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The Ornstein–Uhlenbeck Operator
and the Ornstein–Uhlenbeck Semigroup

In this chapter we are going to define and study the Ornstein–Uhlenbeck operator
and the Ornstein–Uhlenbeck semigroup. They are analogous, in the Gaussian har-
monic analysis, to the Laplacian and the heat semigroup in the classical case. Then,
we study an important property of the Ornstein–Uhlenbeck semigroup, the hyper-
contractivity property, and some of its applications.

2.1 The Ornstein–Uhlenbeck Operator

In the classical case, we consider the Laplacian differential operator Δx = ∑d
i=1

∂ 2

∂x2
i

in R
d and the eigenvalue problem

Δxu = λu (2.1)

with boundary condition

u(x) = O(1), as |x| → ∞.

Then, the set of eigenvalues of this problem consists of all non-positive real numbers,
and given λ < 0 the eigenfunctions corresponding to λ are

ei〈·,y〉, |y|2 =−λ . (2.2)

The Ornstein–Uhlenbeck operator in R
d is a second-order differential operator

defined as

L =
1
2

Δx −〈x,∇x〉=
d

∑
i=1

[1
2

∂ 2

∂x2
i

− xi
∂

∂xi

]
, (2.3)
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where ∇x = ( ∂
∂x1

, ∂
∂x2

, . . . , ∂
∂xd

) is the gradient, and Δx is the Laplace operator defined

in the space of test functions C∞
0 (R

d) of smooth functions with compact support on
R

d . The operator L has a self-adjoint extension to L2(γd), that is also denoted as L,
that is, ∫

Rd
L f (x)g(x)γd(dx) =

∫

Rd
f (x)Lg(x)γd(dx); (2.4)

thus, L is the natural “symmetric” Laplacian in this context.

The Ornstein–Uhlenbeck operator L can also be written as

L =
d

∑
i=1

Li, (2.5)

where Li =
1
2 ∂ 2

i − xi∂i, i = 1, · · ·d, is the one-dimensional Ornstein–Uhlenbeck op-
erator in the i-th variable. Hence, for x = (x1,x2, · · · ,xd) ∈ R

d and ν = (ν, · · · ,νd) a
multi-index,

LHν(x) =
d

∑
i=1

[1
2

∂ 2Hν
∂xi

(x)− xi
∂Hν(x)

∂xi
(x)

]

=
d

∑
i=1

[1
2

∂ 2

∂x2
i

d

∏
j=1

Hν j(x j)− xi
∂

∂xi

d

∏
j=1

Hν j(x j)
]

=
d

∑
i=1

d

∏
j=1, j �=i

Hν j(x j)
[1

2
∂ 2Hνi

∂xi
(xi)− xi

∂Hνi

∂xi
(xi)

]

=
d

∑
i=1

d

∏
j=1, j �=i

Hν j(x j)LiHνi(xi) =
d

∑
i=1

(−νi)
d

∏
j=1

Hν j(x j)

=
d

∑
i=1

(−νi)Hν(x) =−|ν |Hν(x). (2.6)

Thus, the Hermite polynomials in d-variables, {Hν}ν are eigenfunctions of L with
corresponding eigenvalues λν =−|ν |=−∑d

i=1 νi, i.e.,

LHν = λν Hν =−|ν |Hν , (2.7)

and the normalized Hermite polynomials hν are also eigenfunctions of the Ornstein–
Uhlenbeck operator, with the same corresponding eigenvalue,

Lhν = λν hν =−|ν |hν .

Moreover, consider the eigenvalue problem

Lu = λu (2.8)
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with boundary condition

u(x) = O(|x|k), for some k ≥ 0 as |x| → ∞.

Then, the set of eigenvalues is the set of negative integers and the eigenfunctions
corresponding to λ = −n are d-dimensional Hermite polynomials of degree ν , Hν ,
such that |ν |= n.

Hence, the L2(γd) spectrum of L is {· · · ,−2,−1,0}. This coincides with the
Lp(γd)-spectrum for 1 < p < ∞.1 Then, the spectral decomposition of L is given
by

L f =
∞

∑
k=0

(−k)Jk f , (2.9)

where, as before see Definition 1.15, Jk f = ∑|ν |=k〈 f ,hν〉γd hν . Then, the domain of
L is given by

D(L) = { f ∈ L2(γd) :
∞

∑
k=0

k2||Jk f ||22,γ < ∞}, (2.10)

and the spectral decomposition (2.9) is well defined for any f = ∑∞
k=0 Jk f ∈ D(L).

For i = 1,2, · · · ,d let us consider the differential operators

∂ i
γ =

1√
2

∂
∂xi

. (2.11)

∂ i
γ is neither symmetric nor antisymmetric in L2(γd). In fact, its formal L2(γd)-

adjoint2 is

(∂ i
γ)

∗ =− 1√
2

ex2
i

∂
∂xi

(e−x2
i I) =

√
2xiId −

1√
2

∂
∂xi

, (2.12)

where Id is the identity in R
d , because, simply by integration by parts,

∫

Rd
(∂ i

γ f )(x)g(x)
e−|x|2

πd/2
dx =

1√
2

∫

Rd

[ ∂ f
∂xi

(x)
]
g(x)

e−|x|2

πd/2
dx

= − 1√
2

∫

Rd
f (x)

∂
∂xi

[
g(x)

e−|x|2

πd/2

]
dx

=
∫

Rd
f (x)

[√
2xig(x)−

1√
2

∂g
∂xi

(x)
]e−|x|2

πd/2
]dx

=
∫

Rd
f (x)((∂ i

γ)
∗g)(x)

e−|x|2

πd/2
dx.

1The L1(γd)-spectrum of L is the closed right half plane. We will prove this in detail later
(see Theorem 2.7, see also E. B. Davies [65, Theorem 4.3.5]).

2In L2(Rd), ∂
∂xi

is antisymmetric, by integration by parts.
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Observe that (∂ i
γ)

∗ can be written as

(∂ i
γ)

∗ =− 1√
2

e|x|
2
(∂ie

−|x|2I).

Moreover, it is easy to see that

(−L) =
d

∑
i=1

(∂ i
γ)

∗∂ i
γ . (2.13)

Observe that the commutator [∂ i
γ ,(∂ i

γ)
∗], is the identity;3

[∂ i
γ ,(∂ i

γ)
∗] f (x)= ∂ i

γ(∂ i
γ)

∗ f (x)−(∂ i
γ)

∗∂ i
γ f (x)

=
1√
2

∂
∂xi

(√
2xi f (x)− 1√

2

∂ f (x)
∂xi

)
−
(√

2xiI−
1√
2

∂
∂xi

)( 1√
2

∂ f (x)
∂xi

)

= f (x)+
√

2xi
∂ f (x)

∂xi
− 1

2
∂ 2 f (x)

∂x2
i

− xi
∂ f (x)

∂xi
+

1
2

∂ 2 f (x)

∂x2
i

= f (x).

Reversing the order in (2.13), we get another second-order differential operator,
which will be denoted as L,

(−L) =
d

∑
i=1

∂ i
γ(∂ i

γ)
∗ = (−L)+dI =−1

2
Δx + 〈x,∇x〉+dI, (2.14)

and therefore,

L = L−dI =
1
2

Δx −〈x,∇x〉−dI. (2.15)

We will call L the alternative Ornstein–Uhlenbeck operator. The Hermite
polynomials {Hν}ν are also eigenfunctions of L, with eigenvalues λ ν =−(|ν |+1),
i.e.,

LHν = (λν −1)Hν =−(|ν |+1)Hν , (2.16)

The differential operators ∂ i
γ are considered the “natural” notions of (partial)

derivatives for the Gaussian case, and we call it simply the Gaussian partial deriva-
tives. Nevertheless, as we already know, there is another notion of Gaussian differ-
entiation, namely, (∂ i

γ)
∗. The operators ∂ i

γ ,(∂ i
γ)

∗ are called the creation and annihi-

lation operators in quantum mechanics.4

3Recall that, the commutator of two operators A,B is defined as [A,B] = AB−BA.
4In [210] there is a general analysis of this decomposition for orthogonal polynomials and

functions, which is highly recommended.
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Thus, the notion of (partial) differentiation in Gaussian harmonic analysis is, up
to a constant, the same as in the classical case. These facts are important later on
when we discuss the Riesz transforms for the Gaussian measure in Chapter 9.

There are several results in Gaussian harmonic analysis that can be obtained by
what is called the tensorization argument, see [20, 284], which implies that it is
enough to prove only the case d = 1 because the case d > 1 follows immediately by
the tensor product structure.

In this case, the square field operator in R
d is given by

Γ ( f ,g) =
1
2
(L( f g)−gL f − f Lg) =

1
2

d

∑
i=1

∂ f
∂xi

∂g
∂xi

=
1
2
〈∇x f ,∇xg〉. (2.17)

Consider the infinitesimal generator O of an operator semigroup {Tt}, and
symmetric with respect to the measure μ , the Dirichlet form associated with O
is defined as

Eμ( f ) = lim
t→0

〈 f −Tt f , f 〉μ

t
= 〈−O f , f 〉μ =−

∫

E
f (O f )dμ . (2.18)

Then, by symmetry, it can be proved that

Eμ( f ) =
∫

E
Γ ( f , f )dμ . (2.19)

for f ∈ L2(μ); see [120, 284].

Hence, the Dirichlet form associated with the Ornstein–Uhlenbeck operator L
and the Gaussian measure γd is given by

Eγ( f )(x) =
∫

Rd
Γ ( f , f )(x)γd(dx) =

1
2

∫

Rd
|∇x f (x)|2 γd(dx). (2.20)

This can be obtained simply using integration by parts, as
∫

Rd
〈∇x f (x),∇xg(x)〉γd(dx) = 2

∫

Rd
f (x)(−L)g(x)γd(dx), (2.21)

for f ,g ∈ S (Rd), the Schwartz class. In particular, this implies that (−L) is positive
definite and that the Ornstein–Uhlenbeck operator is (formally) self-adjoint in L2(γd)

∫

Rd
L f (x)g(x)γd(dx) =

∫

Rd
f (x)Lg(x)γd(dx). (2.22)

Therefore, as already mentioned L is the “symmetric Laplacian” in this context and
the Gaussian measure γd is the natural measure for studying the operators associated
with the operator L.
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In addition, the iterated square field operator Γ2( f ,g), in this case, is given by

Γ2( f ,g) =
1
2
[LΓ ( f ,g)−Γ ( f ,Lg)−Γ (g,L f )]. (2.23)

Finally, in [168, Lemma 4.1] J. Maas, J. van Neerven, and P. Portal obtained a
Gaussian version of the parabolic Caccioppoli inequality. We consider here only the
real version.

Theorem 2.1. Let v : Rd × (0,∞)→ R be a C1,2-function such that v(·, t) ∈C2
b(R

d)
for all t > 0, and suppose that

∂v
∂ t

= Lv

on I(x0, t0,2r) := B(x0,2cr)× [t0 − 4r2, t0 + 4r2], for some r ∈ (0,1), 0 < C0 ≤ c ≤
C1 < ∞, and t0 > 4r2. Then

∫

I(x0,t0,r)
|∇xv(x, t)|2 γd(dx)dt ≤C

1+ r|x0|
r2

∫

I(x0,t0,2r)
|v(x, t)|2 γd(dx)dt, (2.24)

with C depending only on the dimension d, C0, and C1.

Proof. Let η ∈ C∞(Rd × (0,∞)) be a cut-off function such that 0 ≤ η ≤ 1 on R
d ×

(0,∞), η ≡ 1 on I(x0, t0,r), η ≡ 0 on the complement of I(x0, t0,2r), and

‖∇xη‖∞ � 1
r
, ‖∂η

∂ t
‖∞ � 1

r2 , ‖Δη‖∞ � 1
r2

with the implied constants depending only on d, C0 and C1. Then, in view of

‖x ·∇xη‖∞ � (|x0|+2r) · C′

r
,

and recalling that 0 < r < 1, we have

‖Lη‖∞ � 1
r2 +

1
r
|x0|+1 � 1+ r|x0|

r2 , (2.25)

where the implied constants depend only on d, C0, C1. By integrating the identity

|η∇xv|2 = 〈η∇xv,η∇xv〉= 〈(v∇xη −∇x(vη)),(v∇xη −∇x(vη))〉,

and then using the fact that
∫

I(x0,t0,2r)
η2〈∇x(vη),∇x(vη)〉dγd dt ≤

∫ ∞

0

∫

Rd
〈∇x(vη),∇x(vη)〉dγd dt

= 2
∫ ∞

0

∫

Rd
vη(−L)(vη)dγd dt

=−2
∫

I(x0,t0,2r)
vηL(vη)dγd dt,
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According to (2.21), we obtain

∫

I(x0,t0,r)
|∇xv|2 dγd dt ≤

∫

I(x0,t0,2r)
η2|η∇xv|2 dγd dt

≤
∫

I(x0,t0,2r)
η2|v∇xη |2 dγd dt

+2
∣∣∣
∫

I(x0,t0,2r)
vη2〈∇x(vη),∇xη〉dγd dt

∣∣∣

+2
∣∣∣
∫

I(x0,t0,2r)
vηL(vη)dγd dt

∣∣∣.

(2.26)

For the first term on the right-hand side we have the estimate

∫

I(x0,t0,2r)
η2|v∇xη |2 dγd dt � 1

r2

∫

I(x0,t0,2r)
|v|2 dγd dt.

For the second term we have, by (2.25),

∣∣∣
∫

I(x0,t0,2r)
2vη2〈∇x(vη),∇xη〉dγd dt

∣∣∣= 1
2

∣∣∣
∫

I(x0,t0,2r)
〈∇x(vη)2,∇xη2〉dγd dt

∣∣∣

≤
∣∣∣
∫

Rd
(vη)2Lη2 dγd dt

∣∣∣

� 1+ r|x0|
r2

∫

I(x0,t0,2r)
|v|2 dγd dt

where we used the fact that η2 satisfies the same assumptions as η to apply (2.25)
to η2. To estimate the third term on the right-hand side of (2.26), we substitute the
identity

L(vη) = ηLv+ vLη −〈∇xv,∇xη〉= η
∂v
∂ t

+ vLη −〈∇xv,∇xη〉

and estimate each of the resulting integrals:

∣∣∣
∫

I(x0,t0,2r)
vη2 ∂v

∂ t
dγ dt

∣∣∣ = 1
2

∣∣∣
∫

I(x0,t0,2r)
η2 ∂v2

∂ t
dγd dt

∣∣∣= 1
2

∣∣∣
∫

I(x0,t0,2r)
v2 ∂η2

∂ t
dγd dt

∣∣∣

=
∣∣∣
∫

I(x0,t0,2r)
v2η

∂η
∂ t

dγd dt
∣∣∣� 1

r2

∫

I(x0,t0,2r)
|v|2 dγd dt,

∣∣∣
∫

I(x0,t0,2r)
v2ηLη dγd dt

∣∣∣ � 1+ r|x0|
r2

∫

I(x0,t0,2r)
|v|2 dγd dt,
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and
∣∣∣
∫

I(x0,t0,2r)
vη〈∇xv,∇xη〉dγd dt

∣∣∣ = 1
4

∣∣∣
∫

I(x0,t0,2r)
〈∇xv2, t∇xη2〉dγd dt

∣∣∣

=
1
4

∣∣∣
∫

Rd
v2Lη2 dγd dt

∣∣∣

� 1+ r|x0|
r2

∫

I(x0,t0,2r)
|v|2 dγd dt. ��

2.2 Definition and Basic Properties of the Ornstein–Uhlenbeck
Semigroup

Now, we consider the Ornstein–Uhlenbeck semigroup. On L2(γd) the closure of the
Ornstein–Uhlenbeck operator L generates an operator semigroup.

Definition 2.2. The Ornstein–Uhlenbeck semigroup {Tt}t≥0 is the semigroup of op-
erators generated in L2(γd) by the Ornstein–Uhlenbeck operator L as infinitesimal
generator, i.e., formally Tt = e−tL. In view of the spectral theorem, for f =∑∞

k=0 Jk f ∈
L2(γd) and t ≥ 0, Tt is defined as

Tt f = ∑
ν

e−t|ν |〈 f ,hν〉γd hν =
∞

∑
k=0

e−tk ∑
|ν |=k

〈 f ,hν〉γd hν =
∞

∑
k=0

e−tkJk f , (2.27)

where Jk f = ∑|ν |=k〈 f ,hν〉γd hν is the orthogonal projection of L2(γd) onto Ck.

The Ornstein–Uhlenbeck semigroup have the following representations.

Proposition 2.3. (C. P. Calderón- B. Muckenhoupt)

i) If f ∈ L2(γd), then ∑∞
k=0 e−tkJk f (x) converges absolutely to Tt f (x) almost every-

where (a.e.)γd.
ii) For any 1 ≤ p <,2 there exists a function f ∈ Lp(γd) and t ≥ 0 such that

∑∞
k=0 e−tkJk f (x) diverges for all x.

iii) For any t > 0 the integral representation for Tt is given by

Tt f (x) =
1

(1− e−2t)d/2

∫

Rd
e
− e−2t (|y|2+|x|2)−2e−t 〈x,y〉

1−e−2t f (y)γd(dy). (2.28)

Proof.

i) Observe that for each multi-index ν , |ν | > 0, according to (1.64) and the
Cauchy–Schwartz inequality, we have

|〈 f ,hν〉γd hν(x)| ≤ Cν ,xν!|| f ||2,γ =C′
ν ,x|| f ||2,γ .

Therefore, the sequence {〈 f ,hν〉γd hν(x)} is bounded for each x; thus using to
the Weierstrass M-test, the series ∑∞

k=0 e−tkJk f (x) converges absolutely for any
x. Because L2(γd) ⊂ L1(γd), then, according to the first part, Tt f (x) has the
expansion ∑∞

k=0 e−tkJk f (x), and this must be the limit a.e.
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ii) Using the multiplicative character of the Gaussian measure γd , it is enough to
consider the case d = 1. According to Pollard’s counterexample [230], for 1 ≤
p < 2, there exists a function f ∈ Lp(γ1) such that

limsup
k→∞

(〈 f ,hk〉γd |Hk(x)|)1/k

is a fixed number greater than 1, for any x. Therefore, for t close enough to zero
(i.e., e−t close enough to 1), the expansion of Tt f diverges for any x.

iii) Using again (1.64), the Cauchy–Schwartz inequality and Stirling’s formula, we
get for |ν |= k

∫

Rd
e−tk| f (y)||hν (y)||hν (x)|γd(dy) ≤ ‖ f‖2,γ

(∫

Rd
e−2tk|hν (y)|2|hν (x)|2γd(dy)

)1/2

≤ ‖ f‖2,γ e−tkCν ,x(ν!)1/2
(∫

Rd
|hν (y)|2γd(dy)

)1/2

≤Cν ,x‖ f‖2,γ e−tk.

Then, using this, Lebesgue’s dominated convergence theorem and the
d-dimensional Mehler’s formula (10.24), for r = e−t we get

Tt f (x) = ∑
|ν |≥0

e−t|ν |
[∫

Rd
f (y)hν(y)γd(dy)

]
hν(x)

=
∫

Rd

(
∑

|ν |≥0

e−t|ν |hν(x)hν(y)
)

f (y)γd(dy)

=
1

(1− e−2t)d/2

∫

Rd
e
− e−2t (|y|2+|x|2)−2e−t 〈x,y〉

1−e−2t f (y)γd(dy). ��

Note that the integral representation (2.28), obtained initially for f ∈ L2(γd),
also makes sense for f ∈ Lp(γd), 1 ≤ p < ∞, by using Hölder’s inequality. There-
fore, {Tt}t≥0 can be extended as a family of operators in Lp(γd). Also note that, tak-
ing r = e−t , (2.27) is equivalent to the Abel summability of the Hermite expansion
of f

Tr f =
∞

∑
k=0

rkJk f .

Using this approach, B. Muckenhoupt [193], considered the so-called Poisson inte-
gral for the Hermite expansion for d = 1, and also C.P. Calderón [44] for the case
d ≥ 1.
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The kernel

Mt(x,y) =
1

(1− e−2t)d/2
e
− e−2t (|x|2+|y|2)−2e−t 〈x,y〉

1−e−2t , (2.29)

is called Mehler’s kernel5.

The integral representation of Tt can be written in several equivalent forms. The
first one provides the link between the Ornstein–Uhlenbeck semigroup and the heat
semigroup,

Tt f (x) =
1

(1− e−2t)d/2

∫

Rd
e
− e−2t (|x|2+|y|2)−2e−t 〈x,y〉

1−e−2t f (y)γd(dy)

=
1

πd/2(1− e−2t)d/2

∫

Rd
e
− |y−e−t x|2

1−e−2t f (y)dy, t > 0. (2.30)

Observe that now we are integrating with respect to the Lebesgue measure. The
alternative expression,

Mt(x,y) =
1

πd/2(1− e−2t)d/2
e
− |y−e−t x|2

1−e−2t , (2.31)

allows us to establish a connection between Mehler’s kernel and the heat kernel

kt(x) =
1

(4πt)d/2
e−|x|2/4t . (2.32)

Using {Tt}t≥0, the heat semigroup6

Tt f (x) =
1

(4πt)d/2

∫

Rd
e
−|x−y|2

4t f (y)dy, t > 0,

we have the following representation of the Ornstein–Uhlenbeck semigroup

Tt f (x) = (k(1−e−2t )/4 ∗ f )(e−t x) = δe−t [k(1−e−2t )/4 ∗ f ](x) = δe−t T(1−e−2t )/4 f (x),

where δa is the dilation operator by a, defined by

δa f (x) = f (ax). (2.33)

Thus, the Ornstein–Uhlenbeck semigroup is, after a dilation on the variable x, a
reparametrization of the heat semigroup; therefore, it is not a convolution semigroup.
More precisely, before taking the convolution with the properly reparametrized heat
kernel, a dilation by e−t is applied in the variable x. Because of this dilatation, none

5We have already encountered this kernel in Chapter 1, (1.41)
6See Appendix 10.5 for more details.
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of the methods used in the study of classical semigroups can be applied to this semi-
group. Nevertheless, F. Weissler [292], who denotes this semigroup as the Hermite
semigroup,7 establishes another explicit relation between the Ornstein–Uhlenbeck
and the heat semigroups,

Theorem 2.4. Let 1 ≤ p,q ≤ ∞, t ≥ 0, and ζ ≥ 0.8 Then,

Tt = (ζ et)d/2π(1/2p−1/2q)d(Ξ (q)
d )−1Mβ δζ Tζ (1−e−2t )/4e−tMα Ξ (p)

d , (2.34)

where

α =
1

1− e−2t −
1
p
− e−t

ζ (1− e−2t)
,

β =
1

1− e−2t −
1
q′

− ζ e−t

1− e−2t ,

Ξ (p)
d : Lp(γd)→ Lp(Rd) is the isometric isomorphism defined, for any 1 < p < ∞, as

Ξ (p)
d f (x) = f (x)π−d/2pe−|x|2/p, (2.35)

Mα is the multiplication operator defined as

Mα f (x) = eα |x|2 f (x),

and finally δa is the dilation operator, as defined in (2.33).

Using this relation, Weissler succeeded in not only extending the Ornstein–
Uhlenbeck semigroup holomorphically to the half-plane Rez ≥ 0, where the heat
semigroup is holomorphic but he was also able to obtain additional information
on the continuity of both semigroups (for more details see [292]). We discuss later
in this chapter the holomorphic Ornstein–Uhlenbeck semigroup in more detail (see
page 49).

Observe that
Mt(x,y) = Mt(y,x)e

|x|2−|y|2 .

Through the change of variables u = y−e−t x√
1−e−2t

, we get an alternative representa-

tion of Tt

Tt f (x) =
1

πd/2

∫

Rd
f (
√

1− e−2tu+ e−t x)e−|u|2du. (2.36)

This representation of the Ornstein–Uhlenbeck semigroup allows us to extend it
to a space of infinite dimensions, where the Gaussian measure, unlike the Lebesgue
measure, is well defined (see P. A. Meyer [187]).

7We refer to another semigroup as the Hermite semigroup, see point 10. in Section 2.5,
page 70.

8Actually, Weissler defines it for z ∈ C such that Rez ≥ 0 and Re(ζ ez) ≥ 0, see [292,
Theorem 1].
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One problem of the kernel (2.31) is that it does not reflect the symmetry of
Mehler’s kernel. An alternative symmetric representation of (2.29) is given by

Mt(x,y) =
1

(1− e−2t)d/2
exp

(1
2
|x+ y|2
et +1

− 1
2
|x− y|2
et −1

)
, (2.37)

which has been used in several papers about the Ornstein–Uhlenbeck semigroup,
(see for instance [249] and [104]). In [265], J. Teuwen has an alternative symmetric
representation:

Mt(x,y) =
exp(− e2t |x−y|2

1−e2t )

(1− e−t)d/2

exp(2e−t 〈x,y〉
1+et )

(1+ e−t)d/2
. (2.38)

The Ornstein–Uhlenbeck semigroup {Tt}t≥0 in R
d is a Markov operator semi-

group in Lp(γd),1 ≤ p ≤ ∞, i.e., a positive conservative symmetric diffusion semi-
group, strongly Lp-continuous in Lp(γd),1 ≤ p ≤ ∞, with the Ornstein–Uhlenbeck
operator L as its infinitesimal generator (see [23, 20] or [284]). Its properties can be
obtained directly from the general theory of Markov semigroups (see [20] or [284]).
Nevertheless, because the Ornstein–Uhlenbeck semigroup is of such great impor-
tance and serves as a “model” for Markov semigroups associated with classical or-
thogonal polynomials, we are going to give detailed analytic proof of its properties
using its integral representation (2.28).

Theorem 2.5. The family of operators {Tt : t ≥ 0} satisfies the following properties:

i) Semigroup property:
Tt1+t2 = Tt1 ◦Tt2 , t1, t2 ≥ 0.

ii) Positivity and conservative properties:

Tt f ≥ 0, for f ≥ 0, t ≥ 0,

and
Tt1 = 1.

iii) Contractivity property:
||Tt f ||p,γ ≤ || f ||p,γ ,

for all t ≥ 0, and 1 ≤ p ≤ ∞.
iv) Strong Lp(γd)-continuity property: The mapping t → Tt f is continuous from

[0,∞) to Lp(γd), for 1 ≤ p < ∞ and f ∈ Lp(γd).
v) Symmetry property: Tt is a self-adjoint operator in L2(γd):

∫

Rd
Tt f (x)g(x)γd(dx) =

∫

Rd
f (x)Ttg(x)γd(dx), t ≥ 0. (2.39)

In particular, the Gaussian measure γd is the invariant measure for {Tt}t≥0,

∫

Rd
Tt f (x)γd(dx) =

∫

Rd
f (x)γd(dx), t ≥ 0. (2.40)
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vi) Infinitesimal generator: the Ornstein–Uhlenbeck operator L is the infinitesimal
generator of {Tt : t ≥ 0},

lim
t→0

Tt f − f
t

= L f . (2.41)

Proof.

i) To prove the semigroup property, we use integral representation (2.30)9 as fol-
lows. Let f ∈ L1(γd), by Fubini’s theorem we have

Tt(Ts f )(x) =
1

πd/2(1− e−2t)d/2

∫

Rd
e
− |y−e−t x|2

1−e−2t

×
( 1

πd/2(1− e−2s)d/2

∫

Rd
e
− |z−e−sy|2

1−e−2s f (z)dz
)

dy

=
1

πd/2(1− e−2t)d/2πd/2(1− e−2s)d/2

×
∫

Rd

(∫

Rd
exp

[
− (

|y− e−tx|2
1− e−2t +

|z− e−sy|2
1− e−2s )

]
dy
)

f (z)dz.

Taking the change of variables u = y− esz in the exponent, we get,

−|y− e−t x|2
1− e−2t − |z− e−sy|2

1− e−2s

=−|y− e−t x|2
1− e−2t − e−2s|y− esz|2

1− e−2s =−|u+ esz− e−t x|2
1− e−2t − e−2s|u|2

1− e−2s

=− (1− e−2s)|u− es(e−(t+s)x− z)|2 − (1− e−2t)e−2s|u|2
(1− e−2t)(1− e−2s)

=− (1− e−2s)(|u|2 −2〈u,es(e−(t+s)x− z)〉+ e2s|e−(t+s)x− z|2)
(1− e−2t)(1− e−2s)

− (1− e−2t)e−2s|u|2
(1− e−2t)(1− e−2s)

=−e2s|e−(t+s)x− z|2
1− e−2t +

2es〈u,e−(t+s)x− z〉
1− e−2t − (1− e−2(t+s))|u|2

(1− e−2t)(1− e−2s)
.

But, the last two terms of the latter expression can be rewritten as

2es〈u,e−(t+s)x− z〉
1− e−2t − (1− e−2(t+s))|u|2

(1− e−2t)(1− e−2s)

=− 1− e−2(t+s)

(1− e−2t)(1− e−2s)

[2es〈u,e−(t+s)x− z〉.(1− e−2s)

1− e−2(t+s)
−|u|2

]

=− 1− e−2(t+s)

(1− e−2t)(1− e−2s)

×
[∣∣∣u− es(1− e−2s)(e−(t+s)x− z)

1− e−2(t+s)

∣∣∣
2
− e2s(1− e−2s)2

(1− e−2(t+s))2
|e−(t+s)x− z|2

]
.

9For alternative proofs, see point 4. in Notes and Further Results.
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Then, we have,

−|y− e−t x|2
1− e−2t − |z− e−sy|2

1− e−2s =−e2s|e−(t+s)x− z|2
1− e−2t

× 1− e−2(t+s)

(1− e−2t)(1− e−2s)

∣∣u− es(1− e−2s)(e−(t+s)x− z)

1− e−2(t+s)

∣∣2

+
(1− e−2(t+s))

(1− e−2t)(1− e−2s)

e2s(1− e−2s)2

(1− e−2(t+s))2
|e−(t+s)x− z|2

=−e2s|e−(t+s)x− z|2
1− e−2t − (1− e−2(t+s))

(1− e−2t)(1− e−2s)

×
∣∣∣u− es(1− e−2s)(e−(t+s)x− z)

1− e−2(t+s)

∣∣∣
2

+
e2s(1− e−2s)

(1− e−2t)(1− e−2(t+s))
|e−(t+s)x− z|2.

Now, taking the change of variables w = u − es(1− e−2s)(e−(t+s)x− z)

1− e−2(t+s)
, we

obtain

∫

Rd
exp

(
− 1− e−2(t+s)

(1− e−2t)(1− e−2s)

∣∣∣u− es(1− e−2s)(e−(t+s)x− z)

1− e−2(t+s)

∣∣∣
2
)

du

=
∫

Rd
exp

(
− 1− e−2(t+s)

(1− e−2t)(1− e−2s)
|w|2

)
dw

=
(1− e−2t)d/2(1− e−2s)d/2

(1− e−2(t+s))d/2

∫

Rd
e−|v|2dv

= πd/2 (1− e−2t)d/2(1− e−2s)d/2

(1− e−2(t+s))d/2
.

With another change of variables, v =

√
(1−e−2(t+s))

(1−e−2t )(1−e−2s)
w we have

∫

Rd
exp

[
−
( |y− e−t x|2

1− e−2t +
|z− e−sy|2
1− e−2s

)]
dy

= πd/2 exp
[(

− e2s

1− e−2t +
e2s(1− e−2s)

(1− e−2t)(1− e−2(t+s))

)
|e−(t+s)x− z|2)

]

× (1− e−2t)d/2(1− e−2s)d/2

(1− e−2(t+s))d/2
,
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but as

− e2s

1− e−2t +
e2s(1− e−2s)

(1− e−2t)(1− e−2(t+s))
=
−(1−e−2(t+s))e2s+e2s(1−e−2s)

(1−e−2t)(1−e−2(t+s))

=
e−2t−1

(1−e−2t)(1−e−2(t+s))
=− 1

1−e−2(t+s)
,

we get,

Tt(Ts f )(x) =
1

πd/2(1− e−2t)d/2πd/2(1− e−2s)d/2

×
∫

Rd

(
exp(

−|e−(t+s)x−z|2
1−e−2(t+s)

)
πd/2 (1−e−2t)d/2(1−e−2s)d/2

(1−e−2(t+s))d/2
f (z)dz

=
1

πd/2(1−e−2(t+s))d/2

∫

Rd
e
− |e−(t+s)x−z|2

1−e−2(t+s) f (z)dz = Tt+s f (x).

ii) The conservative property follows immediately by a simple change of variables

u = y−e−t x√
1−e−2t

, the translation invariance property of the Lebesgue measure, and

the fact that γd is a probability measure:

Tt1 =
1

πd/2(1− e−2t)d/2

∫

Rd
e
− |y−e−t x|2

1−e−2t 1dy =
1

πd/2

∫

Rd
e−|u|2du = 1.

For the positivity of Tt , if f ≥ 0,

Tt f (x) =
1

πd/2(1− e−2t)d/2

∫

Rd
f (y)e

− |y−e−t x|2
1−e−2t dy ≥ 0,

as the kernel is positive.

iii) Because the Ornstein–Uhlenbeck semigroup is not a convolution semigroup, this
property cannot be obtained using the theory of approximations of the identity,
as in the case of the classical semigroups (see Appendix 10.5). Nevertheless, it
can be obtained using Jensen’s inequality:

|Tt f (x)|p ≤ 1

πd/2(1− e−2t)d/2

∫

Rd
e
− e−2t (|x|2+|y|2)−2e−t 〈x,y〉

1−e−2t | f (y)|pe−|y|2dy.

= Tt(| f |p)(x),

Then, according to v),

||Tt f ||pp,γd
≤ 1

πd/2

∫

Rd
Tt(| f |p)(x)e−|x|2dx = || f ||pp,γd

.
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Therefore, Tt is a contraction in Lp(γd),1 ≤ p < ∞. The case p = ∞ follows
immediately because Tt1 = 1, according to ii). Alternatively, this can also be
obtained by using interpolation and duality.

iv) We need to prove that Tt f → Tt0 f in Lp(γd) as t → t0. Again, this is not a conse-
quence of the general theory of approximations of the identity. According to the
semigroup property, it is enough to prove that Tt f → f in Lp(γd) as t → 0. Ob-
serve that Lp(γd) is not closed under translation;10 thus, it does not make sense
to speak of continuity in norm Lp(γd) and hence, this type of argument cannot
be used either. The alternative proof below is an extension to d-dimensions of
the proof in [193].

|Tt f (x)− f (x)|

≤ 1

πd/2(1− e−2t)d/2

∫

|x−y|<δ
e
− e−2t (|x|2+|y|2)−2e−t 〈x,y〉

1−e−2t | f (y)− f (x)|e−|y|2dy

+
1

πd/2(1− e−2t)d/2

∫

|x−y|≥δ
e
− e−2t (|x|2+|y|2)−2e−t 〈x,y〉

1−e−2t | f (y)− f (x)|e−|y|2dy.

Let f be a function defined in R
d , continuous with compact support, and let ε > 0

and δ > 0 be such that if |x− y|< δ , then | f (x)− f (y)|< ε . Now, according to
iii), it is clear that the first integral is less than ε . Now, if y belongs to the support
of f , |x− y|> δ and 0 ≤ 1− e−t < δ e−t

2 max{|y| : y ∈ supp f}. Then,

exp
(
− |e−t(x− y)− y(1− e−t)|2

1− e−2t + |y|2
)

≤ exp
(
− e−2tδ 2

4(1− e−2t)
+max{|y|2 : y ∈ supp f}

)
.

The second integral is less than

2|| f ||∞,γ

πd/2(1− e−2t)d/2

∫

supp f
exp

(
− e−2tδ 2

4(1− e−2t)
+max{|y|2 :y∈ supp f}

)
e−|y|2dy,

and this tends to zero as t → t0. Thus, Tt f → f uniformly in x as t → 0. The
general case follows from the density of the continuous functions with compact
support in Lp(γd) for 1 ≤ p < ∞ and using iii).

v) To prove (2.39), using Fubini’s theorem, we have

∫

Rd
Tt f (x)g(x)γd(dx)

=
1

πd/2(1− e−2t)d/2

∫

Rd

(∫

Rd
e(−

(|y|2+|x|2)−2e−t 〈x,y〉
1−e−2t ) f (y)e−|y|2 dy

)
g(x)

1

πd/2
e−|x|2 dx

10Consider, for d = 1, f (x) = 1
|x|e

|x|/2χB(0,1)(x) and its translations.
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=
1

πd/2(1− e−2t)d/2

∫

Rd

(∫

Rd
e(−

(|y|2+|x|2)−2e−t 〈x,y〉
1−e−2t )g(x)e−|x|2 dx

)
f (y)

1

πd/2
e−|y|2 dy

=
∫

Rd
f (y)Ttg(y)γd(dy).

The invariance property follows immediately from (2.39) and the conservative
property, taking g ≡ 1.

vi) Let f ∈ C2
b(R

d), that is, a continuous function with bounded derivatives up to
the second order. Then, using (2.36), we have
(Tt f − f

t

)
(x)−L f (x)

=
1

tπd/2

∫

Rd

[
f (
√

1− e−2t y+ e−t x)− f (x)
]
e−|y|2dy

−1
2

d

∑
k=1

∂ 2 f

∂x2
k

(x)+
d

∑
j=1

x j
∂ f
∂x j

(x)

=
1

tπd/2

∫

Rd

[
f (
√

1− e−2t y+ e−t x)− f (x)

− t
2

d

∑
k=1

∂ 2 f

∂x2
k

(x)
]
e−|y|2dy+

d

∑
j=1

x j
∂ f
∂x j

(x)

=
1

tπd/2

∫

Rd

[
f (
√

1− e−2t y+ e−t x)− f (e−t x)

−t
d

∑
k=1

∂ 2 f

∂x2
k

(x)y2
k

]
e−|y|2dy+

( f (e−t x)− f (x)
t

+
d

∑
j=1

x j
∂ f
∂x j

(x)
)
.

Now, using the Taylor expansion of order 2 for f , for some θ , with 0 ≤ θ ≤ 1,

f (
√

1− e−2t y+ e−t x)− f (e−t x)

=
d

∑
k=1

√
1− e−2t yk

∂ f
∂xk

(e−t x)+
1
2

d

∑
i, j=1

(1− e−2t)yiy j

× ∂ 2 f
∂xi∂x j

(
θe−t x+(1−θ)

√
1− e−2t y

)
.

Then, according to the symmetry of e−|y|2 , we have
(Tt f − f

t

)
(x)−L f (x)

=
1

tπd/2

∫

Rd

[ d

∑
k=1

√
1− e−2t yk

∂ f
∂xk

(e−t x)

+
1
2

d

∑
i, j=1

(1− e−2t)yiy j
∂ 2 f

∂xi∂x j

(
θe−t x+(1−θ)

√
1− e−2t y

)
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−t
d

∑
k=1

∂ 2 f

∂x2
k

(x)y2
k

]
e−|y|2dy+

(
f (e−t − f (x)

t
+

d

∑
j=1

x j
∂ f
∂x j

(x)

)

=
1

πd/2

∫

Rd

d

∑
k=1

[1
2

(
1− e−2t

t

)
∂ 2 f

∂x2
k

(
θe−t x+(1−θ)

√
1− e−2t y

)

−∂ 2 f

∂x2
k

(x)
]
y2

ke−|y|2dy+

(
f (e−t x)− f (x)

t
+

d

∑
j=1

x j
∂ f
∂x j

(x)

)
.

Thus,

∣∣∣(Tt f − f
t

)
(x)−L f (x)

∣∣∣

≤ 1

πd/2

∫

Rd

d

∑
k=1

[1
2

∣∣∣1− e−2t

t

∣∣∣
∣∣∣∂ 2 f

∂x2
k

(θe−t x+(1−θ)
√

1− e−2t y)

−∂ 2 f

∂x2
k

(x)
∣∣∣e−|y|2

]
dy+

∣∣∣ f (e−t x)− f (x)
t

+
d

∑
j=1

x j
∂ f
∂x j

(x)
∣∣∣.

Then, using Lebesgue’s dominated convergence theorem, we conclude that each
of these terms tends to zero as t → 0. ��

Also, each operator of the Ornstein–Uhlenbeck semigroup is compact.

Lemma 2.6. For each t > 0, the operator Tt is compact.

Proof. Because Tt is given by

Tt f =
∞

∑
k=1

e−ktJk f , t > 0,

we can consider the following sequence of compact operators:

Tt(n) f =
n

∑
k=1

e−ktJk f , t > 0.

Then,

‖Tt f −Tt(n) f‖2
2,γ =

∞

∑
k=n+1

‖e−ktJk f‖2
2,γ ≤ e−2nt‖ f‖2

2,γ .
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Fig. 2.1. Epperson region Ep.

Therefore, the sequence of compact operators {Tt(n)} converges in L2(γd)-norm to
Tt for all t > 0. Then, from e) of [62, Theorem A.3.22 ], we can conclude the com-
pactness of Tt . ��

The Ornstein–Uhlenbeck semigroup {Tt}t≥0 can be extended to complex values
of the parameter t. For any z ∈C with Rez ≥ 0, the operator Tz = e−zL, defined spec-
trally, is bounded on L2(γd). It is given by the kernel, using the representation (2.37),
replacing t by z,

Mz(x,y) =
1

(1− e−2z)d/2
exp

(1
2
|x+ y|2
ez +1

− 1
2
|x− y|2
ez −1

)
.

The function t �→ Tt has an holomorphic continuation to a distribution-valued func-
tion z �→ Tz, which is holomorphic in Rez > 0 and continuous in Rez ≥ 0. The family
of continuous operators {Tz : Rez≥ 0} defined from the space of distributions D(Rd)
to D ′(Rd), then satisfies

Tz+iπ(x) = Tz f (−x), Tz f (x) = Tz f (x). (2.42)

J. B. Epperson [74] proved that the operator Tz, extends to a bounded operator on
Lp(γd), 1 ≤ p ≤ ∞, if and only if z ∈ Ep, where

Ep := {z = x+ iy : |siny| ≤ tanφp sinhx}, φp = arccos |2/p−1|. (2.43)

The extension Tz to Lp(γd) is actually a contraction.
The set Ep is a closed iπ-periodic subset of the right half-plane, which is called

Epperson’s region, (see Figure 2.1). Each Ep is a closed subset of the closed right
half-plane and periodic with period iπ. Notice the symmetry φp = φp′ and Ep =
Ep′ , where p′ is the conjugate exponent. Also, we have Ep ⊂ Eq if 1 < p < q < 2.
Furthermore, Ep depends monotonically on p on either side of 2. The extreme cases
are E2 = {z : Rez ≥ 0} and E1 = {x+ ikπ : x ≥ 0,k ∈ Z}.
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The map z → Tz from Ep to the Banach algebra of bounded operators on Lp(γ)
is continuous in the strong operator topology, and its restriction to the interior of Ep

is holomorphic (see also [249]). Additionally, the holomorphic Ornstein–Uhlenbeck
semigroup can be extended to infinite dimensions (see [167]).

Let us prove now that the L1(γd)-spectrum of L is the closed right half-plane (see
E. B. Davies [65, Theorem 4.3.5])

Theorem 2.7. The L1(γd)-spectrum of L is the closed right half-plane {z : Rez ≥ 0}.
Indeed, every z with Rez > 0 is an eigenvalue of L with multiplicity two.

Proof. First of all, according to the tensorization argument, it is enough to consider
the case d = 1. Let us consider the harmonic oscillator operator

H1 f =
1
2
(−d2 f

dx2 + x2 f − f ),

with domain in S (R) ∈ L2(R). It is easy to see, using Mehler’s formula, that the
semigroup generated by H1, {e−tH1}t≥0 has kernel

Kt(x,y) =
1

π1/2(1− e−2t)
exp

(
4xye−t − (x2 + y2)(1+ e−2t)

2(1− e−2t)

)
, t > 0, x,y ∈ R.

Consider the isometric isomorphism, Ξ (2)
1 : L2(γ1) → L2(R) defined in (2.35), for

d = 1 and p = 2,
Ξ (2)

1 f (x) = f (x)π−1/4e−|x|2/2,

and consider
L̃ = Ξ (2)

1 L(Ξ (2)
1 )−1.

Hence, the operator L̃ on L1(R) has the same spectrum as L. The kernel of the semi-
group generated by L̃, {T̃t}t≥0 = {e−tL̃}t≥0 is

M̃t(x,y) =
e−|x|2

π1/2
Mt(x,y)=

e−|x|2

π1/2

1

(1− e−2t)1/2
exp

(
−e−2t(|x|2 + |y|2)−2e−t x · y

1− e−2t

)

=
e−|x|2/2

π1/4
Kt(x,y)

e−|y|2/2

π1/4

=
1

π1/2(1− e−2t)1/2
e
− |x−e−t y|2

1−e−2t

Taking the Fourier transform F from L1(R) into C0(R), it follows that

F (T̃t) f (ζ ) = e−(1−e−2t )ζ 2/4 f (e−tζ ).

Let us consider f+z (x) and f−z (x) the L1(R)-functions, whose Fourier transforms

are χ[0,∞)(ζ )|ζ |ze−ζ 2/4 and χ(−∞,0](ζ )|ζ |ze−ζ 2/4 respectively. Then, for any z, with
Rez > 0



2.2 Definition and Basic Properties of the Ornstein–Uhlenbeck Semigroup 51

F (e−tH1 f+z )(ζ ) = χ[0,∞)(ζ )e−(1−e−2t )ζ 2/4e−zt |ζ |ze−e−2t ζ 2/4 = e−ztF ( f+z )(ζ ),

and analogously,

F (e−tH1 f−z )(ζ ) = χ(−∞,0](ζ )e−(1−e−2t )ζ 2/4e−zt |ζ |ze−e−2t ζ 2/4 = e−ztF ( f−z )(ζ ).

Hence, according to the uniqueness of the Fourier transform,

e−tH1 f+z (x) = e−zt f+z , and e−tH1 f−z (x) = e−zt f−z .

Now, because the spectrum of L is a closed subset of {z : Rez ≥ 0}, as {Tt}t≥0 is a
strongly continuous contraction semigroup, we get the conclusion. ��

Definition 2.8. The maximal function of the Ornstein–Uhlenbeck semigroup {Tt}t≥0

or maximal Ornstein–Uhlenbeck function, is defined as

T ∗ f (x) = sup
t>0

|Tt f (x)| . (2.44)

In Chapter 4, Theorems 4.19 and 4.20, we study the boundedness properties of
T ∗, proving that it is bounded in Lp(γd) for 1 < p ≤ ∞, and that it is of weak type
(1,1) with respect to the measure γd . Also, other versions of maximal functions are
study in detail in Chapter 4.

In 1969, C. P. Calderón [44] proved that the multiparametric Ornstein–
Uhlenbeck maximal function

T∗ f (x) = sup
0<t1<∞
0<t2<∞

···
0<td<∞

[
1

πd/2

d

∏
i=1

1

(1− e−2ti)1/2

∫

Rd
e
− |y−e−ti x|2

1−e−2ti f (y)dy

]
, (2.45)

is Lp(γd)-bounded, 1 < p < ∞. From this result, the Lp(γd)-boundedness for the
one-parameter maximal operator T ∗ also follows.

The maximal function for the holomorphic Ornstein–Uhlenbeck semigroup {Tz :
Rez ≥ 0} can also be considered:

Γ∗
p f (w) = sup

z∈Ep

|Tz f (w)|, (2.46)

where Ep is Epperson’s region defined in (2.43).
In particular, Γ∗

1 is the maximal operator of the Ornstein–Uhlenbeck semigroup
which, as we are going to see in Chapter 4 is of weak type (1,1) and of strong type
(p, p) for each 1 < p < ∞.

According to the periodicity properties of the holomorphic Ornstein–Uhlenbeck
semigroup {Tz : Rez ≥ 0}, we may restrict the parameter z to the set Fp
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Fp = {z ∈ Ep : 0 ≤ Imz ≤ π/2} (2.47)

Consider the map, τ : {ζ ∈ C : |ζ | ≤ 1, |argζ | ≤ π/2} → C∪ {∞} introduced in
[105]:

τ(ζ ) =

{
log 1+ζ

1−ζ , if ζ �= 1

∞, if ζ = 1,
(2.48)

where logω is real when ω > 0; hence τ is real-valued in the interval [0,1). Notice
that τ((ζ )−1) = τ(ζ )+ iπ, which means that τ makes reflection in the unit circle
|ζ | = 1 correspond to reflection in the line Imz = iπ/2. Combined with the period-
icity and symmetry of Tz, we get

Tτ(t−1eiφ ) f (x) = Tτ(teiφ ) f (−x).

Moreover, τ is a homeomorphism of its domain onto the half-strip {ζ ∈ C : Reζ ≥
0, |Imζ | ≤ π/2} mapping the sector

Sφp := {ζ ∈ C : |ζ | ≤ 1, |argζ | ≤ φp} (2.49)

onto the set Fp ∪{∞}. In particular, if 1 < p < 2, then τ maps Sφp \ [1,∞) onto the
interior of E∩ {z ∈ C : |Im|z < π/2} and the ray [0,eiφp∞) onto ∂Ep ∩ {z ∈ C :
|Imz|< π/2} (see Figure 2.1). Additionally, if ζ �= 1,

Mτ(ζ )(x,y) =
(1+ζ )d

(4ζ )d/2
exp

( |x|2 + |y|2
2

− 1
4

(
ζ |x+ y|2 + 1

ζ
|x− y|2

))
,

because

1− e2z =
4ζ

(1+ζ )2 ,
1
2

1
ez +1

=
1
4
− ζ

4
, and− 1

2
1

ez −1
=

1
4
− 1

4ζ
.

We define Mτ(1)(x,y) = 1, for all x,y.
Several estimates for Γ∗

p are given by J. Garcı́a-Cuerva, G. Mauceri, P. Sjögren,
and J. L. Torrea [104]. The simplest result establish that Γ∗

q is bounded on Lp(γd) if
| 1

q −
1
2 |> | 1

p −
1
2 |. This means that for f ∈ Lp(γd), the supremum of |Tz f (x)| is taken

for z ∈ Eq ⊂ Ep.
For the case 1 < p < 2, it was proved in [104] that Γ∗

p is not Lp(γd)-bounded, not
even of weak type (p, p) with respect to the Gaussian measure. The unboundedness
on Lp(γd) here occurs along the whole boundary of Ep.

Γ∗
ε ,p f (w) = sup

z∈Ep,d(z,iπZ)≥ε
|Tz f (w)|, (2.50)

is of weak type (p, p) with respect to the Gaussian measure, for any ε > 0. Then,
P. Sjögren [249] proved that for 2 < p < ∞ Γ∗

p is not Lp(γd)-bounded, but Γ∗
ε ,p is

Lp(γd)-bounded; therefore it is of weak type (p, p) with respect to γ , for any ε > 0.
Finally, for p = 2, the situation is rather different: Γ∗

2 is not of weak type (2,2) with
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respect to the Gaussian measure (see [104]).

According to the Banach principle, it is known (see [107] or [275, Theorem 6.1]),
that the study of this maximal operator is a key tool for investigating the almost
everywhere convergence of {Tt}t≥0,

T0 f (x) lim
t→0+

Tt f (x) = f (x) a.e. x ∈ R
d (2.51)

(see Theorem 4.46), and also

T∞ f (x) := lim
t→∞

Tt f (x) =
∫

Rd
f (y) γd(dy) a.e. x ∈ R

d , (2.52)

for all f ∈ L1(γd). This implies it for all f ∈ Lp(γd), 1 ≤ p ≤ ∞, as Lq(γd)⊂ Lp(γd)
for p ≤ q. Thus, unlike the classical case of the heat semigroup, the Ornstein–
Uhlenbeck semigroup does not decay at infinity. This property expresses the ergodic-
ity of the semigroup. The details of this proof and its generalization to non-tangential
convergence are given in Chapter 4.

Proposition 2.9. If f ∈ Lp(γd), u(x, t) = Tt f (x) is a C∞(Rd ×R+) solution of the
parabolic equation

∂u
∂ t

(x, t) =
1
2

Δxu−〈x,∇xu〉= Lu, x ∈ R
d , t > 0, (2.53)

with boundary condition u(x,0) = f (x), x ∈ R
d .

Thus, u(x, t) = Tt f (x) is the solution of a boundary value problem.

Proof. According to the general semigroup theory, given the fact that L is the in-
finitesimal generator of {Tt : t ≥ 0}, we get

∂u(x, t)
∂ t

=
∂Tt f (x)

∂ t
= LTt f (x) = Lu(x, t).

Yet, this can also be shown explicitly:

Lu(x, t) =
2e−t

πd/2(1− e−2t)d/2+1

∫

Rd

[de−t

2
+

e−t |y− e−t x|2
1− e−2t −< (y− e−t x),x >

]

×exp
(
− |y− e−t x|2

1− e−2t

)
f (y)dy

=
∂u(x, t)

∂ t
.

The boundary condition follows from (2.51). ��
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Now, from the fact that L is the infinitesimal generator of {Tt}t≥0, using the
semigroup property, we can easily get that

dTt

dt
= LTt . (2.54)

In [106], G. Garrigós, S. Harzstein, T. Signes, J. L. Torrea, and B. Viviani find
optimal integrability conditions to guarantee the existence of solutions of (2.53).

Moreover, for the study of Hardy spaces in Chapter 7 we need to consider higher
order derivatives of the Ornstein–Uhlenbeck semigroup,

dkTt

dtk = LkTt (2.55)

We get a closed expression for the integral representation of these derivatives, deter-
mining explicitly the kernels Mk

t such that

(LkTt) f (x) =
∫

Rd
Mk

t (x,y) f (y)γd(dy), (2.56)

Observe that, for ν ∈ N0

(LkTt)hν(x) = |ν |ke−t|ν |hν(x) = |ν |ke−t|ν |hν1(x1) · · ·hνd (xd)

= ∑
|η |=k

(
k

η1,η2, · · · ,ηd

)
νη1

1 · · ·νηd
d e−tη1 · · · e−tηd hν1(x1) · · ·hνd (xd)

= ∑
|η |=k

(
k

η1,η2, · · · ,ηd

)
Lη1

1 T 1
t hν1(x1) · · ·Lηd

d T ηd
t hνd (xd), (2.57)

where, as in (2.5), Li denotes the one-dimensional Ornstein–Uhlenbeck operator,
in the i-th variable, and {T i

t }t≥0 is the one-dimensional Ornstein–Uhlenbeck semi-
group, in the i-th variable. Here, we follow J. Teuwen’s paper [266], and it should be
consulted for full details of the proof.

Theorem 2.10. Let L be the Ornstein–Uhlenbeck operator in L2(γd), t > 0, and
N ≥ 0. The integral kernel Mk

t of LkTt is given by

Mk
t (x,y) = (−1)kMt(x,y) ∑

|η |=k

(
k

η1,η2, · · · ,ηd

) d

∏
i=0

ηi

∑
ni=0

ni

∑
li=0

2−mi

{
ηi

ni

}(
ni

li

)

×
(
− e−t

√
1− e−2t

)2ni−li
Hli(xi)H2ni−li

( yi − xie−t
√

1− e−2t

)
, (2.58)

where
{n

m

}
are Stirling numbers of the second kind.11

11For n ≥ m non-negative integers, the Stirling number of the second kind
{n

m

}
is defined

as the number of partitions of a set of n elements into m non-empty subsets, see [36].
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Proof. From (2.57) and the tensorization argument, it is enough to consider only the
case d = 1. Observe that

(LkTt) f (x) = Lk(Tt f )(x) = Lk
(∫

Rd
Mt(x,y) f (y)γd(dy)

)
=
∫

Rd
LkMt(x,y) f (y)γd(dy);

hence, Mk
t (x,y)= LkMt(x,y). Therefore, using the integral representation of Mehler’s

kernel (1.46) we get

Mk
t (x,y) = Lk

( ey2

√
π

∫

R

e2iξ y−ξ 2
e−(x+iξ e−t )2+x2

dx
)

=
ey2

√
π

∫

R

e2iξ y−ξ 2
Lke(x+iξ e−t )2+x2

dξ .

Now, observe that

Lke−(x−t)2+x2
= (−1)k

(
t

∂
∂ t

)k
e−(x−t)2+x2

= (−1)k
k

∑
n=0

{
k
n

}
tnex2 ∂ k

∂ tk e−(x−t)2

= (−1)k
k

∑
n=0

{
k
n

}
tnex2

(−1)k ∂ k

∂xk e−(x−t)2

= (−1)ke−(x−t)2+x2
k

∑
n=0

{
k
n

}
tn Hn(x− t),

by using Rodrigues’ formula and [266, Lemma 1].12 Therefore, using (1.39)

Mk
t (x,y) = (−1)k ex2+y2

√
π

k

∑
n=0

{
k
n

}∫

R

e2iξ y−ξ 2
(iξ e−t)ke−(x+iξ e−t )2

Hn(x+ iξ e−t)dξ

= (−1)k ex2+y2

√
π

k

∑
n=0

n

∑
l=0

{
k
n

}(
n
l

)
Hn(x)2

n−l
∫

R

e2iξ y−ξ 2
e−(x+iξ e−t )2

(iξ e−t)2n−ldξ .

Thus, it remains to compute the inner integral. For each m ∈ N, using again the in-
tegral representation of the Hermite polynomials (1.30), and the change of variables
η =

√
1− e−2tξ , we have

12Teuwen notices that his Lemma 1 is a particular case of a result in Weyl algebras, and
depends only on the fact that the commutator [t,∂t ] =−1.
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ex2+y2

√
π

∫

R

e2iξ y−ξ 2
e−(x+iξ e−t )2

(iξ e−t)mdξ

=
ey2

√
π

∫

R

e2i(y−xe−t )ξ e−(1−e−2t )ξ 2
(iξ e−t)mdξ

=
ey2

√
π

∫

R

e2iξ
√

1−e−2t [(y−xe−t )/
√

1−e−2t ]e−(1−e−2t )ξ 2
(iξ e−t)mdξ

=
(−1)mey2

2m
√

π
(−2i)me−tm

(
√

1− e−2t)m+1

∫

R

e2iη [(y−xe−t )/
√

1−e−2t ]e−η2
ηmdη

=
e−(y−xe−t )2/(1−e−2t )ey2

√
1− e−2t

2−m
( −e−t
√

1− e−2t

)m
Hm

( y− xe−t
√

1− e−2t

)

= Mt(x,y)2
−m( −e−t

√
1− e−2t

)m
Hm

( y− xe−t
√

1− e−2t

)
.

Therefore,

Mk
t (x,y) = (−1)kMt(x,y)

k

∑
n=0

n

∑
l=0

2−n
{

k
n

}(
n
l

) ( −e−t
√

1− e−2t

)2n−l

Hn(x)H2n−l

( y− xe−t
√

1− e−2t

)
. ��

Another ingredient that is needed for the study of Hardy spaces in Chapter 7 is
the following Gaussian version of A. P. Calderón’s reproducing formula; see [231].

Lemma 2.11. (Portal) For all n ∈ N and a,α > 0, there exists C > 0 such that for
all f ∈ L2(γd)

f (x) =C
∫ ∞

0
(t2L)N+1T(1+a)t2/α f (x)

dt
t
+

∫

Rd
f (x)γd(dx), (2.59)

in L2 sense.

Proof. As this is a formula in L2(γd), it is enough to prove (2.59) for the Hermite
polynomials, as they are an orthonormal basis for L2(γd).

If ν = 0, then as H0 = 1, and LH0 = 0, the right-hand side equals

C
∫ ∞

0
(t2L)N+1T(1+a)t2/α 1

dt
t
+

∫

Rd
1dγd =C ·0+1 = H0.

Let us assume now that ν �= 0. For these Hν , the last integral in (2.59) is zero ac-
cording to orthogonality. As Hν is an eigenfunction with eigenvalue of L, then

LN+1Hν = (−1)N+1|ν |N+1Hν .
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Hence, we obtain for x ∈ R
d

∫ ∞

0
(t2L)N+1T(1+a)t2/α Hν(x)

dt
t
=

∫ ∞

0
(t2L)N+1e−(1+a)t2|ν |/αHν(x)

dt
t

= (−1)N+1|ν |N+1Hν(x)
∫ ∞

0
t2(N+1)e−(1+a)t2|ν |/α dt

t

=
N!
2

(
α

(1+a)

)N+1

Hν(x) =C Hν(x).

Therefore, C =CN = 2
N! (

1+a
α )N+1 is the right constant. ��

Another version of A. P. Calderón’s reproducing formula was obtained in [164],
and is discussed in Chapter 8 (see Theorem 8.31).

2.3 The Hypercontractivity Property for the Ornstein–Uhlenbeck
Semigroup and the Logarithmic Sobolev Inequality

The Ornstein–Uhlenbeck semigroup is not only a contraction semigroup but it is also
hypercontractive. The hypercontractivity property of {Tt}t≥0 was initially proved
by E. Nelson [204] in the context of quantum field theory, and it has been studied
extensively in the literature.

Definition 2.12. Given a semigroup of contractions {Tt}t≥0 defined in Lp(E,μ),
with 1 ≤ p ≤ ∞, the semigroup {Tt}t≥0 satisfies the hypercontractivity property if for
each initial condition 1 < p < ∞ there exists an strictly increasing function q : R+ →
[p,∞), q(0) = p such that

||Tt f ||q(t),μ ≤ || f ||p,μ , for all f ∈ Lp(E,μ), t ≥ 0.

The function q is called the contraction function.

We are going to prove in detail that the Ornstein–Uhlenbeck semigroup {Tt}t≥0

is hypercontractive, having contraction function

q(t) = 1+ e2t(p−1)> p.

Thus, we will prove the following inequality:

||Tt f ||q(t),γ ≤ || f ||p,γ , (2.60)

for all f ∈ Lp(γd) and t ≥ 0.
We will first prove that the Ornstein–Uhlenbeck operator satisfies the logarithmic
Sobolev inequality.
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Theorem 2.13. The Ornstein–Uhlenbeck operator L satisfies the logarithmic
Sobolev inequality: for any f ∈ L2(γd) with ∇x f (in the weak sense) belonging
to L2(γd),

∫

Rd
| f (x)|2 log | f (x)|γd(dx)≤ 1

2

∫

Rd
|∇x f (x)|2γd(dx)+ || f ||22,γd

log || f ||2,γ , (2.61)

or, equivalently,
∫

Rd
| f (x)|2 log | f (x)|γd(dx) −

(∫

Rd
| f (x)|2γd(dx)

)
log

(∫

Rd
| f (x)|γd(dx)

)

≤ 1
2

∫

Rd
|∇x f (x)|2γd(dx).

Proof. To prove (2.61), we will follow Adams and Clarke’s proof [4], which is one of
the simplest proofs for this inequality13. We begin by making a series of reductions.
In the first place, it is enough to prove the logarithmic Sobolev inequality in the case
d = 1. Then, the general case can be obtained by induction in d. In addition, observe
that (2.61) is homogeneous with respect to rescaling of f ; thus, we may assume that
|| f ||2,γ = 1. Moreover, we may assume that || f ′||2,γ < ∞ because, otherwise, there

is nothing to prove. The change f (t) = g(t)et2/2 implies the following equivalent
formulation of the inequality:

∫

R

(
1
2

∣∣g′ (t)∣∣2 −|g(t)|2 log |g(t)|
)

dt ≥
√

π
2

, provided
∫

R

|g(t)|2 dt =
√

π. (2.62)

As
∣∣(|g|′)∣∣ ≤ |g′| a.e., we may assume that g is a non-negative real-valued function.

It is enough to consider only the case g(t)> 0 for all t ∈R; this can be justified by a
simple argument of density. Finally, it is convenient to split (2.62) into two half-line
problems, each of them equivalent to

∫ ∞

0

(
1
2

(
g′ (t)

)2 − (g(t))2 log(g(t))

)
dt ≥

√
π

4
, provided

∫ ∞

0
(g(t))2 dt =

√
π

2
.

(2.63)

For s,r > 0, let V (s,r) =
[
v(s,r)s2 + r

(
1− v(s,r)2 −2 log s

)]
/2, where

v(s,r) = h−1
(
r/s2

)
, and h is given by

h(t) = et2
∫ ∞

t
e−τ2

dτ .

It is easy to see that h is strictly decreasing in R and
(
h−1

)′
(t) =

{
2th−1 (t)−1

}−1
.

The partial derivatives of V are:

Vs = vs, and Vr =−
(
v2/2

)
− logs.

13For another simple proof see [219].
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If U (s,u) =
(
u2/2

)
− s2 logs, then,

Vsu−Vrs
2 +U (s,u) =

1
2
(u+ vs)2 ≥ 0, for s > 0, u ∈ R. (2.64)

Therefore, if g satisfies the inequalities

g(t)> 0,
∫ ∞

0
(g(t))2 dt =

√
π

2
,
∫ ∞

0

(
g′ (t)

)2
dt < ∞, (2.65)

it then follows from (2.64) (setting s = g(t), r =
∫ ∞

t (g(τ))2 dτ , u = g′(t)) that

d
dt

V

(
g(t) ,

∫ ∞

t
(g(τ))2 dτ

)
=Vsg

′ (t)−Vr (g(t))
2 ≥−U

(
g(t) ,g′ (t)

)

and
∫ ∞

0
U
(
g(t) ,g′ (t)

)
dt ≥ −

∫ ∞

0

d
dt

V

(
g(t) ,

∫ ∞

t
(g(τ))2 dτ

)
dt

≥ V

(
g(0) ,

√
π

2

)
− liminf

t→∞
V
(

g(t) ,
∫ ∞

t
(g(τ))2 dτ

)
.

As h−1 is decreasing and h−1
(√

π/2s2
)
= 0 only for s = 1, we conclude that

V
(
s,
√

π/2
)
≥V

(
1,
√

π/2
)
=
√

π/4, for all s > 0.

The inequality (2.63) would be shown if the following claim holds: if g satis-
fies (2.65), then

liminf
t→∞

V

(
g(t) ,

∫ ∞

t
(g(τ))2 dτ

)
≤ 0.

To prove the claim, we use the fact that h(τ)< 1/τ for all τ > 0. Then, h−1 (t)<

1/t for all t > 0, and v(s,r)s2 < s4/r. Similarly, h(τ) <
√

πeτ2
for τ ≤ 0 implies

h−1 (t)≤−
√

log
(
t/
√

π
)

for t ≥
√

π and therefore, setting t = r/s2, we get

(v(s,r))2 ≥ logr− logs2 − log
√

π

for
√

πs2 ≤ r. Evidently, (v(s,r))2 ≥ 0 if r <
√

πs2 and consequently,

r
(
1− v2 −2logs

)
≤ max

{
r
(
1+ log

√
π − logr

)
,
√

πs2 (1− logs2)}

for all r,s > 0. Hence,

V (s,r)≤ s4

2r
+

1
2

max
{

r
(
1+ log

√
π − logr

)
,
√

πs2 (1− logs2)} . (2.66)
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If g satisfies (2.65), then taking s = g(t) ,

r =
∫ ∞

t
(g(τ))2 dτ , and ε =

∫ ∞

t

(
g′ (τ)

)2
dτ

both terms tend to zero as t → ∞. Moreover, according to Hölder’s inequality

s4 = (g(t))4 ≤
(

2
∫ ∞

t
g(τ)

∣∣g′ (τ)∣∣dτ
)2

≤ 4rε .

From (2.66), it follows that liminft→∞ V (s,r)≤ 0. ��

In [119], L. Gross proved the following striking result:

Theorem 2.14. The Ornstein–Uhlenbeck semigroup {Tt}t≥0 is hypercontractive,
with contraction function q(t) = 1 + e2t(p − 1) > p, if and only if the Ornstein–
Uhlenbeck operator L satisfies the logarithmic Sobolev inequality (2.61).

To prove this theorem, we essentially follow Gross’ argument (see [119] and
[120]). For this we need the following technical (but key) lemma. We are going
to formulate it in great generality for any probability space (E,B,μ), which will
be useful in what follows. Of course, in our case, the probability space is simply
(Rd ,B(Rd),γd).

Lemma 2.15. Let (E,B,μ) be a probability space. Let us take 1 < p < ∞, ε > 0
and q> p and let s be a real function, continuously differentiable from [0,ε) to (1,∞)
such that s(0) = p, and let f be a function continuously differentiable from [0,ε) to
Lq(μ) with f (0) = v �= 0. Then, || f (t)||s(t) is differentiable at t = 0 and

d
dt
|| f (t)||s(t)

∣∣∣
t=0

(2.67)

= ||v||1−p
p

[
p−1s′(0)

(∫

E
|v|p log |v|dμ −||v||pp log ||v||p

)
+Re〈 f ′(0),vp〉μ

]
,

where, vp = (sgnv)|v|p−1.

Proof. Let g : [0,ε)→ C be a continuously differentiable function. Then, we have

d
dt
|g(t)|s(t) =

[
s′(t) log |g(t)|+ s(t)

1
|g(t)|2 Reg′(t)g(t)

]
|g(t)|s(t)

= s′(t)|g(t)|s(t) log |g(t)|+ s(t)
1

|g(t)|2 Reg′(t)
g(t)
|g(t)| |g(t)|

s(t)−1

= s′(t)|g(t)|s(t) log |g(t)|+ s(t)
1

|g(t)|2 Reg′(t)g(t)s(t).

This holds even when g(t) = 0 for some t, because s(t)> 1.
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Let us take g(t) = f (t)(x)(formally), integrate it with respect to μ , and inter-
change the order of the integration and differentiation. Then,

d
dt

∫

E
| f (t)(x)|s(t)μ(dx) =

∫

E
s′(t)| f (t)(x)|s(t) log | f (t)(x)|μ(dx)+ s(t)Re〈 f ′(t), fs(t)〉μ .

Then, if V (t) =
∫

E | f (t)(x)|s(t)μ(dx), we have

d
dt
|| f (t)||s(t) =

d
dt

V (t)s(t)

=
1

s(t)

[V (t)s(t)−1

V (t)

]
V ′(t)− s′(t)

s2(t)
V (t)s(t)−1 logV (t).

The second chain of equalities needs justification, because f (t)(x) is not necessarily
differentiable in the variable t for a.e. x (for details see Gross [120, page 63]). Then,
taking t = 0 (2.67) follows. ��

Now, we are ready to prove Theorem 2.14

Proof. First of all, consider the number operator

N = 2(−L) =−Δx +2〈x,∇x〉

which is the Dirichlet form for γd , i.e.,
∫

Rd
〈∇x f (x),∇xg(x)〉γd(dx) =

∫

Rd
f (x)Ng(x)γd(dx),

and consider the semigroup {e−tN}t≥0 generated by N.14

Let us assume that (2.61) holds. Then, we can obtain, for each p > 1, the Sobolev
logarithmic inequality in Lp(γd)

∫

Rd
| f (x)|p log | f (x)|γd(dx)≤ c(p)Re〈N f (t), fp〉γd + || f ||pp,γd

log || f ||p,γ , (2.68)

with c(p) = p
4(p−1) and fp = (sgn f )| f |p−1. In Gross’s notation [120] this means that

N is a Sobolev generator in (0,∞).
The outline of this argument is as follows: assume that p > 1 and let f be a non-

negative bounded function in the domain of N in L2(γd). Then, replacing f by f p/2

in (2.61), we get

p
2

∫

Rd
| f (x)|p log | f (x)|γd(dx) ≤ 1

2

∫

Rd
|∇x f p/2(x)|2γd(dx)

+
1
2

∫

Rd
| f (x)|pγd(dx)

(
log

∫

Rd
| f (x)|pγd(dx)

)
.

14This semigroup is simply {T2t}t≥0, the Ornstein–Uhlenbeck semigroup with parameter
2t.
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Now, if f is bounded and smooth, we have

|∇x( f (x)p/2)|2 = (p/2)2( f (x)p/2−1)2|∇x f (x)|2,

and also
〈∇x f (x),∇x( f (x)p−1)〉= (p−1) f (x)p−2|∇x f (x)|2.

Therefore,

|∇x( f (x)p/2)|2 =
[ (p/2)2

(p−1)

]
〈∇x f (x),∇x( f (x)p−1)〉,

and
∫

Rd
|∇x f p/2(x)|2γd(dx) =

[ p2

4(p−1)

]∫
Rd
〈∇x f (x),∇x( f (x)p−1)〉γd(dx)

=
[ p2

4(p−1)

]
〈N f , f p−1〉γ ,

thus proving (2.68).
The set where these computations make sense can be justified from the fact that

e−tN is a contractive and positive semigroup in L∞(γd) (see [120]).
Now, let g be a non-negative function in C∞

0 (R) with support in (0,∞) and let u ∈
L∞(γd). Then, h :=

∫ ∞
0 g(s)(e−sNu)ds exists as a Riemann integral in Lp(γ1),1 < p <

∞. If f (t) = e−tNh, t ≥ 0, f is a positive and differentiable function in Lp(γd) for all
1 < p < ∞. Then, according to Lemma 2.15 the function α(t) = || f (t)||1+(p−1)e4t ,γd

is differentiable in (0,∞); therefore,

dα(t)
dt

=
d
dt
|| f (t)||1+(p−1)e4t ,γ

= || f (t)||1−p
p,γ

[
c(p)−1

(∫

Rd
| f (t)|p log | f (t)|dγd −|| f (t)||pp,γ log || f (t)||p,γ

)

−Re〈N f (t), f (t)p〉γ

]
≤ 0.

Thus, d
dt logα(t)≤ 0 and logα(t)≤ logα(0) = log ||h||p,γ , i.e.,

||e−tNh||1+(p−1)e4t ,γ ≤ ||h||p,γ . (2.69)

Recall that an approximation of the identity is a sequence of functions {hn} that
converges to the Dirac delta function (see the Appendix 10.5). Then, for each t ≥ 0
and for any element of an approximation of the identity, so that the corresponding
sequence {hn} converges to u in Lp(γd)-norm, and e−tNhn converges to e−tNu in
Lp(γd)-norm, and also almost everywhere. Applying the previous inequality (2.69)
to hn and using Fatou’s lemma, we have

||e−tNu||1+(p−1)e4t ,γ ≤ ||u||p,γ .

As L∞(γd) is dense in Lp(γd), we can again apply Fatou’s lemma; thus, the inequal-
ity (2.69) holds for any h ∈ Lp(γd).
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Finally, given that Tth = etLh = e−(t/2)Nh, the previous inequality is equivalent to

||Tth||1+(p−1)e2t ,γ = ||etLh||1+(p−1)e2t ,γ = ||e−(t/2)Nh||1+(p−1)e4(t/2),γ ≤ ||h||p,γ ;

hence, {Tt}t≥0 satisfies (2.60).

Conversely, let us assume that the semigroup {Tt}t≥0 is strongly continuous on
Lp(γd), 1 < p < ∞, and that it is hypercontractive (2.60). Let D be the linear hull of
the set of functions h :=

∫ ∞
0 g(s)(e−sNu)ds, with g a non-negative function in C∞

0 (R)
with support in (0,∞) and u ∈ L∞(γd), as was considered in the first part of the proof.
Let h be a non-zero element in D and set f (t) = e−tNh, t ∈ (0,∞). Then, for each t,
we have

|| f (t)||1+(p−1)e4t ,γ −|| f (0)||p,γ
t

≤ ||h||p,γ
(1−1

t

)
= 0,

according to the hypercontractivity property (2.60) and the fact that e−tNh = T2th.
By Lemma 2.15, we can take the limit as t ↓ 0 in the preceding inequality to get

||h||1−p
p,γd

[
p−14(p−1)

(∫

Rd
|h|p log |h|dγd −||h||pp,γd

log ||h||p,γ
)
−Re〈Nh,hp〉γd

]
≤ 0.

Multiplying by p
4(p−1) ||h||

p−1
p,γd

, we obtain (2.61).
Now, because D is dense in the domain of the infinitesimal generator of

{e−Nt}t≥0 in Lp(γd), for any f there exists a sequence {hn} in D such that hn → f
in the graph norm and a.e. γd . As xp logx is bounded from below in [0,∞), we can
use Fatou’s lemma on the left side of (2.61). For the right side we observe that the
mapping f → fp is continuous from Lp(γd) to Lp′(γd); thus, the right-hand side is
a continuous function of f in the graph norm. Therefore, because (2.61) holds for
each hn, it holds for any f . ��

The hypercontractivity of the Ornstein–Uhlenbeck semigroup can also be ob-
tained using the curvature-dimension inequalities. In 1984, D. Bakry and M. Emery
[21] developed a criterion (sufficient condition) for a Markov diffusion semigroup to
satisfy the hypercontractivity property, which is the famous Bakry–Emery criterion.
This criterion is given in terms of the iterated square field operator Γ2,

Γ2( f ,g) =
1
2

[
LΓ ( f ,g)−Γ ( f ,Lg)−Γ ( f ,Lg)

]
,

for every f ,g ∈ A , the standard algebra (an “appropriated class” of functions). The
Bakry–Emery criterion has evolved to what is now known as curvature-dimension
inequalities, which allows us to study the local structure of the generator L and has
important applications in differential geometry.

Definition 2.16. An operator L is said to satisfy a curvature-dimension inequality
CD(ρ ,n) if

Γ2( f , f )≥ ρΓ ( f , f )+
1
n
(L f )2, (2.70)

for any f ∈ A . Here, ρ ∈ R is called the curvature and n ∈ [1,∞] the dimension.
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It can be proved (see for instance [19, 284]) that if an inequality CD(ρ ,∞) holds
for some ρ > 0, then the invariant measure μ must be finite; moreover, a logarithmic
Sobolev inequality holds. Observe that for the Gaussian case, when d = 1 (2.17)
and (2.23) become

Γ ( f , f )(x) =
1
2
( f ′(x))2 and Γ2( f , f )(x) =

1
4
( f ′′(x))2 +

1
2
( f ′(x))2.

Then, trivially, we have a curvature-dimension inequality with n = ∞ and constant ρ

1
4
( f ′′(x))2 +

1
2
( f ′(x))2 ≥ ρ

2
( f ′(x))2,

if and only if ρ ≤ 1. The extension for higher dimensions follows simply by the
tensorization argument.

The original hypercontractive estimates of the Ornstein–Uhlenbeck semigroup
were obtained by E. Nelson [204] and were later extended to the complex case, for
suitable values of z, by F.B. Weissler [292] and J.B. Epperson [74].

2.4 Applications of the Hypercontractivity Property

One of the first consequences of the hypercontractivity property for the Ornstein–
Uhlenbeck semigroup {Tt}t≥0 is that the orthogonal projections Jk onto the (closed)
subspaces Ck of the Wiener Chaos are Lp(γd)-continuous for 1 < p < ∞ :

Corollary 2.17. For any k ∈ N, Jk|P(Rd), the restriction of Jk to the polynomials

P(Rd), has an extension, which will also be denoted as Jk, to a bounded operator
in Lp(γd), i.e.,

||Jk f ||p,γ ≤Cp,k|| f ||p,γ . (2.71)

Proof. If p > 2, taking t0 > 0 such that p = e2t0 +1, according to the hypercontrac-
tivity property of {Tt}, we have

||Tt0 f ||p,γ ≤ || f ||2,γ .

In particular, from Hölder’s inequality,

||Tt0Jk f ||p,γ ≤ ||Jk f ||2,γ ≤ || f ||2,γ ≤ || f ||p,γ .

Now, because Tt0 f = ∑∞
k=0 e−t0kJk f , we have Tt0 Jk f = e−t0kJk f ; therefore,

||Tt0Jk f ||p,γ = e−t0k||Jk f ||p,γ .

Thus, we have
||Jk f ||p,γ ≤ et0k|| f ||p,γ .
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The case 1 < p < 2 is obtained by duality from the previous one. Let p′ be the
conjugated exponent of p, that is, 1

p +
1
p′ = 1, p′ > 2. Then, because the projection

Jk is a self-adjoint operator, using Hölder’s inequality, we get

||Jk f ||p,γ = sup
||g||p′,γ≤1

∣∣∣∣
∫ ∞

−∞
Jk f gdγd

∣∣∣∣= sup
||g||p′,γ≤1

∣∣∣∣
∫ ∞

−∞
f Jkgdγd

∣∣∣∣
≤ sup

||g||p′,γ≤1
|| f ||p,γ ||Jkg||p′,γ ≤ sup

||g||p′,γ≤1
|| f ||p,γC||g||p′,γ ≤C|| f ||p,γ ,

where C = et0k, with t0 > 0 such that p′ = e2t0 +1. ��

The next lemma is useful for the proof of P.A. Meyer’s multiplier theorem , which
is also a consequence of the hypercontractivity property.

Lemma 2.18. If 1 < p < ∞, for each n ∈ N, there exists a constant Cn such that

||Tt(I −J0 −J1 − . . .−Jn−1) f ||p,γ ≤Cne−tn|| f ||p,γ . (2.72)

Proof. Again, by duality, it is enough to consider the case p > 2. Let t0 be such that
p = e2t0 +1. Then, using the hypercontractivity property and Parseval’s identity, we
get for t > t0,

||Tt(I −J0 −J1 − . . .−Jn−1) f ||2p,γ
= ||Tt0Tt−t0(I −J0 −J1 − . . .−Jn−1) f ||2p,γ
≤ ||Tt−t0(I −J0 −J1 − . . .−Jn−1) f ||22,γ

= ||
∞

∑
k=n

e−(t−t0)kJk f ||22,γ =
∞

∑
k=n

e−2(t−t0)k||Jk f ||22,γ

=
∞

∑
k=0

e−2(t−t0)(k+n)||Jk+n f ||22,γ ≤ e−2(t−t0)n
∞

∑
k=0

||Jk+n f ||22,γ

≤ e−2(t−t0)n|| f ||2,γ ≤Cne−2tn|| f ||2p,γ ,

where Cn = e2t0n.

Now, if t < t0, because Tt is a contraction,

||Tt(I −J0 −J1 − . . .−Jn−1) f ||p,γ ≤ ||(I −J0 −J1 − . . .−Jn−1) f ||p,γ

≤ (1+
n−1

∑
k=0

ekt0)|| f ||p,γ ≤ (n+1)ent0 || f ||p,γ

≤ Cne−nt0 || f ||p,γ ≤Cne−nt || f ||p,γ ,

with Cn = (n+1)ent0 . ��
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Finally, let us consider potential operators,

Un f =
∫ ∞

0
Tt(I −J0 −J1 − . . .−Jn−1) f dt. (2.73)

According to Minkowski’s integral inequality and Lemma 2.18, we have

||Un f ||p,γ ≤
C
n
|| f ||p,γ , for 1 < p < ∞. (2.74)

Let us also consider the following operators associated with Un

Un,m f =
1

(m−1)!

∫ ∞

0
tm−1Tt(I −J0 −J1 − . . .−Jn−1) f dt. (2.75)

Then, again according to Minkowski’s integral inequality and Lemma 2.18 we have

||Un,m f ||p,γ ≤ 1
(m−1)!

∫ ∞

0
tm−1||Tt(I −J0 −J1 − . . .−Jn−1) f ||p,γ dt

≤ C
(m−1)!

∫ ∞

0
tm−1e−tndt|| f ||p,γ ≤

C
nm || f ||p,γ ;

hence,

||Un.m f ||p,γ ≤
C
nm || f ||p,γ , (2.76)

for all n,m ∈ N.
Moreover, if f ∈ Ck, i.e., Jk f = f , and k ≥ n,

Un f =
∫ ∞

0
TtJk f dt =

∫ ∞

0
e−kt f dt =

1
k

f ,

and similarly,

Un,m f =
1

(m−1)!

∫ ∞

0
tm−1TtJk f dt =

1
(m−1)!

∫ ∞

0
tm−1e−kt f dt =

1
km f .

A very important consequence of the hypercontractivity of the Ornstein–Uhlenbeck
semigroup is P. A. Meyer’s multiplier theorem (see Theorem 6.2 in Chapter 6).

2.5 Notes and Further Results

1. The definition of the Ornstein–Uhlenbeck semigroup {Tt}t≥0 using the integral
representation (2.28) coincides with that obtained using the general theory of
Markov semigroups, taking as transition probabilities

Pt(x,dy)= ∑
|ν |≥0

e−t|ν |hν(x)hν(y)γ1(dy) =
1

(1− e−2t)d/2
e
− e−2t (|y|2+|x|2)−2e−t 〈x,y〉

1−e−2t dy,
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according to Mehler’s formula (10.24). For more details, see for instance [20]
or [284]. This is the link to the theory of Markov processes in probability. It is
well known that Brownian motion {Bt}t≥0 is associated with the heat semigroup
{Tt}t≥0. Similarly, we have the Ornstein–Uhlenbeck process {Xt}t≥0 with tran-
sition probabilities {Pt}t≥0, which is associated with the Ornstein–Uhlenbeck
semigroup {Tt}t≥0. The process {Xt}t≥0 describes the speed of a particle mov-
ing in a fluid with viscosity against a resisting force that is proportional to its
speed (see Breiman [35, Chapter 6]). Hence, {Xt}t≥0 can be obtained using the
following formula to construct its finite-dimensional distributions:

μx{Xt1 ∈ E1,Xt2 ∈ E2, · · · ,Xtk ∈ Ek}=∫

Ek

· · ·
∫

E2

∫

E1

Pt1(x,dy1)Pt2−t1(y1,dy2) · · ·Ptk−tk−1(yk−1,dyk).

It is known that the process can be obtained from the semigroup using (2.77) and
that the semigroup {Tt}t≥0 can be represented in terms of the Markov process
{Xt}t≥0 as

Tt f (x) = E[ f (Xt)|X0 = x], f ∈ L∞(γd). (2.77)

Using this representation, the properties of the semigroup can be proved using
probabilistic methods. Moreover, (2.52) expresses the stationarity and ergodicity
of the process.

2. The Ornstein–Uhlenbeck semigroup can also be introduced formally, following
S. Bochner [32], as a solution to the equation (2.53), as follows: let f ∈ L2(γd)
with Hermite expansion ∑|ν |≥0 aν Hν ; therefore, ∑|ν |≥0(aν)

2 < ∞. Then, for-
mally, L f has the expansion

L f =− ∑
|ν |≥0

|ν |aν Hν ,

if ∑|ν |≥0 |ν |2(aν)
2 < ∞.

Now, let u(x, t) be a solution of (2.53) with Hermite expansion ∑|ν |≥0 aν(t)Hν ;
therefore,

∑
|ν |≥0

(aν(t))
2 < ∞.

Thus, Lu and ∂u
∂ t have Hermite expansions

− ∑
|ν |≥0

|ν |aν(t)Hν , and ∑
|ν |≥0

a′ν(t)Hν

respectively, and then, assuming that

∑
|ν |≥0

|ν |2(aν(t))
2 < ∞ and ∑

|ν |≥0

(a′ν(t))
2 < ∞,
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we conclude by the uniqueness of the Hermite expansions that

−|ν |aν(t) = a′ν(t),

or equivalently
aν(t) = aν e−|ν |t .

Thus, we get the expansion (2.27), and again by uniqueness, we conclude that
necessarily u(x, t) = Tt f (x).

3. S. Pérez [221] provided another way to see that u(x, t) = Tt f (x) is a solution
of (2.53). It consists of looking for an appropriate dilation that, using the Fourier
transform, gives us u as a solution of a differential equation that is easier to solve.
Let w(x, t) = u(etx, t), then

wt(x, t) = et〈x,∇xu(etx, t)〉+ut(e
tx, t),

∇xw(x, t) = et∇xu(etx, t), and Δxw(x, t) = e2tΔxu(etx, t).

Thus, w satisfies a variant of the heat equation

wt(x, t) =
1
2

e−2tΔxw(x, t).

Then, applying the Fourier transform (in the x variable), we obtain that ŵ satisfies
the ordinary differential equation

ŵ′(ξ , t) =−2π2e−2t |ξ |2ŵ(ξ , t),

whose solution is
ŵ(ξ , t) = e−π2(1−e−2t )|ξ |2 f̂ (ξ )

and its inverse Fourier transform is given by

w(x, t) =Cd

∫

Rd

e
− |y−e−t x|2

1−e−2t

(1− e−2t)d/2
f (y)dy.

4. To prove the semigroup property of {Tt}t≥0, there is an analogous proof to that
given for the heat semigroup in the Appendix using the Fourier transform (see
proof of Theorem 10.15i)). Nevertheless, this would prove the result only for
functions in S (Rd), Schwartz’s space of test functions. Also, because the set of
polynomials P(Rd) is dense in Lp(γd), see Corollary 10.12, we can also prove
the semigroup property by means of the representation (2.27).

(Tt1 ◦Tt2) f = Tt1(
∞

∑
k=0

e−t2kJk f ) =
∞

∑
k=0

e−(t1+t2)kJk f = Tt1+t2 f .



2.5 Notes and Further Results 69

5. The translated Ornstein–Uhlenbeck semigroups {T (κ)
t }t≥0, κ ≥ 0, see [122] and

[124], are defined formally as

T (κ)
t = e−κtTt , (2.78)

which means that T (κ)
t hν = e−t(|ν |+κ)hν . Thus, they are in fact a type of trans-

lation of the Ornstein–Uhlenbeck semigroup {Tt}t≥0, It can be shown that the

infinitesimal generator of {T (κ)
t }t≥0 is L−κId .

In particular, for κ = 1, we get that the translated Ornstein–Uhlenbeck

semigroup {T (1)
t }t≥0 has infinitesimal generator L, the alternative Ornstein–

Uhlenbeck operator (2.15).
Clearly, if f ≥ 0,

T (κ)
t f ≤ Tt f ,

for t ≥ 0. These semigroups and their subordinated semigroups are useful in the
study of Littlewood–Paley–Stein functions (see [122]). This is discussed later in
Chapter 5.

6. D. Bárcenas, H. Leyva, and W. Urbina in [26] studied the controllability of the
following controlled Ornstein–Uhlenbeck equation:

z(t) =
1
2

Δz−〈x,∇z〉+
∞

∑
n=1

∑
|ν |=n

uν(t)
〈
b,hν

〉
γd

hν , t > 0, x ∈ R
d , (2.79)

where hν is the normalized Hermite polynomial, b ∈ L2(γd), and the control u
is in L2(0, t1; l2(γd)), with l2(γd) the Hilbert space of the Fourier–Hermite coef-
ficient,

l2(γd) =
{

U = {{Uν}|ν |=n}n≥1 : Uβ ∈ C,
∞

∑
n=1

∑
|ν |=n

|Uν |2 < ∞
}
.

Then, if for all ν = (ν1,ν2, . . . ,νd) ∈ N
d

〈
b,hν

〉
γd
=

∫

Rd
b(x)hν(x)γd(dx) �= 0,

then the system is approximately controllable on [0, t1] for some t1, i.e., for all
z0,z1 ∈ Z and ε > 0, there exists a control u ∈ L2([0, t1]; l2(γd)) such that the
solution z(t) given by (2.79) satisfies

‖z(t1)− z1‖ ≤ ε .

Moreover, the system can never be exactly controllable, i.e., there exist z0,z1 ∈Z

such that for all control u ∈ L2([0, t1]; l2(γd)) the solution z(t) of (2.79) corre-
sponding to u satisfies z(t1) = z1. The fact that {Tt}t≥0 is a compact semigroup,
proved in Lemma 2.6, is crucial here.
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7. The classical Sobolev inequality states that for any function f ∈ L2(Rd) with
∇x f ∈ L2(Rd), in the weak sense, we have f ∈ Lp(Rd) for 1

p = ( 1
2 −

1
n ). Thus,

|| f ||p ≤Cd

∫

Rd
|∇x f (x)|2dx.

The logarithmic Sobolev inequality (2.61) generalizes the classical Sobolev in-
equality for the Gaussian measure.
The Gaussian measure can be defined in a space of infinite dimension, unlike the
Lebesgue measure, and as the inequality (2.61) is independent of the dimension,
it can be extended to the infinite dimensional case. Moreover, observe that in the
classical Sobolev inequality p → 2 as n → ∞ and, consequently, there is loss of
information in this inequality when the dimension increases toward infinity.

8. It follows from (2.61) that if f and ∇x f ∈ L2(γd), then f belongs to the Orlicz
space L2 logL(γd). Moreover, it is easy to prove that there exists a function
f such that the right hand side of (2.61) is finite, but f does not belong to
L2 logL log logL(γd) (see [119]). In that sense, the inequality is optimal and the
constants are also the best possible.

9. In [7], A. Amenta and J. Teuwen studied Lp −Lq off-diagonal estimates for the
Ornstein–Uhlenbeck semigroup. For sufficiently large t (quantified in terms of p
and q), these estimates hold in an unrestricted sense. This would suggest poten-
tial generalizations to perturbations of the Ornstein–Uhlenbeck operator, whose
heat semigroups need not have nice kernels. Moreover, for sufficiently small t,
by using direct estimates of Mehler’s kernel, it is shown that the estimates fail
when restricted to maximal admissible balls and sufficiently small annuli.

10. S. Thangavelu [270], K. Stempak, and J. L. Torrea [259], among several others,
have developed an analogous theory for Hermite functions {Ψ ν} in R

d which
are eigenfunctions of the Hermite operator

H =−Δx + |x|2,

with eigenvalue λν =−(2|ν |+d).
Then, the Hermite semigroup {ϒt = e−tH}t≥0 can be defined in Lp(Rd). The
Hermite semigroup leads to analogous results in classical harmonic analysis with
respect to the Lebesgue measure, which will not be considered here (for more
details see, for instance, [259, 267, 268] and [270]).15

15It is important to observe that the one-dimensional Hermite expansions only converge in
Lp-norm for p = 2 (see [230]), but expansions in Hermite functions converge in Lp-norm for
4
3 < p < 4.
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11. For α >−1,β >−1, consider the one-dimensional Jacobi differential operator,
a second-order diffusion operator defined as

L α ,β =−(1− x2)
d2

dx2 − (β −α − (α +β +2)x)
d
dx

, (2.80)

The Jacobi polynomials {P(α ,β )
n }k can be defined as orthogonal polynomials

with respect to the Jacobi (or beta) measure μα ,β in (−1,1)

μα ,β (dx) =
1

2α+β+1B(α +1,β +1)
χ(−1,1)(x)(1− x)α(1+ x)β dx, (2.81)

and they are eigenfunctions of L α ,β with corresponding eigenvalues λ α+β
n =

n(n+α +β +1).

Observe that if we choose δα ,β =
√

1− x2 d
dx , and consider its formal L2(μα ,β )-

adjoint,

δ ∗
α ,β =−

√
1− x2 d

dx
+
[
(α +

1
2
)

√
1+ x
1− x

− (β +
1
2
)

√
1− x
1+ x

]
I,

then L α ,β = δ ∗
α ,β δα ,β . The differential operator δα ,β is considered the “natural”

notion of derivative in the Jacobi case.

The square field operator is given by

Γ α ,β ( f ,g)(x) =
1
2

[
(1− x2)

d2( f g)
dx2 (x)+(β −α +1− (α +β+2)x)

d( f g)
dx

(x)

−(1−x2) f (x)
d2g
dx2 (x)−(β −α +1− (α +β+2)x) f (x)

dg
dx

(x)

−(1−x2)g(x)
d2 f
dx2 (x)−(β −α +1− (α +β+2)x)g(x)

d f
dx

(x)
]

= (1−x2)
d f
dx

(x)
dg
dx

(x),

and

Γ α ,β ( f )(x) = Γ α ,β ( f , f )(x) = (1− x2)
(d f

dx
(x)

)2
. (2.82)

Moreover, the iterated square field operator is given by

Γ α ,β
2 ( f ,g)(x) = 2(1− x2)2 d2 f

dx2 (x)
d2g
dx2 (x)

−2x(1− x2)
(d2 f

dx2 (x)
dg
dx

(x)+
d f
dx

(x)
d2g
dx2 (x)

)

+
(
(1− x2)(2α +2β +3)

−2x(β −α +1− (α +β +2)x
)d f

dx
(x)

dg
dx

(x).
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The operator semigroup associated with the Jacobi polynomials can be defined,
in R, for positive or bounded measurable Borel functions of (−1,1), as

T α ,β
t f (x) =

∫ 1

−1
pα ,β (t,x,y) f (y)μα ,β (dy), (2.83)

where

pα ,β (t,x,y) = ∑
k

1

ĥk
(α ,β ) P(α ,β )

k (x)P(α ,β )
k (y)e−k(k+α+β+1)t , x,y ∈ [−1,1],

t > 0 and

ĥk
(α ,β )

=
1

(2k+α +β +1)
Γ (α +β +2)Γ (k+α +1)Γ (k+β +1)

Γ (α +1)Γ (β +1)Γ (k+1)Γ (k+α +β +1)
.

Different from the cases of the Hermite or Laguerre polynomials, the kernel
pα ,β (t,x,y) does not correspond to the kernel of Abel summability for the Jacobi

series because the eigenvalues λ α ,β
n are not n, but n(n+α +β ), i.e., they are not

linearly distributed. W.N. Bailey obtained the following representation for the
kernel of Abel summability for the Jacobi series, also called the Jacobi–Poisson
integral,

∑
k

1

ĥk
(α ,β ) P(α ,β )

k (cosθ)P(α ,β )
k (cosφ)rk

=
Γ (α +β +2)

2α+β+1Γ (α +1)Γ (β +1)

1− r

(1+ r)α+β+2

×F4

(α +β +2
2

,
α +β +3

2
;α +1,β +1;

(2sin(θ/2)sin(φ/2)

r1/2 + r−1/2

)2
,
(2cos(θ/2)cos(φ/2)

r1/2 + r−1/2

)2)
,

|r| < 1 and α,β > 1, and F4 is Appell’s hypergeometric function of two vari-
ables,

F4(a1,a2;b1,b2;x,y) =
∞

∑
m,n=0

(a1)m+n(a2)m+n

(b1)m(b2)nm!n!
xmyn,

where (a)k is the Pochhammer symbol, (a)k = a(a+1) · · ·(a+ k−1). This for-
mula was first stated in 1935 without proof in Bailey’s tract [15]. The proof is a
consequence of Watson’s formula for hypergeometric functions (see [290]), and
was published later in [16].
An explicit representation of pα ,β (t,x,y) was obtained by G. Gasper in 1973
[99, 100], which is an analog of Bailey’s formula
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pα ,β (t,x,y) = ∑
k

1

ĥk
(α ,β ) P(α ,β )

k (x)P(α ,β )
k (y)(λ α ,β

n )k

=
Γ (α +β +2)

2α+β+1Γ (α +1)Γ (β +1)

∞

∑
n,m=0

(
α+β+3

2

)
m+n

(
α+β+2

2

)
m+n

m!n!(α +1)m(β +1)n

×[(1− x)(1− y)]m[(1+ x)(1+ y)]n

×
∞

∑
k=0

(−1)m
(2m+2n+α +β +1)k

(
m+n+ α+β+3

2

)
k

k!
(

m+n+ α+β+1
2

)
k

e−tλm+n+k .

Additionally, in [217], A. Nowak, P. Sjögren, and T. Z. Szarek obtained an
integral representation for pα ,β (t,x,y) valid for all admissible-type parameters
α,β > −1. Finally, in [215, Theorem A], A. Nowak and P. Sjögren, without
using an explicit form of pα ,β (t,x,y), obtained sharp estimates of it, giving the
order of magnitude for α,β ≥ −1/2. Previously, only its non-negativity had
been proved (see [11, Chapter 2]).

{T α ,β
t }t≥0 is called the Jacobi semigroup, or Jacobi heat semigroup, in R, and

it can be proved that it is a Markov semigroup (see [213, 214] and references
therein). The generalization of the Jacobi operator and the Jacobi semigroup in
R

d is straightforward according to the tensorization argument (see [20, 284]).

Additionally, the Jacobi operator satisfies a Sobolev inequality, which implies
that it satisfies a tight logarithmic Sobolev inequality; therefore, the Jacobi semi-
group {T α ,β

t }t≥0 is hypercontractive, with contraction function

q(t) = 1+(q(0)−1)e4t/C

(for details see Bakry’s paper [18, page 33–34], [20, 19], or [284]). Moreover,
as a consequence of the asymptotic relations among the Jacobi polynomials and
the Hermite and Laguerre polynomials (see [262], (5.3.4) and (5.6.3)), from the
Sobolev inequality for the Jacobi operator we can obtain the logarithmic Sobolev
inequality for the Ornstein–Uhlenbeck and Laguerre operators; see [20, 284].

12. As has been already mentioned, in the Jacobi setting, because of the non-
linearity in n of the eigenvalues λ α+β

n = n(n+α +β +1), the Jacobi semigroup
does not coincide with the Abel summability for Jacobi expansions, which is
an important difference compared with the Hermite and Laguerre cases. The
Abel summability for the Jacobi expansions has been studied extensively in the
literature (see for instance [41, 46] and [47] and the references therein).

13. For α >−1, consider the one-dimensional Laguerre differential operator

L α =−x
d2

dx2 − (α +1− x)
d
dx

. (2.84)
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The Laguerre polynomials {Lα
n } can be defined as orthogonal polynomials as-

sociated with the Gamma measure on (0,∞),

μα(dx) = χ(0,∞)(x)
xα e−x

Γ (α +1)
dx, (2.85)

and they are eigenfunctions of L α with corresponding eigenvalues λk = k. Ob-
serve that if we choose δα =

√
x d

dx , and consider its formal L2(α)-adjoint,

δ ∗
α =−

√
x

d
dx

+
[α +1/2√

x
+
√

x
]
I

then L α = δ ∗
α δα . The differential operator δα is considered the natural notion

of derivative in the Laguerre case.

The operator semigroup associated with the Laguerre polynomials can be de-
fined for positive or bounded measurable Borel functions of (0,∞), as

T α
t f (x) =

∫ ∞

0
pα(t,x,y) f (y)μα(dy), (2.86)

where, according to the Hille–Hardy formula (10.35),

pα(t,x,y) = ∑
k

Γ (α +1)k!
Γ (k+α +1)

Lα
k (x)L

α
k (y)e

−kt

=
1

1− e−t e−
(x+y)e−t

1−e−t (−xye−t)−α/2Iα

(2
√

xye−t

1− e−t

)
,

where Iα(x) is the modified Bessel function of the first kind of order α . This
identity was found in 1926 by E. Hille [135] and independently rediscovered by
G.H. Hardy [130] (see also G.N. Watson [291]).

In this case, the square field operator is given by

Γ α( f ,g)(x) =
1
2

[
x

d2( f g)
dx2 (x)+(α+1−x)

d( f g)
dx

(x)−x f (x)
d2g
dx2 (x)

−(α +1−x) f (x)
dg
dx

(x)−xg(x)
d2 f
dx2 (x)−(α+1−x)g(x)

d f
dx

(x)
]

= x
d f
dx

(x)
dg
dx

(x),

and

Γ α( f )(x) = Γ α( f , f )(x) = x
(d f

dx
(x)

)2
. (2.87)
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Moreover, the iterated square field operator is given by

Γ α
2 ( f ,g)(x) =

1
2

[
x

d2 f
dx2 (x)

dg
dx

(x)+ x
d f
dx

(x)
d2g
dx2 (x)+2x2 d2 f

dx2 (x)
d2g
dx2 (x)

+(α +1+ x)
d f
dx

(x)
dg
dx

(x)
]
. (2.88)

{T α
t }t≥0 is called the Laguerre semigroup, or Laguerre heat semigroup. It can

be proved that it is a Markov semigroup (see [208] and [193] and the refer-
ences therein). The generalization of the Laguerre operator and the Laguerre
semigroup in R

d is straightforward according to the tensorization argument (see
[20, 284]). Here, again, the semigroup {T α

t } coincides with the Abel summabil-
ity for Laguerre expansions.

Moreover, the Laguerre operator satisfies a tight logarithmic Sobolev inequal-
ity; therefore, the Laguerre semigroup {T α

t } is hypercontractive, see [20, 284].
The hypercontractivity of the Laguerre semigroup was initially proved by A.
Korzeniowski and D. Stroock in [152].

14. The fact that the Jacobi and Laguerre semigroups are hypercontractive allows us
to obtain similar applications to those obtained in Section 2.4 for the Ornstein–
Uhlenbeck semigroup (see for instance [24, 25, 117, 284], and the references
therein).

15. Additionally, an operator semigroup can be defined for the generalized Hermite
polynomials {Hμ

n }, which, as we know, are eigenfunctions of the operator

Lμ =
1
2

d2

dx2 +
(μ

x
− x

) d
dx

−μ
I − Ĩ
2x2 .

Using Mehler’s formula (10.46), this semigroup can be written as

T μ
t f (x) =

∫ ∞

−∞
pμ(t,x,y) f (y)|y|2μ e−|y|2dy, (2.89)

where

pμ(t,x,y) =
1

(1− e−2t)μ+1/2
e
− e−2t (x2+y2)

1−e−2t eμ

(
2xye−t

1− e−2t

)
,

for f a positive or bounded measurable function on (−∞,∞).{
T μ

t

}
t≥0 is called the generalized Ornstein–Uhlenbeck semigroup, and it is easy

to see that it is also a Markov semigroup with generator Lμ ; see [20].

The weak type (1,1) inequality, in addition to its Lp-boundedness for p > 1,
with respect to the measure λ of the maximal operator associated with this semi-
group, was proved in [30]. Those results were extended to higher dimensions in
[92]. Further research into this semigroup and the operators associated with it
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are particular cases of a more general theory for the Dunkl Ornstein–Uhlenbeck
operator (see [212]).

16. For the Hermite, Laguerre, and Jacobi functions in analogous form as above, we
can define operator semigroups, usually called heat diffusion semigroups (see
for instance [270, 259] and the references therein).

17. An unexpected application of the hypercontractivity property of the Ornstein–
Uhlenbeck semigroup has been found in several works on non-linear partial
differential equations of evolution type (see for instance N. Tzvetkov [277]).

18. The boundedness of the Ornstein–Uhlenbeck semigroup on variable Lp(·) Gaus-
sian spaces has been studied in [192] by J. Moreno, E. Pineda, and W. Urbina.
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