allow exploration into previously unattainable temporal scales. Given that the time
step in a particle simulation is dictated by the highest frequency modes, which are
coarsened away in a CG model, time steps that are thousands of times larger may be
taken [92, 104]. Application of CGmodels andmethods that treat chemical reactivity
extend the length and timescales well beyond those currently realizable in atomistic
simulations, enabling exploration of microstructure-dependent material systems that
was not previously possible.

While the DPD-RX framework enables simulations at vastly different length and
timescales as compared to atomistic-scale simulations, the computational speedup
comes at the cost of losing atomistic detail. By design, the CGmodel behavior cannot
replicate the total fidelity of the atomistic model behavior. Rather, the intent is for the
CG model simulation to produce results of sufficient accuracy across a broad range
of material properties and behavior for the problem of interest, but for considerably
less computational expense. In other words, efforts are made to strike a balance
between maintaining the d.o.f. that reproduce the key atomistic model behavior,
while decreasing the overall computational cost. To this end, we continue to optimize
the recovery of the salient d.o.f. through improvements and refinements of the CG
model development and the DPD-RX framework. Several possible refinements and
future research directions for the DPD-RX framework are highlighted next.

The particle interaction model for the product gas mixture (pgm) is a first-
generation model, where an assortment of modifications for extending the trans-
ferability of the model to describe a wider range of chemical states typically present
under the extreme conditions of shock and thermal loading is needed. In deter-
mining the interaction potential for the pgm model, significant effort is required to
adequately sample the reacting environment in a statistically reliable manner, which
is dependent upon both the density and species concentrations. Simulation data from
finer-scale models, as well as an analytical EOS for the exponential-6 potential may
reduce some of the burdens. Furthermore, to minimize the limitations of the single-
site exponential-6 interaction potential currently being used for the pgm model, the
development of a density-dependent model is under consideration.

Some further refinements that would make the method framework more gener-
ally applicable are possible. For example, the DPD-RX framework can be extended
to permit intra- as well as interparticle reactions, i.e., reactions influenced by the
composition and temperature of either the particles themselves solely, or also the
surrounding particles, respectively. The intraparticle approach implicitly accounts
for mass diffusion of the reacting species, which under certain circumstances (e.g.,



10 Toward a Predictive Hierarchical Multiscale Modeling Approach … 249

short timescales) may be sufficient to accurately represent the salient behavior, but
in other scenarios, mass diffusion may play a key role. The interparticle approach
more directly mimics multimolecule reactions, where explicit treatment of mass dif-
fusion can occur via species transfer between CGparticles. Further work is underway
to extend the DPD-RX framework to allow other variations of reactions, including
non-bond breaking reactions such as molecular conformational transitions [111].

Finally, specific to understanding the reactive behavior of EMs under extreme
conditions, improvements to the reaction model itself are needed. Currently, the
four-step reduced kinetics model for RDX decomposition described above is used,
where this reactionmodel exhibits density-dependence consistentwith the condensed
phase. Moreover, the DPD-RX framework ensures that the chemical energy content
from the reaction model, starting with pure RDX and ending with product gases,
is thermodynamically consistent through the use of standard state data taken from
either thermochemical data tables or ab initio calculations. Simulation studies using
the current reaction model are expected to provide reliable qualitative trends, as a
means of mapping the relative roles of various types of microstructure heterogeneity
in EM composites. Nonetheless, much is unknown about the condensed phase chem-
istry of EM, so uncertainty remains regarding the accuracy of our particular reduced
reaction model. Hence, more investigation and development is needed to provide the
most accurate depiction of the condensed phase chemistry. The DPD-RX framework
is sufficiently general such that it allows any (practical) number and type of reac-
tions and the associated species to be implemented, including pressure-dependent
reaction models. Therefore, if new insight gained from higher resolution simulation
techniques, such as those described in the next section, or novel experiments lead to
the development of more accurate reaction models, then these models can be readily
implemented.

10.4 Condensed Phase Chemistry Under Extreme
Conditions

10.4.1 Development of Reaction Models for DPD-RX

A description of the chemical reactivity is needed to complete our approach to model
the microscale response. As indicated above, this description must be amenable for
use at the CG scale within the DPD-RX methodology. In this CG representation,
the description of the interparticle interactions is dependent on the CG material
state whether unreacted, partially reacted, or fully reacted. As described earlier, the
current DPD-RX methodology assumes each CG particle behaves as a well-stirred
reactor [75], whose chemical composition is governed during the simulation by a
corresponding extent-of-reaction variable for each reaction in a prescribed chemical
kinetics mechanism. In its current form, the DPD-RX method requires a description
of the chemical composition of the CG-reactor during the decomposition of the
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solid EM to gaseous products, which in turn is dependent on the chemical kinetics
mechanism.

Derivations of full chemical kinetics mechanisms based on elementary reactions
[112] and subsequent reduction to computationally tractable reduced-order chemical
kineticsmodels (ROM) are conceptually straightforward and have been very success-
ful when used in numerous applications including combustion modeling [113]. The
DPD-RXmethodology demonstrated above for shock loading of theCG-RDXmodel
uses such a reduced four-step chemical kinetics model [75], which was based on gas-
phase reaction mechanisms for nitramine combustion [114] combined with a single-
step rate of RDX decomposition above the melting temperature [115]. However,
while this chemical kinetics model qualitatively exhibits the expected behavior, it
may not properly represent the actual condensed phase reactivity in extreme nonequi-
librium conditions, such as those associated with high-pressure, high-temperature
shock states (>10 GPa and >1000 K). The material environment in these highly
dense conditions (>2.0 g/cm3) allows for different chemistries that would not be
accessible at less extreme conditions. Thus, because a reaction model is required in
the DPD-RX framework, it is necessary to obtain an accurate microscale descrip-
tion of the extent of chemical reaction of an energetic material subjected to insult,
whether a detonation or a sub-detonative response (often even more challenging to
model) is the final result. Some of the challenges that exist for transitioning the con-
densed phase chemistry behavior into the DPD-RX framework will be considered
at the end of this section. However, prior to that, we will describe the challenges in
first determining just the reaction mechanism for chemistry occurring under these
extreme conditions, where consideration for determining the associated kinetics are
left for discussion elsewhere.

10.4.2 Scope of the Problem and Challenges

As chemical reactions are inherently atomistic processes, the proper simulation
methodology to obtain rate information is through atomistic approaches, prefer-
ably using accurate quantum mechanical (QM) methods. QM methods applied to
the systems at hand, are typically limited to simulations of a few picoseconds using
<105 atoms. Numerous classical and quantum-mechanically based MD simulations
of thermally and mechanically initiated energetic materials have been published
[116–153], some of which attempt to describe reaction rates and mechanisms of the
material in extreme conditions. However, as nicely detailed in a review byManaa and
Fried [117], determination of accurate rate information from atomistic simulations of
energetic materials in highly nonequilibrium high-density states is a daunting under-
taking. The most obvious challenges pertain to the complexity of the event, spawn-
ing several questions that must be considered: Is it possible to unravel the complex
dependence of concurrent reactive processes occurring in a heterogeneously dense
environment under extremely nonequilibrium conditions into a series of individual
reaction steps? Does the simulation adequately sample the phase space for a suf-
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ficiently long time to observe all important reactions? Is all relevant phase space
represented in the simulation? Is the level of theory adequate to properly describe
the material state under these extreme conditions? Do computational tricks imposed
for simulation efficiency [18] introduce artifacts that might influence outcomes?

Provided these questions can be adequately addressed, there are additional con-
cerns as to whether chemical species can be properly identified for monitoring
throughout a simulation, the most direct manner in which to determine the extent
of reaction. Using empirical classical reactive models, assignment of bonds can be
readily accomplished, thus allowing for monitoring species evolution throughout a
trajectory. However, there is always the question whether the material states, which
might be far from those of the training set used to parameterize the empirical model,
are properly described. Thus, a more predictive, less empirical quantum-based level
of theory is appropriate for use in these simulations. This leads to questions about the
adequacy of the QM method. At what conditions do approximations in the chosen
QM theory [116] break down? Furthermore, within a QM representation, there is no
unique way to define electron localization and therefore, no unique way of defining
whether atom pairs are bonded, or whether species are radicals or ions. For example,
species may be identified based on bond distance and lifetime criteria, a reasonable,
but nonunique scheme to determine chemical moieties [117]. However, different sets
of bond distance and lifetime criteria could result in different sets of observed chem-
ical moieties. Without a unique means of identifying species, individual reaction
steps, the key to the classical chemical kinetics mechanisms, cannot unambiguously
be determined and monitored to measure lifetimes.

Perhaps the single most difficult challenge is accurately simulating the overall
event. Current computational capabilities allow for certain QMmethods (e.g., DFT)
to simulate systems under extreme conditions, thus reducing reliance on empirical
models but at an increased computational expense. It would be desirable to use highly
accurate QMmethods, such as the “gold standard” of QM (coupled cluster with sin-
gles, double, and perturbative triples excitations [CCSD(T)]) [116]; however, this
method is extremely computational intensive and is limited to approximately 20–40
atoms for a single time step. Outside of this consideration of accuracy versus compu-
tation time, the simulations suffer from several other deficiencies thatmight introduce
error into the results. First, the systems being simulated are highly idealized, and a
realistic material environment is inadequately described. The computational require-
ments for QM simulations of this type preclude inclusion of material heterogeneities
in the simulation cell and do not allow for simulations of processes that go beyond a
few picoseconds (assuming system sizes no larger than 105 atoms). For some simula-
tions, selection of appropriate initial conditions is tricky and fraught with opportunity
to introduce bias. For example, in quantum molecular dynamics (QMD) simulations
that target a specific thermodynamic state at an extreme temperature and/or pressure
(such as Wu et al. [154] and Rice and Byrd [155]), equilibrating the system might
result in chemical reactions occurring before the desired thermodynamic state is
reached. This, in turn, could influence subsequent chemistry once the targeted ther-
modynamic state is reached. Thus, it must be considered whether the initial state and
subsequent equilibration protocol had biased the resulting chemistry as the desired
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thermodynamic state was approached. Rice and Byrd attempted to address these
issues by performing two isothermal–isobaric QMD simulations of formic acid at
extreme conditions in which chemistry was observed, and for which the initial con-
ditions were dramatically different [155]. In these two simulations, densities and
potential energies converged to the same values on the time scale of the simulations.
This information was used to predict a shock Hugoniot point using assumed final
thermodynamic states. However, due to the limited simulation time, it could not be
determined whether full chemical equilibrium was reached, thus potentially influ-
encing the predicted shock Hugoniot point. Furthermore, in simulations of this kind,
the equations of motion are coupled to a thermostat and/or barostat, which could
influence chemical reactions as energy is adjusted to achieve the desired temperature
and pressure. For example, the dissipation rate of thermal energy originating from
exothermic reactions will depend on a thermostat’s damping parameter.

Simulations other than those that target-specific thermodynamic states, such as
the aforementioned examples [154, 155], are also susceptible to potential errors by
virtue of their simulation protocol or process. For example, in some simulations to
explore onset of thermal decomposition [117, 126, 130, 131, 140, 142, 151, 156], a
system is first optimized or equilibrated to a state in which reaction does not occur
and is then heated, leading to the question of how the heating rate is influencing
the chemistry, and whether the heating rate is realistic. For shock simulations, two
approaches are used to explore shock-initiated chemistry: direct mechanical shock
simulation or the multiscale shock technique (MSST) [157, 158]. For the former
approach, of which there are multiple schemes available for mechanically generat-
ing a shocked sample, the system is often overdriven in order to observe chemical
reaction within a computationally feasible time frame. The question is raised as to
whether the chemistry resulting from the overdriven shock (leading to a higher degree
ofmaterial compression) is relevant to the chemistry associatedwith steady-state det-
onation or that initiated by a weaker shock. On the other hand, while several studies
[118, 119, 121–124, 132, 133, 135, 136, 145] have been used to explore the chemistry
resulting from a shock using the MSST approach (which allows for smaller simula-
tion sizes, and thus longer times), the inherent assumptions within MSST regarding
stress gradients and thermal gradients limit its accuracy in describing material states
immediately behind the shock front. Thus, it is unlikely that direct mechanical shock
and MSST simulations would yield the same initial chemistries directly behind the
shock front. This, in turn, could influence subsequent chemistry across the reaction
zone. An example limitation of MSST is that it does not explicitly model a wave
traveling through the sample. As such, some aspects of anisotropic material response
cannot be captured, as microstructural features (e.g., voids, grain boundaries) will
not experience a directional shock wave moving through them. Another advantage
of MSST over direct shock simulation is that it allows for the convenient inclusion of
quantum nuclear effects [159, 160], which may decrease the shock strength neces-
sary to observe the onset of reactions. For both MSST and direct mechanical shock
simulations, it is possible that the chemistry is biased due to the initial conditions,
equilibration protocol, and simulation process.
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Furthermore, these nonequilibrium simulations are performed within the con-
straints of periodic boundary conditions, which can be problematic if the material’s
thermodynamic properties or local structure becomes significantly inhomogeneous
within the simulation cell (such as conditions under mechanical loading). These
local variances (which may further increase with reaction during the simulation)
could interact with the periodic images and adversely influence the outcome. Some
of these errors are introduced because of system size and time limitations; they can be
somewhat mitigated by using empirical or semiempirical approaches, such as reac-
tive force fields [22, 23] or tight-binding DFT (DFTB) [161] to perform substantially
larger and longer simulations [117]. However, the accuracy of these methods cannot
be assumed for conditions beyond those used for parameterization.

Evenwhen using DFT, the accuracy of themethods at extreme conditions is a lim-
iting factor. As opposed to gas-phase processes, the highly accurate multi-reference
QM approaches used in the evaluation of elementary reaction rates cannot be applied
to the condensed phase, due to computational costs. (For a further discussion of
quantum mechanical methods, see Taylor and Rice [116]). Additionally, at extreme
conditions, electronic excited states might play a role in chemistry; these could not be
treated by single-reference DFT. Furthermore, pseudopotentials used for computa-
tional efficiency might introduce errors for highly compressed material. However, as
DFT is the most reasonably accurate ab initio approach available to predict reactions
in a shocked condensed phase system at this time [116, 117], we consider it the best
approach to model chemistry of an energetic material under extreme conditions, and
thus, DFT is being used in our attempts to determine a condensed phase reaction
model for use in DPD-RX.

10.4.3 Some Illustrations of the Challenges

An illustration of some of the difficulties associated with DFT simulations described
above is evident in a heroic study by Wu and co-workers [154], in which they
attempted to examine the chemistry of solid PETN compressed to the estimated
Chapman–Jouguet (CJ) density of 2.38 g/cm3 and heated to temperatures of 3,000
and 4,200 K (the estimated CJ temperature) using DFT isothermal–isochoric (NVT)
simulations. By “painstakingly” tracking reactions during the simulations, Wu et al.
found, for example, “over 3,000 unique reactions, 78% of which only occur once in
the simulation” in a periodic simulation cell containing only four molecules [154].
With computational platforms and algorithms substantially improved since the 2009
Wu et al. study [154] that allow for system sizes and simulation times of 105 atoms
and picosecond timescales, respectively, using DFT, the complexity and number of
the reactions discovered are expected to increase. Wu et al. were able to determine
that material conversion under these conditions involved catalysis by water and its
decomposition products, a distinctly different process than those assumed in more
traditional proposed decomposition mechanisms [154]. The catalytic process is pos-
sible due to the extreme conditions, in which water rapidly dissociates and provides
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a continual source of OH and H. By virtue of this ease of dissociation, Wu et al.
suggest that “bonds containing hydrogen are inherently nonmolecular, and thus the
CJ state should not be treated as a mixture of conventional molecules” [154].

Likewise, our own forays into large-scale QM studies of materials under shock
conditions have shown us that unusual chemistries can occur. For example, we per-
formedQMDNVT simulations of formic acid at shock conditions [155], a detonation
product for which there was conflicting experimental information regarding its reac-
tivity at high shock pressures, and is a standard species considered in thermochemical
code calculations. QMD NVT simulations at a state point well above the purported
transition pressure for reaction showed chemical reactivity, determined from time
traces of all original covalent bonds in parent formic acid, the nearest-neighbor
hydrogen atom from each of the oxygen atoms in the parent molecule, as well as
nearest-neighbor distances between heavy atoms in adjacent molecules. The simula-
tions showed that hydrogens exhibited extensive mobility, migrating back and forth
among species, resulting in hydrogen exchange reactions to reform formic acid or
forming protonated formic acid or formate moieties. Also observed were long-lived
extended networks composed of fragments and atoms fromvarious parentmolecules,
which might be the early stages of polymerization under these conditions.

Other quantum-based simulation studies of materials under high temperature and
pressure states also have shown similar mobility of hydrogen atoms [133–135, 162,
163], as well as charge transfer [118, 136, 164]. Similarly, we have observed “non-
molecular” hydrogen behind the shock front in overdriven shock simulations of
PETN using large-scale, DFT, Born–Oppenheimer MD simulations. For example,
we followed a hydrogen atom propelled forward toward the shock front, weaving
through free space among a tangled mass of atoms so densely packed that chem-
ical speciation would require a herculean effort, and would rely on a certain level
of empiricism. This atom quickly migrated forward ahead of the mass flow, before
it was subsequently captured by a different moiety closer to the shock front, thus
arresting its free motion. In this shock simulation using QM forces, it appears to
be impractical (or impossible) to define the chemistry in terms of unimolecular or
bimolecular mechanisms.

While the material state in the overdriven shock simulations of PETN is at higher
compression and temperature than the Wu et al. simulation of PETN at a single ther-
modynamic state corresponding to the experimental CJ condition [154], it is notable
that a few features are similar, such as the presence of nonmolecular hydrogens. It
is unfortunate that current state of the art precludes QMD simulation for sufficiently
long times to simulate a steady-state detonation of an EM; thus, the material state
in the reaction zone of a steady-state detonation remains to be discovered. Until
novel algorithms and computational resources allowing for realistic atomistic simu-
lations of shock initiation leading to steady-state detonation are available or advanced
experimental methods are developed to interrogate the reaction zone, that question
will remain unanswered. These and other studies of chemistry of materials under
extreme conditions clearly support the conclusion of Wu et al. that “the traditional
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approach based on molecular reactions that is commonly applied in gas-phase com-
bustion chemistry is no longer adequate for describing chemical reactions under these
extreme conditions [154].”

10.4.4 Outlook

Due to the lack of understanding of the material state and the complex chemical
conversion occurring behind the shock front of a reacting EM, we argue that the
most immediate need at present is to perform an extensive series of quantum-based
(either DFT or DFTB) MD simulations of an EM subjected to shocks of different
strengths to monitor emergent material response, specifically identifying features
behind the shock front in which molecularity is retained or lost, and where chemical
speciation can or cannot be determined. A lofty goal would be to compare the het-
erogeneous material state within a simulated detonation reaction zone against that
proposed in the Nonequilibrium Zeldovich–von Neumann–Doring (NEZND) model
of detonation for condensed phase explosives [165]. Pursuit of this goal is facilitated
by the emergence of exascale computing [166–168], novel computational methods
that will allow for QM simulations with larger system sizes and longer times (e.g.,
[169]), and data mining approaches [170–174] to cull crucial information directly
from these atomistic simulations leading to the much-needed understanding.

Clearly, both the time and financial commitment and resources required to achieve
an understanding of condensed phase chemistry is daunting. Moreover, the path for-
ward is speculative, where we have described a possible approach for determining
only the reaction mechanisms. Even more daunting is the task of determining the
reaction kinetics associated with the reaction pathways. Still further, there are con-
siderations for transitioning this information into generating a reaction model that is
of practical use in the DPD-RX framework. For example, a complete reaction mech-
anism is required that encapsulates the reactive behavior from the initial unreacted
EM through to the final product gas species. Thus, research is needed to formulate
ROM for use in the DPD-RX framework that captures the important features of
the detailed chemical kinetics mechanisms obtained from the atomistic simulations.
Still other open-ended questions remain. If radicals, polyradicals [175], or transient
states are part of the reaction mechanism, can the required input for the CG-EOS
for each species be readily determined (i.e., a reference state heat of formation and
temperature-dependent constant-pressure heat capacity)? Will these transient states
be so short-lived that they won’t play a role within the time scale of the DPD-RX
time step (~5–20 fs)? If they are sufficiently long-lived, can CG models be readily
developed for these species? If we develop a highly-detailed reaction mechanism,
will these details be significant on the time scale of the DPD-RX simulation?

These questions provide ample opportunities for research investigations designed
to afford a multiscale description of condensed phase chemical reactivity of EM at
extreme conditions. Our expectation is that the ROMswill be progressively enhanced
as the condensed phase reactionmodeling efforts evolve. These reactionmodel devel-



256 B. C. Barnes et al.

opments will be complemented by any necessary coinciding adaptions of DPD-RX.
This complementary approach provides a convenient and natural framework to incor-
porate the complexities arising from the coupling of microstructure with a quantum
mechanical understanding of chemistry.

10.5 Hierarchical Multiscale Simulation: Reaching
the Experimental Scale

Prediction of the macroscale response of energetic material, including all aspects
of chemical reactivity, provides a significant motivation for continued research in
multiscale modeling. Continuum “burn” (chemistry) models may often reproduce
shock-to-detonation transitions when parameterized using sufficient experimental
data, or when using chemical equilibrium approaches for ideal explosives, but sub-
detonative reactivity and deflagration-to-detonation remain difficult to predict for
many systems. As chemical reactivity may be influenced by many factors, such as
material EOS or microstructure, our research plan involves systematically increas-
ing the complexity of our multiscale simulations. In this section, we will discuss:
(a) common multiscale approaches, (b) properties of constitutive models for ener-
getic materials that are currently addressed by multiscale simulation, (c) our current
hierarchical multiscale approach and implementation, (d) a demonstration of our
concurrent hierarchical approach, and (e) future research opportunities.

10.5.1 Multiscale Approaches

Information from particle-based simulations, such as those using the DPD-RX
method, can be utilized in continuum simulations through a variety of modern mul-
tiscale approaches. We will briefly survey common multiscale approaches, gener-
ally following the taxonomy described by Tadmor and Miller [20]. In describing
multiscale approaches, we will typically be describing a continuum, or macroscale,
simulation that leverages information from high-fidelity, smaller length-scale calcu-
lations. In the literature, these may also be referred to as upper and lower scales, or
alternatively as coarse and fine scales. We will avoid referring to the fine scale as the
“microscale” in order to avoid confusion of the term with micron length scales or
microsecond timescales, which nevertheless may be present in particular multiscale
approaches.
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10.5.1.1 Sequential Upscaling

Fast-running constitutive material models for continuum simulations may be directly
parameterized from the results of fine scale simulations, much like how CG models
maybe constructed from the results of atomistic simulations. Examples of this include
construction of an EOS for a pure material from rigorous first principles calculations
[176], calculation of elastic constants for use in a continuum model [177], or the
fitting of a chemistry model to a numerical description of molecular simulation
results [175].Wewill not discuss the sequential approach in detail; it is historically the
most common approach for transferring information between scales. When carefully
applied by a subject matter expert, it may provide good results for the selected
problem. It is often the case that a particular upscaled material property is understood
to only be applicable within a constrained range of states, i.e., the transferability
problem (particularly important in force field development [178]).

10.5.1.2 Concurrent

Concurrent approaches involve performing simulations with both macroscale and
fine scale methods at run time [20]. This allows for a higher fidelity description of
phenomena of interest than sequential upscaling, but with increased computational
expense. Fracture, for example, is difficult to realistically model at the continuum
scale, but one approach is the embedding of an atomistic domain in a continuum
simulation [179]. A particular property’s response may be dependent upon a large
number of variables, making generation of an upscaled model in advance prohibitive
due to the “curse of dimensionality [14, 180].” Microstructural effects that give
rise to emergent behavior may be difficult to “build in” to a predictive constitutive
model [11]. In each of those cases, a concurrent multiscale approach able to directly
query the results of a high-fidelity model may provide an accurate solution. Note,
the nomenclature for describing concurrent simulation is highly inconsistent across
the open literature. We follow Tadmor and Miller’s [20] usage and further categorize
concurrent multiscale simulation as “partitioned-domain” or “hierarchical”.

Partitioned-Domain

Partitioned-domain approaches involve a decomposition of the simulation into mul-
tiple spatial domains, which may be overlapping. An inexpensive, less computa-
tionally costly model is used in the larger domain(s), and an expensive, more com-
putationally costly model is used in the smaller region of critical interest [181].
Examples of this include a QM/MM simulation for modeling the active site of pro-
teins [182], or an embedded atomistic domain in a continuum finite element mesh.
Challenges for partitioned-domain approaches involve describing the “handshaking”
region between different methods/models, and the accessible simulation timescales
being limited by the computationallymost expensive per-time-step domain (typically
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also the domain requiring the smallest time step). While quite successful in solving
some problems, partitioned-domain approaches may not be applicable to problems
where the domain requiring high-fidelity information is itself macroscale in size; the
high-fidelity, expensive model could consume nearly the entire extent of the system
being simulated. Another limitation is when long timescales need to be accessed.
For example, some partitioned-domain methods are limited by the timescale of the
step size in the expensive simulation (e.g., continuum cycles operating at MD time
steps, roughly ~1 fs), although recent research has attempted to address this issue
[179].

Hierarchical

Hierarchical approaches often involve the interleaving of macroscale and fine scale
simulations [13, 183–185]. A macroscale simulation, such as a continuum finite
element simulation, may require information about its elements from the fine scale
at each time step [186]. This information may be provided from constrained fine
scale simulations run in-between continuum time steps. This information exchange
between scales characterizes a hierarchical approach. An example of this from the
field of computationalmechanics is the FE2 simulation,where twofinite element sim-
ulations are performed, with the fine scale being amuchmore highly resolved “repre-
sentative volume element” (RVE) [187]. Intensive properties of the RVEmay be used
at the macroscale in a technique called computational homogenization [188]. More
general mathematical frameworks for hierarchical simulation include the “equation-
free” approach and heterogeneous multiscale method (HMM) [184, 189, 190]. In
HMM calculations, generalized macroscale governing equations that rely upon a set
of variables may have missing variables provided by constrained fine scale calcu-
lations. The constraints and simulations necessary at the fine scale are application-
specific, and left for the subject matter expert to determine [189]. Using an HMM
approach, one may calculate many different material properties across the entire
macroscale domain using high-fidelity fine scale simulations. An example we will
describe later in this section is calculating EOS response from particle-based simu-
lations.

10.5.2 Constitutive Material Models

We briefly describe two common components of a constitutive model for energetic
materials, which may be described by a multiscale model. Other possible compo-
nents of a material model may include (but are not limited to) models for failure,
elasticity, plasticity, yield strength, hardening, as well as properties such as thermal
conductivity, melt curves, heat capacity, or viscosity. In a shock-to-detonation tran-
sition, brittle failure or thermal conductivity may not be a concern for modeling;
the material will detonate on a short timescale and those properties may not affect
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the transition. However, every continuum simulation for energetic material response
requires an EOS, even if the material does not undergo reaction. Therefore we start
with a discussion of the material EOS, and then discuss chemistry, since energetic
materials will eventually leverage their energy-releasing chemistry during physically
relevant simulations.

10.5.2.1 Equation of State

First and foremost for our application is the material EOS. This is the relationship
betweenmaterial energy, density, temperature, and pressure. A simple example is the
ideal gas law for a gaseous EOS. Pressure is often calculated through an analytical
EOS such as the Mie-Grüneisen equation, Jones–Wilkins–Lee EOS, or a number
of other forms [191]. More complicated recent examples include the use of the
Peng–Robinson EOS formultiphasemixtures [192], or construction of a free energy-
based EOS for solid RDX [176]. In many material models, the temperature may not
actually be calculated and is not present in the continuum governing equations. The
temperaturemay be calculated if a cold curve, or the static lattice energy as a function
of volume, is available. Tabulated forms such as Livermore EOS tables or SESAME
tables are also used in modern hydrocodes, which may include data for all relevant
state variables (including temperature). An accurate EOS is critical for calculation
of peak shock pressure and related state variables in a continuum simulation, or for
stress–strain response at a variety of strain rates. Calculation of realistic stress–strain
curves requires both accurate elasticity and plasticity models before the onset of
failure. Calculation of the EOS is particularly challenging for energetic materials,
as chemical composition will change over the course of a reactive event, such as a
detonation. An ideal steady-state detonation described by Chapman–Jouguet theory
is at the state point where the Rayleigh line of the unreacted products is tangent
to the shock Hugoniot for the product gas [193]. Calculation of those states, and
therefore the detonation properties of an energetic material, requires an accurate
EOS for unreacted material and any species in the reaction mechanism leading to
the final products.

10.5.2.2 Chemistry

While continuum simulations of metals, ceramics, or some composites (e.g., fiber
composites at low strain rate) may not need to consider chemical reactivity, energetic
materials release stored energy through chemical reactions. When modeling explo-
sives, phenomenological models such as the Tarver “ignition and growth” reactive
flow model [165, 194] are often used to describe detonation kinetics. In that model,
progress from reactants to products depends upon material density, pressure, and
amount previously reacted. The reactants and products are described by separate
EOSmodels. Complex hydrocodes also have support for advanced chemistrymodels
that may explicitly account for many chemical compounds and complicated chemi-
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cal kinetics, including chemical equilibrium detonation models [195]. In the absence
of robust experimental data, it may be difficult to parameterize any type of chem-
istry model, motivating the need for multiscale modeling. Further, phenomenologi-
cal models such as the ignition and growth model are less useful for some problem
domains; for example, a model that describes shock-to-detonation may not pro-
vide predictive physical insight regarding the effects of low-velocity sub-detonative
impacts on an energetic material. Therefore, phenomenological models are devel-
oped to model particular classes of problems. Significant progress has been made
in developing models for thermal cook-off [8, 196] or reactions due to low-speed
impact [197]. In principle, a high-fidelitymultiscalemodel can be used to describe the
response to loading at a variety of conditions, including the key chemical processes
in a material [171, 198]. Advances in the DPD-RXmethodology (Sect. 10.3) provide
a path forward for high-fidelity modeling at micron length scales that may address
conditions ranging from nonreactive, low-speed impact to shock-to-detonation tran-
sitions.

10.5.3 Hierarchical Multiscale Simulation

10.5.3.1 Definition of Scales

In this section, we will describe our particular approach for bridging to continuum,
which we refer to as “hierarchical multiscale simulation” (HMS). The macroscale
in our work is a continuum, Lagrangian finite element simulation in ALE3D [171,
199]. The fine scale in our work generates results from the set of DPD variants
implemented in LAMMPS and the CG-RDX model described above. The constitu-
tive material model in ALE3D receives its EOS information from these fine scale
simulations. We will also describe results where chemistry is provided from fine
scale simulations. This combination of macroscale and fine scale defines a concur-
rent, hierarchical approach using the Heterogeneous Multiscale Method. A software
framework, referred to as the HMS framework, handles communication and transfor-
mation of information between the macroscale and fine scale [200, 201]. The HMS
framework also handles computational aspects of the multiscale implementation,
such as queuing of the fine scale calculations and storage of the fine scale results.
Figure 10.7 provides a conceptual representation of the connection between scales,
with the HMS framework handling communication between the macroscale and fine
scale, and requests being dispatched from the macroscale on a per-element basis.

10.5.3.2 Machine Learning

In some cases, direct evaluation of the fine scale for every element at every continuum
time step (or “cycle”) may be prohibitively expensive for simulations with millions
of finite elements, over many hundreds of continuum cycles. Consider the case of a 1
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Fig. 10.7 Conceptual representation of the connection between the macroscale, the HMS frame-
work, and the fine scale

million element simulation run for 7000 cycles, with a fine scale that requires 3 min
and 64 cores for solution (for one element, at one cycle). On a 100,000 core machine,
completion of that simulation would take over 25 years. In order to make our HMS
approach computationally tractable, the HMS framework implements a feature to
leverage previously computed fine scale results. The central idea is that a set of such
previously computedfine scale resultsmaybe used to approximate the result for a new
property calculation, if the new fine scale state is easily interpolated from previously
computed states. Interpolation may be many orders of magnitude faster than an
actual fine scale evaluation. Publications variously describe this general approach as
surrogate modeling, adaptive sampling, or machine learning [180, 200, 202–209].
When used with a database managed by the HMS framework that is expanding over
time (i.e., over the course of themacroscale simulation),where additional information
in the database improves interpolation efficiency and accuracy, we consider this to be
regression via supervised machine learning. HMS applications requiring millions of
elements and hundreds of cycles become computationally tractable with an efficient
machine learning implementation. It is critical that the development of this data-
driven model is done in close coordination with a subject matter expert for the
underlying physics-driven model, otherwise unphysical results may go unnoticed. In
short, theory and data should work hand in hand [172].

10.5.3.3 Speculative Evaluations

The use of machine learning to make problems tractable introduces a new challenge
for HPC environments, where the number of cores available is not a severe constraint.
As the efficiency of the machine learning algorithm (i.e., its interpolation rate) may
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vary from cycle to cycle, the number of required fine scale evaluations will fluctuate.
If the number of cores requested for the job exceeds the number of cores necessary
for fine scale evaluations, then some remaining cores may be idle. This inefficiency
may be overcome through the launching of “speculative” evaluations of the fine scale
model on those otherwise idle cores. While not directly used in constitutive model
evaluations for the current cycle, these speculative evaluations may be added to the
HMS framework database of fine scale results. Additional data in that database will
improve the efficiency and accuracy of future machine-learned model evaluations,
therefore potentially decreasingwall clock run time and increasing the overall fidelity
of the simulation. This is particularly important, as wall clock run time may be
determined by the slowest element; improvement of the fine scale database to a point
where no fine scale evaluations are needed for a particular cycle results in impressive
wall clock speedups. Speculative HMSmay also leverage batch schedulers that allow
changes in the number of cores available for jobs that are currently running; additional
speculative evaluations could be initiated if there are idle nodes on a supercomputer,
or the number of speculative evaluations was lowered for the case in which a higher
priority job is needed to acquire additional batch nodes. The inherently parallel nature
of fine scale evaluations—eachfine scale simulation is independent of others—makes
speculative HMS easily amenable to full utilization of petascale and potentially even
exascale HPC resources, given a sufficiently complicated problem and expensive
fine scale evaluations.

10.5.3.4 The HMS Framework

Key to the effective execution of this HMS strategy is the software framework that
interfaces the macroscale and fine scale [200, 201]. Typically, simulation software is
not written with concurrent, hierarchical multiscale coupling in mind. The software
is most often run in a standalone manner using well-documented material models,
such as analytical forms available in hydrocodes or empirical potential forms built-in
to MD programs. Therefore, communicating constraints and results between those
programs is a software engineering task. This framework is also responsible for the
machine learning (or surrogatemodel) and scheduling of fine scale evaluations,which
are computational science problems. While not adding significant computational
overhead, the HMS framework is responsible for handling the parallel execution
of the updates to the fine scale database (evaluations necessary for the macroscale
model), as well as the updates to the machine-learned model. It should be sufficiently
general that if the HMS requirements change, e.g., additional macroscale variables
are requested for evaluation in a more complicated fine scale model, then large
parts of the software framework do not need to be rewritten. Similarly, it should
be flexible enough to allow for easy changes to the machine learning method or
its hyperparameters and to accommodate restarts to simulations that are terminated
due to hardware error or queue run time limitations. In general, the design and
implementation of the HMS framework is an effort that is distinct from, but as
important as, the design and implementation of the fine scale model.



10 Toward a Predictive Hierarchical Multiscale Modeling Approach … 263

10.5.4 HMS with LIME as the Fine Scale

In this final section, we describe HMS results using a fine scale model for RDX. The
fine scale solver we use is the LAMMPS Integrated Materials Engine (LIME) [210],
an automation and analysis tool written in Python, and developed specifically for our
HMS effort. LIME instantiates, executes, and returns results from DPD simulations
using our CGmodel for RDX. In an HMM review article, E. and co-workers describe
the design of the fine scale solver as “often the most difficult step, and is subject to
continuous improvement [189].” Fine scale solvers must reliably return an accurate
result to the HMS framework without human intervention in a minimal amount
of time, over any range of inputs that may be encountered during the macroscale
simulation. Further, execution ofmany fine scale solversmust effectively scale—task
parallelism leads to efficient leveraging of supercomputing resources [186]. If the
fine scale solver is extremely costly for reading or writing many files or large files
to a shared file system, i.e., input and output (I/O) intensive, then simultaneous
execution of thousands of fine scale solvers may degrade HMS performance. This
may also occur for MPI initialization of programs [211]. Further, jobs unrelated to
the multiscale simulation may also be degraded. As such careful design of the fine
scale solver is necessary.

10.5.4.1 Nonreactive Case

The nonreactive case of HMS using LIME utilizes a CGmodel for RDX and DPD-E.
In this simulation, the macroscale requires EOS information from the fine scale. In
particular, it needs temperature and pressure (T , P) as a function of energy and den-
sity (E, ρ). The pressure desired is the hydrostatic component of the stress tensor. The
hydrostatic nature of the response and the two input state variables provide sufficient
constraints to allow for the construction of the fine scale problem. The temperature
and pressure returned may be considered to be equilibrium values. This allows for
decoupling of the macroscale and fine scale in both length (the fine scale simula-
tion will have a smaller volume than the macroscale element) and time (equilibrium
simulations at the fine scale may have a smaller simulation time than the duration
of macroscale time steps). The fine scale solver must instantiate a DPD simulation
with the same energy and density as the macroscale inputs. It must then equilibrate
the simulation cell. Although equilibration may be assumed for sufficiently long
equilibration periods, properly detecting equilibration is nontrivial and extremely
useful for performing fine scale simulations in minimal amounts of wall clock time.
After the cell is equilibrated, the solver must collect enough data to produce accurate
ensemble averages for temperature and pressure, and return those averages to the
HMS framework. Additional data, such as the standard error and variance of the
ensemble averages, may also be returned. Those values may be used for uncertainty
quantification at the macroscale. When information frommicroscale/mesoscale sim-
ulations is used to determine material response in continuum simulations, the ideal
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continuum model would reproduce the exact result of the fine scale model, if the
two models/methods were used to simulate the same physical system over the same
amount of time. In general, correspondence of observable properties between scales
is a key component of validating a multiscale model.

In Fig. 10.8, we demonstrate this correspondence of results for the P-V and T -
V planes of the Hugoniot with our CG-RDX model. The sets compared are data
provided by LIME and used in an ALE3D plate impact simulation, and data from
longer duration results purely from DPD-E simulation in LAMMPS. The T-V plane
is particularly sensitive to error. For example, if the simulation cell does not have
approximately equal pressure in each cardinal direction when generating data to
be used in ALE3D, then the LAMMPS and ALE3D results will diverge by several
Kelvin. LIME carefully monitors the normal directions of the pressure tensor in
order to ensure they are roughly equal, therefore that error is not present in Fig. 10.8.
Additionally, a very small difference is observed when a yield stress (strengthmodel)
is present in the ALE3D simulation. Disabling this restores near exact agreement
between the sets.

Because temperature determines chemistry in our fine scale model and is the
more sensitive property for bridging scales, it is prudent to investigate the accuracy
of temperature calculations in further detail. Figure 10.9 demonstrates the standard
error of the mean, or the sampling accuracy, of temperature for our fine scale model
using LIME. The axes in Fig. 10.9 reflect the inputs to LIME: finite element energy

Fig. 10.8 P-V and T -V planes of the Hugoniot for particle-based simulations (LAMMPS) and
continuum simulations (ALE3D) driven by LIME EOS tables
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Fig. 10.9 Standard error of the mean for temperature over a range of LIME EOS calculations

and density. In general, LIME provides results with 0.5 K or better accuracy in
temperature for a given state point. As would be expected, systems that are higher in
energy (hotter) have larger error, since we are demonstrating absolute error and not
relative error.

Understanding the efficiency of fine scale simulations across a wide variety of
state points is important, in that it determines both a limiting factor for wall clock
time of the macroscale simulation, and may reveal a challenge for automation of fine
scale calculations. In Fig. 10.10 we examine the total number of DPD-E time steps
(equilibration and production, combined) performed during state point evaluations
across the wide-ranging surface of energy and density. While the vast majority of
state point evaluations using LIME require fewer than ~9000 total DPD-E time steps,
there is a significant cluster in the 1.85–2.15 g/cm3 range at energies corresponding
to temperatures of over 500 K, where many more time steps are needed in order to
converge LIME. If it would be common for simulations to explore that part of state
space, then the algorithms and heuristics in LIME could be further tuned in order to
accelerate convergence for those state points.

Putting it all together for the nonreactive case, we demonstrate a Lagrangian finite
element Taylor anvil impact simulation using ALE3D as the macroscale and LIME
as the fine scale for the material EOS. In Figs. 10.11 and 10.12, snapshots from
2D axisymmetric impact simulations are shown with elements colored by pressure,
demonstrating pressure waves traveling through the material and deformation at
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Fig. 10.10 Total number of DPD-E time steps necessary for LIME convergence over a range of
state point calculations

material edges that are impacting the hard wall. The simulation in Fig. 10.11 used
LIME for EOS calculations in each of the 1600 elements. These calculations were
performed “on the fly”, meaning that LIME was called during the HMS simulation,
for each element, at each cycle. The simulation in Fig. 10.12 also used LIME as the
fine scale, but used a machine learning method for statistical regression in the HMS
framework in order to provide estimates of LIME response within a controllable
error tolerance. The regression method of choice for our HMS framework is kriging,
also known as Gaussian process regression, and was previously demonstrated in a
study examining a two-scale model for crystal plasticity [200]. This allowed the
simulation in Fig. 10.12 to use one million elements for its mesh (a 625× increase
in mesh size), without needing to explicitly call LIME for each of those elements
at every cycle. Comparing the figures, for this case, it is evident that higher mesh
resolutions are critical for resolving physical phenomena in continuum simulations,
where the separation of elastic and plastic waves is visible in Fig. 10.12, while not
visible in Fig. 10.11.

10.5.4.2 Reactive Case

The second example of HMS using LIME is that of a plate impact test using the
CG-RDX model and DPD with reactions (DPD-RX) method described above in
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Fig. 10.11 Taylor impact test simulation, colored by pressure, with 1600 elements. EOS response
for each element was calculated with LIME “on the fly” every cycle. Time units are microseconds
and pressure units are megabar

Fig. 10.12 Taylor impact test simulation, colored by pressure, with one million elements. EOS
response for each element was calculated using a combination of LIME “on the fly” and machine-
learned responses. Time units are microseconds and pressure units are megabar
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Sects. 10.2 and 10.3, respectively. In this simulation, the macroscale requires not
only EOS information from the fine scale, but also chemical species information, an
additional nine variables given our reaction model described in Sect. 10.3. However,
the time evolution of chemical kinetics under shock infers that the fine scale may no
longer be assumed to be in an equilibrium state. Therefore, a similar instantiation
and equilibration scheme may be followed in LIME (adjusted for input chemical
species from the macroscale), but production data is collected in “lock step” with the
macroscale; in particular, the fine scale solver covers the same production simulation
time as themacroscale time step. HMS plate impact simulations, such as the snapshot
in Fig. 10.13, demonstrate the consumption of RDX and temperature rises similar
in magnitude to those observed in DPD-RX simulation, but systematically lower.
This is believed to be in part due to the effects of computational homogenization
when a wave has only partially passed through a many-micron wide finite element.
Resolving differences between reactions at the macroscale and fine scale and solving
the “scale-bridging in time” problem for the nonequilibrium case are active areas of
research for us.

Fig. 10.13 Plate impact simulation, colored by amount of RDX consumed (red scheme, 1.0 �
pure RDX, 0.0� all RDX consumed) and material type (gray, aluminum). This demonstrates direct
use of chemistry from fine scale simulations during a continuum shock impact simulation. Only
elements near where chemistry is occurring are displayed. Time units are microseconds and length
units are centimeters
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10.5.5 Outlook

Going forward, many challenges need to be overcome for our HMS approach applied
to energetic materials. Simulations to date have relied on an idealized description of
RDX as a homogenous, defect-free single-crystal material. However, as described at
the beginning of this chapter, it is known that for real energetic materials, initiation
thresholds are determined by a number of factors such as polycrystalline grain size,
shear, porosity, amount and types of binder or plasticizer present, or more broadly,
any inhomogeneities present [1, 2, 6, 117, 194, 212–220]. Incorporating those effects
into an HMSmodel will require continued research and development of the fine scale
particle-based models, and then leveraging of those models in an HMS scheme that
utilizes additional history variables to describe each of those components of themate-
rial microstructure. Capturing all of those effects in a single microscale RVE may be
difficult or impossible, requiring use of several statistical volume elements to capture
a variety of effects and then return weighted results to the macroscale [221–224].
Including over a dozen history variables for descriptions ofmicrostructure and chem-
istry in an automated fine scale calculation also leads to new challenges for machine
learning in a high-dimensional space, the so-called “curse of dimensionality [14,
180, 225–229].” Regardless of the multiscale approach chosen, currently there is no
immediately apparent approach to model the complex reactive response of energetic
materials across all possible insults. However, with further developments, HMS pro-
vides a viable and promising path forward for accurate, high fidelity simulations in
the future.

10.6 Concluding Remarks

Advances in multiscale modeling and simulation methodologies are beginning to
make possible virtual design and performance assessment of EM, before actual pro-
duction, enabling modeling and analysis of complex phenomena across multiple
time and length scales. We have described our own developmental efforts to predict
the dynamic behavior of EM at all relevant length scales that will lead to under-
standing of the various dynamic processes, properties, and mechanisms for energetic
material response under the full range of conditions. Microstructure plays a domi-
nant role in the macroscale response of the EM, however, computational capabilities
have been lacking at the microscale. We described our efforts to fill this computa-
tional capability gap through the development of CG models and methods that can
simulate microstructure evolution (including effects of chemistry) in response to var-
ious stimuli. Upon upscaling of these microscale tools into the macroscale models,
the effects that microstructural heterogeneities impose on macroscopic events can
be captured. We described multiscale modeling methodologies capable of coupling
behaviors from the fine scale to the macroscale, including our choice of a concurrent,
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hierarchical multiscale approach, and the computational simulation framework into
which simulations at the various scales are effectively integrated.

Relative to atomistic and continuum approaches used to simulate EMs, our
microscale and hierarchical multiscale efforts are in the nascent stage of develop-
ment. Currently, we have demonstrated proof of concept calculations and provided
paths forward for advancing the methodologies. We are proceeding in a straightfor-
ward methodical manner, and while much more work is needed, our efforts continue
to evolve, where progress continues to be promising. Although the effects of the loss
of fidelity due to coarse-graining have yet to be rigorously quantified for our models,
estimates of the computational gains are encouraging. If we consider MD using the
ReaxFF force field as the most viable model comparison for the detailed simulation
of microstructure evolution with chemistry, estimates of the computational costs
savings of our microscale approaches are on the order of 104 in speedup. Such gains
allow us to move beyond the simulation of isolated ideal microstructure and begin
simulating microstructure typically found in actual EM composites.

We described deficiencies of various components of our efforts, with an emphasis
on the reaction models.We believe that future work should focus on the development
of reduced-ordermodels that properly depict chemistry of condensed phasematerials
under extreme temperatures and pressures. Key development needed for our CG
models is a more accurate modeling of the plastic response and improvement in the
transferability of the product gas mixture model. A next stage development for our
CGmethods will focus on a more complete representation of species mass diffusion.
For the multiscale hierarchical tools, further work is needed on novel statistical
sampling of microstructural features at the fine scale, and obtaining an understanding
of error propagation and uncertainty quantification across the scales. This includes
uncertainties on dynamic yield behavior, fracture behavior, mechanical/chemical
physics at extreme states, plastic deformation, anisotropic crystal properties, material
slip, and contact behavior—all of which affect the behavior of an EM.

We hope that the description of the research challenges will inspire further devel-
opment of innovative models and methods, leading to a robust predictive multiscale
modeling and simulation capability that will describe EM response under the full
range of conditions. Our tools are built around a general computational framework,
so that they can be extended to other material systems with moderate modification.
Therefore, while we hope our efforts will advance EM design, we also hope that they
will be used to study materials beyond EM.
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