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Preliminary Results: The Gaussian Measure and
Hermite Polynomials

In this chapter we study the Gaussian measure in R
d for d ≥ 1 and several of its

properties. Then, we study the problem of the Gaussian measure for balls in R
d ,

which is crucial in Chapter 4 for studying the associated covering lemmas for that
measure. For completeness, we consider Hermite polynomials, which are orthogonal
polynomials, with respect to the Gaussian measure, and discuss in detail most of their
properties. The interested reader will find the properties and identities of all classical
orthogonal polynomials listed in the appendix.

1.1 The Gaussian Measure

The Gaussian measure in R is given by1

γ1(dx) =
1√
π

e−x2
dx, (1.1)

where e−x2
is called the Gaussian weight.

The fact that γ1 is a probability measure is based on the following famous com-
putation; using polar coordinates and Fubini’s theorem,

(∫

R

e−x2
dx
)2

=
∫

R

e−x2
dx

∫

R

e−y2
dy =

∫

R

∫

R

e−x2−y2
dx dy

=
∫ 2π

0

∫ ∞

0
e−r2

r dr dθ = 2π
(
− 1

2
e−r2

)∣∣∣
∞

0
= π.

1In probability theory, it is usual to consider the standard Gaussian probability, defined as
1√
2π

e−x2/2dx. Nevertheless, in the context of the theory of orthogonal polynomials, it is more

common to use (1.1) and we are going to follow that normalization (see [262]). The formulas
differ only by constants.
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The Fourier transform of γ1 (characteristic function in probability terminology) is
given by

γ̂1(ξ ) =
∫

R

e−iξ yγ1(dy) =
∫

R

e−iξ y e−y2

√
π

dy

=
e−ξ 2/4
√

π

∫

R

e−(y+iξ/2)2
dy =

e−ξ 2/4
√

π

∫

R

e−y2
dy = e−ξ 2/4; (1.2)

thus, the Gaussian measure is ‘essentially’ (up to a constant) its own Fourier trans-
form. Moreover, that integral is uniformly convergent in any disk D = {x : |x| ≤
r}, r > 0 and is bounded in that region. Therefore, according to the dominated con-
vergence theorem, we can differentiate an arbitrary number of times, obtaining,

dn

dxn e−x2
=

(−2i)n
√

π

∫

R

e−y2
yne−2ixy dy. (1.3)

The Gaussian distribution function Φ is defined as

Φ(x) =
1√
π

∫ x

−∞
e−y2

dy. (1.4)

In other words, Φ is just the cumulative distribution function of the measure γ1. It is
well known that, unfortunately, there is not a closed form of it. An important estimate
of the rate of decrease of the function 1−Φ can be obtained simply using integration
by parts, for x > 0,

1
2
√

π

(1
x
− 1

2x3

)
e−x2 ≤ 1−Φ(x)≤ 1

2
√

πx
e−x2

. (1.5)

The Gaussian measure in R
d is defined as the product measure

γd(dx) =
1

πd/2
e−|x|2dx =

1√
π

e−x2
1 dx1 ⊗ 1√

π
e−x2

2 dx2 ⊗·· ·⊗ 1√
π

e−x2
d dxd . (1.6)

Being a product of probability measures, it is clear that γd is a probability mea-
sure in R

d . On the other hand, γd is radially symmetric. There is likely no other
non-trivial probability measure that satisfies both properties. From the fact that the
Gaussian measure in R

d is a product measure, a technique called tensorization has
been developed, which consists in obtaining d-dimensional estimates from those of
the one-dimensional estimate.

It is clear that the Gaussian measure is highly concentrated near the origin and
decays exponentially at infinity, for all d ≥ 1. That behavior is very far from the in-
variance by translation of the Lebesgue measure; therefore, there is a big difference
between it and the Lebesgue measure. For instance, any argument in classical anal-
ysis that uses the translation invariant property of the Lebesgue measure is totally
useless in the Gaussian case. On the other hand, the Gaussian measure is invariant
by rotation, so we can take advantage of that property.
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Finally, even though in probability theory the Gaussian measures form a whole
family of probability measures (with different means and variances), γd is the only
Gaussian measure considered in this book.2

1.2 Estimates for the Gaussian Measure of Balls in R
d and the

Doubling Condition

We need to estimate the Gaussian measure of balls in R
d to obtain covering lemmas

and other estimates, for instance, but this is not trivial at all, because, as we have
already said, the Gaussian measure is a probability measure, highly concentrated
around the origin, with exponential decay at infinity, invariant by rotation around the
origin, and not translation invariant.

First, we consider a partition P of R, obtained by B. Muckenhoupt, in [194]
Lemma 2, because in such a partition there is a seminal idea about how to measure
balls (or cubes) using the Gaussian measure.

• First, divide the interval [0,2] into the subintervals [0,1] and [1,2] of length one.
• Then, for n ≥ 1, divide the interval [2n,2n+1), into 2n+1 intervals of length 2−n.
• Finally, consider the mirror images of these intervals for the interval (−∞,0].

Then, the elements of the partition in the complement of [−2,2] are of the form
Ik,n = [ k

2n ,
k+1
2n ), where n ≥ 1 and k are integers such that 22n ≤ |k|< 22n+1.

Proposition 1.1. The partition

P= {[−2,−1], [−1,0], [0,1], [1,2]}∪{Ik,n : n ≥ 1, 22n ≤ |k| ≤ 22n+1} (1.7)

satisfies the following properties:

i) Any compact subset of R intersects only a finite number of the intervals of the
partition P.

ii) An interval in the partition is no more than twice as long as the adjacent inter-
vals. Furthermore, for any I ∈ P, if x ∈ I, then 1∧ 1

|x| = min{1, 1
|x| } is not greater

than the length of the interval.
iii) Finally, there exists a constant C, independent of n and k such that

supx∈Ik,n
e−x2

infx∈Ik,n e−x2 ≤C.

Proof.

i) Immediate, because any compact set is bounded.

2For more details on Gaussian measures, see for example the book by V. I. Bogachev ([33,
Chapter 1]).
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ii) That an interval in the partition is no more than twice as long as the adjacent
intervals is clear by construction. Now, if |x| ≤ 1, then3

1∧ 1
|x| = 1 = |[0,1]|.

If |x| > 1, then for the case x ∈ [1,2], 1∧ 1
|x| =

1
|x| < 1 = |[1,2]|. The case x ∈

[−2,−1] is totally analogous. Now, assuming that x∈ Ik,n = [ k
2n ,

k+1
2n ],n≥ 1 then,

1∧ 1
|x| =

1
|x| and

|Ik,n|= 1
2n =

2n

22n ≥ 2n

k
≥ 1

|x| .
Moreover,

|Ik,n|= 1
2n =

2
2n+1 ≤ 2

2n−1

22n ≤ 2
2n−1

k+1
≤ 2

|x| .
iii) By symmetry, let us consider only intervals in [0,∞). For the first two intervals

[0,1] and [1,2], e−y2
varies by a factor of e−1. Now, if x ≥ 2, assuming x ∈ Ik,n =

[ k
2n ,

k+1
2n ], then, as e−x2

is a decreasing function,

supx∈Ik,n
e−x2

infx∈Ik,n e−x2 = e
(k+1)2−k2

22n = e
2k+1
22n ≤ e

22n+2+1
22n ≤ e4+ 1

22n ≤ e5,

hence, the inequality holds with C = e5. 	


Observe that iii) shows a very important characteristic of this partition: the
Gaussian weight e−x2

is essentially constant at each interval in the partition P. Thus,
the exponential decay is controlled; therefore, at each interval of P, the Gaussian
measure is equivalent to the Lebesgue measure. Then, usual estimates using the
Lebesgue measure can be made, at least locally, instead of working with the Gaus-
sian measure. This technique was used initially by B. Muckenhoupt to obtain certain
estimates for singular operators with respect to the Gaussian measure. This idea,
as we are going to see later, is the key to a technique that consists in defining a
local region and then splitting operators into a local and a global part. This will be
discussed in more depth later, in Chapter 4.

We can obtain a partition of R
d of d-dimensional rectangles having the same

properties listed in Lemma 1.1 simply by considering Cartesian products of par-
titions Pi in each variable xi as before. This partition can be refined, splitting the
rectangles into cubes. A similar partition of R

d was considered by P. Sjögren in
[247]. Also, a similar idea is considered in the work of J. Mass, J. Van Neerven, and
P. Portal in [169] on Whitney decomposition. This is discussed in detail in Chapter 4
as well.

The Gaussian measure of any ball B(x,r) in R
d can be easily estimated, depend-

ing of the center of the ball, by using polar coordinates.

3Here we are using the convention that 1∧ 1
0 = 1.
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Lemma 1.2. Let r > 0, and d ≥ 2.

i) The Gaussian measure of a ball in R
d centered at the origin, B(0,r), is bounded

above by

γd(B(0,r))≤ ωd−1

2πd/2
rd . (1.8)

ii) For any x ∈ R
d ,

γd(B(x,r))≤ ωd−1

2πd/2
rde2r|x|e−|x|2 , (1.9)

where ωd−1 is the (surface) measure of the unit (hyper)-sphere Sd−1 in R
d.

Proof.

i) Using polar coordinates, y = ρξ , for ρ > 0, and ξ ∈ Sd−1, i.e., |y| = ρ |ξ | = ρ ,
we have

γd(B(0,r)) =
∫

B(0,r)

e−|y|2

πd/2
dy =

∫

Sd−1

∫ r

0

e−ρ2

πd/2
ρd−1dρdσ

≤ ωd−1

2πd/2
rd−2

∫ r

0
e−ρ2

2ρdρ =
ωd−1

2πd/2
rd−2(1− e−r2

)≤ ωd−1

2πd/2
rd ,

as 1− e−t ≤ t, for any t ≥ 0.
ii) For any x ∈ R

d , as |y|2 ≤ ((y− x)+ x)2 = |y− x|2 +2〈x,y− x〉+ |x|2,

γd(B(x,r)) =
∫

B(x,r)

e−|y|2

πd/2
dy =

e−|x|2

πd/2

∫

B(x,r)
e−|y−x|2e−2〈x,y−x〉 dy

≤ e−|x|2

πd/2

∫

B(x,r)
e−|y−x|2e2|x||y−x| dy

≤ e−|x|2

πd/2
e2r|x|

∫

B(x,r)
e−|y−x|2 dy =

e−|x|2

πd/2
e2r|x|

∫

B(0,r)
e−|y|2 dy

≤ ωd−1

2πd/2
rde2r|x|e−|x|2 . 	


To extend the idea in Proposition 1.1 to higher dimensions, we define a family of
admissible balls.

Definition 1.3. The family of admissible balls4 in R
d, with parameter a,b > 0, is

defined as

Ba,b =
{

B(x,r) : x ∈ R
d , 0 < r < a∧ b

|x|
}
. (1.10)

4Admissible balls are sometimes also called hyperbolic balls.
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In particular, if a = b, the family of admissible balls with parameter a is defined as

Ba =
{

B(x,r) : x ∈ R
d , 0 < r < a

(
1∧ 1

|x|
)}

= {B(x,r) : x ∈ R
d , 0 < r < am(x)}, (1.11)

where

m(x) = 1∧ 1
|x| . (1.12)

m(x) is called the admissibility function.

Observe that, trivially, m(x) ≤ 1 and m(x) ≤ 1
|x| . Observe also that admissible

balls need to be very small when their center is far from the origin.
For admissible balls in Ba,b the Gaussian weight e−|y|2 is essentially constant.

More precisely, we have the following estimates:

Lemma 1.4. For a,b > 0, if |x− y|< a∧ b
|x| , then

e−a2
e−2be−|x|2 ≤ e−|y|2 ≤ e2be−|x|2 . (1.13)

Therefore, for admissible balls, B = B(x,r) ∈Ba,b, their Gaussian measures can be
estimated as:

γd(B) =
1

πd/2

∫

B
e−|y|2dy ∼Cde−|x|2

(
a∧ b

|x|
)d

. (1.14)

In particular, for a > 0, if |x− y|< a
(

1∧ 1
|x|
)
= am(x), then

e−a2
e−2ae−|x|2 ≤ e−|y|2 ≤ e2ae−|x|2 ; (1.15)

therefore, if B = B(x,r) ∈Ba,

γd(B) =
1

πd/2

∫

B
e−|y|2dy ∼Cde−|x|2ad

(
1∧ 1

|x|
)d

=Cde−|x|2adm(x)d . (1.16)

Thus, for admissible balls, their Gaussian measure is essentially a multiple
(which depends on the center) of their Lebesgue measure.

Proof. Simply by triangle inequality,

e−|y|2 = e−|x−(x−y)|2 ≤ e−|x|2e2|x||x−y|e−|x−y|2 ≤ e2be−|x|2 ,

and

e−|y|2 = e−|x+(y−x)|2 ≥ e−|x|2e−2|x||y−x|e−|y−x|2 ≥ e−a2
e−2be−|x|2 . 	


On the other hand, J. Maas, J. van Neerven, and P. Portal [169] obtained the
following lemma, using an idea similar to the one contained in Lemma 1.4.
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Lemma 1.5. Let a,A > 0 be given.

i) If |x− y|< At and t ≤ am(x), then t ≤ a(1+aA)m(y).
ii) If |x− y|< Am(x), then m(x)≤ (1+A)m(y) and m(y)≤ 2(1+A)m(x).

Proof.

i) We have three cases:
• If |y| ≤ 1, then m(y) = 1, and

t ≤ am(x)≤ a = am(y)≤ a(1+aA)m(y).

• If 1 < |y| ≤ 1+aA, then m(y)≥ 1/(1+aA) and

t ≤ am(x)≤ a ≤ a(1+aA)m(y).

• If |y|> 1+aA > 1, then m(y) = 1
|y| and

t ≤ am(x)≤ a
|x| ≤

a
|y|−At

≤ a
|y|−aA

≤ a(1+aA)
|y| = a(1+aA)m(y).

ii) Put t ′ = m(x). Then |x− y| < At ′; therefore, we can apply i) with a = 1 to get
that t ′ ≤ (1+A)m(y). This gives the first estimate. To obtain the second one we
consider three cases:
• If |x| ≤ 1, then 2(1+A)m(x)≥ 1 ≥ m(y).
• If |1 ≤ |x| ≤ 2A, (i.e., A ≥ 1/2) then

2(1+A)m(x)≥ 2(1+A)
2A

≥ 1 ≥ m(y).

• If |x| ≥ 1 and |x| ≥ 2A, then |y| ≥ |x|− A
|x| ≥ |x|− 1

2 ≥ |x|
2 ; thus,

m(y)≤ 2m(x)≤ 2(1+A)m(x). 	

Part i) of Lemma 1.5 says, among other things, that if we have B(x,r) ∈Ba and

if |x− y|< Ar, then B(y,r) ∈Bc for some constant c = ca,A, which depends only on
a and A. Additionally, using part ii), we get the following estimate, similar to (1.13):
if |x− y|< am(x),

e−a2
e−2ae−|x|2 ≤ e−|y|2 ≤ ea2(1+a)2

e2a(1+a)e−|x|2 , (1.17)

because, as |x|m(x)≤ 1, we have

|y|2 ≤ (|x|+ |x− y|)2 ≤ (|x|+am(x))2 ≤ |x|2 +2a+a2,

and, as m(x)≤ (1+a)m(y),

|x|2 ≤ (|y|+ |x− y|)2 ≤ (|y|+am(x))2

≤ (|y|+a(1+a)m(y))2 ≤ |y|2 +2a(1+a)+a2(1+a)2
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(see J. Teuwen [265, Lemma 2], see also G. Mauceri, S. Meda [174, Lemma 2.1
i)]).

The main results of classical harmonic analysis in R
d , which are done with re-

spect to the Lebesgue measure, were later extended for other classes of measures.
The initial and probably the most important one is the class of doubling measures.
Recall that a Borel measure μ in R

d is a doubling measure if a constant C > 0 exists,
depending only on the dimension d, such that

μ(B(x,2r))≤Cμ(B(x,r)), (1.18)

for any x ∈ R
d and r > 0.

The meaning of this condition is that the mass that μ gives to the annulus 2B\B
is controlled by a constant times the mass of B. The opposite of that means that
μ(B) is much less than μ(2B\B), and therefore that μ rarefies at B. All the classical
notions of harmonic analysis can be extended almost immediately to doubling mea-
sures (see for instance [254] or [275]).

As the Gaussian measure γd is a probability measure, it is not a doubling measure,
for more details see Appendix 10.3. Thus, there is no constant C > 0, independent of
x ∈ R

d , and r > 0 such that

γd(B(x,2r))≤Cγd(B(x,r)),

for all x ∈ R
d and r > 0, i.e., the doubling condition does not hold for all possible

balls in R
d . Therefore the classical results of harmonic analysis cannot be extended

directly to the case of Gaussian harmonic analysis. Nevertheless, G. Mauceri and S.
Meda in a seminal paper [174] observed that if we control the radius appropriately,
the Gaussian measure is doubling; more precisely, the Gaussian measure is doubling
if we restrict it to the family of admissible balls Ba. Thus, we can adapt the classical
arguments, at least in some regions. The doubling condition for the Gaussian mea-
sure is therefore a local condition, and is a contained in the following result (see G.
Mauceri and S. Meda’s paper [174, Proposition 2.1]).

Theorem 1.6. Let a,τ > 0. For each ball B = B(cB,rB) ∈ Ba, consider the set B∗
τ

which is the union of all balls B′ = B(cB′ ,rB′), which intersects B and such that
rB′ ≤ τrB, then the following inequalities hold.

i) If σ∗
a,τ = supB∈Ba

γd(B
∗
τ )

γd(B)
then

σ∗
a,τ ≤ (2τ +1)de4a(2τ+1)+a2(2τ+1)2

. (1.19)

ii) (Doubling property) There exists a constant C = Ca,τ ,d > 1 depending only on
a,τ and the dimension d, such that for any ball B′ = B(xB′ ,rB′) having a non-
empty intersection with B and such that rB′ ≤ τrB, then

γd(B
′)≤Cγd(B).
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In particular, this implies that there exists a constant C = Cd > 1 such that for
all τ > 1 and all B = B(xB,rB) ∈Ba

γd(B(xB,τrB))≤Cγd(B(xB,rB)). (1.20)

Proof.

i) First of all, observe that B∗
τ ⊂ B(cB,(2τ +1)rB) ∈B(2τ+1)a and therefore, using

both sides of inequality (1.15) with the parameter (2τ +1)a, we get

γd(B
∗
τ) =

1

πd/2

∫

B∗
τ

e−|y|2dy ≤ 1

πd/2
e2(2τ+1)ae−|cB|2 |B∗

τ |

≤ 1

πd/2
e2(2τ+1)ae−|cB|2 |B(cB,(2τ +1)rB)|

=
1

πd/2
e2(2τ+1)ae−|cB|2(2τ +1)d |B(cB,rB)|,

and

γd(B)≥ 1

πd/2
e−(2τ+1)2a2

e−2(2τ+1)ae−|cB|2 |B(cB,rB)|.

Thus,
σ∗

a,τ ≤ (2τ +1)de4a(2τ+1)+a2(2τ+1)2
.

ii) As B′ is one of the terms in the union that forms B∗
τ then ii) follows immediately

from i) as

γd(B
′) ≤ γd(B

∗
τ) =

γd(B∗
τ)

γd(B)
γd(B)≤ σ∗

a,τ γd(B)

≤ (2τ +1)de4a(2τ+1)+a2(2τ+1)2
γd(B) =Cγd(B),

with C = (2τ +1)de4a(2τ+1)+a2(2τ+1)2
. This estimate of C could be improved as

B′ ⊂ B(cB,(2τ + 1)rB), using inequality (1.15) with the parameter (2τ + 1)a.
	

J. Maas, J. van Neerven, and P. Portal proved, in [168], that there is also a family

of cubes in R
d such that the Gaussian measure is a doubling measure on them (see

Lemma 1.17).

Observe that, because the Gaussian measure is not a doubling measure, the mea-
sure space (Rd , | · |,γd) is not a space of homogeneous type; thus, there is no overlap
between Gaussian harmonic analysis and harmonic analysis of spaces of homoge-
neous type.
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Moreover, the Gaussian measure is trivially a d-dimensional measure5 in R
d ,

because, for any x ∈ R
d , and r > 0,

γd(B(x,r)) =
1

πd/2

∫

B(x,r)
e−|x|2dx ≤ 1

πd/2
|B(x,r)|=Cdrd .

As we have mentioned before, classical harmonic analysis, which was extended
initially to doubling measures, has been extended to the case of s-dimensional mea-
sures (see, for instance, Tolsa [274]). Nevertheless, Gaussian harmonic analysis is
not part of that theory because, as was mentioned before, there is another component
of it, which is the Ornstein–Uhlenbeck and associated operators.

Going back to the problem of the Gaussian measure of balls, we can still get an
estimate for the Gaussian measure of non-admissible balls if they do not contain the
origin. That estimate was obtained by L. Forzani in [83], but in this case the estimate
does not depend upon the center of the ball but rather on the closest point to the
origin.

Proposition 1.7. (Forzani) Let B a ball in R
d, with radius r > 0, which does not

contain the origin, and let x0 denote the point of B whose distance to the origin is
minimal, i.e., d(B,0) = |x0|. Then, there exists a constant Cd > 0, depending only on
the dimension d, such that

γd(B)≤Cd
e−|x0|2

|x0|
( r
|x0|

)(d−1)/2
. (1.21)

Moreover, if rB > C
|x0| , C > 1, the opposite inequality is also true; therefore,

γd(B)∼Cd
e−|x0|2

|x0|
( r
|x0|

)(d−1)/2
. (1.22)

Proof. Let us write B = B(x,r). It is enough to consider that |x0|> 1 because other-
wise a constant would do a better job than the estimate. Consider Π0 the hyperplane
orthogonal to x0 whose distance to the origin is precisely |x0|, that is,

Π0 = {x ∈ R
d : 〈x,x0〉= |x0|2},

and consider the hyperspace Π+
0 = {x ∈R

d : 〈x,x0〉> |x0|2}. Then, any y ∈ Π+
0 can

be written as y = (ξ + |x0|) x0
|x0| +ν , with ξ > 0 and 〈ν ,x0〉= 0. In particular, we have

x = (r+ |x0|) x0
|x0| .

5A Borel measure is s-dimensional in R
d if it satisfies the following growth condition:

μ(B(x,r))≤Crs,

for some constant C and for all x ∈ R
d , and r > 0.
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Observe that y ∈ B if and only if ξ ∈ (0,2r) and |v| <
√

2rξ −ξ 2, because
maxy∈B |y|= 2r+ |x0|, and according to the Pythagorean theorem,

|y− x|2 = |(ξ + |x0|) x0

|x0| +ν − (r+ |x0|) x0

|x0| |
2 = |(ξ − r)

x0

|x0| +ν |2

= (ξ − r)2 + |ν |2 = ξ 2 −2ξ r+ r2 + |ν |2 < r2.

Then, we have

γd(B) =
1

πd/2

∫

B
e−|y|2dy

= Cde−|x0|2
∫ 2r

0
e−2ξ |x0| e−ξ 2

(∫

{v∈Rd−1: |ν |<
√

2rξ−ξ 2}
e−|v|2 dv

)
dξ

≤ Cde−|x0|2
∫ 2r

0
e−2ξ |x0| (2rξ −ξ 2)(d−1)/2 dξ

≤ Cde−|x0|2r(d−1)/2
∫ 2r

0
e−2ξ |x0|(2ξ )(d−1)/2dξ

≤ Cd
e−|x0|2

|x0|
( r
|x0|

)(d−1)/2 ∫ 4r|x0|

0
e−t t(d−1)/2dt ≤Cd

e−|x0|2

|x0|
( r
|x0|

)(d−1)/2
.

Now, if r > C
|x0| ,C > 1, let us define

R(x0,r) =
{

y = (ξ + |x0|) x0

|x0| + v : ξ ∈
[ 1

2|x0| ,
1
|x0|

]
,〈v,x0〉= 0, |v|< 1

2

√
r

|x0|
}
.

We will prove that R(x0,r) ⊂ B. Given y ∈ R(x0,r) it is enough to prove that if ξ ∈
[ 1

2|x0| ,
1
|x0| ] then 2rξ −ξ 2 > r

4|x0| because, in that case,

√
2rξ −ξ 2 >

1
2

√
r

|x0| > |ν |.

Observe that the expression 2rξ − ξ 2, as a function of ξ , in the interval
[

1
2|x0| ,

1
|x0|

]

attains its minimum at 1
2|x0| , and as 1

|x0| <
r
C < r, we get

2rξ −ξ 2 ≥ r
|x0| −

1
2|x0|2 >

r
4|x0| ,

and, clearly, ξ ∈ (0,2r). Now, if y ∈ R(x0,r)

|y|2 = ξ 2 +2ξ |x0|+ |x0|2 + |v|2 < 1
|x0|2 +2+ |x0|2 + r

4|x0| < |x0|2 +C̃.

Hence, e−|y|2 ≥ e−C̃e−|x0|2 and therefore

γd(B)≥ γd(R(x0,r)) =
1

πd/2

∫

R(x0,r)
e−|y|2dy ≥ e−C̃ e−|x0|2

|x0|
( r
|x0|

)(d−1)/2
. 	
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Another version of inequality (1.21) (see [83, Lemma 4.3]) is the following.
There exists a constant C depending on d such that for all x ∈ R

d \{0}, r ∈ (1/2,1)
and s ∈ (0,1/2) the following inequality holds:

γd

(
B

(
x
r
,
|x|
r

s

))
≤C s(d−1)/2 exp

(
−|x|2

r2 (1− s)2
)

1
|x| . (1.23)

This follows immediately from (1.21) taking |x|
r s as the radius, and then x0 =

x
r − x

r s = x
r (1− s).

As we see in Chapter 4, Lemma 4.16, a similar estimate, can be used to prove the
Lp(γd) boundedness, 1 < p < ∞, for the non-centered Hardy–Littlewood maximal
function with respect to the Gaussian measure, obtained in [90]. Moreover, we see
in Chapter 4 how these estimates of the Gaussian measure of balls are important in
the proof of some covering lemmas.

1.3 Hermite Polynomials

Hermite Polynomials in One Variable

For completeness, we study in detail the Hermite polynomials.. Additionally, in
Appendix B, we list the properties for all classical orthogonal polynomials. The
standard reference in orthogonal polynomial theory is G. Szegő [262].

The Hermite polynomials in R, {Hn}n≥0, can be defined (up to a multiplicative
constant) as the orthogonal polynomials associated with the Gaussian measure γ1.
Therefore, they are obtained from the canonical polynomial (monomials) base

{1,x,x2, · · · ,xn, · · ·}

by using the Gram–Schmidt method, with respect to the inner product in L2(γ1)
6 (see

G. Szegő [262] and E. Hille [134]). Thus, if m �= n

∫ +∞

−∞
Hm(x) Hn(x) dγ1(x) = 0. (1.24)

The Gram–Schmidt method determines the polynomials up to a constant; thus, for
normalization we set ∫ +∞

−∞
[Hn(x)]

2 dγ1(x) = 2nn!. (1.25)

6In probability theory, another family of Hermite polynomials is used, which is orthogonal
with respect to the standard Gaussian measure 1√

2π
e−x2/2dx.



1.3 Hermite Polynomials 13

Observe that by using the Gram–Schmidt method, given n ∈ N,
∫ +∞

−∞
P(x) Hn(x) dγ1(x) = 0, (1.26)

for any polynomial P such that deg(P)≤ n−1.

Even though this definition is probably the most straightforward, it is not the eas-
iest to handle as it gives us a recursive formula for Hn, but not an explicit expression.

Alternatively, the Hermite polynomials can be defined using Rodrigues’ formula:

H0(x) = 1 (1.27)

and for n > 1

Hn(x) = (−1)nex2 dn

dxn (e
−x2

). (1.28)

One of the advantages of this definition is precisely that it is easy to get explicit
expressions of Hn, because the formula itself is not difficult to handle. Observe that
according to (1.28), we get the first polynomials easily.

H1(x) = (−1)1ex2 d
dx

(e−x2
) =−ex2

(−2x)e−x2
= 2x,

H2(x) = (−1)2ex2 d2

dx2 (e
−x2

) = ex2
(4x2 −2)e−x2

= 4x2 −2,

H3(x) = (−1)3ex2 d3

dx3 (e
−x2

) =−ex2
(−8x3 +12x)e−x2

= 8x3 −12x,

H4(x) = (−1)4ex2 d4

dx4 (e
−x2

) = ex2
(16x4 −48x2 +12)e−x2

= 16x4 −48x2 +12.

Then, we can prove, by induction, that

Hn(x) = n!
[n/2]

∑
k=0

(−1)k

k!
(2x)n−2k

(n−2k)!
. (1.29)

where [n/2] is the integer part of n/2, i.e., the largest integer not greater that n/2.
Nevertheless, we provide a simpler proof of this formula later, using the generating
function (see Proposition 1.9).

Also, from (1.3), using Rodrigues’ formula, we get the following integral repre-
sentation of Hn,

Hn(x) =
(−2i)nex2

√
π

∫

R

e2ixyyne−y2
dy. (1.30)

Let us prove that Rodrigues’ formula actually gives the same polynomials as those
obtained using the Gram–Schmidt method. To do so, we need to prove that those
polynomials are orthogonal with respect to the Gaussian measure, i.e., that they sat-
isfy (1.24) and to the normalization condition (1.25).
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First of all, observe that trivially, because H0(x) = 1,
∫ ∞

−∞
H0(y)γ1(dy) = 1,

as γ1 is a probability measure. Moreover, if n ≥ 1, we get

∫ +∞

−∞
Hn(x)H0(x) dγ1(x) =

∫ +∞

−∞
Hn(x) dγ1(x) = (−1)n

∫ +∞

−∞
ex2 dn

dxn (e
−x2

)
1√
π

e−x2
dx

=
(−1)n
√

π

∫ +∞

−∞

dn

dxn (e
−x2

) dx = 0,

simply by integrating by parts.
Now, we need to consider the case n,m ≥ 1, m �= n. Without loss of generality,

assume that n > m > 0. Then, using Rodrigues’ formula,

∫ +∞

−∞
Hm(x)Hn(x) dγ1(x) =

∫ +∞

−∞
Hm(x)(−1)nex2 dn

dxn (e
−x2

)
1√
π

e−x2
dx

=
(−1)n
√

π

∫ +∞

−∞
Hm(x)

dn

dxn (e
−x2

) dx

=
(−1)2n
√

π

∫ +∞

−∞

dn

dxn (Hm(x))e
−x2

dx = 0,

by integrating by parts n times, as n > m. For the case n = m, first observe that, from
the explicit expression of Hn (1.29),

H(n)
n (x) = 2nn!, (1.31)

then, integrating by parts n times

∫ +∞

−∞
[Hn(x)]

2 dγ1(x) = (−1)n
∫ +∞

−∞
[ex2 dn

dxn (e
−x2

)]Hn(x)
1√
π

e−x2
dx

=
(−1)n
√

π

∫ +∞

−∞

dn

dxn (e
−x2

)Hn(x)dx =
(−1)2n
√

π

∫ +∞

−∞

dnHn(x)
dxn e−x2

dx

=
1√
π

∫ +∞

−∞
2nn! e−x2

dx = 2nn!.

Hence, as we claimed, the Gram–Schmidt method and Rodrigues’ formula give rise
to the same family of orthogonal polynomials.

The Hermite polynomials have a simple generating function, as we see in the
following proposition.
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Proposition 1.8. The generating function7 of the Hermite polynomials is given by

G(x,y) = e2xy−y2
= e−(x−y)2+x2

, (1.32)

i.e., ∑∞
n=0

Hn(x)
n! yn = e2xy−y2

= e−(x−y)2+x2
.

Proof. Observe that from (1.30) and (1.2) we get

∞

∑
n=0

Hn(x)
n!

yn=
∞

∑
n=0

(−2i)nex2

n!
√

π

∫

R

e−r2
rne2ixr dr yn=

ex2

√
π

∫

R

e−r2
∞

∑
n=0

(−2iry)n

n!
e2ixr dr

=
ex2

√
π

∫

R

e−r2
e2i(x−y)r dr = ex2

e−(x−y)2
= e2xy−y2

= G(x,y). 	


Moreover, the Hermite polynomials are the only polynomials that satisfy that
relation; hence, they can also be defined using G(x,y) as follows:

Hn(x) =
∂ n

∂yn G(x,y)|y=0 =
∂ n

∂yn (e
2xy−y2

)|y=0 = e−(x−y)2+x2 |y=0. (1.33)

Hence, using (1.33) we may easily obtain the first five Hermite polynomials:

H0(x) = G(x,y)|y=0 = 1,

H1(x) =
∂
∂y

G(x,y)|y=0 = 2(x− y)G(x,y)|y=0 = 2x,

H2(x) =
∂ 2

∂y2 G(x,y)|y=0 = (4(x− y)2 −2)G(x,y)|y=0 = 4x2 −2

H3(x) =
∂ 3

∂y3 G(x,y)|y=0 = (8(x− y)3 −12(x− y))G(x,y)|y=0 = 8x3 −12x,

H4(x) =
∂ 4

∂y4 G(x,y)|y=0=(16(x−y)4−48(x−y)2+12)G(x,y)|y=0=16x4−48x2+12.

From Rodrigues’ formula we directly obtain (1.33):

Hn(x) = (−1)nex2 dn

dxn (e
−x2

) = (−1)nex2 ∂ n

∂xn (e
−(x−y)2

)|y=0

= ex2 ∂ n

∂yn (e
−(x−y)2

)|y=0 =
∂ n

∂yn (e
2xy−y2

)|y=0 =
∂ n

∂yn G(x,y)|y=0.

7The generating function of a family of orthogonal polynomials {Pn} is a function G(x,y)
such that {Pn(x)} are the coefficients of the Taylor expansion of G(·,y) around y = 0.
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Additionally, G(x,y) can be extended analytically as

G(x,z) = e2xz−z2
,

for x,z∈C. Then, from (1.33), using Cauchy’s integral formula, we get the following
integral representation of Hn,

Hn(x) =
∂ nG(x,z)

∂ zn

∣∣∣∣
z=0

=
n!

2πi

∮

C

G(x,ζ )
ζ n+1 dζ =

n!
2πi

∮

C

e2xζ−ζ 2

ζ n+1 dζ , (1.34)

where C is any curve around the origin.

Now, let us prove the following properties of Hermite polynomials.

Proposition 1.9. For any n ≥ 1, Hn(x) satisfies the following properties:

i) Recursive relation:

Hn+1(x)−2xHn(x)+2nHn−1(x) = 0. (1.35)

ii) Derivative:
H ′

n(x) = 2nHn−1(x). (1.36)

iii) Differential equation:

H ′′
n (x)−2xH ′

n(x)+2nHn(x) = 0. (1.37)

Thus, the n-th Hermite polynomial is a polynomial solution of the Hermite equa-
tion with parameter n, i.e., the Hermite polynomials are polynomial solutions
of the Hermite equation, or equivalently Hn is an eigenfunction of the one-
dimensional Ornstein–Uhlenbeck operator,8 L= 1

2
d2

dx −x d
dx , with eigenvalue −n,

that is,

LHn(x) =
1
2

d2

dx
Hn(x)− x

d
dx

Hn(x) =−nHn(x). (1.38)

iv)

Hn(x+ y) =
n

∑
k=0

(
n
k

)
Hn−k(y)(2x)k =

n

∑
k=0

(
n
k

)
Hk(y)(2x)n−k. (1.39)

v) Explicit formula:

Hn(x) = n!
[n/2]

∑
k=0

(−1)k

k!
(2x)n−2k

(n−2k)!
. (1.40)

8It is also known as the harmonic oscillator operator. Its generalization to R
d is consid-

ered in detail in Section 2.1 of Chapter 2.
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vi) Mehler’s formula9:

∞

∑
n=0

Hn(x)Hn(y)
2nn!

rn =
1

(1− r2)1/2
e
− r2(y2+x2)−2rxy

1−r2 , |r|< 1. (1.41)

Mehler’s formula allows us to express the Abel summability of Hermite series in
integral form.10

Proof.

i) Observe that the generating function G(x,y) satisfies the differential equation

∂G
∂y

−2(x− y)G = 0.

Then, substituting in (1.32) the Taylor series of G(x,y), we get

0 =
∞

∑
n=1

Hn(x)
n!

nyn−1 − (2x−2y)
∞

∑
n=0

Hn(x)
n!

yn

=
∞

∑
n=1

Hn(x)
(n−1)!

yn−1 −2x
∞

∑
n=0

Hn(x)
n!

yn +2
∞

∑
n=0

Hn(x)
n!

yn+1

=
∞

∑
n=0

[Hn+1(x)−2xHn(x)+2nHn−1(x)]
yn

n!
.

Equating term by term, we get the two-term recurrent relation

Hn+1(x)−2xHn(x)+2nHn−1(x) = 0,

for each n ≥ 1.

ii) Observe that the generating function G(x,y) also satisfies the following differ-
ential equation

∂G
∂x

−2yG = 0.

Again, substituting (1.32) the Taylor series of G(x,y), we get

0 =
∞

∑
n=0

H ′
n(x)
n!

yn −2y
∞

∑
n=0

Hn(x)
n!

yn =
∞

∑
n=0

H ′
n(x)
n!

yn −2
∞

∑
n=0

Hn(x)
n!

yn+1

=
∞

∑
n=0

[H ′
n(x)−2nHn−1(x)]

yn

n!
.

Equating term by term, we get (1.36).

9This formula was found by F. G. Mehler in 1866 [183] and, according to E. A. Hille,
“rediscovered by almost everybody working in the field” (see [134]).

10For more on this, see the definition of the Ornstein–Uhlenbeck semigroup in Chapter 2.
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iii) Using (1.36) to eliminate Hn−1(x) from the recursive relation (1.35), we get

Hn+1(x)−2xHn(x)+H ′
n(x) = 0.

By differentiating, and using (1.36), we obtain

H ′′
n (x)−2xH ′

n(x)+2nHn(x) = 0.

iv) To prove the result, we need to use Cauchy’s product.11 Then

∞

∑
n=0

Hn(x+ y)
rn

n!
= e2(x+y)r−r2

= e2xre2yr−r2
=

∞

∑
n=0

(2xr)n

n!

∞

∑
n=0

Hn(y)
rn

n!

=
∞

∑
n=0

n

∑
k=0

(2xr)k

k!
Hn−k(y)

rn−k

(n− k)
=

∞

∑
n=0

(
n

∑
k=0

(
n
k

)
Hn−k(y)(2x)k

)
rn

n!
.

Equating the coefficients, (1.39) follows.

v) Taking y = 0 in (1.39), we get

Hn(x) =
n

∑
k=0

(
n
k

)
Hn−k(0)(2x)k = n!

n

∑
k=0

1
k!(n− k)!

Hk(0)(2x)n−k. (1.42)

Now, taking x = 0 in (1.32), we get

e−y2
=

∞

∑
k=0

Hk(0)
yk

k!
.

But as

e−y2
=

∞

∑
k=0

(−1)k (2k)!
k!

y2k

(2k)!
,

we can conclude that

H2k+1(0) = 0 and H2k(0) = (−1)k (2k)!
k!

, (1.43)

for any k ≤ [n/2]. Therefore, from (1.42),

11Recall that given two convergent series, ∑an and ∑bn, if at least one is absolutely con-
vergent, then its Cauchy product is defined as ∑cn, where cn = ∑n

k=0 ak bn−k, and it is also
absolutely convergent and its sum the product of the two series.
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Hn(x) = n!
n

∑
k=0

1
k!(n− k)!

Hk(0)(2x)n−k = n!
[n/2]

∑
k=0

1
(2k)!(n−2k)!

H2k(0)(2x)n−2k

= n!
[n/2]

∑
k=0

(−1)k

k!
(2x)n−2k

(n−2k)!
.

Hence, (1.40) follows.12

vi) Observe that by the properties of the Gaussian measure, we get the following
identity ∫ ∞

−∞
e−a2x2−2bxdx =

√
π

a
eb2/a2

, (1.44)

because, by completing the square
∫ ∞

−∞
e−a2x2−2bxdx = eb2/a2

∫ ∞

−∞
e−a2x2−2bx−b2/a2

dx = eb2/a2
∫ ∞

−∞
e−(ax+b/a)2

dx

=
eb2/a2

a

∫ ∞

−∞
e−y2

dy =

√
π

a
eb2/a2

.

Using the integral representation (1.30) and (1.44) we get, for |r|< 1,

∞

∑
n=0

Hn(x)Hn(y)
2nn!

rn =
ex2+y2

π

∫

R

∫

R

e−s2−t2
∞

∑
n=0

(−2str)n

n!
e2iyse2ixt ds dt

=
ex2+y2

π

∫

R

(∫

R

e−s2−2(−iy+tr)s ds
)

e−t2+2ixt dt

=
ex2+y2

π

∫

R

√
πe(−iy+tr)2

e−t2+2ixt dt

=
ex2

√
π

∫

R

e−(1−r2)t2
e−2i(ry−x)t dt

=
ex2

√
π

√
π

(1− r2)1/2
e−(ry−x)2/1−r2

=
1

(1− r2)1/2
e
− r2(y2+x2)−2rxy

1−r2 .

Hence, (1.41) holds. The kernel

Mr(x,y) =
1

(1− r2)1/2
e
− r2(y2+x2)−2rxy

1−r2 =
1

(1− r2)1/2
e
− |y−rx|2

1−r2 ey2
(1.45)

is called Mehler’s kernel. 	


12The explicit formula can also be obtained by solving (1.37) using power series expansions
around zero, as x = 0 is an ordinary point of the Hermite equation.
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Additionally, using the integral representation (1.30) and the formula of their
generating function, we can get the following integral representation for Mehler’s
kernel,

Mr(x,y) =
∞

∑
n=0

Hn(x)Hn(y)
2nn!

rn =
∞

∑
n=0

Hn(x)
2nn!

(−2i)ney2

√
π

∫

R

eξ 2
ξ ne2iξ y dξ rn (1.46)

=
ey2

√
π

∫

R

e−ξ 2
e2iξ y

∞

∑
n=0

Hn(x)
n!

(−iξ r)ndξ =
ey2

√
π

∫

R

e2iξ y−ξ 2
e−(x+iξ r)2+x2

dξ .

The following estimate for Hermite polynomials is useful in what follows (see
G. Szegő [262, (8.22.8)]). There exists a constant C > 0, independent of n, such that

|Hn(x)|e−x2/2 ≤C(2nn!)1/2, (1.47)

for all n ≥ 0. A proof of this fact can be found in [134].

Moreover, using the formula of the generating function (1.32), the estimate (1.47)
and (1.39), it is possible to get an analytic proof of the orthogonality of the Hermite
polynomials {Hn}n. First, observe that

∫ +∞

−∞
Hm(x) e−(x−y)2

dx =
∫ +∞

−∞

( ∞

∑
n=0

Hm(x) Hn(x)
yn

n!

)
e−x2

dx (1.48)

To interchange the series with the integral on the right-hand side of (1.48), we need to
find an integrable bound for the series to apply the dominated convergence theorem;
indeed, by applying the inequality (1.47), we obtain

∣∣∣∣∣
∞

∑
n=0

Hm(x) Hn(x)
yn

n!
e−x2

∣∣∣∣∣≤C
∞

∑
n=0

(
√

2|y|)n
√

n!
|Hm(x)|e−x2/2 ∈ L1(dx),

and thus
∫ +∞

−∞

∞

∑
n=0

(
Hm(x) Hn(x)

yn

n!

)
e−x2

dx =
∞

∑
n=0

(∫ +∞

−∞
Hm(x) Hn(x)e

−x2
dx
)yn

n!
.

On the other hand, by making the change of variables u = x−y and using (1.39), the
left-hand side of (1.48) can be written as

∫ +∞

−∞
Hm(x) e−(x−y)2

dx =
∫ +∞

−∞
Hm(u+ y) e−u2

du (1.49)

=
m

∑
k=0

(
m
k

)∫ +∞

−∞
Hm−k(u) e−u2

du (2y)k =
√

π (2y)m,

by the orthogonality property (1.24). Thus, (1.48) can be rewritten as

√
π 2m ym =

∞

∑
n=0

(∫ +∞

−∞
Hm(x) Hn(x) e−x2

dx
)yn

n!
,
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which implies (1.24), ∫ +∞

−∞
Hm(x) Hn(x) dγ1(x) = 0,

for n �= m and also (1.25)

∫ +∞

−∞
[Hm(x)]

2 dγ1(x) = 2mm!,

for m ≥ 0.

Thus, we know that the Hermite polynomials {Hn}n are linearly independent in
L2(γ1). Now, we shall see that they are also complete.

Proposition 1.10. The Hermite polynomials form a complete orthogonal system in
L2(γ1).

Proof. Assume f ∈ L2(γ1) such that it is orthogonal to Hn for each n ∈ N∪ {0}.
Then, the function f (x)e−x2

, which is in L1(R), is orthogonal to each Hn for each
n ≥ 0, and therefore orthogonal to each polynomial, as {Hn} is an algebraic basis
of the set of all polynomials with real coefficients P(R). Then, by considering the
Fourier transform of g(x) = f (x)e−x2

, we have

ĝ(ζ ) =
∫ ∞

−∞
f (x)e−x2

e−ixζ dx = ∑
k

∫ ∞

−∞
f (x)

(−ixζ )k

k!
e−x2

dx = 0,

according to the assumption. The change of order between the integral and the se-
ries is justified because the series can be dominated by e|x||ζ |. Hence, the Fourier
transform is identically zero; therefore, f = 0 almost everywhere 	


Moreover, polynomials are dense Lp(γd) for 1 ≤ p < ∞ (see Theorem 10.7).

As we have already mentioned, Hermite polynomials play a central role in the
context of Gaussian harmonic analysis. They are also the building blocks for the
eigenfunctions of the harmonic oscillator in quantum mechanics (see for instance
[186]).

We denote by hn the normalized Hermite polynomial of degree n, i.e.,

hn(x) =
Hn(x)

(2nn!)1/2
. (1.50)

It is immediate, then that, up to a constant, the normalized Hermite polynomials
satisfy relations similar to those that are satisfied by the Hermite polynomials, for
example

h′n(x) =
√

2nhn−1(x), (1.51)
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and
h′′n(x)−2xh′n(x)+2nhn(x) = 0. (1.52)

For a function f ∈ L1(γ1), its k-th Fourier–Hermite coefficient is defined as

f̂γ(k) =
∫ ∞

−∞
f (y)hk(y)γ1(dy) = 〈 f ,hk〉γ1 . (1.53)

Then, its Hermite expansion is given by

f =
∞

∑
k=0

f̂γ(k)hk, (1.54)

and its n-th partial sum is

Sn f =
n

∑
k=0

f̂γ(k)hk. (1.55)

Using a standard argument, we can get an integral representation for the partial sums

Sn f (x) =
∫ ∞

−∞
Dn(x,y) f (y)γ1(dy),

where Dn(x,y) is called the Dirichlet–Szegő’s kernel.

According to the Christoffel–Darboux formula, see (10.20), we get the following
representation of Dn(x,y)

Dn(x,y) =
n

∑
k=0

hk(x)hk(y) =
(n+1

2

)1/2 hn+1(x)hn(y)−hn(x)hn+1(y)
x− y

. (1.56)

Hermite Polynomials in d Variables

Now, let us consider the Hermite polynomials in d variables {Hν}ν .

Definition 1.11. For the multi-index ν = (ν1,ν2, · · · ,νd) ∈ N
d
0 , the Hermite polyno-

mial in d variables Hν is defined in tensorial form,13 that is to say, Hν is defined as
the tensor product of one-dimensional Hermite polynomials,

Hν(x) =
d

∏
i=1

Hνi(xi), (1.57)

where x = (x1,x2, · · · ,xd) ∈ R
d, and Hνi(xi) is the Hermite polynomial of degree

νi ≥ 0 in the variable xi.

13There are other possibilities for extending the Hermite polynomials to several variables
(see for instance [71]), but the tensorial extension is the one that has been used extensively in
the theory.
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From the way in which the Hermite polynomials in d variables are defined, they
inherit several properties from the Hermite polynomials in one variable.

Proposition 1.12. (Properties of the Hermite polynomials in d variables)
The Hermite polynomials in d variables satisfy the following properties:

i) Rodrigues’ formula: for x ∈ R
d, we have

Hν(x) = (−1)|ν |e|x|
2
∂ ν

(
e−|x|2

)
. (1.58)

ii) Generating function: for x,y ∈ R
d, we have

e2〈x,y〉−|y|2 = ∑
ν

Hν(x)
yν

ν!
=

∞

∑
k=0

∑
|ν |=k

Hν(x)
yν

ν!
. (1.59)

iii) Derivative:
∂Hν
∂xi

(x) = 2νiHν−ei , (1.60)

where ei, is the i-th element of the canonical basis of Rd.
iv) Orthogonality relation:

∫

Rd
Hν(x) Hη(x) γd(dx) = 2|ν | ν! δνη . (1.61)

v) Explicit formula:

Hν(x) = ∑
2η≤ν

(
ν

2η

)
(−1)|η | (2η)!

η!
(2x)ν−2η (1.62)

vi) The Mehler’s formula in d dimensions:14

∑
|ν |≥0

Hν(x)Hν(y)

2|ν |ν!
rν =

1

(1− r2)d/2
e
− r2(|y|2+|x|2)−2r〈x,y〉

1−r2 , (1.63)

for |r|< 1.

Proof. Most of these properties are straightforward, because of the tensorial defini-
tion of the Hermite polynomials {Hν} and the fact that γd is a product measure. 	


From (1.47) we can get for fixed x ∈ R
d ,

|Hν(x)| ≤Cν ,xν!, (1.64)

where Cν ,x depends on ν (a product of Gamma functions evaluated on νi) and x..

14For more on this, see the definition of the Ornstein–Uhlenbeck semigroup in Chapter 2.
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We see in Chapter 2 that the Hermite polynomials in d variables are eigenfunc-
tions of the Ornstein–Uhlenbeck differential operator L with corresponding eigen-
values −|ν |=−∑d

i=1 νi, i.e.,

LHν =−|ν |Hν . (1.65)

Definition 1.13. The normalized Hermite polynomials in d variables {hν}ν are the
tensor products of one-dimensional normalized Hermite polynomials, that is,

hν(x) =
d

∏
i=1

hνi(xi),

where hνi(xi) is the normalized Hermite polynomial of degree νi ≥ 0 in the variable
xi.

Therefore,

hν(x) =
Hν(x)
‖Hν‖2,γ

=
Hν(x)

(2|ν |ν!)1/2
.

From (1.65), it is immediately seen that the normalized Hermite polynomials hν
are also eigenfunctions of the Ornstein–Uhlenbeck operator,

Lhν =−|ν |hν .

For f ∈ L2(γd), its Fourier–Hermite expansion is given by

f =
∞

∑
k=0

∑
|ν |=k

f̂γ(ν)hν , (1.66)

where
f̂γ(ν) = 〈 f ,hν〉γd =

∫

Rd
f (y)hν(y)γd(dy), (1.67)

is the Fourier–Hermite coefficient associated with the polynomial hν .

Proposition 1.14. i) The Hermite polynomials in d variables {Hν}ν , form an al-
gebraic basis of P(Rd), the set of all polynomials with real coefficients in d
variables, that is

P(Rd) = span({hν : |ν | ≥ 0}).
ii) Let Ck be the closed subspace of L2(γd) generated by {hν : |ν |= k}, that is

Ck = span({hν : |ν |= k})L2(γd) (1.68)

then Ck is a subspace of dimension
(k+n−1

k

)
. Moreover, {Ck} is an orthogonal

decomposition of L2(γd), called Wiener chaos or the Wiener–Ito decomposition
of L2(γd),

L2(γd) =
∞⊕

k=0

Ck. (1.69)
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Proof.

i) Trivially, from (1.62), it is clear that

span
({

hν : |ν | ≥ 0
})

⊂P(Rd).

But we can prove that

(2x)ν = ∑
2η≤ν

(
ν
η

)
(−1)|η | (2η)!

η!
Hν−2η(x). (1.70)

Then, as {1,x,x2, · · · ,xn, · · ·} is the canonical basis of P(Rd), we immediately
get the other inclusion.

ii) For the fact that the dimension of Ck is
(k+n−1

k

)
corresponds to the typical prob-

lem of combinations of multi-sets, see [36, Chapter 3, §3.5]. Now, the fact that
the subspaces Ck and Ck′ are orthogonal if k �= k′ follows directly from the or-
thogonality of the Hermite polynomials. From Proposition 1.10, it can be shown
that {Hν}ν , is complete in L2(γd); the orthogonal decomposition of L2(γd) fol-
lows immediately from there. 	

The Wiener chaos decomposition has an interesting probabilistic interpretation

in terms of stochastic integrals obtained by K. Ito, but this is beyond the scope of the
book (see for instance [288] or [218]).

Definition 1.15. For each k, let Jk : L2(γd) → Ck be the orthogonal projection of
L2(γd) onto Ck, which is continuous and (formally) self-adjoint on L2(γd). Then, the
Hermite expansion of f ∈ L2(γd) can be written as

f =
∞

∑
k=0

Jk f =
∞

∑
k=0

∑
|ν |=k

〈 f ,hν〉γ hν , (1.71)

where
Jk f = ∑

|ν |=k

〈 f ,hν〉γ hν . (1.72)

Moreover, as we prove later, as a consequence of the hypercontractivity of the
Ornstein–Uhlenbeck semigroup, the projection Jk (restricted to the polynomials) can
be extended continuously to Lp(γd) for 1 < p < ∞.

In this book, we study only harmonic analysis with respect to Hermite polyno-
mial expansions; thus, considerations of results related to Hermite functions or other
classical orthogonal polynomials or orthogonal functions are beyond its scope. For
more information on the latter, we refer to the next section.

1.4 Notes and Further Results

1. In [168] J. Maas, J. van Neerven, and P. Portal have another lemma, along the
same lines as Lemma 1.5.
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Lemma 1.16. Let a,A > 0 be given. If B(x,r) ∈ Ba and B(y,r′) ∈ BA have a
non-empty intersection, then

|x− y|< k min{m(x),m(y)},
where k = ka,A = max{2amax{a+A,1}+A,2Amax{a+A,1}+a}.
Proof. We have three cases:
• If |y| ≤ 1, then m(x)≤ 1 = m(y).
• If |y|> 1 and |y| ≤ 2(a+A), then

m(x)≤ 1 ≤ 2(a+A)
1
|y| = 2(a+A)m(y).

• If |y|> 1 and |y|=C(a+A), with C > 2, then

|x| ≥ |y|− r− r′ ≥ |y|−a−A = (C−1)(a+A),

and therefore,

m(x)≤ 1
|x| ≤

C
C−1

1
C(a+A)

=
C

C−1
1
|y| =

C
C−1

m(y)≤ 2m(y).

Hence, in each of these cases,

|x− y| ≤ r+ r′ ≤ am(x)+Am(y)≤ (2amax{a+A,1}+A)m(y).

By symmetry, the same argument yields

|x− y| ≤ (2Amax{a+A,1}+a)m(x),

and the result follows. 	

2. In [174, Proposition 2.1 iii)], G. Mauceri and S. Meda also proved that if B,B′ ∈

Ba, B∩B′ �= /0 and γd(B′)≤ 2γd(B), then

rB′ ≤ (2e8a+a2
)1/drB. (1.73)

Because using inequality (1.15) we get

γd(B
′)≥ 1

πd/2
e−|cB′ |2e−2a−a2 |B′| and γd(B)≤ 1

πd/2
e−|cB|2e2a|B|.

Thus, the assumption γd(B′)≤ 2γd(B), implies that

e−|cB′ |2e−2a−a2 |B′| ≤ 2e−|cB′ |2e2a|B|.
Therefore, because the Gaussian density is a radially decreasing function, the
ball B′ satisfying the assumptions and with maximal radius is that of volume
2γd(B) such that |cB′ | ≥ |cB| and cB and cB′ are collinear with the origin. In this
case |cB′ |− |cB|= rB′ + rB, so that

( rB′

rB

)d ≤ 2e|cB′ |2−|cB|2e4a+a2
= 2e(|cB′ |+|cB|)(|cB′ |−|cB|)e4a+a2

≤ 2e2a+|cB′ |rB+|cB|rB′ e4a+a2 ≤ 2e8a+a2
.
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3. In [168], J. Maas, J. van Neerven, and P. Portal proved that the Gaussian measure
satisfies the doubling property on a family of admissible cubes Δ γ .

Lemma 1.17. For α > 0, let αQ be the cube with the same center as Q that has
a side length α times the side length of Q. Then, there exists a constant C =Cα ,d

depending only on α and the dimension d, such that for any cube Q ∈ Δ γ ,15 we
have

γd(αQ)≤Cγd(Q). (1.74)

Proof. Without loss of generality we may assume that α > 1. Let Q ∈ Δ γ
k,l with

center y and side-length 2s, and let B = B(y,s). Then, B ⊂ Q, and moreover
αQ ⊂ α

√
dB. Now, if |y|> 1

2s =
diam(Q)√

d
= 2−k−l ≤ 2−l ≤

√
d

|y| =
√

d m(y),

where m(y) = 1∧ 1
|y| is the admissibility function. If |y| ≤ 1,

2s =
diam(Q)√

d
= 2−k−l ≤ 1 ≤

√
d m(y),

thus, B ∈ B√
d/2. Using the doubling property of the Gaussian measure on

B√
d/2, see Proposition 1.6, there exists C =C(α,d) such that

γd(αQ)≤ γd(α
√

dB)≤Cγd(B)≤Cγd(Q). 	

4. The Hermite functions are defined as

Ψ0(x) = 1

and, for n ≥ 1,

Ψn(x) = (−1)ne
x2
2

dn

dxn (e
−x2

). (1.75)

Therefore, it is clear from Rodrigues formula (1.28) that

Ψn(x) = Hn(x)e
−x2

2 ;

hence, {Ψn}n≥0 is an orthogonal system with respect to the Lebesgue measure,
that is ∫ ∞

−∞
Ψn(x)Ψm(x)dx = 0,

if n �= m. Moreover, their properties can be easily deduced from the correspond-
ing properties of the Hermite polynomials. In particular, the Hermite functions
{ψn}n are eigenfunctions of the Hermite operator

15See the definition of Δ γ and Δ γ
k,l in (4.6), Chapter 4.
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H =− d2

dx2 + x2, (1.76)

associated with the eigenvalues {(2n+1)}, i.e.,

−d2Ψn(x)
dx2 + x2Ψn(x) = (2n+1)Ψn(x).

Observe that

H =
1
2

[(
− d

dx
+ x

)( d
dx

+ x
)
+
( d

dx
+ x

)(
− d

dx
+ x

)]
=

1
2
(AA∗+A∗A),

where A = (− d
dx + x) and A∗ = ( d

dx + x). A and ∗ are called the creation and
annihilation operators in quantum mechanics (see [270]).

We define the normalized Hermite functions as

ψn(x) =
Ψn(x)

(π1/22nn!)1/2
. (1.77)

They can also be written in the form

ψn(x) = hn(x)
e−

x2
2

π1/2
. (1.78)

The paper of A. González Dominguez [114] is an important early reference to
the modern study of Hermite functions.

Additionally, by induction and taking the Fourier transform, we can see that the
Hermite functions are eigenfunctions of the Fourier transform; see for instance
[149] or [270, Lemma 1.1.3.].

The Hermite functions in d-variables of order ν = (ν1,ν2, · · · ,νd)∈N
d
0, Ψ ν , are

defined as the tensor products of Hermite functions in one variable,

Ψ ν(x) =
d

∏
i=1

Ψνi(xi),

where x = (x1,x2, · · · ,xd) ∈ R
d , and Ψνi(xi) is the νi-Hermite function in the

variable xi.
Analogously, the normalized Hermite functions in d- variables of order ν =
(ν1,ν2, · · · ,νd) ∈ N

d
0 are defined as the tensor products of Hermite functions in

one variable,

ψν(x) =
d

∏
i=1

ψνi(xi),
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where x = (x1,x2, · · · ,xd) ∈ R
d , and ψνi(xi) is the normalized νi-Hermite func-

tion in the variable xi.

Observe that defining, for each 1 < p < ∞, the map Ξ (p)
d : Lp(γd)→ Lp(Rd) as

Ξ (p)
d f (x) = f (x)π−(d/2)pe−|x|2/p, (1.79)

then, Ξ (p)
d is clearly an isometric isomorphism. In particular, Ξ (2)

1 Hn is a multi-

ple of Ψn or, equivalently, Ξ (2)
1 (hn) = ψn. Analogously, Ξ (2)

d Hα is a multiple of
Ψ α .

5. In spite of the fact that Hermite polynomials are dense in Lp(γd) for 1 ≤ p < ∞,
in [230], H. Pollard proved that Sn f → f in Lp(γ1), that is

∫ ∞

−∞
|Sn f (x)− f (x)|pγ1(dx)→ 0,

as n → ∞, if and only if p = 2 using the fact that the Hermite polynomials are a
limiting case of the ultraspherical polynomials (see 10.67). But p = 2 is a trivial
case from the Hilbert space theory. Pollard’s counterexample is the following:
given 1 < p < 2, let us consider the function

f (x) = ecx2
, (1.80)

with 1
2 < c < 1

p . Then, f ∈ Lp(γd). It can be shown that for any k ∈ N,

f̂H(2k+1) = 0 and f̂H(2k) = M
( c

1− c

)k 1
4kk!

.

then,

f̂H(2k)
∫ ∞

−∞
|H2k(x)|pe−x2

dx ≥ M

(2k+1)1/2

( c
1− c

)k ∫ 2(2k+1)1/2π

(2k+1)1/2π
|cosx|dx

≥ M
( c

1− c

)(2k+1)1/2

;

therefore,

lim sup
k→∞

f̂H(2k)
∫ ∞

−∞
|H2k(x)|pe−x2

dx = ∞.

For more details see [230].

6. The other families of classical orthogonal polynomials, the Jacobi polynomials
and the Laguerre polynomials are considered briefly in Appendix B. Similar to
the Hermite case, Jacobi functions and Laguerre functions can also be defined.
For more information see [53] or [262].
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7. There is a more general class of Hermite polynomials, {Hμ
n } the generalized

Hermite polynomials. They were defined by G. Szëgo in [262] (see problem 25,
p. 380) and studied in detail by T. S. Chihara in his Ph.D. thesis [54]. They are
defined as being orthogonal polynomials with respect to the measure

dλμ(x) = |x|2μ e−|x|2dx, (1.81)

with μ >−1/2. When μ = 0 these polynomials coincide, up to a constant, with
the classical Hermite polynomials.
Nevertheless, these polynomials are not classical polynomials as they satisfy a
second-order differential-difference equation (10.47) instead of a second-order
differential equation, i.e., they are eigenfunctions of the differential-difference
operator (10.48)

Lμ =
1
2

d2

dx2 +(
μ
x
− x)

d
dx

−μ
I − Ĩ
2x2 .

For more details, see Appendix and [54].
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