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Spectral Multiplier Operators with Respect
to the Gaussian Measure

In this chapter, we study spectral multiplier operators for Hermite polynomial expan-
sions. First, we consider Meyer’s multiplier theorem, which is one of the most basic
and most useful results for Hermite expansions. Then, we consider spectral multipli-
ers of Laplace transform type. In both cases, we prove their boundedness in Lp(γd),
for 1 < p < ∞. For the case of spectral multipliers of Laplace transform type, we
also study the boundedness in the case p = 1. Finally, we discuss the fact that the
Ornstein–Uhlenbeck operator has a bounded holomorphic functional calculus.

6.1 Gaussian Spectral Multiplier Operators

Definition 6.1. Given a bounded function m : N0 → C. According to the spectral
theorem, we may form the operator m(L)1 defined for any f ∈ L2(γd)

2

m(L) f =
∞

∑
k=0

m(k)Jk f =
∞

∑
k=0

m(k) ∑
|α |=k

〈 f ,hν〉γd hν . (6.1)

Observe that m(L) is trivially bounded in L2(γd), as

‖m(L) f‖2,γ =
∞

∑
k=0

|m(k)|2‖Jk f‖2,γ ≤ ‖m‖∞

∞

∑
k=0

‖Jk f‖2,γ = ‖m‖∞‖ f‖2,γ .

We call m(L) the spectral multiplier operator associated with the spectral multi-
plier m.

1Formally speaking, it should be denoted by m(−L) because of (2.7); for simplicity we
just write it as m(L).

2Alternatively, we could define m(L) on the set of polynomials in d-variables, P(Rd), as
they have finite Hermite expansion f = ∑∞

k=0 Jk f = ∑∞
k=0 ∑|α|=k〈 f ,hν 〉γd hν .
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Moreover, because m(L) is well defined in P(Rd), and we know that P(Rd) is
dense in Lp(γd) for any 1 ≤ p < ∞, the multiplier operator m(L) is densely defined
in L2(γd) with domain

Dm =
{

f ∈ L2(γd) :
∞

∑
k=0

|m(k)|2‖Jk f‖2,γ < ∞
}
.

The basic problem of the multiplier theory is to determine the conditions on the
spectral multiplier m such that the spectral multiplier operator m(L), initially defined
in L2(γd)∩Lp(γd), has a bounded extension on Lp(γd),1 < p < ∞; in other words,
when we can find a constant Cp > 0 dependent only on p such that

‖m(L) f‖p,γ ≤Cp‖ f‖p,γ , (6.2)

for all f ∈ Lp(γd).
We also want to consider under which conditions m(L) is of weak type (1,1) with
respect to the Gaussian measure; in other words, when we can find a constant C > 0
dependent only on p such that

γd

({
x ∈ R

d : m(L) f (x)> λ
})

≤ C
λ
‖ f‖1,γ (6.3)

for any f ∈ Lp(γ1).

6.2 Meyer’s Multipliers

One of the most basic results in Gaussian multiplier theory was obtained by P. A.
Meyer in [189] (see also [288] and [218]), using in a fundamental way the hypercon-
tractivity property of the Ornstein–Uhlenbeck semigroup. Therefore, the multiplier
theory for Hermite expansions and the hypercontractivity property of the Ornstein–
Uhlenbeck semigroup are closely related.

Theorem 6.2. (Meyer) Given a function h, holomorphic in a neighborhood of the

origin, and let m be a spectral multiplier such that m(k) = h
(

1
kα

)
, for some α > 0

and k ≥ n0, for some n0 ≥ 0, then the spectral multiplier operator m(L) admits an
Lp(γd)-bounded extension for any 1 < p < ∞. Moreover, its Lp(γd)-norm does not
depend on the dimension.

Proof. Using Corollary 2.17, Lemma 2.18 and the inequality (3.42), the proof is
almost immediate. Let us decompose m(L) into its finite and infinite parts.

m(L) f =
n0−1

∑
k=0

m(k)Jk f +
∞

∑
k=n0

m(k)Jk f = m1(L) f +m2(L) f .

Using Corollary 2.17, we know that Jn is Lp(γd)-bounded; therefore m1(L) is Lp(γd)-
bounded,
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‖m1(L) f‖p,γ ≤
n0−1

∑
k=0

m(k)‖Jk f‖p,γ ≤Cp‖ f‖p,γ .

Thus, it is enough to prove that m2 is Lp(γd)-bounded,

‖m2(L) f‖p,γ ≤Cp‖ f‖p,γ .

Using the generalized potential operators (3.41) and the inequality (3.42), then, as
h(x) = ∑∞

n=0 anxn,

m2(L) f =
∞

∑
k=n0

m(k)Jk f =
∞

∑
k=n0

( ∞

∑
n=0

an
1

kαn

)
Jk f

=
∞

∑
n=0

an

( ∞

∑
k=n0

1
kαn Jk f

)
=

∞

∑
n=0

an(Un0,α f )n.

Using the Lp(γd)-boundedness of Un0,α n-times, we get

‖m2(L) f‖p,γ ≤
∞

∑
k=1

|an|‖(Un0,α f )n‖p,γ ≤C
( ∞

∑
n=0

|an| 1
nαn

0

)
‖ f‖p,γ =C‖ f‖p,γ . 
�

Definition 6.3. A spectral multiplier operator m(L) is called Meyer’s multiplier if it
satisfies the hypothesis of Theorem 6.2, i.e., there exists a function h holomorphic in
a neighborhood of the origin such that

m(k) = h
( 1

kα

)
, (6.4)

for some α > 0 and k ≥ n0, for some n0 ≥ 0.

We see in Chapter 8 that the Gaussian Riesz potentials are the simplest Meyer’s
multipliers possible (see 8.5), and that the Gaussian Bessel potentials are not Meyer’s
multipliers, but the composition of two Meyer’s multipliers (see 8.19). On the other
hand, the Ornstein–Uhlenbeck and the Poisson–Hermite operators and their varia-
tions are Gaussian multipliers but are not Meyer’s multipliers. Finally, as we are go-
ing to see in Chapter 9, the Gaussian Riesz transforms are not Gaussian multipliers,
different than the Riesz transforms in the classical case.

6.3 Gaussian Laplace Transform Type Multipliers

Following E. Stein [253, Chapter 4], let us consider Laplace type multipliers.

Definition 6.4. A function m : (0,∞)→ C is said to be of Laplace transform type if
and only if

m(k) = k
∫ ∞

0
φ(t)e−tkdt, k > 0, (6.5)

where φ : (0,∞)→ C, is a bounded measurable function.
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Observe that taking the change of variables r = e−t , we see that m can be rewrit-
ten as

m(k) = k
∫ 1

0
ψ(t)rk dr

r
, k > 0, (6.6)

where ψ(r) = φ(− logr).

Definition 6.5. A spectral multiplier operator m(L) is said to be a Laplace transform
type multiplier, if the spectral multiplier m is a function of Laplace transform type.
Then, m(L) can be written as

m(L) f (x) =
∞

∑
k=0

m(
√

k)Jk f =
∞

∑
k=0

m(
√

k) ∑
|α |=k

〈 f ,hν〉γd hν , (6.7)

for a function f with Hermite expansion f = ∑∞
k=0 Jk f = ∑∞

k=0 ∑|α |=k〈 f ,hν〉γd hν .

Observe that if we ask the function φ to be not only bounded but integrable, then
we can get the following easy result:

Proposition 6.6. If m : (0,∞)→C is a spectral multiplier of Laplace transform type
function such that φ is bounded and integrable, then the spectral multiplier operator
m(L) is a Lp(γd)-bounded operator, for 1 < p < ∞.

Proof. Let f = ∑∞
k=0 Jk f , then

m(L) f =
∞

∑
k=0

φ(
√

k)Jk f =
∞

∑
k=0

(∫ ∞

0
φ(t)e−

√
ktdt

)
Jk f =

∫ ∞

0

[ ∞

∑
k=0

e−
√

ktJk f
]
φ(t)dt

=
∫ ∞

0
Pt f φ(t)dt.

Therefore, using Minkowski’s integral inequality, and the Lp(γd)-boundedness of the
Poisson–Hermite semigroup {Pt}t≥0,

||m(L)( f )||p,γ =
∥∥∥
∫ ∞

0
Pt f φ(t)dt

∥∥∥
p,γ

≤
∫ ∞

0
||Pt f ||p,γ |φ(t)|dt ≤Cp || f ||p,γ . 
�

Now for the general case, using the Littlewood–Paley theory, following E. Stein
[253, Chapter II], we get

Theorem 6.7. Given a Laplace transform type spectral multiplier m, the spectral
multiplier operator m(L) has a Lp(γd)-bounded extension, for 1 < p < ∞.

Proof. The proof is given here for the case of the Poisson–Hermite semigroup for
completeness, but it is still valid in far more general settings, as is clear from E.
Stein’s monograph [253].3

We need to prove the following identity,

m(L)( f )(x) =−
∫ ∞

0

∂Pt f
∂ t

(x)φ(t)dt. (6.8)

3In fact, nowadays this theorem is known as Stein’s universal multiplier theorem.
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For it suffices to check the identity for the normalized Hermite polynomials {hν},

∫ ∞

0

∂Pthν
∂ t

(x)φ(t)dt =
∫ ∞

0

d
dt
(e−

√
|ν |t)hν(x)dt φ(t)

= −
√
|ν |

∫ ∞

0
e−

√
|ν |tφ(t)dt hν(x) =−m(

√
|ν |) hν(x).

Now,

Pt1(m(L) f )(x) =−
∫ ∞

0
Pt1

(∂Pt f
∂ t

(x)
)

φ(t)dt =−
∫ ∞

0

∂Pt+t1 f
∂ t

(x)φ(t)dt.

Hence,

∂Pt1(m(L) f )
∂ t1

(x) =− ∂
∂ t1

(∫ ∞

0
Pt1

(∂Pt f
∂ t

(x)
)

φ(t)dt
)
=−

∫ ∞

0

∂ 2Pt+t1 f
∂ t2 (x)φ(t)dt,

thus, as φ is bounded, using the Cauchy–Schwartz inequality

∣∣∣∂Pt1(m(L) f )
∂ t1

(x)
∣∣∣ ≤

∫ ∞

0

∣∣∣∂ 2Pt+t1 f
∂ t2 (x)

∣∣∣|φ(t)|dt ≤ M
∫ ∞

0

∣∣∣∂ 2Pt+t1 f
∂ t2 (x)

∣∣∣dt

= M
∫ ∞

t1
s
∣∣∣∂ 2Ps f

∂ s2 (x)
∣∣∣ds

s
≤ M

(∫ ∞

t1
s2
∣∣∣∂ 2Ps f

∂ s2 (x)
∣∣∣
2
ds
)1/2

t−1/2
1 .

Therefore, according to the same argument used in the proof of Proposition 5.12, we
have using Fubini’s theorem

gt,γ((m(L) f )(x) =

(∫ ∞

0
t1

∣∣∣∣
∂Pt1m(L) f

∂ t1
(x)

∣∣∣∣
2

dt1

)1/2

≤ C

(∫ ∞

0

(∫ ∞

t1
s2

∣∣∣∣
∂ 2Ps f

∂ s2 (x)

∣∣∣∣
2

ds

)
dt1

)1/2

= C

(∫ ∞

0
s3

∣∣∣∣
∂ 2Ps f

∂ s2 (x)

∣∣∣∣
2

ds

)1/2

=Cg2
t,γ f (x).

Now, using Theorem 5.6 and Definition 5.7, we get

C′
p‖m(L) f‖p,γ ≤ ‖gt,γ((m(L) f )(x)‖ ≤C‖g2

t,γ f‖p,γ ≤Cp‖ f‖p,γ . 
�

In particular, the imaginary powers (−L)iλ arising from φ(t) = t−iλ

Γ (1−iλ ) admits a

Lp(γd)-bounded extension for any 1 < p < ∞, because

λ−iα =
λ

Γ (1− iα)

∫ ∞

0
e−λ ss−iα ds.
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Theorem 6.7, is a weak version of the Marcinkiewicz multiplier theorem in the
Euclidean case for the d-dimensional torus Td . The link is that if φ is of Laplace type
then

|xkφ(x)| ≤Ck

for any k ≥ 0, which is a particular case of the Marcinkiewicz condition, then φ(|x|)
is a multiplier in Lp(Td), 1 < p < ∞.

6.4 Functional Calculus for the Ornstein–Uhlenbeck Operator

Now, we are going to discuss the fact that the Ornstein–Uhlenbeck operator has a
bounded holomorphic functional calculus. In [105] J. Garcı́a-Cuerva, G. Mauceri, S.
Meda, and P. Sjögren, J. L. Torrea proved that for Gaussian multipliers if p �= 2 there
is no reasonable non-holomorphic functional calculus in Lp(γd) for L. In particular,
they proved that there is not an analog of the classical Hörmander multiplier theorem.
In fact, for each p �= 2, there exists a spectral multiplier mp such that mp(L) does not
extend to a bounded operator on Lp(γd), which is a restriction of a holomorphic
function in a neighborhood of Rd

+, which satisfies the conditions

sup
x>0

|x j∂ jmp(x)|< ∞,

for all j ∈ N.

Moreover, in [103], J. Garcı́a-Cuerva, G. Mauceri, P. Sjögren, and J. L. Tor-
rea proved that a spectral multiplier operator m(L) of Laplace type is also of weak
type (1,1) with respect to the Gaussian measure. Given a spectral multiplier m is
of Laplace transform type, then m(L) is a continuous operator from the space of
test functions to the space of distributions on R

d ; thus, it has a distributional kernel.
Let us prove that, off the diagonal, this kernel has a density Kψ with respect to the
measure γd(dx)⊗ dy, which satisfies the standard Calderón–Zygmund estimates in
a suitable neighborhood of the diagonal (see [103, Lemma 2.1 and Theorem 2.2]).
Consider the operator rL,0 ≤ r < 1, whose integral kernel

Mr(x,y) =
1

πd/2(1− r2)d/2
e
− |y−rx|2

1−r2 ,

may be obtained from Mehler’s kernel by the change of variables t =− logr. Thus

rL f (x) =
∫

Rd
Mr(x,y) f (y)dy,

for all test functions f . As Mehler’s kernel satisfies the heat equation ∂tMt(x,y) =
LMt(x,y) (see (2.53)), the kernel Mr(x,y) satisfies the transformed equation
r∂rMr(x,y) =−LMr(x,y). If ψ ∈ L∞(Rd), define

Kψ(x,y) =
∫ 1

0
ψ(r)∂rMr(x,y)dr.
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For t > 0, the local region Nt defined in (4.63) is the neighborhood of the diagonal
in R

d ×R
d .

Lemma 6.8. If x �= y, the integral defining Kψ is absolutely convergent. Moreover,
for t > 0 and each pair of multi-indices α,β ∈ N

d, there exists a constant C such
that

|∂ α
x ∂ β

y Kψ(x,y)| ≤C
‖ψ‖∞

|x− y|d+|α |+|β | (6.9)

for all (x,y) ∈ Nt , x �= y.

Proof. Using Rodrigues’ formula for the Hermite polynomials (1.28), we have

∂ α
x ∂ β

y Mr(x,y) =
(−r)|α |

πd/2(1− r2)d/2+|α |+|β | Hα+β

(
xr− y√
1− r2

)
e(1−r2)d/2

. (6.10)

An elementary computation shows that the function r �→ ∂ α
x ∂ β

y Mr(x,y) is the product
of the positive function,

1

πd/2

1

(1− r2)d/2+|α |+|β | e
− |y−rx|2

1−r2 ,

and a polynomial in r of degree at most 2|α|+ |β |+3, whose coefficients depend on
x and y. Hence, as a function of r, it changes sign a finite number of times and there
exists a constant C such that

∫ 1

0
|ψ(r)|∂r∂ α

x ∂ β
y Mr(x,y)|dr ≤C‖ψ‖∞ max

0<r<1
|∂ α

x ∂ β
y Mr(x,y)|,

for all x,y ∈ R
d . According to (6.10), we have that

max
0<r<1

|∂ α
x ∂ β

y Mr(x,y)| ≤ C

(1− r2)(d+|α |+|β |)/2
exp

(
−c0

|y− rx|2
1− r2

)

for some positive constant c0. Because, in the local region Nt ,

|rx− y|2 ≥ |x− y|2 −2(1− r)|x||x− y| ≥ |x− y|2 −2(1− r)t,

the right-hand side of the previous inequality can be estimated by

C(t)(1− r2)(d+|α |+|β |)/2 exp

(
−c0

|y− rx|2
1− r2

)
≤C|x− y|(d+|α |+|β |),

for all (x,y) ∈ Nt . 
�
Using this lemma, we can obtain the following representation of m(L) in terms

of Kψ(x,y).
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Theorem 6.9. Given a spectral multiplier m of Laplace transform type given by
the formula (6.6), then the spectral multiplier operator has the following integral
representation

m(L) =
∫ 1

0
ψ(r)LrL dr

r
(6.11)

where the integral converges on the weak operator topology of L2(γd). Moreover, f is
a test function,

m(L) f (x) =
∫ 1

0
Kψ(x,y) f (y)dy, (6.12)

for all x in the support of f .

Proof.

〈m(L) f ,g〉γ =
∞

∑
k=1

m(k)〈Jk f ,g〉γ =
∞

∑
k=1

k
∫ ∞

0
φ(t)e−tkdt〈Jk f ,g〉γ

=
∞

∑
k=1

k
∫ 1

0
ψ(r)rk dr

r
〈Jk f ,g〉γ =

∫ 1

0
ψ(r)

∞

∑
k=1

krk〈Jk f ,g〉γ
dr
r

=
∫ 1

0
ψ(r)〈LrL f ,g〉γ

dr
r

=
∫ 1

0
〈
∫ 1

0
ψ(r)LrL f

dr
r
,g〉γ

where we have used that ∑∞
k=1 |〈Jk f ,g〉γ | ≤ ‖ f‖2,γ‖g‖2,γ ; thus, we may interchange

the order of summation and integration. Therefore, we have obtained (6.11).
To compute the kernel of the spectral multiplier operator m(L), assume that f

and g are test functions on R
d . Then

〈LrL f ,g〉γ = 〈rL f ,Lg〉γ =
∫∫

Mr(x,y) f (y)dy Lgγd(dx)

= 〈Mrγd(dx)⊗dy,L(g⊗ f )〉

Here, 〈·, ·〉 denotes the pairing between distributions and test functions on R
d ×R

d

and Mrγd(dx)⊗ dy is the distribution whose density with respect to the measure
γd(dx)⊗dy is Mr. As the operator L is symmetric with respect to the Gaussian mea-
sure,

〈rL f ,Lg〉γ = 〈L(Mr)γd(dx)⊗dy,g⊗ f 〉
=

∫∫
r∂rMr(x,y)g(x) f (y)dyγd(dx)

Thus, using (6.11),

〈m(L) f ,g〉γ =
∫ 1

0
ψ(r)

∫∫
∂rMr(x,y)g(x) f (y)γd(dx)dydr.

If f and g have disjoint supports, the triple integral in the identity above is absolutely
convergent because of the previous lemma. Thus, using Fubini’s theorem
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〈m(L) f ,g〉γ =
∫∫

Kψ(x,y) f (y)dyg(x)γd(dx).

This proves that Kψ is the restriction to the complement of the diagonal of the kernel
of m(L), i.e., we have proved that off the diagonal, m(L) has density Kψ with respect
to the measure γd(dx)⊗dy 
�

Now, it can be proved that a spectral multiplier operator m(L) of Laplace type is
also of weak type (1,1) with respect to the Gaussian measure [103, Theorem 3.8].
The proof uses these two previous results. The operator is split, as usual, into a local
part and a global part, using in this case the local region Rt (4.63). J. Garcı́a-Cuerva,
G. Mauceri, P. Sjögren, and J. L. Torrea improved the treatment of the local part
by making a smooth truncation and reducing the estimates to the general Calderón–
Zygmund theory. Then, the global part is immediately bounded by the maximal
Mehler’s kernel used by P. Sjögren, in [247] (for more details, we refer the reader to
[103, Section 3]).

Additionally, in [103], they also investigate how to define the multiplier operator
in terms of its kernel, as a limit of truncated integrals. In particular, we see under
what conditions the multiplier is given by a principal value integral. Boundedness
is also proved for the maximal multiplier operator, via a vector-valued version of
the estimates. The result applies, in particular, to the imaginary powers of (−L),
(−L)iλ . Here, the growth of the operator (quasi-)norm for large imaginary powers is
of special interest. As −L has a non-trivial kernel, to define imaginary powers, it is
first needed to restrict −L to the orthogonal complement of the kernel. This amounts
to considering Liα Π0, where, as before, Π0 = I −J0. The weak type (1,1) constant
of Liα Π0 increases at most exponentially as |α| → ∞. They proved that this estimate
cannot be improved to polynomial growth.

On the other hand, the assumption that a spectral multiplier m of Laplace type
implies that m can be extended to a holomorphic function on the half-plane {z ∈ C :
Rez > 0}, which is bounded on every sector Sθ = {z ∈C : |argz|< θ},0 < θ < π/2
(see Figure 2.1). As the spectrum of the Ornstein–Uhlenbeck L on L1(γd) is the
closed right half-plane (see Theorem 2.7), it is natural to impose a holomorphy
condition on the multiplier m if we want the operator m(L) to be defined on L1(γd).
Nevertheless, because the spectrum of −L on Lp(γd), for 1 < p < ∞, is the set
N0 of non-negative integers, it seems too restrictive to require holomorphy of the
multiplier m to obtain the Lp(γd)-boundedness of m(L). In [182], S. Meda gave a
sufficient condition for the existence of a non-holomorphic functional calculus for
the generator A of a symmetric contraction semigroup on Lp(M),1 < p < ∞, where
M is a σ -finite measure space.

If we fix p∈ (1,∞), as we have mentioned before, it is important to determine the
minimal regularity conditions of the spectral multiplier m, which imply that the spec-
tral multiplier operator m(L) is bounded in Lp(γd). These conditions are sometimes
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best expressed in terms of Banach spaces of holomorphic functions. If θ ∈ (0,π/2),
consider the open sector Sθ = {z ∈C : |argz|< θ}, and denote by H∞(Sθ ) the space
of bounded holomorphic functions on Sθ . A consequence of an abstract result by
M. Cowling [59, Theorem 2] is that if θ > π| 1

q − 1
2 |, the spectral multiplier m is

bounded and there exists m̃ ∈ H∞(Sθ ) such that m(k) = m̃(k), k = 1,2,3, · · · , then
m(L) extends to a bounded operator on Lq(γd).

Moreover, in [105] it is shown that requiring holomorphy of a spectral multi-
plier m, in a sector of angle smaller than φ ∗

p = arcsin | 2
p − 1|, is not sufficient for

the boundedness of m(L) on Lp(γd). Observe that φ ∗
p → π/2 as p → 1 is in line,

with the fact, already mentioned, that the spectrum of L on L1(γd) is the (closed)
right half-plane (see Theorem 2.7). Furthermore, the L1(γd)-boundedness of dilation-
invariant spectral multiplier operators m(L) was characterized in [131, Theorem 3.5].

Finally, let us mention the main result in [105, Theorem 1] by J. Garcı́a-Cuerva,
G. Mauceri, S. Meda, P. Sjögren, and J. L. Torrea, which is an improvement, in the
finite dimensional case of Cowling’s result. Using the notation introduced in Chap-
ter 2, the statement of the theorem is roughly as follows: for every p ∈ (1,∞), p �= 2,
and consider the sector Sφ∗

p
:= {z ∈C : |argz|< φ ∗

p}. If m is a bounded holomorphic
function on Sφ∗

p
whose boundary values on ∂Sφ∗

p
satisfy suitable Hörmander-type

conditions, then the spectral multiplier m(L) extends to a bounded operator on Lp(γd)
and hence to Lq(γd) for all q such that | 1

q − 1
2 | ≤ | 1

p − 1
2 |.

To establish the theorem, we first need the following notation. Suppose that J is
a non-negative integer and that θ ∈ (0,π/2). Denote by H∞(Sθ ;J) the Banach space
of all m ∈ H∞(Sθ ) for which a Hörmander condition of order J holds: there exists a
constant C such that

sup
R>0

∫ 2R

R
|x j∂ jm(e±iθ x)|2 dx

x
≤C2, for j = 0,1, · · · ,J. (6.13)

H∞(Sθ ;J) is endowed with the norm

‖m‖θ ,J = inf

{
C : sup

R>0

∫ 2R

R
|x j∂ jm(e±iθ x)|2 dx

x
≤C2, for j = 0,1, · · · ,J

}
.

Note that (6.13) implies that
sup
z∈Sθ

|m(z)| ≤ 2C,

if J > 0.

Theorem 6.10. Let 1 < p < ∞, p �= 2, let m : N → C be a bounded function, and
assume that there exists a bounded holomorphic function M̃ in Sφ∗

p
, such that

M̃(k) = m(k), k = 1,2,3, · · ·
then,
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i) If M̃ ∈ H∞(Sφ∗
p
;4), then m(L) extends to a bounded operator on Lp(γd); hence,

on Lq(γd) for all q such that | 1
q − 1

2 | ≤ | 1
p − 1

2 |.
ii) If M̃ ∈H∞(Sφ∗

p
), and | 1

q − 1
2 |< | 1

p − 1
2 |, then m(L) extends to a bounded operator

on Lq(γd).

A significant feature of Theorem 6.10 is that the number of derivatives in the
Hörmander condition in i) is independent of the dimension. However, the estimates
depend strongly on dimension; thus, they fail to give a result for the infinite dimen-
sional case, but Cowling’s result holds in the infinite dimensional case. Also, the
theorem may be sharpened using H∞(Sφ∗

p
;J), for J non-integer.

Moreover, the size of the region of holomorphy, measured by the aperture of the
cone, cannot be reduced, as is proved in the following result:

Theorem 6.11. Let 1 < p < ∞, p �= 2, and θ < φ ∗
p . Then, there exists a function

m, which decays exponentially at infinity and belongs to H∞(Sφ∗
p
;J), for J for every

positive integer J, such that m(L) does not extend to a bounded operator on Lp(γd).

For details of the proofs of Theorem 6.10 and 6.11 we refer the reader to [105,
Section 3]. They use an abstract multiplier result for generators of holomorphic semi-
groups, which is a variant of an earlier result by S. Meda (see [182] or [60]).

6.5 Notes and Further Results

1. In [260], D. Stroock also considers the case of spectral multipliers m, being the
Laplace transform of a measure μ in [0,∞) such that, for some integer N

∫ ∞

0
e−Ntν(dt)< ∞,

and then m is defined as

m(k) =

{
0, if 0 ≤ k < N −1

λ
∫ ∞

0 e−λ tν(dt), if k ≥ N.

The proof that the spectral multiplier operator m(L) has an extension to Lp(γd)
is completely analogous to that of Theorem 6.7.

2. Some other examples of spectral multipliers, whose spectral multiplier operator
m(L) is Lp(γd)-bounded, but that are not Meyer’s multipliers, are:
• Let us consider the even part projection multiplier operator

me(L) f =
∞

∑
k=0

J2k f =
∞

∑
k=0

m(1/k)Jk f
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where

m(x) =

⎧
⎨
⎩

1, if x = 1
2n ,n ∈ N

0 otherwise.

Clearly, me(L) is a Lp(γd)-multiplier because the even part of f , fe(x) =
f (x)− f (−x)

2 = ∑∞
k=0 J2k f = me(L) f . Therefore,

‖me(L) f‖p,γ = ‖ fe‖p,γ ≤ ‖ f‖p,γ ,

but me is not a Meyer’s multiplier.
• Analogously, we can consider the odd part projection multiplier operator,

mo(L) =
∞

∑
k=0

J2k+1 f .

Since f = me(L) f +mo(L) f , and we know that me(L) is Lp(γd)-bounded,
then we conclude that mo(L) is a Lp(γd)-multiplier, which is not a Meyer’s
multiplier either.

• Let us consider the spectral multiplier operator

m−(L) f =
∞

∑
k=0

(−1)kJk f .

As

− f (−x) = 2 fp(x)− f (x) =
∞

∑
k=0

J2k f −
∞

∑
k=0

J2 f = m−(L) f ,

then it is clear that
||m−(L) f ||p,γd = || f ||p,γd ,

but m−(L) f is not a Meyer’s multiplier.

3. Meyer’s theorem admits an extension to spectral multiplier operators of the form

m(L) f (x) =
∞

∑
k=0

m(k,x)Jk f (x), (6.14)

where f = ∑∞
k=0 Jk f . The same proof carries over, if m admits an expansion of

the form
m(t,x) = ∑

n
an(x)t

n,

|an(x)| ≤ Mn and ∑∞
n=0 |Mn| 1

nδn
0

< ∞. Operators of the form (6.14) are in a sense

pseudo-differential operators in the Gaussian context, and require further anal-
ysis and study.
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4. An open question, as far as we know, is what is the boundedness property of
Meyer’s multiplier operators for the case of p = 1?

5. In his seminal article [28], W. Beckner proved, among other things, that the
hypercontractivity property for the Ornstein–Uhlenbeck semigroup is a con-
sequence of Young’s generalized inequality, which itself is obtained from an
inequality for multipliers of Hermite expansions. In fact, Beckner proved the
continuity Lp(γd)− Lp′(γd) of the operators Tt , but with a purely imaginary
parameter t = i

√
p−1, something that is closely related to Weissler’s represen-

tation [292] given in (2.34) and the holomorphic Ornstein–Uhlenbeck semigroup
{Tz : Rez ≥ 0}. Moreover, the proof is quite interesting by itself, using in a de-
cisive way the classical central limit theorem (CLT). Beckner makes clear the
intimate relationship between classical harmonic analysis and Gaussian har-
monic analysis, because, for example, the multiplier result allows him to obtain
the best constant in the Haussdorff–Young inequality for the Fourier transform
on R

d .

6. In B. Muckenhoupt’s monograph [198], he uses transplantation theorems to get
spectral multiplier theorems for Jacobi expansions. This idea could be explored
for the Hermite expansions, but to do that we would need to work with the whole
family of generalized Hermite polynomials {Hμ

n } (see note 4 in Chapter 1; see
also T. Chihara [54]).

7. In [148], M. Kemppainen studies a method of decomposing a spectral multiplier
operators m(L) into three parts according to the notion of admissibility, which
quantifies the doubling behavior of the underlying Gaussian measure. He proves
that the above-mentioned admissible decomposition is bounded in Lp(γd) for
1 < p ≤ 2 in a certain sense involving the Gaussian conical square function. The
proof relates admissibility to E. Nelson’s hypercontractivity theorem in a novel
way.

8. In [147], M. Kemppainen studies a class of spectral multiplier operators m(L),
defined using spectral multipliers m such that,

m(λ ) =
∫ ∞

0
e−λ t(tλ )2φ(t)

dt
t
, λ ≥ 0,

where φ : (0,∞)→ C is twice continuously differentiable, satisfying

sup
0<t<∞

(|φ(t)|+ t|φ ′(t)|+ t2|φ”(t)|)+
∫ ∞

1
(|φ ′(t)|+ t|φ”(t)|)dt < ∞,

and finds a sufficient condition for the integrability of m(L) in terms of the
admissible conical square function (5.51) and a maximal function using a de-
composition method presented in [231].
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9. In [117], P. Graczyk, J. J. Loeb, I. López, A. Nowak, & W. Urbina established
a version of P. A. Meyer’s multiplier theorem for the Laguerre case, because, as
we have mentioned in Chapter 2, point 12. of Section 2.5, the Laguerre semi-
group is also hypercontractive.

10. In [236] E. Sasso obtains a multiplier theorem for spectral multipliers of Laplace
transform type in the Laguerre case, proving that they are of weak type (1,1)
for the Gamma measure.

11. In [49], A. Carbonaro and O. Dragicević have an impressive result, using Bell-
man function techniques. It provides an alternative to the results in [105], but is
also valid in infinite dimensions.
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