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Function Spaces with Respect to the Gaussian
Measure

One of the main goals of functional spaces is to interpret and quantify the smoothness
of functions. In this chapter, we discuss the analogs of classical functional spaces
with respect to the Gaussian measure. We see that almost all classical spaces with
respect to the Lebesgue measure have an analog for the Gaussian measure; neverthe-
less, we see that in some cases, for instance, Hardy spaces, the analogs to classical
spaces are still incomplete and/or imperfect. On the other hand, most of the time,
even if the spaces look similar, most of the proofs are different, mainly because the
Gaussian measure is not invariant by translation, which implies the need for com-
pletely different techniques.

7.1 Gaussian Lebesgue Spaces Lp(γd)

The Gaussian Lebesgue spaces have been used implicitly in previous chapters for the
study of continuity properties of the Ornstein–Uhlenbeck semigroup, the Poisson–
Hermite semigroup, and maximal functions. For completeness, we are including
them in this chapter.

Definition 7.1. For 1 ≤ p < ∞, the Gaussian Lebesgue space Lp(γd) is defined as

Lp(γd) =
{

f : Rd → R : f is a measurable function and
∫

Rd
| f (x)|pγd(dx)< ∞

}

(7.1)
and the Lp-norm is given by

‖ f‖p,γ =
(∫

Rd
| f (x)|pγd(dx)

)1/p
. (7.2)

Using analogous arguments, as in the classical case, it can be proved that the
normed space (Lp(γd),‖ · ‖p,γ) is a Banach space for 1 ≤ p < ∞, that is, Lp(γd) is a
complete space (see for instance [263, Theorem 7.3]).
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As the Gaussian measure is a probability measure, using Hölder’s inequality, we
have for 1 ≤ p < q,

Lq(γd)⊂ Lp(γd). (7.3)

Additionally, from Theorem 10.7, we know that the family of polynomials with
real coefficients is not only contained in Lp(γd), 1 ≤ p < ∞, but is also dense there.

Thus, the Gaussian Lebesgue spaces Lp(γd) are very different from the classical
Lebesgue space Lp(Rd) theory with respect to the Lebesgue measure, because if
f ∈ Lp(Rd), then f (x)→ 0 as |x| → ∞, but for f ∈ Lp(γd), we may have f (x)→ ∞
as |x| → ∞, as long as it grows no faster than eδ |x|2/p with δ < 1 .

Observe that for any 1 ≤ p < ∞, the space Lp(γd) is not closed under translations.
For instance, in dimension one and p = 1, taking the function f (x) = e|x|2−|x|, then it
is clear that f ∈ L1(γ1), but it is easy to see that

τ1 f (x) = f (x+1) = e|x+1|2−|x+1| /∈ L1(γ1).

Finally, because the Gaussian measure is trivially absolutely continuous with re-
spect to the Lebesgue measure, with the Radon–Nikodym derivative the Gaussian
weight, dγd

dx = e−|x|2 , then
L∞(γd) = L∞(Rd).

7.2 Gaussian Sobolev Spaces Lp
β (γd)

Sobolev spaces in the classical case are used to measure the regularity of solutions
of partial differential equations (PDEs). Gaussian Sobolev spaces were introduced
in the context of Malliavin calculus (see for instance P. Malliavin [172], D. Nualart
[218] or S. Watanabe [288]). They play a fundamental role in it because they are
used as a scale to measure the regularity of solutions of stochastic differential equa-
tions (see [218]). Moreover, similar to the classical case, Gaussian Sobolev spaces
are particular cases of Gaussian Besov spaces; therefore, Besov spaces are a “better
scale” to measure the regularity of functions.

Definition 7.2. Given β ≥ 0 and 1 ≤ p < ∞, the Gaussian Sobolev space of order β ,
Lp

β (γd), is defined as the completion of the set of polynomials P(Rd) with respect to
the norm

‖ f‖p,β :=
∥∥∥(I −L)β/2 f

∥∥∥
p,γ

. (7.4)

Therefore, the set of polynomials in R
d , P(Rd) is trivially a dense set in these

spaces. The spaces Lp
β (γd), are also called potential spaces (see [145]).
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In the classical case, Sobolev spaces appear naturally in partial differential equa-
tions to measure the integrability of partial derivatives of a given function, A. P.
Calderón proved that Sobolev spaces can be characterized using the integrability of
the derivatives. We are going to see that the same holds in the Gaussian case, i.e.,
fractional derivatives Dβ can be used to characterize Lp

β (γd) (see Theorem 8.8). A
probabilistic proof of this fact was given by Sugita in [261].

Moreover, from the definition given of the Gaussian Sobolev spaces, Lp
α(γd),

we see they can be characterized as the image of the Gaussian Lebesgue spaces
under Gaussian Bessel potentials (see 8.21) Proposition 8.6. They can also be char-
acterized using Riesz fractional derivatives (see Theorem 8.8). Additionally, as an
application of the Littlewood–Paley functions gk

x,γ and gk
t,γ , a characterization of

Gaussian Sobolev spaces, Lp
β (γd) for 1 < p < ∞ can also be provided (see Section

9.5 in Chapter 9.

Finally, we have the following Gaussian Sobolev embeddings,

Proposition 7.3. Gaussian Sobolev spaces satisfy

i) If p < q then Lq
β (γd)⊂ Lp

β (γd) for each β ≥ 0.

ii) If 0 ≤ α1 < β2 then Lp
β2
(γd)⊂ Lp

β1
(γd) for each 1 < p < ∞.

Moreover, the embeddings in i) and ii) are continuous

Proof. Claim i) is an immediate consequence of Hölder’s inequality.
For claim ii), let f be a polynomial and let us consider g = (1−L)−β2/2 f , then

(1−L)(β1−β2)/2g = (1−L)β1/2 f .

Using Meyer’s multiplier theorem, Theorem 6.2, we can conclude that there exists
C > 0, such that

‖ f‖p,β1
≤C‖ f‖p,β2

.

�	

7.3 Gaussian Tent Spaces T 1,q(γd)

In 1985, R. Coifman, Y. Meyer, and E. M. Stein [55], introduced the tent spaces T p
q

with respect to the Lebesgue measure, as the space of functions F : Rd+1
+ :→ R such

that,

Jq( f )(x) =
(∫

Γ (x)
|F(y, t)|qdy

dt
td+1

)1/q ∈ Lp(Rd),

where Γ (x) =
{
(y, t) ∈ R

d+1
+ : |x− y|< t

}
, 1 < q < ∞, and

‖F‖q,p = ‖ Jq( f )‖p.
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In 2012, J. Mass, J. Van Neerven, and P. Portal [169] introduced Gaussian tent
spaces as follows. Let

D := {(x, t) ∈ R
d × (0,∞) : t < m(x)},

where as usual, m(x) = 1∧ 1
|x| , is the admissibility function. Note that a point (x, t) ∈

R
d × (0,∞) belongs to D if and only if B(x, t) ∈B1.

Definition 7.4. The Gaussian tent space T 1,q(γd) is the completion of C0(D) with
respect to the norm,

‖F‖T 1,q(γ) := ‖JF‖L1(Rd ,γd ;Lq(D,γd× dt
t ))

, (7.5)

where

(JF(x))(y, t) :=
χB(y,t)(x)

γd(B(y, t))1/q
F(y, t), F ∈C0(D), (7.6)

that is,

‖F‖T 1,q(γ) =
∫

Rd

(∫ ∫

Γ 1
x (γd)

1
γd(B(y, t))

|(JF(x))(y, t)|qγd(dy)
dt
t

)1/q
γd(dx),

where, Γ 1
x (γd) =

{
(y, t) ∈ R

d × (0,∞) : |y− x|< t < m(x)
}

is a Gaussian cone with

a = 1, see (4.83).

In [169], J. Mass, J. Van Neerven, and P. Portal obtained an atomic decomposition
for T 1,q(γd). As in the Euclidean case, this atomic decomposition turns out to be very
useful, because using an atomic decomposition, we only have to check results for
atoms and then the rest follows easily. First, let us see what a Gaussian tent is:

Definition 7.5. For a measurable set E ⊂R
d and a real number a > 0, we define the

tent with aperture α over E by

Tα(E) = {(y, t) ∈ R
d+1
+ : d(y,Ec)≥ α t}. (7.7)

Now, let us define a Gaussian atom.

Definition 7.6. Given α > 0 a function A : D → C is called a T 1,q(γd) α-atom if
there exists a ball B in Bα such that

i) A is supported in T1(B)∩D, i.e.,

supp(A)⊂ {(y, t) ∈ D : t ≤ d(y,Bc)} .

ii)
∫ ∫

D
|A(y, t)|q γd(dy)

dt
t
≤ 1

γd(B)q/q′ , where 1
q +

1
q′ = 1.

Lemma 7.7. If A is a T 1,q(γd) α-atom, then A ∈ T 1,q(γd) and ‖A‖T 1,q(γ) ≤ 1.
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Proof. Let A be a T 1,q(γd) α-atom supported in T1(B)∩D, for some B ∈ Bα . If
(y, t) ∈T1(B)∩D and x ∈ B(y, t), then x ∈ B. Then, using this fact, Hölder’s inequal-
ity, and Fubini’s theorem, we obtain,

∫

Rd

(∫ ∫

D

χB(y,t)(x)

γd(B(y, t))
|A(y, t)|qγd(dy)

dt
t

)1/q
γd(dx)

=
∫

Rd

(∫ ∫

D

χB(y,t)(x)

γd(B(y, t))
|A(y, t)|qγd(dy)

dt
t

)1/q
χB(x)γd(dx)

≤
(∫

Rd

∫ ∫

D

χB(y,t)(x)

γd(B(y, t))
|A(y, t)|qγd(dy)

dt
t

γd(dx)
)1/q

γd(B)
1/q′

=
(∫ ∫

D

χB(y,t)(x)

γd(B(y, t))
|A(y, t)|qγd(dy)

dt
t

)1/q
γd(B)

1/q′ ≤ 1.

The set D admits a locally finite cover with tents T1(B) based at balls B ∈ Bα
if and only if α > 1; this explains the condition α > 1 in the next theorem, which
establishes an atomic decomposition of T 1,q(γd).

Theorem 7.8. (Mass, Van Neerven, and Portal) For all F ∈ T 1,q(γd) and α > 1,
there exists a sequence (λn)n≥1 ∈ �1 and a sequence of T 1,q(γ) α-atoms {An}n≥1

such that

i) F = ∑∞
n=1 λnAn.

ii) ∑∞
n=1 |λn| ≤C‖ f‖T 1,q(γ), for some constant independent of f .

The proof of this result follows the lines of the classic counterpart in [55]; how-
ever, we can only use the doubling property of γd for admissible balls. That is why we
need the Gaussian Whitney covering (see Theorem 4.10). Before we start with the
proof, we need some notations and auxiliary results. Given a measurable set E ⊆R

d

and a real number α > 0, we define

Rα(E) = {(y, t) ∈ R
d × (0,∞) : d(y,E)< α t}= T c

α(E
c).

We also put, for any measurable set E ⊆ R
d and real number β > 0,

E [β ] =

{
x ∈ R

d :
γd(E ∩B)

γd(B)
≥ β for all B ∈B 3

2
with center x

}
.

We call E [β ] the set of points of admissible β -density of E. Note that E [β ] is a closed
subset of Rd contained in E.

Lemma 7.9. For all η ∈ ( 1
2 ,1) there exists an η ∈ (0,1) such that, for all measur-

able sets E ⊆ R
d and all non-negative measurable functions F on D, there exists a

constant C > 0 such that
∫∫

R1−η (E [η])∩D
F(y, t)γd(dy)

dt
t
≤C

∫

E

(∫∫

D

χB(y,t)(x)

γd(B(y, t))
F(y, t)γd(dy)

dt
t

)
γd(dx).
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Proof. First, let η ∈ (0,1) be arbitrary and fixed. Let (y, t) ∈ R1−η(E [η ])∩D. Note
that (y, t) ∈ D implies B(y, t) ∈ B1. There exists x ∈ E [η] such that |y− x| < (1−
η)t. Notice first that, because t ≤ m(x), we have |x| ≤ (1−η)t + 1

t ≤ 1
2 +

1
t ≤ 3

2
1
t .

Thus, we have that t ∈ (0, 3
2 m(x)). Moreover, B(x,ηt)⊆ B(y, t)⊆ B(x, 3

2 t), and thus
B(y, t) ∈ B1, B(x, t) ∈ B 3

2
, and γd(B(x, t)) ∼ γd(B(y, t)) by repeated application of

Theorem 1.6 ii), the doubling property on admissible balls. Therefore, we have

γd(E ∩B(y, t))≥ γd(E ∩B(x, t))− γd(B(x, t)∩B(y, t)c)

≥ ηγd(B(x, t))− γd(B(x, t))+ γd(B(x, t)∩B(y, t))

≥ (η −1)γd(B(x, t))+ γd(B(x,ηt)).

Now, picking η close enough to 1 and using the doubling property, we obtain a
constant c = c(η ,n) ∈ (0,1) such that

γd(E ∩B(y, t))≥ cγd(B(x, t)).

Therefore, there exists a constant c′ = c′(η ,n)> 0 such that

γd(E ∩B(y, t))≥ c′γd(B(y, t)),

for all (y, t) ∈ R1−η(E [η])∩D. Finally,

∫

E

(∫∫
D

χB(y,t)(x)

γd(B(y, t))
F(y, t)γd(dy)

dt
t

)
γd(dx) =

∫∫

D

γd(E ∩B(y, t))
γd(B(y, t))

F(y, t)γd(dy)
dt
t

≥ c′
∫∫

R1−η (E [η])∩D
F(y, t)γd(dy)

dt
t
. �	

Lemma 7.10. If a function F ∈ T 1,q(γd) admits a decomposition in terms of T 1,q(γd)
α-atoms for some α > 1, then it admits a decomposition in terms of T 1,q(γd) α-atoms
for all α > 1.

Proof. Suppose that F ∈ T 1,q(γd) admits a decomposition in terms of T 1,q(γd) β -
atoms for some β > 1. We will show that f admits a decomposition in terms of
T 1,q(γd) α-atoms for any α > 1. This is immediate if α ≥ β , because in this case
any T 1,q(γd) β -atom is a T 1,q(γd) α-atom as well.

Therefore, let us assume that 1 < α < β . We claim that it suffices to show that
there exists an integer N, depending only upon α,β , and the dimension d, such that
if B ∈Bβ , then T1(B)∩D can be covered by at most N tents of the form T1(B′) with
B′ = B(c′,r′) ∈Bα satisfying r′ = αm(c′).

To prove the claim, it clearly suffices to consider the case that F is a T 1,q(γd)
β -atom having support in T1(B)∩D for some ball B ∈Bβ , with center c and radius
r = βm(c). Let {T1(B′

1), · · · ,T1(B′
N)} be a covering of T1(B), where each B′

j, j =
1, · · ·N, is a ball in Bα with center c j, radius r j = αm(c j), and intersecting B. For
x ∈ T1(B)∩D we set

n(x) := #{1 ≤ j ≤ N : x ∈ T1(B
′
1)}, and Fj(x) =

F(x)
n(x)

χT1(B′
1)
(x).
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Then it follows that F = ∑N
j=1 Fj. Moreover, each Fj is a T 1,q(γd) α-atom, because

Fj is supported in T1(B j)∩D and

‖Fj‖Lq(D,γddt/t) ≤ ‖F‖Lq(D,γddt/t) ≤ γd(B)
−1/q′ ≤Cγd(B

′
j)
−1/q′ .

To obtain the latter estimate, we pick an arbitrary b ∈ B′
j ∪B and use Lemma 1.5

ii) to conclude that

m(c j)≤ (1+α)m(b)≤ 2(1+α)(1+β )m(c),

and then we estimate,

r j = αm(c j)≤ 2α(1+α)(1+β )m(c) = 2
α
β
(1+α)(1+β )r.

Using the doubling property, Theorem 1.6, we conclude γd(B j)≤Cγd(B). It follows
that F = ∑N

j=1 Fj is a decomposition in terms of T 1,q(γd) α-atoms, which proves the
claim.

Fix R≥ 1+β large enough such that α(R−β )/(R−β +α)> 1. The set {(y, t)∈
D : |y| ≤R+1} can be covered with finitely many sets – their number depending only
upon R, d and α – of the form T1(B′) with B′ = B(c′,r′) ∈Bα and r′ = αm(c′).

Take a ball B = B(c,r) ∈ Bβ with |c| ≥ R and choose δ ∈ (0,1) small enough
such that (1−δ )α(R−β )/(R−β +α)> 1. Observe that if x∈B, then |x| ≥R−β ≥
1, and therefore m(x) = 1

|x| . Let us define

CB := {(x, t) ∈ B× (0,∞)}.
Noting that T1(B)∩D ⊂ CB, it remains to cover CB with N tents T1(B′) based on
balls B′ ∈Bα where the number N depends on α,β , and d only. To do so, let us start
picking c′ ∈ B, and let r′ = αm(c′) = α

|c′| and B′ = B(c′,r′). If (x, t) ∈CB is such that

|x− c′| ≤ δ r′, then

d(x,(B′)c) = d(c′,(B′)c)−|x− c′| ≥ (1−δ )r′ = (1−δ )
α
|c′|

≥ (1−δ )
α

|x|+ |x− c′| ≥ m(x)(1−δ )
(

α|x|
|x|+α

)

≥ m(x)(1−δ )
α(R−β )
R−β +α

≥ m(x)≥ t.

Here, we have used the monotonicity of the function t → t/(t +α).
We have proved that the point (x, t) ∈CB belongs to T1(B′) whenever |x− c′| ≤

δ r′. Using that (|c|+β )r ≤ (|c|+β ) β
|c| ≤ β +β 2, we have

r′ = αm(c′)≥ α
|c|+β

≥ α
β +β 2 r.

This implies that B can be covered with N balls B′ = B(c′,δ r′) as above, with N
dependent only on α,β , and d. The union of the N sets T1(B′)∩D then covers CB,
thus completing the proof of the lemma. �	

We are ready to prove Theorem 7.8.
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Proof. Using Lemma 7.10, it suffices to prove that each F ∈ T 1,q(γd) admits a de-
composition in terms of T 1,q(γd) α-atoms for some α > 0.

Recall that the disjoint sets A(i)
p,κ have been introduced in Definition 4.8. We shall

apply Theorem 4.10 for p = 4 and κ = 8 (the reason for this choice is the constant
16 = 24 produced in the argument below). As

( ⋃

0≤l≤4

Ll

)
∪
( ⋃

i∈{1,...,8}d

A(i)
4,8

)
= R

d ,

we may write

f = f χ{‖J f‖2>0} = ∑
0≤l≤4

∑
Q∈Δγ

0,l

f χQ∩{‖J f‖2>0}+ ∑
i∈{1,...,8}d

f χ
A(i)

4,8∩{‖J f‖2>0}, (7.8)

where f χ{‖J f‖2>0}(x, t) := f (x, t)χ{‖J f‖2>0}(x) and

{‖J f‖2 > 0} := {x ∈ R
d : ‖J f (x)‖L2(D,dγd

dt
t )

> 0}.

The first equality in (7.8) is justified as follows. For all x0 ∈ V := {‖J f‖2 = 0} we
have χB(y,t)(x0) f (y, t) = 0 for almost all (y, t)∈ D; therefore, using Fubini’s theorem,
for almost all y ∈ R

d , we have

χB(y,t)(x0) f (y, t) = 0 for almost all t > 0.

Fix δ > 0 arbitrary. Then, for almost all y ∈ B(x0,δ ) we have f (y, t) = 0 for almost
all t ≥ δ . Applying again Fubini’s theorem, this implies that f (y, t) = 0 for almost
all (y, t)∈ (B(x0,δ )× [δ ,∞))∩D. Taking the union over all rational δ > 0, it follows
that f ≡ 0 almost everywhere on Γx := {(y, t) ∈ D : |x− y| < t} the “admissible
cone” over x. If K is any compact set contained in V , then by taking the union over
a countable dense set of points x ∈ K, it follows that f (y, t) = 0 almost everywhere
on the “admissible cone” over K. Finally, using the inner regularity of the Lebesgue
measure on R

d , it follows that f (y, t) = 0 almost everywhere on the “admissible
cone” over V . In particular, this proves the first identity in (7.8).

To prove the theorem it suffices to prove that each of the summands on the right-
hand side of (7.8) has an atomic decomposition. In view of Theorem 4.10 for p = 4
and κ = 8 it suffices to prove that

g := f χW∩{‖J f‖2>0}

has an atomic decomposition for every measurable set W in R
d such that W +C16 is

admissible 29
√

d-Whitney.
Given k ∈ Z, let us define

Ok := {‖J f‖2 > 2k}
and Fk := Oc

k. Fix an arbitrary η ∈ ( 1
2 ,1) and let η be as in Lemma 7.9. With abuse

of notation we let O[η ]
k := (F [η]

k )c, where F [η]
k denotes the set of points of admissible

η-density of Fk. We claim that O[η̄]
k is contained in W +C16 (see (4.8)).
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To prove the claim, we fix x ∈ O[η̄ ]
k , and check that x ∈W +C2. Indeed, as Jg(x)

does not vanish almost everywhere on D, we can find a set D′ ⊂D of positive measure
such that for almost all (y, t) ∈ D′

χB(y,t)(x)g(y, t) = χB(y,t)(x) f (y, t)χW∩{‖J f‖2>0}(y) �= 0.

For those points, we have y ∈ W, |x − y| < t and t < m(y), so t < 2m(x), using
Lemma 1.5 i). Thus, B(x, t) belongs to B2 and intersects W ; thus, x ∈W +C2.

As x is not a point of admissible η-density of Fk, there is a ball B ∈ B 3
2

with

center x such that γd(Fk ∩B)< η̄γd(B). This is only possible if B intersects Ok = Fc
k .

As Ok is contained in W +C2, this means that B intersects W +C2. Fix an arbitrary
x′ ∈B∩(W +C2) and let B′ ∈C2 be any admissible ball centered at x′ and intersecting
W . From x′ ∈ B and B ∈B 3

2
, it follows that |x−x′|< 3

2 m(x). Also, because B′ ∈B2

and intersects W, d(x′,W )< 2m(x), it follows that d(x,W )< 3
2 m(x)+2m(x′). Using

Lemma 1.5 ii), we have m(x′) < 5m(x), and therefore dist(x,W ) ≤ 16m(x). This
proves the claim.

For each N ≥ 1 define gN(y, t) := χ{|y|≤N}χ{|g|≤N}χ( 1
N ,∞)(t)g(y, t). Clearly, gN ∈

T q,q(γd) and, by dominated convergence, limN→∞ gN = g in T 1,q(γd). Defining the

sets Fk,N , Ok,N , F [η]
k,N , O[η ]

k,N in the same way as above, Lemma 7.9 gives that

∫∫

R1−η (F
[η ]
k,N )∩D

|gN(y, t)|qγd(dy)
dt
t

≤C
∫

Fk,N

(∫∫

D

χB(y,t)(x)

γd(B(y, t))
|gN(y, t)|qγd(dy)

dt
t

)
γd(dx)≤C‖gN‖q

T q,q(γd)
.

As k → −∞, the middle term tends to 0; therefore, the support of f gN is con-

tained in the union
⋃

k∈ZT1−η(O
[η]
k,N)∩D. Clearly, Ok,N ⊆ Ok implies T1−η(O

[η]
k,N)⊆

T1−η(O
[η]
k ); therefore, a limiting argument shows that the support of g is contained

in the union
⋃

k∈ZT1−η(O
[η ]
k )∩D.

Choose cubes (Qm
k )m∈N and functions (φ m

k )m∈N as in Lemma 4.12, applied to the

open sets O[η ]
k which are contained in W +C8. Define for (y, t) ∈ D,

bm
k (y, t) := (χ

T1−η (O
[η ]
k )

(y, t)− χ
T1−η (O

[η ]
k+1)

(y, t))φ m
k (y) f (y, t),

μm
k :=

∫∫

D
|bm

k (y, t)|q γd(dy)
dt
t
,

and put

λ m
k := (γd(Q

m
k ))

1
q′ (μm

k )
1
q , am

k (y, t) :=
bm

k (y, t)

λ m
k

.

Then,
g = ∑

k∈Z
∑

m∈N
λ m

k am
k .
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Let C be a constant to be determined later and denote by (Qm
k )

∗∗ the cube that
has the same center as Qm

k , but side length multiplied by C. Let us further denote
by δ m

k the length of the diagonal of Qm
k and by cm

k its center. We now show that
supp(am

k )⊆ T1((Qm
k )

∗∗). We have

supp(am
k )⊆ T1−η(O

[η]
k )∩{(y, t) ∈ D : y ∈ (Qm

k )
∗},

where (Qm
k )

∗ is as in Lemma 4.12. Therefore, for (y, t) ∈ supp(am
k ), we have

d(y,F [η]
k )≥ (1−η)t and y ∈ (Qm

k )
∗. For z �∈ (Qm

k )
∗∗ this gives

d(y,z)≥ d(z,cm
k )−d(y,cm

k )≥
( C

2
√

n
− ρ

2

)
δ m

k , (7.9)

where ρ = ρ210
√

d,d is the constant from Lemma 4.12. Moreover, using property ii)
in Lemma 4.12,

d(cm
k ,F

[η ]
k )≤ (ρ +

1
2
)δ m

k .

For u ∈ F [η ]
k such that d(cm

k ,u)≤ (ρ + 1
2 )δ

m
k + ε , this gives

(1−η)t ≤ d(y,F [η ]
k )≤ d(y,u)≤ d(y,cm

k )+d(cm
k ,u)≤

3ρ +1
2

δ m
k + ε . (7.10)

Upon taking C = 2
√

n(ρ
2 + 3ρ+1

2(1−η) ), from (7.9) and (7.10) and letting ε ↓ 0, we infer
that

d(y,z)≥ 3ρ +1
2(1−η)

δ m
k ≥ t.

This means that (y, t) ∈ T1((Qm
k )

∗∗), thus proving the claim: supp(am
k ) ⊆

T1((Qm
k )

∗∗).
Using the definitions of λ m

k and am
k together with the doubling property for ad-

missible balls, we also get that
∫∫

D
|am

k (y, t)|qγd(dy)
dt
t

≤ 1

γd(Qm
k )

q
q′

≤C
1

γd((Qm
k )

∗∗)
q
q′
.

Up to a multiplicative constant, the am
k are thus T 1,q(γd) α-atoms for some α =

α(C,n)> 0. To get the norm estimates, we first use Lemma 7.9. Noting that (y, t) ∈
T1((Qm

k )
∗∗) and x ∈ B(y, t) imply x ∈ (Qm

k )
∗∗, we obtain

μm
k ≤

∫∫

R1−η (F
[η ]
k+1)∩D

χT1((Q
m
k )

∗∗)(y, t)| f (y, t)|qγd (dy)
dt
t

≤C
∫

Fk+1

(∫∫

D

χB(y,t)(x)χT1((Q
m
k )

∗∗)(y, t)

γ(B(y, t))
| f (y, t)|qγd(dy)

dt
t

)
γd(dx)

≤C
∫

Fk+1∩(Qm
k )

∗∗
‖J f (x)‖q

Lq(D,γd
dt
t ))

γd(dx)

≤C22(k+1)γd((Q
m
k )

∗∗)≤C22kγd(Q
m
k ).
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This then gives

∑
k∈Z

∑
m∈N

λ m
k = ∑

k∈Z
∑

m∈N

√
μm

k γd(Qm
k )≤C ∑

k∈Z
2kγd(O

[η]
k ).

Because x ∈ O[η]
k implies M

3
2

γ (χOk)(x)> 1−η i.e.,

O[η ]
k ⊂ {x ∈W : M

3
2

γ (χOk)(x)> 1−η},

the weak type (1,1) of the truncated centered Gaussian Hardy–Littlewood maximal

function M
3
2

γ defined by using only B 3
2
-balls (see (4.101), gives that

(1−η)γ(O[η]
k )≤Cγ(Ok)

and thus

(1−η) ∑
k∈Z

∑
m∈N

λ m
k � ∑

k∈Z
2kγd(Ok)�

∫ ∞

0
γd(x ∈R

d : ‖J f (x)‖q > s)ds = ‖ f‖T 1,q(γd)
.

�	
As an application of the atomic decomposition, we prove a result on change of

aperture of the cones. The proof is different from the classical one (see [55]), because
the result is derived directly from the atomic decomposition.

Definition 7.11. For α > 0, the Gaussian tent space T 1,q
α (γd) with aperture α is the

completion of C0(D) with respect to the norm,

‖ f‖
T 1,q

α (γd)
= ‖Jα f‖L1(Rd ,γd);Lq(D,γd

dt
t ))

, (7.11)

where

(Jα f (x))(y, t) :=
χB(y,αt)(x)

γd(B(y, t))1/q
f (y, t), f ∈C0(D). (7.12)

Theorem 7.12. (Change of aperture) For all 1 < α0 < α, we have T 1,q
α (γd) =

T 1,q
α0 (γd) with equivalent norms.

Proof. It is clear that T 1,q
α (γd) ⊂ T 1,q

α0 (γd); thus, it suffices to show that T 1,q
α0 (γd) ⊂

T 1,q
α (γd). To get that, it is enough to show that

Jα ∈ L1(Rd ,γd ; Lq(D,γd × dt
t
)),

whenever f ∈ T 1,q
α0 (γd). Observe that (y, t) ∈ D implies B(y, t) ∈B1; therefore, using

the doubling property
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‖Jα f‖L1(Rd ,γd ;Lq(D,γd× dt
t ))

=
∫

Rd

(∫ ∫

D

χB(y,t)(x)

γd(B(y, t))
| f (y, t)|qγd(dy)

dt
t

)1/q
γd(dx)

=

∫

Rd

(∫ ∫

D̃

χB(y,t)(x)

γd(B(y, t/α))
| f (y, t/α)|qγd(dy)

dt
t

)1/q
γd(dx)

≤
∫

Rd

(∫ ∫

D̃

χB(y,t)(x)

γd(B(y, t))
| f (y, t/α)|qγd(dy)

dt
t

)1/q
γd(dx)

= ‖J f̃‖L1(Rd ,γd ;Lq(D̃,γd× dt
t ))

,

where D̃ := {(x, t) ∈ R
d × (0,∞) : (x, t/α) ∈ D}, and f̃ (y, t) := f (y, t/α). To prove

the result, it is enough to show that

‖J f̃‖L1(Rd ,γd ;Lq(D̃,γd× dt
t ))

≤C‖Jα0 f‖L1(Rd ,γd ;Lq(D̃,γd× dt
t ))

, (7.13)

for f ∈ T 1,q
α (γd).

Suppose a is a T 1,q
α (γd) α0-atom. Then, a is supported in T1(B)∩D for some

ball B = B(c,r) ∈ Bα0 . Then ã(y, t) = a(y,y/α) is supported in T̃1(B)∩ D̃ where
T̃1(B) := {(y, t) ∈ R

d × (0,∞) : (y, t/α) ∈ T1(B)}. Using that (y, t) ∈ T̃1(B) and
x ∈ B(y, t) imply x ∈ B(c,αr), the doubling property for admissible balls gives,

∫

Rd

(∫ ∫

D̃

χB(y,t)(x)

γd(B(y, t))
|a(y, t/α)|qγd(dy)

dt
t

)1/q
γd(dx)

≤
∫

Rd

(∫ ∫

D̃

χB(y,t)(x)

γd(B(y, t))
|a(y, t/α)|qγd(dy)

dt
t

)1/q
χB(c,αr)(x)γd(dx)

≤
∫

Rd

(∫ ∫

D̃

χB(y,t)(x)

γd(B(y, t))
|a(y, t/α)|qγd(dy)

dt
t

)1/q
χB(c,αr)(x)γd(dx)

≤
(∫

Rd

(∫ ∫

D̃

χB(y,t)(x)

γd(B(y, t))
|a(y, t/α)|qγd(dy)

dt
t

)1/q
γd(B(c,αr))1/q′

≤C
(∫

Rd

(∫ ∫

D̃
|a(y, t/α)|qγd(dy)

dt
t

)1/q
γd(B(c,r))

1/q′

≤C
(∫

Rd

(∫ ∫

D
|a(y, t)|qγd(dy)

dt
t

)1/q
γd(B(c,r))

1/q′ ≤C.

This shows that Jã ∈ L1(Rd ,γd ; Lq(D̃,γd × dt
t )). Then, using the atomic decompo-

sition, Theorem 7.8, we can conclude that J f̃ ∈ L1(Rd ,γd ; Lq(D̃,γd × dt
t )), for all

f ∈ T 1,q
α (γd). The estimate (7.13) then follows from the closed graph theorem. �	

7.4 Gaussian Hardy Spaces H1(γd)

The real variable theory of Hardy spaces originates from the work of C. Fefferman
and E. Stein [79]. There are several equivalent definitions for the Hardy spaces on
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R
d , with respect to the Lebesgue measure. We are going to discuss briefly the most

important ones, at least for us, here. First, there is the atomic Hardy space H1
at(R

d).
Here, an atom is a complex-valued function a defined on R

d , which is supported on
a cube Q and is such that

∫

Q
a(x)dx = 0 and ‖a‖∞ ≤ 1

|Q| .

The atomic space H1
at(R

d) is defined by

H1
at(R

d) :=
{

∑
j

λ ja j : a j atoms, λ j ∈ C, ∑
j
|λ j|< ∞

}
,

with norm

‖ f‖H1
at(R

d) := inf
{

∑
j
|λ j| : f = ∑

j
λ ja j ∑

j
|λ j|< ∞

}
.

The other relevant characterizations of the classical Hardy space are given using
the non-tangential maximal function T ∗

NT of the heat semigroup

T ∗
NT f (x) := sup

(y,t)∈Γx

|Tt2 f (y)|, (7.14)

and the conical square function of the heat semigroup

SNT f (x) :=
1

|B(y, t)|
(∫

Γx

∣∣∣tTt2 f (y)
∣∣∣
2

dy
dt
t

) 1
2
, (7.15)

where Γx :=
{
(y, t) ∈ R

d × (0,∞) : |y− x|< t
}

are the usual cones in R
d+1 with a

vertex at x ∈ R
d .

The Hardy spaces can then be defined as the completion of the space of com-
pactly supported functions C0(R

d) with respect to the norm

‖ f‖H1
max

:= ‖ f‖1 +‖T ∗
NT f‖1,

or with respect to the norm

‖ f‖H1
quad

:= ‖ f‖1 +‖SNT f‖1.

It can be proved that these norms are equivalent norms.

The Calderón–Zygmund operators are not bounded on L1(Rd), but are bounded
on weak-L1, which is not a Banach space. Another characterization of H1(Rd) is
precisely the subspace of functions f ∈ L1(Rd) such that their Riesz transforms R j f
are also in L1(Rd), i.e.,

H1(Rd) =
{

f ∈ L1(Rd) : R j f ∈ L1(Rd), j = 1,2, · · · ,d
}
.
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Finally, in 1971, it was proved by C. Fefferman in [78] (see also [79]), that the
dual of H1(Rd) is BMO(Rd), the space of functions with bounded mean oscillations
introduced by F. John and L. Nirenberg in [144].

In recent years, the theory of Hardy spaces has been extended to a variety of
new settings. These developments involve replacing the (Euclidean) Laplacian with
a different semigroup generator L, and the space R

d endowed with the Borel σ -
algebra and the Lebesgue measure with a different metric measure space (M,d,μ).
Important references include S. Hofmann and S. Mayboroda’s work on the Euclidean
space, with the Laplacian replaced by a more general divergence form second-order
elliptic differential operator with bounded measurable coefficients (see [136] and
the Auscher–McIntosh–Russ Hardy spaces of differential forms associated with the
Hodge Laplacian on a Riemannian manifold [13]. These results rely heavily on two
assumptions: that the measure μ is a doubling measure (see Appendix), and that the
semigroup generated by L, {etL}, has some appropriate L2 off-diagonal decay: for
f ∈ L2(Rd), there exists a constant C independent of E,F, t and f such that

∥∥∥χEetL(χF f )
∥∥∥

2
≤ c(1+

d(E,F)

t
)−k‖χ f f‖2,

where E,F, are Borel sets in R
d .

Given the success of Hardy space techniques in deterministic partial differential
equations, we can expect that a Gaussian analog would similarly have applications
to non-linear stochastic partial differential equations and stochastic boundary value
problems.

There have been several attempts to define Gaussian Hardy spaces, but the main
difficulty has been the fact that the Gaussian measure is not a doubling measure and
the Ornstein–Uhlenbeck semigroup does not satisfy the kernel bounds required to
apply the non-doubling theory of Tolsa [274]. The first result was obtained in 2007 by
G. Mauceri and S. Meda in their seminal paper [174]. Their work is striking precisely
because the Gaussian measure is not doubling, but the key to their success relies on
the fact that they discovered that the Gaussian measure is a doubling measure when
restricted to the class of admissible balls (see Proposition 1.6). The Mauceri–Meda
Hardy spaces H1

at(γd) are defined via an atomic decomposition. An atom is either
the constant function 1 or a function supported in an admissible ball B ∈ B1 with
vanishing integral and satisfying an appropriate size condition. More precisely,

Definition 7.13. Let 1 < r < ∞, a (1,r)-atom is either the constant function 1, or a
function a in L1(γd) supported in a ball B ∈B1 with the following properties:

∫

B
a(y)γd(dy) = 0, (7.16)

and ( 1
γd(B)

∫

B
|a(y)|r γd(dy)

)1/r ≤ 1
γd(B)

, (7.17)
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or equivalently,
‖a‖r,γ ≤ γd(B)

1/r−1. (7.18)

Then, we have

Definition 7.14. The atomic Gaussian Hardy space H1,r
at (γd) is the space of all func-

tions f in L1(γd) that admit an atomic decomposition of the form

f =
∞

∑
k=1

λkak (7.19)

where ak is a (1,r)-atom and ∑∞
k=1 |λk|< ∞, with norm

‖ f‖
H1,r

at (γ) = inf
{ ∞

∑
k=1

|λk| : f =
∞

∑
k=1

λkak, ak (1,r)−atom and
∞

∑
k=1

|λk|< ∞
}
. (7.20)

By duality with the BMO(γd) spaces, it can be proved that all Gaussian Hardy
spaces H1,r

at (γd) coincide for all r ∈ (1,∞) with equivalent norms. Moreover, in [177,
Theorem 2.2], G. Mauceri, S. Meda, and P. Sjögren prove that this can be extended
to the case r = ∞. Thus, we can denote any of them simply by H1

at(γd) and use any
of the equivalent norms. Additionally, the Mauceri–Meda space H1

at(γd) provides a
good endpoint to the Lp scale from the interpolation point of view.

J. Maas, J. van Neerven, and P. Portal in [168] and [169] developed an alterna-
tive approach to the theory of Hardy spaces for the Gaussian case. This involved
considering adequate dyadic cubes, Whitney-type covering lemmas (which were
discussed in Section 4.1), related tent spaces and their atomic decomposition (which
were discussed in Section 7.3), and techniques to estimate non-tangential maximal
functions and conical square functions (see Section 4.6).

In 2012, P. Portal in [231] gave another characterization of Gaussian Hardy
spaces, introducing two new spaces:

Definition 7.15. i) The (maximal) Gaussian Hardy space, or non-tangential max-
imal function Hardy space, H1

max,a(γd) is the completion of the L2 range of L,
R(L),1 with respect to the norm

‖ f‖H1
max,a(γ) := ‖T ∗

γ (1,a) f‖1,γ , (7.21)

where T ∗
γ (1,a) is the non-tangential maximal function associated with the

Ornstein–Uhlenbeck semigroup (4.84).

1In [231], the spaces are defined as completions of C∞
0 (R

d). This unfortunate mistake was
pointed out in [232]. These spaces, just like other Hardy spaces associated with an operator L,
can only be defined on the range of L (where the reproducing formula holds in a L1 sense). In
other situations, this is only a minor technical hindrance. For the Ornstein–Uhlenbeck opera-
tor, however, this is critical because of the change of spectrum at p = 1.



260 7 Function Spaces with respect to γd

ii) The (quadratic) Gaussian Hardy space H1
quad,a(γd) is the completion of the L2

range of L, R(L), with respect to the norm,

‖ f‖H1
quad,a(γ)

:= ‖ f‖1,γd +‖Sa,γ f‖1,γ , (7.22)

where Sa,γ is the “averaged version” of the non-tangential Ornstein–Uhlenbeck
maximal function, (4.91).

Then, we have the following crucial result:

Theorem 7.16. Given a > 0, there exists a′ > 0 such that the norms ‖·‖H1
quad,a(γ)

and

‖ · ‖H1
max,a′ (γ)

are equivalent; therefore,

H1
quad,a(γd) = H1

max,a(γd). (7.23)

The proof of this result is technically very difficult and long. We give some of
the main elements (for full details, see [231, Theorem 1.1 ]). The proof is based on
the Gaussian version of A. P. Calderón’s reproducing formula (2.59).

First of all, observe that from Theorem 7.12, we can immediately obtain one of
the required inequalities, because

‖Sa,γ f‖1,γ ≤C‖T ∗
γ (1,a′) f‖1,γ ,

for some C,a′ > 0.2

Therefore, to prove Theorem 7.16, we need to prove the reverse inequality.
The (local) part

J1 f (x) :=
∫ m(x)

0
(t2L)N+1T(1+a)t2/α f (x)

dt
t
, (7.24)

is treated, via atomic decomposition of the tent space T 1,q(γd), leading to the esti-
mate,

‖J1 f‖H1
max,a′ (γ)

≤C′(‖ f‖1,γ +‖ f‖H1
quad,a(γ)

). (7.25)

The (global) term,

J∞ f (x) :=
∫ ∞

m(x)
(t2L)N+1T(1+a)t2/α f (x)

dt
t
, (7.26)

is very problematic, as the boundedness of the square function norm ‖Sa,γ‖1,γd does
not give any information about it. Nevertheless, estimates of the Ornstein–Uhlenbeck
semigroup give the estimate,

‖J1 f‖H1
max,a′ (γ)

≤C′′‖ f‖1,γ . (7.27)

2Actually, Theorem 4.43 gives a slightly stronger inequality involving ϒ∗
γ (1,a

′), the “av-
erage” non-tangential maximal function.
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Let us look at the main argument of the proof in more detail. Using the Gaussian
version of A. P. Calderón’s reproducing formula (2.59)

f (x) =
∫

Rd
f (x)γd(dx)+C

∫ ∞

0
(t2L)N+1T(1+a)t2/α f (x)

dt
t
,

for f ∈ L2(γd), in L2-sense, and the atomic decomposition, we can prove the fol-
lowing corollary of Theorem 7.8, for q = 2. This corollary is the actual underlying
identity for proving Theorem 7.16.

Corollary 7.17. For all N ∈N,a > 1,b ≥ 1
2 and α > a2 there exists C1,C2,C3,C4 >

0, and d sequences of α-atoms {An, j}n≥1 and numbers (λn, j)n≥1 ∈ �1, such that for
all f ∈C∞

c (R
d) and x ∈ R

d ,

f (x) =
∫

Rd
f (y)γd(dy) − C1

d

∑
j=1

∞

∑
n=1

λn, j

∫ 2

0
(t2L)NTt2/α

(
t(∂ j

γ )
∗ An, j(x, t)

) dt
t

+ C2

d

∑
j=1

∞

∑
n=1

λn, j

∫ 2

0
χ[

m(x)
b ,2

](t)(t2L)NTt2/α

(
t(∂ j

γ )
∗ An, j(x, t)

)dt
t

− C3

d

∑
j=1

∫ m(x)
b

0
(t2L)NTt2/α

(
χDc(x, t)t∂ j

γ Ta2t2/α f (x)
) dt

t

+ C4

∫ ∞

m(x)
b

(t2L)N+1T(1+a2)t2/α f (x)
dt
t
, (7.28)

and
d

∑
j=1

∞

∑
n=1

|λn, j| ≤C‖ f‖H1
quad,a(γ)

,

where (∂ j
γ )

∗ =
√

2x jId − 1√
2

∂
∂x j

, the formal L2(γd)-adjoint of ∂ j
γ , see (2.12).

Proof. Let us recall that L = −∑d
j=1(∂

j
γ )

∗∂ j
γ , see (2.13). Hence, as L and Tt , t ≥ 0

commute,

(t2L)N+1T(1+a2)t2/α f (x) = −
d

∑
j=1

(t2L)Nt2(∂ j
γ )

∗∂ j
γ Tt2/α Ta2t2/α f (x)

= −
d

∑
j=1

(t2L)NTt2/α t(∂ j
γ )

∗[χD(x, t)+ χDc(x, t)]t∂ j
γ Ta2t2/α f (x).

Set Fj(x, t) := χD(x, t)t∂ j
γ Ta2t2/α f (x), for j = 1, · · · ,d. We need to check that

Fj ∈ T 1,2(γd), i.e., that they have an atomic decomposition.
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Using Theorem 1.6 ii) we have, taking the change of variables t =
√

αs

‖Fj‖T 1,2
α (γd)

≤C
∫

Rd

(∫∫

Γ 1
x (γd)

χD(y, t)
γd(B(y, t))

|t∂ j
γ Ta2t2/α f (y)|2γd(dy)

dt
t

)1/2
γd(dx)

≤C
∫

Rd

(∫ ∞

0

∫

B(x,t)

χD(y, t)
γd(B(y, t))

|t∂ j
γ Ta2t2/α f (y)|2γd(dy)

du
u

)1/2
γd(dx)

≤C
∫

Rd

(∫ ∞

0

∫

B(x,
√

αs)

χD(y,
√

αs)

γd(B(y,
√

αs))
|s∂ j

γ Ta2s2 f (y)|2γd(dy)
ds
s

)1/2
γd(dx)

≤C
∫

Rd

(∫ ∞

0

∫

B(x,
√

αs)

χD(y,
√

αs)

γd(B(y,
√

αs))
|s∇Ta2s2 f (y)|2γd(dy)

ds
s

)1/2
γd(dx)

≤C
∫

Rd

(∫ ∞

0

∫

B(x,
√

αs)

χD(y,
√

αs)
γd(B(y,s))

|s∇Ta2s2 f (y)|2γd(dy)
ds
s

)1/2
γd(dx),

as γd(B(y,
√

αs)) ≥ γd(B(y,s)). Then, by the change of aperture formula, Theo-
rem 7.12, and the change of variables at = s, we get

‖Fj‖T 1,2
α (γd)

≤C
∫

Rd

(∫ ∞

0

∫

B(x,a2t)

χD(y,a2t)
γd(B(y, t))

|t∇Ta2t2 f (y)|2γd(dy)
dt
t

)1/2
γd(dx)

≤C
∫

Rd

(∫ ∞

0

∫

B(x,as)

χD(y,as)
γd(B(y, t))

|s∇Ts2 f (y)|2γd(dy)
ds
s

)1/2
γd(dx)≤ ‖ f‖H1

quad,a
.

Then, using Theorem 7.8, we conclude that

Fj(x, t) =
∞

∑
n=1

λn, jAn, j(x, t),

with ∑∞
n=1 |λn, j| < ∞, for j = 1, · · · ,d. Hence, using the Gaussian version of A. P.

Calderón’s reproducing formula

f (x) =
∫

Rd
f (y)γd(dy)+C

∫ ∞

0
(t2L)N+1T(1+a)t2/α f (x)

dt
t

=
∫

Rd
f (y)γd(dy)+C

∫ ∞

m(x)
b

(t2L)N+1T(1+a)t2/α f (x)
dt
t

−C
d

∑
j=1

∫ m(x)
b

0
d(t2L)NTt2/α t(∂ j

γ )
∗[χD(x, t)+ χDc(x, t)]t∂ j

γ Ta2t2/α f (x)
dt
t

=
∫

Rd
f (y)γd(dy)+C

∫ ∞

m(x)
b

(t2L)N+1T(1+a)t2/α f (x)
dt
t

−C
d

∑
j=1

∫ m(x)
b

0
(t2L)NTt2/α t(∂ j

γ )
∗[χD(x, t)+ χDc(x, t)]t∂ j

γ Ta2t2/α f (x)
dt
t

=
∫

Rd
f (y)γd(dy)+C

∫ ∞

m(x)
b

(t2L)N+1T(1+a)t2/α f (x)
dt
t
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−C
d

∑
j=1

∫ m(x)
b

0
(t2L)NTt2/α t(∂ j

γ )
∗χD(x, t)t∂ j

γ Ta2t2/α f (x)
dt
t

−C
d

∑
j=1

∫ m(x)
b

0
(t2L)NTt2/α t(∂ j

γ )
∗χDc(x, t)t∂ j

γ Ta2t2/α f (x)
dt
t

=
∫

Rd
f (y)γd(dy)+C

∫ ∞

m(x)
b

(t2L)N+1T(1+a)t2/α f (x)
dt
t

−C
d

∑
j=1

∞

∑
n=1

λn, j

∫ m(x)
b

0
(t2L)NTt2/α t(∂ j

γ )
∗An, j(x, t)

dt
t

−C
d

∑
j=1

∫ m(x)
b

0
(t2L)NTt2/α t(∂ j

γ )
∗χDc(x, t)t∂ j

γ Ta2t2/α f (x)
dt
t

It is easy to check that the interchange of the (Bochner) integral with the sum is
allowed. Finally, using that m(x)/b ≤ 2, we get

d

∑
j=1

∞

∑
n=1

λn, j

∫ m(x)
b

0
(t2L)NTt2/α t(∂ j

γ )
∗An, j(x, t)

dt
t

=
d

∑
j=1

∞

∑
n=1

λn, j

∫ 2

0
(t2L)NTt2/α t(∂ j

γ )
∗An, j(x, t)

dt
t

−
d

∑
j=1

∞

∑
n=1

λn, j

∫ 2

0
χ[

m(x)
b ,2

](t)(t2L)NTt2/α t(∂ j
γ )

∗An, j(x, t)
dt
t
.

This gives (7.28). Thus, we have shown that ‖Fj‖T 1,2
α (γd)

≤C‖ f‖H1
quad,a(γ)

, so

d

∑
j=1

∞

∑
n=1

|λn, j| ≤C‖ f‖H1
quad,a(γ)

. �	

The proof of Theorem 7.16 uses (7.28) obtained in Corollary 7.17.
For a > 0, Theorem 7.12 gives that there exists a′ > 0 such that H1

max,a′(γd) ⊂
H1

quad,a(γd). Let us fix a′ and pick

α > max
{

238,32e4,4
√

ae2a2
}
, b ≥ max

{
2e,

√
32e4

(α −32e4)(1− e−2a2/α)

}
,

and N > d/4. Let f ∈C∞
c (R

d) and apply Corollary 7.17. We have
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‖ f‖H1
max,a′ (γ)

≤C =

∥∥∥∥T ∗
γ (1,a)

(∫

Rd
f (y)γd(dy)

)∥∥∥∥
1,γ

+ C
d

∑
j=1

∞

∑
n=1

|λn, j|
∥∥∥∥
∫ 2

0
(t2L)NTt2/α

(
t(∂ j

γ )
∗ An, j(·, t)

) dt
t

∥∥∥∥
H1

max,a′

+ C
d

∑
j=1

∞

∑
n=1

|λn, j|
∥∥∥∥
∫ 2

0
χ[

m(·)
b ,2

](t)(t2L)NTt2/α

(
t(∂ j

γ )
∗ An, j(·, t)

) dt
t

∥∥∥∥
H1

max,a′

+ C
d

∑
j=1

∥∥∥∥∥
∫ m(·)

b

0
(t2L)NTt2/α

(
χDc(x, t)t∂ j

γ Ta2t2/α f (·)
) dt

t

∥∥∥∥∥
H1

max,a′

+ C

∥∥∥∥
∫ ∞

m(·)
b

(t2L)N+1T(1+a2)t2/α f (·) dt
t
)

∥∥∥∥
H1

max,a′
+‖ f‖1,γ .

As the Ornstein–Uhlenbeck semigroup is conservative, i.e., Tt1 =, t ≥ 0 then
∥∥∥∥T ∗

γ (1,a)

(∫

Rd
f (y)γd(dy)

)∥∥∥∥
1,γ

≤ ‖ f‖1,γ ≤ ‖ f‖H1
quad,a′ (γ)

.

To bound the rest of the terms above, several estimates of Mehler’s kernel (off-
diagonal estimates) are needed, in addition to the introduction of the notion of
molecules (see Sections 3 and 4 of [231]). Once that is done, we can then bound
the remaining terms. Using [231, Proposition 5.5], we get

∥∥∥∥
∫ ∞

m(·)
b

(t2L)N+1T(1+a2)t2/α f (·) dt
t
)

∥∥∥∥
H1

max,a′ (γ)
≤C ≤ ‖ f‖1,γ ≤C‖ f‖H1

quad,a′ (γ)
.

Now, for j = 1, · · · ,d, using [231, Proposition 5.4], we obtain

∥∥∥∥∥
∫ m(·)

b

0
(t2L)NTt2/α

(
χDc(x, t)t∂ j

γ Ta2t2/α f (·)
) dt

t

∥∥∥∥∥
H1

max,a′ (γ)
≤C ≤ ‖ f‖1,γ ≤C‖ f‖H1

quad,a′ (γ)
.

Applying [231, Proposition 5.3 ] gives that
∥∥∥∥
∫ 2

0
χ[

m(·)
b ,2

](t)(t2L)NTt2/α

(
t(∂ j

γ )
∗ An, j(·, t)

) dt
t

∥∥∥∥
H1

max,a′ (γ)
≤C,

whereas Proposition 4.2 combined with Theorem 4.3 of [231] gives, for j = 1, · · · ,d,
∥∥∥∥T ∗

γ (1,a)

(∫

Rd
f (y)γd(dy)

)∥∥∥∥
1,γ

≤C.
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Therefore,

‖ f‖H1
max,a′ (γ)

≤C‖ f‖H1
quad,a′ (γ)

+C
d

∑
j=1

∞

∑
n=1

|λn, j| ≤C‖ f‖H1
quad,a′ (γ)

. �	

G. Mauceri and S. Meda proved that the topological dual of H1,r
at (γd) is iso-

morphic to BMO(γd). They also proved that the imaginary power of the Ornstein–
Uhlenbeck operator, (−L)iα and the adjoint of the Riesz transforms R∗

j are bounded

from H1,r
at (γd) to L1(γd). Unfortunately, it was proved by G. Mauceri, S. Meda, and

P. Sjögren in [176, Theorem 3.1] that the Riesz transforms R j are not bounded
from H1

at(γd) to L1(γd) in a dimension greater than one. On the other hand, P. Portal
proved, in [231, Theorem 6.1], that the Riesz transforms R j are bounded from
H1

max(γd) to L1(γd), but it is not known if the imaginary powers of (−L) are bounded
there. Also, nothing is known about duality and interpolation for H1

max(γd). Thus,
these spaces are different.

As we have seen, Portal’s proof is based on the theory of Gaussian tent spaces
T 1,2

α (γd). Although these tent spaces are defined using an atomic decomposition,
and the equivalence of H1

max(γd) and H1
quad(γd) uses the atomic decomposition of

T 1,2
α (γd) via the Gaussian version of Calderón’s reproducing formula, their explicit

characterization is not provided in [231]. In [37], T. Bruno introduces a new atomic
Gaussian Hardy space X1(γd), which is strictly contained in the space H1

at(γd).
First, we need the following notation,

Definition 7.18. Let E be a bounded open set and K be a compact set in R
d .

i) We denote by q2(E) the space of all functions f ∈ L2(E) such that L f is constant
on E, and by q2(K) the space of all functions on K, which are restriction to K of
a function in q2(E ′) for some bounded open set, such that K ⊂ E ′.

ii) We denote by h2(E) the space of all functions f ∈ L2(E) such that L f = 0 on
E, and by h2(K) the space of all functions on K that are restriction to K of a
function in h2(E ′) for some bounded open set, such that K ⊂ E ′.

The spaces h2(E)⊥ and q2(E)⊥ are the orthogonal complements of h2(E) and
q2(E) in L2(E,γd) respectively. The spaces h2(K)⊥ and q2(K)⊥ are the orthogonal
complements of h2(K) and q2(K) in L2(K,γd) respectively.

Now, following G. Mauceri, S. Meda, and P. Vallarino in [178], we defined the
atomic Gaussian Hardy space X1(γd).

Definition 7.19. An X1-atom is a function a ∈ L2(γd), supported in a ball B ∈B1,
with the following properties:

i) a ∈ q2(B)⊥.
ii) ‖a‖2,γ ≤ γd(B)1/2.
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Definition 7.20. The atomic Gaussian Hardy space X1(γd) is the space of all func-
tions f in L1(γd) that admit an atomic decomposition of the form

f =
∞

∑
k=1

λkak (7.29)

where ak is a X1-atom and ∑∞
k=1 |λk|< ∞, with norm

‖ f‖X1(γ) = inf
{ ∞

∑
k=1

|λk| : f =
∞

∑
k=1

λkak, ak X1-atom and
∞

∑
k=1

|λk|< ∞
}
. (7.30)

If B ∈ B1, the functions in q2(B) are referred to as Gaussian quasi-harmonic
functions in B.

Observe that the space X1(γd) is strictly contained in the atomic Gaussian space
H1

at(γd) of Mauceri and Meda. Indeed, the atoms defining H1
at(γd) are supported on

admissible balls of B1, but have only zero integral, a much weaker condition than
being in q2(B)⊥. The great advantage of the space X1(γd) is that T. Bruno proved that
the Riesz transforms are bounded from X1(γd) to L1(γd). However, the understanding
of the space X1(γd) is far from complete; for instance, it seems that X1(γd) is also a
subspace of H1

max(γd).

7.5 Gaussian BMO(γd) Spaces

In 1961, F. John and L. Nirenberg [144] introduced the space of functions of bounded
mean oscillations (BMO) with respect to the Lebesgue measure, as the space of all
locally integrable functions on R

d such that

sup
Q∈Q

1
|Q|

∫

Rd
| f (y)− fQ|dy < ∞, (7.31)

where Q is the family of all open cubes in R
d with sides parallel to the coordinate

axes, and fQ = 1
|Q|

∫
Rd | f (y)|dy, the average of f over Q with respect to the Lebesgue

measure. It is easy to see that by replacing the family Q with the family of balls B
in the formula above, we obtain an equivalent norm on BMO.

Extensions of the space of functions of bounded mean oscillations have been
considered in the literature. In particular, a theory of functions of bounded mean
oscillations that parallels the Euclidean theory has been developed on spaces of
homogeneous type by R. Coifman and G. Weiss [56] (see also [170]). As mentioned
before, (Rd , | · |,γd) is not a space of homogeneous type and the theory of BMO
spaces developed in [56] and [170] does not apply to this setting.

More recently, spaces of functions of bounded mean oscillations have been
introduced on measured metric spaces not of homogeneous type, specifically on
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(Rd , | · |,μ), where μ is a (possibly non-doubling) non-negative Radon measure. In
particular, X. Tolsa [274] has defined a regular BMO space, RBMO(μ), whenever μ
is a non-negative Radon measure on R

d , which is n-dimensional, i.e., there exists a
constant C > 0 such that for any ball B(x,r)⊂ R

d

μ(B(x,r))≤Crn,

for some n ∈ [1,d]. Tolsa’s space enjoys many good properties of BMO of spaces of
homogeneous type. In particular, Calderón–Zygmund singular integrals are bounded
from L∞(μ) to RBMO(μ).

As mentioned before, γd is trivially a d-dimensional measure. However,
RBMO(γd) is not the appropriate space to study the boundedness on L∞(γd) of
Gaussian singular integrals, because the kernel of these operators does not sat-
isfy the standard estimates uniformly in the whole complement of the diagonal in
R

d ×R
d . As we discuss in detail in Chapter 9, the local part of Gaussian singular

integrals satisfies the usual estimates of a Calderón–Zygmund operator. In 2007, G.
Mauceri and S. Meda in [174] also introduced Gaussian BMO spaces, BMO(γd), as
follows:

Definition 7.21. The Gaussian space of functions of bounded mean oscillations
BMO(γd), is the space of functions f ∈ L1(γd) that satisfy

sup
B∈B1

1
γd(B)

∫

B
| f (x)− f γ

B|γ(dx)< ∞, (7.32)

where

f γ
B =

1
γd(B)

∫

B
f (x)γd(dx),

the average of f over B. We define

‖ f‖B1∗ = sup
B∈B1

1
γd(B)

∫

B
| f (x)− f γ

B|γ(dx), (7.33)

and the norm in BMO(γd) is then defined as

‖ f‖BMO(γ) = ‖ f‖1,γ +‖ f‖B1∗ .

Observe that by definition BMO(γd) ⊂ L1(γd). Moreover, it can be proved that
BMO(γd) is a Banach space, and also that if we replace the family B1 with any other
family Ba in the definition of BMO(γd), we obtain the same space with an equivalent
norm (see [174, Proposition 2.4]),3

3Also, we obtain the same space with an equivalent norm if instead of Ba, we consider
Qa the admissible cubes of parameter a, i.e., the cubes Q with sides parallel to the axes , with
a center at cq and a side length lq ≤ am(cQ).
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We define the (local) sharp function f � as follows:

Definition 7.22. Given f ∈ L1(γd), the (local) sharp function f � is defined as

f �(x) = sup
B∈B1,x∈B

1
γd(B)

∫

B
| f (y)− f γ

B|γd(dy). (7.34)

Clearly, f ∈ BMO(γd) if and only if f � ∈ L∞(γd), and ‖ f‖B1∗ = ‖ f �‖∞,γ .. More-
over, it is straightforward to prove that f � ≤ 2M a

γ 1 f (x), for any x ∈ R
d .

Additionally, G. Mauceri and S. Meda in [174] prove that an inequality of John–
Nirenberg type for admissible balls holds for functions in BMO(γd) (see [174, Propo-
sition 4.1]) and that the topological dual of H1

at(γd) is isomorphic to BMO(γd). The
proof of this result is modeled over the classical result of Fefferman, although there
are several additional difficulties to overcome to adapt the original proof to the Gaus-
sian setting (see [174, Theorem 5.2]).

7.6 Gaussian Lipschitz Spaces Lipα(γ)

The standard Euclidean Lipschitz space Lipα(R
n) consists of all bounded functions

f such that for some C > 0

| f (y)− f (x)| ≤C|x− y|α , x,y ∈ R
n. (7.35)

This characterization is based on the regularity of the functions. It is known that
the space Lipα(R

n) can also be characterized by convolution with the standard Pois-
son kernel,

qt(x) = cn
t

(t2 + |x− y|2)(d+1)/2
,

see E. Stein [252, Section V. 4. 2], as f ∈ Lipα(R
n) if and only if

∥∥∥∂Pt

∂ t
(x,y) f

∥∥∥
L∞

≤Ctα−1, (7.36)

for all t > 0.

We would like to define Lipschitz spaces associated with the Gaussian measure.
Observe that, as mentioned above, the spaces Lp(γd) are not closed under the action
of the classical translation operator; thus, it would not be a good idea to try to
define them following the classical definition (7.35). Therefore, we use the Poisson–
Hermite semigroup to define Gaussian Lipschitz spaces.

In what follows, we need the technical result about the L1-norm of the derivatives
discussed in Lemma 3.16. From there, we then get the following key result,
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Proposition 7.23. Suppose f ∈ L∞(γ) and α > 0. Let k and l be two integers both
greater than α . The two conditions

∥∥∥∂ kPt f
∂ tk

∥∥∥
∞,γ

≤ Aα ,kt−k+α (7.37)

and ∥∥∥∂ lPt f
∂ tl

∥∥∥
∞,γ

≤ Aα ,lt
−l+α , (7.38)

are equivalent. Moreover, the smallest Aα ,k and Aα ,l holding in the above inequali-
ties, are comparable.

Proof. It suffices to prove that if k > α ,

∥∥∥∂ kPt f
∂ tk

∥∥∥
∞,γ

≤ Aα ,kt−k+α (7.39)

and ∥∥∥∂ k+1Pt f
∂ tk+1

∥∥∥
∞,γ

≤ Aα ,k+1t−(k+1)+α , (7.40)

are equivalent.

Let us assume (7.39). Applying the semigroup property, if t = t1 + t2, Pt f =
Pt1(Pt2 f ), then using the hypothesis and Lemma 3.3,

∥∥∥∂ k+1Pt f
∂ tk+1

∥∥∥
∞,γ

=
∥∥∥∂Pt1

∂ t1

(∂ kPt2 f

∂ tk
2

)∥∥∥
∞,γ

≤
∥∥∥∂ kPt2 f

∂ tk
2

∥∥∥
∞,γ

∫

Rd
|∂ p(t1, ·,y)

∂ t1
|dy

≤ Aα ,kt−k+α
2 Ct−1

1 .

For t1 = t2 = t/2 we get (7.40).

Now, assume (7.40). Observe that, again by Lemma 3.3,

∥∥∥∂ kPt f
∂ tk

∥∥∥
∞,γ

≤ ‖ f‖∞

∫

Rd
|∂

k p(t,x,y)
∂ tk |dy ≤ C

tk ‖ f‖∞;

thus, ∂ kPt f
∂ tk → 0 as t → ∞, and then using hypothesis

∥∥∥∂ kPt f
∂ tk

∥∥∥
∞,γ

≤
∫ ∞

t

∥∥∥∂ k+1Ps f
∂ sk+1

∥∥∥
∞,γ

ds ≤ Aα ,k+1
t−k+α

−k+α
=Ct−k+α . �	

Now, we can define the Gaussian Lipschitz spaces as follows:

Definition 7.24. For α > 0 let n be the smallest integer greater than α . The Gaussian
Lipschitz space Lipα(γ) is defined as the set of L∞ functions for which there exists a
constant A such that
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∥∥∥∂ nPt f
∂ tn

∥∥∥
∞
≤ At−n+α . (7.41)

The norm of f ∈ Lipα(γ) is defined as

‖ f‖Lipα (γ) := ‖ f‖∞,γ +Aα( f ), (7.42)

where Aα( f ) is the smallest constant A appearing in (7.41).

Observations 7.25. For the Gaussian Lipschitz spaces, we have

i) The definition of Lipα(γ) does not depend on which k > α is chosen and the
resulting norms are equivalent, according to Proposition 7.23.

ii) Condition (7.41) is of interest for t near zero, because the inequality

∥∥∥∂ nPt f
∂ tn

∥∥∥
∞
≤ At−n, (7.43)

which is stronger away from zero, follows for f ∈ L∞ immediately from (3.17),

∥∥∥∂ nPt f
∂ tn

∥∥∥
∞,γ

≤
∫

Rd

∣∣∣∂ n p(t,x,y)
∂ tn

∣∣∣| f (y)|dy ≤ C
tn ‖ f‖∞.

iii) For the completeness of the Gaussian Lipschitz spaces see Lemma 7.35.

We also define, for α > 0, homogeneous Gaussian Besov spaces
·
B

α

∞,∞(γ) as fol-
lows:

Definition 7.26. For α > 0, let n be the smallest integer greater than α , then the

homogeneous Gaussian Besov space type
·
B

α

∞,∞(γ) is defined as the set of L1(γ) func-
tions such that (7.41) holds for a constant Bα ,n.

All these spaces can also be obtained using abstract interpolation theory using
the Poisson–Hermite semigroup (see [271] 1.6.5.)

Observe that Lipα(γ) ⊂
·
B

α

∞,∞(γ). There are also inclusion relations among the
Gaussian Lipschitz spaces,

Proposition 7.27. If 0 < α1 < α2, then we have the inclusion

Lipα2(γ)⊂ Lipα1(γ).

Proof. Take f ∈ Lipα2(γ) and n ≥ α2, then

∥∥∥∂ nPt f
∂ tn

∥∥∥
∞,γ

≤ Aα( f )t−n+α2 .

If 0 < t < 1, then t−n+α2 ≤ t−n+α1 ; therefore,

∥∥∥∂ nPt f
∂ tn

∥∥∥
∞,γ

≤ Aα( f )t−n+α1 .
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Now, if t ≥ 1, then we know from (7.43) that

∥∥∥∂ nPt f
∂ tn

∥∥∥
∞,γ

≤ Aα( f )t−n

and as t−n+α1 > t−n, we also get in this case

∥∥∥∂ nPt f
∂ tn

∥∥∥
∞,γ

≤ Aα( f )t−n+α1

because n > α1; then, f ∈ Lipα1(γ). �	
Proposition 7.28. If f ∈ Lipα(γ) with 0 < α < 1, then

||Pt f − f ||∞,γ ≤ Aα( f ) tα . (7.44)

Proof. Applying the fundamental theorem of calculus,

||Pt f − f ||∞,γ =
∥∥∥
∫ t

0

∂Ps f
∂ s

ds
∥∥∥

∞
≤

∫ t

0

∥∥∥∂Ps f
∂ s

∥∥∥
∞,γ

ds

≤ Aα( f )
∫ t

0
s−1+α ds = Aα( f ) tα . �	

Gaussian Lipschitz spaces were defined by A. E. Gatto and W. Urbina in [109]
following E. Stein’s approach in [252, Chapter V], using the Poisson–Hermite semi-
group. After the given definition of those spaces in this way, it is natural to ask if
there is a characterization based on the regularity of the functions involved, as in the
classical case. In [159], L. Liu and P. Sjögren have characterized these spaces, for
0 < α < 1, in terms of a combination of ordinary Lipschitz continuity conditions,
giving a positive answer to the question posed. The main result of Liu and Sjögren’s
paper is the following:

Theorem 7.29. Let α ∈ (0,1), an essentially bounded function f ∈ Lipα(γ) if and
only if there exists a constant K such that for all x,y ∈ R

n,

| f (y)− f (x)| ≤ K min
{
|x− y|α ,

( |x− y|
1+ |x|+ |y|

)α/2
+((|x|+ |y|)sinθ)α

}
, (7.45)

after a correction of f on a null set. Here, θ denotes the angle between the vectors x
and y; if x = 0 or y = 0, then θ is understood to be 0.

In one dimension, the inequality becomes,

| f (y)− f (x)| ≤ K min
{
|x− y|α ,

( |x− y|
1+ |x|+ |y|

)α/2}
. (7.46)

This is a combined Lipschitz condition, with exponent α for a short distance |x− y|
and exponent α/2 with a different coefficient, for a long distance.
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As usual in Gaussian harmonic analysis, the two parts of this estimate correspond
to the “local part” (for short distance |x−y|), in which the estimate coincides with the
Euclidean case, and the “global part” corresponding to the long distance (i.e., |x− y|
big), in which the effect of the Gaussian measure makes the estimate a little different.

In higher dimensions, the expression (|x|+ |y|)sinθ describes the “orthogonal
component” of the vector x− y, because it is the distance from x to the line in the
direction x. To make this clearer, Liu and Sjögren state a non-symmetric inequality
equivalent to (7.45). For x,y ∈ R

n with x �= 0, we decompose y as y = yx + y′x, where
yx is parallel to x and y′x orthogonal to x,

| f (y)− f (x)| ≤ K′ min
{
|x− y|α ,

( |x− yx|
1+ |x|

)α/2
+ |y′x|

}
. (7.47)

This inequality means that the combined Lipschitz condition applies in the radial
direction, but in the orthogonal direction, the exponent is always α. The equivalence
between these two inequalities is valid in any dimension, with a constant K′ > 0
comparable with K.

The proof of (7.45) relies on very precise pointwise estimates of the Poisson–
Hermite kernel p(t,x,y) and its derivatives; for all t > 0 and x,y ∈ R

n,

p(t,x,y)≤C[K1(t,x,y)+K2(t,x,y)+K3(t,x,y)+K4(t,x,y)], (7.48)

where,

K1(t,x,y) =
t

(t2 + |x− y|2)(n+1)/2
exp(−C1t(1+ |x|)),

for some constant C1,

K2(t,x,y) =
t
|x|

(
t2 +

|x− yx|
|x| + |y′x|2

)−(n+2)/2

×exp
(
−C2

(t2 + |y′x|2)|x|
|x− yx|

)
χ{|x|>1,x·y>0,|x|/2≤|yx|<|x|};

for some constant C2,

K3(t,x,y) = min(1, t)exp(−C3|y|2);
for some constant C3, and

K4(t,x,y)=
t

|yx|
(

log
|x|
|yx|

)−3/2
exp

(
−C4

t2

log |x|
|yx|

)
exp(−C5|y′x|2)χ{x·y>0,1<|yx|<|x|/2};

for some constant C4.

Similar estimates are also possible for the derivatives of p(t,x,y), both ∂t p(t,x,y)
and ∂xi p(t,x,y). Thus,
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p(t,x,y)+ |t∂t p(t,x,y)|+ |t∂xi p(t,x,y)|
≤C[K1(t,x,y)+K2(t,x,y)+K3(t,x,y)+K4(t,x,y)]. (7.49)

Moreover, Liu and Sjögren prove that these estimates are also sharp. For each of
the four kernels Ki(t,x,y) there is a set Ẽi of points (t,x,y) in which p(t,x,y) is
equivalent to Ki(t,x,y), but where the other terms are much smaller; thus, none of
the four terms can be suppressed in the estimate. The estimates are product of a very
deep understanding of the kernel p(t,x,y) and how it compares with the standard
Poisson kernel qt(x) (for more details, we refer the reader to their paper [159]).

The estimates of the Poisson–Hermite kernel p(t,x,y) and its derivatives are of
independent interest, and the proof of the main result is almost straightforward once
we have those estimates. It would be interesting to know if alternative characteri-
zation of the Gaussian Besov–Lipschitz and the Gaussian Triebel–Lizorkin spaces,
which are defined in the next two sections, using higher order derivatives of the
Poisson–Hermite kernel, can be obtained using similar estimates.

Another open question would be if the characterization of the Gaussian Lipschitz
spaces obtained by Liu and Sjögren is related to the notion of translation operator
introduced by C. Markett in [173].

In the Euclidean case, as mentioned above, condition (7.36) characterizes the
ordinary Lipchitz space only if the functions considered are bounded. Thus, we
obtain the inhomogeneous Lipschitz space; without the boundedness assumption, we
get the larger homogeneous Lipschitz space.

In the Gaussian setting, as no homogeneity is involved, the condition (7.41) with-
out the boundedness assumption defines a space that had been considered by L. Liu
and P. Sjögren in [160]. It is called the global Gaussian Lipschitz space. Using a
result by G. Garrigós, S. Harzstein, T. Signes, J. L. Torrea, and B. Viviani [106], Liu
and Sjögren consider measurable functions f in R

d with the condition
∫

Rd

e−|y|2
√

ln(e+ |y|) | f (y)|dy < ∞, (7.50)

which according to Theorem 1.1 of [106] guarantees that the Pt f is well defined.
Moreover, the same condition ensures that Pt f (x)→ f (x) as t → 0 a.e. x∈R

n. There-
fore,

Definition 7.30. Let α ∈ (0,1). A measurable function f defined in R
n and satisfy-

ing (7.50) belongs to the global Gaussian Lipschitz space GLipα(γ) if (7.41) holds.
The corresponding norm is

‖ f‖GLipα (γ) = inf{A > 0 : A satisfies (7.41)}.
This space is actually a space of equivalence classes, as it consists of functions

modulo constants.
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A natural question is what continuity condition characterizes these spaces? To
answer this, Liu and Sjögren introduce the following distance:

d(x,y) =
∣∣∣
∫ y

x

dξ
1+ |ξ |

∣∣∣= | ln(1+ |x|)− sgnxy ln(1+ |y|)|, x,y ∈ R, (7.51)

with the convention sgn0 = 1. In several dimensions, we use this distance on the line
spanned by x, defining

d(x,y) = | ln(1+ |x|)− sgn < x,y > ln(1+ |yx|)|, x,y ∈ R
n,

with yx as before. The main result in [160] is the following:

Theorem 7.31. Let α ∈ (0,1) and let f be a measurable function in R
n. The follow-

ing conditions are equivalent:

i) f satisfies condition (7.50) and f ∈ GLipα(γ).
ii) There exists a positive constant K such that for all x,y ∈ R

n

| f (y)− f (x)| ≤ K min
{
|x− y|α ,d(x,yx)

α/2 + |y′x|α
}
, x,y ∈ R

n (7.52)

after a correction of f on a null set.

Moreover, the space GLipα(γ) is defined in terms of the distance function d.
Indeed, (7.47) implies boundedness, then (7.47) holds if and only if there exists a
constant K” > 0 such that,

| f (y)− f (x)| ≤ K min
{

1, |x− y|α ,d(x,yx)
α/2 + |y′x|α

}
,

for x,y∈R
n. This also tells us that for bounded functions (7.47) and (7.52) are equiv-

alent.
The condition (7.52) implies only

f (x) = O(ln |x|)α/2 as |x| → ∞.

Liu and Sjögren show that this condition is sharp using a counterexample in Sec-
tion 7.5.

To obtain (7.52), they need to modify the kernel K3 to decay for large values of
x, refining a few of the previous arguments. The estimates (7.48) and (7.49) remain
valid if the kernel K3(t,x,y) is replaced by

K̃3(t,x,y) = min
{

1,
t

[ln(e+ |x|)]1/2

}
exp(−C3|y|2)

The introduction in (7.51) of the distance d in the context of Gaussian harmonic
analysis is an interesting point that may be used in other problems.

After several technical results, analogous estimates can obtained for f ∈
GLipα(γ) with norm 1:
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• For all i = 1,2, · · ·n, t > 0, and x ∈ R
n,

|∂xiPt f (x)| ≤Ctα−1.

• For all t > 0 and x = (x1,0, · · · ,0) ∈ R
n with x1 ≥ 0,

|∂xiPt f (x)| ≤Ctα−2(1+ x1)
−1.

The proof of the main result, Theorem 1.2, follows almost immediately from all the
previous estimates.

7.7 Gaussian Besov–Lipschitz Spaces Bα
p,q(γd)

In the next two sections, we study the Gaussian Besov–Lipschitz and the Gaussian
Triebel–Lizorkin spaces. They were introduced initially by E. Pineda in his doctoral
dissertation (see [224] and also [226]).

For any α ≥ 0, we define Gaussian Besov–Lipschitz spaces Bα
p,q(γd), following

E. Stein [252] to define and study the Bα
p,q(γd) spaces, using the Poisson–Hermite

semigroup. But because the Poisson–Hermite semigroup is not a convolution semi-
group, the proofs of the results are totally different to those given there.

As in the case of Gaussian Lipschitz spaces, Besov–Lipschitz spaces can also be
obtained as interpolated spaces using interpolation theory for semigroups defined on
a Banach space (see for instance Chapter 3 of [38, 112] or [271]).

We use the representation of the Poisson–Hermite semigroup (3.8) in a crucial
way, using the one-sided stable measure

μ(1/2)
t (ds) =

t

2
√

π
e−t2/4s

s3/2
ds = g(t,s)ds,

and the estimates (3.19), (3.20) and (3.21).

In Chapter 3, we have obtained an estimate of the Lp(γd)-norms of the derivatives
of the Poisson–Hermite semigroup (see Lemma 3.5); additionally, we have

Lemma 7.32. Given f ∈ Lp(γd),α ≥ 0 and k, l integers greater than α , then

∥∥∥∂ kPt f
∂ tk

∥∥∥
p,γ

≤ Akt−k+α if and only if
∥∥∥∂ lPt f

∂ tl

∥∥∥
p,γ

≤ Alt
−l+α .

Moreover, if Ak( f ),Al( f ) are the smallest constants appearing in the above inequal-
ities, then there exist constants Ak,l,α and Dk,l,α such that

Ak,l,α Ak( f )≤ Al( f )≤CDk,l,α Ak( f ),

for all f ∈ Lp(γd).
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Proof. Let us suppose, without loss of generality, that k ≥ l. We prove the direct
implication first. For this, we use again the representation of the Poisson–Hermite
semigroup (3.8),

Pt f (x) =
∫ +∞

0
Ts f (x)μ(1/2)

t (ds).

Then, differentiating k-times with respect to t,

∂ kPt f (x)
∂ tk =

∫ +∞

0
Ts f (x)

∂ k

∂ tk μ(1/2)
t (ds).

Using the identity (3.19), it is easy to prove that for all m ∈ N

lim
t→+∞

∂ mPt f (x)
∂ tm = 0;

therefore, given n ∈ N,n > α

∂ nPt f (x)
∂ tn =−

∫ +∞

t

∂ n+1Ps f (x)
∂ sn+1 ds

Thus,

∥∥∥∂ nPt f
∂ tn

∥∥∥
p,γ

≤
∫ +∞

t

∥∥∥∂ n+1Ps f
∂ sn+1

∥∥∥
p,γ

ds ≤
∫ +∞

t
An+1( f )s−(n+1)+αds

=
An+1( f )

n−α
t−n+α .

Then,

An( f )≤ An+1( f )
n−α

,

and as n > α is arbitrary, by using the above result k− l times, we get

Al( f ) ≤ Al+1( f )
l −α

≤ Al+2

(l −α)(l +1−α)
≤ . . .≤ Ak( f )

(l −α)(l +1−α) . . .(k−1−α)

= Dk,l,αAk( f ).

To prove the converse implication, using again the representation of the Poisson–
Hermite semigroup (3.8),

u(x, t1 + t2) = Pt1(Pt2 f )(x) =
∫ +∞

0
Ts(Pt2 f )(x)μ(1/2)

t1 (ds).

Therefore, taking t = t1 + t2 and differentiating l times with respect to t2 and k− l
times with respect to t1, we get

∂ ku(x, t)
∂ tk =

∫ +∞

0
Ts

(∂ lPt2 f (x)

∂ tl
2

) ∂ k−l

∂ tk−l
1

μ(1/2)
t1 (ds). (7.53)



7.7 Gaussian Besov–Lipschitz Spaces Bα
p,q(γd) 277

Thus, using the inequality (3.21) and the fact that the Ornstein–Uhlenbeck semi-
group is a contraction semigroup, we get

∥∥∥∂ ku(·, t)
∂ tk

∥∥∥
p,γ

≤
∫ +∞

0

∥∥∥Ts

(∂ lPt2 f

∂ tl
2

)∥∥∥
p,γ

∣∣∣∂ k−l μ(1/2)
t1

∂ tk−l
1

(ds)
∣∣∣

≤
∥∥∥∂ lPt2 f

∂ tl
2

∥∥∥
p,γ

∫ +∞

0

∣∣∣ ∂ k−l

∂ tk−l
1

μ(1/2)
t1 (ds)

∣∣∣≤Ck−l

∥∥∥ ∂ l

∂ tl
2

Pt2 f
∥∥∥

p,γ
tl−k
1

≤ Ck−lAl( f )t−l+α
2 tl−k

1 .

Therefore, taking t1 = t2 = t
2 ,

∥∥∥∂ ku(·, t)
∂ tk

∥∥∥
p,γ

≤Ck−lAl( f )(
t
2
)−k+α ,

and then,

Ak( f )≤ Ck−l

2−k+α Al( f ).

�	
The following technical result is crucial for defining Gaussian Besov–Lipschitz

spaces:

Lemma 7.33. Given α ≥ 0 and k, l integers greater than α . Then,

(∫ +∞

0

(
tk−α

∥∥∥∂ kPt f
∂ tk

∥∥∥
p,γ

)q dt
t

) 1
q
< ∞

if and only if (∫ +∞

0

(
tl−α

∥∥∥∂ lPt f
∂ tl

∥∥∥
p,γ

)q dt
t

) 1
q
< ∞.

Moreover, there exist constants Ak,l,α ,Dk,l,α such that

Dk,l,α

(∫ +∞

0

(
tl−α

∥∥∥∂ lPt f
∂ tl

∥∥∥
p,γ

)q dt
t

) 1
q ≤

(∫ +∞

0

(
tk−α

∥∥∥∂ kPt f
∂ tk

∥∥∥
p,γ

)q dt
t

) 1
q

≤ Ak,l,α

(∫ +∞

0

(
tl−α

∥∥∥∂ lPt f
∂ tl

∥∥∥
p,γ

)q dt
t

) 1
q

Proof. Let us suppose, without loss of generality, that k ≥ l. We prove the converse
implication first; from Lemma 7.32, we have

∥∥∥∂ kPt f
∂ tk

∥∥∥
p,γ

≤ Ck−l

∥∥∥
∂ lPt

2
f

∂ ( t
2 )

l

∥∥∥
p,γ
(

t
2
)l−k.
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Thus,

(∫ +∞

0

(
tk−α

∥∥∥∂ kPt f
∂ tk

∥∥∥
p,γ

)q dt
t

) 1
q ≤ Ck−l

2l−k

(∫ +∞

0

(
tl−α

∥∥∥∂ lPt/2 f

∂ ( t
2 )

l

∥∥∥
p,γ

)q dt
t

) 1
q

= Ak,l,α

(∫ +∞

0

(
sl−α

∥∥∥∂ lPs f
∂ sl

∥∥∥
p,γ

)q ds
s

) 1
q

with Ak,l,α =Ck−l2
k−α .

For the direct implication, given n ∈ N, n > α , using the previous lemma again,
we get ∥∥∥∂ nPt f

∂ tn

∥∥∥
p,γ

≤
∫ +∞

t

∥∥∥∂ n+1Ps f
∂ sn+1

∥∥∥
p,γ

ds

Therefore, using Hardy’s inequality (10.101),

(∫ +∞

0

(
tn−α

∥∥∥∂ nPt f
∂ tn

∥∥∥
p,γ

)q dt
t

) 1
q

≤
(∫ +∞

0

(
tn−α

∫ +∞

t

∥∥∥∂ n+1Ps f
∂ sn+1

∥∥∥
p,γ

ds
)q dt

t

) 1
q

=
(∫ +∞

0

(∫ +∞

t

∥∥∥∂ n+1Ps f
∂ sn+1

∥∥∥
p,γ

ds
)q

t(n−α)q−1dt
) 1

q

≤ 1
n−α

(∫ +∞

0

(
sn+1−α

∥∥∥∂ n+1Ps f
∂ sn+1

∥∥∥
p,γ

)q ds
s

) 1
q
.

Now, as n > α is arbitrary, using the above result k− l, times

(∫ +∞

0

(
tl−α

∥∥∥∂ lPt f
∂ tl

∥∥∥
p,γ

)q dt
t

) 1
q

≤ 1
l −α

(∫ +∞

0

(
tl+1−α

∥∥∥∂ l+1Pt f
∂ tl+1

∥∥∥
p,γ

)q dt
t

) 1
q

≤ 1
(l −α).(l+1−α)

(∫ +∞

0

(
tl+2−α

∥∥∥∂ l+2Pt f
∂ tl+2

∥∥∥
p,γ

)q dt
t

) 1
q

. . .

≤ Dk,l,α

(∫ +∞

0

(
tk−α‖∂ kPt f

∂ tk

∥∥∥
p,γ

)q dt
t

) 1
q

where Dk,l,α =
1

(l −α).(l +1−α) . . .(k−1−α)
. �	

Following the classical case, we are going to define the Gaussian Besov–
Lipschitz spaces Bα

p,q(γd) or Besov–Lipschitz spaces for Hermite polynomial ex-
pansions.
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Definition 7.34. Let α ≥ 0, k be the smallest integer greater than α , and 1 ≤ p,q ≤
∞. For 1 ≤ q < ∞ the Gaussian Besov–Lipschitz space Bα

p,q(γd) is defined as the set
of functions f ∈ Lp(γd), for which

(∫ ∞

0
(tk−α

∥∥∥∥
∂ kPt f

∂ tk

∥∥∥∥
p,γ
)q dt

t

)1/q

< ∞. (7.54)

The norm of f ∈ Bα
p,q(γd) is defined as

‖ f‖Bα
p,q

:= ‖ f‖p,γ +

(∫ ∞

0
(tk−α

∥∥∥∥
∂ kPt f

∂ tk

∥∥∥∥
p,γ
)q dt

t

)1/q

(7.55)

For q = ∞, the Gaussian Besov–Lipschitz space Bα
p,∞(γd) is defined as the set of

functions f ∈ Lp(γd) for which exists a constant A, such that

∥∥∥∂ kPt f
∂ tk

∥∥∥
p,γ

≤ At−k+α

and then the norm of f ∈ Bα
p,∞(γd) is defined as

‖ f‖Bα
p,∞

:= ‖ f‖p,γ +Ak( f ), (7.56)

where Ak( f ) is the smallest constant A appearing in the above inequality.
In particular, the space Bα

∞,∞(γd) is the Gaussian Lipschitz space Lipα(γd).

Lemma 7.33 shows us that we could have replaced k with any other integer l
greater than α and that the resulting norms are equivalent. Let us prove now that the
Gaussian Besov–Lipschitz spaces are complete.

Lemma 7.35. For any α ≥ 0, 1 ≤ p, q ≤ ∞, the Gaussian Besov–Lipschitz spaces
Bα

p,q(γd) are Banach spaces.

Proof. To prove the completeness, it is enough to see that if { fn} is a sequence in

Bα
p,q(γd), such that

∞

∑
n=1

‖ fn‖Bα
p,q

< ∞, then
∞

∑
n=1

fn converges in Bα
p,q(γd). Because

∞

∑
n=1

‖ fn‖Bα
p,q

=
∞

∑
n=1

(
‖ fn‖p,γ +

(∫ +∞

0

(
tk−α

∥∥∥ ∂ k

∂ tk Pt fn

∥∥∥
p,γ

)q dt
t

) 1
q
)
< ∞.

In particular, this implies that

∞

∑
n=1

‖ fn‖p,γ < ∞, and
∞

∑
n=1

(∫ +∞

0

(
tk−α

∥∥∥ ∂ k

∂ tk Pt fn

∥∥∥
p,γ

)q dt
t

) 1
q
< ∞.

But as Lp(γd) is complete, there exists a function f ∈ Lp(γd), such that

∞

∑
n=1

fn(x) = f (x) a.e.x.
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We need to prove that
∞

∑
n=1

fn = f in Bα
p,q, i.e. lim

n→∞
‖

n

∑
i=1

fi − f‖Bα
p,q

= 0.

Given t > 0 and x ∈ R
d , by linearity, Pt(

n

∑
i=1

fi(x)) =
∫

Rd
p(t,x,y)

n

∑
i=1

fi(y)dy and

then

lim
n→∞

p(t,x,y)
n

∑
i=1

fi(y) = p(t,x,y)
∞

∑
i=1

fi(y) = p(t,x,y) f (y) a.e.y

and for all n ∈ N

|p(t,x,y)
n

∑
i=1

fi(y)| ≤ p(t,x,y)
n

∑
i=1

| fi(y)| ≤ p(t,x,y)g(y) a.e.

As
∫

Rd
p(t,x,y)g(y)dy = Ptg(x) < ∞, i.e., p(t,x,y)g(y) is integrable, we conclude

using Lebesgue’s dominated convergence theorem, for any t ≥ 0 and x ∈ R
d ,

lim
n→∞

Pt(
n

∑
i=1

fi(x)) = lim
n→∞

∫

Rd
p(t,x,y)

n

∑
i=1

fi(y) =
∫

Rd
p(t,x,y) f (y)dy = Pt f (x).

Similarly, we have, lim
n→∞

Tt(
n

∑
i=1

fi(x))= Tt f (x), for any t ≥ 0 and x∈R
d , and again

using Lebesgue’s dominated convergence theorem,

lim
n→∞

n

∑
i=1

∂ k

∂ tk Pt( fi(x)) = lim
n→∞

n

∑
i=1

∂ k

∂ tk Pt(
n

∑
i=1

fi(x)) = lim
n→∞

∫ ∞

0
Ts(

n

∑
i=1

fi(x))
∂ k

∂ tk μ1/2
t (ds)

=
∫ ∞

0
lim
n→∞

Ts(
n

∑
i=1

fi(x))
∂ k

∂ tk μ1/2
t (ds)

=

∫ ∞

0
Ts f (x)

∂ k

∂ tk μ1/2
t (ds) =

∂ k

∂ tk Pt f (x),

for any t ≥ 0 and x ∈ R
d . Then, for t > 0, using Fatou’s lemma,

∥∥∥ ∂ k

∂ tk Pt f
∥∥∥

p

p,γ
=

∫

Rd

∣∣∣ ∂ k

∂ tk Pt f
∣∣∣

p
γd(dx)

=
∫

Rd

∣∣∣ lim
n→∞

n

∑
i=1

∂ k

∂ tk Pt fi(x)
∣∣∣

p
γd(dx)

≤ liminf
n→∞

∫

Rd

∣∣∣
n

∑
i=1

∂ k

∂ tk Pt fi(x)
∣∣∣

p
γd(dx).

Thus, for any t > 0, by triangle inequality,

∥∥∥ ∂ k

∂ tk Pt f
∥∥∥

p,γ
≤ liminf

n→∞

∥∥∥
n

∑
i=1

∂ k

∂ tk Pt fi

∥∥∥
p,γ

≤ liminf
n→∞

n

∑
i=1

∥∥∥ ∂ k

∂ tk Pt fi

∥∥∥
p,γ
,
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and again, by triangle inequality,

(∫ +∞

0

(
tk−α

∥∥∥ ∂ k

∂ tk Pt f
∥∥∥

p,γ

)q dt
t

) 1
q

≤
(∫ +∞

0

(
tk−α liminf

n→∞

( n

∑
i=1

∥∥∥ ∂ k

∂ tk Pt fi

∥∥∥
p,γ

))q dt
t

) 1
q

≤ liminf
n→∞

(∫ +∞

0

(
tk−α

( n

∑
i=1

∥∥∥ ∂ k

∂ tk Pt fi

∥∥∥
p,γ

))q dt
t

) 1
q

=
∞

∑
n=1

(∫ +∞

0

(
tk−α

∥∥∥ ∂ k

∂ tk Pt fn

∥∥∥
p,γ

)q dt
t

) 1
q
)
< ∞.

Then, f ∈ Bα
p,q.

Let, for each t > 0,

h(t) = tk−α
(

liminf
n→∞

( n

∑
i=1

∥∥∥ ∂ k

∂ tk Pt fi

∥∥∥
p,γ

)
+
∥∥∥∂ k

∂ k Pt f
∥∥∥

p,γ

)
.

Then,
∫ +∞

0
|h(t)|q dt

t

≤
∫ +∞

0

(
tk−α

(
liminf

n→∞

( n

∑
i=1

∥∥∥ ∂ k

∂ tk Pt fi

∥∥∥
p,γ

)
+
∥∥∥ ∂ k

∂ tk Pt f
∥∥∥

p,γ

))q dt
t

≤
∫ +∞

0

(
tk−α

(
2liminf

n→∞

( n

∑
i=1

∥∥∥ ∂ k

∂ tk Pt fi

∥∥∥
p,γ

)))q dt
t

≤ 2liminf
n→∞

(∫ +∞

0

(
tk−α

( n

∑
i=1

∥∥∥ ∂ k

∂ tk Pt fi

∥∥∥
p,γ

))q dt
t

)
;

hence,

(∫ +∞

0
|h(t)|q dt

t

)1/q ≤ 2liminf
n→∞

(∫ +∞

0

(
tk−α

( n

∑
i=1

∥∥∥ ∂ k

∂ tk Pt fi

∥∥∥
p,γ

))q dt
t

)1/q

≤ 2liminf
n→∞

n

∑
i=1

(∫ +∞

0

(
tk−α

∥∥∥ ∂ k

∂ tk Pt fi

∥∥∥
p,γ

)q dt
t

)1/q

= 2
∞

∑
n=1

(∫ +∞

0

(
tk−α

∥∥∥ ∂ k

∂ tk Pt fn

∥∥∥
p,γ

)q dt
t

) 1
q
< ∞.

Thus, h ∈ Lq((0,∞), dt
t ); therefore,

h(t) = tk−α
(

liminf
n→∞

( n

∑
i=1

∥∥∥ ∂ k

∂ tk Pt fi

∥∥∥
p,γ

)
+
∥∥∥ ∂ k

∂ tk Pt f
∥∥∥

p,γ

)
< ∞ a.e. t



282 7 Function Spaces with respect to γd

and this immediately implies

∞

∑
n=1

∥∥∥ ∂ k

∂ tk Pt fn

∥∥∥
p,γ

+
∥∥∥ ∂ k

∂ tk Pt f
∥∥∥

p,γ
< ∞ a.e. t. (7.57)

Let t > 0 such that h(t)< ∞, we know that for all x ∈ R
d

lim
n→∞

( n

∑
i=1

∂ k

∂ tk Pt fi(x)− ∂ k

∂ tk Pt f (x)
)
= lim

n→∞

∂ k

∂ tk Pt

( n

∑
i=1

fi(x)− f (x)
)
= 0,

Set, for each x ∈ R
d ,

H(x) := 2
∞

∑
n=1

∣∣∣ ∂ k

∂ tk Pt fn(x)
∣∣∣.

Then, from the above H ∈ Lp(γd) and, therefore, as for any n ∈ N and any x ∈ R
d ,

∣∣∣
n

∑
i=1

∂ k

∂ tk Pt fi(x)− ∂ k

∂ tk Pt f (x)
∣∣∣≤ 2

∞

∑
i=1

∣∣∣ ∂ k

∂ tk Pt fi(x)
∣∣∣= H(x).

Then, using Lebesgue’s dominated convergence theorem,

lim
n→∞

∥∥∥
n

∑
i=1

∂ k

∂ tk Pt fi − ∂ k

∂ tk Pt f
∥∥∥

p,γ

= lim
n→∞

∫

Rd

∣∣∣
n

∑
i=1

∂ k

∂ tk Pt fi(x)− ∂ k

∂ tk Pt f (x)
∣∣∣

p
γd(dx)

=

∫

Rd
lim
n→∞

∣∣∣
n

∑
i=1

∂ k

∂ tk Pt fi(x)− ∂ k

∂ tk Pt f (x)
∣∣∣

p
γd(dx) = 0,

and as h(t)< ∞ a.e.t, we conclude,

lim
n→∞

∥∥∥
n

∑
i=1

∂ k

∂ tk Pt fi − ∂ k

∂ tk Pt f
∥∥∥

p,γ
= 0, a.e. t.

Now, for each n ∈ N,

∥∥∥ ∂ k

∂ tk Pt

( n

∑
i=1

fi − f
)∥∥∥

p,γ
≤

∞

∑
i=1

∥∥∥ ∂ k

∂ tk Pt fi

∥∥∥
p,γ

+ liminf
n→∞

( n

∑
i=1

∥∥∥ ∂ k

∂ tk Pt fi

∥∥∥
p,γ

)

= 2liminf
n→∞

( n

∑
i=1

∥∥∥ ∂ k

∂ tk Pt fi

∥∥∥
p,γ

)
.

For each t > 0, let G(t) = liminf
n→∞

(
2tk−α

n

∑
i=1

∥∥∥ ∂ k

∂ tk Pt fi

∥∥∥
p,γ

)
. Then, using Fatou’s

lemma and triangle inequality,
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(∫ ∞

0
|G(t)|q dt

t

)1/q ≤ 2liminf
n→∞

(∫ ∞

0

(
tk−α

n

∑
i=1

∥∥∥ ∂ k

∂ tk Pt fi

∥∥∥
p,γ

)q dt
t

)1/q

≤ 2
∞

∑
n=1

(∫ ∞

0

(
tk−α

∥∥∥ ∂ k

∂ tk Pt fn

∥∥∥
p,γ

)q dt
t

)1/q
< ∞.

Thus, G ∈ Lq((0,∞), dt
t ), so liminf

n→∞

(
tk−α

n

∑
i=1

∥∥∥ ∂ k

∂ tk Pt fi

∥∥∥
p,γ

)q 1
t

is integrable, and

therefore, using Lebesgue’s dominated convergence theorem,

lim
n→∞

(∫ ∞

0

(
tk−α

∥∥∥ ∂ k

∂ tk Pt

( n

∑
i=1

fi − f
)∥∥∥

p,γ

)q dt
t

)1/q

=
(∫ ∞

0
lim
n→∞

(
tk−α

∥∥∥ ∂ k

∂ tk Pt

( n

∑
i=1

fi − f
)∥∥∥

p,γ

)q dt
t

)1/q
= 0.

Hence,

lim
n→∞

∥∥∥
n

∑
i=1

fi − f
∥∥∥

Bα
p,q

= lim
n→∞

(∥∥∥
n

∑
i=1

fi − f
∥∥∥

p,γ
+ lim

n→∞

(∫ ∞

0

(
tk−α

∥∥∥ ∂ k

∂ tk Pt

( n

∑
i=1

fi − f
)∥∥∥

p,γ

)q dt
t

)1/q
= 0.

�	
Finally, we study some inclusions among the Gaussian Besov–Lipschitz spaces:

Proposition 7.36. The inclusion Bα1
p,q1(γd)⊂ Bα2

p,q2(γd) holds if either:

i) α1 > α2 > 0 (q1 and q2 need not be related), or
ii) If α1 = α2 and q1 ≤ q2.

Proof. To prove ii), we set A =
(∫ +∞

0

(
tk−α

∥∥∥∂ kPt f
∂ tk

∥∥∥
p,γ

)q1 dt
t

) 1
q1

Now, fixing t0 > 0 ∫ t0

t0
2

(
tk−α

∥∥∥∂ kPt f
∂ tk

∥∥∥
p,γ

)q1 dt
t
≤ Aq1 .

Using Lemma 3.5,
∥∥∥∂ kPt f

∂ tk

∥∥∥
p,γ

takes its minimum value at the upper end point (t =

t0) of the above integral; thus, we get

∥∥∥∂ kPt0 f

∂ tk

∥∥∥
q1

p,γ

∫ t0

t0
2

t(k−α)q1
dt
t
≤ Aq1 .
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That is
∥∥∥∂ kPt0 f

∂ tk

∥∥∥
p,γ

≤CAt−k+α
0 , but because t0 is arbitrary, then

∥∥∥∂ kPt f
∂ tk

∥∥∥
p,γ

≤CAt−k+α ,

for all t > 0. In other words, f ∈ Bα
p,q1

also implies that f ∈ Bα
p,∞. Thus, as q2 ≥ q1

∫ +∞

0

(
tk−α

∥∥∥∂ kPt f
∂ tk

∥∥∥
p,γ

)q2 dt
t

≤
∫ +∞

0

(
tk−α

∥∥∥∂ kPt f
∂ tk

∥∥∥
p,γ

)q2−q1
(

tk−α
∥∥∥∂ kPt f

∂ tk

∥∥∥
p,γ

)q1 dt
t

≤ (CA)q2−q1

∫ +∞

0

(
tk−α

∥∥∥∂ kPt f
∂ tk

∥∥∥
p,γ

)q1 dt
t

= (CA)q2−q1Aq1 =CAq2 <+∞;

therefore f ∈ Bα
p,q2

.

Now, to prove part i), using Lemma 3.5, we have

∥∥∥∂ kPt f
∂ tk

∥∥∥
p,γ

≤Ct−k, t > 0.

Then, given f ∈ Bα1
p,q1 , taking again

A =
(∫ +∞

0

(
tk−α1

∥∥∥∂ kPt f
∂ tk

∥∥∥
p,γ

)q1 dt
t

) 1
q1 ,

we get, as in part ii), ∥∥∥∂ kPt f
∂ tk

∥∥∥
p,γ

≤CAt−k+α1 ,

for all t > 0. Thus,

∫ +∞

0

(
tk−α2

∥∥∥∂ kPt f
∂ tk

∥∥∥
p,γ

)q2 dt
t

=
∫ 1

0

(
tk−α2

∥∥∥∂ kPt f
∂ tk

∥∥∥
p,γ

)q2 dt
t

+
∫ +∞

1

(
tk−α2

∥∥∥∂ kPt f
∂ tk

∥∥∥
p,γ

)q2 dt
t

= (I)+(II).

Now,

(I) =
∫ 1

0
t(k−α2)q2

∥∥∥∂ kPt f
∂ tk

∥∥∥
q2

p,γ

dt
t
≤

∫ 1

0
t(k−α2)q2(CA)q2t(α1−k)q2

dt
t

= (CA)q2

∫ 1

0
t(α1−α2)q2

dt
t
=CAq2 ,
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and

(II) =
∫ +∞

1
t(k−α2)q2

∥∥∥∂ kPt f
∂ tk

∥∥∥
q2

p,γ

dt
t
≤

∫ +∞

1
t(k−α2)q2Cq2t−kq2

dt
t

= Cq2

∫ +∞

1
t−α2q2

dt
t
=C.

Hence,
∫ +∞

0

(
tk−α2

∥∥∥∂ kPt f
∂ tk

∥∥∥
p,γ

)q2 dt
t

< +∞;

thus, f ∈ Bα2
p,q2 . �	

7.8 Gaussian Triebel–Lizorkin Spaces Fα
p,q(γd)

Finally, we define Gaussian Triebel–Lizorkin spaces Fα
p,q(γd) for any α ≥ 0. The

following technical result is key for their definition:

Lemma 7.37. Let α ≥ 0 and k, l integers such that k ≥ l > α . Then

∥∥∥
(∫ +∞

0

(
tk−α

∣∣∣ ∂ k

∂ tk Pt f
∣∣∣
)q dt

t

) 1
q
∥∥∥

p,γ
< ∞

if and only if ∥∥∥
(∫ +∞

0

(
tl−α

∣∣∣ ∂ l

∂ tl Pt f
∣∣∣
)q dt

t

) 1
q
∥∥∥

p,γ
< ∞.

Moreover, there exist constants Ak,l,α ,Dk,l,α such that

Dk,l,α

∥∥∥
(∫ +∞

0

(
tl−α

∣∣∣ ∂ l

∂ tl Pt f
∣∣∣
)q dt

t

) 1
q ‖p,γ ≤

∥∥∥
(∫ +∞

0

(
tk−α

∣∣∣ ∂ k

∂ tk Pt f
∣∣∣
)q dt

t

) 1
q
∥∥∥

p,γ

≤ Ak,l,α

∥∥∥
(∫ +∞

0

(
tl−α

∣∣∣ ∂ l

∂ tl Pt f
∣∣∣
)q dt

t

) 1
q
∥∥∥

p,γ
.

Proof. Let n ∈ N such that n > α . It can be proved that

∣∣∣ ∂ n

∂ tn Pt f (x)
∣∣∣≤

∫ +∞

t

∣∣∣ ∂ n+1

∂ sn+1 Ps f (x)
∣∣∣ds

Then, using Hardy’s inequality,

(∫ +∞

0

(
tn−α

∣∣∣ ∂ n

∂ tn Pt f (x)
∣∣∣
)q dt

t

) 1
q ≤

(∫ +∞

0

(
tn−α

∫ +∞

t

∣∣∣ ∂ n+1

∂ sn+1 Ps f (x)
∣∣∣ds

)q dt
t

) 1
q

≤ 1
n−α

(∫ +∞

0

(
s
∣∣∣ ∂ n+1

∂ sn+1 Ps f (x)
∣∣∣
)q

s(n−α)q−1ds
) 1

q

=
1

n−α

(∫ +∞

0

(
sn+1−α

∣∣∣ ∂ n+1

∂ sn+1 Ps f (x)
∣∣∣
)q ds

s

) 1
q
.
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Now, as n > α is arbitrary, iterating the previous argument k− l times, we have

(∫ +∞

0

(
tl−α

∣∣∣ ∂ l

∂ tl Pt f (x)
∣∣∣
)q dt

t

) 1
q

≤ 1
l −α

(∫ +∞

0

(
tl+1−α

∣∣∣ ∂ l+1

∂ tl+1 Pt f (x)
∣∣∣
)q dt

t

) 1
q

≤ 1
(l −α)(l +1−α)

(∫ +∞

0

(
tl+2−α

∣∣∣ ∂ l+2

∂ tl+2 Pt f (x)
∣∣∣
)q dt

t

) 1
q

. . .

≤Ck,l,α

(∫ +∞

0

(
tk−α

∣∣∣ ∂ k

∂ tk Pt f (x)
∣∣∣
)q dt

t

) 1
q

where Ck,l,α =
1

(l −α)(l +1−α) . . .(k−1−α)
. Thus,

Dk,l,α

∥∥∥
(∫ +∞

0

(
tl−α

∣∣∣ ∂ l

∂ tl Pt f
∣∣∣
)q dt

t

) 1
q
∥∥∥

p,γ
≤ ‖

(∫ +∞

0

(
tk−α

∣∣∣ ∂ k

∂ tk Pt f
∣∣∣
)q dt

t

) 1
q
∥∥∥

p,γ
,

where Dk,l,α = 1/Ck,l,α .
The converse inequality is also obtained by an inductive argument from the case

k = l +1. Let us recall (7.53),

∂ ku(x, t)
∂ tk =

∫ +∞

0
Ts

(∂ lPt2 f (x)

∂ tl
2

) ∂ k−l

∂ tk−l
1

μ(1/2)
t1 (ds),

and because, from (3.19),
∂

∂ t1
μ(1/2)

t1 (ds) =
(

t−1
1 − t1

2s

)
μ(1/2)

t1 (ds) we get

∣∣∣∂ ku(x, t)
∂ tk

∣∣∣

≤
∫ +∞

0
Ts

(∣∣∣∂ lPt2 f (x)

∂ tl
2

∣∣∣
)∣∣∣
(

t−1
1 − t1

2s

)∣∣∣μ(1/2)
t1 (ds)

≤ t−1
1

∫ +∞

0
Ts(

∣∣∣∂ lPt2 f (x)

∂ tl
2

∣∣∣)μ(1/2)
t1 (ds)+

t1
2

∫ +∞

0
Ts(

∣∣∣∂ lPt2 f (x)

∂ tl
2

∣∣∣)1
s

μ(1/2)
t1 (ds).

Therefore,

(∫ +∞

0

(
tk−α
2

∣∣∣∂ ku(x, t)
∂ tk

∣∣∣
)q dt2

t2

)1/q

≤Cq

[(∫ +∞

0

(
tk−α
2 t−1

1

∫ +∞

0
Ts

(∣∣∣∂ lPt2 f (x)

∂ tl
2

∣∣∣
)

μ(1/2)
t1 (ds)

)q dt2
t2

)1/q

+
(∫ +∞

0

(
tk−α
2

t1
2

∫ +∞

0
Ts

(∣∣∣∂ lPt2 f (x)

∂ tl
2

∣∣∣
)1

s
μ(1/2)

t1 (ds)
)q dt2

t2

)1/q]

= (I)+(II)
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Then, using Minkowski’s integral inequality twice (because Ts is an integral trans-

formation with a positive kernel) and the fact that μ(1/2)
t1 (ds) is a probability, we

get

(I) = Cq

(∫ +∞

0

(
tk−α
2 t−1

1

)q(∫ +∞

0
Ts

(∣∣∣∂ lPt2 f (x)

∂ tl
2

∣∣∣
)

μ(1/2)
t1 (ds)

)q dt2
t2

)1/q

≤ Cq

∫ +∞

0

(∫ +∞

0

(
tk−α
2 t−1

1

)q(
Ts

(∣∣∣∂ lPt2 f (x)

∂ tl
2

∣∣∣
))q dt2

t2

)1/q
μ(1/2)

t1 (ds)

≤ Cq

∫ +∞

0
Ts

((∫ +∞

0

(
tk−α
2 t−1

1

)q(∣∣∣∂ lPt2 f (x)

∂ tl
2

∣∣∣
)q dt2

t2

)1/q)
μ(1/2)

t1 (ds)

≤ CqT ∗
((∫ +∞

0

(
tk−α
2 t−1

1

)q(∣∣∣∂ lPt2 f (x)

∂ tl
2

∣∣∣
)q dt2

t2

)1/q)

and, using the same argument for (II) and (3.20), we have

(II) ≤ CqT ∗
((∫ +∞

0

(
tk−α
2 t1

)q(∣∣∣∂ lPt2 f (x)

∂ tl
2

∣∣∣
)q dt2

t2

)1/q) 1

t2
1

= CqT ∗
((∫ +∞

0

(
tk−α
2 t−1

1

)q(∣∣∣∂ lPt2 f (x)

∂ tl
2

∣∣∣
)q dt2

t2

)1/q)
.

Taking t1 = t2 = t
2 and changing the variable, we get

(I) ≤ CqT ∗
((∫ +∞

0

(
tl−α

)q(∣∣∣∂ lPt f (x)
∂ tl

∣∣∣
)q dt

t

)1/q)

and

(II) ≤ CqT ∗
((∫ +∞

0

(
tl−α

)q(∣∣∣∂ lPt f (x)
∂ tl

∣∣∣
)q dt

t

)1/q)
.

Hence, using the Lp boundedness of T ∗

∥∥∥
(∫ +∞

0

(
tk−α

∣∣∣∂ ku(x, t)
∂ tk

∣∣∣
)q dt

t

)1/q∥∥∥
p,γ

≤Cq,k,α

∥∥∥T ∗
((∫ +∞

0

(
tl−α

∣∣∣∂ lPt f (x)
∂ul

∣∣∣
)q dt

t

)1/q)∥∥∥
p,γ

+Cq

∥∥∥T ∗
((∫ +∞

0

(
tl−α

∣∣∣∂ lPt f (x)
∂ul

∣∣∣
)q dt

t

)1/q)∥∥∥
p,γ

)

≤Ck,α ,q

∥∥∥
(∫ +∞

0

(
tl−α

∣∣∣∂ lPt f (x)
∂ tl

∣∣∣
)q dt

t

)1/q∥∥∥
p,γ
. �	

Now, we can introduce the Gaussian Triebel–Lizorkin spaces Fα
p,q(γd) following

the classical case:
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Definition 7.38. Let α ≥ 0, k be the smallest integer greater than α , and 1 ≤ p,q <
∞. The Gaussian Triebel–Lizorkin space Fα

p,q(γd) is the set of functions f ∈ Lp(γd)
for which ∥∥∥∥∥

(∫ ∞

0

(
tk−α

∣∣∣∣
∂ kPt f

∂ tk

∣∣∣∣
)q dt

t

)1/q
∥∥∥∥∥

p,γ

< ∞. (7.58)

The norm of f ∈ Fα
p,q(γd) is defined as

‖ f‖Fα
p,q

:= ‖ f‖p,γ +

∥∥∥∥∥
(∫ ∞

0

(
tk−α

∣∣∣∣
∂ kPt f

∂ tk

∣∣∣∣
)q dt

t

)1/q
∥∥∥∥∥

p,γ

. (7.59)

Observe that according to Lemma 7.37, the definition of Fα ,q
p (γd) does not de-

pend on which k > α is chosen and the resulting norms are equivalent.

Let us prove now that the Gaussian Triebel–Lizorkin spaces are complete,

Lemma 7.39. For any α ≥ 0, 1 ≤ p,q < ∞, the Gaussian Triebel–Lizorkin space
Fα

p,q(γd) is a Banach space.

Proof. To prove the completeness, it is enough to see that if ( fn) is a sequence in

Fα
p,q(γd) such that

∞

∑
n=1

‖ fn‖Fα
p,q

< ∞, then
∞

∑
n=1

fn converges in Fα
p,q(γd). Since,

∞

∑
n=1

‖ fn‖Fα
p,q

=
∞

∑
n=1

‖ fn‖p,γ +
∥∥∥
(∫ +∞

0

(
tk−α

∣∣∣∂ kPt fn

∂ tk

∣∣∣
)q dt

t

) 1
q
∥∥∥

p,γ
< ∞.

In particular, this implies that

∞

∑
n=1

‖ fn‖p,γ < ∞, and
∞

∑
n=1

∥∥∥
(∫ +∞

0

(
tk−α

∣∣∣∂ kPt fn

∂ tk

∣∣∣
)q dt

t

) 1
q
∥∥∥

p,γ
< ∞.

But as Lp(γd) is complete, there exist functions f ,g ∈ Lp(γd), such that

g(x) =
∞

∑
n=1

| fn(x)|, and
∞

∑
n=1

fn(x) = f (x) a.e.x.

Moreover,
∞

∑
n=1

fn = f in Lp(γd). Analogously, there exists h ∈ Lp(γd), such that

∞

∑
n=1

(∫ +∞

0

(
tk−α

∣∣∣∂ kPt fn(x)
∂ tk

∣∣∣
)q dt

t

) 1
q
= h(x) a.e.x,
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and
∞

∑
n=1

(∫ +∞

0

(
tk−α

∣∣∣∂ kPt fn

∂ tk

∣∣∣
)q dt

t

) 1
q
= h

in Lp(γd).

We need to prove that
∞

∑
n=1

fn = f in Fα
p,q, i.e., lim

n→∞
‖

n

∑
i=1

fi − f‖Fα
p,q

= 0.

Let hn(x) =
n

∑
i=1

(∫ +∞

0

(
tk−α

∣∣∣∂ kPt fi(x)
∂ tk

∣∣∣
)q dt

t

) 1
q
, then h(x) = lim

n→∞
hn(x) a.e.x,

and for each x, {hn(x)} is a non-decreasing sequence of real numbers, also
hn(x)≤ h(x) a.e. x.

As in the proof of the completeness of the Besov–Lipschitz spaces Bα
p,q(γd), we

have, using Lebesgue’s dominated convergence theorem, for any t ≥ 0 and x ∈ R
d ,

lim
n→∞

n

∑
i=1

∂ k

∂ tk Pt fi(x) =
∂ k

∂ tk Pt f (x).

Now, let us prove that f ∈ Fα
p,q. In fact, using the triangle inequality and Fatou’s

lemma,

∫ +∞

0

(
tk−α

∣∣∣ ∂ k

∂ tk Pt f (x)
∣∣∣
)q dt

t

) 1
q
=

∫ +∞

0
lim
n→∞

(
tk−α

∣∣∣
n

∑
i=1

∂ k

∂ tk Pt fi(x)
∣∣∣
)q dt

t

) 1
q

≤ liminf
n→∞

∫ +∞

0

(
tk−α

∣∣∣
n

∑
i=1

∂ k

∂ tk Pt fi(x)
∣∣∣
)q dt

t

) 1
q

≤ liminf
n→∞

n

∑
i=1

∫ +∞

0

(
tk−α

∣∣∣ ∂ k

∂ tk Pt fi(x)
∣∣∣
)q dt

t

) 1
q

=
∞

∑
n=1

(∫ +∞

0

(
tk−α

∣∣∣ ∂ k

∂ tk Pt fn(x)
∣∣∣
)q dt

t

)1
q
=h(x) a.e.x.

Therefore,

∥∥∥
∫ +∞

0

(
tk−α

∣∣∣ ∂ k

∂ tk Pt f
∣∣∣
)q dt

t

) 1
q
∥∥∥

p,γ
≤ ‖h‖p,γ < ∞.

Because for any t ≥ 0 and x ∈ R
d ,

∣∣∣
n

∑
i=1

∂ k

∂ tk Pt fi(x)− ∂ k

∂ tk Pt f (x)
∣∣∣ ≤

n

∑
i=1

∣∣∣ ∂ k

∂ tk Pt fi(x)
∣∣∣+ | ∂ k

∂ tk Pt f (x)
∣∣∣

≤
∞

∑
i=1

∣∣∣ ∂ k

∂ tk Pt fi(x)
∣∣∣+

∣∣∣ ∂ k

∂ tk Pt f (x)
∣∣∣,
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and

∫ +∞

0

(
tk−α

( ∞

∑
i=1

∣∣∣ ∂ k

∂ tk Pt fi(x)
∣∣∣+

∣∣∣ ∂ k

∂ tk Pt f (x)
∣∣∣
))q dt

t

) 1
q

≤
∞

∑
i=1

∫ +∞

0

(
tk−α

∣∣∣ ∂ k

∂ tk Pt fi(x)
∣∣∣
)q dt

t

) 1
q
+

∫ +∞

0

(
tk−α

∣∣∣ ∂ k

∂ tk Pt f (x)
∣∣∣
)q dt

t

) 1
q

= h(x)+
∫ +∞

0

(
tk−α

∣∣∣ ∂ k

∂ tk Pt f (x)
∣∣∣
)q dt

t

) 1
q ≤ 2h(x)< ∞ a.e.x,

thus,
(

tk−α
( ∞

∑
i=1

∣∣∣ ∂ k

∂ tk Pt fi(x)
∣∣∣+

∣∣∣ ∂ k

∂ tk Pt f (x)
∣∣∣
))q 1

t
is integrable a.e. x, and, therefore,

according to Lebesgue’s dominated convergence theorem,

lim
n→∞

∫ +∞

0

(
tk−α

∣∣∣
n

∑
i=1

∂ k

∂ tk Pt fi(x)− ∂ k

∂ tk Pt f (x)
∣∣∣
)q dt

t

)
= 0 a.e.x,

and,

∫ +∞

0

(
tk−α

∣∣∣ ∂ k

∂ tk Pt

( n

∑
i=1

fi(x)− f (x)
)∣∣∣
)q dt

t

) 1
q

=
∫ +∞

0

(
tk−α

∣∣∣
n

∑
i=1

∂ k

∂ tk Pt fi(x)− ∂ k

∂ tk Pt f (x)
∣∣∣
)q dt

t

)1/q

≤ 2h(x),

a.e.x, for all n ∈ N, where h ∈ Lp(γd); thus,

lim
n→∞

∫ +∞

0

(
tk−α

∣∣∣ ∂ k

∂ tk Pt

( n

∑
i=1

fi(x)− f (x)
)∣∣∣
)q dt

t

) 1
q

= lim
n→∞

∫ +∞

0

(
tk−α

∣∣∣
n

∑
i=1

∂ k

∂ tk Pt fi(x)− ∂ k

∂ tk Pt f (x)
∣∣∣
)q dt

t

)
= 0 a.e.x.

Then, again using Lebesgue’s dominated convergence theorem,

lim
n→∞

∥∥∥
∫ +∞

0

(
tk−α

∣∣∣ ∂ k

∂ tk Pt

( n

∑
i=1

fi − f
)∣∣∣
)q dt

t

) 1
q
∥∥∥

p,γ

∥∥∥ lim
n→∞

∫ +∞

0

(
tk−α | ∂ k

∂ tk Pt

( n

∑
i=1

fi − f
)
|
)q dt

t

) 1
q
∥∥∥

p,γ
= 0.
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Finally,

lim
n→∞

∥∥∥
n

∑
i=1

fi − f
∥∥∥

Fα
p,q

= lim
n→∞

(∥∥∥
n

∑
i=1

fi − f
∥∥∥

p,γ
+
∥∥∥
∫ +∞

0

(
tk−α

∣∣∣ ∂ k

∂ tk Pt

( n

∑
i=1

fi − f
)∣∣∣
)q dt

t

) 1
q
∥∥∥

p,γ

)

= lim
n→∞

∥∥∥
n

∑
i=1

fi − f
∥∥∥

p,γ
+ lim

n→∞

∥∥∥
∫ +∞

0

(
tk−α

∣∣∣ ∂ k

∂ tk Pt

( n

∑
i=1

fi − f
)∣∣∣
)q dt

t

) 1
q
∥∥∥

p,γ
= 0.

�	
Observe that using the Lp(γd)-continuity of the Gaussian Littlewood–Paley gt,γ -

function (5.13),

gt,γ( f )(x) =

(∫ ∞

0
t

∣∣∣∣
∂Pt f

∂ t

∣∣∣∣
2

dt

)1/2

,

it can be seen, for 1 < p < ∞, that

Lp(γd) = F0
p,2(γd).

Also, by the trivial identification of the Lp spaces with the Hardy spaces, we have

H p(γd) = F0
p,2(γd).

For Gaussian Triebel–Lizorkin spaces, we have the following inclusion result,
which is analogous to Proposition 7.36 i:

Proposition 7.40. The inclusion Fα1
p,q1(γd) ⊂ Fα2

p,q2(γd) holds for α1 > α2 > 0 and
q1 ≥ q2.

Proof. Let us consider f ∈ Fα1,q1
p (γd). Then,

(∫ +∞

0

(
tk−α2

∣∣∣∂ kPt f (x)
∂ tk

∣∣∣
)q2 dt

t

) 1
q2

=
(∫ 1

0

(
tk−α2

∣∣∣∂ kPt f (x)
∂ tk

∣∣∣
)q2 dt

t
+

∫ +∞

1

(
tk−α2

∣∣∣∂ kPt f (x)
∂ tk

∣∣∣
)q2 dt

t

) 1
q2

≤
(∫ 1

0

(
tk−α2

∣∣∣∂ kPt f (x)
∂ tk

∣∣∣
)q2 dt

t

) 1
q2 +

(∫ +∞

1

(
tk−α2

∣∣∣∂ kPt f (x)
∂ tk

∣∣∣
)q2 dt

t

) 1
q2

= (I)+(II).

Let us observe that for the first term I, the result for the case q1 = q2 is immediate,
because, as t < 1, tk−α2 < tk−α1 and then

(I)q2 ≤
∫ +∞

0

(
tk−α1

∣∣∣∂ kPt f (x)
∂ tk

∣∣∣
)q1 dt

t
.
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Now, in the case q1 > q2, taking r =
q1

q2
, s =

q1

q1 −q2
then r,s > 1 and

1
r
+

1
s
= 1,

then, using Hölder’s inequality

(I)q2 =

∫ 1

0
t(α1−α2)q2

(
tk−α1

∣∣∣∂ kPt f (x)
∂ tk

∣∣∣
)q2 dt

t
≤
(∫ 1

0
t(α1−α2)q2s dt

t

) 1
s

×
(∫ 1

0

(
tk−α1

∣∣∣∂ kPt f (x)
∂ tk

∣∣∣
)q2r dt

t

) 1
r

=
1

(α1 −α2)q2s

(∫ 1

0

(
tk−α1

∣∣∣∂ kPt f (x)
∂ tk

∣∣∣
)q1 dt

t

) q2
q1 ≤C

(∫ +∞

0

(
tk−α1

∣∣∣∂ kPt f (x)
∂ tk

∣∣∣
)q1 dt

t

) q2
q1 .

Now, for the second term II, using Lemma 3.4, we have

(II) =
(∫ +∞

1

(
tk−α2

∣∣∣∂ kPt f (x)
∂ tk

∣∣∣
)q2 dt

t

) 1
q2 ≤C T ∗ f (x)

(∫ +∞

1

(
tk−α2t−k

)q2 dt
t

) 1
q2

= C T ∗ f (x)
(∫ +∞

1
t−α2q2

dt
t

) 1
q2 =C T ∗ f (x).

Then, using the Lp(γd) continuity of T ∗, we get

∥∥∥
(∫ +∞

0

(
tk−α2

∣∣∣∂ kPt f
∂ tk

∣∣∣
)q2 dt

t

) 1
q2
∥∥∥

p,γ

≤C
∥∥∥
(∫ +∞

0

(
tk−α1

∣∣∣∂ kPt f
∂ tk

∣∣∣
)q1 dt

t

) 1
q1
∥∥∥

p,γ
+C‖T ∗ f‖p,γd

≤C
[∥∥∥

(∫ +∞

0

(
tk−α1 |∂

kPt f
∂ tk |

)q1 dt
t

) 1
q1
∥∥∥

p,γ
+‖ f‖p,γ

]
<+∞.

Thus, f ∈ Fα2,q2
p (γd). �	

Observe that the Gaussian Besov–Lipschitz spaces and the Gaussian Triebel–
Lizorkin spaces are, by construction, subspaces of Lp(γd) and the inclusions are
trivially continuous.

Additionally, it is clear that for all t > 0 and k ∈ N,

∂ k

∂ tk Pthβ (x) = (−1)k|β |k/2e−t
√

|β |hβ (x);

therefore,

(∫ +∞

0

(
tk−α

∥∥∥ ∂ k

∂ tk Pthβ

∥∥∥
p,γ

)q dt
t

)1/q
=

|β |α/2

qk−α

(
Γ ((k−α)q)

)1/q‖hβ‖p,γ < ∞.

Thus, hβ ∈ Bα
p,q(γd) and

‖hβ‖Bα
p,q

= (1+
|β |α/2

qk−α

(
Γ ((k−α)q)

)1/q
)‖hβ‖p,γ .
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Similarly, hβ ∈ Fα
p,q(γd) and

‖hβ‖Fα
p,q

= (1+
|β |α/2

qk−α

(
Γ ((k−α)q)

)1/q
)‖hβ‖p,γ = ‖hβ‖Bα

p,q
.

Therefore, the set of polynomials P is included in Bα
p,q(γd) and in Fα

p,q(γd). An
open question is to prove whether or not P is dense in Bα

p,q(γd) or Fα
p,q(γd).

Also, we have the following inclusion relations between Gaussian Triebel–
Lizorkin spaces and Gaussian Besov–Lipschitz spaces:

Proposition 7.41. Let α ≥ 0 and p,q > 1

i) If p = q, then Fα
p,p(γd) = Bα

p,p(γd).
ii) If q > p, then Fα

p,q(γd)⊂ Bα
p,q(γd).

iii) If p > q, then Bα
p,q(γd)⊂ Fα

p,q(γd).

Proof.

i) Using Tonelli’s theorem, we trivially have

‖
(∫ +∞

0

(
tk−α

∣∣∣∂ kPt f
∂ tk

∣∣∣
)p dt

t

) 1
p
∥∥∥

p,γ
=

(∫ +∞

0
t(k−α)p

∫

Rd

∣∣∣∂ kPt f (x)
∂ tk

∣∣∣
p
γd(dx)

dt
t

) 1
p

=
(∫ +∞

0

(
tk−α

∥∥∥∂ kPt f
∂ tk

∥∥∥
p,γ

)p dt
t

) 1
p
.

ii) Suppose q > p, by Minkowski’s integral inequality we then have,

(∫ ∞

0

(
tk−α

∥∥∥∂ kPt f
∂ tk

∥∥∥
p,γ

)q dt
t

)p/q

=

(∫ ∞

0
t(k−α)q

(∫

Rd

∣∣∣∣
∂ kPt f (x)

∂ tk

∣∣∣∣
p

γd(dx)
)q/p dt

t

)p/q

≤
∫

Rd

(∫ ∞

0

(
tk−α

∣∣∣∣
∂ kPt f (x)

∂ tk

∣∣∣∣
)q dt

t

)p/q
γd(dx).

Therefore,

‖ f‖Bα
p,q

= ‖ f‖p,γ +

(∫ ∞

0

(
tk−α

∥∥∥∂ kPt f
∂ tk

∥∥∥
p,γ

)q dt
t

)1/q

≤ ‖ f‖p,γ +
∥∥∥
(∫ ∞

0

(
tk−α

∣∣∣∣
∂ kPt f

∂ tk

∣∣∣∣
)q dt

t

)1/q∥∥∥
p,γ

= ‖ f‖Fα
p,q
.

iii) Finally, if p > q, again using Minkowski’s integral inequality, we get

‖ f‖Fα
p,q

= ‖ f‖p,γ +
∥∥∥
(∫ ∞

0

(
tk−α

∣∣∣∂ kPt f
∂ tk

∣∣∣
)q dt

t

)1/q∥∥∥
p,γ

≤ ‖ f‖p,γ +
(∫ ∞

0

(
tk−α

∥∥∥∂ kPt f
∂ tk

∥∥∥
p,γ

)q dt
t

)1/q
= ‖ f‖Bα

p,q
. �	

Moreover, Gaussian Sobolev spaces Lp
α(γd) are contained in some Besov–

Lipschitz and Triebel–Lizorkin spaces; therefore, these spaces are “finer scales” for
measuring the regularity of functions.
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Theorem 7.42. Let us suppose that 1 < p <+∞ and α > 0. Then

i) Lp
α(γd)⊂ Fα

p,2(γd) if p > 1.
ii) Lp

α(γd)⊂ Bα
p,p(γd) = Fα

p,p(γd) if p ≥ 2.
iii) Lp

α(γd)⊂ Bα
p,2(γd) if p ≤ 2.

Proof. For the proof of these inclusions, we need to use a characterization of the
Gaussian Sobolev spaces, which will be discussed in the next chapter (see 8.21).

i) We have to consider two cases:

i-1) If α ≥ 1. Suppose h∈ Lp
α(γd) then h=Jα f , f ∈ Lp(γd), by the change of vari-

able u = t+s, using the fact of the representation of the Bessel potentials (8.20)
and Hardy’s inequality to get,
(∫ +∞

0

(
tk−α

∣∣∣∂ kPth(x)
∂ tk

∣∣∣
)2 dt

t

) 1
2

=
(∫ +∞

0
t2(k−α)

∣∣∣∂ kPtJα f (x)
∂ tk

∣∣∣
2 dt

t

) 1
2

≤ 1
Γ (α)

(∫ +∞

0
t2(k−α)

(∫ +∞

0
sα e−s

∣∣∣∂ kPt+s f (x)
∂ (t + s)k

∣∣∣ds
s

)2 dt
t

) 1
2

=
1

Γ (α)

(∫ +∞

0
t2(k−α)

(∫ +∞

t
(u− t)α−1et−u

∣∣∣∂ kPu f (x)
∂uk

∣∣∣du
)2 dt

t

) 1
2

≤ 1
Γ (α)

(∫ +∞

0

(∫ +∞

t
uα−1

∣∣∣∂ kPu f (x)
∂uk

∣∣∣du
)2

t2(k−α)−1dt
) 1

2

≤ 1
Γ (α)

1
k−α

(∫ +∞

0

(
uk
∣∣∣∂ kPu f (x)

∂uk

∣∣∣
)2 du

u

) 1
2
.

Hence, using the Lp(γd)-continuity of the Gaussian Littlewood–Paley gk
t,γ -

function (see Theorem 5.13),
∥∥∥
(∫ +∞

0

(
tk−α

∣∣∣∂ kPth
∂ tk

∣∣∣
)2 dt

t

) 1
2
∥∥∥

p,γ
≤ 1

Γ (α)

1
k−α

∥∥∥
(∫ +∞

0

(
uk
∣∣∣∂ kPu f

∂uk

∣∣∣
)2 du

u

) 1
2
∥∥∥

p,γ

= Ck,α‖gk f‖p,γ ≤Ck,α‖ f‖p,γ =Ck,α‖h‖p,α ;

thus, h ∈ Fα
p,2(γd).

i-2) If 0 ≤ α < 1. Suppose h ∈ Lp
α(γd), then h = Jα f , f ∈ Lp(γd), again us-

ing (8.20),
(∫ +∞

0

(
tk−α

∣∣∣∂ kPth(x)
∂ tk

∣∣∣
)2 dt

t

) 1
2

≤ 1
Γ (α)

(∫ +∞

0
t2(k−α)

(∫ +∞

0
sα e−s

∣∣∣∂ kPt+s f (x)
∂ (t + s)k

∣∣∣ds
s

)2 dt
t

) 1
2

≤ C
Γ (α)

(∫ +∞

0
t2(k−α)−1

[
(
∫ t

0
sα e−s

∣∣∣∂ kPt+s f (x)
∂ (t + s)k

∣∣∣ds
s
)2

+(
∫ +∞

t
sα e−s

∣∣∣∂ kPt+s f (x)
∂ (t + s)k

∣∣∣ds
s
)2
]
dt
) 1

2
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≤ C
Γ (α)

(
∫ +∞

0
t2(k−α)−1

(∫ t

0
sα−1e−s

∣∣∣∂ kPt+s f (x)
∂ (t + s)k

∣∣∣ds
)2

dt
) 1

2

+
C

Γ (α)
(
∫ +∞

0
t2(k−α)−1

(∫ +∞

t
sα−1e−s

∣∣∣∂ kPt+s f (x)
∂ (t + s)k

∣∣∣ds
)2

dt
) 1

2

= (I)+(II).

Now, because e−s < 1, sα−1 < tα−1 as α < 1, and, using the change of variables
u = t + s and Hardy inequality we get,

(II) ≤
(∫ +∞

0
t2(k−1)−1

(∫ +∞

t

∣∣∣∂ kPt+s f (x)
∂ (t + s)k

∣∣∣ds
)2

dt
) 1

2

=
(∫ +∞

0
t2(k−1)−1

(∫ +∞

2t

∣∣∣∂ kPu f (x)
∂uk

∣∣∣du
)2

dt
) 1

2

≤
(∫ +∞

0
t2(k−1)−1

(∫ +∞

t

∣∣∣∂ kPu f (x)
∂uk

∣∣∣du
)2

dt
) 1

2

≤
(∫ +∞

0

(
u
∣∣∣∂ kPu f (x)

∂uk

∣∣∣
)2

u2(k−1)−1du
) 1

2
.

=
(∫ +∞

0

∣∣∣uk ∂ kPu f (x)
∂uk

∣∣∣
2 du

u

) 1
2
= gk

t,γ f (x).

In addition, again using that e−s < 1, we get

(I)2 ≤
∫ +∞

0
t2(k−α)−1

(∫ t

0
sα−1

∣∣∣∂ kPt+s f (x)
∂ (t + s)k

∣∣∣ds
)2

dt

=
1

α2

∫ +∞

0
t2k−1

( α
tα

∫ t

0
sα−1

∣∣∣∂ kPt+s f (x)
∂ (t + s)k

∣∣∣ds
)2

dt

Then, as α > 0 using Jensen’s inequality (for the measure α
tα sα−1ds) and

Tonelli’s theorem,

(I)2 ≤ 1
α2

∫ +∞

0
t2k−1

( α
tα

∫ t

0
sα−1

∣∣∣∂ kPt+s f (x)
∂ (t + s)k

∣∣∣
2
ds
)

dt

≤ 1
α

∫ +∞

0
sα−1

(∫ +∞

s
(t + s)2k−α−1

∣∣∣∂ kPt+s f (x)
∂ (t + s)k

∣∣∣
2
dt
)

ds,

as 2k−α −1 > 0. Finally, again using the change of variables u = t + s and the
Hardy inequality

(I)2 ≤ 1
α

∫ +∞

0
sα−1

(∫ +∞

2s
u2k−α−1

∣∣∣∂ kPu f (x)
∂uk

∣∣∣
2
du

)
ds

≤ 1
α

∫ +∞

0
sα−1

(∫ +∞

s
u2k−α−1

∣∣∣∂ kPu f (x)
∂uk

∣∣∣
2
du

)
ds

≤ 1
α

∫ +∞

0

∣∣∣uk ∂ kPu f (x)
∂uk

∣∣∣
2 du

u
=

1
α
(gk

t,γ f (x))2.



296 7 Function Spaces with respect to γd

Hence, again using the Lp(γd)-continuity of the Gaussian Littlewood–Paley
gk

t,γ -function,

∥∥∥
(∫ +∞

0

(
tk−α

∣∣∣∂ kPth
∂ tk

∣∣∣
)2 dt

t

) 1
2
∥∥∥

p,γ
≤Ck,α‖gk f‖p,γ ≤Ck,α‖ f‖p,γ =Ck,α‖h‖p,α .

Thus, h ∈ Fα
p,2(γd), for 0 < α < 1.

ii) Suppose h ∈ Lp
α(γd) with p ≥ 2, then h = Jα f , f ∈ Lp(γd). Using the in-

equality (a+b)p ≤Cp(ap +bp), if a,b ≥ 0, p ≥ 1, we get

(∫ +∞

0

(
tk−α

∥∥∥∂ kPtJα f
∂ tk

∥∥∥
p,γ

)p dt
t

) 1
p

≤ 1
Γ (α)

(∫ +∞

0

(
tk−α

∫ +∞

0
sα e−s

∥∥∥ ∂ kPt+s f
∂ (t + s)k

∥∥∥
p,γ

ds
s

)p dt
t

) 1
p

≤ C
Γ (α)

(∫ +∞

0
t p(k−α)

(∫ t

0
sα
∥∥∥ ∂ kPs+t f

∂ (s+ t)k

∥∥∥
p,γ

ds
s

)p

+
(∫ +∞

t
sα
∥∥∥ ∂ kPs+t f

∂ (s+ t)k

∥∥∥
p,γ

ds
s

)p dt
t

) 1
p
.

Using the inequality (a+b)1/p ≤ a1/p +b1/p if a,b ≥ 0, p ≥ 1

C
Γ (α)

(∫ +∞

0
t p(k−α)

(∫ t

0
sα
∥∥∥ ∂ kPs+t f

∂ (s+ t)k

∥∥∥
p,γ

ds
s

)p

+
(∫ +∞

t
sα
∥∥∥ ∂ kPs+t f

∂ (s+ t)k

∥∥∥
p,γ

ds
s

)p dt
t

) 1
p

≤ C
Γ (α)

(∫ +∞

0
t(k−α)p

(∫ t

0
sα
∥∥∥ ∂ kPs+t f

∂ (s+ t)k

∥∥∥
p,γ

ds
s

)p dt
t

) 1
p

+
C

Γ (α)

(∫ +∞

0
t(k−α)p

(∫ +∞

t
sα
∥∥∥ ∂ kPs+t f

∂ (s+ t)k

∥∥∥
p,γ

ds
s

)p dt
t

) 1
p

= (I)+(II).

Now, again using Hardy’s inequality, because k > α and Lemma 3.5

(II) =
C

Γ (α)

(∫ +∞

0
t p(k−α)

(∫ +∞

t
sα
∥∥∥ ∂ kPs+t f

∂ (s+ t)k

∥∥∥
p,γ

ds
s

)p dt
t

) 1
p

≤ C
Γ (α)

(∫ +∞

0
t p(k−α)

(∫ +∞

t
sα
∥∥∥∂ kPs f

∂ sk

∥∥∥
p,γ

ds
s

)p dt
t

) 1
p

≤ C
Γ (α)

1
k−α

(∫ +∞

0

(
sα
∥∥∥ ∂ k

∂ sk Ps f
∥∥∥

p,γ

)p
s(k−α)p−1ds

) 1
p

= Ck,α

(∫ +∞

0

(
sk
∥∥∥ ∂ k

∂ sk Ps f
∥∥∥

p,γ

)p ds
s

) 1
p
=Ck,α‖

(∫ +∞

0

∣∣∣sk ∂ kPs f
∂ sk

∣∣∣
p ds

s

) 1
p ‖p,

using Tonelli’s theorem.
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Now, because p ≥ 2 using Lemma 3.4, we have

∫ +∞

0

∣∣∣uk ∂ kPu f (x)
∂uk

∣∣∣
p du

u
=

∫ +∞

0

(
uk
∣∣∣ ∂ k

∂uk Pu f (x)
∣∣∣
)p−2(

uk
∣∣∣ ∂ k

∂uk Pu f (x)
∣∣∣
)2 du

u

≤ C
(

T ∗ f (x)
)p−2 ∫ +∞

0

(
uk
∣∣∣ ∂ k

∂uk Pu f (x)
∣∣∣
)2 du

u
.

Therefore,

∥∥∥
(∫ +∞

0
|uk ∂ kPu f

∂uk |p du
u

) 1
p
∥∥∥

p

p

=
∫

Rd

(∫ +∞

0

∣∣∣uk ∂ kPu f (x)
∂uk

∣∣∣
p du

u

)
γd(dx)

≤C
∫

Rd

((
T ∗ f (x)

)p−2 ∫ +∞

0

(
uk
∣∣∣∂ kPu f (x)

∂uk

∣∣∣
)2 du

u
)γd(dx)

Using Hölder’s inequality, with θ =
2
p

, and the Lp(γd) continuity of T ∗ and gk,

we have

∥∥∥
(∫ +∞

0

∣∣∣uk ∂ kPu f
∂uk

∣∣∣
p du

u

) 1
p
∥∥∥

p

p

≤C
∫

Rd

((
T ∗ f (x)

)p−2 ∫ +∞

0

(
uk
∣∣∣∂ kPu f (x)

∂uk

∣∣∣
)2 du

u

)
γd(dx)

≤C
(∫

Rd

((
T ∗ f (x)

)(p−2). 1
1−θ γd(dx)

)1−θ
.

×
(∫

Rd

(∫ +∞

0

(
uk
∣∣∣ ∂ k

∂uk Pu f (x)
∣∣∣
)2 du

u

) 1
θ γd(dx)

)θ

=C
(∫

Rd

((
T ∗ f (x)

)p
γd(dx)

) p−2
p
.

×
(∫

Rd

(∫ +∞

0

(
uk
∣∣∣ ∂ k

∂uk Pu f (x)
∣∣∣
)2 du

u

) p
2 γd(dx)

) 2
p

=C‖T ∗ f‖p−2
p,γ ‖gk f‖2

p,γ ≤C‖ f‖p
p,γ .

Thus,
(II)≤Ck,α‖h‖p,α .



298 7 Function Spaces with respect to γd

Now, again using Lemma 3.5 and because α > 0

(I) =
C

Γ (α)

(∫ +∞

0
t p(k−α)

(∫ t

0
sα
∥∥∥ ∂ k

∂ (s+ t)k Ps+t f
∥∥∥

p,γ

ds
s

)p dt
t

) 1
p

≤ C
Γ (α)

(∫ +∞

0
t p(k−α)

(∫ t

0
sα
∥∥∥∂ kPt f

∂ tk

∥∥∥
p,γ

ds
s

)p dt
t

) 1
p

=
1
α

C
Γ (α)

(∫ +∞

0
tk
∥∥∥∂ kPt f

∂ tk

∥∥∥
p

p,γ

dt
t

) 1
p ≤Ck,α‖h‖p,α ,

Thus, h ∈ Bα
p,p(γd), if p ≥ 2.

iii) This inclusion could be proved using similar arguments as in i) and ii), but it
is an immediate consequence of i) and of Proposition 7.41 ii). �	

In [166], using Theorem 3.2, it is claimed that the Gaussian Sobolev spaces
Lp

α(γd) coincide with the homogeneous Gaussian Triebel–Lizorkin Ḟα
p,2, but the

proof of that theorem is wrong because it is assumed that the operator involved is
linear; however, it is actually only sublinear.

Now, let us prove some interpolation results for the Gaussian Besov–Lipschitz
spaces and for the Gaussian Triebel–Lizorkin Spaces.

Theorem 7.43. We have the following interpolation results:

i) For 1 < p j,q j < +∞ and α j ≥ 0, if f ∈ B
α j
p j ,q j(γd), j = 0,1, then f ∈ Bα

p,q(γd),
where α = α0(1−θ)+α1θ , and

1
p
=

1
p0

(1−θ)+
θ
p1

,
1
q
=

1
q0

(1−θ)+
θ
q1

, 0 < θ < 1.

ii) For 1 < p j,q j < +∞ and α j ≥ 0, if f ∈ F
α j
p j ,q j(γd), j = 0,1, then f ∈ Fα

p,q(γd),
where α = α0(1−θ)+α1θ , and

1
p
=

1
p0

(1−θ)+
θ
p1

,
1
q
=

1
q0

(1−θ)+
θ
q1

, 0 < θ < 1.

Proof. The proof of both results is based on the following interpolation result for
Lp(γd) spaces (actually true for any measure μ) obtained using Hölder’s inequality:

For 1 < r0,r1 < ∞ and
1
r
=

1
r0
(1−η)+

η
r1
,0 < η < 1. If f ∈ Lr j(γd), j = 0,1

then f ∈ Lr(γd) and
‖ f‖r,γ ≤ ‖ f‖1−η

r0,γ ‖ f‖η
r1,γ . (7.60)

Let us prove i). Let k be any integer greater than α0 and α1. By using the above
result, we get for α = α0(1−θ)+α1θ ,
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∫ +∞

0

(
tk−α

∥∥∥∂ kPt f
∂ tk

∥∥∥
p,γ

)q dt
t

≤
∫ +∞

0

(
tk−(α0(1−θ)+α1θ)

∥∥∥∂ kPt f
∂ tk

∥∥∥
1−θ

p0,γ

∥∥∥∂ kPt f
∂ tk

∥∥∥
θ

p1,γ

)q dt
t

=
∫ +∞

0

(
t(1−θ)(k−α0)+θ(k−α1)

∥∥∥∂ kPt f
∂ tk

∥∥∥
1−θ

p0,γ

∥∥∥∂ kPt f
∂ tk

∥∥∥
θ

p1,γ

)q dt
t

=
∫ +∞

0

(
tk−α0

∥∥∥∂ kPt f
∂ tk

∥∥∥
p0,γ

)(1−θ)q(
tk−α1

∥∥∥∂ kPt f
∂ tk

∥∥∥
p1,γ

)θq dt
t
.

Now, if λ =
θq
q1

then 0 < λ < 1 and q = (1 − λ )q0 + λq1. Therefore, by using

Hölder’s inequality again,

∫ +∞

0

(
tk−α

∥∥∥∂ kPt f
∂ tk

∥∥∥
p,γ

)q dt
t

≤
(∫ +∞

0

(
tk−α0

∥∥∥∂ kPt f
∂ tk

∥∥∥
p0,γ

)q0 dt
t

)1−λ(∫ +∞

0

(
tk−α1

∥∥∥∂ kPt f
∂ tk

∥∥∥
p1,γ

)q1 dt
t

)λ
< ∞;

thus f ∈ Bα
p,q(γd).

ii) Analogously, by taking β = pθ
p1
, λ = qθ

q1
, we have 0 < β ,λ < 1 and p = (1−

β )p0 +β p1,q = (1−λ )q0 +λq1. Let k be any integer greater than α0 and α1, by
using Hölder’s inequality we get for α = α0(1−θ)+α1θ ,

∫ +∞

0

(
tk−α

∣∣∣∂ kPt f
∂ tk

∣∣∣
)q dt

t

=
∫ +∞

0

(
tk−α0

∣∣∣∂ kPt f
∂ tk

∣∣∣
)(1−θ)q(

tk−α1

∣∣∣∂ kPt f
∂ tk

∣∣∣
)θq dt

t

=
∫ +∞

0

(
tk−α0

∣∣∣∂ kPt f
∂ tk

∣∣∣
)(1−λ )q0

(
tk−α1

∣∣∣∂ kPt f
∂ tk

∣∣∣
)λq1 dt

t

≤
(∫ +∞

0

(
tk−α0

∣∣∣∂ kPt f
∂ tk

∣∣∣
)q0 dt

t

)1−λ(∫ +∞

0

(
tk−α1

∣∣∣∂ kPt f
∂ tk

∣∣∣
)q1 dt

t

)λ
.

Thus,

∥∥∥
(∫ +∞

0

(
tk−α

∣∣∣∂ kPt f
∂ tk

∣∣∣
)q dt

t

) 1
q
∥∥∥

p

p,γ
=

∫

Rd

(∫ +∞

0

(
tk−α

∣∣∣∂ kPt f
∂ tk

∣∣∣
)q dt

t

) p
q γd(dx)

≤
∫

Rd

(∫ +∞

0

(
tk−α0

∣∣∣∂ kPt f
∂ tk

∣∣∣
)q0 dt

t

) (1−λ )p
q

(∫ +∞

0

(
tk−α1

∣∣∣∂ kPt f
∂ tk

∣∣∣
)q1 dt

t

) λ p
q γd(dx)

=
∫

Rd

(∫ +∞

0

(
tk−α0

∣∣∣∂ kPt f
∂ tk

∣∣∣
)q0 dt

t

) (1−θ)p
q0

(∫ +∞

0

(
tk−α1

∣∣∣∂ kPt f
∂ tk

∣∣∣
)q1 dt

t

) θ p
q1 γd(dx)

=
∫

Rd

(∫ +∞

0

(
tk−α0

∣∣∣∂ kPt f
∂ tk

∣∣∣
)q0 dt

t

) (1−β )p0
q0

(∫ +∞

0

(
tk−α1

∣∣∣∂ kPt f
∂ tk

∣∣∣
)q1 dt

t

) β p1
q1 γd(dx),

and then again using Hölder’s inequality,
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∥∥∥
(∫ +∞

0

(
tk−α

∣∣∣∂ kPt f
∂ tk

∣∣∣
)q dt

t

) 1
q
∥∥∥

p

p,γ

≤
(∫

Rd

(∫ +∞

0

(
tk−α0

∣∣∣∂ kPt f
∂ tk

∣∣∣
)q0 dt

t

) p0
q0 γd(dx)

)1−β

×
(∫

Rd

(∫ +∞

0

(
tk−α1

∣∣∣∂ kPt f
∂ tk

∣∣∣
)q1 dt

t

) p1
q1 γd(dx)

)β

=
∥∥∥
(∫ +∞

0

(
tk−α0

∣∣∣∂ kPt f
∂ tk

∣∣∣
)q0 dt

t

) 1
q0
∥∥∥

p0(1−β )

p0,γ

×
∥∥∥
(∫ +∞

0

(
tk−α1

∣∣∣∂ kPt f
∂ tk

∣∣∣
)q1 dt

t

) 1
q1
∥∥∥

p1β

p1,γ
<+∞.

Hence, f ∈ Fα
p,q(γd). �	

Finally, we are going to study the continuity properties of the Ornstein–
Uhlenbeck semigroup and the Poisson–Hermite semigroup on the Gaussian Besov–
Lipschitz and Triebel–Lizorkin spaces. In the next chapter, we consider the bound-
edness property of other operators on those spaces.

Theorem 7.44. For The Ornstein–Uhlenbeck semigroup {Tt}t≥0 and the Poisson–
Hermite semigroup {Pt}t≥0,

i) Both are bounded on Bα
p,q(γd).

ii) Both are bounded on Fα
p,q(γd).

Proof.

i) Let us prove the Bα
p,q(γd)-continuity of Pt for any t > 0; the proof for Tt is

totally analogous. Using the Lp-continuity of the Poisson–Hermite semigroup,
Lebesgue’s dominated convergence theorem, and Jensen’s inequality, we get

∫

Rd

∣∣∣∂ kPt(Ps f )
∂ tk (x)

∣∣∣
p
γd(dx) =

∫

Rd

∣∣∣Ps

(∂ kPt f
∂ tk

)
(x)

∣∣∣
p
γd(dx)

≤
∫

Rd
Ps

(∣∣∣∂ kPt f (x)
∂ tk

∣∣∣
p)

γd(dx)

=
∫

Rd

∣∣∣∂ kPt f (x)
∂ tk

∣∣∣
p
γd(dx).

Thus, ∥∥∥∂ kPt(Ps f )
∂ tk

∥∥∥
p,γ

≤
∥∥∥∂ kPt f

∂ tk

∥∥∥
p,γ

;

therefore,

‖Ps f‖Bα
p,q

= ‖Ps f‖p,γ +
(∫ +∞

0

(
tk−α

∥∥∥∂ kPt(Ps f )
∂ tk

∥∥∥
p,γ

)q dt
t

)1/q

≤ ‖ f‖p,γ +
(∫ +∞

0

(
tk−α

∥∥∥∂ kPt f
∂ tk

∥∥∥
p,γ

)q dt
t

)1/q
= ‖ f‖Bα

p,q
.
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ii) Let us prove the Fα
p,q-continuity of Pt for any t > 0; the proof for Tt is totally

analogous. Using Lebesgue’s dominated convergence theorem and Minkowski’s
integral inequality, we have

(∫ ∞

0

(
sk−α

∣∣∣∣
∂ kPt(Psg)

∂ sk (x)

∣∣∣∣
)q ds

s

)1/q

=

(∫ ∞

0

(
sk−α

∣∣∣∣
∫

Rd
p(t,x,y)

∂ kPsg(y)
∂ sk dy

∣∣∣∣
)q ds

s

)1/q

≤
∫

Rd
p(t,x,y)

(∫ ∞

0
(sk−α

∣∣∣∣
∂ kPsg(y)

∂ sk

∣∣∣∣
)q ds

s

)1/q

dy

= Pt

((∫ ∞

0

(
sk−α

∣∣∣∣
∂ kPsg
∂ sk

∣∣∣∣
)q ds

s

)1/q)
(x).

Therefore, by the Lp continuity of Pt we get

∥∥∥
(∫ ∞

0

(
sk−α

∣∣∣∣
∂ kPs(Ptg)

∂ sk

∣∣∣∣
)q ds

s

)1/q

‖p,γ

≤ ‖Pt

((∫ ∞

0

(
sk−α

∣∣∣∣
∂ kPsg
∂ sk

∣∣∣∣
)q ds

s

)1/q)∥∥∥
p,γ

≤
∥∥∥
(∫ ∞

0

(
sk−α

∣∣∣∣
∂ kPsg
∂ sk

∣∣∣∣
)q ds

s

)1/q∥∥∥
p,γ

Thus,

‖Ptg‖Fα
p,q

= ‖Ptg‖p,γ +
∥∥∥
(∫ ∞

0

(
sk−α

∣∣∣∣
∂ kPs(Ptg)

∂ sk

∣∣∣∣
)q ds

s

)1/q∥∥∥
p,γ

≤ ‖g‖p,γ +
∥∥∥
(∫ ∞

0

(
sk−α

∣∣∣∣
∂ kPsg
∂ sk

∣∣∣∣
)q ds

s

)1/q∥∥∥
p,γ

= ‖g‖Fα
p,q
. �	

7.9 Notes and Further Results

1. In [117], P. Graczyk, J. J. Loeb, I. López, A. Nowak, and W. Urbina define and
study Sobolev spaces associated with multi-dimensional Laguerre expansions
of type α. The result is obtained by means of transference from a Hermite
setting using the relationship between Laguerre and Hermite polynomials (see
G. Szegő’s book [262, (5.6.1)]).

2. In [177], G. Mauceri, S. Meda, and P. Sjögren found a maximal characterization
of H1

at(γd) that unfortunately is only valid for d = 1. In the same paper, they give
a description of the non-negative functions in H1

at(γd) and use it to prove that
Lp(γd)⊂ H1

at(γd), for 1 < p ≤ ∞.
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3. In 1995, J. Epperson [75] considered Triebel–Lizorkin spaces with respect to
the Hermite function expansions. Those spaces are completely different than
the spaces that we are considering here, because the reference measure is the
Lebesgue measure; therefore it should not be confused with them, because he
was working with the Lebesgue measure.

4. In [161], L. Liu and D. Yang consider Gaussian bounded lower oscillation
(BLO) spaces BLOa(γd), the space of functions with bounded lower oscillation
associated with a given class of admissible balls with parameter a.

5. In [166], I. López defines and briefly studies Besov spaces and Triebel–Lizorkin
spaces for Hermite and Laguerre expansions. There are some technical problems
in the definitions and some gaps in the proofs.

6. More abstract approaches to Besov and Triebel–Lizorkin spaces associated with
a general differential operator can be found, for instance, in [154].

7. Hardy spaces for Jacobi expansions have a curious story. The first construction
obtained by L. Cafarelli in his doctoral dissertation in 1971, under the direction
of C. P. Calderón, [39]. He defined the conjugation as a smooth differential
operator, and from there he was able to give a definition of them. Unfortunately,
that memoir, which contains very original and novel ideas, for example, the
proof that the Jacobi measure is doubling, well before the notion of doubling
measure was formulated, was never published. Then, 25 years later, in 1996,
Zhongkai Li [157, 158], formulated another definition of Hardy spaces for Ja-
cobi expansions, closely following the work of B. Muckenhoupt and E. Stein
[199] in the ultraspherical case.

8. There is a class of spaces that are an intermediate generalization between the
classical Lebesgue spaces and the Orlicz spaces; they are the variable Lebesgue
spaces, which have been intensively studied over the last 25 years, extending
almost all the boundedness properties of classical harmonic analysis operators
with respect to the Lebesgue measure (see, for instance, [61] or [66]). For the
study of variable Lebesgue spaces with respect to general Radon measures, see
[3]. In particular, some results for variable Lebesgue spaces with respect to the
Gaussian measure can be found in [63] and [192].
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