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Function Spaces with Respect to the Gaussian
Measure

One of the main goals of functional spaces is to interpret and quantify the smoothness
of functions. In this chapter, we discuss the analogs of classical functional spaces
with respect to the Gaussian measure. We see that almost all classical spaces with
respect to the Lebesgue measure have an analog for the Gaussian measure; neverthe-
less, we see that in some cases, for instance, Hardy spaces, the analogs to classical
spaces are still incomplete and/or imperfect. On the other hand, most of the time,
even if the spaces look similar, most of the proofs are different, mainly because the
Gaussian measure is not invariant by translation, which implies the need for com-
pletely different techniques.

7.1 Gaussian Lebesgue Spaces L”(7;)

The Gaussian Lebesgue spaces have been used implicitly in previous chapters for the
study of continuity properties of the Ornstein—Uhlenbeck semigroup, the Poisson—
Hermite semigroup, and maximal functions. For completeness, we are including
them in this chapter.

Definition 7.1. For 1 < p < oo, the Gaussian Lebesgue space LP(y;) is defined as

LP(y) = {f :RY = R f is a measurable function and /Rd | £ ()P ya(dx) < oo}

(7.1)
and the LP-norm is given by

= ([, P )" 72

Using analogous arguments, as in the classical case, it can be proved that the
normed space (L”(Y4), || - || p,y) is a Banach space for 1 < p < oo, that is, L”(y,) is a
complete space (see for instance [263, Theorem 7.3]).
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As the Gaussian measure is a probability measure, using Holder’s inequality, we
have for 1 < p < ¢,

LU(ya) C LP (ya). (7.3)

Additionally, from Theorem 10.7, we know that the family of polynomials with
real coefficients is not only contained in L” (), 1 < p < o, but is also dense there.

Thus, the Gaussian Lebesgue spaces LP(;) are very different from the classical
Lebesgue space L”(R?) theory with respect to the Lebesgue measure, because if
f € LP(R?), then f(x) — 0 as |x| — oo, but for f € LP(y,), we may have f(x) — oo

i SIx*/p wi
as |x| — oo, as long as it grows no faster than e withd < 1.

Observe that for any 1 < p < e, the space L” () is not closed under translations.
For instance, in dimension one and p = 1, taking the function f(x) = el _"“, then it
is clear that f € L' (y1), but it is easy to see that

Tf() = flat 1) =PRI g Ll ),

Finally, because the Gaussian measure is trivially absolutely continuous with re-
spect to the Lebesgue measure, with the Radon—Nikodym derivative the Gaussian
. 2
welght,‘%’ = ¢ N , then

L(y) = L (R).

7.2 Gaussian Sobolev Spaces Lg (%)

Sobolev spaces in the classical case are used to measure the regularity of solutions
of partial differential equations (PDEs). Gaussian Sobolev spaces were introduced
in the context of Malliavin calculus (see for instance P. Malliavin [172], D. Nualart
[218] or S. Watanabe [288]). They play a fundamental role in it because they are
used as a scale to measure the regularity of solutions of stochastic differential equa-
tions (see [218]). Moreover, similar to the classical case, Gaussian Sobolev spaces
are particular cases of Gaussian Besov spaces; therefore, Besov spaces are a “better
scale” to measure the regularity of functions.

Definition 7.2. Given f >0 and 1 < p < e, the Gaussian Sobolev space of order 3,
Lg (1), is defined as the completion of the set of polynomials 2 (R?) with respect to
the norm

e (AL (7.4

Therefore, the set of polynomials in RY, 22(R9) is trivially a dense set in these
spaces. The spaces Lg (74), are also called potential spaces (see [145]).
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In the classical case, Sobolev spaces appear naturally in partial differential equa-
tions to measure the integrability of partial derivatives of a given function, A. P.
Calderé6n proved that Sobolev spaces can be characterized using the integrability of
the derivatives. We are going to see that the same holds in the Gaussian case, i.e.,
fractional derivatives Dy can be used to characterize Lg (74) (see Theorem 8.8). A
probabilistic proof of this fact was given by Sugita in [261].

Moreover, from the definition given of the Gaussian Sobolev spaces, L5 (v4),
we see they can be characterized as the image of the Gaussian Lebesgue spaces
under Gaussian Bessel potentials (see 8.21) Proposition 8.6. They can also be char-
acterized using Riesz fractional derivatives (see Theorem 8.8). Additionally, as an
application of the Littlewood—Paley functions gfm, and gﬁy, a characterization of
Gaussian Sobolev spaces, Lg (74) for 1 < p < oo can also be provided (see Section
9.5 in Chapter 9.

Finally, we have the following Gaussian Sobolev embeddings,

Proposition 7.3. Gaussian Sobolev spaces satisfy

i) If p < q then L;’;(yd) C Lg(yd)for each B > 0.
i) If 0 < oy < B then ng(yd) C Lgl (74) for each 1 < p < oo,

Moreover, the embeddings in i) and ii) are continuous

Proof. Claim i) is an immediate consequence of Holder’s inequality.
For claim ii), let f be a polynomial and let us consider g = (1 — L)’ﬁz/ 2f, then

(1—L)Br=-B)2g — (1 —\B1/2f.

Using Meyer’s multiplier theorem, Theorem 6.2, we can conclude that there exists
C > 0, such that

11,8, <CUIAN g, -

7.3 Gaussian Tent Spaces Tl’q(}/d)

In 1985, R. Coifman, Y. Meyer, and E. M. Stein [55], introduced the tent spaces qu
with respect to the Lebesgue measure, as the space of functions F : R‘fl :— R such

that,
' dr \1/
K@ = ([, IFOnlay ) ()

where I"(x) = {(y,t) eRIM: x—y)| <t}, 1 < g <o, and

1Ellg.p = 11 Ja ()l p-
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In 2012, J. Mass, J. Van Neerven, and P. Portal [169] introduced Gaussian tent
spaces as follows. Let

D= {(x,1) € R x (0,00) : 1 < m(x)},

where as usual, m(x) = 1 A ﬁ, is the admissibility function. Note that a point (x,t) €
R9 x (0,0) belongs to D if and only if B(x,t) € 4.

Definition 7.4. The Gaussian tent space T'9(yy) is the completion of Co(D) with
respect to the norm,

1 rap) 2= IVF L1 (g gy 10000 (75
where @
XB(y) X
JF(x))(v,t) := ————————F—F(y,t), FeCy(D), (7.6)
that is,

1P = [, (] [ gty 0o §) i)

where, [} (y;) = {(yJ) ER x (0,00) : [y—x| <t < m(x)} is a Gaussian cone with
a=1,see (4.83).

In [169],J. Mass, J. Van Neerven, and P. Portal obtained an atomic decomposition
for T'4(y,). As in the Euclidean case, this atomic decomposition turns out to be very
useful, because using an atomic decomposition, we only have to check results for
atoms and then the rest follows easily. First, let us see what a Gaussian fent is:

Definition 7.5. For a measurable set E C R? and a real number a > 0, we define the
tent with aperture o, over E by

To(E) ={(v,t) R : d(y,E) > at}. (1.7)

Now, let us define a Gaussian atom.

Definition 7.6. Given o > 0 a function A : D — C is called a T"4(y;) a-atom if
there exists a ball B in B, such that

i) Ais supportedin T{(B)ND, ie.,

supp(A) C {(y,t) eD: t <d(y,B)}.

1 _
ii) //|Ay, )N Ya dy) (B )q/q,,whereq—i—?—l.

Lemma 7.7. IfA is a T"9(y;) a-atom, then A € T"4(y;) and [All71a¢y) < 1.
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Proof. Let A be a T'(7y;) o-atom supported in T{(B) N D, for some B € B, If
(y,1) € Ti(B)ND and x € B(y,t), then x € B. Then, using this fact, Holder’s inequal-
ity, and Fubini’s theorem, we obtain,

/]Rd(/ Dm( )| ?va(dy)— )l/q)/d(dx)

- [.() [ x>)|A<y, O 1a(a) ) ga eyt

D Ya(B(y,1)
< (Lo tmoney (f)) Al r(an) Y ratan)) sy 1
= ([ [ 2oy pean &) ey <
D'Yd( ( )) Y Yaldy Ya <1.

The set D admits a locally finite cover with tents T;(B) based at balls B € %,,
if and only if o > 1; this explains the condition & > 1 in the next theorem, which
establishes an atomic decomposition of T'4(yy).

Theorem 7.8. (Mass, Van Neerven, and Portal) For all F € T17q(}/d) and o > 1,
there exists a sequence (Ay),>1 € €' and a sequence of T'4(y) a-atoms {A,}n>1
such that

i) F =32 A
i) Xp_i|An| < C||fll714(), for some constant independent of f.

The proof of this result follows the lines of the classic counterpart in [55]; how-
ever, we can only use the doubling property of 7, for admissible balls. That is why we
need the Gaussian Whitney covering (see Theorem 4.10). Before we start with the
proof, we need some notations and auxiliary results. Given a measurable set E C RY
and a real number o > 0, we define

Ra(E) ={(31) €R? x (0,00) : d(y,E) < ar} = T5(E°).

We also put, for any measurable set £ C R? and real number 8 > 0,

EWB = {x eRY: M > B forall B € #; with centerx}.
Ya(B) 2

We call EIB] the set of points of admissible 3-density of E. Note that E (Bl is a closed
subset of R contained in E.

Lemma 7.9. Foralln € (%, 1) there exists an M € (0, 1) such that, for all measur-
able sets E C RY and all non-negative measurable functions F on D, there exists a
constant C > 0 such that

dt XB(ys) (X) dt
//zeln(E[n])mDF(y’t) va(dy) = SC/E </D7@(l;(%t)) (1) va(dy) — )Yd(dx)
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Proof. First, let 1 € (0,1) be arbitrary and fixed. Let (y,7) € Ry_n(EM)ND. Note
that (y,r) € D implies B(y,t) € ). There exists x € EM such that \y x\ <(1-
n)t. Notice first that, because ¢ < m(x), we have [x| < (1-n)r+ 1 <141 <31
Thus, we have that 7 € (0, 2m( x)). Moreover, B(x,nt) C B(y,t) C B( X, 3 ), and thus
B(y,t) € %, B(x,t) € %%, and y;(B(x,t)) ~ y4(B(y,t)) by repeated application of

Theorem 1.6 ii), the doubling property on admissible balls. Therefore, we have

’Vd(EmB(y’t)) > Yd(EﬂB(xat)) - Vd(B(xvt) ﬁB(y,t)C)
= NY(B(x,1)) — Ya(B(x,1)) + Ya(B(x,1) N B(y,1))
> (M= 1)7(B(x,1)) + Ya(B(x,n1)).

Now, picking 17 close enough to 1 and using the doubling property, we obtain a
constant ¢ = ¢(n,n) € (0, 1) such that

Yd(EmB(yat)) > C')/d(B(X,l)).

Therefore, there exists a constant ¢’ = ¢/(1,n) > 0 such that

%(ENB(y,1) = 1a(B(y,1)),
for all (y,7) € Ry—n(EM) N D. Finally,

XB( ,t)( x) dt Ya(ENB(y,1)) dt
/E(/D}/d(l;(y,t)) (1) Ya(d) )W dx) / 70)17()’»[)%1(‘1)’)7

dt
> ’// F(y,t)y(dy)—. O
>c e (EMyD (1) va(dy) -

Lemma 7.10. Ifa function F € T'4(y,) admits a decomposition in terms of T'9 ()
a-atoms for some o > 1, then it admits a decomposition in terms ole*q(}/d) a-atoms
forall oo > 1.

Proof. Suppose that F € T'4(y,) admits a decomposition in terms of T14(y;) B-
atoms for some § > 1. We will show that f admits a decomposition in terms of
T'4(y;) a-atoms for any o > 1. This is immediate if o > 3, because in this case
any T14(y;) B-atom is a T19(y,) o-atom as well.

Therefore, let us assume that 1 < o0 < 3. We claim that it suffices to show that
there exists an integer N, depending only upon o, 3, and the dimension d, such that
if B € A, then T (B) ND can be covered by at most N tents of the form T (B') with
B = B(c,¥) € By satistying ' = am(c’).

To prove the claim, it clearly suffices to consider the case that F is a T'9(y,)
B-atom having support in T (B) N D for some ball B € %, with center ¢ and radius
r=Bm(c). Let {T1(B}), -, T1(By)} be a covering of T (B), where each B’ j =
1,---N, is a ball in %, with center ¢}, radius r; = oum(c;), and intersecting B. For
x € T1(B)ND we set

n(x) :=#{1 < j<N:x€T(B))}, and Fj(x) = :((;C))anw(x)-
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Then it follows that F = 2?':1 F;. Moreover, each Fj is a T1="(yd) a-atom, because
Fj is supported in T1(B;) N D and

i llzapyyarfey < NF | La(p,yyarje) < Ya(B)~11 < CYd(B,,;)_I/ql«

To obtain the latter estimate, we pick an arbitrary b € B} UB and use Lemma 1.5

ii) to conclude that

m(cj) < (1+a)m(b) <2(1+ o) (1+B)m(c),
and then we estimate,
o
B
Using the doubling property, Theorem 1.6, we conclude y;(B;) < Cy;(B). It follows
that F = ley:] Fj is a decomposition in terms of T'4(y,) a-atoms, which proves the
claim.

Fix R > 1 + 3 large enough such that «(R—f3)/(R— B + o) > 1. The set {(y,¢) €
D:]y| <R+ 1} can be covered with finitely many sets — their number depending only
upon R, d and o — of the form T{(B) with B' = B(c',r) € By and ¥ = am(c).

Take a ball B = B(c,r) € %p with |c| > R and choose 6 € (0,1) small enough
such that (1 —6)a(R—fB)/(R— B+ ) > 1. Observe that if x € B, then |x| > R—f3 >

1, and therefore m(x) = \;IT| Let us define

ri=oam(c;) <20(14+a)(14+B)m(c) =2 (1+a)(1+p)r.

Cp :={(x,) € Bx (0,00)}.

Noting that T1(B) N D C Cg, it remains to cover Cg with N tents T;(B’) based on
balls B’ € %, where the number N depends on ¢, 3, and d only. To do so, let us start
picking ¢’ € B, and let ¥’ = am(c’) = ﬁ and B' = B(c/,r'). If (x,) € Cp is such that
|x—c'| < 6F, then

d(x,(B)) = d(c',(B)) v —¢| > (1= 8) = (1-8)

]
P N SRV o|x|

> (-8 2me1-9) (50

2m(x)(1—5)m2m(x)2t.

Here, we have used the monotonicity of the functionz — ¢ /(¢ + o).
We have proved that the point (x,7) € Cp belongs to T} (B') whenever |x — ¢’| <

&r'. Using that (|c|+ B)r < (|c] +B)% < B+ B2, we have

_* > Lr.

lc[+B ~ B+pB?

This implies that B can be covered with N balls B’ = B(c’,6+') as above, with N

dependent only on o, 3, and d. The union of the N sets T1(B") N D then covers Cg,
thus completing the proof of the lemma. O

¥ =am(d) >

We are ready to prove Theorem 7.8.
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Proof. Using Lemma 7.10, it suffices to prove that each F € T14(y;) admits a de-
composition in terms of 719(y,) o-atoms for some & > 0.

Recall that the disjoint sets Ag?,( have been introduced in Definition 4.8. We shall
apply Theorem 4.10 for p = 4 and k = 8 (the reason for this choice is the constant

16 = 2* produced in the argument below). As

(Un)o( U Ai)-m

0<i<4 ic{1,...,.8}4
we may write
F=Ixqus,>00 = Y X fXonflsls0)+ fo(i)m{\\Jf\\2>0}’ (7.8)
0<I<4 geal, ic{l,.8)d 48

where [ |sf,>0y (X:1) := (X, 1) X{)s7],>0y () and
{72 >0} := {xeR’: I F M 12 g ey > O3

The first equality in (7.8) is justified as follows. For all xo € V := {||Jf]|» = 0} we
have xp(y.) (x0)f (y,¢) = 0 for almost all (y,¢) € D; therefore, using Fubini’s theorem,

for almost all y € R4, we have
XB(y.s)(X0)f(y,¢) =0 for almost all > 0.

Fix 0 > 0 arbitrary. Then, for almost all y € B(xg,0) we have f(y,t) = 0 for almost
all t > §. Applying again Fubini’s theorem, this implies that f(y,7) = 0 for almost
all (y,7) € (B(xp, 6) x [6,°0)) N D. Taking the union over all rational 6 > 0, it follows
that f = 0 almost everywhere on I := {(y,/) € D: |x—y| <t} the “admissible
cone” over x. If K is any compact set contained in V, then by taking the union over
a countable dense set of points x € K, it follows that f(y,#) = 0 almost everywhere
on the “admissible cone” over K. Finally, using the inner regularity of the Lebesgue
measure on RY, it follows that f(y,#) = 0 almost everywhere on the “admissible
cone” over V. In particular, this proves the first identity in (7.8).

To prove the theorem it suffices to prove that each of the summands on the right-
hand side of (7.8) has an atomic decomposition. In view of Theorem 4.10 for p =4
and x = 8 it suffices to prove that

8= xwn{lsfl>0}

has an atomic decomposition for every measurable set W in R? such that W + % is
admissible 2°v/d-Whitney.
Given k € Z, let us define

O = {|l7fIl> > 2"}

and Fy := Of. Fix an arbitrary 1) € (%, 1) and let 7] be as in Lemma 7.9. With abuse
of notation we let 0,[:” = (Fk[n])c , where Fk[n] denotes the set of points of admissible
T-density of F;. We claim that 0][:7] is contained in W + %4 (see (4.8)).
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To prove the claim, we fix x € 0[77] and check that x € W 4 4. Indeed, as Jg(x)
does not vanish almost everywhere on D, we can find a set D’ C D of positive measure
such that for almost all (y,7) € D’

() (X)) = () (X)L 0, ) Xwg|a >0y (V) # 0.

For those points, we have y € W, [x —y| <t and t < m(y), so t < 2m(x), using
Lemma 1.5 i). Thus, B(x,t) belongs to %, and intersects W thus, x € W + 6.

As x is not a point of admissible 1-density of Fy, there is a ball B € ‘%)% with
center x such that y;(Fp N B) < f1y,(B). This is only possible if B intersects Oy =
As Oy is contained in W + %5, this means that B intersects W + 3. Fix an arbitrary
x' € BN(W +%) and let B’ € ¢, be any admissible ball centered at x’ and intersecting
W.Fromx € Band B € 93%, it follows that |x —x'| < 3m(x). Also, because B' € %,
and intersects W, d(x',W) < 2m(x), it follows that d(x,W) < 3m(x) +2m(x’). Using
Lemma 1.5 ii), we have m(x’) < 5m(x), and therefore dist(x,W) < 16m(x). This
proves the claim.

For each N > 1 define gy(y,t) := X<y X8I <NI X (4 o0) (t)g(y,1). Clearly, gy €
T94(y,) and, by dominated convergence, limy_,.. gy = g in T"9(y,). Defining the
sets Fr y, O, F, k[w}\l, 0[71] in the same way as above, Lemma 7.9 gives that

dt
)|y (dy) —
A i SOOI

XB(ya)(X) dt
¢ Fin (/DM| N1 1va(dy) — )yd(dx)<c||gN||m

As k — —eo, the middle term tends to 0; therefore, the support of fgy is con-
tained in the union ez T1—q (0,[("1]\,) ND. Clearly, Oy y C Oy implies Ti_p (Ol[cn]]\,) -

Tiq (OW)’ therefore, a limiting argument shows that the support of g is contained

in the union Uz T1—y (O[ ]) ND.

Choose cubes (Q}')men and functions (¢;"),cn as in Lemma 4.12, applied to the
[ ]

open sets O, * which are contained in W + %3. Define for (y,7) € D,
D) = (L, o 0= 2y, g (50O 0)7 ),
P e @) 5
and put .
M= O ) )= R,
Then,

=3 S

keZ meN
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Let C be a constant to be determined later and denote by (Q}')** the cube that
has the same center as O}, but side length multiplied by C. Let us further denote
by o;" the length of the diagonal of Q' and by cJ' its center. We now show that
supp(ay’) € T1((QF)*™). We have

supp(a}) C Ti_n (O{T) N {(n.t) €D y e (OF)"},

where (Qf')* is as in Lemma 4.12. Therefore, for (y,) € supp(af’), we have
DE

d(y,F, M >(1—m)tandy e (QF)*. Forz & (Q}')** this gives
d(y,z) > d(z,¢}') —d(y,cf') > (L—B)&" (7.9)
) = yCk ) Z 2\/ﬁ 2 k >

where p = p,10,/7 4 is the constant from Lemma 4.12. Moreover, using property i)
in Lemma 4.12,

m n 1 m
dey F™ < (p+ )8
Foru € Fk[ﬁ] such that d(c}',u) < (p + %)8/" + &, this gives

3p+1

(1=m)t <d(y, ™) < d(y,u) < d(y,c}") +d(c]',u) < 5" +e.  (1.10)

Upon taking C = 2+/n(5 + 3p “)) from (7.9) and (7.10) and letting € | 0, we infer
that

3p+1
d(y,z) 2 &' >
08 = 5
This means that (y,r) € T{((Q)**), thus proving the claim: supp(a}') C

T((Q8)™)-
Using the definitions of A;" and 4} together with the doubling property for ad-
missible balls, we also get that

dt 1 1
/ |ai (v,1)[? Yd(dy)T TS C 7
Ya(QF) Ya((QF)) 4
Up to a multiplicative constant, the a' are thus T'9(y;) o-atoms for some o =
o(C,n) > 0. To get the norm estimates, we first use Lemma 7.9. Noting that (y,7) €
Ti((Q))™) and x € B(y,t) imply x € (Q}')**, we obtain

dt
He //R £, %Tl((ka)**)(yvt)|f(%t)|q7d(dy)7

k+1

<C - (//XB ) le ))) ot )| Fou )‘qyd(dy)d )yd(dx)

<C/ J H d
— JRaneg) 7Gx )”Lq (D24 )>'Yd( *)

< C22E Ny ((0f)™) < C2%u (@),
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This then gives

>I =33 \Jurup <Y 2uol.

keZmeN keZmeN keZ

Because x € O[”]

3
implies .2y (xo0,)(x) > 1 -1 i.e.,
o 3
o c{xew: 47 (xo)(x) > 1-T},

the weak type (1,1) of the truncated centered Gaussian Hardy-Littlewood maximal

function . : defined by using only %’x -balls (see (4.101), gives that

(1-my(0") < cy(0y)

and thus
(=M 3, ¥4 X 2000 S [ wlxeR: > 5)ds = fllriagy:
keZmeN keZ

O

As an application of the atomic decomposition, we prove a result on change of
aperture of the cones. The proof is different from the classical one (see [55]), because
the result is derived directly from the atomic decomposition.

Definition 7.11. For o > 0, the Gaussian tent space Tot’q()/d) with aperture o is the
completion of Cy(D) with respect to the norm,

1l 3y = Wef s e 5,); 000,30 2)) (7.11)
where ©
XB(y,ar)\X

J = Co(D). 7.12

( Otf(x))(yvt) yd(B(y’t))l/qf(yat)v fE 0( ) ( )

Theorem 7.12. (Change of aperture) For all 1 < oy < o, we have Tolc’q(}/d) =
Tolk;q(yd) with equivalent norms.

Proof. Tt is clear that Ty (1) C T (v4); thus, it suffices to show that Ty ?(y4) C
Té’q(yd). To get that, it is enough to show that

dt
Jo € L' (R, y4: LY(D, 7 % 7))7

whenever f € Toi(;q(yd). Observe that (y,t) € D implies B(y,?) € #; therefore, using
the doubling property
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' 1/
e G v ,(f)))lf(% Dy L) vt

= L.(/ D%,XB”(X) £t /o)) ) )

t/a))
XB(y1) (%) 4 dr\1/4
S/]Rd( [, 25 st &) e

= ||Jf||L1 (RYy:L4(D,yy < 4L))

where D := {(x,1) € R? x (0,%0) : (x,¢/a) € D}, and f(y,t) := f(y,t/cx). To prove
the result, it is enough to show that

M7l et D 7 203y < C Mo Nt et oty 7.13)
for f € Ty (va).

Suppose a is a Tolc’q(yd) op-atom. Then, a is supported in T;(B) N D for some
ball B = B(c,r) € Be,. Then d(y,t) = a(y,y/a) is supported in T1(B) N D where
Ti1(B) :={(y,t) € R x (0,%) : (y,t/ct) € T1(B)}. Using that (y,z) € T;(B) and
x € B(y,t) imply x € B(c, aur), the doubling property for admissible balls gives,

XB(*,I)(X) q diN\1/q
/Rd (/ DmW(N/OCN Yd(dy)T) Ya(dx)

< [ 2 by afonaan L) s )
S/ (/ DJZ? y’( ,(f))I (v.t/0)|9%a(dy) =~ ) e ()
: / / D;jBW (x))) |a(y7t/a)|‘1yd(dy)d )”"Yd(B(C,m))l/q,
<[ (f flatres @) ouly) ™)y Bte.r) Y

IN

C(/Rd(//|“ »t) |q7’d(dy)dt) (B < .

This shows that Ja € L'(R9, y;; L9(D, y; x )) Then, using the atomic decompo-
sition, Theorem 7.8, we can conclude that J fe L' (R, y;; LY(D, vy x —)), for all
fe Té (y4). The estimate (7.13) then follows from the closed graph theorem. O

7.4 Gaussian Hardy Spaces H!(y,)

The real variable theory of Hardy spaces originates from the work of C. Fefferman
and E. Stein [79]. There are several equivalent definitions for the Hardy spaces on
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R?, with respect to the Lebesgue measure. We are going to discuss briefly the most
important ones, at least for us, here. First, there is the atomic Hardy space HJ,(R?).
Here, an atom is a complex-valued function a defined on R¢, which is supported on
a cube Q and is such that

1

/Qa(x)dx:O and ol < 5

The atomic space HJ (R?) is defined by
HLY(RY) := {Z?Ljaj: ajatoms,A; € C, D |A;] < 00},
J J

with norm
Al oy = inf{ SIA1: £ = S Aga; Thdl < oo}
J J J

The other relevant characterizations of the classical Hardy space are given using
the non-tangential maximal function .7y, of the heat semigroup

Inrf(x) = sup [Taf()l; (7.14)

(n1)€ery

and the conical square function of the heat semigroup

It f(x) = m </I}

where I, := {(y,) € R? x (0,00): [y—x| <t} are the usual cones in R‘"! with a
vertex at x € R?.
The Hardy spaces can then be defined as the completion of the space of com-
pactly supported functions Co(R?) with respect to the norm
1Ay, = I+ I Fwr s

max

? dt)i, (7.15)

1Tpf0)] &

or with respect to the norm
1Al = I+
It can be proved that these norms are equivalent norms.
The Calder6n-Zygmund operators are not bounded on L' (R¢), but are bounded
on weak-L', which is not a Banach space. Another characterization of H'(R?) is
precisely the subspace of functions f € L'(R?) such that their Riesz transforms R;f

are also in L' (R9), i.e.,

H'(RY) = {f e L'(®"): Rif € L'(R),j = 1,2, .d}.
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Finally, in 1971, it was proved by C. Fefferman in [78] (see also [79]), that the
dual of H'(R?) is BMO(R?), the space of functions with bounded mean oscillations
introduced by F. John and L. Nirenberg in [144].

In recent years, the theory of Hardy spaces has been extended to a variety of
new settings. These developments involve replacing the (Euclidean) Laplacian with
a different semigroup generator L, and the space R endowed with the Borel o-
algebra and the Lebesgue measure with a different metric measure space (M, d, 1t).
Important references include S. Hofmann and S. Mayboroda’s work on the Euclidean
space, with the Laplacian replaced by a more general divergence form second-order
elliptic differential operator with bounded measurable coefficients (see [136] and
the Auscher—McIntosh—Russ Hardy spaces of differential forms associated with the
Hodge Laplacian on a Riemannian manifold [13]. These results rely heavily on two
assumptions: that the measure U is a doubling measure (see Appendix), and that the
semigroup generated by L, {¢'"}, has some appropriate L? off-diagonal decay: for
f € L*(R?), there exists a constant C independent of £, F, and f such that

e, < e+ LED g 1),

where E, F, are Borel sets in R?.

Given the success of Hardy space techniques in deterministic partial differential
equations, we can expect that a Gaussian analog would similarly have applications
to non-linear stochastic partial differential equations and stochastic boundary value
problems.

There have been several attempts to define Gaussian Hardy spaces, but the main
difficulty has been the fact that the Gaussian measure is not a doubling measure and
the Ornstein—Uhlenbeck semigroup does not satisfy the kernel bounds required to
apply the non-doubling theory of Tolsa [274]. The first result was obtained in 2007 by
G. Mauceri and S. Meda in their seminal paper [174]. Their work is striking precisely
because the Gaussian measure is not doubling, but the key to their success relies on
the fact that they discovered that the Gaussian measure is a doubling measure when
restricted to the class of admissible balls (see Proposition 1.6). The Mauceri-Meda
Hardy spaces H;t(yd) are defined via an atomic decomposition. An atom is either
the constant function 1 or a function supported in an admissible ball B € %) with
vanishing integral and satisfying an appropriate size condition. More precisely,

Definition 7.13. Ler 1 < r < oo, a (1,r)-atom is either the constant function 1, or a
function a in L' () supported in a ball B € %, with the following properties:

[ a)matar) =o. (7.16)

and

1 . o1
(7 a0 wlan) " < s (1.17)
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or equivalently,
lallsy < va(B)'/. (7.18)

Then, we have

Definition 7.14. The atomic Gaussian Hardy space H;,‘r(}/d) is the space of all func-
tions f in L' (y;) that admit an atomic decomposition of the form

=2 Ma (7.19)
k=1
where ay is a (1,r)-atom and Y| | M| < oo, with norm

[Fa[e zinf{ Sl f =Y hear, ax (1,7) —atomand Y | 4] <oo}. (7.20)
Hat (Y) k=1 =1 k=1

By duality with the BMO(y;) spaces, it can be proved that all Gaussian Hardy
spaces Hal,"r(yd) coincide for all r € (1, ) with equivalent norms. Moreover, in [177,
Theorem 2.2], G. Mauceri, S. Meda, and P. Sjogren prove that this can be extended
to the case r = oo. Thus, we can denote any of them simply by H),(7;) and use any
of the equivalent norms. Additionally, the Mauceri-Meda space H/,(y,) provides a
good endpoint to the L scale from the interpolation point of view.

J. Maas, J. van Neerven, and P. Portal in [168] and [169] developed an alterna-
tive approach to the theory of Hardy spaces for the Gaussian case. This involved
considering adequate dyadic cubes, Whitney-type covering lemmas (which were
discussed in Section 4.1), related tent spaces and their atomic decomposition (which
were discussed in Section 7.3), and techniques to estimate non-tangential maximal
functions and conical square functions (see Section 4.6).

In 2012, P. Portal in [231] gave another characterization of Gaussian Hardy
spaces, introducing two new spaces:

Definition 7.15. i) The (maximal) Gaussian Hardy space, or non-tangential max-
imal function Hardy space, H) (74) is the completion of the L? range of L,

max,a

R(L),! with respect to the norm

£ 11

max,a

(7) = ||'yy*(17a)f||1,77 (721)

where Z,*(l,a) is the non-tangential maximal function associated with the
Ornstein—Uhlenbeck semigroup (4.84).

'In [231], the spaces are defined as completions of Cy (R?). This unfortunate mistake was
pointed out in [232]. These spaces, just like other Hardy spaces associated with an operator L,
can only be defined on the range of L (where the reproducing formula holds in a L' sense). In
other situations, this is only a minor technical hindrance. For the Ornstein—Uhlenbeck opera-
tor, however, this is critical because of the change of spectrum at p = 1.
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ii) The (quadratic) Gaussian Hardy space H) (y4) is the completion of the L*

quad,a

range of L, R(L), with respect to the norm,

Wy, = W+ 1 T (1.22)
where S,y is the “averaged version” of the non-tangential Ornstein—-Uhlenbeck
maximal function, (4.91).

Then, we have the following crucial result:

Theorem 7.16. Given a > 0, there exists a’ > 0 such that the norms || - || .1 and
Hquad‘a(Y)

-l H (yare equivalent; therefore,

quuad,a(yd) = Hrizax,a(yd)' (7.23)

The proof of this result is technically very difficult and long. We give some of
the main elements (for full details, see [231, Theorem 1.1 ]). The proof is based on
the Gaussian version of A. P. Calderén’s reproducing formula (2.59).

First of all, observe that from Theorem 7.12, we can immediately obtain one of
the required inequalities, because

|-Sarf

1y <CIZY (La) fll1y,

for some C,a’ > 0.2

Therefore, to prove Theorem 7.16, we need to prove the reverse inequality.
The (local) part

") N dr
W)= [ CL Tl ) T (7.24)
is treated, via atomic decomposition of the tent space T'(y;), leading to the esti-

mate,

HJlf”H,}m_a/W) <C(Iflhy+ ||f\|qumva(y))- (7.25)
The (global) term,

Jof@) = [ (PLNIT d 7.26

wf(X) 1= m(x)( ) (1+a)t2/af(x)7a (7.26)

is very problematic, as the boundedness of the square function norm || |1 ,, does
not give any information about it. Nevertheless, estimates of the Ornstein—Uhlenbeck
semigroup give the estimate,

||Jlf||HVLM,(y) <" fllhy- (7.27)

2 Actually, Theorem 4.43 gives a slightly stronger inequality involving Y‘;‘,( 1,d'), the “av-
erage” non-tangential maximal function.
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Let us look at the main argument of the proof in more detail. Using the Gaussian
version of A. P. Calderdn’s reproducing formula (2.59)

= d
= [ +C [ LT g af )

for f € L*(y,), in L?-sense, and the atomic decomposition, we can prove the fol-
lowing corollary of Theorem 7.8, for ¢ = 2. This corollary is the actual underlying
identity for proving Theorem 7.16.

Corollary 7.17. ForallN e Nja> 1,b > % and o > a? there exists C1,Cy,C3,Cy >

0, and d sequences of a-atoms {Ay, j}u>1 and numbers (A j)n>1 € ', such that for
all f € C2(RY) and x € R4,

9= [ Fo)ut) - clzzzn, [wn Tz/a(wf')*An.,j(x,r))?

/ln

i\ dt
+C22 anj/ x mx ) th/a (t(a}{) A,Lj(x,t))?

j=1n=

m(x)

dt

-G Z / (LN T2 4 (ch(x,t)ta;Taz,z Ja f(x)) -

-~ dt
+G /mm LY T2z 0 f () < (7.28)

b

and
d oo
Zz n/|<CHf||H1 (y)
where ((9){)* =V2x;l; - f ax , the formal L2(y,)-adjoint of 33, see (2.12).

Proof. Let us recall that L = 72?:1 (87{)*87{, see (2.13). Hence, as L and T;,t > 0
commute,

H
M&

(LT )2 o f () (PLN(9)) 07 T2 o T o ()

~.
Il
—_

||
M&

(PLN T2t (07)" (X0 (x,1) + xpe (x. 1)1 T2 o f ().

~.
Il

Set Fj(x,t) := XD(x,t)ta}{Taztz/af(x), for j =1,---,d. We need to check that
F;j € T"2(y,), i.e., that they have an atomic decomposition.
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Using Theorem 1.6 ii) we have, taking the change of variables t = /ots

7o <€ L, (I, oo Tas af O (@) )l
<c ([ [ 2osalton o)) @
SC,/H‘@(// Jais) fgg((); a)))|sa Ta252f(y)‘27d(dY)%)l/2}/d(dx)
<CL (I 2o 50T 1) Pt )

IN

L o 0T 1) Prtan) ) (),

as Y;(B(y,v/as)) > v:(B(y,s)). Then, by the change of aperture formula, Theo-
rem 7.12, and the change of variables at = s, we get

x y,az diN\1/2
il <€ Ly (L L iy PV Fe 0P ) ey

<[] "”‘” VT 0Pl ) ) < 1y

quad.a

Then, using Theorem 7.8, we conclude that

2 Anj(x,1),

with ¥ 1 |A, j| < ee, for j=1,---,d. Hence, using the Gaussian version of A. P.
Calderén’s reproducing formula

1@ = [ IO +C [ RDNNT el 0 S

o d
= [ 10ty +c [nm (LM T saf ()

X)

,CZ AL Tt G o)+ 10T 0

d
= [ fomtan)+c /,,lm (LM T sl ()

fcz / B DT O Deole) + e T 00

dt
= [ f0man)+c /,,m (PLN T st @) S
b
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3 [ D Tt 34 205 10T S

d b d
cy /0 (LY T (3) e (010 Tz f (0 !

dt
Rd F)va(dy) +C/ 2L N+1T(1+a tz/af( )
mgv) i dt
¥y 2 Mo / (PL) T 1 (2) A s (e0)
j=ln=

m(x)

b - i dt
_cz / (PL)N Ty () 2pr (6, 0)10) Ty 1 f (6) -

It is easy to check that the interchange of the (Bochner) integral with the sum is
allowed. Finally, using that m(x)/b < 2, we get

m(x)

L b 2 N i\ * dt
2 Z)‘”]/O L) Tz/oc (8}/) An,j(xJ)T

j=1n=1

I 2 : dt
:ZZA”]/ t2/a }{)An/()”)t

j=1n=1 0

d e 2 vk dt
_z Z}’n,j X[m (7 L) 7;2/051‘(87) An,j(xat)T'
j=1n=1 U

=

This gives (7.28). Thus, we have shown that ||Fj||T1.2<Yd> < fll

quad.a(Y) » SO

d oo
Z'l; il < ClA Ml - B

The proof of Theorem 7.16 uses (7.28) obtained in Corollary 7.17.
For a > 0, Theorem 7.12 gives that there exists a’ > 0 such that H a,(}/d) C

Hquad,a(yd)' Let us fix ¢’ and pick

324
o > max {238,3284,4\/592“2} , b > max{ 2e, ¢ . ,
(00 —32e4)(1 — e 2a%/ )

and N > d/4. Let f € CZ(R?) and apply Corollary 7.17. We have
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i <€ = |77 0.0 ([ s0mian)

max,a lr'y
i\ s dt
+CZ}ZW,| [0 T (1)) Ani0) & .
j n ma.r,a/
i\ dt
+CZZM A 70 0L T (10 A0s0)
j=1n= b2 t HJHLX
= i dt
+CZ G e e D)
H'
Z 27N+ dt
0| o PO Tt O D) Wl
YT H

max,a’

As the Ornstein—Uhlenbeck semigroup is conservative, i.e., T;1 =, t > 0 then

|7 ([ roma)|

<y <l o0

To bound the rest of the terms above, several estimates of Mehler’s kernel (oft-
diagonal estimates) are needed, in addition to the introduction of the notion of
molecules (see Sections 3 and 4 of [231]). Once that is done, we can then bound
the remaining terms. Using [231, Proposition 5.5], we get

o

t <C<|flhy <Clflla

| P T a0 o

H (7)

max,a

Now, for j =1,---,d, using [231, Proposition 5.4], we obtain

m()
b

; dt
(PL)V T2 4 (XDC (0010 T2 f(-)) =

<C<|flhy < C”f”H;uad,a/W)'

0 /(7)

mux a

Applying [231, Proposition 5.3 ] gives that

whereas Proposition 4.2 combined with Theorem 4.3 of [231] gives, for j=1,--- ,d,

700 ([, ronatan)

2 .
[ 2o OCL Ty (10 40s00)

t

H L (7)

max,a

<C.
Ly
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Therefore,

d o
Hf”H,Lax,a/(V) < CHf”Ht}uad‘a’(y) +CY D il <Cl Sl a0

1
j=1n=1 quad,a

G. Mauceri and S. Meda proved that the topological dual of H;;r(}/d) is iso-
morphic to BMO(Y,). They also proved that the imaginary power of the Ornstein—
Uhlenbeck operator, (—L)'* and the adjoint of the Riesz transforms #; are bounded

from Hal,”(yd) to L' (7). Unfortunately, it was proved by G. Mauceri, S. Meda, and
P. Sjogren in [176, Theorem 3.1] that the Riesz transforms %; are not bounded
from H),(y4) to L' (7,) in a dimension greater than one. On the other hand, P. Portal
proved, in [231, Theorem 6.1], that the Riesz transforms %, are bounded from
H) . .(v1) to L' (1), but it is not known if the imaginary powers of (—L) are bounded
there. Also, nothing is known about duality and interpolation for H _ (y;). Thus,

these spaces are different.

As we have seen, Portal’s proof is based on the theory of Gaussian tent spaces
Tolg’Z(yd). Although these tent spaces are defined using an atomic decomposition,

and the equivalence of H!  (y;) and H qluud(Yd) uses the atomic decomposition of

TJ’Z(yd) via the Gaussian version of Calderén’s reproducing formula, their explicit

characterization is not provided in [231]. In [37], T. Bruno introduces a new atomic

Gaussian Hardy space X !(y,), which is strictly contained in the space H], (y,).
First, we need the following notation,

Definition 7.18. Let E be a bounded open set and K be a compact set in R?.

i) We denote by q*(E) the space of all functions f € L*(E) such that Lf is constant
on E, and by ¢*(K) the space of all functions on K, which are restriction to K of
a function in ¢*(E') for some bounded open set, such that K C E'.

ii) We denote by h*(E) the space of all functions f € L*(E) such that Lf =0 on
E, and by h*(K) the space of all functions on K that are restriction to K of a
function in h>(E') for some bounded open set, such that K C E'.

The spaces h>(E)* and ¢*(E)* are the orthogonal complements of 4?(E) and
¢*(E) in L*(E,y,) respectively. The spaces h*(K)* and ¢*(K)" are the orthogonal
complements of #%(K) and ¢*(K) in L*>(K, y;) respectively.

Now, following G. Mauceri, S. Meda, and P. Vallarino in [178], we defined the
atomic Gaussian Hardy space X' ().

Definition 7.19. An X'-atom is a function a € L*(y,), supported in a ball B € %,
with the following properties:

i) a€q*(B)*.

ii) [lall2y < va(B)"/>.
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Definition 7.20. The atomic Gaussian Hardy space X' () is the space of all func-
tions f in L' (y;) that admit an atomic decomposition of the form

= ha (7.29)
k=1
where ay is a X' -atom and Yy [Ak| < oo, with norm

£l = inf{ Sl f= Max, ax X'-atomand Y || < oo}. (7.30)
k=1 k=1 k=1

If B € %, the functions in ¢*(B) are referred to as Gaussian quasi-harmonic
functions in B.

Observe that the space X' (7;) is strictly contained in the atomic Gaussian space
H)(74) of Mauceri and Meda. Indeed, the atoms defining H',(y;) are supported on
admissible balls of %, but have only zero integral, a much weaker condition than
being in ¢>(B)*. The great advantage of the space X' (7;) is that T. Bruno proved that
the Riesz transforms are bounded from X' (y;) to L' (7). However, the understanding
of the space X' (y,) is far from complete; for instance, it seems that X' (y;) is also a
subspace of H! , (v4).

7.5 Gaussian BMO(7y,) Spaces

In 1961, F. John and L. Nirenberg [144] introduced the space of functions of bounded
mean oscillations (BMO) with respect to the Lebesgue measure, as the space of all
locally integrable functions on R? such that

1
SUB 157 o 0~ Jldy <o (31)

where 2 is the family of all open cubes in R¢ with sides parallel to the coordinate
axes, and fp = @ Jra | ()|dy, the average of f over Q with respect to the Lebesgue
measure. It is easy to see that by replacing the family 2 with the family of balls £
in the formula above, we obtain an equivalent norm on BMO.

Extensions of the space of functions of bounded mean oscillations have been
considered in the literature. In particular, a theory of functions of bounded mean
oscillations that parallels the Euclidean theory has been developed on spaces of
homogeneous type by R. Coifman and G. Weiss [56] (see also [170]). As mentioned
before, (R?, |- |,7;) is not a space of homogeneous type and the theory of BMO
spaces developed in [56] and [170] does not apply to this setting.

More recently, spaces of functions of bounded mean oscillations have been
introduced on measured metric spaces not of homogeneous type, specifically on
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(R4, |-|,u), where u is a (possibly non-doubling) non-negative Radon measure. In
particular, X. Tolsa [274] has defined a regular BMO space, RBMO(1L), whenever u
is a non-negative Radon measure on R4 , which is n-dimensional, i.e., there exists a
constant C > 0 such that for any ball B(x,r) C R?

w(B(x,r)) <Cr",

for some n € [1,d]. Tolsa’s space enjoys many good properties of BMO of spaces of
homogeneous type. In particular, Calderon—Zygmund singular integrals are bounded
from L=(u) to RBMO().

As mentioned before, y; is trivially a d-dimensional measure. However,
RBMO(Yyy) is not the appropriate space to study the boundedness on L™(7,;) of
Gaussian singular integrals, because the kernel of these operators does not sat-
isfy the standard estimates uniformly in the whole complement of the diagonal in
RY x R?. As we discuss in detail in Chapter 9, the local part of Gaussian singular
integrals satisfies the usual estimates of a Calderén—Zygmund operator. In 2007, G.
Mauceri and S. Meda in [174] also introduced Gaussian BMO spaces, BMO(,;), as
follows:

Definition 7.21. The Gaussian space of functions of bounded mean oscillations
BMO(Yy,), is the space of functions f € L'(y;) that satisfy

! Y
S0 T ) =@ <= (732)

where

1
1§ =y S mta)

the average of f over B. We define

A7 = sup —— / F(x) — £ y(dx), (7.33)

EJ]

and the norm in BMO(Yy) is then defined as

I fllBvocy) =

Observe that by definition BMO(y,) C L'(y,). Moreover, it can be proved that
BMO(v,) is a Banach space, and also that if we replace the family %, with any other
family 4, in the definition of BMO(Y;), we obtain the same space with an equivalent
norm (see [174, Proposition 24,2

3 Also, we obtain the same space with an equivalent norm if instead of Z,, we consider
2, the admissible cubes of parameter a, i.e., the cubes Q with sides parallel to the axes , with
a center at ¢, and a side length I, < am(cQ).
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We define the (local) sharp function f* as follows:
Definition 7.22. Given f € L'(y,), the (local) sharp function f* is defined as

(x) = ! _
= s s 100 (@) (734

Clearly, f € BMO(y,) if and only if f* € L=(y,), and || f||7" = || f*||es.y.. More-
over, it is straightforward to prove that f? < 2.41f(x), for any x € RY.

Additionally, G. Mauceri and S. Meda in [174] prove that an inequality of John—
Nirenberg type for admissible balls holds for functions in BMO(Yyy) (see [174, Propo-
sition 4.1]) and that the topological dual of H/,(y;) is isomorphic to BMO(7;). The
proof of this result is modeled over the classical result of Fefferman, although there
are several additional difficulties to overcome to adapt the original proof to the Gaus-
sian setting (see [174, Theorem 5.2]).

7.6 Gaussian Lipschitz Spaces Lip(7y)

The standard Euclidean Lipschitz space Lipq (R") consists of all bounded functions
f such that for some C > 0

|f(y)_f(x)| §C|x_y|aa xayERn' (735)

This characterization is based on the regularity of the functions. It is known that
the space Lipy (R") can also be characterized by convolution with the standard Pois-

son kernel,
t

QI(X) = Cp (f2+ |X*y|2)(d+1)/27

see E. Stein [252, Section V. 4. 2], as f € Lipq (R") if and only if

%
ot

(x,)f Hm <cr* ! (7.36)
for all ¢ > 0.

We would like to define Lipschitz spaces associated with the Gaussian measure.
Observe that, as mentioned above, the spaces L”(;) are not closed under the action
of the classical translation operator; thus, it would not be a good idea to try to
define them following the classical definition (7.35). Therefore, we use the Poisson—
Hermite semigroup to define Gaussian Lipschitz spaces.

In what follows, we need the technical result about the L!-norm of the derivatives
discussed in Lemma 3.16. From there, we then get the following key result,
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Proposition 7.23. Suppose f € L*(y) and o > 0. Let k and | be two integers both
greater than o. The two conditions

o P, f k
< Ag pt Ko )
|5 Hm,y— it (7.37)
and ,
d'Pf —
<Ay e 7.38
[221). <muare o

are equivalent. Moreover, the smallest Ay and Aq; holding in the above inequali-
ties, are comparable.

Proof. 1t suffices to prove that if k > «,

o*p,
22 <t
and k+1
'R _
|5 < Aaprt e, (740

are equivalent.

Let us assume (7.39). Applying the semigroup property, if t =t + 1, Bf =
P, (P, f), then using the hypothesis and Lemma 3.3,

H 8"“PJH _ H P, (8"szf) H < H 8thsz |8p(t1,',y) d
Jtkt1 an \ oty oty NleyJre’ o g
SAa,kt{k+aCt171
For 1| =1, =1/2 we get (7.40).
Now, assume (7.40). Observe that, again by Lemma 3.3,
O*P f kp(t,x,y) C
|5, <10 [ 15y < 2l
thus, 8 k - 0as — oo, and then using hypothesis
akP;f ak+le —k+a .
ds <A =C " O
e e

Now, we can define the Gaussian Lipschitz spaces as follows:

Definition 7.24. For o > 0 let n be the smallest integer greater than o. The Gaussian
Lipschitz space Lipy () is defined as the set of L™ functions for which there exists a
constant A such that
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", ff e
[ e <At (7.41)
The norm of f € Lipy () is defined as
1 ipey) = 1l +Aa(f), (7.42)

where Ay (f) is the smallest constant A appearing in (7.41).
Observations 7.25. For the Gaussian Lipschitz spaces, we have

i) The definition of Lipy(y) does not depend on which k > o is chosen and the
resulting norms are equivalent, according to Proposition 7.23.
ii) Condition (7.41) is of interest for t near zero, because the inequality

|5
ot

which is stronger away from zero, follows for f € L™ immediately from (3.17),

e ey
ot R4

iti) For the completeness of the Gaussian Lipschitz spaces see Lemma 7.35.

.o
We also define, for o > 0, homogeneous Gaussian Besov spaces B, () as fol-

lows:

<A, (7.43)

‘ =

" p(t,x,
L2LIIN | 3y < Sl

Definition 7.26. For o > 0, let n be the smallest integer greater than o, then the
o

homogeneous Gaussian Besov space type B‘X,_’w(}/) is defined as the set of L' (y) func-
tions such that (7.41) holds for a constant By, .

All these spaces can also be obtained using abstract interpolation theory using
the Poisson—Hermite semigroup (see [271] 1.6.5.)
.o
Observe that Lipy(y) C B....(Y). There are also inclusion relations among the
Gaussian Lipschitz spaces,

Proposition 7.27. If0 < oy < ap, then we have the inclusion

Lipg,(Y) C Lipo, (7).

Proof. Take f € Lipo,(y) and n > ap, then

|54

2 e

If0 <t <1, then t"t% < ¢+ therefore,

|5
o

o)
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Now, if # > 1, then we know from (7.43) that

J"P,f _
|5 < Aatr
and as t~"t* >t we also get in this case
"R f -
| .., < Aatnnme
because n > a; then, f € Lipg, (7). O

Proposition 7.28. If f € Lipy(y) with0 < o < 1, then

IS = flloy < Aa(f)1%. (7.44)

Proof. Applying the fundamental theorem of calculus,

18~ Al = | [ 22Las| <

gAa(f)/Os—H“ds:Aa(f)t“. m

anH ds

0

Gaussian Lipschitz spaces were defined by A. E. Gatto and W. Urbina in [109]
following E. Stein’s approach in [252, Chapter V], using the Poisson—Hermite semi-
group. After the given definition of those spaces in this way, it is natural to ask if
there is a characterization based on the regularity of the functions involved, as in the
classical case. In [159], L. Liu and P. Sjogren have characterized these spaces, for
0 < a <1, in terms of a combination of ordinary Lipschitz continuity conditions,
giving a positive answer to the question posed. The main result of Liu and Sjogren’s
paper is the following:

Theorem 7.29. Let o € (0, 1), an essentially bounded function f € Lipy(y) if and
only if there exists a constant K such that for all x,y € R",

_ o/2
170 =10] < Kmin v =17, (2 ) T (b sine e 2.4

after a correction of f on a null set. Here, 0 denotes the angle between the vectors x
and y; if x =0 o0ry =0, then 0 is understood to be 0.

In one dimension, the inequality becomes,
: =yl \/?
FO) —flx SKmm{x—y“,(i) } (7.46)
1) = £ e (3 W

This is a combined Lipschitz condition, with exponent ¢ for a short distance |x — y|
and exponent ¢/2 with a different coefficient, for a long distance.
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As usual in Gaussian harmonic analysis, the two parts of this estimate correspond
to the “local part” (for short distance |x —y|), in which the estimate coincides with the
Euclidean case, and the “global part” corresponding to the long distance (i.e., |x — y|
big), in which the effect of the Gaussian measure makes the estimate a little different.

In higher dimensions, the expression (|x| 4 |y|)sin® describes the “orthogonal
component” of the vector x —y, because it is the distance from x to the line in the
direction x. To make this clearer, Liu and Sjogren state a non-symmetric inequality
equivalent to (7.45). For x,y € R" with x # 0, we decompose y as y = y; + Y}, where
yx is parallel to x and y', orthogonal to x,

’o. a (=2 /
[f () = f ()] < K min  [x—y|%, + vl (7.47)
L+ x|
This inequality means that the combined Lipschitz condition applies in the radial
direction, but in the orthogonal direction, the exponent is always ¢t. The equivalence
between these two inequalities is valid in any dimension, with a constant K’ > 0
comparable with K.

The proof of (7.45) relies on very precise pointwise estimates of the Poisson—
Hermite kernel p(z,x,y) and its derivatives; for all # > 0 and x,y € R",

p(t,x,y) < C[Ki(t,x,y) + Ka(t,x,y) + K3(t,x,y) + Ka(t,x,y)], (7.48)

where,
t

(2 + e —y[?)nt!

Ki(t,x,y) = )/2 exp(—Ci1(1+|x[)),

for some constant Cj,

x — x|
x|

)—(n+2) 2

t
Ko(txy) = = (P4 2 2

[
(2 + )

xexp(sz — il
X

)%{Ix\>l,x-y>0,\x\/2§\yx\<|x\};
for some constant C,,
K3(taxay) = min(l,t) eXp(—C3|y|2),

for some constant C3, and
2

_ x| \—3/2 ! 2 .
Ky(t,x,y) = — (10g *) exp (*C47M ) exp(—Cs[yy ") Xry>0,1< vl <[xl/2} 5
‘yx| |yx‘ logm

for some constant Cy.

Similar estimates are also possible for the derivatives of p(¢,x,y), both d, p(,x,y)
and dy, p(t,x,y). Thus,
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p(t,x,y) + [t p(t,x,y)| + [t p(t,x,)]
< CIK (t,x,y) + Ko (t,x,y) + K3(t,x,y) + K4(t,x,y)]. (7.49)

Moreover, Liu and Sjogren prove that these estimates are also sharp. For each of
the four kernels K;(,x,y) there is a set E; of points (,x,y) in which p(¢,x,y) is
equivalent to K;(t,x,y), but where the other terms are much smaller; thus, none of
the four terms can be suppressed in the estimate. The estimates are product of a very
deep understanding of the kernel p(z,x,y) and how it compares with the standard
Poisson kernel g;(x) (for more details, we refer the reader to their paper [159]).

The estimates of the Poisson—Hermite kernel p(r,x,y) and its derivatives are of
independent interest, and the proof of the main result is almost straightforward once
we have those estimates. It would be interesting to know if alternative characteri-
zation of the Gaussian Besov—-Lipschitz and the Gaussian Triebel-Lizorkin spaces,
which are defined in the next two sections, using higher order derivatives of the
Poisson—Hermite kernel, can be obtained using similar estimates.

Another open question would be if the characterization of the Gaussian Lipschitz
spaces obtained by Liu and Sjogren is related to the notion of translation operator
introduced by C. Markett in [173].

In the Euclidean case, as mentioned above, condition (7.36) characterizes the
ordinary Lipchitz space only if the functions considered are bounded. Thus, we
obtain the inhomogeneous Lipschitz space; without the boundedness assumption, we
get the larger homogeneous Lipschitz space.

In the Gaussian setting, as no homogeneity is involved, the condition (7.41) with-
out the boundedness assumption defines a space that had been considered by L. Liu
and P. Sjogren in [160]. It is called the global Gaussian Lipschitz space. Using a
result by G. Garrigés, S. Harzstein, T. Signes, J. L. Torrea, and B. Viviani [106], Liu
and Sjogren consider measurable functions f in R¢ with the condition

—Iy?

e
| (V)ldy <, (7.50)

I8 Vin(e+ )

which according to Theorem 1.1 of [106] guarantees that the P, f is well defined.

Moreover, the same condition ensures that P, f(x) — f(x) ast — 0 a.e. x € R". There-

fore,

Definition 7.30. Ler o € (0,1). A measurable function f defined in R" and satisfy-
ing (7.50) belongs to the global Gaussian Lipschitz space GLipy () if (7.41) holds.
The corresponding norm is

I fllGLipa(y) = Inf{A > 0 : A satisfies (7.41)}.

This space is actually a space of equivalence classes, as it consists of functions
modulo constants.
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A natural question is what continuity condition characterizes these spaces? To
answer this, Liu and Sjogren introduce the following distance:

dé
Je 1+|E]

with the convention sgn0 = 1. In several dimensions, we use this distance on the line
spanned by x, defining

d(xay) =

| = In(1 4+ )~ sgnayin(1 + )], xyeR, (75D

d(x,y) = [In(1+4|x]) —sgn < x,y > In(1+|yc|)|, x,y€R",

with y, as before. The main result in [160] is the following:

Theorem 7.31. Let o € (0,1) and let f be a measurable function in R". The follow-
ing conditions are equivalent:

i) f satisfies condition (7.50) and f € GLipy(7).
ii) There exists a positive constant K such that for all x,y € R"

‘f(y) _f(x)| < Kmin{‘x_y|a7d(x7yx)a/2+ |y;c‘a}7 X,y € R" (752)

after a correction of f on a null set.

Moreover, the space GLip4(y) is defined in terms of the distance function d.
Indeed, (7.47) implies boundedness, then (7.47) holds if and only if there exists a
constant K > 0 such that,

) = O] < Kmin {1, [x =y, d (e, 2+ 3|},

for x,y € R". This also tells us that for bounded functions (7.47) and (7.52) are equiv-
alent.
The condition (7.52) implies only

f(x)=0n|x)*? as |x| — oo.

Liu and Sjogren show that this condition is sharp using a counterexample in Sec-
tion 7.5.

To obtain (7.52), they need to modify the kernel K3 to decay for large values of
x, refining a few of the previous arguments. The estimates (7.48) and (7.49) remain
valid if the kernel K3(z,x,y) is replaced by

t
7 }eXP(—C3|)’|2)

Ks(t,x,y) Zmi“{l’w

The introduction in (7.51) of the distance d in the context of Gaussian harmonic
analysis is an interesting point that may be used in other problems.

After several technical results, analogous estimates can obtained for f €
GLipy(y) with norm 1:
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e Foralli=1,2,---n,t >0,and x € R",
|9 Pf ()] < €t
e Forallt >0and x = (x1,0,---,0) € R" withx; >0,
|0k P f(x)] < C* 72 (1421) 7"

The proof of the main result, Theorem 1.2, follows almost immediately from all the
previous estimates.

7.7 Gaussian Besov-Lipschitz Spaces B (7.)

In the next two sections, we study the Gaussian Besov-Lipschitz and the Gaussian
Triebel-Lizorkin spaces. They were introduced initially by E. Pineda in his doctoral
dissertation (see [224] and also [226]).

For any o > 0, we define Gaussian Besov-Lipschitz spaces By, ,(7u), following
E. Stein [252] to define and study the B} q(yd) spaces, using the Poisson—Hermite
semigroup. But because the Poisson—Hermite semigroup is not a convolution semi-
group, the proofs of the results are totally different to those given there.

As in the case of Gaussian Lipschitz spaces, Besov—Lipschitz spaces can also be
obtained as interpolated spaces using interpolation theory for semigroups defined on
a Banach space (see for instance Chapter 3 of [38, 112] or [271]).

We use the representation of the Poisson—Hermite semigroup (3.8) in a crucial
way, using the one-sided stable measure

¢ e—t2/4s
th(lm (ds) = ﬁW‘“ = g(t,s)ds,

and the estimates (3.19), (3.20) and (3.21).

In Chapter 3, we have obtained an estimate of the L”(y;)-norms of the derivatives
of the Poisson—Hermite semigroup (see Lemma 3.5); additionally, we have

Lemma 7.32. Given f € LP(y;),0 > 0 and k,l integers greater than o, then

|

o'Pf

—k+o - . t —l+o
if and only i HiH < Ayt .
otk pr if vif ot! Py :

Moreover, if Ay (f),A;(f) are the smallest constants appearing in the above inequal-
ities, then there exist constants Ay o and Dy o such that

Ar1eAc(f) SAI(f) < CDryoA(f),
Sforall f € LP(y).
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Proof. Let us suppose, without loss of generality, that k > [. We prove the direct
implication first. For this, we use again the representation of the Poisson—Hermite

semigroup (3.8),
oo

RFO)= [ Ty 172 as).

Then, differentiating k-times with respect to ¢,

IR f -
PRI [0 Dol ),

Using the identity (3.19), it is easy to prove that for all m € N

PRI

I

therefore, givenn € Nyn > o

PRIC) IR,

ot O]
Thus,
"k f e anﬂpsf e —(n+1)+a
e A & B G B
_ An+1 (f) t*nJrlZ
n—o '
Then,
An+1(f)
A <
() < T
and as n > o is arbitrary, by using the above result k — [ times, we get
A1 (f) A2 Ar(f)
A < < <...<
=== s (I—a)(li+1—a) = "~ (-a)+1-a)...(k—1—a)
= Dy1,aAk(f)

To prove the converse implication, using again the representation of the Poisson—
Hermite semigroup (3.8),

i +1) =By (B0 = [ BN @),

Therefore, taking ¢ = #; +#, and differentiating / times with respect to #, and k — [
times with respect to 71, we get

du(x,t) = 9P k!
e ST
2
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Thus, using the inequality (3.21) and the fact that the Ornstein—Uhlenbeck semi-
group is a contraction semigroup, we get

ku(-, o0 I k=1, (1/2)
15562, = IO, |t

alPt f o0 ak 1 (1/2) i
S H Bti H /0 atk 7y (ds)’ < G- lHat Pzz ‘pytl
2 5 )
< A (f)y ok
Therefore, taking 1, =1, = £,
H&ku(.7t) H <CA (f)( ki
ok llpy = TV ’
and then,
Ci—i
Ak(f) S 27WAI(JC).
O

The following technical result is crucial for defining Gaussian Besov—Lipschitz
spaces:

Lemma 7.33. Given o0 > 0 and k,l integers greater than o. Then,

()
()

Moreover, there exist constants A j.q, Dy .o such that

Dk,l,a(( /0+°° (tzf Py H )th ) - ( /0'+°° (tk,
< Ao (/0+°° (fl*a

Proof. Let us suppose, without loss of generality, that k > I. We prove the converse
implication first; from Lemma 7.32, we have

k 1
Tl 7)<

if and only if

) )L <

) )’

|y

%], <

'J/

-k
m(2)
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Thus,

()

1

k 1 a f 1
%Hm)m" SO,

/0+ 8PfH )qu)é

with Ak717a = Ck_12k‘°‘.

For the direct implication, given n € N, n > ¢, using the previous lemma again,
"R f

we get
+o0 aVH—lP‘
o Iy A e
ot" P,y t dsntl pY

Therefore, using Hardy’s inequality (10.101),
(e, )
1
< ([l [T )
~( / ( /*“’ m\ ) d,)%
<ama U,

Now, as n > ¢ is arbitrary, using the above result k — /, times

()

)
1 a9 RS adty g
<= 5= L))

o0 a1 1
<(l—06).(ll+1—oc)(/o+ (11 ’ PtprQ@)q

atl+2 t
<ol [ (2 Yy’

1
here Dy o = ' ’
where Dy ; o (I—a)(+1—a)...(k—1—a)

Following the classical case, we are going to define the Gaussian Besov—
Lipschitz spaces Bp q(yd) or Besov-Lipschitz spaces for Hermite polynomial ex-
pansions.
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Definition 7.34. Let oc > O, k be the smallest integer greater than o, and 1 < p,q <
oo, For 1 < g < oo the Gaussian Besov-Lipschitz space Bp q(yd) is defined as the set
of functions f € LP(vy), for which

(/Om(tkoc

The norm of f € By ,(Ya) is defined as

1/q
* d
Fllsg, = 171+ ( G >qj> (7.55)

For q = oo, the Gaussian Besov-Lipschitz space By, .(Ya) is defined as the set of
Sfunctions f € LP(v,;) for which exists a constant A, such that

o*kpf
otk

1/q
)q‘it> < oo, (7.54)

pY

o*pf
otk

Y

—k+a

), <

otk Hp Y
and then the norm of f € By .(Ya) is defined as

1 Fllag_ = 1+ Ax(F), (7.56)
where A (f) is the smallest constant A appearing in the above inequality.
In particular; the space BZ .. (Va) is the Gaussian Lipschitz space Lipo(Ya)-

Lemma 7.33 shows us that we could have replaced k with any other integer /
greater than o and that the resulting norms are equivalent. Let us prove now that the
Gaussian Besov—Lipschitz spaces are complete.

Lemma 7.35. Forany o > 0, 1 < p, g < oo, the Gaussian Besov—Lipschitz spaces
By ,(Ya) are Banach spaces.

Proof. To prove the completeness, it is enough to see that if {f,} is a sequence in

By ,(Ya), such that z] [ fallg, < oo, then 2 fn converges in By (V1) Because
n= n=1

< < tee adt\ g
k-
>, Unlag, = 3 (Il () (4 Tern )Y <o
n= n=
In particular, this implies that
& < Fee adry g
< oo, and (/ (t"‘“ P )—)"<oo.
3.l <=y and 3 ( SwBh| )

But as LP () is complete, there exists a function f € LP(,), such that
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n
We need to prove that z fa=finBy  ie. lim I Zf,- _f||32‘.q =0.
n=1

Given ¢ > 0 and x € RY, by linearity, P, / p(t,x y fi(y)dy and

then

lim p(t.5.9) Y. fi0) = plr.x.5) iﬁ@) — Pl fl) ey

i=1 i=1
and foralln e N

p(x) S Fi0)| < txyzm pltxn)gly) ae.
i=1

As / p(t,x,y)g(y)dy = Pg(x) < oo, ie., p(t,x,y)g(y) is integrable, we conclude

using Lebesgue s dominated convergence theorem, for any # > 0 and x € R?,

n—oo : n—eo

im P i) = fim [ p(r.6) 32 70) = [ ple.e) 00y = o).
i=1

n
Similarly, we have, lim 7;( )’ fi(x)) =T; f(x), forany ¢ > 0 and x € R?, and again
n—o0 :
i=
using Lebesgue’s dominated convergence theorem,
n ak n ) n ak

n k
lim 3. P (filx lim;ikﬂ(;ﬁ(ﬂ)lim T(Y, i) g it (ds)

n—soo n—soo ! n—oo J( ]

0 n—eo

i 73 ) ()

k

= [ rr Dot = Zenso,

forany ¢t > 0and x € RY. Then, for t > 0, using Fatou’s lemma,

ak
Hatk nil), _/ i | 0@
— Jl_r}lz& thfz ‘ Ya(dx)
)4
< liminf —szi(X)] Ya(dx).
1

Thus, for any ¢ > 0, by triangle inequality,

ak
7 Pfi

n ak
‘ < liminf|| S 2
PaV n—ee i=1

Bifi
pY

)
p?’y

H azk
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and again, by triangle inequality,
oo ok adry g
k— q
5w, ) T)
(/0 ( k tf DY t
~+oo
g(/ (k O‘hmlnf(
0 n—soo
400
< timint / (o (
n—oo 0
TG
n=1 0

Q=

')
D))
))<=

‘aﬁ’ﬁ

i

8ﬁtﬁ

wPIfn
Then, f € B},

Let, for each ¢ > 0,

w0 =< (imine (3| ] )+ 5] )

Then,

| e
S/(:w( (hﬂiﬂ‘f(il a;kp’f’ )*Hatk ‘p,y))qit
< [ (e mie (5| 5ena], )
<2imint ([ (1(5 | Sna], )"

hence,

(7w ([

BN

8ﬁBﬁ

i o adty\1/4

: : ) T

2t ([ (| o)

= e adiy
=23 () (el gans], ) ') <
2; 0 8ﬂ’ﬁ’ i) =
Thus, h € L1((0,00), %); therefore,

hr) = 1+ (hggf(zl atkP,f, )+H8tk 1)< aer
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and this immediately implies

< oo ae.f. (7.57)

z Hatk B +Hazk ’p,’y

Let ¢ > 0 such that A(t) < oo, we know that for all x € R?

a ak n
lim(zakP,fl — i

n—roo

Set, for each x € R4,
-2 Z ] Px 9.
Then, from the above H € L”(;) and, therefore, as for any n € N and any x € RY,

n ak ak fd 81(
G = SRS )] <2 3| S| = H).

Then, using Lebesgue’s dominated convergence theorem,

k

. L J ok
Jim | X, Sensi— gt
ok p
=im Rd zatk F fix wptf(x)‘ Ya(dx)
ok p
= fn Prﬁ )= 5B (0] 1aldx) = 0,

and as h(t) <o a.e.t, we conclude,

,}51; tk ,f‘ —0, ae.r.
Now, foreachn € N,
&k n n
’ﬁ’%(;f"‘f)u ZHatkP’f' +h:£13f(i§; ‘8#‘ Rfi )
.. ok
_ 21%13f( 575, )
ak
For each t > 0, let G(r) = liniinf <2t > b fi ) Then, using Fatou’s
n e \

lemma and triangle inequality,
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(/Ow\c(;)\q?)l/q SZlirIgigf(/ (- aZHa;k n )q?)l/q

d o adry1/4
<2 (/ (t"“" —P ) —) < oo,
- ,E’l 0 o py/ t
1
Thus, G € L"((O,oo),%), S0 11m1nf( 8tk tfl )q; is integrable, and

therefore, using Lebesgue’s dominated convergence theorem,
o adt\1/4
im ([ (- Gn ()],
v 0 ' Z‘f py/ 1
2 adt\1/4
= ([ tm e e (B o)), ) ) -
(/0 Pt ok’ Zif f py/ 1

Hence
n
lim fi—f
n—)wig{ B?,‘_q
n
o 1: _ . ka _ qﬂ)l/q—
= tim (| 1], (7 (e (B 1), ) ) o

O

Finally, we study some inclusions among the Gaussian Besov—Lipschitz spaces:
Proposition 7.36. The inclusion Bp'y, (va) C By, (va) holds if either:

i) o1 > o > 0 (qq and g need not be related), or
ii) If g = o and q1 < q3.

Za),
otk lpy) ¢

~+oo
Proof. To prove ii), we set A = (/ (tk_a
0

Now, fixing ty > 0
) k
/ (-
[
2

8k bf

O*P f a1 dt
— < AN,
atk Hp y) t

takes its minimum value at the upper end point (¢t =

s
to) of the above integral thus we get

k
H J P’](()f 7 /to tk=0)a1 ﬂ < AT,
ark llpyJo t
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t() f

That is H < CAyy k*‘x, but because #j is arbitrary, then

-

|

< CAr~++e
otk Hp,y - ’

for all # > 0. In other words, f € B

+o0
/ (tk—oc
0

».q, also implies that f € BO‘#X,. Thus, as g2 > q

k
885,<f Hp 7/)qz cit
dtk

~+oo
< / (tkfa
0

+
< (CA)— / (e
0

— (CA)‘IZ*qlAQI = CA® < +oo;

) | S )

ok P,fH )qldt

therefore f € Bp 0

Now, to prove part i), using Lemma 3.5, we have

k
5¥]

T *.t>o0.

Then, given f € B}, taking again

(e

we get, as in part ii),

o), ey
otk lpy) ¢ ’

k
H J BfH < Ccartton,
atk llpy

for all + > 0. Thus,

[, - e, )
0 otk llpy/ t 0 Py

otk t

Foo o*P.f %dt
k—op t
+/1 (t otk H )
— (n+ ),
Now,
(I) = lt(k 02)q2 IR f || £< 1t(k*az)‘h(CA)‘ht(O‘l*k)fhﬂ
0 ottt = Jo t

1
_ (CA)42/ t(al_a2)42$ = CA%,
0
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and
(1) = /+wt(k 0)q 0" Bf e g < /+wt(k 0)qx 42 p—kar =2 dt
1 ok llpyt — 1
= (C12 /+wt—a2q2£ =C.
1 t
Hence,
e kP f % dt
k—o ] .
./0 (t ' otk H ) < el
thus, f € Bp2,. O

7.8 Gaussian Triebel-Lizorkin Spaces F, ()

Finally, we define Gaussian Triebel-Lizorkin spaces F (v4) for any o > 0. The
following technical result is key for their definition:

Lemma 7.37. Let oo > 0 and k,l integers such that k > 1 > o Then

0L (e’
ICL™ Gelgamal)'F)

Moreover, there exist constants Ay .o, D 1o such that

(el ganal) ) < | O \&kﬁ
() g

Proof. Letn € N such that n > . It can be proved that
+o0 an+1
7Pt s / Wpsf (x)

Then, using Hardy’s inequality,

() (el gans])'F)’

t

< oo
pY}/

Eraid
if and only if

orl ks psY

Dy o

)l
ni])'F)’

<Aga

y.

ds

(/OJr“’ (ﬂ—a/*“ aann-ille ’ds)qﬂ)é
—la(/(:m( a&n,:le( )D (n— a)qflds)é

n
1 +oo B +1
(/ (SnJrl o
— o 0

asn+1 Psf(x)‘)q%)é'




286 7 Function Spaces with respect to ¥,

Now, as n > ¢ is arbitrary, iterating the previous argument k — [ times, we have

(f (e

2 hs)) Ly

t
<A (7 e Graw])” d?)é
«l 9" i
S(l—oe)(1]+1—oc)(/o (| S ’f”’)qit)

Foo qdt\ g
<
<Cua( [ (| gemreo])" L)
here C = 1 Thus
w k,l,a_(l_a)(l-i-l—a)...(k—l_a). w

([ (e 2ma) )], <0 (e

) qdt ) i
t
where Dy ¢ =1/Cr1 -
The converse inequality is also obtained by an inductive argument from the case
k=1+1. Let us recall (7.53),

ak

d!
Shf

Dy 0 5

s

7

DY

ulrt) [n (LEL ) 20 g,

k [ k—1
ot o, ot}

and because, from (3.19), Bitl'ufllm (ds) = (tl’l h ),u,ll/2 (ds) we get

‘Qku(x,t)‘
ark
o (1P () N[ (o1 BN (1)2)
<), 5 o1 A= 50|
N R G I (VPR N R K PV LG N AR
i [ R(SSE a5 (=i e

Therefore,

(f (e

o))

drk 5
9'P, f(x) Dﬂu/z) (ds))q@) 1/

+eo oo
< k= “t‘l/ T, (
=G K/o <2 o ot} i )

+(/O.+ <t§ atz‘ Ts( M’)E“}llm(d@)q@yﬂ

ot} s t
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Then, using Minkowski’s integral inequality twice (because T is an integral trans-

formation with a positive kernel) and the fact that ,u,(ll/ 2) (ds) is a probability, we

.
o= () m T ) )
<o [0 G () ) s
< n((f ) alpaz]l;w )'2) " it ta
sar (7 () (P52))")
and, using the same argument for (I1) and (3.20), we have
e ([ ) () )
“ar ()76 (TR )

Taking 7 = 1o = 5 and changing the variable, we get

m=ar ([ 5

and

(II) < C,T* (( /0 i (tlfa)qQ 9113{[@) Dq? ) l/q).

Hence, using the L” boundedness of 7T*

I

k
S,

()

= DN,

< Cq,k,a

ou! t
o I
sl (=)' ), )
<cuad(f 7 (e FEN D, o

Now, we can introduce the Gaussian Triebel-Lizorkin spaces Fpofq(yd) following
the classical case:
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Definition 7.38. Let oc > O, k be the smallest integer greater than o, and 1 < p,q <

co. The Gaussian Triebel-Lizorkin space F;' (Ys) is the set of functions f € LP(Y;)
for which

OFP f|\adt /4

otk ) t) <

pY

" k= oo, (7.58)

The norm of f € F, )/d is defined as

(|

Observe that according to Lemma 7.37, the definition of F,"/(y,) does not de-
pend on which k > o is chosen and the resulting norms are equivalent.

o*Pf
otk

1A llrg, =

a =,y + (7.59)

p.Y

Let us prove now that the Gaussian Triebel-Lizorkin spaces are complete,

Lemma 7.39. For any a > 0, 1 < p,q < oo, the Gaussian Triebel-Lizorkin space
Fy.(Ya) is a Banach space.

Proof. To prove the completeness, it is enough to see that if (f,) is a sequence in

g (Ya) such that z [|fallFg,, < oo, then 2 Jn converges in ¥, (va). Since,

w kP f, \adi &
k o tJn T\ o,
3 Ui, = ZWNM+M/ =) ),
In particular, this implies that
OFP f, \adt g
k tJn q
znﬁmy<w7md2W(/ (=5 ) ), <=

But as L?(y,) is complete, there exist functions f,g € LP(7;), such that

i | fu(x)], and i fux)=f(x) aeux.
n=1 n=1

Moreover, Y f, = f in LP(7,). Analogously, there exists h € L”(y;), such that

i ( /0+°° (tk—a

n=1

PR yodt

1
q p—
5 ; ) =h(x) ae.ux,
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5 (7 (| B ) =
in LP (ya).

n=
oo n
We need to prove that an = f in F,, ie, r}groloHZf, fHqu =

and
9*P.fy
otk

n=1
PP
Let hy(x) = ( / (t"*“ =
et hy(x) 1:21 o Bl
and for each x, {h,(x)} is a non-decreasing sequence of real numbers, also
ha(x) < h(x) ae.x.

n

adtN
D —)q, then h(x) = lim h,(x) a.e.x,
t n—yoo

As in the proof of the completeness of the Besov—Lipschitz spaces Bp q(yd)
have, using Lebesgue’s dominated convergence theorem, for any t > 0 and x € Rd,

ak
lim 2 = kBﬁ = b/ ().

n—oo i

Now, let us prove that f € Fp?fq. In fact, using the triangle inequality and Fatou’s

lemma,
adry g T —al <
Semr) ) = [ (4]

JANGF: 3 Sena)" 4
Zakpff' @) d?)g

+
< liminf (" o

n—e  Jo

<t [ [genae]) ')
= ’;(/OMG A P Sl )Dq?)%:h(x) ac.x.
Therefore,
H/ ok rf)th)é oy < lhllpy <o

Because for any t > 0 and x € R,

n ak ak

ok
3 S SR i)+ IWP,f(X)‘

0] < 3|5

gg 2 B M 0]
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and

[ (o (S Ganatnl s [Fanra)))' )

<2 ;iw Dy e
o+ [

thus, (k “(Z‘atkl’,f, ’+’8t" P.f( )D)q%is integrable a.e. x, and, therefore,

according to Lebesgue s dominated convergence theorem,

2 ni))" L)’

t

adt
t

1
) ! <2h(x) <o ae.x,

2 ri))

s [ (| S it g ") =ose
and,
k n 1
G (; )Dq?)”
2R 2onr)) )

2
a.e.x, for all n € N, where i € LP(y,); thus,

|an (S )Dq?)a

szz g; P f(x )Dq?>:0 a.e.x.

. Fee
lim (
n—eo

) +oo
= lim (
n—oo J(

Then, again using Lebesgue’s dominated convergence theorem,

i [ (SN,
i (B )

=0.
Y
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Finally,
lim
n—soo
Foo qdt
:ﬁm( - H 7 g () )L
n—es \|| & f Py 0 ok’ l;f | p.Y
- lim if,-—fH +1imH/+w(tk*“ P,(Zf, )qut) _o.
n—ree || = py n—=<llJo otk i—1 Py
O

Observe that using the L”(7,)-continuity of the Gaussian Littlewood—Paley g; ;-

function (5.13),
N ) N\ 12
g,,y<f><x>=< | dr) ,

it can be seen, for 1 < p < o, that
L’ (Ya) = Fp> (a)-

P f
ot

Also, by the trivial identification of the L” spaces with the Hardy spaces, we have

HP (Ya) = Fyy(Ya)-

For Gaussian Triebel-Lizorkin spaces, we have the following inclusion result,
which is analogous to Proposition 7.36 i:

Proposition 7.40. The inclusion Fyy, (V1) C Fpa,(Ya) holds for oy > o > 0 and
q1 2 -

Proof. Let us consider f € F,"*"'(y,). Then,
([ (e
([ (e
1
< (/0 (tkfaz

k X) [\ 92 % tee —on
) (T
= (I)+ ().

Let us observe that for the first term /, the result for the case g; = ¢; is immediate,
because, as f < 1, 579 < tk=% and then

(042§.A+m(ﬁ*m

%Bﬂ@D%£>é
dtk t
kP f(x) qudt) m

otk t

kP f(x) Dql dt

otk t
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1
Now, in the case q; > g3, taking r = ﬂ, s = _a then r,s > 1 and — —1— - =1,

) . . 92 q1—q2
then, using Holder’s inequality

(e = /0‘,<al-az>q2 (tk_a,‘a gtk (*x) qu dr <( /Ol,m azmsit)
X( /0“ (zk—a]

= s U ()" ) () (e

Now, for the second term /1, using Lemma 3.4, we have

= ([ (PR <crs (e

_ cT*f(x)(/:wz “mdt) =CT f(x).

kP f(x) qurﬂ)%
otk t
I*Pf(x) Dql g> a

otk t

Then, using the L”(7;) continuity of 7%, we get

(e

Sk

otk t by
8"P,fon dt) ar

SCH(/OM (fk_al 55 1)
<c[|( [ (o dry

Thus, f € Fy> (). o

+CIT* fllp
Py

|+l <.
1204

Observe that the Gaussian Besov—-Lipschitz spaces and the Gaussian Triebel—
Lizorkin spaces are, by construction, subspaces of LP(y;) and the inclusions are
trivially continuous.

Additionally, it is clear that for all # > O and k € N,

ak

S Bl () = (=1)¥1B /2 Plag (x):

therefore,

([ a,sz g )th)l/q - 'qﬁkaf (r(e—a) gl <

Thus, hg € B ,(v4) and

o/2
Ingllag, = 1+ L (Pk-10) gl
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Similarly, hg € F,(va) and

/2 1/q
ltglleg, = -+ EEZ (= a)a) ) inglls = g g,

Therefore, the set of polynomials & is included in Bj ,(74) and in F;" (1) A
open question is to prove whether or not & is dense in Bj (va) or F, (}/d)

Also, we have the following inclusion relations between Gaussian Triebel—
Lizorkin spaces and Gaussian Besov—Lipschitz spaces:

Proposition 7.41. Let o > 0 and p,q > 1

i) If p=q, then F,},(va) = B, ,(Va)-
i) Ifqg>p, then Fa (Yd) c qu(Yd)
iii) If p > q, then B“, (va) C Fply(Ya)-

Proof.
i) Using Tonelli’s theorem, we trivially have
o*P, P dr\»
tf(x) ’ d(dx)T) r

”</0+°° (tk_a MD”@)% » _ (/()Jr”t(k—a)p/Rd =

otk t
SANGE -

otk t
ii) Suppose g > p, by Minkowski’s integral inequality we then have,

/a
</ N O*Pf th p/q o P f(x)|" alpdr\
(LG5, ) ) = 5] wta) ™
o |9FP adt\r/a
Syéd [ (e ) ) e,

Therefore,

ok BfH )th)l/q

1, = U+ () %5
RN Y = sl

<l | ([ (5

iti) Finally, if p > ¢, again using Minkowski’s integral inequality, we get

Ifllrg, = ||f||p77+H(/0w (tkfa athfquf)l/qHM

otk t
<l (] (-

okp, adt\1/4
e e ] P
otk llpy/ P
Moreover, Gaussian Sobolev spaces L (y;) are contained in some Besov—
Lipschitz and Triebel-Lizorkin spaces; therefore, these spaces are “finer scales” for
measuring the regularity of functions.
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Theorem 7.42. Let us suppose that 1 < p < +oo and o > 0. Then

i) Lo(va) CES(va) if p > 1.
ii) Lo (va) C By ,(va) = F(va) if p > 2.
iii) Lo(va) C sz(')/d) fp<2
Proof. For the proof of these inclusions, we need to use a characterization of the

Gaussian Sobolev spaces, which will be discussed in the next chapter (see 8.21).
i) We have to consider two cases:

i-1) If > 1. Suppose h € Ly, (v4) then h= _Zo f, f € LP(y4), by the change of vari-
able u =t + s, using the fact of the representation of the Bessel potentials (8.20)
and Hardy’s inequality to get,

TG )
/+°°t (ko ‘8k1’,faf(x) ’2@)%
otk t

/N

< ([ e G )

+oo Foo Flx 5 !
P ([ [T 20
< i (7w | Py )

11 (/ ( ’Bkax) )2du)
—_— u .
I'la)k 0 duk
Hence, using the LP(y,)-continuity of the Gaussian Littlewood—Paley gfﬁ,—
function (see Theorem 5.13),

oo k 1 oo k 1
115D D,y < maeal () @D )

= Crallgrf lp.y < Crallfllpy = Crallbllp.os
thus, h € F (%a)-

IN

Y

i-2) If 0 < a < 1. Suppose h € Ly(v4), then h = Zof, f € LP(y), again us-
ing (8.20),

()

< r(la) (/()+m12(k—a)</()+wsae 5| 98 Zilg x)|d : )Zfit)
<

c o)1 /’ o y—s
F(OC (\/() ! [( 0 s
Joo
+(/ s%™*
t

ot Pt-&-sf(x ’

d Pz+sf§f) ?)z}dt)i
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S%(/;mtz(kfa)fl(/o (01 s o P,Hf(x ‘d) dt)l

d(t+s)k
= (I)+ (11).

Now, because e * < 1,5 ! <% ! as o < 1, and, using the change of variables
u =t + s and Hardy inequality we get,

(1) < (/[)+wt2<"‘1>‘1(/t+m a;;;f;gkx)‘ds)zdr)é
(P
(P
([P )

= ([ RN g )

In addition, again using that e =¥ < 1, we get

o o) t o 10%P f(x) 2
2 2(k—a)—1 oa—1|Y ZTids) \A)
(I) S/O t </O s a(t—‘y-s)k ds) dt

Lo+ o /t a1 | O Py f(x) 2
= — t — —————\ds) dt
oc2/o (to‘ - (t+s)k S)

Then, as o > 0 using Jensen’s inequality (for the measure t%so‘"ds) and
Tonelli’s theorem,

2 1/+°°2k10‘/a13Pt+sf
Oy M I A FIE ’d)‘”

P f(x
1 s 1 n-o—1]9 Dts
= / / t+s) 9+ 9)F ‘d)

as 2k — oo — 1 > 0. Finally, again using the change of variables u = ¢ + s and the
Hardy inequality

(I)QSé/OJf“saf](/; h—o— 1‘3 Puf(x ‘du)

Sé/+msa71 /+ 2k—o— l‘an ‘du)

<l/+°°‘ kaka()r@:l k
~ oo duk u ol

/\
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Hence, again using the LP(y;)-continuity of the Gaussian Littlewood—Paley

gﬁy-function,

oo 1

IO (5’
0 t

Thus, h € Fpofz(yd), for0 < o < 1.

o*Ph

= Callhllp,a-

Py

ii) Suppose h € Lb(y;) with p > 2, then h = _Zof, f € LP(yy). Using the in-
equality (a+b)? < Cp(a? +b?),if a,b > 0,p > 1, we get

ol OB Faf || \PdENS
(f )7

ootk t

1 (/er (tkfa/erSa
I'(a) \Jo 0

- 8B+sfH )Pdt>%
- t+s py S

oo k
<t (b el 5

+(/

Using the inequality (a+b)'/? < a'/? +b'/P ifa,b > 0,p > 1

3 2 1
5 hys ) T)"

ra (o

5 P f H )
s+t Py S

oo 1
([l )
el )T

S LA A
+F(Ca)(/o+wt(k_a)p(/,

Now, again using Hardy’s inequality, because k > ¢ and Lemma 3.5

() = (C )</+m;p(ka)</l+m Haaspj:;f pr S )pdt>

aPMf H )pdt)%
pY S

= (I)+ (1)

<rial (A, 2
< riartall (e, e a)
-l [, )2 - ([

using Tonelli’s theorem.
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Now, because p > 2 using Lemma 3.4, we have

J = [ ) (e )
o) [ (o]
Therefore,

H /+°°‘ A Pf|pdu

duk
k
- W(/ o

<c/, ((rrw)" /0 NG ‘9"gu£(x)‘)2@)yd(dx)

u

rdu
u

)Yd(dx)

2
Using Holder’s inequality, with 6 = —, and the LP(},) continuity of T* and g,
p

we have
(et iy
<C/ /0 uk‘akgf( )chfj)?’d(dx)
Sc(/M(<Tf )" P utan)
(L @) ) )’
—o( [, (1) i) "
x(/Rd(/(:m ( jkk ) (x)Dz%)%Yd(dx))%
=T 157 N f1I2 , < CIFIIG -
Thus,

(1) < Collllp.or-
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Now, again using Lemma 3.5 and because o« > 0

(1) = Ifm(%;+wtp(k“>(/(;tsa

ak

ds\rdt\»
[ — ] ) =
(s +1)k ”’f‘p,ys) t)

< I“C‘oc)(,/;wtp(ka)(/o 3kPerM : )pdt)
S LS T Y <cuatha

Thus, h € BY ,(a), if p > 2.

iii) This inclusion could be proved using similar arguments as in i) and ii), but it
is an immediate consequence of i) and of Proposition 7.41 ii). a

In [166], using Theorem 3.2, it is claimed that the Gaussian Sobolev spaces
L% (v4) coincide with the homogeneous Gaussian Triebel-Lizorkin Fpofz, but the
proof of that theorem is wrong because it is assumed that the operator involved is
linear; however, it is actually only sublinear.

Now, let us prove some interpolation results for the Gaussian Besov—Lipschitz
spaces and for the Gaussian Triebel-Lizorkin Spaces.

Theorem 7.43. We have the following interpolation results:

i) For 1< pj,q; <-+eoand o >0, if f € Byl (ya)., j=0,1, then f € B (ya),
where o = op(1 —0)+ 0,16, and
1 0 1 1

1 7]
c= (1= ——=—(1-0)+—,0<0<1.
p PO P19 490 q1

ii) For 1 < pj,q; <+ and o; >0, if f € F,y (Ya), j=0,1, then f € F%,(va).
where o = otp(1 — 60) 4+ 0,1 0, and
1 1 61 1 0
-—=—({1-0)+—,-=—(1-0)+—,0<06<1.
p Do P19 4o q1
Proof. The proof of both results is based on the following interpolation result for

LP(yy) spaces (actually true for any measure () obtained using Holder’s inequality:
For 1 < rg,r] < e and % = %(1—n)+7—1,0<n <1.If feLi(y), j=0,1

then f € L"(7;) and
1A lly < UF g 117 (7.60)

Let us prove i). Let k be any integer greater than o and ¢;. By using the above
result, we get for o = op(1 —0) + 6,
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)
p;Y

+oo
/ (tk—oc
0

otk t
oo k
< [ (o | 220 H() P’fH,,l,y)
_/ £(1-0) (k—t0)+6 (k—e1 ) IR f HB"P, )qﬂ
otk Nlpoyll 9tk llpy/ ¢
oo (1-0)g , 0
G e I R G - W

0
Now, if A = 29 then 0 < A < 1 and g = (1= 2)go + Aqi. Therefore, by using

q1
Holder’s inequality again,
L%,
0 otk llpy/ ¢
(G T e
~\Jo otk poy/ 1 0

q1 di\*
) T) <=
1Y t
thus f € By ,(Ya)-

i) Analogously, by taking f§ = %7 = ‘f/e, wehave 0 < B,A <land p=(1—
B)po+ Bpi,qg=(1—2A)qo+ Aqi. Let k be any integer greater than og and a;, by

using Hoélder’s inequality we get for a = op(1 —0) + 04 6,

oo
/ (tkfoc
0

o*P.f
otk

8thfDq£
t

[ e

@D"@

(9 k
_ tee k—og a Ptf (1=A)q0 k—oy alfP;f M]f dt
_/0 (’ \ PTG ) (f W) T

|y

(B

otk t
Thus,
H(/OM (tkfoc 3(’;1;,<f )q%)é Zy: /Rd </O+w (tk"" a;ﬁf‘)th)g%z(d@
< L (L (ol )™y (7 (| B )" ) ¥t
LT OGS e ) e
o (1-B) - By
= e (/0+ (tk*%‘agﬁf’)qo?) . (/OJr (tkfal agl;z(f )ql [it) ql’)/d(dx)

and then again using Holder’s inequality,
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G4 15D )
< (LU @) ) Batas)
X </]Rd (/OJFOO (t"‘“l akP’fDql ﬂ) %Yd(dx))ﬁ

A

ok 1)t
=0, 1D
00 k L B
QO ) ) <+
Hence, f € F,(Ya)- O

Finally, we are going to study the continuity properties of the Ornstein—
Uhlenbeck semigroup and the Poisson—Hermite semigroup on the Gaussian Besov—
Lipschitz and Triebel-Lizorkin spaces. In the next chapter, we consider the bound-
edness property of other operators on those spaces.

Theorem 7.44. For The Ornstein-Uhlenbeck semigroup {T,};>o and the Poisson—
Hermite semigroup {P, }+>0,

i) Both are bounded on By, ,(Ya).
ii) Both are bounded on Fy),(Ya)-
Proof.
i) Let us prove the By (74)-continuity of P for any ¢ > 0; the proof for 7; is
totally analogous. Using the L”-continuity of the Poisson—-Hermite semigroup,
Lebesgue’s dominated convergence theorem, and Jensen’s inequality, we get

L[ 0 e = [ (S Yoo mta
< _/RdPS( %‘p)w(d@
-/, %‘pyd(dx).
Thus,
|52, <15,
therefore,

e k—a
12 lsg, = RS+ ([ (0

<Ml ([ (P

otk t

a;fif”p,y)qit)w — 1flsg,

OB (P f) H )th) 1/q
Py
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ii) Let us prove the Fp"fq-continuity of P, for any ¢t > 0; the proof for 7; is totally
analogous. Using Lebesgue’s dominated convergence theorem and Minkowski’s

integral inequality, we have
) ads\ "4
s

(f
= (/Om (Sk*a ,/H.gdp(t’x’y)y(?fk(y)dy‘)qis>l/q
< /]de(l,x,y) (/O”(Sk_a

*P(y) Dd) o
-n(( (|
0

dsk s
dsk
Therefore, by the L” continuity of P, we get

) e
H (/0"" (#-e W’)”‘)l/qnw

osk

o+ P, (P
a(sk 2

S
([ 2% ),
2P

oo 1/q
IO =1525)5) L

Thus,
= okP(Pg)|\ads\ 1
_ k—o s\t bl
Iesleg, = el + | ([ (| 522)'5) .,

S
= 0*P,g|\ads /4
k—o N _
<g||p,y+H(/0 (s )s) |,,=lelleg, O

dsk
7.9 Notes and Further Results

dsk

1. In [117], P. Graczyk, J. J. Loeb, 1. Lopez, A. Nowak, and W. Urbina define and
study Sobolev spaces associated with multi-dimensional Laguerre expansions
of type . The result is obtained by means of transference from a Hermite
setting using the relationship between Laguerre and Hermite polynomials (see
G. Szeg6’s book [262, (5.6.1)]).

2. In [177], G. Mauceri, S. Meda, and P. Sjogren found a maximal characterization
of H!,(7;) that unfortunately is only valid for d = 1. In the same paper, they give
a description of the non-negative functions in H,(y;) and use it to prove that
L7 (Ya) C Hy(Ya), for 1 < p <eeo.
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In 1995, J. Epperson [75] considered Triebel-Lizorkin spaces with respect to
the Hermite function expansions. Those spaces are completely different than
the spaces that we are considering here, because the reference measure is the
Lebesgue measure; therefore it should not be confused with them, because he
was working with the Lebesgue measure.

In [161], L. Liu and D. Yang consider Gaussian bounded lower oscillation
(BLO) spaces BLO,(Y4), the space of functions with bounded lower oscillation
associated with a given class of admissible balls with parameter a.

. In[166], I. Lopez defines and briefly studies Besov spaces and Triebel-Lizorkin

spaces for Hermite and Laguerre expansions. There are some technical problems
in the definitions and some gaps in the proofs.

More abstract approaches to Besov and Triebel-Lizorkin spaces associated with
a general differential operator can be found, for instance, in [154].

. Hardy spaces for Jacobi expansions have a curious story. The first construction

obtained by L. Cafarelli in his doctoral dissertation in 1971, under the direction
of C. P. Calderén, [39]. He defined the conjugation as a smooth differential
operator, and from there he was able to give a definition of them. Unfortunately,
that memoir, which contains very original and novel ideas, for example, the
proof that the Jacobi measure is doubling, well before the notion of doubling
measure was formulated, was never published. Then, 25 years later, in 1996,
Zhongkai Li [157, 158], formulated another definition of Hardy spaces for Ja-
cobi expansions, closely following the work of B. Muckenhoupt and E. Stein
[199] in the ultraspherical case.

There is a class of spaces that are an intermediate generalization between the
classical Lebesgue spaces and the Orlicz spaces; they are the variable Lebesgue
spaces, which have been intensively studied over the last 25 years, extending
almost all the boundedness properties of classical harmonic analysis operators
with respect to the Lebesgue measure (see, for instance, [61] or [66]). For the
study of variable Lebesgue spaces with respect to general Radon measures, see
[3]. In particular, some results for variable Lebesgue spaces with respect to the
Gaussian measure can be found in [63] and [192].
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