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The Poisson–Hermite Semigroup

In this chapter, we consider the Poisson–Hermite semigroup, which is the semigroup
subordinated to the Ornstein–Uhlenbeck semigroup. This is analogous to the clas-
sical case in which the Poisson semigroup is obtained by subordination of the heat
semigroup (for more details see the Appendix). Then, we study the characterization
of the ∂ 2

∂ t2 +L-harmonic functions, the generalized Poisson–Hermite semigroups, and
the conjugated Poisson–Hermite semigroup which, as in the classical case, is closely
related to the notion of singular integrals.

3.1 Definition and Basic Properties

We define the Poisson–Hermite semigroup as the semigroup subordinated to the
Ornstein–Uhlenbeck semigroup using Bochner’s subordination formula,1

e−λ =
1√
π

∫ ∞

0

e−u
√

u
e−λ 2/4udu, (3.1)

(see E. Stein [252]). Thus, making the change of variables r = e−t2/4u, we have

Pt f (x) =
1√
π

∫ ∞

0

e−u
√

u
T(t2/4u) f (x)du

=
1

π(d+1)/2

∫
Rd

∫ ∞

0

e−u
√

u

exp
(−|y−e−t2/4ux|2

1−e−t2/2u

)

(1− e−t2/2u)d/2
du f (y)dy (3.2)

=
1

2π(d+1)/2

∫
Rd

∫ 1

0
t
exp(t2/4logr)

(− logr)3/2

exp
(−|y−rx|2

1−r2

)

(1− r2)d/2

dr
r

f (y)dy.

1In [133], C. Herz considered more general subordination relations between semigroups.
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Then,

Pt f (x) =
∫
Rd

p(t,x,y) f (y)dy, (3.3)

with what we will call the Poisson–Hermite kernel,

p(t,x,y) =
1

π(d+1)/2

∫ ∞

0

e−u
√

u

exp
(−|y−e−t2/4ux|2

1−e−t2/2u

)

(1− e−t2/2u)d/2
du (3.4)

=
1

4π(d+1)/2

∫ 1

0
t
exp(t2/4logr)

(− logr)3/2

exp
(−|y−rx|2

1−r2

)

(1− r2)d/2

dr
r
, (3.5)

using the change of variables r = e−t2/4u. Moreover, making the change of variables
v = 1− r2, we get

p(t,x,y) =
1

8π(d+1)/2

∫ 1

0

e
t2

4log
√

1−v

(− log
√

1− v)3/2

e−
|y−√

1−vx|2
v

vd/2

dv
1− v

. (3.6)

The subordination of the Poisson–Hermite semigroup {Pt}t≥0 can be expressed

alternatively in the following way. Let μ(1/2)
t be the Borel measure on [0,∞) whose

Laplace transform satisfies
∫ ∞

0
e−λ sμ(1/2)

t (ds) = e−
√

λ t .

It is easy to check that the family of measures {μ(1/2)
t }t≥0 forms a convolution semi-

group [81]. Moreover, using Bochner’s subordination formula (3.1) (with λ = t
√

α
and the change of variables s = t2

4u ), it yields the following explicit expression of the

measure μ(1/2)
t :

μ(1/2)
t (du) =

t

2
√

π
e−t2/4uu−3/2du. (3.7)

Then, Pt can be defined by

Pt f (x) =
∫ ∞

0
Ts f (x)μ(1/2)

t (ds). (3.8)

The Poisson–Hermite semigroup {Pt}t≥0 is a strongly continuous, symmetric,
conservative semigroup of positive contractions in Lp(γd), 1 ≤ p < ∞, with infinites-
imal generator (−L)1/2. More precisely,

Theorem 3.1. The family of operators {Pt}t≥0 satisfies the following properties:

i) Semigroup property:
Pt1+t2 = Pt1 ◦Pt2 , t1, t2 ≥ 0.
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ii) Positivity and conservative property:

Pt f ≥ 0, for f ≥ 0, t ≥ 0,

and
Pt1 = 1.

iii) Contractivity property:

||Pt f ||p,γ ≤ || f ||p,γ , t ≥ 0, 1 ≤ p ≤ ∞.

iv) Strong Lp(γd)-continuity property: The mapping t → Pt f is continuous from
[0,∞) to Lp(γd), for 1 ≤ p < ∞ and f ∈ Lp(γd).

v) Symmetry property: Pt is a self-adjoint operator in L2(γd), i.e.,
∫
Rd

Pt f (x)g(x)γd(dx) =
∫
Rd

f (x)Ptg(x)γd(dx), t ≥ 0. (3.9)

vi) Infinitesimal generator: (−L)1/2 is the infinitesimal generator of {Pt : t ≥ 0},
that is to say,

lim
t→0

Pt f − f
t

= (−L)1/2 f . (3.10)

Proof. These results can be obtained immediately from Theorem 2.5 using
Bochner’s subordination formula (3.1). �	

As the Poisson–Hermite semigroup is subordinated to the Ornstein–Uhlenbeck
semigroup and, therefore, (−L)1/2 is its infinitesimal generator, we conclude that Pt

can be defined in the spectral sense as e−t(−L)1/2
. Therefore,

Pthν = e−t
√

|α |hν . (3.11)

Proposition 3.2. (B. Muckenhoupt)

i) If f has a Hermite expansion f = ∑∞
k=0 Jk f , then for all t ≥ 0, Pt f has a Hermite

expansion

Pt f =
∞

∑
k=0

e−t
√

kJk f . (3.12)

ii) If f ∈ L2(γd) then ∑∞
k=0 e−t

√
kJk f (x) converges absolutely to Pt f (x) almost ev-

erywhere (a.e.) x.

Proof.

i) By arguments analogous to those given in Proposition 2.3, and using Bochner’s
subordination formula (3.1), we obtain
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∫
Rd

Pt f (x)hν(x)γd(dx) =
∫
Rd

(∫ 1

0
T (t,r)T(− logr) f (x)dr

)
hν(x)γd(dx)

=
∫ 1

0

∫
Rd

T(− logr) f (x)hν(x)γd(dx)T (t,r)dr

= 〈 f ,hν〉γd

∫ 1

0
rν T (t,r)dr = e−t

√
ν〈 f ,hν〉γd .

ii) As the sequence {〈 f ,hν〉γd hν(x)}ν is bounded for each x, by the Weierstrass

M-test, the series ∑∞
k=0 e−t

√
kJk f (x) converges absolutely for each x. Given

that L2(γd) ⊂ L1(γd), then according to i), Pt f (x) has an expansion Pt f (x) =

∑∞
k=0 e−t

√
kJk f (x); this must be the limit a.e. �	

B. Muckenhoupt obtained this result for d = 1 (see [193]). It was extended to
higher dimensions by C. P. Calderón [44] .

To study higher-order Gaussian Littlewood–Paley g functions and the Gaussian
Besov–Lipschitz and Triebel–Lizorkin spaces and Riesz transform, we need some

results for the k-th derivatives of the Poisson–Hermite semigroup ∂ kPt f (x)
∂ tk . Let us

consider explicitly their expressions. First, recall that p(t,x,y) can be written as

p(t,x,y) =
1

2π(d+1)/2

∫ 1

0
t
exp

(
t2/4logr

)
(− logr)3/2

exp
(−|y−rx|2

1−r2

)

(1− r2)d/2

dr
r
.

Therefore, using Rodrigues’ formula (1.28),

∂ p(t,x,y)
∂ t

=
1

2π(d+1)/2

∫ 1

0

exp
(
t2/4logr

)
(− logr)3/2

(
1− t2

2(− logr)

)exp
(−|y−rx|2

1−r2

)

(1− r2)d/2

dr
r
.

=
1

22π(d+1)/2

∫ 1

0

exp
(
t2/4logr

)
(− logr)3/2

(
2−4

t2

4(− logr)

)exp
(−|y−rx|2

1−r2

)

(1− r2)d/2

dr
r
.

= − 1

22π(d+1)/2

∫ 1

0

exp
(
t2/4logr

)
(− logr)3/2

H2

( t

2
√− logr

)exp
(−|y−rx|2

1−r2

)

(1− r2)d/2

dr
r
.

(3.13)

where H2 is the Hermite polynomial of order 2.

Moreover, by induction, again using Rodrigues’ formula (1.28) and the three-
term recurrence relation of the Hermite polynomials (10.19), it can be proved that,
for k > 1

∂ k p(t,x,y)
∂ tk = Cd

∫ 1

0

exp
(
t2/4logr

)
(− logr)3/2

Hk+1

(
t

2(− logr)1/2

)

(− logr)
k−1

2

exp
(−|y−rx|2

1−r2

)

(1− r2)d/2

dr
r
,

where Hk+1 is the Hermite polynomial of order k+1.
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On the other hand, for j = 1, · · · ,d,
∂ p(t,x,y)

∂x j
=

1

π(d+1)/2

∫ 1

0
t
exp

(
t2/4logr

)
(− logr)3/2

(y j − rx j)

(1− r2)(d+1)/2
exp

(
−|y− rx|2

1− r2

)
dr

=
∫ 1

0
t
exp

(
t2/4logr

)
(− logr)

ω(r)
(y j − rx j)

(1− r2)(d+3)/2
exp

(
−|y− rx|2

1− r2

)
dr,

(3.14)

where ω(r) =Cd(
1−r2

− logr )
1/2 is a Lipschitz function on [0,1], and

∂ |β |p(t,x,y)

∂xβ1
1 · · ·xβd

d

=
(−1)|β |

2π(d+1)/2

∫ 1

0
t
exp

(
t2/4logr

)
(− logr)3/2

r|β |Hβ

( y−rx

(1−r2)1/2

)exp
(−|y−rx|2

1−r2

)

(1−r2)d/2

dr
r

=
∫ 1

0
t
exp

(
t2/4logr

)
(− logr)

ω(r)r|β |Hβ

( y− rx

(1− r2)1/2

) exp
(−|y−rx|2

1−r2

)

(1− r2)(d+1)/2

dr
r
.

(3.15)

Now, we will also need the following technical result about the L1-norm of the
derivatives of the kernel p(t,x,y).

Lemma 3.3. If p(t,x,y) is the Poisson–Hermite kernel, then
∫
Rd

∣∣∣∣∂ p(t,x,y)
∂ t

∣∣∣∣dy ≤ C
t
, (3.16)

where C is a constant independent of x and t. Moreover, for any positive integer k,
we have ∫

Rd

∣∣∣∣∂ k p(t,x,y)
∂ tk

∣∣∣∣dy ≤ C
tk . (3.17)

Proof. Let us first prove (3.16). Using Tonelli’s theorem, using the fact that

1

πd/2

∫
Rd

exp
(−|y−rx|2

1−r2

)

(1− r2)d/2
dy = 1,

we have

∫
Rd

∣∣∣∣∂ p(t,x,y)
∂ t

∣∣∣∣dy ≤ 1

2π(d+1)/2

∫
Rd

∫ 1

0

exp
(
t2/4logr

)
(− logr)3/2

∣∣∣∣1+ t2

2 logr

∣∣∣∣
exp

(−|y−rx|2
1−r2

)

(1−r2)d/2

dr
r

dy

=
1

2π(d+1)/2

∫ 1

0

exp
(
t2/4logr

)
(− logr)3/2

∣∣∣∣1+ t2

2 logr

∣∣∣∣
∫
Rd

exp
(−|y−rx|2

1−r2

)

(1−r2)d/2
dy

dr
r

=
1

2π1/2

∫ 1

0

exp
(
t2/4logr

)
(− logr)3/2

∣∣∣∣1+ t2

2 logr

∣∣∣∣ dr
r
.
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Thus, what we need to prove is

∫ 1

0

exp
(
t2/4logr

)
(− logr)3/2

∣∣∣∣1+ t2

2 logr

∣∣∣∣ dr
r

≤ C
t
. (3.18)

Making the change of variables s =− logr, we get

∫ 1

0

exp
(
t2/4logr

)
(− logr)3/2

∣∣∣∣1+ t2

2 logr

∣∣∣∣ dr
r

=

∫ ∞

0

e−t2/4s

s3/2

∣∣∣1− t2

2s

∣∣∣ds

≤
∫ ∞

0

e−t2/4s

s3/2
ds+

∫ ∞

0

e−t2/4s

s3/2

t2

2s
ds

Now, making the change of variables v = t2

4s , ds =− t2

4v2 dv, we get

∫ ∞

0

e−t2/4s

s3/2
ds =

∫ ∞

0
e−v

( t2

4v

)−3/2 t2

4v2 dv =
∫ ∞

0
e−v (4v)3/2

t3

t2

4v2 dv

=
C
t

∫ ∞

0
e−vv−1/2dv =

CΓ (1/2)
t

=
C′

t

and

∫ ∞

0

e−t2/4s

s3/2

t2

4s
ds = 2

∫ ∞

0
e−v

( t2

4v

)−3/2
v

t2

4v2 dv = 2
∫ ∞

0
e−v (4v)3/2

t3 v
t2

4v2 dv

=
C
t

∫ ∞

0
e−vv1/2dv =

CΓ (3/2)
t

=
C′

t
.

For the proof of the general case (3.17), we use induction. As the case k = 1 is already
proved, let us assume that (3.17) holds for certain k and prove that it also holds for
k+1. According to the semigroup property, and taking u = t + s, we have

∂ k+1 p(u,x,y)
∂uk+1 =

∂
∂ s

∂ k

∂ tk p(t + s,x,y) =
∂
∂ s

∂ k

∂ tk

[∫
Rd

p(s,x,v)p(t,v,y)dv

]

=
∫
Rd

∂ p(s,x,v)
∂ s

∂ k p(t,v,y)
∂ tk dv.

Therefore,

∫
Rd

∣∣∣∣∂ k+1 p(u,x,y)
∂uk+1

∣∣∣∣dy ≤
∫
Rd

∫
Rd

∣∣∣∣∂ p(s,x,v)
∂ s

∣∣∣∣
∣∣∣∣∂ k p(t,v,y)

∂ tks

∣∣∣∣dvdy

≤
∫
Rd

∣∣∣∣∂ p(s,x,v)
∂ s

∣∣∣∣
∫
Rd

∣∣∣∣∂ k p(t,v,y)
∂ tk

∣∣∣∣dydv ≤ C
s

C
tk .

Finally, taking s = t = u/2, the case k+1 is proved. �	



3.1 Definition and Basic Properties 83

Using the representation of the Poisson–Hermite semigroup (3.8) using the one-
sided stable measure

μ(1/2)
t (ds) =

t

2
√

π
e−t2/4s

s3/2
ds = g(t,s)ds,

we can rephrase the result of Lemma 3.3 in terms of μ(1/2)
t as follows. First, for any

k ∈ N, the notation ∂ k

∂ tk μ(1/2)
t (ds) denotes

∂ k

∂ tk μ(1/2)
t (ds) :=

∂ kg(t,s)
∂ tk ds.

Then, by induction, it can be seen that

∂ kμ(1/2)
t

∂ tk (ds) =

⎛
⎜⎝ ∑

i ∈ Z, j ∈ N,
0 ≤ j ≤ k,2 j− i = k

ai, j
t i

s j

⎞
⎟⎠μ(1/2)

t (ds) (3.19)

where {ai, j} is a (finite) set of constants.

Moreover, using the change of variables u = t2

4s , it is easy to see that given k ∈ N

and t > 0 ∫ +∞

0

1
sk μ

1
2

t (ds) =
Ck

t2k , (3.20)

and then, if k ∈ N and t > 0

∫ +∞

0

∣∣∣∣ ∂ k

∂ tk μ(1/2)
t

∣∣∣∣(ds)≤ Ck

tk . (3.21)

Additionally a pointwise estimate of the k-th derivative of the Poisson–Hermite
semigroup is needed in what follows.

Lemma 3.4. ∣∣∣∣∂ kPt f (x)
∂ tk

∣∣∣∣≤Ck T ∗ f (x)t−k, (3.22)

where T ∗ f is the maximal Ornstein–Uhlenbeck function.

Proof. Using (3.21) and the dominated convergence theorem, we have

∣∣∣∣∂ kPt f (x)
∂ tk

∣∣∣∣ =
∣∣∣∣
∫ +∞

0
Ts f (x)

∂ k

∂ tk μ(1/2)
t (ds)

∣∣∣∣≤
∫ +∞

0
|Ts f (x)|

∣∣∣ ∂ k

∂ tk μ(1/2)
t (ds)

∣∣∣

≤
∫ +∞

0
T ∗ f (x)

∣∣∣∣ ∂ k

∂ tk μ(1/2)
t (ds)

∣∣∣∣≤Ck T ∗ f (x)t−k. �	

Now, we need an estimate of the Lp(γd)-norms of the derivatives of the Poisson–
Hermite semigroup.
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Lemma 3.5. Suppose f ∈ Lp(γd), then for any integer k, the function
∣∣∣
∣∣∣ ∂ kPt f

∂ tk

∣∣∣
∣∣∣

p,γ
is

a non-increasing function of t, for 0 < t <+∞. Moreover,

∣∣∣∣
∣∣∣∣∂ kPt f

∂ tk

∣∣∣∣
∣∣∣∣

p,γ
≤C‖ f‖p,γ t−k, t > 0. (3.23)

Proof. Let us consider first the case k = 0. Let us fix t1, t2 > 0, then by using the
semigroup property, we get

u(x, t1 + t2) = Pt1+t2 f (x) = Pt1(Pt2 f (x)) = Pt1(u(x, t2))

Therefore, by definition of Pt , Jensen’s inequality and the invariance of γd

∫
Rd

|u(x, t1 + t2)|pγd(dx) =
∫
Rd

∣∣∣
∫
Rd

p(t1,x,y)u(y, t2)dy
∣∣∣p

γd(dx)

≤
∫
Rd

(∫
Rd

p(t1,x,y)|u(y, t2)|pdy
)

γd(dx)

=
∫
Rd

Pt1(|u(x, t2)|p)γd(dx) =
∫
Rd

|u(x, t2)|pγd(dx).

Thus,
‖Pt1+t2 f‖p,γ ≤ ‖Pt2 f‖p,γ .

Now, we prove the general case k > 0. Differentiating the identity

u(x, t1 + t2) = Pt1(u(x, t2))

k-times with respect to t2, we get

∂ ku(x, t1 + t2)
∂ (t1 + t2)k = Pt1

(∂ ku(x, t2)

∂ tk
2

)

and then we use an analogous argument to the one above.
To prove (3.23), we again use the representation of the Poisson–Hermite semi-

group with a one-sided stable measure (3.8), and differentiating it k-times with re-
spect to t, we get

∂ kPt f (x)
∂ tk =

∫ +∞

0
Ts f (x)

∂ k

∂ tk μ(1/2)
t (ds).

Thus, using Minkowski’s integral inequality, the contractive property of the
Ornstein–Uhlenbeck semigroup and inequality (3.21), we get for t > 0

∣∣∣∣
∣∣∣∣∂ kPt f

∂ tk

∣∣∣∣
∣∣∣∣

p,γ
≤

∫ +∞

0

∣∣∣∣
∣∣∣∣Ts f

∂ k

∂ tk μ(1/2)
t (ds)

∣∣∣∣
∣∣∣∣=

∫ +∞

0
‖Ts f‖p,γ

∣∣∣∣ ∂ k

∂ tk μ(1/2)
t (ds)

∣∣∣∣
≤ ‖ f‖p,γ

∫ +∞

0

∣∣∣∣ ∂ k

∂ tk μ(1/2)
t (ds)

∣∣∣∣≤ Ck

tk ‖ f‖p,γ . �	
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Definition 3.6. The maximal function of the Poisson–Hermite semigroup or Poisson–
Hermite maximal function {Pt}t≥0 is defined as

P∗ f (x) = sup
t>0

|Pt f (x)| . (3.24)

In Theorem 4.28 of Chapter 4, we study the boundedness properties of P∗, prov-
ing that it is bounded in Lp(γd) for 1 < p ≤ ∞, and it is of weak type (1,1) with
respect to the measure γd . Moreover, from the boundedness property of P∗, it fol-
lows that

P0 f (x) = lim
t→0+

Pt f (x) = f (x) a.e. x ∈ R
d , (3.25)

and
P∞ f (x) := lim

t→∞
Pt f (x) =

∫
Rd

f (y) γd(dy) a.e. x ∈ R
d , (3.26)

for all f ∈ Lp(γd), 1 ≤ p ≤ ∞; see Theorem 4.46,. Observe that this says that the
Poisson–Hermite semigroup does not decay at infinity, i.e., it is not true that Pt → 0
as t → ∞, unless

∫
Rd f (y) γd(dy) = 0. In this case, one can obtain a precise estimate

of the decay, as it is proved in the following result.

Lemma 3.7. The Poisson–Hermite semigroup {Pt}t>0 has exponential decay on
C⊥

0 =
⊕∞

k=1Ck. More precisely, if
∫
Rd f (y)γd(dy) = 0,

|Pt f (x)| ≤Cd, f (d + |x|)e−t . (3.27)

Proof. As {Pt}t>0 is a strongly continuous semigroup, we have

lim
t→0+

Pt f (x) = f (x) (3.28)

and according to the hypothesis, because we are assuming that
∫
Rd f (y)γd(dy) = 0,

lim
t→∞

Pt f (x) = 0. (3.29)

Let us prove that ∣∣∣∣ ∂
∂ t

Pt f (x)

∣∣∣∣≤Cd, f (d + |x|)e−t .

As
∂Tt f

∂ t
(x) = L(Tt f )(x),

differentiating in (2.36), we have

∇x(Tt f )(x) =

(
e−tTt

(
∂ f
∂x1

)
(x), . . . ,e−tTt

(
∂ f
∂xd

)
(x)

)

and

�x(Tt f )(x) =
d

∑
j=1

e−2tTt

(
∂ 2 f

∂x2
j

)
(x).
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Therefore, taking f ∈C2
b(R

d) and using (3.2), we have that

∂Pt f
∂ t

(x) =
1√
π

∫ ∞

0

e−u
√

u
t

2u
L(Tt2/4u f )(x)du.

Carrying on the computations, as in [122], we get

∣∣∣∣∂Pt f
∂ t

(x)

∣∣∣∣ ≤ Cd

∫ ∞

0

e−u
√

u
t
u

[
d

∑
j=1

e−t2/2u

2
+ |x j|e−t2/4u

]
f (u)du

≤ Cd, f (d + |x|)e−t .

Then,

|Pt f (x)| ≤
∫ ∞

t

∣∣∣∣ ∂
∂ s

Ps f (x)

∣∣∣∣ds ≤Cd, f (d + |x|)e−t . �	

On the other hand, because the Poisson–Hermite semigroup is the subordinated
semigroup of the Ornstein–Uhlenbeck semigroup, it is easy to see that it is also
hypercontractive.

Additionally, we have the following result.

Proposition 3.8. If f ∈ Lp(γd), u(x, t) =Pt f (x) is a C∞(Rd+1
+ ) solution of the elliptic

equation,2

∂ 2u
∂ t2 (x, t)+Lu = 0, x ∈ R

d , t > 0, (3.30)

with boundary condition u(x,0) = f (x), x ∈ R
d .

Proof. By the general theory of semigroups, given that (−L)1/2 is the infinitesimal
generator of {Pt}t≥0, we have

∂ 2u
∂ t2 (x, t) =

∂
∂ t

[
∂Pt f

∂ t
(x)

]
=

∂
∂ t

[(−L)1/2Pt f (x)]

= (−L)1/2
[

∂Pt f
∂ t

(x)

]
= (−L)1/2[(−L)1/2Pt f (x)] =−Lu(x, t).

Alternatively, if we assume first that f ∈ L2(γd), because the sequence {〈 f ,hν〉γd

hν(x)}ν≥0 is bounded for each x, we know that

Pt f (x) =
∞

∑
k=0

e−t
√

kJk f (x) =
∞

∑
k=0

e−t
√

k ∑
|ν |=k

fH(ν)hν(x)

converges absolutely for each x; therefore, we can differentiate term by term. Now,
because the Hermite polynomials are eigenfunctions of L, we have

2Sometimes called the wave equation (see for instance [59]).
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∂ 2Pt f
∂ t2 (x)+LPt f (x) =

∞

∑
k=0

e−t
√

k

(2kk!)1/2 ∑
|ν |=k

fH(ν)[kHν(x)− kHν(x)] = 0.

Differentiation under the integral sign is justified by showing that the derivatives of
the kernel are bounded in y for each (t,x) in a neighborhood of (t0,x0), and this is
easy to check by estimating the derivatives of T (t,r)M(− logr)(x,y) and integrating
with respect to r. The boundary condition holds by (3.25). �	

Therefore, u(x, t) = Pt f (x) satisfies:

2
∂ 2u
∂ t2 (x, t)+Δxu(x, t)−2〈x,�xu(x, t)〉= 0, (3.31)

and we will say that u is ∂ 2

∂ t2 + L-harmonic. Moreover, u(x, t) = Pt f (x), which

can also be called the Poisson–Hermite integral, can be thought of as the ∂ 2

∂ t2 + L-

harmonic extension of f in R
d to the upper half-plane R

(n+1)
+ .

In [106], G. Garrigós, S. Harzstein, T. Signes, J. L. Torrea, and B. Viviani find
optimal integrability conditions to guarantee the existence of solutions of (3.31).

3.2 Characterization of ∂ 2

∂ t2 +L-Harmonic Functions

In the classical case, it is well known that Δ -harmonic functions on the disc D, and
in the case of the semiplane Rd+1

+ , are characterized by being the Poisson integral of
Lp(Rd)-functions, 1 < p ≤ ∞, see for instance, [252, Chapter VII, §1] and [299, Vol
I Chapter VII, 7].

In his famous paper [199], B. Muckenhoupt and E. Stein defined the notion of
Poisson integral for the case of the ultraspherical expansions and then they gave
the corresponding characterization of functions that are Poisson integrals of Lp-
functions in that case.

In Gaussian harmonic analysis, the analogous problem is the characterization of
∂ 2

∂ t2 + L-harmonic functions on the half-plane R
d+1
+ that are Poisson–Hermite inte-

grals of functions R
d . This was studied by L. Forzani and W. Urbina in [94]. Let

us start with the bounded case. The proof of this result essentially follows, with the
necessary variations, the classical proof that can be found in Stein’s book [252].

Theorem 3.9. Given a function u defined in R
d+1
+ , u is ∂ 2

∂ t2 + L-harmonic and
bounded if and only if u is the Poisson–Hermite integral of a function in L∞(γd).

Proof. It is enough to prove the sufficient condition, because the necessary condi-
tion is immediate, as the Poisson–Hermite integral of a bounded function is ∂ 2

∂ t2 +L-

harmonic and bounded. Now, assume that u is a ∂ 2

∂ t2 +L-harmonic function such that
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|u| ≤ M in R
d+1
+ . For each k ∈N set fk(x) = u(x,1/k) and let uk(x, t) be the Poisson–

Hermite integral of fk. Let us consider

Δk(x, t) = u(x, t +1/k)−uk(x, t).

It is enough to prove that Δk ≡ 0 because, assuming that, we have

u(x, t +1/k) = uk(x, t) =
∫
Rd

p(t,x,y) fk(y)γd(dy)

and hence, by the boundedness condition

|| fk||L∞(γ) = ||u(·,1/k)||L∞(γ) ≤ M < ∞.

Thus, { fk} is a bounded sequence in L∞(γd) = (L1(γd))
∗, and then, according to the

Bourbaki–Alaoglu theorem, there is an f ∈ L∞(γd) and a subsequence { fk′} such that
fk′ → f in the weak∗ topology, that is,

∫
Rd

fk′(y)φ(y)γd(dy)−→
∫
Rd

f (y)φ(y)γd(dy),

for all φ ∈ L1(γd).
For a fixed (x, t) ∈ R

d+1
+ , choosing φ(·) = p(t,x, ·), in the limit, we have that

u(x, t) =
∫
Rd

p(t,x,y) f (y)γd(dy).

Then, to prove that Δk ≡ 0; define, for ε > 0, the auxiliary function

U(x, t) = Δk(x, t)+2Mεt + εh(x, t),

where h(x, t) = e−2t( 2
n |x|2 − 1) + 1 is strictly positive, radial in x, and ∂ 2

∂ t2 + L-
harmonic function.

U(x, t) is clearly ∂ 2

∂ t2 +L-harmonic on R
d+1
+ and continuous on R

d+1
+ . We restrict

our attention to the bounded domain Σ = {(x, t) : 0 < t < 1/ε , |x| < R}, where R is
sufficiently large, to be chosen later. Then, on its boundary,

∂Σ = {(x,0) : |x|< R}∪{(x,1/ε) : |x|< R}∪{(x, t) : 0 < t < 1/ε , |x|= R}
= ∂Σ1 ∪∂Σ2 ∪∂Σ3,

we have the following two conditions:

• On ∂Σ1, Δk(x,0) = 0 and

U(x,0) = εh(x,0)≥ 0.

• On ∂Σ2,
U(x,1/ε) = Δk(x,1/ε)+2M+ εh(x,1/ε)≥ 0

since |Δk(x, t)| ≤ 2M.
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• Finally, on ∂Σ3, because Δk(x, t) is bounded and h(x, t) is radially increasing in
x, U(x, t) is positive for R big enough (note that R depends on ε).

Then, by using the maximum principle,3 we get that U(x, t) ≥ 0 in the region Σ
and this implies that for all (x, t) ∈ Σ

Δk ≥−ε(2Mt +h(x, t)).

By a similar argument, considering −Δk instead of Δk, we get that for all (x, t) ∈ Σ

Δk ≤ ε(2Mt +h(x, t)).

Now, consider an arbitrary point (x, t) ∈ R
d+1
+ . For any ε small enough (x, t) ∈ Σ ;

thus, we can get both inequalities for Δk(x, t) and, therefore, Δk(x, t) = 0. �	
The characterization result, mentioned above, is the following theorem (see [94]).

Theorem 3.10. Given a function u defined in R
d+1
+ , u is ∂ 2

∂ t2 +L-harmonic and uni-
formly Lp(γd)-bounded, 1 ≤ p < ∞, that is to say

supt>0||u(·, t)||p,γ ≤ M, (3.32)

if and only if u is the Poisson–Hermite integral of a function in Lp(γd), if p > 1. In
the case p = 1, u is the Poisson–Hermite integral of a measure μ as above.

In the classical case, the analogous result of Theorem 3.10 is simply a corollary
of the corresponding result of Theorem 3.9, but that is not the case here. The proof of
Theorem 3.10 is a combination of the classical proof and specific estimates for the
Gaussian measure. One of the necessary ingredients is the following result, which
first appeared in [87].

Theorem 3.11. Let us consider the operators

L1u =
∂ 2u
∂ t2 +Lu, and L2u = L1u−2u. (3.33)

If u satisfies L1u = 0 or L2u = 0, then:

i) Mean value inequality. There exists a constant C, dependent only on dimension,
such that

|u(x, t)| ≤ C
|B((x, t),r)|

∫
B((x,t),r)

|u(y,s)|dyds, (3.34)

for r ≤ t, and t ≤ m(x), where, as before, m(x) = 1∧ 1
|x| is the admissibility

function. Thus, the mean value inequality is valid for radii that are small enough.
ii) If u ≥ 0 in B((x, t),2r), then

u(z, l)≈ 1
|B((x, t),r)|

∫
B((x,t),r)

u(y,s)dyds, (3.35)

for any (z, l) ∈ B((x, t),r), with r ≤ t and t ≤ m(x).

3The weak maximum principle on bounded domains can be applied here as L is a uni-
formly elliptic differential operator with continuous coefficients.
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iii) Harnack’s inequality. There exists a constant C > 0 such that if u ≥ 0 in
B((x, t),2r)

sup
B((x,t),r)

u ≤C inf
B((x,t),r)

u (3.36)

if r ≤ t and t ≤ m(x).

Proof. For each (x0, t0) ∈ R
d+1
+ , x0 �= 0, |x0| > 1, set B = B

(
(x0, t0), 1

|x0|
)

. Let us

define on B the transformation

x = x0 +
1
|x0|x

′,

t = t0 +
1
|x0| t

′.

Then (x,y) ∈ B if and only if (x′,y′) ∈ B((0,0),1). Define the function

U(x′, t ′) = u

(
x0 +

1
|x0|x

′, t0 +
1
|x0| t

′
)
.

The function U satisfies the equation

Δx′,t ′U −2
1
|x0|

(
x0 +

1
|x0|x

′
)

∇x′U = 0

and because (x′, t ′) ∈ B((0,0),1), then 1
|x0|

(
x0 +

1
|x0|x

′
)

is bounded by a constant.

Given that the (classical) mean value inequality is still true for differential operators
with bounded first-order coefficients (see D. Gilbarg, N. S. Trudinger [113], page
244), we have

U(0,0)≤ 1
sd+1

∫
B((0,0),s)

U(x′, t ′)dx′dt ′

for all s ≤ 1.
Now, according to the definition of U , the latter inequality can be rewritten as

u(x0, t0)≤ 1
sd+1

∫
B((0,0),s)

u

(
x0 +

1
|x0|x

′, t0 +
1
|x0| t

′
)

dx′dt ′

=
|x0|d+1

sd+1

∫
B((x0,y0),

s
|x0| )

u(x, t)dxdt.

Hence, to obtain the inequality, if t0 < 1
|x0| , take s = |x0|t0 and if t0 > 1

|x0| , s = 1.

To prove (3.35) and (3.36) we use, as before, the results we know for classical
positive solutions (see D. Gilbarg, N. S. Trudinger [113, pages 244–250]). �	

We are now ready to prove Theorem 3.10.
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Proof. The necessary condition is immediate because the Poisson–Hermite integral
of a Lp(γd) function is ∂ 2

∂ t2 +L-harmonic and Lp(γd)-bounded. We then just have to
prove the sufficient condition.

For each (x, t) ∈ R
d+1
+ , consider an admissible ball B((x, t),r) radius r ≤ t, and

t ≤ m(x), because, as we already know the values of Gaussian density e−|y|2 are
equivalents for points (y,s) on that ball, it is clear that

B((x, t),r)⊂
{
(y,s) : t − r < s < t + r

}
,

and |B((x, t),r)| = Crd+1; therefore, using these facts, the mean value inequal-
ity (3.34) and Hölder’s inequality, we get, for 1 ≤ p < ∞,

|u(x, t)|p ≤ C
|B((x, t),r)|

∫
B((x,t),r)

|u(y,s)|pdyds

≤ Ce|x|2

rd+1

∫ t+r

t−r

(∫
Rd

|u(y,s)|pγd(dy)
)

ds.

Thus, according to the Lp(γd)-boundedness

|u(x, t)| ≤Cr−d/pe|x|
2/p,

with r ≤ t and t ≤ m(x).
As before, consider, for each k ∈ N, fk(x) = u(x,1/k), uk(x, t) its Poisson–

Hermite integral and

Δk(x, t) = u(x, t +1/k)−uk(x, t).

According to the weak compactness argument, it is again enough to prove that

Δk ≡ 0.

Observe that, according to the previous inequality,

|u(x, t +1/k)| ≤ C

((
t +

1
k

)
1∧ 1

|x|
)−d/p

e|x|
2/p

≤ C(k∨1∨|x|)d/pe|x|
2/p.

Now, consider the auxiliary function

U(x, t) = Δk +2Cε(k2 + |x|2)de|x|
2/pt + εh(x, t),

where h is as in the proof of Theorem 3.9. Then, U(x, t) is clearly ∂ 2

∂ t2 + L-

subharmonic on R
d+1
+ and continuous on R

d+1
+ . Thus, according to an analogous

argument to that of the proof of Theorem 3.9, to apply the maximum principle on
the bounded domain
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Σ =
{
(x, t) : 0 < t < 1/ε , |x|< R

}

we get that U(x, t)≥ 0 in the region Σ ; thus, this implies for all (x, t) ∈ Σ

Δk ≥−ε
(

2C(k2 + |x|2)de|x|
2/p +h(x, t)

)
.

Analogously, considering −Δk instead of Δk, we get that for all (x, t) ∈ Σ

Δk ≤ ε
(

2C(k2 + |x|2)de|x|
2/p +h(x, t)

)
.

Now, consider an arbitrary point (x, t) ∈ R
d+1
+ . For any ε > 0 small enough (x, t) ∈

Σ ; thus, we can get both inequalities for Δk(x, t), i.e., Δk(x, t) = 0. Therefore, for
p > 1, there exist f ∈ Lp(γd) and a subsequence { fk′} such that fk′ → f in the weak∗
topology. Thus, u(x, t) is the Poisson–Hermite integral of that f .

For p = 1 there exists a measure μ , such that e−|y|2 μ(dy) is a finite measure, and
a subsequence { fk′} such that fk′ → μ in the weak∗ topology; therefore u(x, t) is the
Poisson–Hermite integral of μ . �	

3.3 Generalized Poisson–Hermite Semigroups

The Poisson–Hermite semigroup can be generalized to a family of semigroups ob-
tained from the Ornstein–Uhlenbeck semigroup, by using the generalized subordina-

tion formula. Let μ(α)
t be the Borel measure on [0,∞) such that its Laplace transform

satisfies ∫ ∞

0
e−λ sμ(α)

t (ds) = e−λ α t , 0 < α < 1. (3.37)

The measures μ(α)
t are probability measures, which are known as one-sided stable

measures in [0,∞) of order α; moreover, for each α fixed, {μ(α)
t }t≥0 is a convolution

semigroup (see [81]).

Definition 3.12. The generalized Poisson–Hermite semigroup of order α , {Pα
t }t≥0

is defined as

Pα
t f (x) =

∫ ∞

0
Ts f (x)μ(α)

t (ds). (3.38)

The proof that {Pα
t }t≥0 is a strongly continuous, symmetric, conservative semi-

group of positive contractions on Lp(γd), 1 ≤ p < ∞, with infinitesimal generator
(−L)α can be obtained by adapting the proof for the case α = 1/2. Hence, formally

Pα
t = e−(−L)α t ,

which means that for any ν multi-index,
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Pα
t hν = e−t|ν |α hν , (3.39)

and, therefore, if f = ∑∞
k=0 Jk f ,

Pα
t f =

∞

∑
k=0

e−tkα
Jk f .

Again, these semigroups turn out to be hypercontractive; therefore,

Lemma 3.13. If 1 < p < ∞

||Pα
t (I −J0 −J1 − . . .−Jn−1) f ||p,γ ≤ e−tnα || f ||p,γ . (3.40)

Proof. From Lemma 2.18, we have

||Tt(I −J0 −J1 − . . .−Jn−1) f ||p,γ ≤ e−tn|| f ||p,γ .

Then, using (3.37) and Minkowski’s integral inequality, we get

||Pα
t (I −J0 −J1 − . . .−Jn−1) f ||p,γ ≤

∣∣∣∣
∣∣∣∣
∫ ∞

0
Tt(I −J0 −J1 − . . .−Jn−1) f μα

t (ds)

∣∣∣∣
∣∣∣∣

p,γ

≤
∫ ∞

0
||Tt(I −J0 −J1 − . . .−Jn−1) f ||p,γ μα

t (ds)

≤
∫ ∞

0
e−nt || f ||p,γ μα

t (ds)≤Ce−nα t || f ||p,γ . �	

Now, if instead of the Ornstein–Uhlenbeck semigroup {Tt}t≥0, in formula (2.73),
we use the generalized Poisson–Hermite semigroups, {Pα

t }t≥0, we get generalized
potential operators

Un,α f =
∫ ∞

0
Pα

t (I −J0 −J1 − . . .−Jn−1) f ;dt, (3.41)

and obtain similar Lp(γd) estimates, as in (2.74), using Lemma 3.13 and Minkowski’s
integral inequality,

‖Un,α f‖p,γ ≤
∫ ∞

0
‖Pα

t (I −J0 −J1 − . . .−Jn−1) f‖p,γ dt ≤C
1

nα ‖ f‖p,γ . (3.42)

In particular, if f ∈ Ck with k ≥ n,

Un,α f =
∫ ∞

0
Pα

t f dt =
1

nα f .

These results will be key in the proof of Meyer’s multiplier theorem (see Theo-
rem 6.2).
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3.4 Conjugate Poisson–Hermite Semigroup

The investigation of conjugacy for discrete and continuous non-trigonometric or-
thogonal expansions was initiated and extensively studied in the seminal article by
B. Muckenhoupt and E. M. Stein [199]. B. Muckenhoupt introduced in [194] the
conjugate Hermite expansions for dimension d = 1. According to (3.31), we know
that given f ∈ L1(γ1), if u(x, t) = Pt f (x), then u(x, t) satisfies

2
∂ 2u
∂ t2 (x, t)+

∂ 2u
∂x2 (x, t)−2x

∂u
∂x

(x, t) = 0, (3.43)

or equivalently,

2
∂ 2u
∂ t2 (x, t)+ ex2 ∂

∂x

(
e−x2 ∂u

∂x
(x, t)

)
= 0.

B. Muckenhoupt introduced the Gaussian conjugate function v of u by considering
the Gaussian Cauchy–Riemann equations,

∂u
∂x

(x, t) = −∂v
∂ t

(x, t)

∂u
∂ t

(x, t) = ex2 ∂
∂x

(e−x2
v(x, t)). (3.44)

Then, the function v(x, t) must be defined as

v(x, t) =
∫ ∞

−∞
Q(t,x,y) f (y)dy, t > 0, (3.45)

where

Q(t,x,y)=

√
2

π

∫ 1

0

(
1− r2

− logr

)1/2

exp

(
t2

4 logr

)
y− rx
(1−r2)2 exp

(−r2x2 +2rxy− r2y2

1−r2

)
dr.

(3.46)

Observe that (3.46) can be obtained from (3.4), for d = 1, differentiating with respect
to x, integrating with respect to t, using the fact that Q must tend to 0 as t → ∞ and
multiplying by −1, i.e.,

Q(t,x,y) =−
∫ ∞

t

∂ p(s,x,y)
∂x

ds. (3.47)

By construction v satisfies the first Cauchy–Riemann equation. Additionally, it is
easy to see that v satisfies,

2
∂ 2v
∂ t2 (x, t)+

∂ 2v
∂x2 (x, t)−2x

∂v
∂x

(x, t) =−2v(x, t), (3.48)
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which is equivalent to

2
∂ 2v
∂ t2 (x, t)+

∂
∂x

[
ex2 ∂ (e−x2

v(x, t))
∂x

]
= 0.

Now, because u satisfies (3.43), i.e., it is a ∂ 2

∂ t2 +L-harmonic, but v does not, then
it seems that probably this is not the best notion of conjugacy. More on the problem
of notions of conjugacy for orthogonal polynomials can be found at [39].

Definition 3.14. The conjugate Poisson–Hermite integral of f , is defined as

Pc
t f (x) = v(x, t).

Therefore,

Pc
t f (x) =−

∫ ∞

t

∂Ps f
∂x

(x)ds. (3.49)

In [194], B. Muckenhoupt proved that Pc
t f is bounded on Lp(γ1), 1 < p < ∞ and

as we see later in Chapter 9, if t → 0, Pc
t f tends to the Gaussian Hilbert transform

H f , in Lp-norm and a.e.

In his doctoral dissertation, R. Scotto [244] extended Muckenhoupt’s notion of
conjugacy in higher dimensions, d > 1, considering the Gaussian Cauchy–Riemann
equations in R

d :

∂u
∂x j

(x, t) = −∂v j

∂ t
(x, t), j = 1, . . . ,d

∂vi

∂x j
(x, t) =

∂v j

∂xi
(x, t), i, j = 1, . . . ,d (3.50)

∂u
∂ t

(x, t) =
1
2

d

∑
j=1

e|x|
2 ∂

∂x j
(e−|x|2v j(x, t)).

From these relations, R. Scotto defined a system of conjugates,

(u(x, t),v1(x, t),v2(x, t), . . . ,vd(x, t)).

Again, following Muckenhoupt’s argument, the functions vi(x, t) verify that the first
equation of (3.50); thus,

Definition 3.15. The i-th conjugate Poisson kernel of f , is defined as

Pc
i,t f = vi(x, t), i = 1, . . . ,d.

Therefore,

Pc
i,t f =

∫
Rd

Qi(t,x,y) f (y)dy, t > 0, (3.51)
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where

Q j(t,x,y) = −
∫ ∞

t

∂ p
∂x j

(s,x,y)ds

=
1

π(d+1)/2

∫ 1

0

(
1− r2

− logr

)1/2

exp

(
t2

4 logr

)
y j − rx j

(1− r2)(d+3)/2

× exp

(−r2(|x|2 + |y|2)+2r〈x,y〉
1− r2

)
dr,

Thus,

Pc
i,t f (x) =−

∫ ∞

t

∂Ps f
∂xi

(x)ds, (3.52)

for any i = 1, . . . ,d.

Thus, again following Muckenhoupt [194], we have the following result:

Proposition 3.16.

i) Qi(t,x,y) is a bounded function in y, for any i = 1, . . . ,d.
ii) If f ∈ L1(γd), then for any i = 1, . . . ,d Pc

i,t f exists for any t > 0 and they verify
an analogous equation as (3.48),

∂ 2v
∂ t2 (x, t)+Lv(x, t) =−v(x, t), (3.53)

and the Gaussian Cauchy–Riemann equations (3.50).
iii) If f has a Hermite expansion f = ∑∞

k=0 ∑|ν |=k f̂H(ν)hν , then, for any t ≥ 0, Pc
i,t f

has a Hermite expansion

Pc
i,t f =−

∞

∑
k=1

∑
|ν |=k

f̂H(ν)e−t
√

|ν |
√

2
|ν |νihν−ei , (3.54)

where ei is the unitary vector with zeros in all j-coordinates j �= i and one in the
i-th coordinate. These series are called conjugate Poisson series.

iv) If f ∈ L2(γd) and t > 0, the series (3.54) converges a.e.

Proof.

i) Let i = 1, . . . ,d fixed. Considering the cases 0 ≤ r < 1/2 and 1/2 ≤ t < 1, and
replacing − logr by a multiple of 1− r, in the second case it can be proved that

(
1− r2

− logr

)1/2 exp
(

t2

4 logr

)

(1− r2)(d+3)/2
<C

(
1+

1
xd+4

)
.

Then, we get that Qi(t,x,y) is bounded.
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ii) If f ∈ L1(γd) then Pc
i,t f is well defined byi). The differentiation under the integral

sign can be done as it can be proved that all the kernels are properly bounded
(for more details see [244]).

Qi(t,x,y) satisfies the first equation of (3.50) by construction; therefore Pc
i,t f (x)

will verify it too. According to an analogous argument to that done for v veri-
fying (3.48), we have that Pc

i,t f (x) satisfies (3.53), because, as u(x, t) = Pt f (x)

satisfies (3.30), it follows that
∂Pc

i,t f

∂xi
(x) verifies

∂ 2

∂ t2

(∂Pc
i,t f

∂xi

)
(x)+L

∂Pc
i,t f

∂xi
(x) =

∂Pc
i,t f

∂xi
(x).

The second equation of (3.50) is satisfied immediately, as

∂Pc
i,t f

∂x j
(x) =−

∫ ∞

t

∂ 2Ps f
∂xi∂x j

(x)ds =
∂Pc

j,t f

∂xi
(x).

Finally, the last equation of (3.50) is satisfied, because

1
2

d

∑
i=1

e|x|
2 ∂

∂xi
(e−|x|2Pc

i,t f (x)) =
d

∑
i=1

[
− xiP

c
i,t f (x)+

1
2

∂Pc
i,t f

∂xi
(x)

]

= −
∫ ∞

t

d

∑
i=1

[
−xi

∂Ps f
∂xi

(x)+
1
2

∂ 2Ps f

∂x2
i

(x)

]
ds

= −
∫ ∞

t
LPs f (x)ds =−

∫ ∞

t

∂ 2Ps f
∂ s2 (x)ds

=
∂Pt f

∂ t
(x).

iii) Following an analogous argument as in Proposition 2.3, we can prove that

Qi(t,x,y) =−
∞

∑
k=1

∑
|ν |=k

f̂H(ν)e−t
√

|ν |
√

2
|ν |νihν−ei .

and ∫
Rd

Qi(t,x,y)hν−ei(x)γd(dx) = e−t
√

|ν |hν(y),

and from there, using Fubini’s theorem, we can prove that Pc
i,t f has the expan-

sion (3.54).
iv) It can be proved by an analogous argument to that in the proof of Proposi-

tion 2.3. �	
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3.5 Notes and Further Results

1. Following B. Muckenhoupt [193], the Poisson–Hermite kernel can also be writ-
ten as

p(t,x,y) =
∫ 1

0
U(t,r)M(− logr)(x,y)dr,

where Mt(x,y) is Mehler’s kernel, and

U(t,r) =
1

2π1/2

t exp(t2/4logr)

(− logr)3/2

1
r
.

Pt can also be written as

Pt f (x) =
∫ 1

0
U(t,r)T(− logr) f (x)dr. (3.55)

Observe that the definition of the Poisson–Hermite semigroup given here, for
d = 1, differs from that in [193] by a constant, because in that case

T (t,r) =
1

(2π)1/2

t exp(t2/2logr)

(− logr)3/2

1
r
,

which implies, essentially, similar relations, but with different constants.

2. Similar to the case of the Ornstein–Uhlenbeck semigroup, for the Jacobi semi-
group and the Laguerre semigroup, using Bochner’s subordination formula (3.1),
we can define the Jacobi–Poisson semigroup {Pα ,β

t }t≥0and the Laguerre–
Poisson semigroup {Pα

t }t≥0, in addition to their conjugate semigroups (see for
instance [213] and [209]). In an expository and very interesting paper [276],
J. L. Torrea considers the semigroup theory as a tool for developing harmonic
analysis for general differential second operators, based on the seminal papers
of B. Muckenhoupt and E. Stein [199, 193] and [194].

3. Associated with the family of translated semigroups {T (κ)
t }t≥0, defined in (2.78),

we have their subordinated semigroups {P(κ)
t }t≥0, defined by using the Bochner

subordination formula; these are referred to as the translated Poisson–Hermite
semigroups. Therefore,

P(κ)
t hν = e−t

√
|ν |+κhν . (3.56)

Moreover, P(κ)
t f ≤ Pt f for any t ≥ 0 and f ≥ 0. These translated semigroups are

important in Chapter 5 and in Chapter 9.
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