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Gaussian Fractional Integrals and Fractional
Derivatives, and Their Boundedness on Gaussian
Function Spaces

In this chapter, we study several important operators in Gaussian harmonic anal-
ysis. First, we consider Riesz and Bessel potentials with respect to the Ornstein—
Uhlenbeck operator L, and then, Riesz and Bessel fractional derivatives. We study
their regularity on Gaussian Lipschitz spaces, on Gaussian Besov—Lipschitz spaces,
and on Gaussian Triebel-Lizorkin spaces. The results obtained are essentially
similar to the classical results, as mentioned before, the methods of proofs are
completely different. The boundedness results for Gaussian Besov—Lipschitz and
Triebel-Lizorkin spaces were obtained by A. E. Gatto, E. Pineda, and W. Urbina,
and appeared initially in [110] and [111]. These results can be extended to the case
of Laguerre and Jacobi expansions by analogous arguments.

8.1 Riesz and Bessel Potentials with Respect to the Gaussian
Measure

Gaussian Riesz Potentials

In the classical case, the Riesz potential of order 3 > 0 is defined as the negative

fractional powers of —A,
(—a) P2,

which means, using Fourier transform, that

(—a)P2fr(E) = (2m|E]) P f(E). 8.1)
For more details, see [252, 118].
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The Gaussian fractional integrals or Gaussian Riesz potentials can also be
defined as negative fractional powers of (—L). However, because the Ornstein—
Uhlenbeck operator has eigenvalue 0, the negative powers are not defined on all
of L?(y,); thus, we need to be more careful with the definition. Let us consider

Ihhf = f— /df(y)}/d(dy) the L?(y,) for f € L?(y,), the orthogonal projection on

R
the orthogonal complement of the eigenspace corresponding to the eigenvalue 0.
Definition 8.1. The Gaussian fractional integral or Riesz potential of order B > 0,
I is defined spectrally as

Ig = (—L)"P/*1, (8.2)

which means that for any multi-index v, |v| > 0 its action on the Hermite polynomial
H, is given by

1
IgHy (x) = WHv(x)» (3.3)

andforv = O = (07...’0), Iﬁ(HO) - 0

By linearity, using the fact that the Hermite polynomials are an algebraic basis of
P (R7), Iz can be defined for any polynomial function f(x) = ¥, f,(v)H, as

@ = ﬂl(;/)znv(x) -y

\% k>1

1
Wka(X) (8.4)

and similarly for f € L?(y,).

From (8.4), it is clear that the Gaussian Riesz potentials Iz are the simplest
Meyer’s multipliers, because in this case

mk)=-— = h(i), (8.5)

with /(x) = x the identity function.

Proposition 8.2. The Gaussian Riesz potential Ig, B > 0, has the following integral
representations, for f € (RY) is a polynomial or f € Cz(R?),

1 oo
Igf(x) = B — d 8.6
B10)= Feg7y P U TS, 3.6)
with respect to the Ornstein—Uhlenbeck semigroup, and
) = g [ PTRU- T, 8.7)
rp) o

with respect to the Poisson—Hermite semigroup,
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Proof. 1t is enough to prove that (8.6) holds for the Hermite polynomials. By the
change of variables u = |V|t

1 “ B/2-1 _ O — B2 Y] »
1 o yB/2-1 _y du
= R o e
1
= MTHHV(X)

Then, again as the Hermite polynomials are an algebraic base of the set of polyno-
mials & (R¢), the formula holds for any polynomial. It can be proved that (8.6) also
holds for f € CZ(R?).

Observe that the integral representation (8.7) only means a change of scale, as
Ig = [(—L)'/?]~B. Taking the change of variables u =,/]V],

L/wtﬁ*(a(z—JO)Hv)(x)dt - L/mtﬁ*e*fmdz H, (x)

rp) Jo rp) Jo
1 = uP=l . du
- e
1
:MT/ZHV(X)’

again using that the Hermite polynomials are an algebraic base of the set of polyno-
mials 22 (RY), O

Following the classical case, in general, we prefer to use the representation of
Ig (8.7), using the Poisson-Hermite semigroup. This representation will be crucial
later to get several boundedness results to operators associated with L.

On the other hand, let us recall that in the classical case (see [252, Chapter V
§1]), Riesz potentials have the following integral representation:

/o) J

—A)B/2 - _JV)
( A) f(x) _Cﬁ Rd |x_y|d,ﬁ .

In the Gaussian case, we can also get an integral representation, as follows:

Theorem 8.3. The Gaussian Riesz potential Ig, B > 0, has an integral representa-
tion,

() = [ Nyl f()dy. 59)
where the kernel Ng j;(x,y) is defined as

_ber?

1

! 4/ e 17 e\ dr
Nﬁ/z(%)’)zm/o (—logr)P/? l(m—e bl )7~ (8.9
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Proof. To find the integral representation of /g, because the negative powers of L
do not exist in all of L?(y;), we add a small multiple of the identity. Hence, let us
consider the operator (&l; — L), where I, is the identity in R? and & > 0, and let
us take its negative powers. The advantage of this trick is that it can be represented
as a Laplace transform and this allows us to use the expression for Mehler’s kernel
M;(x,y). More precisely, for € > 0 and ﬁ >0,

(el—1) P2 = / (8121 (1Lt . (8.10)

ﬂ/Z

therefore, the kernel of (el —L)"B/2is

Naeled) = gy ) 17 e M
1 _b—eTtx?

L [3/2 1 -e__ - _e— 2
F(ﬁ/2)/ot e nd/Z(l_e—zr)d/ze I dt,

because, if f € L' (y,),

1
(eI—1) P12 f(x) / e T
r'(B/2)
1
_ B/2—1 —et )
= — t e "M (x,y)dt ) f(x)dy.
b (L (. y)dr ) £ (x)dy
As Iy is the orthogonal projection of the orthogonal complement of the
eigenspace corresponding to the eigenvalue 0, then Jo = I — Iy, where Jj is the
orthogonal projection on the subspace generated by Hy = 1 (that is, the constants),

and then we have

(el —L) P21y = (el —L) P2 — e~ P/2),.

The kernel of Jy is clearly n=4/2¢=b and trivially e P = [°tP~1e~¥dt, then the
kernel of (eI —L)~P/2ITy is

1 oo 2
B/2—1 —et _—d/2 -]y
B /2) '/0 t e (M,(x,y) n e )dt

We can take € — 0 in the integral above without problems, then
1 oo
Ig = 7/ PP (1= Jo)dt
oY R
Therefore, the kernel of /5 is given by

_—elof?
e |L2t

1 ot 2
- - Br-1(_ ¢ =~ _ =Dl
Nﬁ/Z(xay) - nd/ZI“(B/Z) /0 4 ((1 _672t)d/2 € )dt

=

1 1 e 17 2\ dr
_ _ B/2-1 )2
- nd/ZF(B/Z)/() ( 10gr) ((17r2)d/2 e Vv ) (811)
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taking r = e~ *. Thus
Igf(x) = AdNﬁ/z(x,y).f(Y)dy-
a

In [102], it is proven that these operators are not of weak type (1, 1) with respect
to 7. On the other hand, the strong type (p, p), for | < p < eo,

Wpl1p7a < Coll fllpus (8.12)

follows either directly, from the hypercontractivity property of the Ornstein—
Uhlenbeck semigroup, or by applying P. A. Meyer’s multiplier theorem, Theo-
rem 6.2.

The classical Riesz potentials are homogeneous (see E. Stein [252, Chapter V
(10)]), but it is easy to see that this is not the case for the Gaussian Riesz potentials Ig.

Moreover, it is well-known that the classical Riesz potentials are of strong type

(p,q) with é = % — %, that is to say, the classical Riesz potentials “improve” in

the sense that Ig : LP(R?) — L9(R?) continuously, with é = % - g. The Gaussian
Riesz potentials, however, do not improve integrability. More formally, for any 8 > 0
for the Gaussian Riesz potential Ig, there is no g > p such that it sends L”(y;) —
L9(yy) continuously. This can be proved using the following counterexample, due to
L. Forzani and W. Urbina, [87]. For every a > 0, let us split Iﬁ as,

) =1F () +f () = [ Nps)f Oy + [ M) fO)a.

where the kernel (8.11) is split into the sum of two parts,

» _lynf?
1 _ o pot(_€ " pp\dr
Nﬁ(xvy) Cﬁ,d/) ( lOgr) ((1_r2)d/2 e ) r
_=ne?

1

1-r2

N/%(xa)’) :C137d/ (flogr)ﬁ*((le;wfe—\ﬂz)?.

The operator
1fx) = [ Ny) )y
R4

can be written as
B = pg [T o f )
X) = —— x)dt,
: T(B) Ja ’

where T; = ¢! is the Ornstein—Uhlenbeck semigroup (see Chapter 2). Taking into
account that T’ is a hypercontractive semigroup, I; turns out to be of strong type

(p,q), withg = 1+ (p—1)e*.
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Additionally, I, is an operator defined for every function on L?(7;). To prove
that it does not improve integrability, it would be enough to show that for every
g > p there is a function f € LP(dYy) such that I f ¢ L7(y,). Let us take é <c< %
and f(y) = e"‘y‘zx‘y‘zl € LP(dy).! Tt can be proved (see [86]), that the kernel

12

2 . .
Nj(x,y) > Cell 4o in the region {(x,y) : || > 1, Iy +1 < x> < 3y[*}.

('XZ
Hence, Iz(ecmz) 2 elx‘l‘z for |x| > 1; therefore, Iz(e”‘)"z) ¢ L(y).

The reason why Gaussian Riesz potentials do not improve integrability is the
fact that L satisfies a logarithmic Sobolev inequality and not a Sobolev inequality.
Nevertheless, a LPlog L(y,) inequality can still be pulled out. Following E. Fabes’
suggestion, applying certain techniques used by L. Gross in [119], to prove that hy-
percontractivity implies a Sobolev logarithmic inequality, we can prove the following
result:

Proposition 8.4. For any B > 0 the Gaussian Riesz potential Ig maps LP(yy) into
LPlogL(Yy) continuously; in other words, the following inequality holds

[ s ogips ] van <€ ([l ay-+ 515 toel 1l ) 13

foreach f € LP(y).

Proof. Indeed, for B > 0, consider the generalized Poisson—Hermite semigroup P,B =
e_(_L)ﬁt, defined in (3.38). Let f be a polynomial, such that [p. f dy =0, Igf #0,
and set F(t) = Ptﬁ (I3 f), then for every 1 > 0,

E Ol p—1yet y = [IF O)lp,y
t

1-1
< — g Allpy=0 (8.14)

where the above inequality is a consequence of the hypercontractivity of P,B .In(8.14)
we lett — 0T to get

d
EHF(I)HH(pfl)e‘”,y <0 (8.15)
=0
Using a lemma proved in [119],
2\l I Al I 4= 1) [ Il ogllgldy  (816)
dt L(p-netry| = IEBllpy 1P P o 'BIV10810B Y .

—~ (11 f1|p.y10g |15 £1lpy) + Re(F'(0), sgn(lp f)l1g f17~")y).

'For d = 1 the function f, defined above, is the same as that used by H. Pollard in his
famous counterexample in [230].
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But F'(0) = (fL)BIﬁf = f. Now, combining (8.15) and (8.16) we get

/Rd [1.f (x)|" log |15 £ (x)| dy < C(|1Ip fI} 08 115 /1 py + (LF 1, 12 F1P~ "))

By applying Holder’s inequality to the second term of the sum appearing on the
right-hand side of the above inequality, and then the L”(dy) continuity of /g, we get
inequality (8.13). a

Thus, although g do not improve in the L”(y;) “scale,” they do improve in the
“logarithmic scale” L” (y;)log L(7y).

Gaussian Bessel Potentials

Definition 8.5. The Gaussian Bessel potential of order > 0, . is defined spec-

trally as
Jp=I+V-L)P, (8.17)
meaning that for the Hermite polynomials we have,
1
SpHy(x) = ————Hy(x). (8.18)
(1++/Iv])P
Again, by linearity, g can be extended to any polynomial; thus, if f = Y Ji f, then
1
Sp=3 S,
© (14 /[k])P

From (8.18), it is clear that the Gaussian Bessel potentials #g are not Meyer’s
multipliers, but a composition of two Meyer’s multipliers, because in this case

uﬁmﬁ(k+QZ@mwmmw» (8.19)

with A (x) = (1 +x) 7B and hy(x) = x.

Using a similar argument to that above (8.7), the Bessel potentials can be repre-
sented as

Ipf(x) = L / Bt f(x)ﬂ - / B f(x)dr  (8.20)
PRV T(B) Jo T B ’ '

P. A. Meyer’s multiplier theorem, Theorem 6.2, shows that jﬁ is a bounded
operator on LP(y,), 1 < p < e, and again (8.20) can be extended to L”(y;), using
the density of the polynomials there.
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On the other hand, again using P. A. Meyer’s multiplier theorem, Theorem 6.2,
we get that the operators
I i

——, and =~

B Ip
are bounded on every L”(y,),1 < p < o; because, for instance, for any multi-index
v, [v|>0

I P V/i7i . W (0 U WO B
(/ﬁ)HVU—( o )HVU—(mH) HL () = (L),

with h(x) = (x+ 1)B. These give the relation between the Riesz and Bessel poten-
tials, similar to those in the classical case (see [252, Chapter V. Lemma. 2]).

It is easy to see, from the fact that # is a multiplier, that it is also a bijection
over the set of polynomials &2. Additionally, the Gaussian Sobolev spaces can be
characterized in terms of Gaussian Bessel potentials,

Proposition 8.6. For f >0and 1 < p <o
Ly(va) ={Ipf: f €L (W)} (8:21)

Proof. First of all, observe that #g maps the family of polynomials & (R9) into
itself injectively. Then, as we already know _Zj is continuous in L”(y;), then we
conclude _#g : LP(y;) — Li(va) is bijective. O

Moreover, considering the family {_#p} g itis easy to see that it is a strongly con-

tinuous semigroup on L”(y), 1 < p < e, having as infinitesimal generator %log([ —
L).

8.2 Fractional Derivatives with Respect to the Gaussian Measure

Gaussian Riesz Fractional Derivate

In the classical case, fractional derivates for the Laplacian operator are defined as,

5 o fx+y)—fx)
(A =eplim | s P

28r(da+B/2
for0 < B <2.cp = i 55, see [255]
For the case of doubling measures, and more recently for s-dimensional non-
doubling measures, this has been generalized by A. E. Gatto, C. Segovia, and S.
Vagi in [108].
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On the other hand, observe that

) () [ro
——=——=dy=C t P f(x)— f(x))dt, 8.22
Rd y|¢+P y=Cpa |, (Pf(x)— f(x)) (8.22)

where P, is the classical Poisson semigroup. Then, following the classical case:

Definition 8.7. The Gaussian Riesz fractional derivative of order > 0, DB is de-
fined spectrally as
DP = (—L)B/?, (8.23)

meaning that for the Hermite polynomials, we have
DPH, (x) = |v|P/?H, (x). (8.24)
Thus, by linearity, DP can be extended to any polynomial (see [164] and [224]).

Now, if f is a polynomial, by the linearity of the operators /g and DB, (8.3)
and (8.24), we get
Ig(DP f) = DP (g f) = Ty . (8.25)

In the case of 0 < B < 1 we have the following integral representation for f a

polynomial,
1 "o
DPf(x)=— [ PN 1—P) f(x)dt, (8.26)
CB JO

where cg =[5 u B=1(1 — e *)du : because for the Hermite polynomials we have,

by the change of variables u = \/|Vv|t,
: PN (1= P)Hy (x) (x)dt = (i/ P! (e"\/M —1) dl)Hv(X)
Cﬁ 0 C[; 0
1 oo
= |v|P/? <CB/0 u B! (e"—1) du)Hv(x)

= |v|P/?H, (x) = DPH, (x).

The identity (8.26) is very important in the development of a version of A. P.
Calderdn’s reproduction formula (see Theorem 8.31 below).

Now, if B > 1, let k be the smallest integer greater than 3 i.e. k— 1 < f8 <k, then
the fractional derivative DP can be represented as

l oo
DB f= 7/ B —P)rrar, (8.27)
s Jo

B
where c’é =Jy uB-1 (1 —e *)*du and f a polynomial function (see [239]).

As was mentioned earlier, fractional derivatives DB can be used to characterize

the Gaussian Sobolev spaces Lg (74). First, we need to extend the fractional derivative
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operator DP to all the Gaussian Sobolev spaces Lg(yd), 1 < p < 0. The union of
these spaces

Lg(va) == |J Ly ()

p>1
is a natural domain of DB. Observe that the definition of D in all the spaces
Lg (74), 1 < p < o, is based on an application of Meyer’s multiplier theorem, Theo-
rem 6.2.

Theorem 8.8. Let B >0and 1 < p < oo,

i) If {P,}n is a sequence of polynomials such that lim, .. P, = f in Lg(}/d), then

lim, DP P, exists in LE (1) and does not depend on the choice of a sequence

{Bhn If f € Lg (va) N Lg (Va), then the limit does not depend on the choice of p
or r. Thus, the fractional derivative is well defined by

DPf=1imDPP, in L2(y,), as limP,=f in L2(y,),
B s B

n—o0
f € Lg(Ya), is well defined.
ii) f€ Lg (1) if and only if D f € LP(y,). Moreover,

Bopflpp < [PP1) ) <051l (8.28)

Proof. ii) Let f be a polynomial. Then
8 Z n \B/?
s (i) e
so\l+n "

where g = (1 — L)’ﬁ/ 2 f. Note that g is also a polynomial. Observe that by construc-
tion,
£l = llgllp.y-

Using Meyer’s multiplier theorem, Theorem 6.2, with the holomorphic function
h(z) = (142)7B/2, we get

[DPs||  <cilghpy
p7Y

To prove the converse inequality, observe that the polynomial g can be rewritten as

> <lin)ﬁ/2Jn<Dﬁf),

n>0

and using Meyer’s multiplier theorem again we obtain,
Il < Co[[DP7]] .
by

Thus, we get (8.28) for polynomials.
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i) The completeness of Lg (74) can be proved using (8.28), and the fact that for
r > p the embedding Lj (y;) C Ll’;( Y1) is continuous. Finally, from there, we can
obtain (8.28) for any f € Lp(Yd) ad

From the previous result and Proposition 7.3, we can immediately obtain a cha-
racterization of the Gaussian Sobolev spaces.

Corollary 8.9. Assume that 1 < p < e and 3 > 0. Then

Lhw) = {f eLy(u) : D f e (v0) |- (8.29)

If B=keN, then

L) = {f € Llw) : DIf €L (). j <k} (8.30)
This characterization of Sobolev spaces is the most common one in the classical
case.
Gaussian Bessel Fractional Derivates

We can also define the Gaussian Bessel fractional derivatives, b,

Definition 8.10. The Gaussian Bessel fractional derivatives of order J3, 9B, are
defined spectrally as

9B = (1+V=L)", (8.31)

which means that for the Hermite polynomials, we have
2PH, (x) = 1+ /|v])PH, (x) (8.32)

thus, by linearity, it can be extended to any polynomial (see [224]).

In the case of 0 < 8 < 1, we have the following integral representation,

1 1)
PBr=— | B 1—e'P) fdr, (8.33)
Cﬁ 0

where, as before, cg = [y uB=1(1—e*)du and f is a polynomial.

Moreover, if B > 1, let k be the smallest integer greater than 3,i.e.. k—1 < 8 <k,
then we have the following representation of 2P f

ghr=L / TPl Ry far, (8.34)
Cﬁ 0

where c’é =Jy u b1 (1 —e *)*du and f is a polynomial (see [239]).
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8.3 Boundedness of Fractional Integrals and Fractional
Derivatives on Gaussian Lipschitz Spaces

The boundedness results in the case of Gaussian Lipschitz spaces initially appeared
in A. E. Gatto and W. Urbina’s article [109]. First, observe that the Gaussian Riesz
potentials are not bounded operators on L™(y,) and, therefore, not on Lip () either.
Then, to make sense of Riesz potentials on L™, we consider, for 8 > 0, the truncated
Gaussian Riesz potentials,

1
1550 = [ PR,

We want to study the truncated Gaussian Riesz potentials I,g on the Gaussian
Lipschitz spaces Lipy (Y4),

Theorem 8.11. For 0 < 8 < | and o > 0, the Riesz potential of order J3, Ig :
Lipo(Ya) — Lipgp(Ya) is bounded.

Proof. Let f € Lipy(V,), i.e., f € L such that H% < At~!*% First, observe

that

“"’J’d
RSO [ plex )OIy < 1f oy
that is, P, f € L™ and then

1
p

Therefore, IZ f € L™. Now, using the semigroup property and Fubini’s theorem,

1 1
1< [ PR @ar < [P e = i1

oy

1
RIGFG) = [ poxs)F 0y = [ Pouf () = v(x.s)
Ifa+B<1,thenfor0<s<1
d 1 s 0 ls .0
?:(x’s) :/0 P la s+tf(x)dt:/0 P IEPH,f(x)dt

S g 3 1 B 8
— (I)+ (7).
Now, for (I), because t < s
(D] < /S[ﬂ_l‘ipﬂ»tf(x)‘dt §C/St’3‘1(t+s)a—1dt
0 ot 0

< Csafl/stﬁfldt = CslotB)=1
0
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and, for (II),ast > s

1 0 oo
D < [ NS Rl <C [P e ar
N N
< C/wtﬁflto‘*ldt =Csleth)-1
N
Thus,
|20, <cte
which implies I,g feLlipy, B (74)- The general case follows in a similar manner. 0O

Now, we study the action of the Bessel potentials on the Gaussian Lipschitz
spaces Lip (), which is much better than the case of the Riesz potentials:

Theorem 8.12. Let o, 3 > 0 then 7 is bounded from Lipo () to Lipg. (7).

Proof. Let f € Lipy(y) and consider a fixed integer n > o + 3, then

| <o,

Using (8.20), the fact that f € L™, and consequently P f € L™, we obtain

t>0.

P(IPF)(x) = r(lm/;wsﬁ—le—sp,ﬂf(x)ds; (8.35)

therefore,

1B (7B )leo < 1 fleo
ie. Pt(/ﬁf) erL

Now, we want to verify the Lipschitz condition. Differentiating (8.35), we get

PESNWD L[ ),
5 ¢

ar" ot
1 T g 1 _0"Pisf(x)
_ B-1,—s I+
7F( )/0 sP e 3 +s) ds,
and this implies
Hanl)z(/ﬁf)H < / 1,
ar" o t—|—s)
1 LT IR 8"P f
_ B—1,=s|| Z_its)
VAR e §

(1) +(11).
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Because f >0ast+s>1,

(I S F / B=1(t 4 5) e ds
A(ﬁ_n Y
< Qe [ s < €

On the other hand, because n > ot + 3, ast +s > s

A °° A oo
() < ﬁ(f) / Sﬁileis(t—i-s)*rWads < ﬁ(f) / Blo=sg—nta go
! t

re) re)
Aﬁ(f) —— B-14.__ —n+o+f
gm/t s TP ds = CAg(f)r TP,
Therefore,
Hc?nl’téfﬁf)Hm SCAB(f)t—nJrochB7 t>0.

Thus, Zgf € Lipyp(¥), and moreover

128 Lipg, s = 178 S oy +Ap(7BS)
< [ flleey +CAB(f) < ClIS lLipp )

a

Finally, let us study the action of the fractional derivative DP on the Gaussian
Lipschitz spaces.

Theorem 8.13. For 0 < B < o < 1, the fractional derivate of order J, DB .
Lipo(Ya) = Lipo_pg(Ya) is bounded.

< At~ QObserve that

Proof. Let f € Lipa(Ya), i.e., f € L™ such that H 85’;)‘

-
using (7.44) and Proposition 7.23, we get

1 oo
DP £(0)] < e b PR () = £l

1 /! 1 />

m / RS Wl [ PR~ f0ld
L s 2 flley [ 5

— p-1 _ 2l Mleoy B-1

o IR = Sl S [

1 oo
< IM/ l‘aiﬁildt—F%/ t*ﬁfldt
g Jo B 1
A(f) 2

= ~ry< '
csa—p) " peg = ol luingr

IN
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Thus, DB f € L=(y,). Now, using (8.26), and fixing s, we have

2 (p? 512 - - P R - B
ch,3 | fﬁ*[%(mf(x))—%Psf(xﬂdf
— o [P S R ) - S
o [P ) = R
= (I)+ (II).

Using Proposition 7.27, we have

< Au®?

— )

(8.36)

‘ Vd

[zt

and then, using the fundamental theorem of calculus, we get

0 0 s+ 92 s+t o
S Pcf @) = SRIWI < [ SR Wldu<a [ a2

gA/mu - A s
s 1—
Then, as t < s,
1 _p-1 d
O < = [P 2 (P ) - R
Cﬁ N
—1 S S
gA—/ r—ﬁ—ls“drgcaﬁs—l/ 19 Plar =, ps P
cg Jo ’ 0 '
On the other hand,
1 [ d d
mn < — [ 1= — —Pf(x)|d
00 < o [T S B )= SRS
AS(X*I oo
< 1B dr =, 55 P
= (/3_1)cﬁ/.y P

Therefore,
J
9 ppB ’ < Cs@—B-1
Hgs(PSD f) ‘ <Cs ,

°,Yd

which implies DP f € Lip,,_p(14). O
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8.4 Boundedness of Fractional Integrals and Fractional
Derivatives on Gaussian Besov-Lipschitz Spaces

As we discussed in the previous section, in the case of the Lipschitz spaces only a
truncated version of the Riesz potentials is bounded from Lipy(Ys) to Lipg g (Ya)-
Now, we study the boundedness properties of the Riesz potentials on Besov—
Lipschitz spaces, and we see that in this case, the results are better.

Theorem 8.14. Let o0 > 0,8 >0, 1 < p < 0,1 < g < oo then Ig is bounded from
BS () into By P (va).

Proof. Letk > o+ B a fixed integer, f € By ,(7), using the integral representation

of Riesz potentials (8.7), the semigroup property of {P, };>¢ and the fact that P f(x)
is a constant and the semigroup is conservative, we get

1 tee
- B-1p(p. -
Pls /() = gy o RS~ Pap(a))as
1 gl
= rip o Bt 0 s 837)
Using the fact that P, f(x) is a constant again, and the chain rule,
o L= gy o
Z - B-12_ _
S Pl W) = gy | P G s () Pef () s
oo
= ﬁ/o sﬁflu(k)(x,t—i—s)ds. (8.38)
Then, using Minkowski’s integral inequality
o~ 1t
= - B=111,8) (.
H&tkmﬁfHM < F(B)/o BN ® (-, 14 5) | poys. (8.39)

Hence, if 1 < g < oo,

<'/0-+°° (tk(a+ﬁ)"§t1j‘(glﬂf)“p7y)qcf);
< lﬁ(/0+mt<k(a+ﬁ))"</0+msﬁ1|M(k)(',t—|—5)|p-,yds>qit>‘1’
< [ [ BNl ) L)

t

+eo oo adt\ 4
Gy ([ B[P s) | s) ) T = 1) D).
0 t t
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Now, as 3 > 0 using Lemma 3.5, and as ¢ + s > 1,

(I)SCﬁ(/+ —(a+B))q / B— 1”” (J pryds)q?)é
Cﬁ(/omt(k(aw))qH&(;I;ltcfH,,,y(i)qit>;

1

q

c (/0+oo (tkia Qkptpry)th) < oo,

dtk t
because f € By ().

On the other hand, as k > o + 8 using Lemma 3.5 again, because 7 + s > s, and
Hardy’s inequality (10.101), we obtain

te oo ds\adt\ g
1) < ([ ([P ), ) )

oo k 1
= k_&m/; (o] 52 \,,,y)q?)q <o,

dsk
because f € B  (74). Therefore, I f € Bff;ﬁ (74) and, moreover,

1l goss = Mpfllpy+ (/;w (tk(HB)H(;};c(mﬁf)Hp,y)“?)é

oo O*Pf adry §
< k—a ! H =)< ,
<Al Cap ([ (“| S| )" E)" <Clrlyg,

t
Now, if g = oo, (8.39) can be written as

o* L™ g1y, ®
I5arirl,, < g s O s
o
= m/o B IHM(k>('7t+S)||p.,de
1 oo
LI T
— (1) + (1.

Using that § > 0, Lemma 3.5, as t +s > ¢, and because f € B“’m(yd),

) < Fl gf;fHM/ Bt gs < mlg

(f)t7k+a _ CﬁAk (f) fkro+p
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Now, because k > o + f3, using Lemma 3.5, as 7 +s > s, and because f € By, ,(Va),
we get

(1) < ﬁ / “sﬁ—luaﬁf | ass f;kg)) [t

Ac(f) pk+o+B

_ _ —k+o+B
BOLECE TR .

Therefore,
HithIﬁfH < CA(P) P 150
otk py ’ ’

and this implies that /g f € B‘Hﬁ(yd) and Ai(Ig f) < CAr(f).

Moreover, as /g is a bounded operator on LP(y;), 1 < p < oo,
g fll gas = g fllp.y + AU f) < I 1lpy+CA(S) < CI|fllBg... O
o

Now, we are going to study the boundedness properties of the Bessel potentials
on Besov-Lipschitz spaces.

Theorem 8.15. Let ¢ > 0, 1 < p,q < o, then for § >0,

i) g is bounded on B ,(Ya)-
ii) Moreover, #g is bounded from By, ,(Va) to BI(quFB (Ya)-
iii) Finally, for q = e, #p is bounded from B} _.(Ya) into By ().

Proof.

i) Let us see that # is bounded on Bp q(}/d) Using Lebesgue’s dominated con-
vergence theorem, Minkowski’s integral inequality, and Jensen’s inequality, we
have

Haakt}k)l (/ﬁf>Hp w (/.d i;l:[((113)/o+msﬂe‘YPsf(x)(LgWYd(dx))Z
KT T et

1 /+°°ﬁ —s BP,Y ds
< — sPe —
— ) Jo

otk lpy s
and then, using Tonelli’s theorem,

5 ), )

> = P, (Pof
o
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< 1_,(1[3)/0+ms“e_s(/o+w (tk_o‘

:/0*“’ (tkftx akﬂfHMd)th

otk t’

), e
otk lpy/ t7 s

Therefore,

(),

too s 1OFBS adt
o t
< fllp+ I,,) 5 =1lss,

ii) We use the notation u(x,t) = P, f(x) and U(x,t) = B _#g f(x), using the repre-
sentation (3.8) of P, we have,

~+oo
|75 g, = | I M+ [ (1

U = [T @ ),

Therefore,
~+oo

Ut +0) =By (P (Ao )0 = | (B, (S @ (ds).

Now, let k, I be integers greater than o, B respectively, by differentiating k times
with respect to #, and [ times with respect to ¢1,

ak'HU(x,l‘l-i-lz) :/+°° (QkPlz

l
30 + 1) o S5 %1 ).

Thus,

(9k+lU , o0 8th2
= [ R g s
2

if t = #; 4+, and therefore, using the L” continuity of 75 and (3.21)

| o) < [ ||T<‘9;f;2</ﬁf>>H Sl

E 8kP )
<[ 15, at,un/)( )

~ |5l L g s

< thlHaTg P, 75 fHW, (8.40)
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On the other hand, using the representation of Bessel potential (8.20), we have

P75 f) () = % [ TSR0

then

P, 1t 5 0P f(x)ds
atk</3f><>zr()/o e A
1

ey ORLS() ds

I )/o MNP TR

and this implies that

8 Pt+vf

|5 il
t+s p’yS

Jik /ﬂfH <r(113)/o+ws[j

because f € By ,(74). Now, because the definition of BY} ,(74) is independent on
the integer k > o that we can choose, let us take k > oo+ 8 and / > 3, then
k+1>a+2B > o+ B; thus, k+/ is an integer greater than o + 3. Let us now

see that il .
(7 (e 2, ) ) <+
0 okl lpy/ ¢ ’

In fact, taking #; =, = ¢/2 in (8.40), we get

([ (e 2500y
<o (e s ], )L
<ra ([T ([T ], )y

- P, f
<elh (g, )

o ap,f 1
([ el )T

Again using that (a + b)? < Cy(a? + b?) if a,b > 0,q > 1, but because (a +
p)Va<a'liypVaifab>0,g>1,

0o Szf
O e A )

i f ;
([ gt 2y e
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< I_f)[/()+wt(k—(a+ﬁ))q(/ aaspj:’f Hp ydss)th]l/q
R )
= (I)+ ().

Now, using Lemma 3.5 and because 3 > 0

oo S .
(I) = F(Cﬁ)[/(: z("*(o”rﬁ))q(/ ﬁHa S++ pr s )th]
o ok P: 1
1“(C/3)[/0+ t(k*(%ﬁ))q(/ ﬁH deSS)th]q
C

= ok Pt 1
-5 (*ll5 H,,)q?)q

el

ouk u
because f € By ().

IN

On the other hand, using Hardy inequality, because k > o + 3 and Lemma 3.5,
we get

() = < (/Oert(k*(aJrﬁ))q(/er ﬁ”a sj:Zf pr s )th)%

T(p)
“rip (4 L
<cam=arph laerr], ) E) <+

because f € By ,(va). Thus, Zgf € Bgzﬁ (74) and, moreover,
atp <C .
175 lyasp < Caplflyg.

iii) Letk > o+ afixed integer, f € By ..(7a), by using the representation of Bessel
potential (8.20), we get

B(/ﬁf)(x)zl_(lm/()+wsﬁesP[Jrsf(x)dss’

thus, using the chain rule, we obtain

ak - 1 teo ﬁ —s () ds
WE(/ﬂf)(X) = W/O sPesutt (X7f+s)?’
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which implies, using Minkowski’s integral inequality,

oo

Haﬂ A1), Sjﬁ%jﬁ Pt +9)

1 ! ds
— B,—s|,&) (. t+ —
F(B) /(; e Hu (7 S)HPJ’ s

L msﬁe_s ub (45 Q:
+F(ﬁ)/l Ot )y = (D + (D).

Now, as 3 > 0, using Lemma 3.5, as ¢ +s > ¢, and because f € Bgﬁm()/d),

e W e e
1

< t
STEB

On the other hand, as k > o +  using Lemma 3.5, as t +s > s, and because
fe€By.(Va)

Ar(f)r 5% = CpAw(f)r*TetP,

(1) < _ B —s aszfH ds 7Ak / Bos 7k+oc
rp)Ji ask llpy s

(f)/ glrotB—1 7 _Ak(f) r k+a+ﬁ
- F(ﬁ) ' C(B) k—(a+p)

Therefore,

Cra,pAR(f)1 hrath,

|2 nsn)],, < catnsres

then 7y f € By (y4) and Ay( 7 f) < CAx(f). Thus,

H/ﬁf‘

o = || 61|+ T80 < IF i+ €A <Cl .

Bp
O

Now, we study the boundedness of the Riesz fractional derivatives and of the
Bessel fractional derivatives on Besov-Lipschitz spaces. We use the representa-
tion (8.24) of the fractional derivative and Hardy’s inequalities. Because they require
different techniques, we consider two cases:

e The bounded case, 0 < B < o < 1.
e The unbounded case 0 < 8 < a.

Let us start with the bounded case for the Riesz derivative:

Theorem 8.16. Let0< B <o <1, 1 <p<ooandl <q<oothen DB is bounded
from B q(yd) into Bg’;ﬁ(yd).
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Proof. Let f € By ,(Ya), using Hardy’s inequality (10.100), with p = 1, and the fun-
damental theorem of calculus,

1 [t | I s d
p — —B-1 — — -B-1 [
PPl < o [P RS - slas < - [T R s
1 too lfﬁ 8 dr
<oph GRS (341)

Thus, using Minkowski’s integral inequality

ool < [ g, e e

‘ dr
pyY T

because f € By ,(v4) C 5,1(%1), I<g<ewasa>f,ie,Dgf €L’ (V)

Now, by analogous argument

d

1t d d
2 p(pB - -B-112 _Z
SO0 = o [ S R0~ SRy
+oo t+s
1 siﬁ*l/ u® (x,r)drds
cg Jo t

and again, using Minkowski’s integral inequality

1 oo t+s
P Dﬁf)H <— s‘f“/ [P (1) ||y drds (8.43)
t

H8 P,y Cﬁ 0

Then, if 1 < g < oo, by (8.43)

fy (e HanDﬁf)H )T
< [ (¢ /+ —B—lfﬂnu ()l drds) '
:cﬁ/o /- /*ﬁ 1/ 4@ ||,,ydrds)@
+CB/O tl—a—/t s—ﬁ—l/t ||u2(~,r)|\p7ydrds>qg
(1)

=)+ (1

Now, because r > ¢ using Lemma 3.5 and the fact that 0 < f < 1,

> ! dt
< ) / By |u®(- dt
(1)_Cﬁ/0 (1 | s ds |l () ;

_ CM/: (z“‘ 5—:2P,f ’m)q?.
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On the other hand, as r > ¢ using Hardy’s inequality (10.101), because (1 — ot)g > 0,

we get
12 [ [t [ )
_Cﬁ/ (1= / )l )"
: (l—ﬁa) /Ow <r2 ’ 88:2Prf ’p,}')q?'
Thus,

([ oo )2 <e( [ (o | Zana] ) 4) " <=

as f € By ,(va)- Then, Dg f € Bg;ﬂ()/d) and
HD;;fHBg‘;/s = |Dg flpy+ (/ ( 1- a+ﬁHat})’DﬁfH )th)l/q

adt\1/q
< o 2-a ‘ —_ < ( o .
< Gl fllg, +C2(/0 (t m/) p ) <C|fllsg,

ﬁtf

Therefore, Dg f : By , — Bg,;ﬁ is bounded.

Now if g = o, inequality (8.43) can be written as

[5r@onl],, <o ’3/’ aa e, ards
t+s
Cﬁ/ / ,f drds

a2

L[t [0 drds = (I)+ (11
+— sE / — P rds=(I)+ .
o " 5=n,, (1) + (1)

Now, using Lemma 3.5, because r > ¢,

5 s
< ds=Cy|| 55nf|| 1

[ 5] |
cp aﬂ Y Py

S CﬁA(f)t—z-‘rDttl—ﬁ — CBA(f)t_l_HX_B,
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and by Lemma 3.5, because r > ¢, and the fact that f € BI7 o)

() < clﬁ/+ws—f’—1/mH;:2P,f ‘m/drds

<qﬂﬁ/‘b2’f
= a,ﬁA(f) 71+o¢ ﬁ-

dr < CpA(f)iP / Frag,

t

Thus,
\ba%ﬂ\smmﬂ”% £>0.
Hence, Dy f € Bf,‘;ﬁ(yd) then A(Dg f) < CA(f), and

||Dﬁf||3;;z;ﬁ = [|Dpfllpy+ADpf) < Cillgllaz., +C2A(f) < C||fllpg...

P

Therefore, Dpg : Bg‘,m — Bgﬁ;ﬁ is bounded. O

Next, we study the boundedness of the Bessel fractional derivative on Besov—
Lipschitz spaces for the bounded case 0 < B < or < 1 :

Theorem 8.17. LetO< B <o <1, 1 <p<ooandl < g< oo then @ﬁ is bounded
from By, ,(Va) into Bff\;ﬁ (%a)-

Proof. Let f € LP(yy), using the fundamental theorem of calculus we can write,

1 [t .
510 < o 5B s

oo oo

<L s”*fwvw—ﬂmw+i/ s B e 1] £ (@)lds
B
1 jteo oo

gf s P '|/ d|d+ |/ sTh1 - / e "dr|ds
1 oo

< — *ﬁ1/| Pf(x |dd+ |/ *ﬁ‘/ e "drds.
Cﬁ. JO

Now, using Hardy’s inequality (10.100), with p = 1 in both integrals, we have

ra-g

By

1 [t d d
500 < g [P PIS RS



328 8 Gaussian Fractional Integrals and Fractional Derivatives

Therefore, according to Minkowski’s integral inequality

19010 < g ) 755

because f € By ,(Ya) C 5’1(7/,1), 1<g<easa>f,ie Dgf €Ll ()

dr F(l—ﬁ)

11l < Cullfllsg, <o,
Beg

On the other hand, using the fundamental theorem of calculus and, Hardy’s in-
equality (10.100) again, with p = 1 in the second integral, we have

e P P
L e T 9
SPBNE@N < o [ S R0 - SR
e ¥ P
L —B-1_-51 Y v
< o [ S R ()= SRl
e 9
LI e R
+cﬁ/0 s 1|5 R f()lds
oo s 2
< [T [T R laras
g Jo t

1, d > s
+Cﬁ|atPtf(x)|/ 5_3_1/0 e "drds,

I e R ra-po
<ol /t =P (Wldrds + 5o SRS

Thus, using Minkowski’s integral inequality,

ra-p
‘pl’ydrds—i— 5o

82
ant

Ha R(%p1)| <L Oms,ﬁ,l[ﬂ

=P .
p.Y Cﬁ Hat tf pY

(8.44)
Then, if 1 < g < oo, using (8.44) and Minkowski’s integral inequality, we get

(f e Zam], ) 5™
<5 (e [ [ e

L o I e

t
For the first term, the argument is the same as that considered in the second part of
the proof of Theorem 8.16; thus,

0= [ (4] S

drds)qg)l/q

) < g, <

t
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because f € By (Y1), and for the second term trivially
(1) < C|fllga-p < Clfllsg,
120 !
because & > o — 3 and the inclusion relation given in Proposition 7.36.

Hence, if 1 < g < oo,

([ (| sr@n] )'5)" < allflng,

s0 Zpf € BZ‘,Eﬁ (Y1) and, moreover,

199 10 = 1210+ ([ (048] 55220 102)" )"

t
SN adi\1/4
< Cillfllag, +Ca( [ (7 L) ) <Clrlsg,

t P

92
ZPf

If g = oo, using the same argument as in Theorem 8.16, inequality (8.44) can be
written as

5zl < [ [

< Coc.ﬁA(f)f—Ha_B + F([l}c_ﬁﬁ)f\(f)t‘”“—ﬁ < CaﬂﬁA(f)t—l-Hx—ﬁ’

r

9* (1-PB)
=P ’NdrdH b

—P
H&t !

‘PJ’

forz > 0, then, Zg f € B,‘f_;ﬁ(}/d) and A(Zpf) < Cy gA(f); thus,

1Zp 1l gap = 125 f oy +A(Zpf) < Cill fllg.. + CAS) < ClIf 5.

Py

O

We consider now the unbounded case for fractional derivatives (removing the
condition that the indexes must be less than 1). To do this, we need to consider
forward differences. Remember that for a given function f, the k-th order forward
difference of f starting at r with increment s is defined as

k

A=Y (’]‘) (1P f(+ (k— J)s).

j=0

The forward differences have the following properties (see Appendix Lemma 10.30),
which will be needed in what follows. For any positive integer k

i) AK(f,1) = AS1(A(F, ). 1) = A (A1 (- ), >-

Vi+s Vi— 2+5 Vi— 1+s
i)y AK(f,1) / / / / ) (vi)dvidvi_1 .. .dvadvy.
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iii) For any positive integer k

%(Af(f,r)) = kAT (f 1 +9), (8.45)

and for any integer j > 0,

d .
O (ak(r.1)) = A1), (8.46)

Observe that using the binomial theorem and the semigroup property of {P, }, we
have

(B 1) = Y (5)rinise - s (5) vt

j=0\J =0
k k ) k k ) .
= Pt (]) (=) Py f(x) = j;o <]> (=) u(x, (k—j)t)
= Atk(u(x’ ),0), (8.47)

where as usual, u(x,t) = P, f(x). Additionally, we need the following result:

Lemma 8.18. Let f € LP(y;),1 < p < e and k,n € N then

1AF @ )y < 1)

Proof. From property ii) of forward differences (see Lemma 10.30), we have

t+s  [vi+s Vk—2+S  [Vk—1TtS
Ask(“(n> (x,7),1) = / / / / u(k+")(x,vk)dvkdvk,1 ...dvadvy,
t Vi Vk—2 Vk—1

then, using Minkowski’s integral inequality k-times and Lemma 3.5,

t+s  pvi+s Vit Vi1 s k+"
A @™ )11 —/ / / / a7 (v || g dvidvi—s .. .dvadvy
Vi
akJrn
k k+n) '
< s*||u Dllpys = Hatk'*'" ’ th%i.
O

Let us start studying the boundedness of the Riesz fractional derivative in
By 4 (Ya)
Theorem 8.19. Let0< B < a, 1 < p<ooand1 < g < eothen

DB is bounded from B (Ya) into Bgﬂ;ﬁ (Ya)-

Proof. Let f € By ,(va), using (8.47), Hardy’s inequality (10.100), p = 1, the
fundamental theorem of calculus, and property iii) of forward differences (see
Lemma 10.30), we get
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I [+t 4 Lot=
D501 < o [P ke 0lds < - [ [ k) 0)rds
1 [t= 40 ko[
- —B) 2 Ak . A By ak—1( 00,
<oy b PIg AN 0dr =g [ PIAR G )l

Now, using Minkowski’s integral inequality and Lemma 8.18

k[t
D < —/ rP A;‘_l ur dr
DSl < g [, PlAE 60|
k[t ok dr
o ] -
- 56[3/0 e o

because f € By, (v4) C g’l(yd), as oo > f3. Therefore, Dg f € LP(7z).

/o<®(]yﬂbmﬂ@)

—2:() VB /) = AKu(x, )r). (848)

On the other hand,

™M=

R[(F =D f(x)] = P(Af (u(x,"),0)) = A(

Thus, if n is the smaller integer greater than ¢, i.e., n — 1 < o < n, then according to
Lemma 10.30 iv),
0" 1 [t a"
_ s B-1 .
GBI = LAk ()
1 [t
= — [P AR (v, ), )ds:
Clg 0
therefore, using Minkowski’s integral inequality

Lo iy aky(n
H&t" (Dgf) ngc— [ s P AR 1) s (8.49)

Now, if 1 < g < oo, by (8.49),

(e lgenonn, )"

([ (o [t ) )
) /

( )"
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Then, using Lemma 8.18,

= (e gmn,
.y ——
because £ € B2, (1), and using Lemma 3.

an < ([ [T (3 () i) )
S e [T (3 (e a)' )
NG Hinn A, ) )

S

adt\1/4
L))
py/ t

because f € Bp q(yd) Therefore, if 1 < g <o, Dgf € Bgi;ﬁ (v4); moreover,

A

[y

e

IN

- hf

adt\1/q
|1Dg f )

oo = 1008t ([ (e o), )"
< il lsg, +Col g, <Cllflsg,

pqg —

Thus, Dp f : B%, — Byy" is bounded.

If g = o, inequality (8.49) can be written as

o 1 T g n
IO, < 5 Jy P10
1 [t~ 45 n
+£ s Bt Ak (ul )7t)||p~,yds
— ()+

and then as f € Bgm, by Lemma 8.18,

LT i ky (k) otk
U Rl s = Co| oz s

S CBA(f)t—n—k-'rOCtk—ﬁ — CﬁA(f)t_nJra_ﬁ,

L
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and as above, using Lemma 3.5,

< 2 [T ()t k- l)as

B =0
teo k k ; B o
<6 [ (E ()t | 2
j=

< CpA(f)r %P = CpA(f)r P

-

O

There is an alternative proof of the fact that Dg f € L”(y;) without using Hardy’s

inequality following the same scheme as in the proof of i) [109, Theorem 3.5], and

using the inclusion B , C Bg;’s with B +¢ <k.

Now, let us consider the case of the Bessel derivative.

Theorem 8.20. LetO< B <o, 1 < p <ooand1 < g< oo then
g is bounded from By, ,(va) into Bg‘;ﬁ (Ya)-
Proof. Let f € By ,(va), and set v(x,t) = e 'u(x,t). Then, using Hardy’s inequal-

ity (10.100), the fundamental theorem of calculus, and property iii) of forward dif-
ferences (see Lemma 10.30),

~+oo
Ipftal < o [ Akt ). 0)ds

1+ s 9

<= ,ﬁ,l/" 2 A (u(x, -

<ol s 5 s
k

< —
7[3Cﬁ

and this implies, using Minkowski’s integral inequality,

~+oo
[Pl vl
0

ko[t _ _
1510 < o [, 7 P10l

Now, using property ii) of forward differences (see Lemma 10.30),

1 2r  pvi+r Vi—o+r "
\m;(wnmyg/ / .“/ VO v ) poydve 1V ... dvadvy
r 141

Vk—2
and using Leibniz’s differentiation rule for the product

- H i)(k) (e_vk")(Du(k_j)(',vk—l)H
<3 ()er )

W9, v

Py Py

p;Y:



334 8 Gaussian Fractional Integrals and Fractional Derivatives

Then

1AF )y

k 2r pvi+r .
2 ( )/ /l / _V’H||u(k_/)(~7vk_1)||p7ydvk_1dvk_2...dvzdv1
=0\
L k—1 k—j
<3 () eIl
j=0 \J
Therefore,
k /+°° k=B—1 ,—r1|,, (k=)
r dr
52 () D)
k k— oo 1, akfj
137 g‘ ( )/ ¢ ark*-’-PerMdr
B o IR
K k=l L 9k
BCI} j= ( )/ Harkijperp?ydr
k 7r
e A
Thus,
k "’(k) i pp |l 9
2 < K5 (* / pk=i=(B=J) ’
12 flp.y ﬁcﬁjgf) il ngk, f‘p]/r
kI"(k—p)

e <=
because f € By ,(Ya) C j(}/d) aso>fB>B—j>0,forje{0,....k—1}, then
Dpf € LP ().

On the other hand,

k
Rl A—Dffx) =Y <k) (=1 e Dy(x,1 + (k— j)s).

j=0\J

Let n be the smaller integer greater than 3, i.e., n— 1 < 8 < n, we have
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SLRT0) = - +°°s’3‘i(k-><—1>"e“"f'>u<"><x,r+<k—j>s>ds

cp /o =0 \J

e [t Lok ; (i
= — sy <> (=1) e U=y (x ¢ 4 (k— j)s)ds

¢ Jo j=0 \J
rot
= < _ﬁ_lA‘f(W(Xf),t)dS,
Cﬁ 0

where w(x,7) = e"u") (x,r). Now, using the fundamental theorem of calculus,

" P o0
v - —B-1,k .
G000 = = [P At )ds

{ oo
= e— s B- 1/ ar ),t)drds.

Then, using Hardy’s inequality (10.100) and property iii) of forward differences (see
Lemma 10.30),

/\

t oo
S RO s o[t [15 kot )

< —/+Mr|—Ak(w(x D)l Pdr
> Cﬁﬁ 0 ar r 5" )
[ oo
= K [ B o x4+ )
Cﬁﬂ

and according to Minkowski’s integral inequality, we get

| Zmasr)| < e [P IaE o )
atn B py Bcﬁ Jo r r w, )l p,ya@r.

Now, using an analogous argument to that above, Lemma 10.30 and Leibniz’s prod-
uct rule give us

k
I8 0l = 3 (4) At I )
Jj=0
and this implies that

H&t" @ﬂf)H <e %/errﬁ(i (I;)rk‘e<’+r)||u(k+nj)(.)t_,_r)”p)y)dr

Jj=0

ko< e . i
ﬁ2(>A B k1) (4 )
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Thus,

k =r n
R, g 2 (5) A W el

Now, if 1 < g < oo, using (8.50) we have,
() (Pl garwn], )"

Cﬁﬁz()(/ (e [ PPt D ) gar) )

Foreach 1 < j<k,0< a—f+k—j<p and using Lemma 3.5

T n(aB) 7 kB, (kb)) adi\1/a
([ (e em [ e s D ) ) )

oo . +oo adt\ /4
n—(a—B) | (n-+k—)) B, \dt
g(/o (t lu (1) /0 . edr) t)

(ke ) — (et Btk— )11 (n adt\1/4
:F(k_ﬁ)(/o (t +(k—j)—(a—B+k /)||u (n+k— /( )”py) 7) < oo,

t

H o’

as f € By ,(va) C Bg@ﬂﬂk_j)(}/d) forany 0 < j <k.

Now, for the case j =0,
th) /a

oo 400
(/ (t”f(“fﬁ)/ rkiﬁ*le”Hu("Jrk)(-,t—Fr) ydr) —
0 0
“ one(a—B) [F k—B1 —ri (n adty\1/a
< ([ (e ® [ APt O ) ) )

o) [T kBl —ry (n adt\1/4
(] (e [ A e ) gar) )
= (I)+ (11).

Using Lemma 3.5, and k > f3,

O e A T R
([ (oDl [ 8- 1ar) 0

_ r(A (tn+k7aHu (n+k) (,’t)||p7y)q$>l/q < oo,

I A
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because f € B) (ys) and n+k > o. For the second term, using Lemma 3.5 and
Hardy’s inequality (10.101)
th) 1/q

oo too

1) < / ,nf(afﬁ)/ kB0 |l )T

()_<0( t " B (r)m/r)l
1 o adr\1/q

< - ntk—o |, (n+k) (. “r oo

_n—(a—ﬁ)(/o (’ ) p,y) r) <

because f € By ()

Therefore, Zpf € Bgﬁ;ﬁ (74). Moreover,

H-@[}fHBIO)t;/B =12 fllpy+ (/w (, Hatn ﬁf” )’Idt)l/q

<atr o3 (e[ (g, ) 5"

< C|fllsg

1204

b.f

Finally, if g = o, from the inequality (8.50)

H&t" 7p/) H,,f csB 2 > ( )/ Ot (T OO

and then, the argument is essentially similar to the previous case, as in the last part
of the proof of Theorem 8.19. g

8.5 Boundedness of Fractional Integrals and Fractional
Derivatives on Gaussian Triebel-Lizorkin Spaces

First, we study the boundedness of the Riesz potentials Ig on Gaussian Triebel-
Lizorkin spaces.

Theorem 8.21. Let o >0, >0, 1 < p <o, 1 < g < oo then I is bounded from
Fgty () into P ().

Proof. Let k> o+ + 1 be an integer fixed and f € F, (7). Using the integral
representation of Riesz potentials (8.7), the semigroup property of {P, };>0, and the
fact that P f(x) is a constant, we get

RN = 17 ) BRI~ Pep)ds

_ e _P_f(x))ds
= B | P ) = Pap)ds. (8.50)
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Then, again using that P f(x) is a constant and the chain rule,
ak 1 o0 ak
- — p-1
5PN = Frgy [ S (Brsf ()~ Paf ()

1t
N . 51
F(B)/o 7l £ 5)ds (8.51)

i) Case 8 > 1: Using (8.51), the change of variables r = +s, dr = ds, and Hardy’s
inequality (10.101), we have

(/()+°° (t (a+B) |M|)Q£>1M

otk t

Sr(l )(/:o; a+ﬁ))</0+°° =1y (xt+s)|ds) ﬂ)é
:F(lﬁ)(/o+ tq(k—(w/s))(/“"(r_,)ﬁ ¥ |dr)q?)%
< I“(lﬂ)(/(: tq(k—(a+ﬁ))(/+°° B110) (x. 1) |dr)th)$

< F(lﬂ) = (alﬁ))l/q (/(:w (rk’“|u(k>(x7r)\)q?)§7

and, therefore,

I, (e ™),

<Gagl( [ (F 15"’

because [ € Fp‘f‘q. By (8.12) and the previous estimate,

(o)

pY

Ilgf]

Foc+[3 <
P4 P:q

ii) Case 0 < B < 1: again using (8.51),
(/O+°° (t (a+B) |%|>q?)é
: F(lﬁ) (/omtq“fw”(/omsﬁ\u< (x, t+s>|*)qit)$
< F(C (/0+°°,q< ~(a+B))- / Pt u®) (v, t+s)|ds> )

oo oo .
+W(/O (a(k—(a+B))—1 (/t Sﬁ71|u(k)(x7t+s)\ds)th> 7

-
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-1, p-1
q+q’

Writing sP~1 =5 + 4 =1, and using Holder’s inequality in the inter-

nal integral,
C oo 1 1/
(1) < lil ( / falk—a)—B-1 / $B1[u® (x,t+s)|qudt> .
ﬁqT Jo 0
Using the Fubini-Tonelli theorem and using that g(k— ) — B —1 >0, as k >
B+pB+1, we get

C +o0 +oo 1/
() < ﬁﬁl (/0 sﬁfl/ tq<k*a>*ﬁ*1|u(k)(x,t—|—s)|thds> !
q N
C 400 Foo 1/
< i(/ sﬁ—l/ (1-+5)0% DB (3,1 4 5) dr ds )
0 s

1
’q

_

Then, by the change of variables r = ¢ + s and using Hardy’s inequality (10.101),

C oo +oo 1
(I) < %(/ SB_I/ rq(k_a)_ﬁ_l|u(k)(x,r)|qdrds) fa
ﬁ* 0 2s

oo oo 1
< Cp (/ st]/ rq<k*a>*ﬁ*l|u(k)(x,r)|qdrds) a
0 s

On the other hand, because B < 1, then 7 < s implies that sB~! < A~1 and by
the change of variables r = ¢ + s and according to Hardy’s inequality (10.101),
ask> o+ +1> o+ 1, we obtain

oo +oo a \i
< q(k—a—1)—1 / (k) g
(11) 7cﬁ(/0 : ( [l (1-+5)ds) "air

<Cg (/()+°°tq(k—a—1)—1 (/sz ) (x, r)|dr)qdz‘)é

< gl () T)

Therefore,

([ (oo 2RO ey

otk t Py

< Ck’“"BH (/(;Lw (rk*a|a:;]:2f )qg)é

as f € Fy',. Then, using (8.12) and the previous estimate, we get

s f 1l e < Cllfllrg, -

q

< oo,

Py
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Next, we study the boundedness properties of the Bessel potentials on Triebel—
Lizorkin spaces.
Theorem 8.22. Let o0 >0, 1 < p,q < oo then for every 3 > 0,
i) Zp is bounded on F;',(Ya).
ii) Moreover, #g is bounded from F" (Ya) to Fpof;ﬁ (%a)-
Proof.

i) Letus prove that _#g is bounded on Fp"_fq(}/d). Using Lebesgue’s dominated con-
vergence theorem, Minkowski’s integral inequality, and iii), we have

(/0 (ka ds>1/q

oo /
%ksis (1“(113)/o+ tPe'Pg(x )it) )qis)l "

IP(Pg), | ds\ " di
REUL <x>>s> &

okp,

dsk (f/sg)
_ (/Ow(ska
< 1_,(1[3)/()+wtﬁe_’ (/Om(sk_o‘

then, again using Minkowski’s integral inequality, and iif)

oo o\
I(F 52 $) 1,
oo o o\

i e () ) 4

oo s 1/q
: (== s) L,

[ (- Pg|)ods Y a
0 dsk s

pyt
J*Pg )st) Va H
s Py

osk
8 P ads Va
()" %)

1/q
ds
1), = el

IN

tﬁeft

IN

)

!
R oY

tBet

IN

r

i
[

=

)

[

I
/N

Thus,

e N

oo akpg
< k—o S
< o] (<[ 2

ii) Let k > oo+ fB + 1 be a fixed integer, let f € F; (y4), and let h = Zgf. We
consider two cases:

ii-1) If B > 1. Taking the change of variables u = ¢ + s and using Hardy’s inequal-
ity, we get

N
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([

~(a+p) QPR )@)‘/q
otk t

gy (e ([ e ) deyrdys
1

IA /‘\

’j

ST()(ZT“ﬂw4wmn(Z+“( - H8Pf(ﬁd)Q$>é

< 1_(1)</0+m (/t+muﬁ—1|ak?:§((x)du)q,q(k—(wﬁ))—ldt)flz

e @)
Therefore,

I gy

1
i

pY

k7a|8kPuf )(1@)%

duk u

pY
because f € Fy, (va). Thus Zgf € Fp?;ﬁ(Yd)-

ii-2) If0 < B < 1.

(" (em =5 >|) 7

il L -w“z:s%)m)q
ok )
gt (e )
=I+1I

Now, ¢ * < landas B < 1, then s8B! < P~ forr < s.
Hence, again by the change of variables u =t + s and using Hardy’s inequal-

ity, we get

ST ([ )
(/0+wtq(k—/3—1)—1(/l+°°|3k1;u£(x) |du)th)é
[yt

o

I <
ST

=

IN
o

h]
=

(B)

IN
o

MJ
=

(
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On the other hand, using e™* < 1 again,

2 [ [Tt

- /OM’“““*‘(,‘Z [ 1|af(°;++s];§>|ds) @

t tﬁ
Now, as 8 > 0, / sPlds = ﬁ, then using Jensen’s inequality for the prob-
0

ability measure £ sP~1ds and Fubini’s theorem, we get

tB

19 < F([;:)ﬁq/+ zﬂ/ p— 1‘& Pt+rf )\qd)
oo oo % s

= r @ sﬁ*l(/s S 1"“[?5 rar)as
.

/ Sﬁ—1</+°°(t+s) qlk—0)—B— 1|3 Prsf(x )|th)

rp)ps"Jo (1 +s)k

as g(k— o) —f —1> 0, because 0 < B < 1. Finally, again taking the change
of variables u =t 4 s and using Hardy’s inequality, we get

= e |

|
a A

~—

C teo ot g1, OFP, f(x)
B—1 qk—a)—p—1 u q
Sif(ﬂ)ﬁfrl/o s (/S u | Y |du)ds
c g O°Puf(x) \adu
<)y W)
Hence,

I ey s)

p’y

OFP,f \adun &

<C H / k—o Y fuJ e XA < oo,

<Guan|(f, (1550 )0,
Thus, Zgf € Fp(f;B()/d), forO<p < 1.
Therefore, in both cases we have,

oo BP/f adt g

— (a+B) t/B a

Y Y P A G e o )",

aduy §
< Coll i+ Ceapl( [ (151"
< Cuapllfllrg,

12%4
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Now, we study the boundedness of the Riesz fractional derivatives and of the
Bessel fractional derivatives on Triebel-Lizorkin spaces. Again, because they require
different techniques, we consider two cases:

e The bounded case, 0 < B < < 1.
e The unbounded case 0 < 8 < a.

Let us start with the bounded case for the Riesz derivative.

Theorem 8.23. Let 1 < p,q < oo, for 0 < B < a < 1, DB is bounded from FY (va)
into Fyg” (va)

Proof. Let f € Fy',(Y4), using the fundamental theorem of calculus, and Hardy’s
inequality (10.100) with p =1,

ds

D5 rwl < - [ R - £
“p

1 +oo
<[ l/‘a P.f(x) ‘drds<
Cc

s

Fee 0 dr
1-B
cﬁﬁ d ’ arPrf(x)

Thus,

Foo 0 dr
ﬂ < / lfﬁ — — < o %)
10 Fllr < o [ r 8|S pr || < Collfllg, <= ®852)

because F, (y1) C ﬁ] (1) (@ > B and g > 1). Now, using an analogous argument
using Hardy S mequality (10.100) with p =1,

a9
2 Bw? ) <—/ BN B0~ Sg(o)lds

oo oo
< 1 sB-1 / \u (x,t+r)|drds§ L/ r7ﬁ|u(2)(x7t+r)|dr.
cg Jo Jo cgB Jo

This implies that

[ (e Sy < /”( ) [ B )

/ / B (x,t+r)|dr>q? (8.53)
+Cﬁ/ /+mr_ﬁ\u(2)(x,t+r)|dr)q?
- )+
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715 ,,5
Writing r— B—ya™ ,
integral, we have

+ 4 =1, and using Holder’s inequality in the internal

<=
_

oo t
(1) < C(1—B)'~ / 1(2-00-2+p / 7 Blu® (x,1 +r)|9drdr.
0 0

Then, according to the Fubini—Tonelli theorem, we get

(1 <Cp(1-p)'~ "/mr*‘3 /wz@*“)ﬁﬂﬂu(z)(x,z+r)|qczzdr.

It is easy to prove that (2 —a)g+ B —2 > —1. We need to study two cases:

Case #1 —if (2—0a)g+ B —2 < 0: as r < ¢ and taking the change of variables
w =1t-+r, we have

(1) < Cy(1—B)14 / T e-a)g2 / 1@ (et 4P| 9dr dr
0 Jr

< cﬁ(l—ﬁ)lfq/o r[<2*“>q*11*1/2r 1u® (x, w)|“dwdr
< cﬁ(uﬁ)l—q/o r[@—“m—u—l/ 1u® (x, w)|“dwr.

Then using Hardy’s inequality (10.101) as (2—a)g—1 >0

9dw

(1) < Gl —B)qu/ow (Wziﬁ\“(z)(ﬁw)\) —

w
Case #2 —if (2— B)g+ B — 2 > 0: taking the change of variables w =t + r, we get
(1) < Cy(1—B)14 / . / (¢ 1) 2D P20 (3 1 4 ) 4dr dr
=Cp(1-PB)! ‘1/ P W @atB=2),2) (x w) [ 9dwdr

0 2r
< Cy(1—p)' /O B / W= @821, (x ) dwdr,

and using Hardy’s inequality (10.101),

Therefore, in both cases we have

d
<CB/ w22 xw)\)q—w.
w
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To estimate (II), observe that r~B <t=B forr >t and B > 0, then using the same
argument as before to estimate () case #1, taking the change of variables w =7 +r,
and using Hardy’s inequality (10.101), so that

(1) < % Om( ) w)])

Finally,

I(f Cengmwrn)'$),,

<l (e [ o) ]

([ () ) <mase

as f € F£ ¢(7a). Using the previous estimate and (8.52)
DPf|| o p<C . O
ID" £l g < ClIf Nl g,

In the following theorem, we study the boundedness of the Bessel fractional
derivative on Triebel-Lizorkin spaces for the bounded case 0 < 8 < o < 1.
Theorem 8.24. Let0 < < a < 1,1< p,q < oo then PP is bounded from Fr (Ya)
into Fyy” (va)

Proof. Let f € LP(yy), using the fundamental theorem of calculus, we can write

PP < = [ e )~ s

CB()

1 [t 1 [t
<— s*”fwww—ﬂmm+—/ s 17l
c

B

1 [t
< = *ﬁl/ 3
_CB ‘8 f

Now, using Hardy’s inequality (10.100) with p = 1 in both integrals, we have

drds—|— \f \/ / “drds.

L ra-prw

| d d
Ty e L T

[30

Thus,

Brial < 1 (B0 Y Y r B
PN g [ PO @RI B,
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Therefore, if f € F,(va), we get
1
+ 2T =B fllpy
pY

1 Fee dr
i <« L / 1-B,(1)(.
& f||p,y_ﬁcﬁH A A 7

< Cpllfll s, < CplFllrg,. (8.55)
P,

because F," (1) C él(yd),asa>ﬁ,andq2 L.

Using a similar argument to that above, the fundamental theorem of calculus and
Hardy’s inequality (10.100) with p = 1, we get

d 1 [~ d d
2 (P <7/ Bt _g
St < L [l S il
1 d d
il —B-1,=s| L _Z
<[ - Zars
1 = d
— Bl |2
+Cﬁ/0 s e 1|‘atPtf(x) ds
< L ostﬁfl/S|u(2)(x,t—|—r)|drds
cp Jo Jo
+i\u(1)(x,t)|/ms_ﬁ_l/se_rdrds,
ol 0 0
< L/wr—ﬁ|u(2>(x,t+r)|dr+ M\u(l)(x,tﬂ.
Bep Jo Bep
Therefore,
‘ =P (PP f(x ))’ < L /wfﬁ|u<2>(x7t+r)|dr+Ll_B)|u(l)(x,t)|.
ot - ﬁCﬁ 0 ﬁCB

Then, we have

I (erlgrenl) )™,

< g lCL (e [Troeeaman'§)
sl e )

Now, the first term can be estimated as in the proof of Theorem 3, estimates (8.53)
and (8.54), so that

A e A N W VR G T SO R
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which is finite as f € F,, (V). For the second term, we have

H(/O"" <z"(°‘*ﬁ)|u(‘)(x,;)|)q£)”"Hn < Cllfll e < Clflleg,

t

as F%, () C Foy P (v4); thus,

|([ (2 r@ ) )| <clrlng,

Therefore, 2P f € F,,Of; P (74) and moreover, using the previous estimate and (8.55)
||9ﬁf||F,gf;ﬁ < Clfllrg,-
O

To study the general case for fractional derivatives (removing the condition that
the indexes must be less than 1), we need to consider forward differences again.
Also, we need the generalized version of Hardy’s inequality (see Theorem 10.26 in
the Appendix, and also the following technical results):

Lemma 8.25. For any positive integer k,

k t+s  vi+s Vk—1+s *)
As (f7t) :/t / / f (Vk)dvk...dV2dV1
Vi Vk—1
:/ / FO@ v+ v )dvg...dvy
0 0

For the proof of this result, see Lemma 10.30 in the Appendix, or [109]
Lemma 3.1, ii).

Lemma 8.26. Lert > 0,3 > 0 and let k be the smallest integer greater than 3, and
let f differentiable up to order k, then

Foo +oo
| s PR Rds < Cp [ w0 )
0 0

1 1
where CB,k:/ / i+ ...+ v)P vy . dwy
0 0

Proof. Using Lemmal0.26, with p = 1, and Lemma 8.25 we have,
+oo oo S N
/0 sTPYAR(f ) |ds < / s’ﬁ’I/ / O +vi+...+w)dvy ... dvds

1 oo
<A / /0 (s** (”S(Vl+-~~+Vk)|)fﬁ*‘ds)dvl..,dvk
1
/ / / G l‘f (t+s(vi+.. +Vk)|)ds>dv1...dvk
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taking r = s(vi +...+v) thendr = (vi +...+v)ds,

foo oo
| P a s+ vlds = [ AP ) TP
JO

‘dr
0 r

o0
:/ KB O (¢ ) dr(vy + .+ v PR
0

Therefore,

~+oo
[ s akrs
0

1 1, oo
g/ / (/ rk*B’1|f(k)(t—|—r)|dr(v1+...+vk)ﬁ7k)dv1...dvk
0 0o \Jo
too 1 1
= (/ rk*ﬁ*'|f(k>(t+r)|dr)/ / i+ .. +v)P v, . dw
0 0 0

o0
=l [ AP ar

1 1
whereCﬁyk:/ / (v1+...+vk)ﬁ*kdv1...dvk<o<>. O
0 0

We need to use (8.47)

and (8.48)
P.(P fl)kf(x) = A]f(u(x, st).

S

Let us consider the unbounded case 0 < 8 < o for the Riesz derivative,
Theorem 8.27. Let 0 < B < a, 1 < p,q < oo, then DP is bounded from Fy,(Ya) into
Ey P ().

Proof. Let f € Fpofq(yd), using (8.47), (8.48) and Lemma 8.26,

1 [t~ 4.
Dpfel < — | s P (P =D f(x)ds
B /0
1 [t
= Siﬁ71|ASk(u(x7~),O)|dS
Cﬁ 0

Then

teo dr
1Dp SNy < Cpal| [ Pl

< oo,
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because F," (1) C Flfl (), (oe > B and 1 < g < eo).

Letn € N;n > o; using Lemma 10.30(8.46) and Lemma 8.26, we get

an
SR (D))

+oo
LT B AR ) (v, 1) ds
Cﬁ 0
1 oo
—Cﬁ_k/ rk7ﬁ71|u<”+k)(x,t—|—r)|dr.
Cﬁ Jo

IN

IN

Therefore,

/°° (t"‘(“_ﬁ) gnl’;(Dﬁf)( )’)q$

0
oo too
< Cpa [ () [T A D ok par) '
- Jo 0 4

which is inequality (8.53) for n = k = 1. The rest of the proof follows the argument
used in Theorem 8.23, so that

= e de\1/
( / (rmte=p) / AP0 4 )lar) ) (8.56)
0 0 t
= ds\1/4
< ntk—a |, (n+k) aas
e A G ) I
taking L”(y)-norm both sides of the inequality, we get the result. a

Finally, the following result extends Theorem 8.24 to the general case 0 < 8 < o:
Theorem 8.28. Ler0< B <, 1 <p<ooand1 < g < oo, then 9B is bounded from
Fgy(ta) into Fy'g " (1)

Proof. Let f € Fy,(va), k be an integer such that k —1 < B < k and v(x,r) =
e "u(x,r), using Lemma 8.26 and Leibniz’s differentiation rule for the product

s L R B T B AR
Prls o [P e R f<x>|ds—% [ s P ak o). 0)las

oo
<o [ TP <G5 (5) [ e i)

k—1

:Cﬁ,k(jg (5) [ et r>|?)+cﬁk/+ PP ) 2
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then

k 1 oo rtoo
k + dr + dr
17 <C H/ By —H +C H/ A Be (-, )| =
12" fllp.y ﬁk (]) =D ()| p M) B J, [u(-,7)] p

' OC)H/W”'“ ”?pr +Cﬁk/ PP )
<C3kkl(];)H/+w ﬁj‘ukj( )

< Clfllrg,

pY

)*Cﬁﬁkl\f\\l,yr(k_ﬁ)

becauserf‘q(yd) CFlffj(}/d),as o>B>B—j>0,forj=0,....k—1andg > 1.

Now, let n € N,n > o and w(x,1) = e~"u" (x,1), using Lemma 8.26, we get

a"
Sar@ ] < & [P Akt ). las

+
< etCﬁ_k/ SBWH (x, 1 4-5) |ds.
" Jo

k
k . .
Now, using Leibniz’s rule, w) (x,r) = ¥ ( ) (—=1)7e"u**=1) (x, r) and then
j=o\J

DS (5o,

=0\

for all » > 0. Thus,

‘ n

or"

(2P F)(x )‘ < CMi)(i) /()+°°Sk—ﬁ—1€—s|u(k+n—j)(xvt+s)|ds‘
=
Therefore,
([ (re?|am@Pnw|) )"
< Cﬁ’ké) (;‘) (/Ow (tn—(oc—ﬁ)/O"'wsk_j—(ﬁ—j)—le—s‘u(k—j+ﬂ)(xvt+s)|ds>q?>l/q

For0< j<k—1,wehave B —j > —(k—1) >0, and taking into account that
each term of the above sum is bounded by the left side of the inequality (8.56), with
k replaced by k — j and 8 replaced by 8 — j, we get that

* RRal . : dr\ 1/
[y (oo [ st ten s oias) E) 7 <,
Jo 0 t Y ’
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for 0 < j <k— 1. Unfortunately, the remaining case j = k requires a special argument
that uses the following known inequality for the Poisson—Hermite semigroup:

2 ns)| < (8.57)

(see Lemma 3.4; see also [226, Lemma 1], or [224]). Then

([ (e [ e o glas) " 40)

* ! 1/q
i) [ g=B—14s ], adt
< C(/O (t /0 s e *lu (x,t+s)|ds> ; )
o Fee adt\1/4
n—(o—P) k=B=1p=s,(n) bl
+C(./0 (t /t s e lu (x,t+s)|ds) ; )
= (I)+ ).

We first consider the case k < 3. The term (I) is estimated as term (I) in the proof of
Theorem 8.23.

(I < C(/Ow (Vﬂf(afk)‘u(n)(x’v)oq?)l/q_

Because 3 > k— 1, taking the change of variables v =t + s, we get

oo +oo 1
(11)§C( /0 r("“c*a*l)f/*l( /, |u(”)(x,t+s)|ds)th) fa

C(/Omt(nJrkfafl)qfl (/2_'_00 |u(”)(X, r)|dr) th) /g
!
C(/O‘”I(Hk,a,l)q,l(/t+°°|u(,,)(x’r)|dr>‘1dt)'/‘1.

Therefore, using Hardy’s inequality (10.101),

C °° adr\1/4
n—(a—k) |, (n) il
= (n—i—k—a—l)l/q(/o (P wnl) )

Next, consider the case k > «. In this case, using inequality (8.57) and Hardy’s
inequality (10.100), we have

(I) < Co|T* f(x)] (/Omt*(a*ﬁ)qfl (/Otskfﬁfleﬁyds>th) 1/q

" 1 * —a)d—1 —s 1/q
< C|T f(x)|m</0 ka1, qu)

1

IN

= C|T" f(%)] (r (k= c)g)'/s.

On the other hand,
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1 Feo a \1l/q
n < ( / flrtkma=t- ( / el (x,t +5)|ds ) ar)
0 t

+ </1wt(n+k—a71)qfl (/t+°° e [u™ (x,1 +s)|ds) th) /e

= () +(IV).

Using the usual argument the change of variables v = ¢ 4+ s and Hardy’s inequal-
ity (10.101), we get

( (

(/Owt(niwqil (/IJFOQ |u(") (x,t+s)|ds)th) Ve
= (/Owt("_lm_l (/2:00 ™ (x, r)|dr)th) v

(

IN

IN

1 < ny () adr 1/q
=i () () )
Finally, using inequality (8.57) again, we get
oo +oo 1
([V) < (/ t(n+k7a*1)q71</ eiscn|T*f(x)|tindS>th)
1 '
poo 1/
:Can*f(x)|(/ t(k"’"l)q’le*’qdo !
J1

< Can*f(x)l(./l'wt(kfoﬁl)qfldt)l/t] :C"'T*f(x)'(M)l/q'

/4

Hence, in both cases, we get that

() (g )], <=

as f € F,%, (Ya). Therefore, 2Bf e E P (74) and moreover,

B
127 fllpes < Cllfllpg,- O

1204

8.6 Notes and Further Results

1. Observe that the arguments given in the proofs of theorems in this chapter are
still valid in the classical case taking the Poisson integral; therefore, they are
alternative proofs to those given in E. Stein’s book [252].
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2. Moreover, if instead of considering the Ornstein—Uhlenbeck operator and the
Poisson—Hermite semigroup, we consider the Laguerre differential operator in
R4 for ov = (0, , 0tz) @ multi-index,

d [ 2 P)
2= |xig (et —x) o (8.58)

i=1

and the corresponding Poisson—Laguerre semigroup, or if we consider the Jacobi
differential operator in (—1,1)4,

d J? d
7P =3 l(l —x%)ﬁ+(l3i—06i— (Oli+l3i+2)xi)] ; (8.59)

i=1 i i

and the corresponding Poisson—Jacobi semigroup (for more details, we refer
the reader to [279]), the arguments are completely analogous. To see this, it
is more convenient to use the representation of P in terms of the one-sided
stable measure ut(l/ 2) (ds) and to write Lemma 3.3 in those terms (see [225]). In
other words, we can define in an analogous manner Laguerre—Lipschitz spaces
and Jacobi-Lipschitz spaces, and prove the corresponding notions of fractional

integrals and fractional derivatives (see [117, 25]).

3. Following similar arguments to those given in Chapter 7, we can define in
an analogous manner Laguerre—Besov-Lipschitz spaces and Jacobi—Besov—
Lipschitz spaces, in addition to Laguerre—Triebel-Lizorkin spaces and Jacobi—
Triebel-Lizorkin spaces, and then prove that the corresponding notions of
fractional integrals and fractional derivatives of corresponding operators .Z o,p
and .Z% behave similarly.

4. In [146], G. E. Karadzhov & M. Milman show that the Gaussian Riesz potentials
Ig maps LP(logL), continuously into LP(logL),p, for 1 < p <eoand a € R.
The proof is using extrapolation in an abstract setting. Moreover, their proof is
in fact valid for any hypercontractive semigroup (see [146, Theorem 5.7]).

5. We can also consider alternative Riesz potentials, alternative Bessel potential,
alternative Riesz and alternative Bessel fractional derivatives using the same
formulas as before, but with respect to L, the alternative Ornstein—Uhlenbeck
operator (2.14). This case is actually simpler, as 0 is not a eigenvalue of L. For
instance, for B > 0 the alternative Riesz potential jﬁ can be defined as

Ig = (-L) P72, (8.60)
meaning that any multi-index v such that |v| > 0 its action on the Hermite poly-

nomial Hy, is

- 1
IgH,(x) = ﬁ/sz(x). (8.61)

(IvI+a)
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Tﬁ has the following integral representation, using the fact that L is the infinite-
simal generator of the semigroup {T,(d) }: = {e7"T;},, the d-translated Ornstein—
Uhlenbeck semigroup (2.78),

Igf(x) = (L) PP f(x) = (ﬁ/z) /mt¥Tt(d)f(x) dt (8.62)
= W‘/Owtﬁz;zeidtnf(x) dt

. L e -2 dr
= e [ ([ 1080 - ) ) ),

= Gy Rd(/l( logr) 7 1 d(el;;;z)tz,c{r”)f(y)(dy)'

The integral representation (8.62) is crucial to getting the L”(y,)-boundedness
results of some of the Gaussian singular integrals considered in Chapter 9.

Similar representations can be found for Bessel potentials and the fractional
derivatives associated with L.

6. In [164], alternate representations of Ig and Dy are obtained.

Proposition 8.29. Suppose f € C3(R?) such that [ga f(y)Ya(dy) =0, then

] oo
Dﬁf:—/ B prar 0<B<l, (8.63)
ﬁCﬁ 0 ot
If——#/mtﬁipfdt B>0 (8.64)
PETBr(B) o o | |
Proof. Let us start proving (8.63). Integrating by parts in (8.26) ,we get
1 b
Dpf(x) = — lim | 1+ P71 (Af(x)~ f(x))dr
B gL e

I . P b 1 [b 5 P
- Cﬁal—1>r(r)1+{_ﬁ (Plf(x) _f(x)) ﬂ+B/a t atP[f(x)dt}

because, using (3.28) and (3.29), we have

i (L1 g
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and
| Puf(x) = f(x)
1 — 1 < 1 P
uir(glJr aﬁ - uir(l;lJr ds f )
. 1—ed
gcd,f<d+\x\>agrg+ ——=0.

Let us prove now (8.64). Again, by integrating by parts, we have

L
Igf(x) = — o lim [ t°7"P,f(x)dt

TR g /o

IR 5 d

r(ﬂ){io;{ B, ﬁ/’ B }
1 < o d

:_ﬁr(ﬁ)/() tﬁgptf(x)dt,

because, using the previous result

lim ‘P,, f(x)bﬁ‘ < Capld+]x]) limbBe® =0
b—yoo - b—oo

and

lim
a—0t

Pf‘ 0

Observe that because the previous proposition holds for /= Hg, the Hermite
polynomial of order f3,|3| > 0, then it holds for any non-constant polynomial f

such that [za f(y)7a(dy) =

By using (3.3) and (8.63), Dg can be expressed explicitly as

Dg f(x) / Kg(x,y)f(y)dy,

where,

y—rx2
b 1 - 1—r2
_ —B i%/Alogr 12 €
Kg(x,y) = Cd/O /0 177 T8 (—logr) ‘(l_rz)d/z

" <2r2 ly—rx|* = 2r(1 = P2) (y — rx,x) —dr?(1 — 12 )) drd

(1—7r2)2

Now, let us write

\y \2
d exp (1 2/4logr) exp( ) dr
4i(y) =15 /Or e )d/z o )
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and define the operator Q; as

0f(¥) = 1 2R f( 0= [ at)s (8.66)
Following [108] we immediately get from (8.63) and (8.64) the following for-
mulas:
Corollary 8.30. Suppose f € C5(RY) such that [ga f(y)ya(dy) = 0. Then, we
have 1 e
—BDgf = 7/ B0 At 0< B <1, (8.67)
Cﬁ 0
1 oo
Iy = —/ P10, fdt, B > 0. 8.68

7. An interesting use of the family {Q;} is that it allows us to give a version of A.
P. Calderon’s reproducing formula for the Gaussian measure; see [164].

Theorem 8.31.
i) Suppose f € L' (yy) such that [ga f(y)Yya(dy) = O, then we have

bl dt
f= /0 sz7- (8.69)

ii) Suppose f a polynomial such that [ga f(y)v4(dy) = 0, then we have

dsd
f= CB/ / tBBQ,Qf)—STt 0<B<l. (8.70)

Also,

/ / PP, (O f )det_d[;/ s Pufdu. 8.71)

Formula (8.70) is the aforementioned version of Calderén’s reproducing formula
for the Gaussian measure.

Proof.
i) Using (3.28) and (3.29) we have,

oo b 9 b
/ Qtf— = lim ( / 5 Bfdt) = lim (<Bf)| =.
0 ah—;Ow a t ab—:)O; a

if) Let us prove (8.70), given f, a polynomial such that [ra f(y)7y4(dy) =0, by
Corollary 8.30, we have

1 g
Dy (1pf) =g [ 177 g
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Now, using the definition of Q; and Fubini’s theorem, we have

1 < B
0 (1s1) = gy oo ) ¥ OIasay

Again, using the definition of Oy, we obtain

£ =Dy (Isf) =dg /Ow/()wfﬁ*‘sﬁ”g, (Qsf)dsdr.

To show (8.71), we see that from (8.66)

Jd d
0 (Osf) (x) = tsg apH»sf(x)'

But 3 3 2
~—_Pp —__p
5195 el 0 = 5@ P )
then
oo poo oo oo 82
/ / 1 B1B10, (0, f) dsdt = / / PP —P.f dsdt
0o Jo o Jo du u=t+s
o 92
— dy /0 uSs Pufu,
where dg = %, B(—pB + 1,8+ 1) being the beta function of pa-
rameter (—+ 1,5 +1). O

8. Also, in [117], P. Graczyk, J. J. Loeb, I. Lépez, A. Nowak, and W. Urbina ob-
tained an analog of A. P. Calder6n’s reproducing formula for the Laguerre case.

9. Using more abstract approaches to Besov and Triebel-Lizorkin spaces associ-
ated with a general differential operator, as in [154], many of the results con-
tained in this chapter would follow from the functional calculus for the Ornstein—
Uhlenbeck operator.
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