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René Schilling, Dresden, Germany
Panagiotis Souganidis, Chicago, USA
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Foreword

Special functions with their magical properties occur naturally in several branches of
analysis, such as differential equations, Fourier analysis, representation theory, and
mathematical physics. Most of these functions occurring in the context of Lie groups
are eigenfunctions of the underlying Laplacians and consequently they are express-
ible as hypergeometric functions. Thus, we encounter Bessel functions on Euclidean
spaces, Jacobi polynomials on compact Riemannian symmetric spaces, and Jacobi
functions on non-compact Riemannian symmetric spaces. In the context of nilpotent
Lie groups, especially on Heisenberg groups, we come across Hermite and Laguerre
polynomials. The special functions play a fundamental role in harmonic analysis on
Lie groups and no detailed analysis on such groups can be carried out without a deep
understanding of the special functions involved. It is therefore no exaggeration to
say that harmonic analysis on Lie groups is inseparably intertwined with analysis of
special functions.

Orthogonal polynomials occurring as special functions in Lie groups are even
more special, as they form an orthogonal basis for the L2 space of the functions on the
groups. The best-known example is the case of trigonometric polynomials, leading to
the theory of Fourier series. But other orthogonal polynomials have been well studied
in the literature: in an influential 1965 paper, B. Muckenhoupt and E. Stein studied
expansions in terms of ultraspherical polynomials, in which they investigated a long
list of problems that can be studied in the case of other orthogonal systems as well.
In 1970, Muckenhoupt wrote a series of papers dealing with expansions in terms
of Hermite and Laguerre polynomials. Earlier works by H. Pollard (1948) and R.
Askey and S. Wainger (1965) had already brought out certain unexpected behaviors
of expansions in terms of Hermite and Laguerre polynomials, which made them the
topic of several interesting works that followed.

Hermite functions, which are of the form Hn(x)e−
1
2 x2

where Hn are the Hermite
polynomials, are ubiquitous in analysis; for instance, they occur as eigenfunctions
of the simple harmonic oscillator, thus playing a central role in quantum mechanics,
and they are also eigenfunctions of the Fourier transform, a fact that has been used
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to develop a different way of treating Fourier transforms, Schwartz functions, and
tempered distributions. But the Hermite polynomials are also expressible as (com-
plex) moments of the normal distribution with Gaussian density:

Hn(x) =
(−2i)n
√
π

∫ ∞

−∞
(y+ ix)ne−y2

dy.

This makes a connection between Hermite polynomials and probability theory that
lies at the base of the so-called Gaussian harmonic analysis, the main theme of this
monograph. Suitably normalized, the Hermite functions form an orthonormal ba-
sis for L2(R,dx) taken with the Lebesgue measure. The resulting theory of Hermite
function expansions is fairly straightforward and has been the subject matter of sev-
eral interesting works with connections to analysis on Heisenberg groups.

On the other hand, Hermite polynomials Hn under suitable normalization form an
orthonormal basis for L2(R,γ1) taken with respect to the Gaussian measure γ1(dx) =

1√
π e−x2

dx. More generally, we can look at multi-dimensional Hermite polynomials

Hν(x) =Π d
j=1Hν j(x j), ν ∈ N

d in the space L2(Rd ,γd) with γd(dx) = 1
(
√
π)d e−|x|2dx.

(The measure space (Rd ,γd) has an added advantage over the Lebesgue measure
space because now an infinite dimensional analog is possible. Thus, Gaussian har-
monic analysis has a considerable overlap with Malliavin calculus.) The polyno-
mials Hν are eigenfunctions of the Ornstein–Uhlenbeck operator L = 1

2Δx − x ·∇x

with eigenvalues |ν | = ∑d
j=1 ν j. Consequently, the natural analogs of classical op-

erators from Fourier analysis, such as Riesz transforms, spectral multipliers, max-
imal functions, Ornstein–Uhlenbeck semigroup, Littlewood–Paley–Stein theory of
g-functions and singular integrals, all make sense in this new setting. A systematic
treatment of these topics is presented very nicely in this monograph.

As the Hermite functions are eigenfunctions of the simple harmonic oscillator
H = −Δx + |x|2, also known as the Hermite operator, the theory of Hermite func-
tion expansions is the spectral theory of H, and many of the resulting operators
can be controlled by means of translation-invariant operators. However, a similar
remark cannot be made of the Hermite polynomial expansions, which are related to
the spectral theory of the Ornstein–Uhlenbeck operator L. This is mainly because
the underlying measure γd(dx) is not doubling, which renders the theory of max-
imal functions and Calderón–Zygmund singular integrals on homogeneous spaces
rather useless. Thus, it became clear that new covering lemmas and decompositions
of functions adapted to the Gaussian measure have to be developed to deal with max-
imal functions and singular integrals. It is therefore not surprising that the celebrated
works of P. A. Meyer on spectral multipliers for L and of P. Sjögren on the weak-
type (1,1) inequality for the maximal function associate to the Ornstein–Uhlenbeck
semigroup e−tL are highly non-trivial and technical. The hypercontractive estimate
for e−tL established by E. Nelson has played an important role in the proof of the
spectral multiplier theorem. (In this monograph, the author has presented the beauti-
ful proof of L. Gross using the logarithmic Sobolev inequality.) Apart from the top-
ics mentioned above, this monograph also deals with various function spaces, such
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as Hardy, Besov–Lipschitz, and Trieber–Lizorkin spaces in the context of Gaussian
measures and topics such as Riesz potentials and fractional derivatives.

In this monograph, the author has collected and presented in a readable fashion
the hard work of several eminent harmonic analysts, including the author himself
and his collaborators, performed over half a century or so. Without any doubt, this
is a monograph written by an analyst for analysts in which the main characters are
“concrete personalities” and there is no place for “abstract arguments.” Anyone who
is fond of hard analysis and estimates will enjoy reading this monograph. As far
as we are aware, there are no books dealing exclusively with Gaussian harmonic
analysis, except for possibly two other less well-known monographs by the author,
written in Spanish ([280, 281]). This long-awaited monograph thus fulfils the need
for such a book and the author is highly commended for producing this fine piece of
work.

Department of Mathematics Sundaram Thangavelu
Indian Institute of Science
Bangalore, India
January 2018



Preface

Classical harmonic analysis dates back to the beginning of the nineteenth century
and has its roots in the study of Fourier series, the Fourier transform, and the devel-
opment of tools needed to understand them. In the twentieth century it underwent
an exponential expansion, creating quite a few new branches. Gaussian harmonic
analysis is one of those new branches.

Classical harmonic analysis is formulated using as its reference measure the
Lebesgue measure in R

d ; thus, it is formulated in the measure space (Rd ,B(Rd),m).
Gaussian harmonic analysis is formulated using the Gaussian probability measure
in R

d ,

γd(dx) =
1

πd/2
e−|x|2dx;

Thus, it is formulated in the probability space (Rd ,B(Rd),γd).
In Gaussian harmonic analysis, we want to get analogs to the classical no-

tions (semigroups, covering lemmas, maximal functions, Littlewood–Paley func-
tions, spectral multipliers, fractional integrals and fractional derivatives, singular in-
tegrals, etc.) with respect to the Gaussian measure.

A second component of classical harmonic analysis is the Laplace operator,

Δx =
d

∑
k=1

∂ 2

∂x2
k

.

Using integration by parts, it is easy to see that the Laplace operator is (formally)
self-adjoint on L2(Rd),

∫
Rd
Δx f (x)g(x) dx =

∫
Rd

f (x)Δxg(x) dx.

In Gaussian harmonic analysis, the second component is the Ornstein–Uhlenbeck
second-order differential operator,

L =
1
2
Δx −〈x,∇x〉 , XI
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where ∇x =
(

∂
∂x1

, ∂
∂x2

, . . . , ∂
∂xd

)
is the gradient. Again, by integration by parts, it is

easy to see that L is (formally) a self-adjoint operator on L2(γd), i.e.,
∫
Rd

L f (x)g(x) γd(dx) =
∫
Rd

f (x)Lg(x) γd(dx).

Thus, L plays the role of the symmetric Laplacian in the Gaussian context and
the Gaussian measure γd is the natural measure with which to study the Ornstein–
Uhlenbeck operator L and its associated operators. For reasons that will become clear
later, these two components are complementary.

Finally, there is a third component of Gaussian harmonic analysis: the Hermite
polynomials. They form a family of orthogonal polynomials with respect to the
Gaussian measure and are also eigenfunctions of the Ornstein–Uhlenbeck operator
L. In other words, the operator is diagonal with respect to the Hermite polynomial
family. Precisely for that reason, Gaussian harmonic analysis in L2(γd) is relatively
straightforward. Nevertheless, in Lp(γd) it is a lot more difficult, and kernel tech-
niques are crucial.

Gaussian harmonic analysis has experienced important developments over the
last 50 years and our work tries to review most of them, for the first time in book
form. Also, it has been an important source of new problems, and a model upon
which harmonic analysis with respect to other orthogonal expansions and harmonic
analysis of generalized Laplacian have been developed. There are several motivations
for the study of Gaussian harmonic analysis:

• First, to extend the classical results obtained in Fourier analysis, that is, harmonic
analysis of trigonometric expansions, to orthogonal polynomial expansions. In
1965, B. Muckenhoupt and E. Stein published a seminal article on Gegenbauer
(or ultraspherical) orthogonal polynomial expansions (see [199]). Then, in late
1969, B. Muckenhoupt published two articles on Hermite and Laguerre orthog-
onal polynomial expansions ([193, 194]). Finally, also in 1969, C. P. Calderón
published two articles on the Abel summability of Hermite and Laguerre poly-
nomial expansions ([44] and [45]), which treated the d-dimensional case for both
families as well. The whole area of harmonic analysis of orthogonal polynomial
expansions developed from there.

• Another motivation can be found in probability theory. Malliavin calculus was
developed to study the regularity of solutions for stochastic differential equa-
tions. Malliavin calculus happens to be harmonic analysis in infinite dimensional
spaces with respect to the Gaussian measure, using probabilistic methods. The
books by D. Nualart [218] and P. Malliavin’s [171, 172] are the main references
(see also [33, 189, 260] and [288]). It is important to note that there is an impor-
tant overlap between the topics of Gaussian harmonic analysis and Malliavin cal-
culus. Nevertheless, the scope of the results, and the methods used in the proofs,
are completely different. In Gaussian harmonic analysis only analytic methods
in finite dimensions are considered, what might be called “kernel techniques,”
whereas in Malliavin calculus, the main tools are among others Itô’s formula and
the Burkholder–Davis–Gundy inequality. For this reason, it would be a mistake
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to think that Gaussian harmonic analysis is simply the Malliavin calculus in finite
dimensions.

• Additionally, there is the work of D. Bakry and M. Emery on semigroup the-
ory, hypercontractivity, and geometric applications (see for instance [19, 21], and
[22]).

• A final motivation is based on considerations in quantum mechanics, more
specifically on the second quantization (see for instance A. Messiah [186] and
E. Nelson [204]).

In this book, we are going to consider only the first motivation; that is, to ex-
tend harmonic analysis to Hermite polynomial expansions using analytic methods in
the tradition of the Calderón–Zygmund school of harmonic analysis. In other words,
we consider Gaussian harmonic analysis only from the point of view of doing har-
monic analysis for non-trigonometric orthogonal expansions using analytic methods,
mostly kernel techniques. There are other powerful techniques that are beyond the
scope of this book; for example, operator theoretic techniques (see for instance J. M.
A. M. van Neerven et al [137]), functional and geometric techniques (see for instance
D. Bakry [20]), and Bellman function techniques (see for instance A. Carbonaro, O.
Dragicević [49]). We try to indicate the connections between Gaussian harmonic
analysis and other connected fields, points of view, and alternative techniques. Gaus-
sian harmonic analysis is perhaps the most frequently studied point of view, among
all possible harmonic analysis done for orthogonal expansions, precisely because of
its place at the intersection of several fields. Thus, Gaussian harmonic analysis may
serve as a good introduction to other cases. Additionally, a deep understanding of
this theory may help the reader to gain insights into related problems in other non-
Euclidean settings.

In their article, B. Muckenhoupt and E. Stein [199] studied the case of harmonic
analysis for ultraspherical or Gegenbauer polynomial expansions, including topics
such as the Poisson integral, the conjugate function, H p spaces, Littlewood–Paley
theory, multiplier theory, and Riesz potentials. Thus, for ultraspherical polynomial
expansions they were able to develop almost all the important topics of harmonic
analysis, in one dimension. In the case of Gaussian harmonic analysis, the theory
is far from complete. There are still several important gaps, even though advances
have been made in recent years. There are two types of problems. The first involves
completing results that are not even known in the one-dimensional case. The second
involves obtaining analytic proofs with constants independent of dimension. Such
proofs should exist because, as we know from Malliavin calculus thanks to proba-
bilistic techniques, all the operators and semigroups considered make perfect sense
in infinite dimensions.

This book is intended for a very diverse audience, from graduate students to
researchers working in a broad spectrum of areas in analysis (including, but not lim-
ited to, real analysis, harmonic analysis, orthogonal polynomial theory, approxima-
tion theory, functional analysis, and partial differential equations). Readers will be
able to learn more about Gaussian harmonic analysis in particular and/or harmonic
analysis with respect to orthogonal expansions in general. Our goal is to provide an
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updated exposition, as self-contained as possible, of all the topics in Gaussian har-
monic analysis that have so far been mostly scattered in research papers and sections
of books. Thus, we have tried to provide full details of most of the crucial results
of the theory. Nevertheless, to avoid an extremely lengthy exposition, sometimes we
skip some technical details, trying instead to give the main ideas behind them. Hence,
it is not as self-contained as we would like it to be, but full references are provided
for the interested reader. Detailed proofs of hard-to-find results are also given in full
detail. The requirements for the reader of this book are a basic knowledge of real
analysis and classical harmonic analysis, including the Calderón–Zygmund theory.
As references, we can mention the books of A. Zygmund and R. Wheeden [294] and
E. Stein [252]. Also, some knowledge of basic orthogonal polynomial theory would
be convenient; the main references are the books by T. S Chihara [53] or G. Szegő
[262].

The scheme of the book is as follows. It consists of nine chapters and one ap-
pendix. Chapter 1 focuses on preliminary results of the Gaussian probability mea-
sure. Because the Gaussian measure is highly concentrated near the origin, precise
estimates of the Gaussian measure of balls are needed. They are discussed in Chap-
ter 1. We see that the Gaussian measure is a doubling measure for a special family
of balls, even though it is not a doubling measure for all balls in R

d ; this impor-
tant conclusion was obtained by G. Mauceri and S. Meda in [174]. Additionally,
Hermite polynomials, which are orthogonal with respect to γd , are studied there
in detail. In Chapter 2, we study the Ornstein–Uhlenbeck operator, the Ornstein–
Uhlenbeck semigroup, and its main properties. In particular, we consider one of its
most important properties, the hypercontractivity property. In Chapter 3 we study
the Poisson–Hermite semigroup, its basic properties, the characterization of ∂ 2

∂ t2 +L-
harmonic functions, and the conjugate Poisson–Hermite semigroup, which will be
important in Chapter 9. In Chapter 4, we study covering lemmas in R

d , several
maximal functions with respect to the Gaussian measure, and also the behavior of
Calderón–Zygmund operators with respect to the Gaussian measure. Chapter 5 is de-
voted to the Gaussian Littlewood–Paley–Stein theory, which has important applica-
tions in Chapters 6, 7, and 9. In Chapter 6, we consider spectral multiplier operators
with respect to the Gaussian measure and their boundedness properties. In Chap-
ter 7, we consider function spaces with respect to the Gaussian measure, including
the most important spaces used in analysis (Lebesgue spaces, Sobolev spaces, Tent
spaces, Hardy spaces, bounded mean oscillation (BMO) spaces, Lipschitz spaces,
Besov–Lipschitz spaces and Triebel–Lizorkin spaces). In Chapter 8, we study Gaus-
sian fractional integrals and fractional derivatives, analyzing their regularity on some
of the spaces considered in Chapter 7, and finally, in Chapter 9, we study what is
probably one of the most important topics in Gaussian harmonic analysis: Gaussian
singular integrals. In the Appendix, we have included several topics: the first is the
Gamma function and related functions. The second contains the main properties and
formulas of all the classical orthogonal polynomials. In the third, we consider dou-
bling measures in a general setting. In the fourth, we study the classical semigroups
in analysis (the heat and the Poisson semigroups); this makes it easier to compare
them with the Ornstein–Uhlenbeck and Poisson–Hermite semigroups considered in
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Chapters 2 and 3. The fifth topic is interpolation theory. The sixth is Hardy’s inequal-
ities, which are used extensively in several chapters, especially in Chapters 7 and 8.
The seventh is Natanson’s lemma and some of its generalizations, which is a basic
tool for the initial analytic proofs of the boundedness for the Gaussian Riesz trans-
forms by B. Muckenhoupt [194], C. P. Calderón [44], and W. Urbina [278]. The final
topic is forward differences, which are needed in the study of fractional derivatives
in Chapter 8, when we study unbounded indexes.

This book is based on two previous monographs, [280] and [281], written when
I was full professor at Universidad Central de Venezuela in Caracas, Venezuela, be-
fore the country started to fall apart. The present work also has some overlap with a
monograph published by the French Mathematical Society (SMF) in 2012, on semi-
groups for classical polynomials [281] based on a course given in a CIMPA school in
Mérida, Venezuela in 2006. It summarizes my own research, the research of my stu-
dents, and the research of many others in the area. It also summarizes countless talks
that I have had with friends and collaborators, in addition to seminars given in several
universities: Universidad Central de Venezuela in Caracas; Universidad de los Andes
in Mérida, Venezuela; University of Minnesota in Minneapolis; Rutgers University at
New Brunswick; Temple University in Philadelphia; Instituto Venezolano de Investi-
gaciones Cientı́ficas in Altos de Pipe, Venezuela; Universidad Autónoma de Madrid;
Universidad de la Habana; Universidad de Matanzas, Cuba; Universidad de la Ri-
oja; Universidad de Zaragoza; Universidad Simón Bolı́var in Caracas; Universidad
del Paı́s Vasco in Bilbao; Universidad de Málaga; Universidad de Sevilla; Universi-
dad de Valencia; Universidad Carlos III de Madrid; Université Paris V; Université de
Angers; Universidad de la Laguna, Tenerife; Universidad Nacional del Litoral, Santa
Fé, Argentina; Universidad Nacional de La Plata, Argentina; University of Kansas,
University of New Mexico; University of Arizona; New Mexico State University, Las
Cruces; University of California at Santa Barbara; CIMAT in Guanajuato, México;
DePaul University in Chicago; Florida International University in Miami; University
of Georgia in Statesboro; and Roosevelt University. I am very thankful for the oppor-
tunities I have had to speak about these topics to so many different audiences, and
for the interest they raised.

Finally, I want to thank my unforgettable adviser Eugene Fabes, wherever he
is, in addition to my collaborators, students, and colleagues who have, in different
ways, helped me to understand the subject matter. In particular, I want to thank Lil-
iana Forzani, Roberto Scotto, Estefanı́a Dalmasso, Richard Gundy, Fernando Soria,
Sundaram Thangavelu, Sonsoles Pérez, Maria Dolores (Lolo) Morán, Piotr Graczyk,
José Rafael (Chichi) León, José Luis Torrea, Peter Sjögren, A. Eduardo Gatto, Con-
stantine Georgakis, Laura DeCarli, Jonas Teuwen, Yamilet (Vicky) Quintana, Adrián
Infante, and Calixto P. Calderón. They have all been very generous in sharing their
ideas with me. I also want to thank my Ph.D. students, Iris López, Cristina Balder-
rama, Ebner Pineda, and Eduard Navas. All of them, in one way or another, have
helped me to more deeply understand all of the topics that we consider in this book
and several of them helped me to correct several versions of the manuscript. Also, I
want to thank Estefanı́a Dalmasso and Jorge Moreno for the figures that appear in the
book and to J. Maas, J. van Neerven, and P. Portal for allowing me to use one of their
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figures from [169]. Furthermore, I want to thank all of the anonymous reviewers,
who, with their comments and corrections, greatly improved the final version of the
book. I would like to give a special mention to Sylvia Escárcega, Melanie Pivarski,
and Estefanı́a Dalmasso for all their help with improving the English and presen-
tation (all the remaining mistakes are entirely my own responsibility), and last but
not least, Donna Chernyk, editor of Springer-Verlag, for all her help, support, and
patience.

Chicago, IL, USA Wilfredo Urbina-Romero
2018
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1

Preliminary Results: The Gaussian Measure and
Hermite Polynomials

In this chapter we study the Gaussian measure in R
d for d ≥ 1 and several of its

properties. Then, we study the problem of the Gaussian measure for balls in R
d ,

which is crucial in Chapter 4 for studying the associated covering lemmas for that
measure. For completeness, we consider Hermite polynomials, which are orthogonal
polynomials, with respect to the Gaussian measure, and discuss in detail most of their
properties. The interested reader will find the properties and identities of all classical
orthogonal polynomials listed in the appendix.

1.1 The Gaussian Measure

The Gaussian measure in R is given by1

γ1(dx) =
1√
π

e−x2
dx, (1.1)

where e−x2
is called the Gaussian weight.

The fact that γ1 is a probability measure is based on the following famous com-
putation; using polar coordinates and Fubini’s theorem,

(∫
R

e−x2
dx
)2

=
∫
R

e−x2
dx

∫
R

e−y2
dy =

∫
R

∫
R

e−x2−y2
dx dy

=
∫ 2π

0

∫ ∞

0
e−r2

r dr dθ = 2π
(
− 1

2
e−r2

)∣∣∣∞
0
= π.

1In probability theory, it is usual to consider the standard Gaussian probability, defined as
1√
2π

e−x2/2dx. Nevertheless, in the context of the theory of orthogonal polynomials, it is more

common to use (1.1) and we are going to follow that normalization (see [262]). The formulas
differ only by constants.
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2 1 Preliminary Results

The Fourier transform of γ1 (characteristic function in probability terminology) is
given by

γ̂1(ξ ) =
∫
R

e−iξyγ1(dy) =
∫
R

e−iξy e−y2

√
π

dy

=
e−ξ

2/4
√
π

∫
R

e−(y+iξ/2)2
dy =

e−ξ
2/4

√
π

∫
R

e−y2
dy = e−ξ

2/4; (1.2)

thus, the Gaussian measure is ‘essentially’ (up to a constant) its own Fourier trans-
form. Moreover, that integral is uniformly convergent in any disk D = {x : |x| ≤
r}, r > 0 and is bounded in that region. Therefore, according to the dominated con-
vergence theorem, we can differentiate an arbitrary number of times, obtaining,

dn

dxn e−x2
=

(−2i)n
√
π

∫
R

e−y2
yne−2ixy dy. (1.3)

The Gaussian distribution function Φ is defined as

Φ(x) =
1√
π

∫ x

−∞
e−y2

dy. (1.4)

In other words, Φ is just the cumulative distribution function of the measure γ1. It is
well known that, unfortunately, there is not a closed form of it. An important estimate
of the rate of decrease of the function 1−Φ can be obtained simply using integration
by parts, for x > 0,

1
2
√
π

(1
x
− 1

2x3

)
e−x2 ≤ 1−Φ(x)≤ 1

2
√
πx

e−x2
. (1.5)

The Gaussian measure in R
d is defined as the product measure

γd(dx) =
1

πd/2
e−|x|2dx =

1√
π

e−x2
1 dx1 ⊗

1√
π

e−x2
2 dx2 ⊗·· ·⊗ 1√

π
e−x2

d dxd . (1.6)

Being a product of probability measures, it is clear that γd is a probability mea-
sure in R

d . On the other hand, γd is radially symmetric. There is likely no other
non-trivial probability measure that satisfies both properties. From the fact that the
Gaussian measure in R

d is a product measure, a technique called tensorization has
been developed, which consists in obtaining d-dimensional estimates from those of
the one-dimensional estimate.

It is clear that the Gaussian measure is highly concentrated near the origin and
decays exponentially at infinity, for all d ≥ 1. That behavior is very far from the in-
variance by translation of the Lebesgue measure; therefore, there is a big difference
between it and the Lebesgue measure. For instance, any argument in classical anal-
ysis that uses the translation invariant property of the Lebesgue measure is totally
useless in the Gaussian case. On the other hand, the Gaussian measure is invariant
by rotation, so we can take advantage of that property.
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Finally, even though in probability theory the Gaussian measures form a whole
family of probability measures (with different means and variances), γd is the only
Gaussian measure considered in this book.2

1.2 Estimates for the Gaussian Measure of Balls in R
d and the

Doubling Condition

We need to estimate the Gaussian measure of balls in R
d to obtain covering lemmas

and other estimates, for instance, but this is not trivial at all, because, as we have
already said, the Gaussian measure is a probability measure, highly concentrated
around the origin, with exponential decay at infinity, invariant by rotation around the
origin, and not translation invariant.

First, we consider a partition P of R, obtained by B. Muckenhoupt, in [194]
Lemma 2, because in such a partition there is a seminal idea about how to measure
balls (or cubes) using the Gaussian measure.

• First, divide the interval [0,2] into the subintervals [0,1] and [1,2] of length one.
• Then, for n ≥ 1, divide the interval [2n,2n+1), into 2n+1 intervals of length 2−n.
• Finally, consider the mirror images of these intervals for the interval (−∞,0].
Then, the elements of the partition in the complement of [−2,2] are of the form
Ik,n = [ k

2n ,
k+1
2n ), where n ≥ 1 and k are integers such that 22n ≤ |k|< 22n+1.

Proposition 1.1. The partition

P= {[−2,−1], [−1,0], [0,1], [1,2]}∪{Ik,n : n ≥ 1, 22n ≤ |k| ≤ 22n+1} (1.7)

satisfies the following properties:

i) Any compact subset of R intersects only a finite number of the intervals of the
partition P.

ii) An interval in the partition is no more than twice as long as the adjacent inter-
vals. Furthermore, for any I ∈ P, if x ∈ I, then 1∧ 1

|x| = min{1, 1
|x| } is not greater

than the length of the interval.
iii) Finally, there exists a constant C, independent of n and k such that

supx∈Ik,n
e−x2

infx∈Ik,n e−x2 ≤C.

Proof.

i) Immediate, because any compact set is bounded.

2For more details on Gaussian measures, see for example the book by V. I. Bogachev ([33,
Chapter 1]).
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ii) That an interval in the partition is no more than twice as long as the adjacent
intervals is clear by construction. Now, if |x| ≤ 1, then3

1∧ 1
|x| = 1 = |[0,1]|.

If |x| > 1, then for the case x ∈ [1,2], 1∧ 1
|x| =

1
|x| < 1 = |[1,2]|. The case x ∈

[−2,−1] is totally analogous. Now, assuming that x ∈ Ik,n = [ k
2n ,

k+1
2n ],n ≥ 1 then,

1∧ 1
|x| =

1
|x| and

|Ik,n|=
1
2n =

2n

22n ≥ 2n

k
≥ 1

|x| .
Moreover,

|Ik,n|=
1
2n =

2
2n+1 ≤ 2

2n−1

22n ≤ 2
2n−1

k+1
≤ 2

|x| .

iii) By symmetry, let us consider only intervals in [0,∞). For the first two intervals
[0,1] and [1,2], e−y2

varies by a factor of e−1. Now, if x ≥ 2, assuming x ∈ Ik,n =

[ k
2n ,

k+1
2n ], then, as e−x2

is a decreasing function,

supx∈Ik,n
e−x2

infx∈Ik,n e−x2 = e
(k+1)2−k2

22n = e
2k+1
22n ≤ e

22n+2+1
22n ≤ e4+ 1

22n ≤ e5,

hence, the inequality holds with C = e5. ��

Observe that iii) shows a very important characteristic of this partition: the
Gaussian weight e−x2

is essentially constant at each interval in the partition P. Thus,
the exponential decay is controlled; therefore, at each interval of P, the Gaussian
measure is equivalent to the Lebesgue measure. Then, usual estimates using the
Lebesgue measure can be made, at least locally, instead of working with the Gaus-
sian measure. This technique was used initially by B. Muckenhoupt to obtain certain
estimates for singular operators with respect to the Gaussian measure. This idea,
as we are going to see later, is the key to a technique that consists in defining a
local region and then splitting operators into a local and a global part. This will be
discussed in more depth later, in Chapter 4.

We can obtain a partition of R
d of d-dimensional rectangles having the same

properties listed in Lemma 1.1 simply by considering Cartesian products of par-
titions Pi in each variable xi as before. This partition can be refined, splitting the
rectangles into cubes. A similar partition of R

d was considered by P. Sjögren in
[247]. Also, a similar idea is considered in the work of J. Mass, J. Van Neerven, and
P. Portal in [169] on Whitney decomposition. This is discussed in detail in Chapter 4
as well.

The Gaussian measure of any ball B(x,r) in R
d can be easily estimated, depend-

ing of the center of the ball, by using polar coordinates.

3Here we are using the convention that 1∧ 1
0 = 1.
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Lemma 1.2. Let r > 0, and d ≥ 2.

i) The Gaussian measure of a ball in R
d centered at the origin, B(0,r), is bounded

above by

γd(B(0,r))≤
ωd−1

2πd/2
rd . (1.8)

ii) For any x ∈ R
d ,

γd(B(x,r))≤
ωd−1

2πd/2
rde2r|x|e−|x|2 , (1.9)

where ωd−1 is the (surface) measure of the unit (hyper)-sphere Sd−1 in R
d.

Proof.

i) Using polar coordinates, y = ρξ , for ρ > 0, and ξ ∈ Sd−1, i.e., |y| = ρ |ξ | = ρ ,
we have

γd(B(0,r)) =
∫

B(0,r)

e−|y|2

πd/2
dy =

∫
Sd−1

∫ r

0

e−ρ
2

πd/2
ρd−1dρdσ

≤ ωd−1

2πd/2
rd−2

∫ r

0
e−ρ

2
2ρdρ =

ωd−1

2πd/2
rd−2(1− e−r2

)≤ ωd−1

2πd/2
rd ,

as 1− e−t ≤ t, for any t ≥ 0.
ii) For any x ∈ R

d , as |y|2 ≤ ((y− x)+ x)2 = |y− x|2 +2〈x,y− x〉+ |x|2,

γd(B(x,r)) =
∫

B(x,r)

e−|y|2

πd/2
dy =

e−|x|2

πd/2

∫
B(x,r)

e−|y−x|2e−2〈x,y−x〉 dy

≤ e−|x|2

πd/2

∫
B(x,r)

e−|y−x|2e2|x||y−x| dy

≤ e−|x|2

πd/2
e2r|x|

∫
B(x,r)

e−|y−x|2 dy =
e−|x|2

πd/2
e2r|x|

∫
B(0,r)

e−|y|2 dy

≤ ωd−1

2πd/2
rde2r|x|e−|x|2 . ��

To extend the idea in Proposition 1.1 to higher dimensions, we define a family of
admissible balls.

Definition 1.3. The family of admissible balls4 in R
d, with parameter a,b > 0, is

defined as

Ba,b =
{

B(x,r) : x ∈ R
d , 0 < r < a∧ b

|x|
}
. (1.10)

4Admissible balls are sometimes also called hyperbolic balls.
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In particular, if a = b, the family of admissible balls with parameter a is defined as

Ba =
{

B(x,r) : x ∈ R
d , 0 < r < a

(
1∧ 1

|x|
)}

= {B(x,r) : x ∈ R
d , 0 < r < am(x)}, (1.11)

where

m(x) = 1∧ 1
|x| . (1.12)

m(x) is called the admissibility function.

Observe that, trivially, m(x) ≤ 1 and m(x) ≤ 1
|x| . Observe also that admissible

balls need to be very small when their center is far from the origin.
For admissible balls in Ba,b the Gaussian weight e−|y|2 is essentially constant.

More precisely, we have the following estimates:

Lemma 1.4. For a,b > 0, if |x− y|< a∧ b
|x| , then

e−a2
e−2be−|x|2 ≤ e−|y|2 ≤ e2be−|x|2 . (1.13)

Therefore, for admissible balls, B = B(x,r) ∈ Ba,b, their Gaussian measures can be
estimated as:

γd(B) =
1

πd/2

∫
B

e−|y|2dy ∼Cde−|x|2
(

a∧ b
|x|

)d
. (1.14)

In particular, for a > 0, if |x− y|< a
(

1∧ 1
|x|

)
= am(x), then

e−a2
e−2ae−|x|2 ≤ e−|y|2 ≤ e2ae−|x|2 ; (1.15)

therefore, if B = B(x,r) ∈ Ba,

γd(B) =
1

πd/2

∫
B

e−|y|2dy ∼Cde−|x|2ad
(

1∧ 1
|x|

)d
=Cde−|x|2adm(x)d . (1.16)

Thus, for admissible balls, their Gaussian measure is essentially a multiple
(which depends on the center) of their Lebesgue measure.

Proof. Simply by triangle inequality,

e−|y|2 = e−|x−(x−y)|2 ≤ e−|x|2e2|x||x−y|e−|x−y|2 ≤ e2be−|x|2 ,

and

e−|y|2 = e−|x+(y−x)|2 ≥ e−|x|2e−2|x||y−x|e−|y−x|2 ≥ e−a2
e−2be−|x|2 . ��

On the other hand, J. Maas, J. van Neerven, and P. Portal [169] obtained the
following lemma, using an idea similar to the one contained in Lemma 1.4.
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Lemma 1.5. Let a,A > 0 be given.

i) If |x− y|< At and t ≤ am(x), then t ≤ a(1+aA)m(y).
ii) If |x− y|< Am(x), then m(x)≤ (1+A)m(y) and m(y)≤ 2(1+A)m(x).

Proof.

i) We have three cases:
• If |y| ≤ 1, then m(y) = 1, and

t ≤ am(x)≤ a = am(y)≤ a(1+aA)m(y).

• If 1 < |y| ≤ 1+aA, then m(y)≥ 1/(1+aA) and

t ≤ am(x)≤ a ≤ a(1+aA)m(y).

• If |y|> 1+aA > 1, then m(y) = 1
|y| and

t ≤ am(x)≤ a
|x| ≤

a
|y|−At

≤ a
|y|−aA

≤ a(1+aA)
|y| = a(1+aA)m(y).

ii) Put t ′ = m(x). Then |x− y| < At ′; therefore, we can apply i) with a = 1 to get
that t ′ ≤ (1+A)m(y). This gives the first estimate. To obtain the second one we
consider three cases:
• If |x| ≤ 1, then 2(1+A)m(x)≥ 1 ≥ m(y).
• If |1 ≤ |x| ≤ 2A, (i.e., A ≥ 1/2) then

2(1+A)m(x)≥ 2(1+A)
2A

≥ 1 ≥ m(y).

• If |x| ≥ 1 and |x| ≥ 2A, then |y| ≥ |x|− A
|x| ≥ |x|− 1

2 ≥ |x|
2 ; thus,

m(y)≤ 2m(x)≤ 2(1+A)m(x). ��

Part i) of Lemma 1.5 says, among other things, that if we have B(x,r) ∈ Ba and
if |x− y|< Ar, then B(y,r) ∈ Bc for some constant c = ca,A, which depends only on
a and A. Additionally, using part ii), we get the following estimate, similar to (1.13):
if |x− y|< am(x),

e−a2
e−2ae−|x|2 ≤ e−|y|2 ≤ ea2(1+a)2

e2a(1+a)e−|x|2 , (1.17)

because, as |x|m(x)≤ 1, we have

|y|2 ≤ (|x|+ |x− y|)2 ≤ (|x|+am(x))2 ≤ |x|2 +2a+a2,

and, as m(x)≤ (1+a)m(y),

|x|2 ≤ (|y|+ |x− y|)2 ≤ (|y|+am(x))2

≤ (|y|+a(1+a)m(y))2 ≤ |y|2 +2a(1+a)+a2(1+a)2
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(see J. Teuwen [265, Lemma 2], see also G. Mauceri, S. Meda [174, Lemma 2.1
i)]).

The main results of classical harmonic analysis in R
d , which are done with re-

spect to the Lebesgue measure, were later extended for other classes of measures.
The initial and probably the most important one is the class of doubling measures.
Recall that a Borel measure μ in R

d is a doubling measure if a constant C > 0 exists,
depending only on the dimension d, such that

μ(B(x,2r))≤Cμ(B(x,r)), (1.18)

for any x ∈ R
d and r > 0.

The meaning of this condition is that the mass that μ gives to the annulus 2B\B
is controlled by a constant times the mass of B. The opposite of that means that
μ(B) is much less than μ(2B\B), and therefore that μ rarefies at B. All the classical
notions of harmonic analysis can be extended almost immediately to doubling mea-
sures (see for instance [254] or [275]).

As the Gaussian measure γd is a probability measure, it is not a doubling measure,
for more details see Appendix 10.3. Thus, there is no constant C > 0, independent of
x ∈ R

d , and r > 0 such that

γd(B(x,2r))≤Cγd(B(x,r)),

for all x ∈ R
d and r > 0, i.e., the doubling condition does not hold for all possible

balls in R
d . Therefore the classical results of harmonic analysis cannot be extended

directly to the case of Gaussian harmonic analysis. Nevertheless, G. Mauceri and S.
Meda in a seminal paper [174] observed that if we control the radius appropriately,
the Gaussian measure is doubling; more precisely, the Gaussian measure is doubling
if we restrict it to the family of admissible balls Ba. Thus, we can adapt the classical
arguments, at least in some regions. The doubling condition for the Gaussian mea-
sure is therefore a local condition, and is a contained in the following result (see G.
Mauceri and S. Meda’s paper [174, Proposition 2.1]).

Theorem 1.6. Let a,τ > 0. For each ball B = B(cB,rB) ∈ Ba, consider the set B∗
τ

which is the union of all balls B′ = B(cB′ ,rB′), which intersects B and such that
rB′ ≤ τrB, then the following inequalities hold.

i) If σ∗
a,τ = supB∈Ba

γd(B
∗
τ )

γd(B)
then

σ∗
a,τ ≤ (2τ+1)de4a(2τ+1)+a2(2τ+1)2

. (1.19)

ii) (Doubling property) There exists a constant C = Ca,τ ,d > 1 depending only on
a,τ and the dimension d, such that for any ball B′ = B(xB′ ,rB′) having a non-
empty intersection with B and such that rB′ ≤ τrB, then

γd(B
′)≤Cγd(B).
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In particular, this implies that there exists a constant C = Cd > 1 such that for
all τ > 1 and all B = B(xB,rB) ∈ Ba

γd(B(xB,τrB))≤Cγd(B(xB,rB)). (1.20)

Proof.

i) First of all, observe that B∗
τ ⊂ B(cB,(2τ+1)rB) ∈ B(2τ+1)a and therefore, using

both sides of inequality (1.15) with the parameter (2τ+1)a, we get

γd(B
∗
τ) =

1

πd/2

∫
B∗
τ

e−|y|2dy ≤ 1

πd/2
e2(2τ+1)ae−|cB|2 |B∗

τ |

≤ 1

πd/2
e2(2τ+1)ae−|cB|2 |B(cB,(2τ+1)rB)|

=
1

πd/2
e2(2τ+1)ae−|cB|2(2τ+1)d |B(cB,rB)|,

and

γd(B)≥
1

πd/2
e−(2τ+1)2a2

e−2(2τ+1)ae−|cB|2 |B(cB,rB)|.

Thus,
σ∗

a,τ ≤ (2τ+1)de4a(2τ+1)+a2(2τ+1)2
.

ii) As B′ is one of the terms in the union that forms B∗
τ then ii) follows immediately

from i) as

γd(B
′) ≤ γd(B

∗
τ) =

γd(B∗
τ)

γd(B)
γd(B)≤ σ∗

a,τ γd(B)

≤ (2τ+1)de4a(2τ+1)+a2(2τ+1)2
γd(B) =Cγd(B),

with C = (2τ+1)de4a(2τ+1)+a2(2τ+1)2
. This estimate of C could be improved as

B′ ⊂ B(cB,(2τ + 1)rB), using inequality (1.15) with the parameter (2τ + 1)a.
��

J. Maas, J. van Neerven, and P. Portal proved, in [168], that there is also a family
of cubes in R

d such that the Gaussian measure is a doubling measure on them (see
Lemma 1.17).

Observe that, because the Gaussian measure is not a doubling measure, the mea-
sure space (Rd , | · |,γd) is not a space of homogeneous type; thus, there is no overlap
between Gaussian harmonic analysis and harmonic analysis of spaces of homoge-
neous type.
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Moreover, the Gaussian measure is trivially a d-dimensional measure5 in R
d ,

because, for any x ∈ R
d , and r > 0,

γd(B(x,r)) =
1

πd/2

∫
B(x,r)

e−|x|2dx ≤ 1

πd/2
|B(x,r)|=Cdrd .

As we have mentioned before, classical harmonic analysis, which was extended
initially to doubling measures, has been extended to the case of s-dimensional mea-
sures (see, for instance, Tolsa [274]). Nevertheless, Gaussian harmonic analysis is
not part of that theory because, as was mentioned before, there is another component
of it, which is the Ornstein–Uhlenbeck and associated operators.

Going back to the problem of the Gaussian measure of balls, we can still get an
estimate for the Gaussian measure of non-admissible balls if they do not contain the
origin. That estimate was obtained by L. Forzani in [83], but in this case the estimate
does not depend upon the center of the ball but rather on the closest point to the
origin.

Proposition 1.7. (Forzani) Let B a ball in R
d, with radius r > 0, which does not

contain the origin, and let x0 denote the point of B whose distance to the origin is
minimal, i.e., d(B,0) = |x0|. Then, there exists a constant Cd > 0, depending only on
the dimension d, such that

γd(B)≤Cd
e−|x0|2

|x0|
( r
|x0|

)(d−1)/2
. (1.21)

Moreover, if rB > C
|x0| , C > 1, the opposite inequality is also true; therefore,

γd(B)∼Cd
e−|x0|2

|x0|
( r
|x0|

)(d−1)/2
. (1.22)

Proof. Let us write B = B(x,r). It is enough to consider that |x0|> 1 because other-
wise a constant would do a better job than the estimate. Consider Π0 the hyperplane
orthogonal to x0 whose distance to the origin is precisely |x0|, that is,

Π0 = {x ∈ R
d : 〈x,x0〉= |x0|2},

and consider the hyperspace Π+
0 = {x ∈R

d : 〈x,x0〉> |x0|2}. Then, any y ∈Π+
0 can

be written as y = (ξ + |x0|) x0
|x0| +ν , with ξ > 0 and 〈ν ,x0〉= 0. In particular, we have

x = (r+ |x0|) x0
|x0| .

5A Borel measure is s-dimensional in R
d if it satisfies the following growth condition:

μ(B(x,r))≤Crs,

for some constant C and for all x ∈ R
d , and r > 0.
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Observe that y ∈ B if and only if ξ ∈ (0,2r) and |v| <
√

2rξ −ξ 2, because
maxy∈B |y|= 2r+ |x0|, and according to the Pythagorean theorem,

|y− x|2 = |(ξ + |x0|)
x0

|x0|
+ν− (r+ |x0|)

x0

|x0|
|2 = |(ξ − r)

x0

|x0|
+ν |2

= (ξ − r)2 + |ν |2 = ξ 2 −2ξ r+ r2 + |ν |2 < r2.

Then, we have

γd(B) =
1

πd/2

∫
B

e−|y|2dy

= Cde−|x0|2
∫ 2r

0
e−2ξ |x0| e−ξ

2
(∫

{v∈Rd−1: |ν |<
√

2rξ−ξ 2}
e−|v|2 dv

)
dξ

≤ Cde−|x0|2
∫ 2r

0
e−2ξ |x0| (2rξ −ξ 2)(d−1)/2 dξ

≤ Cde−|x0|2r(d−1)/2
∫ 2r

0
e−2ξ |x0|(2ξ )(d−1)/2dξ

≤ Cd
e−|x0|2

|x0|
( r
|x0|

)(d−1)/2 ∫ 4r|x0|

0
e−t t(d−1)/2dt ≤Cd

e−|x0|2

|x0|
( r
|x0|

)(d−1)/2
.

Now, if r > C
|x0| ,C > 1, let us define

R(x0,r) =
{

y = (ξ + |x0|)
x0

|x0|
+ v : ξ ∈

[ 1
2|x0|

,
1

|x0|
]
,〈v,x0〉= 0, |v|< 1

2

√
r

|x0|
}
.

We will prove that R(x0,r) ⊂ B. Given y ∈ R(x0,r) it is enough to prove that if ξ ∈
[ 1

2|x0| ,
1

|x0| ] then 2rξ −ξ 2 > r
4|x0| because, in that case,

√
2rξ −ξ 2 >

1
2

√
r

|x0|
> |ν |.

Observe that the expression 2rξ − ξ 2, as a function of ξ , in the interval
[

1
2|x0| ,

1
|x0|

]
attains its minimum at 1

2|x0| , and as 1
|x0| <

r
C < r, we get

2rξ −ξ 2 ≥ r
|x0|

− 1
2|x0|2

>
r

4|x0|
,

and, clearly, ξ ∈ (0,2r). Now, if y ∈ R(x0,r)

|y|2 = ξ 2 +2ξ |x0|+ |x0|2 + |v|2 < 1
|x0|2

+2+ |x0|2 +
r

4|x0|
< |x0|2 +C̃.

Hence, e−|y|2 ≥ e−C̃e−|x0|2 and therefore

γd(B)≥ γd(R(x0,r)) =
1

πd/2

∫
R(x0,r)

e−|y|2dy ≥ e−C̃ e−|x0|2

|x0|
( r
|x0|

)(d−1)/2
. ��
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Another version of inequality (1.21) (see [83, Lemma 4.3]) is the following.
There exists a constant C depending on d such that for all x ∈ R

d \{0}, r ∈ (1/2,1)
and s ∈ (0,1/2) the following inequality holds:

γd

(
B

(
x
r
,
|x|
r

s

))
≤C s(d−1)/2 exp

(
−|x|2

r2 (1− s)2
)

1
|x| . (1.23)

This follows immediately from (1.21) taking |x|
r s as the radius, and then x0 =

x
r −

x
r s = x

r (1− s).

As we see in Chapter 4, Lemma 4.16, a similar estimate, can be used to prove the
Lp(γd) boundedness, 1 < p < ∞, for the non-centered Hardy–Littlewood maximal
function with respect to the Gaussian measure, obtained in [90]. Moreover, we see
in Chapter 4 how these estimates of the Gaussian measure of balls are important in
the proof of some covering lemmas.

1.3 Hermite Polynomials

Hermite Polynomials in One Variable

For completeness, we study in detail the Hermite polynomials.. Additionally, in
Appendix B, we list the properties for all classical orthogonal polynomials. The
standard reference in orthogonal polynomial theory is G. Szegő [262].

The Hermite polynomials in R, {Hn}n≥0, can be defined (up to a multiplicative
constant) as the orthogonal polynomials associated with the Gaussian measure γ1.
Therefore, they are obtained from the canonical polynomial (monomials) base

{1,x,x2, · · · ,xn, · · ·}

by using the Gram–Schmidt method, with respect to the inner product in L2(γ1)
6 (see

G. Szegő [262] and E. Hille [134]). Thus, if m �= n

∫ +∞

−∞
Hm(x) Hn(x) dγ1(x) = 0. (1.24)

The Gram–Schmidt method determines the polynomials up to a constant; thus, for
normalization we set ∫ +∞

−∞
[Hn(x)]

2 dγ1(x) = 2nn!. (1.25)

6In probability theory, another family of Hermite polynomials is used, which is orthogonal
with respect to the standard Gaussian measure 1√

2π
e−x2/2dx.
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Observe that by using the Gram–Schmidt method, given n ∈ N,
∫ +∞

−∞
P(x) Hn(x) dγ1(x) = 0, (1.26)

for any polynomial P such that deg(P)≤ n−1.

Even though this definition is probably the most straightforward, it is not the eas-
iest to handle as it gives us a recursive formula for Hn, but not an explicit expression.

Alternatively, the Hermite polynomials can be defined using Rodrigues’ formula:

H0(x) = 1 (1.27)

and for n > 1

Hn(x) = (−1)nex2 dn

dxn (e
−x2

). (1.28)

One of the advantages of this definition is precisely that it is easy to get explicit
expressions of Hn, because the formula itself is not difficult to handle. Observe that
according to (1.28), we get the first polynomials easily.

H1(x) = (−1)1ex2 d
dx

(e−x2
) =−ex2

(−2x)e−x2
= 2x,

H2(x) = (−1)2ex2 d2

dx2 (e
−x2

) = ex2
(4x2 −2)e−x2

= 4x2 −2,

H3(x) = (−1)3ex2 d3

dx3 (e
−x2

) =−ex2
(−8x3 +12x)e−x2

= 8x3 −12x,

H4(x) = (−1)4ex2 d4

dx4 (e
−x2

) = ex2
(16x4 −48x2 +12)e−x2

= 16x4 −48x2 +12.

Then, we can prove, by induction, that

Hn(x) = n!
[n/2]

∑
k=0

(−1)k

k!
(2x)n−2k

(n−2k)!
. (1.29)

where [n/2] is the integer part of n/2, i.e., the largest integer not greater that n/2.
Nevertheless, we provide a simpler proof of this formula later, using the generating
function (see Proposition 1.9).

Also, from (1.3), using Rodrigues’ formula, we get the following integral repre-
sentation of Hn,

Hn(x) =
(−2i)nex2

√
π

∫
R

e2ixyyne−y2
dy. (1.30)

Let us prove that Rodrigues’ formula actually gives the same polynomials as those
obtained using the Gram–Schmidt method. To do so, we need to prove that those
polynomials are orthogonal with respect to the Gaussian measure, i.e., that they sat-
isfy (1.24) and to the normalization condition (1.25).
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First of all, observe that trivially, because H0(x) = 1,
∫ ∞

−∞
H0(y)γ1(dy) = 1,

as γ1 is a probability measure. Moreover, if n ≥ 1, we get

∫ +∞

−∞
Hn(x)H0(x) dγ1(x) =

∫ +∞

−∞
Hn(x) dγ1(x) = (−1)n

∫ +∞

−∞
ex2 dn

dxn (e
−x2

)
1√
π

e−x2
dx

=
(−1)n
√
π

∫ +∞

−∞

dn

dxn (e
−x2

) dx = 0,

simply by integrating by parts.
Now, we need to consider the case n,m ≥ 1, m �= n. Without loss of generality,

assume that n > m > 0. Then, using Rodrigues’ formula,

∫ +∞

−∞
Hm(x)Hn(x) dγ1(x) =

∫ +∞

−∞
Hm(x)(−1)nex2 dn

dxn (e
−x2

)
1√
π

e−x2
dx

=
(−1)n
√
π

∫ +∞

−∞
Hm(x)

dn

dxn (e
−x2

) dx

=
(−1)2n
√
π

∫ +∞

−∞

dn

dxn (Hm(x))e
−x2

dx = 0,

by integrating by parts n times, as n > m. For the case n = m, first observe that, from
the explicit expression of Hn (1.29),

H(n)
n (x) = 2nn!, (1.31)

then, integrating by parts n times

∫ +∞

−∞
[Hn(x)]

2 dγ1(x) = (−1)n
∫ +∞

−∞
[ex2 dn

dxn (e
−x2

)]Hn(x)
1√
π

e−x2
dx

=
(−1)n
√
π

∫ +∞

−∞

dn

dxn (e
−x2

)Hn(x)dx =
(−1)2n
√
π

∫ +∞

−∞

dnHn(x)
dxn e−x2

dx

=
1√
π

∫ +∞

−∞
2nn! e−x2

dx = 2nn!.

Hence, as we claimed, the Gram–Schmidt method and Rodrigues’ formula give rise
to the same family of orthogonal polynomials.

The Hermite polynomials have a simple generating function, as we see in the
following proposition.
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Proposition 1.8. The generating function7 of the Hermite polynomials is given by

G(x,y) = e2xy−y2
= e−(x−y)2+x2

, (1.32)

i.e., ∑∞
n=0

Hn(x)
n! yn = e2xy−y2

= e−(x−y)2+x2
.

Proof. Observe that from (1.30) and (1.2) we get

∞

∑
n=0

Hn(x)
n!

yn=
∞

∑
n=0

(−2i)nex2

n!
√
π

∫
R

e−r2
rne2ixr dr yn=

ex2

√
π

∫
R

e−r2
∞

∑
n=0

(−2iry)n

n!
e2ixr dr

=
ex2

√
π

∫
R

e−r2
e2i(x−y)r dr = ex2

e−(x−y)2
= e2xy−y2

= G(x,y). ��

Moreover, the Hermite polynomials are the only polynomials that satisfy that
relation; hence, they can also be defined using G(x,y) as follows:

Hn(x) =
∂ n

∂yn G(x,y)|y=0 =
∂ n

∂yn (e
2xy−y2

)|y=0 = e−(x−y)2+x2 |y=0. (1.33)

Hence, using (1.33) we may easily obtain the first five Hermite polynomials:

H0(x) = G(x,y)|y=0 = 1,

H1(x) =
∂
∂y

G(x,y)|y=0 = 2(x− y)G(x,y)|y=0 = 2x,

H2(x) =
∂ 2

∂y2 G(x,y)|y=0 = (4(x− y)2 −2)G(x,y)|y=0 = 4x2 −2

H3(x) =
∂ 3

∂y3 G(x,y)|y=0 = (8(x− y)3 −12(x− y))G(x,y)|y=0 = 8x3 −12x,

H4(x) =
∂ 4

∂y4 G(x,y)|y=0=(16(x−y)4−48(x−y)2+12)G(x,y)|y=0=16x4−48x2+12.

From Rodrigues’ formula we directly obtain (1.33):

Hn(x) = (−1)nex2 dn

dxn (e
−x2

) = (−1)nex2 ∂ n

∂xn (e
−(x−y)2

)|y=0

= ex2 ∂ n

∂yn (e
−(x−y)2

)|y=0 =
∂ n

∂yn (e
2xy−y2

)|y=0 =
∂ n

∂yn G(x,y)|y=0.

7The generating function of a family of orthogonal polynomials {Pn} is a function G(x,y)
such that {Pn(x)} are the coefficients of the Taylor expansion of G(·,y) around y = 0.
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Additionally, G(x,y) can be extended analytically as

G(x,z) = e2xz−z2
,

for x,z ∈C. Then, from (1.33), using Cauchy’s integral formula, we get the following
integral representation of Hn,

Hn(x) =
∂ nG(x,z)

∂ zn

∣∣∣∣
z=0

=
n!

2πi

∮
C

G(x,ζ )
ζ n+1 dζ =

n!
2πi

∮
C

e2xζ−ζ 2

ζ n+1 dζ , (1.34)

where C is any curve around the origin.

Now, let us prove the following properties of Hermite polynomials.

Proposition 1.9. For any n ≥ 1, Hn(x) satisfies the following properties:

i) Recursive relation:

Hn+1(x)−2xHn(x)+2nHn−1(x) = 0. (1.35)

ii) Derivative:
H ′

n(x) = 2nHn−1(x). (1.36)

iii) Differential equation:

H ′′
n (x)−2xH ′

n(x)+2nHn(x) = 0. (1.37)

Thus, the n-th Hermite polynomial is a polynomial solution of the Hermite equa-
tion with parameter n, i.e., the Hermite polynomials are polynomial solutions
of the Hermite equation, or equivalently Hn is an eigenfunction of the one-
dimensional Ornstein–Uhlenbeck operator,8 L= 1

2
d2

dx −x d
dx , with eigenvalue −n,

that is,

LHn(x) =
1
2

d2

dx
Hn(x)− x

d
dx

Hn(x) =−nHn(x). (1.38)

iv)

Hn(x+ y) =
n

∑
k=0

(
n
k

)
Hn−k(y)(2x)k =

n

∑
k=0

(
n
k

)
Hk(y)(2x)n−k. (1.39)

v) Explicit formula:

Hn(x) = n!
[n/2]

∑
k=0

(−1)k

k!
(2x)n−2k

(n−2k)!
. (1.40)

8It is also known as the harmonic oscillator operator. Its generalization to R
d is consid-

ered in detail in Section 2.1 of Chapter 2.
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vi) Mehler’s formula9:

∞

∑
n=0

Hn(x)Hn(y)
2nn!

rn =
1

(1− r2)1/2
e
− r2(y2+x2)−2rxy

1−r2 , |r|< 1. (1.41)

Mehler’s formula allows us to express the Abel summability of Hermite series in
integral form.10

Proof.

i) Observe that the generating function G(x,y) satisfies the differential equation

∂G
∂y

−2(x− y)G = 0.

Then, substituting in (1.32) the Taylor series of G(x,y), we get

0 =
∞

∑
n=1

Hn(x)
n!

nyn−1 − (2x−2y)
∞

∑
n=0

Hn(x)
n!

yn

=
∞

∑
n=1

Hn(x)
(n−1)!

yn−1 −2x
∞

∑
n=0

Hn(x)
n!

yn +2
∞

∑
n=0

Hn(x)
n!

yn+1

=
∞

∑
n=0

[Hn+1(x)−2xHn(x)+2nHn−1(x)]
yn

n!
.

Equating term by term, we get the two-term recurrent relation

Hn+1(x)−2xHn(x)+2nHn−1(x) = 0,

for each n ≥ 1.

ii) Observe that the generating function G(x,y) also satisfies the following differ-
ential equation

∂G
∂x

−2yG = 0.

Again, substituting (1.32) the Taylor series of G(x,y), we get

0 =
∞

∑
n=0

H ′
n(x)
n!

yn −2y
∞

∑
n=0

Hn(x)
n!

yn =
∞

∑
n=0

H ′
n(x)
n!

yn −2
∞

∑
n=0

Hn(x)
n!

yn+1

=
∞

∑
n=0

[H ′
n(x)−2nHn−1(x)]

yn

n!
.

Equating term by term, we get (1.36).

9This formula was found by F. G. Mehler in 1866 [183] and, according to E. A. Hille,
“rediscovered by almost everybody working in the field” (see [134]).

10For more on this, see the definition of the Ornstein–Uhlenbeck semigroup in Chapter 2.
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iii) Using (1.36) to eliminate Hn−1(x) from the recursive relation (1.35), we get

Hn+1(x)−2xHn(x)+H ′
n(x) = 0.

By differentiating, and using (1.36), we obtain

H ′′
n (x)−2xH ′

n(x)+2nHn(x) = 0.

iv) To prove the result, we need to use Cauchy’s product.11 Then

∞

∑
n=0

Hn(x+ y)
rn

n!
= e2(x+y)r−r2

= e2xre2yr−r2
=

∞

∑
n=0

(2xr)n

n!

∞

∑
n=0

Hn(y)
rn

n!

=
∞

∑
n=0

n

∑
k=0

(2xr)k

k!
Hn−k(y)

rn−k

(n− k)
=

∞

∑
n=0

(
n

∑
k=0

(
n
k

)
Hn−k(y)(2x)k

)
rn

n!
.

Equating the coefficients, (1.39) follows.

v) Taking y = 0 in (1.39), we get

Hn(x) =
n

∑
k=0

(
n
k

)
Hn−k(0)(2x)k = n!

n

∑
k=0

1
k!(n− k)!

Hk(0)(2x)n−k. (1.42)

Now, taking x = 0 in (1.32), we get

e−y2
=

∞

∑
k=0

Hk(0)
yk

k!
.

But as

e−y2
=

∞

∑
k=0

(−1)k (2k)!
k!

y2k

(2k)!
,

we can conclude that

H2k+1(0) = 0 and H2k(0) = (−1)k (2k)!
k!

, (1.43)

for any k ≤ [n/2]. Therefore, from (1.42),

11Recall that given two convergent series, ∑an and ∑bn, if at least one is absolutely con-
vergent, then its Cauchy product is defined as ∑cn, where cn = ∑n

k=0 ak bn−k, and it is also
absolutely convergent and its sum the product of the two series.
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Hn(x) = n!
n

∑
k=0

1
k!(n− k)!

Hk(0)(2x)n−k = n!
[n/2]

∑
k=0

1
(2k)!(n−2k)!

H2k(0)(2x)n−2k

= n!
[n/2]

∑
k=0

(−1)k

k!
(2x)n−2k

(n−2k)!
.

Hence, (1.40) follows.12

vi) Observe that by the properties of the Gaussian measure, we get the following
identity ∫ ∞

−∞
e−a2x2−2bxdx =

√
π

a
eb2/a2

, (1.44)

because, by completing the square
∫ ∞

−∞
e−a2x2−2bxdx = eb2/a2

∫ ∞

−∞
e−a2x2−2bx−b2/a2

dx = eb2/a2
∫ ∞

−∞
e−(ax+b/a)2

dx

=
eb2/a2

a

∫ ∞

−∞
e−y2

dy =

√
π

a
eb2/a2

.

Using the integral representation (1.30) and (1.44) we get, for |r|< 1,

∞

∑
n=0

Hn(x)Hn(y)
2nn!

rn =
ex2+y2

π

∫
R

∫
R

e−s2−t2
∞

∑
n=0

(−2str)n

n!
e2iyse2ixt ds dt

=
ex2+y2

π

∫
R

(∫
R

e−s2−2(−iy+tr)s ds
)

e−t2+2ixt dt

=
ex2+y2

π

∫
R

√
πe(−iy+tr)2

e−t2+2ixt dt

=
ex2

√
π

∫
R

e−(1−r2)t2
e−2i(ry−x)t dt

=
ex2

√
π

√
π

(1− r2)1/2
e−(ry−x)2/1−r2

=
1

(1− r2)1/2
e
− r2(y2+x2)−2rxy

1−r2 .

Hence, (1.41) holds. The kernel

Mr(x,y) =
1

(1− r2)1/2
e
− r2(y2+x2)−2rxy

1−r2 =
1

(1− r2)1/2
e
− |y−rx|2

1−r2 ey2
(1.45)

is called Mehler’s kernel. ��

12The explicit formula can also be obtained by solving (1.37) using power series expansions
around zero, as x = 0 is an ordinary point of the Hermite equation.
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Additionally, using the integral representation (1.30) and the formula of their
generating function, we can get the following integral representation for Mehler’s
kernel,

Mr(x,y) =
∞

∑
n=0

Hn(x)Hn(y)
2nn!

rn =
∞

∑
n=0

Hn(x)
2nn!

(−2i)ney2

√
π

∫
R

eξ
2
ξ ne2iξy dξ rn (1.46)

=
ey2

√
π

∫
R

e−ξ
2
e2iξy

∞

∑
n=0

Hn(x)
n!

(−iξ r)ndξ =
ey2

√
π

∫
R

e2iξy−ξ 2
e−(x+iξ r)2+x2

dξ .

The following estimate for Hermite polynomials is useful in what follows (see
G. Szegő [262, (8.22.8)]). There exists a constant C > 0, independent of n, such that

|Hn(x)|e−x2/2 ≤C(2nn!)1/2, (1.47)

for all n ≥ 0. A proof of this fact can be found in [134].

Moreover, using the formula of the generating function (1.32), the estimate (1.47)
and (1.39), it is possible to get an analytic proof of the orthogonality of the Hermite
polynomials {Hn}n. First, observe that

∫ +∞

−∞
Hm(x) e−(x−y)2

dx =
∫ +∞

−∞

( ∞

∑
n=0

Hm(x) Hn(x)
yn

n!

)
e−x2

dx (1.48)

To interchange the series with the integral on the right-hand side of (1.48), we need to
find an integrable bound for the series to apply the dominated convergence theorem;
indeed, by applying the inequality (1.47), we obtain

∣∣∣∣∣
∞

∑
n=0

Hm(x) Hn(x)
yn

n!
e−x2

∣∣∣∣∣≤C
∞

∑
n=0

(
√

2|y|)n
√

n!
|Hm(x)|e−x2/2 ∈ L1(dx),

and thus
∫ +∞

−∞

∞

∑
n=0

(
Hm(x) Hn(x)

yn

n!

)
e−x2

dx =
∞

∑
n=0

(∫ +∞

−∞
Hm(x) Hn(x)e

−x2
dx
)yn

n!
.

On the other hand, by making the change of variables u = x−y and using (1.39), the
left-hand side of (1.48) can be written as

∫ +∞

−∞
Hm(x) e−(x−y)2

dx =
∫ +∞

−∞
Hm(u+ y) e−u2

du (1.49)

=
m

∑
k=0

(
m
k

)∫ +∞

−∞
Hm−k(u) e−u2

du (2y)k =
√
π (2y)m,

by the orthogonality property (1.24). Thus, (1.48) can be rewritten as

√
π 2m ym =

∞

∑
n=0

(∫ +∞

−∞
Hm(x) Hn(x) e−x2

dx
)yn

n!
,
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which implies (1.24), ∫ +∞

−∞
Hm(x) Hn(x) dγ1(x) = 0,

for n �= m and also (1.25)

∫ +∞

−∞
[Hm(x)]

2 dγ1(x) = 2mm!,

for m ≥ 0.

Thus, we know that the Hermite polynomials {Hn}n are linearly independent in
L2(γ1). Now, we shall see that they are also complete.

Proposition 1.10. The Hermite polynomials form a complete orthogonal system in
L2(γ1).

Proof. Assume f ∈ L2(γ1) such that it is orthogonal to Hn for each n ∈ N∪ {0}.
Then, the function f (x)e−x2

, which is in L1(R), is orthogonal to each Hn for each
n ≥ 0, and therefore orthogonal to each polynomial, as {Hn} is an algebraic basis
of the set of all polynomials with real coefficients P(R). Then, by considering the
Fourier transform of g(x) = f (x)e−x2

, we have

ĝ(ζ ) =
∫ ∞

−∞
f (x)e−x2

e−ixζdx =∑
k

∫ ∞

−∞
f (x)

(−ixζ )k

k!
e−x2

dx = 0,

according to the assumption. The change of order between the integral and the se-
ries is justified because the series can be dominated by e|x||ζ |. Hence, the Fourier
transform is identically zero; therefore, f = 0 almost everywhere ��

Moreover, polynomials are dense Lp(γd) for 1 ≤ p < ∞ (see Theorem 10.7).

As we have already mentioned, Hermite polynomials play a central role in the
context of Gaussian harmonic analysis. They are also the building blocks for the
eigenfunctions of the harmonic oscillator in quantum mechanics (see for instance
[186]).

We denote by hn the normalized Hermite polynomial of degree n, i.e.,

hn(x) =
Hn(x)

(2nn!)1/2
. (1.50)

It is immediate, then that, up to a constant, the normalized Hermite polynomials
satisfy relations similar to those that are satisfied by the Hermite polynomials, for
example

h′
n(x) =

√
2nhn−1(x), (1.51)
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and
h′′

n(x)−2xh′
n(x)+2nhn(x) = 0. (1.52)

For a function f ∈ L1(γ1), its k-th Fourier–Hermite coefficient is defined as

f̂γ(k) =
∫ ∞

−∞
f (y)hk(y)γ1(dy) = 〈 f ,hk〉γ1 . (1.53)

Then, its Hermite expansion is given by

f =
∞

∑
k=0

f̂γ(k)hk, (1.54)

and its n-th partial sum is

Sn f =
n

∑
k=0

f̂γ(k)hk. (1.55)

Using a standard argument, we can get an integral representation for the partial sums

Sn f (x) =
∫ ∞

−∞
Dn(x,y) f (y)γ1(dy),

where Dn(x,y) is called the Dirichlet–Szegő’s kernel.

According to the Christoffel–Darboux formula, see (10.20), we get the following
representation of Dn(x,y)

Dn(x,y) =
n

∑
k=0

hk(x)hk(y) =
(n+1

2

)1/2 hn+1(x)hn(y)−hn(x)hn+1(y)
x− y

. (1.56)

Hermite Polynomials in d Variables

Now, let us consider the Hermite polynomials in d variables {Hν}ν .
Definition 1.11. For the multi-index ν = (ν1,ν2, · · · ,νd) ∈ N

d
0 , the Hermite polyno-

mial in d variables Hν is defined in tensorial form,13 that is to say, Hν is defined as
the tensor product of one-dimensional Hermite polynomials,

Hν(x) =
d

∏
i=1

Hνi(xi), (1.57)

where x = (x1,x2, · · · ,xd) ∈ R
d, and Hνi(xi) is the Hermite polynomial of degree

νi ≥ 0 in the variable xi.

13There are other possibilities for extending the Hermite polynomials to several variables
(see for instance [71]), but the tensorial extension is the one that has been used extensively in
the theory.
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From the way in which the Hermite polynomials in d variables are defined, they
inherit several properties from the Hermite polynomials in one variable.

Proposition 1.12. (Properties of the Hermite polynomials in d variables)
The Hermite polynomials in d variables satisfy the following properties:

i) Rodrigues’ formula: for x ∈ R
d, we have

Hν(x) = (−1)|ν |e|x|
2
∂ν

(
e−|x|2

)
. (1.58)

ii) Generating function: for x,y ∈ R
d, we have

e2〈x,y〉−|y|2 =∑
ν

Hν(x)
yν

ν!
=

∞

∑
k=0

∑
|ν |=k

Hν(x)
yν

ν!
. (1.59)

iii) Derivative:
∂Hν
∂xi

(x) = 2νiHν−ei , (1.60)

where ei, is the i-th element of the canonical basis of Rd.
iv) Orthogonality relation:

∫
Rd

Hν(x) Hη(x) γd(dx) = 2|ν | ν! δνη . (1.61)

v) Explicit formula:

Hν(x) = ∑
2η≤ν

(
ν

2η

)
(−1)|η |

(2η)!
η!

(2x)ν−2η (1.62)

vi) The Mehler’s formula in d dimensions:14

∑
|ν |≥0

Hν(x)Hν(y)

2|ν |ν!
rν =

1

(1− r2)d/2
e
− r2(|y|2+|x|2)−2r〈x,y〉

1−r2 , (1.63)

for |r|< 1.

Proof. Most of these properties are straightforward, because of the tensorial defini-
tion of the Hermite polynomials {Hν} and the fact that γd is a product measure. ��

From (1.47) we can get for fixed x ∈ R
d ,

|Hν(x)| ≤Cν ,xν!, (1.64)

where Cν ,x depends on ν (a product of Gamma functions evaluated on νi) and x..

14For more on this, see the definition of the Ornstein–Uhlenbeck semigroup in Chapter 2.
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We see in Chapter 2 that the Hermite polynomials in d variables are eigenfunc-
tions of the Ornstein–Uhlenbeck differential operator L with corresponding eigen-
values −|ν |=−∑d

i=1 νi, i.e.,

LHν =−|ν |Hν . (1.65)

Definition 1.13. The normalized Hermite polynomials in d variables {hν}ν are the
tensor products of one-dimensional normalized Hermite polynomials, that is,

hν(x) =
d

∏
i=1

hνi(xi),

where hνi(xi) is the normalized Hermite polynomial of degree νi ≥ 0 in the variable
xi.

Therefore,

hν(x) =
Hν(x)
‖Hν‖2,γ

=
Hν(x)

(2|ν |ν!)1/2
.

From (1.65), it is immediately seen that the normalized Hermite polynomials hν
are also eigenfunctions of the Ornstein–Uhlenbeck operator,

Lhν =−|ν |hν .

For f ∈ L2(γd), its Fourier–Hermite expansion is given by

f =
∞

∑
k=0

∑
|ν |=k

f̂γ(ν)hν , (1.66)

where
f̂γ(ν) = 〈 f ,hν〉γd =

∫
Rd

f (y)hν(y)γd(dy), (1.67)

is the Fourier–Hermite coefficient associated with the polynomial hν .

Proposition 1.14. i) The Hermite polynomials in d variables {Hν}ν , form an al-
gebraic basis of P(Rd), the set of all polynomials with real coefficients in d
variables, that is

P(Rd) = span({hν : |ν | ≥ 0}).
ii) Let Ck be the closed subspace of L2(γd) generated by {hν : |ν |= k}, that is

Ck = span({hν : |ν |= k})L2(γd) (1.68)

then Ck is a subspace of dimension
(k+n−1

k

)
. Moreover, {Ck} is an orthogonal

decomposition of L2(γd), called Wiener chaos or the Wiener–Ito decomposition
of L2(γd),

L2(γd) =
∞⊕

k=0

Ck. (1.69)
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Proof.

i) Trivially, from (1.62), it is clear that

span
({

hν : |ν | ≥ 0
})

⊂ P(Rd).

But we can prove that

(2x)ν = ∑
2η≤ν

(
ν
η

)
(−1)|η |

(2η)!
η!

Hν−2η(x). (1.70)

Then, as {1,x,x2, · · · ,xn, · · ·} is the canonical basis of P(Rd), we immediately
get the other inclusion.

ii) For the fact that the dimension of Ck is
(k+n−1

k

)
corresponds to the typical prob-

lem of combinations of multi-sets, see [36, Chapter 3, §3.5]. Now, the fact that
the subspaces Ck and Ck′ are orthogonal if k �= k′ follows directly from the or-
thogonality of the Hermite polynomials. From Proposition 1.10, it can be shown
that {Hν}ν , is complete in L2(γd); the orthogonal decomposition of L2(γd) fol-
lows immediately from there. ��

The Wiener chaos decomposition has an interesting probabilistic interpretation
in terms of stochastic integrals obtained by K. Ito, but this is beyond the scope of the
book (see for instance [288] or [218]).

Definition 1.15. For each k, let Jk : L2(γd) → Ck be the orthogonal projection of
L2(γd) onto Ck, which is continuous and (formally) self-adjoint on L2(γd). Then, the
Hermite expansion of f ∈ L2(γd) can be written as

f =
∞

∑
k=0

Jk f =
∞

∑
k=0

∑
|ν |=k

〈 f ,hν〉γhν , (1.71)

where
Jk f = ∑

|ν |=k

〈 f ,hν〉γhν . (1.72)

Moreover, as we prove later, as a consequence of the hypercontractivity of the
Ornstein–Uhlenbeck semigroup, the projection Jk (restricted to the polynomials) can
be extended continuously to Lp(γd) for 1 < p < ∞.

In this book, we study only harmonic analysis with respect to Hermite polyno-
mial expansions; thus, considerations of results related to Hermite functions or other
classical orthogonal polynomials or orthogonal functions are beyond its scope. For
more information on the latter, we refer to the next section.

1.4 Notes and Further Results

1. In [168] J. Maas, J. van Neerven, and P. Portal have another lemma, along the
same lines as Lemma 1.5.
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Lemma 1.16. Let a,A > 0 be given. If B(x,r) ∈ Ba and B(y,r′) ∈ BA have a
non-empty intersection, then

|x− y|< k min{m(x),m(y)},

where k = ka,A = max{2amax{a+A,1}+A,2Amax{a+A,1}+a}.
Proof. We have three cases:
• If |y| ≤ 1, then m(x)≤ 1 = m(y).
• If |y|> 1 and |y| ≤ 2(a+A), then

m(x)≤ 1 ≤ 2(a+A)
1
|y| = 2(a+A)m(y).

• If |y|> 1 and |y|=C(a+A), with C > 2, then

|x| ≥ |y|− r− r′ ≥ |y|−a−A = (C−1)(a+A),

and therefore,

m(x)≤ 1
|x| ≤

C
C−1

1
C(a+A)

=
C

C−1
1
|y| =

C
C−1

m(y)≤ 2m(y).

Hence, in each of these cases,

|x− y| ≤ r+ r′ ≤ am(x)+Am(y)≤ (2amax{a+A,1}+A)m(y).

By symmetry, the same argument yields

|x− y| ≤ (2Amax{a+A,1}+a)m(x),

and the result follows. ��
2. In [174, Proposition 2.1 iii)], G. Mauceri and S. Meda also proved that if B,B′ ∈

Ba, B∩B′ �= /0 and γd(B′)≤ 2γd(B), then

rB′ ≤ (2e8a+a2
)1/drB. (1.73)

Because using inequality (1.15) we get

γd(B
′)≥ 1

πd/2
e−|cB′ |2e−2a−a2 |B′| and γd(B)≤

1

πd/2
e−|cB|2e2a|B|.

Thus, the assumption γd(B′)≤ 2γd(B), implies that

e−|cB′ |2e−2a−a2 |B′| ≤ 2e−|cB′ |2e2a|B|.

Therefore, because the Gaussian density is a radially decreasing function, the
ball B′ satisfying the assumptions and with maximal radius is that of volume
2γd(B) such that |cB′ | ≥ |cB| and cB and cB′ are collinear with the origin. In this
case |cB′ |− |cB|= rB′ + rB, so that

( rB′

rB

)d
≤ 2e|cB′ |2−|cB|2e4a+a2

= 2e(|cB′ |+|cB|)(|cB′ |−|cB|)e4a+a2

≤ 2e2a+|cB′ |rB+|cB|rB′ e4a+a2 ≤ 2e8a+a2
.
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3. In [168], J. Maas, J. van Neerven, and P. Portal proved that the Gaussian measure
satisfies the doubling property on a family of admissible cubes Δγ .

Lemma 1.17. For α > 0, let αQ be the cube with the same center as Q that has
a side length α times the side length of Q. Then, there exists a constant C =Cα ,d
depending only on α and the dimension d, such that for any cube Q ∈ Δγ ,15 we
have

γd(αQ)≤Cγd(Q). (1.74)

Proof. Without loss of generality we may assume that α > 1. Let Q ∈ Δγ
k,l with

center y and side-length 2s, and let B = B(y,s). Then, B ⊂ Q, and moreover
αQ ⊂ α

√
dB. Now, if |y|> 1

2s =
diam(Q)√

d
= 2−k−l ≤ 2−l ≤

√
d

|y| =
√

d m(y),

where m(y) = 1∧ 1
|y| is the admissibility function. If |y| ≤ 1,

2s =
diam(Q)√

d
= 2−k−l ≤ 1 ≤

√
d m(y),

thus, B ∈ B√
d/2. Using the doubling property of the Gaussian measure on

B√
d/2, see Proposition 1.6, there exists C =C(α,d) such that

γd(αQ)≤ γd(α
√

dB)≤Cγd(B)≤Cγd(Q). ��

4. The Hermite functions are defined as

Ψ0(x) = 1

and, for n ≥ 1,

Ψn(x) = (−1)ne
x2
2

dn

dxn (e
−x2

). (1.75)

Therefore, it is clear from Rodrigues formula (1.28) that

Ψn(x) = Hn(x)e
−x2

2 ;

hence, {Ψn}n≥0 is an orthogonal system with respect to the Lebesgue measure,
that is ∫ ∞

−∞
Ψn(x)Ψm(x)dx = 0,

if n �= m. Moreover, their properties can be easily deduced from the correspond-
ing properties of the Hermite polynomials. In particular, the Hermite functions
{ψn}n are eigenfunctions of the Hermite operator

15See the definition of Δγ and Δγ
k,l in (4.6), Chapter 4.
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H =− d2

dx2 + x2, (1.76)

associated with the eigenvalues {(2n+1)}, i.e.,

−d2Ψn(x)
dx2 + x2Ψn(x) = (2n+1)Ψn(x).

Observe that

H =
1
2

[(
− d

dx
+ x

)( d
dx

+ x
)
+
( d

dx
+ x

)(
− d

dx
+ x

)]
=

1
2
(AA∗+A∗A),

where A = (− d
dx + x) and A∗ = ( d

dx + x). A and ∗ are called the creation and
annihilation operators in quantum mechanics (see [270]).

We define the normalized Hermite functions as

ψn(x) =
Ψn(x)

(π1/22nn!)1/2
. (1.77)

They can also be written in the form

ψn(x) = hn(x)
e−

x2
2

π1/2
. (1.78)

The paper of A. González Dominguez [114] is an important early reference to
the modern study of Hermite functions.

Additionally, by induction and taking the Fourier transform, we can see that the
Hermite functions are eigenfunctions of the Fourier transform; see for instance
[149] or [270, Lemma 1.1.3.].

The Hermite functions in d-variables of order ν = (ν1,ν2, · · · ,νd)∈N
d
0,Ψν , are

defined as the tensor products of Hermite functions in one variable,

Ψν(x) =
d

∏
i=1

Ψνi(xi),

where x = (x1,x2, · · · ,xd) ∈ R
d , and Ψνi(xi) is the νi-Hermite function in the

variable xi.
Analogously, the normalized Hermite functions in d- variables of order ν =
(ν1,ν2, · · · ,νd) ∈ N

d
0 are defined as the tensor products of Hermite functions in

one variable,

ψν(x) =
d

∏
i=1

ψνi(xi),
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where x = (x1,x2, · · · ,xd) ∈ R
d , and ψνi(xi) is the normalized νi-Hermite func-

tion in the variable xi.

Observe that defining, for each 1 < p < ∞, the map Ξ (p)
d : Lp(γd)→ Lp(Rd) as

Ξ (p)
d f (x) = f (x)π−(d/2)pe−|x|2/p, (1.79)

then, Ξ (p)
d is clearly an isometric isomorphism. In particular, Ξ (2)

1 Hn is a multi-

ple ofΨn or, equivalently, Ξ (2)
1 (hn) = ψn. Analogously, Ξ (2)

d Hα is a multiple of
Ψα .

5. In spite of the fact that Hermite polynomials are dense in Lp(γd) for 1 ≤ p < ∞,
in [230], H. Pollard proved that Sn f → f in Lp(γ1), that is

∫ ∞

−∞
|Sn f (x)− f (x)|pγ1(dx)→ 0,

as n → ∞, if and only if p = 2 using the fact that the Hermite polynomials are a
limiting case of the ultraspherical polynomials (see 10.67). But p = 2 is a trivial
case from the Hilbert space theory. Pollard’s counterexample is the following:
given 1 < p < 2, let us consider the function

f (x) = ecx2
, (1.80)

with 1
2 < c < 1

p . Then, f ∈ Lp(γd). It can be shown that for any k ∈ N,

f̂H(2k+1) = 0 and f̂H(2k) = M
( c

1− c

)k 1
4kk!

.

then,

f̂H(2k)
∫ ∞

−∞
|H2k(x)|pe−x2

dx ≥ M

(2k+1)1/2

( c
1− c

)k ∫ 2(2k+1)1/2π

(2k+1)1/2π
|cosx|dx

≥ M
( c

1− c

)(2k+1)1/2

;

therefore,

lim sup
k→∞

f̂H(2k)
∫ ∞

−∞
|H2k(x)|pe−x2

dx = ∞.

For more details see [230].

6. The other families of classical orthogonal polynomials, the Jacobi polynomials
and the Laguerre polynomials are considered briefly in Appendix B. Similar to
the Hermite case, Jacobi functions and Laguerre functions can also be defined.
For more information see [53] or [262].
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7. There is a more general class of Hermite polynomials, {Hμ
n } the generalized

Hermite polynomials. They were defined by G. Szëgo in [262] (see problem 25,
p. 380) and studied in detail by T. S. Chihara in his Ph.D. thesis [54]. They are
defined as being orthogonal polynomials with respect to the measure

dλμ(x) = |x|2μe−|x|2dx, (1.81)

with μ >−1/2. When μ = 0 these polynomials coincide, up to a constant, with
the classical Hermite polynomials.
Nevertheless, these polynomials are not classical polynomials as they satisfy a
second-order differential-difference equation (10.47) instead of a second-order
differential equation, i.e., they are eigenfunctions of the differential-difference
operator (10.48)

Lμ =
1
2

d2

dx2 +(
μ
x
− x)

d
dx

−μ
I − Ĩ
2x2 .

For more details, see Appendix and [54].



2

The Ornstein–Uhlenbeck Operator
and the Ornstein–Uhlenbeck Semigroup

In this chapter we are going to define and study the Ornstein–Uhlenbeck operator
and the Ornstein–Uhlenbeck semigroup. They are analogous, in the Gaussian har-
monic analysis, to the Laplacian and the heat semigroup in the classical case. Then,
we study an important property of the Ornstein–Uhlenbeck semigroup, the hyper-
contractivity property, and some of its applications.

2.1 The Ornstein–Uhlenbeck Operator

In the classical case, we consider the Laplacian differential operator Δx = ∑d
i=1

∂ 2

∂x2
i

in R
d and the eigenvalue problem

Δxu = λu (2.1)

with boundary condition

u(x) = O(1), as |x| → ∞.

Then, the set of eigenvalues of this problem consists of all non-positive real numbers,
and given λ < 0 the eigenfunctions corresponding to λ are

ei〈·,y〉, |y|2 =−λ . (2.2)

The Ornstein–Uhlenbeck operator in R
d is a second-order differential operator

defined as

L =
1
2
Δx −〈x,∇x〉=

d

∑
i=1

[1
2
∂ 2

∂x2
i

− xi
∂
∂xi

]
, (2.3)
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where ∇x = ( ∂
∂x1

, ∂
∂x2

, . . . , ∂
∂xd

) is the gradient, and Δx is the Laplace operator defined

in the space of test functions C∞
0 (R

d) of smooth functions with compact support on
R

d . The operator L has a self-adjoint extension to L2(γd), that is also denoted as L,
that is, ∫

Rd
L f (x)g(x)γd(dx) =

∫
Rd

f (x)Lg(x)γd(dx); (2.4)

thus, L is the natural “symmetric” Laplacian in this context.

The Ornstein–Uhlenbeck operator L can also be written as

L =
d

∑
i=1

Li, (2.5)

where Li =
1
2∂

2
i − xi∂i, i = 1, · · ·d, is the one-dimensional Ornstein–Uhlenbeck op-

erator in the i-th variable. Hence, for x = (x1,x2, · · · ,xd) ∈ R
d and ν = (ν, · · · ,νd) a

multi-index,

LHν(x) =
d

∑
i=1

[1
2
∂ 2Hν
∂xi

(x)− xi
∂Hν(x)
∂xi

(x)
]

=
d

∑
i=1

[1
2
∂ 2

∂x2
i

d

∏
j=1

Hν j(x j)− xi
∂
∂xi

d

∏
j=1

Hν j(x j)
]

=
d

∑
i=1

d

∏
j=1, j �=i

Hν j(x j)
[1

2
∂ 2Hνi

∂xi
(xi)− xi

∂Hνi

∂xi
(xi)

]

=
d

∑
i=1

d

∏
j=1, j �=i

Hν j(x j)LiHνi(xi) =
d

∑
i=1

(−νi)
d

∏
j=1

Hν j(x j)

=
d

∑
i=1

(−νi)Hν(x) =−|ν |Hν(x). (2.6)

Thus, the Hermite polynomials in d-variables, {Hν}ν are eigenfunctions of L with
corresponding eigenvalues λν =−|ν |=−∑d

i=1 νi, i.e.,

LHν = λνHν =−|ν |Hν , (2.7)

and the normalized Hermite polynomials hν are also eigenfunctions of the Ornstein–
Uhlenbeck operator, with the same corresponding eigenvalue,

Lhν = λνhν =−|ν |hν .

Moreover, consider the eigenvalue problem

Lu = λu (2.8)
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with boundary condition

u(x) = O(|x|k), for some k ≥ 0 as |x| → ∞.

Then, the set of eigenvalues is the set of negative integers and the eigenfunctions
corresponding to λ = −n are d-dimensional Hermite polynomials of degree ν , Hν ,
such that |ν |= n.

Hence, the L2(γd) spectrum of L is {· · · ,−2,−1,0}. This coincides with the
Lp(γd)-spectrum for 1 < p < ∞.1 Then, the spectral decomposition of L is given
by

L f =
∞

∑
k=0

(−k)Jk f , (2.9)

where, as before see Definition 1.15, Jk f = ∑|ν |=k〈 f ,hν〉γd hν . Then, the domain of
L is given by

D(L) = { f ∈ L2(γd) :
∞

∑
k=0

k2||Jk f ||22,γ < ∞}, (2.10)

and the spectral decomposition (2.9) is well defined for any f = ∑∞
k=0 Jk f ∈ D(L).

For i = 1,2, · · · ,d let us consider the differential operators

∂ i
γ =

1√
2

∂
∂xi

. (2.11)

∂ i
γ is neither symmetric nor antisymmetric in L2(γd). In fact, its formal L2(γd)-

adjoint2 is

(∂ i
γ)

∗ =− 1√
2

ex2
i
∂
∂xi

(e−x2
i I) =

√
2xiId −

1√
2

∂
∂xi

, (2.12)

where Id is the identity in R
d , because, simply by integration by parts,

∫
Rd
(∂ i

γ f )(x)g(x)
e−|x|2

πd/2
dx =

1√
2

∫
Rd

[ ∂ f
∂xi

(x)
]
g(x)

e−|x|2

πd/2
dx

= − 1√
2

∫
Rd

f (x)
∂
∂xi

[
g(x)

e−|x|2

πd/2

]
dx

=
∫
Rd

f (x)
[√

2xig(x)−
1√
2

∂g
∂xi

(x)
]e−|x|2

πd/2
]dx

=
∫
Rd

f (x)((∂ i
γ)

∗g)(x)
e−|x|2

πd/2
dx.

1The L1(γd)-spectrum of L is the closed right half plane. We will prove this in detail later
(see Theorem 2.7, see also E. B. Davies [65, Theorem 4.3.5]).

2In L2(Rd), ∂
∂xi

is antisymmetric, by integration by parts.
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Observe that (∂ i
γ)

∗ can be written as

(∂ i
γ)

∗ =− 1√
2

e|x|
2
(∂ie

−|x|2I).

Moreover, it is easy to see that

(−L) =
d

∑
i=1

(∂ i
γ)

∗∂ i
γ . (2.13)

Observe that the commutator [∂ i
γ ,(∂ i

γ)
∗], is the identity;3

[∂ i
γ ,(∂ i

γ)
∗] f (x)= ∂ i

γ(∂ i
γ)

∗ f (x)−(∂ i
γ)

∗∂ i
γ f (x)

=
1√
2

∂
∂xi

(√
2xi f (x)− 1√

2

∂ f (x)
∂xi

)
−
(√

2xiI−
1√
2

∂
∂xi

)( 1√
2

∂ f (x)
∂xi

)

= f (x)+
√

2xi
∂ f (x)
∂xi

− 1
2
∂ 2 f (x)

∂x2
i

− xi
∂ f (x)
∂xi

+
1
2
∂ 2 f (x)

∂x2
i

= f (x).

Reversing the order in (2.13), we get another second-order differential operator,
which will be denoted as L,

(−L) =
d

∑
i=1

∂ i
γ(∂ i

γ)
∗ = (−L)+dI =−1

2
Δx + 〈x,∇x〉+dI, (2.14)

and therefore,

L = L−dI =
1
2
Δx −〈x,∇x〉−dI. (2.15)

We will call L the alternative Ornstein–Uhlenbeck operator. The Hermite
polynomials {Hν}ν are also eigenfunctions of L, with eigenvalues λν =−(|ν |+1),
i.e.,

LHν = (λν −1)Hν =−(|ν |+1)Hν , (2.16)

The differential operators ∂ i
γ are considered the “natural” notions of (partial)

derivatives for the Gaussian case, and we call it simply the Gaussian partial deriva-
tives. Nevertheless, as we already know, there is another notion of Gaussian differ-
entiation, namely, (∂ i

γ)
∗. The operators ∂ i

γ ,(∂ i
γ)

∗ are called the creation and annihi-

lation operators in quantum mechanics.4

3Recall that, the commutator of two operators A,B is defined as [A,B] = AB−BA.
4In [210] there is a general analysis of this decomposition for orthogonal polynomials and

functions, which is highly recommended.
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Thus, the notion of (partial) differentiation in Gaussian harmonic analysis is, up
to a constant, the same as in the classical case. These facts are important later on
when we discuss the Riesz transforms for the Gaussian measure in Chapter 9.

There are several results in Gaussian harmonic analysis that can be obtained by
what is called the tensorization argument, see [20, 284], which implies that it is
enough to prove only the case d = 1 because the case d > 1 follows immediately by
the tensor product structure.

In this case, the square field operator in R
d is given by

Γ ( f ,g) =
1
2
(L( f g)−gL f − f Lg) =

1
2

d

∑
i=1

∂ f
∂xi

∂g
∂xi

=
1
2
〈∇x f ,∇xg〉. (2.17)

Consider the infinitesimal generator O of an operator semigroup {Tt}, and
symmetric with respect to the measure μ , the Dirichlet form associated with O
is defined as

Eμ( f ) = lim
t→0

〈 f −Tt f , f 〉μ
t

= 〈−O f , f 〉μ =−
∫

E
f (O f )dμ . (2.18)

Then, by symmetry, it can be proved that

Eμ( f ) =
∫

E
Γ ( f , f )dμ . (2.19)

for f ∈ L2(μ); see [120, 284].

Hence, the Dirichlet form associated with the Ornstein–Uhlenbeck operator L
and the Gaussian measure γd is given by

Eγ( f )(x) =
∫
Rd
Γ ( f , f )(x)γd(dx) =

1
2

∫
Rd

|∇x f (x)|2 γd(dx). (2.20)

This can be obtained simply using integration by parts, as
∫
Rd

〈∇x f (x),∇xg(x)〉γd(dx) = 2
∫
Rd

f (x)(−L)g(x)γd(dx), (2.21)

for f ,g ∈ S (Rd), the Schwartz class. In particular, this implies that (−L) is positive
definite and that the Ornstein–Uhlenbeck operator is (formally) self-adjoint in L2(γd)

∫
Rd

L f (x)g(x)γd(dx) =
∫
Rd

f (x)Lg(x)γd(dx). (2.22)

Therefore, as already mentioned L is the “symmetric Laplacian” in this context and
the Gaussian measure γd is the natural measure for studying the operators associated
with the operator L.
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In addition, the iterated square field operator Γ2( f ,g), in this case, is given by

Γ2( f ,g) =
1
2
[LΓ ( f ,g)−Γ ( f ,Lg)−Γ (g,L f )]. (2.23)

Finally, in [168, Lemma 4.1] J. Maas, J. van Neerven, and P. Portal obtained a
Gaussian version of the parabolic Caccioppoli inequality. We consider here only the
real version.

Theorem 2.1. Let v : Rd × (0,∞)→ R be a C1,2-function such that v(·, t) ∈ C2
b(R

d)
for all t > 0, and suppose that

∂v
∂ t

= Lv

on I(x0, t0,2r) := B(x0,2cr)× [t0 − 4r2, t0 + 4r2], for some r ∈ (0,1), 0 < C0 ≤ c ≤
C1 < ∞, and t0 > 4r2. Then

∫
I(x0,t0,r)

|∇xv(x, t)|2 γd(dx)dt ≤C
1+ r|x0|

r2

∫
I(x0,t0,2r)

|v(x, t)|2 γd(dx)dt, (2.24)

with C depending only on the dimension d, C0, and C1.

Proof. Let η ∈ C∞(Rd × (0,∞)) be a cut-off function such that 0 ≤ η ≤ 1 on R
d ×

(0,∞), η ≡ 1 on I(x0, t0,r), η ≡ 0 on the complement of I(x0, t0,2r), and

‖∇xη‖∞ � 1
r
, ‖∂η

∂ t
‖∞ � 1

r2 , ‖Δη‖∞ � 1
r2

with the implied constants depending only on d, C0 and C1. Then, in view of

‖x ·∇xη‖∞ � (|x0|+2r) · C′

r
,

and recalling that 0 < r < 1, we have

‖Lη‖∞ � 1
r2 +

1
r
|x0|+1 � 1+ r|x0|

r2 , (2.25)

where the implied constants depend only on d, C0, C1. By integrating the identity

|η∇xv|2 = 〈η∇xv,η∇xv〉= 〈(v∇xη−∇x(vη)),(v∇xη−∇x(vη))〉,

and then using the fact that
∫

I(x0,t0,2r)
η2〈∇x(vη),∇x(vη)〉dγd dt ≤

∫ ∞

0

∫
Rd

〈∇x(vη),∇x(vη)〉dγd dt

= 2
∫ ∞

0

∫
Rd

vη(−L)(vη)dγd dt

=−2
∫

I(x0,t0,2r)
vηL(vη)dγd dt,
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According to (2.21), we obtain

∫
I(x0,t0,r)

|∇xv|2 dγd dt ≤
∫

I(x0,t0,2r)
η2|η∇xv|2 dγd dt

≤
∫

I(x0,t0,2r)
η2|v∇xη |2 dγd dt

+2
∣∣∣
∫

I(x0,t0,2r)
vη2〈∇x(vη),∇xη〉dγd dt

∣∣∣
+2

∣∣∣
∫

I(x0,t0,2r)
vηL(vη)dγd dt

∣∣∣.

(2.26)

For the first term on the right-hand side we have the estimate

∫
I(x0,t0,2r)

η2|v∇xη |2 dγd dt � 1
r2

∫
I(x0,t0,2r)

|v|2 dγd dt.

For the second term we have, by (2.25),

∣∣∣
∫

I(x0,t0,2r)
2vη2〈∇x(vη),∇xη〉dγd dt

∣∣∣= 1
2

∣∣∣
∫

I(x0,t0,2r)
〈∇x(vη)2,∇xη2〉dγd dt

∣∣∣
≤
∣∣∣
∫
Rd
(vη)2Lη2 dγd dt

∣∣∣
� 1+ r|x0|

r2

∫
I(x0,t0,2r)

|v|2 dγd dt

where we used the fact that η2 satisfies the same assumptions as η to apply (2.25)
to η2. To estimate the third term on the right-hand side of (2.26), we substitute the
identity

L(vη) = ηLv+ vLη−〈∇xv,∇xη〉= η
∂v
∂ t

+ vLη−〈∇xv,∇xη〉

and estimate each of the resulting integrals:

∣∣∣
∫

I(x0,t0,2r)
vη2 ∂v

∂ t
dγ dt

∣∣∣ = 1
2

∣∣∣
∫

I(x0,t0,2r)
η2 ∂v2

∂ t
dγd dt

∣∣∣= 1
2

∣∣∣
∫

I(x0,t0,2r)
v2 ∂η2

∂ t
dγd dt

∣∣∣
=

∣∣∣
∫

I(x0,t0,2r)
v2η

∂η
∂ t

dγd dt
∣∣∣� 1

r2

∫
I(x0,t0,2r)

|v|2 dγd dt,

∣∣∣
∫

I(x0,t0,2r)
v2ηLη dγd dt

∣∣∣ � 1+ r|x0|
r2

∫
I(x0,t0,2r)

|v|2 dγd dt,
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and ∣∣∣
∫

I(x0,t0,2r)
vη〈∇xv,∇xη〉dγd dt

∣∣∣ = 1
4

∣∣∣
∫

I(x0,t0,2r)
〈∇xv2, t∇xη2〉dγd dt

∣∣∣
=

1
4

∣∣∣
∫
Rd

v2Lη2 dγd dt
∣∣∣

� 1+ r|x0|
r2

∫
I(x0,t0,2r)

|v|2 dγd dt. ��

2.2 Definition and Basic Properties of the Ornstein–Uhlenbeck
Semigroup

Now, we consider the Ornstein–Uhlenbeck semigroup. On L2(γd) the closure of the
Ornstein–Uhlenbeck operator L generates an operator semigroup.

Definition 2.2. The Ornstein–Uhlenbeck semigroup {Tt}t≥0 is the semigroup of op-
erators generated in L2(γd) by the Ornstein–Uhlenbeck operator L as infinitesimal
generator, i.e., formally Tt = e−tL. In view of the spectral theorem, for f =∑∞

k=0 Jk f ∈
L2(γd) and t ≥ 0, Tt is defined as

Tt f =∑
ν

e−t|ν |〈 f ,hν〉γd hν =
∞

∑
k=0

e−tk ∑
|ν |=k

〈 f ,hν〉γd hν =
∞

∑
k=0

e−tkJk f , (2.27)

where Jk f = ∑|ν |=k〈 f ,hν〉γd hν is the orthogonal projection of L2(γd) onto Ck.

The Ornstein–Uhlenbeck semigroup have the following representations.

Proposition 2.3. (C. P. Calderón- B. Muckenhoupt)

i) If f ∈ L2(γd), then ∑∞
k=0 e−tkJk f (x) converges absolutely to Tt f (x) almost every-

where (a.e.)γd.
ii) For any 1 ≤ p <,2 there exists a function f ∈ Lp(γd) and t ≥ 0 such that

∑∞
k=0 e−tkJk f (x) diverges for all x.

iii) For any t > 0 the integral representation for Tt is given by

Tt f (x) =
1

(1− e−2t)d/2

∫
Rd

e
− e−2t (|y|2+|x|2)−2e−t 〈x,y〉

1−e−2t f (y)γd(dy). (2.28)

Proof.

i) Observe that for each multi-index ν , |ν | > 0, according to (1.64) and the
Cauchy–Schwartz inequality, we have

|〈 f ,hν〉γd hν(x)| ≤ Cν ,xν!|| f ||2,γ =C′
ν ,x|| f ||2,γ .

Therefore, the sequence {〈 f ,hν〉γd hν(x)} is bounded for each x; thus using to
the Weierstrass M-test, the series ∑∞

k=0 e−tkJk f (x) converges absolutely for any
x. Because L2(γd) ⊂ L1(γd), then, according to the first part, Tt f (x) has the
expansion ∑∞

k=0 e−tkJk f (x), and this must be the limit a.e.
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ii) Using the multiplicative character of the Gaussian measure γd , it is enough to
consider the case d = 1. According to Pollard’s counterexample [230], for 1 ≤
p < 2, there exists a function f ∈ Lp(γ1) such that

limsup
k→∞

(〈 f ,hk〉γd |Hk(x)|)1/k

is a fixed number greater than 1, for any x. Therefore, for t close enough to zero
(i.e., e−t close enough to 1), the expansion of Tt f diverges for any x.

iii) Using again (1.64), the Cauchy–Schwartz inequality and Stirling’s formula, we
get for |ν |= k

∫
Rd

e−tk| f (y)||hν (y)||hν (x)|γd(dy) ≤ ‖ f‖2,γ

(∫
Rd

e−2tk|hν (y)|2|hν (x)|2γd(dy)
)1/2

≤ ‖ f‖2,γe−tkCν ,x(ν!)1/2
(∫

Rd
|hν (y)|2γd(dy)

)1/2

≤Cν ,x‖ f‖2,γe−tk.

Then, using this, Lebesgue’s dominated convergence theorem and the
d-dimensional Mehler’s formula (10.24), for r = e−t we get

Tt f (x) = ∑
|ν |≥0

e−t|ν |
[∫

Rd
f (y)hν(y)γd(dy)

]
hν(x)

=
∫
Rd

(
∑

|ν |≥0

e−t|ν |hν(x)hν(y)
)

f (y)γd(dy)

=
1

(1− e−2t)d/2

∫
Rd

e
− e−2t (|y|2+|x|2)−2e−t 〈x,y〉

1−e−2t f (y)γd(dy). ��

Note that the integral representation (2.28), obtained initially for f ∈ L2(γd),
also makes sense for f ∈ Lp(γd), 1 ≤ p < ∞, by using Hölder’s inequality. There-
fore, {Tt}t≥0 can be extended as a family of operators in Lp(γd). Also note that, tak-
ing r = e−t , (2.27) is equivalent to the Abel summability of the Hermite expansion
of f

Tr f =
∞

∑
k=0

rkJk f .

Using this approach, B. Muckenhoupt [193], considered the so-called Poisson inte-
gral for the Hermite expansion for d = 1, and also C.P. Calderón [44] for the case
d ≥ 1.
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The kernel

Mt(x,y) =
1

(1− e−2t)d/2
e
− e−2t (|x|2+|y|2)−2e−t 〈x,y〉

1−e−2t , (2.29)

is called Mehler’s kernel5.

The integral representation of Tt can be written in several equivalent forms. The
first one provides the link between the Ornstein–Uhlenbeck semigroup and the heat
semigroup,

Tt f (x) =
1

(1− e−2t)d/2

∫
Rd

e
− e−2t (|x|2+|y|2)−2e−t 〈x,y〉

1−e−2t f (y)γd(dy)

=
1

πd/2(1− e−2t)d/2

∫
Rd

e
− |y−e−t x|2

1−e−2t f (y)dy, t > 0. (2.30)

Observe that now we are integrating with respect to the Lebesgue measure. The
alternative expression,

Mt(x,y) =
1

πd/2(1− e−2t)d/2
e
− |y−e−t x|2

1−e−2t , (2.31)

allows us to establish a connection between Mehler’s kernel and the heat kernel

kt(x) =
1

(4πt)d/2
e−|x|2/4t . (2.32)

Using {Tt}t≥0, the heat semigroup6

Tt f (x) =
1

(4πt)d/2

∫
Rd

e
−|x−y|2

4t f (y)dy, t > 0,

we have the following representation of the Ornstein–Uhlenbeck semigroup

Tt f (x) = (k(1−e−2t )/4 ∗ f )(e−t x) = δe−t [k(1−e−2t )/4 ∗ f ](x) = δe−t T(1−e−2t )/4 f (x),

where δa is the dilation operator by a, defined by

δa f (x) = f (ax). (2.33)

Thus, the Ornstein–Uhlenbeck semigroup is, after a dilation on the variable x, a
reparametrization of the heat semigroup; therefore, it is not a convolution semigroup.
More precisely, before taking the convolution with the properly reparametrized heat
kernel, a dilation by e−t is applied in the variable x. Because of this dilatation, none

5We have already encountered this kernel in Chapter 1, (1.41)
6See Appendix 10.5 for more details.
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of the methods used in the study of classical semigroups can be applied to this semi-
group. Nevertheless, F. Weissler [292], who denotes this semigroup as the Hermite
semigroup,7 establishes another explicit relation between the Ornstein–Uhlenbeck
and the heat semigroups,

Theorem 2.4. Let 1 ≤ p,q ≤ ∞, t ≥ 0, and ζ ≥ 0.8 Then,

Tt = (ζet)d/2π(1/2p−1/2q)d(Ξ (q)
d )−1Mβ δζTζ (1−e−2t )/4e−tMαΞ

(p)
d , (2.34)

where

α =
1

1− e−2t −
1
p
− e−t

ζ (1− e−2t)
,

β =
1

1− e−2t −
1
q′ −

ζe−t

1− e−2t ,

Ξ (p)
d : Lp(γd)→ Lp(Rd) is the isometric isomorphism defined, for any 1 < p <∞, as

Ξ (p)
d f (x) = f (x)π−d/2pe−|x|2/p, (2.35)

Mα is the multiplication operator defined as

Mα f (x) = eα |x|2 f (x),

and finally δa is the dilation operator, as defined in (2.33).

Using this relation, Weissler succeeded in not only extending the Ornstein–
Uhlenbeck semigroup holomorphically to the half-plane Rez ≥ 0, where the heat
semigroup is holomorphic but he was also able to obtain additional information
on the continuity of both semigroups (for more details see [292]). We discuss later
in this chapter the holomorphic Ornstein–Uhlenbeck semigroup in more detail (see
page 49).

Observe that
Mt(x,y) = Mt(y,x)e

|x|2−|y|2 .

Through the change of variables u = y−e−t x√
1−e−2t

, we get an alternative representa-

tion of Tt

Tt f (x) =
1

πd/2

∫
Rd

f (
√

1− e−2tu+ e−t x)e−|u|2du. (2.36)

This representation of the Ornstein–Uhlenbeck semigroup allows us to extend it
to a space of infinite dimensions, where the Gaussian measure, unlike the Lebesgue
measure, is well defined (see P. A. Meyer [187]).

7We refer to another semigroup as the Hermite semigroup, see point 10. in Section 2.5,
page 70.

8Actually, Weissler defines it for z ∈ C such that Rez ≥ 0 and Re(ζez) ≥ 0, see [292,
Theorem 1].
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One problem of the kernel (2.31) is that it does not reflect the symmetry of
Mehler’s kernel. An alternative symmetric representation of (2.29) is given by

Mt(x,y) =
1

(1− e−2t)d/2
exp

(1
2
|x+ y|2
et +1

− 1
2
|x− y|2
et −1

)
, (2.37)

which has been used in several papers about the Ornstein–Uhlenbeck semigroup,
(see for instance [249] and [104]). In [265], J. Teuwen has an alternative symmetric
representation:

Mt(x,y) =
exp(− e2t |x−y|2

1−e2t )

(1− e−t)d/2

exp(2e−t 〈x,y〉
1+et )

(1+ e−t)d/2
. (2.38)

The Ornstein–Uhlenbeck semigroup {Tt}t≥0 in R
d is a Markov operator semi-

group in Lp(γd),1 ≤ p ≤ ∞, i.e., a positive conservative symmetric diffusion semi-
group, strongly Lp-continuous in Lp(γd),1 ≤ p ≤ ∞, with the Ornstein–Uhlenbeck
operator L as its infinitesimal generator (see [23, 20] or [284]). Its properties can be
obtained directly from the general theory of Markov semigroups (see [20] or [284]).
Nevertheless, because the Ornstein–Uhlenbeck semigroup is of such great impor-
tance and serves as a “model” for Markov semigroups associated with classical or-
thogonal polynomials, we are going to give detailed analytic proof of its properties
using its integral representation (2.28).

Theorem 2.5. The family of operators {Tt : t ≥ 0} satisfies the following properties:

i) Semigroup property:
Tt1+t2 = Tt1 ◦Tt2 , t1, t2 ≥ 0.

ii) Positivity and conservative properties:

Tt f ≥ 0, for f ≥ 0, t ≥ 0,

and
Tt1 = 1.

iii) Contractivity property:
||Tt f ||p,γ ≤ || f ||p,γ ,

for all t ≥ 0, and 1 ≤ p ≤ ∞.
iv) Strong Lp(γd)-continuity property: The mapping t → Tt f is continuous from

[0,∞) to Lp(γd), for 1 ≤ p < ∞ and f ∈ Lp(γd).
v) Symmetry property: Tt is a self-adjoint operator in L2(γd):

∫
Rd

Tt f (x)g(x)γd(dx) =
∫
Rd

f (x)Ttg(x)γd(dx), t ≥ 0. (2.39)

In particular, the Gaussian measure γd is the invariant measure for {Tt}t≥0,

∫
Rd

Tt f (x)γd(dx) =
∫
Rd

f (x)γd(dx), t ≥ 0. (2.40)
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vi) Infinitesimal generator: the Ornstein–Uhlenbeck operator L is the infinitesimal
generator of {Tt : t ≥ 0},

lim
t→0

Tt f − f
t

= L f . (2.41)

Proof.

i) To prove the semigroup property, we use integral representation (2.30)9 as fol-
lows. Let f ∈ L1(γd), by Fubini’s theorem we have

Tt(Ts f )(x) =
1

πd/2(1− e−2t)d/2

∫
Rd

e
− |y−e−t x|2

1−e−2t

×
( 1

πd/2(1− e−2s)d/2

∫
Rd

e
− |z−e−sy|2

1−e−2s f (z)dz
)

dy

=
1

πd/2(1− e−2t)d/2πd/2(1− e−2s)d/2

×
∫
Rd

(∫
Rd

exp
[
− (

|y− e−tx|2
1− e−2t +

|z− e−sy|2
1− e−2s )

]
dy
)

f (z)dz.

Taking the change of variables u = y− esz in the exponent, we get,

−|y− e−t x|2
1− e−2t − |z− e−sy|2

1− e−2s

=−|y− e−t x|2
1− e−2t − e−2s|y− esz|2

1− e−2s =−|u+ esz− e−t x|2
1− e−2t − e−2s|u|2

1− e−2s

=− (1− e−2s)|u− es(e−(t+s)x− z)|2 − (1− e−2t)e−2s|u|2
(1− e−2t)(1− e−2s)

=− (1− e−2s)(|u|2 −2〈u,es(e−(t+s)x− z)〉+ e2s|e−(t+s)x− z|2)
(1− e−2t)(1− e−2s)

− (1− e−2t)e−2s|u|2
(1− e−2t)(1− e−2s)

=−e2s|e−(t+s)x− z|2
1− e−2t +

2es〈u,e−(t+s)x− z〉
1− e−2t − (1− e−2(t+s))|u|2

(1− e−2t)(1− e−2s)
.

But, the last two terms of the latter expression can be rewritten as

2es〈u,e−(t+s)x− z〉
1− e−2t − (1− e−2(t+s))|u|2

(1− e−2t)(1− e−2s)

=− 1− e−2(t+s)

(1− e−2t)(1− e−2s)

[2es〈u,e−(t+s)x− z〉.(1− e−2s)

1− e−2(t+s)
−|u|2

]

=− 1− e−2(t+s)

(1− e−2t)(1− e−2s)

×
[∣∣∣u− es(1− e−2s)(e−(t+s)x− z)

1− e−2(t+s)

∣∣∣2 − e2s(1− e−2s)2

(1− e−2(t+s))2
|e−(t+s)x− z|2

]
.

9For alternative proofs, see point 4. in Notes and Further Results.
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Then, we have,

−|y− e−t x|2
1− e−2t − |z− e−sy|2

1− e−2s =−e2s|e−(t+s)x− z|2
1− e−2t

× 1− e−2(t+s)

(1− e−2t)(1− e−2s)

∣∣u− es(1− e−2s)(e−(t+s)x− z)

1− e−2(t+s)

∣∣2

+
(1− e−2(t+s))

(1− e−2t)(1− e−2s)

e2s(1− e−2s)2

(1− e−2(t+s))2
|e−(t+s)x− z|2

=−e2s|e−(t+s)x− z|2
1− e−2t − (1− e−2(t+s))

(1− e−2t)(1− e−2s)

×
∣∣∣u− es(1− e−2s)(e−(t+s)x− z)

1− e−2(t+s)

∣∣∣2

+
e2s(1− e−2s)

(1− e−2t)(1− e−2(t+s))
|e−(t+s)x− z|2.

Now, taking the change of variables w = u − es(1− e−2s)(e−(t+s)x− z)

1− e−2(t+s)
, we

obtain

∫
Rd

exp

(
− 1− e−2(t+s)

(1− e−2t)(1− e−2s)

∣∣∣u− es(1− e−2s)(e−(t+s)x− z)

1− e−2(t+s)

∣∣∣2
)

du

=
∫
Rd

exp
(
− 1− e−2(t+s)

(1− e−2t)(1− e−2s)
|w|2

)
dw

=
(1− e−2t)d/2(1− e−2s)d/2

(1− e−2(t+s))d/2

∫
Rd

e−|v|2dv

= πd/2 (1− e−2t)d/2(1− e−2s)d/2

(1− e−2(t+s))d/2
.

With another change of variables, v =

√
(1−e−2(t+s))

(1−e−2t )(1−e−2s)
w we have

∫
Rd

exp
[
−
( |y− e−t x|2

1− e−2t +
|z− e−sy|2
1− e−2s

)]
dy

= πd/2 exp
[(

− e2s

1− e−2t +
e2s(1− e−2s)

(1− e−2t)(1− e−2(t+s))

)
|e−(t+s)x− z|2)

]

× (1− e−2t)d/2(1− e−2s)d/2

(1− e−2(t+s))d/2
,
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but as

− e2s

1− e−2t +
e2s(1− e−2s)

(1− e−2t)(1− e−2(t+s))
=

−(1−e−2(t+s))e2s+e2s(1−e−2s)

(1−e−2t)(1−e−2(t+s))

=
e−2t−1

(1−e−2t)(1−e−2(t+s))
=− 1

1−e−2(t+s)
,

we get,

Tt(Ts f )(x) =
1

πd/2(1− e−2t)d/2πd/2(1− e−2s)d/2

×
∫
Rd

(
exp(

−|e−(t+s)x−z|2
1−e−2(t+s)

)
πd/2 (1−e−2t)d/2(1−e−2s)d/2

(1−e−2(t+s))d/2
f (z)dz

=
1

πd/2(1−e−2(t+s))d/2

∫
Rd

e
− |e−(t+s)x−z|2

1−e−2(t+s) f (z)dz = Tt+s f (x).

ii) The conservative property follows immediately by a simple change of variables

u = y−e−t x√
1−e−2t

, the translation invariance property of the Lebesgue measure, and

the fact that γd is a probability measure:

Tt1 =
1

πd/2(1− e−2t)d/2

∫
Rd

e
− |y−e−t x|2

1−e−2t 1dy =
1

πd/2

∫
Rd

e−|u|2du = 1.

For the positivity of Tt , if f ≥ 0,

Tt f (x) =
1

πd/2(1− e−2t)d/2

∫
Rd

f (y)e
− |y−e−t x|2

1−e−2t dy ≥ 0,

as the kernel is positive.

iii) Because the Ornstein–Uhlenbeck semigroup is not a convolution semigroup, this
property cannot be obtained using the theory of approximations of the identity,
as in the case of the classical semigroups (see Appendix 10.5). Nevertheless, it
can be obtained using Jensen’s inequality:

|Tt f (x)|p ≤ 1

πd/2(1− e−2t)d/2

∫
Rd

e
− e−2t (|x|2+|y|2)−2e−t 〈x,y〉

1−e−2t | f (y)|pe−|y|2dy.

= Tt(| f |p)(x),

Then, according to v),

||Tt f ||pp,γd
≤ 1

πd/2

∫
Rd

Tt(| f |p)(x)e−|x|2dx = || f ||pp,γd
.
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Therefore, Tt is a contraction in Lp(γd),1 ≤ p < ∞. The case p = ∞ follows
immediately because Tt1 = 1, according to ii). Alternatively, this can also be
obtained by using interpolation and duality.

iv) We need to prove that Tt f → Tt0 f in Lp(γd) as t → t0. Again, this is not a conse-
quence of the general theory of approximations of the identity. According to the
semigroup property, it is enough to prove that Tt f → f in Lp(γd) as t → 0. Ob-
serve that Lp(γd) is not closed under translation;10 thus, it does not make sense
to speak of continuity in norm Lp(γd) and hence, this type of argument cannot
be used either. The alternative proof below is an extension to d-dimensions of
the proof in [193].

|Tt f (x)− f (x)|

≤ 1

πd/2(1− e−2t)d/2

∫
|x−y|<δ

e
− e−2t (|x|2+|y|2)−2e−t 〈x,y〉

1−e−2t | f (y)− f (x)|e−|y|2dy

+
1

πd/2(1− e−2t)d/2

∫
|x−y|≥δ

e
− e−2t (|x|2+|y|2)−2e−t 〈x,y〉

1−e−2t | f (y)− f (x)|e−|y|2dy.

Let f be a function defined in R
d , continuous with compact support, and let ε > 0

and δ > 0 be such that if |x− y|< δ , then | f (x)− f (y)|< ε . Now, according to
iii), it is clear that the first integral is less than ε . Now, if y belongs to the support
of f , |x− y|> δ and 0 ≤ 1− e−t < δ e−t

2 max{|y| : y ∈ supp f}. Then,

exp
(
− |e−t(x− y)− y(1− e−t)|2

1− e−2t + |y|2
)

≤ exp
(
− e−2tδ 2

4(1− e−2t)
+max{|y|2 : y ∈ supp f}

)
.

The second integral is less than

2|| f ||∞,γ
πd/2(1− e−2t)d/2

∫
supp f

exp
(
− e−2tδ 2

4(1− e−2t)
+max{|y|2 :y ∈ supp f}

)
e−|y|2dy,

and this tends to zero as t → t0. Thus, Tt f → f uniformly in x as t → 0. The
general case follows from the density of the continuous functions with compact
support in Lp(γd) for 1 ≤ p < ∞ and using iii).

v) To prove (2.39), using Fubini’s theorem, we have

∫
Rd

Tt f (x)g(x)γd(dx)

=
1

πd/2(1− e−2t)d/2

∫
Rd

(∫
Rd

e(−
(|y|2+|x|2)−2e−t 〈x,y〉

1−e−2t ) f (y)e−|y|2 dy
)

g(x)
1

πd/2
e−|x|2 dx

10Consider, for d = 1, f (x) = 1
|x|e

|x|/2χB(0,1)(x) and its translations.
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=
1

πd/2(1− e−2t)d/2

∫
Rd

(∫
Rd

e(−
(|y|2+|x|2)−2e−t 〈x,y〉

1−e−2t )g(x)e−|x|2 dx
)

f (y)
1

πd/2
e−|y|2 dy

=
∫
Rd

f (y)Ttg(y)γd(dy).

The invariance property follows immediately from (2.39) and the conservative
property, taking g ≡ 1.

vi) Let f ∈ C2
b(R

d), that is, a continuous function with bounded derivatives up to
the second order. Then, using (2.36), we have
(Tt f − f

t

)
(x)−L f (x)

=
1

tπd/2

∫
Rd

[
f (
√

1− e−2t y+ e−t x)− f (x)
]
e−|y|2dy

−1
2

d

∑
k=1

∂ 2 f

∂x2
k

(x)+
d

∑
j=1

x j
∂ f
∂x j

(x)

=
1

tπd/2

∫
Rd

[
f (
√

1− e−2t y+ e−t x)− f (x)

− t
2

d

∑
k=1

∂ 2 f

∂x2
k

(x)
]
e−|y|2dy+

d

∑
j=1

x j
∂ f
∂x j

(x)

=
1

tπd/2

∫
Rd

[
f (
√

1− e−2t y+ e−t x)− f (e−t x)

−t
d

∑
k=1

∂ 2 f

∂x2
k

(x)y2
k

]
e−|y|2dy+

( f (e−t x)− f (x)
t

+
d

∑
j=1

x j
∂ f
∂x j

(x)
)
.

Now, using the Taylor expansion of order 2 for f , for some θ , with 0 ≤ θ ≤ 1,

f (
√

1− e−2t y+ e−t x)− f (e−t x)

=
d

∑
k=1

√
1− e−2t yk

∂ f
∂xk

(e−t x)+
1
2

d

∑
i, j=1

(1− e−2t)yiy j

× ∂ 2 f
∂xi∂x j

(
θe−t x+(1−θ)

√
1− e−2t y

)
.

Then, according to the symmetry of e−|y|2 , we have
(Tt f − f

t

)
(x)−L f (x)

=
1

tπd/2

∫
Rd

[ d

∑
k=1

√
1− e−2t yk

∂ f
∂xk

(e−t x)

+
1
2

d

∑
i, j=1

(1− e−2t)yiy j
∂ 2 f

∂xi∂x j

(
θe−t x+(1−θ)

√
1− e−2t y

)
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−t
d

∑
k=1

∂ 2 f

∂x2
k

(x)y2
k

]
e−|y|2dy+

(
f (e−t − f (x)

t
+

d

∑
j=1

x j
∂ f
∂x j

(x)

)

=
1

πd/2

∫
Rd

d

∑
k=1

[1
2

(
1− e−2t

t

)
∂ 2 f

∂x2
k

(
θe−t x+(1−θ)

√
1− e−2t y

)

−∂ 2 f

∂x2
k

(x)
]
y2

ke−|y|2dy+

(
f (e−t x)− f (x)

t
+

d

∑
j=1

x j
∂ f
∂x j

(x)

)
.

Thus,

∣∣∣(Tt f − f
t

)
(x)−L f (x)

∣∣∣
≤ 1

πd/2

∫
Rd

d

∑
k=1

[1
2

∣∣∣1− e−2t

t

∣∣∣
∣∣∣∂ 2 f

∂x2
k

(θe−t x+(1−θ)
√

1− e−2t y)

−∂ 2 f

∂x2
k

(x)
∣∣∣e−|y|2

]
dy+

∣∣∣ f (e−t x)− f (x)
t

+
d

∑
j=1

x j
∂ f
∂x j

(x)
∣∣∣.

Then, using Lebesgue’s dominated convergence theorem, we conclude that each
of these terms tends to zero as t → 0. ��

Also, each operator of the Ornstein–Uhlenbeck semigroup is compact.

Lemma 2.6. For each t > 0, the operator Tt is compact.

Proof. Because Tt is given by

Tt f =
∞

∑
k=1

e−ktJk f , t > 0,

we can consider the following sequence of compact operators:

Tt(n) f =
n

∑
k=1

e−ktJk f , t > 0.

Then,

‖Tt f −Tt(n) f‖2
2,γ =

∞

∑
k=n+1

‖e−ktJk f‖2
2,γ ≤ e−2nt‖ f‖2

2,γ .
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Fig. 2.1. Epperson region Ep.

Therefore, the sequence of compact operators {Tt(n)} converges in L2(γd)-norm to
Tt for all t > 0. Then, from e) of [62, Theorem A.3.22 ], we can conclude the com-
pactness of Tt . ��

The Ornstein–Uhlenbeck semigroup {Tt}t≥0 can be extended to complex values
of the parameter t. For any z ∈C with Rez ≥ 0, the operator Tz = e−zL, defined spec-
trally, is bounded on L2(γd). It is given by the kernel, using the representation (2.37),
replacing t by z,

Mz(x,y) =
1

(1− e−2z)d/2
exp

(1
2
|x+ y|2
ez +1

− 1
2
|x− y|2
ez −1

)
.

The function t �→ Tt has an holomorphic continuation to a distribution-valued func-
tion z �→ Tz, which is holomorphic in Rez > 0 and continuous in Rez ≥ 0. The family
of continuous operators {Tz : Rez ≥ 0} defined from the space of distributions D(Rd)
to D ′(Rd), then satisfies

Tz+iπ(x) = Tz f (−x), Tz f (x) = Tz f (x). (2.42)

J. B. Epperson [74] proved that the operator Tz, extends to a bounded operator on
Lp(γd), 1 ≤ p ≤ ∞, if and only if z ∈ Ep, where

Ep := {z = x+ iy : |siny| ≤ tanφp sinhx}, φp = arccos |2/p−1|. (2.43)

The extension Tz to Lp(γd) is actually a contraction.
The set Ep is a closed iπ-periodic subset of the right half-plane, which is called

Epperson’s region, (see Figure 2.1). Each Ep is a closed subset of the closed right
half-plane and periodic with period iπ. Notice the symmetry φp = φp′ and Ep =
Ep′ , where p′ is the conjugate exponent. Also, we have Ep ⊂ Eq if 1 < p < q < 2.
Furthermore, Ep depends monotonically on p on either side of 2. The extreme cases
are E2 = {z : Rez ≥ 0} and E1 = {x+ ikπ : x ≥ 0,k ∈ Z}.
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The map z → Tz from Ep to the Banach algebra of bounded operators on Lp(γ)
is continuous in the strong operator topology, and its restriction to the interior of Ep

is holomorphic (see also [249]). Additionally, the holomorphic Ornstein–Uhlenbeck
semigroup can be extended to infinite dimensions (see [167]).

Let us prove now that the L1(γd)-spectrum of L is the closed right half-plane (see
E. B. Davies [65, Theorem 4.3.5])

Theorem 2.7. The L1(γd)-spectrum of L is the closed right half-plane {z : Rez ≥ 0}.
Indeed, every z with Rez > 0 is an eigenvalue of L with multiplicity two.

Proof. First of all, according to the tensorization argument, it is enough to consider
the case d = 1. Let us consider the harmonic oscillator operator

H1 f =
1
2
(−d2 f

dx2 + x2 f − f ),

with domain in S (R) ∈ L2(R). It is easy to see, using Mehler’s formula, that the
semigroup generated by H1, {e−tH1}t≥0 has kernel

Kt(x,y) =
1

π1/2(1− e−2t)
exp

(
4xye−t − (x2 + y2)(1+ e−2t)

2(1− e−2t)

)
, t > 0, x,y ∈ R.

Consider the isometric isomorphism, Ξ (2)
1 : L2(γ1) → L2(R) defined in (2.35), for

d = 1 and p = 2,
Ξ (2)

1 f (x) = f (x)π−1/4e−|x|2/2,

and consider
L̃ = Ξ (2)

1 L(Ξ (2)
1 )−1.

Hence, the operator L̃ on L1(R) has the same spectrum as L. The kernel of the semi-
group generated by L̃, {T̃t}t≥0 = {e−tL̃}t≥0 is

M̃t(x,y) =
e−|x|2

π1/2
Mt(x,y)=

e−|x|2

π1/2

1

(1− e−2t)1/2
exp

(
−e−2t(|x|2 + |y|2)−2e−t x · y

1− e−2t

)

=
e−|x|2/2

π1/4
Kt(x,y)

e−|y|2/2

π1/4

=
1

π1/2(1− e−2t)1/2
e
− |x−e−t y|2

1−e−2t

Taking the Fourier transform F from L1(R) into C0(R), it follows that

F (T̃t) f (ζ ) = e−(1−e−2t )ζ 2/4 f (e−tζ ).

Let us consider f+z (x) and f −z (x) the L1(R)-functions, whose Fourier transforms

are χ[0,∞)(ζ )|ζ |ze−ζ
2/4 and χ(−∞,0](ζ )|ζ |ze−ζ

2/4 respectively. Then, for any z, with
Rez > 0
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F (e−tH1 f+z )(ζ ) = χ[0,∞)(ζ )e−(1−e−2t )ζ 2/4e−zt |ζ |ze−e−2tζ 2/4 = e−ztF ( f+z )(ζ ),

and analogously,

F (e−tH1 f −z )(ζ ) = χ(−∞,0](ζ )e−(1−e−2t )ζ 2/4e−zt |ζ |ze−e−2tζ 2/4 = e−ztF ( f −z )(ζ ).

Hence, according to the uniqueness of the Fourier transform,

e−tH1 f+z (x) = e−zt f+z , and e−tH1 f −z (x) = e−zt f −z .

Now, because the spectrum of L is a closed subset of {z : Rez ≥ 0}, as {Tt}t≥0 is a
strongly continuous contraction semigroup, we get the conclusion. ��

Definition 2.8. The maximal function of the Ornstein–Uhlenbeck semigroup {Tt}t≥0

or maximal Ornstein–Uhlenbeck function, is defined as

T ∗ f (x) = sup
t>0

|Tt f (x)| . (2.44)

In Chapter 4, Theorems 4.19 and 4.20, we study the boundedness properties of
T ∗, proving that it is bounded in Lp(γd) for 1 < p ≤ ∞, and that it is of weak type
(1,1) with respect to the measure γd . Also, other versions of maximal functions are
study in detail in Chapter 4.

In 1969, C. P. Calderón [44] proved that the multiparametric Ornstein–
Uhlenbeck maximal function

T∗ f (x) = sup
0<t1<∞
0<t2<∞···
0<td<∞

[
1

πd/2

d

∏
i=1

1

(1− e−2ti)1/2

∫
Rd

e
− |y−e−ti x|2

1−e−2ti f (y)dy

]
, (2.45)

is Lp(γd)-bounded, 1 < p < ∞. From this result, the Lp(γd)-boundedness for the
one-parameter maximal operator T ∗ also follows.

The maximal function for the holomorphic Ornstein–Uhlenbeck semigroup {Tz :
Rez ≥ 0} can also be considered:

Γ∗
p f (w) = sup

z∈Ep

|Tz f (w)|, (2.46)

where Ep is Epperson’s region defined in (2.43).
In particular, Γ∗

1 is the maximal operator of the Ornstein–Uhlenbeck semigroup
which, as we are going to see in Chapter 4 is of weak type (1,1) and of strong type
(p, p) for each 1 < p < ∞.

According to the periodicity properties of the holomorphic Ornstein–Uhlenbeck
semigroup {Tz : Rez ≥ 0}, we may restrict the parameter z to the set Fp
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Fp = {z ∈ Ep : 0 ≤ Imz ≤ π/2} (2.47)

Consider the map, τ : {ζ ∈ C : |ζ | ≤ 1, |argζ | ≤ π/2} → C∪ {∞} introduced in
[105]:

τ(ζ ) =

{
log 1+ζ

1−ζ , if ζ �= 1

∞, if ζ = 1,
(2.48)

where logω is real when ω > 0; hence τ is real-valued in the interval [0,1). Notice
that τ((ζ )−1) = τ(ζ )+ iπ, which means that τ makes reflection in the unit circle
|ζ | = 1 correspond to reflection in the line Imz = iπ/2. Combined with the period-
icity and symmetry of Tz, we get

Tτ(t−1eiφ ) f (x) = Tτ(teiφ ) f (−x).

Moreover, τ is a homeomorphism of its domain onto the half-strip {ζ ∈ C : Reζ ≥
0, |Imζ | ≤ π/2} mapping the sector

Sφp := {ζ ∈ C : |ζ | ≤ 1, |argζ | ≤ φp} (2.49)

onto the set Fp ∪{∞}. In particular, if 1 < p < 2, then τ maps Sφp \ [1,∞) onto the
interior of E ∩ {z ∈ C : |Im|z < π/2} and the ray [0,eiφp∞) onto ∂Ep ∩ {z ∈ C :
|Imz|< π/2} (see Figure 2.1). Additionally, if ζ �= 1,

Mτ(ζ )(x,y) =
(1+ζ )d

(4ζ )d/2
exp

( |x|2 + |y|2
2

− 1
4

(
ζ |x+ y|2 + 1

ζ
|x− y|2

))
,

because

1− e2z =
4ζ

(1+ζ )2 ,
1
2

1
ez +1

=
1
4
− ζ

4
, and− 1

2
1

ez −1
=

1
4
− 1

4ζ
.

We define Mτ(1)(x,y) = 1, for all x,y.
Several estimates for Γ∗

p are given by J. Garcı́a-Cuerva, G. Mauceri, P. Sjögren,
and J. L. Torrea [104]. The simplest result establish that Γ∗

q is bounded on Lp(γd) if
| 1

q − 1
2 |> | 1

p − 1
2 |. This means that for f ∈ Lp(γd), the supremum of |Tz f (x)| is taken

for z ∈ Eq ⊂ Ep.
For the case 1 < p < 2, it was proved in [104] that Γ∗

p is not Lp(γd)-bounded, not
even of weak type (p, p) with respect to the Gaussian measure. The unboundedness
on Lp(γd) here occurs along the whole boundary of Ep.

Γ∗
ε ,p f (w) = sup

z∈Ep,d(z,iπZ)≥ε
|Tz f (w)|, (2.50)

is of weak type (p, p) with respect to the Gaussian measure, for any ε > 0. Then,
P. Sjögren [249] proved that for 2 < p < ∞ Γ∗

p is not Lp(γd)-bounded, but Γ∗
ε ,p is

Lp(γd)-bounded; therefore it is of weak type (p, p) with respect to γ , for any ε > 0.
Finally, for p = 2, the situation is rather different: Γ∗

2 is not of weak type (2,2) with
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respect to the Gaussian measure (see [104]).

According to the Banach principle, it is known (see [107] or [275, Theorem 6.1]),
that the study of this maximal operator is a key tool for investigating the almost
everywhere convergence of {Tt}t≥0,

T0 f (x) lim
t→0+

Tt f (x) = f (x) a.e. x ∈ R
d (2.51)

(see Theorem 4.46), and also

T∞ f (x) := lim
t→∞

Tt f (x) =
∫
Rd

f (y) γd(dy) a.e. x ∈ R
d , (2.52)

for all f ∈ L1(γd). This implies it for all f ∈ Lp(γd), 1 ≤ p ≤ ∞, as Lq(γd)⊂ Lp(γd)
for p ≤ q. Thus, unlike the classical case of the heat semigroup, the Ornstein–
Uhlenbeck semigroup does not decay at infinity. This property expresses the ergodic-
ity of the semigroup. The details of this proof and its generalization to non-tangential
convergence are given in Chapter 4.

Proposition 2.9. If f ∈ Lp(γd), u(x, t) = Tt f (x) is a C∞(Rd ×R+) solution of the
parabolic equation

∂u
∂ t

(x, t) =
1
2
Δxu−〈x,∇xu〉= Lu, x ∈ R

d , t > 0, (2.53)

with boundary condition u(x,0) = f (x), x ∈ R
d .

Thus, u(x, t) = Tt f (x) is the solution of a boundary value problem.

Proof. According to the general semigroup theory, given the fact that L is the in-
finitesimal generator of {Tt : t ≥ 0}, we get

∂u(x, t)
∂ t

=
∂Tt f (x)

∂ t
= LTt f (x) = Lu(x, t).

Yet, this can also be shown explicitly:

Lu(x, t) =
2e−t

πd/2(1− e−2t)d/2+1

∫
Rd

[de−t

2
+

e−t |y− e−t x|2
1− e−2t −< (y− e−t x),x >

]

×exp
(
− |y− e−t x|2

1− e−2t

)
f (y)dy

=
∂u(x, t)
∂ t

.

The boundary condition follows from (2.51). ��
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Now, from the fact that L is the infinitesimal generator of {Tt}t≥0, using the
semigroup property, we can easily get that

dTt

dt
= LTt . (2.54)

In [106], G. Garrigós, S. Harzstein, T. Signes, J. L. Torrea, and B. Viviani find
optimal integrability conditions to guarantee the existence of solutions of (2.53).

Moreover, for the study of Hardy spaces in Chapter 7 we need to consider higher
order derivatives of the Ornstein–Uhlenbeck semigroup,

dkTt

dtk = LkTt (2.55)

We get a closed expression for the integral representation of these derivatives, deter-
mining explicitly the kernels Mk

t such that

(LkTt) f (x) =
∫
Rd

Mk
t (x,y) f (y)γd(dy), (2.56)

Observe that, for ν ∈ N0

(LkTt)hν(x) = |ν |ke−t|ν |hν(x) = |ν |ke−t|ν |hν1(x1) · · ·hνd (xd)

= ∑
|η |=k

(
k

η1,η2, · · · ,ηd

)
νη1

1 · · ·νηd
d e−tη1 · · · e−tηd hν1(x1) · · ·hνd (xd)

= ∑
|η |=k

(
k

η1,η2, · · · ,ηd

)
Lη1

1 T 1
t hν1(x1) · · ·Lηd

d Tηd
t hνd (xd), (2.57)

where, as in (2.5), Li denotes the one-dimensional Ornstein–Uhlenbeck operator,
in the i-th variable, and {T i

t }t≥0 is the one-dimensional Ornstein–Uhlenbeck semi-
group, in the i-th variable. Here, we follow J. Teuwen’s paper [266], and it should be
consulted for full details of the proof.

Theorem 2.10. Let L be the Ornstein–Uhlenbeck operator in L2(γd), t > 0, and
N ≥ 0. The integral kernel Mk

t of LkTt is given by

Mk
t (x,y) = (−1)kMt(x,y) ∑

|η |=k

(
k

η1,η2, · · · ,ηd

) d

∏
i=0

ηi

∑
ni=0

ni

∑
li=0

2−mi

{
ηi

ni

}(
ni

li

)

×
(
− e−t

√
1− e−2t

)2ni−li
Hli(xi)H2ni−li

( yi − xie−t
√

1− e−2t

)
, (2.58)

where
{n

m

}
are Stirling numbers of the second kind.11

11For n ≥ m non-negative integers, the Stirling number of the second kind
{n

m

}
is defined

as the number of partitions of a set of n elements into m non-empty subsets, see [36].
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Proof. From (2.57) and the tensorization argument, it is enough to consider only the
case d = 1. Observe that

(LkTt) f (x) = Lk(Tt f )(x) = Lk
(∫

Rd
Mt(x,y) f (y)γd(dy)

)
=
∫
Rd

LkMt(x,y) f (y)γd(dy);

hence, Mk
t (x,y)= LkMt(x,y). Therefore, using the integral representation of Mehler’s

kernel (1.46) we get

Mk
t (x,y) = Lk

( ey2

√
π

∫
R

e2iξy−ξ 2
e−(x+iξe−t )2+x2

dx
)

=
ey2

√
π

∫
R

e2iξy−ξ 2
Lke(x+iξe−t )2+x2

dξ .

Now, observe that

Lke−(x−t)2+x2
= (−1)k

(
t
∂
∂ t

)k
e−(x−t)2+x2

= (−1)k
k

∑
n=0

{
k
n

}
tnex2 ∂ k

∂ tk e−(x−t)2

= (−1)k
k

∑
n=0

{
k
n

}
tnex2

(−1)k ∂ k

∂xk e−(x−t)2

= (−1)ke−(x−t)2+x2
k

∑
n=0

{
k
n

}
tn Hn(x− t),

by using Rodrigues’ formula and [266, Lemma 1].12 Therefore, using (1.39)

Mk
t (x,y) = (−1)k ex2+y2

√
π

k

∑
n=0

{
k
n

}∫
R

e2iξy−ξ 2
(iξe−t)ke−(x+iξe−t )2

Hn(x+ iξe−t)dξ

= (−1)k ex2+y2

√
π

k

∑
n=0

n

∑
l=0

{
k
n

}(
n
l

)
Hn(x)2

n−l
∫
R

e2iξy−ξ 2
e−(x+iξe−t )2

(iξe−t)2n−ldξ .

Thus, it remains to compute the inner integral. For each m ∈ N, using again the in-
tegral representation of the Hermite polynomials (1.30), and the change of variables
η =

√
1− e−2tξ , we have

12Teuwen notices that his Lemma 1 is a particular case of a result in Weyl algebras, and
depends only on the fact that the commutator [t,∂t ] =−1.
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ex2+y2

√
π

∫
R

e2iξy−ξ 2
e−(x+iξe−t )2

(iξe−t)mdξ

=
ey2

√
π

∫
R

e2i(y−xe−t )ξ e−(1−e−2t )ξ 2
(iξe−t)mdξ

=
ey2

√
π

∫
R

e2iξ
√

1−e−2t [(y−xe−t )/
√

1−e−2t ]e−(1−e−2t )ξ 2
(iξe−t)mdξ

=
(−1)mey2

2m
√
π

(−2i)me−tm

(
√

1− e−2t)m+1

∫
R

e2iη [(y−xe−t )/
√

1−e−2t ]e−η
2
ηmdη

=
e−(y−xe−t )2/(1−e−2t )ey2

√
1− e−2t

2−m
( −e−t
√

1− e−2t

)m
Hm

( y− xe−t
√

1− e−2t

)

= Mt(x,y)2
−m( −e−t

√
1− e−2t

)m
Hm

( y− xe−t
√

1− e−2t

)
.

Therefore,

Mk
t (x,y) = (−1)kMt(x,y)

k

∑
n=0

n

∑
l=0

2−n
{

k
n

}(
n
l

) ( −e−t
√

1− e−2t

)2n−l

Hn(x)H2n−l

( y− xe−t
√

1− e−2t

)
. ��

Another ingredient that is needed for the study of Hardy spaces in Chapter 7 is
the following Gaussian version of A. P. Calderón’s reproducing formula; see [231].

Lemma 2.11. (Portal) For all n ∈ N and a,α > 0, there exists C > 0 such that for
all f ∈ L2(γd)

f (x) =C
∫ ∞

0
(t2L)N+1T(1+a)t2/α f (x)

dt
t
+

∫
Rd

f (x)γd(dx), (2.59)

in L2 sense.

Proof. As this is a formula in L2(γd), it is enough to prove (2.59) for the Hermite
polynomials, as they are an orthonormal basis for L2(γd).

If ν = 0, then as H0 = 1, and LH0 = 0, the right-hand side equals

C
∫ ∞

0
(t2L)N+1T(1+a)t2/α1

dt
t
+
∫
Rd

1dγd =C ·0+1 = H0.

Let us assume now that ν �= 0. For these Hν , the last integral in (2.59) is zero ac-
cording to orthogonality. As Hν is an eigenfunction with eigenvalue of L, then

LN+1Hν = (−1)N+1|ν |N+1Hν .
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Hence, we obtain for x ∈ R
d

∫ ∞

0
(t2L)N+1T(1+a)t2/αHν(x)

dt
t
=

∫ ∞

0
(t2L)N+1e−(1+a)t2|ν |/αHν(x)

dt
t

= (−1)N+1|ν |N+1Hν(x)
∫ ∞

0
t2(N+1)e−(1+a)t2|ν |/α dt

t

=
N!
2

(
α

(1+a)

)N+1

Hν(x) =C Hν(x).

Therefore, C =CN = 2
N! (

1+a
α )N+1 is the right constant. ��

Another version of A. P. Calderón’s reproducing formula was obtained in [164],
and is discussed in Chapter 8 (see Theorem 8.31).

2.3 The Hypercontractivity Property for the Ornstein–Uhlenbeck
Semigroup and the Logarithmic Sobolev Inequality

The Ornstein–Uhlenbeck semigroup is not only a contraction semigroup but it is also
hypercontractive. The hypercontractivity property of {Tt}t≥0 was initially proved
by E. Nelson [204] in the context of quantum field theory, and it has been studied
extensively in the literature.

Definition 2.12. Given a semigroup of contractions {Tt}t≥0 defined in Lp(E,μ),
with 1 ≤ p ≤∞, the semigroup {Tt}t≥0 satisfies the hypercontractivity property if for
each initial condition 1 < p <∞ there exists an strictly increasing function q : R+ →
[p,∞), q(0) = p such that

||Tt f ||q(t),μ ≤ || f ||p,μ , for all f ∈ Lp(E,μ), t ≥ 0.

The function q is called the contraction function.

We are going to prove in detail that the Ornstein–Uhlenbeck semigroup {Tt}t≥0

is hypercontractive, having contraction function

q(t) = 1+ e2t(p−1)> p.

Thus, we will prove the following inequality:

||Tt f ||q(t),γ ≤ || f ||p,γ , (2.60)

for all f ∈ Lp(γd) and t ≥ 0.
We will first prove that the Ornstein–Uhlenbeck operator satisfies the logarithmic
Sobolev inequality.



58 2 The Ornstein–Uhlenbeck Operator and the Ornstein–Uhlenbeck Semigroup

Theorem 2.13. The Ornstein–Uhlenbeck operator L satisfies the logarithmic
Sobolev inequality: for any f ∈ L2(γd) with ∇x f (in the weak sense) belonging
to L2(γd),

∫
Rd

| f (x)|2 log | f (x)|γd(dx)≤ 1
2

∫
Rd

|∇x f (x)|2γd(dx)+ || f ||22,γd
log || f ||2,γ , (2.61)

or, equivalently,
∫
Rd

| f (x)|2 log | f (x)|γd(dx) −
(∫

Rd
| f (x)|2γd(dx)

)
log

(∫
Rd

| f (x)|γd(dx)
)

≤ 1
2

∫
Rd

|∇x f (x)|2γd(dx).

Proof. To prove (2.61), we will follow Adams and Clarke’s proof [4], which is one of
the simplest proofs for this inequality13. We begin by making a series of reductions.
In the first place, it is enough to prove the logarithmic Sobolev inequality in the case
d = 1. Then, the general case can be obtained by induction in d. In addition, observe
that (2.61) is homogeneous with respect to rescaling of f ; thus, we may assume that
|| f ||2,γ = 1. Moreover, we may assume that || f ′||2,γ < ∞ because, otherwise, there

is nothing to prove. The change f (t) = g(t)et2/2 implies the following equivalent
formulation of the inequality:

∫
R

(
1
2

∣∣g′ (t)
∣∣2 −|g(t)|2 log |g(t)|

)
dt ≥

√
π

2
, provided

∫
R

|g(t)|2 dt =
√
π. (2.62)

As
∣∣(|g|′)∣∣ ≤ |g′| a.e., we may assume that g is a non-negative real-valued function.

It is enough to consider only the case g(t)> 0 for all t ∈R; this can be justified by a
simple argument of density. Finally, it is convenient to split (2.62) into two half-line
problems, each of them equivalent to

∫ ∞

0

(
1
2

(
g′ (t)

)2 − (g(t))2 log(g(t))

)
dt ≥

√
π

4
, provided

∫ ∞

0
(g(t))2 dt =

√
π

2
.

(2.63)

For s,r > 0, let V (s,r) =
[
v(s,r)s2 + r

(
1− v(s,r)2 −2 log s

)]
/2, where

v(s,r) = h−1
(
r/s2

)
, and h is given by

h(t) = et2
∫ ∞

t
e−τ

2
dτ .

It is easy to see that h is strictly decreasing in R and
(
h−1

)′
(t) =

{
2th−1 (t)−1

}−1
.

The partial derivatives of V are:

Vs = vs, and Vr =−
(
v2/2

)
− logs.

13For another simple proof see [219].
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If U (s,u) =
(
u2/2

)
− s2 logs, then,

Vsu−Vrs
2 +U (s,u) =

1
2
(u+ vs)2 ≥ 0, for s > 0, u ∈ R. (2.64)

Therefore, if g satisfies the inequalities

g(t)> 0,
∫ ∞

0
(g(t))2 dt =

√
π

2
,
∫ ∞

0

(
g′ (t)

)2
dt < ∞, (2.65)

it then follows from (2.64) (setting s = g(t), r =
∫ ∞

t (g(τ))2 dτ , u = g′(t)) that

d
dt

V

(
g(t) ,

∫ ∞

t
(g(τ))2 dτ

)
=Vsg

′ (t)−Vr (g(t))
2 ≥ −U

(
g(t) ,g′ (t)

)

and
∫ ∞

0
U
(
g(t) ,g′ (t)

)
dt ≥ −

∫ ∞

0

d
dt

V

(
g(t) ,

∫ ∞

t
(g(τ))2 dτ

)
dt

≥ V

(
g(0) ,

√
π

2

)
− liminf

t→∞
V
(

g(t) ,
∫ ∞

t
(g(τ))2 dτ

)
.

As h−1 is decreasing and h−1
(√

π/2s2
)
= 0 only for s = 1, we conclude that

V
(
s,
√
π/2

)
≥V

(
1,
√
π/2

)
=

√
π/4, for all s > 0.

The inequality (2.63) would be shown if the following claim holds: if g satis-
fies (2.65), then

liminf
t→∞

V

(
g(t) ,

∫ ∞

t
(g(τ))2 dτ

)
≤ 0.

To prove the claim, we use the fact that h(τ)< 1/τ for all τ > 0. Then, h−1 (t)<

1/t for all t > 0, and v(s,r)s2 < s4/r. Similarly, h(τ) <
√
πeτ

2
for τ ≤ 0 implies

h−1 (t)≤ −
√

log
(
t/
√
π
)

for t ≥
√
π and therefore, setting t = r/s2, we get

(v(s,r))2 ≥ logr− logs2 − log
√
π

for
√
πs2 ≤ r. Evidently, (v(s,r))2 ≥ 0 if r <

√
πs2 and consequently,

r
(
1− v2 −2logs

)
≤ max

{
r
(
1+ log

√
π− logr

)
,
√
πs2 (1− logs2)}

for all r,s > 0. Hence,

V (s,r)≤ s4

2r
+

1
2

max
{

r
(
1+ log

√
π− logr

)
,
√
πs2 (1− logs2)} . (2.66)
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If g satisfies (2.65), then taking s = g(t) ,

r =
∫ ∞

t
(g(τ))2 dτ , and ε =

∫ ∞

t

(
g′ (τ)

)2
dτ

both terms tend to zero as t → ∞. Moreover, according to Hölder’s inequality

s4 = (g(t))4 ≤
(

2
∫ ∞

t
g(τ)

∣∣g′ (τ)
∣∣dτ

)2

≤ 4rε .

From (2.66), it follows that liminft→∞V (s,r)≤ 0. ��

In [119], L. Gross proved the following striking result:

Theorem 2.14. The Ornstein–Uhlenbeck semigroup {Tt}t≥0 is hypercontractive,
with contraction function q(t) = 1 + e2t(p − 1) > p, if and only if the Ornstein–
Uhlenbeck operator L satisfies the logarithmic Sobolev inequality (2.61).

To prove this theorem, we essentially follow Gross’ argument (see [119] and
[120]). For this we need the following technical (but key) lemma. We are going
to formulate it in great generality for any probability space (E,B,μ), which will
be useful in what follows. Of course, in our case, the probability space is simply
(Rd ,B(Rd),γd).

Lemma 2.15. Let (E,B,μ) be a probability space. Let us take 1 < p < ∞, ε > 0
and q> p and let s be a real function, continuously differentiable from [0,ε) to (1,∞)
such that s(0) = p, and let f be a function continuously differentiable from [0,ε) to
Lq(μ) with f (0) = v �= 0. Then, || f (t)||s(t) is differentiable at t = 0 and

d
dt

|| f (t)||s(t)
∣∣∣
t=0

(2.67)

= ||v||1−p
p

[
p−1s′(0)

(∫
E
|v|p log |v|dμ−||v||pp log ||v||p

)
+Re〈 f ′(0),vp〉μ

]
,

where, vp = (sgnv)|v|p−1.

Proof. Let g : [0,ε)→ C be a continuously differentiable function. Then, we have

d
dt

|g(t)|s(t) =
[
s′(t) log |g(t)|+ s(t)

1
|g(t)|2 Reg′(t)g(t)

]
|g(t)|s(t)

= s′(t)|g(t)|s(t) log |g(t)|+ s(t)
1

|g(t)|2 Reg′(t)
g(t)
|g(t)| |g(t)|

s(t)−1

= s′(t)|g(t)|s(t) log |g(t)|+ s(t)
1

|g(t)|2 Reg′(t)g(t)s(t).

This holds even when g(t) = 0 for some t, because s(t)> 1.
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Let us take g(t) = f (t)(x)(formally), integrate it with respect to μ , and inter-
change the order of the integration and differentiation. Then,

d
dt

∫
E
| f (t)(x)|s(t)μ(dx) =

∫
E

s′(t)| f (t)(x)|s(t) log | f (t)(x)|μ(dx)+ s(t)Re〈 f ′(t), fs(t)〉μ .

Then, if V (t) =
∫

E | f (t)(x)|s(t)μ(dx), we have

d
dt

|| f (t)||s(t) =
d
dt

V (t)s(t)

=
1

s(t)

[V (t)s(t)−1

V (t)

]
V ′(t)− s′(t)

s2(t)
V (t)s(t)−1 logV (t).

The second chain of equalities needs justification, because f (t)(x) is not necessarily
differentiable in the variable t for a.e. x (for details see Gross [120, page 63]). Then,
taking t = 0 (2.67) follows. ��

Now, we are ready to prove Theorem 2.14

Proof. First of all, consider the number operator

N = 2(−L) =−Δx +2〈x,∇x〉

which is the Dirichlet form for γd , i.e.,
∫
Rd

〈∇x f (x),∇xg(x)〉γd(dx) =
∫
Rd

f (x)Ng(x)γd(dx),

and consider the semigroup {e−tN}t≥0 generated by N.14

Let us assume that (2.61) holds. Then, we can obtain, for each p > 1, the Sobolev
logarithmic inequality in Lp(γd)

∫
Rd

| f (x)|p log | f (x)|γd(dx)≤ c(p)Re〈N f (t), fp〉γd + || f ||pp,γd
log || f ||p,γ , (2.68)

with c(p) = p
4(p−1) and fp = (sgn f )| f |p−1. In Gross’s notation [120] this means that

N is a Sobolev generator in (0,∞).
The outline of this argument is as follows: assume that p > 1 and let f be a non-

negative bounded function in the domain of N in L2(γd). Then, replacing f by f p/2

in (2.61), we get

p
2

∫
Rd

| f (x)|p log | f (x)|γd(dx) ≤ 1
2

∫
Rd

|∇x f p/2(x)|2γd(dx)

+
1
2

∫
Rd

| f (x)|pγd(dx)
(

log
∫
Rd

| f (x)|pγd(dx)
)
.

14This semigroup is simply {T2t}t≥0, the Ornstein–Uhlenbeck semigroup with parameter
2t.
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Now, if f is bounded and smooth, we have

|∇x( f (x)p/2)|2 = (p/2)2( f (x)p/2−1)2|∇x f (x)|2,

and also
〈∇x f (x),∇x( f (x)p−1)〉= (p−1) f (x)p−2|∇x f (x)|2.

Therefore,

|∇x( f (x)p/2)|2 =
[ (p/2)2

(p−1)

]
〈∇x f (x),∇x( f (x)p−1)〉,

and
∫
Rd

|∇x f p/2(x)|2γd(dx) =
[ p2

4(p−1)

]∫
Rd

〈∇x f (x),∇x( f (x)p−1)〉γd(dx)

=
[ p2

4(p−1)

]
〈N f , f p−1〉γ ,

thus proving (2.68).
The set where these computations make sense can be justified from the fact that

e−tN is a contractive and positive semigroup in L∞(γd) (see [120]).
Now, let g be a non-negative function in C∞

0 (R) with support in (0,∞) and let u ∈
L∞(γd). Then, h :=

∫ ∞
0 g(s)(e−sNu)ds exists as a Riemann integral in Lp(γ1),1 < p <

∞. If f (t) = e−tNh, t ≥ 0, f is a positive and differentiable function in Lp(γd) for all
1 < p < ∞. Then, according to Lemma 2.15 the function α(t) = || f (t)||1+(p−1)e4t ,γd

is differentiable in (0,∞); therefore,

dα(t)
dt

=
d
dt

|| f (t)||1+(p−1)e4t ,γ

= || f (t)||1−p
p,γ

[
c(p)−1

(∫
Rd

| f (t)|p log | f (t)|dγd −|| f (t)||pp,γ log || f (t)||p,γ
)

−Re〈N f (t), f (t)p〉γ
]
≤ 0.

Thus, d
dt logα(t)≤ 0 and logα(t)≤ logα(0) = log ||h||p,γ , i.e.,

||e−tNh||1+(p−1)e4t ,γ ≤ ||h||p,γ . (2.69)

Recall that an approximation of the identity is a sequence of functions {hn} that
converges to the Dirac delta function (see the Appendix 10.5). Then, for each t ≥ 0
and for any element of an approximation of the identity, so that the corresponding
sequence {hn} converges to u in Lp(γd)-norm, and e−tNhn converges to e−tNu in
Lp(γd)-norm, and also almost everywhere. Applying the previous inequality (2.69)
to hn and using Fatou’s lemma, we have

||e−tNu||1+(p−1)e4t ,γ ≤ ||u||p,γ .

As L∞(γd) is dense in Lp(γd), we can again apply Fatou’s lemma; thus, the inequal-
ity (2.69) holds for any h ∈ Lp(γd).
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Finally, given that Tth = etLh = e−(t/2)Nh, the previous inequality is equivalent to

||Tth||1+(p−1)e2t ,γ = ||etLh||1+(p−1)e2t ,γ = ||e−(t/2)Nh||1+(p−1)e4(t/2),γ ≤ ||h||p,γ ;

hence, {Tt}t≥0 satisfies (2.60).

Conversely, let us assume that the semigroup {Tt}t≥0 is strongly continuous on
Lp(γd), 1 < p < ∞, and that it is hypercontractive (2.60). Let D be the linear hull of
the set of functions h :=

∫ ∞
0 g(s)(e−sNu)ds, with g a non-negative function in C∞

0 (R)
with support in (0,∞) and u ∈ L∞(γd), as was considered in the first part of the proof.
Let h be a non-zero element in D and set f (t) = e−tNh, t ∈ (0,∞). Then, for each t,
we have

|| f (t)||1+(p−1)e4t ,γ −|| f (0)||p,γ
t

≤ ||h||p,γ
(1−1

t

)
= 0,

according to the hypercontractivity property (2.60) and the fact that e−tNh = T2th.
By Lemma 2.15, we can take the limit as t ↓ 0 in the preceding inequality to get

||h||1−p
p,γd

[
p−14(p−1)

(∫
Rd

|h|p log |h|dγd −||h||pp,γd
log ||h||p,γ

)
−Re〈Nh,hp〉γd

]
≤ 0.

Multiplying by p
4(p−1) ||h||

p−1
p,γd

, we obtain (2.61).
Now, because D is dense in the domain of the infinitesimal generator of

{e−Nt}t≥0 in Lp(γd), for any f there exists a sequence {hn} in D such that hn → f
in the graph norm and a.e. γd . As xp logx is bounded from below in [0,∞), we can
use Fatou’s lemma on the left side of (2.61). For the right side we observe that the
mapping f → fp is continuous from Lp(γd) to Lp′(γd); thus, the right-hand side is
a continuous function of f in the graph norm. Therefore, because (2.61) holds for
each hn, it holds for any f . ��

The hypercontractivity of the Ornstein–Uhlenbeck semigroup can also be ob-
tained using the curvature-dimension inequalities. In 1984, D. Bakry and M. Emery
[21] developed a criterion (sufficient condition) for a Markov diffusion semigroup to
satisfy the hypercontractivity property, which is the famous Bakry–Emery criterion.
This criterion is given in terms of the iterated square field operator Γ2,

Γ2( f ,g) =
1
2

[
LΓ ( f ,g)−Γ ( f ,Lg)−Γ ( f ,Lg)

]
,

for every f ,g ∈ A , the standard algebra (an “appropriated class” of functions). The
Bakry–Emery criterion has evolved to what is now known as curvature-dimension
inequalities, which allows us to study the local structure of the generator L and has
important applications in differential geometry.

Definition 2.16. An operator L is said to satisfy a curvature-dimension inequality
CD(ρ ,n) if

Γ2( f , f )≥ ρΓ ( f , f )+
1
n
(L f )2, (2.70)

for any f ∈ A . Here, ρ ∈ R is called the curvature and n ∈ [1,∞] the dimension.
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It can be proved (see for instance [19, 284]) that if an inequality CD(ρ ,∞) holds
for some ρ > 0, then the invariant measure μ must be finite; moreover, a logarithmic
Sobolev inequality holds. Observe that for the Gaussian case, when d = 1 (2.17)
and (2.23) become

Γ ( f , f )(x) =
1
2
( f ′(x))2 and Γ2( f , f )(x) =

1
4
( f ′′(x))2 +

1
2
( f ′(x))2.

Then, trivially, we have a curvature-dimension inequality with n = ∞ and constant ρ

1
4
( f ′′(x))2 +

1
2
( f ′(x))2 ≥ ρ

2
( f ′(x))2,

if and only if ρ ≤ 1. The extension for higher dimensions follows simply by the
tensorization argument.

The original hypercontractive estimates of the Ornstein–Uhlenbeck semigroup
were obtained by E. Nelson [204] and were later extended to the complex case, for
suitable values of z, by F.B. Weissler [292] and J.B. Epperson [74].

2.4 Applications of the Hypercontractivity Property

One of the first consequences of the hypercontractivity property for the Ornstein–
Uhlenbeck semigroup {Tt}t≥0 is that the orthogonal projections Jk onto the (closed)
subspaces Ck of the Wiener Chaos are Lp(γd)-continuous for 1 < p < ∞ :

Corollary 2.17. For any k ∈ N, Jk|P(Rd), the restriction of Jk to the polynomials

P(Rd), has an extension, which will also be denoted as Jk, to a bounded operator
in Lp(γd), i.e.,

||Jk f ||p,γ ≤Cp,k|| f ||p,γ . (2.71)

Proof. If p > 2, taking t0 > 0 such that p = e2t0 +1, according to the hypercontrac-
tivity property of {Tt}, we have

||Tt0 f ||p,γ ≤ || f ||2,γ .

In particular, from Hölder’s inequality,

||Tt0Jk f ||p,γ ≤ ||Jk f ||2,γ ≤ || f ||2,γ ≤ || f ||p,γ .

Now, because Tt0 f = ∑∞
k=0 e−t0kJk f , we have Tt0 Jk f = e−t0kJk f ; therefore,

||Tt0Jk f ||p,γ = e−t0k||Jk f ||p,γ .

Thus, we have
||Jk f ||p,γ ≤ et0k|| f ||p,γ .
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The case 1 < p < 2 is obtained by duality from the previous one. Let p′ be the
conjugated exponent of p, that is, 1

p +
1
p′ = 1, p′ > 2. Then, because the projection

Jk is a self-adjoint operator, using Hölder’s inequality, we get

||Jk f ||p,γ = sup
||g||p′,γ≤1

∣∣∣∣
∫ ∞

−∞
Jk f gdγd

∣∣∣∣= sup
||g||p′,γ≤1

∣∣∣∣
∫ ∞

−∞
f Jkgdγd

∣∣∣∣
≤ sup

||g||p′,γ≤1
|| f ||p,γ ||Jkg||p′,γ ≤ sup

||g||p′,γ≤1
|| f ||p,γC||g||p′,γ ≤C|| f ||p,γ ,

where C = et0k, with t0 > 0 such that p′ = e2t0 +1. ��

The next lemma is useful for the proof of P.A. Meyer’s multiplier theorem , which
is also a consequence of the hypercontractivity property.

Lemma 2.18. If 1 < p < ∞, for each n ∈ N, there exists a constant Cn such that

||Tt(I −J0 −J1 − . . .−Jn−1) f ||p,γ ≤Cne−tn|| f ||p,γ . (2.72)

Proof. Again, by duality, it is enough to consider the case p > 2. Let t0 be such that
p = e2t0 +1. Then, using the hypercontractivity property and Parseval’s identity, we
get for t > t0,

||Tt(I −J0 −J1 − . . .−Jn−1) f ||2p,γ
= ||Tt0Tt−t0(I −J0 −J1 − . . .−Jn−1) f ||2p,γ
≤ ||Tt−t0(I −J0 −J1 − . . .−Jn−1) f ||22,γ

= ||
∞

∑
k=n

e−(t−t0)kJk f ||22,γ =
∞

∑
k=n

e−2(t−t0)k||Jk f ||22,γ

=
∞

∑
k=0

e−2(t−t0)(k+n)||Jk+n f ||22,γ ≤ e−2(t−t0)n
∞

∑
k=0

||Jk+n f ||22,γ

≤ e−2(t−t0)n|| f ||2,γ ≤Cne−2tn|| f ||2p,γ ,

where Cn = e2t0n.

Now, if t < t0, because Tt is a contraction,

||Tt(I −J0 −J1 − . . .−Jn−1) f ||p,γ ≤ ||(I −J0 −J1 − . . .−Jn−1) f ||p,γ

≤ (1+
n−1

∑
k=0

ekt0)|| f ||p,γ ≤ (n+1)ent0 || f ||p,γ

≤ Cne−nt0 || f ||p,γ ≤Cne−nt || f ||p,γ ,

with Cn = (n+1)ent0 . ��
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Finally, let us consider potential operators,

Un f =
∫ ∞

0
Tt(I −J0 −J1 − . . .−Jn−1) f dt. (2.73)

According to Minkowski’s integral inequality and Lemma 2.18, we have

||Un f ||p,γ ≤
C
n
|| f ||p,γ , for 1 < p < ∞. (2.74)

Let us also consider the following operators associated with Un

Un,m f =
1

(m−1)!

∫ ∞

0
tm−1Tt(I −J0 −J1 − . . .−Jn−1) f dt. (2.75)

Then, again according to Minkowski’s integral inequality and Lemma 2.18 we have

||Un,m f ||p,γ ≤ 1
(m−1)!

∫ ∞

0
tm−1||Tt(I −J0 −J1 − . . .−Jn−1) f ||p,γ dt

≤ C
(m−1)!

∫ ∞

0
tm−1e−tndt|| f ||p,γ ≤

C
nm || f ||p,γ ;

hence,

||Un.m f ||p,γ ≤
C
nm || f ||p,γ , (2.76)

for all n,m ∈ N.
Moreover, if f ∈ Ck, i.e., Jk f = f , and k ≥ n,

Un f =
∫ ∞

0
TtJk f dt =

∫ ∞

0
e−kt f dt =

1
k

f ,

and similarly,

Un,m f =
1

(m−1)!

∫ ∞

0
tm−1TtJk f dt =

1
(m−1)!

∫ ∞

0
tm−1e−kt f dt =

1
km f .

A very important consequence of the hypercontractivity of the Ornstein–Uhlenbeck
semigroup is P. A. Meyer’s multiplier theorem (see Theorem 6.2 in Chapter 6).

2.5 Notes and Further Results

1. The definition of the Ornstein–Uhlenbeck semigroup {Tt}t≥0 using the integral
representation (2.28) coincides with that obtained using the general theory of
Markov semigroups, taking as transition probabilities

Pt(x,dy)= ∑
|ν |≥0

e−t|ν |hν(x)hν(y)γ1(dy) =
1

(1− e−2t)d/2
e
− e−2t (|y|2+|x|2)−2e−t 〈x,y〉

1−e−2t dy,
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according to Mehler’s formula (10.24). For more details, see for instance [20]
or [284]. This is the link to the theory of Markov processes in probability. It is
well known that Brownian motion {Bt}t≥0 is associated with the heat semigroup
{Tt}t≥0. Similarly, we have the Ornstein–Uhlenbeck process {Xt}t≥0 with tran-
sition probabilities {Pt}t≥0, which is associated with the Ornstein–Uhlenbeck
semigroup {Tt}t≥0. The process {Xt}t≥0 describes the speed of a particle mov-
ing in a fluid with viscosity against a resisting force that is proportional to its
speed (see Breiman [35, Chapter 6]). Hence, {Xt}t≥0 can be obtained using the
following formula to construct its finite-dimensional distributions:

μx{Xt1 ∈ E1,Xt2 ∈ E2, · · · ,Xtk ∈ Ek}=∫
Ek

· · ·
∫

E2

∫
E1

Pt1(x,dy1)Pt2−t1(y1,dy2) · · ·Ptk−tk−1(yk−1,dyk).

It is known that the process can be obtained from the semigroup using (2.77) and
that the semigroup {Tt}t≥0 can be represented in terms of the Markov process
{Xt}t≥0 as

Tt f (x) = E[ f (Xt)|X0 = x], f ∈ L∞(γd). (2.77)

Using this representation, the properties of the semigroup can be proved using
probabilistic methods. Moreover, (2.52) expresses the stationarity and ergodicity
of the process.

2. The Ornstein–Uhlenbeck semigroup can also be introduced formally, following
S. Bochner [32], as a solution to the equation (2.53), as follows: let f ∈ L2(γd)
with Hermite expansion ∑|ν |≥0 aνHν ; therefore, ∑|ν |≥0(aν)

2 < ∞. Then, for-
mally, L f has the expansion

L f =− ∑
|ν |≥0

|ν |aνHν ,

if ∑|ν |≥0 |ν |2(aν)2 < ∞.

Now, let u(x, t) be a solution of (2.53) with Hermite expansion ∑|ν |≥0 aν(t)Hν ;
therefore,

∑
|ν |≥0

(aν(t))
2 < ∞.

Thus, Lu and ∂u
∂ t have Hermite expansions

− ∑
|ν |≥0

|ν |aν(t)Hν , and ∑
|ν |≥0

a′
ν(t)Hν

respectively, and then, assuming that

∑
|ν |≥0

|ν |2(aν(t))2 < ∞ and ∑
|ν |≥0

(a′
ν(t))

2 < ∞,
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we conclude by the uniqueness of the Hermite expansions that

−|ν |aν(t) = a′
ν(t),

or equivalently
aν(t) = aνe−|ν |t .

Thus, we get the expansion (2.27), and again by uniqueness, we conclude that
necessarily u(x, t) = Tt f (x).

3. S. Pérez [221] provided another way to see that u(x, t) = Tt f (x) is a solution
of (2.53). It consists of looking for an appropriate dilation that, using the Fourier
transform, gives us u as a solution of a differential equation that is easier to solve.
Let w(x, t) = u(etx, t), then

wt(x, t) = et〈x,∇xu(etx, t)〉+ut(e
tx, t),

∇xw(x, t) = et∇xu(etx, t), and Δxw(x, t) = e2tΔxu(etx, t).

Thus, w satisfies a variant of the heat equation

wt(x, t) =
1
2

e−2tΔxw(x, t).

Then, applying the Fourier transform (in the x variable), we obtain that ŵ satisfies
the ordinary differential equation

ŵ′(ξ , t) =−2π2e−2t |ξ |2ŵ(ξ , t),

whose solution is
ŵ(ξ , t) = e−π

2(1−e−2t )|ξ |2 f̂ (ξ )

and its inverse Fourier transform is given by

w(x, t) =Cd

∫
Rd

e
− |y−e−t x|2

1−e−2t

(1− e−2t)d/2
f (y)dy.

4. To prove the semigroup property of {Tt}t≥0, there is an analogous proof to that
given for the heat semigroup in the Appendix using the Fourier transform (see
proof of Theorem 10.15i)). Nevertheless, this would prove the result only for
functions in S (Rd), Schwartz’s space of test functions. Also, because the set of
polynomials P(Rd) is dense in Lp(γd), see Corollary 10.12, we can also prove
the semigroup property by means of the representation (2.27).

(Tt1 ◦Tt2) f = Tt1(
∞

∑
k=0

e−t2kJk f ) =
∞

∑
k=0

e−(t1+t2)kJk f = Tt1+t2 f .
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5. The translated Ornstein–Uhlenbeck semigroups {T (κ)
t }t≥0, κ ≥ 0, see [122] and

[124], are defined formally as

T (κ)
t = e−κtTt , (2.78)

which means that T (κ)
t hν = e−t(|ν |+κ)hν . Thus, they are in fact a type of trans-

lation of the Ornstein–Uhlenbeck semigroup {Tt}t≥0, It can be shown that the

infinitesimal generator of {T (κ)
t }t≥0 is L−κId .

In particular, for κ = 1, we get that the translated Ornstein–Uhlenbeck

semigroup {T (1)
t }t≥0 has infinitesimal generator L, the alternative Ornstein–

Uhlenbeck operator (2.15).
Clearly, if f ≥ 0,

T (κ)
t f ≤ Tt f ,

for t ≥ 0. These semigroups and their subordinated semigroups are useful in the
study of Littlewood–Paley–Stein functions (see [122]). This is discussed later in
Chapter 5.

6. D. Bárcenas, H. Leyva, and W. Urbina in [26] studied the controllability of the
following controlled Ornstein–Uhlenbeck equation:

z(t) =
1
2
Δz−〈x,∇z〉+

∞

∑
n=1

∑
|ν |=n

uν(t)
〈
b,hν

〉
γd

hν , t > 0, x ∈ R
d , (2.79)

where hν is the normalized Hermite polynomial, b ∈ L2(γd), and the control u
is in L2(0, t1; l2(γd)), with l2(γd) the Hilbert space of the Fourier–Hermite coef-
ficient,

l2(γd) =
{

U = {{Uν}|ν |=n}n≥1 : Uβ ∈ C,
∞

∑
n=1

∑
|ν |=n

|Uν |2 < ∞
}
.

Then, if for all ν = (ν1,ν2, . . . ,νd) ∈ N
d

〈
b,hν

〉
γd
=

∫
Rd

b(x)hν(x)γd(dx) �= 0,

then the system is approximately controllable on [0, t1] for some t1, i.e., for all
z0,z1 ∈ Z and ε > 0, there exists a control u ∈ L2([0, t1]; l2(γd)) such that the
solution z(t) given by (2.79) satisfies

‖z(t1)− z1‖ ≤ ε .

Moreover, the system can never be exactly controllable, i.e., there exist z0,z1 ∈Z

such that for all control u ∈ L2([0, t1]; l2(γd)) the solution z(t) of (2.79) corre-
sponding to u satisfies z(t1) = z1. The fact that {Tt}t≥0 is a compact semigroup,
proved in Lemma 2.6, is crucial here.
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7. The classical Sobolev inequality states that for any function f ∈ L2(Rd) with
∇x f ∈ L2(Rd), in the weak sense, we have f ∈ Lp(Rd) for 1

p = ( 1
2 − 1

n ). Thus,

|| f ||p ≤Cd

∫
Rd

|∇x f (x)|2dx.

The logarithmic Sobolev inequality (2.61) generalizes the classical Sobolev in-
equality for the Gaussian measure.
The Gaussian measure can be defined in a space of infinite dimension, unlike the
Lebesgue measure, and as the inequality (2.61) is independent of the dimension,
it can be extended to the infinite dimensional case. Moreover, observe that in the
classical Sobolev inequality p → 2 as n → ∞ and, consequently, there is loss of
information in this inequality when the dimension increases toward infinity.

8. It follows from (2.61) that if f and ∇x f ∈ L2(γd), then f belongs to the Orlicz
space L2 logL(γd). Moreover, it is easy to prove that there exists a function
f such that the right hand side of (2.61) is finite, but f does not belong to
L2 logL log logL(γd) (see [119]). In that sense, the inequality is optimal and the
constants are also the best possible.

9. In [7], A. Amenta and J. Teuwen studied Lp −Lq off-diagonal estimates for the
Ornstein–Uhlenbeck semigroup. For sufficiently large t (quantified in terms of p
and q), these estimates hold in an unrestricted sense. This would suggest poten-
tial generalizations to perturbations of the Ornstein–Uhlenbeck operator, whose
heat semigroups need not have nice kernels. Moreover, for sufficiently small t,
by using direct estimates of Mehler’s kernel, it is shown that the estimates fail
when restricted to maximal admissible balls and sufficiently small annuli.

10. S. Thangavelu [270], K. Stempak, and J. L. Torrea [259], among several others,
have developed an analogous theory for Hermite functions {Ψν} in R

d which
are eigenfunctions of the Hermite operator

H =−Δx + |x|2,

with eigenvalue λν =−(2|ν |+d).
Then, the Hermite semigroup {ϒt = e−tH}t≥0 can be defined in Lp(Rd). The
Hermite semigroup leads to analogous results in classical harmonic analysis with
respect to the Lebesgue measure, which will not be considered here (for more
details see, for instance, [259, 267, 268] and [270]).15

15It is important to observe that the one-dimensional Hermite expansions only converge in
Lp-norm for p = 2 (see [230]), but expansions in Hermite functions converge in Lp-norm for
4
3 < p < 4.
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11. For α >−1,β >−1, consider the one-dimensional Jacobi differential operator,
a second-order diffusion operator defined as

L α ,β =−(1− x2)
d2

dx2 − (β −α− (α+β +2)x)
d
dx

, (2.80)

The Jacobi polynomials {P(α ,β )
n }k can be defined as orthogonal polynomials

with respect to the Jacobi (or beta) measure μα ,β in (−1,1)

μα ,β (dx) =
1

2α+β+1B(α+1,β +1)
χ(−1,1)(x)(1− x)α(1+ x)βdx, (2.81)

and they are eigenfunctions of L α ,β with corresponding eigenvalues λα+β
n =

n(n+α+β +1).

Observe that if we choose δα ,β =
√

1− x2 d
dx , and consider its formal L2(μα ,β )-

adjoint,

δ ∗
α ,β =−

√
1− x2 d

dx
+
[
(α+

1
2
)

√
1+ x
1− x

− (β +
1
2
)

√
1− x
1+ x

]
I,

then L α ,β = δ ∗
α ,β δα ,β . The differential operator δα ,β is considered the “natural”

notion of derivative in the Jacobi case.

The square field operator is given by

Γ α ,β ( f ,g)(x) =
1
2

[
(1− x2)

d2( f g)
dx2 (x)+(β −α+1− (α+β+2)x)

d( f g)
dx

(x)

−(1−x2) f (x)
d2g
dx2 (x)−(β −α+1− (α+β+2)x) f (x)

dg
dx

(x)

−(1−x2)g(x)
d2 f
dx2 (x)−(β −α+1− (α+β+2)x)g(x)

d f
dx

(x)
]

= (1−x2)
d f
dx

(x)
dg
dx

(x),

and

Γ α ,β ( f )(x) = Γ α ,β ( f , f )(x) = (1− x2)
(d f

dx
(x)

)2
. (2.82)

Moreover, the iterated square field operator is given by

Γ α ,β
2 ( f ,g)(x) = 2(1− x2)2 d2 f

dx2 (x)
d2g
dx2 (x)

−2x(1− x2)
(d2 f

dx2 (x)
dg
dx

(x)+
d f
dx

(x)
d2g
dx2 (x)

)

+
(
(1− x2)(2α+2β +3)

−2x(β −α+1− (α+β +2)x
)d f

dx
(x)

dg
dx

(x).
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The operator semigroup associated with the Jacobi polynomials can be defined,
in R, for positive or bounded measurable Borel functions of (−1,1), as

Tα ,β
t f (x) =

∫ 1

−1
pα ,β (t,x,y) f (y)μα ,β (dy), (2.83)

where

pα ,β (t,x,y) =∑
k

1

ĥk
(α ,β ) P(α ,β )

k (x)P(α ,β )
k (y)e−k(k+α+β+1)t , x,y ∈ [−1,1],

t > 0 and

ĥk
(α ,β )

=
1

(2k+α+β +1)
Γ (α+β +2)Γ (k+α+1)Γ (k+β +1)

Γ (α+1)Γ (β +1)Γ (k+1)Γ (k+α+β +1)
.

Different from the cases of the Hermite or Laguerre polynomials, the kernel
pα ,β (t,x,y) does not correspond to the kernel of Abel summability for the Jacobi

series because the eigenvalues λα ,β
n are not n, but n(n+α+β ), i.e., they are not

linearly distributed. W.N. Bailey obtained the following representation for the
kernel of Abel summability for the Jacobi series, also called the Jacobi–Poisson
integral,

∑
k

1

ĥk
(α ,β ) P(α ,β )

k (cosθ)P(α ,β )
k (cosφ)rk

=
Γ (α+β +2)

2α+β+1Γ (α+1)Γ (β +1)

1− r

(1+ r)α+β+2

×F4

(α+β +2
2

,
α+β +3

2
;α+1,β +1;

(2sin(θ/2)sin(φ/2)

r1/2 + r−1/2

)2
,
(2cos(θ/2)cos(φ/2)

r1/2 + r−1/2

)2)
,

|r| < 1 and α,β > 1, and F4 is Appell’s hypergeometric function of two vari-
ables,

F4(a1,a2;b1,b2;x,y) =
∞

∑
m,n=0

(a1)m+n(a2)m+n

(b1)m(b2)nm!n!
xmyn,

where (a)k is the Pochhammer symbol, (a)k = a(a+1) · · ·(a+ k−1). This for-
mula was first stated in 1935 without proof in Bailey’s tract [15]. The proof is a
consequence of Watson’s formula for hypergeometric functions (see [290]), and
was published later in [16].
An explicit representation of pα ,β (t,x,y) was obtained by G. Gasper in 1973
[99, 100], which is an analog of Bailey’s formula
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pα ,β (t,x,y) =∑
k

1

ĥk
(α ,β ) P(α ,β )

k (x)P(α ,β )
k (y)(λα ,β

n )k

=
Γ (α+β +2)

2α+β+1Γ (α+1)Γ (β +1)

∞

∑
n,m=0

(
α+β+3

2

)
m+n

(
α+β+2

2

)
m+n

m!n!(α+1)m(β +1)n

×[(1− x)(1− y)]m[(1+ x)(1+ y)]n

×
∞

∑
k=0

(−1)m
(2m+2n+α+β +1)k

(
m+n+ α+β+3

2

)
k

k!
(

m+n+ α+β+1
2

)
k

e−tλm+n+k .

Additionally, in [217], A. Nowak, P. Sjögren, and T. Z. Szarek obtained an
integral representation for pα ,β (t,x,y) valid for all admissible-type parameters
α,β > −1. Finally, in [215, Theorem A], A. Nowak and P. Sjögren, without
using an explicit form of pα ,β (t,x,y), obtained sharp estimates of it, giving the
order of magnitude for α,β ≥ −1/2. Previously, only its non-negativity had
been proved (see [11, Chapter 2]).

{Tα ,β
t }t≥0 is called the Jacobi semigroup, or Jacobi heat semigroup, in R, and

it can be proved that it is a Markov semigroup (see [213, 214] and references
therein). The generalization of the Jacobi operator and the Jacobi semigroup in
R

d is straightforward according to the tensorization argument (see [20, 284]).

Additionally, the Jacobi operator satisfies a Sobolev inequality, which implies
that it satisfies a tight logarithmic Sobolev inequality; therefore, the Jacobi semi-
group {Tα ,β

t }t≥0 is hypercontractive, with contraction function

q(t) = 1+(q(0)−1)e4t/C

(for details see Bakry’s paper [18, page 33–34], [20, 19], or [284]). Moreover,
as a consequence of the asymptotic relations among the Jacobi polynomials and
the Hermite and Laguerre polynomials (see [262], (5.3.4) and (5.6.3)), from the
Sobolev inequality for the Jacobi operator we can obtain the logarithmic Sobolev
inequality for the Ornstein–Uhlenbeck and Laguerre operators; see [20, 284].

12. As has been already mentioned, in the Jacobi setting, because of the non-
linearity in n of the eigenvalues λα+β

n = n(n+α+β +1), the Jacobi semigroup
does not coincide with the Abel summability for Jacobi expansions, which is
an important difference compared with the Hermite and Laguerre cases. The
Abel summability for the Jacobi expansions has been studied extensively in the
literature (see for instance [41, 46] and [47] and the references therein).

13. For α >−1, consider the one-dimensional Laguerre differential operator

L α =−x
d2

dx2 − (α+1− x)
d
dx

. (2.84)
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The Laguerre polynomials {Lαn } can be defined as orthogonal polynomials as-
sociated with the Gamma measure on (0,∞),

μα(dx) = χ(0,∞)(x)
xαe−x

Γ (α+1)
dx, (2.85)

and they are eigenfunctions of L α with corresponding eigenvalues λk = k. Ob-
serve that if we choose δα =

√
x d

dx , and consider its formal L2(α)-adjoint,

δ ∗
α =−

√
x

d
dx

+
[α+1/2√

x
+

√
x
]
I

then L α = δ ∗
αδα . The differential operator δα is considered the natural notion

of derivative in the Laguerre case.

The operator semigroup associated with the Laguerre polynomials can be de-
fined for positive or bounded measurable Borel functions of (0,∞), as

Tα
t f (x) =

∫ ∞

0
pα(t,x,y) f (y)μα(dy), (2.86)

where, according to the Hille–Hardy formula (10.35),

pα(t,x,y) =∑
k

Γ (α+1)k!
Γ (k+α+1)

Lαk (x)L
α
k (y)e

−kt

=
1

1− e−t e−
(x+y)e−t

1−e−t (−xye−t)−α/2Iα
(2

√
xye−t

1− e−t

)
,

where Iα(x) is the modified Bessel function of the first kind of order α . This
identity was found in 1926 by E. Hille [135] and independently rediscovered by
G.H. Hardy [130] (see also G.N. Watson [291]).

In this case, the square field operator is given by

Γ α( f ,g)(x) =
1
2

[
x

d2( f g)
dx2 (x)+(α+1−x)

d( f g)
dx

(x)−x f (x)
d2g
dx2 (x)

−(α+1−x) f (x)
dg
dx

(x)−xg(x)
d2 f
dx2 (x)−(α+1−x)g(x)

d f
dx

(x)
]

= x
d f
dx

(x)
dg
dx

(x),

and

Γ α( f )(x) = Γ α( f , f )(x) = x
(d f

dx
(x)

)2
. (2.87)
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Moreover, the iterated square field operator is given by

Γ α
2 ( f ,g)(x) =

1
2

[
x

d2 f
dx2 (x)

dg
dx

(x)+ x
d f
dx

(x)
d2g
dx2 (x)+2x2 d2 f

dx2 (x)
d2g
dx2 (x)

+(α+1+ x)
d f
dx

(x)
dg
dx

(x)
]
. (2.88)

{Tα
t }t≥0 is called the Laguerre semigroup, or Laguerre heat semigroup. It can

be proved that it is a Markov semigroup (see [208] and [193] and the refer-
ences therein). The generalization of the Laguerre operator and the Laguerre
semigroup in R

d is straightforward according to the tensorization argument (see
[20, 284]). Here, again, the semigroup {Tα

t } coincides with the Abel summabil-
ity for Laguerre expansions.

Moreover, the Laguerre operator satisfies a tight logarithmic Sobolev inequal-
ity; therefore, the Laguerre semigroup {Tα

t } is hypercontractive, see [20, 284].
The hypercontractivity of the Laguerre semigroup was initially proved by A.
Korzeniowski and D. Stroock in [152].

14. The fact that the Jacobi and Laguerre semigroups are hypercontractive allows us
to obtain similar applications to those obtained in Section 2.4 for the Ornstein–
Uhlenbeck semigroup (see for instance [24, 25, 117, 284], and the references
therein).

15. Additionally, an operator semigroup can be defined for the generalized Hermite
polynomials {Hμ

n }, which, as we know, are eigenfunctions of the operator

Lμ =
1
2

d2

dx2 +
(μ

x
− x

) d
dx

−μ
I − Ĩ
2x2 .

Using Mehler’s formula (10.46), this semigroup can be written as

T μ
t f (x) =

∫ ∞

−∞
pμ(t,x,y) f (y)|y|2μe−|y|2dy, (2.89)

where

pμ(t,x,y) =
1

(1− e−2t)μ+1/2
e
− e−2t (x2+y2)

1−e−2t eμ

(
2xye−t

1− e−2t

)
,

for f a positive or bounded measurable function on (−∞,∞).{
T μ

t

}
t≥0 is called the generalized Ornstein–Uhlenbeck semigroup, and it is easy

to see that it is also a Markov semigroup with generator Lμ ; see [20].

The weak type (1,1) inequality, in addition to its Lp-boundedness for p > 1,
with respect to the measure λ of the maximal operator associated with this semi-
group, was proved in [30]. Those results were extended to higher dimensions in
[92]. Further research into this semigroup and the operators associated with it
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are particular cases of a more general theory for the Dunkl Ornstein–Uhlenbeck
operator (see [212]).

16. For the Hermite, Laguerre, and Jacobi functions in analogous form as above, we
can define operator semigroups, usually called heat diffusion semigroups (see
for instance [270, 259] and the references therein).

17. An unexpected application of the hypercontractivity property of the Ornstein–
Uhlenbeck semigroup has been found in several works on non-linear partial
differential equations of evolution type (see for instance N. Tzvetkov [277]).

18. The boundedness of the Ornstein–Uhlenbeck semigroup on variable Lp(·) Gaus-
sian spaces has been studied in [192] by J. Moreno, E. Pineda, and W. Urbina.



3

The Poisson–Hermite Semigroup

In this chapter, we consider the Poisson–Hermite semigroup, which is the semigroup
subordinated to the Ornstein–Uhlenbeck semigroup. This is analogous to the clas-
sical case in which the Poisson semigroup is obtained by subordination of the heat
semigroup (for more details see the Appendix). Then, we study the characterization
of the ∂ 2

∂ t2 +L-harmonic functions, the generalized Poisson–Hermite semigroups, and
the conjugated Poisson–Hermite semigroup which, as in the classical case, is closely
related to the notion of singular integrals.

3.1 Definition and Basic Properties

We define the Poisson–Hermite semigroup as the semigroup subordinated to the
Ornstein–Uhlenbeck semigroup using Bochner’s subordination formula,1

e−λ =
1√
π

∫ ∞

0

e−u
√

u
e−λ

2/4udu, (3.1)

(see E. Stein [252]). Thus, making the change of variables r = e−t2/4u, we have

Pt f (x) =
1√
π

∫ ∞

0

e−u
√

u
T(t2/4u) f (x)du

=
1

π(d+1)/2

∫
Rd

∫ ∞

0

e−u
√

u

exp
(

−|y−e−t2/4ux|2

1−e−t2/2u

)

(1− e−t2/2u)d/2
du f (y)dy (3.2)

=
1

2π(d+1)/2

∫
Rd

∫ 1

0
t
exp(t2/4logr)

(− logr)3/2

exp
(

−|y−rx|2
1−r2

)

(1− r2)d/2

dr
r

f (y)dy.

1In [133], C. Herz considered more general subordination relations between semigroups.
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Then,

Pt f (x) =
∫
Rd

p(t,x,y) f (y)dy, (3.3)

with what we will call the Poisson–Hermite kernel,

p(t,x,y) =
1

π(d+1)/2

∫ ∞

0

e−u
√

u

exp
(

−|y−e−t2/4ux|2

1−e−t2/2u

)

(1− e−t2/2u)d/2
du (3.4)

=
1

4π(d+1)/2

∫ 1

0
t
exp(t2/4logr)

(− logr)3/2

exp
(

−|y−rx|2
1−r2

)

(1− r2)d/2

dr
r
, (3.5)

using the change of variables r = e−t2/4u. Moreover, making the change of variables
v = 1− r2, we get

p(t,x,y) =
1

8π(d+1)/2

∫ 1

0

e
t2

4log
√

1−v

(− log
√

1− v)3/2

e−
|y−

√
1−vx|2
v

vd/2

dv
1− v

. (3.6)

The subordination of the Poisson–Hermite semigroup {Pt}t≥0 can be expressed

alternatively in the following way. Let μ(1/2)
t be the Borel measure on [0,∞) whose

Laplace transform satisfies
∫ ∞

0
e−λ sμ(1/2)

t (ds) = e−
√
λ t .

It is easy to check that the family of measures {μ(1/2)
t }t≥0 forms a convolution semi-

group [81]. Moreover, using Bochner’s subordination formula (3.1) (with λ = t
√
α

and the change of variables s = t2

4u ), it yields the following explicit expression of the

measure μ(1/2)
t :

μ(1/2)
t (du) =

t

2
√
π

e−t2/4uu−3/2du. (3.7)

Then, Pt can be defined by

Pt f (x) =
∫ ∞

0
Ts f (x)μ(1/2)

t (ds). (3.8)

The Poisson–Hermite semigroup {Pt}t≥0 is a strongly continuous, symmetric,
conservative semigroup of positive contractions in Lp(γd), 1 ≤ p <∞, with infinites-
imal generator (−L)1/2. More precisely,

Theorem 3.1. The family of operators {Pt}t≥0 satisfies the following properties:

i) Semigroup property:
Pt1+t2 = Pt1 ◦Pt2 , t1, t2 ≥ 0.
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ii) Positivity and conservative property:

Pt f ≥ 0, for f ≥ 0, t ≥ 0,

and
Pt1 = 1.

iii) Contractivity property:

||Pt f ||p,γ ≤ || f ||p,γ , t ≥ 0, 1 ≤ p ≤ ∞.

iv) Strong Lp(γd)-continuity property: The mapping t → Pt f is continuous from
[0,∞) to Lp(γd), for 1 ≤ p < ∞ and f ∈ Lp(γd).

v) Symmetry property: Pt is a self-adjoint operator in L2(γd), i.e.,
∫
Rd

Pt f (x)g(x)γd(dx) =
∫
Rd

f (x)Ptg(x)γd(dx), t ≥ 0. (3.9)

vi) Infinitesimal generator: (−L)1/2 is the infinitesimal generator of {Pt : t ≥ 0},
that is to say,

lim
t→0

Pt f − f
t

= (−L)1/2 f . (3.10)

Proof. These results can be obtained immediately from Theorem 2.5 using
Bochner’s subordination formula (3.1). ��

As the Poisson–Hermite semigroup is subordinated to the Ornstein–Uhlenbeck
semigroup and, therefore, (−L)1/2 is its infinitesimal generator, we conclude that Pt

can be defined in the spectral sense as e−t(−L)1/2
. Therefore,

Pthν = e−t
√

|α |hν . (3.11)

Proposition 3.2. (B. Muckenhoupt)

i) If f has a Hermite expansion f =∑∞
k=0 Jk f , then for all t ≥ 0, Pt f has a Hermite

expansion

Pt f =
∞

∑
k=0

e−t
√

kJk f . (3.12)

ii) If f ∈ L2(γd) then ∑∞
k=0 e−t

√
kJk f (x) converges absolutely to Pt f (x) almost ev-

erywhere (a.e.) x.

Proof.

i) By arguments analogous to those given in Proposition 2.3, and using Bochner’s
subordination formula (3.1), we obtain
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∫
Rd

Pt f (x)hν(x)γd(dx) =
∫
Rd

(∫ 1

0
T (t,r)T(− logr) f (x)dr

)
hν(x)γd(dx)

=
∫ 1

0

∫
Rd

T(− logr) f (x)hν(x)γd(dx)T (t,r)dr

= 〈 f ,hν〉γd

∫ 1

0
rνT (t,r)dr = e−t

√
ν〈 f ,hν〉γd .

ii) As the sequence {〈 f ,hν〉γd hν(x)}ν is bounded for each x, by the Weierstrass

M-test, the series ∑∞
k=0 e−t

√
kJk f (x) converges absolutely for each x. Given

that L2(γd) ⊂ L1(γd), then according to i), Pt f (x) has an expansion Pt f (x) =

∑∞
k=0 e−t

√
kJk f (x); this must be the limit a.e. ��

B. Muckenhoupt obtained this result for d = 1 (see [193]). It was extended to
higher dimensions by C. P. Calderón [44] .

To study higher-order Gaussian Littlewood–Paley g functions and the Gaussian
Besov–Lipschitz and Triebel–Lizorkin spaces and Riesz transform, we need some

results for the k-th derivatives of the Poisson–Hermite semigroup ∂ kPt f (x)
∂ tk . Let us

consider explicitly their expressions. First, recall that p(t,x,y) can be written as

p(t,x,y) =
1

2π(d+1)/2

∫ 1

0
t
exp

(
t2/4logr

)
(− logr)3/2

exp
(

−|y−rx|2
1−r2

)

(1− r2)d/2

dr
r
.

Therefore, using Rodrigues’ formula (1.28),

∂ p(t,x,y)
∂ t

=
1

2π(d+1)/2

∫ 1

0

exp
(
t2/4logr

)
(− logr)3/2

(
1− t2

2(− logr)

)exp
(

−|y−rx|2
1−r2

)

(1− r2)d/2

dr
r
.

=
1

22π(d+1)/2

∫ 1

0

exp
(
t2/4logr

)
(− logr)3/2

(
2−4

t2

4(− logr)

)exp
(

−|y−rx|2
1−r2

)

(1− r2)d/2

dr
r
.

= − 1

22π(d+1)/2

∫ 1

0

exp
(
t2/4logr

)
(− logr)3/2

H2

( t

2
√
− logr

)exp
(

−|y−rx|2
1−r2

)

(1− r2)d/2

dr
r
.

(3.13)

where H2 is the Hermite polynomial of order 2.

Moreover, by induction, again using Rodrigues’ formula (1.28) and the three-
term recurrence relation of the Hermite polynomials (10.19), it can be proved that,
for k > 1

∂ k p(t,x,y)
∂ tk = Cd

∫ 1

0

exp
(
t2/4logr

)
(− logr)3/2

Hk+1

(
t

2(− logr)1/2

)

(− logr)
k−1

2

exp
(

−|y−rx|2
1−r2

)

(1− r2)d/2

dr
r
,

where Hk+1 is the Hermite polynomial of order k+1.
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On the other hand, for j = 1, · · · ,d,

∂ p(t,x,y)
∂x j

=
1

π(d+1)/2

∫ 1

0
t
exp

(
t2/4logr

)
(− logr)3/2

(y j − rx j)

(1− r2)(d+1)/2
exp

(
−|y− rx|2

1− r2

)
dr

=
∫ 1

0
t
exp

(
t2/4logr

)
(− logr)

ω(r)
(y j − rx j)

(1− r2)(d+3)/2
exp

(
−|y− rx|2

1− r2

)
dr,

(3.14)

where ω(r) =Cd(
1−r2

− logr )
1/2 is a Lipschitz function on [0,1], and

∂ |β |p(t,x,y)

∂xβ1
1 · · ·xβd

d

=
(−1)|β |

2π(d+1)/2

∫ 1

0
t
exp

(
t2/4logr

)
(− logr)3/2

r|β |Hβ

( y−rx

(1−r2)1/2

)exp
(

−|y−rx|2
1−r2

)

(1−r2)d/2

dr
r

=
∫ 1

0
t
exp

(
t2/4logr

)
(− logr)

ω(r)r|β |Hβ

( y− rx

(1− r2)1/2

) exp
(

−|y−rx|2
1−r2

)

(1− r2)(d+1)/2

dr
r
.

(3.15)

Now, we will also need the following technical result about the L1-norm of the
derivatives of the kernel p(t,x,y).

Lemma 3.3. If p(t,x,y) is the Poisson–Hermite kernel, then
∫
Rd

∣∣∣∣∂ p(t,x,y)
∂ t

∣∣∣∣dy ≤ C
t
, (3.16)

where C is a constant independent of x and t. Moreover, for any positive integer k,
we have ∫

Rd

∣∣∣∣∂
k p(t,x,y)
∂ tk

∣∣∣∣dy ≤ C
tk . (3.17)

Proof. Let us first prove (3.16). Using Tonelli’s theorem, using the fact that

1

πd/2

∫
Rd

exp
(

−|y−rx|2
1−r2

)

(1− r2)d/2
dy = 1,

we have

∫
Rd

∣∣∣∣∂ p(t,x,y)
∂ t

∣∣∣∣dy ≤ 1

2π(d+1)/2

∫
Rd

∫ 1

0

exp
(
t2/4logr

)
(− logr)3/2

∣∣∣∣1+ t2

2 logr

∣∣∣∣
exp

(
−|y−rx|2

1−r2

)

(1−r2)d/2

dr
r

dy

=
1

2π(d+1)/2

∫ 1

0

exp
(
t2/4logr

)
(− logr)3/2

∣∣∣∣1+ t2

2 logr

∣∣∣∣
∫
Rd

exp
(
−|y−rx|2

1−r2

)

(1−r2)d/2
dy

dr
r

=
1

2π1/2

∫ 1

0

exp
(
t2/4logr

)
(− logr)3/2

∣∣∣∣1+ t2

2 logr

∣∣∣∣ dr
r
.
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Thus, what we need to prove is

∫ 1

0

exp
(
t2/4logr

)
(− logr)3/2

∣∣∣∣1+ t2

2 logr

∣∣∣∣ dr
r

≤ C
t
. (3.18)

Making the change of variables s =− logr, we get

∫ 1

0

exp
(
t2/4logr

)
(− logr)3/2

∣∣∣∣1+ t2

2 logr

∣∣∣∣ dr
r

=

∫ ∞

0

e−t2/4s

s3/2

∣∣∣1− t2

2s

∣∣∣ds

≤
∫ ∞

0

e−t2/4s

s3/2
ds+

∫ ∞

0

e−t2/4s

s3/2

t2

2s
ds

Now, making the change of variables v = t2

4s , ds =− t2

4v2 dv, we get

∫ ∞

0

e−t2/4s

s3/2
ds =

∫ ∞

0
e−v

( t2

4v

)−3/2 t2

4v2 dv =
∫ ∞

0
e−v (4v)3/2

t3

t2

4v2 dv

=
C
t

∫ ∞

0
e−vv−1/2dv =

CΓ (1/2)
t

=
C′

t

and

∫ ∞

0

e−t2/4s

s3/2

t2

4s
ds = 2

∫ ∞

0
e−v

( t2

4v

)−3/2
v

t2

4v2 dv = 2
∫ ∞

0
e−v (4v)3/2

t3 v
t2

4v2 dv

=
C
t

∫ ∞

0
e−vv1/2dv =

CΓ (3/2)
t

=
C′

t
.

For the proof of the general case (3.17), we use induction. As the case k = 1 is already
proved, let us assume that (3.17) holds for certain k and prove that it also holds for
k+1. According to the semigroup property, and taking u = t + s, we have

∂ k+1 p(u,x,y)
∂uk+1 =

∂
∂ s

∂ k

∂ tk p(t + s,x,y) =
∂
∂ s

∂ k

∂ tk

[∫
Rd

p(s,x,v)p(t,v,y)dv

]

=
∫
Rd

∂ p(s,x,v)
∂ s

∂ k p(t,v,y)
∂ tk dv.

Therefore,

∫
Rd

∣∣∣∣∂
k+1 p(u,x,y)
∂uk+1

∣∣∣∣dy ≤
∫
Rd

∫
Rd

∣∣∣∣∂ p(s,x,v)
∂ s

∣∣∣∣
∣∣∣∣∂

k p(t,v,y)
∂ tks

∣∣∣∣dvdy

≤
∫
Rd

∣∣∣∣∂ p(s,x,v)
∂ s

∣∣∣∣
∫
Rd

∣∣∣∣∂
k p(t,v,y)
∂ tk

∣∣∣∣dydv ≤ C
s

C
tk .

Finally, taking s = t = u/2, the case k+1 is proved. ��
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Using the representation of the Poisson–Hermite semigroup (3.8) using the one-
sided stable measure

μ(1/2)
t (ds) =

t

2
√
π

e−t2/4s

s3/2
ds = g(t,s)ds,

we can rephrase the result of Lemma 3.3 in terms of μ(1/2)
t as follows. First, for any

k ∈ N, the notation ∂ k

∂ tk μ
(1/2)
t (ds) denotes

∂ k

∂ tk μ
(1/2)
t (ds) :=

∂ kg(t,s)
∂ tk ds.

Then, by induction, it can be seen that

∂ kμ(1/2)
t

∂ tk (ds) =

⎛
⎜⎝ ∑

i ∈ Z, j ∈ N,
0 ≤ j ≤ k,2 j− i = k

ai, j
t i

s j

⎞
⎟⎠μ(1/2)

t (ds) (3.19)

where {ai, j} is a (finite) set of constants.

Moreover, using the change of variables u = t2

4s , it is easy to see that given k ∈ N

and t > 0 ∫ +∞

0

1
sk μ

1
2

t (ds) =
Ck

t2k , (3.20)

and then, if k ∈ N and t > 0

∫ +∞

0

∣∣∣∣ ∂
k

∂ tk μ
(1/2)
t

∣∣∣∣(ds)≤ Ck

tk . (3.21)

Additionally a pointwise estimate of the k-th derivative of the Poisson–Hermite
semigroup is needed in what follows.

Lemma 3.4. ∣∣∣∣∂
kPt f (x)
∂ tk

∣∣∣∣≤Ck T ∗ f (x)t−k, (3.22)

where T ∗ f is the maximal Ornstein–Uhlenbeck function.

Proof. Using (3.21) and the dominated convergence theorem, we have

∣∣∣∣∂
kPt f (x)
∂ tk

∣∣∣∣ =
∣∣∣∣
∫ +∞

0
Ts f (x)

∂ k

∂ tk μ
(1/2)
t (ds)

∣∣∣∣≤
∫ +∞

0
|Ts f (x)|

∣∣∣ ∂ k

∂ tk μ
(1/2)
t (ds)

∣∣∣

≤
∫ +∞

0
T ∗ f (x)

∣∣∣∣ ∂
k

∂ tk μ
(1/2)
t (ds)

∣∣∣∣≤Ck T ∗ f (x)t−k. ��

Now, we need an estimate of the Lp(γd)-norms of the derivatives of the Poisson–
Hermite semigroup.
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Lemma 3.5. Suppose f ∈ Lp(γd), then for any integer k, the function
∣∣∣
∣∣∣ ∂ kPt f

∂ tk

∣∣∣
∣∣∣

p,γ
is

a non-increasing function of t, for 0 < t <+∞. Moreover,

∣∣∣∣
∣∣∣∣∂

kPt f
∂ tk

∣∣∣∣
∣∣∣∣

p,γ
≤C‖ f‖p,γ t−k, t > 0. (3.23)

Proof. Let us consider first the case k = 0. Let us fix t1, t2 > 0, then by using the
semigroup property, we get

u(x, t1 + t2) = Pt1+t2 f (x) = Pt1(Pt2 f (x)) = Pt1(u(x, t2))

Therefore, by definition of Pt , Jensen’s inequality and the invariance of γd

∫
Rd

|u(x, t1 + t2)|pγd(dx) =
∫
Rd

∣∣∣
∫
Rd

p(t1,x,y)u(y, t2)dy
∣∣∣p
γd(dx)

≤
∫
Rd

(∫
Rd

p(t1,x,y)|u(y, t2)|pdy
)
γd(dx)

=
∫
Rd

Pt1(|u(x, t2)|p)γd(dx) =
∫
Rd

|u(x, t2)|pγd(dx).

Thus,
‖Pt1+t2 f‖p,γ ≤ ‖Pt2 f‖p,γ .

Now, we prove the general case k > 0. Differentiating the identity

u(x, t1 + t2) = Pt1(u(x, t2))

k-times with respect to t2, we get

∂ ku(x, t1 + t2)
∂ (t1 + t2)k = Pt1

(∂ ku(x, t2)

∂ tk
2

)

and then we use an analogous argument to the one above.
To prove (3.23), we again use the representation of the Poisson–Hermite semi-

group with a one-sided stable measure (3.8), and differentiating it k-times with re-
spect to t, we get

∂ kPt f (x)
∂ tk =

∫ +∞

0
Ts f (x)

∂ k

∂ tk μ
(1/2)
t (ds).

Thus, using Minkowski’s integral inequality, the contractive property of the
Ornstein–Uhlenbeck semigroup and inequality (3.21), we get for t > 0

∣∣∣∣
∣∣∣∣∂

kPt f
∂ tk

∣∣∣∣
∣∣∣∣

p,γ
≤

∫ +∞

0

∣∣∣∣
∣∣∣∣Ts f

∂ k

∂ tk μ
(1/2)
t (ds)

∣∣∣∣
∣∣∣∣=

∫ +∞

0
‖Ts f‖p,γ

∣∣∣∣ ∂
k

∂ tk μ
(1/2)
t (ds)

∣∣∣∣
≤ ‖ f‖p,γ

∫ +∞

0

∣∣∣∣ ∂
k

∂ tk μ
(1/2)
t (ds)

∣∣∣∣≤ Ck

tk ‖ f‖p,γ . ��
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Definition 3.6. The maximal function of the Poisson–Hermite semigroup or Poisson–
Hermite maximal function {Pt}t≥0 is defined as

P∗ f (x) = sup
t>0

|Pt f (x)| . (3.24)

In Theorem 4.28 of Chapter 4, we study the boundedness properties of P∗, prov-
ing that it is bounded in Lp(γd) for 1 < p ≤ ∞, and it is of weak type (1,1) with
respect to the measure γd . Moreover, from the boundedness property of P∗, it fol-
lows that

P0 f (x) = lim
t→0+

Pt f (x) = f (x) a.e. x ∈ R
d , (3.25)

and
P∞ f (x) := lim

t→∞
Pt f (x) =

∫
Rd

f (y) γd(dy) a.e. x ∈ R
d , (3.26)

for all f ∈ Lp(γd), 1 ≤ p ≤ ∞; see Theorem 4.46,. Observe that this says that the
Poisson–Hermite semigroup does not decay at infinity, i.e., it is not true that Pt → 0
as t → ∞, unless

∫
Rd f (y) γd(dy) = 0. In this case, one can obtain a precise estimate

of the decay, as it is proved in the following result.

Lemma 3.7. The Poisson–Hermite semigroup {Pt}t>0 has exponential decay on
C ⊥

0 =
⊕∞

k=1 Ck. More precisely, if
∫
Rd f (y)γd(dy) = 0,

|Pt f (x)| ≤Cd, f (d + |x|)e−t . (3.27)

Proof. As {Pt}t>0 is a strongly continuous semigroup, we have

lim
t→0+

Pt f (x) = f (x) (3.28)

and according to the hypothesis, because we are assuming that
∫
Rd f (y)γd(dy) = 0,

lim
t→∞

Pt f (x) = 0. (3.29)

Let us prove that ∣∣∣∣ ∂∂ t
Pt f (x)

∣∣∣∣≤Cd, f (d + |x|)e−t .

As
∂Tt f
∂ t

(x) = L(Tt f )(x),

differentiating in (2.36), we have

∇x(Tt f )(x) =

(
e−tTt

(
∂ f
∂x1

)
(x), . . . ,e−tTt

(
∂ f
∂xd

)
(x)

)

and

�x(Tt f )(x) =
d

∑
j=1

e−2tTt

(
∂ 2 f

∂x2
j

)
(x).
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Therefore, taking f ∈C2
b(R

d) and using (3.2), we have that

∂Pt f
∂ t

(x) =
1√
π

∫ ∞

0

e−u
√

u
t

2u
L(Tt2/4u f )(x)du.

Carrying on the computations, as in [122], we get

∣∣∣∣∂Pt f
∂ t

(x)

∣∣∣∣ ≤ Cd

∫ ∞

0

e−u
√

u
t
u

[
d

∑
j=1

e−t2/2u

2
+ |x j|e−t2/4u

]
f (u)du

≤ Cd, f (d + |x|)e−t .

Then,

|Pt f (x)| ≤
∫ ∞

t

∣∣∣∣ ∂∂ s
Ps f (x)

∣∣∣∣ds ≤Cd, f (d + |x|)e−t . ��

On the other hand, because the Poisson–Hermite semigroup is the subordinated
semigroup of the Ornstein–Uhlenbeck semigroup, it is easy to see that it is also
hypercontractive.

Additionally, we have the following result.

Proposition 3.8. If f ∈ Lp(γd), u(x, t) =Pt f (x) is a C∞(Rd+1
+ ) solution of the elliptic

equation,2

∂ 2u
∂ t2 (x, t)+Lu = 0, x ∈ R

d , t > 0, (3.30)

with boundary condition u(x,0) = f (x), x ∈ R
d .

Proof. By the general theory of semigroups, given that (−L)1/2 is the infinitesimal
generator of {Pt}t≥0, we have

∂ 2u
∂ t2 (x, t) =

∂
∂ t

[
∂Pt f
∂ t

(x)

]
=

∂
∂ t

[(−L)1/2Pt f (x)]

= (−L)1/2
[
∂Pt f
∂ t

(x)

]
= (−L)1/2[(−L)1/2Pt f (x)] =−Lu(x, t).

Alternatively, if we assume first that f ∈ L2(γd), because the sequence {〈 f ,hν〉γd

hν(x)}ν≥0 is bounded for each x, we know that

Pt f (x) =
∞

∑
k=0

e−t
√

kJk f (x) =
∞

∑
k=0

e−t
√

k ∑
|ν |=k

fH(ν)hν(x)

converges absolutely for each x; therefore, we can differentiate term by term. Now,
because the Hermite polynomials are eigenfunctions of L, we have

2Sometimes called the wave equation (see for instance [59]).
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∂ 2Pt f
∂ t2 (x)+LPt f (x) =

∞

∑
k=0

e−t
√

k

(2kk!)1/2 ∑
|ν |=k

fH(ν)[kHν(x)− kHν(x)] = 0.

Differentiation under the integral sign is justified by showing that the derivatives of
the kernel are bounded in y for each (t,x) in a neighborhood of (t0,x0), and this is
easy to check by estimating the derivatives of T (t,r)M(− logr)(x,y) and integrating
with respect to r. The boundary condition holds by (3.25). ��

Therefore, u(x, t) = Pt f (x) satisfies:

2
∂ 2u
∂ t2 (x, t)+Δxu(x, t)−2〈x,�xu(x, t)〉= 0, (3.31)

and we will say that u is ∂ 2

∂ t2 + L-harmonic. Moreover, u(x, t) = Pt f (x), which

can also be called the Poisson–Hermite integral, can be thought of as the ∂ 2

∂ t2 + L-

harmonic extension of f in R
d to the upper half-plane R

(n+1)
+ .

In [106], G. Garrigós, S. Harzstein, T. Signes, J. L. Torrea, and B. Viviani find
optimal integrability conditions to guarantee the existence of solutions of (3.31).

3.2 Characterization of ∂ 2

∂ t2 +L-Harmonic Functions

In the classical case, it is well known that Δ -harmonic functions on the disc D, and
in the case of the semiplane Rd+1

+ , are characterized by being the Poisson integral of
Lp(Rd)-functions, 1 < p ≤ ∞, see for instance, [252, Chapter VII, §1] and [299, Vol
I Chapter VII, 7].

In his famous paper [199], B. Muckenhoupt and E. Stein defined the notion of
Poisson integral for the case of the ultraspherical expansions and then they gave
the corresponding characterization of functions that are Poisson integrals of Lp-
functions in that case.

In Gaussian harmonic analysis, the analogous problem is the characterization of
∂ 2

∂ t2 + L-harmonic functions on the half-plane R
d+1
+ that are Poisson–Hermite inte-

grals of functions R
d . This was studied by L. Forzani and W. Urbina in [94]. Let

us start with the bounded case. The proof of this result essentially follows, with the
necessary variations, the classical proof that can be found in Stein’s book [252].

Theorem 3.9. Given a function u defined in R
d+1
+ , u is ∂ 2

∂ t2 + L-harmonic and
bounded if and only if u is the Poisson–Hermite integral of a function in L∞(γd).

Proof. It is enough to prove the sufficient condition, because the necessary condi-
tion is immediate, as the Poisson–Hermite integral of a bounded function is ∂ 2

∂ t2 +L-

harmonic and bounded. Now, assume that u is a ∂ 2

∂ t2 +L-harmonic function such that
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|u| ≤ M in R
d+1
+ . For each k ∈N set fk(x) = u(x,1/k) and let uk(x, t) be the Poisson–

Hermite integral of fk. Let us consider

Δk(x, t) = u(x, t +1/k)−uk(x, t).

It is enough to prove that Δk ≡ 0 because, assuming that, we have

u(x, t +1/k) = uk(x, t) =
∫
Rd

p(t,x,y) fk(y)γd(dy)

and hence, by the boundedness condition

|| fk||L∞(γ) = ||u(·,1/k)||L∞(γ) ≤ M < ∞.

Thus, { fk} is a bounded sequence in L∞(γd) = (L1(γd))
∗, and then, according to the

Bourbaki–Alaoglu theorem, there is an f ∈ L∞(γd) and a subsequence { fk′} such that
fk′ → f in the weak∗ topology, that is,

∫
Rd

fk′(y)φ(y)γd(dy)−→
∫
Rd

f (y)φ(y)γd(dy),

for all φ ∈ L1(γd).
For a fixed (x, t) ∈ R

d+1
+ , choosing φ(·) = p(t,x, ·), in the limit, we have that

u(x, t) =
∫
Rd

p(t,x,y) f (y)γd(dy).

Then, to prove that Δk ≡ 0; define, for ε > 0, the auxiliary function

U(x, t) = Δk(x, t)+2Mεt + εh(x, t),

where h(x, t) = e−2t( 2
n |x|2 − 1) + 1 is strictly positive, radial in x, and ∂ 2

∂ t2 + L-
harmonic function.

U(x, t) is clearly ∂ 2

∂ t2 +L-harmonic on R
d+1
+ and continuous on R

d+1
+ . We restrict

our attention to the bounded domain Σ = {(x, t) : 0 < t < 1/ε , |x| < R}, where R is
sufficiently large, to be chosen later. Then, on its boundary,

∂Σ = {(x,0) : |x|< R}∪{(x,1/ε) : |x|< R}∪{(x, t) : 0 < t < 1/ε , |x|= R}
= ∂Σ1 ∪∂Σ2 ∪∂Σ3,

we have the following two conditions:

• On ∂Σ1, Δk(x,0) = 0 and

U(x,0) = εh(x,0)≥ 0.

• On ∂Σ2,
U(x,1/ε) = Δk(x,1/ε)+2M+ εh(x,1/ε)≥ 0

since |Δk(x, t)| ≤ 2M.
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• Finally, on ∂Σ3, because Δk(x, t) is bounded and h(x, t) is radially increasing in
x, U(x, t) is positive for R big enough (note that R depends on ε).

Then, by using the maximum principle,3 we get that U(x, t) ≥ 0 in the region Σ
and this implies that for all (x, t) ∈ Σ

Δk ≥ −ε(2Mt +h(x, t)).

By a similar argument, considering −Δk instead of Δk, we get that for all (x, t) ∈ Σ

Δk ≤ ε(2Mt +h(x, t)).

Now, consider an arbitrary point (x, t) ∈ R
d+1
+ . For any ε small enough (x, t) ∈ Σ ;

thus, we can get both inequalities for Δk(x, t) and, therefore, Δk(x, t) = 0. ��
The characterization result, mentioned above, is the following theorem (see [94]).

Theorem 3.10. Given a function u defined in R
d+1
+ , u is ∂ 2

∂ t2 +L-harmonic and uni-
formly Lp(γd)-bounded, 1 ≤ p < ∞, that is to say

supt>0||u(·, t)||p,γ ≤ M, (3.32)

if and only if u is the Poisson–Hermite integral of a function in Lp(γd), if p > 1. In
the case p = 1, u is the Poisson–Hermite integral of a measure μ as above.

In the classical case, the analogous result of Theorem 3.10 is simply a corollary
of the corresponding result of Theorem 3.9, but that is not the case here. The proof of
Theorem 3.10 is a combination of the classical proof and specific estimates for the
Gaussian measure. One of the necessary ingredients is the following result, which
first appeared in [87].

Theorem 3.11. Let us consider the operators

L1u =
∂ 2u
∂ t2 +Lu, and L2u = L1u−2u. (3.33)

If u satisfies L1u = 0 or L2u = 0, then:

i) Mean value inequality. There exists a constant C, dependent only on dimension,
such that

|u(x, t)| ≤ C
|B((x, t),r)|

∫
B((x,t),r)

|u(y,s)|dyds, (3.34)

for r ≤ t, and t ≤ m(x), where, as before, m(x) = 1 ∧ 1
|x| is the admissibility

function. Thus, the mean value inequality is valid for radii that are small enough.
ii) If u ≥ 0 in B((x, t),2r), then

u(z, l)≈ 1
|B((x, t),r)|

∫
B((x,t),r)

u(y,s)dyds, (3.35)

for any (z, l) ∈ B((x, t),r), with r ≤ t and t ≤ m(x).

3The weak maximum principle on bounded domains can be applied here as L is a uni-
formly elliptic differential operator with continuous coefficients.
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iii) Harnack’s inequality. There exists a constant C > 0 such that if u ≥ 0 in
B((x, t),2r)

sup
B((x,t),r)

u ≤C inf
B((x,t),r)

u (3.36)

if r ≤ t and t ≤ m(x).

Proof. For each (x0, t0) ∈ R
d+1
+ , x0 �= 0, |x0| > 1, set B = B

(
(x0, t0), 1

|x0|

)
. Let us

define on B the transformation

x = x0 +
1

|x0|
x′,

t = t0 +
1

|x0|
t ′.

Then (x,y) ∈ B if and only if (x′,y′) ∈ B((0,0),1). Define the function

U(x′, t ′) = u

(
x0 +

1
|x0|

x′, t0 +
1

|x0|
t ′
)
.

The function U satisfies the equation

Δx′,t ′U −2
1

|x0|

(
x0 +

1
|x0|

x′
)
∇x′U = 0

and because (x′, t ′) ∈ B((0,0),1), then 1
|x0|

(
x0 +

1
|x0|x

′
)

is bounded by a constant.

Given that the (classical) mean value inequality is still true for differential operators
with bounded first-order coefficients (see D. Gilbarg, N. S. Trudinger [113], page
244), we have

U(0,0)≤ 1
sd+1

∫
B((0,0),s)

U(x′, t ′)dx′dt ′

for all s ≤ 1.
Now, according to the definition of U , the latter inequality can be rewritten as

u(x0, t0)≤
1

sd+1

∫
B((0,0),s)

u

(
x0 +

1
|x0|

x′, t0 +
1

|x0|
t ′
)

dx′dt ′

=
|x0|d+1

sd+1

∫
B((x0,y0),

s
|x0|

)
u(x, t)dxdt.

Hence, to obtain the inequality, if t0 < 1
|x0| , take s = |x0|t0 and if t0 > 1

|x0| , s = 1.

To prove (3.35) and (3.36) we use, as before, the results we know for classical
positive solutions (see D. Gilbarg, N. S. Trudinger [113, pages 244–250]). ��

We are now ready to prove Theorem 3.10.
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Proof. The necessary condition is immediate because the Poisson–Hermite integral
of a Lp(γd) function is ∂ 2

∂ t2 +L-harmonic and Lp(γd)-bounded. We then just have to
prove the sufficient condition.

For each (x, t) ∈ R
d+1
+ , consider an admissible ball B((x, t),r) radius r ≤ t, and

t ≤ m(x), because, as we already know the values of Gaussian density e−|y|2 are
equivalents for points (y,s) on that ball, it is clear that

B((x, t),r)⊂
{
(y,s) : t − r < s < t + r

}
,

and |B((x, t),r)| = Crd+1; therefore, using these facts, the mean value inequal-
ity (3.34) and Hölder’s inequality, we get, for 1 ≤ p < ∞,

|u(x, t)|p ≤ C
|B((x, t),r)|

∫
B((x,t),r)

|u(y,s)|pdyds

≤ Ce|x|
2

rd+1

∫ t+r

t−r

(∫
Rd

|u(y,s)|pγd(dy)
)

ds.

Thus, according to the Lp(γd)-boundedness

|u(x, t)| ≤Cr−d/pe|x|
2/p,

with r ≤ t and t ≤ m(x).
As before, consider, for each k ∈ N, fk(x) = u(x,1/k), uk(x, t) its Poisson–

Hermite integral and

Δk(x, t) = u(x, t +1/k)−uk(x, t).

According to the weak compactness argument, it is again enough to prove that

Δk ≡ 0.

Observe that, according to the previous inequality,

|u(x, t +1/k)| ≤ C

((
t +

1
k

)
1∧ 1

|x|

)−d/p

e|x|
2/p

≤ C(k∨1∨|x|)d/pe|x|
2/p.

Now, consider the auxiliary function

U(x, t) = Δk +2Cε(k2 + |x|2)de|x|
2/pt + εh(x, t),

where h is as in the proof of Theorem 3.9. Then, U(x, t) is clearly ∂ 2

∂ t2 + L-

subharmonic on R
d+1
+ and continuous on R

d+1
+ . Thus, according to an analogous

argument to that of the proof of Theorem 3.9, to apply the maximum principle on
the bounded domain
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Σ =
{
(x, t) : 0 < t < 1/ε , |x|< R

}

we get that U(x, t)≥ 0 in the region Σ ; thus, this implies for all (x, t) ∈ Σ

Δk ≥ −ε
(

2C(k2 + |x|2)de|x|
2/p +h(x, t)

)
.

Analogously, considering −Δk instead of Δk, we get that for all (x, t) ∈ Σ

Δk ≤ ε
(

2C(k2 + |x|2)de|x|
2/p +h(x, t)

)
.

Now, consider an arbitrary point (x, t) ∈ R
d+1
+ . For any ε > 0 small enough (x, t) ∈

Σ ; thus, we can get both inequalities for Δk(x, t), i.e., Δk(x, t) = 0. Therefore, for
p > 1, there exist f ∈ Lp(γd) and a subsequence { fk′} such that fk′ → f in the weak∗

topology. Thus, u(x, t) is the Poisson–Hermite integral of that f .

For p = 1 there exists a measure μ , such that e−|y|2μ(dy) is a finite measure, and
a subsequence { fk′} such that fk′ → μ in the weak∗ topology; therefore u(x, t) is the
Poisson–Hermite integral of μ . ��

3.3 Generalized Poisson–Hermite Semigroups

The Poisson–Hermite semigroup can be generalized to a family of semigroups ob-
tained from the Ornstein–Uhlenbeck semigroup, by using the generalized subordina-

tion formula. Let μ(α)
t be the Borel measure on [0,∞) such that its Laplace transform

satisfies ∫ ∞

0
e−λ sμ(α)

t (ds) = e−λ
α t , 0 < α < 1. (3.37)

The measures μ(α)
t are probability measures, which are known as one-sided stable

measures in [0,∞) of order α; moreover, for each α fixed, {μ(α)
t }t≥0 is a convolution

semigroup (see [81]).

Definition 3.12. The generalized Poisson–Hermite semigroup of order α , {Pα
t }t≥0

is defined as

Pα
t f (x) =

∫ ∞

0
Ts f (x)μ(α)

t (ds). (3.38)

The proof that {Pα
t }t≥0 is a strongly continuous, symmetric, conservative semi-

group of positive contractions on Lp(γd), 1 ≤ p < ∞, with infinitesimal generator
(−L)α can be obtained by adapting the proof for the case α = 1/2. Hence, formally

Pα
t = e−(−L)α t ,

which means that for any ν multi-index,
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Pα
t hν = e−t|ν |α hν , (3.39)

and, therefore, if f = ∑∞
k=0 Jk f ,

Pα
t f =

∞

∑
k=0

e−tkα Jk f .

Again, these semigroups turn out to be hypercontractive; therefore,

Lemma 3.13. If 1 < p < ∞

||Pα
t (I −J0 −J1 − . . .−Jn−1) f ||p,γ ≤ e−tnα || f ||p,γ . (3.40)

Proof. From Lemma 2.18, we have

||Tt(I −J0 −J1 − . . .−Jn−1) f ||p,γ ≤ e−tn|| f ||p,γ .

Then, using (3.37) and Minkowski’s integral inequality, we get

||Pα
t (I −J0 −J1 − . . .−Jn−1) f ||p,γ ≤

∣∣∣∣
∣∣∣∣
∫ ∞

0
Tt(I −J0 −J1 − . . .−Jn−1) f μα

t (ds)

∣∣∣∣
∣∣∣∣

p,γ

≤
∫ ∞

0
||Tt(I −J0 −J1 − . . .−Jn−1) f ||p,γ μα

t (ds)

≤
∫ ∞

0
e−nt || f ||p,γ μα

t (ds)≤Ce−nα t || f ||p,γ . ��

Now, if instead of the Ornstein–Uhlenbeck semigroup {Tt}t≥0, in formula (2.73),
we use the generalized Poisson–Hermite semigroups, {Pα

t }t≥0, we get generalized
potential operators

Un,α f =
∫ ∞

0
Pα

t (I −J0 −J1 − . . .−Jn−1) f ;dt, (3.41)

and obtain similar Lp(γd) estimates, as in (2.74), using Lemma 3.13 and Minkowski’s
integral inequality,

‖Un,α f‖p,γ ≤
∫ ∞

0
‖Pα

t (I −J0 −J1 − . . .−Jn−1) f‖p,γ dt ≤C
1

nα
‖ f‖p,γ . (3.42)

In particular, if f ∈ Ck with k ≥ n,

Un,α f =
∫ ∞

0
Pα

t f dt =
1

nα
f .

These results will be key in the proof of Meyer’s multiplier theorem (see Theo-
rem 6.2).
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3.4 Conjugate Poisson–Hermite Semigroup

The investigation of conjugacy for discrete and continuous non-trigonometric or-
thogonal expansions was initiated and extensively studied in the seminal article by
B. Muckenhoupt and E. M. Stein [199]. B. Muckenhoupt introduced in [194] the
conjugate Hermite expansions for dimension d = 1. According to (3.31), we know
that given f ∈ L1(γ1), if u(x, t) = Pt f (x), then u(x, t) satisfies

2
∂ 2u
∂ t2 (x, t)+

∂ 2u
∂x2 (x, t)−2x

∂u
∂x

(x, t) = 0, (3.43)

or equivalently,

2
∂ 2u
∂ t2 (x, t)+ ex2 ∂

∂x

(
e−x2 ∂u

∂x
(x, t)

)
= 0.

B. Muckenhoupt introduced the Gaussian conjugate function v of u by considering
the Gaussian Cauchy–Riemann equations,

∂u
∂x

(x, t) = −∂v
∂ t

(x, t)

∂u
∂ t

(x, t) = ex2 ∂
∂x

(e−x2
v(x, t)). (3.44)

Then, the function v(x, t) must be defined as

v(x, t) =
∫ ∞

−∞
Q(t,x,y) f (y)dy, t > 0, (3.45)

where

Q(t,x,y)=

√
2
π

∫ 1

0

(
1− r2

− logr

)1/2

exp

(
t2

4 logr

)
y− rx
(1−r2)2 exp

(
−r2x2 +2rxy− r2y2

1−r2

)
dr.

(3.46)

Observe that (3.46) can be obtained from (3.4), for d = 1, differentiating with respect
to x, integrating with respect to t, using the fact that Q must tend to 0 as t → ∞ and
multiplying by −1, i.e.,

Q(t,x,y) =−
∫ ∞

t

∂ p(s,x,y)
∂x

ds. (3.47)

By construction v satisfies the first Cauchy–Riemann equation. Additionally, it is
easy to see that v satisfies,

2
∂ 2v
∂ t2 (x, t)+

∂ 2v
∂x2 (x, t)−2x

∂v
∂x

(x, t) =−2v(x, t), (3.48)
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which is equivalent to

2
∂ 2v
∂ t2 (x, t)+

∂
∂x

[
ex2 ∂ (e−x2

v(x, t))
∂x

]
= 0.

Now, because u satisfies (3.43), i.e., it is a ∂ 2

∂ t2 +L-harmonic, but v does not, then
it seems that probably this is not the best notion of conjugacy. More on the problem
of notions of conjugacy for orthogonal polynomials can be found at [39].

Definition 3.14. The conjugate Poisson–Hermite integral of f , is defined as

Pc
t f (x) = v(x, t).

Therefore,

Pc
t f (x) =−

∫ ∞

t

∂Ps f
∂x

(x)ds. (3.49)

In [194], B. Muckenhoupt proved that Pc
t f is bounded on Lp(γ1), 1 < p < ∞ and

as we see later in Chapter 9, if t → 0, Pc
t f tends to the Gaussian Hilbert transform

H f , in Lp-norm and a.e.

In his doctoral dissertation, R. Scotto [244] extended Muckenhoupt’s notion of
conjugacy in higher dimensions, d > 1, considering the Gaussian Cauchy–Riemann
equations in R

d :

∂u
∂x j

(x, t) = −∂v j

∂ t
(x, t), j = 1, . . . ,d

∂vi

∂x j
(x, t) =

∂v j

∂xi
(x, t), i, j = 1, . . . ,d (3.50)

∂u
∂ t

(x, t) =
1
2

d

∑
j=1

e|x|
2 ∂
∂x j

(e−|x|2v j(x, t)).

From these relations, R. Scotto defined a system of conjugates,

(u(x, t),v1(x, t),v2(x, t), . . . ,vd(x, t)).

Again, following Muckenhoupt’s argument, the functions vi(x, t) verify that the first
equation of (3.50); thus,

Definition 3.15. The i-th conjugate Poisson kernel of f , is defined as

Pc
i,t f = vi(x, t), i = 1, . . . ,d.

Therefore,

Pc
i,t f =

∫
Rd

Qi(t,x,y) f (y)dy, t > 0, (3.51)



96 3 The Poisson–Hermite Semigroup

where

Q j(t,x,y) = −
∫ ∞

t

∂ p
∂x j

(s,x,y)ds

=
1

π(d+1)/2

∫ 1

0

(
1− r2

− logr

)1/2

exp

(
t2

4 logr

)
y j − rx j

(1− r2)(d+3)/2

× exp

(
−r2(|x|2 + |y|2)+2r〈x,y〉

1− r2

)
dr,

Thus,

Pc
i,t f (x) =−

∫ ∞

t

∂Ps f
∂xi

(x)ds, (3.52)

for any i = 1, . . . ,d.

Thus, again following Muckenhoupt [194], we have the following result:

Proposition 3.16.

i) Qi(t,x,y) is a bounded function in y, for any i = 1, . . . ,d.
ii) If f ∈ L1(γd), then for any i = 1, . . . ,d Pc

i,t f exists for any t > 0 and they verify
an analogous equation as (3.48),

∂ 2v
∂ t2 (x, t)+Lv(x, t) =−v(x, t), (3.53)

and the Gaussian Cauchy–Riemann equations (3.50).
iii) If f has a Hermite expansion f =∑∞

k=0∑|ν |=k f̂H(ν)hν , then, for any t ≥ 0, Pc
i,t f

has a Hermite expansion

Pc
i,t f =−

∞

∑
k=1

∑
|ν |=k

f̂H(ν)e−t
√

|ν |
√

2
|ν |νihν−ei , (3.54)

where ei is the unitary vector with zeros in all j-coordinates j �= i and one in the
i-th coordinate. These series are called conjugate Poisson series.

iv) If f ∈ L2(γd) and t > 0, the series (3.54) converges a.e.

Proof.

i) Let i = 1, . . . ,d fixed. Considering the cases 0 ≤ r < 1/2 and 1/2 ≤ t < 1, and
replacing − logr by a multiple of 1− r, in the second case it can be proved that

(
1− r2

− logr

)1/2 exp
(

t2

4 logr

)

(1− r2)(d+3)/2
<C

(
1+

1
xd+4

)
.

Then, we get that Qi(t,x,y) is bounded.
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ii) If f ∈ L1(γd) then Pc
i,t f is well defined byi). The differentiation under the integral

sign can be done as it can be proved that all the kernels are properly bounded
(for more details see [244]).

Qi(t,x,y) satisfies the first equation of (3.50) by construction; therefore Pc
i,t f (x)

will verify it too. According to an analogous argument to that done for v veri-
fying (3.48), we have that Pc

i,t f (x) satisfies (3.53), because, as u(x, t) = Pt f (x)

satisfies (3.30), it follows that
∂Pc

i,t f

∂xi
(x) verifies

∂ 2

∂ t2

(∂Pc
i,t f

∂xi

)
(x)+L

∂Pc
i,t f

∂xi
(x) =

∂Pc
i,t f

∂xi
(x).

The second equation of (3.50) is satisfied immediately, as

∂Pc
i,t f

∂x j
(x) =−

∫ ∞

t

∂ 2Ps f
∂xi∂x j

(x)ds =
∂Pc

j,t f

∂xi
(x).

Finally, the last equation of (3.50) is satisfied, because

1
2

d

∑
i=1

e|x|
2 ∂
∂xi

(e−|x|2Pc
i,t f (x)) =

d

∑
i=1

[
− xiP

c
i,t f (x)+

1
2

∂Pc
i,t f

∂xi
(x)

]

= −
∫ ∞

t

d

∑
i=1

[
−xi

∂Ps f
∂xi

(x)+
1
2
∂ 2Ps f

∂x2
i

(x)

]
ds

= −
∫ ∞

t
LPs f (x)ds =−

∫ ∞

t

∂ 2Ps f
∂ s2 (x)ds

=
∂Pt f
∂ t

(x).

iii) Following an analogous argument as in Proposition 2.3, we can prove that

Qi(t,x,y) =−
∞

∑
k=1

∑
|ν |=k

f̂H(ν)e−t
√

|ν |
√

2
|ν |νihν−ei .

and ∫
Rd

Qi(t,x,y)hν−ei(x)γd(dx) = e−t
√

|ν |hν(y),

and from there, using Fubini’s theorem, we can prove that Pc
i,t f has the expan-

sion (3.54).
iv) It can be proved by an analogous argument to that in the proof of Proposi-

tion 2.3. ��
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3.5 Notes and Further Results

1. Following B. Muckenhoupt [193], the Poisson–Hermite kernel can also be writ-
ten as

p(t,x,y) =
∫ 1

0
U(t,r)M(− logr)(x,y)dr,

where Mt(x,y) is Mehler’s kernel, and

U(t,r) =
1

2π1/2

t exp(t2/4logr)

(− logr)3/2

1
r
.

Pt can also be written as

Pt f (x) =
∫ 1

0
U(t,r)T(− logr) f (x)dr. (3.55)

Observe that the definition of the Poisson–Hermite semigroup given here, for
d = 1, differs from that in [193] by a constant, because in that case

T (t,r) =
1

(2π)1/2

t exp(t2/2logr)

(− logr)3/2

1
r
,

which implies, essentially, similar relations, but with different constants.

2. Similar to the case of the Ornstein–Uhlenbeck semigroup, for the Jacobi semi-
group and the Laguerre semigroup, using Bochner’s subordination formula (3.1),
we can define the Jacobi–Poisson semigroup {Pα ,β

t }t≥0and the Laguerre–
Poisson semigroup {Pα

t }t≥0, in addition to their conjugate semigroups (see for
instance [213] and [209]). In an expository and very interesting paper [276],
J. L. Torrea considers the semigroup theory as a tool for developing harmonic
analysis for general differential second operators, based on the seminal papers
of B. Muckenhoupt and E. Stein [199, 193] and [194].

3. Associated with the family of translated semigroups {T (κ)
t }t≥0, defined in (2.78),

we have their subordinated semigroups {P(κ)
t }t≥0, defined by using the Bochner

subordination formula; these are referred to as the translated Poisson–Hermite
semigroups. Therefore,

P(κ)
t hν = e−t

√
|ν |+κhν . (3.56)

Moreover, P(κ)
t f ≤ Pt f for any t ≥ 0 and f ≥ 0. These translated semigroups are

important in Chapter 5 and in Chapter 9.



4

Covering Lemmas, Gaussian Maximal Functions, and
Calderón–Zygmund Operators

Maximal functions are among the most important operators in harmonic analysis
and are some of those that are most studied. Averaging is an important operation in
analysis and to understand and simplify its study, maximal functions are introduced.
Moreover, for any limit process such as almost sure convergence, there is a maximal
function that controls it; therefore, the study of their properties is crucial.

In this chapter, we study covering lemmas, the Hardy–Littlewood maximal func-
tion with respect to the Gaussian measure, and its variants. Covering lemmas are
needed to establish the boundedness properties of the Hardy–Littlewood maximal
function, among other reasons. Additionally, we study in detail the maximal func-
tions of the Ornstein–Uhlenbeck and Poisson–Hermite semigroups, and their non-
tangential versions. As a consequence, we get results on the non-tangential conver-
gence for the Ornstein–Uhlenbeck and the Poisson–Hermite semigroups. Finally, we
consider Calderón–Zygmund operators and their behavior with respect to the Gaus-
sian measure.

4.1 Covering Lemmas with Respect to the Gaussian Measure

As we have already mentioned, the Gaussian measure is highly concentrated near
the origin and decays exponentially toward infinity. This behavior, which is far from
the invariance by translation of the Lebesgue measure, makes it difficult to obtain
good covering lemmas. We first consider the Besicovitch covering lemma, one of the
most basic covering lemmas in harmonic analysis, which is more powerful than the
classical Vitali’s covering lemma, because it is independent of the subjacent measure.
In other words, it works fine for any Borel measure and that is the main reason why
we want to study it here. For completeness, we give proof of it, even though it is well
known.

The original version of this chapter was revised. The correction to this chapter is available at
https://doi.org/10.1007/978-3-030-05597-4 10
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Lemma 4.1. (Besicovitch) Let E be a bounded subset of Rd. Let F be a family of
balls covering E such that, for every x ∈ E, there is a ball Bx = B(x,r(x))∈F . Then,
there exits an at most countable family {Bi}= {B(xi,r(xi))}i and a constant C > 0,
dependent only on dimension, such that:

i) E ⊂⋃∞
i=1 Bi.

ii) The family {Bi} has bounded overlaps
∞

∑
i=1

χBi(x)≤C, (4.1)

for all x ∈ E.

Proof. Let α = sup{r(x) : x ∈ E}. If α =+∞ as E is a bounded set, there exists r > 0
such that E ⊂ B(0,r). Choose x0 ∈ E such that r(x0)> 2r, then E ⊂ B(x0,r(x0)), as
if x ∈ E then

|x− x0| ≤ |x|+ |x0|< 2r < r(x0).

Now, let us assume that α <+∞. Set

E1 = E1
1 =

{
x ∈ E : α/2 < r(x)≤ α

}
.

Take x1 ∈ E1, and B1
1 = B(x1,r(x1)). Assuming that we have constructed the sets

E1
1 ,E

1
2 , · · · ,E1

k−1 and selected the balls B1
1,B

1
2, . . . ,B

1
k−1, we define E1

k = E1 −
∪k−1

i=1 B1
i , take xk ∈ E1

k , and set B1
k = B(xk,r(xk)). The selection process stops obtain-

ing a finite covering {B1
i }

m1
i=1 of E1. In fact, by construction B

(
x1

i ,
α
2i

)
∩B

(
x1

j ,
α
2 j

)
= /0

for i �= j and are all contained in {x : d(x,E)< α}, which is a bounded set.
Assuming that we already have constructed the sets E1, · · · ,Ek, we define

El = El
1 =

{
x ∈ E :

α
2l < r(x)≤ α

2l−1

}
−
(
∪l−1

j=1 ∪
m j
i=1B j

i

)

and we iterate the construction done for E1, getting a finite covering {Bl
k}k of El .

Therefore, {Bl
k}l,k by construction satisfies property i). Now, it remains to be proved

that it also has bounded overlaps. It is enough to prove that

ii-1) ∑i χB j
i
(x)≤C1.

ii-2) ∑l χBl
j
(x)≤C2

with C1,C2 independent of j, because then,
∞

∑
i=1

χBi(x)≤ ∑
{k:∃i x∈Bk

i }
∑

{i: y∈Bk
i }
χBk

i
(x)≤C1

(
#{k : ∃i y ∈ Bk

i }
)
≤C1 C2.

• If x0 ∈ ∩N
i=1B j

i = ∩N
i=1B(x j

i ,r(x
j
i )), then we have that the balls in the family{

B
(

x j
i ,

α
2 j+1

)}N

i=1
are disjoint and B

(
x j

i ,
α

2 j+1

)
⊂ B

(
x0;3 α

2 j+2

)
. Therefore, as
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M ωn
αd

2( j+1)n
=

M

∑
i=1

∣∣∣B
(

x j
i ,

α
2 j+1

)∣∣∣=
∣∣∣∪N

i=1 B
(

x j
i ,

α
2 j+1

)∣∣∣

≤
∣∣∣B
(

x0,3
α

2 j+1

)∣∣∣= 3dωnd
αd

2( j+1)n
,

then we get that M ≤ 3d .

• If x0 ∈∩N
i=1Bki

ji
=∩N

i=1Bi with k1 < k2 < .. . . < kN ,N = N(x0). For x ∈R
d , define

Tr(x) =
x−x0

r + x0, r > 0. By construction,

Trk(xk) �∈
L⋃

i=1

Trk Bi

where rk is the radius of Bk. As rk ≤ ri we have TriBi ⊂ Trk Bk; hence,

Trk(xk) �∈
k−1⋃
i=1

B(
xi

ri
;1).

In other words, the balls
{

B
(

xi
ri
, 1

2

)}
i=1,··· ,k−1

are disjoint, and because

N⋃
i=1

B
(xi

ri
,

1
2

)
⊂ B(0,3),

we are done. ��

There is also a version of the Besicovitch covering lemma for cubes with sides
parallel to the axis (see for instance [294, Theorem 10.45]).

The following covering lemma, obtained by L. Forzani (see [83] or [5]), is some-
how halfway between the Besicovitch and Wiener covering lemmas1 and, as we see
later, it is the key result to prove that a family of generalized maximal functions are
of weak type (1,1) with respect to the Gaussian measure (see Theorem 4.18).

Lemma 4.2. Let E = {xα : α ∈ I} be a subset of Rd\B(0,2ζ ), with ζ > 2 fixed,

and I be a finite set of indices. For each x ∈ E a number r = r(x) ∈
(

3
4 ,1− ζ 2

|x|2
)

is given. Let B j := B
(

x j
r j
,
|x j |
r j
(1− r j)

)
and Bν

j := B
(

x j
r j
,νρ j

)
, with ν ≥ 1 and ρ j =√

1− r j, and let δ j =
r j

|x j |(1−r j)
min

{
1

|x j | ,
√

1− r j

}
=

r j

|x j |2ρ2
j
. Then, there exists a

positive constant C, dependent only on dimension, and a subset J of I such that

i) E ⊂⋃
j∈J(1+δ j)B j.

1In the sense that you cover the centers xα ∈ E, as in the Besicovitch covering lemma, the
covering obtained is of dilated balls as in the Wiener covering lemma, but they have bounded
overlaps as in the Besicovitch covering lemma.
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ii) ∑ j∈J χBνj
≤Cν2d .

Proof. Let I1 = I, α1 ∈ I1 such that |xα1 | = min{|xα | : α ∈ I1}. Let x1 = xα1 and
B1 = Bα1 .

Assuming that the set of indexes I1, . . . Ik−1, the points x1, . . . ,xk−1, and the balls
B1, . . . ,Bk−1 have been chosen, we define

Ik =
{
α ∈ I : xα /∈ ∪k−1

j=1(1+δ j)B j

}
.

Choose αk ∈ Ik such that |xαk | = min {|xα | : α ∈ Ik}. Let xk = xαk and Bk = Bαk .
Set J = {α1, . . . ,αN} where N is the first integer for which IN+1 = /0. Then, i) is
immediate.

Before proving ii), let us make several remarks.

• x j was chosen so that x j /∈ (1+δs)Bs, for all s < j; hence,

|xs|2
r2

s
+ |x j|2 −2|x j|

|xs|
rs

cos
〈xs

rs
,x j

〉
=

∣∣∣∣xs

rs
− x j

∣∣∣∣
2

≥ R2
s (1+δs)

2, (4.2)

where Rs =
|xs|
rs
(1− rs).

• |x j| ≥ |xs| for s < j, i.e., |x j| is increasing with j.
• Finally, we prove

∣∣∣xs

rs
− x j

r j

∣∣∣2 ≥ 1
r j

[
|xs|2
r2

s r j
(r j − rs)

2 +2
(1− rs)

rs

]
≥ θ 2max2{ρ j,ρs} (4.3)

for s < j and some θ > 0.

In fact, using the two previous inequalities, and because R2
sδs =

(1−rs)
rs

,

∣∣∣∣xs

rs
− x j

r j

∣∣∣∣
2

=
|xs|2
r2

s
+

|x j|2
r2

j

−2
|x j|
r j

|xs|
rs

cos
〈xs

rs
,

x j

r j

〉

≥ |xs|2
r2

s
+

|x j|2
r2

j

+
1
r j

[
R2

s (1+δs)
2 −|x j|2 −

|xs|2
r2

s

]

=
1
r j

R2
s (1+δs)

2 − 1
r j

[
−|x j|2

(1− r j

r j

)
+

|xs|2
r2

s
(1− r j)

]

≥ 1
r j

[
R2

s (1+δs)
2 + |xs|2(1− r j)

[
1
r j

− 1
r2

s

]]

≥ 1
r j

[
|xs|2
r2

s
(1− rs)

2 +2
(1− rs)

rs
+ |xs|2(1− r j)

[
1
r j

− 1
r2

s

]]

=
1
r j

[
|xs|2
r2

s r j
(r j − rs)

2 +2
(1− rs)

rs

]
≥ θ 2max2{ρ j,ρs}.

To obtain the latter inequality we consider two cases:
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• ρ2
s ≥ 1

2ρ
2
j . Because by definition ρ2

s = (1−rs), and the non-negativity of the first
term, the inequality then follows.

• ρ2
j ≥ 2ρ2

s . We have that (r j − rs)
2 = (ρ2

j − ρ2
s )

2 ≥ 1
4ρ

4
j . Using the fact that

|xs|ρs ≥ ξ , the inequality follows. Recall that, according to the hypothesis,

rs ≤ 1− ξ 2

|xs|2 .

To prove the second case we define, for κ > 0 fixed,

I1 =
{

j : j ∈ J and νρ j ≥ κ
}
, I2 =

{
j : j ∈ J and

R j

2
< νρ j < κ

}

I3 =

{
j : j ∈ J and νρ j ≤

R j

2

}
.

We prove the inequality

∑
j∈Ii

χBνj
(y)≤Cν2d , (4.4)

for y ∈ R
d and i = 1,2,3, from which (ii) follows.

Consider I1(y) =
{

j ∈ I1 : y ∈ Bν
j

}
. To obtain the desired estimate, we only need

to find a sequence of pairwise disjoint measurable sets {S j} j∈I1(y) such that

• S j ⊂ B(y,Cν),
• |S j| ≥ C

νd .
The case i = 1 in (4.4) follows immediately from these conditions.

Defining S j = B
(

x j
r j

; θ2 ρ j

)
, j ∈ I1(y). The second condition above is trivial, as

j ∈ I1, which implies ρ j ≥ κ
ν . To get the first condition, let us take h ∈ S j. As y ∈ Bν

j ,
we have

|h− y| ≤
∣∣∣h− x j

r j

∣∣∣+
∣∣∣x j

r j
− y

∣∣∣≤ θ
2
ρ j +νρ j ≤Cν .

That {S j} j∈I1(y) is a family of pairwise disjoint sets follows from (4.3).

Now, consider I2(y) =
{

j ∈ I2 : y ∈ Bν
j

}
. To obtain the desired estimate, we only

need to find a sequence of pairwise disjoint measurable sets {S j} j∈I2(y) such that

• S j ⊂ B(y,Cν2).
• |S j| � 1 for some constant C.

The case i = 2 in (4.4) follows immediately from these conditions.

Define S j = B
(

y+ (
x j
r j

− y)
|x j |
r j
,C
)
, j ∈ I2(y). Therefore, the second condition

above is immediate. Let us now prove the first condition. Take h ∈ S j. Then, using

the fact that y ∈ Bν
j and

R j
2 ≤ νρ j or, equivalently, ρ j

|x j |
r j

≤ 2ν , we get
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|h− y| ≤ C+
∣∣∣x j

r j
− y

∣∣∣ |x j|
r j

≤C+νρ j
|x j|
r j

≤C+ν2 ≤Cν2.

To prove that the sets of the family {S j} j∈I2(y) are pairwise disjoint we use the
following facts:

•
∣∣∣ xs

rs
− x j

r j

∣∣∣≥ θρs.

• |xs|ρs ≥
√
ζ .

•
∣∣∣ x j

r j
− y

∣∣∣≤ νρ j ≤ κ ( j ∈ I2).

•
∣∣∣ |xs|

rs
− |x j |

r j

∣∣∣≤ νρs +νρ j ≤ 2κ .

So,

∣∣∣∣
(x j

r j
− y

) |x j|
r j

−
(xs

rs
− y

) |xs|
rs

∣∣∣∣ ≥ |xs|
rs

∣∣∣∣x j

r j
− xs

rs

∣∣∣∣−
∣∣∣∣x j

r j
− y

∣∣∣∣
∣∣∣∣ |xs|

rs
− |x j|

r j

∣∣∣∣
≥

√
ζ
θ
rs

−2κ2 ≥C,

after choosing ζ and κ in a convenient way.

Finally, consider I3(y) =
{

j ∈ I3 : y ∈ Bν
j

}
. To obtain the desired estimate, we

need to find a sequence of pairwise disjoint measurable sets {S j} j∈I3(y) such that

• S j ⊂ B(y,Cνρτ).
• |S j| ≥Cρτ for some constant C, where τ = min{ j : j ∈ I3(y)}.

The case i = 3 in (4.4) follows from these conditions.

Define S j = B
(

x j
r j
, θ2 ρ j

)
, j ∈ I3(y). It is enough to prove that

1
2
ρτ < ρ j < 2ρτ , (4.5)

for all j ∈ I3(y). From the inequality (4.5), we get the conditions above. That the
sets of the family {S j} j∈I3(y) are disjoint follows from (4.3). Let us prove then (4.5).
From (4.3) ∣∣∣∣x j

r j
− xτ

rτ

∣∣∣∣
2

≥ 1
r j

[
|xτ |2
r2
τ r j

(r j − rτ)
2 +2

(1− rτ)
rτ

]
,

then ∣∣∣∣x j

r j
− xτ

rτ

∣∣∣∣
2

≥ |xτ |2
r2
τ

(ρ2
j −ρ2

τ )
2,

and, as τ , j ∈ I3(y), we have |xτ |
rτ

≥ 2 ν
ρτ . Therefore,

(νρ j +νρτ)2 ≥
∣∣∣∣x j

r j
− xτ

rτ

∣∣∣∣
2
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≥ |xτ |2
r2
τ

(ρ2
j −ρ2

τ )
2 ≥ 4

ν2

ρ2
τ
(ρ2

j −ρ2
τ )

2

Thus, 1 ≥ 2
|ρ j−ρτ |

ρτ . This inequality is equivalent to |ρ j −ρτ | ≤ 1
2ρτ , which in turn is

equivalent to (4.5). ��

There is another tool that gives us a decomposition of Rd into a family of ad-
missible balls (and therefore the values of the Gaussian density are equivalents)
with bounded overlaps, which is useful for studying the local parts of Gaussian
Littlewood–Paley functions and Gaussian Riesz transforms. This decomposition was
used by R. Scotto in his doctoral dissertation [244], in [77], and also by S. Pérez in
[221] (see also J. Garcı́a-Cuerva, G. Mauceri, P. Sjögren, J. L. Torrea [105] and F.
Soria and G. Weiss [251]).

Lemma 4.3. There exists a strictly increasing sequence of positive real numbers
{αk}k, such a family of disjoint balls {B j

k}k∈N,1≤ j≤Nk can be obtained that satisfies
the following properties:

i) If B̃ j
k = 2B j

k, the countable collection F = {B(0,α1),{B̃ j
k} j,k} is a covering of

R
d .

ii) F has a bounded overlaps property.
iii) The center c j

k of B j
k satisfies |c j

k|= (αk+1 +αk)/2.

iv) diam(B j
k) = αk+1 −αk.

v) Every ball B ∈ F is contained in an admissible ball; therefore, for any pair
x,y ∈ B, e−|x|2 ∼ e−|y|2 with constants independent of B.

vi) There exists a uniform positive constant Cd such that, if x ∈ B ∈ F , then B(x)⊂
CdB := B̂. Moreover, the collection F̂ = {B̂}B∈F also satisfies the properties ii)
and v).

Proof. Given that α1 ≥ 2R, with R > 1 fixed, define recursively

αk+1 := αk +
R
αk

, k ∈ N.

The sequence {αk}k is strictly increasing and tends to infinity as k → ∞.
Set l0 := α0 and lk := αk+1 −αk, k ≥ 1, then lk+1 < lk < 2lk+1, and let, for any

k ≥ 1, the annulus
Sk = {x ∈ R

d : αk ≤ |x|< αk+1}.

Let B1
k ,B

2
k , · · · ,B

Nk
k a maximal disjoint family of balls contained in Sk and such that

their diameter is lk, i.e., diam(B j
k) = lk, 1 ≤ j ≤ Nk. If c j

k is the center of B j
k, then

B j
k = B(c j

k, lk/2) and |c j
k| = αk +

lk
2 . Then, it is clear that Sk ⊂ ⋃Nk

j=1 2B j
k, where 2B

denotes the ball with the same center of B and twice the radius. Now, F is defined
as follows: B ∈ F if and only if B = B(0,α1) or B = 2B j

k for some j,k. Clearly, F

is a covering of Rd . Now, if x ∈ ⋂l
j=1 2B j

k, then l ≤ 4d as
⋃l

j=1 2B j
k ⊂ B(x,2lk) (see

Figure 4.1).
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αk

αk+1

cj
k

B̃j
k

Bj
k

Fig. 4.1. Annulus Sk, the balls B j
k, and the balls B̃ j

k.

Now, for each k ≥, let the annulus S̃k :=
{

x ∈ R
d : αk − lk

2 ≤ |x|< αk+1 +
lk
2

}
.

Then,
⋃Nk

j=1 2B j
k ⊂ S̃k. For k > j + 2, α j+1 +

l j
2 < αk − lk

2 , and for k < j − 2, αk −
lk
2 < α j+1 +

l j
2 . This implies that S̃ j ∩ S̃k = /0 for |k − j| > 2; thus, the family F

has the bounded overlaps property. Now, we need to prove that every ball B ∈ F is
an admissible ball. If B = B(0,α1), the result is immediate. If B = 2B(c j

k, lk/2) =

B(c j
k, lk) = B(c j

k,R/αk) for some j,k, then B ⊂ B(c j
k,2R/|c j

k|) ∈ B2R.
Finally, for vi) it is enough to take Cd = 2d +1. ��
Another important tool of Euclidean harmonic analysis is the Whitney decom-

position lemma (see E. Stein’s book [252, Chapter VI.1] for details). This technique
allows an open set O to be covered with dyadic cubes (or balls) whose sizes are
proportional to their distance to the complement of O. In the Gaussian case, we run
into the problem that admissible cubes become very small at large distances from
the origin. As a consequence, the distance of such a cube to the exterior of a given
open set is typically much larger than the size of the cube; thus, it may seem that the
Whitney covering lemma is useless as a tool in the Gaussian setting. Nevertheless,
in [169] J. Mass, J. Van Neerven, and P. Portal were able to adapt it to the Gaussian
setting we call it a Gaussian Whitney covering, and it is used, in a crucial way, to
define Gaussian tent spaces, as we see later in Chapter 7.

For m ∈ Z, let Δm be the set of dyadic cubes at scale m, i.e.,

Δm = {2−m(x+[0,1)d) : x ∈ Z
d}.

For the Gaussian measure, the idea is to use, on every scale, cubes whose diam-
eter depends upon another parameter l ≥ 0, which keeps track of the distance from
the cube to the origin, similar to the idea in Proposition 1.7. More precisely, define
the layers
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0 20 21 22 23

20

21

22

23

Fig. 4.2. Subdivision of the layers L0,L1,L2, · · · into cubes of Δγ
0,l . Shaded are the (5,8)-cubes

in the layers L2 and L3 corresponding to the choice κ = 3.

L0 = [−1,1)d , Ll = [−2l ,2l)d\[−2l−1,2l−1)d ,

for l ≥ 1, and define for k ∈ Z and l ≥ 0

Δγ
k,l = {Q ∈ Δl+k : Q ⊂ Ll}, Δγ

k =
⋃
l≥0

Δγ
k,l , Δγ =

⋃
k≥0

Δγ
k . (4.6)

Fix an integer κ ≥ 1. For each l ≥  κ+1
2 !, the layer Ll is a disjoint union of 2κd

cubes in Δγ
−κ ,l , each of which is the disjoint union of 2κd cubes from Δγ

0,l . Each cube

can be labeled i = (i1, · · · , id) ∈ {1, · · · ,2κ}d (see Figure 4.2), where d = 2, κ = 3,
and the shade cubes are the cubes from Δγ

0,l with label i = (5,8), for l = 2,3.

Note that, if k ≤ −2l, then Δγ
k,l = /0. Also, if Q ∈ Δγ

k,l , then Q has sidelength

2−k−l , its center cQ has norm 2l−1 ≤ |cQ| ≤ 2l
√

d and its diameter satisfies

diam(Q) = 2−k−l
√

d ≤ 2−kd m(cQ). (4.7)
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Lemma 4.4. If a ball B(x,r) ∈ Ba intersects a cube Q ∈ Δγ
0 with center cQ, then

r ≤ 2a(a+d)m(cQ).

Proof. We consider two cases:
- First, if |cQ| ≥ 2(a+d), we notice that

r ≤ a
|x| ≤

a
|cQ|− (r+dm(cQ)/2)

≤ a
|cQ|− (a+d/2)

≤ 2a
|cQ|

= 2am(cQ).

The first inequality follows, because diam(Q)≤ dm(cQ) according to (4.7); the sec-
ond follows because m(cQ) ≤ 1 and r ≤ am(x) ≤ a; the third follows from the as-
sumption we made; and the final identity follows by noting that |cQ| ≥ 2d ≥ 1.

- Second, if |cQ| ≤ 2(a+d), then together with 1 ≤ 2(a+d), we obtain

1 ≤ 2(a+d)m(cQ), and r ≤ a ≤ 2a(a+d)m(cQ). ��

In [168, Lemma 2.5] J. Maas, J. van Neerven, & P. Portal also have the following
covering lemma,

Lemma 4.5. Let E ⊆ R
d be a non-empty set, let α,β ,η > 0 be fixed, and let

Oa := {x ∈ R
d : 0 < d(x,E)≤ am(x)}.

There exists a sequence (xk)k≥1 in Oα with the following properties:

i) Oα ⊆
⋃
k≥1

B(xk,β ·d(xk,E)).

ii) ∑
k≥1

γd(B(xk,δ d(xk,E)))≤Cγd(O2α) with C depending only on a, b, c, and d.

Proof. Let δ := min{ 1
2 ,β} and set O := Oα and O′ := O2α for simplicity. We use a

Whitney covering of O′ by disjoint cubes Qk such that

1
4δd(Qk,O

′c)≤ diam(Qk)≤ δd(Qk,O
′c);

(see [252, VI.1]). We discard the cubes that do not intersect O and relabel the re-
maining sequence of cubes as {Qk}k≥1 with centers {ck}k≥1. For each k ≥ 1 pick
xk ∈ O∩Qk.

To check that the balls B(ck,diam(Qk)) are admissible, we use the fact that δ ≤ 1
2

to obtain

|ck − xk| ≤ 1
2 diam(Qk)≤ 1

4 d(Qk,O
′c)≤ 1

4 d(xk,E)≤ 1
4αm(xk).

Now, part ii) of Lemma 1.5 then shows that m(xk) ≤ (1+ α
4 )m(ck). It follows that

the balls B(ck,diam(Qk)) are admissible.
Next, diam(Qk)≤ δd(Qk,O′c)≤ βd(xk,E), so i) follows from

O ⊆
⋃
k≥1

Qk ⊆
⋃
k≥1

B(xk,diam(Qk))⊆
⋃
k≥1

B(xk,βd(xk,F)).
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To prove ii), we claim that for all x ∈ O,

d(x,F)≤ 3max{1,α}d(x,O′c).

To prove the claim, we fix x ∈ O and pick an arbitrary y ∈ O′c. Setting ε :=
1
3 min{1, 1

α } we need to prove that

|x− y| ≥ εd(x,E).

From y �∈ O′, we know that either d(y,E)≥ 2αm(y) or d(y,E) = 0. In the latter case,
we have y ∈ E; hence, εd(x,E) ≤ d(x,E) ≤ |x− y|. Therefore, in what follows, we
may assume that d(y,E) ≥ 2αm(y). From x ∈ O, we know that d(x,E) ≤ αm(x).
Suppose, for a contradiction, that |x − y| < εd(x,E). Then, |x − y| < εαm(x) and
therefore m(x) ≤ (1+ εα)m(y), again according to ii) of Lemma 1.5. Also, for all
e ∈ E, we have

|x− y| ≥ |y− e|− |e− x| ≥ 2αm(y)−|e− x|.

Minimizing over e, this gives |x− y| ≥ 2αm(y)−d(x,E). As εd(x,E)also > |x− y|,
we find that

αm(y)<
1
2
(1+ ε)d(x,E)≤ 1

2
(1+ ε)αm(x).

It follows that m(y)< 1
2 (1+ ε)m(x), and in combination with the inequality m(x)≤

(1+ εα)m(y) we get
2 < (1+ ε)(1+ εα).

On the other hand, recalling that ε = 1
3 min{1, 1

α } we get that

(1+ ε)(1+ εα)≤ (1+
1
3
)(1+

1
3
) =

16
9

< 2.

This contradicts the previous inequality and the claim is proved. Combining the es-
timate

d(xk,O
′c)≤ d(Qk,O

′c)+diam(Qk)≤
(

1+
4
δ

)
diam(Qk)

with the claim, we obtain

d(xk,E)≤ 3max{1,α}d(xk,O
′c)≤ 3

(
1+

4
δ

)
max{1,α}diam(Qk).

Recalling the inequality |ck −xk| ≤ 1
4 d(xk,E) proved before, and then using the dou-

bling property in combination with the above inequality, we obtain

∑
k≥1

γ(B(xk,ηd(xk,E)) ≤ ∑
k≥1

γ(B(ck,(η+ 1
4 )d(xk,E))

≤ C ∑
k≥1

γ(B(ck,diam(Qk))≤C ∑
k≥1

γ(Qk)≤Cγ(O′). ��
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For a set E ⊂ R
d , define

E +Ca = {x ∈ R
d : x is the center of a ball B ∈ Ba such that B∩E �= /0}. (4.8)

Lemma 4.6. Given p ≥ 0, l ≥ p+1 integers, and Q ∈ Δγ
0,l , if a ball B = B(cB,rB) ∈

B2p intersects Q, then cB ∈ Ll−1 ∪Ll ∪Ll+1.

Proof. If we had cb ∈ Ll−m for some 2 ≤ m ≤ l, then rB ≤ 2p ≤ 2l−1, in case m = l;

or rB ≤ 2p

|cB| ≤
2l−1

2l−m−1 = 2m ≤ 2l−1, in the case 2 ≤ m ≤ l −1. On the other hand, the

distance between layers Ll and Ll−m is at least 2l−1 +2l−2 + · · ·+2l−m+1. Similarly,
it can be seen that xb /∈ Ll+m for any m ≥ 2. ��

Lemma 4.7. Fix non-negative integers p ≥ 0 and κ > p+4. Let i ∈ {1,2, · · · ,2κ}d

and let Q1 ∈ Δγ
0,l1

and Q2 ∈ Δγ
0,l2

be two distinct cubes with the same label i in the
layers Ll1 and Ll2 with ll1 , ll2 ≥ max{5, p+1, κ2 !}. Then,

d(Q1 +C2p ,Q2 +C2p)> 0.

Proof. We first consider only the case that Q1 ∈ Ll and Q2 ∈ Ll+1. The case in which
both cubes lie in the same layer or that they are in more than one layer apart can be
handled with cruder estimates.

The center of a ball B = B(xB,rB) ∈ B2p intersecting the layer Ll satisfies
|cB| ≥ 2l−1−rB ≥ 2l−1−2p/|rB|, which, using Lemma 4.6, implies that |cB| ≥ 2l−1−
2p−l+2. Therefore, rB ≤ 2p/(2l−1 −2p−l+2). For j = 1,2 let B j = B(cB j ,rB j) ∈ B2p

intersecting Q j. It follows that

rB1 ≤ 1
2l−p−1 −2−l+2 , rB2 ≤ 1

2l−p −2−l+1 .

The cubes Q1 and Q2 are separated by at least 2κ − 1 cubes in Δγ
0,l or Δγ

0,l+1; thus,

the distance between Q1 and Q2 is at least (2κ −1)/2l+1. Hence, using that l ≥ p+1
and l ≥ 5, we get

d(Q1 +C2p ,Q2 +C2p) ≥ 2κ −1
2l+1 −

( 1
2l−p−1 −2−l+2 +

1
2l−p −2−l+1

)

≥ 2κ −1
2l+1 −

( 1
2l−p−1 −2−p+2 +

1
2l−p −2−p+1

)

=
2κ −1
2l+1 −2p

( 2
2l −8

+
1

2l −2

)

=
2κ −1
2l+1 −2p 3

2l −8
≥ 2κ −1

2l+1 −2p 8
2l+1 =

2κ −2p+3 −1
2l+1 ,

and the right-hand side is strictly positive as κ ≥ p+4. ��

Let us fix p ≥ 4 and κ ≥ p+4. Note that all l ≥ p+1 satisfy the assumptions of
Lemma 4.7.
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Definition 4.8. Let us define the set E(i)
p,κ as the union of all cubes in

⋃
l≥p+1Δ

γ
0,l

with label in i ∈ {1, · · · ,2κ}d .

Definition 4.9. Let λ > 0, a set E ⊂R
d is said to be an admissible λ -Whitney set if

for all x ∈ E we have
d(x,Ec)≤ λd m(x). (4.9)

It is clear that subsets of admissible λ -Whitney sets are also admissible λ -
Whitney.

Theorem 4.10. For p ≥ 4 and κ ≥ p+4, we have:

i) Q+C2p , with Q ∈ Δγ
0,l and l = 0,1, · · · , p, is (22p+1

√
d)-admissible Whitney.

ii) E(i)
p,κ +C2p , with i ∈ {1, · · · ,2κ}d , is (2p+3

√
d)-admissible Whitney.

Proof. According to Lemma 4.7 to prove i) and ii), it is enough to prove that Q+C2p

is admissible Whitney for any cube Q ∈ Δγ
0,l , for l ≥ 0 arbitrary.

• First, let l ∈ {1, · · · , p}. If Q ∈ Δγ
0,l let us take a ball B = B(cB,rB) ∈ B2p inter-

secting Q, then |rB| ≤ 2p; therefore,

Q+C2p ⊂
{

x ∈ R
d : d(x,Q)≤ 2p

}
.

Let y ∈ Q+C2p be given. If y ∈ Q, then the distance of y to the complement of
Q+C2p is at most 1

2 +2p, and m(y) ≥ 1
2p√n , as y ∈ L0 ∪ ·· ·∪Lp. If y /∈ Q, then

the distance of y to the complement of Q+C2p is at most 2p, and m(y)≥ 1
2p+1

√
d
,

as y ∈ L0 ∪·· ·∪Lp+1; in both cases (4.9) holds.
• Then, let l ≥ p+1 and Q ∈Δγ

0,l given take a ball B=B(cB,rB)∈B2p intersecting

Q. Using Lemma 4.6 we get |rB| ≤ 2p|cB|−1 ≤ 2p−l+2. It follows that

Q+C2p ⊂
{

x ∈ R
d : d(x,Q)≤ 2p−l+2

}
.

Now, given y ∈ Q +C2p , if y ∈ Q, then the distance of y to the complement
of Q +C2p is at most 2−l−1 + 2p−l+2, and m(y) ≥ 1

2l√n
, as y ∈ Ll . If y /∈ Q,

then the distance of y to the complement of Q+C2p is at most 2−p−l+2, and
m(y)≥ 1

2l+1
√

d
, because y ∈ Ll−1 ∪Ll ∪Ll+1; in both cases (4.9) holds. ��

Corollary 4.11. There exists a constant N, dependent only on p and the dimension
d, such that every open set in R

d can be covered by N admissible open 22p+1√n-
Whitney sets.

An explicit bound of N is obtained by taking κ = p + 4 and counting
the number of sets involved in Theorem 4.10, which can be estimated by
2d(1+2κd + · · ·+2(p−1)κd)+2κd .
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The next result is an immediate consequence of the classical Whitney covering
lemma (see [252, Chapter VI]). The cubes that are picked up from the Euclidean
proof are automatically admissible on a suitable scale (which depends only on d) as
we start from an admissible Whitney set.

Lemma 4.12. Let λ > 0 and E ⊂ R
d be an open admissible λ -Whitney set. There

exists a constant ρ , depending only on λ and d, a countable family of disjoint cubes
{Qn}n≥1 in Δγ , and a family of functions {φn}n≥1 ⊂C∞

0 (R
d) such that:

i)
⋃

n Qn = E.
ii) For all n ∈ N, diam(Qn)≤ d(Qn,Ec)≤ ρdiam(Qn).

iii) For all n ∈ N, supp(φn) ⊂ Q∗
n where Q∗

n denotes the cube with the same center
as Qn, but its side length is ρ times the side length of Qn.

iv) For all n ∈ N, and all x ∈ Qn
1
ρ ≤ φn(x)≤ 1.

v) For all x ∈ E, ∑n φ(x) = 1.

This result is used to study Gaussian tent spaces T 1,q(γd) in Chapter 7 (see The-
orem 7.8).

4.2 Hardy–Littlewood Maximal Function with Respect to the
Gaussian Measure and Its Variants

We define the centered Gaussian Hardy–Littlewood maximal function using the stan-
dard definition of the Hardy–Littlewood maximal function with respect to a general
Borel measure in R

d (see, for instance, E. Stein [254, Chapter 1, §3], L. Grafakos
[118, Chapter 2, §2] or A. Torchinski [275, Chapter 9, §1]).

Definition 4.13. The centered Gaussian Hardy–Littlewood maximal function is de-
fined as

Mγ f (x) = sup
r>0

1
γd(B(x,r))

∫
B(x,r)

| f (y)|γd(dy), (4.10)

for f ∈ L1
loc(γd), x ∈ R

d .

Observe that Mγ f is defined on balls centered at x. It is easy to see, using classi-
cal arguments, that Mγ f is lower continuous (and therefore measurable) and satisfies

• Mγ f is non-negative, 0 ≤ Mγ f ≤ ∞.
• Mγ f is sublinear, that is

Mγ( f1 + f2)≤ Mγ f1 +Mγ f2, and Mγ(c f ) = |c|Mγd f .

The boundedness properties of the Hardy–Littlewood maximal function with re-
spect to a Borel measure are well known, but for the sake of completeness, we ex-
plicitly establish them for the Gaussian measure.

Theorem 4.14. The (centered) Gaussian Hardy–Littlewood maximal function Mγ
satisfies the following properties:
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i) Mγ is of weak type (1,1) with respect to the Gaussian measure, i.e., there exists
a constant C, depending only on the dimension d, such that for any f ∈ L1(γd)

γd

({
x ∈ R

d : Mγ f (x)> λ
})

≤ C
λ
‖ f‖1,γ (4.11)

for any λ > 0.
ii) For 1 < p ≤∞, Mγ is Lp(γd)-bounded, i.e., there exists a constant Ap depending

only on p and the dimension d, such that

‖Mγ f‖p,γ ≤ Ap‖ f‖p,γ . (4.12)

Proof.

i) Let λ > 0 and take Eλ =
{

x ∈ R
d : Mγ f (x) > λ

}
. Considering A a bounded

Borel set in R
d , take x ∈ Eλ ∩A. Next, there exists r = r(x)> 0 such that

1
γd(B(x,r))

∫
B(x,r)

| f (y)|γd(dy)> λ .

Then, using Besicovitch covering lemma, there exists an at most countable fam-
ily {Bi = B(xi,r(xi))}i, xi ∈ Eλ and a constant C, depending only on the dimen-
sion d, such that

Eλ ∩A ⊂
⋃

i

Bi,
1

γd(Bi)

∫
Bi

| f (y)|γd(dy)> λ , and ∑
i
χBi(x)≤C.

Thus, according to the subadditivity of γd and the bounded overlaps property of
the covering {Bi}, we get

γd(Eλ ∩A) ≤ γd

(⋃
i

Bi

)
≤∑

i
γd(Bi)≤

1
λ ∑i

∫
Bi

| f (y)|γd(dy)

≤ C
λ

∫
∪iBi

| f (y)|γd(dy)≤ C
λ

∫
Rd

| f (y)|γd(dy).

Now, using the continuity from below of γd , taking A ↑ Rd , we get (4.11).
ii) Observe that the case p = ∞ is trivial, because

‖Mγ f‖∞,γ = ‖Mγ f‖∞ ≤ ‖ f‖∞,γ .

Then, using the Marcinkiewicz interpolation theorem (see Theorem 10.24), from
i) we get (4.12). ��

Observe that we have used Besicovitch covering lemma in a crucial way. For
doubling measures, we could instead use Vitali’s covering lemma or the Calderón–
Zygmund decomposition (see for instance [275, pages 223–225]).
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The centered Gaussian Hardy–Littlewood maximal function on cubes, can also
be defined as M Q

γ f (x),

M Q
γ f (x) = sup

Q(x)

1
γd(Q(x))

∫
Q(x)

| f (y)|γd(dy), (4.13)

where Q(x) is any cube with the sides parallel to the axis with the center at x.

M Q
γ has similar boundedness properties as Mγ and the proof is entirely analo-

gous, using the Besicovitch covering lemma for cubes. Nevertheless, unlike the case
of the Lebesgue measure, these two functions are not equivalent, i.e., there are no
constants Ad ,Bd depending only on dimension, such that for any f ∈ L1

loc(γd) and
x ∈ R

d ,
AdM

Q
γ f (x)≤ Mγ f (x)≤ BdM

Q
γ f (x),

because for the Gaussian measure, we do not have good control of the measures of
the balls and cubes, independent of the center.

Additionally, we can also define non-centered Gaussian Hardy–Littlewood max-
imal functions, as

M̃γ f (x) = sup
r>0

1
γd(B(z,r))

∫
B(z,r)

| f (y)|γd(dy), (4.14)

where B(z,r) is any ball with center at z ∈ R
d , which contains x, and

M̃ Q
γ f (x) = sup

Q

1
γd(Q)

∫
Q
| f (y)|γd(dy), (4.15)

where Q is any cube with sides parallel to the axis that contains x. Clearly, for any
f ∈ L1

loc(γd) and x ∈ R
d ,

Mγ f (x)≤ M̃γ f (x), and M Q
γ f (x)≤ M̃ Q

γ f (x),

It is well known that, in one dimension, the Hardy–Littlewood maximal function
with respect to any non-negative Borel measure μ , Mμ , is always of weak type (1,1)
as can be seen for instance in E. Stein’s book [254, Chapter I §3], P. Sjögren [246], or
A. Garsia [107]. For dimension d > 1, and if μ is a doubling measure, then Mμ is also
of weak type (1,1) (see [275, Chapter IX]). Nevertheless, P. Sjögren, [246], proved
that M̃γd and M̃ Q

γd
are not of weak type (1,1) with respect to γd ,d > 1. Therefore,

they cannot be equivalent to Mγ and M Q
γ . Let us see this argument in detail. The

argument is by contradiction: take d = 2, and assume the weak type (1,1) for M̃γ .
According to a limiting argument, we would get a weak type (1,1) estimate for the
maximal function M̃γ μ for finite measures μ . Take μ to be a Dirac delta mass located
at (0,a+ 1) for a > 0 big enough. Take B1, a unit ball with its center at (c0,a+ 1),
with |c0|< 1. B1 is contained in the parabolic region
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{(x,y) ∈ R
2 : y > a+(x− c0)

2/2},

as if (x− c0)
2 +((y−a)−1)2 = (x− c0)

2 +(y−a)2 −2(y−a)+1 < 1, then

(x− c0)
2 < (x− c0)

2 +(y−a)2 < 2(y−a).

Thus, using (1.5),

γ2(B1) ≤ C
∫ 1

−1

∫ ∞

a+x2/2
e−y2

dy dx ≤ C
a

∫ 1

−1
e−(a+x2/2)2

dx

≤ C
a

e−a2
∫ 1

−1
e−ax2

dx ≤ C
a
√

a
e−a2

.

Hence, M̃γ μ is at least Ca
√

aea2
in the set {(x,y) ∈ R

2 : |x|< 1,a < y < a+2} but,

again, using (1.5), this set has Gaussian measure of at least Ca−1e−a2
. Taking a →∞

this leads us to a contradiction. ��

This counter-example can be extended to higher dimensions d > 1, as is done
in [138], using Proposition 1.7. Taking a Dirac delta mass δa located at a = (a+
1,0, · · · ,0), for a > 0, and consider B1 a unit ball with its center at (a+1,0, · · · ,0).
Taking a big enough such that (1.22) can be used, where r = 1 and x0 = (a,0, · · · ,0),
then

γd(B1)≤Ce−a2
a−(d+1)/2,

for a certain constant C that depends only on the dimension d but not on a. Let

Eλ =
{

x : Mγδa(x)≥
1

γd(B1)

}
,

and consider the set

D =
{
(x,x′) ∈ R

d : a < x1 < a+
1
a
, |x′|< 1, where x′ = (x2, · · · ,xd)

}
.

Clearly D ⊂ Eλ , and

γd(D) =
1

πd/2

∫ a+ 1
a

a

∫
|x′|<1

e−x2
1 e−|x′|2dx1 dx′ ∼ e−a2

/a.

Assuming that the weak (1,1) inequality is true, then we would have

γd(Eλ ) = γd

({
x : Mγδa(x)≥

1
γd(B1)

})
≤Cγd(B1)≤Ce−a2

a−(d+1)/2;

therefore,
e−a2

/a ∼ γd(D)≤Ce−a2
a−(d+1)/2.

This inequality is only true for a big enough if d = 1.
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Also, it can be proved that M̃ Q
γd

are not of weak type (1,1), for d = 2.
Again, by contradiction: taking δ(a,a) a Dirac delta mass located at (a,a) for
a > 0 big enough and consider (two-dimensional) cubes with a lower left ver-
tex at (a − x0,a − y0), x0, t0 > 0, x0 + t0 = 1. Then, we get that M̃ Q

γd
δ(a,a) is at

least Ca2ea2−a in the union of these cubes, whose Gaussian measure is at least
Ca−1e−a2+a. Taking a → ∞, this leads us again to a contradiction.

As the non-centered Gaussian Hardy–Littlewood maximal functions are not
weak (1,1), the interpolation argument used in the proof of Theorem 4.14 for the
strong type (p, p), p > 1, of centered Gaussian Hardy–Littlewood maximal func-
tions cannot be applied. Thus, a natural question is whether or not M̃γ and M̃ Q

γ are
of strong type (p, p), p > 1, for d > 1. In [90], L. Forzani, R. Scotto, P. Sjögren, and
W. Urbina gave a positive answer for M̃γ .

Theorem 4.15. The non-centered Gaussian Hardy–Littlewood maximal function
M̃γ is a bounded operator on Lp(γd) for p > 1, that is, there exists a constant
C =C(d, p) such that for f ∈ Lp(γd),

‖M̃γ f‖p,γd ≤C‖ f‖p,γd .

Let us denote Sd−1
r =

{
x ∈R

d : |x|= r
}

and Sd−1 = Sd−1
1 , and let dσ be the area

measure on Sd−1. The spherical maximal function

Me f (h) = sup
R>0

1
σ(|z′ −h| ≤ R)

∫
|z′−h|≤R

| f (z′)| dσ(z′), h ∈ Sd−1,

is bounded on Lp(dσ). One can extend Me to functions defined in R
d by using polar

coordinates x = ρx′, with x′ ∈ Sd−1, and applying Me in the x′ variable. Then, Me is
bounded on Lp(γd).

To prove Theorem 4.15, we need the following technical lemma, which is a vari-
ation of (1.22), in the second part of Lemma 1.7.

Lemma 4.16. Let B be a closed ball in R
d of radius r. Denote by x0 the point of B

whose distance to the origin is minimal. Assume that |x0| ≥ 1 and that r ≥ 1/|x0|.
Then, for all x, y ∈ B

γd(B)≥C
e−|x0|2

|x0|

(
1 ∧ |y− x|2

|x0|(|x|∨ |y|− |x0|)

) d−1
2

. (4.16)

Proof. Consider the hyperplane orthogonal to x0 whose distance from the origin is
|x0|+ t, with 1/(2|x0|)< t < 1/|x0|. Its intersection with B is a (d−1)−dimensional
ball whose radius is at least C

√
rt ≥ C

√
r/2|x0|. Integrating the Gaussian density

first along this (d −1) -dimensional ball and then in t, we get

γd(B)≥
∫ 1/|x0|

1/(2|x0|)
e−(|x0|+t)2

dt
∫
|v|<C

√
r/|x0|

e−|v|2dv,
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where v is a (d −1)-dimensional variable. The inner integral here is at least

C min{1,(r/|x0|)(d−1)/2},

and e−(|x0|+t)2 ≥Ce−|x0|2 for these t’s; therefore,

γd(B)≥C
e−|x0|2

|x0|

(
1∧

(
r

|x0|

) d−1
2
)
. (4.17)

To estimate r from below, we let z be the center of B and w the projection of x
onto the line passing through 0, x0 and z. Write h= |x−w| and a= |w−x0|. Applying
the Pythagorean theorem twice, we get

|x− z|2 − (r−a)2 = h2 = |x− x0|2 −a2.

As |x− z| ≤ r, we conclude that 2ar ≥ |x− x0|2. Clearly, a ≤ |x|− |x0| so that

r ≥ |x− x0|2
2(|x|− |x0|)

≥ |x− x0|2
2(|x|∨ |y|− |x0|)

.

As x and y are arbitrary points of B, the same argument also implies

r ≥ |y− x0|2
2(|x|∨ |y|− |x0|)

.

Using the triangle inequality we conclude that 2|x− x0|∨ |y− x0| ≥ |x− y|, and so

r ≥ |x− y|2
8(|x|∨ |y|− |x0|)

.

Combining this with (4.17), we obtain the inequality (4.16). ��

We are ready to prove Theorem 4.15.

Proof. We assume that d ≥ 2, as we have already mentioned the case d = 1 is well
known (see for example [246]). Take 0 ≤ f ∈ Lp(γd) and x ∈ R

d . For any ball B
containing x, we must estimate the average

f (B) =
1

γd(B)

∫
B

f (y)γd(dy).

Let r and x0 be defined as in Lemma 4.16, |x0| > 1. We first consider small balls B,
and denote by M0 f (x) the supremum of f (B) taken only over balls B containing x
and verifying r < 1∧ |x0|−1. Split Rd into rings Sk = {x :

√
k−1 ≤ |x| <

√
k}, k =

1,2, . . .. The width of Sk is no larger than 1/
√

k; thus, the Gaussian density is of
constant order of magnitude in each Rk. Using Lebesgue measure arguments, we can
easily estimate the Lp(γd) norm of M0 f in Sk in terms of the Lp(γd) norm of f in
∪{Sk′ : |k′ − k| ≤C}. This takes care of small balls.
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Consider now balls B with r ≥ 1∧ |x0|−1. Observe first that the case |x0| < 2 is
simple, because γd(B)≥C and thus

f (B)≤C
∫

f (y)γd(dy)≤C‖ f‖p,γ .

The corresponding part of M f thus satisfies the Lp(γd) estimate.

It remains to consider the operator

M f (x) = sup
B

f (B),

the supremum taken over balls B containing x and with the property that r ≥ |x0|−1

and |x0| ≥ 2. Let B be such a ball, and observe that it satisfies the hypotheses of
Lemma 4.16.

For each ρ ≥ 1 such that Sd−1
ρ intersects B, let yρ ∈ Sd−1

ρ ∩ ∂B be such that
|yρ − x|= supz∈B∩Sd−1

ρ
|z− x|. Write x′ = x/|x|.

For each z′ ∈ Sd−1 such that ρz′ ∈ B we have

|x′ − z′| = 1
ρ
|ρx′ −ρz′| ≤ 1

ρ
(
|x−ρz′|+ |ρ−|x||

)
≤ 2

ρ
|yρ − x|; (4.18)

and trivially |x′ − z′| ≤ 2.

Because of (4.18) and the definition of Me,

f (B) =
∫ |x0|+2r

|x0|

1
γd(B)

∫
Sd−1

χB(ρz′) f (ρz′)dσ(z′) ρd−1e−ρ
2

dρ

≤
∫ |x0|+2r

|x0|

1
γd(B)

∫
|z′−x′|≤2

(
1∧ |yρ−x|

ρ

) f (ρz′)dσ(z′) ρd−1e−ρ
2

dρ

≤ C
∫ |x0|+2r

|x0|

[
1∧

(
|yρ−x|
ρ

)d−1
]

γd(B)
M e f (ρx′)ρd−1e−ρ

2
dρ

≤ C
∫ |x0|+2r

|x0|
|x0|e|x0|2

[
1∨

(
|x0|(ρ ∨|x|− |x0|)

|x− yρ |2
) d−1

2
]

×
[

1∧
( |yρ − x|

ρ

)d−1
]

M e f (ρx′)ρd−1e−ρ
2

dρ , (4.19)

where we applied Lemma 4.16 with y = yρ to get the last inequality. Write M =
ρ ∨ |x| and m = ρ ∧ |x|, so that |x0| ≤ m ≤ M. Now we need to prove the following
claim, to conclude, from (4.19), that

f (B)≤C
∫ ∞

1
mem2

(
1

m2 ∨ M −m
m

) d−1
2

M e f (ρx′)ρd−1e−ρ
2

dρ . (4.20)
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Claim: For |x0|< ρ < |x0|+2r and some C > 0,

e|x0|2
[

1∨
(
|x0|(M −|x0|)

|x− yρ |2
) d−1

2
][

1∧
( |yρ − x|

ρ

)d−1
]
≤Cem2

(
1

m2 ∨ M −m
m

) d−1
2

.

(4.21)
The proof of the claim is as follows: assume first that

(
|x0|(M −|x0|)

|x− yρ |2
) d−1

2

≤ 1. (4.22)

Then,

e|x0|2
[

1∨
(
|x0|(M −|x0|)

|x− yρ |2
) d−1

2
][

1∧
( |yρ − x|

ρ

)d−1
]
≤ e|x0|2(|x− yρ |/ρ)d−1.

The angles at x0 of the triangles 0x0x and 0x0yρ are obtuse, so that |x|2 ≥ |x0|2 + |x−
x0|2 and |yρ |2 ≥ |x0|2 + |yρ − x0|2. But

|x− yρ | ≤ |x− x0|+ |yρ − x0|,

and this implies that

|x− yρ |2 ≤ 4max
{
|x− x0|2, |yρ − x0|2

}
≤ 4max

{
|x|2 −|x0|2, |yρ |2 −|x0|2

}
= 4(M2 −|x0|2).

If |x| ≤ 2ρ , this last quantity is at most 12ρ(M −|x0|), and then

e|x0|2
[

1∨
(
|x0|(M −|x0|)

|x− yρ |2
) d−1

2
][

1∧
( |yρ − x|

ρ

)d−1
]
≤Ce|x0|2

(
M −|x0|

ρ

) d−1
2

.

In the case |x|> 2ρ , we simply observe that

e|x0|2
[

1∨
(
|x0|(M −|x0|)

|x− yρ |2
) d−1

2
][

1∧
( |yρ − x|

ρ

)d−1
]
≤Ce|x0|2 ,

whereas the right-hand side is at least Cem2
. This case of the lemma is thus trivial.

Assume now that (4.22) is false. Then

e|x0|2
[

1∨
(
|x0|(M −|x0|)

|x− yρ |2
) d−1

2
][

1∧
( |yρ − x|

ρ

)d−1
]
≤ e|x0|2 (|x0|(M −|x0|))

d−1
2

ρd−1

and we arrive again at (4.2). Thus, it only remains to see that (4.2) implies (4.21).
This would follow from the estimate

e|x0|2−m2
(M −|x0|)

d−1
2 ≤C((1/m)∨ (M −m))

d−1
2 . (4.23)
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To prove (4.23), we use the fact that

(M −|x0|)
d−1

2 ≤C
(
(M −m)

d−1
2 +(m−|x0|)

d−1
2

)

and, when m−|x0|> 1/m, also

e|x0|2−m2
= e−(m−|x0|)(m+|x0|) ≤ C

(m−|x0|)
d−1

2 m
d−1

2

.

Hence, (4.23) and inequality (4.21) follow.

Now, we split the integral in (4.20) into five integrals taken over the following
intervals

I1 =

[
1,

|x|
2

]
, I2 =

(
|x|
2
, |x|− 1

|x|

]
, I3 =

(
|x|− 1

|x| , |x|+
1
|x|

]
,

I4 =

(
|x|+ 1

|x| ,
5
4
|x|
]
, I5 =

(
5
4
|x| ,+∞

)
.

Let for i = 1, . . . ,5 we consider

Mi f (x) =
∫

Ii
mem2

(
1

m2 ∨ M −m
m

) d−1
2

Me f (ρx′)ρd−1e−ρ
2

dρ .

Then,

M̃γ f (x)≤C
5

∑
i=1

Mi f (x).

• Bound for M1 f . It is easy to see that

M1 f (x)≤ |x|d
∫ |x|/2

1
Me f (ρx′) dρ .

Hölder’s inequality and the Lp(dσ) boundedness of M e imply

‖M1 f‖p
p,γ ≤

∫ +∞

1

∫
Sd−1

(
sd

∫ s/2

1
Me f (ρx′)dρ

)p

dσ(x′)sd−1e−s2
ds

≤
∫ +∞

1

∫

Sd−1

sd p
∫ s/2

1
|Me f (ρx′)|pρd−1e−ρ

2
dρ

×
(∫ s/2

1
ρ−(d−1) p′

p e
p′
p ρ

2
dρ

) p
p′

dσ(x′)sd−1e−s2
ds

≤
(∫ +∞

1
sCe−

3
4 s2

ds

)
‖ f‖p

p,γ ≤Cl f‖p
p,γ .
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• Bound for M2 f . Making the change of variables ρ = |x|− t
|x| , we get

M2 f (x) ≤ |x| d+1
2

|x|− 1
|x|∫

|x|/2

(|x|−ρ)
d−1

2 Me f (ρx′) dρ

≤
∫ |x|2/2

1
t

d−1
2 Me f

((
|x|− t

|x|
)

x′
)

dt.

From Minkowski’s integral inequality and the Lp(dσ) boundedness of M e, we
obtain

‖M2 f‖p,γ ≤
∫ +∞

1
t

d−1
2

∥∥∥∥Me f

((
| · |− t

| · |
)

x′
)
χ
{1≤t≤ |x|2

2 }

∥∥∥∥
p,γ

dt

≤
∫ +∞

1
t

d−1
2

[∫
Sd−1

∫ +∞
√

2t
f
((

s− t
s

)
x′
)p

sd−1e−s2
dsdσ(x′)

] 1
p

dt.

Let us make the change of variables ρ = s− t/s, observing that s ≤ 2ρ ,

−s2 =−ρ2 −2t + t2/s2 ≤ −ρ2 −3t/2

and dρ/ds ≥ 1. Thus,

‖M2 f‖p,γ ≤ C
∫ +∞

1
t

d−1
2

[∫
Sd−1

∫ +∞
√

t/2
| f
(
ρx′

)
|pρd−1e−ρ

2
e−3t/2dρdσ(x′)

] 1
p

dt

≤ C ‖ f‖p,γ

(∫ +∞

1
t

d−1
2 e−

3t
2p dt

)
≤C ‖ f‖p,γ .

• Bound for M3 f . Let us consider the Borel measure dμ = ρd−1e−ρ
2

dρ on R+.
We have

M3 f (x) ≤ C|x|
∫ |x|+1/|x|

|x|−1/|x|
Me f (ρx′)dρ

≤ C(μ(|x|−1/|x|, |x|+1/|x|))−1
∫ |x|+1/|x|

|x|−1/|x|
Me f (ρx′)dμ(ρ).

Let Mμ denote the one-dimensional centered maximal operator defined in terms
of μ , acting in the ρ variable. Then,

M3 f (x)≤CMμ(M
e f (|x|x′)).

But, as we have mentioned before, Mμ is bounded on Lp(dμ) (see [193] or
[246]). Then, the Lp(γd) boundedness of M3 follows.



122 4 Covering Lemmas, Gaussian Maximal Functions, and Calderón–Zygmund . . .

• Bound for M4 f . Making the change of variables ρ = |x|+ t
|x| , we have

M4 f (x) ≤ C|x| d+1
2 e|x|

2
∫ 5

4 |x|

|x|+ 1
|x|

(ρ−|x|) d−1
2 Me f (ρx′) e−ρ

2
dρ

≤ C
∫ |x|2

4

1
t

d−1
2 Me f

((
|x|+ t

|x|
)

x′
)

e−2t e
− t2

|x|2 dt.

Minkowski’s integral inequality implies that

‖M4 f‖p,γ ≤C
∫ +∞

1
t

d−1
2

∥∥∥∥∥Me f

((
|x|+ t

|x|
)

x′
)

e
− t2

|x|2 χ
{1≤t≤ |x|2

4 }

∥∥∥∥∥
p,γ

e−2tdt.

But Me is bounded on Lp(σd), so that

‖Me f

((
|x|+ t

|x|
)

x′
)

e
− t2

|x|2 χ
{1≤t≤ |x|2

4 }
‖p,γ

≤C
∫ ∞

2
√

t

∫
Sd−1

∣∣∣∣ f

((
|x|+ t

|x|
)

x′
)

e−
t2

s2

∣∣∣∣
p

dσ(x′)sd−1e−s2
ds.

Analogous to the case of M2, we make the change of variables ρ = s + t/s
and observe that s ≤ ρ and −s2 = −ρ2 + 2t + t2/s2 and dρ/ds ≥ 1/2. As
e−pt2/s2

et2/s2
< 1, it follows that the above double integral is at most

C
∫

Sd−1

∫ +∞

1
| f (ρx′)|pρd−1e−ρ

2
dρdσ(x′) e2t ≤C‖ f‖p

p,γe2t .

Thus,

‖M4 f‖p,γ ≤ C
∫ +∞

1
t

d−1
2 ‖ f‖p,γe

2t
p e−2tdt ≤ C‖ f‖p,γ .

• Bound for M5 f . Observe that

M5 f (x) ≤ |x|
3−n

2 e|x|
2
∫ +∞

5/4|x|
Me f (ρx′) ρ

d−1
2 ρd−1e−ρ

2
dρ .

Taking the Lp norm and then applying Hölder’s inequality, we get

‖M5 f‖p
p,γ ≤

∫ +∞

1

∫
Sd−1

eps2

sp d−3
2

(∫ +∞

5s/4
Me f (ρx′)ρ

3(d−1)
2 e−ρ

2
dρ

)p

dσ(x′)sd−1e−s2
ds

≤
∫ +∞

1

∫
Sd−1

eps2

sp d−3
2

∫ +∞

0
|Me f (ρx′)|pρd−1e−ρ

2
dρ

×
(∫ +∞

5s/4
ρ( p′

2 +1)(d−1)e−ρ
2
dρ

) p
p′
dσ(x′)sd−1e−s2

ds

≤ ‖ f‖p
p,γ

(∫ +∞

1
sCe(p−1)s2

e−(p−1)( 5
4 s)2

ds

)
≤C‖ f‖p

p,γ . ��
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On the other hand, in her doctoral dissertation [83], L. Forzani (see also [5])
considered a whole class of generalized Gaussian maximal functions, proving that
they are of weak type (1,1). This result has several applications, one of which, as
we see in the next section, is that the Ornstein–Uhlenbeck maximal function is a
particular case of them; therefore, its weak type (1,1) follows from the general result.
It is also used for the Lp(γd) boundedness of the non-tangential maximal function in
Section 4.6, and also in Section 9.3 to prove the weak type (1,1) of the alternative
Gaussian Riesz transforms.

Definition 4.17. Let Φ : R+
0 → R

+
0 be a non-increasing function, such that

S = ∑
v≥1

Φ
(

1
2
(v−1)

)
v2d < ∞.

Define the Φ-maximal function MΦ as

MΦ f (x) = sup
0<r<1

1

γd((1+δ )B
(

x
r ,

|x|
r (1− r)

)
∫
Rd
Φ
(

|x− ry|√
1− r2

)
| f (y)|γd(dy),

(4.24)

where δ = δr,x =
r

|x|(1−r) min
{

1
|x| ,

√
1− r

}
.

Let us prove now that MΦ is of weak type (1,1) with respect to the Gaussian
measure,

Theorem 4.18. (Forzani) There exists a constant C dependent only on S and the
dimension d, such that for all λ > 0, and f ∈ L1(dγd), we have

γd

({
x ∈ R

d : MΦ f (x)> λ
})

≤ C
λ
|| f ||1,γ . (4.25)

Proof. We consider only r > 3
4 , as the maximal operator is γd-weak type (1,1) for

0 < r ≤ 3
4 (see [83]). Let us denote with the same letter MΦ the maximal operator

restricted to the interval 3
4 < r < 1, with M 1

Φ the maximal operator for 3
4 < r <

1− ζ 2

|x|2 and M 2
Φ the corresponding one for 1− ζ 2

|x|2 < r < 1 (ζ is the constant chosen

in Lemma 4.2).
First, we prove that for |x|< 2ζ ,

MΦ f (x)≤CMγd f (x),

where Mγd is the centered Gaussian Hardy–Littlewood maximal function; see Defi-

nition 4.13. Indeed, denoting Rx,r =
r

|x|(1−r) min
{

1
|x| ,

√
1− r

}
, for |x| ≤ 2ζ , we have

MΦ f (x) = sup
3/4<r<1

1

γd((1+δ )B
(

x
r ,Rx,r

)
∫
Rd
Φ
(

|x− ry|√
1− r2

)
| f (y)|γd(dy)

= C sup
3/4<r<1

e|x|
2

|B(x,Rx,r)|
∞

∑
ν=0

∫
νRx,r≤|y− x

r |≤(ν+1)Rx,r

Φ
(

|x−ry|√
1−r2

)
| f (y)|γd(dy)
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≤ C
∞

∑
ν=0

sup
3/4<r<1

Φ(ν/8ζ )(ν+2)d

× sup
3/4<r<1

1
γd(B(x,(ν+2)Rx,r))

∫
B(x,(ν+2)Rx,r)

| f (y)|γd(dy)

≤ CMγd f (x).

For |x| ≥ 2ζ , because MΦ f (x) ≤ M 1
Φ f (x) +M 2

Φ f (x) and the γd-weak type
(1,1) of MΦ follows once we prove that M 1

Φ and M 2
Φ are γd-weak type (1,1).

To prove the γd-weak type (1,1) of M 1
Φ , it is enough to prove that

γd(E
1,λ
N )≤ C

λ

∫
Rd

| f (y)|dγd(y),

with constant C independent of N and f , where

E1,λ
N =

{
x ∈ R

d : |x| ≥ 2ζ and M 1
Φ f (y)> λ

}
∩B(0,N).

For each x ∈ E1,λ
N , there exists r = r(x) ∈

(
3
4 ,1− ζ 2

|y|2
)

such that

1

γd

(
(1+δ )B( x

r ,
|x|
r (1− r))

)
∫
Rd
Φ
( |x− ry|√

1− r2

)
| f (y)|γd(dy)≥ λ . (4.26)

For every x ∈ E1,λ
N we have that |x| 1−r

r is bounded above and below by positive
numbers, and the centers x

r are in a bounded subset of Rd . Hence, there exists ε > 0
such that for all 0 < α < 1,

γd

(
B
(x

r
,(1+α)|x|1− r

r
+ ε

))
≤ 2γd

(
B
(x

r
,(1+α)|x|1− r

r

))

for all x ∈ E1,λ
N . Let A be a subset of E1,λ

N which is a maximal set with the pro-

perty |x − x̄| > ε
2 for x �= x̄, x ∈ A, x̄ ∈ A. As E1,λ

N is bounded, A is a finite set
A = {x1, . . . ,xL}. If we apply Lemma 4.2 to the set A, we get a family of balls{

B j = B
(

x j
r j
, |x j| 1−r j

r j

)}
j∈J⊂{1,...,L}

such that A ⊂ ∪ j∈J(1 + δ j)B j and ii) follows.

Thus,

E1,λ
N ⊂

⋃
j∈J

B

(
x j

r j
,(1+δ j)

|x j|
r j

(1− r j)+ ε
)
.,

and then

γd(E
1,λ
N )≤ 2∑

j∈J
γd

(
B
(x j

r j
,(1+δ j)|x j|

1− r j

r j

))
.
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From (4.26), and the fact that Φ is a non-increasing function such that

∑
v≥1

Φ
(

1
2
(v−1)

)
v2n < ∞,

we have, using ii) of Lemma 4.2, that

γd(E
1,λ
N ) ≤ 2∑

j≥1
γd((1+δ j)B j)≤

C
λ ∑j≥1

∫
Rd
Φ

⎛
⎝ |x j − r jy|√

1− r2
j

⎞
⎠ | f (z)|dγ(y)

≤ C
λ ∑j≥1

∑
ν≥1

∫
B

(
x j
r j
,νρ j

)
\B

(
x j
r j
,(ν−1)ρ j

)Φ
⎛
⎝ |x j − r jy|√

1− r2
j

⎞
⎠ | f (z)|γd(dy)

=
C
λ ∑j≥1

∑
ν≥1

Φ
(1

2
(ν−1)

)∫
Bνj

| f (y)|γd(dy)

≤ C
λ

∫
Rd
∑
ν≥1

Φ
(1

2
(ν−1)

)
∑

j
χBνj

(y)| f (y)|γd(dy)

≤ C
λ

∫
Rd
∑
ν≥1

Φ
(1

2
(ν−1)

)
ν2n| f (y)|γd(dy)≤ C

λ

∫
Rd

| f (y)|γd(dy).

Finally, we prove that M 2
Φ is of γd-weak type (1,1). First, let us observe that if

r > 1− ζ 2

|x|2 then, for all y ∈ (1+δ )B
(

x
r ,

|x|
r (1− r)

)
= B

(
x
r ,

|x|
r (1− r)+

√
1− r

)
, the

values of e−|y|2 are equivalent. Now, let us define

E2,λ
N =

{
x ∈ R

d : |x| ≥ 2ζ and M 2
Φ f (y)> λ

}
∩B(0,N).

The γd-weak type (1,1) for M 2
Φ follows once we prove the inequality

γd(E
2,λ
N )≤ C

λ

∫
Rd

| f (y)|γd(dy), (4.27)

with constant C independent of N and f .

For each x ∈ E2,λ
N , we have γd((1 + δ )B( y

r ,
|y|
r (1 − r))) � e−|y|2(1 − r)n/2. To

prove (4.27), we divide the region of integration into two parts: one given by
|y− x|< 2 C

|x|r and the other one by |y− x|> 2 C
|x|r .

For the first region, we have

e|x|
2

(1− r)d/2

∫
|y−x|<2 C

|x|r
Φ
(

|x− ry|√
1− r2

)
| f (y)|γd(dy)

≤C
e|x|

2

(1− r)d/2

∫
|y−x|<c

√
1−r
r

| f (y)| γd(dy) (4.28)
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+
e|x|

2

(1− r)d/2

∫
c
√

1−r
r <|y−x|<2 C

|x|r
Φ
(

C
|x− y|√
1− r2

)
| f (y)|γd(dy)

≤C M 1
γ f (x),

where M a
γ is the truncated Hardy–Littlewood maximal function, for a > 0, given

in (4.101).

The first inequality follows from the fact that Φ is bounded and

|x− ry| ≥ r|y− x|− (1− r)|x| ≥ r
2
|y− x|.

The second inequality follows from the fact that Φ is a Lebesgue integrable, non-
increasing function; hence, it is a good approximation of the identity.

For the second region, we have that |x− ry|>C|x− y|. Therefore,

1

(1− r2)d/2
Φ
(

|x− ry|√
1− r2

)
≤ 1

|x− y|d
( |x− y|√

1− r2

)d
Φ
(

C|x− y|√
1− r2

)

≤ C
(
√

1− r2)d

|x− y|2d ≤ C
|x|d |x− y|2d ,

as Φ( 1
2 (ν−1))≤ S. Then,

e|x|
2

(1− r)d/2

∫
|x−y|>2 C

|x|r
Φ
(

|x− ry|√
1− r2

)
| f (y)|γd(dy)

≤C′ e
|x|2

|x|d
∫
|x−y|>2 C

|x|r

f (y)
|x− y|2d γd(dy),

but
e|x|

2

|x|d
∫
|x−y|>2 c

|x|r

f (y)
|x− y|2d γd(dy) ∈ L1(γd).

Therefore, the weak type (1,1) of M 2
Φ follows. ��

4.3 The Maximal Functions of the Ornstein–Uhlenbeck and
Poisson–Hermite Semigroups

The Continuity Properties of the Ornstein–Uhlenbeck Maximal Function

As we already saw in Chapter 2, the maximal function for the Ornstein–Uhlenbeck
semigroup or simply the Ornstein–Uhlenbeck maximal function is defined, for any
f ∈ L1(γd), as
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T ∗ f (x) = sup
t>0

|Tt f (x)|= sup
t>0

∣∣∣∣
∫
Rd

Mt(x,y) f (y)dy

∣∣∣∣

= sup
0<r<1

1

πd/2(1− r2)d/2

∣∣∣∣∣
∫
Rd

e
− |y−rx|2

1−r2 f (y)dy

∣∣∣∣∣ . (4.29)

It is also called Mehler’s maximal transform, but we reserve that for another operator
(see 4.35).

As in the classical case, this maximal function is important as it controls the
almost everywhere (a.e.) convergence, i.e., if it is Lp(γd) bounded for some 1 < p <
∞, then there is almost everywhere convergence for f ∈ Lp(γd). Let us prove, then,
the Lp(γd)-boundedness of T ∗.

Theorem 4.19. For 1 < p < ∞, the Ornstein–Uhlenbeck maximal function T ∗ is
Lp(γd)-bounded, that is, there exists a constant Cp dependent only on p and the
dimension d, such that

‖T ∗ f‖p,γ ≤Cp‖ f‖p,γ . (4.30)

Proof. As the Ornstein–Uhlenbeck semigroup is not a convolution semigroup, the
boundedness of T ∗ f in Lp(γd), 1 < p < ∞ cannot be obtained, as in the classical
case, from the boundedness of the Hardy–Littlewood maximal function.

In the case d = 1, for r and y fixed, the maximum of Mehler’s kernel is at-
tained at x = y/r. Thus, the centered maximal operator does not seem to be the
best average maximal function to be used to get the γd-weak type (1,1) property.
The boundedness of T ∗ can be proved directly by using Natanson’s lemma (see Ap-
pendix Lemma 10.27). To apply Natanson’s lemma, B. Muckenhoupt defines a kernel
L(r,x,y), which is a modification of Mehler’s kernel in the interval [y,y/r], as

L(r,x,y) =

{
P(r,y/r,y) if x ∈ [y,y/r],

P(r,x,y) if x /∈ [y,y/r].

Then, Muckenhoupt proves that L(r,x,y) still satisfies (10.103) and (10.104) (see
Lemma 3 of [193]).

Nevertheless, in general, for any d ≥ 1, because the Ornstein–Uhlenbeck semi-
group is a Markov semigroup, the boundedness of T ∗ in Lp(γd) can be proved using
the maximal theorem, as {Tt} is a Markov semigroup, which is based on the Hopf–
Dunford–Schwartz ergodic theorem (see E. Stein [253, page 73]). ��

The case p = 1 is highly non-trivial and it was an open problem until 1982, when
P. Sjögren [247] proved that T ∗ is of γd-weak type (1,1).

Theorem 4.20. The Ornstein–Uhlenbeck maximal function T ∗ is of weak type (1,1)
with respect to the Gaussian measure, that is, there exists a constant C dependent
only on the dimension d, such that for any f ∈ L1(γd)
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γd

({
x ∈ R

d : T ∗ f (x)> λ
})

≤ C
λ
‖ f‖1,γ . (4.31)

for any λ > 0.

There are several proofs of this result.

• First of all, the initial proof was obtained by P. Sjögren. His proof does not use
pointwise estimates by means of average maximal operators or covering lem-
mas, such as Besicovitch or Wiener, which are basic standard tools in classical
harmonic analysis because, as we have already said, the Gaussian measure is not
a doubling measure. His arguments are very original, but too technical to be given
in detail here. Nevertheless, we give a sketch of his proof. Consider the region
NR defined as

NR =
{
(x,y) ∈ R

d ×R
d : |x| ≤ R and |y| ≤ R, or |y| ≥ R/2 and |x− y| ≤ R/|y|

}
.

For a fixed x ∈ R
d , the x-section of NR is given by Nx

R = {y ∈ R
d : (x,y) ∈ NR}.

Using Nx
R, Sjögren considers a local part and a global part of the operator T ∗,

defined for f ∈ L1(γd) as

T ∗
L f (x) = sup

0<r<1

1

πd/2(1− r2)d/2

∫
Nx

R

e
− |y−rx|2

1−r2 f (y)dy, (4.32)

and

T ∗
G f (x) = sup

0<r<1

∫
(Nx

R)
c

1

πd/2(1− r2)d/2
e
− |y−rx|2

1−r2 f (y)dy. (4.33)

Sjögren proves that both operators, T ∗
L and T ∗

G , map L1(γd) on L1,∞(γd). For
the local part T ∗

L , he uses the fact that the Gaussian measure and the Lebesgue
measure are equivalent on Nx

R, according to similar arguments to those given in
Section 4.1; thus, classical estimates for the Hardy–Littlewood maximal function
can be used.

The argument to bound the global operator T ∗
G is very original and deeply in-

teresting. Unfortunately, it is too technical; therefore, trying to give full details
would be outside the scope of this book (for more information, see [247]). Con-
sider Mehler’s maximal kernel defined as

K ∗(x,y) = sup
t>0

Mt(x,y) = sup
0<r<1

1

π d
2 (1− r2)

d
2

e
− |y−rx|2

1−r2 , (4.34)

and the operator defined by the kernel K ∗(x,y) that we call Mehler’s maximal
transform,

T∗ f (x) =
∫

Rd

K ∗(x,y) f (y)dy. (4.35)
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What is needed is to estimate the Gaussian measure of the level set is{
x ∈ R

d : T∗ f (x)> λ
}
.

More precisely, we want to get, for f ∈ L1(γd), f ≥ 0, the inequality

γd

({
x ∈ R

d : T∗ f (x)> λ
})

≤ C
λ

∫
Rd

f (x)γd(dx).

It would be enough to prove that
∫
{x∈Rd :T∗ f (x)>λ}

K ∗(x,y)γd(dx)≤Ce−|y|2 , (4.36)

because then, using Fubini’s theorem, we would get

γd

({
x ∈ R

d : T∗ f (x)> λ
})

≤
∫
{x∈Rd :T∗ f (x)>λ}

1
λ

∫
K ∗(x,y) f (y)dyγd(dx)

=
1
λ

∫
f (y)

∫
{x∈Rd :T∗ f (x)>λ}

K ∗(x,y)γd(dx)dy

≤ C
λ

∫
f (y)γd(dy).

Unfortunately, the inequality (4.36) is not true; thus, the argument fails. Never-
theless, the argument can be “rescued” if a subset E of {x ∈ R

d : T∗ f (x) > λ}
can be constructed such that the inequality

∫
E

K ∗(x,y)γd(dx)≤Ce−|y|2 , (4.37)

holds. Hence, E must be small, such that

γd(E)≤Cγd

({
x ∈ R

d : T∗ f (x)> λ
})

,

which implies that E cannot be too small. Then,

γd

({
x ∈ R

d : T∗ f (x)> λ
})

≤C′γd(E);

thus, we can repeat the argument above. To construct the set E,Rd is divided into
cubes Qi centered at xi, i = 1,2, . . . such that their diameters verify

cm(xi) = c
(

1∧ 1
|xi|

)
≤ diam (Qi)≤C

(
1∧ 1

|xi|
)
=Cm(xi).

The set {x ∈ R
d : T∗ f (x) > λ} is the union of cubes of this type. The problem

is that there may be cubes that are very close together. Hence, to construct E, an
inductive selection argument is needed to select the cubes so that there are not
too many cubes too close to each other, and so that (4.37) holds. For each cube
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Q j, we need to consider its forbidden region Fj, which is defined to be the union
of cubes Qi, i > j, with non-empty intersection with the set Q j +Kj, where Kj is
the cone and {

x ∈ R
d : α(x,y)≤ π/4 for some y ∈ Q j

}
,

where α(x,y) is the angle between x and y. It can be proved that

γd(Fj)≤Cγd(Q j), (4.38)

as the Gaussian density falls exponentially.

For the first step of the construction of E we select Q1 if and only if it intersects
the set {x ∈ R

d : T∗ f (x) > λ}. In the i-th step, Qi is chosen if it intersects the
set {x ∈ R

d : T∗ f (x) > λ} and it is not in the forbidden region Fj for any cube
Q j already selected. Then, by construction, the set {x ∈ R

d : T∗ f (x) > λ} is
contained in the union of the selected cubes Q j and their corresponding forbidden
regions Fj; hence, using (4.38), we get

γd

({
x ∈ R

d : T∗ f (x)> λ
})

≤∑
j
γd(Q j)+∑

j
γd(Fj)

≤ C∑
j
γd(Q j) =Cγd(E).

Moreover, it can be proved that (4.36) holds, because basically, taking any
straight line in the direction of y ∈ R

d , we get a selected cube Q j and the rest of
the line is in the forbidden region Fj (for more details see [247]).

The scheme of Sjögren’s proof was later used by several authors to obtain
positive results for other operators associated with the Ornstein–Uhlenbeck
semigroup, such as the Riesz transforms (see [77, 86]) or the Littlewood–Paley
square function (see [87]). In all these cases, the proof follows his arguments
very closely. Thus, we can conclude that there is a close connection between all
these operators and Mehler’s maximal transform.

• Another proof was given by T. Menárguez, S. Pérez, and F. Soria (see [184, 185]
and [220]). They obtained a more geometric proof as an alternative to Sjögren’s,
which in some sense simplifies it, although it is still very involved. The main
idea is to use polar coordinates, which turns out to be very natural, as the Gaus-
sian measure is invariant by rotations (around the origin), obtaining a Vitali’s
covering type for conic regions.

Again, similar to Sjögren’s proof, they split T ∗ into a local part and a global part,
but the regions considered in this case are different and somehow simpler. Given
x ∈ R

d , the local part of the operator T ∗ is its restriction to the admissible ball

Bh(x) = B(x,Cd m(x)) = {y ∈ R
d : |y− x|<Cd m(x)},
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and we have seen that the Gaussian density is essentially constant on admissible
balls; see (4.102). The global part of the operator T ∗ is its restriction to the
complement of Bh(x). Thus,

T ∗ f (x) = Cd sup
0<t<1

⎛
⎜⎝

∫

|x−y|<d m(x)

Mt(x,y)| f (y)|dy+
∫

|x−y|≥d m(x)

Mt(x,y)| f (y)|dy

⎞
⎟⎠

≤ T ∗
L f (x)+T ∗

G f (x),

where T ∗
L f (x) = T ∗( f χBh(·))(x) is the local part and T ∗

G f (x) = T ∗( f χBc
h(·))(x) is

the global part of T ∗.

This scheme is used in general for operators associated with the Ornstein–
Uhlenbeck operator. We split them into a local part and a global part. Because
the Gaussian measure and the Lebesgue measure are equivalent on the local
region, the local part is controlled by the corresponding classical operators. The
difficult problem is to control the global part of those operators, even though
they are positive.

Similar to Sjögren’s proof, the local part T ∗
L is weak (1,1) as it is bounded by the

(classical) Hardy–Littlewood maximal function.

Theorem 4.21. T ∗
L is of weak type (1,1) with respect to the Gaussian measure

γd ,

γd

({
x ∈ R

d : T ∗
L f (x)> λ

})
≤ C

λ

∫
Rd

| f (y)|γd(dy)

Proof. As mentioned above, it is enough to bound T ∗
L by the (classical) Hardy–

Littlewood maximal function

T ∗
L f (x)≤CdM f (x).

Let us denote Kt the reparametrized Mehler’s kernel, with t = 1− r2,

Kt(x,y) =
Cd

td/2
e−

|y−
√

1−tx|2
t . (4.39)

Observe that if |x− y| ≤ d
|x| , then |x− y||x| ≤ d; therefore,

|y−
√

1− tx|2 ≥
(
|y− x|− |x|(1−

√
1− t)

)2

≥ |y− x|2 −2|x||y− x| t

1+
√

1− t
≥ |y− x|2 −2d t.
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Hence,

T ∗
L f (x) = Cd sup

0<t<1

∫
Kt(x,y)| f (y)|dy

≤ Cd sup
0<t<1

e2d

td/2

∫
Rd

e−
|y−x|2

t | f (y)|dy ≤CdM f (x).

To prove the weak type (1,1) inequality for T ∗, we use Lemma 4.3, considering
a family F = {B(0,α), B̃k

j}k, j of admissible balls, with bounded overlaps, that

covers Rd , and B̂ :=CdB, B ∈ F . Therefore,

T ∗
L f (x)≤ T ∗

L ( f χB̂(0,α))(x)+∑
k, j

T ∗
L ( f χB̂k

j
)(x) = ∑

B∈F

T ∗
L ( f χB̂)(x)χB(x).

Then, using the argument given above, and using the weak type inequality for the
non-centered Hardy–Littlewood maximal function M̃,

γd

({
x ∈ R

d : T ∗
L f (x)> λ

})
≤ ∑

B∈F ,B⊂Sk

γd

({
x ∈ B : M̃( f χB)(x)> λ

})

∼ ∑
B∈F ,B⊂Sk

e−αk

∣∣∣
{

x ∈ B : M̃( f χB)(x)> λ
}∣∣∣

≤ C ∑
B∈F ,B⊂Sk

e−αk

λ

∫
B
| f (x)|dx

∼ ∑
B∈F ,B⊂Sk

∫

B

| f (x)|γd(dx)∼
∫

Rd

| f (x)|γd(dx),

where we have used the fact that the family F has the finite overlapping property.

Observe that, with an analogous argument, we can prove, without using interpo-
lation theory, that T ∗

L is a bounded operator in Lp(γd), as for f ∈ Lp(γd)

‖T ∗
L f‖p,γ ∼

∞

∑
k=0

∑
B∈F ,B⊂Sk

e−αk

∫
B
|T ∗

L f (x)|pdx ≤
∞

∑
k=0

e−αk

∫
B
|M̃ f (x)|pdx

≤ C
∞

∑
k=0

∑
B∈F ,B⊂Sk

e−αk

∫
B
| f (x)|pdx ∼

∞

∑
k=0

∑
B∈F ,B⊂Sk

∫
B
| f (x)|pγd(dx)

∼ ‖ f‖p,γ . ��
Now, we want to prove the boundedness of the global part T ∗

G . Following P.
Sjögren’s idea, [247] we need to estimate K ∗ the supremum of Mehler’s ker-
nel (4.34). S. Pérez, in her doctoral dissertation (see [220] or [185]), gets an
estimation of the kernel that is very interesting and allows a unified treatment of
the global part of several operators related to the Ornstein–Uhlenbeck operator,
as we are going to see later. The scheme of her proof is based on the following
results:
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– Mehler’s maximal kernel (4.34) is equivalent to the Gaussian maximal kernel
K , (4.40), proved in Proposition 4.23.

– Prove that the maximal Gaussian operator T associated with K , is of weak
type (1,1) with respect to the Gaussian measure γd (see Theorem 4.24). Its
proof is long and very technical and we additionally need Lemmas 4.25, 4.26,
and 4.27.

Definition 4.22. Let us define the Gaussian maximal kernel K as

K (x,y) =

⎧⎨
⎩

e−|y|2 , if 〈x,y〉 ≤ 0(
|x+y|
|x−y|

)d/2
e−

|y|2−|x|2
2 e−

|x−y||x+y|
2 , if 〈x,y〉> 0.

(4.40)

Then we have

Proposition 4.23. If |x− y| ≥Cd m(x), then we have

K ∗(x,y)∼ K (x,y).

It is easy to see that if y ∈ Bh(x), i.e., |x− y| ≤Cd m(x), we have

K ∗(x,y)∼ 1
|x− y|d ,

which corresponds to the action of the (classical) Hardy–Littlewood maximal
function on one Dirac delta. This shows the close connection that exists between
the operators T ∗ and M̃ in the local case.

Proof. To simplify the notation, in what follows we denote

a = a(x,y) := |x|2 + |y|2, b = b(x,y) := 2〈x,y〉,

and

u(t) = u(t;x,y) :=
|y−

√
1− tx|2
t

=
a
t
−

√
1− t
t

b−|x|2.

This operator was first introduced by W. Urbina in [278] and later used by S.
Pérez extensively.

Observe that, if d ≥ 2 and |x− y| ≥Cd m(x), then a = |x|2 + |y|2 ≥ d
2 .

We need to study the function

ϕ(t) =
1

td/2
e−u(t), (4.41)

for fixed x,y.
Consider its derivative,

ϕ ′(t) = −
[

d
2t

+u′(t)

]
e−u(t)

td/2
=

e−u(t)

td/2

(2a−d t)
√

1− t − (2− t)b

2t2
√

1− t
.
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As the factor 2a − d t is positive for all 0 < t < 1, and as d ≥ 2 and |x − y| ≥
Cd m(x), we have

2a = 2(|x|2 + |y|2)≥ |x− y|2 ≥ d2m(x)2 ≥ d2
(

1∧ 1
a

)
;

therefore a ≥ d/2.

– Case #1: b ≤ 0.
If b ≤ 0, then ϕ ′ is positive and the function ϕ is strictly increasing. There-
fore,

sup
0≤t≤1

Kt(x,y)= sup
0≤t≤1

1

td/2
e−u(t) ≤Cdϕ(1)=K1(x,y)=Cde−a+|x|2 =Cde−|y|2 .

– Case #2: b > 0.
If b > 0, then |x+ y|> |x|. Moreover, |x+ y||x− y| ≥ d if y ∈ Bc

h(x), as

|x+ y|2 = |x|2 +2〈x,y〉+ |y|2 ≥ |x|2 −2〈x,y〉+ |y|2 = |x− y|2.

Thus, |x+ y| ≥ |x− y| and

|x+ y|2 = |x|2 +2〈x,y〉+ |y|2 ≥ |x|2,

so |x+ y|> |x|.

Therefore, if |x| ≤ 1

|x− y| ≥ d

(
1∧ 1

|x|

)
= d,

|x− y||x+ y| ≥ |x− y||x− y| ≥ d2 ≥ d.

Hence, |x− y||x+ y| ≥ d. If |x|> 1

|x− y| ≥ d

(
1∧ 1

|x|

)
=

d
|x| , so |x||x− y| ≥ d

which implies |x− y||x+ y| ≥ |x− y||x| ≥ d.

Thus, in any case, if b > 0
√

a2 −b2 = |x+ y||x− y| ≥ d. (4.42)

Therefore, a ≥ d and this information is useful to find the critical points of
ϕ , as ϕ ′(t) = 0 if and only if u′(t)+ d

2t = 0, i.e.,

−2a
√

1− t − (2− t)b

2t2
√

1− t
+

d
2t

= 0
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√
1 − t

(2−t)b
2a

g(t)

b
a

td t00 1 2

1

Fig. 4.3.

or equivalently,

√
1− t = g(t), where g(t) =

(2− t)b
2a−d t

. (4.43)

Observe that the denominator of g(t) is always positive. Moreover, it is easy
to see that g is concave and decreasing on [0,1] with x-intercept at x = 2 and
y-intercept at y = b

a < 1. Because
√

1− t is also concave and decreasing on
[0,1] with x-intercept at x = 1 and y-intercept y = 1, there is a unique solution
to equation (4.43), which corresponds to the intersection of the two curves,
that is denoted as td ; see Figure 4.3. As ϕ is increasing up to td and then
decreasing, we conclude that

sup
0≤t≤1

Kt(x,y) = Ktd (x,y).

Unfortunately, td is a solution of a third-order equation, it has a very com-
plicated explicit expression. Hence, we are going to approximate its value by
the positive solution of the following quadratic equation

√
1− t =

(2− t)b
2a

.

This corresponds to finding the point where the function e−u(t) attains its
supremum. As the graph of (2− t)b/(2a) is a straight line passing through
the points (0,b/a) and (2,0), which coincides with the intersection points
of g with the axes, and g is concave, we must have td ≤ t0. Moreover, t0 is
actually a very good approximation of td , as we prove that they are equivalent
in the region |x− y| ≥ 2d m(x). To prove that indeed td and t0 are equivalent,
let us look at the tangent line to the graph of the function g at the point t = 0,
that is,

z(t) =−g′(0)t +g(0) = (a−d)b/(2a2)t +b/a =−pt +q,
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where p = −g′(0) = (a− d)b/(2a2) and q = g(0) = b/a. The concavity of
the graph implies that the positive solution of the equation

√
1− t = z(t),

denoted by t ′d , satisfies t ′d ≤ td ≤ t0, as it can be seen in Figure 4.4.

√
1 − t

(2−t)b
2a

g(t)

z(t)

b
a

t′
d
td t00 1 2

1

Fig. 4.4.

Moreover, from (4.42), it follows that

t ′d = 2
1−q2

(1−2pq)+
√
(1−2pq)2 +4p2(1−q2)

≥ 1−q2√
1−4pq+4p2

=
a2−b2

a2√
a2−b2

a2 + d2b2

a4

=
a2 −b2√

(a2 −b2)a2 +d2a2
≥

√
a2 −b2

2a
≥ 1

4
t0.

This implies that ϕ(td)∼ ϕ(t0) as

ϕ(t0)≤ sup
0<t<1

ϕ(t) = ϕ(td) =
e−u(td)

td/2
d

≤ e−u(t0)

td/2
d

≤ 2d e−u(t0)

td/2
0

= 2dϕ(t0).

(4.44)
Hence,

Kt0(x,y) ≤ Ktd (x,y) =
1

td/2
d

e−u(td)

≤ 1

td/2
d

e−u(t1) ≤Cd
1

td/2
0

e−u(t0) =CdKt0(x,y),

It is easy to get the explicit expression of t0, as it is the positive solution of
the quadratic equation

b2t2 +4(a2 −b2)t −4(a2 −b2) = 0,
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and then,

t0 = 2

√
a2 −b2

a+
√

a2 −b2
. (4.45)

Therefore, as

u(t0) =

√
a2 −b2

2
+

a
2
−|x|2 = |y|2 −|x|2

2
+

√
a2 −b2

2

and

t0 ∼
√

a2 −b2

a
∼

√
a−b√
a+b

=
|x− y|
|x+ y| ,

we conclude that

Kt0(x,y)∼
(
|x+ y|
|x− y|

)d/2

e−
|x+y||x−y|

2 e−
|y|2−|x|2

2 . ��

Observe that in case #1, b = 2〈x,y〉 ≤ 0, if a = |x|2 + |y|2 ≤ d/2, then

Kt(x,y)≤ h(2a/d)∼ e|x|
2

ad/2
∼ 1

|x|d + |y|d e|x|
2

As the linear operator T f (x) =
∫
Rd

f (y)
|x|d+|y|d dy is of weak type (1,1) with respect

to the Lebesgue measure (see [251]), the same argument used for the Hardy–
Littlewood maximal operator above shows that the (strong) local part

S f (x) =
∫

|x−y|≤d m(x)
〈x,y〉≤0

K ∗(x,y)| f (y)|dy

is also of weak type (1,1) with respect to the Gaussian measure.

As we have already mentioned, the fundamental observation by P. Sjögren in
[247], to study the global part, is to consider Mehler’s maximal transform (4.35).

In Proposition 4.23, we have shown that K ∗(x,y)∼ K (x,y) if |x− y|> d m(x).
Thus, it is enough to prove the weak type (1,1), with respect to the Gaussian
measure, of the operator associated with this latter kernel.

Theorem 4.24. The maximal Gaussian operator defined as

T f (x) =
∫

Rd

K (x,y) f (y)dy (4.46)

is of weak type (1,1) with respect to the Gaussian measure γd.
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Proof. The idea is to use geometric arguments similar to Vitali’s covering lemma.
The problem here is that the Gaussian measure is not doubling; therefore, some
replacement for the notion of the “double of a set” needs to be found. Observe
that the Gaussian measure can be written in polar coordinates as

γd(dx) =
1

πd/2
e−|x|2dx =

1

πd/2
e−r2

rn−1drdσ ,

where dσ denotes the surface measure on the unit sphere, which is indeed a
doubling measure. Therefore, the dilations are done with respect to the angular
variable.

Without loss of generality we assume that f ≥ 0. First, it is easy to see that given
x ∈R

d considering T restricted to the region {y ∈R
d : 〈x,y〉 ≤ 0} is strong (1,1)

continuous because
∫
Rd

∫
〈x,y〉<0

K (x,y) f (y)dye−|x|2dx =
∫
Rd

e−|y|2 f (y)dy
∫
〈x,y〉<0

e−|x|2dxdy

≤ C
∫
Rd

e−|y|2 f (y)dy.

Hence, we assume 〈x,y〉> 0 for the rest of the proof.

The local part T L is of strong type (1,1), because, as we have mentioned before,
on admissible balls, the Gaussian density is essentially constant. Therefore, if
y ∈ R

d such that |x− y| ≤Cd m(x), then e−|y|2 ∼ e−|x|2 ; therefore,

T L f (x) =
∫
Rd

∫

|x−y|≤d m(x)

K (x,y) f (y)dye−|x|2dx

≤ Cd

∫
Rd

∫

|x−y|≤d m(x)

K (x,y)dx f (y)e−|y|2dy

= Cd

∫
Rd

∫

|x−y|≤d m(x)

(
|x+ y|
|x− y|

)d/2

e−
|y|2−|x|2

2 e−
|x−y||x+y|

2 dx f (y)e−|y|2dy

Thus, it is enough to show that the inner integral is bounded uniformly on y. Now,
the exponential part of K (x,y) is controlled by e|x|

2+|y|2 , as

||y|2 −|x|2| ≤ |x− y||x+ y|,

which in this case is bounded by a constant. On the other hand,

|x+ y| ≤ |x− y|+2|y| ≤Cd ++2|y| ≤Cd(1∨|y|),

so the strong type follows from
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∫

|x−y|≤d m(x)

K (x,y)dx ≤ Cd

∫

|x−y|≤d m(y)

(
|x+ y|
|x− y|

)d/2

dx

= Cd(1∨|y|d/2)
∫

|z|≤dm(y)

1

|z|d/2
dz

= Cd(1∧|y|d/2)(1∨|y|)d/2 =Cd .

The argument above shows in general that if K (x,y)e|y|
2−|x|2 is uniformly in-

tegrable in y with respect to the Lebesgue measure over a given region, then
Fubini’s theorem implies the strong type (1,1) with respect to γd of T when
restricted to that region.

Now, we prove the weak (1,1) continuity of the global part, T G,

T G f (x) =
∫

|x−y|≥d m(x)

K (x,y) f (y)dy, (4.47)

that is,

γd

({
x ∈ R

d : T G f (x)> λ
})

≤ C
λ

∫
Rd

| f (y)|γd(dy).

To prove this, we are going to consider several regions, which are somehow gen-
eralizations to R

d of the regions considered by B. Muckenhoupt in the case d = 1
in [194] (see Figure 4.5). We see that in some of those regions the operator is ac-
tually of strong type (1,1) with respect to the Gaussian measure γd .
– First, given x ∈ R

d with |x| < 10, let us consider the region {y /∈ Bh(x) :
〈x,y〉> 0}. There, the operator is of strong type (1,1), because if |x−y| ≥ c,
it follows that either C ≥ |x+ y| ≥ |x− y| ≥ c or |x+ y| ∼ |x− y| ∼ |y|. Thus,
we get

K (x,y)≤Ce−|y|2−|x|2 ≤Ce−|y|2 .

– Let us consider, for x ∈ R
d with |x| ≥ 10, the region

{y /∈ Bh(x) : 〈x,y〉> 0, |x| ≥ |y|}.

Then we have
K (x,y)≤Cd |x|de−

|x−y||x|
2 e|x|

2−|y|2 .

Hence, if |x− y|> 1,

K (x,y)e|y|
2−|x|2 ≤Cd |x|de−c|x|,

which is an integrable function on R
d . Thus,

∫
Rd

∫

〈x,y〉>0
|x−y|>1,|x|>10,|x|>|y|

K (x,y) f (y)dye−|x|2dx
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≤
∫
Rd

∫
Rd

|x|de−c|x|dx f (y)e−|y|2dy ≤Cd || f ||1,γ

Now, if |x−y| ≤ 1, then |x| ∼ |y|, so taking the change of variables (x −
y)|y|=v, we get

∫
Rd

∫

〈x,y〉>0
|x−y|≤1,|x|>10,|x|>|y|

K (x,y) f (y)dye−|x|2dx

≤
∫
Rd

∫
Rd

|y|de−
|x−y||x|

2 dx f (y)e−|y|2dy

≤ Cd

∫
Rd

∫
Rd

e−
|v|
2 dv f (y)e−|y|2dy ≤Cd || f ||1,γ .

2x

1
|x|

〈x, y〉 < 0 〈x, y〉 ≥ 0

2|x| < |y|

|x| ≤ |y| ≤ 2|x|

|x| > |y|

|x| 2|x|

1
|x|

x

Fig. 4.5.

– For x ∈ R
d with |x| ≥ 10, it remains to be considered the region{

y /∈ Bh(x) : 〈x,y〉> 0, |x| ≤ |y|
}
.

This is the most problematic region, but even here there are some sub-regions
that give the strong type (1,1) for the corresponding operator. Here, the fact
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that we are working with the kernel K becomes crucial. Let α := α(x,y) =
sin∠(x,y), where ∠(x,y) ∈ [0,π] denotes the shortest angle between the vec-
tors x and y (if 〈x,y〉> 0, we have ∠(x,y) ∈ [0,π/2]). Using the identity

|x− y|2|x+ y|2 = (|x|2 + |y|2 −2〈x,y〉)(|x|2 + |y|2 +2〈x,y〉)
= (|x|2 + |y|2)2 −4〈x,y〉2 = (|y|2 −|x|2)2 +4|x|2|y|2α2(x,y)

= (|x|2 + |y|2)2 −4〈x,y〉2 = 4(A2 + |x|2|y|2α2(x,y)),

where
A = A(x,y) := (|y|2 −|x|2)/2. (4.48)

In this region, we obtain

K (x,y) =

(
|x+ y|
|x− y|

)d/2

eA−
√

A2+α2(|x|2+|y|2)e|x|
2−|y|2

=
|x+ y|d

(|x− y||x+ y|)d/2
exp

(
− α2|x|2|y|2

A+
√

A2 +α2(|x|2 + |y|2)

)
e|x|

2−|y|2

≤ 2d
( |y|2
|x− y||x+ y|

)d/2
exp

(
− α2|x|2|y|2

|x− y|x+ y|
)

e|x|
2−|y|2 . (4.49)

This implies that we need to divide this region into sub-regions, depending
on the behavior of α(x,y) and the size of |x| and |y|.

Observe that if we consider, for ε > 0, the region

Bε =
{
(x,y) ∈R

2d : 〈x,y〉> 0, |x| ≤ |y|, |y−x| ≥Cd(1∧1/|x|),α(x,y)> ε
}
,

and T ε the operator associated with the kernel K ε = K χBε , then T ε is of
strong type (1,1), because for (x,y)∈ Bε we have 1/2 ≤ |y|2(|x−y||x+y|)<
C(1+ |x|)2; hence, ∫

K εe|y|
2−|x|2 ≤C,

uniformly in y.

A close look at the previous argument shows that what we really need is
(1+ |x|)de−(α2|x|2)/2 ∈ L1(Rd). This is the case, for example, if α(x,y) ≥
(4(d + 1) ln(1+ x))1/2/|x|. With this remark as a motivation, observe that
given a positive function α0 : [0,∞)→ [0,1], the set

Γα0(x) = {y : 〈x,y〉> 0, |x| ≤ |y|,α(x,y)≤ α0(|x|)} ,

represents a (truncated) light cone, centered at x, with angular opening
α0(|x|). Assume that α0 is a non-increasing function and define Γ ∗

α0
(x) =
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Γ3α0(x) if 3α0(|x|) ≤ 1 and Γ ∗
α0
(x) = {y : 〈x,y〉 > 0, |x| ≤ |y|} otherwise;

hence, Γ ∗
α0
(x) is essentially a dilation of Γα0(x) in the angular sense.

Then, the collection of cones {Γα0(x)} satisfies the following properties:

· If Γα0(x)∩Γα0(x
′) �= /0 and |x|< |x′| we have Γα0(x

′)⊂ Γ ∗
α0
(x).

· There exists a constant Cd dependent only on dimension such that

γd(Γ ∗
α0
(x))≤Cdγd(Γα0(x)),

as

γd(Γα0(x))≤Cd

∫ ∞

|x|
e−r2

rd−1(α0(r))
d−1dr ∼Cd(|x|α0(|x|))d−1e−|x|2 .

Thus, Γ ∗
α0
(x) is precisely the needed notion of “double of a set” for Γα0(x);

therefore, we have finally obtained a “doubling condition” for the Gaussian
measure γd on the sets {Γα0(x)}. Therefore, we can apply the usual Vitali’s
covering lemma and prove that the operator

Tα0 f (x) =
1

γd(Γα0(x))

∫
Γα0 (x)

| f (y)|e−|y|2dy, (4.50)

is of weak type (1,1) with respect to γd , because any compact subset of {x :
Tα0 f (x) > λ} can be covered by a finite union of cones {Γ ∗

α0
(xi)} that are

dilations of a sub-collection of disjoint cones {Γα0(xi)}i∈J and, therefore,

γd(K) ≤ ∑
i∈J

γd(Γ ∗
α0
(xi)) =Cd ∑

i∈J

γd(Γα0(xi))

≤ Cd

λ ∑
i∈J

∫
Γ ∗
α0

(xi)
f (y)e−|y|2dy ≤ Cd

λ

∫

Rd

f (y)e−|y|2dy.

For |x| ≥ 10, k = 1,2, l = 1,2, · · · , [|x|k] + 1 and α0(x) = l
|x|k ∧ 1, we write

Γ k
l (x)

Γ k
l (x) =

{
y : 〈x,y〉> 0, |x| ≤ |y|,α(x,y)≤ l/|x|k

}
(4.51)

and Tk
l

Tk
l f (x) =

1

γd(Γ k
l (x))

∫
Γ k

l (x)
| f (y)|e−|y|2dy, (4.52)

instead of Γα0(x) and Tα0 respectively (see Figure 4.6).
We know that each Tk

l is of weak type (1,1) with respect to the Gaussian
measure, with a constant independent of l. The idea now is to majorize our
operator T , when restricted to the remaining region under study, by a linear
combination (with rapidly decreasing coefficients) of those operators Tk

l . To
that end, let us study separately the two operators T 1 and T 2 defined by the
restrictions of K (x,y) over the regions
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Fig. 4.6.

B1 =
{
(x,y) ∈ R

2d : y /∈ Bh(x),〈x,y〉> 0, |x| ≤ |y| and α(x,y)> 1/|x|

or |x| ≤ 2|y|,α(x,y)≤ 1/|x|
}
,

B2 =
{
(x,y) ∈ R

2d : y /∈ Bh(x) : 〈x,y〉> 0, |y|/2 ≤ |x|< |y|,α(x,y)≤ 1/|x|
}
.

To finish the proof of Theorem 4.24, we need the following lemmas (see [185,
Lemma 2.6, 2.7, and 2.8]):
Lemma 4.25. For some δ > 0

T
(1)

f (x)≤C
∞

∑
l≥1

e−δ lT1
l f (x), (4.53)

Proof. For any s,m ∈ R
+, there exists a constant Cm such that e−s <

Cms−me−s/2. Taking s = (α2|x|2|y|2)/(|x − y| |x + y|), m = d/2, as |x −
y| |x+ y| ≤ 2|y|2, we get from (4.49)

K (x,y) ≤ C

(
1

α|x|

)d

exp
(
− α2|x|2|y|2

2|x− y|x+ y|
)

e|x|
2−|y|2

≤ C

(
1

α|x|

)d

e−(α2|x|2)/4e|x|
2−|y|2 .

On the other hand, when |y|> 2|x| and 〈x,y〉> 0 we have the inequality|y|2 ≤
2|x−y|x+y| and then, K (x,y)≤ e|x|

2−|y|2 . Therefore, if we split the integral
over the regions where m ≤ α|x|< m+1, for m = 0,1, · · · we get

T
(1)

f (x) ≤ Cde|x|
2
∫
Γ 1

1 (x)
e−|y|2dy+Cm ∑

m≥1

1
m

e−m2/4

γd(Γ 1
m+1(x))∫

Γ 1
m+1(x)\Γ 1

m (x)

f (y)e−|y|2dy (4.54)
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≤ CT1
1 f (x)+C ∑

m≥1
e−m2/4T1

m+1 f (x), (4.55)

where we have used

γd(Γ 1
m (x))∼

(
m
|x|

)d−1

(1+ |x|)d−2e−|x|2 ≤Cdmd−1e−|x|2 ,

because |x|> 1. ��

Fig. 4.7.

Lemma 4.26.

T
(2)

f (x)≤C
∞

∑
l≥2

e−δ lT2
l f (x)+C ˜A f (x), (4.56)

where ˜A f is a “weighted average” operator defined as

˜A f (x) =
1

γd(Λ(x))

∫
Λ(x)

G(x,y) f (y)e−|y|2dy,

where G(x,y) = A−d/2eα
2|y|4/16A, with A = A(x,y) defined as in (4.48),

Γ 1
1 (x) := {y : (x,y) ∈ B2}, and

Λ(x) = Γ 1
1 (x)∩

{
y : |x|< |y|< 2|y|α(x,y− x)<

1
100

}
,

are convex bodies (whose shape resembles that of a pencil).
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Proof. As,

T
(2)

f (x) =
∫
Γ 1

1 (x)
f (x)K (x,y)dy,

with

K (x,y) ≤ C
|x|d

(A+α|x|2)d/2
exp

(
− α2|x|2|y|2

2(A+α|x|2)
)

e|x|
2−|y|2 ,

for y ∈ Γ 1
1 (x), as |x − y| |x + y| = 2

√
A+α|x|2|y|2 ∼ A + α|x|2. Now, we

analyze the cases A > α|x|2, and A ≤ α|x|2. To do that, we consider the
convex bodies Λ(x). When y ∈ Γ 1

1 (x)\Λ(x), we have

|y− x|= (α(x,y)/α(x,y− x))|y| ≤ 100α(x,y)|y|,

(see Figure 4.7) and, as |x−y||x+y| ≥ d and |x| ∼ |y| we obtain from (4.49),

K (x,y)≤C|x|de−(α |x|2)/200e|x|
2−|y|2 .

Splitting the region of integration according to the different values of α, l ≤
α|x|2 < l +1, we have for some δ > 0
∫
Γ 1

1 (x)\Λ(x)
K (x,y) f (y)dy ≤ C

γd(Γ 2
10(x))

∫
Γ 2

10(x)
f (x)e−|y|2dy

+C ∑
l>10

|x|de|x|
2
e−lδ

∫
Γ 2

l (x)
f (x)e−|y|2dy,

≤ C∑
l≥2

ld−1e−lδ 1

γd(Γ 2
l (x)

∫
Γ 2

l (x)
f (x)e−|y|2dy

where we have used γd(Γ 2
l (x)) ∼ (l/|x|2)d−2e−|x|2 ≤ Cd(ld−1/|x|)d)e−|x|2 ,

for every l = 1,2, · · ·

Now, we need to study the properties of T over Λ(x). To do that, we study
the properties of the operator

˜A f (x) =
1

γd(Λ(x))

∫
Λ(x)

G(x,y) f (y)e−|y|2dy.

Noting that γd(Λ(x))∼ |x|−de−|x|2 , and that A ≥ α|x|2 if y ∈Λ(x), it follows
from (4.49), ∫

Λ(x)
K (x,y) f (y)dy ≤C ˜A f (x).

Finally, we need to prove the weak type (1,1) with respect to γd of ˜A . This
proof is difficult, as it faces the problem that the family {Λ(x)} does not have
the “doubling property,” so we cannot find dilations of Λ(x) with essentially
the same Gaussian measure.



146 4 Covering Lemmas, Gaussian Maximal Functions, and Calderón–Zygmund . . .

Lemma 4.27. The weighted average operator ˜A is of weak type (1,1) with
respect to γd .

Proof. Let

Λ ∗(x) =
{

y : |y|> |x|,〈x,y− x〉> 0,α(x,y− x)< 99/100
}
.

Then,
γd(Λ ∗(x))∼ γd(Λ(x))∼ |x|de−|x|2 .

If we also Λ ∗∗(x) =Λ ∗(x(1−3/|x|2)), we have γd(Λ ∗∗(x))∼ |x|de−|x|2 too.
Given λ > 0 and D, a compact subset of the level set {x : ˜A f (x) > λ}, we
can find x1,x2, · · · ,xN ∈ D such that

D ⊂
⋃

j

Λ ∗∗(x j), and xk /∈Λ ∗∗(x j) if j �= k. (4.57)

This is somehow similar to the one used by Sjögren for the “forbidden re-
gions.” Observe that the family {Γ 2

1 (x j)} is disjoint. With these assumptions
we are able to prove the following generalization of the usual Vitali’s cov-
ering lemma: instead of asking for the bounded overlap of the collection
{Λ(x j)}, that is, ∑ j∈S(y) χΛ(x j)(y)≤C with S(y) := { j : y ∈Λ(x j)}, we show
that

∑
j∈S(y)

G(x j,y)≤C. (4.58)

Once this is done, we deduce easily the weak type (1,1) for the operator ˜A
with respect to γd because

γd(D)≤C∑
j
γd(Λ(x j))≤

C
λ

∫
f (y)e−|y|2 ∑

j∈S(y)

G(x j,y) dy ≤ C
λ

f (y)e−|y|2 dy.

To prove (4.58), we fix y and make the following geometric remark: if we
call A0 := max{Ak = (|y|2 −|xk|2)/2 : k ∈ S(y)}, then we obtain, from (4.57)
that 1

2 A0 ≤ A j ≤ A0, for all j ∈ S(y) (see Figure 4.8). Therefore, writing α j =
α(x j,y), we get for some δ > 0

∑
j∈S(y)

G(x j,y)≤ ∑
k≥0

1

Ad/2
0

∑
{ j∈S(y):(A0k)1/2/|y|2≤α j<(A0(k+1))1/2/|y|2}

e−δk.

On the other hand, the number of disjoint “circles” of radius 1/|y|2 over the
unit sphere of Rd whose angular distance to a fixed point on it lies between
(A0k)1/2/|y|2 and (A0(k+1))1/2/|y|2 is not larger than

(
|y|2

)d−1

[
(A0(k+1))1/2

|y|2 − (A0k)1/2

|y|2

]
∼ (A0)

(d−1)/2(k+1)(d−3)/2.
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Fig. 4.8.

Thus, as d < |x+ y| |x− y| ≤ 2(A+α|x|2)≤ 4A whenever y ∈Λ(x), we con-
clude that A is bounded below; therefore,

∑
j∈S(y)

G(x j,y)≤ ∑
k≥0

(k+1)(d−3)/2

A1/2
0

e−δk ≤C.

This finishes the proof of the lemma. ��

Thus, the weak type (1,1) of ˜A together with (4.53) and (4.56), from the adding-
up condition on L1,∞ (see E. M. Stein and N. J. Weiss [257]), finally gives us that
the operator T is of weak type (1,1) with respect to γd ; thus, we conclude the
proof of Theorem 4.24 and therefore of Theorem 4.20. ��

As we have seen in the proof above, one of the main differences between the
proofs of S. Pérez and P. Sjögren is the crucial use of polar coordinates. This not
only simplifies some of the argument, but also provides a geometrical approach
that is very natural for the Gaussian measure, which happens to be a unifying
method that can be used to study other operators associated with the Gaussian
measure.
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• In [91] L. Forzani, E. Harboure, and R. Scotto give a rewritten version of the
kernel K sketching a simpler proof than the original one given by T. Menárgez,
S. Pérez, and F. Soria in [185, 223], using a clever technique introduced in [104].

• A third proof was obtained by L. Forzani as a consequence of Theorem 4.18,
majorizing T ∗ with an appropriate maximal function (see [5]). Simply choose
Φ(t) = 1

πn/2 e−t2
, then from (1.22) we get

γd

(
(1+δ )B

(x
r
,
|x|
r
(1− r)

))
≤C e−|x|2(1− r)

d
2 .

Then, for any f ∈ L1(γd)
T ∗ f (x)≤ MΦ f (x);

therefore the γd-weak type (1,1) of T ∗ follows. ��

• There is yet another proof of the weak (1,1) of T ∗, obtained by J. Garcı́a-Cuerva,
G. Mauceri, S. Meda, P. Sjögren, and J. L. Torrea in [104, Theorem 3.2, Theo-
rem 4.3], using the holomorphic Ornstein–Uhlenbeck semigroup (and therefore
complex variables techniques). The proof is actually simpler than the ones given
above, but as the techniques are completely different from those considered
throughout the book, we do not provide further details.

• Finally, in [37] T. Bruno, combining the ideas of T. Menárguez, S. Pérez, and F.
Soria [185] and [223] with those of J. Garcı́a-Cuerva, G. Mauceri, S. Meda, P.
Sjögren, and J. L. Torrea in [104] gives a different shorter and simpler proof of
the weak type (1,1) of the global part of T ∗ using the kernel

K̃(x,y) = e|x|
2−|y|2

(
|x+ y|
|x− y|

)d/2

e−
|x|2

2 +
|x|2

2 − |x−y||x+y|
2 Ψ(x,y)χG(x,y), (4.59)

where

Ψ(x,y) = max{1,
1

(|x− y||x+ y|)d/2
}, and G = Nc

1 ,

where N1 =
{
(x,y) ∈ R

d ×R
d : |x− y|< 1

1+|x|+|y|

}
(see (4.63)).

Bruno proves (see [37, Proposition 3.3]) that, for every (x,y) ∈ G

K (x,y)≤CK̃(x,y).

The kernel K̃(x,y) controls only from above K (x,y).2 This greatly simplifies
the proofs, because the weak type (1,1) of the operator associated with K̃(x,y)
can be easily deduced by a kernel obtained by J. Garcı́a-Cuerva, G. Mauceri, S.
Meda, P. Sjögren, and J. L. Torrea in [104] (see [37, Lemma 3.5]).

2Except in certain regions where they are equivalent (see [37, Remark 3.4]).
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As mentioned in Chapter 2, the boundedness properties of the maximal function
for the holomorphic Ornstein–Uhlenbeck semigroup {Tz : Rez ≥ 0}, Γ∗

p

Γ∗
p f (z) = sup

z∈Ep

|Tz f (x)|,

sharp weak type and strong type estimates have been studied by J. Garcı́a-Cuerva,
G. Mauceri, P. Sjögren, and J. L. Torrea in [104] and by P. Sjögren in [249] using a
similar technique of splitting the corresponding operators into local and global parts.

The Continuity Properties of the Poisson–Hermite Maximal Function

The proof of the continuity properties of the Poisson–Hermite maximal function,

P∗ f (x) = sup
t>0

|Pt f (x)| ,

is far simpler.

Theorem 4.28. For the Poisson–Hermite maximal function P∗, we have

i) For 1 < p <∞ the Poisson–Hermite maximal function P∗ is of strong type (p, p)
with respect to the Gaussian measure, that is, there exists a constant Ap depen-
dent only on p and the dimension d, such that

‖P∗ f‖p,γ ≤ Ap‖ f‖p,γ . (4.60)

ii) The Poisson–Hermite Maximal function P∗ is of weak type (1,1) with respect to
the Gaussian measure, that is, there exists a constant C dependent only on the
dimension d, such that for any f ∈ L1(γd)

γd

({
x ∈ R

d : P∗ f (x)> λ
})

≤ C
λ
‖ f‖1,γ (4.61)

for any λ > 0.

Proof.

i) From the general theory of the semigroup, it follows that P∗ is Lp(γd)-bounded
for 1 < p < ∞, with respect to the Gaussian measure, and the constant is inde-
pendent of the dimension (see [253]). Moreover, this can also be obtained from
the fact that the Poisson–Hermite semigroup is a subordinated semigroup (see
C. Herz [133]).

ii) On the other hand, from the fact that the Poisson–Hermite semigroup is a sub-
ordinate semigroup, it can be deduced immediately that P∗ satisfies a weak type
(1,1) with respect to the Gaussian measure, because
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|Pt f (x)| ≤ 1√
π

∫ ∞

0

e−u
√

u

∣∣∣T(t2/4u) f (x)
∣∣∣ du

≤ 1√
π

∫ ∞

0

e−u
√

u
du T ∗ f (x) = T ∗ f (x).

Hence,
P∗ f (x) = sup

t>0
|Pt f (x)| ≤ T ∗ f (x);

therefore, using Theorem 4.20

γd

({
x ∈ R

d : P∗ f (x)> λ
})

≤ γd

({
x ∈ R

d : T ∗ f (x)> λ
})

≤ C
λ
‖ f‖1,γ . ��

4.4 The Local and Global Regions

The technique in Gaussian harmonic analysis of splitting the kernels, such as
Mehler’s kernel into a local and a global part is well known and goes back to B.
Muckenhoupt’s paper [193] in dimension one, but there it was considered implicitly.
In higher dimensions d > 1, this was first used explicitly by W. Urbina in [278],
where the local region was given by “admissible rectangles”; for x ∈R

d fix, the local
region

Ax :=

{
y ∈ R

d : |yi − xi|< 1∧ 1
|xi|

, for all i = 1,2, · · · ,d
}
,

and the global part is simply A c
x .

The basic idea behind the notion of local region, regardless of the specific defini-
tion, is that the corresponding local part of the operator behaves in a similar manner
to a classical operator, usually a Calderón–Zygmund operator, from the fact that, on
those regions, the Gaussian measure is equivalent to a multiple of the Lebesgue mea-
sure. The problem is then reduced to study the global part of the operator, that is to
say, the operator restricted to the global region, which is usually a positive operator
and/or has nice decay properties. The study of the global part is unfortunately, most
of the time, highly non-trivial.

For the proof of the weak type (1,1) of the Ornstein–Uhlenbeck maximal opera-
tor (see 4.3), P. Sjögren considered the following local region,

NR :=
{
(x,y) ∈ R

d ×R
d : |x| ≤ R and |y| ≤ R, or |y| ≥ R/2 and |x− y| ≤ R/|y|

}
,

(4.62)
and NR,x means the section of NR at level x ∈ R

d ,

NR,x :=
{

y ∈ R
d : |x| ≤ R and |y| ≤ R, or |y| ≥ R/2 and |x− y| ≤ R/|y|

}
.

R. Scotto, in his doctoral dissertation [244] (see also [77]), considered the same local
region.



4.5 Calderón–Zygmund Operators and the Gaussian Measure 151

The local region considered by T. Menárguez, S. Pérez, and F. Soria is given by

N =
{
(x,y) ∈ R

d ×R
d : |x− y| ≤Cdm(x)

}

and the section for x ∈ R
d , is given by

Nx =
{

y ∈ R
d : (x,y) ∈ N

}
= B(x,Cdm(x)) = Bh(x),

the admissible ball. The global region, for fixed x ∈ R
d is simply the complement of

Bh(x).

In [102] and [103], J. Garcı́a-Cuerva, G. Mauceri, P. Sjögren, and J. L. Torrea
consider for each t > 0 the local region Nt , the neighborhood of the diagonal in
R

d ×R
d defined by

Nδ =

{
(x,y) ∈ R

d ×R
d : |x− y|< δ

1+ |x|+ |y|

}
, (4.63)

δ > 0.
Finally, P. Portal in [231] considered the following local region, for all a > 0,

Na :=
{
(x,y) ∈ R

d ×R
d : |x− y| ≤ am(x)

}
. (4.64)

The global region is then the complement of Na. Furthermore, Portal also defines the
local region Na(B)

Na(B) :=
{

y ∈ R
d : |cB − y| ≤ am(cB)

}
.

4.5 Calderón–Zygmund Operators and the Gaussian Measure

A very important generalization of the arguments developed by S. Pérez and F. So-
ria to bound the local part of T ∗ are the tools developed to control the local part
of Calderón–Zygmund operators (see [223] and [221]). We are going to study in
this section a generalization of Calderón–Zygmund’s theory adapted to the Gaussian
measure γd . This extension is very useful in Chapter 5 for the Lp(γd)-boundedness of
Gaussian Littlewood–Paley g functions and in Chapter 9 for the Lp(γd)-boundedness
of Gaussian singular integrals.

First of all, let us recall the definition of a Calderón–Zygmund operator.3

Definition 4.29. We say that a C1 function K(x,y), defined off the diagonal of Rd ×
R

d , i.e., x �= y, is a Calderón–Zygmund kernel provided that the following conditions
are satisfied:

i) |K(x,y)| ≤ C
|x−y|d .

3For more on the classical theory, see E. Stein [252, Chap II], J. Duoandikoetxea [72,
Chapter 5], L. Grafakos [118, Chapter 4] or A. Torchinski [275, Chapter XI].
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ii) |∂yK(x,y)| ≤ C
|x−y|d+1 .

Associated with K we define the operator T by means of the formula

T f (x) = p.v.
∫
Rd

K(x,y) f (y)d = lim
ε→0

∫
|x−y|>ε

K(x,y) f (y)dy.

with f ∈ C∞
0 (R

d). We say that T is a Calderón–Zygmund operator if T admits a
continuous extension to L2(Rd).

We are now going to prove that in general, the local part of a singular integral
of Calderón–Zygmund type has the expected boundedness properties with respect to
the Gaussian measure. This theorem was obtained by S. Pérez (see [221, Theorem
2.1]).

Theorem 4.30. Let K(x,y) be a kernel that satisfies the Calderón–Zygmund condi-
tions for |x− y| ≤ m(x), and consider the integral operator T with kernel K,

T f (x) = p.v.
∫
Rd

K(x,y) f (y)dy. (4.65)

Taking a covering of Rd F = {B(0,α), B̃k
j}k, j of admissible balls, with bounded

overlaps,4 we can define the “local part” of T as

TL f (x) = TL,F f (x) =
∞

∑
k=0

∑
B∈F ,B⊂Sk

T ( f χB̂)(x)χB(x). (4.66)

Then, if T bounded on Lp(γd) for some 1 < p < ∞, TL is of weak type (1,1) with
respect to γd .

Given a ball B ⊂ R
d , let us denote by TB, the restriction of T to the ball B,

TB f (x) = p.v.
∫

B

K(x,y) f (y)dy.

To prove the theorem, we need the following technical lemma (see S. Pérez [221,
Lemma 2.2])

Lemma 4.31. Let T be a Calderón–Zygmund operator with kernel K. Given x0 ∈R
d

and consider an admissible ball centered at x ∈ R
d, Bh(x) = {y : |y− x| ≤ Cdm(x)},

then there exists a constant C such that,

∣∣∣
{

x ∈ B : |TBh(·) f (x)|> λ
}∣∣∣≤ C

λ

∫

Bh(x)

| f (y)|dy,

for every f ∈ L1(Rd).

4The existence of that family is obtained from Lemma 4.3.



4.5 Calderón–Zygmund Operators and the Gaussian Measure 153

Proof. Without loss of generality, we may assume that the support of f is contained
in Bh; therefore, we would have TBh f (x) = T f (x). We also assume that the L1(γd)
norm of f is one, ‖ f‖1,γ = 1. Set r =Cdm(x) =Cd(1∧1/|x|).

Recall the classical Calderón–Zygmund decomposition. Given a non-negative
function f ∈ L1(B) and λ > 0, there exists a sequence {Q j} j∈A of cubes whose
interiors are mutually disjoint, such that

i) f (x)≤ λ for almost everywhere on (∪Q j)
c.

ii) |⋃ j Q j| ≤ 1
λ ‖ f‖1.

iii) λ ≤ 1
|Q j |

∫
Q j

f (x)dx ≤ 2dλ .

Associated with this collection, we can write the function f as the sum of two func-
tions b and g given by

g(x) =

⎧⎨
⎩

f (x) x ∈ (∪ jQ j)
c

1
|Q j |

∫
Q j

f (y)dy x ∈ Q j,

called the “good part” and

b(x) =∑
j

b j(x) with b j(x) =

⎛
⎜⎝ f − 1

|Q j|

∫

Q j

f (y)dy

⎞
⎟⎠χQ j(x),

called the “bad part.”

• Case #1: If r < (1/λ )1/d .
In this case, the lemma holds trivially because

∣∣∣
{

x ∈ B : |T f (x)| ≥ λ
}∣∣∣≤Crd ≤C

‖ f‖1

λ
.

• Case #2: If r ≥ (1/λ )1/d . Observe that, according to ii), |Q j| < 1/λ , for all j;
thus, the side length of all the cubes Q j is smaller than or equal to (1/λ )1/d .
Therefore, all the cubes Q j are contained in B′, a ball with its center at x0 and its
radius (1+

√
d)r. From this point onward, the proof follows the classical one.

According to the usual argument, it is enough to establish separately the estimates
for the level set of height λ/2 for both b and g. Using Chebyshev’s inequality and
from the boundedness of T on Lp(γd), we easily obtain the estimate for T g (as
g ≤Cλ )

∣∣∣
{

x ∈ B : T g(x)> λ/2
}∣∣∣ ≤ C

λ p

∫
B
|T (g)(x)|pdx ≤ Ce|x0|2

λ p

∫
B
|T (g)(x)|pγ(x)dx

≤ Ce|x0|2

λ p

∫
B′
|g(x)|pγ(x)dx ≤C

λ p−1

λ p

∫
Rd

|g(x)|dx
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≤ C
1
λ
‖ f‖1.

Now, let us estimate T b. Let y j be the center of Q j and consider the cube Q′
j is

the cube dilated by 2 and concentric with Q j. When x ∈ ∪ jQ′
j, then

∣∣∣∣∣
⋃

j

Q′
j

∣∣∣∣∣≤
C
λ

∫
Rd

| f (y)|dy.

Otherwise, the mean value zero of each b j implies

∣∣∣
{

x ∈ B\
⋃

j

Q′
j : |T b(x)|> λ/2

}∣∣∣ ≤ C
λ ∑l

∫

B\∪Q′
j

∣∣∣∣
∫

Ql

K(x,y)bl(y)dy

∣∣∣∣dx

=
C
λ ∑l

∫

B\∪Q′
j

∣∣∣∣
∫

Ql

(K(x,y)−K(x,yl))bl(y)dy

∣∣∣∣dx

≤ C
λ ∑l

∫
Ql

|bl(y)|
∫

B\Q′
l

|K(x,y)−K(x,yl)|dxdy

≤ C
λ ∑l

∫
Ql

|bl(y)|
∫
(Q′

l)
c

|y− yl |
|x− yl |d+1 dxdy

≤ C
λ ∑l

∫
Ql

|bl(y)|dy ≤ C
λ

∫
Rd

| f (y)|dy,

where we have used the fact that if y,yl ∈ Ql and y′ is any point in the segment yyl ,
then y′ ∈ Ql ⊂ B′. In particular, if x ∈ B, then |x−y′| ≤ (2+

√
d)r ≤C1(1∧1/|x|),

for some positive constant C1 ∼Cd ; therefore, the assumption about the decay of
the gradient of K establishes the lemma. ��

Let us now prove Theorem 4.30.

Proof. According to the definition of TL and the fact that F is a covering of Rd of
admissible balls with bounded overlaps, we have, using Lemma 4.31, that

γd

({
x : |TL f (x)|> λ

})
≤

∞

∑
k=0

∑
B∈F ,B⊂Sk

γd({x ∈ B : |TB f (x)|> λ})

∼ 1

πd/2

∞

∑
k=0

∑
B∈F ,B⊂Sk

e−α
2
k |{x ∈ B : |TB f (x)|> λ}|

≤ 1

πd/2

∞

∑
k=0

∑
B∈F ,B⊂Sk

e−α
2
k

C
λ

∫

B

| f (y)|dy

∼ C
λ ∑

B∈F ,B⊂Sk

∫

B

| f (y)|γd(dy)≤ C
λ
‖ f‖1,γd .



4.5 Calderón–Zygmund Operators and the Gaussian Measure 155

Moreover,

‖TL f‖p,γ ∼
∞

∑
k=0

∑
B∈F ,B⊂Sk

e−α
2
k

∫
B
|TB f (x)|pdx ≤

∞

∑
k=0

e−α
2
k

∫
B
|M f (x)|pdx

≤ C
∞

∑
k=0

∑
B∈F ,B⊂Sk

e−α
2
k

∫
B
| f (x)|pdx ∼

∞

∑
k=0

∑
B∈F ,B⊂Sk

∫
B
| f (x)|pγd(dx)

∼ ‖ f‖p,γ ��.

In particular, as is well known in the classical Calderón–Zygmund theory (see
for instance E. Stein [252, Chapter II] or J. Duoandikoetxea [72, Chapter 4]), that if
we consider a singular integral of convolution type, i.e., the kernel K is given as

K (x) =
Ω(x)
|x|d , (4.67)

where Ω is a C1 homogeneous function of degree zero with mean zero over the unit
(hyper)-sphere Sd−1 ⊂ R

d ,

∫
Sd−1

Ω(x′)dσ(x′) = 0,

and the operator T is defined by convolution with K , then T is a Calderón–Zygmund
operator. In this case, we have the following result, obtained by S. Pérez [221, Propo-
sition 4.3]:

Theorem 4.32. Let T be the Calderón–Zygmund operator defined by convolution
with K = Ω(x)

|x|d , with Ω as above,

T f (x) = p.v.
∫
Rd

K (x− y) f (y)dy = p.v.
∫
Rd

Ω(x− y)
|x− y|d f (y)dy.

Then, its local part TL is bounded in Lp(γd), 1 < p <∞, and of weak type (1,1) with
respect to γd .

Proof. Using Lemma 4.3 again, we can take a family F = {B(0,α), B̃k
j}k, j of ad-

missible balls, with bounded overlaps, that covers R
d , and set B̂ := CdB. Given an

operator T, we can define its “local part” as

TL f (x) = TL,F f (x) =
∞

∑
k=0

∑
B∈F ,B⊂Sk

T ( f χB)(x)χB(x).

Consider the truncated maximal operator,

N f (x) = sup
0,ε<N

∣∣∣
∫
ε≤|x−y|≤N

K (x− y) f (y)dy
∣∣∣. (4.68)
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It is well known; see for instance E. Stein [252, Chap II, § 4], that N is Lp(Rd)-
bounded,1 < p < ∞, and weak (1,1) with respect to the Lebesgue measure. From
the definition of TL, we have |TBg(x)| ≤ N g(x) for any function g and any admis-
sible ball B ∈ F . Then, using the fact that the family F is a covering of R

d of
admissible balls with bounded overlaps, making a similar argument than in the proof
of Theorem 4.30, we have the strong type (p, p),

‖TL f‖p,γ ∼
∞

∑
k=0

∑
B∈F ,B⊂Sk

e−α
2
k

∫
B
|TB f (x)|pdx ≤

∞

∑
k=0

e−α
2
k

∫
B
|N f (x)|pdx

≤ C
∞

∑
k=0

∑
B∈F ,B⊂Sk

e−α
2
k

∫
B
| f (x)|pdx ∼

∞

∑
k=0

∑
B∈F ,B⊂B

∫
B
| f (x)|pγd(dx)

∼ ‖ f‖p,γ ,

and also, the weak type (1,1),

γd

({
x : |TL f (x)|> λ

})
≤

∞

∑
k=0

∑
B∈F ,B⊂Sk

γd

({
x ∈ B : |TB f (x)|> λ

})

∼ 1

πd/2

∞

∑
k=0

∑
B∈F ,B⊂Sk

e−α
2
k

∣∣∣
{

x ∈ B : |TB f (x)|> λ
}∣∣∣

≤ 1

πd/2

∞

∑
k=0

∑
B∈F ,B⊂Sk

e−α
2
k

∣∣∣
{

x ∈ B : |N f (x)|> λ
}∣∣∣

≤ 1

πd/2

∞

∑
k=0

∑
B∈F ,B⊂Sk

e−α
2
k

C
λ

∫

B

| f (y)|dy

∼ C
λ ∑

B∈F ,B⊂Sk

∫

B

| f (y)|γd(dy)≤ C
λ
‖ f‖1,γ . ��

Now, we extend Theorem 4.32 by considering a condition on the “size” of the
operator. This argument is similar to the one obtained by F. Soria and G. Weiss
in [251] and is obtained by S. Pérez [221, Theorem 5.1]. We use it for Calderón–
Zygmund operators, but it can be used in more general situations, in particular, for
vector valued operators.

Theorem 4.33. Let T be a sublinear operator of weak type (1,1) with respect to the
Lebesgue measure, i.e., there exists a constant C such that for any λ > 0

∣∣∣
{

x ∈ R
d : |T f (x)| ≥ λ

}∣∣∣≤ C
λ
‖ f‖1 (4.69)

for any f ∈ L!(Rd), and let T0 be the operator defined as

T0 f (x) = T ( f χBh(·))(x),

where Bh(x) =
{

y ∈ R
d : |y− x|< dm(x)

}
. Then, if T satisfies
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|T f (x)| ≤C
∫
Rd

| f (y)|
|x− y|d dy, for x /∈ supp f , (4.70)

T0 is of weak type (1,1) with respect to the Gaussian measure. Moreover, if T is
Lp(Rd) bounded for some 1 < p < ∞, then T0 is also Lp(γd) bounded for the same
p.

Proof. We use Lemma 4.3, considering a family F = {B(0,α), B̃k
j}k, j of admissible

balls, with bounded overlaps, that covers R
d , and setting B̂ = CdB, B ∈ F , where

Cd > d. T0 can be bounded as,

|T0F(x)| ≤ ∑
B∈F

|T0( f χB̂(·))(x)|χB(x).

Let T1 be defined as
T1 f (x) = T ( f χBc

h(·))(x).

We also have

|T0( f χB̂(·))(x)| ≤ |T f ( f χB̂(·))(x)|+ |T1( f χB̂(·))(x)|.

Now, for x ∈ B ∈ F , using condition (4.70) and the fact that if x ∈ B then m(x) ∼
m(cB) where cB is the center of B, we get

|T1( f χB̂(·))(x)| ≤
∫
Rd

|( f χB̂(x)χBc
h(x)

)(y)|
|x− y|d dy

≤
∫

dm(x)≤|y−x|<Cdm(cb)

|( f χB̂(x))(y)|
|x− y|d dy

≤ C
m(cb)d

∫
|y−x|<Cdm(cb)

|( f χB̂(x))(y)|dy ≤CM( f χB̂(·))(x).

We conclude that,

|T0 f (x)| ≤C ∑
B∈F

(
|T ( f χB̂(·))(x)|+M( f χB̂(·))(x)

)
χB(x).

The theorem follows from the boundedness properties of T with respect to the
Lebesgue measure using the same arguments used the proof of Theorem 4.32. ��

Finally, there is an extension of these results to the vector valued case, which
follows the same steps with minor changes (see [87]).

Theorem 4.34. Let (A1, | · |1) and (A2, | · |2) be two separable Banach spaces. Let T
be a bounded linear transformation from Lp

γ (R
d ,A1) to Lp

γ (R
d ,A2) for some 1 < p <

∞ defined as

T f (x) = p.v.
∫
Rd

K(x,y) f (y)dy
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where K defined on the set {(x,y) ∈ R
d ×R

d : x �= y} takes its values in B(A1,A2)
and satisfies that for every constant C1 > 0 there exists another constant C2 > 0, so
that whenever |x− y| ≤C1m(x),

i) |K(x,y)|B ≤ C2
|x−y|d .

ii)
∫
|z−x|≥2|x−y| |K(z,x)−K(z,y)|B dz ≤C2.

Let TL f (x) = T ( f χBh(·))(x). Then, for every f ∈ L1
γ (R

d ,A1) and every λ > 0, there
exists C > 0 such that

γd

({
x ∈ R

d : |TL f (x)|2 > λ
})

≤ C
λ

∫
Rd

| f (y)|1dγ(y).

Proof. Let F = {B j}∞j=1 be a sequence of admissible balls B j = B(x j,dm(x j)) such

that Rd =
⋃∞

j=1 B j and ∑∞
j=1 χB∗

j
(x) ≤ C for all x ∈ R

d where B∗
j = 2B j is such that⋃

x∈B j
Bh(x)⊆ B∗

j (see Lemma 4.3). For x ∈ B j,

|TL f (x)|2 ≤ |T ( f χB∗
j
)(x)|2 + |T ( f χB∗

j\Bh(·))(x)|2, (4.71)

and

|T ( f χB∗
j\Bh(·))(x)|2 ≤

∫
B∗

j\Bh(x)
|K(x,y)|B | f (y)|1 dy ≤C2

∫
B∗

j\Bh(·)

| f (y)|1
|x− y|d dy,

where the last inequality comes from condition i). For y ∈ B∗
j \Bh(x), we have

d m(x)< |x− y| ≤ 2d m(x j).

On B j, |x| ∼ |x j|. Therefore,

|T ( f χB∗
j\Bh(·))(x)|2 ≤CM(χB∗

j
| f |1)(x), (4.72)

where M is the Hardy–Littlewood maximal function with respect to the Lebesgue
measure.

Taking into account that the balls B j cover Rd together with inequality (4.71) and

the fact that the Gaussian density e−|x|2 is on constant order of magnitude on each
B j, we have

γd

({
x ∈ R

d : |TL f (x)|2 > λ
})

≤
+∞

∑
j=1

γd

({
x ∈ B j : |T ( f χBh(·))(x)|2 > λ

})

∼
+∞

∑
j=1

e−|x j |2
∣∣∣
{

x ∈ B j : |T ( f χB∗
j
)(x)|2 > λ/2

}∣∣∣+

+
+∞

∑
j=1

e−|x j |2
∣∣∣
{

x ∈ B j : |T ( f χB∗
j\Bh(·))(x)|2 > λ/2

}∣∣∣
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From (4.72), and the fact that M is of weak type (1,1) with respect to the
Lebesgue measure, we have
∣∣∣
{

x ∈ B j : |T ( f χB∗
j\Bh(·))(x)|2 > λ/2

}∣∣∣≤
∣∣∣
{

x ∈ R
d : M(| f |1χB∗

j
)(x)> λ/2C

}∣∣∣
≤ C

λ

∫
B∗

j

| f (y)|1 dy.

It remains to prove that

∣∣∣
{

x ∈ B j : |T ( f χB∗
j
)(x)|2 > λ/2

}∣∣∣≤ C
λ

∫
B∗

j

| f (y)|1 dy.

Minor changes in the proof of the Calderón–Zygmund decomposition, where we
have to replace f ≥ 0 by | f |1 to get the sequence of cubes {Qk}∞k=1, such that

1. | f (x)|1 ≤ λ almost everywhere x /∈⋃
k Qk.

2. |∪Qk| ≤ 1
λ
∫

B∗
j
| f (x)|1 dx.

3. λ < 1
|Qk|

∫
Qk

| f (x)|1 dx ≤ 2dλ .

Define

g(x) =

{
f (x) if x /∈⋃

k Qk
1

|Qk|
∫

Qk
f (y)dy if x ∈ Qk,

and b(x) = f (x)−g(x).

Then, following the steps written there (and whenever we find an absolute value, this
must be changed by | · |1 or | · |2, whichever corresponds), and replacing the condition
on the gradient of the kernel with the Hormänder condition ii) of the hypothesis, we
get

γd

({
x ∈ R

d : |TL f (x)|2 > λ
})

≤ C
λ

+∞

∑
j=1

e−|x j |2
∫

B∗
j

| f (y)|1 dy ≤ C
λ

∫
Rd

| f (y)|1 γd(dy).

where this latter inequality was obtained because the Gaussian density is essentially
constant over each B∗

j and that the sequence {B∗
j}∞j=1 has a bounded overlap. ��

Additionally, we have several technical results that are needed to bound the local
or the global part of certain operators. First, we consider the following technical
result, obtained S. Pérez [221, Lemma 3.1], which will be crucial for bounding the
local part of several operators later. We use the notation of Proposition 4.23,

a = a(x,y) := |x|2 + |y|2, b = b(x,y) := 2〈x,y〉,

u(t) = u(t;x,y) :=
|y−

√
1− tx|2
t

=
a
t
−

√
1− t
t

b−|x|2,

t0 = 2

√
a2 −b2

a+
√

a2 −b2
∼

√
a2 −b2

a
∼

√
a−b√
a+b

=
|x− y|
|x+ y| ,
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and

u0 = u(t0) =
|y|2 −|x|2

2
+

|x+ y||x− y|
2

.

Lemma 4.35. For every η ≥ 0, there exists a constant C such that if |x−y| ≤Cdm(x),
we have

1∫

0

(u(t))η
e−u(t)

t
d+3

2

dt√
1− t

≤ C
|x− y|d+1 .

Proof. As u(t) is always positive for any 0 < δ < 1, the function (u(t))ηe−(1−δ )u(t)

is uniformly bounded on (0,1) for all η . Then, it is enough to show that for some
0 < δ < 1, we have

1∫

0

e−δu(t)

t
d+3

2

dt√
1− t

≤ C

|y− x| d+1
2

.

Actually, this is true for any δ > 0. The reason is that whenever |x − y| ≤ Cd(1 ∧
1/|x|),

u(t)≥ (|y− x|− |x|(1−
√

1− t))2

t
≥ |y− x|2

t
−2

|x||x− y|
1+

√
1− t

≥ |y− x|2
t

−2Cd .

Therefore, the change of variables |y−x|2
t = s gives the desired estimate,

1∫

0

e−δu(t)

t
d+3

2

dt√
1− t

≤ eδ2C1

1∫

0

exp
(
− δ |y−x|2

t

)

t
d+3

2

dt√
1− t

≤ Cd

|y− x|d+1

∞∫

|y−x|2
e−δ s sd/2√

s−|y− x|2
ds =

Cd

|x− y|d+1 . ��

Now, to bound the global part of certain operators later on, we need the following
technical results, also obtained by S. Pérez and F. Soria. We use the same notation
as for Proposition 4.23. The first result is a generalization of [223, Lemma 2.3] and
[221, Lemma 4.1]

Lemma 4.36. For every 0 ≤ η ≤ 1 and ν > 0, there exists a constant C such that if
〈x,y〉> 0 and |x− y|>Cdm(x), we have,

∫ 1

0
(u(t))η/2e−νu(t) dt

t3/2
√

1− t
≤C

e−νu0

t1/2
0

. (4.73)

Proof. The change of variables s = u(t)− u0 is one-to-one over the intervals (0, t0)
and (t0,1). Writing t as a function of s, we observe that if β (s) = 2s+a+

√
a2 −b2,

then t satisfies the equation
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2
√

1− tb = 2a−β (s)t, or, equivalently, (β (s))2 t2

4
− (aβ (s)−b2)t +(a2 −b2) = 0.

The discriminant of this second-order equation is given by

(aβ (s)−b2)2 − (β (s))2(a2 −b2) = 4b2(s2 + s
√

a2 −b2).

Therefore, t is given, over the intervals (0, t0) and (t0,1), by the two solutions of this
equation, i.e.,

v(s) = 2
aβ (s)−b2 −

√
(aβ (s)−b2)2 − (β (s))2(a2 −b2)

(β (s))2

= 2
aβ (s)−b2 −2b

√
s2 + s

√
a2 −b2

(β (s))2 ,

and

w(s) = 2
aβ (s)−b2 +

√
(aβ (s)−b2)2 − (β (s))2(a2 −b2)

(β (s))2

= 2
aβ (s)−b2 +2b

√
s2 + s

√
a2 −b2

(β (s))2 .

We split the integral at t0 and set h(t) = 1
|u′(t)|t2

√
1−t

. Then, using that
√

v(s) ≤√
w(s), we get

∫ 1

0
(u(t))η/2e−νu(t) dt

t3/2
√

1− t

≤ e−νu0

∫ u(0+)−u0

0
(s+u0)

η/2e−νsh(v(s))
√

v(s)ds

+e−νu0

∫ u(1−)−u0

0
(s+u0)

η/2e−νsh(w(s))
√

w(s)ds

≤Ce−νu0

∫ ∞

0
(sη/2 +uη/2

0 )e−νs[h(v(s))+h(w(s))]
√

w(s)ds.

To estimate the sum h(v(s))+h(w(s)), observe that

2|u′(t)|t2
√

1− t = |2a
√

1− t − (2− t)b|, so h(t) =
2b

|2(a2 −b2)− (aβ (s)−b2)t| .

After some calculations, we obtain

h(v(s)) =
aβ (s)−b2 +2b

√
s2 + s

√
a2 −b2

2(a2 −b2)
√

s2 + s
√

a2 −b2

and
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h(w(s)) =
aβ (s)−b2 −2b

√
s2 + s

√
a2 −b2

2(a2 −b2)
√

s2 + s
√

a2 −b2
.

Thus, from the definition of β (s), we have

h(v(s))+h(w(s))≤ 2a
a2−b2+

2a

(a2−b2)1/2
√

s(a2−b2)1/4
≤ C

t0

1

(a2 −b2)1/4

(
1+

1√
s

)
,

because t0 ∼
√

a2−b2

a and a2 −b2 > d ≥ 1, in the global region and b > 0.
The estimate of

√
w(s) is analogous with the additional fact that β (s)≥ a,

w(s)≤ 4
aβ (s)−b2

(β (s))2 ≤C
as+a

√
a2 −b2

(β (s))2 ≤C
s+

√
a2 −b2

a
≤Ct0(s+1).

Adding up these estimates, again using that a2 −b2 > d ≥ 1, and u0 ≤
√

a2 −b2, we
get

∫ 1

0
(u(t))η/2e−νu(t) dt

t3/2
√

1− t

≤C
e−νu0

t1/2
0

1

(a2 −b2)1/4

∫ ∞

0
(sη/2 +uη/2

0 )e−νs
(√

s+
1√
s

)
ds

≤C
e−νu0

t1/2
0

(
1+

uη/2
0

(a2 −b2)1/4

)∫ ∞

0
e−νs

(
s+

1√
s

)
ds

≤C
e−νu0

t1/2
0

. ��

Using the same estimates as in the previous lemma, we get this other technical
result (see [223, Lemma 4.3]).

Lemma 4.37. For every η ≥ 2 and ν > 0, there exists a constant C such that if
〈x,y〉> 0 and |x− y|>Cdm(x), we have

∫ 1

0
(u(t))η/2e−νu(t) dt

t3/2
≤C

e−νu0

t1/2
0

(
1+u(η−1)/2

0

(b
a
+

1
a2 −b2

))
. (4.74)

Proof. We consider again the change of variables s = u(t)− u0 and setting h(t) =
1

|u′(t)|t2
√

1−t
, we get, using that v(s)≤ w(s); therefore,

√
1−w(s)≤

√
1− v(s),

∫ 1

0
(u(t))η/2e−νu(t) dt

t3/2

≤Ce−νu0

∫ ∞

0
(sη/2 +uη/2

0 )e−νsh(v(s))
√

1− v(s)
√

v(s)ds

+Ce−νu0

∫ ∞

0
(sη/2 +uη/2

0 )e−νsh(w(s))
√

1−w(s)
√

w(s)ds

≤Ce−νu0

∫ ∞

0
(sη/2 +uη/2

0 )e−νs(h(v(s))+h(w(s)))
√

1− v(s)
√

w(s)ds.
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Using the same estimates as in Lemma 4.36, we get

∫ 1

0
(u(t))η/2e−νu(t) dt

t3/2
≤C

e−νu0

t1/2
0

1

(a2−b2)1/4

∫ ∞

0
(sη/2+uη/2

0 )e−νs
(√

s+
1√
s

)√
1−ν(s)ds.

On the other hand, t = v(s) is the solution of 2
√

1− tb = 2a − β (s)t. Hence, as
β (s)> a, we get

√
1− v(s) =

b2 +2b
√

s2 + s
√

a2 −b2

bβ (s)

≤ 2
a

(
b+(s+ s1/2)(a2 −b2)1/4

)
≤C(1+ s)

(b
a
+(

1

(a2 −b2)1/4

)
.

Therefore, adding all these estimates,

∫ 1

0
(u(t))η/2e−νu(t) dt

t3/2
≤ C

e−νu0

t1/2
0

(
1+u(η−2)/2

0

(b
a
+

1

(a2 −b2)1/4

))

×
∫ ∞

0

(
s(m+3)/2 +

1

s1/2

)
e−ηsds

≤ C
e−νu0

t1/2
0

(
1+u(η−2)/2

0

(b
a
+

1

(a2 −b2)1/4

))
. ��

Finally, we have the following lemma,

Lemma 4.38. If |x− y| ≥Cd

(
1∧ 1

|x|

)
=Cdm(x) then

∫ 1

0
(u(t))1/2e−u(t) dt

t
d
2 +1

√
1− t

∼ K (x,y), (4.75)

where K is the Gaussian maximal kernel defined in (4.40).

Proof. We know that u(t) is strictly decreasing in (0, t0), and strictly increasing in
(t0,1), with

t0 =
2
√

a2 −b2

a+
√

a2 −b2
∼

√
a2 −b2

a
,

as u′(t) =− 2a
√

1−t−(2−t)b
2t2

√
1−t

. Then, we need to analyze two cases.

• Case #1: b ≤ 0. We prove that

∫ 1

0
(u(t))1/2e−u(t) dt

t
d
2 +1

√
1− t

≤Ce−|y|2 .
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Given that b is non-positive, we have

a
t
−|x|2 ≤ u(t) =

a
t
−

√
1− t
t

b−|x|2 ≤ 2a
t
. (4.76)

Thus,

∫ 1

0
(u(t))1/2e−u(t) at

t
d
2 +1

√
1− t

≤Ce−|y|2
∫ 1

0
e(−

a
t +a)

(
2a
t

)1/2 dt

t
d
2 +1

√
1− t

.

It is enough to prove that this last integral is uniformly bounded in a. Making
the change of variables a( 1

t − 1) = s and using that a > d/2 ≥ 1/2, if |x− y| ≥
Cd

(
1∧ 1

|x|

)
, we obtain

∫ 1

0
(u(t))1/2e−u(t) dt

t
d
2 +1

√
1− t

≤ C
e−|y|2

ad/2

∫ ∞

0
e−s(s+a)d/2 ds√

s

≤ Ce−|y|2
∫ ∞

0
e−s(2s+1)d/2 ds√

s
≤Ce−|y|2 .

• Case #2: b > 0. Consider again

u0 = u(t0) =
|y|2 −|x|2

2
+

√
a2 −b2

2
≤ (a2 −b2)1/2.

If d ≥ 2, considering the function ϕ(t) = 1
td/2 e−u(t) used in Proposition 4.23, we

know that

ϕ(t) =
e−u(t)

td/2
≤ e−u(t0)

td/2
= ϕ(t0); (4.77)

therefore,

e−
d−2

d u(t)

t
d−2

2

=

(
e−u(t)

t
d
2

) d−2
d

= (ϕ(t))
d−2

d ≤ (ϕ(td))
d−2

d

≤ C(ϕ(t0))
d−2

d =C

⎛
⎝e−u0

t
d
2

0

⎞
⎠

d−2
d

=
e−

d−2
d u0

t
d−2

2
0

, (4.78)

and we know that ϕ(td) ∼ ϕ(t0) (see 4.44). Now, according to Lemma 4.36,
taking η = 1, we have for any ν > 0 the following inequality:

∫ 1

0
u1/2(t)e−νu(t) dt

t2
√

1− t
≤Cν

e−νu0

t0
. (4.79)

Hence, taking ν = d/2, we get the desired inequality as

Cd
e−

d−2
d u0

t
d−2

2
0

∫ 1

0
(u(t))1/2e−

d
2 u(t) dt

t2
√

1− t
≤Cd

e−u0

td/2
0

∼ K (x,y). ��
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4.6 The Non-tangential Maximal Functions for the
Ornstein–Uhlenbeck and Poisson–Hermite Semigroups

We consider now the non-tangential maximal functions for the Ornstein–Uhlenbeck
and Poisson–Hermite semigroups. In the classical case, the cones with vertex at x ∈
R

d , and aperture a > 0 are defined as

Γa(x) =
{
(y, t) ∈ R

d+1
+ : |y− x|< at

}
. (4.80)

Then, the classical non-tangential maximal function associated with the heat semi-
group (see E. Stein [252, Chapter VII]), is defined as

T ∗
a f (x) = sup

(y,t)∈Γa(x)
|Tt(y)|. (4.81)

T ∗
a is bounded almost everywhere by the classical Hardy–Littlewood maximal func-

tion, i.e.,
T ∗

a f (x)≤CM f (x).

Therefore, the boundedness properties of T ∗
a follow immediately from those of

M f (x).

In the Gaussian case, again because Gaussian harmonic analysis is local, we need
to consider Gaussian or admissible cones, with arbitrary aperture A > 0 and a cut-off
parameter a > 0, which are defined as

Γ A,a
γ (x) =

{
(y, t) ∈ R

d+1
+ : |y− x|< At, t < a

(
1∧ 1

|x|

)
= am(x)

}
, (4.82)

where A, a > 0.
As a consequence of the definition of Γ A,a

γ (x), we have that |x− y||x| < At|x| <
aA and if (y, t) ∈ Γ A,a

γ (x), then |x| ∼ |y|; therefore, e−|x|2 ∼ e−|y|2 .
In particular, for the case A = 1, we have

Γ a
γ (x) =

{
(y, t) ∈ R

d+1
+ : |y− x|< t, t < a

(
1∧ 1

|x|

)
= am(x)

}
, (4.83)

for a > 0, and if a = 1, we simply write Γγ(x) instead of Γ a
γ (x).

The Non-tangential Ornstein–Uhlenbeck Maximal Function

Definition 4.39. The non-tangential maximal function associated with the Ornstein–
Uhlenbeck semigroup is defined as

T ∗
γ (A,a) f (x) = sup

(y,t)∈Γ A,a
γ (x)

| Tt2 f (y) | . (4.84)
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If A = a = 1 we write simply T ∗
γ (1,1) = T ∗

γ and similarly P∗
γ (A,a) = P∗

γ .

These functions, and the Gaussian square functions, were defined initially in
1994 by L. Forzani and E. Fabes for the case A = a = 15. They are Gaussian analogs
to the sublinear operators, which in the classical case, are the cornerstones of the
real variable theory of H1. Their Lp(γd)-boundedness was shown by L. Forzani, R.
Scotto, and W. Urbina in [87].

Now, the boundedness properties of T ∗, are immediate consequences of the fol-
lowing inequality, obtained by J. Teuwen in [265].

Theorem 4.40. Let A,a > 0. For all x ∈ R
d and f ∈ L1(γd) then

T ∗
γ (A,a) f (x)≤CMγ f (x), (4.85)

where the constant C =CA,a,d is dependent only on A,a, and d.

This result extends a previous result obtained by E. Pineda and W. Urbina in
[225], which is Theorem 4.49 at the end of this chapter; not only by enlarging the
family of Gaussian cones in which the non-tangential maximal function is defined,
but also allowing an arbitrary aperture A > 0 and a cut-off parameter a > 0 with-
out any additional technicalities. As we are going to see, this additional generality
is very important, and it has been used by P. Portal in [231] for his definition of
Gaussian Hardy spaces. Moreover, J. Teuwen’s result is not only an extension of
Theorem 4.49, but its proof also happens to be simpler and shorter.

To prove Theorem 4.40, we need the following off-diagonal kernel estimates on
annuli of Mehler’s kernel. We decompose R

d into disjoint annuli. In what follows,
we fix x ∈R

d , constants A,a ≥ 1, a pair (y, t) ∈Γ A,a
γ (x). The annuli Ck :=Ck(B(y, t))

are given by:

Ck :=

{
B(y,2t), k = 0,

B(y,2k+1t)\B(y,2kt), k ≥ 1.

Whenever ξ ∈Ck, we get, for k ≥ 1,

2kt < |y−ξ |< 2k+1t. (4.86)

On Ck, we have the following bound for Mt2(y, ·):
Lemma 4.41. For all ξ ∈Ck and k ≥ 1, we have

Mt2(y,ξ )≤
e|y|

2

(1− e−2t2
)d/2

e2k+1t|y| e
− 4k

2e2t2 . (4.87)

5L. Forzani and E. Fabes defined T ∗
γ on “parabolic” Gaussian cones, which are unnec-

essary. The definition given here using Gaussian cones Γ A,a
γ (x) is equivalent because we are

considering the Ornstein–Uhlenbeck semigroup in parameter t2.
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Proof. Considering Mehler’s kernel in the form (2.38),

Mt2(y,ξ ) =
exp

(
− e−2t2 |y−ξ |2

1−e−2t2

)

(1− e−t2
)d/2

exp
(

2e−t2 <y,ξ>
1+e−t2

)

(1+ e−t2
)d/2

.

For the first exponential, using the inequality 1−e−s ≤ s, s ≥ 0, and (4.86), we have,

exp
(
− e−2t2 |y−ξ |2

1− e−2t2

)
≤ exp

(
− 4k

e2t2

t2

1− e−2t2

)
≤ exp

(
− 4k

2e2t2

)
.

On the other hand, if 0 ≤ s ≤ 1 trivially, we have 2s ≤ 1+s. Then, using that estimate
and (4.86), we have for the second exponential of Mehler’s kernel

exp
(

2e−t2 < y,ξ >

1+ e−t2

)
≤ e|<y,ξ>| ≤ e|<y,ξ−y>|e|y|

2 ≤ e2k+1t|y|e|y|
2
.

Combining these two inequalities we get the required estimate. ��

Now, we are ready to prove Theorem 4.40.

Proof. Let x ∈ R
d be fixed, and take (y, t) ∈ Γ A,a

γ (x), then

|Tt2 f (y)| ≤
∞

∑
k=0

∫
Ck

Mt2(y,ξ )| f (ξ )|γd(dξ ).

As t ≤ am(x)≤ a and, according to Lemma 1.5, t|y| ≤ 1+aA, then from (4.85) and
Lemma 1.5, we conclude for ξ ∈Ck and k ≥ 1

Mt2(y,ξ ) ≤ e|y|
2

(1− e−2t2
)d/2

e2k+1t|y| e
− 4k

2e2t2 ≤ e|y|
2

(1− e−2t2
)d/2

e2k+1(1+aA) e
− 4k

2e2t2

=
e|y|

2

(1− e−2t2
)d/2

λk ∼ e|x|
2

(1− e−2t2
)d/2

λk. (4.88)

with λk = e2k+1(1+aA) e
− 4k

2e2t2 .

Now, using (4.86) we have

|x−ξ | ≤ |x− y|+ |y−ξ | ≤ (2k+1 +A)t.

Let K be the smallest integer such that 2k+1 ≥ A whenever k ≥ K. Then Ck ⊂
B(x,2k+2t) for k ≥ K and Ck ⊂ B(x,2At) for k < K.

Set

Dk = Dk(x) :=

{
B(x,2k+2t) if k ≥ K

B(x,2At) if k < K.
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Then, using (4.88), we get,

∫
Ck

Mt2(y,ξ )| f (ξ )|γd(dξ ) ≤ Ca,Aλk
e|x|

2

(1− e−2t2
)d/2

∫
Ck

| f (ξ )|γd(dξ )

≤ Ca,Aλk
e|x|

2

(1− e−2t2
)d/2

∫
Dk

| f (ξ )|γd(dξ )

≤ Ca,Aλk
e|x|

2

(1− e−2t2
)d/2

γd(Dk)Mγd f (x).

Thus, using Lemma 1.2, if k ≥ K

γd(Dk)e
|x|2 ≤C

ωd−1

2πd/2
2d(k+1)tde2k+3t|x| ≤C2dktde2k+3a,

as t ≤ a and t|x| ≤ am(x)|x| ≤ a. If k < K,

γd(Dk)e
|x|2 ≤C

ωd−1

2πd/2
(2A)dtde2At|x| ≤Ctde2Aa.

Additionally, as t ≤ a and the fact that the function s/(1 − e−s) is increasing, we
obtain,

td

1− e−2t2 ≤ ad

1− e−2a2 ≤Ca.

Therefore, if k ≥ K
∫

Ck

Mt2(y,ξ )| f (ξ )|γd(dξ )≤Ca,Aλk2kdtde2k+2aMγ f (x),

and if k < K
∫

Ck

Mt2(y,ξ )| f (ξ )|γd(dξ )≤Ca,Aλktde2AaMγ f (x).

Similarly, if ξ ∈ B(x,2t) then
∫

B(x,2t)
Mt2(y,ξ )| f (ξ )|γd(dξ )≤Ca,AMγ f (x).

Finally, putting together all these estimates, we get

|Tt2 f (y)| ≤
∫

B(x,2t)
Mt2(y,ξ )| f (ξ )|γd(dξ )+

K−1

∑
k=1

∫
Ck

Mt2(y,ξ )| f (ξ )|γd(dξ )

+
∞

∑
k=K

∫
Ck

Mt2(y,ξ )| f (ξ )|γd(dξ )

≤CA,a,d

[
1+

K−1

∑
k=1

e2k+1(1+aA) e
− 4k

2ee2t2 +
∞

∑
k=K

2kde2k+1(1+2a+aA) e
− 4k

2e2t2

]
Mγ f (x),
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valid for all (y, t) ∈ Γ A,a
γ (x). The series on the right-hand side converges; thus, we

conclude the proof. ��

Corollary 4.42. i) There exists a constant C, dependent only on dimension d, such
that for all λ > 0, if f ∈ L1(γd), then

γd

({
y ∈ R

d : T ∗
γ (A,a) f (x)> λ

})
≤ C

λ
|| f ||1,γ (4.89)

ii) There exists a constant C, dependent only on p and the dimension d, such that,
if f ∈ Lp(γd), 1 < p ≤ ∞, then

||T ∗
γ (A,a) f ||p,γ ≤C|| f ||p,γ (4.90)

Proof. It is enough to prove (4.89), the weak type (1,1) of T ∗
γ (A,a), since the strong

type on L∞ is trivial; therefore, using the Marcinkiewicz interpolation theorem 10.24,
we obtain the strong type (p, p), 1 < p < +∞, (4.90). But the weak type (1,1) is
immediate from the properties of the Gaussian Hardy–Littlewood function, Theo-
rem 4.14, and (4.85). ��

In [168], J. Maas, J. Van Neerven, and P. Portal consider an “averaged version”
of the non-tangential Ornstein -Uhlenbeck maximal function defined as follows

ϒ∗
γ(A,a) f (x) = sup

(y,t)∈Γ A,a
γ (x)

(
1

γd(B(y,At))

∫
B(y,At)

|Tt2 f (z)|2γd(dz)

)1/2

, (4.91)

for f ∈C0(R
d).

The additional averaging adds some technical difficulties, but as we see later,
such averaging can be helpful in the Hardy space theory and its applications. For
these maximal functions, they prove a change of aperture for the Gaussian cones
Γ A,a
γ (x) appearing in their definition (see [168, Theorem 3.1]), in the spirit of one of

the key results of R. Coifman, Y. Meyer, and E. Stein in [55].

Theorem 4.43. There exists a constant D, dependent only on A, and a and the di-
mension d, such that for all f ∈ L1(γd) and λ > 0

γd

({
x ∈ R

d : ϒ∗
γ(A,a) f (x)> λ

})
≤ γd

({
x ∈ R

d : ϒ∗
γ(1,CA,a) f (x)> Dλ

})
,

(4.92)
with CA,a a constant dependent only on A, and a. By interpolation, this inequality
implies

‖ϒ∗
γ(A,a) f‖p,γ ≤ ‖ϒ∗

γ(1,CA,a) f‖p,γ .

For details of the proof see [168, Theorem 3.1].
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The Non-tangential Poisson–Hermite Maximal Function

Definition 4.44. The non-tangential maximal function associated with the Poisson
semigroup is defined as

P∗
γ (A,a) f (x) = sup

(y,t)∈Γ A,a
γ (x)

|Pt f (y)|, (4.93)

The analogous results for the non-tangential Poisson–Hermite maximal function
P∗

γ (A,a) follow basically by subordination. This function was first introduced by E.
Fabes and L. Forzani in an unpublished manuscript [84].

Theorem 4.45. (Forzani - Fabes) For the non-tangential Poisson–Hermite maximal
function P∗

γ (A,a), we have the following boundedness properties.

i) There exists a constant C, dependent only on the dimension d, such that for all
λ > 0, if f ∈ L1(γd), then

γd

({
y ∈ R

d : P∗
γ (A,a) f (x)> λ

})
≤ C

λ
|| f ||1,γ . (4.94)

ii) There exists a constant C, dependent only on p and the dimension d, such that,
if f ∈ Lp(γd), and 1 < p ≤ ∞, then

||P∗
γ (A,a) f ||p,γ ≤C|| f ||p,γ . (4.95)

Proof. Again, according to the interpolation argument, it is enough to prove (4.94).
We know from the subordination formula (3.1) that Pt can be written as,

Pt f (x) =
t√
π

∫ ∞

0
Ts f (x)e−t2/4ss−3/2ds =

t√
π

∫ ∞

0
Tu2 f (x)e−t2/4u2

u−2ds,

after the change of variables s = u2. Then, taking ψt(v) = t√
π e−

1
4v v−1, we can write

Pt f (x) = t−1
∫ ∞

0
ψt

( s2

t2

)
Ts2 f (x)ds.

Given x ∈ R
d , let (y, t) ∈ Γ A,a

γ (x). Then

Pt f (y) = t−1
∫ |x−y|/A

0
ψt

( s2

t2

)
Ts2 f (y)ds+ t−1

∫ am(x)

|x−y|/A
ψt

( s2

t2

)
Ts2 f (y)ds

+t−1
∫ ∞

am(x)
ψt

( s2

t2

)
Ts2 f (y)ds

= (I)+(II)+(III).

Using the definition of T ∗
γ (A,a), we have6

6Observe, that t−1 ∫ ∞
0 ψ

(
s2

t2

)
ds = Pt1 = 1.



4.6 The Non-Tangential Maximal Functions for Gaussian Semigroups 171

(II) ≤ CT ∗
γ (A,a) f (x)t−1

∫ am(x)

|x−y|/A
ψt

( s2

t2

)
ds

≤ CT ∗
γ (A,a) f (x)t−1

∫ ∞

0
ψt

( s2

t2

)
ds =CT ∗

γ (A,a) f (x).

To bound (III), we use similar arguments to those in the proof of (II);

(III) = Ct−1
∫ +∞

am(x)
ψt

( s2

t2

)
Ts2 f (y)ds,

≤ Ct−1
∫ +∞

am(x)
ψt

( s2

t2

)[
sup

|x−y|<am(x)<s
Ts2 f (y)

]
ds ≤CT ∗

γ (A,a) f (x)

Finally, we bound (I), which is the most difficult one,

(I) = t−1
∫ |x−y|/A

0
ψt

( s2

t2

)( e|y|
2

(1− e−s2
)d/2

∫
Rd

e
− |e−s2

u−y|2

1−e−2s2 f (u)γd(du)
)

ds

= Ct−1
∫ |x−y|/A

0
ψt

( s2

t2

)
Ms f (y)ds,

where

Ms f (y) =
e|y|

2

(1− e−s2
)d/2

∫
Rd

e
− |e−s2

u−y|2

1−e−2s2 f (u)γd(du). (4.96)

We prove that
Ms f (y)≤ MΦ f (x),

for 0 < s < |x−y|/A, for some Φ as in Theorem 4.18. In fact, given |x−y|< At, and
t < am(x), we have from (1.15)

Ms f (y) =
e|y|

2

(1− e−2s2
)d/2

∫
Rd

e
− |e−s2

u−y|2

1−e−2s2 f (u)γd(du)

≤ C
e|x|

2

(1− e−2s2
)d/2 ∑

v≥1

∫
B

(
xe2t2 ,v

√
1−e−2t2

)
\B

(
xe2t2 ,(v−1)

√
1−e−2t2

) e
− |e−s2

u−y|2

1−e−2s2

× f (u)γd(du).

Let u ∈ B
(

xe2t2
,v
√

1− e2t2
)
\B

(
xe2t2

,(v−1)
√

1− e−2t2
)

, then for v ≥ 6

|e−s2
u− y| ≥ e−s2 |u− xe2t2 |− e−s2 |x− y|− e−s2 |x|(e2t2 −1)−|y|(1− e−s2

)

≥ C
(
(v−1)

√
1− e−2t2 −2

√
1− e−2t2 −|x||x− y|2 −|y||x− y|2

)
≥ C((v−1)

√
1−e−2t2 −2

√
1− e−2t2 −2|x− y|)≥C(v−1)

√
1− e−2t2

.

Moreover, because 0 <
√

1− e−s2
< cs < c|x − y|2/A < ct < c(1 − e−2t2

)1/2, we

have for u ∈ B
(

xe2t2
,v
√

1− e−2t2
)
\B

(
xe2t2

,(v−1)
√

1− e−2t2
)
,
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|e−s2
u− y|2

1− e−s2 ≥ c(v−1)2.

Therefore, for 0 < s < |x− y|/A,

Ms f (y)≤ MΦ f (x),

with Φ(x) = ∑v≥1 e−C(v−1)2χ[ν−1,ν)(x). As a consequence of this

(I)≤CMΦ f (x)t−1
∫ |x−y|/A

0
ψt

( s2

t2

)
ds ≤CMΦ f (x).

Hence, as each term of Pt f (x) is bounded by an operator that is of weak type (1,1),
we get (4.94). ��

4.7 Radial and Non-tangential Convergence of the
Ornstein–Uhlenbeck and Poisson–Hermite Semigroups

Now, by the usual argument, the almost everywhere radial and non-radial conver-
gence of {Tt} and {Pt} can be proved, from the boundedness properties of T ∗, P∗,
T ∗
γ (A,a) and P∗

γ (A,a), obtained in previous sections.

Theorem 4.46. The Ornstein–Uhlenbeck semigroup {Tt}t≥0 and the Poisson–
Hermite semigroup {Pt}t≥0 have (radial) convergence almost everywhere, that is to
say

i) For any f ∈ L1(γd), {Tt f} converges almost everywhere to f as t → 0+,

lim
t→0+

Tt f (x) = f (x) almost everywhere x ∈ R
d .

ii) For any f ∈ L1(γd), {Pt f} converges almost everywhere to f as t → 0+,

lim
t→0+

Pt f (x) = f (x) almost everywhere x ∈ R
d .

Proof. The proof follows a very classical argument in harmonic analysis. We prove
i), the case of the Poisson–Hermite semigroup, ii) that it is completely analogous.
Set

Ω f (x) :=
∣∣∣ limsup

t→0+
Tt f (x)− liminf

t→0+
Tt f (x)

∣∣∣.
If f ∈C0(R

d) continuous with compact support, then it is easy to see that

lim
t→0+

Tt f (x) = f (x),

uniformly; thus, Ω f (x) = 0. Now, for the general case, f ∈ L1(γd) by writing7 f =
f1 + f2 with f1 ∈ C0(R

d) and f2 such that ‖ f2‖1,γ < ε . But as Tt f (x) = Tt f1(x)+
Tt f2(x) and Ω f (x)≤Ω f1(x)+Ω f2(x) then

7Here we are using the fact that C0(R
d) is dense in L1(γd); we discuss this in detail in

Chapter 7.
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Ω f (x) =
∣∣∣ limsup

t→0+
Tt f (x)− liminf

t→0+
Tt f (x)

∣∣∣≤
∣∣∣ limsup

t→0+
Tt f2(x)− liminf

t→0+
Tt f2(x)

∣∣∣
≤ 2T ∗ f2(x).

Hence,
Ω f (x)≤ 2T ∗ f2(x);

therefore, given ε > 0, according to Theorem 4.20,

γd

({
x ∈ R

d : Ω f (x)> ε
})

≤ γd

({
x ∈ R

d : T ∗ f2(x)> ε
})

≤C‖ f2‖1,γ ≤Cε .

Thus, Ω f (x) = 0. a.e. ��

In [106] G. Garrigós, S. Harzstein, T. Signes, J. L. Torrea, and B. Viviani found
optimal integrability conditions to guarantee almost everywhere (radial) convergence
of the Ornstein–Uhlenbeck semigroup and the Poisson–Hermite semigroups8 (see
also [2]).

As the Ornstein–Uhlenbeck and the Poisson–Hermite semigroups are strong
Lp(γd)-continuous for 1 ≤ p < ∞ (see Theorem 2.5 iv and Theorem 3.1 iv), we also
have

‖Tt f − f‖p,γ → 0, as t → 0+, and ‖Pt f − f‖p,γ → 0, as t → 0+

Thus, in the Gaussian case, {Tt}t≥0 and {Pt}t≥0 have the properties of an approxi-
mation of the identity, but they are not obtained by convolution.

Now, we want to study the non-tangential convergence for the Ornstein–
Uhlenbeck semigroup {Tt}t≥0, in the following sense,

lim
(y,t)→x,

(y,t)∈Γγ (x)

Tt2 f (y) = f (x), almost everywherex ∈ R
d ,

and the non-tangential convergence for the Poisson–Hermite semigroup{Pt}, in the
following sense,

lim
(y,t)→x∈Rd ,
(y,t)∈Γγ (x)

Pt f (y) = f (x), almost everywherex ∈ R
d .

In [225], E. Pineda and W. Urbina study the non-tangential convergence for
the Ornstein–Uhlenbeck semigroup using the non-tangential maximal function as-
sociated with the Ornstein–Uhlenbeck semigroup using the Γ p,T

γ (x) cones (see
also (4.108). Their argument can be adapted for Gaussian cones Γγ (i.e., cones with
A = a = 1).

8The Ornstein–Uhlenbeck case is one among several other operators that are studied there,
which also includes the classical Laplacian and the Hermite operators.
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Theorem 4.47. For any f ∈ L1(γd), {Tt f}t≥0 converges to f non- tangentially as
t → 0+,

lim
(y,t)→x,

(y,t)∈Γγ (x)

Tt2 f (y) = f (x), almost everywherex ∈ R
d . (4.97)

Proof. The proof is a modification of the proof of Theorem 4.46. Considering

Ω f (x) = lim
α→0+

[
sup

(y,t)∈Γγ (x)
| Tt2 f (y)− f (x) |

]
,

and let us set f (x) = f (x)χ(0,k)(x)+ f (x)(χ(0,k)c(x)) = f1(x)+ f2(x), for k ∈N fixed.
Let us prove that

Ω f (x)≤CdMγ f2(x),

for almost everywhere | x |≤ k− 1. Let x be a Lebesgue point for f ∈ L1(γd), i.e., x
satisfies

lim
r→0+

1
γd(B(x,r))

∫
B(x,r)

| f (u)− f (x) | γd(du) = 0.

Then, given ε > 0 there exists 0 < δ < 1 such that

1
γd(B(x,r))

∫
B(x,r)

| f (u)− f (x) | γd(du)< ε ,

for 0 < r < δ . Defining g as

g(u) =

{
f (u)− f (x) if |u− x|< δ
0 if |u− x| ≥ δ

,

we get that g depends on x and Mγg(x)< ε . On the other hand, we can write

Tt2 f (y)− f (x) = (u1(y, t)− f1(x))+(u2(y, t)− f2(x)),

where

ui(y, t) =
1

πd/2(1− e−2t2
)d/2

∫
Rd

exp

(
−| e−t2

y−u |2

1− e−2t2

)
fi(u)du, with i = 1,2.

Then, we get

u1(y, t)− f1(x) =
1

πd/2(1− e−2t2
)d/2

∫
|x−u|<δ

exp
(
− | e−t2

y−u |2
1− e−2t2

)
( f1(u)− f1(x))du

+
1

πd/2(1− e−2t2
)d/2

∫
|x−u|≥δ

exp
(
− | e−t2

y−u |2
1− e−2t2

)
( f1(u)− f1(x))du.
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Now, if | x |≤ k−1, | u− x |< δ implies

| u |=| u− x+ x |≤| u− x |+ | x |< δ + k−1 < 1+ k−1 = k

and then, f1(u) = f (u)∧ f1(x) = f (x). Therefore, if (y, t) ∈ Γγ(x),

1

πd/2(1− e−2t2
)d/2

∣∣∣∣∣
∫
|x−u|≤δ

exp
(
− | e−t2

y−u |2

1− e−2t2

)
( f1(u)− f1(x))du

∣∣∣∣∣
=

1

πd/2(1− e−2t2
)d/2

∣∣∣∣∣
∫
|x−u|≤δ

exp
(
− | e−t2

y−u |2

1− e−2t2

)
( f (u)− f (x))du

∣∣∣∣∣
=

1

πd/2(1− e−2t2
)d/2

∣∣∣∣∣
∫
Rd

exp
(
− | e−t2

y−u |2

1− e−2t2

)
g(u)du

∣∣∣∣∣
≤ T ∗

γ g(x)≤CdMγg(x)≤Cdε ,

by using Theorem 4.40.
Observe that if (y, t) ∈ Γγ(x) and taking t < δ/2, then | u− x |> δ implies

δ <| u− x |≤| u− y |+ | y− x |;

therefore,

δ <| u− y |+ | y− x |<| u− y |+t ≤| u− y |+δ
2

;

thus, | u− y |> δ
2 . Hence,

1

πd/2(1− e−2t2
)d/2

∣∣∣∣∣
∫
|u−x|>δ

exp
(
− | e−t2

y−u |2

1− e−2t2

)
( f1(u)− f1(x))du

∣∣∣∣∣
≤ 1

πd/2(1− e−2t2
)d/2

∫
|u−x|>δ

exp
(
− | e−t2

y−u |2

1− e−2t2

)
| f1(u) | du

+
1

πd/2(1− e−2t2
)d/2

| f1(x) |
∫
|u−x|>δ

exp
(
− | e−t2

y−u |2

1− e−2t2

)
du

≤ 1

πd/2(1− e−2t2
)d/2

∫
|u−y|> δ

2

exp
(
− | e−t2

y−u |2

1− e−2t2

)
| f1(u) | du

+
1

πd/2(1− e−2t2
)d/2

| f1(x) |
∫
|u−x|>δ

exp
(
− | e−t2

y−u |2

1− e−2t2

)
du.

Now, we have

1

πd/2(1− e−2t2
)d/2

∫
|u−y|> δ

2

exp
(
− | e−t2

y−u |2

1− e−2t2

)
| f1(u) | du

=
1

πd/2(1− e−2t2
)d/2

∫
|u−y|> δ

2 ,|u|<k
exp

(
− | e−t2

y−u |2

1− e−2t2

)
| f (u) | du
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≤ 1

πd/2(1− e−2t2
)d/2

ek2
∫
|u−y|> δ

2 ,|u|<k
exp

(
− | e−t2

y−u |2

1− e−2t2

)
| f (u) | e−|u|2du.

Then, for 0 < t2 < log

(
4k+2δ
4k+δ

)
, | u− y |> δ

2 , | u |< k implies that

| e−t2
y−u | = | e−t2

y− e−t2
u+ e−t2

u−u |=| e−t2
(y−u)− (u− e−t2

u) |
≥ e−t2 | y−u | − | u− e−t2

u |= e−t2 | y−u | −(1− e−t2
) | u |

≥ e−t2 δ
2
− k(1− e−t2

) = e−t2
(
δ
2
+ k

)
− k.

But, as 0 < t2 < log

(
4k+2δ
4k+δ

)
, then e−t2

>
4k+δ

4k+2δ
. Hence,

e−t2
(
δ
2
+ k

)
− k >

4k+δ
4(2k+δ )

(2k+δ )− k

=
4k+δ

4
− k =

4k+δ −4k
4

=
δ
4
.

Therefore, | u− y |> δ
2
, | u |< k implies | e−t2

y−u |> δ
4

; hence,

1

πd/2(1− e−2t2
)d/2

∫
|u−y|> δ

2

exp
(
− | e−t2

y−u |2

1− e−2t2

)
| f1(u) | du

≤ 1

πd/2(1− e−2t2
)d/2

ek2
∫
|u−y|> δ

2 ,|u|<k
e
− δ2

16(1−e−2t2 ) | f (u) | e−|u|2du

≤ e
− δ2

16(1−e−2t2 )
+k2

πd/2(1− e−2t2
)d/2

∫
Rd

| f (u) | e−|u|2du =
e
− δ2

16(1−e−2t2 )
+k2

(1− e−2t2
)d/2

‖ f‖1,γ .

On the other hand, taking the change of variables s = u− e−t2
y, we have

1

πd/2(1− e−2t2
)d/2

| f1(x) |
∫
|u−x|>δ

exp
(
− | e−t2

y−u |2

1− e−2t2

)
du

=
| f1(x) |

πd/2(1− e−2t2
)d/2

∫
|x−s−e−t2 y|>δ

e
−|s|2

1−e−2t2 ds

=
| f (x) |

πd/2(1− e−2t2
)d/2

∫
|x−s−e−t2 y|>δ

e
−|s|2

1−e−2t2 ds,

because f1(x) = f (x) as | x |≤ k−1 < k.
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Thus, taking 0 < t2 < log

(
k−1−δ/2
k−1−3δ/4

)
, | x− s− e−t2

y |> δ implies

| s | = | s− x+ e−t2
y+ x− e−t2

y |≥| s− x+ e−t2
y | − | e−t2

y− x |,

but

| e−t2
y− x | = | e−t2

y− e−t2
x+ e−t2

x− x |≤ e−t2 | y− x |+(1− e−t2
) | x |

≤ e−t2
t +(1− e−t2

)(k−1).

Hence, because t <
δ
2

,

| s− x+ e−t2
y | − | e−t2

y− x | > δ − e−t2
t − (1− e−t2

)(k−1)

≥ δ − (k−1)+

(
k−1− δ

2

)
e−t2

,

and as 0 < t2 < log

(
k−1−δ/2
k−1−3δ/4

)
, then e−t2

>
k−1−3δ/4
k−1−δ/2

. Hence,

| s | > δ − (k−1)+(k−1−δ/2)e−t2 ≥ δ − (k−1)+ k−1−3δ/4

= δ −3δ/4 =
δ
4
.

Then, | x−s−e−t2
y |> δ implies | s |> δ

4
if 0< t2 < log

(
k−1−δ/2
k−1−3δ/4

)
. Therefore,

taking w =
s√

1− e−2t2
,

1

πd/2(1− e−2t2
)d/2

∫
|u−y|> δ

2

exp
(
− | e−t2

y−u |2

1− e−2t2

)
| f1(x) | du

≤ | f (x) |
πd/2(1− e−2t2

)d/2

∫
|s|> δ

4

e
−|s|2

1−e−2t2 ds

=
| f (x) |
πd/2

∫
|w|> δ

4

√
1−e−2t2

e−|w|2dw.

Now, because | x |≤ k−1 < k, then f2(x) = 0. Hence,

| u2(y, t)− f2(x) |=| u2(y, t) |≤ T ∗ f2(x)≤CdMγ f2(x)

for (y, t) ∈ Γγ(x). Therefore,

| u(y, t)− f (x) | ≤ | u1(y, t)− f1(x) |+ | u2(y, t)− f2(x) |
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= | u1(y, t)− f1(x) |+ | u2(y, t) |

≤ Cdε+
e

−δ
16(1−e−2t2 )

+k2

(1− e−2t2
)d/2

‖ f‖1,γ

+
| f (x) |
πd/2

∫
|w|> δ

4

√
1−e−2t2

e−|w|2dw+CdMγ f2(x),

if (y, t) ∈ Γγ(x) and

0 < t2 < min

{
log

(
4k+2δ
4k+δ

)
, log

(
k−1−δ/2

k−1−3δ/4

)
,m(x)

}
=Λ ,

by using Theorem 4.40. Thus, taking supremum on (y, t) ∈Γγ(x), 0 < t < α <Λ and
then taking α → 0+ we obtain,

Ω f (x)≤Cd(ε+Mγ f2(x))

for all ε > 0 and almost every x with | x |≤ k−1. Thus,

Ω f (x)≤CdMγ f2(x).

Using the weak (1,1) boundedness of Mγ , we obtain

γd

({
x ∈ R

d :| x |≤ k−1,Ω f (x)> ε
})

≤ γd

({
x ∈ R

d :| x |≤ k−1,CdMγ f2(x)> ε
})

≤C′/ε‖ f2‖1,γ .

Given ε > 0, let us take for k sufficiently large such that ‖ f2‖1,γ ≤ ε2/2C′. We
get,

γd

({
x ∈ R

d :| x |≤ k−1,Ω f (x)> ε
})

≤ ε/2.

Finally, observe that taking k big enough, we can make

γd

({
x ∈ R

d :| x |> k−1,Ω f (x)> ε
})

≤ γd

({
x ∈ R

d :| x |> k−1
})

≤ ε/2,

and that implies that for any ε > 0,

γd

({
x ∈ R

d : Ω f (x)> ε
})

≤ ε .

Hence, Ω f (x) = 0 almost everywhere. ��
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4.8 Notes and Further Results

1. Let us prove in detail that Mγ is not bounded in L1
loc(γd), i.e., given f ∈ L1

loc(γd),
Mγ f /∈ L1(γd).
• First, if f = χE , where E ⊂ R

d is measurable and bounded, then let us see
that

Mγ χE(x)≥Cd
γd(E)
|x|d ,

for |x| is big enough. As E is bounded, there exists R > 0 such that E ⊂
B(0,R). Taking x /∈ B(0,R), i.e., |x|> R. Then, E ⊂ B(x,2|x|), and

Mγ χE(x) = sup
r>0

γd(E ∩B(x,r))
γd(B(x,r))

≥ γd(E ∩B(x,2|x|))
γd(B(x, |x|))

=
γd(E)

γd(B(x,r))
≥ Cdγd(E)

rd =
Cdγd(E)

2d |x|d =Cd
γd(E)
|x|d ,

as γd is a d-dimensional measure.
• Now, let us prove that if f ∈ L1

loc(γd), f �= 0 in a set of positive measure, then
there exists C such that

Mγ f (x)≥ C
|x|d , (4.98)

for |x| big enough. As in the classical case, set F =
{

x ∈ R
d : f (x) �= 0

}
.

Then,

F =
⋃

m∈N
Fm =

⋃
m∈N

{
x ∈ R

d : | f (x)|> 1/m, and |x|< m
}
.

As Fm ⊂ Fm+1, for all m ∈N, then, according to the lower continuity property
of γd ,

γd(F) = lim
m→∞

γd(Fm).

As γd(F) > 0, then there exists M ∈ N such that γd(FM) > 0. Hence, FM

is a bounded set with a positive measure. Let R > 0, fixed. Then using the
previous claim

Mγd f (x) ≥ 1
γd(B(x,R))

∫
F∩B(x,R)

| f (y)|γd(dy)

≥ 1
γd(B(x,R))

∫
FM∩B(x,R)

| f (y)|γd(dy)

>
1
M

γd(FM ∩B(x,R))
γd(B(x,R))

=
1
M

MγdχFM (x)≥
Cd

M
γd(FM)

|x|d =
C
|x|d ,

for |x| big enough.
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• Finally, from (4.98), as |x|de−|x|2 /∈ L1(Rd), then Mγ f /∈ L1(γd).

2. We can also define for a,b > 0 the (a,b)-truncated centered Hardy–Littlewood
maximal function as

Ma,b f (x) = sup
0<r<a∧ b

|x|

1
|B(x,r)|

∫
B(x,r)

| f (y)|dy, (4.99)

for f ∈ L1
loc(R

d), and the Gaussian (a,b)-truncated centered Hardy–Littlewood
maximal function,

M a,b
γ f (x) = sup

0<r<a∧ b
|x|

1
γd(B(x,r))

∫
B(x,r)

| f (y)|γd(dy)

= sup
B(x,r)∈Ba,b

1
γd(B(x,r))

∫
B(x,r)

| f (y)|γd(dy), (4.100)

f ∈ L1
loc(γd), i.e., we are taking the supremum over admissible balls B(x,r) ∈

Ba,b. In particular, taking a = b, we get,

M a
γ f (x) = sup

0<r<am(x)

1
γd(B(x,r))

∫
B(x,r)

| f (y)|γd(dy)

= sup
B(x,r)∈Ba

1
γd(B(x,r))

∫
B(x,r)

| f (y)|γd(dy), (4.101)

which is called the truncated centered Gaussian Hardy–Littlewood maximal
function.

Observe that, for any f ∈ L1
loc(γd),

M a,b
γ f (x)≤ Mγ f (x),

for any x ∈ R
d , which then implies that M a,b

γ and M a
γ are of weak type (1,1),

and strong type (p, p) for 1 < p < ∞ with respect to the Gaussian measure γd .

Moreover, on L1
loc(γd), Ma,b and M a,b

γ are equivalent, as given an admissible
ball B(x,r) = {y ∈ R

d : |y− x|< r,0 < r < a∧ b
|x| } ∈ Ba,b, we know, according

to Lemma 1.4 that the Gaussian density is essentially constant. Then, as 0 < r <
1∧ 1

|x| ,

1
γd(B(x,r))

∫
B(x,r)

| f (y)|γd(dy) ≥ e−2be|x|
2

|B(y,r)|

∫
B(x,r)

| f (y)|e−a2
e−2be−|x|2dy
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=
e−a2

e−4b

|B(y,r)|

∫
B(x,r)

| f (y)|dy,

and

1
γd(B(x,r))

∫
B(x,r)

| f (y)|γd(dy) ≤ ea2
e2be|x|

2

|B(y,r)|

∫
B(x,r)

| f (y)|e2be−|x|2dy

=
ea2

e4b

|B(y,r)|

∫
B(x,r)

| f (y)|dy.

Hence, for any f ∈ L1
loc(γd) and x ∈ R

d ,

C−1
a,bMa,b f (x)≤ M a,b

γ f (x)≤Ca,bMa,b f (x),

where Ca,b = ea2
e4b. Additionally, observe that for the same reasons, M a

γ can be
written as

M a
γ f (x) =Cd sup

0<r<am(x)

e|x|
2

rd

∫
B(x,r)

f (y)γd(dy). (4.102)

Finally, observe that, for any f ∈ L1
loc(γd) and x ∈ R

d ,

Mγ f (x) ≤ M a,b
γ f (x)+ sup

r≥a∧ b
|x|

1
γd(B(x,r))

∫
B(x,r)

| f (y)|γd(dy)

≤ M a,b
γ f (x)+

1

γd

(
B
(

x,a∧ b
|x|

))
∫
Rd

| f (y)|γd(dy)

≤ M a,b
γ f (x)+Cd

(1
a
∨ |x|

b

)d
e|x|

2‖ f‖1,γ ,

and as Ma,b and M a,b
γ are equivalent, we also have

Mγ f (x)≤Ca,bMa,b f (x)+Cd

(1
a
∨ |x|

b

)d
e|x|

2‖ f‖1,γ .

See also [174, Theorem 3.1].

3. A more general result than [246] was obtained by A. Vargas in [285], who got
necessary and sufficient conditions for radial, strictly positive measures μ with
support on all Rd , for which the corresponding Hardy–Littlewood maximal op-
erator Mμ is of weak type (1,1). The condition is that the measure μ is doubling
“away from cero.” Also, in [250] P. Sjögren and F. Soria proved estimates for
the maximal operator associated with a wide class of monotone decreasing and
radial measures μ . Additionally, in [139] (see also [138]), A. Infante and F. Soria
extended the result obtained in [250] for the case of rotation invariant measures
that are increasing along rays, in addition to results on general measures.
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4. In [48], C. P. Calderón, A. S. Coré, and W. Urbina obtained, in one dimension,
a special type of covering for open sets in R that has the same type of building
principle as the classical Whitney decomposition. Observe that the Gaussian dis-
tribution (1.4), Φ(x) = 1√

π
∫ x
−∞ e−y2

dy is a bijection between R and (0,1). Then,

considering the distance d(x,y) =
∣∣∣∫ y

x e−t2
dt
∣∣∣, and using the same arguments as

in [48], it seems possible to obtain from the classical Whitney decomposition a
Gaussian version of it, and also a Gaussian Calderón–Zygmund decomposition.
Its generalization to higher dimensions also seems possible.

5. The interest in studying the boundedness properties for maximal operators
associated with a non-doubling measure was renewed after the development
of the Calderón–Zygmund theory in this non-doubling setting by, among oth-
ers, J. Tolsa [274] and J. Verdera [287]. For the particular case of Gaussian-like
measures, the motivation comes from the study of the properties of the Ornstein–
Uhlenbeck semigroup and operators associated with it.

6. In [128], E. Harboure, J. L. Torrea, and B. Viviani characterize the weights
w for which both the centered Gaussian Hardy–Littlewood maximal function
Mγ and the maximal function for the Ornstein–Uhlenbeck semigroup T ∗ are
well defined for every function in Lp(wγd) and their Gaussian means converge

almost everywhere. The condition is that w− 1
p−1 ∈ L1(γd). This condition is

also necessary and sufficient for the existence of a weight v such that Mγ and
T ∗ are bounded from Lp(wγd) into Lp(vγd). Using J. L. Rubio de Francia’s
classical approach (see [101]), they prove the result by obtaining some vector
value inequalities for the operator under consideration. Moreover, the weight v
whose existence is guaranteed satisfies ‖v‖s/(p−s),γ <∞ for every 0 < s < 1 (see
[128, Theorem 2.12]).

7. In 1988, C. Gutierrez and W. Urbina [125] came back to the problem of point-
wise estimates for T ∗ and proved that

Theorem 4.48. (Gutiérrez–Urbina) For f ∈ L1(γd), we have

T ∗ f (x)≤CdMγ f (x)+(2∨|x|)de|x|
2 || f ||1,γ . (4.103)

Proof. We may assume f ≥ 0. Set

u0(x,s) =
1

πd/2sd/2

∫
Rd

exp
(
− |x− y|2

s

)
f (y)dy,

the heat semigroup, up to a constant. Taking s = 1− e−2t , then

Tt f (x) =
1

πd/2(1− e−2t)d/2

∫
Rd

exp
(
− |y− e−t x|2

1− e−2t

)
f (y)dy

=
1

πd/2sd/2

∫
Rd

exp
(
− |y−

√
1− sx|2
s

)
f (y)dy = u0(

√
1− s x,s);
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therefore,
T ∗ f (x) = sup

0<t<1
|u0(

√
1− t x, t)|.

Let
T ∗

1 f (x) = sup

0<t<
(

1
|x| ∧

1
2

)2
|u0(

√
1− t x, t)|,

and
T ∗

2 f (x) = sup(
1
|x| ∧

1
2

)2
≤t<1

|u0(
√

1− t x, t)|.

Given x ∈ R
d , let

Γ p
γ (x) =

{
(y, t) : |y− x| ≤

√
t,0 < t <

( 1
|x| ∧

1
2

)2}
,

be a truncated parabolic cone and let us consider the non-tangential maximal
function for the heat semigroup

U∗ f (x) = sup
(y,t)∈Γ p(x)

|u0(y, t)|. (4.104)

We show that
T ∗

1 f (x)≤U∗ f (x)≤CdMγd f (x), (4.105)

and
T ∗

2 f (x)≤ (2∨|x|)de|x|
2 || f ||1,γ . (4.106)

The first inequality in (4.105) follows because, if 0 < t <
(

1
|x| ∧

1
2

)2
, then

|
√

1− t x− x|= (1−
√

1− t)|x|< 1−
√

1− t√
t

<
√

t;

therefore, (
√

1− t x, t) ∈ Γ p
γ (x).

For the second inequality, set a0 = 0 and a j = j1/2 for j ∈ N. We can write

u0(y, t) =
1

πd/2td/2

∫
Rd

exp
(
− |y−u|2

t

)
f (u)du

=
1

πd/2td/2

∞

∑
j=1

∫
a j−1t1/2≤|y−u|<a jt1/2

exp
(
− |y−u|2

t

)
f (u)du.

If (y, t) ∈ Γ p
γ (x) and |y−u|< a jt1/2, then

|x−u| ≤ |y−u|+ |y−u| ≤ (1+a j)t
1/2
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and, consequently,

u0(y, t)≤
1

πd/2sd/2

∞

∑
j=1

e−a2
j−1

∫
|x−u|<(a j+1)t1/2

f (u)du.

We have |u|2 = |u− x|2 +2〈x,(u− x)〉+ |x|2. Hence,
∫
|x−u|<(a j+1)t1/2

f (u)du ≤ exp
(
|x|2 +2|x|(1+a j)s

1/2 +(1+a j)
2t
)

×
∫
|y−u|<(a j+1)t1/2

f (u)e−|u|2du

≤ exp
(
|x|2 +2|x|(1+a j)t

1/2 +(1+a j)
2s
)

×Mγ f (x)
∫
|x−u|<(a j+1)t1/2

e−|u|2du

≤ exp
(

2|x|(1+a j)t
1/2 +(1+a j)

2t
)

×Mγ f (x)
∫
|x−u|<(a j+1)t1/2

e−|u−x|2+2|x||u−x|du

≤ exp
(

4|x|(1+a j)t
1/2 +(1+a j)

2t
)

×Mγ f (x)
∫
|x−u|<(a j+1)t1/2

e−|u|2du

≤ Cd(1+a j)
dtd/2 exp

(
4|x|(1+a j)t

1/2 +(1+a j)
2t
)

×Mγ f (x).

Thus,

u0(y,s) ≤ Cd

πd/2sd/2

[ ∞

∑
j=1

e−a2
j−1(1+a j)

dsd/2

×exp
(

4|x|(1+a j)t
1/2 +(1+a j)

2t
)]

Mγ f (x).

But if (y, t) ∈ Γ p
γ (x)

∞

∑
j=1

e−a2
j−1(1+a j)

dtd/2 exp
(

4|x|(1+a j)t
1/2 +(1+a j)

2t
)

≤
∞

∑
j=1

e−a2
j−1(1+a j)

dtd/2 exp
(
4(1+a j)+(1+a j)

2/4
)
<∞.

Hence,
u0(y,s)≤CdMγ f (x).
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To prove (4.106), observe that if t > t ′ and x,x′ ∈ R
d , then for any u ∈ R

d we
have

|y−u|2
s

− |x−u|2
t

≤ |y− x|2
s− t

.

Thus,

u(y,s)≤ u(x,s)
( s

t

)d/2
e

|x−y|2
(t−s) , (4.107)

for 0 < t < s. In particular,

u0(
√

1− t x, t)≤ u0(0,1)
(1

t

)d/2
e|x|

2
,

for 0 < t < 1. If t ≥
(

1
|x| ∧

1
2

)2
, then 1/t ≤ (2∧|x|)2 and as

u0(0,1) =
1

πd/2

∫
Rd

e−|u|2 f (u)du = || f ||1,γ ,

then (4.106) follows.

8. The inequality (4.103) implies, in particular, that T ∗ f < ∞ almost everywhere.
Unfortunately, this inequality only allows us to prove the weak type (1,1) in-
equality of T ∗ with respect to γd in the case d = 1, because of the second term
(bad term). But for the case d = 1, Muckenhoupt’s proof [193] is more direct
and easier. Moreover, it is easy to see that the estimation done in Theorem 4.48
of T ∗

2 f (x), is not good enough. Observe that if instead of using the inequal-
ity (4.107), we simply use the fact that the exponential is less than one,

u0(
√

1− sx,s) =
1

πd/2sd/2

∫
Rd

exp

(
−|y−

√
1− sx|2
s

)
f (y)dy

=
e|x|

2

πd/2sd/2

∫
Rd

exp

(
−|

√
1− sy− x|2

s

)
f (y)e−|y|2dy

≤ (2∨|x|)de|x|
2
∫
Rd

f (y)
e−|y|2

πd/2
dy = (2∨|x|)de|x|

2 || f ||1,γ ,

if s >
(

1
|x| ∧

1
2

)2
.

Therefore, the problem is to improve the estimate of T ∗
2 f (x). If we decompose

u0(
√

1− sx,s) as

u0(
√

1− sx,s) =
1

πd/2sd/2

∫
|x−y|< 1

|x| ∧
1
2

exp

(
−|y−

√
1− sx|2
s

)
f (y)dy

+
1

πd/2sd/2

∫
|x−y|≥ 1

|x| ∧
1
2

exp

(
−|y−

√
1− sx|2
s

)
f (y)dy

= (I)+(II).
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The first integral can be bounded, using an analogous argument as before, by

(I)≤ (2∨|x|)de|x|
2
∫
|x−y|< 1

|x| ∧
1
2

f (y)
e|x|

2

πd/2sd/2
dy.

Now, as we know, the values of the exponential e−|y|2 in an admissible ball

B
(

x, 1
|x| ∧

1
2

)
are equivalent; therefore,

γd

(
B
(

x,
1
|x| ∧

1
2

))
=

∫
|x−y|< 1

|x| ∧
1
2

f (y)
e−|y|2

πd/2
dy =Cd

(
1
|x| ∧

1
2

)d

e−|x|2 .

Hence, the first integral is bounded by the truncated Hardy–Littlewood maximal

function M
1/2,1
γ f , which we already know is bounded by the Gaussian Hardy–

Littlewood maximal function Mγ f . Thus, the second integral is the problematic
one. Observe that it can be written as

(II) =
1

πd/2sd/2

∫
|x−y|≥(1/2)∧(1/|x|)

exp
(
− (1− s)(|y|2 + |x|2)−2

√
1− s〈x,y〉

s

)

×e−|y|2 f (y)dy,

and this integral can be divided into two integrals, one where 〈x,y〉 ≥ 0 and the
other one where 〈x,y〉< 0. The latter is less than or equal to (2∨|x|)d || f ||1,γ , just
by bounding the exponential term by one. As the term (2∨ |x|)d ∈ L1(γd), then,
according to Chebyshev’s inequality, we get that this integral behaves correctly
for the weak (1,1) with respect to γd .
For the first integral, we divide the region

{
y ∈ R

d : |x− y| ≥ (1/2)∧ (1/|x|),〈x,y〉 ≥ 0
}

into two parts: |y|<
√

1− s|x| and |y| ≥
√

1− s|x|.
The integral on the first region is again of weak type (1,1) because using Cheby-
shev’s inequality, we get

γd

({
x ∈ R

d :
∫

|x−y|≥((1/2)∧(1/|x|))
〈x,y〉≥0,|y|<

√
1−s|x|

exp

(
− (1− s)(|y|2 + |x|2)−2

√
1− s〈x,y〉

s

)

×e−|y|2 f (y)dy > λ
})

≤ 1
λ

1

(πs)d/2

∫
Rd

∫

|x−y|≥((1/2)∧(1/|x|))
〈x,y〉≥0,|y|<

√
1−s|x|

exp

(
− (1− s)(|y|2 + |x|2)−2

√
1− s〈x,y〉

s

)

×e−|y|2 f (y)dy
e−|x|2

πd/2
dx.
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But, as ε > 0,〈x,y〉 ≤ ε
2 |x|2 +

1
2ε |y|2. Then, taking ε =

√
1− s, and using the

inequality |y|<
√

1− s|x| we get

1
λ

1

πd/2sd/2

∫
Rd

∫

|x−y|≥((1/2)∧(1/|x|))
〈x,y〉≥0,|y|<

√
1−s|x|

e−|y|2 f (y)dy
e−s|x|2

πd/2
dx

≤ 1
λ

1

sd/2

∫
Rd

∫
Rd

f (y)
e−|y|2

πd/2
dy

e−s|x|2

πd/2
dx ≤ 1

λ
(2∨|x|)d e−s|x|2

πd/2
dx|| f ||1,γ .

Therefore, the problematic region that remains to be studied is
{

y ∈ R
d : |x− y| ≥ (1/2)∧ (1/|x|),〈x,y〉 ≥ 0, |y| ≥

√
1− s|x|

}
.

The proof of S. Pérez [221] is a substantial improvement of the arguments above,
using very cleverly the geometry of the problem to obtain pointwise inequalities
to get the weak type (1,1).

9. As a corollary of Theorem 4.48, using inequality (4.103), we can prove the non-
tangential convergence of

u0(y,s) =
1

πd/2sd/2

∫
Rd

exp
(
− |x− y|2

s

)
f (y)dy,

which is a modification of the heat semigroup, for truncated parabolic Gaussian
cones,

Γ p,T
γ (x) =

{
(y, t) : |y− x| ≤ t1/2, 0 < t <

(
1
|x| ∧

1
2

)2
}
. (4.108)

10. E. Pineda and W. Urbina’s result regarding the non-tangential maximal function
is the following:

Theorem 4.49. Consider the truncated non-tangential maximal function asso-
ciated with the Ornstein–Uhlenbeck semigroup, defined as

T ∗
T f (x) = sup

(y,t)∈Γ p,T
γ (x)

| Tt f (y) | . (4.109)

Then, there exists a constant Cd such that

T ∗
T f (x)≤CdMγ f (x), (4.110)

for any f ∈ L1(γd) and for all x ∈ R
d .

For the proof, see [225, Lemma 1.1].
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11. Using Forzani’s result, Theorem 4.18, an alternative proof of Corollary 4.42 can
be given (see for instance [281]). It is enough to prove that there exists a function
Φ that satisfies the conditions in that result such that

T ∗
γ (A,a) f (x)≤ MΦ f (x). (4.111)

In fact, given x ∈ R
d by the definition of T ∗

γ (A,a) f (x), let y ∈ R
d such that

|x− y| < At, t < am(x). Then, if 1 > r = e−t2
> e−a2

= 2C we have that |x−
y| < C

√
1− r2 ∧m(x); therefore, again using the auxiliary function Ms defined

in (4.96), and taking r = e−t2
, we get

Mr f (y) =
e|y|

2

(1− r2)d/2

∫
Rd

e
− |ru−y|2

1−r2 f (u)γd(du)

≤ C
e|x|

2

(1− r2)d/2 ∑
v≥1

∫
B( x

r ,v
√

1−r2)\B( x
r ,(v−1)

√
1−r2)

e
− |ru−y|2

1−r2 f (u)γd(du)

≤ C
e|x|

2

(1− r2)d/2

∫
Rd

(
∑
v≥1

e−c(v−1)2
χ

B( x
r ,v

√
1−r2)\B( x

r ,(v−1)
√

1−r2)
(u)

)

× f (u)γd(du)

≤ CMΦ f (x)

where Φ(x) = ∑v≥1 e−C(v−1)2χ[ν−1,ν)(x).
The second inequality is a consequence of the fact that if |x−y|< c

√
1− r∧m(x)

and z ∈ B
(

x
r ,v

√
1− r2

)
\B

(
x
r ,(v−1)

√
1− r2

)
, then we have

|rz− y| ≥ r|z− x
r
|− |x− y|

≥ rv
√

1− r2 − c
√

1− r2 ≥ c(v−1)
√

1− r2.

12. There is another proof of Theorem 4.45, using Theorem 4.28 (see [87]). Using
Harnack’s inequality (3.36), given x ∈ R

d we have, for all (y, t) ∈ Γ A,a
γ (x), i.e.,

y ∈ B((x, t),Aam(x)), that Pt(y)≤CPt(x); hence,

P∗
γ (A,a) f (x) = sup

(y,t)∈Γ A,a
γ (x)

|Pt f (y)| ≤C sup
t>0

|Pt f (x)|= P∗ f (x).

Thus the weak type (1,1) of the Poisson-Hermite maximal function follows
from the weak type (1,1) of P∗ which was obtained in Theorem 4.28.

13. As a corollary of Theorem 4.48, using inequality (4.103), we can prove the
almost everywhere (radial) convergence of the Ornstein–Uhlenbeck semi-
group {Tt}t≥0 in L1(γd) in addition to the almost everywhere convergence
for f ∈ L1(γd) as t → 0 (see [125]).
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14. Using a general statement for families of linear operators, we can get a sim-
pler proof of the non-tangential convergence, both for the Ornstein–Uhlenbeck
semigroup and for the Poisson–Hermite semigroup (see [225]). This result is a
generalization of Theorem 2.2 of J. Duoandikoetxea’s book [72].

Theorem 4.50. Let {Γt}t≥0 be a family of linear operators on Lp(Rd ,μ) and
for any x ∈R

d, letΛ(x) be a subset of Rd+1
+ such that x is an accumulation point

of Λ(x). Define

Γ∗ f (x) = sup{|Γt f (y)| : (y, t) ∈Λ(x)},

for f ∈ Lp(Rd ,μ) and x ∈ R
d . If Γ∗ is weak (p,q), then the set

S =
{

f ∈ Lp(Rd ,μ) : lim
(y,t)→x,
(y,t)∈Λ(x)

Γt f (y) = f (x)almost everywhere
}

is closed in Lp(Rd ,μ).

Proof. Let us consider a sequence ( fn) in S such that fn → f in Lp(Rd ,μ). Then,

|Γt f (y)− f (x)|− |Γt fn(y)− fn(x)| ≤ |Γt( f − fn)(y)− ( f (x)− fn(x))|,

and this implies that, for each n ∈ N, and for almost every x ∈ R
d

limsup
(y,t)→x,
(y,t)∈Λ(x)

|Γt f (y)− f (x)| ≤ limsup
(y,t)→x,
(y,t)∈Λ(x)

|Γt( f − fn)(y)− ( f (x)− fn(x))|

≤ limsup
(y,t)→x,
(y,t)∈Λ(x)

|Γt( f − fn)(y)|+ limsup
(y,t)→x,
(y,t)∈Λ(x)

| f (x)− fn(x)|

≤ Γ∗( f − fn)(x)+ | f (x)− fn(x)|.

On the other hand, if we know that a ≤ b+c, then a > λ implies b > λ
2 ∨c > λ

2 .

Hence, given λ > 0 and n ∈ N, as limsup (y,t)→x,
(y,t)∈Λ(x)

|Γt f (y)− f (x)|> λ , we have

Γ∗( f − fn)(x)>
λ
2
∨| f (x)− fn(x)|>

λ
2

almost everywhere

and this implies that, given λ > 0,

μ
({

x : limsup
(y,t)→x,
(y,t)∈Λ(x)

|Γt f (y)− f (x)|> λ
})

≤ μ
({

x : Γ∗( f − fn)(x)>
λ
2

})
+μ

({
x : | f (x)− fn(x)|>

λ
2

})
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≤
(2C
λ

‖ f − fn‖p

)q
+
( 2
λ
‖ f − fn‖p

)p
,

for all n ∈ N. Therefore,

μ
({

x : limsup
(y,t)→x,
(y,t)∈Λ(x)

|Γt f (y)− f (x)|> λ
})

= 0

and, as this is true for all λ > 0, we get that

μ
({

x : limsup
(y,t)→x,
(y,t)∈Λ(x)

|Γt f (y)− f (x)|> 0
})

= 0.

Now,

{
x : limsup

(y,t)→x,
(y,t)∈Λ(x)

|Γt f (y)− f (x)|> 0
}
=

∞⋃
n=1

{
x : limsup

(y,t)→x,
(y,t)∈Λ(x)

|Γt f (y)− f (x)|> 1
n

}
.

Then,
lim

(y,t)→x,
(y,t)∈Λ(x)

Γt f (y) = f (x) almost everywhere

and then f ∈ S. Therefore, S is a closed set in Lp(Rd ,μ). ��

15. As a consequence of Theorem 4.50, we can alternatively get a proof of the non-
tangential convergence for the Ornstein–Uhlenbeck semigroup {Tt}t≥0 and the
Poisson–Hermite semigroup {Pt}t≥0.

Corollary 4.51. The Ornstein–Uhlenbeck semigroup {Tt}t≥0 and the Poisson–
Hermite semigroup {Pt}t≥0 verify

lim
(y,t)→x,

(y,t)∈Γ p
γ (x)

Tt f (y) = f (x) almost everywhere x ∈ R
d ,

and
lim

(y,t)→x,
(y,t)∈Γ p

γ (x)

Pt f (y) = f (x) almost everywhere x ∈ R
d .

Proof. Let us discuss the proof for the Ornstein–Uhlenbeck semigroup {Tt}t≥0.
The proof for the Poisson–Hermite semigroup {Pt}t>0 is totally similar. It is
immediate that for any given polynomial f (x) = ∑n

k=0 Jk f (x), because

Tt f (y) = Tt
( n

∑
k=0

Jk f (y)
)
=

n

∑
k=0

e−tkJk f (y),

we have the non-tangential convergence,
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lim
(y,t)→x,

(y,t)∈Γ p
γ (x)

Tt f (y) = f (x),

for all x ∈ R
d . Now, considering the set

S =
{

f ∈ Lp(γd) : lim
(y,t)→x,

(y,t)∈Γ p
γ (x)

Tt f (y) = f (x)almost everywhere
}
,

corresponding to the Ornstein–Uhlenbeck semigroup, then the polynomials are
in S. From the previous result, because the non-tangential maximal function
for the Ornstein–Uhlenbeck semigroup T ∗

γ f is weak (1,1) with respect to the
Gaussian measure, we get that the set S is closed in Lp(γd), and as the polyno-
mials are dense in Lp(γd) then S = Lp(γd). ��

16. Regarding approximations of the identity for the Gaussian case, we have that,
using the functional calculus of L, that is discussed in Chapter 6, we can get
an approximation of the identity by taking any bounded holomorphic function
φ on the sector of holomorphy that decays polynomially at infinity and that is
equal to one at 0. The functions φt(z) = e−t|z| and φt(z) = e−tz2

, which generate
Pt and Tt , are good examples, but there are many more, such as φt(z) = 1

(1+tz2)
.

The difference in the Euclidean case is that any radial convolution is in the
functional calculus of the Laplacian operator Δ , which means that geometric
approximations of the identity are appropriately related to the Laplacian opera-
tor. Attempts to use a similar geometric approach to the Gaussian setting have
not been successful, because the modifications to classical approximations of
the identity tend to be adapted to the Gaussian case only in the local region.

17. For the maximal function of the Laguerre semigroup T ∗
α , the weak-type (1,1)

estimate with respect to the Gamma measure was obtained for d = 1 by B.
Muckenhoupt in [195] using direct estimates, and for d ≥ 2 by U. Dinger in
[68]. She proves it first when α is an integer or half integer, taking advan-
tage of the relationship between Laguerre and Hermite polynomials (see G.
Szegő’s book [262, (5.6.1)]) and using the fact that the maximal function of
the Ornstein–Uhlenbeck semigroup is of weak type (1,1) with respect to the
Gaussian measure. Then, for general α, taking r = e−t , she proves the result for
the supremum restricted to the intervals 0 < r < 1/2 and 1/2 ≤ r < 1 separately.

18. Additionally, in [238], E. Sasso proves weak-type and strong-type estimates for a
class of maximal operators associated with the holomorphic Laguerre semigroup
on the half-line R+. A complete and readable proof of this result was given by
A. Nowak, P. Sjögren, and T. Z. Szarek in [216].



5

Littlewood–Paley–Stein Theory with Respect
to the Gaussian Measure

Littlewood–Paley–Stein theory is an important area in harmonic analysis, with a
great number of applications, as Littlewood–Paley functions are very useful in the
proof of the Lp boundedness of singular integral operators, and in the character-
ization of Hardy spaces. E. Stein, in his beautiful monograph [253] showed how
the classical notions of the Littlewood–Paley theory could be extended well beyond
the Euclidean setting and also showed explicitly its link to the martingale theory in
probability.

In this chapter, we study the Littlewood–Paley–Stein theory for the Gaussian mea-
sure. In 1976, P. A. Meyer [188] introduced some Littlewood–Paley functions with
respect to the Gaussian measure using probabilistic methods (see also D. Stroock
[260]). The study of Littlewood–Paley functions with respect to the Gaussian mea-
sure from an analytic point of view started in 1994 with C. Gutiérrez’s paper [122],
where the Gaussian Littlewood–Paley gγ function was introduced, among other vari-
ants, and their Lp(γd)-boundedness properties were studied. The same year, E. Fabes
and L. Forzani considered an area function for the Gaussian measure Sa

γ . Since then,
several other Littlewood–Paley functions have been introduced. In this chapter, we
study some of them, their Lp(γd)-boundedness properties, and some of their variants.

5.1 The Gaussian Littlewood–Paley g Function and Its Variants

As already stated, the study of Littlewood–Paley–Stein theory for the Gaussian
measure started in 1994 with a paper by C. Gutiérrez [122].1 Analogous to the clas-
sical case and following E. Stein’s monograph [253], he introduces, the (first-order)
Gaussian Littlewood–Paley g-function, gγ and some variants.

1Gutiérrez actually considers a more general case of Gaussian measures involving
positive-definite symmetric matrix B, but the case when B is the identity matrix is the only
one that we are interested in.
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194 5 Littlewood-Paley-Stein Theory with respect γd

Definition 5.1. (Gutierrez) The Gaussian Littlewood–Paley–Stein g-function is de-
fined as

gγ( f )(x) =

(∫ ∞

0
|t∇Pt( f )(x)|2 dt

t

)1/2

, (5.1)

where ∇=
(

∂
∂ t ,

1√
2
∇x

)
is the (total) gradient.

Observe that gγ can also be written as

gγ( f )(x) =

(∫ ∞

0
|∇Pt( f )(x)|2 t dt

)1/2

.

As in the classical case (see E. Stein [252, IV, §, page 82]), this operator can be
considered as a vector valued singular integral, defined on a given Hilbert space. Let
H1 = R and let H2 be the direct sum of (d +1)-copies of

L2((0,∞),
dt
t
) = {h : (0,∞)→ R :

∫ ∞

0
|h(t)|2 dt

t
< ∞},

with norm ‖h‖L2((0,∞),dt/t) =
(∫ ∞

0 |h(t)|2 dt
t

)1/2
and for h = (h1,h2, · · · ,hd+1) ∈H2

let

|h|2 =
( d+1

∑
k=1

‖hk‖2
L2

)1/2

Consider the singular kernel,

K(t,x,y) =
(

t
∂ p
∂ t

(t,x,y),
t√
2

∂ p
∂x1

(t,x,y), . . . ,
t√
2

∂ p
∂xd

(t,x,y)
)

(5.2)

=
(

K0(t,x,y),K1(t,x,y), . . . ,Kd(t,x,y)
)

then, the Gaussian Littlewood–Paley function gγ can be written as

gγ( f )(x) =
∣∣∣
∫
Rd

K(·,x,y) f (y)dy
∣∣∣
2
. (5.3)

Observe that if f ≥ 0 is a bounded smooth function whose first and second deriva-
tives are also bounded, then,

gγ( f )(x)2 ≤C(1+ |x|)2
∫ ∞

0
te−2tdt ≤C(1+ |x|)2, (5.4)

and, therefore, gγ( f ) ∈ Lp(γd) for p > 0 for this case. In general, we have the fol-
lowing result.

Theorem 5.2. (Gutiérrez) For 1 < p <∞ there exists a constant Cp, depending only
on p, such that, for any f ∈ Lp(γd)

||gγ( f )||p,γ ≤Cp|| f ||p,γ . (5.5)
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To prove this result, we need the following lemmas,

Lemma 5.3. Let u be a non-negative solution of the equation

L1u(x, t) =
∂ 2u(x, t)
∂ t2 +Lu(x, t) =

∂ 2u(x, t)
∂ t2 +

1
2
Δu(x, t)−〈x,∇xu(x, t)〉= 0. (5.6)

If p ≥ 1, then
L1up = p(p−1)up−2|∇xu|2.

Proof. Differentiating

∂ 2up(x, t)
∂ t2 = p(p−1)up−2 ∂u(x, t)

∂ t
+ pup−1 ∂ 2u(x, t)

∂ t2 ,

∂up(x, t)
∂xi

= pup−1 ∂u(x, t)
∂xi

,

∂ 2up(x, t)
∂xi∂x j

= p(p−1)up−2(
∂u(x, t)
∂xi

)2 + pup−1 ∂ 2u(x, t)
∂xi∂x j

.

The lemma follows immediately. ��

Lemma 5.4. Let F be a smooth function in R
d+1
+ , such that F(x, t) ≥ 0 and

L1F(x, t) ≥ 0. Suppose that there are constants M and C, such that for all R > 0,
we have

|F(x, t)| ≤ M, (5.7)

sup{|∇xF(x, t)| : |x| ≤ R, 0 < t < R} ≤ M, (5.8)

R|∂F
∂ t

(x,R)| ≤C|x|φ(R), (5.9)

where φ(R)→ 0 as R → ∞, and such that
∫ ∞

0
φ(t)

t dt < ∞. Then,

∫ ∞

0

∫
Rd

tL1F(x, t)γd(dx)dt =
∫
Rd

F(x,0)γd(dx)−
∫
Rd

F(x,∞)〉γd(dx). (5.10)

Proof. The scheme of the proof is analogous to the proof of Lemma 3, page 50 of
Stein’s monograph [253], but some technicalities have to be overcome.
Let

DR = {(x, t) ∈ R
d : |x| ≤ R, 0 ≤ t ≤ R}, C1(R) = {(x,0) ∈ R

d : |x| ≤ R},

C2(R) = {(x,R) ∈ R
d : |x| ≤ R}, C3(R) = {(x, t) ∈ R

d : |x|= R, 0 ≤ t ≤ R}.
Then,

∂DR =C1(R)∪C2(R)∪C3(R),
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and
∫ ∫

DR

tL1F(x, t)γd(dx)dt =
∫ ∫

DR

t(
∂ 2F(x, t)

∂ t2 +
1
2
ΔxF(x, t))γd(dx)dt

−
∫ ∫

DR

t〈x,∇xF(x, t)〉γd(dx)dt

= (I)− (II).

Now, using the product rule of differentiation and the divergence theorem

(II) =
∫ ∫

DR

t〈x,∇xF(x, t)〉γd(dx)dt =
1

πd/2

∫ ∫
DR

t
( d

∑
i=1

xi
∂F
∂xi

)
e−|x|2dxdt

= − 1

2πd/2

∫ ∫
DR

t
( d

∑
i=1

∂e−|x|2

∂xi

∂F
∂xi

(x, t)
)

dxdt

= − 1

2πd/2

∫ ∫
DR

t
( d

∑
i=1

∂
∂xi

(F(x, t)e−|x|2)
)

dxdt

+
1

2πd/2

∫ ∫
DR

tΔx(e
−|x|2)F(x, t)dxdt

= − 1

2πd/2

d

∑
i=1

∫ ∫
∂DR

tF(x, t)
∂e−|x|2

∂xi
ηi dσ(x, t)

+
1

2πd/2

∫ ∫
DR

tΔx(e
−|x|2)F(x, t)dxdt

= − 1

2πd/2

∫ ∫
∂DR

tF(x, t)
∂e−|x|2

∂η
dσ(x, t)

+
1

2πd/2

∫ ∫
DR

tΔx(e
−|x|2)F(x, t)dxdt,

where η = (η1,η2, · · · ,ηd+1) denotes the unit outward normal to ∂DR. Then, as
∂DR = C1(R)∪C2(R)∪C3(R), splitting the first integral into three integrals, it can
be proved that it tends to zero as R → ∞ (for more details see [122, page 117]). We
then have, using the divergence theorem again,

lim
R→∞

∫ ∫
DR

tL1F(x, t)γd(dx)dt

= lim
R→∞

[∫ ∫
DR

t(
∂ 2F(x, t)

∂ t2 +
1
2
ΔxF(x, t))γd(dx)dt − 1

2πd/2

∫ ∫
DR

tΔx(e
−|x|2)F(x, t)dxdt

]

= lim
R→∞

1

πd/2

[∫ ∫
DR

t(
∂ 2F(x, t)

∂ t2 +
1
2
ΔxF(x, t))e−|x|2 − (

∂ 2(te−|x|2)

∂ t2 +Δx(et−|x|2)F(x, t))dxdt
]

= lim
R→∞

1

πd/2

[∫ ∫
∂DR

te−|x|2(� F(x, t) ·η ′)−F(x, t)(� (te−|x|2) ·η ′) dσ(x, t)
]
,

where η ′ = ( 1
2η1,

1
2η2, · · · , 1

2ηd ,ηd+1) denotes the unit outward normal to ∂DR.
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Using (5.9), φ(R) → 0, the mean value theorem and the integrability condition
on φ , we conclude that limR→∞F(x,R) = F(x,∞) exists for each x. Then, again as
∂DR =C1(R)∪C2(R)∪C3(R), splitting the last integral into three integrals, it can be
proved that tends to

∫
Rd

F(x,0)〉γd(dx)−
∫
Rd

F(x,∞)〉γd(dx)

as R → ∞ (for more details see [122, page 118]). This completes the proof of the
lemma. ��

The hypothesis L1F(x, t)≥ 0 in Lemma 5.4 can be replaced by

∞∫

0

∫

Rd

t|L1F(x, t)|γd(dx)dt < ∞. (5.11)

In that case, the proof is the same, with the exception that when we take the limit,
we need to use Lebesgue’s dominated convergence.

We are ready to prove Theorem 5.2.

Proof. First, we shall apply Lemma 5.4 in the case F(x, t) = u(x, t)p, p > 1, u(x, t) =
Pt f (x), where f ≥ 0a bounded smooth function whose first and second derivatives
are also bounded. We need to verify that such a F(x, t) satisfies the hypothesis of
Lemma 5.4. Set v(x, t) = Tt f (x), then

∂v
∂ t

=
1
2
Δxv−〈x,∇xv〉.

According to the subordination formula, we know that

u(x, t) =
1√
π

∞∫

0

e−u
√

u
v

(
x,

t2

4u

)
du,

then

∂u
∂ t

(x, t) =
1√
π

∞∫

0

e−u
√

u
∂
∂ t

(
v

(
x,

t2

4u

))
du

=
1

2
√
π

∞∫

0

e−u
√

u
t
u

[
1
2
Δxv

(
x,

t2

4u

)
−〈x,∇xv

(
x,

t2

4u

)
〉
]

du.

Now, let us prove that
∇xv(x, t) = e−tTt(∇x f )(x),

and
Δxv(x, t) = e−2tTt(Δx f )(x).
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This follows by using the representation (2.36) of the Ornstein–Uhlenbeck semi-
group

v(x, t) =
1

πd/2

∫

Rd

f (e−t x− (1− e−2t)1/2y)e−|y|2dy,

and differentiating with respect to xi. Therefore,

∂u
∂ t

(x, t) =
1

4
√
π

∞∫

0

e−u
√

u
t
u

e−t2/2uTt2/4u(Δx f )(x)du

− 1
2
√
π

∞∫

0

e−u
√

u
t
u

e−t2/4u〈x,Tt2/4u(∇x f )(x)〉du

Using the change of variables s = t2

2u and the identity 1√
π

∞∫
0

e−u√
u e−t2/4udu = e−t , we

get,

|t 1
4
√
π

∞∫

0

e−u
√

u
t
u

e−t2/2uTt2/4u(Δx f )(x)du| ≤C

∞∫

0

e−u
√

u
t2

u
e−t2/2udu =Cte−t

√
2.

Also,

|t 1
2
√
π

∞∫

0

e−u
√

u
t
u

e−t2/4u〈x,Tt2/4u(∇x f )(x)〉du| ≤C

∞∫

0

e−u
√

u
t2

u
|x|e−t2/4udu =Ct|x|e−t .

Therefore,

t

∣∣∣∣∂u
∂ t

(x, t)

∣∣∣∣≤Ct(1+ |x|)e−t ,

and because u(x, t)≤C, then conditions i) and iii) of Lemma 5.4 for F(x, t)= up(x, t)
hold. To show condition ii), we have

∇xu(x, t) =
1√
π

∞∫

0

e−u
√

u
∇xv

(
x,

t2

4u

)
du,

and because the first derivatives of f are bounded, we obtain

|∇xu(x, t)| ≤Ce−t ,

which implies condition ii).

Moreover, we know from inequality (5.4), that gγ( f ) ∈ Lp(γd) for p > 0. Now,
we prove

||gγ( f )||p,γ ≤Cp|| f ||p,γ .
It is done in several cases,
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• Case #1: 1 < p ≤ 2. Again, let f ≥ 0 be a bounded smooth function whose
first and second derivatives are also bounded. If ε > 0, let fε = ε + f , then as
the Ornstein–Uhlenbeck semigroup is conservative, Tt( fε) = ε +Tt f ; therefore,
Pt( fε) = ε+Pt f > 0. From Lemma 5.3, we get

(gγ( f )(x))2 = gγ( fε)(x)
2 =

∞∫

0

t|∇(Pt fε)|2dt =
1

p(p−1)

∞∫

0

t(Pt fε(x))
2−pL1(Pt fε)

pdt

≤ 1
p(p−1)

P∗ fε(x)
2−p

∞∫

0

tL1(Pt f )pdt.

Then,

‖gγ( f )‖p
p,γ =

∫

Rd

gγ( f )(x)pγd(dx)≤ 1

(p(p−1))p/2

∫

Rd

P∗ fε(x)
(1− p

2 )p

⎛
⎝

∞∫

0

tL1(Pt f )pdt

⎞
⎠

p/2

≤ 1

(p(p−1))p/2

⎛
⎝ ∫

Rd

P∗ fε(x)
pγd(dx)

⎞
⎠

1− p
2
⎛
⎝ ∫

Rd

∞∫

0

tL1(Pt f )pγd(dx)dt

⎞
⎠

p/2

≤ Ap

(p(p−1))p/2
‖ fε‖

(1− p
2 )p

p,γ

⎛
⎝∫

Rd

∞∫

0

tL1(Pt f )pγ(x)dxdt

⎞
⎠

p/2

≤ A′
p‖ fε‖

(1− p
2 )p

p,γ

⎛
⎝∫

Rd

f (x)pγ(x)dx

⎞
⎠

p/2

= A′
p‖ fε‖

(1− p
2 )p

p,γ ‖ f‖p2/2
p,γ ,

using Hölder’s inequality, Lemma 5.4 and the Lp-boundedness of the maximal
function P∗, (4.60). Taking ε → 0, the inequality follows.

• Case #2: p ≥ 4. Again, let f ≥ 0 be a bounded smooth function whose first and
second derivatives are also bounded. Recall that for any t > 0, Tt is a self-adjoint
operator (see 2.39). We claim that

|Pt f (x)| ≤ (Pt( f 2)(x))1/2. (5.12)

In fact,

Pt f (x) =
1√
π

∞∫

0

e−u
√

u
Tt2/4u f (x)du =

1√
π

∞∫

0

e−u
√

u

∫

Rd

Mt2/4u(x,y) f (y)dydu

=
∫

Rd

M̃t(x,y) f (y)dy,



200 5 Littlewood-Paley-Stein Theory with respect γd

where

M̃t(x,y) =
1√
π

∞∫

0

e−u
√

u
Mt2/4u(x,y)du.

Observe that

∫

Rd

M̃t(x,y)dy =
1√
π

∞∫

0

e−u
√

u

∫

Rd

Mt2/4u(x,y)dydu =
1√
π

∞∫

0

e−u
√

u
1du = 1.

and therefore, using the Cauchy–Schwartz inequality, we get

∫

Rd

M̃t(x,y) f (y)dy ≤

⎛
⎝∫

Rd

f 2M̃t(x,y) f 2(y)dy

⎞
⎠

1/2⎛
⎝∫

Rd

M̃t(x,y)dy

⎞
⎠

1/2

=

⎛
⎝∫

Rd

M̃t(x,y) f 2(y)dy

⎞
⎠

1/2

and from there (5.12) follows.

Let u(x, t) = Pt f (x); according to the semigroup property of {Pt}, we have

∂u
∂ t

(x,s+ t) = Ps

(
∂u
∂ t

(·, t)
)
(x).

Additionally we have,

∂Tt f
∂xi

(x) = e−tTt

(
∂ f
∂yi

)
(x).

Hence,
∂Pt f
∂xi

(x) = P(1)
t

(
∂ f
∂yi

)
(x),

and
∂u
∂xi

(x, t + s) = P(1)
t

(
∂u
∂xi

(·,s)
)
(x),

where {P(1)
t } is the translated Poisson–Hermite semigroup subordinated to the

translated Ornstein–Uhlenbeck semigroup {T (1)
t } defined in (2.78). Therefore,

∇xu(x, t) =
(

Pt/2

(
∂u
∂ t

(·, t/2)

)
(x),

1√
2

P(1)
t/2

(
∂u
∂x1

(·, t/2)

)
(x), . . .

,
1√
2

P(1)
t/2

(
∂u
∂xn

(·, t/2)

)
(x)

)
.
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Let φ ≥ 0 and smooth, then

∫
Rd

gγ( f )(x)2φ(x)γd(dx) =
∫

Rd

∞∫

0

t|∇xu(x, t)|2φ(x)γd(dx)dt

≤
∫

Rd

∞∫

0

t
[
|Pt/2

(
∂u
∂ t

)
(·, t/2)(x)|2

+
1
2

n

∑
i=1

|P(1)
t/2

(
∂u
∂xi

(·, t/2)

)
(x)|2

]
φ(x)γd(dx)dt

≤
∫

Rd

∞∫

0

t
[
Pt/2

((
∂u
∂ t

(·, t/2)

)2
)
(x)

+
1
2

n

∑
i=1

Pt/2

((
∂u
∂xi

(·, t/2)

)2
)
(x)

]
φ(x)γd(dx)dt,

because P(1)
t f ≤ Pt f , if f ≥ 0. Moreover, because for any t > 0, Pt is a self-adjoint

operator (3.9), we obtain

∫

Rd

gγ( f )(x)2φ(x)γd(dx)≤ 4

∞∫

0

t
∫

Rd

|∇xu(x, t)|2φ(x, t)γd(dx)dt,

where φ(x, t) = Ptφ(x). According to Lemma 5.3 with p = 2, the right-hand side
of the last inequality equals

J = 2

∞∫

0

t
∫

Rd

L1u2(x, t)φ(x, t)γd(dx)dt.

Because L1(u2φ) = (L1φ)u2 +2〈∇xφ ,∇x(u2)〉 and L1φ(x, t) = 0,

φL1(u
2) = L1(u

2φ)−2〈∇xφ ,∇x(u
2)〉.

We claim that ∫
R

d+1
+

t|L1(u
2φ)|γd(dx)dt

is finite and then F = u2φ satisfies the hypothesis of Lemma 5.4. Assume that
φ ≥ 0 is a bounded smooth function whose first and second derivatives are also
bounded. We have,

u2φ ≥ 0, |u2φ | ≤ M, |∇x(u
2φ)| ≤C

and because (u2φ)t = 2uutφ +u2φt , we obtain

t|(u2φ)t | ≤ ct|ut |+ ctφt ≤ ct(1+ |x|)e−t .
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Also,
|L1(u

2φ)| ≤ c|L1u2|+2|∇xφ ||∇x(u
2)|.

According to Lemma 5.4
∫

R
d+1
+

t|L1u2|γd(dx)dt < ∞. Also, using the Cauchy–

Schwartz inequality and the inequality (5.4), we have

∞∫

0

t|∇xφ ||∇xu2|dt ≤Cgγ( f )(x)g(φ)(x)≤ c(1+ |x|)2.

This proves the claim. Therefore, according to condition (5.11), we write

J = 2

∞∫

0

t
∫

Rd

L1(u
2(x, t)φ(x, t))γd(dx)dt −4

∞∫

0

∫

Rd

t〈|∇xφ |,∇x(u
2)〉γd(dx)dt

= I − II,

and by Lemma 5.3,

I ≤ 2
∫

Rd

f (x)2φ(x)γd(dx).

Also, using the Cauchy–Schwartz inequality

II ≤ 8
∫

Rd

P∗ f (x)gγ( f )(x)g(φ)(x)γd(dx).

Then, we obtain
∫

Rd

gγ( f )(x)2φ(x)γd(dx) ≤ 2
∫

Rd

f (x)2φ(x)γd(dx)

+8
∫

Rd

P∗ f (x)gγ( f )(x)g(φ)(x)γd(dx).

Because p ≥ 4, let us consider 1
q +

2
p = 1, and φ such that ‖φ‖q,γ ≤ 1, then, by

Hölder’s inequality, the Lp(γd) boundedness of P∗ and the Lp(γd) boundedness
of g, for q ≤ 2 we get

∫

Rd

gγ( f )2(x)φ(x)γd(dx)≤ c‖ f‖2
p,γ + c‖gγ( f )‖p,γ‖ f‖p,

for all φ ≥ 0,‖φ‖q,γ ≤ 1. Therefore,

‖gγ( f )2‖p/2,γ ≤ c‖ f‖2
p,γ + c‖gγ( f )‖p,γ‖ f‖p,

which implies the result.
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• Case #3: 2 ≤ p < 4. The result follows by the Riesz–Thorin interpolation theo-
rem, Theorem 10.21.

The inequality (5.20) has been proved for f ≥ 0, a bounded smooth function whose
first and second derivatives are also bounded. For a general function f , using the
density of those functions on Lp(γd), we write f as a difference of its positive and
negative part f = f+− f − and, approximating each part by an increasing sequence
of bounded smooth function, whose first and second derivatives are also bounded,
we get (5.1) in full generality. ��

It is easy to see that the proof is still true for Hilbert space valued functions. This
observation is crucial for the proof of Theorem 5.13.

Additionally, time and spatial Gaussian Littlewood–Paley g functions can be de-
fined.

Definition 5.5.

gt,γ( f )(x) =

(∫ ∞

0

∣∣∣∣t ∂Pt f
∂ t

(x)

∣∣∣∣
2 dt

t

)1/2

, (5.13)

and

gx,γ( f )(x) =

(∫ ∞

0
|t∇xPt f (x)|2 dt

t

)1/2

. (5.14)

Observe that g2
γ = g2

t,γ + g2
x,γ . Moreover, because these functions are bounded

pointwise by gγ then, from Theorem 5.2, it is immediate that they are also Lp(γd)-
bounded, 1 < p < ∞. Moreover, we have

Theorem 5.6. For 1 < p < ∞, there exist constants Cp,C′
p,C”p such that,

Cp‖ f‖p,γ ≤ ‖gγ( f )‖p,γ , (5.15)

C′
p‖ f‖p,γ ≤ ‖gt,γ( f )‖p,γ , (5.16)

and
C”p‖ f‖p,γ ≤ ‖gx,γ( f )‖p,γ , (5.17)

Proof. Let us prove (5.16). Following E. Stein’s proof [252, Chapter IV, §1], observe
first that

‖gt,γ( f )‖2,γ =
1
2
‖ f‖p2,γ ,

for f ∈ L2(γd). Let us check this identity on the Hermite polynomials {Hν},

‖gt,γ(Hν)‖2
2,γ =

∫
Rd

(∫ ∞

0

∣∣∣∣t ∂PtHν
∂ t

(x)

∣∣∣∣
2 dt

t

)
γd(dx)

=

∫
Rd

(∫ ∞

0

∣∣∣∣t d
dt
(e−

√
|ν | t)Hν(x)

∣∣∣∣
2 dt

t

)
γd(dx)

=
∫
Rd

(∫ ∞

0
t(−

√
|ν |)2e−2

√
|ν | tdt

)
|Hν(x)|2γd(dx)

= |ν |
∫ ∞

0
te−2

√
|ν | tdt

∫
Rd

|Hν(x)|2γd(dx) =
1
4
‖Hν‖2

2,γ .
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Then, by polarization, we get

4
∫
Rd

(∫ ∞

0
t
∂Pt f
∂ t

(x)
∂Pth
∂ t

(x)dt
)
γd(dx) =

∫
Rd

f (x)h(x)γd(dx),

for f ,h ∈ L2(γd). This identity leads, using the Cauchy–Schwarz inequality, to the
inequality

1
4

∣∣∣
∫
Rd

f (x)g(x)γd(dx)
∣∣∣≤

∫
Rd

gt,γ( f )(x)gt,γ(g)(x)γd(dx).

Now, for f ∈ L2(γd)∩Lp(γd), 1 < p < ∞, and q such that 1
p +

1
q = 1, we get by the

duality argument, and using Hölder’s inequality

‖ f‖p,γ = sup
h∈L2(γd)∩Lq(γd),‖h‖q,γ≤1

∣∣∣
∫
Rd

f (x)h(x)γd(dx)
∣∣∣

≤ 4 sup
h∈L2(γd)∩Lq(γd),‖h‖q,γ≤1

∣∣∣
∫
Rd

gt,γ( f )(x)gt,γ(h)(x)γd(dx)
∣∣∣

≤ 4 sup
h∈L2(γd)∩Lq(γd),‖h‖q,γ≤1

‖gt,γ( f )‖p,γ‖gt,γ(h)‖q,γ ≤Cp‖gt,γ( f )‖p,γ .

The passage to the general case is provided by a standard limiting argument. ��

Also, in [122], C. Gutiérrez considered the following Gaussian Littlewood–Paley

functions, associated with the translated Poison–Hermite semigroup {P(1)
t }{t≥0}

(see 3.56).

Definition 5.7.

g(1)+,γ( f )(x) =
(∫ ∞

0
(|t∇P(1)

t f (x)|2 +(tP(1)
t f (x))2)

dt
t

)1/2
, (5.18)

g(1)t,γ ( f )(x) =
(∫ ∞

0

∣∣∣t ∂P(1)
t f
∂ t

(x)
∣∣∣2 dt

t

)1/2
. (5.19)

For those functions, Gutiérrez proves the following result.

Theorem 5.8. For 1 < p <∞, there exist constants Cp and C′
p, depending only on p,

such that for all f ∈ Lp(γd)

||g(1)+,γ( f )||p,γ ≤Cp|| f ||p,γ , (5.20)

and
|| f ||p,γ ≤C′

p||g
(1)
t,γ ( f )||p,γ . (5.21)
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Proof. The proof of (5.20) is essentially analogous to that of Theorem 5.2, but work-

ing with the translated Poisson–Hermite semigroup {P(1)
t }t and the operator

L2u(x, t) =
∂ 2u(x, t)
∂ t2 +Lu(x, t)−u(x, t) = L1u(x, t)−u(x, t)

(for details see Gutiérrez’s article [122, Theorem 2]).

To prove the inequality (5.21), we know that the operator

L =
1
2
Δx −〈x,∇x〉− Id

has as eigenfunctions the Hermite polynomials hν with eigenvalues |ν |+ 1. Then,
given f ∈ L2(γd) with Hermite expansion f =∑ν f̂H(ν)hν , for each t > 0, the trans-

lated Poisson operator u(x, t) = P(1)
t f (x) has expansion

∑
ν

e−t
√

|ν |+1 f̂H(ν)hν ;

therefore,
∂u
∂ t

∼ −∑
ν

√
|ν |+1e−t

√
|ν |+1 f̂H(ν)hν .

Now, according to Parseval’s identity, we have

∫
Rd

∣∣∣∂u(x, t)
∂ t

∣∣∣2γd(dx) =−∑
α
(|ν |+1)e−2t

√
|ν |+1( f̂H(ν))2;

hence,

∫
Rd
(g(1)t,γ ( f )(x))2γd(dx) =

∫ ∞

0
t
∫
Rd

∣∣∣∂u(x, t)
∂ t

∣∣∣2γd(dx)dt

=∑
ν

(∫ ∞

0
t(|ν |+1)e−2t

√
|ν |+1dt

)
( f̂H(ν))2=

1
4∑ν

( f̂H(ν))2.

Then,
4||g(1)t,γ ( f )||22,γ =∑

ν
( f̂H(ν))2 = || f ||22,γ

and using the polarization argument in the last equality, we obtain

4
∫ ∞

0
t
∫
Rd

∂u1(x, t)
∂ t

∂u2(x, t)
∂ t

γd(dx)dt =
∫
Rd

f1(x) f2(x)γd(dx)dt,

where ui(x, t) = P(1)
t fi(x), fi ∈ L2(γd), i = 1,2.
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If f ∈ L2(γd)∩ Lp(γd), then, by duality, using Cauchy–Schwartz and Hölder’s
inequalities, we get

‖ f‖p,γ = sup
h∈L2(γd)∩Lq(γd),‖h‖q,γ≤1

∣∣∣
∫
Rd

f (x)h(x)γd(dx)
∣∣∣

= 4 sup
h∈L2(γd)∩Lq(γd),||h||q,γ≤1

∣∣∣
∫ ∞

0
t
∫
Rd

∂u f (x, t)

∂ t
∂uh(x, t)

∂ t
γd(dx)dt

∣∣∣

≤ 4 sup
h∈L2(γd)∩Lq(γd),||h||q,γ≤1

∫
Rd

g(1)t,γ ( f )(x)g(1)t,γ (h)(x)γd(dx)

≤ 4 sup
h∈L2(γd)∩Lq(γd),||h||q,γ≤1

||g(1)t,γ ( f )||p,γ ||g(1)t,γ (h)||q,γ

≤ Cp||g(1)1 ( f )||p,γ ,

using (5.20). ��

In his doctoral dissertation, R. Scotto [244] proved the weak type (1,1) for the
function gγ .

Theorem 5.9. (R. Scotto) There exists a constant C =Cd dependent only on dimen-
sion, such that for any function f ∈ L1(γd)

γd

({
x ∈ R

d : gγ( f )(x)> λ
})

≤ Cd

λ
‖ f‖1,γ (5.22)

Scotto proved this result by adapting the technique developed by Sjögren for the
maximal function of the Ornstein–Uhlenbeck semigroup, splitting the operator into
a local part and a global part using as the local region NR defined in (4.62). First,
Scotto considers the representation of gγ (5.3) and studies the components of the
kernel K(x,y), see [245]. From (3.13) we have,

K0(t,x,y) = t
∂ p(t,x,y)

∂ t
(5.23)

=
t

2π(d+1)/2

∫ 1

0

exp
(
t2/4logr

)
(− logr)3/2

(1− t2

2(− logr)
)

exp
(

−|y−rx|2
1−r2

)

(1− r2)d/2

dr
r
.

= − 1

22π(d+1)/2

∫ 1

0
ϕ1(t,r)

exp
(

−|y−rx|2
1−r2

)

(1− r2)d/2

dr
r
.

where,

ϕ1(t,r) =Cd
t exp

(
t2/4logr

)
(− logr)3/2

H2(
t

2
√
− logr

),

and H2 is the Hermite polynomial of order 2.
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For the function ϕ1(t,r), we have

|ϕ1(t,r)| ≤
Cd

(− logr)3/2
exp

(
t2/c logr

)
,

because |x|e|x|2 ≤Ce−|x|2/c ≤C for some c > 0, and
∫ 1

0
ϕ1(t,r)

dr
r

= 0,

for all t > 0, because taking the change of variables u = t
2
√

(− logr)
, integrating by

parts and using the orthogonality of the Hermite polynomials, we get
∫ 1

0
ϕ1(t,r)

dr
r

=Cd

∫ +∞

0
H2(u)e

−u2
du = 0.

Let τ1(t,r) :=
∫ r

0 ϕ1(t,s) ds
s , then, for every 0 < r < 1,

‖τ1(·,r)‖2
L2((0,∞),dt/t) =

∫ ∞

0

(∫ r

0
ϕ1(t,s)

ds
s

)2 dt
t
,

Splitting the integral in t into the sum of the integral over the intervals
[0,(− logr)1/2] and [(− logr)1/2,∞) and using previous estimates, it is easy to
prove that ‖τ1(·,r)‖2

L2((0,∞),dt/t)
is finite and independent of r.

Now, because ∂τ1
∂ r (t,r) =

ϕ(t,r)
r , using integration by parts we get

K0(t,x,y) =
∫ 1

0

[2(xr− y)(x− ry)

(1− r2)(d+4)/2
− rd

(1− r2)(d+2)/2

]
exp

(
−|y− rx|2

(1− r2)

)
τ1(t,r)dr.

On the other hand, for j = 1, · · · ,d, using (3.14), we get

Kj(t,x,y) =
t√
2

∂ p(t,x,y)
∂x j

(x,y) (5.24)

=
t

2
√

2π(d+1)/2

∫ 1

0

exp
(
t2/4logr

)
(− logr)3/2

(y j − rx j)

(1− r2)(d+2)/2
exp

(
−|y− rx|2

1− r2

)
dr
r

= Cd

∫ 1

0
t
exp

(
t2/4logr

)
(− logr)

ω(r)
(y j − rx j)

(1− r2)(d+3)/2
exp

(
−|y− rx|2

1− r2

)
dr,

Next, Scotto uses the vector representation of gγ (5.3), and decomposes it into a
local part and a global part.

gγ( f )(x) = |
∫
Rd

K(x,y) f (y)dy|2

= |
∫

Nx
R

K(x,y) f (y)dy|2 + |
∫
Rd\Nx

R

K(x,y) f (y)dy|2

= gL,γ( f )(x)+gG,γ( f )(x).
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Then, he follows P. Sjögren’s proof of Theorem 4.20. The argument is very long and
technical (for details see [244]; see also [77]). Nevertheless, we discuss later in more
detail a simplified version of the proof for the weak type (1,1) for the higher order
Gaussian Littlewood–Paley g functions (see Theorem 5.14), which happens to be
essentially analogous to this one.

Alternatively, the weak type (1,1) of gγ function can be proved using S. Pérez
and F. Soria’s approach ([221] and [223]); considering as the local region Bh(x) =
B(x,d m(x)) and splitting gγ into a local part,

gL,γ f (x) = gγ( f χBh(·))(x)

and a global part
gG,γ = gγ( f χBc

h(·))(x)

Theorem 5.10. (Pérez-Soria)

i) The local part gL,γ of gγ is of weak type (1,1) with respect to the Gaussian
measure, that is, there exists a constant Cd such that

γd

({
x ∈ R

d : gL,γ f (x)> λ
})

≤ Cd

λ
‖ f‖1,γ , (5.25)

and Lp(Rd)-bounded, for 1 < p < ∞, that is, for each 1 < p < ∞, there exists a
constant Cd,p such that

‖gL,γ f‖p,γ ≤Cd,p‖ f‖p,γ . (5.26)

ii) For the global part gG,γ f we have,

gG,γ( f )(x)≤
∫
{y:|x−y|≥Cdm(x)}

K (x,y)| f (y)|dy, (5.27)

where K (x,y) is the Gaussian maximal kernel defined in (4.40). Consequently,

gG,γ( f )(x)≤ T f (x) =
∫

Rd

K (x,y) f (y)dy

where T is the maximal Gaussian operator defined in (4.46); therefore gG,γ is of
weak type (1,1) with respect to the Gaussian measure.

Proof. Again, we are going to use (5.3), the vector representation of gγ .
From (3.6), we have

∂ p(t,x,y)
∂ t

= Cd

∫ 1

0

(
1+

t2

2 log
√

1− v

) e
t2

4log
√

1−s

(− log
√

1− v)3/2

e−
|y−

√
1−vx|2
v

vd/2

dv
1− v

= Cd

∫ 1

0

(
1+

t2

2 log
√

1− v

) e
t2

4log
√

1−s

(− log
√

1− v)3/2

e−u(v)

vd/2

dv
1− v

,
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and, by integration by parts, we have

∂ p(t,x,y)
∂ t

= Cd

∫ 1

0

∂
∂ s

(∫ s

0

(
1+

t2

2 log
√

1− v

) e
t2

4log
√

1−s

(− log
√

1− v)3/2

dv
1− v

) e−u(s)

sd/2
ds

= Cd

∫ 1

0

(∫ s

0

(
1+

t2

2 log
√

1− v

) e
t2

4log
√

1−s

(− log
√

1− v)3/2

dv
1− v

) e−u(s)

sd/2

(
u′(s)+

d
2s

)
ds

=
∫ 1

0
Ψ(t,s)

e−u(s)

sd/2

( d
2s

− 2(|x|2 + |y|2)
√

1− s−2(2− s)〈x,y〉
2s2

√
1− s

)
ds,

with Ψ(t,s) = Cd
∫ s

0

(
1+ t2

2 log
√

1−v

)
e

t2

4log
√

1−s

(− log
√

1−v)3/2
dv

1−v . Here, we have used the

fact that
∫ 1

0

(
1+

t2

2 log
√

1− v

) e
t2

4log
√

1−s

(− log
√

1− v)3/2

dv
1− v

= 0;

which can also be proved by integration by parts (see [245]). Thus,

K0(t,x,y) = t
∫ 1

0
Ψ(t,s)

e−u(s)

sd/2

( d
2s

− 2(|x|2 + |y|2)
√

1− s−2(2− s)〈x,y〉
2s2

√
1− s

)
ds.

Using the similar arguments done by R. Scotto (see above and [245] or [223]), it can
be proved that the H2-norm

|Ψ(t, ·)|2 =Cd

(∫ ∞

0
t
[∫ s

0

(
1+

t2

2 log
√

1− v

) e
t2

4log
√

1−s

(− log
√

1− v)3/2

dv
1− v

]2
ds
)1/2

≤C,

(5.28)
uniformly in 0 ≤ t ≤ 1.

On the other hand, again using (3.6), we have

∂ p(t,x,y)
∂x j

= −Cd

∫ 1

0

e
t2

4log
√

1−v

(− log
√

1− v)3/2
(y j −

√
1− vx j)

e−
|y−

√
1−vx|2
v

vd/2+1

dv√
1− v

;

therefore,

Kj(t,x,y) = −Cd

∫ 1

0
t

e
t2

4log
√

1−v

(− log
√

1− v)3/2
(y j −

√
1− vx j)

e−
|y−

√
1−vx|2
v

vd/2+1

dv√
1− v

.

Now, let us first consider ii). Using Minkowski’s inequality and (5.28), we have

|K0(·,x,y)|2 ≤C
∫ 1

0

e−u(s)

sd/2

∣∣∣u′(s)+
d
2s

∣∣∣ ds =C
∫ 1

0

∣∣∣ϕ ′(s)
∣∣∣ds,
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where ϕ(s) was considered in the proof of Proposition 4.23 (see 4.41). Using similar
arguments to those used there (see also [223]), we can conclude that

|K0(·,x,y)|2 ∼ K (x,y).

Now, for the partial derivatives in the spatial variable, observe that, for j = 1, · · · ,d

|Kj(t,x,y)| = Cd

∣∣∣
∫ 1

0
t

e
t2

4log
√

1−v

(− log
√

1− v)3/2
(y j −

√
1− vx j)

e−
|y−

√
1−vx|2
v

vd/2+1

dv√
1− v

∣∣∣

≤ Cd

∫ 1

0
t

e
t2

4log
√

1−v

(− log
√

1− v)
|u(v)|1/2 e−u(v)

vd/2+1

dv√
1− v

.

It is easy to check that, for any v ∈ (0,1)

∫ ∞

0
t
( te

t2

4log
√

1−v

(− log
√

1− v)

)2
dt ≤C.

Therefore, using Minkowski’s inequality

(∫ ∞

0

∣∣∣Kj(t,x,y) f (x)|2 dt
t

)1/2
≤

∫
Bc

h(x)
|Kj(·,x,y)|2| f (y)|dy

≤
∫

Bc
h(x)

(∫ 1

0
|u(v)|1/2 e−u(v)

vd/2+1

dv√
1− v

)
| f (y)|dy.

Then, using Lemma 4.38 we get that this is bounded by K (x,y). Finally, again using
Minkowski’s inequality,

gG,γ( f )(x) ≤ C
∫

Bc
h(x)

(
|K0(·,x,y)|2 +

d

∑
j=1

|Kj(·,x,y)|2
)
| f (y)|dy

≤ Cd

∫
Bc

h(x)
K (x,y)| f (y)|dy ≤Cd

∫
Rd

K (x,y)| f (y)|dy = T | f |(x)

and from Theorem 4.24, we know that T is of weak type (1,1) with respect to the
Gaussian measure γd .

Now, let us prove i). Consider the vector valued kernel

K̃(t,x) = (K̃0(t,x), K̃1(t,x), · · · , K̃d(t,x)),

whose components are given by

K̃0(t,x) = t
∫ 1

0
Ψ(t,s)

e−|x|2/s

sd/2

( d
2s

− |x|2
2s2

√
1− s

)
ds,
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and, for j = 1, · · · ,d,

K̃ j(t,x) =
∫ 1

0
t

e
t2

4log
√

1−v

(− log
√

1− v)3/2

−x je−
|x|2

v

vd/2+1

dv√
1− v

.

It is easy to check, because |Ψ(t, ·)|2 ≤C, that

| ̂̃K(t, ·)|2 ≤C and |∇xK̃(t, ·)|2 ≤ C
|x|n+1 .

Thus, from the classical Calderón–Zygmund theory (see for instance E. Stein [252,
Chapter II]), the operator defined as,

Θ f (x) = |(K̃(t, ·)∗ f )(x)|2 =
∣∣∣
∫
Rd

K̃(t,x− y) f (y)dy
∣∣∣
2
,

is a Calderón–Zygmund operator and therefore of weak type (1,1) and Lp(Rd)-
bounded, 1 < p <∞ with respect to the Lebesgue measure. Also, it is not difficult to
see that

|(K̃(t, ·)∗ f )(x)|2 ≤ C
|x|n ,

Therefore,Θ satisfies the required boundedness properties of Theorem 4.33 because
using Minkowski’s inequality

Θ f (x) = |(K̃(t, ·)∗ f )(x)|2 ≤
d

∑
i=0

∫
Rd

|K̃i(·,x− y)|2| f (y)|dy ≤C
∫
Rd

| f (y)|
|x− y|d dy.

Hence, it is of weak type (1,1) and Lp(γd)-bounded, for 1 < p < ∞.

Now, because

gL,γ( f )(x) =
∣∣∣
∫

Bh(x)
K(·,x,y) f (y)dy

∣∣∣
2

≤ |
∫

Bh(x)
K̃(·,x− y) f (y)dy|2 +

∣∣∣
∫

Bh(x)
(K(·,x,y)− K̃(·,x− y)) f (y)dy

∣∣∣
2
.

To conclude the proof, we have that it can be proved that the operator defined by

Θ̃ f (x) =
∣∣∣
∫

Bh(x)
(K(·,x,y)− K̃(·,x− y)) f (y)dy

∣∣∣
2

is bounded by an operator with kernel 1+|x|2
|x−y|d−1/2 and therefore Lp(γd)-bounded for

1 ≤ p < ∞, using similar arguments to those done in Theorem 9.17. ��
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5.2 The Higher Order Gaussian Littlewood–Paley g Functions

In this section, we study the higher order Gaussian Littlewood–Paley–Stein func-
tions. We see that they are Lp(γ) bounded for any 1 < p < ∞ and for the case p = 1,
we see that some of them are of weak type (1,1) but others are not.

They were defined by C. Gutiérrez, C. Segovia, and J. L. Torrea in their article
[124]. Their pointwise definition is as follows

Definition 5.11. For f ∈ L1(γd), the higher order time Gaussian Littlewood–Paley g
function is defined as

gk
t,γ( f )(x) =

(∫ +∞

0

∣∣∣∣tk ∂ kPt f
∂ tk (x)

∣∣∣∣
2

dt
t

) 1
2

, (5.29)

and the higher order spatial Gaussian Littlewood–Paley g function is defined as

gk
x,γ( f )(x) =

(∫ +∞

0
|tk∇k

xPt f (x)|2 dt
t

) 1
2

(5.30)

with ∇k
x =

(
∂ |β |

∂xβ1
···∂xβk

)
β∈Γk

the gradient operator of order k, and the norm | |,

which appears in the integral of gk
2, is the Euclidean norm in R

dk
.

Additionally, for f(x) = ( fβ (x))β∈Λk
, we define the vector version of the higher

order time Gaussian Littlewood–Paley g function, as

gk
t,γ(f)(x) =

(∫ ∞

0
∑
β∈Λk

∣∣∣tk ∂
kP(k)

t fβ
∂ tk (x)

∣∣∣2 dt
t

)1/2
, (5.31)

where for β = (β1, · · · ,βk), and P(k)
t is the translated Poisson–Hermite semi-

group (3.56).

As before, it is clear that gk
t,γ can be written as

gk
t,γ( f )(x) =

(∫ ∞

0
t2k−1

∣∣∣∂ kPt f
∂ tk (x)

∣∣∣2dt
)1/2

.

Nevertheless, the former representation is more convenient, because it allows a vec-
tor interpretation, using the space L2((0,∞), dt

t ). Also, we have

Proposition 5.12. For any k ∈ N, we have the following pointwise inequality

gk
t,γ( f )(x)≤ gk+1

t,γ ( f )(x). (5.32)

Proof. The proof is by induction. For k = 1, according to the fundamental theorem
of calculus and the Cauchy–Schwartz inequality
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∣∣∣∂Pt f
∂ t

(x)
∣∣∣ ≤

∫
t

∣∣∣∂ 2Ps f
ds2

∣∣∣ds =
∫

t
s
∣∣∣∂ 2Ps f

ds2

∣∣∣ds
s

≤
(∫

t
s2
∣∣∣∂ 2Ps f

ds2

∣∣∣2ds
)1/2

t−1/2.

Hence, using Fubini’s theorem

gt,γ( f )(x) =

(∫ +∞

0
t

∣∣∣∣∂Pt f
∂ t

(x)

∣∣∣∣
2

dt

) 1
2

≤
(∫ +∞

0

(∫
t
s2
∣∣∣∂ 2Ps f

ds2

∣∣∣2ds
)

dt

) 1
2

=

(∫ +∞

0
s3

∣∣∣∣∂
2Ps f
∂ s2 (x)

∣∣∣∣
2

ds

) 1
2

= g2
t,γ( f )(x).

To prove the induction hypothesis, the argument is completely analogous. ��

In [124], C. Gutiérrez, C. Segovia, and J. L. Torrea prove the following:

Theorem 5.13. For 1 < p < ∞, the Littlewood–Paley functions gk
t,γ , gk

x,γ are Lp(γd)-
bounded, that is, there exists a constant Cp such that for all f ∈ Lp(γd),

||gk
t,γ( f )||p,γ ≤Cp|| f ||p,γ , (5.33)

and there exists a constant C′
p such that for all f ∈ Lp(γd),

||gk
x,γ( f )||p,γ ≤C′

p|| f ||p,γ ; (5.34)

there also exists a constant C”p such that for all f ∈ Lp(γd),

|| |f| |||p,γ ≤Cp||gk
t,γ(f)||p,γ . (5.35)

Proof. Let us prove (5.33) using induction in k. If k = 1, it is clear, by definition, that
g1

t,γ = gt,γ ; thus,

||g1
t,γ( f )||p,γ ≤ ||gγ( f )||p,γ ;

therefore, using Theorem 5.2, we get

||g1
t,γ( f )||p,γ ≤Cp|| f ||p,γ .

Thus, ∥∥∥
(∫ ∞

0

∣∣∣t ∂Pt f
∂ t

f
∣∣∣2 dt

t

)1/2∥∥∥
p,γ

≤Cp|| f ||p,γ . (5.36)

Considering the vector inequality (see [124, Corollary, Theorem 2]):

(∫
X

(∫
M

∫
Ω
|T̃ f (x,ω,μ)|2dμdω

)p/2
dρ(x)

)1/p

≤Cp||T ||p
(∫

X

(∫
M

| f (x,μ)|2dμ
)1/2

dρ(x)
)1/p

,
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with

X =R
d ,dρ(x) = γd(dx),M = (0,∞),μ = t,dμ =

dt
t
,Ω = (0,∞),ω = s,dω =

ds
s

and considering T = S1 = t ∂Pt
∂ t : Lp(γd)→ Lp

L2((0,∞), dt
t )
(γd) then

S̃1 f (x, t,s) =: Lp
L2((0,∞), dt

t )
(γd)→ Lp

L2((0,∞), dt
t )
(γd)

defined as

S̃1 f (x, t,s) = s
∂Ps f
∂ s

(x, t),

for any f ∈ L2((0,∞), dt
t ). We have,

∥∥∥
(∫ ∞

0

∫ ∞

0

∣∣∣s∂Psh
∂ s

(x, t)
∣∣∣2 dt

t
ds
s

)1/2∥∥∥
p,γ

≤Cp

∥∥∥
(∫ ∞

0
|h(x, t)|2 dt

t

)1/2∥∥∥
p,γ
. (5.37)

Assuming now that (5.36) holds up to a given k. Taking

h(x, t) = Sk f (x, t) = tk ∂ kPt f
∂ tk (x).

and applying (5.37) we obtain
∥∥∥
(∫ ∞

0

∫ ∞

0

∣∣∣s∂Ps

∂ s

(
tk ∂ kPt f

∂ tk (x)
)∣∣∣2 dt

t
ds
s

)1/2∥∥∥
p,γ

≤ Cp

∥∥∥
(∫ ∞

0

∣∣∣tk ∂ kPt f
∂ tk (x)

∣∣∣2 dt
t

)1/2∥∥∥
p,γ

≤ Cp,k|| f ||p,γ .
Then, taking the change of variables u = t + s and using Fubini’s theorem
∫ ∞

0

∫ ∞

0

∣∣∣s∂Ps

∂ s

(
tk ∂ kPt f

∂ tk (x)
)∣∣∣2 dt

t
ds
s

=
∫ ∞

0

∫ ∞

0

∣∣∣stk ∂
∂ s

∂ kPs+t f
∂ tk (x)

∣∣∣2 dt
t

ds
s

=
∫ ∞

0

∫ ∞

0

∣∣∣stk ∂ k+1Pu f
∂uk+1 (x)

∣∣∣
u=t+s

∣∣∣2 dt
t

ds
s

=
∫ ∞

0

∫ ∞

s

∣∣∣s(u− s)k ∂ k+1

∂uk+1 Pu f (x)
∣∣∣2 du

u− s
ds
s

=
∫ ∞

0

∫ u

0

∣∣∣s(u− s)k ∂ k+1Pu f
∂uk+1 (x)

∣∣∣2 ds
s

du
u− s

=
1

2k(2k+1)

∫ ∞

0

∣∣∣uk+1 ∂ k+1Pu f
∂uk+1 (x)

∣∣∣2 du
u

=
1

2k(2k+1)
(gk+1

t,γ ( f )(x))2.

This implies

||gk+1
t,γ ( f )||p,γ ≤ 2k(2k+1)Cp|| f ||p,γ =Cp,k|| f ||p,γ .

The proofs of the Lp(γd)-boundedness for the function gk
x,γ , and of the inequal-

ity (5.35), are also by induction on k, and uses another vector inequality (for details
see [124, Theorem 2]) ��.
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On the other hand, they proved the opposite inequality from gk
t,γ( f )(·).

Theorem 1. Given 1 < p < ∞, let k ≥ 1, there exists a constant Bp,k > 0 such that
for every polynomial f , we have

‖ f‖p,γd
≤ Bp,k

∥∥∥gk
t,γ( f )

∥∥∥
p,γd

. (5.38)

In [87], R. Scotto studies the weak type (1,1) for the gk
t,γ and gk

x,γ functions in
detail.

Theorem 5.14. (Scotto) There exists a constant C, depending on d and k, such that
for every f ∈ L1(dγ) and every λ > 0,

γd

({
x ∈ R

d : gk
t,γ f (x)> λ

})
≤ C

λ
|| f ||1,γ . (5.39)

For k = 1 or k = 2, gk
2,γ satisfies,

γd

({
x ∈ R

d : gk
x,γ f (x)> λ

})
≤ C

λ
|| f ||1,γ , (5.40)

but if k > 2 then gk
x,γ need not satisfy (5.40).

Before proving this theorem, let us make the following remarks:

1. As in the case of gγ , the operator gk
1,γ can be viewed as a vector valued singular

integral operator( see [252]). Let A1 = C be the set of complex numbers and

A2 = L2((0,+∞),
dt
t
),

the space of C-valued measurable functions, which are square integrable on
(0,+∞) with respect to the measure dt

t . For h ∈ A2, let

|h|2 =
(∫ +∞

0
|h(t)|2 dt

t

)1/2
.

Let B(A1,A2) be the set of bounded linear transformations from A1 to A2; it can
be identified with A2. Thus,

gk
t,γ f (x) =

∣∣∣∣p.v.
∫
Rd

Kk
0(·,x,y) f (y)dy

∣∣∣∣
2
,

where,

Kk
0(t,x,y) =

∫ 1

0
tk ∂ k p(t,x,y)

∂ tk

e
− |rx−y|2

1−r2

(1− r2)
d
2

dr
r

=
tk

2π(d+1)/2

∫ 1

0

e(t2/4logr)

(− logr)3/2

Hk+1

(
t

2(− logr)1/2

)

(− logr)
k−1

2

e
− |rx−y|2

1−r2

(1− r2)
d
2

dr
r

=
∫ 1

0

e
− |rx−y|2

1−r2

(1− r2)
d
2

ϕk(t,r)
dr
r
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where Hk+1 is the Hermite polynomial of degree k+1, and

ϕk(t,r) =Cd
tk exp

(
t2/4logr

)
(− logr)3/2

Hk+1

(
t

2(− logr)1/2

)

(− logr)
k−1

2

.

For the function ϕk(t,r), we then have

|ϕk(t,r)| ≤
Cd

t
e

t2
8logr

(− logr)3/2
,

for t > 0, 0 < r < 1, and ∫ 1

0
ϕk(t,r)

dr
r

= 0,

for all t > 0, which follows from the change of variables u = t
2
√
− logr

and using
the orthogonality property of the Hermite polynomials, or equivalently integrat-
ing by parts k−1 times. Indeed,

∫ 1

0
ϕk(t,r)

dr
r

= Ck

∫ +∞

0
uk−1Hk+1(u)e

−u2
du

= Ck(−1)k+1
∫ +∞

0
uk−1 dk+1

duk+1

(
e−u2

)
du

= Ck(k−1)!
∫ +∞

0
H2(u)e

−u2
du = 0.

Now, integrating by parts

Kk
0(t,x,y) =

∫ 1

0

e
− |rx−y|2

1−r2

(1− r2)
d
2

ϕk(t,r)
dr
r

(5.41)

=
∫ 1

0

e
− |rx−y|2

1−r2

(1−r2)
d
2

∂
∂ r

(∫ r

0
ϕk(t,s)

ds
s

)
dr =−

∫ 1

0

∂
∂ r

⎛
⎜⎝e

− |rx−y|2
1−r2

(1−r2)
d
2

⎞
⎟⎠τk(t,r)dr

(5.42)

where τk(t,r) =
∫ r

0 ϕk(t,s)
ds
s . Hence,

Kk
0(t,x,y) =

∫ 1

0

[
2(rx− y).(x− ry)

(1− r2)
d+4

2

− rd

(1− r2)
d+2

2

]
e
− |rx−y|2

1−r2 τk(t,r)dr,

2. τk(·,r) ∈ A2 and |τk(.,r)|2 is bounded by a constant independent of r. Indeed,

|τk(·,r)|2 =
∫ +∞

0

(∫ r

0
ϕk(t,s)

ds
s

)2 dt
t

=
∫ (− logr)1/2

0

(∫ r

0
ϕk(t,s)

ds
s

)2 dt
t

+
∫ +∞

(− logr)1/2

(
−
∫ 1

r
ϕk(t,s)

ds
s

)2 dt
t
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where in the inner integral of the second term we use remark 1 to replace∫ r
0 ϕk(t,s)ds/s by −

∫ 1
r ϕk(t,s)ds/s. Then, we use remark 1 5.2 above to bound

|ϕk(t,s)| in the inner integrals of both terms. Once this is done, we make the
change of variables − logr = t2v and then |τk(·,r)|2 turns out to be bounded by

C

⎡
⎣∫ (− logr)1/2

0

(∫ +∞

− logr
t2

v−3/2 dv

)2
dt
t
+
∫ +∞

(− logr)1/2

(∫ − logr
t2

0
dv

)2
dt
t

⎤
⎦ ,

which is a constant independent of r.

3. For every f ∈ L1(dγ), Pt f (x) turns out to be a smooth function

|∇k
xPt f (x)|2 = ∑

1 ≤ β j ≤ d
1 ≤ j ≤ k

∣∣∣∣ ∂ k

∂xβ1
· · ·∂xβk

Pt f (x)

∣∣∣∣
2

=C ∑
|α |=k

|∂αPt f (x)|2

where α = (α1, . . . ,αd) is a multi-index with non-negative integer entries, |α|=
α1 + · · ·+αd , and ∂α = ∂ k

∂x
α1
1 ···∂x

αd
d

. Thus

gk
x,γ f (x) =C

(∫ +∞

0
∑

|α |=k

∣∣∣tk∂αPt f (x)
∣∣∣2 dt

t

) 1
2

.

4. The operator gk
x,γ can also be viewed as a vector-valued singular integral operator

with A1 =C and A2 the direct sum of

(
k+d −1

d −1

)
copies of L2((0,+∞),dt/t).

Let

|h|2 =
(∫ +∞

0
∑

|α |=k

|hα(t)|2
dt
t

)1/2

for h = (hα)|α |=k ∈ A2. Here, B(A1,A2) can also be identified with A2. Thus,

gk
x,γ f (x) =

∣∣∣∣p.v.
∫
Rd

Kk(·,x,y) f (y)dy

∣∣∣∣
2

where, by (3.15), Kk(t,x,y) = (Kk
ν(t,x,y))|ν |=k, with

Kk
ν(t,x,y) =Cd,k

∫ 1

0
ηk(t,r) ωkI Hν

(
rx− y√
1− r2

)
e
− |rx−y|2

1−r2

(1− r2)
d+2

2

dr

with

ηk(t,r) =
tk+1e

t2
4logr

(− logr)
k+1

2

, ωk(r) = rk−1
(
− logr
1− r2

) k−2
2

.
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5. By direct computation, we can easily see that |ηk(·,r)|L2((0,+∞),dt/t) is bounded
by a constant independent of r. In addition, ω1(r) is a bounded function on
(0,1), and for k ≥ 2, ωk(r)≤Cr on the same interval.

We are ready to prove Theorem 5.14.

Proof. gk
t,γ f can be bounded as

gk
t,γ f (x) ≤ gk

t,L f (x)+gk
t,G f (x)

=

∣∣∣∣p.v.
∫

Nx

Kk
0(·,x,y) f (y)dy

∣∣∣∣
2

+

∫
Rd\Nx

|Kk
0(·,x,y)|2 | f (y)| dy.

Similarly, for k = 1 or k = 2,

gk
x,γ f (x) ≤ gk

x,L f (x)+gk
2,G

=

∣∣∣∣p.v.
∫

Nx

Kk(·,x,y) f (y)dy

∣∣∣∣
2

+
∫
Rd\Nx

|Kk(·,x,y)|2 | f (y)| dy.

Analogous to the proof of Theorem 5.10, the kernels of gk
t,G, |Kk

0(·,x,y)|2, and of

g1
x,G, |K1(·,x,y)|2, on R

d \Nx, can be bounded by the maximal Gaussian kernel (4.40)

K (x,y) =

⎧⎨
⎩

e−|y|2 if 〈x,y〉 ≤ 0(
|x+y|
|x−y|

)2
e−

|y|2−|x|2
2 − |x−y||x+y|

2 if 〈x,y〉> 0.

Indeed, by applying Minkowski’s integral inequality to Kk
0 and remark 2 above, we

get

|Kk
0(·,x,y)|2 ≤C

∫ 1

0

∣∣∣∣∣∣∣
∂
∂ r

⎛
⎜⎝ e

− |rx−y|2
1−r2

(1− r2)
d
2

⎞
⎟⎠
∣∣∣∣∣∣∣
dr.

This last term is bounded by K (x,y) as was done in [220, pages 47–49], after the
change of variables t = 1− r2. Now, applying Minkowski’s integral inequality to K1

and remark 5 above, we get

|K1(·,x,y)|2 ≤C
∫ 1

0

|rx− y|
(1− r2)

d+3
2

e
− |rx−y|2

1−r2 dr.

The right-hand side of this inequality is also bounded by K (x,y) (see [220, page
39]). Therefore gk

1,G f (x) and g1
2,G f (x) are bounded by the operator (4.46)
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T f (x) =
∫
Rd

K (x,y) | f (y)|dy,

which is of weak type (1,1) with respect to γd , as was proved in Theorem 4.24 (see
also S. Pérez in [220, page 25]).

|K2(·,x,y)|2, on the other hand, is bounded by a 2-modified maximal Gaussian
kernel

K 2(x,y) =

{
K (x,y) if 〈x,y〉 ≤ 0(

(|x+ y||x− y|) 1
2

|x||y|
|x|2+|y|2 +1

)
K (x,y) if 〈x,y〉> 0

(5.43)

where K is the Gaussian maximal kernel defined in (4.40). This estimate can also be
found in [220, page 52], once we have applied Minkowski’s integral inequality and
remark 5 above to |K2(·,x,y)|2. Therefore g2

2,G f (x) is bounded by the 2-modified
maximal operator

T 2 f (x) =
∫
Rd

K 2(x,y) f (y) dy, (5.44)

which, similar to T , is also of weak type (1,1), as can be seen in [220, page 56].

It remains to be proved that the local parts of these operators are also of weak
type (1,1) with respect to γd . This follows once we check that the kernels of these
operators satisfy conditions i) and ii) of Theorem 4.34.

For y ∈ Nx, we have

•
|〈x,(x− y)〉| ≤ |x| |x− y| ≤C, and |x| ∼ |y|. (5.45)

• For 0 < r < 1, e
− |rx−y|2

c(1−r) = e
− |x−y|2

c(1−r) e−
(1−r)|x|2

c e
2x.(x−y)

c ≤Ce
− |x−y|2

c(1−r) e−
(1−r)|x|2

c .
• |rx− y| |x− ry| = |x− y− (1− r)x| |x− y+(1− r)y| ≤ |x− y|2 +(1− r)(|x|+

|y|)|x− y|+(1− r)2|x| |y| ≤C(|x− y|2 +(1− r)+(1− r)2|x|2).

1. Condition i): By applying Minkowski’s integral inequality to kernel Kk
0

and (5.41), we have

|Kk
0(·,x,y)|2 ≤C

∫ 1

0

[
|rx− y| |x− ry|
(1− r2)

d+4
2

+
1

(1− r2)
d+2

2

]
e
− |rx−y|2

2(1−r) dr.

The right-hand side of this inequality can be bounded, using the remarks above,
by

C
∫ 1

0

[
|x− y|2 +(1− r)+(1− r)2|x|2

(1− r)
d+4

2

+
1

(1− r)
d+2

2

]
e
− |x−y|2

2(1−r) e−
(1−r)|x|2

2 dr

≤C
∫ 1

0

(
|x− y|2

(1− r)
d+4

2

+
1

(1− r)
d+2

2

)
e
− |x−y|2

2(1−r) dr
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By the change of variables u = |x− y|/(1− r)1/2, the integral on the right-hand
side of the above inequality becomes

C
|x− y|d

∫ +∞

|x−y|
(ud+1 +ud−1)e−u2/2 du ≤ C

|x− y|d .

By applying Minkowski’s integral inequality to kernel Kk and remark 5 above,
we get, for any k ∈ N

|Kk(·,x,y)|2 ≤ C ∑
|α |=k

∫ 1

0

∣∣∣∣Hν

(
rx− y√
1− r2

)∣∣∣∣e−
|rx−y|2
2(1−r2)

e
− |rx−y|2

4(1−r)

(1− r)
d+2

2

dr

≤ C
∫ 1

0

e
− |rx−y|2

4(1−r)

(1− r)
d+2

2

dr ≤ C
|x− y|d .

2. Condition ii): To verify Hörmander’s condition ii) of Theorem 4.34, it will

be enough to check that both
∣∣∣ ∂K0

∂y j
(·,x,y)

∣∣∣
2

and
∣∣∣ ∂Kk

α
∂y j

(·,x,y)
∣∣∣
2

are bounded by
C

|x−y|d+1 . Indeed,

∇yK0(t,x,y) = 2
∫ 1

0

[(2|rx− y|2 +(1− r)(rx− y).(x+ y)

(1− r2)
d+4

2

− rd

(1− r2)
d+2

2

)
rx− y
1− r2

−
(

1+ r

(1−r2)
d+4

2

(rx− y)+
1− r

(1−r2)
d+4

2

(x+ y)

)]
e
− |rx−y|2

1−r2 τk(t,r) dr,

and

∇yKk
α(t,x,y) = C

∫ 1

0
ηk(t,r)ω(r)

[ α√
1− r2

Hα−1

(
rx− y√
1− r2

)

+
rx− y
1− r2 Hα

(
rx− y√
1− r2

)] e
− |rx−y|2

1−r2

(1− r2)
d+2

2

dr,

where α−1 means the d-dimensional vector (α1 −1, . . . ,αd −1).

Thus, applying Minkowski’s integral inequality and remarks 2 and 5 above to
∇yK0 and ∇yKk respectively, then remarks (5.45), and finally the change of vari-
ables u = |x− y|/(1− r)1/2, we get

| |∇yK0(·,x,y)| |2 ≤ C
∫ 1

0

[( |x− ry|
(1− r2)1/2

)3
+(1− r)

1
2 |x|

( |rx− y|2
1− r2 +1

)

|rx− y|
(1− r2)1/2

]
e−

(1−r)|x|2
4 e

− |rx−y|2
2(1−r2)

e
− |x−y|2

4(1−r)

(1− r)
d+3

2

dr

≤ C
∫ 1

0

e
− |x−y|2

4(1−r)

(1− r)
d+3

2

≤ C
|x− y|d+1 ,
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and

| |∇yKk(·,x,y)| |2 ≤C
∫ 1

0

e
− |x−y|2

4(1−r)

(1− r)
d+3

2

≤ C
|x− y|d+1 .

According to Theorem 4.34, the local operators gk
t,L and gk

x,L are of weak type
(1,1) with respect to γd for all k.

To see that gk
x for k > 2 need not satisfy the weak type (1,1) inequality, we refer

to [102], where they show that the higher order Riesz transforms need not be of
weak type (1,1) with respect to γd if their order is greater than 2 (see the proof
of Theorem 9.10). Take |y| large and yi ≥ |y|, i = 1, . . . ,d, and C > 0 so that

Hν

(
y− rx√
1− r2

)
>C|y||ν |.

Then, define

J =

{
ξ

y
|y| + v :

1
2
|y|< ξ <

3
4
|y|,v ⊥ y, |v|< 1

}
,

for |ν |= k and x ∈ J

Kk
ν(t,x,y)≥ ctk+1e−ct2 |y|keξ

2−|y|2
∫ 3/4

1/4
e−c(ξ−r|y|)2

dr ≥ ctk+1e−ct2 |y|k−1eξ
2−|y|2 .

Now, by taking 0 ≤ f ∈ L1(γd) to be close to an approximation of the identity
near to the point mass δ , with L1(γd) norm equals to 1, we conclude that

gk
x f (x)≥ c|y|keξ

2 ≥ c|y|ke

(
|y|
2

)2

for x ∈ J. Because γd(J) ≥ c|y|−1e
−
(

|y|
2

)2

, then the L1,∞(γd) quasi-norm of gk
x f

is at least c|y|k−2 → ∞ as |y| → ∞ when k > 2, which means that the weak type
(1,1) inequality is not satisfied. ��

5.3 The Gaussian Lusin Area Function

The area function and the area function of higher order have significant applications
in the classical case of the Lebesgue measure, because a harmonic function on R

d+1
+ ,

the existence of non-tangential limits is equivalent to the finiteness of the S operator.
These area functions are very important in the characterization of Hardy spaces and
they are related to the atomic decomposition of Hardy spaces. Therefore, the study
of the analogous notions in the Gaussian case is important and interesting. In the
Gaussian context, these operators were first introduced by E. Fabes and L. Forzani,
in an unpublished manuscript. They considered the Gaussian counterpart of the Lusin
area function.
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Definition 5.15. (Fabes–Forzani) The Gaussian Lusin area function Sa
γ is defined for

f ∈ L1(γd), as

Sa
γ f (x) =

(∫
Γ a
γ (x)

|t∇xPt f (y)|2
(

t−d ∨|x|d ∨1
)

dy
dt
t

)1/2

, (5.46)

where, as before, Γ a
γ (x) =

{
(y, t)∈R

d+1
+ : |y−x|< t, t < am(x)

}
is a Gaussian cone

with aperture a > 0 and vertex at x ∈ R
d . If a = 1, we simply denote it as Sγ .

The main results for this area function appeared in [87], and are the following.

Theorem 5.16. (Fabes–Forzani)

i) There exists a constant C such that for every x ∈ R
d ,

gx,γ( f )(x)≤C Sa
γ f (x), (5.47)

for f ∈ L1(γd).
ii) If 1 < p < ∞, then there exists a constant Ap such that

||Sa
γ f ||p,γ ≤ Ap || f ||p,γ , (5.48)

for f ∈ Lp(γd).

Proof. The proof of the result follows that of E. Stein ([252, Chapter IV, §1 pages
86–94]).

i) For f smooth enough ∇yu(y, t) =∇yPt f (y) is a solution of L2u = 0; then, apply-
ing the mean value inequality, Theorem 3.11 ii), that there exists a constant C,
dependent only on dimension, such that

|∇xu(x, t)| ≤ (t−d−1 ∨|x|d+1 ∨1)
∫

B((x,t),C1(t∧a(1∧ 1
|x| )))

|∇yu(y,s)|2dy ds

where C1 is such that B
(
(x, t),C1

(
t ∧ a

(
1∧ 1

|x|

)))
⊂ Γ a

γ (x). Then, after using

the Cauchy–Schwartz inequality, in the definition of g2,γ( f ), we get

(g2,γ( f ))2(x)≤C
∫ ∞

0
t(t−d−1∨|x|d+1∨1)

∫
B((x,t),C1(t∧a(1∧ 1

|x| )))
|∇yu(y,s)|2dy ds dt.

Now, if (y,s) ∈ B
(
(x, t),C1

(
t ∧a

(
1∧ 1

|x|

)))
, then (y,s) ∈ Γ a

γ (x), and

t −C1

(
t ∧a

(
1∧ 1

|x|
))

< s < t +C1

(
t ∧a

(
1∧ 1

|x|
))



5.3 The Gaussian Lusin Area Function 223

Then, using Fubini’s theorem,

(g2,γ( f ))2(x) ≤ C
∫
Γ a
γ (x)

|∇yu(y,s)|2
∫
|s−t|<C1(t∧a( 1

|x| ∧1))
t(t−d−1 ∨|x|d+1 ∨1)dsdy dt

≤ C
∫
Γ a
γ (x)

|∇yu(y,s)|2s(s−d ∨1∨|x|d)dsdy =C(Sa
γ )

2( f )(x),

as we wanted to prove.

ii) To prove the Lp inequality, we consider two cases:
• p ≥ 2. Let φ be a positive function in R

d . Interchanging integrals in the
definition of the area function we have
∫
Rd
(Sa

γ ( f ))2(x)φ(x)γd(dx)

≤
∫
Rd

∫
B((x,t),t∧a(1∧ 1

|x| ))

∫ ∞

0
t|∇yu(y, t)|2(t−d ∨|x|d ∨1)dtdyφ(x)γd(dx)

≤
∫
Rd
(g2,γ( f )(y))2M a

γ φ(y)γd(dy),

where M a
γ is the Gaussian truncated Hardy–Littlewood maximal function

defined in (4.101). Because M a
γ is of strong type (p, p) for p> 1 and of weak

type (1,1) with respect to the Gaussian measure γd , applying the Lp(γd)-
boundedness of g2,γ( f ) in the last inequality, we have (5.48) for p ≥ 2.

• 1 < p < 2. If f is smooth enough and positive, we can use the fact that

L1(Pt f )p =Cp(Pt f )p−2|∇u|2

to have
(Sa

γ ( f ))2(x)≤Cp(P
∗(1,a) f (x))2−pI∗,a(x), (5.49)

where P∗(1,a) f (x) is the non-tangential maximal function associated with
the Poisson–Hermite semigroup (see 4.93), and

I∗,a(x) =
∫
Γ a
γ (x)

tL1(Pt f (y))p(t−d ∨|x|d ∨1)dydt.

In [122], C. Gutiérrez proved that
∫ ∞

0

∫
Rd

tL1(Pt f )p(y)dtγd(dy)≤
∫
Rd

| f (y)|pγd(dy)

and as
∣∣∣B
(

x, t ∧a
(

1∧ 1
|x|

))∣∣∣≈C(td ∧|x|−d ∧1), we get

∫
Rd

I∗,a(x)γd(dx)≤C|| f ||pLp(γd)
, (5.50)
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because
∫
Rd

I∗,a(x)γd(dx)

=
∫ ∫

R
d+1
+

(
e|y|

2
∫
|x−y|<t∧a(1∧ 1

|x| )
(t−d ∨|x|d ∨1)e−|x|2dx

)

×tL1(Pt f )p(y)γd(dy) dt.

Hence, using this latter expression and Theorem 5.10, we get
∫
Rd

I∗,a(x)γd(dx)≤C
∫ ∫

R
d+1
+

tL1(Pt f )p(y)γd(dy) dt ≤
∫
Rd

f (y)γd(dy).

Now, let us prove (5.48) for this case. Inequality (5.49) tells us that
∫
Rd

|Sγ( f )(x)|pγd(dx)

≤C
∫
Rd

(
P∗(1,a) f (x)

) (2−p)p
2

I∗,a(x)
p
2 γd(dx)

≤C
(∫

Rd

(
P∗(1,a) f (x)

)p
γd(dx)

) 2−p
2
(∫

Rd
(I∗,a(x))γd(dx)

)p/2

≤C
∫
Rd

| f (x)|pγd(dx),

where we have used Hölder’s inequality with exponent r = 2
2−p , its conjugate

index r′ and Theorem 4.28, ii). ��

In [168], J. Maas, J. Van Neerven, and P. Portal introduce the following Gaussian
admissible conical square function:

Definition 5.17. The Gaussian admissible conical square function S a
γ is defined for

f ∈ L1(γd) as

Sa,γ f (x) =
(∫

Γ 1,a
γ (x)

1
γd(B(y, t))

|tTt2 f (y)|2γd(dy)
dt
t

)1/2
, (5.51)

where, as before, Γ 1,a
γ (x) =

{
(y, t) ∈R

d+1
+ : |y−x|< t < am(x)

}
is a Gaussian cone

with aperture 1 > 0 and vertex at x ∈ R
d .

Then, they prove that this admissible conical square function is controlled by
“average” non-tangential maximal function (4.91).

Theorem 5.18. The Gaussian ‘admissible conical square function Sγ is controlled
by the “average” non-tangential maximal function in the following sense: there ex-
ists a constant a′ ≥ 1 and a constant C such that

‖Sa,γ f‖1,γ ≤C‖ϒ∗
γ (1,a

′) f‖1,γ . (5.52)
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To obtain this result, they follow the arguments given in the proof of the square
function estimates in Hardy spaces for the classical case by C. Fefferman and E.
M. Stein in their famous paper [79]. They need to use the covering obtained in
Lemma 4.5, Lemma 1.5, the parabolic Caccioppoli inequality, Theorem 2.1, and
Theorem 4.43, about the change of aperture for the admissible cone appearing in
the definition of the non-tangential maximal function. By using the truncated cones,
we are only averaging over admissible balls in the definition of the operators. The
idea is, of course, to exploit the doubling property of the Gaussian measure on these
balls. This makes the operators “admissible.” Unfortunately, they are not local, in the
sense that their kernels are not supported in the local region. Moreover, they cannot
be written as sums of local operators. This is due to a lack of off-diagonal estimates,
which is a crucial difference between the Ornstein–Uhlenbeck semigroup and the
heat semigroup. The proof is long and hard (for more details see [168, Theorem
1.1]).

5.4 Notes and Further Results

1. We can also define the “total” Gaussian Lusin area function Sa
γ for f ∈ L1(γd),

as

Sa
T,γ f (x) =

(∫
Γ a
γ (x)

|t∇Pt f (y)|2
(

t−d ∨|x|d ∨1
)

dy
dt
t

)1/2

, (5.53)

where, as before, Γ a
γ (x) =

{
(y, t) ∈ R

d+1
+ : |y− x|< t, t < am(x)

}
is a Gaussian

cone with opening a > 0 and vertex at x ∈ R
d , and ∇=

(
∂
∂ t ,

1√
2
∇x

)
.

In that case, with the same proof as in Theorem 5.16, we can prove that there
exists a constant C such that for every x ∈ R

d ,

gγ( f )(x)≤C Sa
T,γ f (x), (5.54)

for f ∈ L1(γd), and
||Sa

T,γ f ||p,γ ≤ Ap || f ||p,γ , (5.55)

for f ∈ Lp(γd).
Observe that, using the same notation as for the Littlewood–Paley g functions

Sa
γ f (x) = Sa

x,T,γ f (x).

For more details see [87].

2. A classical Littlewood–Paley function that has not been generalized to the Gaus-
sian case is the function g∗

λ , which is defined as

g∗
λ (x) =

(∫ ∞

0

∫
Rd
(

t
|y|+ t

)λd |∇u(x− y, t)|2t1−ddy dt
)1/2

.
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The problem with the generalization of this function is find an appropriate ap-
proximation of identity. The inner integral in the classical g∗

λ function is the
convolution of the gradient of the Poisson integral u with a family of approxi-
mations of identity. In the Gaussian case it is not entirely clear what to do in that
direction. A possible definition, that looks familiar because of what is done for
the Gaussian area function, suggested by L. Forzani, is the following,

g∗
γ ,λ (x) =

(∫ ∞

0

∫
Rd
(

(t ∧ 1
|x| ∧1)

|x− y|+(t ∧ 1
|x| ∧1)

)λd |∇Pt f (y)|2t (t−d ∨|x|d ∨1)dy dt
)1/2

.

(5.56)
Nevertheless, such a function is problematic, and more research in this direction
is needed.

3. Following the same scheme formulated by E. Stein in [253], the main motiva-
tion of C. Gutiérrez’s article [122], of considering Gaussian Littlewood–Paley
functions, is to prove the Lp(γd) boundedness, 1 < p < ∞, for the Riesz trans-
form. An important advantage of this argument is that the constants obtained are
independent of dimension. This is discussed in more detail in Chapter 9.

4. In [122], C. Gutiérrez, also considers the following Gaussian Littlewood–Paley

functions, associated with the translated semigroups {P(k)
t }t

g(k)+,γ( f )(x) =
(∫ ∞

0
t(|∇P(k)

t f (x)|2 +(P(k)
t f (x))2dt

)1/2
, (5.57)

and C. Gutiérrez, C. Segovia, and J. L. Torrea in [124] also consider Gaussian
Littlewood–Paley functions of order k ≥ 1, with respect to the spatial variable x
where the k-th derivation is done in x (but not in the variable t).

5. Following C. Gutiérrez’s article [122], C. Gutiérrez, C. Segovia, and J. L. Tor-
rea in [124] consider higher order Gaussian Littlewood–Paley functions to get
the Lp(γd) boundedness of Gaussian higher order Riesz transforms. Again, an
important advantage of this proof is that the constants are independent of di-
mension (see Chapter 9).

6. The Jacobi–Littlewood–Paley g function can be defined as

g(α ,β ) f (x) =
(∫ ∞

0
t|∇(α ,β )P

α ,β
t f (x)|2dt

)1/2
, (5.58)

where ∇(α ,β ) =
(

∂
∂ t ,δα ,β

)
=
(

∂
∂ t ,

√
1− x2 ∂

∂x

)
The Lp-continuity of the Jacobi–Littlewood–Paley g-function g(α;β ), was
proved by A. Nowak and P. Sjögren in [213].
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Theorem 5.19. Assume that 1 < p < ∞ and α,β ∈ [−1/2,∞)d. There exists a
constant cp such that

‖g(α ,β ) f‖p,(α ,β ) ≤ cp‖ f‖p,(α ,β ). (5.59)

7. The Laguerre–Littlewood–Paley g function can be defined as

gα f (x) =
(∫ ∞

0
t|∇αPα

t f (x)|2dt
)1/2

(5.60)

where ∇α =
(

∂
∂ t ,δα

)
=
(

∂
∂ t ,

√
x ∂
∂x

)
and {Pα

t } is the Poisson–Laguerre semi-

group, i.e., the subordinated semigroup to the Laguerre semigroup (for more
information see [279]).

The Lp continuity of the Laguerre–Littlewood–Paley g function was proved by
A. Nowak in [208].

Theorem 5.20. Assume that 1 < p < ∞ and α ∈ [1/2,∞)d. There exists a con-
stant cp such that

‖gα f‖p,α ≤ cp‖ f‖p,α . (5.61)

8. The main motivation of A. Nowak’s article [209] on Littlewood–Paley g func-
tions for the Laguerre case, and also A. Nowak and P. Sjögren’s article on
Littlewood–Paley g functions for the Jacobi case was, following E. Stein mono-
graph [253], to study the Lp boundedness of the corresponding Riesz transforms.

9. In [202], E. Navas and W. Urbina develop a transference method to obtain the
Lp-boundedness, 1 < p < ∞ of the Gaussian–Littlewood–Paley g function and
the Lp-boundedness of the Laguerre–Littlewood–Paley g function from the Lp-
continuity of the Jacobi–Littlewood–Paley g function, in dimension one, using
the well-known asymptotic relations between Jacobi polynomials and other clas-
sical orthogonal polynomials (10.64) and (10.67) (see also [262, (5.3.4),(5.6.3)]).

i) For Hermite polynomials,

lim
λ→∞

λ−n/2Cλ
n (x/

√
λ ) =

Hn(x)
n!

,

where {Cλ
n (x)} are the Gegenbauer polynomials defined as

Cλ
n (x) =

Γ (λ +1/2)Γ (n+2λ )
Γ (2λ )Γ (n+λ +1/2)

P(λ−1/2,λ−1/2)
n (x).

ii) For Laguerre polynomials,

lim
β→∞

P(α ,β )
n (1−2x/β ) = Lαn (x).

Both relations hold uniformly in every closed interval of R.
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10. In [165], I. López and W. Urbina, following R. Wheeden and C. Segovia [293],
consider some Gaussian area functions of higher order. Sk,a

2,γ , which generalize
the function Sγ . They are defined as

Sk,a
2,γ f (x) =

(∫
Γ a
γ (x,δ )

(
t ∧1∧|x|−1

)2k−1+d ∣∣∣∇kPt( f )(y)
∣∣∣2 t−d

(
t−d ∨|x|d ∨1

)
dy dt

)1/2

,

for k ≥ 1 and a > 0, where Γ a
γ (x) is a Gaussian cone with aperture a > 0 and ∇k

x
is the k-th gradient. (in the spatial variable x). If k = 1

S1,a
γ f (x)≤ Sa

γ f (x).

They also define an associated Littlewood–Paley g-type function of order k as

g̃k
γ( f )(x) =

(∫ ∞

0
t−(d+1)

(
t ∧1∧|x|−1

)2k+d ∣∣∣∇kPt( f )(x)
∣∣∣2 dt

)1/2

, (5.62)

proving the Lp(γd)-boundedness for 1 < p < ∞ of the function Sk,a
2,γ and g̃k

γ .

Theorem 5.21. Suppose f ∈ Lp(γd). Then,
i) If 1 < p < ∞, then there exists a constant Cp,δ ,k,d > 0 such that

∥∥∥Sk,a
2,γ( f )(·,δ )

∥∥∥
p,γd

≤Cp,δ ,k,d ‖ f‖p,γd
. (5.63)

ii) There exists a constant Ck,δ ,d > 0 such that for every y ∈ R
d

g̃k
γ( f )(y)≤Ck,δ ,dSk,a

2,γ( f )(y,δ ). (5.64)

The Lp(γd) boundedness of Sk,a
2,γ is obtained simply by proving the following

pointwise estimate
Sk,α
γ f (x)≤ Sk,β

γ f (x),

0 < α < β (see [165, Lemma 2.3]), and applying (5.16). For the inequal-
ity (5.64), the arguments are similar to those in Theorem 5.16.

11. The Littlewood–Paley theory for the Jacobi semigroup was done, in the case
d = 1 by W. Connett and A. Schwartz in [58]. For d > 1 it was done by A.
Nowak and P. Sjögren in [213], to study the Lp continuity of the Jacobi–Riesz
transforms for more, see Section 9.5 in Chapter 9.

12. The Littlewood–Paley theory for the Laguerre semigroup for d > 1 was obtained
by A. Nowak in [209] to study the Lp continuity of the Laguerre–Riesz trans-
forms for more, see Section 9.5 in Chapter 9.
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13. Some of the Littlewood–Paley estimates obtained in this chapter, at least for the
time derivative, can also be obtained from the functional calculus of L that will
be studied in the next chapter (see for instance [137, Theorem 10.4.16]). This
shows that something more general is at play. Also, this implies that changing
the square functions involving the subordinated semigroup {Pt}t≥0 to square
functions involving {Tt}t≥0 or some other functional of L is possible and easy.
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Spectral Multiplier Operators with Respect
to the Gaussian Measure

In this chapter, we study spectral multiplier operators for Hermite polynomial expan-
sions. First, we consider Meyer’s multiplier theorem, which is one of the most basic
and most useful results for Hermite expansions. Then, we consider spectral multipli-
ers of Laplace transform type. In both cases, we prove their boundedness in Lp(γd),
for 1 < p < ∞. For the case of spectral multipliers of Laplace transform type, we
also study the boundedness in the case p = 1. Finally, we discuss the fact that the
Ornstein–Uhlenbeck operator has a bounded holomorphic functional calculus.

6.1 Gaussian Spectral Multiplier Operators

Definition 6.1. Given a bounded function m : N0 → C. According to the spectral
theorem, we may form the operator m(L)1 defined for any f ∈ L2(γd)

2

m(L) f =
∞

∑
k=0

m(k)Jk f =
∞

∑
k=0

m(k) ∑
|α |=k

〈 f ,hν〉γd hν . (6.1)

Observe that m(L) is trivially bounded in L2(γd), as

‖m(L) f‖2,γ =
∞

∑
k=0

|m(k)|2‖Jk f‖2,γ ≤ ‖m‖∞
∞

∑
k=0

‖Jk f‖2,γ = ‖m‖∞‖ f‖2,γ .

We call m(L) the spectral multiplier operator associated with the spectral multi-
plier m.

1Formally speaking, it should be denoted by m(−L) because of (2.7); for simplicity we
just write it as m(L).

2Alternatively, we could define m(L) on the set of polynomials in d-variables, P(Rd), as
they have finite Hermite expansion f = ∑∞

k=0 Jk f = ∑∞
k=0∑|α|=k〈 f ,hν 〉γd hν .
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Moreover, because m(L) is well defined in P(Rd), and we know that P(Rd) is
dense in Lp(γd) for any 1 ≤ p < ∞, the multiplier operator m(L) is densely defined
in L2(γd) with domain

Dm =
{

f ∈ L2(γd) :
∞

∑
k=0

|m(k)|2‖Jk f‖2,γ < ∞
}
.

The basic problem of the multiplier theory is to determine the conditions on the
spectral multiplier m such that the spectral multiplier operator m(L), initially defined
in L2(γd)∩Lp(γd), has a bounded extension on Lp(γd),1 < p < ∞; in other words,
when we can find a constant Cp > 0 dependent only on p such that

‖m(L) f‖p,γ ≤Cp‖ f‖p,γ , (6.2)

for all f ∈ Lp(γd).
We also want to consider under which conditions m(L) is of weak type (1,1) with
respect to the Gaussian measure; in other words, when we can find a constant C > 0
dependent only on p such that

γd

({
x ∈ R

d : m(L) f (x)> λ
})

≤ C
λ
‖ f‖1,γ (6.3)

for any f ∈ Lp(γ1).

6.2 Meyer’s Multipliers

One of the most basic results in Gaussian multiplier theory was obtained by P. A.
Meyer in [189] (see also [288] and [218]), using in a fundamental way the hypercon-
tractivity property of the Ornstein–Uhlenbeck semigroup. Therefore, the multiplier
theory for Hermite expansions and the hypercontractivity property of the Ornstein–
Uhlenbeck semigroup are closely related.

Theorem 6.2. (Meyer) Given a function h, holomorphic in a neighborhood of the

origin, and let m be a spectral multiplier such that m(k) = h
(

1
kα

)
, for some α > 0

and k ≥ n0, for some n0 ≥ 0, then the spectral multiplier operator m(L) admits an
Lp(γd)-bounded extension for any 1 < p < ∞. Moreover, its Lp(γd)-norm does not
depend on the dimension.

Proof. Using Corollary 2.17, Lemma 2.18 and the inequality (3.42), the proof is
almost immediate. Let us decompose m(L) into its finite and infinite parts.

m(L) f =
n0−1

∑
k=0

m(k)Jk f +
∞

∑
k=n0

m(k)Jk f = m1(L) f +m2(L) f .

Using Corollary 2.17, we know that Jn is Lp(γd)-bounded; therefore m1(L) is Lp(γd)-
bounded,
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‖m1(L) f‖p,γ ≤
n0−1

∑
k=0

m(k)‖Jk f‖p,γ ≤Cp‖ f‖p,γ .

Thus, it is enough to prove that m2 is Lp(γd)-bounded,

‖m2(L) f‖p,γ ≤Cp‖ f‖p,γ .

Using the generalized potential operators (3.41) and the inequality (3.42), then, as
h(x) = ∑∞

n=0 anxn,

m2(L) f =
∞

∑
k=n0

m(k)Jk f =
∞

∑
k=n0

( ∞

∑
n=0

an
1

kαn

)
Jk f

=
∞

∑
n=0

an

( ∞

∑
k=n0

1
kαn Jk f

)
=

∞

∑
n=0

an(Un0,α f )n.

Using the Lp(γd)-boundedness of Un0,α n-times, we get

‖m2(L) f‖p,γ ≤
∞

∑
k=1

|an|‖(Un0,α f )n‖p,γ ≤C
( ∞

∑
n=0

|an|
1

nαn
0

)
‖ f‖p,γ =C‖ f‖p,γ . ��

Definition 6.3. A spectral multiplier operator m(L) is called Meyer’s multiplier if it
satisfies the hypothesis of Theorem 6.2, i.e., there exists a function h holomorphic in
a neighborhood of the origin such that

m(k) = h
( 1

kα

)
, (6.4)

for some α > 0 and k ≥ n0, for some n0 ≥ 0.

We see in Chapter 8 that the Gaussian Riesz potentials are the simplest Meyer’s
multipliers possible (see 8.5), and that the Gaussian Bessel potentials are not Meyer’s
multipliers, but the composition of two Meyer’s multipliers (see 8.19). On the other
hand, the Ornstein–Uhlenbeck and the Poisson–Hermite operators and their varia-
tions are Gaussian multipliers but are not Meyer’s multipliers. Finally, as we are go-
ing to see in Chapter 9, the Gaussian Riesz transforms are not Gaussian multipliers,
different than the Riesz transforms in the classical case.

6.3 Gaussian Laplace Transform Type Multipliers

Following E. Stein [253, Chapter 4], let us consider Laplace type multipliers.

Definition 6.4. A function m : (0,∞)→ C is said to be of Laplace transform type if
and only if

m(k) = k
∫ ∞

0
φ(t)e−tkdt, k > 0, (6.5)

where φ : (0,∞)→ C, is a bounded measurable function.
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Observe that taking the change of variables r = e−t , we see that m can be rewrit-
ten as

m(k) = k
∫ 1

0
ψ(t)rk dr

r
, k > 0, (6.6)

where ψ(r) = φ(− logr).

Definition 6.5. A spectral multiplier operator m(L) is said to be a Laplace transform
type multiplier, if the spectral multiplier m is a function of Laplace transform type.
Then, m(L) can be written as

m(L) f (x) =
∞

∑
k=0

m(
√

k)Jk f =
∞

∑
k=0

m(
√

k) ∑
|α |=k

〈 f ,hν〉γd hν , (6.7)

for a function f with Hermite expansion f = ∑∞
k=0 Jk f = ∑∞

k=0∑|α |=k〈 f ,hν〉γd hν .

Observe that if we ask the function φ to be not only bounded but integrable, then
we can get the following easy result:

Proposition 6.6. If m : (0,∞)→C is a spectral multiplier of Laplace transform type
function such that φ is bounded and integrable, then the spectral multiplier operator
m(L) is a Lp(γd)-bounded operator, for 1 < p < ∞.

Proof. Let f = ∑∞
k=0 Jk f , then

m(L) f =
∞

∑
k=0

φ(
√

k)Jk f =
∞

∑
k=0

(∫ ∞

0
φ(t)e−

√
ktdt

)
Jk f =

∫ ∞

0

[ ∞

∑
k=0

e−
√

ktJk f
]
φ(t)dt

=
∫ ∞

0
Pt f φ(t)dt.

Therefore, using Minkowski’s integral inequality, and the Lp(γd)-boundedness of the
Poisson–Hermite semigroup {Pt}t≥0,

||m(L)( f )||p,γ =
∥∥∥
∫ ∞

0
Pt f φ(t)dt

∥∥∥
p,γ

≤
∫ ∞

0
||Pt f ||p,γ |φ(t)|dt ≤Cp || f ||p,γ . ��

Now for the general case, using the Littlewood–Paley theory, following E. Stein
[253, Chapter II], we get

Theorem 6.7. Given a Laplace transform type spectral multiplier m, the spectral
multiplier operator m(L) has a Lp(γd)-bounded extension, for 1 < p < ∞.

Proof. The proof is given here for the case of the Poisson–Hermite semigroup for
completeness, but it is still valid in far more general settings, as is clear from E.
Stein’s monograph [253].3

We need to prove the following identity,

m(L)( f )(x) =−
∫ ∞

0

∂Pt f
∂ t

(x)φ(t)dt. (6.8)

3In fact, nowadays this theorem is known as Stein’s universal multiplier theorem.
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For it suffices to check the identity for the normalized Hermite polynomials {hν},

∫ ∞

0

∂Pthν
∂ t

(x)φ(t)dt =
∫ ∞

0

d
dt
(e−

√
|ν |t)hν(x)dt φ(t)

= −
√

|ν |
∫ ∞

0
e−

√
|ν |tφ(t)dt hν(x) =−m(

√
|ν |) hν(x).

Now,

Pt1(m(L) f )(x) =−
∫ ∞

0
Pt1

(∂Pt f
∂ t

(x)
)
φ(t)dt =−

∫ ∞

0

∂Pt+t1 f
∂ t

(x)φ(t)dt.

Hence,

∂Pt1(m(L) f )
∂ t1

(x) =− ∂
∂ t1

(∫ ∞

0
Pt1

(∂Pt f
∂ t

(x)
)
φ(t)dt

)
=−

∫ ∞

0

∂ 2Pt+t1 f
∂ t2 (x)φ(t)dt,

thus, as φ is bounded, using the Cauchy–Schwartz inequality

∣∣∣∂Pt1(m(L) f )
∂ t1

(x)
∣∣∣ ≤

∫ ∞

0

∣∣∣∂ 2Pt+t1 f
∂ t2 (x)

∣∣∣|φ(t)|dt ≤ M
∫ ∞

0

∣∣∣∂ 2Pt+t1 f
∂ t2 (x)

∣∣∣dt

= M
∫ ∞

t1
s
∣∣∣∂ 2Ps f
∂ s2 (x)

∣∣∣ds
s

≤ M
(∫ ∞

t1
s2
∣∣∣∂ 2Ps f
∂ s2 (x)

∣∣∣2ds
)1/2

t−1/2
1 .

Therefore, according to the same argument used in the proof of Proposition 5.12, we
have using Fubini’s theorem

gt,γ((m(L) f )(x) =

(∫ ∞

0
t1

∣∣∣∣∂Pt1m(L) f
∂ t1

(x)

∣∣∣∣
2

dt1

)1/2

≤ C

(∫ ∞

0

(∫ ∞

t1
s2

∣∣∣∣∂
2Ps f
∂ s2 (x)

∣∣∣∣
2

ds

)
dt1

)1/2

= C

(∫ ∞

0
s3

∣∣∣∣∂
2Ps f
∂ s2 (x)

∣∣∣∣
2

ds

)1/2

=Cg2
t,γ f (x).

Now, using Theorem 5.6 and Definition 5.7, we get

C′
p‖m(L) f‖p,γ ≤ ‖gt,γ((m(L) f )(x)‖ ≤C‖g2

t,γ f‖p,γ ≤Cp‖ f‖p,γ . ��

In particular, the imaginary powers (−L)iλ arising from φ(t) = t−iλ

Γ (1−iλ ) admits a

Lp(γd)-bounded extension for any 1 < p < ∞, because

λ−iα =
λ

Γ (1− iα)

∫ ∞

0
e−λ ss−iαds.
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Theorem 6.7, is a weak version of the Marcinkiewicz multiplier theorem in the
Euclidean case for the d-dimensional torus Td . The link is that if φ is of Laplace type
then

|xkφ(x)| ≤Ck

for any k ≥ 0, which is a particular case of the Marcinkiewicz condition, then φ(|x|)
is a multiplier in Lp(Td), 1 < p < ∞.

6.4 Functional Calculus for the Ornstein–Uhlenbeck Operator

Now, we are going to discuss the fact that the Ornstein–Uhlenbeck operator has a
bounded holomorphic functional calculus. In [105] J. Garcı́a-Cuerva, G. Mauceri, S.
Meda, and P. Sjögren, J. L. Torrea proved that for Gaussian multipliers if p �= 2 there
is no reasonable non-holomorphic functional calculus in Lp(γd) for L. In particular,
they proved that there is not an analog of the classical Hörmander multiplier theorem.
In fact, for each p �= 2, there exists a spectral multiplier mp such that mp(L) does not
extend to a bounded operator on Lp(γd), which is a restriction of a holomorphic
function in a neighborhood of Rd

+, which satisfies the conditions

sup
x>0

|x j∂ jmp(x)|< ∞,

for all j ∈ N.

Moreover, in [103], J. Garcı́a-Cuerva, G. Mauceri, P. Sjögren, and J. L. Tor-
rea proved that a spectral multiplier operator m(L) of Laplace type is also of weak
type (1,1) with respect to the Gaussian measure. Given a spectral multiplier m is
of Laplace transform type, then m(L) is a continuous operator from the space of
test functions to the space of distributions on R

d ; thus, it has a distributional kernel.
Let us prove that, off the diagonal, this kernel has a density Kψ with respect to the
measure γd(dx)⊗ dy, which satisfies the standard Calderón–Zygmund estimates in
a suitable neighborhood of the diagonal (see [103, Lemma 2.1 and Theorem 2.2]).
Consider the operator rL,0 ≤ r < 1, whose integral kernel

Mr(x,y) =
1

πd/2(1− r2)d/2
e
− |y−rx|2

1−r2 ,

may be obtained from Mehler’s kernel by the change of variables t =− logr. Thus

rL f (x) =
∫
Rd

Mr(x,y) f (y)dy,

for all test functions f . As Mehler’s kernel satisfies the heat equation ∂tMt(x,y) =
LMt(x,y) (see (2.53)), the kernel Mr(x,y) satisfies the transformed equation
r∂rMr(x,y) =−LMr(x,y). If ψ ∈ L∞(Rd), define

Kψ(x,y) =
∫ 1

0
ψ(r)∂rMr(x,y)dr.
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For t > 0, the local region Nt defined in (4.63) is the neighborhood of the diagonal
in R

d ×R
d .

Lemma 6.8. If x �= y, the integral defining Kψ is absolutely convergent. Moreover,
for t > 0 and each pair of multi-indices α,β ∈ N

d, there exists a constant C such
that

|∂αx ∂βy Kψ(x,y)| ≤C
‖ψ‖∞

|x− y|d+|α |+|β | (6.9)

for all (x,y) ∈ Nt , x �= y.

Proof. Using Rodrigues’ formula for the Hermite polynomials (1.28), we have

∂αx ∂βy Mr(x,y) =
(−r)|α |

πd/2(1− r2)d/2+|α |+|β | Hα+β

(
xr− y√
1− r2

)
e(1−r2)d/2

. (6.10)

An elementary computation shows that the function r �→ ∂αx ∂
β
y Mr(x,y) is the product

of the positive function,

1

πd/2

1

(1− r2)d/2+|α |+|β | e
− |y−rx|2

1−r2 ,

and a polynomial in r of degree at most 2|α|+ |β |+3, whose coefficients depend on
x and y. Hence, as a function of r, it changes sign a finite number of times and there
exists a constant C such that

∫ 1

0
|ψ(r)|∂r∂αx ∂βy Mr(x,y)|dr ≤C‖ψ‖∞ max

0<r<1
|∂αx ∂βy Mr(x,y)|,

for all x,y ∈ R
d . According to (6.10), we have that

max
0<r<1

|∂αx ∂βy Mr(x,y)| ≤
C

(1− r2)(d+|α |+|β |)/2
exp

(
−c0

|y− rx|2
1− r2

)

for some positive constant c0. Because, in the local region Nt ,

|rx− y|2 ≥ |x− y|2 −2(1− r)|x||x− y| ≥ |x− y|2 −2(1− r)t,

the right-hand side of the previous inequality can be estimated by

C(t)(1− r2)(d+|α |+|β |)/2 exp

(
−c0

|y− rx|2
1− r2

)
≤C|x− y|(d+|α |+|β |),

for all (x,y) ∈ Nt . ��

Using this lemma, we can obtain the following representation of m(L) in terms
of Kψ(x,y).
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Theorem 6.9. Given a spectral multiplier m of Laplace transform type given by
the formula (6.6), then the spectral multiplier operator has the following integral
representation

m(L) =
∫ 1

0
ψ(r)LrL dr

r
(6.11)

where the integral converges on the weak operator topology of L2(γd). Moreover, f is
a test function,

m(L) f (x) =
∫ 1

0
Kψ(x,y) f (y)dy, (6.12)

for all x in the support of f .

Proof.

〈m(L) f ,g〉γ =
∞

∑
k=1

m(k)〈Jk f ,g〉γ =
∞

∑
k=1

k
∫ ∞

0
φ(t)e−tkdt〈Jk f ,g〉γ

=
∞

∑
k=1

k
∫ 1

0
ψ(r)rk dr

r
〈Jk f ,g〉γ =

∫ 1

0
ψ(r)

∞

∑
k=1

krk〈Jk f ,g〉γ
dr
r

=
∫ 1

0
ψ(r)〈LrL f ,g〉γ

dr
r

=
∫ 1

0
〈
∫ 1

0
ψ(r)LrL f

dr
r
,g〉γ

where we have used that ∑∞
k=1 |〈Jk f ,g〉γ | ≤ ‖ f‖2,γ‖g‖2,γ ; thus, we may interchange

the order of summation and integration. Therefore, we have obtained (6.11).
To compute the kernel of the spectral multiplier operator m(L), assume that f

and g are test functions on R
d . Then

〈LrL f ,g〉γ = 〈rL f ,Lg〉γ =
∫∫

Mr(x,y) f (y)dy Lgγd(dx)

= 〈Mrγd(dx)⊗dy,L(g⊗ f )〉

Here, 〈·, ·〉 denotes the pairing between distributions and test functions on R
d ×R

d

and Mrγd(dx)⊗ dy is the distribution whose density with respect to the measure
γd(dx)⊗dy is Mr. As the operator L is symmetric with respect to the Gaussian mea-
sure,

〈rL f ,Lg〉γ = 〈L(Mr)γd(dx)⊗dy,g⊗ f 〉

=
∫∫

r∂rMr(x,y)g(x) f (y)dyγd(dx)

Thus, using (6.11),

〈m(L) f ,g〉γ =
∫ 1

0
ψ(r)

∫∫
∂rMr(x,y)g(x) f (y)γd(dx)dydr.

If f and g have disjoint supports, the triple integral in the identity above is absolutely
convergent because of the previous lemma. Thus, using Fubini’s theorem
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〈m(L) f ,g〉γ =
∫∫

Kψ(x,y) f (y)dyg(x)γd(dx).

This proves that Kψ is the restriction to the complement of the diagonal of the kernel
of m(L), i.e., we have proved that off the diagonal, m(L) has density Kψ with respect
to the measure γd(dx)⊗dy ��

Now, it can be proved that a spectral multiplier operator m(L) of Laplace type is
also of weak type (1,1) with respect to the Gaussian measure [103, Theorem 3.8].
The proof uses these two previous results. The operator is split, as usual, into a local
part and a global part, using in this case the local region Rt (4.63). J. Garcı́a-Cuerva,
G. Mauceri, P. Sjögren, and J. L. Torrea improved the treatment of the local part
by making a smooth truncation and reducing the estimates to the general Calderón–
Zygmund theory. Then, the global part is immediately bounded by the maximal
Mehler’s kernel used by P. Sjögren, in [247] (for more details, we refer the reader to
[103, Section 3]).

Additionally, in [103], they also investigate how to define the multiplier operator
in terms of its kernel, as a limit of truncated integrals. In particular, we see under
what conditions the multiplier is given by a principal value integral. Boundedness
is also proved for the maximal multiplier operator, via a vector-valued version of
the estimates. The result applies, in particular, to the imaginary powers of (−L),
(−L)iλ . Here, the growth of the operator (quasi-)norm for large imaginary powers is
of special interest. As −L has a non-trivial kernel, to define imaginary powers, it is
first needed to restrict −L to the orthogonal complement of the kernel. This amounts
to considering LiαΠ0, where, as before, Π0 = I −J0. The weak type (1,1) constant
of LiαΠ0 increases at most exponentially as |α| →∞. They proved that this estimate
cannot be improved to polynomial growth.

On the other hand, the assumption that a spectral multiplier m of Laplace type
implies that m can be extended to a holomorphic function on the half-plane {z ∈ C :
Rez > 0}, which is bounded on every sector Sθ = {z ∈C : |argz|< θ},0 < θ < π/2
(see Figure 2.1). As the spectrum of the Ornstein–Uhlenbeck L on L1(γd) is the
closed right half-plane (see Theorem 2.7), it is natural to impose a holomorphy
condition on the multiplier m if we want the operator m(L) to be defined on L1(γd).
Nevertheless, because the spectrum of −L on Lp(γd), for 1 < p < ∞, is the set
N0 of non-negative integers, it seems too restrictive to require holomorphy of the
multiplier m to obtain the Lp(γd)-boundedness of m(L). In [182], S. Meda gave a
sufficient condition for the existence of a non-holomorphic functional calculus for
the generator A of a symmetric contraction semigroup on Lp(M),1 < p < ∞, where
M is a σ -finite measure space.

If we fix p ∈ (1,∞), as we have mentioned before, it is important to determine the
minimal regularity conditions of the spectral multiplier m, which imply that the spec-
tral multiplier operator m(L) is bounded in Lp(γd). These conditions are sometimes
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best expressed in terms of Banach spaces of holomorphic functions. If θ ∈ (0,π/2),
consider the open sector Sθ = {z ∈C : |argz|< θ}, and denote by H∞(Sθ ) the space
of bounded holomorphic functions on Sθ . A consequence of an abstract result by
M. Cowling [59, Theorem 2] is that if θ > π| 1

q − 1
2 |, the spectral multiplier m is

bounded and there exists m̃ ∈ H∞(Sθ ) such that m(k) = m̃(k), k = 1,2,3, · · · , then
m(L) extends to a bounded operator on Lq(γd).

Moreover, in [105] it is shown that requiring holomorphy of a spectral multi-
plier m, in a sector of angle smaller than φ ∗

p = arcsin | 2
p − 1|, is not sufficient for

the boundedness of m(L) on Lp(γd). Observe that φ ∗
p → π/2 as p → 1 is in line,

with the fact, already mentioned, that the spectrum of L on L1(γd) is the (closed)
right half-plane (see Theorem 2.7). Furthermore, the L1(γd)-boundedness of dilation-
invariant spectral multiplier operators m(L) was characterized in [131, Theorem 3.5].

Finally, let us mention the main result in [105, Theorem 1] by J. Garcı́a-Cuerva,
G. Mauceri, S. Meda, P. Sjögren, and J. L. Torrea, which is an improvement, in the
finite dimensional case of Cowling’s result. Using the notation introduced in Chap-
ter 2, the statement of the theorem is roughly as follows: for every p ∈ (1,∞), p �= 2,
and consider the sector Sφ∗

p
:= {z ∈C : |argz|< φ ∗

p}. If m is a bounded holomorphic
function on Sφ∗

p
whose boundary values on ∂Sφ∗

p
satisfy suitable Hörmander-type

conditions, then the spectral multiplier m(L) extends to a bounded operator on Lp(γd)
and hence to Lq(γd) for all q such that | 1

q − 1
2 | ≤ | 1

p − 1
2 |.

To establish the theorem, we first need the following notation. Suppose that J is
a non-negative integer and that θ ∈ (0,π/2). Denote by H∞(Sθ ;J) the Banach space
of all m ∈ H∞(Sθ ) for which a Hörmander condition of order J holds: there exists a
constant C such that

sup
R>0

∫ 2R

R
|x j∂ jm(e±iθ x)|2 dx

x
≤C2, for j = 0,1, · · · ,J. (6.13)

H∞(Sθ ;J) is endowed with the norm

‖m‖θ ,J = inf

{
C : sup

R>0

∫ 2R

R
|x j∂ jm(e±iθ x)|2 dx

x
≤C2, for j = 0,1, · · · ,J

}
.

Note that (6.13) implies that
sup
z∈Sθ

|m(z)| ≤ 2C,

if J > 0.

Theorem 6.10. Let 1 < p < ∞, p �= 2, let m : N → C be a bounded function, and
assume that there exists a bounded holomorphic function M̃ in Sφ∗

p
, such that

M̃(k) = m(k), k = 1,2,3, · · ·

then,
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i) If M̃ ∈ H∞(Sφ∗
p
;4), then m(L) extends to a bounded operator on Lp(γd); hence,

on Lq(γd) for all q such that | 1
q − 1

2 | ≤ | 1
p − 1

2 |.
ii) If M̃ ∈ H∞(Sφ∗

p
), and | 1

q −
1
2 |< | 1

p −
1
2 |, then m(L) extends to a bounded operator

on Lq(γd).

A significant feature of Theorem 6.10 is that the number of derivatives in the
Hörmander condition in i) is independent of the dimension. However, the estimates
depend strongly on dimension; thus, they fail to give a result for the infinite dimen-
sional case, but Cowling’s result holds in the infinite dimensional case. Also, the
theorem may be sharpened using H∞(Sφ∗

p
;J), for J non-integer.

Moreover, the size of the region of holomorphy, measured by the aperture of the
cone, cannot be reduced, as is proved in the following result:

Theorem 6.11. Let 1 < p < ∞, p �= 2, and θ < φ ∗
p . Then, there exists a function

m, which decays exponentially at infinity and belongs to H∞(Sφ∗
p
;J), for J for every

positive integer J, such that m(L) does not extend to a bounded operator on Lp(γd).

For details of the proofs of Theorem 6.10 and 6.11 we refer the reader to [105,
Section 3]. They use an abstract multiplier result for generators of holomorphic semi-
groups, which is a variant of an earlier result by S. Meda (see [182] or [60]).

6.5 Notes and Further Results

1. In [260], D. Stroock also considers the case of spectral multipliers m, being the
Laplace transform of a measure μ in [0,∞) such that, for some integer N

∫ ∞

0
e−Ntν(dt)< ∞,

and then m is defined as

m(k) =

{
0, if 0 ≤ k < N −1

λ
∫ ∞

0 e−λ tν(dt), if k ≥ N.

The proof that the spectral multiplier operator m(L) has an extension to Lp(γd)
is completely analogous to that of Theorem 6.7.

2. Some other examples of spectral multipliers, whose spectral multiplier operator
m(L) is Lp(γd)-bounded, but that are not Meyer’s multipliers, are:
• Let us consider the even part projection multiplier operator

me(L) f =
∞

∑
k=0

J2k f =
∞

∑
k=0

m(1/k)Jk f
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where

m(x) =

⎧⎨
⎩

1, if x = 1
2n ,n ∈ N

0 otherwise.

Clearly, me(L) is a Lp(γd)-multiplier because the even part of f , fe(x) =
f (x)− f (−x)

2 = ∑∞
k=0 J2k f = me(L) f . Therefore,

‖me(L) f‖p,γ = ‖ fe‖p,γ ≤ ‖ f‖p,γ ,

but me is not a Meyer’s multiplier.
• Analogously, we can consider the odd part projection multiplier operator,

mo(L) =
∞

∑
k=0

J2k+1 f .

Since f = me(L) f +mo(L) f , and we know that me(L) is Lp(γd)-bounded,
then we conclude that mo(L) is a Lp(γd)-multiplier, which is not a Meyer’s
multiplier either.

• Let us consider the spectral multiplier operator

m−(L) f =
∞

∑
k=0

(−1)kJk f .

As

− f (−x) = 2 fp(x)− f (x) =
∞

∑
k=0

J2k f −
∞

∑
k=0

J2 f = m−(L) f ,

then it is clear that
||m−(L) f ||p,γd = || f ||p,γd ,

but m−(L) f is not a Meyer’s multiplier.

3. Meyer’s theorem admits an extension to spectral multiplier operators of the form

m(L) f (x) =
∞

∑
k=0

m(k,x)Jk f (x), (6.14)

where f = ∑∞
k=0 Jk f . The same proof carries over, if m admits an expansion of

the form
m(t,x) =∑

n
an(x)t

n,

|an(x)| ≤ Mn and ∑∞
n=0 |Mn| 1

nδn
0

< ∞. Operators of the form (6.14) are in a sense

pseudo-differential operators in the Gaussian context, and require further anal-
ysis and study.
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4. An open question, as far as we know, is what is the boundedness property of
Meyer’s multiplier operators for the case of p = 1?

5. In his seminal article [28], W. Beckner proved, among other things, that the
hypercontractivity property for the Ornstein–Uhlenbeck semigroup is a con-
sequence of Young’s generalized inequality, which itself is obtained from an
inequality for multipliers of Hermite expansions. In fact, Beckner proved the
continuity Lp(γd)− Lp′(γd) of the operators Tt , but with a purely imaginary
parameter t = i

√
p−1, something that is closely related to Weissler’s represen-

tation [292] given in (2.34) and the holomorphic Ornstein–Uhlenbeck semigroup
{Tz : Rez ≥ 0}. Moreover, the proof is quite interesting by itself, using in a de-
cisive way the classical central limit theorem (CLT). Beckner makes clear the
intimate relationship between classical harmonic analysis and Gaussian har-
monic analysis, because, for example, the multiplier result allows him to obtain
the best constant in the Haussdorff–Young inequality for the Fourier transform
on R

d .

6. In B. Muckenhoupt’s monograph [198], he uses transplantation theorems to get
spectral multiplier theorems for Jacobi expansions. This idea could be explored
for the Hermite expansions, but to do that we would need to work with the whole
family of generalized Hermite polynomials {Hμ

n } (see note 4 in Chapter 1; see
also T. Chihara [54]).

7. In [148], M. Kemppainen studies a method of decomposing a spectral multiplier
operators m(L) into three parts according to the notion of admissibility, which
quantifies the doubling behavior of the underlying Gaussian measure. He proves
that the above-mentioned admissible decomposition is bounded in Lp(γd) for
1 < p ≤ 2 in a certain sense involving the Gaussian conical square function. The
proof relates admissibility to E. Nelson’s hypercontractivity theorem in a novel
way.

8. In [147], M. Kemppainen studies a class of spectral multiplier operators m(L),
defined using spectral multipliers m such that,

m(λ ) =
∫ ∞

0
e−λ t(tλ )2φ(t)

dt
t
, λ ≥ 0,

where φ : (0,∞)→ C is twice continuously differentiable, satisfying

sup
0<t<∞

(|φ(t)|+ t|φ ′(t)|+ t2|φ”(t)|)+
∫ ∞

1
(|φ ′(t)|+ t|φ”(t)|)dt < ∞,

and finds a sufficient condition for the integrability of m(L) in terms of the
admissible conical square function (5.51) and a maximal function using a de-
composition method presented in [231].
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9. In [117], P. Graczyk, J. J. Loeb, I. López, A. Nowak, & W. Urbina established
a version of P. A. Meyer’s multiplier theorem for the Laguerre case, because, as
we have mentioned in Chapter 2, point 12. of Section 2.5, the Laguerre semi-
group is also hypercontractive.

10. In [236] E. Sasso obtains a multiplier theorem for spectral multipliers of Laplace
transform type in the Laguerre case, proving that they are of weak type (1,1)
for the Gamma measure.

11. In [49], A. Carbonaro and O. Dragicević have an impressive result, using Bell-
man function techniques. It provides an alternative to the results in [105], but is
also valid in infinite dimensions.



7

Function Spaces with Respect to the Gaussian
Measure

One of the main goals of functional spaces is to interpret and quantify the smoothness
of functions. In this chapter, we discuss the analogs of classical functional spaces
with respect to the Gaussian measure. We see that almost all classical spaces with
respect to the Lebesgue measure have an analog for the Gaussian measure; neverthe-
less, we see that in some cases, for instance, Hardy spaces, the analogs to classical
spaces are still incomplete and/or imperfect. On the other hand, most of the time,
even if the spaces look similar, most of the proofs are different, mainly because the
Gaussian measure is not invariant by translation, which implies the need for com-
pletely different techniques.

7.1 Gaussian Lebesgue Spaces Lp(γd)

The Gaussian Lebesgue spaces have been used implicitly in previous chapters for the
study of continuity properties of the Ornstein–Uhlenbeck semigroup, the Poisson–
Hermite semigroup, and maximal functions. For completeness, we are including
them in this chapter.

Definition 7.1. For 1 ≤ p < ∞, the Gaussian Lebesgue space Lp(γd) is defined as

Lp(γd) =
{

f : Rd → R : f is a measurable function and
∫
Rd

| f (x)|pγd(dx)< ∞
}

(7.1)
and the Lp-norm is given by

‖ f‖p,γ =
(∫

Rd
| f (x)|pγd(dx)

)1/p
. (7.2)

Using analogous arguments, as in the classical case, it can be proved that the
normed space (Lp(γd),‖ · ‖p,γ) is a Banach space for 1 ≤ p < ∞, that is, Lp(γd) is a
complete space (see for instance [263, Theorem 7.3]).
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As the Gaussian measure is a probability measure, using Hölder’s inequality, we
have for 1 ≤ p < q,

Lq(γd)⊂ Lp(γd). (7.3)

Additionally, from Theorem 10.7, we know that the family of polynomials with
real coefficients is not only contained in Lp(γd), 1 ≤ p < ∞, but is also dense there.

Thus, the Gaussian Lebesgue spaces Lp(γd) are very different from the classical
Lebesgue space Lp(Rd) theory with respect to the Lebesgue measure, because if
f ∈ Lp(Rd), then f (x)→ 0 as |x| → ∞, but for f ∈ Lp(γd), we may have f (x)→ ∞
as |x| → ∞, as long as it grows no faster than eδ |x|

2/p with δ < 1 .

Observe that for any 1 ≤ p <∞, the space Lp(γd) is not closed under translations.
For instance, in dimension one and p = 1, taking the function f (x) = e|x|

2−|x|, then it
is clear that f ∈ L1(γ1), but it is easy to see that

τ1 f (x) = f (x+1) = e|x+1|2−|x+1| /∈ L1(γ1).

Finally, because the Gaussian measure is trivially absolutely continuous with re-
spect to the Lebesgue measure, with the Radon–Nikodym derivative the Gaussian
weight, dγd

dx = e−|x|2 , then
L∞(γd) = L∞(Rd).

7.2 Gaussian Sobolev Spaces Lp
β (γd)

Sobolev spaces in the classical case are used to measure the regularity of solutions
of partial differential equations (PDEs). Gaussian Sobolev spaces were introduced
in the context of Malliavin calculus (see for instance P. Malliavin [172], D. Nualart
[218] or S. Watanabe [288]). They play a fundamental role in it because they are
used as a scale to measure the regularity of solutions of stochastic differential equa-
tions (see [218]). Moreover, similar to the classical case, Gaussian Sobolev spaces
are particular cases of Gaussian Besov spaces; therefore, Besov spaces are a “better
scale” to measure the regularity of functions.

Definition 7.2. Given β ≥ 0 and 1 ≤ p <∞, the Gaussian Sobolev space of order β ,
Lp
β (γd), is defined as the completion of the set of polynomials P(Rd) with respect to

the norm
‖ f‖p,β :=

∥∥∥(I −L)β/2 f
∥∥∥

p,γ
. (7.4)

Therefore, the set of polynomials in R
d , P(Rd) is trivially a dense set in these

spaces. The spaces Lp
β (γd), are also called potential spaces (see [145]).
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In the classical case, Sobolev spaces appear naturally in partial differential equa-
tions to measure the integrability of partial derivatives of a given function, A. P.
Calderón proved that Sobolev spaces can be characterized using the integrability of
the derivatives. We are going to see that the same holds in the Gaussian case, i.e.,
fractional derivatives Dβ can be used to characterize Lp

β (γd) (see Theorem 8.8). A
probabilistic proof of this fact was given by Sugita in [261].

Moreover, from the definition given of the Gaussian Sobolev spaces, Lp
α(γd),

we see they can be characterized as the image of the Gaussian Lebesgue spaces
under Gaussian Bessel potentials (see 8.21) Proposition 8.6. They can also be char-
acterized using Riesz fractional derivatives (see Theorem 8.8). Additionally, as an
application of the Littlewood–Paley functions gk

x,γ and gk
t,γ , a characterization of

Gaussian Sobolev spaces, Lp
β (γd) for 1 < p < ∞ can also be provided (see Section

9.5 in Chapter 9.

Finally, we have the following Gaussian Sobolev embeddings,

Proposition 7.3. Gaussian Sobolev spaces satisfy

i) If p < q then Lq
β (γd)⊂ Lp

β (γd) for each β ≥ 0.

ii) If 0 ≤ α1 < β2 then Lp
β2
(γd)⊂ Lp

β1
(γd) for each 1 < p < ∞.

Moreover, the embeddings in i) and ii) are continuous

Proof. Claim i) is an immediate consequence of Hölder’s inequality.
For claim ii), let f be a polynomial and let us consider g = (1−L)−β2/2 f , then

(1−L)(β1−β2)/2g = (1−L)β1/2 f .

Using Meyer’s multiplier theorem, Theorem 6.2, we can conclude that there exists
C > 0, such that

‖ f‖p,β1
≤C‖ f‖p,β2

.

��

7.3 Gaussian Tent Spaces T 1,q(γd)

In 1985, R. Coifman, Y. Meyer, and E. M. Stein [55], introduced the tent spaces T p
q

with respect to the Lebesgue measure, as the space of functions F : Rd+1
+ :→ R such

that,

Jq( f )(x) =
(∫

Γ (x)
|F(y, t)|qdy

dt
td+1

)1/q
∈ Lp(Rd),

where Γ (x) =
{
(y, t) ∈ R

d+1
+ : |x− y|< t

}
, 1 < q < ∞, and

‖F‖q,p = ‖ Jq( f )‖p.
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In 2012, J. Mass, J. Van Neerven, and P. Portal [169] introduced Gaussian tent
spaces as follows. Let

D := {(x, t) ∈ R
d × (0,∞) : t < m(x)},

where as usual, m(x) = 1∧ 1
|x| , is the admissibility function. Note that a point (x, t) ∈

R
d × (0,∞) belongs to D if and only if B(x, t) ∈ B1.

Definition 7.4. The Gaussian tent space T 1,q(γd) is the completion of C0(D) with
respect to the norm,

‖F‖T 1,q(γ) := ‖JF‖L1(Rd ,γd ;Lq(D,γd× dt
t ))

, (7.5)

where

(JF(x))(y, t) :=
χB(y,t)(x)

γd(B(y, t))1/q
F(y, t), F ∈C0(D), (7.6)

that is,

‖F‖T 1,q(γ) =
∫
Rd

(∫ ∫
Γ 1

x (γd)

1
γd(B(y, t))

|(JF(x))(y, t)|qγd(dy)
dt
t

)1/q
γd(dx),

where, Γ 1
x (γd) =

{
(y, t) ∈ R

d × (0,∞) : |y− x|< t < m(x)
}

is a Gaussian cone with

a = 1, see (4.83).

In [169], J. Mass, J. Van Neerven, and P. Portal obtained an atomic decomposition
for T 1,q(γd). As in the Euclidean case, this atomic decomposition turns out to be very
useful, because using an atomic decomposition, we only have to check results for
atoms and then the rest follows easily. First, let us see what a Gaussian tent is:

Definition 7.5. For a measurable set E ⊂R
d and a real number a > 0, we define the

tent with aperture α over E by

Tα(E) = {(y, t) ∈ R
d+1
+ : d(y,Ec)≥ α t}. (7.7)

Now, let us define a Gaussian atom.

Definition 7.6. Given α > 0 a function A : D → C is called a T 1,q(γd) α-atom if
there exists a ball B in Bα such that

i) A is supported in T1(B)∩D, i.e.,

supp(A)⊂ {(y, t) ∈ D : t ≤ d(y,Bc)} .

ii)
∫ ∫

D
|A(y, t)|q γd(dy)

dt
t

≤ 1

γd(B)q/q′
, where 1

q +
1
q′ = 1.

Lemma 7.7. If A is a T 1,q(γd) α-atom, then A ∈ T 1,q(γd) and ‖A‖T 1,q(γ) ≤ 1.
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Proof. Let A be a T 1,q(γd) α-atom supported in T1(B)∩ D, for some B ∈ Bα . If
(y, t) ∈T1(B)∩D and x ∈ B(y, t), then x ∈ B. Then, using this fact, Hölder’s inequal-
ity, and Fubini’s theorem, we obtain,

∫
Rd

(∫ ∫
D

χB(y,t)(x)

γd(B(y, t))
|A(y, t)|qγd(dy)

dt
t

)1/q
γd(dx)

=
∫
Rd

(∫ ∫
D

χB(y,t)(x)

γd(B(y, t))
|A(y, t)|qγd(dy)

dt
t

)1/q
χB(x)γd(dx)

≤
(∫

Rd

∫ ∫
D

χB(y,t)(x)

γd(B(y, t))
|A(y, t)|qγd(dy)

dt
t
γd(dx)

)1/q
γd(B)

1/q′

=
(∫ ∫

D

χB(y,t)(x)

γd(B(y, t))
|A(y, t)|qγd(dy)

dt
t

)1/q
γd(B)

1/q′ ≤ 1.

The set D admits a locally finite cover with tents T1(B) based at balls B ∈ Bα
if and only if α > 1; this explains the condition α > 1 in the next theorem, which
establishes an atomic decomposition of T 1,q(γd).

Theorem 7.8. (Mass, Van Neerven, and Portal) For all F ∈ T 1,q(γd) and α > 1,
there exists a sequence (λn)n≥1 ∈ �1 and a sequence of T 1,q(γ) α-atoms {An}n≥1

such that

i) F = ∑∞
n=1λnAn.

ii) ∑∞
n=1 |λn| ≤C‖ f‖T 1,q(γ), for some constant independent of f .

The proof of this result follows the lines of the classic counterpart in [55]; how-
ever, we can only use the doubling property of γd for admissible balls. That is why we
need the Gaussian Whitney covering (see Theorem 4.10). Before we start with the
proof, we need some notations and auxiliary results. Given a measurable set E ⊆R

d

and a real number α > 0, we define

Rα(E) = {(y, t) ∈ R
d × (0,∞) : d(y,E)< α t}= T c

α(E
c).

We also put, for any measurable set E ⊆ R
d and real number β > 0,

E [β ] =

{
x ∈ R

d :
γd(E ∩B)
γd(B)

≥ β for all B ∈ B 3
2

with center x

}
.

We call E [β ] the set of points of admissible β -density of E. Note that E [β ] is a closed
subset of Rd contained in E.

Lemma 7.9. For all η ∈ ( 1
2 ,1) there exists an η ∈ (0,1) such that, for all measur-

able sets E ⊆ R
d and all non-negative measurable functions F on D, there exists a

constant C > 0 such that
∫∫

R1−η (E [η])∩D
F(y, t)γd(dy)

dt
t

≤C
∫

E

(∫∫
D

χB(y,t)(x)

γd(B(y, t))
F(y, t)γd(dy)

dt
t

)
γd(dx).
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Proof. First, let η ∈ (0,1) be arbitrary and fixed. Let (y, t) ∈ R1−η(E [η ])∩D. Note
that (y, t) ∈ D implies B(y, t) ∈ B1. There exists x ∈ E [η] such that |y− x| < (1−
η)t. Notice first that, because t ≤ m(x), we have |x| ≤ (1−η)t + 1

t ≤ 1
2 +

1
t ≤ 3

2
1
t .

Thus, we have that t ∈ (0, 3
2 m(x)). Moreover, B(x,ηt)⊆ B(y, t)⊆ B(x, 3

2 t), and thus
B(y, t) ∈ B1, B(x, t) ∈ B 3

2
, and γd(B(x, t)) ∼ γd(B(y, t)) by repeated application of

Theorem 1.6 ii), the doubling property on admissible balls. Therefore, we have

γd(E ∩B(y, t))≥ γd(E ∩B(x, t))− γd(B(x, t)∩B(y, t)c)

≥ ηγd(B(x, t))− γd(B(x, t))+ γd(B(x, t)∩B(y, t))

≥ (η−1)γd(B(x, t))+ γd(B(x,ηt)).

Now, picking η close enough to 1 and using the doubling property, we obtain a
constant c = c(η ,n) ∈ (0,1) such that

γd(E ∩B(y, t))≥ cγd(B(x, t)).

Therefore, there exists a constant c′ = c′(η ,n)> 0 such that

γd(E ∩B(y, t))≥ c′γd(B(y, t)),

for all (y, t) ∈ R1−η(E [η])∩D. Finally,

∫
E

(∫∫
D

χB(y,t)(x)

γd(B(y, t))
F(y, t)γd(dy)

dt
t

)
γd(dx) =

∫∫
D

γd(E ∩B(y, t))
γd(B(y, t))

F(y, t)γd(dy)
dt
t

≥ c′
∫∫

R1−η (E [η])∩D
F(y, t)γd(dy)

dt
t
. ��

Lemma 7.10. If a function F ∈ T 1,q(γd) admits a decomposition in terms of T 1,q(γd)
α-atoms for some α > 1, then it admits a decomposition in terms of T 1,q(γd) α-atoms
for all α > 1.

Proof. Suppose that F ∈ T 1,q(γd) admits a decomposition in terms of T 1,q(γd) β -
atoms for some β > 1. We will show that f admits a decomposition in terms of
T 1,q(γd) α-atoms for any α > 1. This is immediate if α ≥ β , because in this case
any T 1,q(γd) β -atom is a T 1,q(γd) α-atom as well.

Therefore, let us assume that 1 < α < β . We claim that it suffices to show that
there exists an integer N, depending only upon α,β , and the dimension d, such that
if B ∈ Bβ , then T1(B)∩D can be covered by at most N tents of the form T1(B′) with
B′ = B(c′,r′) ∈ Bα satisfying r′ = αm(c′).

To prove the claim, it clearly suffices to consider the case that F is a T 1,q(γd)
β -atom having support in T1(B)∩D for some ball B ∈ Bβ , with center c and radius
r = βm(c). Let {T1(B′

1), · · · ,T1(B′
N)} be a covering of T1(B), where each B′

j, j =
1, · · ·N, is a ball in Bα with center c j, radius r j = αm(c j), and intersecting B. For
x ∈ T1(B)∩D we set

n(x) := #{1 ≤ j ≤ N : x ∈ T1(B
′
1)}, and Fj(x) =

F(x)
n(x)

χT1(B′
1)
(x).
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Then it follows that F = ∑N
j=1 Fj. Moreover, each Fj is a T 1,q(γd) α-atom, because

Fj is supported in T1(B j)∩D and

‖Fj‖Lq(D,γddt/t) ≤ ‖F‖Lq(D,γddt/t) ≤ γd(B)
−1/q′ ≤Cγd(B

′
j)

−1/q′ .

To obtain the latter estimate, we pick an arbitrary b ∈ B′
j ∪B and use Lemma 1.5

ii) to conclude that

m(c j)≤ (1+α)m(b)≤ 2(1+α)(1+β )m(c),

and then we estimate,

r j = αm(c j)≤ 2α(1+α)(1+β )m(c) = 2
α
β
(1+α)(1+β )r.

Using the doubling property, Theorem 1.6, we conclude γd(B j)≤Cγd(B). It follows
that F = ∑N

j=1 Fj is a decomposition in terms of T 1,q(γd) α-atoms, which proves the
claim.

Fix R ≥ 1+β large enough such that α(R−β )/(R−β+α)> 1. The set {(y, t)∈
D : |y| ≤ R+1} can be covered with finitely many sets – their number depending only
upon R, d and α – of the form T1(B′) with B′ = B(c′,r′) ∈ Bα and r′ = αm(c′).

Take a ball B = B(c,r) ∈ Bβ with |c| ≥ R and choose δ ∈ (0,1) small enough
such that (1−δ )α(R−β )/(R−β+α)> 1. Observe that if x ∈ B, then |x| ≥ R−β ≥
1, and therefore m(x) = 1

|x| . Let us define

CB := {(x, t) ∈ B× (0,∞)}.
Noting that T1(B)∩D ⊂ CB, it remains to cover CB with N tents T1(B′) based on
balls B′ ∈ Bα where the number N depends on α,β , and d only. To do so, let us start
picking c′ ∈ B, and let r′ = αm(c′) = α

|c′| and B′ = B(c′,r′). If (x, t) ∈CB is such that

|x− c′| ≤ δ r′, then

d(x,(B′)c) = d(c′,(B′)c)−|x− c′| ≥ (1−δ )r′ = (1−δ )
α
|c′|

≥ (1−δ )
α

|x|+ |x− c′| ≥ m(x)(1−δ )
(

α|x|
|x|+α

)

≥ m(x)(1−δ )
α(R−β )
R−β +α

≥ m(x)≥ t.

Here, we have used the monotonicity of the function t → t/(t +α).
We have proved that the point (x, t) ∈ CB belongs to T1(B′) whenever |x− c′| ≤

δ r′. Using that (|c|+β )r ≤ (|c|+β ) β|c| ≤ β +β 2, we have

r′ = αm(c′)≥ α
|c|+β

≥ α
β +β 2 r.

This implies that B can be covered with N balls B′ = B(c′,δ r′) as above, with N
dependent only on α,β , and d. The union of the N sets T1(B′)∩D then covers CB,
thus completing the proof of the lemma. ��

We are ready to prove Theorem 7.8.
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Proof. Using Lemma 7.10, it suffices to prove that each F ∈ T 1,q(γd) admits a de-
composition in terms of T 1,q(γd) α-atoms for some α > 0.

Recall that the disjoint sets A(i)
p,κ have been introduced in Definition 4.8. We shall

apply Theorem 4.10 for p = 4 and κ = 8 (the reason for this choice is the constant
16 = 24 produced in the argument below). As( ⋃

0≤l≤4

Ll

)
∪
( ⋃

i∈{1,...,8}d

A(i)
4,8

)
= R

d ,

we may write

f = f χ{‖J f‖2>0} = ∑
0≤l≤4

∑
Q∈Δγ

0,l

f χQ∩{‖J f‖2>0}+ ∑
i∈{1,...,8}d

f χ
A(i)

4,8∩{‖J f‖2>0}, (7.8)

where f χ{‖J f‖2>0}(x, t) := f (x, t)χ{‖J f‖2>0}(x) and

{‖J f‖2 > 0} := {x ∈ R
d : ‖J f (x)‖L2(D,dγd

dt
t )

> 0}.

The first equality in (7.8) is justified as follows. For all x0 ∈ V := {‖J f‖2 = 0} we
have χB(y,t)(x0) f (y, t) = 0 for almost all (y, t)∈ D; therefore, using Fubini’s theorem,
for almost all y ∈ R

d , we have

χB(y,t)(x0) f (y, t) = 0 for almost all t > 0.

Fix δ > 0 arbitrary. Then, for almost all y ∈ B(x0,δ ) we have f (y, t) = 0 for almost
all t ≥ δ . Applying again Fubini’s theorem, this implies that f (y, t) = 0 for almost
all (y, t)∈ (B(x0,δ )× [δ ,∞))∩D. Taking the union over all rational δ > 0, it follows
that f ≡ 0 almost everywhere on Γx := {(y, t) ∈ D : |x − y| < t} the “admissible
cone” over x. If K is any compact set contained in V , then by taking the union over
a countable dense set of points x ∈ K, it follows that f (y, t) = 0 almost everywhere
on the “admissible cone” over K. Finally, using the inner regularity of the Lebesgue
measure on R

d , it follows that f (y, t) = 0 almost everywhere on the “admissible
cone” over V . In particular, this proves the first identity in (7.8).

To prove the theorem it suffices to prove that each of the summands on the right-
hand side of (7.8) has an atomic decomposition. In view of Theorem 4.10 for p = 4
and κ = 8 it suffices to prove that

g := f χW∩{‖J f‖2>0}

has an atomic decomposition for every measurable set W in R
d such that W +C16 is

admissible 29
√

d-Whitney.
Given k ∈ Z, let us define

Ok := {‖J f‖2 > 2k}

and Fk := Oc
k. Fix an arbitrary η ∈ ( 1

2 ,1) and let η be as in Lemma 7.9. With abuse

of notation we let O[η ]
k := (F [η]

k )c, where F [η]
k denotes the set of points of admissible

η-density of Fk. We claim that O[η̄]
k is contained in W +C16 (see (4.8)).
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To prove the claim, we fix x ∈ O[η̄ ]
k , and check that x ∈W +C2. Indeed, as Jg(x)

does not vanish almost everywhere on D, we can find a set D′ ⊂D of positive measure
such that for almost all (y, t) ∈ D′

χB(y,t)(x)g(y, t) = χB(y,t)(x) f (y, t)χW∩{‖J f‖2>0}(y) �= 0.

For those points, we have y ∈ W, |x − y| < t and t < m(y), so t < 2m(x), using
Lemma 1.5 i). Thus, B(x, t) belongs to B2 and intersects W ; thus, x ∈W +C2.

As x is not a point of admissible η-density of Fk, there is a ball B ∈ B 3
2

with

center x such that γd(Fk ∩B)< η̄γd(B). This is only possible if B intersects Ok = Fc
k .

As Ok is contained in W +C2, this means that B intersects W +C2. Fix an arbitrary
x′ ∈B∩(W +C2) and let B′ ∈C2 be any admissible ball centered at x′ and intersecting
W . From x′ ∈ B and B ∈ B 3

2
, it follows that |x−x′|< 3

2 m(x). Also, because B′ ∈ B2

and intersects W, d(x′,W )< 2m(x), it follows that d(x,W )< 3
2 m(x)+2m(x′). Using

Lemma 1.5 ii), we have m(x′) < 5m(x), and therefore dist(x,W ) ≤ 16m(x). This
proves the claim.

For each N ≥ 1 define gN(y, t) := χ{|y|≤N}χ{|g|≤N}χ( 1
N ,∞)(t)g(y, t). Clearly, gN ∈

T q,q(γd) and, by dominated convergence, limN→∞ gN = g in T 1,q(γd). Defining the

sets Fk,N , Ok,N , F [η]
k,N , O[η ]

k,N in the same way as above, Lemma 7.9 gives that

∫∫
R1−η (F

[η ]
k,N )∩D

|gN(y, t)|qγd(dy)
dt
t

≤C
∫

Fk,N

(∫∫
D

χB(y,t)(x)

γd(B(y, t))
|gN(y, t)|qγd(dy)

dt
t

)
γd(dx)≤C‖gN‖q

T q,q(γd)
.

As k → −∞, the middle term tends to 0; therefore, the support of f gN is con-

tained in the union
⋃

k∈ZT1−η(O
[η]
k,N)∩D. Clearly, Ok,N ⊆ Ok implies T1−η(O

[η]
k,N)⊆

T1−η(O
[η]
k ); therefore, a limiting argument shows that the support of g is contained

in the union
⋃

k∈ZT1−η(O
[η ]
k )∩D.

Choose cubes (Qm
k )m∈N and functions (φm

k )m∈N as in Lemma 4.12, applied to the

open sets O[η ]
k which are contained in W +C8. Define for (y, t) ∈ D,

bm
k (y, t) := (χ

T1−η (O
[η ]
k )

(y, t)− χ
T1−η (O

[η ]
k+1)

(y, t))φm
k (y) f (y, t),

μm
k :=

∫∫
D
|bm

k (y, t)|q γd(dy)
dt
t
,

and put

λm
k := (γd(Q

m
k ))

1
q′ (μm

k )
1
q , am

k (y, t) :=
bm

k (y, t)

λm
k

.

Then,
g = ∑

k∈Z
∑

m∈N
λm

k am
k .
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Let C be a constant to be determined later and denote by (Qm
k )

∗∗ the cube that
has the same center as Qm

k , but side length multiplied by C. Let us further denote
by δm

k the length of the diagonal of Qm
k and by cm

k its center. We now show that
supp(am

k )⊆ T1((Qm
k )

∗∗). We have

supp(am
k )⊆ T1−η(O

[η]
k )∩{(y, t) ∈ D : y ∈ (Qm

k )
∗},

where (Qm
k )

∗ is as in Lemma 4.12. Therefore, for (y, t) ∈ supp(am
k ), we have

d(y,F [η]
k )≥ (1−η)t and y ∈ (Qm

k )
∗. For z �∈ (Qm

k )
∗∗ this gives

d(y,z)≥ d(z,cm
k )−d(y,cm

k )≥
( C

2
√

n
− ρ

2

)
δm

k , (7.9)

where ρ = ρ210
√

d,d is the constant from Lemma 4.12. Moreover, using property ii)
in Lemma 4.12,

d(cm
k ,F

[η ]
k )≤ (ρ+

1
2
)δm

k .

For u ∈ F [η ]
k such that d(cm

k ,u)≤ (ρ+ 1
2 )δ

m
k + ε , this gives

(1−η)t ≤ d(y,F [η ]
k )≤ d(y,u)≤ d(y,cm

k )+d(cm
k ,u)≤

3ρ+1
2

δm
k + ε . (7.10)

Upon taking C = 2
√

n(ρ2 + 3ρ+1
2(1−η) ), from (7.9) and (7.10) and letting ε ↓ 0, we infer

that

d(y,z)≥ 3ρ+1
2(1−η)

δm
k ≥ t.

This means that (y, t) ∈ T1((Qm
k )

∗∗), thus proving the claim: supp(am
k ) ⊆

T1((Qm
k )

∗∗).
Using the definitions of λm

k and am
k together with the doubling property for ad-

missible balls, we also get that
∫∫

D
|am

k (y, t)|qγd(dy)
dt
t

≤ 1

γd(Qm
k )

q
q′

≤C
1

γd((Qm
k )

∗∗)
q
q′
.

Up to a multiplicative constant, the am
k are thus T 1,q(γd) α-atoms for some α =

α(C,n)> 0. To get the norm estimates, we first use Lemma 7.9. Noting that (y, t) ∈
T1((Qm

k )
∗∗) and x ∈ B(y, t) imply x ∈ (Qm

k )
∗∗, we obtain

μm
k ≤

∫∫
R1−η (F

[η ]
k+1)∩D

χT1((Q
m
k )

∗∗)(y, t)| f (y, t)|qγd (dy)
dt
t

≤C
∫

Fk+1

(∫∫
D

χB(y,t)(x)χT1((Q
m
k )

∗∗)(y, t)

γ(B(y, t))
| f (y, t)|qγd(dy)

dt
t

)
γd(dx)

≤C
∫

Fk+1∩(Qm
k )

∗∗
‖J f (x)‖q

Lq(D,γd
dt
t ))

γd(dx)

≤C22(k+1)γd((Q
m
k )

∗∗)≤C22kγd(Q
m
k ).
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This then gives

∑
k∈Z

∑
m∈N

λm
k = ∑

k∈Z
∑

m∈N

√
μm

k γd(Qm
k )≤C ∑

k∈Z
2kγd(O

[η]
k ).

Because x ∈ O[η]
k implies M

3
2
γ (χOk)(x)> 1−η i.e.,

O[η ]
k ⊂ {x ∈W : M

3
2
γ (χOk)(x)> 1−η},

the weak type (1,1) of the truncated centered Gaussian Hardy–Littlewood maximal

function M
3
2
γ defined by using only B 3

2
-balls (see (4.101), gives that

(1−η)γ(O[η]
k )≤Cγ(Ok)

and thus

(1−η)∑
k∈Z

∑
m∈N

λm
k � ∑

k∈Z
2kγd(Ok)�

∫ ∞

0
γd(x ∈R

d : ‖J f (x)‖q > s)ds = ‖ f‖T 1,q(γd)
.

��

As an application of the atomic decomposition, we prove a result on change of
aperture of the cones. The proof is different from the classical one (see [55]), because
the result is derived directly from the atomic decomposition.

Definition 7.11. For α > 0, the Gaussian tent space T 1,q
α (γd) with aperture α is the

completion of C0(D) with respect to the norm,

‖ f‖
T 1,q
α (γd)

= ‖Jα f‖L1(Rd ,γd);Lq(D,γd
dt
t ))

, (7.11)

where

(Jα f (x))(y, t) :=
χB(y,αt)(x)

γd(B(y, t))1/q
f (y, t), f ∈C0(D). (7.12)

Theorem 7.12. (Change of aperture) For all 1 < α0 < α, we have T 1,q
α (γd) =

T 1,q
α0 (γd) with equivalent norms.

Proof. It is clear that T 1,q
α (γd) ⊂ T 1,q

α0 (γd); thus, it suffices to show that T 1,q
α0 (γd) ⊂

T 1,q
α (γd). To get that, it is enough to show that

Jα ∈ L1(Rd ,γd ; Lq(D,γd ×
dt
t
)),

whenever f ∈ T 1,q
α0 (γd). Observe that (y, t) ∈ D implies B(y, t) ∈ B1; therefore, using

the doubling property
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‖Jα f‖L1(Rd ,γd ;Lq(D,γd× dt
t ))

=
∫
Rd

(∫ ∫
D

χB(y,t)(x)

γd(B(y, t))
| f (y, t)|qγd(dy)

dt
t

)1/q
γd(dx)

=

∫
Rd

(∫ ∫
D̃

χB(y,t)(x)

γd(B(y, t/α))
| f (y, t/α)|qγd(dy)

dt
t

)1/q
γd(dx)

≤
∫
Rd

(∫ ∫
D̃

χB(y,t)(x)

γd(B(y, t))
| f (y, t/α)|qγd(dy)

dt
t

)1/q
γd(dx)

= ‖J f̃‖L1(Rd ,γd ;Lq(D̃,γd× dt
t ))

,

where D̃ := {(x, t) ∈ R
d × (0,∞) : (x, t/α) ∈ D}, and f̃ (y, t) := f (y, t/α). To prove

the result, it is enough to show that

‖J f̃‖L1(Rd ,γd ;Lq(D̃,γd× dt
t ))

≤C‖Jα0 f‖L1(Rd ,γd ;Lq(D̃,γd× dt
t ))

, (7.13)

for f ∈ T 1,q
α (γd).

Suppose a is a T 1,q
α (γd) α0-atom. Then, a is supported in T1(B)∩D for some

ball B = B(c,r) ∈ Bα0 . Then ã(y, t) = a(y,y/α) is supported in T̃1(B)∩ D̃ where
T̃1(B) := {(y, t) ∈ R

d × (0,∞) : (y, t/α) ∈ T1(B)}. Using that (y, t) ∈ T̃1(B) and
x ∈ B(y, t) imply x ∈ B(c,αr), the doubling property for admissible balls gives,

∫
Rd

(∫ ∫
D̃

χB(y,t)(x)

γd(B(y, t))
|a(y, t/α)|qγd(dy)

dt
t

)1/q
γd(dx)

≤
∫
Rd

(∫ ∫
D̃

χB(y,t)(x)

γd(B(y, t))
|a(y, t/α)|qγd(dy)

dt
t

)1/q
χB(c,αr)(x)γd(dx)

≤
∫
Rd

(∫ ∫
D̃

χB(y,t)(x)

γd(B(y, t))
|a(y, t/α)|qγd(dy)

dt
t

)1/q
χB(c,αr)(x)γd(dx)

≤
(∫

Rd

(∫ ∫
D̃

χB(y,t)(x)

γd(B(y, t))
|a(y, t/α)|qγd(dy)

dt
t

)1/q
γd(B(c,αr))1/q′

≤C
(∫

Rd

(∫ ∫
D̃
|a(y, t/α)|qγd(dy)

dt
t

)1/q
γd(B(c,r))

1/q′

≤C
(∫

Rd

(∫ ∫
D
|a(y, t)|qγd(dy)

dt
t

)1/q
γd(B(c,r))

1/q′ ≤C.

This shows that Jã ∈ L1(Rd ,γd ; Lq(D̃,γd × dt
t )). Then, using the atomic decompo-

sition, Theorem 7.8, we can conclude that J f̃ ∈ L1(Rd ,γd ; Lq(D̃,γd × dt
t )), for all

f ∈ T 1,q
α (γd). The estimate (7.13) then follows from the closed graph theorem. ��

7.4 Gaussian Hardy Spaces H1(γd)

The real variable theory of Hardy spaces originates from the work of C. Fefferman
and E. Stein [79]. There are several equivalent definitions for the Hardy spaces on
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R
d , with respect to the Lebesgue measure. We are going to discuss briefly the most

important ones, at least for us, here. First, there is the atomic Hardy space H1
at(R

d).
Here, an atom is a complex-valued function a defined on R

d , which is supported on
a cube Q and is such that

∫
Q

a(x)dx = 0 and ‖a‖∞ ≤ 1
|Q| .

The atomic space H1
at(R

d) is defined by

H1
at(R

d) :=
{
∑

j
λ ja j : a j atoms,λ j ∈ C, ∑

j
|λ j|< ∞

}
,

with norm

‖ f‖H1
at(R

d) := inf
{
∑

j
|λ j| : f =∑

j
λ ja j ∑

j
|λ j|< ∞

}
.

The other relevant characterizations of the classical Hardy space are given using
the non-tangential maximal function T ∗

NT of the heat semigroup

T ∗
NT f (x) := sup

(y,t)∈Γx

|Tt2 f (y)|, (7.14)

and the conical square function of the heat semigroup

SNT f (x) :=
1

|B(y, t)|
(∫

Γx

∣∣∣tTt2 f (y)
∣∣∣2 dy

dt
t

) 1
2
, (7.15)

where Γx :=
{
(y, t) ∈ R

d × (0,∞) : |y− x|< t
}

are the usual cones in R
d+1 with a

vertex at x ∈ R
d .

The Hardy spaces can then be defined as the completion of the space of com-
pactly supported functions C0(R

d) with respect to the norm

‖ f‖H1
max

:= ‖ f‖1 +‖T ∗
NT f‖1,

or with respect to the norm

‖ f‖H1
quad

:= ‖ f‖1 +‖SNT f‖1.

It can be proved that these norms are equivalent norms.

The Calderón–Zygmund operators are not bounded on L1(Rd), but are bounded
on weak-L1, which is not a Banach space. Another characterization of H1(Rd) is
precisely the subspace of functions f ∈ L1(Rd) such that their Riesz transforms R j f
are also in L1(Rd), i.e.,

H1(Rd) =
{

f ∈ L1(Rd) : R j f ∈ L1(Rd), j = 1,2, · · · ,d
}
.
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Finally, in 1971, it was proved by C. Fefferman in [78] (see also [79]), that the
dual of H1(Rd) is BMO(Rd), the space of functions with bounded mean oscillations
introduced by F. John and L. Nirenberg in [144].

In recent years, the theory of Hardy spaces has been extended to a variety of
new settings. These developments involve replacing the (Euclidean) Laplacian with
a different semigroup generator L, and the space R

d endowed with the Borel σ -
algebra and the Lebesgue measure with a different metric measure space (M,d,μ).
Important references include S. Hofmann and S. Mayboroda’s work on the Euclidean
space, with the Laplacian replaced by a more general divergence form second-order
elliptic differential operator with bounded measurable coefficients (see [136] and
the Auscher–McIntosh–Russ Hardy spaces of differential forms associated with the
Hodge Laplacian on a Riemannian manifold [13]. These results rely heavily on two
assumptions: that the measure μ is a doubling measure (see Appendix), and that the
semigroup generated by L, {etL}, has some appropriate L2 off-diagonal decay: for
f ∈ L2(Rd), there exists a constant C independent of E,F, t and f such that

∥∥∥χEetL(χF f )
∥∥∥

2
≤ c(1+

d(E,F)

t
)−k‖χ f f‖2,

where E,F, are Borel sets in R
d .

Given the success of Hardy space techniques in deterministic partial differential
equations, we can expect that a Gaussian analog would similarly have applications
to non-linear stochastic partial differential equations and stochastic boundary value
problems.

There have been several attempts to define Gaussian Hardy spaces, but the main
difficulty has been the fact that the Gaussian measure is not a doubling measure and
the Ornstein–Uhlenbeck semigroup does not satisfy the kernel bounds required to
apply the non-doubling theory of Tolsa [274]. The first result was obtained in 2007 by
G. Mauceri and S. Meda in their seminal paper [174]. Their work is striking precisely
because the Gaussian measure is not doubling, but the key to their success relies on
the fact that they discovered that the Gaussian measure is a doubling measure when
restricted to the class of admissible balls (see Proposition 1.6). The Mauceri–Meda
Hardy spaces H1

at(γd) are defined via an atomic decomposition. An atom is either
the constant function 1 or a function supported in an admissible ball B ∈ B1 with
vanishing integral and satisfying an appropriate size condition. More precisely,

Definition 7.13. Let 1 < r < ∞, a (1,r)-atom is either the constant function 1, or a
function a in L1(γd) supported in a ball B ∈ B1 with the following properties:

∫
B

a(y)γd(dy) = 0, (7.16)

and ( 1
γd(B)

∫
B
|a(y)|r γd(dy)

)1/r
≤ 1

γd(B)
, (7.17)
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or equivalently,
‖a‖r,γ ≤ γd(B)

1/r−1. (7.18)

Then, we have

Definition 7.14. The atomic Gaussian Hardy space H1,r
at (γd) is the space of all func-

tions f in L1(γd) that admit an atomic decomposition of the form

f =
∞

∑
k=1

λkak (7.19)

where ak is a (1,r)-atom and ∑∞
k=1 |λk|< ∞, with norm

‖ f‖
H1,r

at (γ) = inf
{ ∞

∑
k=1

|λk| : f =
∞

∑
k=1

λkak, ak (1,r)−atom and
∞

∑
k=1

|λk|<∞
}
. (7.20)

By duality with the BMO(γd) spaces, it can be proved that all Gaussian Hardy
spaces H1,r

at (γd) coincide for all r ∈ (1,∞) with equivalent norms. Moreover, in [177,
Theorem 2.2], G. Mauceri, S. Meda, and P. Sjögren prove that this can be extended
to the case r = ∞. Thus, we can denote any of them simply by H1

at(γd) and use any
of the equivalent norms. Additionally, the Mauceri–Meda space H1

at(γd) provides a
good endpoint to the Lp scale from the interpolation point of view.

J. Maas, J. van Neerven, and P. Portal in [168] and [169] developed an alterna-
tive approach to the theory of Hardy spaces for the Gaussian case. This involved
considering adequate dyadic cubes, Whitney-type covering lemmas (which were
discussed in Section 4.1), related tent spaces and their atomic decomposition (which
were discussed in Section 7.3), and techniques to estimate non-tangential maximal
functions and conical square functions (see Section 4.6).

In 2012, P. Portal in [231] gave another characterization of Gaussian Hardy
spaces, introducing two new spaces:

Definition 7.15. i) The (maximal) Gaussian Hardy space, or non-tangential max-
imal function Hardy space, H1

max,a(γd) is the completion of the L2 range of L,
R(L),1 with respect to the norm

‖ f‖H1
max,a(γ) := ‖T ∗

γ (1,a) f‖1,γ , (7.21)

where T ∗
γ (1,a) is the non-tangential maximal function associated with the

Ornstein–Uhlenbeck semigroup (4.84).

1In [231], the spaces are defined as completions of C∞
0 (R

d). This unfortunate mistake was
pointed out in [232]. These spaces, just like other Hardy spaces associated with an operator L,
can only be defined on the range of L (where the reproducing formula holds in a L1 sense). In
other situations, this is only a minor technical hindrance. For the Ornstein–Uhlenbeck opera-
tor, however, this is critical because of the change of spectrum at p = 1.
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ii) The (quadratic) Gaussian Hardy space H1
quad,a(γd) is the completion of the L2

range of L, R(L), with respect to the norm,

‖ f‖H1
quad,a(γ)

:= ‖ f‖1,γd +‖Sa,γ f‖1,γ , (7.22)

where Sa,γ is the “averaged version” of the non-tangential Ornstein–Uhlenbeck
maximal function, (4.91).

Then, we have the following crucial result:

Theorem 7.16. Given a > 0, there exists a′ > 0 such that the norms ‖·‖H1
quad,a(γ)

and

‖ · ‖H1
max,a′ (γ)

are equivalent; therefore,

H1
quad,a(γd) = H1

max,a(γd). (7.23)

The proof of this result is technically very difficult and long. We give some of
the main elements (for full details, see [231, Theorem 1.1 ]). The proof is based on
the Gaussian version of A. P. Calderón’s reproducing formula (2.59).

First of all, observe that from Theorem 7.12, we can immediately obtain one of
the required inequalities, because

‖Sa,γ f‖1,γ ≤C‖T ∗
γ (1,a

′) f‖1,γ ,

for some C,a′ > 0.2

Therefore, to prove Theorem 7.16, we need to prove the reverse inequality.
The (local) part

J1 f (x) :=
∫ m(x)

0
(t2L)N+1T(1+a)t2/α f (x)

dt
t
, (7.24)

is treated, via atomic decomposition of the tent space T 1,q(γd), leading to the esti-
mate,

‖J1 f‖H1
max,a′ (γ)

≤C′(‖ f‖1,γ +‖ f‖H1
quad,a(γ)

). (7.25)

The (global) term,

J∞ f (x) :=
∫ ∞

m(x)
(t2L)N+1T(1+a)t2/α f (x)

dt
t
, (7.26)

is very problematic, as the boundedness of the square function norm ‖Sa,γ‖1,γd does
not give any information about it. Nevertheless, estimates of the Ornstein–Uhlenbeck
semigroup give the estimate,

‖J1 f‖H1
max,a′ (γ)

≤C′′‖ f‖1,γ . (7.27)

2Actually, Theorem 4.43 gives a slightly stronger inequality involving ϒ∗
γ (1,a

′), the “av-
erage” non-tangential maximal function.



7.4 Gaussian Hardy Spaces H1(γd) 261

Let us look at the main argument of the proof in more detail. Using the Gaussian
version of A. P. Calderón’s reproducing formula (2.59)

f (x) =
∫
Rd

f (x)γd(dx)+C
∫ ∞

0
(t2L)N+1T(1+a)t2/α f (x)

dt
t
,

for f ∈ L2(γd), in L2-sense, and the atomic decomposition, we can prove the fol-
lowing corollary of Theorem 7.8, for q = 2. This corollary is the actual underlying
identity for proving Theorem 7.16.

Corollary 7.17. For all N ∈N,a > 1,b ≥ 1
2 and α > a2 there exists C1,C2,C3,C4 >

0, and d sequences of α-atoms {An, j}n≥1 and numbers (λn, j)n≥1 ∈ �1, such that for
all f ∈C∞

c (R
d) and x ∈ R

d ,

f (x) =
∫
Rd

f (y)γd(dy) − C1

d

∑
j=1

∞

∑
n=1

λn, j

∫ 2

0
(t2L)NTt2/α

(
t(∂ j

γ )
∗ An, j(x, t)

) dt
t

+ C2

d

∑
j=1

∞

∑
n=1

λn, j

∫ 2

0
χ[m(x)

b ,2
](t)(t2L)NTt2/α

(
t(∂ j

γ )
∗ An, j(x, t)

)dt
t

− C3

d

∑
j=1

∫ m(x)
b

0
(t2L)NTt2/α

(
χDc(x, t)t∂ j

γ Ta2t2/α f (x)
) dt

t

+ C4

∫ ∞

m(x)
b

(t2L)N+1T(1+a2)t2/α f (x)
dt
t
, (7.28)

and
d

∑
j=1

∞

∑
n=1

|λn, j| ≤C‖ f‖H1
quad,a(γ)

,

where (∂ j
γ )

∗ =
√

2x jId − 1√
2

∂
∂x j

, the formal L2(γd)-adjoint of ∂ j
γ , see (2.12).

Proof. Let us recall that L = −∑d
j=1(∂

j
γ )

∗∂ j
γ , see (2.13). Hence, as L and Tt , t ≥ 0

commute,

(t2L)N+1T(1+a2)t2/α f (x) = −
d

∑
j=1

(t2L)Nt2(∂ j
γ )

∗∂ j
γ Tt2/αTa2t2/α f (x)

= −
d

∑
j=1

(t2L)NTt2/α t(∂ j
γ )

∗[χD(x, t)+ χDc(x, t)]t∂ j
γ Ta2t2/α f (x).

Set Fj(x, t) := χD(x, t)t∂ j
γ Ta2t2/α f (x), for j = 1, · · · ,d. We need to check that

Fj ∈ T 1,2(γd), i.e., that they have an atomic decomposition.
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Using Theorem 1.6 ii) we have, taking the change of variables t =
√
αs

‖Fj‖T 1,2
α (γd)

≤C
∫
Rd

(∫∫
Γ 1

x (γd)

χD(y, t)
γd(B(y, t))

|t∂ j
γ Ta2t2/α f (y)|2γd(dy)

dt
t

)1/2
γd(dx)

≤C
∫
Rd

(∫ ∞

0

∫
B(x,t)

χD(y, t)
γd(B(y, t))

|t∂ j
γ Ta2t2/α f (y)|2γd(dy)

du
u

)1/2
γd(dx)

≤C
∫
Rd

(∫ ∞

0

∫
B(x,

√
αs)

χD(y,
√
αs)

γd(B(y,
√
αs))

|s∂ j
γ Ta2s2 f (y)|2γd(dy)

ds
s

)1/2
γd(dx)

≤C
∫
Rd

(∫ ∞

0

∫
B(x,

√
αs)

χD(y,
√
αs)

γd(B(y,
√
αs))

|s∇Ta2s2 f (y)|2γd(dy)
ds
s

)1/2
γd(dx)

≤C
∫
Rd

(∫ ∞

0

∫
B(x,

√
αs)

χD(y,
√
αs)

γd(B(y,s))
|s∇Ta2s2 f (y)|2γd(dy)

ds
s

)1/2
γd(dx),

as γd(B(y,
√
αs)) ≥ γd(B(y,s)). Then, by the change of aperture formula, Theo-

rem 7.12, and the change of variables at = s, we get

‖Fj‖T 1,2
α (γd)

≤C
∫
Rd

(∫ ∞

0

∫
B(x,a2t)

χD(y,a2t)
γd(B(y, t))

|t∇Ta2t2 f (y)|2γd(dy)
dt
t

)1/2
γd(dx)

≤C
∫
Rd

(∫ ∞

0

∫
B(x,as)

χD(y,as)
γd(B(y, t))

|s∇Ts2 f (y)|2γd(dy)
ds
s

)1/2
γd(dx)≤ ‖ f‖H1

quad,a
.

Then, using Theorem 7.8, we conclude that

Fj(x, t) =
∞

∑
n=1

λn, jAn, j(x, t),

with ∑∞
n=1 |λn, j| < ∞, for j = 1, · · · ,d. Hence, using the Gaussian version of A. P.

Calderón’s reproducing formula

f (x) =
∫
Rd

f (y)γd(dy)+C
∫ ∞

0
(t2L)N+1T(1+a)t2/α f (x)

dt
t

=
∫
Rd

f (y)γd(dy)+C
∫ ∞

m(x)
b

(t2L)N+1T(1+a)t2/α f (x)
dt
t

−C
d

∑
j=1

∫ m(x)
b

0
d(t2L)NTt2/α t(∂ j

γ )
∗[χD(x, t)+ χDc(x, t)]t∂ j

γ Ta2t2/α f (x)
dt
t

=
∫
Rd

f (y)γd(dy)+C
∫ ∞

m(x)
b

(t2L)N+1T(1+a)t2/α f (x)
dt
t

−C
d

∑
j=1

∫ m(x)
b

0
(t2L)NTt2/α t(∂ j

γ )
∗[χD(x, t)+ χDc(x, t)]t∂ j

γ Ta2t2/α f (x)
dt
t

=
∫
Rd

f (y)γd(dy)+C
∫ ∞

m(x)
b

(t2L)N+1T(1+a)t2/α f (x)
dt
t
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−C
d

∑
j=1

∫ m(x)
b

0
(t2L)NTt2/α t(∂ j

γ )
∗χD(x, t)t∂ j

γ Ta2t2/α f (x)
dt
t

−C
d

∑
j=1

∫ m(x)
b

0
(t2L)NTt2/α t(∂ j

γ )
∗χDc(x, t)t∂ j

γ Ta2t2/α f (x)
dt
t

=
∫
Rd

f (y)γd(dy)+C
∫ ∞

m(x)
b

(t2L)N+1T(1+a)t2/α f (x)
dt
t

−C
d

∑
j=1

∞

∑
n=1

λn, j

∫ m(x)
b

0
(t2L)NTt2/α t(∂ j

γ )
∗An, j(x, t)

dt
t

−C
d

∑
j=1

∫ m(x)
b

0
(t2L)NTt2/α t(∂ j

γ )
∗χDc(x, t)t∂ j

γ Ta2t2/α f (x)
dt
t

It is easy to check that the interchange of the (Bochner) integral with the sum is
allowed. Finally, using that m(x)/b ≤ 2, we get

d

∑
j=1

∞

∑
n=1

λn, j

∫ m(x)
b

0
(t2L)NTt2/α t(∂ j

γ )
∗An, j(x, t)

dt
t

=
d

∑
j=1

∞

∑
n=1

λn, j

∫ 2

0
(t2L)NTt2/α t(∂ j

γ )
∗An, j(x, t)

dt
t

−
d

∑
j=1

∞

∑
n=1

λn, j

∫ 2

0
χ[m(x)

b ,2
](t)(t2L)NTt2/α t(∂ j

γ )
∗An, j(x, t)

dt
t
.

This gives (7.28). Thus, we have shown that ‖Fj‖T 1,2
α (γd)

≤C‖ f‖H1
quad,a(γ)

, so

d

∑
j=1

∞

∑
n=1

|λn, j| ≤C‖ f‖H1
quad,a(γ)

. ��

The proof of Theorem 7.16 uses (7.28) obtained in Corollary 7.17.
For a > 0, Theorem 7.12 gives that there exists a′ > 0 such that H1

max,a′(γd) ⊂
H1

quad,a(γd). Let us fix a′ and pick

α > max
{

238,32e4,4
√

ae2a2
}
, b ≥ max

{
2e,

√
32e4

(α−32e4)(1− e−2a2/α)

}
,

and N > d/4. Let f ∈C∞
c (R

d) and apply Corollary 7.17. We have
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‖ f‖H1
max,a′ (γ)

≤C =

∥∥∥∥T ∗
γ (1,a)

(∫
Rd

f (y)γd(dy)

)∥∥∥∥
1,γ

+ C
d

∑
j=1

∞

∑
n=1

|λn, j|
∥∥∥∥
∫ 2

0
(t2L)NTt2/α

(
t(∂ j

γ )
∗ An, j(·, t)

) dt
t

∥∥∥∥
H1

max,a′

+ C
d

∑
j=1

∞

∑
n=1

|λn, j|
∥∥∥∥
∫ 2

0
χ[m(·)

b ,2
](t)(t2L)NTt2/α

(
t(∂ j

γ )
∗ An, j(·, t)

) dt
t

∥∥∥∥
H1

max,a′

+ C
d

∑
j=1

∥∥∥∥∥
∫ m(·)

b

0
(t2L)NTt2/α

(
χDc(x, t)t∂ j

γ Ta2t2/α f (·)
) dt

t

∥∥∥∥∥
H1

max,a′

+ C

∥∥∥∥
∫ ∞

m(·)
b

(t2L)N+1T(1+a2)t2/α f (·) dt
t
)

∥∥∥∥
H1

max,a′

+‖ f‖1,γ .

As the Ornstein–Uhlenbeck semigroup is conservative, i.e., Tt1 =, t ≥ 0 then
∥∥∥∥T ∗

γ (1,a)

(∫
Rd

f (y)γd(dy)

)∥∥∥∥
1,γ

≤ ‖ f‖1,γ ≤ ‖ f‖H1
quad,a′ (γ)

.

To bound the rest of the terms above, several estimates of Mehler’s kernel (off-
diagonal estimates) are needed, in addition to the introduction of the notion of
molecules (see Sections 3 and 4 of [231]). Once that is done, we can then bound
the remaining terms. Using [231, Proposition 5.5], we get

∥∥∥∥
∫ ∞

m(·)
b

(t2L)N+1T(1+a2)t2/α f (·) dt
t
)

∥∥∥∥
H1

max,a′ (γ)
≤C ≤ ‖ f‖1,γ ≤C‖ f‖H1

quad,a′ (γ)
.

Now, for j = 1, · · · ,d, using [231, Proposition 5.4], we obtain

∥∥∥∥∥
∫ m(·)

b

0
(t2L)NTt2/α

(
χDc(x, t)t∂ j

γ Ta2t2/α f (·)
) dt

t

∥∥∥∥∥
H1

max,a′ (γ)

≤C ≤ ‖ f‖1,γ ≤C‖ f‖H1
quad,a′ (γ)

.

Applying [231, Proposition 5.3 ] gives that
∥∥∥∥
∫ 2

0
χ[m(·)

b ,2
](t)(t2L)NTt2/α

(
t(∂ j

γ )
∗ An, j(·, t)

) dt
t

∥∥∥∥
H1

max,a′ (γ)
≤C,

whereas Proposition 4.2 combined with Theorem 4.3 of [231] gives, for j = 1, · · · ,d,
∥∥∥∥T ∗

γ (1,a)

(∫
Rd

f (y)γd(dy)

)∥∥∥∥
1,γ

≤C.
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Therefore,

‖ f‖H1
max,a′ (γ)

≤C‖ f‖H1
quad,a′ (γ)

+C
d

∑
j=1

∞

∑
n=1

|λn, j| ≤C‖ f‖H1
quad,a′ (γ)

. ��

G. Mauceri and S. Meda proved that the topological dual of H1,r
at (γd) is iso-

morphic to BMO(γd). They also proved that the imaginary power of the Ornstein–
Uhlenbeck operator, (−L)iα and the adjoint of the Riesz transforms R∗

j are bounded

from H1,r
at (γd) to L1(γd). Unfortunately, it was proved by G. Mauceri, S. Meda, and

P. Sjögren in [176, Theorem 3.1] that the Riesz transforms R j are not bounded
from H1

at(γd) to L1(γd) in a dimension greater than one. On the other hand, P. Portal
proved, in [231, Theorem 6.1], that the Riesz transforms R j are bounded from
H1

max(γd) to L1(γd), but it is not known if the imaginary powers of (−L) are bounded
there. Also, nothing is known about duality and interpolation for H1

max(γd). Thus,
these spaces are different.

As we have seen, Portal’s proof is based on the theory of Gaussian tent spaces
T 1,2
α (γd). Although these tent spaces are defined using an atomic decomposition,

and the equivalence of H1
max(γd) and H1

quad(γd) uses the atomic decomposition of

T 1,2
α (γd) via the Gaussian version of Calderón’s reproducing formula, their explicit

characterization is not provided in [231]. In [37], T. Bruno introduces a new atomic
Gaussian Hardy space X1(γd), which is strictly contained in the space H1

at(γd).
First, we need the following notation,

Definition 7.18. Let E be a bounded open set and K be a compact set in R
d .

i) We denote by q2(E) the space of all functions f ∈ L2(E) such that L f is constant
on E, and by q2(K) the space of all functions on K, which are restriction to K of
a function in q2(E ′) for some bounded open set, such that K ⊂ E ′.

ii) We denote by h2(E) the space of all functions f ∈ L2(E) such that L f = 0 on
E, and by h2(K) the space of all functions on K that are restriction to K of a
function in h2(E ′) for some bounded open set, such that K ⊂ E ′.

The spaces h2(E)⊥ and q2(E)⊥ are the orthogonal complements of h2(E) and
q2(E) in L2(E,γd) respectively. The spaces h2(K)⊥ and q2(K)⊥ are the orthogonal
complements of h2(K) and q2(K) in L2(K,γd) respectively.

Now, following G. Mauceri, S. Meda, and P. Vallarino in [178], we defined the
atomic Gaussian Hardy space X1(γd).

Definition 7.19. An X1-atom is a function a ∈ L2(γd), supported in a ball B ∈ B1,
with the following properties:

i) a ∈ q2(B)⊥.
ii) ‖a‖2,γ ≤ γd(B)1/2.
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Definition 7.20. The atomic Gaussian Hardy space X1(γd) is the space of all func-
tions f in L1(γd) that admit an atomic decomposition of the form

f =
∞

∑
k=1

λkak (7.29)

where ak is a X1-atom and ∑∞
k=1 |λk|< ∞, with norm

‖ f‖X1(γ) = inf
{ ∞

∑
k=1

|λk| : f =
∞

∑
k=1

λkak, ak X1-atom and
∞

∑
k=1

|λk|< ∞
}
. (7.30)

If B ∈ B1, the functions in q2(B) are referred to as Gaussian quasi-harmonic
functions in B.

Observe that the space X1(γd) is strictly contained in the atomic Gaussian space
H1

at(γd) of Mauceri and Meda. Indeed, the atoms defining H1
at(γd) are supported on

admissible balls of B1, but have only zero integral, a much weaker condition than
being in q2(B)⊥. The great advantage of the space X1(γd) is that T. Bruno proved that
the Riesz transforms are bounded from X1(γd) to L1(γd). However, the understanding
of the space X1(γd) is far from complete; for instance, it seems that X1(γd) is also a
subspace of H1

max(γd).

7.5 Gaussian BMO(γd) Spaces

In 1961, F. John and L. Nirenberg [144] introduced the space of functions of bounded
mean oscillations (BMO) with respect to the Lebesgue measure, as the space of all
locally integrable functions on R

d such that

sup
Q∈Q

1
|Q|

∫
Rd

| f (y)− fQ|dy < ∞, (7.31)

where Q is the family of all open cubes in R
d with sides parallel to the coordinate

axes, and fQ = 1
|Q|

∫
Rd | f (y)|dy, the average of f over Q with respect to the Lebesgue

measure. It is easy to see that by replacing the family Q with the family of balls B
in the formula above, we obtain an equivalent norm on BMO.

Extensions of the space of functions of bounded mean oscillations have been
considered in the literature. In particular, a theory of functions of bounded mean
oscillations that parallels the Euclidean theory has been developed on spaces of
homogeneous type by R. Coifman and G. Weiss [56] (see also [170]). As mentioned
before, (Rd , | · |,γd) is not a space of homogeneous type and the theory of BMO
spaces developed in [56] and [170] does not apply to this setting.

More recently, spaces of functions of bounded mean oscillations have been
introduced on measured metric spaces not of homogeneous type, specifically on
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(Rd , | · |,μ), where μ is a (possibly non-doubling) non-negative Radon measure. In
particular, X. Tolsa [274] has defined a regular BMO space, RBMO(μ), whenever μ
is a non-negative Radon measure on R

d , which is n-dimensional, i.e., there exists a
constant C > 0 such that for any ball B(x,r)⊂ R

d

μ(B(x,r))≤Crn,

for some n ∈ [1,d]. Tolsa’s space enjoys many good properties of BMO of spaces of
homogeneous type. In particular, Calderón–Zygmund singular integrals are bounded
from L∞(μ) to RBMO(μ).

As mentioned before, γd is trivially a d-dimensional measure. However,
RBMO(γd) is not the appropriate space to study the boundedness on L∞(γd) of
Gaussian singular integrals, because the kernel of these operators does not sat-
isfy the standard estimates uniformly in the whole complement of the diagonal in
R

d ×R
d . As we discuss in detail in Chapter 9, the local part of Gaussian singular

integrals satisfies the usual estimates of a Calderón–Zygmund operator. In 2007, G.
Mauceri and S. Meda in [174] also introduced Gaussian BMO spaces, BMO(γd), as
follows:

Definition 7.21. The Gaussian space of functions of bounded mean oscillations
BMO(γd), is the space of functions f ∈ L1(γd) that satisfy

sup
B∈B1

1
γd(B)

∫
B
| f (x)− f γB|γ(dx)< ∞, (7.32)

where

f γB =
1

γd(B)

∫
B

f (x)γd(dx),

the average of f over B. We define

‖ f‖B1∗ = sup
B∈B1

1
γd(B)

∫
B
| f (x)− f γB|γ(dx), (7.33)

and the norm in BMO(γd) is then defined as

‖ f‖BMO(γ) = ‖ f‖1,γ +‖ f‖B1∗ .

Observe that by definition BMO(γd) ⊂ L1(γd). Moreover, it can be proved that
BMO(γd) is a Banach space, and also that if we replace the family B1 with any other
family Ba in the definition of BMO(γd), we obtain the same space with an equivalent
norm (see [174, Proposition 2.4]),3

3Also, we obtain the same space with an equivalent norm if instead of Ba, we consider
Qa the admissible cubes of parameter a, i.e., the cubes Q with sides parallel to the axes , with
a center at cq and a side length lq ≤ am(cQ).
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We define the (local) sharp function f � as follows:

Definition 7.22. Given f ∈ L1(γd), the (local) sharp function f � is defined as

f �(x) = sup
B∈B1,x∈B

1
γd(B)

∫
B
| f (y)− f γB|γd(dy). (7.34)

Clearly, f ∈ BMO(γd) if and only if f � ∈ L∞(γd), and ‖ f‖B1∗ = ‖ f �‖∞,γ .. More-
over, it is straightforward to prove that f � ≤ 2M a

γ 1 f (x), for any x ∈ R
d .

Additionally, G. Mauceri and S. Meda in [174] prove that an inequality of John–
Nirenberg type for admissible balls holds for functions in BMO(γd) (see [174, Propo-
sition 4.1]) and that the topological dual of H1

at(γd) is isomorphic to BMO(γd). The
proof of this result is modeled over the classical result of Fefferman, although there
are several additional difficulties to overcome to adapt the original proof to the Gaus-
sian setting (see [174, Theorem 5.2]).

7.6 Gaussian Lipschitz Spaces Lipα(γ)

The standard Euclidean Lipschitz space Lipα(Rn) consists of all bounded functions
f such that for some C > 0

| f (y)− f (x)| ≤C|x− y|α , x,y ∈ R
n. (7.35)

This characterization is based on the regularity of the functions. It is known that
the space Lipα(Rn) can also be characterized by convolution with the standard Pois-
son kernel,

qt(x) = cn
t

(t2 + |x− y|2)(d+1)/2
,

see E. Stein [252, Section V. 4. 2], as f ∈ Lipα(Rn) if and only if

∥∥∥∂Pt

∂ t
(x,y) f

∥∥∥
L∞

≤Ctα−1, (7.36)

for all t > 0.

We would like to define Lipschitz spaces associated with the Gaussian measure.
Observe that, as mentioned above, the spaces Lp(γd) are not closed under the action
of the classical translation operator; thus, it would not be a good idea to try to
define them following the classical definition (7.35). Therefore, we use the Poisson–
Hermite semigroup to define Gaussian Lipschitz spaces.

In what follows, we need the technical result about the L1-norm of the derivatives
discussed in Lemma 3.16. From there, we then get the following key result,
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Proposition 7.23. Suppose f ∈ L∞(γ) and α > 0. Let k and l be two integers both
greater than α . The two conditions

∥∥∥∂ kPt f
∂ tk

∥∥∥
∞,γ

≤ Aα ,kt−k+α (7.37)

and ∥∥∥∂ lPt f
∂ tl

∥∥∥
∞,γ

≤ Aα ,lt
−l+α , (7.38)

are equivalent. Moreover, the smallest Aα ,k and Aα ,l holding in the above inequali-
ties, are comparable.

Proof. It suffices to prove that if k > α ,

∥∥∥∂ kPt f
∂ tk

∥∥∥
∞,γ

≤ Aα ,kt−k+α (7.39)

and ∥∥∥∂ k+1Pt f
∂ tk+1

∥∥∥
∞,γ

≤ Aα ,k+1t−(k+1)+α , (7.40)

are equivalent.

Let us assume (7.39). Applying the semigroup property, if t = t1 + t2, Pt f =
Pt1(Pt2 f ), then using the hypothesis and Lemma 3.3,

∥∥∥∂ k+1Pt f
∂ tk+1

∥∥∥
∞,γ

=
∥∥∥∂Pt1

∂ t1

(∂ kPt2 f

∂ tk
2

)∥∥∥
∞,γ

≤
∥∥∥∂ kPt2 f

∂ tk
2

∥∥∥
∞,γ

∫
Rd

|∂ p(t1, ·,y)
∂ t1

|dy

≤ Aα ,kt−k+α
2 Ct−1

1 .

For t1 = t2 = t/2 we get (7.40).

Now, assume (7.40). Observe that, again by Lemma 3.3,

∥∥∥∂ kPt f
∂ tk

∥∥∥
∞,γ

≤ ‖ f‖∞
∫
Rd

|∂
k p(t,x,y)
∂ tk |dy ≤ C

tk ‖ f‖∞;

thus, ∂ kPt f
∂ tk → 0 as t → ∞, and then using hypothesis

∥∥∥∂ kPt f
∂ tk

∥∥∥
∞,γ

≤
∫ ∞

t

∥∥∥∂ k+1Ps f
∂ sk+1

∥∥∥
∞,γ

ds ≤ Aα ,k+1
t−k+α

−k+α
=Ct−k+α . ��

Now, we can define the Gaussian Lipschitz spaces as follows:

Definition 7.24. For α > 0 let n be the smallest integer greater than α . The Gaussian
Lipschitz space Lipα(γ) is defined as the set of L∞ functions for which there exists a
constant A such that
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∥∥∥∂ nPt f
∂ tn

∥∥∥
∞
≤ At−n+α . (7.41)

The norm of f ∈ Lipα(γ) is defined as

‖ f‖Lipα (γ) := ‖ f‖∞,γ +Aα( f ), (7.42)

where Aα( f ) is the smallest constant A appearing in (7.41).

Observations 7.25. For the Gaussian Lipschitz spaces, we have

i) The definition of Lipα(γ) does not depend on which k > α is chosen and the
resulting norms are equivalent, according to Proposition 7.23.

ii) Condition (7.41) is of interest for t near zero, because the inequality

∥∥∥∂ nPt f
∂ tn

∥∥∥
∞
≤ At−n, (7.43)

which is stronger away from zero, follows for f ∈ L∞ immediately from (3.17),

∥∥∥∂ nPt f
∂ tn

∥∥∥
∞,γ

≤
∫
Rd

∣∣∣∂ n p(t,x,y)
∂ tn

∣∣∣| f (y)|dy ≤ C
tn ‖ f‖∞.

iii) For the completeness of the Gaussian Lipschitz spaces see Lemma 7.35.

We also define, for α > 0, homogeneous Gaussian Besov spaces
·
B
α

∞,∞(γ) as fol-
lows:

Definition 7.26. For α > 0, let n be the smallest integer greater than α , then the

homogeneous Gaussian Besov space type
·
B
α

∞,∞(γ) is defined as the set of L1(γ) func-
tions such that (7.41) holds for a constant Bα ,n.

All these spaces can also be obtained using abstract interpolation theory using
the Poisson–Hermite semigroup (see [271] 1.6.5.)

Observe that Lipα(γ) ⊂
·
B
α

∞,∞(γ). There are also inclusion relations among the
Gaussian Lipschitz spaces,

Proposition 7.27. If 0 < α1 < α2, then we have the inclusion

Lipα2(γ)⊂ Lipα1(γ).

Proof. Take f ∈ Lipα2(γ) and n ≥ α2, then

∥∥∥∂ nPt f
∂ tn

∥∥∥
∞,γ

≤ Aα( f )t−n+α2 .

If 0 < t < 1, then t−n+α2 ≤ t−n+α1 ; therefore,

∥∥∥∂ nPt f
∂ tn

∥∥∥
∞,γ

≤ Aα( f )t−n+α1 .
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Now, if t ≥ 1, then we know from (7.43) that

∥∥∥∂ nPt f
∂ tn

∥∥∥
∞,γ

≤ Aα( f )t−n

and as t−n+α1 > t−n, we also get in this case

∥∥∥∂ nPt f
∂ tn

∥∥∥
∞,γ

≤ Aα( f )t−n+α1

because n > α1; then, f ∈ Lipα1(γ). ��

Proposition 7.28. If f ∈ Lipα(γ) with 0 < α < 1, then

||Pt f − f ||∞,γ ≤ Aα( f ) tα . (7.44)

Proof. Applying the fundamental theorem of calculus,

||Pt f − f ||∞,γ =
∥∥∥
∫ t

0

∂Ps f
∂ s

ds
∥∥∥
∞
≤

∫ t

0

∥∥∥∂Ps f
∂ s

∥∥∥
∞,γ

ds

≤ Aα( f )
∫ t

0
s−1+αds = Aα( f ) tα . ��

Gaussian Lipschitz spaces were defined by A. E. Gatto and W. Urbina in [109]
following E. Stein’s approach in [252, Chapter V], using the Poisson–Hermite semi-
group. After the given definition of those spaces in this way, it is natural to ask if
there is a characterization based on the regularity of the functions involved, as in the
classical case. In [159], L. Liu and P. Sjögren have characterized these spaces, for
0 < α < 1, in terms of a combination of ordinary Lipschitz continuity conditions,
giving a positive answer to the question posed. The main result of Liu and Sjögren’s
paper is the following:

Theorem 7.29. Let α ∈ (0,1), an essentially bounded function f ∈ Lipα(γ) if and
only if there exists a constant K such that for all x,y ∈ R

n,

| f (y)− f (x)| ≤ K min
{
|x− y|α ,

( |x− y|
1+ |x|+ |y|

)α/2
+((|x|+ |y|)sinθ)α

}
, (7.45)

after a correction of f on a null set. Here, θ denotes the angle between the vectors x
and y; if x = 0 or y = 0, then θ is understood to be 0.

In one dimension, the inequality becomes,

| f (y)− f (x)| ≤ K min
{
|x− y|α ,

( |x− y|
1+ |x|+ |y|

)α/2}
. (7.46)

This is a combined Lipschitz condition, with exponent α for a short distance |x− y|
and exponent α/2 with a different coefficient, for a long distance.
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As usual in Gaussian harmonic analysis, the two parts of this estimate correspond
to the “local part” (for short distance |x−y|), in which the estimate coincides with the
Euclidean case, and the “global part” corresponding to the long distance (i.e., |x− y|
big), in which the effect of the Gaussian measure makes the estimate a little different.

In higher dimensions, the expression (|x|+ |y|)sinθ describes the “orthogonal
component” of the vector x− y, because it is the distance from x to the line in the
direction x. To make this clearer, Liu and Sjögren state a non-symmetric inequality
equivalent to (7.45). For x,y ∈ R

n with x �= 0, we decompose y as y = yx + y′x, where
yx is parallel to x and y′x orthogonal to x,

| f (y)− f (x)| ≤ K′ min
{
|x− y|α ,

( |x− yx|
1+ |x|

)α/2
+ |y′x|

}
. (7.47)

This inequality means that the combined Lipschitz condition applies in the radial
direction, but in the orthogonal direction, the exponent is always α. The equivalence
between these two inequalities is valid in any dimension, with a constant K′ > 0
comparable with K.

The proof of (7.45) relies on very precise pointwise estimates of the Poisson–
Hermite kernel p(t,x,y) and its derivatives; for all t > 0 and x,y ∈ R

n,

p(t,x,y)≤C[K1(t,x,y)+K2(t,x,y)+K3(t,x,y)+K4(t,x,y)], (7.48)

where,

K1(t,x,y) =
t

(t2 + |x− y|2)(n+1)/2
exp(−C1t(1+ |x|)),

for some constant C1,

K2(t,x,y) =
t
|x|

(
t2 +

|x− yx|
|x| + |y′x|2

)−(n+2)/2

×exp
(
−C2

(t2 + |y′x|2)|x|
|x− yx|

)
χ{|x|>1,x·y>0,|x|/2≤|yx|<|x|};

for some constant C2,

K3(t,x,y) = min(1, t)exp(−C3|y|2);

for some constant C3, and

K4(t,x,y)=
t

|yx|
(

log
|x|
|yx|

)−3/2
exp

(
−C4

t2

log |x|
|yx|

)
exp(−C5|y′x|2)χ{x·y>0,1<|yx|<|x|/2};

for some constant C4.

Similar estimates are also possible for the derivatives of p(t,x,y), both ∂t p(t,x,y)
and ∂xi p(t,x,y). Thus,
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p(t,x,y)+ |t∂t p(t,x,y)|+ |t∂xi p(t,x,y)|
≤C[K1(t,x,y)+K2(t,x,y)+K3(t,x,y)+K4(t,x,y)]. (7.49)

Moreover, Liu and Sjögren prove that these estimates are also sharp. For each of
the four kernels Ki(t,x,y) there is a set Ẽi of points (t,x,y) in which p(t,x,y) is
equivalent to Ki(t,x,y), but where the other terms are much smaller; thus, none of
the four terms can be suppressed in the estimate. The estimates are product of a very
deep understanding of the kernel p(t,x,y) and how it compares with the standard
Poisson kernel qt(x) (for more details, we refer the reader to their paper [159]).

The estimates of the Poisson–Hermite kernel p(t,x,y) and its derivatives are of
independent interest, and the proof of the main result is almost straightforward once
we have those estimates. It would be interesting to know if alternative characteri-
zation of the Gaussian Besov–Lipschitz and the Gaussian Triebel–Lizorkin spaces,
which are defined in the next two sections, using higher order derivatives of the
Poisson–Hermite kernel, can be obtained using similar estimates.

Another open question would be if the characterization of the Gaussian Lipschitz
spaces obtained by Liu and Sjögren is related to the notion of translation operator
introduced by C. Markett in [173].

In the Euclidean case, as mentioned above, condition (7.36) characterizes the
ordinary Lipchitz space only if the functions considered are bounded. Thus, we
obtain the inhomogeneous Lipschitz space; without the boundedness assumption, we
get the larger homogeneous Lipschitz space.

In the Gaussian setting, as no homogeneity is involved, the condition (7.41) with-
out the boundedness assumption defines a space that had been considered by L. Liu
and P. Sjögren in [160]. It is called the global Gaussian Lipschitz space. Using a
result by G. Garrigós, S. Harzstein, T. Signes, J. L. Torrea, and B. Viviani [106], Liu
and Sjögren consider measurable functions f in R

d with the condition
∫
Rd

e−|y|2√
ln(e+ |y|)

| f (y)|dy < ∞, (7.50)

which according to Theorem 1.1 of [106] guarantees that the Pt f is well defined.
Moreover, the same condition ensures that Pt f (x)→ f (x) as t → 0 a.e. x ∈R

n. There-
fore,

Definition 7.30. Let α ∈ (0,1). A measurable function f defined in R
n and satisfy-

ing (7.50) belongs to the global Gaussian Lipschitz space GLipα(γ) if (7.41) holds.
The corresponding norm is

‖ f‖GLipα (γ) = inf{A > 0 : A satisfies (7.41)}.
This space is actually a space of equivalence classes, as it consists of functions

modulo constants.
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A natural question is what continuity condition characterizes these spaces? To
answer this, Liu and Sjögren introduce the following distance:

d(x,y) =
∣∣∣
∫ y

x

dξ
1+ |ξ |

∣∣∣= | ln(1+ |x|)− sgnxy ln(1+ |y|)|, x,y ∈ R, (7.51)

with the convention sgn0 = 1. In several dimensions, we use this distance on the line
spanned by x, defining

d(x,y) = | ln(1+ |x|)− sgn < x,y > ln(1+ |yx|)|, x,y ∈ R
n,

with yx as before. The main result in [160] is the following:

Theorem 7.31. Let α ∈ (0,1) and let f be a measurable function in R
n. The follow-

ing conditions are equivalent:

i) f satisfies condition (7.50) and f ∈ GLipα(γ).
ii) There exists a positive constant K such that for all x,y ∈ R

n

| f (y)− f (x)| ≤ K min
{
|x− y|α ,d(x,yx)

α/2 + |y′x|α
}
, x,y ∈ R

n (7.52)

after a correction of f on a null set.

Moreover, the space GLipα(γ) is defined in terms of the distance function d.
Indeed, (7.47) implies boundedness, then (7.47) holds if and only if there exists a
constant K” > 0 such that,

| f (y)− f (x)| ≤ K min
{

1, |x− y|α ,d(x,yx)
α/2 + |y′x|α

}
,

for x,y ∈R
n. This also tells us that for bounded functions (7.47) and (7.52) are equiv-

alent.
The condition (7.52) implies only

f (x) = O(ln |x|)α/2 as |x| → ∞.

Liu and Sjögren show that this condition is sharp using a counterexample in Sec-
tion 7.5.

To obtain (7.52), they need to modify the kernel K3 to decay for large values of
x, refining a few of the previous arguments. The estimates (7.48) and (7.49) remain
valid if the kernel K3(t,x,y) is replaced by

K̃3(t,x,y) = min
{

1,
t

[ln(e+ |x|)]1/2

}
exp(−C3|y|2)

The introduction in (7.51) of the distance d in the context of Gaussian harmonic
analysis is an interesting point that may be used in other problems.

After several technical results, analogous estimates can obtained for f ∈
GLipα(γ) with norm 1:
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• For all i = 1,2, · · ·n, t > 0, and x ∈ R
n,

|∂xiPt f (x)| ≤Ctα−1.

• For all t > 0 and x = (x1,0, · · · ,0) ∈ R
n with x1 ≥ 0,

|∂xiPt f (x)| ≤Ctα−2(1+ x1)
−1.

The proof of the main result, Theorem 1.2, follows almost immediately from all the
previous estimates.

7.7 Gaussian Besov–Lipschitz Spaces Bα
p,q(γd)

In the next two sections, we study the Gaussian Besov–Lipschitz and the Gaussian
Triebel–Lizorkin spaces. They were introduced initially by E. Pineda in his doctoral
dissertation (see [224] and also [226]).

For any α ≥ 0, we define Gaussian Besov–Lipschitz spaces Bα
p,q(γd), following

E. Stein [252] to define and study the Bα
p,q(γd) spaces, using the Poisson–Hermite

semigroup. But because the Poisson–Hermite semigroup is not a convolution semi-
group, the proofs of the results are totally different to those given there.

As in the case of Gaussian Lipschitz spaces, Besov–Lipschitz spaces can also be
obtained as interpolated spaces using interpolation theory for semigroups defined on
a Banach space (see for instance Chapter 3 of [38, 112] or [271]).

We use the representation of the Poisson–Hermite semigroup (3.8) in a crucial
way, using the one-sided stable measure

μ(1/2)
t (ds) =

t

2
√
π

e−t2/4s

s3/2
ds = g(t,s)ds,

and the estimates (3.19), (3.20) and (3.21).

In Chapter 3, we have obtained an estimate of the Lp(γd)-norms of the derivatives
of the Poisson–Hermite semigroup (see Lemma 3.5); additionally, we have

Lemma 7.32. Given f ∈ Lp(γd),α ≥ 0 and k, l integers greater than α , then

∥∥∥∂ kPt f
∂ tk

∥∥∥
p,γ

≤ Akt−k+α if and only if
∥∥∥∂ lPt f

∂ tl

∥∥∥
p,γ

≤ Alt
−l+α .

Moreover, if Ak( f ),Al( f ) are the smallest constants appearing in the above inequal-
ities, then there exist constants Ak,l,α and Dk,l,α such that

Ak,l,αAk( f )≤ Al( f )≤CDk,l,αAk( f ),

for all f ∈ Lp(γd).



276 7 Function Spaces with respect to γd

Proof. Let us suppose, without loss of generality, that k ≥ l. We prove the direct
implication first. For this, we use again the representation of the Poisson–Hermite
semigroup (3.8),

Pt f (x) =
∫ +∞

0
Ts f (x)μ(1/2)

t (ds).

Then, differentiating k-times with respect to t,

∂ kPt f (x)
∂ tk =

∫ +∞

0
Ts f (x)

∂ k

∂ tk μ
(1/2)
t (ds).

Using the identity (3.19), it is easy to prove that for all m ∈ N

lim
t→+∞

∂mPt f (x)
∂ tm = 0;

therefore, given n ∈ N,n > α

∂ nPt f (x)
∂ tn =−

∫ +∞

t

∂ n+1Ps f (x)
∂ sn+1 ds

Thus,

∥∥∥∂ nPt f
∂ tn

∥∥∥
p,γ

≤
∫ +∞

t

∥∥∥∂ n+1Ps f
∂ sn+1

∥∥∥
p,γ

ds ≤
∫ +∞

t
An+1( f )s−(n+1)+αds

=
An+1( f )

n−α
t−n+α .

Then,

An( f )≤ An+1( f )
n−α

,

and as n > α is arbitrary, by using the above result k− l times, we get

Al( f ) ≤ Al+1( f )
l −α

≤ Al+2

(l −α)(l +1−α)
≤ . . .≤ Ak( f )

(l −α)(l +1−α) . . .(k−1−α)
= Dk,l,αAk( f ).

To prove the converse implication, using again the representation of the Poisson–
Hermite semigroup (3.8),

u(x, t1 + t2) = Pt1(Pt2 f )(x) =
∫ +∞

0
Ts(Pt2 f )(x)μ(1/2)

t1 (ds).

Therefore, taking t = t1 + t2 and differentiating l times with respect to t2 and k − l
times with respect to t1, we get

∂ ku(x, t)
∂ tk =

∫ +∞

0
Ts

(∂ lPt2 f (x)

∂ tl
2

) ∂ k−l

∂ tk−l
1

μ(1/2)
t1 (ds). (7.53)
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Thus, using the inequality (3.21) and the fact that the Ornstein–Uhlenbeck semi-
group is a contraction semigroup, we get

∥∥∥∂ ku(·, t)
∂ tk

∥∥∥
p,γ

≤
∫ +∞

0

∥∥∥Ts

(∂ lPt2 f

∂ tl
2

)∥∥∥
p,γ

∣∣∣∂
k−lμ(1/2)

t1

∂ tk−l
1

(ds)
∣∣∣

≤
∥∥∥∂ lPt2 f

∂ tl
2

∥∥∥
p,γ

∫ +∞

0

∣∣∣ ∂ k−l

∂ tk−l
1

μ(1/2)
t1 (ds)

∣∣∣≤Ck−l

∥∥∥ ∂ l

∂ tl
2

Pt2 f
∥∥∥

p,γ
tl−k
1

≤ Ck−lAl( f )t−l+α
2 tl−k

1 .

Therefore, taking t1 = t2 = t
2 ,

∥∥∥∂ ku(·, t)
∂ tk

∥∥∥
p,γ

≤Ck−lAl( f )(
t
2
)−k+α ,

and then,

Ak( f )≤ Ck−l

2−k+α Al( f ).

��

The following technical result is crucial for defining Gaussian Besov–Lipschitz
spaces:

Lemma 7.33. Given α ≥ 0 and k, l integers greater than α . Then,

(∫ +∞

0

(
tk−α

∥∥∥∂ kPt f
∂ tk

∥∥∥
p,γ

)q dt
t

) 1
q
< ∞

if and only if (∫ +∞

0

(
tl−α

∥∥∥∂ lPt f
∂ tl

∥∥∥
p,γ

)q dt
t

) 1
q
< ∞.

Moreover, there exist constants Ak,l,α ,Dk,l,α such that

Dk,l,α

(∫ +∞

0

(
tl−α

∥∥∥∂ lPt f
∂ tl

∥∥∥
p,γ

)q dt
t

) 1
q ≤

(∫ +∞

0

(
tk−α

∥∥∥∂ kPt f
∂ tk

∥∥∥
p,γ

)q dt
t

) 1
q

≤ Ak,l,α

(∫ +∞

0

(
tl−α

∥∥∥∂ lPt f
∂ tl

∥∥∥
p,γ

)q dt
t

) 1
q

Proof. Let us suppose, without loss of generality, that k ≥ l. We prove the converse
implication first; from Lemma 7.32, we have

∥∥∥∂ kPt f
∂ tk

∥∥∥
p,γ

≤ Ck−l

∥∥∥∂
lPt

2
f

∂ ( t
2 )

l

∥∥∥
p,γ
(

t
2
)l−k.
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Thus,

(∫ +∞

0

(
tk−α

∥∥∥∂ kPt f
∂ tk

∥∥∥
p,γ

)q dt
t

) 1
q ≤ Ck−l

2l−k

(∫ +∞

0

(
tl−α

∥∥∥∂
lPt/2 f

∂ ( t
2 )

l

∥∥∥
p,γ

)q dt
t

) 1
q

= Ak,l,α

(∫ +∞

0

(
sl−α

∥∥∥∂ lPs f
∂ sl

∥∥∥
p,γ

)q ds
s

) 1
q

with Ak,l,α =Ck−l2
k−α .

For the direct implication, given n ∈ N, n > α , using the previous lemma again,
we get ∥∥∥∂ nPt f

∂ tn

∥∥∥
p,γ

≤
∫ +∞

t

∥∥∥∂ n+1Ps f
∂ sn+1

∥∥∥
p,γ

ds

Therefore, using Hardy’s inequality (10.101),

(∫ +∞

0

(
tn−α

∥∥∥∂ nPt f
∂ tn

∥∥∥
p,γ

)q dt
t

) 1
q

≤
(∫ +∞

0

(
tn−α

∫ +∞

t

∥∥∥∂ n+1Ps f
∂ sn+1

∥∥∥
p,γ

ds
)q dt

t

) 1
q

=
(∫ +∞

0

(∫ +∞

t

∥∥∥∂ n+1Ps f
∂ sn+1

∥∥∥
p,γ

ds
)q

t(n−α)q−1dt
) 1

q

≤ 1
n−α

(∫ +∞

0

(
sn+1−α

∥∥∥∂ n+1Ps f
∂ sn+1

∥∥∥
p,γ

)q ds
s

) 1
q
.

Now, as n > α is arbitrary, using the above result k− l, times

(∫ +∞

0

(
tl−α

∥∥∥∂ lPt f
∂ tl

∥∥∥
p,γ

)q dt
t

) 1
q

≤ 1
l −α

(∫ +∞

0

(
tl+1−α

∥∥∥∂ l+1Pt f
∂ tl+1

∥∥∥
p,γ

)q dt
t

) 1
q

≤ 1
(l −α).(l+1−α)

(∫ +∞

0

(
tl+2−α

∥∥∥∂ l+2Pt f
∂ tl+2

∥∥∥
p,γ

)q dt
t

) 1
q

. . .

≤ Dk,l,α

(∫ +∞

0

(
tk−α‖∂

kPt f
∂ tk

∥∥∥
p,γ

)q dt
t

) 1
q

where Dk,l,α =
1

(l −α).(l +1−α) . . .(k−1−α)
. ��

Following the classical case, we are going to define the Gaussian Besov–
Lipschitz spaces Bα

p,q(γd) or Besov–Lipschitz spaces for Hermite polynomial ex-
pansions.
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Definition 7.34. Let α ≥ 0, k be the smallest integer greater than α , and 1 ≤ p,q ≤
∞. For 1 ≤ q < ∞ the Gaussian Besov–Lipschitz space Bα

p,q(γd) is defined as the set
of functions f ∈ Lp(γd), for which

(∫ ∞

0
(tk−α

∥∥∥∥∂
kPt f
∂ tk

∥∥∥∥
p,γ
)q dt

t

)1/q

< ∞. (7.54)

The norm of f ∈ Bα
p,q(γd) is defined as

‖ f‖Bαp,q
:= ‖ f‖p,γ +

(∫ ∞

0
(tk−α

∥∥∥∥∂
kPt f
∂ tk

∥∥∥∥
p,γ
)q dt

t

)1/q

(7.55)

For q = ∞, the Gaussian Besov–Lipschitz space Bα
p,∞(γd) is defined as the set of

functions f ∈ Lp(γd) for which exists a constant A, such that

∥∥∥∂ kPt f
∂ tk

∥∥∥
p,γ

≤ At−k+α

and then the norm of f ∈ Bα
p,∞(γd) is defined as

‖ f‖Bαp,∞
:= ‖ f‖p,γ +Ak( f ), (7.56)

where Ak( f ) is the smallest constant A appearing in the above inequality.
In particular, the space Bα

∞,∞(γd) is the Gaussian Lipschitz space Lipα(γd).

Lemma 7.33 shows us that we could have replaced k with any other integer l
greater than α and that the resulting norms are equivalent. Let us prove now that the
Gaussian Besov–Lipschitz spaces are complete.

Lemma 7.35. For any α ≥ 0, 1 ≤ p, q ≤ ∞, the Gaussian Besov–Lipschitz spaces
Bα

p,q(γd) are Banach spaces.

Proof. To prove the completeness, it is enough to see that if { fn} is a sequence in

Bα
p,q(γd), such that

∞

∑
n=1

‖ fn‖Bαp,q < ∞, then
∞

∑
n=1

fn converges in Bα
p,q(γd). Because

∞

∑
n=1

‖ fn‖Bαp,q =
∞

∑
n=1

(
‖ fn‖p,γ +

(∫ +∞

0

(
tk−α

∥∥∥ ∂ k

∂ tk Pt fn

∥∥∥
p,γ

)q dt
t

) 1
q
)
< ∞.

In particular, this implies that

∞

∑
n=1

‖ fn‖p,γ < ∞, and
∞

∑
n=1

(∫ +∞

0

(
tk−α

∥∥∥ ∂ k

∂ tk Pt fn

∥∥∥
p,γ

)q dt
t

) 1
q
< ∞.

But as Lp(γd) is complete, there exists a function f ∈ Lp(γd), such that

∞

∑
n=1

fn(x) = f (x) a.e.x.
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We need to prove that
∞

∑
n=1

fn = f in Bα
p,q, i.e. lim

n→∞
‖

n

∑
i=1

fi − f‖Bαp,q = 0.

Given t > 0 and x ∈ R
d , by linearity, Pt(

n

∑
i=1

fi(x)) =
∫
Rd

p(t,x,y)
n

∑
i=1

fi(y)dy and

then

lim
n→∞

p(t,x,y)
n

∑
i=1

fi(y) = p(t,x,y)
∞

∑
i=1

fi(y) = p(t,x,y) f (y) a.e.y

and for all n ∈ N

|p(t,x,y)
n

∑
i=1

fi(y)| ≤ p(t,x,y)
n

∑
i=1

| fi(y)| ≤ p(t,x,y)g(y) a.e.

As
∫
Rd

p(t,x,y)g(y)dy = Ptg(x) < ∞, i.e., p(t,x,y)g(y) is integrable, we conclude

using Lebesgue’s dominated convergence theorem, for any t ≥ 0 and x ∈ R
d ,

lim
n→∞

Pt(
n

∑
i=1

fi(x)) = lim
n→∞

∫
Rd

p(t,x,y)
n

∑
i=1

fi(y) =
∫
Rd

p(t,x,y) f (y)dy = Pt f (x).

Similarly, we have, lim
n→∞

Tt(
n

∑
i=1

fi(x))= Tt f (x), for any t ≥ 0 and x ∈R
d , and again

using Lebesgue’s dominated convergence theorem,

lim
n→∞

n

∑
i=1

∂ k

∂ tk Pt( fi(x)) = lim
n→∞

n

∑
i=1

∂ k

∂ tk Pt(
n

∑
i=1

fi(x)) = lim
n→∞

∫ ∞

0
Ts(

n

∑
i=1

fi(x))
∂ k

∂ tk μ
1/2
t (ds)

=
∫ ∞

0
lim
n→∞

Ts(
n

∑
i=1

fi(x))
∂ k

∂ tk μ
1/2
t (ds)

=

∫ ∞

0
Ts f (x)

∂ k

∂ tk μ
1/2
t (ds) =

∂ k

∂ tk Pt f (x),

for any t ≥ 0 and x ∈ R
d . Then, for t > 0, using Fatou’s lemma,

∥∥∥ ∂ k

∂ tk Pt f
∥∥∥p

p,γ
=

∫
Rd

∣∣∣ ∂ k

∂ tk Pt f
∣∣∣p
γd(dx)

=
∫
Rd

∣∣∣ lim
n→∞

n

∑
i=1

∂ k

∂ tk Pt fi(x)
∣∣∣p
γd(dx)

≤ liminf
n→∞

∫
Rd

∣∣∣
n

∑
i=1

∂ k

∂ tk Pt fi(x)
∣∣∣p
γd(dx).

Thus, for any t > 0, by triangle inequality,

∥∥∥ ∂ k

∂ tk Pt f
∥∥∥

p,γ
≤ liminf

n→∞

∥∥∥
n

∑
i=1

∂ k

∂ tk Pt fi

∥∥∥
p,γ

≤ liminf
n→∞

n

∑
i=1

∥∥∥ ∂ k

∂ tk Pt fi

∥∥∥
p,γ
,
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and again, by triangle inequality,

(∫ +∞

0

(
tk−α

∥∥∥ ∂ k

∂ tk Pt f
∥∥∥

p,γ

)q dt
t

) 1
q

≤
(∫ +∞

0

(
tk−α liminf

n→∞

( n

∑
i=1

∥∥∥ ∂ k

∂ tk Pt fi

∥∥∥
p,γ

))q dt
t

) 1
q

≤ liminf
n→∞

(∫ +∞

0

(
tk−α

( n

∑
i=1

∥∥∥ ∂ k

∂ tk Pt fi

∥∥∥
p,γ

))q dt
t

) 1
q

=
∞

∑
n=1

(∫ +∞

0

(
tk−α

∥∥∥ ∂ k

∂ tk Pt fn

∥∥∥
p,γ

)q dt
t

) 1
q
)
< ∞.

Then, f ∈ Bα
p,q.

Let, for each t > 0,

h(t) = tk−α
(

liminf
n→∞

( n

∑
i=1

∥∥∥ ∂ k

∂ tk Pt fi

∥∥∥
p,γ

)
+
∥∥∥∂ k

∂ k Pt f
∥∥∥

p,γ

)
.

Then,
∫ +∞

0
|h(t)|q dt

t

≤
∫ +∞

0

(
tk−α

(
liminf

n→∞

( n

∑
i=1

∥∥∥ ∂ k

∂ tk Pt fi

∥∥∥
p,γ

)
+
∥∥∥ ∂ k

∂ tk Pt f
∥∥∥

p,γ

))q dt
t

≤
∫ +∞

0

(
tk−α

(
2liminf

n→∞

( n

∑
i=1

∥∥∥ ∂ k

∂ tk Pt fi

∥∥∥
p,γ

)))q dt
t

≤ 2liminf
n→∞

(∫ +∞

0

(
tk−α

( n

∑
i=1

∥∥∥ ∂ k

∂ tk Pt fi

∥∥∥
p,γ

))q dt
t

)
;

hence,

(∫ +∞

0
|h(t)|q dt

t

)1/q
≤ 2liminf

n→∞

(∫ +∞

0

(
tk−α

( n

∑
i=1

∥∥∥ ∂ k

∂ tk Pt fi

∥∥∥
p,γ

))q dt
t

)1/q

≤ 2liminf
n→∞

n

∑
i=1

(∫ +∞

0

(
tk−α

∥∥∥ ∂ k

∂ tk Pt fi

∥∥∥
p,γ

)q dt
t

)1/q

= 2
∞

∑
n=1

(∫ +∞

0

(
tk−α

∥∥∥ ∂ k

∂ tk Pt fn

∥∥∥
p,γ

)q dt
t

) 1
q
< ∞.

Thus, h ∈ Lq((0,∞), dt
t ); therefore,

h(t) = tk−α
(

liminf
n→∞

( n

∑
i=1

∥∥∥ ∂ k

∂ tk Pt fi

∥∥∥
p,γ

)
+
∥∥∥ ∂ k

∂ tk Pt f
∥∥∥

p,γ

)
< ∞ a.e. t



282 7 Function Spaces with respect to γd

and this immediately implies

∞

∑
n=1

∥∥∥ ∂ k

∂ tk Pt fn

∥∥∥
p,γ

+
∥∥∥ ∂ k

∂ tk Pt f
∥∥∥

p,γ
< ∞ a.e. t. (7.57)

Let t > 0 such that h(t)< ∞, we know that for all x ∈ R
d

lim
n→∞

( n

∑
i=1

∂ k

∂ tk Pt fi(x)−
∂ k

∂ tk Pt f (x)
)
= lim

n→∞

∂ k

∂ tk Pt

( n

∑
i=1

fi(x)− f (x)
)
= 0,

Set, for each x ∈ R
d ,

H(x) := 2
∞

∑
n=1

∣∣∣ ∂ k

∂ tk Pt fn(x)
∣∣∣.

Then, from the above H ∈ Lp(γd) and, therefore, as for any n ∈ N and any x ∈ R
d ,

∣∣∣
n

∑
i=1

∂ k

∂ tk Pt fi(x)−
∂ k

∂ tk Pt f (x)
∣∣∣≤ 2

∞

∑
i=1

∣∣∣ ∂ k

∂ tk Pt fi(x)
∣∣∣= H(x).

Then, using Lebesgue’s dominated convergence theorem,

lim
n→∞

∥∥∥
n

∑
i=1

∂ k

∂ tk Pt fi −
∂ k

∂ tk Pt f
∥∥∥

p,γ

= lim
n→∞

∫
Rd

∣∣∣
n

∑
i=1

∂ k

∂ tk Pt fi(x)−
∂ k

∂ tk Pt f (x)
∣∣∣p
γd(dx)

=

∫
Rd

lim
n→∞

∣∣∣
n

∑
i=1

∂ k

∂ tk Pt fi(x)−
∂ k

∂ tk Pt f (x)
∣∣∣p
γd(dx) = 0,

and as h(t)< ∞ a.e.t, we conclude,

lim
n→∞

∥∥∥
n

∑
i=1

∂ k

∂ tk Pt fi −
∂ k

∂ tk Pt f
∥∥∥

p,γ
= 0, a.e. t.

Now, for each n ∈ N,

∥∥∥ ∂ k

∂ tk Pt

( n

∑
i=1

fi − f
)∥∥∥

p,γ
≤

∞

∑
i=1

∥∥∥ ∂ k

∂ tk Pt fi

∥∥∥
p,γ

+ liminf
n→∞

( n

∑
i=1

∥∥∥ ∂ k

∂ tk Pt fi

∥∥∥
p,γ

)

= 2liminf
n→∞

( n

∑
i=1

∥∥∥ ∂ k

∂ tk Pt fi

∥∥∥
p,γ

)
.

For each t > 0, let G(t) = liminf
n→∞

(
2tk−α

n

∑
i=1

∥∥∥ ∂ k

∂ tk Pt fi

∥∥∥
p,γ

)
. Then, using Fatou’s

lemma and triangle inequality,
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(∫ ∞

0
|G(t)|q dt

t

)1/q
≤ 2liminf

n→∞

(∫ ∞

0

(
tk−α

n

∑
i=1

∥∥∥ ∂ k

∂ tk Pt fi

∥∥∥
p,γ

)q dt
t

)1/q

≤ 2
∞

∑
n=1

(∫ ∞

0

(
tk−α

∥∥∥ ∂ k

∂ tk Pt fn

∥∥∥
p,γ

)q dt
t

)1/q
< ∞.

Thus, G ∈ Lq((0,∞), dt
t ), so liminf

n→∞

(
tk−α

n

∑
i=1

∥∥∥ ∂ k

∂ tk Pt fi

∥∥∥
p,γ

)q 1
t

is integrable, and

therefore, using Lebesgue’s dominated convergence theorem,

lim
n→∞

(∫ ∞

0

(
tk−α

∥∥∥ ∂ k

∂ tk Pt

( n

∑
i=1

fi − f
)∥∥∥

p,γ

)q dt
t

)1/q

=
(∫ ∞

0
lim
n→∞

(
tk−α

∥∥∥ ∂ k

∂ tk Pt

( n

∑
i=1

fi − f
)∥∥∥

p,γ

)q dt
t

)1/q
= 0.

Hence,

lim
n→∞

∥∥∥
n

∑
i=1

fi − f
∥∥∥

Bαp,q

= lim
n→∞

(∥∥∥
n

∑
i=1

fi − f
∥∥∥

p,γ
+ lim

n→∞

(∫ ∞

0

(
tk−α

∥∥∥ ∂ k

∂ tk Pt

( n

∑
i=1

fi − f
)∥∥∥

p,γ

)q dt
t

)1/q
= 0.

��

Finally, we study some inclusions among the Gaussian Besov–Lipschitz spaces:

Proposition 7.36. The inclusion Bα1
p,q1(γd)⊂ Bα2

p,q2(γd) holds if either:

i) α1 > α2 > 0 (q1 and q2 need not be related), or
ii) If α1 = α2 and q1 ≤ q2.

Proof. To prove ii), we set A =
(∫ +∞

0

(
tk−α

∥∥∥∂ kPt f
∂ tk

∥∥∥
p,γ

)q1 dt
t

) 1
q1

Now, fixing t0 > 0 ∫ t0

t0
2

(
tk−α

∥∥∥∂ kPt f
∂ tk

∥∥∥
p,γ

)q1 dt
t

≤ Aq1 .

Using Lemma 3.5,
∥∥∥∂ kPt f

∂ tk

∥∥∥
p,γ

takes its minimum value at the upper end point (t =

t0) of the above integral; thus, we get

∥∥∥∂ kPt0 f

∂ tk

∥∥∥q1

p,γ

∫ t0

t0
2

t(k−α)q1
dt
t

≤ Aq1 .
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That is
∥∥∥∂ kPt0 f

∂ tk

∥∥∥
p,γ

≤CAt−k+α
0 , but because t0 is arbitrary, then

∥∥∥∂ kPt f
∂ tk

∥∥∥
p,γ

≤CAt−k+α ,

for all t > 0. In other words, f ∈ Bα
p,q1

also implies that f ∈ Bα
p,∞. Thus, as q2 ≥ q1

∫ +∞

0

(
tk−α

∥∥∥∂ kPt f
∂ tk

∥∥∥
p,γ

)q2 dt
t

≤
∫ +∞

0

(
tk−α

∥∥∥∂ kPt f
∂ tk

∥∥∥
p,γ

)q2−q1
(

tk−α
∥∥∥∂ kPt f

∂ tk

∥∥∥
p,γ

)q1 dt
t

≤ (CA)q2−q1

∫ +∞

0

(
tk−α

∥∥∥∂ kPt f
∂ tk

∥∥∥
p,γ

)q1 dt
t

= (CA)q2−q1Aq1 =CAq2 <+∞;

therefore f ∈ Bα
p,q2

.

Now, to prove part i), using Lemma 3.5, we have

∥∥∥∂ kPt f
∂ tk

∥∥∥
p,γ

≤Ct−k, t > 0.

Then, given f ∈ Bα1
p,q1 , taking again

A =
(∫ +∞

0

(
tk−α1

∥∥∥∂ kPt f
∂ tk

∥∥∥
p,γ

)q1 dt
t

) 1
q1 ,

we get, as in part ii), ∥∥∥∂ kPt f
∂ tk

∥∥∥
p,γ

≤CAt−k+α1 ,

for all t > 0. Thus,

∫ +∞

0

(
tk−α2

∥∥∥∂ kPt f
∂ tk

∥∥∥
p,γ

)q2 dt
t

=
∫ 1

0

(
tk−α2

∥∥∥∂ kPt f
∂ tk

∥∥∥
p,γ

)q2 dt
t

+
∫ +∞

1

(
tk−α2

∥∥∥∂ kPt f
∂ tk

∥∥∥
p,γ

)q2 dt
t

= (I)+(II).

Now,

(I) =
∫ 1

0
t(k−α2)q2

∥∥∥∂ kPt f
∂ tk

∥∥∥q2

p,γ

dt
t

≤
∫ 1

0
t(k−α2)q2(CA)q2t(α1−k)q2

dt
t

= (CA)q2

∫ 1

0
t(α1−α2)q2

dt
t
=CAq2 ,
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and

(II) =
∫ +∞

1
t(k−α2)q2

∥∥∥∂ kPt f
∂ tk

∥∥∥q2

p,γ

dt
t

≤
∫ +∞

1
t(k−α2)q2Cq2t−kq2

dt
t

= Cq2

∫ +∞

1
t−α2q2

dt
t
=C.

Hence,
∫ +∞

0

(
tk−α2

∥∥∥∂ kPt f
∂ tk

∥∥∥
p,γ

)q2 dt
t

< +∞;

thus, f ∈ Bα2
p,q2 . ��

7.8 Gaussian Triebel–Lizorkin Spaces Fα
p,q(γd)

Finally, we define Gaussian Triebel–Lizorkin spaces Fα
p,q(γd) for any α ≥ 0. The

following technical result is key for their definition:

Lemma 7.37. Let α ≥ 0 and k, l integers such that k ≥ l > α . Then

∥∥∥
(∫ +∞

0

(
tk−α

∣∣∣ ∂ k

∂ tk Pt f
∣∣∣
)q dt

t

) 1
q
∥∥∥

p,γ
< ∞

if and only if ∥∥∥
(∫ +∞

0

(
tl−α

∣∣∣ ∂ l

∂ tl Pt f
∣∣∣
)q dt

t

) 1
q
∥∥∥

p,γ
< ∞.

Moreover, there exist constants Ak,l,α ,Dk,l,α such that

Dk,l,α

∥∥∥
(∫ +∞

0

(
tl−α

∣∣∣ ∂ l

∂ tl Pt f
∣∣∣
)q dt

t

) 1
q ‖p,γ ≤

∥∥∥
(∫ +∞

0

(
tk−α

∣∣∣ ∂ k

∂ tk Pt f
∣∣∣
)q dt

t

) 1
q
∥∥∥

p,γ

≤ Ak,l,α

∥∥∥
(∫ +∞

0

(
tl−α

∣∣∣ ∂ l

∂ tl Pt f
∣∣∣
)q dt

t

) 1
q
∥∥∥

p,γ
.

Proof. Let n ∈ N such that n > α . It can be proved that

∣∣∣ ∂ n

∂ tn Pt f (x)
∣∣∣≤

∫ +∞

t

∣∣∣ ∂ n+1

∂ sn+1 Ps f (x)
∣∣∣ds

Then, using Hardy’s inequality,

(∫ +∞

0

(
tn−α

∣∣∣ ∂ n

∂ tn Pt f (x)
∣∣∣
)q dt

t

) 1
q ≤

(∫ +∞

0

(
tn−α

∫ +∞

t

∣∣∣ ∂ n+1

∂ sn+1 Ps f (x)
∣∣∣ds

)q dt
t

) 1
q

≤ 1
n−α

(∫ +∞

0

(
s
∣∣∣ ∂ n+1

∂ sn+1 Ps f (x)
∣∣∣
)q

s(n−α)q−1ds
) 1

q

=
1

n−α

(∫ +∞

0

(
sn+1−α

∣∣∣ ∂ n+1

∂ sn+1 Ps f (x)
∣∣∣
)q ds

s

) 1
q
.
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Now, as n > α is arbitrary, iterating the previous argument k− l times, we have

(∫ +∞

0

(
tl−α

∣∣∣ ∂ l

∂ tl Pt f (x)
∣∣∣
)q dt

t

) 1
q

≤ 1
l −α

(∫ +∞

0

(
tl+1−α

∣∣∣ ∂ l+1

∂ tl+1 Pt f (x)
∣∣∣
)q dt

t

) 1
q

≤ 1
(l −α)(l +1−α)

(∫ +∞

0

(
tl+2−α

∣∣∣ ∂ l+2

∂ tl+2 Pt f (x)
∣∣∣
)q dt

t

) 1
q

. . .

≤Ck,l,α

(∫ +∞

0

(
tk−α

∣∣∣ ∂ k

∂ tk Pt f (x)
∣∣∣
)q dt

t

) 1
q

where Ck,l,α =
1

(l −α)(l +1−α) . . .(k−1−α)
. Thus,

Dk,l,α

∥∥∥
(∫ +∞

0

(
tl−α

∣∣∣ ∂ l

∂ tl Pt f
∣∣∣
)q dt

t

) 1
q
∥∥∥

p,γ
≤ ‖

(∫ +∞

0

(
tk−α

∣∣∣ ∂ k

∂ tk Pt f
∣∣∣
)q dt

t

) 1
q
∥∥∥

p,γ
,

where Dk,l,α = 1/Ck,l,α .
The converse inequality is also obtained by an inductive argument from the case

k = l +1. Let us recall (7.53),

∂ ku(x, t)
∂ tk =

∫ +∞

0
Ts

(∂ lPt2 f (x)

∂ tl
2

) ∂ k−l

∂ tk−l
1

μ(1/2)
t1 (ds),

and because, from (3.19),
∂
∂ t1

μ(1/2)
t1 (ds) =

(
t−1
1 − t1

2s

)
μ(1/2)

t1 (ds) we get

∣∣∣∂ ku(x, t)
∂ tk

∣∣∣
≤

∫ +∞

0
Ts

(∣∣∣∂ lPt2 f (x)

∂ tl
2

∣∣∣
)∣∣∣
(

t−1
1 − t1

2s

)∣∣∣μ(1/2)
t1 (ds)

≤ t−1
1

∫ +∞

0
Ts(

∣∣∣∂ lPt2 f (x)

∂ tl
2

∣∣∣)μ(1/2)
t1 (ds)+

t1
2

∫ +∞

0
Ts(

∣∣∣∂ lPt2 f (x)

∂ tl
2

∣∣∣)1
s
μ(1/2)

t1 (ds).

Therefore,

(∫ +∞

0

(
tk−α
2

∣∣∣∂ ku(x, t)
∂ tk

∣∣∣
)q dt2

t2

)1/q

≤Cq

[(∫ +∞

0

(
tk−α
2 t−1

1

∫ +∞

0
Ts

(∣∣∣∂ lPt2 f (x)

∂ tl
2

∣∣∣
)
μ(1/2)

t1 (ds)
)q dt2

t2

)1/q

+
(∫ +∞

0

(
tk−α
2

t1
2

∫ +∞

0
Ts

(∣∣∣∂ lPt2 f (x)

∂ tl
2

∣∣∣
)1

s
μ(1/2)

t1 (ds)
)q dt2

t2

)1/q]

= (I)+(II)
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Then, using Minkowski’s integral inequality twice (because Ts is an integral trans-

formation with a positive kernel) and the fact that μ(1/2)
t1 (ds) is a probability, we

get

(I) = Cq

(∫ +∞

0

(
tk−α
2 t−1

1

)q(∫ +∞

0
Ts

(∣∣∣∂ lPt2 f (x)

∂ tl
2

∣∣∣
)
μ(1/2)

t1 (ds)
)q dt2

t2

)1/q

≤ Cq

∫ +∞

0

(∫ +∞

0

(
tk−α
2 t−1

1

)q(
Ts

(∣∣∣∂ lPt2 f (x)

∂ tl
2

∣∣∣
))q dt2

t2

)1/q
μ(1/2)

t1 (ds)

≤ Cq

∫ +∞

0
Ts

((∫ +∞

0

(
tk−α
2 t−1

1

)q(∣∣∣∂ lPt2 f (x)

∂ tl
2

∣∣∣
)q dt2

t2

)1/q)
μ(1/2)

t1 (ds)

≤ CqT ∗
((∫ +∞

0

(
tk−α
2 t−1

1

)q(∣∣∣∂ lPt2 f (x)

∂ tl
2

∣∣∣
)q dt2

t2

)1/q)

and, using the same argument for (II) and (3.20), we have

(II) ≤ CqT ∗
((∫ +∞

0

(
tk−α
2 t1

)q(∣∣∣∂ lPt2 f (x)

∂ tl
2

∣∣∣
)q dt2

t2

)1/q) 1

t2
1

= CqT ∗
((∫ +∞

0

(
tk−α
2 t−1

1

)q(∣∣∣∂ lPt2 f (x)

∂ tl
2

∣∣∣
)q dt2

t2

)1/q)
.

Taking t1 = t2 = t
2 and changing the variable, we get

(I) ≤ CqT ∗
((∫ +∞

0

(
tl−α

)q(∣∣∣∂ lPt f (x)
∂ tl

∣∣∣
)q dt

t

)1/q)

and

(II) ≤ CqT ∗
((∫ +∞

0

(
tl−α

)q(∣∣∣∂ lPt f (x)
∂ tl

∣∣∣
)q dt

t

)1/q)
.

Hence, using the Lp boundedness of T ∗

∥∥∥
(∫ +∞

0

(
tk−α

∣∣∣∂ ku(x, t)
∂ tk

∣∣∣
)q dt

t

)1/q∥∥∥
p,γ

≤Cq,k,α

∥∥∥T ∗
((∫ +∞

0

(
tl−α

∣∣∣∂ lPt f (x)
∂ul

∣∣∣
)q dt

t

)1/q)∥∥∥
p,γ

+Cq

∥∥∥T ∗
((∫ +∞

0

(
tl−α

∣∣∣∂ lPt f (x)
∂ul

∣∣∣
)q dt

t

)1/q)∥∥∥
p,γ

)

≤Ck,α ,q

∥∥∥
(∫ +∞

0

(
tl−α

∣∣∣∂ lPt f (x)
∂ tl

∣∣∣
)q dt

t

)1/q∥∥∥
p,γ
. ��

Now, we can introduce the Gaussian Triebel–Lizorkin spaces Fα
p,q(γd) following

the classical case:
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Definition 7.38. Let α ≥ 0, k be the smallest integer greater than α , and 1 ≤ p,q <
∞. The Gaussian Triebel–Lizorkin space Fα

p,q(γd) is the set of functions f ∈ Lp(γd)
for which ∥∥∥∥∥

(∫ ∞

0

(
tk−α

∣∣∣∣∂
kPt f
∂ tk

∣∣∣∣
)q dt

t

)1/q
∥∥∥∥∥

p,γ

< ∞. (7.58)

The norm of f ∈ Fα
p,q(γd) is defined as

‖ f‖Fα
p,q

:= ‖ f‖p,γ +

∥∥∥∥∥
(∫ ∞

0

(
tk−α

∣∣∣∣∂
kPt f
∂ tk

∣∣∣∣
)q dt

t

)1/q
∥∥∥∥∥

p,γ

. (7.59)

Observe that according to Lemma 7.37, the definition of Fα ,q
p (γd) does not de-

pend on which k > α is chosen and the resulting norms are equivalent.

Let us prove now that the Gaussian Triebel–Lizorkin spaces are complete,

Lemma 7.39. For any α ≥ 0, 1 ≤ p,q < ∞, the Gaussian Triebel–Lizorkin space
Fα

p,q(γd) is a Banach space.

Proof. To prove the completeness, it is enough to see that if ( fn) is a sequence in

Fα
p,q(γd) such that

∞

∑
n=1

‖ fn‖Fα
p,q

< ∞, then
∞

∑
n=1

fn converges in Fα
p,q(γd). Since,

∞

∑
n=1

‖ fn‖Fα
p,q

=
∞

∑
n=1

‖ fn‖p,γ +
∥∥∥
(∫ +∞

0

(
tk−α

∣∣∣∂ kPt fn

∂ tk

∣∣∣
)q dt

t

) 1
q
∥∥∥

p,γ
< ∞.

In particular, this implies that

∞

∑
n=1

‖ fn‖p,γ < ∞, and
∞

∑
n=1

∥∥∥
(∫ +∞

0

(
tk−α

∣∣∣∂ kPt fn

∂ tk

∣∣∣
)q dt

t

) 1
q
∥∥∥

p,γ
< ∞.

But as Lp(γd) is complete, there exist functions f ,g ∈ Lp(γd), such that

g(x) =
∞

∑
n=1

| fn(x)|, and
∞

∑
n=1

fn(x) = f (x) a.e.x.

Moreover,
∞

∑
n=1

fn = f in Lp(γd). Analogously, there exists h ∈ Lp(γd), such that

∞

∑
n=1

(∫ +∞

0

(
tk−α

∣∣∣∂ kPt fn(x)
∂ tk

∣∣∣
)q dt

t

) 1
q
= h(x) a.e.x,
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and
∞

∑
n=1

(∫ +∞

0

(
tk−α

∣∣∣∂ kPt fn

∂ tk

∣∣∣
)q dt

t

) 1
q
= h

in Lp(γd).

We need to prove that
∞

∑
n=1

fn = f in Fα
p,q, i.e., lim

n→∞
‖

n

∑
i=1

fi − f‖Fα
p,q

= 0.

Let hn(x) =
n

∑
i=1

(∫ +∞

0

(
tk−α

∣∣∣∂ kPt fi(x)
∂ tk

∣∣∣
)q dt

t

) 1
q
, then h(x) = lim

n→∞
hn(x) a.e.x,

and for each x, {hn(x)} is a non-decreasing sequence of real numbers, also
hn(x)≤ h(x) a.e. x.

As in the proof of the completeness of the Besov–Lipschitz spaces Bα
p,q(γd), we

have, using Lebesgue’s dominated convergence theorem, for any t ≥ 0 and x ∈ R
d ,

lim
n→∞

n

∑
i=1

∂ k

∂ tk Pt fi(x) =
∂ k

∂ tk Pt f (x).

Now, let us prove that f ∈ Fα
p,q. In fact, using the triangle inequality and Fatou’s

lemma,

∫ +∞

0

(
tk−α

∣∣∣ ∂ k

∂ tk Pt f (x)
∣∣∣
)q dt

t

) 1
q
=

∫ +∞

0
lim
n→∞

(
tk−α

∣∣∣
n

∑
i=1

∂ k

∂ tk Pt fi(x)
∣∣∣
)q dt

t

) 1
q

≤ liminf
n→∞

∫ +∞

0

(
tk−α

∣∣∣
n

∑
i=1

∂ k

∂ tk Pt fi(x)
∣∣∣
)q dt

t

) 1
q

≤ liminf
n→∞

n

∑
i=1

∫ +∞

0

(
tk−α

∣∣∣ ∂ k

∂ tk Pt fi(x)
∣∣∣
)q dt

t

) 1
q

=
∞

∑
n=1

(∫ +∞

0

(
tk−α

∣∣∣ ∂ k

∂ tk Pt fn(x)
∣∣∣
)q dt

t

)1
q
=h(x) a.e.x.

Therefore,

∥∥∥
∫ +∞

0

(
tk−α

∣∣∣ ∂ k

∂ tk Pt f
∣∣∣
)q dt

t

) 1
q
∥∥∥

p,γ
≤ ‖h‖p,γ < ∞.

Because for any t ≥ 0 and x ∈ R
d ,

∣∣∣
n

∑
i=1

∂ k

∂ tk Pt fi(x)−
∂ k

∂ tk Pt f (x)
∣∣∣ ≤

n

∑
i=1

∣∣∣ ∂ k

∂ tk Pt fi(x)
∣∣∣+ | ∂

k

∂ tk Pt f (x)
∣∣∣

≤
∞

∑
i=1

∣∣∣ ∂ k

∂ tk Pt fi(x)
∣∣∣+

∣∣∣ ∂ k

∂ tk Pt f (x)
∣∣∣,
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and

∫ +∞

0

(
tk−α

( ∞

∑
i=1

∣∣∣ ∂ k

∂ tk Pt fi(x)
∣∣∣+

∣∣∣ ∂ k

∂ tk Pt f (x)
∣∣∣
))q dt

t

) 1
q

≤
∞

∑
i=1

∫ +∞

0

(
tk−α

∣∣∣ ∂ k

∂ tk Pt fi(x)
∣∣∣
)q dt

t

) 1
q
+
∫ +∞

0

(
tk−α

∣∣∣ ∂ k

∂ tk Pt f (x)
∣∣∣
)q dt

t

) 1
q

= h(x)+
∫ +∞

0

(
tk−α

∣∣∣ ∂ k

∂ tk Pt f (x)
∣∣∣
)q dt

t

) 1
q ≤ 2h(x)< ∞ a.e.x,

thus,
(

tk−α
( ∞

∑
i=1

∣∣∣ ∂ k

∂ tk Pt fi(x)
∣∣∣+

∣∣∣ ∂ k

∂ tk Pt f (x)
∣∣∣
))q 1

t
is integrable a.e. x, and, therefore,

according to Lebesgue’s dominated convergence theorem,

lim
n→∞

∫ +∞

0

(
tk−α

∣∣∣
n

∑
i=1

∂ k

∂ tk Pt fi(x)−
∂ k

∂ tk Pt f (x)
∣∣∣
)q dt

t

)
= 0 a.e.x,

and,

∫ +∞

0

(
tk−α

∣∣∣ ∂ k

∂ tk Pt

( n

∑
i=1

fi(x)− f (x)
)∣∣∣
)q dt

t

) 1
q

=
∫ +∞

0

(
tk−α

∣∣∣
n

∑
i=1

∂ k

∂ tk Pt fi(x)−
∂ k

∂ tk Pt f (x)
∣∣∣
)q dt

t

)1/q

≤ 2h(x),

a.e.x, for all n ∈ N, where h ∈ Lp(γd); thus,

lim
n→∞

∫ +∞

0

(
tk−α

∣∣∣ ∂ k

∂ tk Pt

( n

∑
i=1

fi(x)− f (x)
)∣∣∣
)q dt

t

) 1
q

= lim
n→∞

∫ +∞

0

(
tk−α

∣∣∣
n

∑
i=1

∂ k

∂ tk Pt fi(x)−
∂ k

∂ tk Pt f (x)
∣∣∣
)q dt

t

)
= 0 a.e.x.

Then, again using Lebesgue’s dominated convergence theorem,

lim
n→∞

∥∥∥
∫ +∞

0

(
tk−α

∣∣∣ ∂ k

∂ tk Pt

( n

∑
i=1

fi − f
)∣∣∣
)q dt

t

) 1
q
∥∥∥

p,γ

∥∥∥ lim
n→∞

∫ +∞

0

(
tk−α | ∂

k

∂ tk Pt

( n

∑
i=1

fi − f
)
|
)q dt

t

) 1
q
∥∥∥

p,γ
= 0.
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Finally,

lim
n→∞

∥∥∥
n

∑
i=1

fi − f
∥∥∥

Fα
p,q

= lim
n→∞

(∥∥∥
n

∑
i=1

fi − f
∥∥∥

p,γ
+
∥∥∥
∫ +∞

0

(
tk−α

∣∣∣ ∂ k

∂ tk Pt

( n

∑
i=1

fi − f
)∣∣∣
)q dt

t

) 1
q
∥∥∥

p,γ

)

= lim
n→∞

∥∥∥
n

∑
i=1

fi − f
∥∥∥

p,γ
+ lim

n→∞

∥∥∥
∫ +∞

0

(
tk−α

∣∣∣ ∂ k

∂ tk Pt

( n

∑
i=1

fi − f
)∣∣∣
)q dt

t

) 1
q
∥∥∥

p,γ
= 0.

��

Observe that using the Lp(γd)-continuity of the Gaussian Littlewood–Paley gt,γ -
function (5.13),

gt,γ( f )(x) =

(∫ ∞

0
t

∣∣∣∣∂Pt f
∂ t

∣∣∣∣
2

dt

)1/2

,

it can be seen, for 1 < p < ∞, that

Lp(γd) = F0
p,2(γd).

Also, by the trivial identification of the Lp spaces with the Hardy spaces, we have

H p(γd) = F0
p,2(γd).

For Gaussian Triebel–Lizorkin spaces, we have the following inclusion result,
which is analogous to Proposition 7.36 i:

Proposition 7.40. The inclusion Fα1
p,q1(γd) ⊂ Fα2

p,q2(γd) holds for α1 > α2 > 0 and
q1 ≥ q2.

Proof. Let us consider f ∈ Fα1,q1
p (γd). Then,

(∫ +∞

0

(
tk−α2

∣∣∣∂ kPt f (x)
∂ tk

∣∣∣
)q2 dt

t

) 1
q2

=
(∫ 1

0

(
tk−α2

∣∣∣∂ kPt f (x)
∂ tk

∣∣∣
)q2 dt

t
+
∫ +∞

1

(
tk−α2

∣∣∣∂ kPt f (x)
∂ tk

∣∣∣
)q2 dt

t

) 1
q2

≤
(∫ 1

0

(
tk−α2

∣∣∣∂ kPt f (x)
∂ tk

∣∣∣
)q2 dt

t

) 1
q2 +

(∫ +∞

1

(
tk−α2

∣∣∣∂ kPt f (x)
∂ tk

∣∣∣
)q2 dt

t

) 1
q2

= (I)+(II).

Let us observe that for the first term I, the result for the case q1 = q2 is immediate,
because, as t < 1, tk−α2 < tk−α1 and then

(I)q2 ≤
∫ +∞

0

(
tk−α1

∣∣∣∂ kPt f (x)
∂ tk

∣∣∣
)q1 dt

t
.
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Now, in the case q1 > q2, taking r =
q1

q2
, s =

q1

q1 −q2
then r,s > 1 and

1
r
+

1
s
= 1,

then, using Hölder’s inequality

(I)q2 =

∫ 1

0
t(α1−α2)q2

(
tk−α1

∣∣∣∂ kPt f (x)
∂ tk

∣∣∣
)q2 dt

t
≤
(∫ 1

0
t(α1−α2)q2s dt

t

) 1
s

×
(∫ 1

0

(
tk−α1

∣∣∣∂ kPt f (x)
∂ tk

∣∣∣
)q2r dt

t

) 1
r

=
1

(α1 −α2)q2s

(∫ 1

0

(
tk−α1

∣∣∣∂ kPt f (x)
∂ tk

∣∣∣
)q1 dt

t

) q2
q1 ≤C

(∫ +∞

0

(
tk−α1

∣∣∣∂ kPt f (x)
∂ tk

∣∣∣
)q1 dt

t

) q2
q1 .

Now, for the second term II, using Lemma 3.4, we have

(II) =
(∫ +∞

1

(
tk−α2

∣∣∣∂ kPt f (x)
∂ tk

∣∣∣
)q2 dt

t

) 1
q2 ≤C T ∗ f (x)

(∫ +∞

1

(
tk−α2t−k

)q2 dt
t

) 1
q2

= C T ∗ f (x)
(∫ +∞

1
t−α2q2

dt
t

) 1
q2 =C T ∗ f (x).

Then, using the Lp(γd) continuity of T ∗, we get

∥∥∥
(∫ +∞

0

(
tk−α2

∣∣∣∂ kPt f
∂ tk

∣∣∣
)q2 dt

t

) 1
q2
∥∥∥

p,γ

≤C
∥∥∥
(∫ +∞

0

(
tk−α1

∣∣∣∂ kPt f
∂ tk

∣∣∣
)q1 dt

t

) 1
q1
∥∥∥

p,γ
+C‖T ∗ f‖p,γd

≤C
[∥∥∥
(∫ +∞

0

(
tk−α1 |∂

kPt f
∂ tk |

)q1 dt
t

) 1
q1
∥∥∥

p,γ
+‖ f‖p,γ

]
<+∞.

Thus, f ∈ Fα2,q2
p (γd). ��

Observe that the Gaussian Besov–Lipschitz spaces and the Gaussian Triebel–
Lizorkin spaces are, by construction, subspaces of Lp(γd) and the inclusions are
trivially continuous.

Additionally, it is clear that for all t > 0 and k ∈ N,

∂ k

∂ tk Pthβ (x) = (−1)k|β |k/2e−t
√

|β |hβ (x);

therefore,

(∫ +∞

0

(
tk−α

∥∥∥ ∂ k

∂ tk Pthβ
∥∥∥

p,γ

)q dt
t

)1/q
=

|β |α/2

qk−α

(
Γ ((k−α)q)

)1/q
‖hβ‖p,γ < ∞.

Thus, hβ ∈ Bα
p,q(γd) and

‖hβ‖Bαp,q = (1+
|β |α/2

qk−α

(
Γ ((k−α)q)

)1/q
)‖hβ‖p,γ .
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Similarly, hβ ∈ Fα
p,q(γd) and

‖hβ‖Fα
p,q

= (1+
|β |α/2

qk−α

(
Γ ((k−α)q)

)1/q
)‖hβ‖p,γ = ‖hβ‖Bαp,q .

Therefore, the set of polynomials P is included in Bα
p,q(γd) and in Fα

p,q(γd). An
open question is to prove whether or not P is dense in Bα

p,q(γd) or Fα
p,q(γd).

Also, we have the following inclusion relations between Gaussian Triebel–
Lizorkin spaces and Gaussian Besov–Lipschitz spaces:

Proposition 7.41. Let α ≥ 0 and p,q > 1

i) If p = q, then Fα
p,p(γd) = Bα

p,p(γd).
ii) If q > p, then Fα

p,q(γd)⊂ Bα
p,q(γd).

iii) If p > q, then Bα
p,q(γd)⊂ Fα

p,q(γd).

Proof.

i) Using Tonelli’s theorem, we trivially have

‖
(∫ +∞

0

(
tk−α

∣∣∣∂ kPt f
∂ tk

∣∣∣
)p dt

t

) 1
p
∥∥∥

p,γ
=

(∫ +∞

0
t(k−α)p

∫
Rd

∣∣∣∂ kPt f (x)
∂ tk

∣∣∣p
γd(dx)

dt
t

) 1
p

=
(∫ +∞

0

(
tk−α

∥∥∥∂ kPt f
∂ tk

∥∥∥
p,γ

)p dt
t

) 1
p
.

ii) Suppose q > p, by Minkowski’s integral inequality we then have,

(∫ ∞

0

(
tk−α

∥∥∥∂ kPt f
∂ tk

∥∥∥
p,γ

)q dt
t

)p/q

=

(∫ ∞

0
t(k−α)q

(∫
Rd

∣∣∣∣∂
kPt f (x)
∂ tk

∣∣∣∣
p

γd(dx)
)q/p dt

t

)p/q

≤
∫
Rd

(∫ ∞

0

(
tk−α

∣∣∣∣∂
kPt f (x)
∂ tk

∣∣∣∣
)q dt

t

)p/q
γd(dx).

Therefore,

‖ f‖Bαp,q = ‖ f‖p,γ +

(∫ ∞

0

(
tk−α

∥∥∥∂ kPt f
∂ tk

∥∥∥
p,γ

)q dt
t

)1/q

≤ ‖ f‖p,γ +
∥∥∥
(∫ ∞

0

(
tk−α

∣∣∣∣∂
kPt f
∂ tk

∣∣∣∣
)q dt

t

)1/q∥∥∥
p,γ

= ‖ f‖Fα
p,q
.

iii) Finally, if p > q, again using Minkowski’s integral inequality, we get

‖ f‖Fα
p,q

= ‖ f‖p,γ +
∥∥∥
(∫ ∞

0

(
tk−α

∣∣∣∂ kPt f
∂ tk

∣∣∣
)q dt

t

)1/q∥∥∥
p,γ

≤ ‖ f‖p,γ +
(∫ ∞

0

(
tk−α

∥∥∥∂ kPt f
∂ tk

∥∥∥
p,γ

)q dt
t

)1/q
= ‖ f‖Bαp,q . ��

Moreover, Gaussian Sobolev spaces Lp
α(γd) are contained in some Besov–

Lipschitz and Triebel–Lizorkin spaces; therefore, these spaces are “finer scales” for
measuring the regularity of functions.
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Theorem 7.42. Let us suppose that 1 < p <+∞ and α > 0. Then

i) Lp
α(γd)⊂ Fα

p,2(γd) if p > 1.
ii) Lp

α(γd)⊂ Bα
p,p(γd) = Fα

p,p(γd) if p ≥ 2.
iii) Lp

α(γd)⊂ Bα
p,2(γd) if p ≤ 2.

Proof. For the proof of these inclusions, we need to use a characterization of the
Gaussian Sobolev spaces, which will be discussed in the next chapter (see 8.21).

i) We have to consider two cases:

i-1) If α ≥ 1. Suppose h ∈ Lp
α(γd) then h=Jα f , f ∈ Lp(γd), by the change of vari-

able u = t+s, using the fact of the representation of the Bessel potentials (8.20)
and Hardy’s inequality to get,
(∫ +∞

0

(
tk−α

∣∣∣∂ kPth(x)
∂ tk

∣∣∣
)2 dt

t

) 1
2

=
(∫ +∞

0
t2(k−α)

∣∣∣∂ kPtJα f (x)
∂ tk

∣∣∣2 dt
t

) 1
2

≤ 1
Γ (α)

(∫ +∞

0
t2(k−α)

(∫ +∞

0
sαe−s

∣∣∣∂ kPt+s f (x)
∂ (t + s)k

∣∣∣ds
s

)2 dt
t

) 1
2

=
1

Γ (α)

(∫ +∞

0
t2(k−α)

(∫ +∞

t
(u− t)α−1et−u

∣∣∣∂ kPu f (x)
∂uk

∣∣∣du
)2 dt

t

) 1
2

≤ 1
Γ (α)

(∫ +∞

0

(∫ +∞

t
uα−1

∣∣∣∂ kPu f (x)
∂uk

∣∣∣du
)2

t2(k−α)−1dt
) 1

2

≤ 1
Γ (α)

1
k−α

(∫ +∞

0

(
uk
∣∣∣∂ kPu f (x)

∂uk

∣∣∣
)2 du

u

) 1
2
.

Hence, using the Lp(γd)-continuity of the Gaussian Littlewood–Paley gk
t,γ -

function (see Theorem 5.13),
∥∥∥
(∫ +∞

0

(
tk−α

∣∣∣∂ kPth
∂ tk

∣∣∣
)2 dt

t

) 1
2
∥∥∥

p,γ
≤ 1

Γ (α)
1

k−α

∥∥∥
(∫ +∞

0

(
uk
∣∣∣∂ kPu f
∂uk

∣∣∣
)2 du

u

) 1
2
∥∥∥

p,γ

= Ck,α‖gk f‖p,γ ≤Ck,α‖ f‖p,γ =Ck,α‖h‖p,α ;

thus, h ∈ Fα
p,2(γd).

i-2) If 0 ≤ α < 1. Suppose h ∈ Lp
α(γd), then h = Jα f , f ∈ Lp(γd), again us-

ing (8.20),
(∫ +∞

0

(
tk−α

∣∣∣∂ kPth(x)
∂ tk

∣∣∣
)2 dt

t

) 1
2

≤ 1
Γ (α)

(∫ +∞

0
t2(k−α)

(∫ +∞

0
sαe−s

∣∣∣∂ kPt+s f (x)
∂ (t + s)k

∣∣∣ds
s

)2 dt
t

) 1
2

≤ C
Γ (α)

(∫ +∞

0
t2(k−α)−1

[
(
∫ t

0
sαe−s

∣∣∣∂ kPt+s f (x)
∂ (t + s)k

∣∣∣ds
s
)2

+(
∫ +∞

t
sαe−s

∣∣∣∂ kPt+s f (x)
∂ (t + s)k

∣∣∣ds
s
)2
]
dt
) 1

2
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≤ C
Γ (α)

(
∫ +∞

0
t2(k−α)−1

(∫ t

0
sα−1e−s

∣∣∣∂ kPt+s f (x)
∂ (t + s)k

∣∣∣ds
)2

dt
) 1

2

+
C

Γ (α)
(
∫ +∞

0
t2(k−α)−1

(∫ +∞

t
sα−1e−s

∣∣∣∂ kPt+s f (x)
∂ (t + s)k

∣∣∣ds
)2

dt
) 1

2

= (I)+(II).

Now, because e−s < 1, sα−1 < tα−1 as α < 1, and, using the change of variables
u = t + s and Hardy inequality we get,

(II) ≤
(∫ +∞

0
t2(k−1)−1

(∫ +∞

t

∣∣∣∂ kPt+s f (x)
∂ (t + s)k

∣∣∣ds
)2

dt
) 1

2

=
(∫ +∞

0
t2(k−1)−1

(∫ +∞

2t

∣∣∣∂ kPu f (x)
∂uk

∣∣∣du
)2

dt
) 1

2

≤
(∫ +∞

0
t2(k−1)−1

(∫ +∞

t

∣∣∣∂ kPu f (x)
∂uk

∣∣∣du
)2

dt
) 1

2

≤
(∫ +∞

0

(
u
∣∣∣∂ kPu f (x)

∂uk

∣∣∣
)2

u2(k−1)−1du
) 1

2
.

=
(∫ +∞

0

∣∣∣uk ∂ kPu f (x)
∂uk

∣∣∣2 du
u

) 1
2
= gk

t,γ f (x).

In addition, again using that e−s < 1, we get

(I)2 ≤
∫ +∞

0
t2(k−α)−1

(∫ t

0
sα−1

∣∣∣∂ kPt+s f (x)
∂ (t + s)k

∣∣∣ds
)2

dt

=
1
α2

∫ +∞

0
t2k−1

( α
tα

∫ t

0
sα−1

∣∣∣∂ kPt+s f (x)
∂ (t + s)k

∣∣∣ds
)2

dt

Then, as α > 0 using Jensen’s inequality (for the measure α
tα sα−1ds) and

Tonelli’s theorem,

(I)2 ≤ 1
α2

∫ +∞

0
t2k−1

( α
tα

∫ t

0
sα−1

∣∣∣∂ kPt+s f (x)
∂ (t + s)k

∣∣∣2ds
)

dt

≤ 1
α

∫ +∞

0
sα−1

(∫ +∞

s
(t + s)2k−α−1

∣∣∣∂ kPt+s f (x)
∂ (t + s)k

∣∣∣2dt
)

ds,

as 2k−α−1 > 0. Finally, again using the change of variables u = t + s and the
Hardy inequality

(I)2 ≤ 1
α

∫ +∞

0
sα−1

(∫ +∞

2s
u2k−α−1

∣∣∣∂ kPu f (x)
∂uk

∣∣∣2du
)

ds

≤ 1
α

∫ +∞

0
sα−1

(∫ +∞

s
u2k−α−1

∣∣∣∂ kPu f (x)
∂uk

∣∣∣2du
)

ds

≤ 1
α

∫ +∞

0

∣∣∣uk ∂ kPu f (x)
∂uk

∣∣∣2 du
u

=
1
α
(gk

t,γ f (x))2.
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Hence, again using the Lp(γd)-continuity of the Gaussian Littlewood–Paley
gk

t,γ -function,

∥∥∥
(∫ +∞

0

(
tk−α

∣∣∣∂ kPth
∂ tk

∣∣∣
)2 dt

t

) 1
2
∥∥∥

p,γ
≤Ck,α‖gk f‖p,γ ≤Ck,α‖ f‖p,γ =Ck,α‖h‖p,α .

Thus, h ∈ Fα
p,2(γd), for 0 < α < 1.

ii) Suppose h ∈ Lp
α(γd) with p ≥ 2, then h = Jα f , f ∈ Lp(γd). Using the in-

equality (a+b)p ≤Cp(ap +bp), if a,b ≥ 0, p ≥ 1, we get

(∫ +∞

0

(
tk−α

∥∥∥∂ kPtJα f
∂ tk

∥∥∥
p,γ

)p dt
t

) 1
p

≤ 1
Γ (α)

(∫ +∞

0

(
tk−α

∫ +∞

0
sαe−s

∥∥∥ ∂ kPt+s f
∂ (t + s)k

∥∥∥
p,γ

ds
s

)p dt
t

) 1
p

≤ C
Γ (α)

(∫ +∞

0
t p(k−α)

(∫ t

0
sα
∥∥∥ ∂ kPs+t f
∂ (s+ t)k

∥∥∥
p,γ

ds
s

)p

+
(∫ +∞

t
sα
∥∥∥ ∂ kPs+t f
∂ (s+ t)k

∥∥∥
p,γ

ds
s

)p dt
t

) 1
p
.

Using the inequality (a+b)1/p ≤ a1/p +b1/p if a,b ≥ 0, p ≥ 1

C
Γ (α)

(∫ +∞

0
t p(k−α)

(∫ t

0
sα
∥∥∥ ∂ kPs+t f
∂ (s+ t)k

∥∥∥
p,γ

ds
s

)p

+
(∫ +∞

t
sα
∥∥∥ ∂ kPs+t f
∂ (s+ t)k

∥∥∥
p,γ

ds
s

)p dt
t

) 1
p

≤ C
Γ (α)

(∫ +∞

0
t(k−α)p

(∫ t

0
sα
∥∥∥ ∂ kPs+t f
∂ (s+ t)k

∥∥∥
p,γ

ds
s

)p dt
t

) 1
p

+
C

Γ (α)

(∫ +∞

0
t(k−α)p

(∫ +∞

t
sα
∥∥∥ ∂ kPs+t f
∂ (s+ t)k

∥∥∥
p,γ

ds
s

)p dt
t

) 1
p

= (I)+(II).

Now, again using Hardy’s inequality, because k > α and Lemma 3.5

(II) =
C

Γ (α)

(∫ +∞

0
t p(k−α)

(∫ +∞

t
sα
∥∥∥ ∂ kPs+t f
∂ (s+ t)k

∥∥∥
p,γ

ds
s

)p dt
t

) 1
p

≤ C
Γ (α)

(∫ +∞

0
t p(k−α)

(∫ +∞

t
sα
∥∥∥∂ kPs f

∂ sk

∥∥∥
p,γ

ds
s

)p dt
t

) 1
p

≤ C
Γ (α)

1
k−α

(∫ +∞

0

(
sα
∥∥∥ ∂ k

∂ sk Ps f
∥∥∥

p,γ

)p
s(k−α)p−1ds

) 1
p

= Ck,α

(∫ +∞

0

(
sk
∥∥∥ ∂ k

∂ sk Ps f
∥∥∥

p,γ

)p ds
s

) 1
p
=Ck,α‖

(∫ +∞

0

∣∣∣sk ∂ kPs f
∂ sk

∣∣∣p ds
s

) 1
p ‖p,

using Tonelli’s theorem.
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Now, because p ≥ 2 using Lemma 3.4, we have

∫ +∞

0

∣∣∣uk ∂ kPu f (x)
∂uk

∣∣∣p du
u

=
∫ +∞

0

(
uk
∣∣∣ ∂ k

∂uk Pu f (x)
∣∣∣
)p−2(

uk
∣∣∣ ∂ k

∂uk Pu f (x)
∣∣∣
)2 du

u

≤ C
(

T ∗ f (x)
)p−2 ∫ +∞

0

(
uk
∣∣∣ ∂ k

∂uk Pu f (x)
∣∣∣
)2 du

u
.

Therefore,

∥∥∥
(∫ +∞

0
|uk ∂ kPu f

∂uk |p du
u

) 1
p
∥∥∥p

p

=
∫
Rd

(∫ +∞

0

∣∣∣uk ∂ kPu f (x)
∂uk

∣∣∣p du
u

)
γd(dx)

≤C
∫
Rd

((
T ∗ f (x)

)p−2 ∫ +∞

0

(
uk
∣∣∣∂ kPu f (x)

∂uk

∣∣∣
)2 du

u
)γd(dx)

Using Hölder’s inequality, with θ =
2
p

, and the Lp(γd) continuity of T ∗ and gk,

we have

∥∥∥
(∫ +∞

0

∣∣∣uk ∂ kPu f
∂uk

∣∣∣p du
u

) 1
p
∥∥∥p

p

≤C
∫
Rd

((
T ∗ f (x)

)p−2 ∫ +∞

0

(
uk
∣∣∣∂ kPu f (x)

∂uk

∣∣∣
)2 du

u

)
γd(dx)

≤C
(∫

Rd

((
T ∗ f (x)

)(p−2). 1
1−θ γd(dx)

)1−θ
.

×
(∫

Rd

(∫ +∞

0

(
uk
∣∣∣ ∂ k

∂uk Pu f (x)
∣∣∣
)2 du

u

) 1
θ γd(dx)

)θ

=C
(∫

Rd

((
T ∗ f (x)

)p
γd(dx)

) p−2
p
.

×
(∫

Rd

(∫ +∞

0

(
uk
∣∣∣ ∂ k

∂uk Pu f (x)
∣∣∣
)2 du

u

) p
2 γd(dx)

) 2
p

=C‖T ∗ f‖p−2
p,γ ‖gk f‖2

p,γ ≤C‖ f‖p
p,γ .

Thus,
(II)≤Ck,α‖h‖p,α .
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Now, again using Lemma 3.5 and because α > 0

(I) =
C

Γ (α)

(∫ +∞

0
t p(k−α)

(∫ t

0
sα
∥∥∥ ∂ k

∂ (s+ t)k Ps+t f
∥∥∥

p,γ

ds
s

)p dt
t

) 1
p

≤ C
Γ (α)

(∫ +∞

0
t p(k−α)

(∫ t

0
sα
∥∥∥∂ kPt f

∂ tk

∥∥∥
p,γ

ds
s

)p dt
t

) 1
p

=
1
α

C
Γ (α)

(∫ +∞

0
tk
∥∥∥∂ kPt f

∂ tk

∥∥∥p

p,γ

dt
t

) 1
p ≤Ck,α‖h‖p,α ,

Thus, h ∈ Bα
p,p(γd), if p ≥ 2.

iii) This inclusion could be proved using similar arguments as in i) and ii), but it
is an immediate consequence of i) and of Proposition 7.41 ii). ��

In [166], using Theorem 3.2, it is claimed that the Gaussian Sobolev spaces
Lp
α(γd) coincide with the homogeneous Gaussian Triebel–Lizorkin Ḟα

p,2, but the
proof of that theorem is wrong because it is assumed that the operator involved is
linear; however, it is actually only sublinear.

Now, let us prove some interpolation results for the Gaussian Besov–Lipschitz
spaces and for the Gaussian Triebel–Lizorkin Spaces.

Theorem 7.43. We have the following interpolation results:

i) For 1 < p j,q j < +∞ and α j ≥ 0, if f ∈ B
α j
p j ,q j(γd), j = 0,1, then f ∈ Bα

p,q(γd),
where α = α0(1−θ)+α1θ , and

1
p
=

1
p0

(1−θ)+
θ
p1

,
1
q
=

1
q0

(1−θ)+
θ
q1

, 0 < θ < 1.

ii) For 1 < p j,q j < +∞ and α j ≥ 0, if f ∈ F
α j
p j ,q j(γd), j = 0,1, then f ∈ Fα

p,q(γd),
where α = α0(1−θ)+α1θ , and

1
p
=

1
p0

(1−θ)+
θ
p1

,
1
q
=

1
q0

(1−θ)+
θ
q1

, 0 < θ < 1.

Proof. The proof of both results is based on the following interpolation result for
Lp(γd) spaces (actually true for any measure μ) obtained using Hölder’s inequality:

For 1 < r0,r1 < ∞ and
1
r
=

1
r0
(1−η)+

η
r1
,0 < η < 1. If f ∈ Lr j(γd), j = 0,1

then f ∈ Lr(γd) and
‖ f‖r,γ ≤ ‖ f‖1−η

r0,γ ‖ f‖ηr1,γ . (7.60)

Let us prove i). Let k be any integer greater than α0 and α1. By using the above
result, we get for α = α0(1−θ)+α1θ ,
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∫ +∞

0

(
tk−α

∥∥∥∂ kPt f
∂ tk

∥∥∥
p,γ

)q dt
t

≤
∫ +∞

0

(
tk−(α0(1−θ)+α1θ)

∥∥∥∂ kPt f
∂ tk

∥∥∥1−θ

p0,γ

∥∥∥∂ kPt f
∂ tk

∥∥∥θ
p1,γ

)q dt
t

=
∫ +∞

0

(
t(1−θ)(k−α0)+θ(k−α1)

∥∥∥∂ kPt f
∂ tk

∥∥∥1−θ

p0,γ

∥∥∥∂ kPt f
∂ tk

∥∥∥θ
p1,γ

)q dt
t

=
∫ +∞

0

(
tk−α0

∥∥∥∂ kPt f
∂ tk

∥∥∥
p0,γ

)(1−θ)q(
tk−α1

∥∥∥∂ kPt f
∂ tk

∥∥∥
p1,γ

)θq dt
t
.

Now, if λ =
θq
q1

then 0 < λ < 1 and q = (1 − λ )q0 + λq1. Therefore, by using

Hölder’s inequality again,

∫ +∞

0

(
tk−α

∥∥∥∂ kPt f
∂ tk

∥∥∥
p,γ

)q dt
t

≤
(∫ +∞

0

(
tk−α0

∥∥∥∂ kPt f
∂ tk

∥∥∥
p0,γ

)q0 dt
t

)1−λ(∫ +∞

0

(
tk−α1

∥∥∥∂ kPt f
∂ tk

∥∥∥
p1,γ

)q1 dt
t

)λ
< ∞;

thus f ∈ Bα
p,q(γd).

ii) Analogously, by taking β = pθ
p1
, λ = qθ

q1
, we have 0 < β ,λ < 1 and p = (1−

β )p0 +β p1,q = (1−λ )q0 +λq1. Let k be any integer greater than α0 and α1, by
using Hölder’s inequality we get for α = α0(1−θ)+α1θ ,

∫ +∞

0

(
tk−α

∣∣∣∂ kPt f
∂ tk

∣∣∣
)q dt

t

=
∫ +∞

0

(
tk−α0

∣∣∣∂ kPt f
∂ tk

∣∣∣
)(1−θ)q(

tk−α1

∣∣∣∂ kPt f
∂ tk

∣∣∣
)θq dt

t

=
∫ +∞

0

(
tk−α0

∣∣∣∂ kPt f
∂ tk

∣∣∣
)(1−λ )q0

(
tk−α1

∣∣∣∂ kPt f
∂ tk

∣∣∣
)λq1 dt

t

≤
(∫ +∞

0

(
tk−α0

∣∣∣∂ kPt f
∂ tk

∣∣∣
)q0 dt

t

)1−λ(∫ +∞

0

(
tk−α1

∣∣∣∂ kPt f
∂ tk

∣∣∣
)q1 dt

t

)λ
.

Thus,

∥∥∥
(∫ +∞

0

(
tk−α

∣∣∣∂ kPt f
∂ tk

∣∣∣
)q dt

t

) 1
q
∥∥∥p

p,γ
=

∫
Rd

(∫ +∞

0

(
tk−α

∣∣∣∂ kPt f
∂ tk

∣∣∣
)q dt

t

) p
q γd(dx)

≤
∫
Rd

(∫ +∞

0

(
tk−α0

∣∣∣∂ kPt f
∂ tk

∣∣∣
)q0 dt

t

) (1−λ )p
q

(∫ +∞

0

(
tk−α1

∣∣∣∂ kPt f
∂ tk

∣∣∣
)q1 dt

t

) λ p
q γd(dx)

=
∫
Rd

(∫ +∞

0

(
tk−α0

∣∣∣∂ kPt f
∂ tk

∣∣∣
)q0 dt

t

) (1−θ)p
q0

(∫ +∞

0

(
tk−α1

∣∣∣∂ kPt f
∂ tk

∣∣∣
)q1 dt

t

) θ p
q1 γd(dx)

=
∫
Rd

(∫ +∞

0

(
tk−α0

∣∣∣∂ kPt f
∂ tk

∣∣∣
)q0 dt

t

) (1−β )p0
q0

(∫ +∞

0

(
tk−α1

∣∣∣∂ kPt f
∂ tk

∣∣∣
)q1 dt

t

) β p1
q1 γd(dx),

and then again using Hölder’s inequality,
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∥∥∥
(∫ +∞

0

(
tk−α

∣∣∣∂ kPt f
∂ tk

∣∣∣
)q dt

t

) 1
q
∥∥∥p

p,γ

≤
(∫

Rd

(∫ +∞

0

(
tk−α0

∣∣∣∂ kPt f
∂ tk

∣∣∣
)q0 dt

t

) p0
q0 γd(dx)

)1−β

×
(∫

Rd

(∫ +∞

0

(
tk−α1

∣∣∣∂ kPt f
∂ tk

∣∣∣
)q1 dt

t

) p1
q1 γd(dx)

)β

=
∥∥∥
(∫ +∞

0

(
tk−α0

∣∣∣∂ kPt f
∂ tk

∣∣∣
)q0 dt

t

) 1
q0
∥∥∥p0(1−β )

p0,γ

×
∥∥∥
(∫ +∞

0

(
tk−α1

∣∣∣∂ kPt f
∂ tk

∣∣∣
)q1 dt

t

) 1
q1
∥∥∥p1β

p1,γ
<+∞.

Hence, f ∈ Fα
p,q(γd). ��

Finally, we are going to study the continuity properties of the Ornstein–
Uhlenbeck semigroup and the Poisson–Hermite semigroup on the Gaussian Besov–
Lipschitz and Triebel–Lizorkin spaces. In the next chapter, we consider the bound-
edness property of other operators on those spaces.

Theorem 7.44. For The Ornstein–Uhlenbeck semigroup {Tt}t≥0 and the Poisson–
Hermite semigroup {Pt}t≥0,

i) Both are bounded on Bα
p,q(γd).

ii) Both are bounded on Fα
p,q(γd).

Proof.

i) Let us prove the Bα
p,q(γd)-continuity of Pt for any t > 0; the proof for Tt is

totally analogous. Using the Lp-continuity of the Poisson–Hermite semigroup,
Lebesgue’s dominated convergence theorem, and Jensen’s inequality, we get

∫
Rd

∣∣∣∂ kPt(Ps f )
∂ tk (x)

∣∣∣p
γd(dx) =

∫
Rd

∣∣∣Ps

(∂ kPt f
∂ tk

)
(x)

∣∣∣p
γd(dx)

≤
∫
Rd

Ps

(∣∣∣∂ kPt f (x)
∂ tk

∣∣∣p)
γd(dx)

=
∫
Rd

∣∣∣∂ kPt f (x)
∂ tk

∣∣∣p
γd(dx).

Thus, ∥∥∥∂ kPt(Ps f )
∂ tk

∥∥∥
p,γ

≤
∥∥∥∂ kPt f

∂ tk

∥∥∥
p,γ

;

therefore,

‖Ps f‖Bαp,q = ‖Ps f‖p,γ +
(∫ +∞

0

(
tk−α

∥∥∥∂ kPt(Ps f )
∂ tk

∥∥∥
p,γ

)q dt
t

)1/q

≤ ‖ f‖p,γ +
(∫ +∞

0

(
tk−α

∥∥∥∂ kPt f
∂ tk

∥∥∥
p,γ

)q dt
t

)1/q
= ‖ f‖Bαp,q .
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ii) Let us prove the Fα
p,q-continuity of Pt for any t > 0; the proof for Tt is totally

analogous. Using Lebesgue’s dominated convergence theorem and Minkowski’s
integral inequality, we have

(∫ ∞

0

(
sk−α

∣∣∣∣∂
kPt(Psg)
∂ sk (x)

∣∣∣∣
)q ds

s

)1/q

=

(∫ ∞

0

(
sk−α

∣∣∣∣
∫
Rd

p(t,x,y)
∂ kPsg(y)
∂ sk dy

∣∣∣∣
)q ds

s

)1/q

≤
∫
Rd

p(t,x,y)

(∫ ∞

0
(sk−α

∣∣∣∣∂
kPsg(y)
∂ sk

∣∣∣∣
)q ds

s

)1/q

dy

= Pt

((∫ ∞

0

(
sk−α

∣∣∣∣∂
kPsg
∂ sk

∣∣∣∣
)q ds

s

)1/q)
(x).

Therefore, by the Lp continuity of Pt we get

∥∥∥
(∫ ∞

0

(
sk−α

∣∣∣∣∂
kPs(Ptg)
∂ sk

∣∣∣∣
)q ds

s

)1/q

‖p,γ

≤ ‖Pt

((∫ ∞

0

(
sk−α

∣∣∣∣∂
kPsg
∂ sk

∣∣∣∣
)q ds

s

)1/q)∥∥∥
p,γ

≤
∥∥∥
(∫ ∞

0

(
sk−α

∣∣∣∣∂
kPsg
∂ sk

∣∣∣∣
)q ds

s

)1/q∥∥∥
p,γ

Thus,

‖Ptg‖Fα
p,q

= ‖Ptg‖p,γ +
∥∥∥
(∫ ∞

0

(
sk−α

∣∣∣∣∂
kPs(Ptg)
∂ sk

∣∣∣∣
)q ds

s

)1/q∥∥∥
p,γ

≤ ‖g‖p,γ +
∥∥∥
(∫ ∞

0

(
sk−α

∣∣∣∣∂
kPsg
∂ sk

∣∣∣∣
)q ds

s

)1/q∥∥∥
p,γ

= ‖g‖Fα
p,q
. ��

7.9 Notes and Further Results

1. In [117], P. Graczyk, J. J. Loeb, I. López, A. Nowak, and W. Urbina define and
study Sobolev spaces associated with multi-dimensional Laguerre expansions
of type α. The result is obtained by means of transference from a Hermite
setting using the relationship between Laguerre and Hermite polynomials (see
G. Szegő’s book [262, (5.6.1)]).

2. In [177], G. Mauceri, S. Meda, and P. Sjögren found a maximal characterization
of H1

at(γd) that unfortunately is only valid for d = 1. In the same paper, they give
a description of the non-negative functions in H1

at(γd) and use it to prove that
Lp(γd)⊂ H1

at(γd), for 1 < p ≤ ∞.
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3. In 1995, J. Epperson [75] considered Triebel–Lizorkin spaces with respect to
the Hermite function expansions. Those spaces are completely different than
the spaces that we are considering here, because the reference measure is the
Lebesgue measure; therefore it should not be confused with them, because he
was working with the Lebesgue measure.

4. In [161], L. Liu and D. Yang consider Gaussian bounded lower oscillation
(BLO) spaces BLOa(γd), the space of functions with bounded lower oscillation
associated with a given class of admissible balls with parameter a.

5. In [166], I. López defines and briefly studies Besov spaces and Triebel–Lizorkin
spaces for Hermite and Laguerre expansions. There are some technical problems
in the definitions and some gaps in the proofs.

6. More abstract approaches to Besov and Triebel–Lizorkin spaces associated with
a general differential operator can be found, for instance, in [154].

7. Hardy spaces for Jacobi expansions have a curious story. The first construction
obtained by L. Cafarelli in his doctoral dissertation in 1971, under the direction
of C. P. Calderón, [39]. He defined the conjugation as a smooth differential
operator, and from there he was able to give a definition of them. Unfortunately,
that memoir, which contains very original and novel ideas, for example, the
proof that the Jacobi measure is doubling, well before the notion of doubling
measure was formulated, was never published. Then, 25 years later, in 1996,
Zhongkai Li [157, 158], formulated another definition of Hardy spaces for Ja-
cobi expansions, closely following the work of B. Muckenhoupt and E. Stein
[199] in the ultraspherical case.

8. There is a class of spaces that are an intermediate generalization between the
classical Lebesgue spaces and the Orlicz spaces; they are the variable Lebesgue
spaces, which have been intensively studied over the last 25 years, extending
almost all the boundedness properties of classical harmonic analysis operators
with respect to the Lebesgue measure (see, for instance, [61] or [66]). For the
study of variable Lebesgue spaces with respect to general Radon measures, see
[3]. In particular, some results for variable Lebesgue spaces with respect to the
Gaussian measure can be found in [63] and [192].
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Gaussian Fractional Integrals and Fractional
Derivatives, and Their Boundedness on Gaussian
Function Spaces

In this chapter, we study several important operators in Gaussian harmonic anal-
ysis. First, we consider Riesz and Bessel potentials with respect to the Ornstein–
Uhlenbeck operator L, and then, Riesz and Bessel fractional derivatives. We study
their regularity on Gaussian Lipschitz spaces, on Gaussian Besov–Lipschitz spaces,
and on Gaussian Triebel–Lizorkin spaces. The results obtained are essentially
similar to the classical results, as mentioned before, the methods of proofs are
completely different. The boundedness results for Gaussian Besov–Lipschitz and
Triebel–Lizorkin spaces were obtained by A. E. Gatto, E. Pineda, and W. Urbina,
and appeared initially in [110] and [111]. These results can be extended to the case
of Laguerre and Jacobi expansions by analogous arguments.

8.1 Riesz and Bessel Potentials with Respect to the Gaussian
Measure

Gaussian Riesz Potentials

In the classical case, the Riesz potential of order β > 0 is defined as the negative
fractional powers of −Δ ,

(−Δ)−β/2,

which means, using Fourier transform, that

((−Δ)−β/2 f )̂ (ξ ) = (2π|ξ |)−β f̂ (ξ ). (8.1)

For more details, see [252, 118].

The original version of this chapter was revised. The correction to this chapter is available at
https://doi.org/10.1007/978-3-030-05597-4 10
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The Gaussian fractional integrals or Gaussian Riesz potentials can also be
defined as negative fractional powers of (−L). However, because the Ornstein–
Uhlenbeck operator has eigenvalue 0, the negative powers are not defined on all
of L2(γd); thus, we need to be more careful with the definition. Let us consider

Π0 f = f −
∫
Rd

f (y)γd(dy) the L2(γd) for f ∈ L2(γd), the orthogonal projection on

the orthogonal complement of the eigenspace corresponding to the eigenvalue 0.

Definition 8.1. The Gaussian fractional integral or Riesz potential of order β > 0,
Iβ is defined spectrally as

Iβ = (−L)−β/2Π0, (8.2)

which means that for any multi-index ν , |ν |> 0 its action on the Hermite polynomial
Hν is given by

IβHν(x) =
1

|ν |β/2
Hν(x), (8.3)

and for ν = 0 = (0, . . . ,0), Iβ (H0) = 0.

By linearity, using the fact that the Hermite polynomials are an algebraic basis of
P(Rd), Iβ can be defined for any polynomial function f (x) = ∑ν f̂γ(ν)Hν as

Iβ f (x) =∑
ν

f̂γ(ν)
|ν |β/2

Hν(x) = ∑
k≥1

1

kβ/2
Jk f (x). (8.4)

and similarly for f ∈ L2(γd).

From (8.4), it is clear that the Gaussian Riesz potentials Iβ are the simplest
Meyer’s multipliers, because in this case

m(k) =
1

kβ
= h(

1

kβ
), (8.5)

with h(x) = x the identity function.

Proposition 8.2. The Gaussian Riesz potential Iβ , β > 0, has the following integral
representations, for f ∈ (Rd) is a polynomial or f ∈C2

b(R
d),

Iβ f (x) =
1

Γ (β/2)

∫ ∞

0
tβ/2−1Tt(I −J0) f (x)dt, (8.6)

with respect to the Ornstein–Uhlenbeck semigroup, and

Iβ f (x) =
1

Γ (β )

∫ ∞

0
tβ−1Pt(I −J0) f (x)dt, (8.7)

with respect to the Poisson–Hermite semigroup,
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Proof. It is enough to prove that (8.6) holds for the Hermite polynomials. By the
change of variables u = |ν |t

1
Γ (β/2)

∫ ∞

0
tβ/2−1(Tt(I −J0)Hν)(x)dt =

1
Γ (β/2)

∫ ∞

0
tβ/2−1e−t|ν | dt Hν(x)

=
1

Γ (β/2)

∫ ∞

0

uβ/2−1

|ν |β/2−1
e−u du

|ν | Hν(x)

=
1

|ν |β/2
Hν(x).

Then, again as the Hermite polynomials are an algebraic base of the set of polyno-
mials P(Rd), the formula holds for any polynomial. It can be proved that (8.6) also
holds for f ∈C2

b(R
d).

Observe that the integral representation (8.7) only means a change of scale, as
Iβ = [(−L)1/2]−β . Taking the change of variables u = t

√
|ν |,

1
Γ (β )

∫ ∞

0
tβ−1(Pt(I −J0)Hν)(x)dt =

1
Γ (β )

∫ ∞

0
tβ−1e−t

√
|ν | dt Hν(x)

=
1

Γ (β )

∫ ∞

0

uβ−1

|ν |(β−1)/2
e−u du√

|ν |
Hν(x)

=
1

|ν |β/2
Hν(x),

again using that the Hermite polynomials are an algebraic base of the set of polyno-
mials P(Rd), ��

Following the classical case, in general, we prefer to use the representation of
Iβ (8.7), using the Poisson–Hermite semigroup. This representation will be crucial
later to get several boundedness results to operators associated with L.

On the other hand, let us recall that in the classical case (see [252, Chapter V
§1]), Riesz potentials have the following integral representation:

(−Δ)−β/2 f (x) =Cβ

∫
Rd

f (y)

|x− y|d−β
dy.

In the Gaussian case, we can also get an integral representation, as follows:

Theorem 8.3. The Gaussian Riesz potential Iβ , β > 0, has an integral representa-
tion,

Iβ f (x) =
∫
Rd

Nβ/2(x,y) f (y)dy, (8.8)

where the kernel Nβ/2(x,y) is defined as

Nβ/2(x,y) =
1

πd/2Γ (β/2)

∫ 1

0
(− logr)β/2−1

( e
− |y−rx|2

1−r2

(1− r2)d/2
− e−|y|2

)dr
r
. (8.9)
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Proof. To find the integral representation of Iβ , because the negative powers of L
do not exist in all of L2(γd), we add a small multiple of the identity. Hence, let us
consider the operator (εId − L), where Id is the identity in R

d and ε > 0, and let
us take its negative powers. The advantage of this trick is that it can be represented
as a Laplace transform and this allows us to use the expression for Mehler’s kernel
Mt(x,y). More precisely, for ε > 0 and β > 0,

(εI −L)−β/2 =
1

Γ (β/2)

∫ ∞

0
tβ/2−1e−(εI−L)tdt; (8.10)

therefore, the kernel of (εI −L)−β/2 is

Nβ/2,ε(x,y) =
1

Γ (β/2)

∫ ∞

0
tβ/2−1e−εtMt(x,y)dt

=
1

Γ (β/2)

∫ ∞

0
tβ/2−1e−εt 1

πd/2(1− e−2t)d/2
e
− |y−e−t x|2

1−e−2t dt,

because, if f ∈ L1(γd),

(εI −L)−β/2 f (x) =
1

Γ (β/2)

∫ ∞

0
tβ/2−1e−(εI−L)t f (x)dt

=
1

Γ (β )

∫
Rd

(∫ ∞

0
tβ/2−1e−εtMt(x,y)dt

)
f (x)dy.

As Π0 is the orthogonal projection of the orthogonal complement of the
eigenspace corresponding to the eigenvalue 0, then J0 = I −Π0, where J0 is the
orthogonal projection on the subspace generated by H0 ≡ 1 (that is, the constants),
and then we have

(εI −L)−β/2Π0 = (εI −L)−β/2 − ε−β/2J0.

The kernel of J0 is clearly π−d/2e−|y|2 and trivially ε−β =
∫ ∞

0 tβ−1e−εtdt, then the
kernel of (εI −L)−β/2Π0 is

1
Γ (β/2)

∫ ∞

0
tβ/2−1e−εt

(
Mt(x,y)−π−d/2e−|y|2

)
dt.

We can take ε → 0 in the integral above without problems, then

Iβ =
1

Γ (β/2)

∫ ∞

0
tβ/2−1Tt(I −J0)dt.

Therefore, the kernel of Iβ is given by

Nβ/2(x,y) =
1

πd/2Γ (β/2)

∫ ∞

0
tβ/2−1

( e
− |y−e−t x|2

1−e−2t

(1− e−2t)d/2
− e−|y|2

)
dt

=
1

πd/2Γ (β/2)

∫ 1

0
(− logr)β/2−1

( e
− |y−rx|2

1−r2

(1− r2)d/2
− e−|y|2

)dr
r
. (8.11)
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taking r = e−t . Thus

Iβ f (x) =
∫
Rd

Nβ/2(x,y) f (y)dy.

��

In [102], it is proven that these operators are not of weak type (1,1) with respect
to γ . On the other hand, the strong type (p, p), for 1 < p < ∞,

||Iβ ||p,γd ≤Cp|| f ||p,γd , (8.12)

follows either directly, from the hypercontractivity property of the Ornstein–
Uhlenbeck semigroup, or by applying P. A. Meyer’s multiplier theorem, Theo-
rem 6.2.

The classical Riesz potentials are homogeneous (see E. Stein [252, Chapter V
(10)]), but it is easy to see that this is not the case for the Gaussian Riesz potentials Iβ .

Moreover, it is well-known that the classical Riesz potentials are of strong type
(p,q) with 1

q = 1
p − β

d , that is to say, the classical Riesz potentials “improve” in

the sense that Iβ : Lp(Rd) → Lq(Rd) continuously, with 1
q = 1

p − β
d . The Gaussian

Riesz potentials, however, do not improve integrability. More formally, for any β > 0
for the Gaussian Riesz potential Iβ , there is no q > p such that it sends Lp(γd) →
Lq(γd) continuously. This can be proved using the following counterexample, due to
L. Forzani and W. Urbina, [87]. For every a > 0, let us split Iβ as,

Iβ f (x) = I1 f (x)+ I2 f (x) =
∫
Rd

N1
β (x,y) f (y)dy+

∫
Rd

N2
β (x,y) f (y)dy,

where the kernel (8.11) is split into the sum of two parts,

N1
β (x,y) =Cβ ,d

∫ e−a

0
(− logr)β−1

( e
− |y−rx|2

1−r2

(1− r2)d/2
− e−|y|2

)dr
r

N2
β (x,y) =Cβ ,d

∫ 1

e−a
(− logr)β−1

( e
− |y−rx|2

1−r2

(1− r2)d/2
− e−|y|2

)dr
r
.

The operator

I1 f (x) =
∫
Rd

N1
β (x,y) f (y)dy

can be written as

I1 f (x) =
1

Γ (β )

∫ +∞

a
tβ−1T tΠ0 f (x)dt,

where Tt = eLt is the Ornstein–Uhlenbeck semigroup (see Chapter 2). Taking into
account that Tt is a hypercontractive semigroup, I1 turns out to be of strong type
(p,q), with q = 1+(p−1)e4t .
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Additionally, I2 is an operator defined for every function on Lp(γd). To prove
that it does not improve integrability, it would be enough to show that for every
q > p there is a function f ∈ Lp(dγ) such that I2 f /∈ Lq(γd). Let us take 1

q < c < 1
p

and f (y) = ec|y|2χ|y|≥1 ∈ Lp(dγ).1 It can be proved (see [86]), that the kernel

N2
β (x,y) ≥ Ce|x|

2 e|y|
2

|y| in the region {(x,y) : |x| ≥ 1, 1
4 |y|2 + 1 < |x|2 < 3

4 |y|2}.

Hence, I2(ec|x|2)≥ ec|x|2

|x|2 for |x| ≥ 1; therefore, I2(ec|x|2) /∈ Lq(γd).

The reason why Gaussian Riesz potentials do not improve integrability is the
fact that L satisfies a logarithmic Sobolev inequality and not a Sobolev inequality.
Nevertheless, a Lp logL(γd) inequality can still be pulled out. Following E. Fabes’
suggestion, applying certain techniques used by L. Gross in [119], to prove that hy-
percontractivity implies a Sobolev logarithmic inequality, we can prove the following
result:

Proposition 8.4. For any β > 0 the Gaussian Riesz potential Iβ maps Lp(γd) into
Lp logL(γd) continuously; in other words, the following inequality holds

∫
Rd

|Iβ f (x)|p log |Iβ f (x)| γ(dx)≤C

(∫
Rd

| f (x)|p dγ+ || f ||pp,γ log || f ||p,γ
)
, (8.13)

for each f ∈ Lp(γd).

Proof. Indeed, for β > 0, consider the generalized Poisson–Hermite semigroup Pβ
t =

e−(−L)β t , defined in (3.38). Let f be a polynomial, such that
∫
Rd f dγ = 0, Iβ f �= 0,

and set F(t) = Pβ
t (Iβ f ), then for every t > 0,

||F(t)||1+(p−1)e4t ,γ −||F(0)||p,γ
t

≤ 1−1
t

||Iβ f ||p,γ = 0 (8.14)

where the above inequality is a consequence of the hypercontractivity of Pβ
t . In (8.14)

we let t → 0+ to get
d
dt

||F(t)||1+(p−1)e4t ,γ

∣∣∣∣
t=0

≤ 0 (8.15)

Using a lemma proved in [119],

d
dt

||F(t)||1+(p−1)e4t ,γ

∣∣∣∣
t=0

= ||Iβ f ||1−p
p,γ [p−14(p−1)(

∫
Rd

|Iβ |p log |Iβ | dγ (8.16)

−||Iβ f ||p,γ log ||Iβ f ||p,γ)+Re〈F ′(0),sgn(Iβ f )|Iβ f |p−1〉γ ].

1For d = 1 the function f , defined above, is the same as that used by H. Pollard in his
famous counterexample in [230].
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But F ′(0) = (−L)β Iβ f = f . Now, combining (8.15) and (8.16) we get

∫
Rd

|Iβ f (x)|p log |Iβ f (x)| dγ ≤C(||Iβ f ||pp,γ log ||Iβ f ||p,γ + 〈| f |, |Iβ f |p−1〉γ).

By applying Hölder’s inequality to the second term of the sum appearing on the
right-hand side of the above inequality, and then the Lp(dγ) continuity of Iβ , we get
inequality (8.13). ��

Thus, although Iβ do not improve in the Lp(γd) “scale,” they do improve in the
“logarithmic scale” Lp(γd) logL(γd).

Gaussian Bessel Potentials

Definition 8.5. The Gaussian Bessel potential of order β > 0, Jβ , is defined spec-
trally as

Jβ = (I +
√
−L)−β , (8.17)

meaning that for the Hermite polynomials we have,

JβHν(x) =
1

(1+
√

|ν |)β
Hν(x). (8.18)

Again, by linearity, Jβ can be extended to any polynomial; thus, if f =∑k Jk f , then

Jβ =∑
k

1

(1+
√

|k|)β
Jk f .

From (8.18), it is clear that the Gaussian Bessel potentials Jβ are not Meyer’s
multipliers, but a composition of two Meyer’s multipliers, because in this case

1

(1+
√

k)β
=
( 1√

k
+1

)−β 1

kβ/2
= m1(L)(m2(L)(k)), (8.19)

with h1(x) = (1+ x)−β and h2(x) = x.

Using a similar argument to that above (8.7), the Bessel potentials can be repre-
sented as

Jβ f (x) =
1

Γ (β )

∫ +∞

0
tβ e−tPt f (x)

dt
t
=

1
Γ (β )

∫ +∞

0
tβ−1e−tPt f (x)dt (8.20)

P. A. Meyer’s multiplier theorem, Theorem 6.2, shows that Jβ is a bounded
operator on Lp(γd), 1 < p < ∞, and again (8.20) can be extended to Lp(γd), using
the density of the polynomials there.
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On the other hand, again using P. A. Meyer’s multiplier theorem, Theorem 6.2,
we get that the operators

Iβ
Jβ

, and
Jβ

Iβ

are bounded on every Lp(γd),1 < p < ∞; because, for instance, for any multi-index
ν , |ν |> 0

(
Iβ

Jβ

)
Hν(x)=

(
(1+

√
|ν |)β

|ν |β/2

)
Hν(x)=

(
1√
|ν |

+1

)β

Hν(x)= h(
1

|ν |1/2
)Hν(x),

with h(x) = (x+ 1)β . These give the relation between the Riesz and Bessel poten-
tials, similar to those in the classical case (see [252, Chapter V. Lemma. 2]).

It is easy to see, from the fact that Jβ is a multiplier, that it is also a bijection
over the set of polynomials P . Additionally, the Gaussian Sobolev spaces can be
characterized in terms of Gaussian Bessel potentials,

Proposition 8.6. For β ≥ 0 and 1 ≤ p < ∞

Lp
β (γd) = {Jβ f : f ∈ Lp(γd)} (8.21)

Proof. First of all, observe that Jβ maps the family of polynomials P(Rd) into
itself injectively. Then, as we already know Jβ is continuous in Lp(γd), then we
conclude Jβ : Lp(γd)→ Lp

α(γd) is bijective. ��

Moreover, considering the family {Jβ}β it is easy to see that it is a strongly con-
tinuous semigroup on Lp(γ), 1 ≤ p < ∞, having as infinitesimal generator 1

2 log(I −
L).

8.2 Fractional Derivatives with Respect to the Gaussian Measure

Gaussian Riesz Fractional Derivate

In the classical case, fractional derivates for the Laplacian operator are defined as,

(−�)β/2 f (x) = cβ lim
ε→0

∫
|y|≥ε

f (x+ y)− f (x)

|y|d+β
dy

for 0 < β < 2, cβ = 2βΓ (d+β/2)
πd/2Γ (−β/2)

, see [255].

For the case of doubling measures, and more recently for s-dimensional non-
doubling measures, this has been generalized by A. E. Gatto, C. Segovia, and S.
Vàgi in [108].
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On the other hand, observe that
∫
Rd

f (x+ y)− f (x)

|y|d+β
dy =Cβ ,d

∫ ∞

0
t−β−1 (Pt f (x)− f (x))dt, (8.22)

where Pt is the classical Poisson semigroup. Then, following the classical case:

Definition 8.7. The Gaussian Riesz fractional derivative of order β > 0, Dβ is de-
fined spectrally as

Dβ = (−L)β/2, (8.23)

meaning that for the Hermite polynomials, we have

DβHν(x) = |ν |β/2 Hν(x). (8.24)

Thus, by linearity, Dβ can be extended to any polynomial (see [164] and [224]).

Now, if f is a polynomial, by the linearity of the operators Iβ and Dβ , (8.3)
and (8.24), we get

Iβ (D
β f ) = Dβ (Iβ f ) =Π0 f . (8.25)

In the case of 0 < β < 1 we have the following integral representation for f a
polynomial,

Dβ f (x) =
1
cβ

∫ ∞

0
t−β−1(I −Pt) f (x)dt, (8.26)

where cβ =
∫ ∞

0 u−β−1(1− e−u)du : because for the Hermite polynomials we have,

by the change of variables u =
√

|ν |t,

1
cβ

∫ ∞

0
t−β−1(I −Pt)Hν(x)(x)dt =

( 1
cβ

∫ ∞

0
t−β−1

(
e−t

√
|ν | −1

)
dt
)

Hν(x)

= |ν |β/2
( 1

cβ

∫ ∞

0
u−β−1 (e−u −1

)
du
)

Hν(x)

= |ν |β/2 Hν(x) = DβHν(x).

The identity (8.26) is very important in the development of a version of A. P.
Calderón’s reproduction formula (see Theorem 8.31 below).

Now, if β ≥ 1, let k be the smallest integer greater than β i.e. k−1 ≤ β < k, then
the fractional derivative Dβ can be represented as

Dβ f =
1

ck
β

∫ ∞

0
t−β−1(I −Pt)

k f dt, (8.27)

where ck
β =

∫ ∞
0 u−β−1(1− e−u)k du and f a polynomial function (see [239]).

As was mentioned earlier, fractional derivatives Dβ can be used to characterize
the Gaussian Sobolev spaces Lp

β (γd). First, we need to extend the fractional derivative
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operator Dβ to all the Gaussian Sobolev spaces Lp
β (γd), 1 < p < ∞. The union of

these spaces
Lβ (γd) :=

⋃
p>1

Lp
β (γd)

is a natural domain of Dβ . Observe that the definition of Dβ in all the spaces
Lp
β (γd), 1 < p < ∞, is based on an application of Meyer’s multiplier theorem, Theo-

rem 6.2.

Theorem 8.8. Let β > 0 and 1 < p < ∞.

i) If {Pn}n is a sequence of polynomials such that limn→∞Pn = f in Lp
β (γd), then

limn DβPn exists in Lp
β (γd) and does not depend on the choice of a sequence

{Pn}n. If f ∈ Lp
β (γd)∩Lr

β (γd), then the limit does not depend on the choice of p
or r. Thus, the fractional derivative is well defined by

Dβ f = lim
n→∞

DβPn in Lp
β (γd), as lim

n→∞
Pn = f in Lp

β (γd),

f ∈ Lβ (γd), is well defined.

ii) f ∈ Lp
β (γd) if and only if Dβ f ∈ Lp(γd). Moreover,

Bp,β ‖ f‖p,β ≤
∥∥∥Dβ f

∥∥∥
p,γd

≤ Ap,β ‖ f‖p,β . (8.28)

Proof. ii) Let f be a polynomial. Then

Dβ f = ∑
n≥0

(
n

1+n

)β/2

Jng,

where g = (1−L)−β/2 f . Note that g is also a polynomial. Observe that by construc-
tion,

‖ f‖p,β = ‖g‖p,γ .

Using Meyer’s multiplier theorem, Theorem 6.2, with the holomorphic function
h(z) = (1+ z)−β/2, we get

∥∥∥Dβ f
∥∥∥

p,γ
≤C1‖g‖p,γ .

To prove the converse inequality, observe that the polynomial g can be rewritten as

g = ∑
n≥0

(
n

1+n

)β/2

Jn(D
β f ),

and using Meyer’s multiplier theorem again we obtain,

‖h‖p,γ ≤C2

∥∥∥Dβ f
∥∥∥

p,γ
.

Thus, we get (8.28) for polynomials.
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i) The completeness of Lp
β (γd) can be proved using (8.28), and the fact that for

r ≥ p the embedding Lr
β (γd) ⊂ Lp

β (γd) is continuous. Finally, from there, we can

obtain (8.28) for any f ∈ Lp
β (γd). ��

From the previous result and Proposition 7.3, we can immediately obtain a cha-
racterization of the Gaussian Sobolev spaces.

Corollary 8.9. Assume that 1 < p < ∞ and β > 0. Then

Lp
β (γd) =

{
f ∈ Lβ (γd) : Dβ f ∈ Lp(γd)

}
. (8.29)

If β = k ∈ N, then

Lp
k (γd) =

{
f ∈ Lk(γd) : D j f ∈ Lp(γd), j ≤ k

}
. (8.30)

This characterization of Sobolev spaces is the most common one in the classical
case.

Gaussian Bessel Fractional Derivates

We can also define the Gaussian Bessel fractional derivatives, Dβ .

Definition 8.10. The Gaussian Bessel fractional derivatives of order β , Dβ , are
defined spectrally as

Dβ = (I +
√
−L)β , (8.31)

which means that for the Hermite polynomials, we have

DβHν(x) = (1+
√

|ν |)βHν(x); (8.32)

thus, by linearity, it can be extended to any polynomial (see [224]).

In the case of 0 < β < 1, we have the following integral representation,

Dβ f =
1
cβ

∫ ∞

0
t−β−1(I − e−tPt) f dt, (8.33)

where, as before, cβ =
∫ ∞

0 u−β−1(1− e−u)du and f is a polynomial.

Moreover, if β ≥ 1, let k be the smallest integer greater than β , i.e.. k−1 ≤ β < k,
then we have the following representation of Dβ f

Dβ f =
1

ck
β

∫ ∞

0
t−β−1(I − e−tPt)

k f dt, (8.34)

where ck
β =

∫ ∞
0 u−β−1(1− e−u)kdu and f is a polynomial (see [239]).
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8.3 Boundedness of Fractional Integrals and Fractional
Derivatives on Gaussian Lipschitz Spaces

The boundedness results in the case of Gaussian Lipschitz spaces initially appeared
in A. E. Gatto and W. Urbina’s article [109]. First, observe that the Gaussian Riesz
potentials are not bounded operators on L∞(γd) and, therefore, not on Lipα(γ) either.
Then, to make sense of Riesz potentials on L∞, we consider, for β > 0, the truncated
Gaussian Riesz potentials,

IT
β f (x) =

∫ 1

0
tβ−1Pt f (x)dt.

We want to study the truncated Gaussian Riesz potentials IT
β on the Gaussian

Lipschitz spaces Lipα(γd),

Theorem 8.11. For 0 < β < 1 and α > 0, the Riesz potential of order β , IT
β :

Lipα(γd)→ Lipα+β (γd) is bounded.

Proof. Let f ∈ Lipα(γd), i.e., f ∈ L∞ such that
∥∥∥ ∂Pt f

∂ t

∥∥∥
∞,γd

≤ At−1+α . First, observe

that
|Pt f (x)| ≤

∫
Rd

p(t,x,y)| f (y)|dy ≤ ‖ f‖∞,γ ,

that is, Pt f ∈ L∞ and then

|IT
β f (x)| ≤

∫ 1

0
tβ−1|Pt f (x)|dt ≤

∫ 1

0
tβ−1‖ f‖∞,γdt =

1
β
‖ f‖∞,γ .

Therefore, IT
β f ∈ L∞. Now, using the semigroup property and Fubini’s theorem,

PsI
T
β f (x) =

∫
Rd

p(s,x,y)IT
β f (y)dy =

∫ 1

0
tβ−1Ps+t f (y)dt = v(x,s).

If α+β < 1, then for 0 ≤ s ≤ 1

∂v
∂ s

(x,s) =
∫ 1

0
tβ−1 ∂

∂ s
Ps+t f (x)dt =

∫ 1

0
tβ−1 ∂

∂ t
Ps+t f (x)dt

=
∫ s

0
tβ−1 ∂

∂ t
Ps+t f (x)dt +

∫ 1

s
tβ−1 ∂

∂ t
Ps+t f (x)dt

= (I)+(II).

Now, for (I), because t < s

|(I)| ≤
∫ s

0
tβ−1| ∂

∂ t
Ps+t f (x)|dt ≤C

∫ s

0
tβ−1(t + s)α−1dt

≤ Csα−1
∫ s

0
tβ−1dt =Cs(α+β )−1,
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and, for (II), as t > s

|(II)| ≤
∫ 1

s
tβ−1| ∂

∂ t
Ps+t f (x)|dt ≤C

∫ ∞

s
tβ−1(t + s)α−1dt

≤ C
∫ ∞

s
tβ−1tα−1dt =Cs(α+β )−1.

Thus, ∥∥∥ ∂
∂ s

Iβ f
∥∥∥
∞,γd

<Cs(α+β )−1,

which implies Iβ f ∈ Lipα+β (γd). The general case follows in a similar manner. ��

Now, we study the action of the Bessel potentials on the Gaussian Lipschitz
spaces Lipα(γ), which is much better than the case of the Riesz potentials:

Theorem 8.12. Let α,β > 0 then Jβ is bounded from Lipα(γ) to Lipα+β (γ).

Proof. Let f ∈ Lipα(γ) and consider a fixed integer n > α+β , then

∥∥∥∂ nPt f
∂ tn

∥∥∥
∞
≤ Aβ ( f )t−n+α , t > 0.

Using (8.20), the fact that f ∈ L∞, and consequently Pt+s f ∈ L∞, we obtain

Pt(J
β f )(x) =

1
Γ (β )

∫ +∞

0
sβ−1e−sPt+s f (x)ds; (8.35)

therefore,
‖Pt(Jβ f )‖∞ ≤ ‖ f‖∞,

i.e. Pt(Jβ f ) ∈ L∞.

Now, we want to verify the Lipschitz condition. Differentiating (8.35), we get

∂ nPt(Jβ f )(x)

∂ tn =
1

Γ (β )

∫ +∞

0
sβ−1e−s ∂ nPt+s f (x)

∂ tn ds

=
1

Γ (β )

∫ +∞

0
sβ−1e−s ∂ nPt+s f (x)

∂ (t + s)n ds,

and this implies

∥∥∥∂
nPt(Jβ f )

∂ tn

∥∥∥
∞
≤ 1

Γ (β )

∫ t

0
sβ−1e−s

∥∥∥ ∂ nPt+s f
∂ (t + s)n

∥∥∥
∞

ds

+
1

Γ (β )

∫ +∞

t
sβ−1e−s

∥∥∥ ∂ nPt+s f
∂ (t + s)n

∥∥∥
∞

ds

= (I)+(II).
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Because β > 0 as t + s > t,

(I) ≤
Aβ ( f )

Γ (β )

∫ t

0
sβ−1(t + s)−n+αe−s ds

≤
Aβ ( f )

Γ (β )
t−n+α

∫ t

0
sβ−1ds(γ)≤Ct−n+α+β ‖ f‖Lipβ (γ).

On the other hand, because n > α+β , as t + s > s

(II) ≤
Aβ ( f )

Γ (β )

∫ ∞

t
sβ−1e−s(t + s)−n+α ds ≤

Aβ ( f )

Γ (β )

∫ ∞

t
sβ−1e−ss−n+α ds

≤
Aβ ( f )

Γ (β )

∫ ∞

t
s−n+α+β−1ds =CAβ ( f )t−n+α+β .

Therefore,

∥∥∥∂
nPt(Jβ f )

∂ tn

∥∥∥
∞
≤ CAβ ( f )t−n+α+β , t > 0.

Thus, Jβ f ∈ Lipα+β (γ), and moreover

‖Jβ f‖Lipα+β (γ) = ‖Jβ f‖∞,γ +Aβ (Jβ f )

≤ ‖ f‖∞,γ +CAβ ( f )≤C‖ f‖Lipβ (γ).

��

Finally, let us study the action of the fractional derivative Dβ on the Gaussian
Lipschitz spaces.

Theorem 8.13. For 0 < β < α < 1, the fractional derivate of order β , Dβ :
Lipα(γd)→ Lipα−β (γd) is bounded.

Proof. Let f ∈ Lipα(γd), i.e., f ∈ L∞ such that
∥∥∥ ∂Pt f

∂ t

∥∥∥
∞,γ

≤ At−1+α . Observe that

using (7.44) and Proposition 7.23, we get

|Dβ f (x)| ≤ 1
cβ

∫ ∞

0
t−β−1|Pt f (x)− f (x)|dt

=
1
cβ

∫ 1

0
t−β−1|Pt f (x)− f (x)|dt +

1
cβ

∫ ∞

1
t−β−1|Pt f (x)− f (x)|dt

≤ 1
cβ

∫ 1

0
t−β−1‖Pt f (x)− f (x)‖∞,γdt +

2‖ f‖∞,γ
cβ

∫ ∞

1
t−β−1dt

≤ A1( f )
cβ

∫ 1

0
tα−β−1dt +

2‖ f‖∞,γ
cβ

∫ ∞

1
t−β−1dt

=
A1( f )

cβ (α−β )
+

2‖ f‖∞,γ
βcβ

≤Cβ ,β‖ f‖Lipβ (γ).
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Thus, Dβ f ∈ L∞(γd). Now, using (8.26), and fixing s, we have

∂
∂ s

(PsD
β f (x)) =

1
cβ

∂
∂ s

∫ ∞

0
t−β−1[Ps+t f (x)−Ps f (x)]dt

=
1
cβ

∫ ∞

0
t−β−1[

∂
∂ s

(Ps+t f (x))− ∂
∂ s

Ps f (x)]dt

=
1
cβ

∫ s

0
t−β−1[

∂
∂ s

(Ps+t f (x))− ∂
∂ s

Ps f (x)]dt

+
1
cβ

∫ ∞

s
t−β−1[

∂
∂ s

(Ps+t f (x))− ∂
∂ s

Ps f (x)]dt

= (I)+(II).

Using Proposition 7.27, we have

∥∥∥ ∂ 2

∂u2 Pu f
∥∥∥
∞,γd

≤ Auα−2, (8.36)

and then, using the fundamental theorem of calculus, we get

| ∂
∂ s

(Ps+t f (x))− ∂
∂ s

Ps f (x)| ≤
∫ s+t

s
| ∂

2

∂u2 Pu f (x)|du ≤ A
∫ s+t

s
uα−2du

≤ A
∫ ∞

s
uα−2du ≤ A

1−α
sα−1.

Then, as t < s,

|(I)| ≤ 1
cβ

∫ s

0
t−β−1| ∂

∂ s
(Ps+t f (x))− ∂

∂ s
Ps f (x)|dt

≤ A
s−1

cβ

∫ s

0
t−β−1sαdt ≤Cα ,β s−1

∫ s

0
tα−β−1dt =Cα ,β sα−β−1.

On the other hand,

|(II)| ≤ 1
cβ

∫ ∞

s
t−β−1| ∂

∂ s
(Ps+t f (x))− ∂

∂ s
Ps f (x)|dt

≤ Asα−1

(β −1)cβ

∫ ∞

s
t−β−1dt =Cα ,β sα−β−1.

Therefore, ∥∥∥ ∂
∂ s

(PsD
β f )

∥∥∥
∞,γd

≤Csα−β−1,

which implies Dβ f ∈ Lipα−β (γd). ��
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8.4 Boundedness of Fractional Integrals and Fractional
Derivatives on Gaussian Besov–Lipschitz Spaces

As we discussed in the previous section, in the case of the Lipschitz spaces only a
truncated version of the Riesz potentials is bounded from Lipα(γd) to Lipα+β (γd).
Now, we study the boundedness properties of the Riesz potentials on Besov–
Lipschitz spaces, and we see that in this case, the results are better.

Theorem 8.14. Let α ≥ 0,β > 0, 1 < p < ∞,1 ≤ q ≤ ∞ then Iβ is bounded from

Bα
p,q(γd) into Bα+β

p,q (γd).

Proof. Let k > α+β a fixed integer, f ∈ Bα
p,q(γd), using the integral representation

of Riesz potentials (8.7), the semigroup property of {Pt}t≥0 and the fact that P∞ f (x)
is a constant and the semigroup is conservative, we get

PtIβ f (x) =
1

Γ (β )

∫ +∞

0
sβ−1Pt(Ps f (x)−P∞ f (x))ds

=
1

Γ (β )

∫ +∞

0
sβ−1(Pt+s f (x)−P∞ f (x))ds. (8.37)

Using the fact that P∞ f (x) is a constant again, and the chain rule,

∂ k

∂ tk (PtIβ f )(x) =
1

Γ (β )

∫ +∞

0
sβ−1 ∂ k

∂ tk (Pt+s f (x)−P∞ f (x))ds

=
1

Γ (β )

∫ +∞

0
sβ−1u(k)(x, t + s)ds. (8.38)

Then, using Minkowski’s integral inequality

∥∥∥ ∂ k

∂ tk Pt Iβ f
∥∥∥

p,γ
≤ 1

Γ (β )

∫ +∞

0
sβ−1‖u(k)(·, t + s)‖p,γds. (8.39)

Hence, if 1 ≤ q < ∞,

(∫ +∞

0

(
tk−(α+β )

∥∥∥ ∂ k

∂ tk (PtIβ f )
∥∥∥

p,γ

)q dt
t

) 1
q

≤ 1
Γ (β )

(∫ +∞

0
t(k−(α+β ))q

(∫ +∞

0
sβ−1‖u(k)(·, t + s)‖p,γds

)q dt
t

) 1
q

≤Cβ

(∫ +∞

0
t(k−(α+β ))q

(∫ t

0
sβ−1‖u(k)(·, t + s)‖p,γds

)q dt
t

) 1
q

+Cβ

(∫ +∞

0
t(k−(α+β ))q

(∫ +∞

t
sβ−1‖u(k)(·, t + s)‖p,γds

)q dt
t

) 1
q
= (I)+(II).
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Now, as β > 0 using Lemma 3.5, and as t + s > t,

(I) ≤ Cβ

(∫ +∞

0
t(k−(α+β ))q

(∫ t

0
sβ−1‖u(k)(·, t)‖p,γds

)q dt
t

) 1
q

= Cβ

(∫ +∞

0
t(k−(α+β ))q

∥∥∥∂ kPt f
∂ tk

∥∥∥q

p,γ

( tβ

β

)q dt
t

) 1
q

= C′
β

(∫ +∞

0

(
tk−α

∥∥∥∂ kPt f
∂ tk

∥∥∥
p,γ

)q dt
t

) 1
q
<+∞,

because f ∈ Bα ,q
p (γd).

On the other hand, as k > α+β using Lemma 3.5 again, because t + s > s, and
Hardy’s inequality (10.101), we obtain

(II) ≤ Cβ

(∫ +∞

0
t(k−(α+β ))q

(∫ +∞

t
sβ‖u(k)(·,s)‖p,γ

ds
s

)q dt
t

) 1
q

≤
Cβ

k− (α+β )

∫ +∞

0

(
sk−α

∥∥∥∂ kPs f
∂ sk

∥∥∥
p,γ

)q ds
s

) 1
q
<+∞,

because f ∈ Bα
p,q(γd). Therefore, Iβ f ∈ Bα+β

p,q (γd) and, moreover,

‖Iβ f‖
Bα+βp,q

= ‖Iβ f‖p,γ +
(∫ +∞

0

(
tk−(α+β )

∥∥∥ ∂ k

∂ tk (PtIβ f )
∥∥∥

p,γ

)q dt
t

) 1
q

≤ C‖ f‖p,γ +Cα ,β

(∫ +∞

0

(
tk−α

∥∥∥∂ kPt f
∂ tk

∥∥∥
p,γ

)q dt
t

) 1
q ≤C‖ f‖

Bβp,q
.

Now, if q = ∞, (8.39) can be written as

∥∥∥ ∂ k

∂ tk Pt Iβ f
∥∥∥

p,γ
≤ 1

Γ (β )

∫ +∞

0
sβ−1‖u(k)(·, t + s)‖p,γds

=
1

Γ (β )

∫ t

0
sβ−1‖u(k)(·, t + s)‖p,γds

+
1

Γ (β )

∫ ∞

t
sβ−1‖u(k)(·, t + s)‖p,γds

= (I)+(II).

Using that β > 0, Lemma 3.5, as t + s > t, and because f ∈ Bα
p,∞(γd),

(I) ≤ 1
Γ (β )

∥∥∥∂ kPt f
∂ tk

∥∥∥
p,γ

∫ t

0
sβ−1ds ≤ 1

Γ (β )
tβ

β
Ak( f )t−k+α =CβAk( f ) t−k+α+β .
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Now, because k > α+β , using Lemma 3.5, as t + s > s, and because f ∈ Bα
p,∞(γd),

we get

(II) ≤ 1
Γ (β )

∫ ∞

t
sβ−1

∥∥∥∂ kPs f
∂ sk

∥∥∥
p,γ

ds ≤ Ak( f )
Γ (β )

∫ ∞

t
s−k+α+β−1ds

=
Ak( f )
Γ (β )

t−k+α+β

k− (α+β )
=Ck,α ,β t−k+α+β .

Therefore,

∥∥∥ ∂ k

∂ tk PtIβ f
∥∥∥

p,γ
≤ CAk( f )t−k+α+β , t > 0,

and this implies that Iβ f ∈ Bα+β
p,∞ (γd) and Ak(Iβ f )≤CAk( f ).

Moreover, as Iβ is a bounded operator on Lp(γd),1 < p < ∞,

‖Iβ f‖
Bα+βp,∞

= ‖Iβ f‖p,γ +Ak(Iβ f )≤ ‖ f‖p,γ +CAk( f )≤C‖ f‖Bαp,∞ . ��

Now, we are going to study the boundedness properties of the Bessel potentials
on Besov–Lipschitz spaces.

Theorem 8.15. Let α ≥ 0, 1 ≤ p,q < ∞, then for β > 0,

i) Jβ is bounded on Bα
p,q(γd).

ii) Moreover, Jβ is bounded from Bα
p,q(γd) to Bα+β

p,q (γd).

iii) Finally, for q = ∞, Jβ is bounded from Bα
p,∞(γd) into Bα+β

p,∞ (γd).

Proof.

i) Let us see that Jβ is bounded on Bα
p,q(γd). Using Lebesgue’s dominated con-

vergence theorem, Minkowski’s integral inequality, and Jensen’s inequality, we
have
∥∥∥∂ kPt

∂ tk

(
Jβ f

)∥∥∥q

p,γd

= (
∫
Rd

|∂
kPt

∂ tk (
1

Γ (β )

∫ +∞

0
sβ e−sPs f (x)

ds
s
)|pγd(dx))

q
p

≤ (
1

Γ (β )

∫ +∞

0
sβ e−s(

∫
Rd

|∂
kPtPs f (x)
∂ tk |pγd(dx))

1
p

ds
s
)q

≤ 1
Γ (β )

∫ +∞

0
sβ e−s

∥∥∥∂ kPtPs f
∂ tk

∥∥∥q

p,γd

ds
s
,

and then, using Tonelli’s theorem,

∫ +∞

0

(
tk−α

∥∥∥∂ kPt

∂ tk

(
Jβ f

)∥∥∥
p,γd

)q dt
t

≤ 1
Γ (β )

∫ +∞

0
sαe−s(

∫ +∞

0

(
tk−α

∥∥∥∂
kPt

(
Ps f

)

∂ tk

∥∥∥
p,γd

)q dt
t
)

ds
s
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≤ 1
Γ (β )

∫ +∞

0
sαe−s(

∫ +∞

0

(
tk−α

∥∥∥∂ kPt f
∂ tk

∥∥∥
p,γd

)q dt
t
)

ds
s

=
∫ +∞

0

(
tk−α

∥∥∥∂ kPt f
∂ tk

∥∥∥
p,γd

)q dt
t
.

Therefore,

‖Jβ f‖Bαp,q = ‖Jβ f‖p,γd +

∫ +∞

0

(
tk−α

∥∥∥∂ kPt

∂ tk

(
Jβ f

)∥∥∥
p,γd

)q dt
t

≤ ‖ f‖p,γd +
∫ +∞

0

(
tk−α

∥∥∥∂ kPt f
∂ tk

∥∥∥
p,γd

)q dt
t
= ‖ f‖Bαp,q .

ii) We use the notation u(x, t) = Pt f (x) and U(x, t) = PtJβ f (x), using the repre-
sentation (3.8) of Pt we have,

U(x, t) =
∫ +∞

0
Ts(Jβ f )(x)μ(1/2)

t (ds).

Therefore,

U(x, t1 + t2) = Pt1(Pt2(Jβ f ))(x) =
∫ +∞

0
Ts(Pt2(Jβ f ))(x)μ(1/2)

t1 (ds).

Now, let k, l be integers greater than α,β respectively, by differentiating k times
with respect to t2 and l times with respect to t1,

∂ k+lU(x, t1 + t2)
∂ (t1 + t2)k+l =

∫ +∞

0
Ts(

∂ kPt2

∂ tk
2

(Jβ f ))(x)
∂ l

∂ tl
1

μ(1/2)
t1 (ds).

Thus,
∂ k+lU(x, t)

∂ tk+l =
∫ +∞

0
Ts(

∂ kPt2

∂ tk
2

(Jβ f ))(x)
∂ l

∂ tl
1

μ(1/2)
t1 (ds),

if t = t1 + t2 and therefore, using the Lp continuity of Ts and (3.21)

∥∥∥∂ k+lU(·, t)
∂ tk+l

∥∥∥
p,γ

≤
∫ +∞

0
‖Ts(

∂ kPt2

∂ tk
2

(Jβ f ))
∥∥∥

p,γ
| ∂

l

∂ tl
1

μ(1/2)
t1 (ds)|

≤
∫ +∞

0
‖∂

kPt2

∂ tk
2

(Jβ f )
∥∥∥

p,γ
| ∂

l

∂ tl
1

μ(1/2)
t1 (ds)|

=
∥∥∥∂ kPt2

∂ tk
2

(Jβ f )
∥∥∥

p,γ

∫ +∞

0
| ∂

l

∂ tl
1

μ(1/2)
t1 (ds)|

≤ Ct−l
1

∥∥∥ ∂ k

∂ tk
2

Pt2Jβ f
∥∥∥

p,γ
. (8.40)
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On the other hand, using the representation of Bessel potential (8.20), we have

Pt(Jβ f )(x) =
1

Γ (β )

∫ +∞

0
sβ e−sPt+s f (x)

ds
s

then

∂ kPt

∂ tk (Jβ f )(x) =
1

Γ (β )

∫ +∞

0
sβ e−s ∂ kPt+s f (x)

∂ tk

ds
s

=
1

Γ (β )

∫ +∞

0
sβ e−s ∂ kPt+s f (x)

∂ (t + s)k

ds
s
,

and this implies that

∥∥∥∂ kPt

∂ tk (Jβ f )
∥∥∥

p,γ
≤ 1

Γ (β )

∫ +∞

0
sβ e−s

∥∥∥ ∂ kPt+s f
∂ (t + s)k

∥∥∥
p,γ

ds
s

< ∞,

because f ∈ Bα
p,q(γd). Now, because the definition of Bα

p,q(γd) is independent on
the integer k > α that we can choose, let us take k > α + β and l > β , then
k+ l > α+2β > α+β ; thus, k+ l is an integer greater than α+β . Let us now
see that (∫ +∞

0

(
tk+l−(α+β )

∥∥∥∂ k+lU(·, t)
∂ tk+l

∥∥∥
p,γ

)q dt
t

) 1
q
<+∞.

In fact, taking t1 = t2 = t/2 in (8.40), we get

(∫ +∞

0

(
tk+l−(α+β )

∥∥∥∂ k+lU(·, t)
∂ tk+l

∥∥∥
p,γ

)q dt
t

) 1
q

≤C
(∫ +∞

0

(
tk+l−(α+β )

∥∥∥ ∂ kPt
2

∂ ( t
2 )

k (Jβ f )
∥∥∥

p,γ
(

t
2
)−l

)q dt
t

) 1
q

≤ C
Γ (β )

(∫ +∞

0

(
tk−(α+β )

(∫ +∞

0
sβ e−s

∥∥∥∂
kPs+ t

2
f

∂ ( t
2 )

k

∥∥∥
p,γ

ds
s

))q dt
t

) 1
q

≤ C
Γ (β )

[∫ +∞

0
t(k−(α+β ))q

(∫ t

0
sβ
∥∥∥ ∂ kPs+ t

2
f

∂ (s+ t
2 )

k

∥∥∥
p,γ

ds
s

)q

+
(∫ +∞

t
sβ
∥∥∥ ∂ kPs+ t

2
f

∂ (s+ t
2 )

k

∥∥∥
p,γ

ds
s

)q dt
t

] 1
q
.

Again using that (a + b)q ≤ Cq(aq + bq) if a,b ≥ 0,q ≥ 1, but because (a +

b)1/q ≤ a1/q +b1/q if a,b ≥ 0,q ≥ 1,

C
Γ (β )

[∫ +∞

0
t(k−(α+β ))q

(∫ t

0
sβ
∥∥∥ ∂ kPs+ t

2
f

∂ (s+ t
2 )

k

∥∥∥
p,γ

ds
s

)q

+
(∫ +∞

t
sβ
∥∥∥ ∂ kPs+ t

2
f

∂ (s+ t
2 )

k

∥∥∥
p,γ

ds
s

)q dt
t

] 1
q
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≤ C
Γ (β )

[∫ +∞

0
t(k−(α+β ))q

(∫ t

0
sβ
∥∥∥ ∂ kPs+ t

2
f

∂ (s+ t
2 )

k

∥∥∥
p,γ

ds
s

)q dt
t

]1/q

+
C

Γ (β )

[∫ +∞

0
t(k−(α+β ))q

(∫ +∞

t
sβ
∥∥∥ ∂ kPs+ t

2
f

∂ (s+ t
2 )

k

∥∥∥
p,γ

ds
s

)q dt
t

] 1
q

= (I)+(II).

Now, using Lemma 3.5 and because β > 0

(I) =
C

Γ (β )

[∫ +∞

0
t(k−(α+β ))q

(∫ t

0
sβ
∥∥∥ ∂ kPs+ t

2
f

∂ (s+ t
2 )

k

∥∥∥
p,γ

ds
s

)q dt
t

] 1
q

≤ C
Γ (β )

[∫ +∞

0
t(k−(α+β ))q

(∫ t

0
sβ
∥∥∥∂

kPt
2

f

∂ ( t
2 )

k

∥∥∥
p,γ

ds
s

)q dt
t

] 1
q

=
C

βΓ (β )

(∫ +∞

0

(
tk−α

∥∥∥∂
kPt

2
f

∂ ( t
2 )

k

∥∥∥
p,γ

)q dt
t

) 1
q

= Cα ,β

(∫ +∞

0

(
uk−α

∥∥∥∂ kPu f
∂uk

∥∥∥
p,γ

)q du
u

) 1
q
<+∞,

because f ∈ Bα ,q
p (γd).

On the other hand, using Hardy inequality, because k > α+β and Lemma 3.5,
we get

(II) =
C

Γ (β )

(∫ +∞

0
t(k−(α+β ))q

(∫ +∞

t
sβ
∥∥∥ ∂ kPs+ t

2
f

∂ (s+ t
2 )

k

∥∥∥
p,γ

ds
s

)q dt
t

) 1
q

≤ C
Γ (β )

(∫ +∞

0
t(k−(α+β ))q

(∫ +∞

t
sβ
∥∥∥∂ kPs f

∂ sk

∥∥∥
p,γ

ds
s

)q dt
t

) 1
q

≤ C
Γ (β )

1
k− (α+β )

∫ +∞

0

(
sk−α

∥∥∥ ∂ k

∂ sk Ps f
∥∥∥

p,γ

)q ds
s

) 1
q
<+∞

because f ∈ Bα
p,q(γd). Thus, Jβ f ∈ Bα+β

p,q (γd) and, moreover,

‖Jβ f‖
Bα+βp,q

≤Cα ,β‖ f‖
Bβp,q

.

iii) Let k >α+β a fixed integer, f ∈ Bα
p,∞(γd), by using the representation of Bessel

potential (8.20), we get

Pt(Jβ f )(x) =
1

Γ (β )

∫ +∞

0
sβ e−sPt+s f (x)

ds
s

;

thus, using the chain rule, we obtain

∂ k

∂ tk Pt(Jβ f )(x) =
1

Γ (β )

∫ +∞

0
sβ e−su(k)(x, t + s)

ds
s
,
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which implies, using Minkowski’s integral inequality,

∥∥∥ ∂ k

∂ tk Pt(Jβ f )
∥∥∥

p,γ
≤ 1

Γ (β )

∫ +∞

0
sβ e−s‖u(k)(·, t + s)‖p,γ

ds
s

=
1

Γ (β )

∫ t

0
sβ e−s‖u(k)(·, t + s)‖p,γ

ds
s

+
1

Γ (β )

∫ ∞

t
sβ e−s‖u(k)(·, t + s)‖p,γ

ds
s

= (I)+(II).

Now, as β > 0, using Lemma 3.5, as t + s > t, and because f ∈ Bβ
p,∞(γd),

(I) ≤ 1
Γ (β )

∥∥∥∂ kPt f
∂ tk

∥∥∥
p,γ

∫ t

0
sβ e−s ds

s
≤ 1
Γ (β )

∥∥∥∂ kPt f
∂ tk

∥∥∥
p,γ

∫ t

0
sβ−1ds

≤ 1
Γ (β )

tβ

β
Ak( f )t−k+α =CβAk( f )t−k+α+β .

On the other hand, as k > α + β using Lemma 3.5, as t + s > s, and because
f ∈ Bα

p,∞(γd)

(II) ≤ 1
Γ (β )

∫ ∞

t
sβ e−s

∥∥∥∂ kPs f
∂ sk

∥∥∥
p,γ

ds
s

≤ Ak( f )
Γ (β )

∫ ∞

t
sβ e−ss−k+α ds

s

≤ Ak( f )
Γ (β )

∫ ∞

t
s−k+α+β−1ds =

Ak( f )
Γ (β )

t−k+α+β

k− (α+β )
=Ck,α ,βAk( f )t−k+α+β .

Therefore,

∥∥∥ ∂ k

∂ tk Pt(Jβ f )
∥∥∥

p,γ
≤ CAk( f )t−k+α+β ,

then Jβ f ∈ Bα+β
p,∞ (γd) and Ak(Jβ f )≤CAk( f ). Thus,

∥∥∥Jβ f
∥∥∥

Bα+βp,∞
=

∥∥∥Jβ f
∥∥∥

p,γ
+Ak(Jβ f )≤ ‖ f‖p,γ +CAk( f )≤C‖ f‖Bαp,∞ .

��

Now, we study the boundedness of the Riesz fractional derivatives and of the
Bessel fractional derivatives on Besov–Lipschitz spaces. We use the representa-
tion (8.24) of the fractional derivative and Hardy’s inequalities. Because they require
different techniques, we consider two cases:

• The bounded case, 0 < β < α < 1.
• The unbounded case 0 < β < α.

Let us start with the bounded case for the Riesz derivative:

Theorem 8.16. Let 0 < β < α < 1, 1 ≤ p < ∞ and 1 ≤ q ≤ ∞ then Dβ is bounded

from Bα
p,q(γd) into Bα−β

p,q (γd).



8.4 Boundedness of Fractional Integrals and Fractional Derivatives on. . . 325

Proof. Let f ∈ Bα
p,q(γd), using Hardy’s inequality (10.100), with p = 1, and the fun-

damental theorem of calculus,

|Dβ f (x)| ≤ 1
cβ

∫ +∞

0
s−β−1|Ps f (x)− f (x)|ds ≤ 1

cβ

∫ +∞

0
s−β−1

∫ s

0
| ∂
∂ r

Pr f (x)|dr ds

≤ 1
cββ

∫ +∞

0
r1−β | ∂

∂ r
Pr f (x)|dr

r
. (8.41)

Thus, using Minkowski’s integral inequality

∥∥∥Dβ f
∥∥∥

p,γ
≤ Cβ

∫ +∞

0
r1−β

∥∥∥ ∂
∂ r

Pr f
∥∥∥

p,γ

dr
r

< ∞, (8.42)

because f ∈ Bα
p,q(γd)⊂ Bβ

p,1(γd), 1 ≤ q ≤ ∞ as α > β , i.e., Dβ f ∈ Lp(γd).

Now, by analogous argument

∂
∂ t

Pt(D
β f )(x) =

1
cβ

∫ +∞

0
s−β−1[

∂
∂ t

Pt+s f (x)− ∂
∂ t

Pt f (x)]ds

=
1
cβ

∫ +∞

0
s−β−1

∫ t+s

t
u(2)(x,r)dr ds

and again, using Minkowski’s integral inequality

∥∥∥ ∂
∂ t

Pt(D
β f )

∥∥∥
p,γ

≤ 1
cβ

∫ +∞

0
s−β−1

∫ t+s

t
‖u(2)(·,r)‖p,γ dr ds (8.43)

Then, if 1 ≤ q < ∞, by (8.43)

∫ ∞

0

(
t1−(α−β )

∥∥∥ ∂
∂ t

Pt(Dβ f )
∥∥∥

p,γ

)q dt
t

≤Cβ

∫ ∞

0

(
t1−(α−β )

∫ +∞

0
s−β−1

∫ t+s

t
‖u(2)(·,r)‖p,γ dr ds

)q dt
t

=Cβ

∫ ∞

0

(
t1−(α−β )

∫ t

0
s−β−1

∫ t+s

t
‖u(2)(·,r)‖p,γ dr ds

)q dt
t

+Cβ

∫ ∞

0

(
t1−(α−β )

∫ +∞

t
s−β−1

∫ t+s

t
‖u(2)(·,r)‖p,γ dr ds

)q dt
t

= (I)+(II).

Now, because r > t using Lemma 3.5 and the fact that 0 < β < 1,

(I) ≤ Cβ

∫ ∞

0

(
t1−(α−β )

∫ t

0
s−βds‖u(2)(·,r)‖p,γ

)q dt
t

= Cβ ,q

∫ ∞

0

(
t2−α

∥∥∥ ∂ 2

∂ r2 Pr f
∥∥∥

p,γ

)q dt
t
.
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On the other hand, as r > t using Hardy’s inequality (10.101), because (1−α)q > 0,
we get

(II) ≤ Cβ

∫ ∞

0
t(1−(α−β ))q

(∫ +∞

t
s−β−1ds

∫ ∞

t
‖u(2)(·,r)‖p,γ dr

)q dt
t

= C′
β

∫ ∞

0
t(1−α)q

(∫ ∞

t
‖u(2)(·,r)‖p,γ dr

)q dt
t

≤
C′
β

(1−α)

∫ ∞

0

(
r2−α

∥∥∥ ∂ 2

∂ r2 Pr f
∥∥∥

p,γ

)q dr
r
.

Thus,

(∫ ∞

0

(
t1−α+β

∥∥∥ ∂
∂ t

PtDβ f
∥∥∥

p,γ

)q dt
t

)1/q
≤ C

(∫ ∞

0

(
t2−α

∥∥∥ ∂ 2

∂ t2 Pt f
∥∥∥

p,γ

)q dt
t

)1/q
< ∞,

as f ∈ Bα
p,q(γd). Then, Dβ f ∈ Bα−β

p,q (γd) and

‖Dβ f‖
Bα−β

p,q
= ‖Dβ f‖p,γ +

(∫ ∞

0

(
t1−α+β

∥∥∥ ∂
∂ t

PtDβ f
∥∥∥

p,γ

)q dt
t

)1/q

≤ C1‖ f‖Bαp,q +C2

(∫ ∞

0

(
t2−α

∥∥∥ ∂ 2

∂ t2 Pt f
∥∥∥

p,γ

)q dt
t

)1/q
≤C‖ f‖Bαp,q .

Therefore, Dβ f : Bα
p,q → Bα−β

p,q is bounded.

Now if q = ∞, inequality (8.43) can be written as

∥∥∥ ∂
∂ t

Pt(Dβ f )
∥∥∥

p,γ
≤ 1

cβ

∫ +∞

0
s−β−1

∫ t+s

t

∥∥∥ ∂ 2

∂ r2 Pr f
∥∥∥

p,γ
dr ds

=
1
cβ

∫ t

0
s−β−1

∫ t+s

t

∥∥∥ ∂ 2

∂ r2 Pr f
∥∥∥

p,γ
dr ds

+
1
cβ

∫ +∞

t
s−β−1

∫ t+s

t

∥∥∥ ∂ 2

∂ r2 Pr f
∥∥∥

p,γ
dr ds = (I)+(II).

Now, using Lemma 3.5, because r > t,

(I) ≤ 1
cβ

∫ t

0
s−β

∥∥∥ ∂ 2

∂ t2 Pt f
∥∥∥

p,γ
ds =Cβ

∥∥∥ ∂ 2

∂ t2 Pt f
∥∥∥

p,γ
t1−β

≤ CβA( f )t−2+α t1−β =CβA( f )t−1+α−β ,
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and by Lemma 3.5, because r > t, and the fact that f ∈ Bα
p,∞,

(II) ≤ 1
cβ

∫ +∞

t
s−β−1

∫ ∞

t

∥∥∥ ∂ 2

∂ r2 Pr f
∥∥∥

p,γ
dr ds

≤ Cβ t−β
∫ ∞

t

∥∥∥ ∂ 2

∂ r2 Pr f
∥∥∥

p,γ
dr ≤CβA( f )t−β

∫ ∞

t
r−2+αdr

= Cα ,βA( f )t−1+α−β .

Thus, ∥∥∥ ∂
∂ t

Pt(Dβ f )
∥∥∥

p,γ
≤CA( f )t−1+α−β , t > 0.

Hence, Dβ f ∈ Bα−β
p,∞ (γd) then A(Dβ f )≤CA( f ), and

‖Dβ f‖
Bα−β

p,∞
= ‖Dβ f‖p,γ +A(Dβ f )≤C1‖g‖Bαp,∞ +C2A( f )≤C‖ f‖Bαp,∞ .

Therefore, Dβ : Bα
p,∞ → Bα−β

p,∞ is bounded. ��

Next, we study the boundedness of the Bessel fractional derivative on Besov–
Lipschitz spaces for the bounded case 0 < β < α < 1 :

Theorem 8.17. Let 0 < β < α < 1, 1 ≤ p < ∞ and 1 ≤ q ≤ ∞, then Dβ is bounded

from Bα
p,q(γd) into Bα−β

p,q (γd).

Proof. Let f ∈ Lp(γd), using the fundamental theorem of calculus we can write,

|Dβ f (x)| ≤ 1
cβ

∫ +∞

0
s−β−1|e−sPs f (x)− f (x)|ds

≤ 1
cβ

∫ +∞

0
s−β−1e−s|Ps f (x)− f (x)|ds+

1
cβ

∫ +∞

0
s−β−1|e−s −1|| f (x)|ds

≤ 1
cβ

∫ +∞

0
s−β−1|

∫ s

0

∂
∂ r

Pr f (x)dr|ds+
| f (x)|

cβ

∫ +∞

0
s−β−1|−

∫ s

0
e−rdr |ds

≤ 1
cβ

∫ +∞

0
s−β−1

∫ s

0
| ∂
∂ r

Pr f (x)|dr ds+
| f (x)|

cβ

∫ +∞

0
s−β−1

∫ s

0
e−rdr ds.

Now, using Hardy’s inequality (10.100), with p = 1 in both integrals, we have

|Dβ f (x)| ≤ 1
βcβ

∫ +∞

0
r1−β | ∂

∂ r
Pr f (x)|dr

r
+
Γ (1−β )
βcβ

| f (x)|.
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Therefore, according to Minkowski’s integral inequality

‖Dβ f‖p ≤ 1
βcβ

∫ +∞

0
r1−β

∥∥∥ ∂
∂ r

Pr f
∥∥∥

p

dr
r
+
Γ (1−β )
βcβ

‖ f‖p <C1‖ f‖Bαp,q < ∞,

because f ∈ Bα
p,q(γd)⊂ Bβ

p,1(γd), 1 ≤ q ≤ ∞ as α > β , i.e. Dβ f ∈ Lp(γd).

On the other hand, using the fundamental theorem of calculus and, Hardy’s in-
equality (10.100) again, with p = 1 in the second integral, we have

| ∂
∂ t

Pt(Dβ f )(x)| ≤ 1
cβ

∫ ∞

0
s−β−1|e−s ∂

∂ t
Pt+s f (x)− ∂

∂ t
Pt f (x)|ds

≤ 1
cβ

∫ ∞

0
s−β−1e−s| ∂

∂ t
Pt+s f (x)− ∂

∂ t
Pt f (x)|ds

+
1
cβ

∫ ∞

0
s−β−1|e−s −1|| ∂

∂ t
Pt f (x)|ds

≤ 1
cβ

∫ ∞

0
s−β−1

∫ t+s

t
| ∂

2

∂ r2 Pr f (x)|dr ds

+
1
cβ

| ∂
∂ t

Pt f (x)|
∫ ∞

0
s−β−1

∫ s

0
e−rdr ds,

≤ 1
cβ

∫ ∞

0
s−β−1

∫ t+s

t
| ∂

2

∂ r2 Pr f (x)|dr ds+
Γ (1−β )
βcβ

| ∂
∂ t

Pt f (x)|.

Thus, using Minkowski’s integral inequality,

∥∥∥ ∂
∂ t

Pt(Dβ f )
∥∥∥

p,γ
≤ 1

cβ

∫ ∞

0
s−β−1

∫ t+s

t

∥∥∥ ∂ 2

∂ r2 Pr f
∥∥∥

p,γ
dr ds+

Γ (1−β )
βcβ

∥∥∥ ∂
∂ t

Pt f
∥∥∥

p,γ
.

(8.44)
Then, if 1 ≤ q < ∞, using (8.44) and Minkowski’s integral inequality, we get

(∫ ∞

0

(
t1−(α−β )

∥∥∥ ∂
∂ t

PtDβ f
∥∥∥

p,γ

)q dt
t

)1/q

≤ 1
cβ

(∫ ∞

0

(
t1−(α−β )

∫ ∞

0
s−β−1

∫ t+s

t

∥∥∥ ∂ 2

∂ r2 Pr f
∥∥∥

p,γ
dr ds

)q dt
t

)1/q

+
Γ (1−β )
βcβ

(∫ ∞

0

(
t1−(α−β )

∥∥∥ ∂
∂ t

Pt f
∥∥∥

p,γ

)q dt
t

)1/q
= (I)+(II).

For the first term, the argument is the same as that considered in the second part of
the proof of Theorem 8.16; thus,

(I) ≤ Cβ

(∫ ∞

0

(
t2−β

∥∥∥ ∂ 2

∂ t2 Pt f
∥∥∥

p,γ

)q dt
t

)1/q
< ‖ f‖Bαp,q < ∞,
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because f ∈ Bα
p,q(γd), and for the second term trivially

(II) ≤ C‖ f‖
Bα−β

p,q
≤C‖ f‖Bαp,q

because α > α−β and the inclusion relation given in Proposition 7.36.

Hence, if 1 ≤ q < ∞,

(∫ ∞

0

(
t1−(α−β )

∥∥∥ ∂
∂ t

Pt(Dβ f )
∥∥∥

p,γ

)q dt
t

)1/q
≤C2‖ f |Bαp,q ,

so Dβ f ∈ Bα−β
p,q (γd) and, moreover,

‖Dβ f‖
Bα−β

p,q
= ‖Dβ f‖p,γ +

(∫ ∞

0

(
t1−α+β

∥∥∥ ∂
∂ t

PtDβ f‖p,γ

)q dt
t

)1/q

≤ C1‖ f‖Bαp,q +C2

(∫ ∞

0

(
t2−α

∥∥∥ ∂ 2

∂ t2 Pt f
∥∥∥

p,γ

)q dt
t

)1/q
≤C‖ f‖Bαp,q .

If q = ∞, using the same argument as in Theorem 8.16, inequality (8.44) can be
written as

∥∥∥ ∂
∂ t

PtDβ f
∥∥∥

p,γ
≤ 1

cβ

∫ ∞

0
s−β−1

∫ t+s

t

∥∥∥ ∂ 2

∂ r2 Pr f
∥∥∥

p,γ
dr ds+

Γ (1−β )
βcβ

∥∥∥ ∂
∂ t

Pt f
∥∥∥

p,γ

≤ Cα ,βA( f )t−1+α−β +
Γ (1−β )
βcβ

A( f )t−1+α−β ≤Cα ,βA( f )t−1+α−β ,

for t > 0, then, Dβ f ∈ Bα−β
p,∞ (γd) and A(Dβ f )≤Cα ,βA( f ); thus,

‖Dβ f‖
Bα−β

p,∞
= ‖Dβ f‖p,γ +A(Dβ f )≤C1‖ f‖Bαp,∞ +C2A( f )≤C‖ f‖Bαp,∞ .

��

We consider now the unbounded case for fractional derivatives (removing the
condition that the indexes must be less than 1). To do this, we need to consider
forward differences. Remember that for a given function f , the k-th order forward
difference of f starting at t with increment s is defined as

Δ k
s ( f , t) =

k

∑
j=0

(
k
j

)
(−1) j f (t +(k− j)s).

The forward differences have the following properties (see Appendix Lemma 10.30),
which will be needed in what follows. For any positive integer k

i) Δ k
s ( f , t) = Δ k−1

s (Δs( f , ·), t) = Δs(Δ k−1
s ( f , ·), t).

ii) Δ k
s ( f , t) =

∫ t+s

t

∫ v1+s

v1

. . .
∫ vk−2+s

vk−2

∫ vk−1+s

vk−1

f (k)(vk)dvkdvk−1 . . .dv2dv1.
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iii) For any positive integer k

∂
∂ s

(Δ k
s ( f , t)) = kΔ k−1

s ( f ′, t + s), (8.45)

and for any integer j > 0,

∂ j

∂ t j (Δ
k
s ( f , t)) = Δ k

s ( f ( j), t). (8.46)

Observe that using the binomial theorem and the semigroup property of {Pt}, we
have

(Pt − I)k f (x) =
k

∑
j=0

(
k
j

)
Pk− j

t (−I) j f (x) =
k

∑
j=0

(
k
j

)
(−1) jPk− j

t f (x)

=
k

∑
j=0

(
k
j

)
(−1) jP(k− j)t f (x) =

k

∑
j=0

(
k
j

)
(−1) ju(x,(k− j)t)

= Δ k
t (u(x, ·),0), (8.47)

where as usual, u(x, t) = Pt f (x). Additionally, we need the following result:

Lemma 8.18. Let f ∈ Lp(γd), 1 ≤ p < ∞ and k,n ∈ N then

‖Δ k
s (u

(n), t)‖p,γd ≤ sk‖u(k+n)(·, t)‖p,γd

Proof. From property ii) of forward differences (see Lemma 10.30), we have

Δ k
s (u

(n)(x, ·), t) =
∫ t+s

t

∫ v1+s

v1

. . .

∫ vk−2+s

vk−2

∫ vk−1+s

vk−1

u(k+n)(x,vk)dvkdvk−1 . . .dv2dv1,

then, using Minkowski’s integral inequality k-times and Lemma 3.5,

‖Δ k
s (u

(n), t)‖p,γd ≤
∫ t+s

t

∫ v1+s

v1

. . .
∫ vk−2+s

vk−2

∫ vk−1+s

vk−1

‖u(k+n)(·,vk)‖p,γd dvkdvk−1 . . .dv2dv1

≤ sk‖u(k+n)(·, t)‖p,γd = sk
∥∥∥ ∂ k+n

∂ tk+n u(·, t)
∥∥∥

p,γd

.

��

Let us start studying the boundedness of the Riesz fractional derivative in
Bα

p,q(γd)

Theorem 8.19. Let 0 < β < α , 1 ≤ p < ∞ and 1 ≤ q ≤ ∞ then

Dβ is bounded from Bα
p,q(γd) into Bα−β

p,q (γd).

Proof. Let f ∈ Bα
p,q(γd), using (8.47), Hardy’s inequality (10.100), p = 1, the

fundamental theorem of calculus, and property iii) of forward differences (see
Lemma 10.30), we get
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|Dβ f (x)| ≤ 1
cβ

∫ +∞

0
s−β−1|Δ k

s (u(x, ·),0)|ds ≤ 1
cβ

∫ +∞

0
s−β−1

∫ s

0
| ∂
∂ r

Δ k
r (u(x, ·),0)|dr ds

≤ 1
βcβ

∫ +∞

0
r−β | ∂

∂ r
Δ k

r (u(x, ·),0)|dr =
k

βcβ

∫ +∞

0
r−β |Δ k−1

r (u′(x, ·),r)|dr.

Now, using Minkowski’s integral inequality and Lemma 8.18

‖Dβ f‖p,γ ≤ k
βcβ

∫ +∞

0
r−β‖Δ k−1

r (u′,r)
∥∥∥

p,γ
dr

≤ k
βcβ

∫ +∞

0
rk−β

∥∥∥ ∂ k

∂ rk Pr f
∥∥∥

p,γ

dr
r

< ∞,

because f ∈ Bα
p,q(γd)⊂ Bβ

p,1(γd), as α > β . Therefore, Dβ f ∈ Lp(γd).

On the other hand,

Pt [(Ps − I)k f (x)] = Pt(Δ k
s (u(x, ·),0)) = Pt(

k

∑
j=0

(
k
j

)
(−1) jP(k− j)s f (x))

=
k

∑
j=0

(
k
j

)
(−1) jPt+(k− j)s f (x) = Δ k

s (u(x, ·), t). (8.48)

Thus, if n is the smaller integer greater than α , i.e., n−1 ≤ α < n, then according to
Lemma 10.30 iv),

∂ n

∂ tn Pt(Dβ f )(x) =
1
cβ

∫ +∞

0
s−β−1 ∂ n

∂ tn (Δ
k
s (u(x, ·), t)

=
1
cβ

∫ +∞

0
s−β−1Δ k

s (u
(n)(x, ·), t)ds;

therefore, using Minkowski’s integral inequality
∥∥∥ ∂ n

∂ tn Pt(Dβ f )
∥∥∥

p,γ
≤ 1

cβ

∫ +∞

0
s−β−1‖Δ k

s (u
(n), t)‖p,γds. (8.49)

Now, if 1 ≤ q < ∞, by (8.49),
(∫ ∞

0

(
tn−(α−β )

∥∥∥ ∂ n

∂ tn Pt(Dβ f )
∥∥∥

p,γ

)q dt
t

)1/q

≤ 1
cβ

(∫ ∞

0

(
tn−(α−β )

∫ +∞

0
s−β−1‖Δ k

s (u
(n), t)‖p,γds

)q dt
t

)1/q

≤ 1
cβ

(∫ ∞

0

(
tn−(α−β )

∫ t

0
s−β−1‖Δ k

s (u
(n), t)‖p,γds

)q dt
t

)1/q

+
1
cβ

(∫ ∞

0

(
tn−(α−β )

∫ +∞

t
s−β−1‖Δ k

s (u
(n), t)‖p,γds

)q dt
t

)1/q

= (I)+(II).
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Then, using Lemma 8.18,

(I) ≤ 1
cβ

(∫ ∞

0

(
tn−(α−β )

∥∥∥ ∂ n+k

∂ tn+k Pt f
∥∥∥

p,γ

∫ t

0
sk−β−1ds

)q dt
t

)1/q

=
1

cβ (k−β )

(∫ ∞

0

(
tn+k−α‖u(n+k)(·, t)‖p,γ

)q dt
t

)1/q
< ∞,

because f ∈ Bα
p,q(γd), and using Lemma 3.5

(II) ≤ 1
cβ

(∫ ∞

0

(
tn−(α−β )

∫ +∞

t
s−β−1

( k

∑
j=0

(
k
j

)
‖u(n)(·, t +(k− j)s)‖p,γ

)
ds
)q dt

t

)1/q

≤ 1
cβ

(∫ ∞

0

(
tn−(α−β )

∫ +∞

t
s−β−1

( k

∑
j=0

(
k
j

)
‖u(n)(·, t)‖p,γ

)
ds
)q dt

t

)1/q

=
2k

cβ

(∫ ∞

0

(
tn−(α−β )

∥∥∥ ∂ n

∂ tn Pt f
∥∥∥

p,γ

∫ +∞

t
s−β−1ds

)q dt
t

)1/q

=
2k

cββ

(∫ ∞

0

(
tn−α

∥∥∥ ∂ n

∂ tn Pt f
∥∥∥

p,γ

)q dt
t

)1/q
< ∞,

because f ∈ Bα
p,q(γd). Therefore, if 1 ≤ q < ∞, Dβ f ∈ Bα−β

p,q (γd); moreover,

‖Dβ f
∥∥∥

Bα−β
p,q

= ‖Dβ f‖p,γ +
(∫ ∞

0

(
tn−α+β

∥∥∥ ∂ n

∂ tn Pt(Dβ f )
∥∥∥

p,γ

)q dt
t

)1/q

≤ C1‖ f‖Bαp,q +C2‖ f‖Bαp,q ≤C‖ f‖Bαp,q

Thus, Dβ f : Bα
p,q → Bα−β

p,q is bounded.

If q = ∞, inequality (8.49) can be written as

‖ ∂
n

∂ tn Pt(Dβ f )
∥∥∥

p,γ
≤ 1

cβ

∫ t

0
s−β−1‖Δ k

s (u
(n), t)‖p,γds

+
1
cβ

∫ +∞

t
s−β−1‖Δ k

s (u
(n), t)‖p,γds

= (I)+(II)

and then as f ∈ Bβ
p,∞, by Lemma 8.18,

(I) ≤ 1
cβ

∫ t

0
s−β−1sk‖u(n+k)‖p,γds =Cβ

∥∥∥ ∂ n+k

∂ tn+k Pt f
∥∥∥

p,γ
tk−β

≤ CβA( f )t−n−k+αtk−β =CβA( f )t−n+α−β ,
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and as above, using Lemma 3.5,

(II) ≤ 1
cβ

∫ +∞

t
s−β−1

( k

∑
j=0

(
k
j

)
‖u(n)(·, t +(k− j)s)‖p,γ

)
ds

≤ Cβ

∫ +∞

t
s−β−1

( k

∑
j=0

(
k
j

)
‖u(n)(·, t)‖p,γ

)
ds =Cβ t−β

∥∥∥ ∂ n

∂ tn Pt f
∥∥∥

p,γ

≤ CβA( f )t−n+α t−β =CβA( f )t−n+α−β .

��

There is an alternative proof of the fact that Dβ f ∈ Lp(γd) without using Hardy’s
inequality following the same scheme as in the proof of i) [109, Theorem 3.5], and
using the inclusion Bα

p,q ⊂ Bβ+ε
p,∞ with β + ε < k.

Now, let us consider the case of the Bessel derivative.

Theorem 8.20. Let 0 < β < α , 1 ≤ p < ∞ and 1 ≤ q ≤ ∞ then

Dβ is bounded from Bα
p,q(γd) into Bα−β

p,q (γd).

Proof. Let f ∈ Bα
p,q(γd), and set v(x, t) = e−tu(x, t). Then, using Hardy’s inequal-

ity (10.100), the fundamental theorem of calculus, and property iii) of forward dif-
ferences (see Lemma 10.30),

|Dβ f (x)| ≤ 1
cβ

∫ +∞

0
s−β−1|Δ k

s (v(x, ·),0)|ds

≤ 1
cβ

∫ +∞

0
s−β−1

∫ s

0
| ∂
∂ r

Δ k
r (v(x, ·),0)|dr ds

≤ k
βcβ

∫ +∞

0
r−β |Δ k−1

r (v′(x, ·),r)|dr

and this implies, using Minkowski’s integral inequality,

‖Dβ f‖p,γd ≤ k
βcβ

∫ +∞

0
r−β‖Δ k−1

r (v′,r)‖p,γdr.

Now, using property ii) of forward differences (see Lemma 10.30),

‖Δ k−1
r (v′,r)‖p,γ ≤

∫ 2r

r

∫ v1+r

v1

. . .
∫ vk−2+r

vk−2

‖v(k)(·,vk−1)‖p,γdvk−1dvk−2 . . .dv2dv1

and using Leibniz’s differentiation rule for the product

‖v(k)(·,vk−1)
∥∥∥

p,γ
=

∥∥∥
k

∑
j=0

(
k
j

)
(e−vk−1)( j)u(k− j)(·,vk−1)

∥∥∥
p,γ

≤
k

∑
j=0

(
k
j

)
e−vk−1‖u(k− j)(·,vk−1)‖p,γ .
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Then

‖Δ k−1
r (v′,r)‖p,γ

≤
k

∑
j=0

(
k
j

)∫ 2r

r

∫ v1+r

v1

. . .
∫ vk−2+r

vk−2

e−vk−1‖u(k− j)(·,vk−1)‖p,γdvk−1dvk−2 . . .dv2dv1

≤
k

∑
j=0

(
k
j

)
rk−1e−r‖u(k− j)(·,r)‖p,γ .

Therefore,

‖Dβ f‖p,γ ≤ k
βcβ

k

∑
j=0

(
k
j

)∫ +∞

0
rk−β−1e−r‖u(k− j)(·,r)‖p,γdr

=
k

βcβ

k−1

∑
j=0

(
k
j

)∫ +∞

0
r(k− j)−(β− j)−1e−r

∥∥∥ ∂ k− j

∂ rk− j Pr f
∥∥∥

p,γ
dr

+
k

βcβ

∫ +∞

0
rk−β−1e−r‖Pr f‖p,γdr

≤ k
βcβ

k−1

∑
j=0

(
k
j

)∫ +∞

0
r(k− j)−(β− j)−1

∥∥∥ ∂ k− j

∂ rk− j Pr f
∥∥∥

p,γ
dr

+
k

βcβ

∫ +∞

0
rk−β−1e−r‖ f‖p,γdr

Thus,

‖Dβ f‖p,γ ≤ k
βcβ

k−1

∑
j=0

(
k
j

)∫ +∞

0
rk− j−(β− j)

∥∥∥ ∂ k− j

∂ rk− j Pr f
∥∥∥

p,γ

dr
r

+
kΓ (k−β )

βcβ
‖ f‖p,γ < ∞,

because f ∈ Bα
p,q(γd)⊂ Bβ− j

p,1 (γd) as α > β > β − j ≥ 0, for j ∈ {0, . . . ,k−1}, then
Dβ f ∈ Lp(γd).

On the other hand,

Pt(e
−sPs − I)k f (x) =

k

∑
j=0

(
k
j

)
(−1) je−s(k− j)u(x, t +(k− j)s).

Let n be the smaller integer greater than β , i.e., n−1 ≤ β < n, we have
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∂ n

∂ tn Pt(Dβ f )(x) =
1
cβ

∫ +∞

0
s−β−1

k

∑
j=0

(
k
j

)
(−1) je−s(k− j)u(n)(x, t +(k− j)s)ds

=
et

cβ

∫ +∞

0
s−β−1

k

∑
j=0

(
k
j

)
(−1) je−(t+s(k− j))u(n)(x, t +(k− j)s)ds

=
et

cβ

∫ +∞

0
s−β−1Δ k

s (w(x, ·), t)ds,

where w(x, t) = e−tu(n)(x, t). Now, using the fundamental theorem of calculus,

∂ n

∂ tn Pt(Dβ f )(x) =
et

cβ

∫ +∞

0
s−β−1Δ k

s (w(x, ·), t)ds

=
et

cβ

∫ +∞

0
s−β−1

∫ s

0

∂
∂ r

Δ k
r (w(x, ·), t)dr ds.

Then, using Hardy’s inequality (10.100) and property iii) of forward differences (see
Lemma 10.30),

| ∂
n

∂ tn Pt(Dβ f )(x)| ≤ et

cβ

∫ +∞

0
s−β−1

∫ s

0
| ∂
∂ r

Δ k
r (w(x, ·), t)|drds

≤ et

cββ

∫ +∞

0
r| ∂
∂ r

Δ k
r (w(x, ·), t)|r−β−1dr

=
ket

cββ

∫ +∞

0
r−β |Δ k−1

r (w′(x, ·), t + r)|dr

and according to Minkowski’s integral inequality, we get

∥∥∥ ∂ n

∂ tn Pt(Dβ f )
∥∥∥

p,γ
≤ ket

βcβ

∫ +∞

0
r−β‖Δ k−1

r (w′, t + r)‖p,γdr.

Now, using an analogous argument to that above, Lemma 10.30 and Leibniz’s prod-
uct rule give us

‖Δ k−1
r (w′, t + r)‖p,γ ≤

k

∑
j=0

(
k
j

)
rk−1e−(t+r)‖u(k+n− j)(·, t + r)‖p,γ ,

and this implies that

∥∥∥ ∂ n

∂ tn Pt(Dβ f )
∥∥∥

p,γ
≤ et k

cββ

∫ +∞

0
r−β

( k

∑
j=0

(
k
j

)
rk−1e−(t+r)‖u(k+n− j)(·, t + r)‖p,γ

)
dr

=
k

cββ

k

∑
j=0

(
k
j

)∫ +∞

0
rk−β−1e−r‖u(k+n− j)(·, t + r)‖p,γdr.
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Thus,

∥∥∥ ∂ n

∂ tn Pt(Dβ f )
∥∥∥

p,γ
≤ k

cββ

k

∑
j=0

(
k
j

)∫ +∞

0
rk−β−1e−r‖u(k+n− j)(·, t + r)‖p,γ dr.

Now, if 1 ≤ q < ∞, using (8.50) we have,

(∫ ∞

0

(
tn−(α−β )

∥∥∥ ∂ n

∂ tn Pt(Dβ f )
∥∥∥

p,γ

)q dt
t

)1/q

≤ k
cβ β

k

∑
j=0

(
k
j

)(∫ ∞

0

(
tn−(α−β )

∫ +∞

0
rk−β−1e−r‖u(k+n− j)(·, t + r)‖p,γdr

)q dt
t

)1/q
.

For each 1 ≤ j ≤ k, 0 < α−β + k− j ≤ β and using Lemma 3.5

(
∫ ∞

0

(
tn−(α−β )

∫ ∞

0
rk−β−1e−r‖u(k+n− j)(·, t + r)‖p,γdr

)q dt
t

)1/q

≤ (
∫ ∞

0

(
tn−(α−β )‖u(n+k− j)(·, t)‖p,γ

∫ +∞

0
rk−β−1e−rdr

)q dt
t

)1/q

= Γ (k−β )(
∫ ∞

0

(
tn+(k− j)−(α−β+k− j)‖u(n+k− j)(·, t)‖p,γ

)q dt
t

)1/q
< ∞,

as f ∈ Bα
p,q(γd)⊂ Bα−β+(k− j)

p,q (γd) for any 0 ≤ j ≤ k.

Now, for the case j = 0,

(∫ ∞

0

(
tn−(α−β )

∫ +∞

0
rk−β−1e−r‖u(n+k)(·, t + r)‖p,γdr

)q dt
t

)1/q

≤
(∫ ∞

0

(
tn−(α−β )

∫ t

0
rk−β−1e−r‖u(n+k)(·, t + r)‖p,γdr

)q dt
t

)1/q

+
(∫ ∞

0

(
tn−(α−β )

∫ +∞

t
rk−β−1e−r‖u(n+k)(·, t + r)‖p,γdr

)q dt
t

)1/q

= (I)+(II).

Using Lemma 3.5, and k > β ,

(I) ≤
(∫ ∞

0

(
tn−(α−β )

∫ t

0
rk−β−1‖u(n+k)(·, t)‖p,γdr

)q dt
t

)1/q

=
(∫ ∞

0

(
tn−(α−β )‖u(n+k)(·, t)‖p,γ

∫ t

0
rk−β−1dr

)q dt
t

)1/q

=
1

k−β

(∫ ∞

0

(
tn+k−α‖u(n+k)(·, t)‖p,γ

)q dt
t

)1/q
< ∞,
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because f ∈ Bα
p,q(γd) and n+ k > α. For the second term, using Lemma 3.5 and

Hardy’s inequality (10.101)

(II) ≤
(∫ ∞

0

(
tn−(α−β )

∫ +∞

t
rk−β−1‖u(n+k)(·,r)

∥∥∥
p,γ

dr
)q dt

t

)1/q

≤ 1
n− (α−β )

(∫ ∞

0

(
rn+k−α‖u(n+k)(·,r)

∥∥∥
p,γ

)q dr
r

)1/q
< ∞,

because f ∈ Bα
p,q(γd).

Therefore, Dβ f ∈ Bα−β
p,q (γd). Moreover,

‖Dβ f‖
Bα−β

p,q
= ‖Dβ f‖p,γ +

(∫ ∞

0

(
tn−(α−β )

∥∥∥ ∂ n

∂ tn PtDβ f
∥∥∥

p,γ

)q dt
t

)1/q

≤ C1‖ f‖p,γ +
k

cββ

k

∑
j=0

(
k
j

)
C2

(∫ ∞

0

(
rn−α

∥∥∥ ∂ n

∂ rn Pr f
∥∥∥

p,γ

)q dr
r

)1/q

≤ C‖ f‖Bαp,q

Finally, if q = ∞, from the inequality (8.50)

∥∥∥ ∂ n

∂ tn Pt(Dβ f )
∥∥∥

p,γ
≤ k

cββ

k

∑
j=0

(
k
j

)∫ +∞

0
rk−β−1e−r‖u(k+n− j)(·, t + r)‖p,γdr,

and then, the argument is essentially similar to the previous case, as in the last part
of the proof of Theorem 8.19. ��

8.5 Boundedness of Fractional Integrals and Fractional
Derivatives on Gaussian Triebel–Lizorkin Spaces

First, we study the boundedness of the Riesz potentials Iβ on Gaussian Triebel–
Lizorkin spaces.

Theorem 8.21. Let α ≥ 0,β > 0, 1 < p < ∞,1 ≤ q < ∞ then Iβ is bounded from

Fα
p,q(γd) into Fα+β

p,q (γd).

Proof. Let k > α + β + 1 be an integer fixed and f ∈ Fα
p,q(γd). Using the integral

representation of Riesz potentials (8.7), the semigroup property of {Pt}t≥0, and the
fact that P∞ f (x) is a constant, we get

Pt(Iβ f )(x) =
1

Γ (β )

∫ +∞

0
sβ−1Pt(Ps f (x)−P∞ f (x))ds

=
1

Γ (β )

∫ +∞

0
sβ−1(Pt+s f (x)−P∞ f (x))ds. (8.50)
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Then, again using that P∞ f (x) is a constant and the chain rule,

∂ k

∂ tk Pt(Iβ f )(x) =
1

Γ (β )

∫ +∞

0
sβ−1 ∂ k

∂ tk (Pt+s f (x)−P∞ f (x))ds

=
1

Γ (β )

∫ +∞

0
sβ−1u(k)(x, t + s)ds. (8.51)

i) Case β ≥ 1: Using (8.51), the change of variables r = t+s, dr = ds, and Hardy’s
inequality (10.101), we have

(∫ +∞

0

(
tk−(α+β )|

∂ kPt(Iβ f )(x)

∂ tk |
)q dt

t

)1/q

≤ 1
Γ (β )

(∫ +∞

0
tq(k−(α+β ))

(∫ +∞

0
sβ−1|u(k)(x, t + s)|ds

)q dt
t

) 1
q

=
1

Γ (β )

(∫ +∞

0
tq(k−(α+β ))

(∫ +∞

t
(r− t)β−1|u(k)(x,r)|dr

)q dt
t

) 1
q

≤ 1
Γ (β )

(∫ +∞

0
tq(k−(α+β ))

(∫ +∞

t
rβ−1|u(k)(x,r)|dr

)q dt
t

) 1
q

≤ 1
Γ (β )

1

(k− (α+β ))1/q

(∫ +∞

0

(
rk−α |u(k)(x,r)|

)q dr
r

) 1
q
,

and, therefore,

‖
(∫ +∞

0

(
tk−(α+β )|

∂ kPt(Iβ f )

∂ tk |
)q dt

t

) 1
q
∥∥∥

p,γ

≤Ck,α ,β‖
(∫ +∞

0

(
rk−α |∂

kPr f
∂ rk |

)q dr
r

) 1
q
∥∥∥

p,γ
< ∞,

because f ∈ Fα
p,q. By (8.12) and the previous estimate,

‖Iβ f
∥∥∥

Fα+β
p,q

≤C‖ f
∥∥∥

Fα
p,q

.

ii) Case 0 < β < 1: again using (8.51),

(∫ +∞

0

(
tk−(α+β )|

∂ kPt(Iβ f )(x)

∂ tk |
)q dt

t

) 1
q

≤ 1
Γ (β )

(∫ +∞

0
tq(k−(α+β ))

(∫ +∞

0
sβ |u(k)(x, t + s)|ds

s

)q dt
t

) 1
q

≤ C
Γ (β )

(
∫ +∞

0
tq(k−(α+β ))−1

(∫ t

0
sβ−1|u(k)(x, t + s)|ds

)q
dt
) 1

q

+
C

Γ (β )
(
∫ +∞

0
tq(k−(α+β ))−1

(∫ +∞

t
sβ−1|u(k)(x, t + s)|ds

)q
dt
) 1

q

= (I)+(II).
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Writing sβ−1 = s
β−1

q + β−1
q′ , 1

q +
1
q′ = 1, and using Hölder’s inequality in the inter-

nal integral,

(I) ≤
Cβ

β
q−1

q

(∫ +∞

0
tq(k−α)−β−1

∫ t

0
sβ−1|u(k)(x, t + s)|qdsdt

)1/q
.

Using the Fubini–Tonelli theorem and using that q(k −β )−β − 1 > 0, as k >
β +β +1, we get

(I) ≤
Cβ

β
q−1

q

(∫ +∞

0
sβ−1

∫ +∞

s
tq(k−α)−β−1|u(k)(x, t + s)|qdt ds

)1/q

≤
Cβ

β
q−1

q

(∫ +∞

0
sβ−1

∫ +∞

s
(t + s)q(k−α)−β−1|u(k)(x, t + s)|qdt ds

)1/q
.

Then, by the change of variables r = t+s and using Hardy’s inequality (10.101),

(I) ≤
Cβ

β
q−1

q

(∫ +∞

0
sβ−1

∫ +∞

2s
rq(k−α)−β−1|u(k)(x,r)|qdr ds

)1/q

≤
Cβ

β
q−1

q

(∫ +∞

0
sβ−1

∫ +∞

s
rq(k−α)−β−1|u(k)(x,r)|qdr ds

)1/q

≤
Cβ

β

(∫ +∞

0

(
rk−α |u(k)(x,r)|

)q dr
r

)1/q
.

On the other hand, because β < 1, then t < s implies that sβ−1 < tβ−1, and by
the change of variables r = t + s and according to Hardy’s inequality (10.101),
as k > α+β +1 > α+1, we obtain

(II) ≤ Cβ

(∫ +∞

0
tq(k−α−1)−1

(∫ +∞

t
|u(k)(x, t + s)|ds

)q
dt
) 1

q

≤ Cβ

(∫ +∞

0
tq(k−α−1)−1

(∫ +∞

2t
|u(k)(x,r)|dr

)q
dt
) 1

q

≤ Cβ
1

(k−α−1)1/q

(∫ +∞

0

(
rk−α |∂

kPr f (x)
∂ rk |

)q dr
r

) 1
q
.

Therefore,
∥∥∥
(∫ +∞

0

(
tk−(α+β )|

∂ kPt(Iβ f )(x)

∂ tk |
)q dt

t

) 1
q
∥∥∥

p,γ

≤Ck,α ,β

∥∥∥
(∫ +∞

0

(
rk−α |∂

kPr f
∂ rk |

)q dr
r

) 1
q
∥∥∥

p,γ
< ∞.

as f ∈ Fα
p,q. Then, using (8.12) and the previous estimate, we get

‖Iβ f‖
Fα+β

p,q
≤C‖ f‖Fα

p,q
.

��
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Next, we study the boundedness properties of the Bessel potentials on Triebel–
Lizorkin spaces.

Theorem 8.22. Let α ≥ 0, 1 ≤ p,q < ∞ then for every β > 0,

i) Jβ is bounded on Fα
p,q(γd).

ii) Moreover, Jβ is bounded from Fα
p,q(γd) to Fα+β

p,q (γd).

Proof.

i) Let us prove that Jβ is bounded on Fα
p,q(γd). Using Lebesgue’s dominated con-

vergence theorem, Minkowski’s integral inequality, and iii), we have

(∫ ∞

0
(sk−α

∣∣∣∣∂
kPs

∂ sk

(
Jβg

)
(x)

∣∣∣∣)q ds
s

)1/q

=

(∫ ∞

0
(sk−α

∣∣∣∣∂
kPs

∂ sk

( 1
Γ (β )

∫ +∞

0
tβ e−tPtg(x)

dt
t

)∣∣∣∣)q ds
s

)1/q

≤ 1
Γ (β )

∫ +∞

0
tβ e−t

(∫ ∞

0
(sk−α

∣∣∣∣∂
kPs(Ptg)
∂ sk (x)

∣∣∣∣)q ds
s

)1/q
dt
t
,

then, again using Minkowski’s integral inequality, and iii)

∥∥∥
(∫ ∞

0

(
sk−α

∣∣∣∣∂
kPs

∂ sk

(
Jβg

)∣∣∣∣
)q ds

s

)1/q∥∥∥
p,γ

≤
∥∥∥ 1
Γ (β )

∫ +∞

0
tβ e−t

(∫ ∞

0

(
sk−α

∣∣∣∣∂
kPs(Ptg)
∂ sk

∣∣∣∣
)q ds

s

)1/q
dt
t

∥∥∥
p,γ

≤ 1
Γ (β )

∫ +∞

0
tβ e−t

∥∥∥
(∫ ∞

0

(
sk−α

∣∣∣∣∂
kPs(Ptg)
∂ sk

∣∣∣∣
)q ds

s

)1/q∥∥∥
p,γ

dt
t

≤ 1
Γ (β )

∫ +∞

0
tβ e−t

∥∥∥
(∫ ∞

0

(
sk−α

∣∣∣∣∂
kPsg
∂ sk

∣∣∣∣
)q ds

s

)1/q∥∥∥
p,γ

dt
t

=
∥∥∥
(∫ ∞

0

(
sk−α

∣∣∣∣∂
kPsg
∂ sk

∣∣∣∣
)q ds

s

)1/q∥∥∥
p,γ
.

Thus,

‖Jβg‖
Fβ

p,q
= ‖Jβg‖p,γ +

∥∥∥
(∫ ∞

0

(
sk−α

∣∣∣∣∂
kPs

∂ sk

(
Jβg

)∣∣∣∣
)q ds

s

)1/q∥∥∥
p,γ

≤ ‖g‖p,γ +
∥∥∥
(∫ ∞

0

(
sk−α

∣∣∣∣∂
kPsg
∂ sk

∣∣∣∣)q ds
s

)1/q∥∥∥
p,γ

= ‖g‖Fα
p,q
.

ii) Let k > α + β + 1 be a fixed integer, let f ∈ Fα
p,q(γd), and let h = Jβ f . We

consider two cases:
ii-1) If β ≥ 1. Taking the change of variables u = t+s and using Hardy’s inequal-

ity, we get
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(∫ +∞

0

(
tk−(α+β )|∂

kPth(x)
∂ tk |

)q dt
t

)1/q

≤ 1
Γ (β )

(∫ +∞

0
tq(k−(α+β ))

(∫ +∞

0
sβ e−s|∂

kPt+s f (x)
∂ (t + s)k |ds

s

)q dt
t

) 1
q

≤ 1
Γ (β )

(∫ +∞

0
tq(k−(α+β ))

(∫ +∞

t
(u− t)β−1|∂

kPu f (x)
∂uk |du

)q dt
t

) 1
q

≤ 1
Γ (β )

(∫ +∞

0

(∫ +∞

t
uβ−1|∂

kPu f (x)
∂uk |du

)q
tq(k−(α+β ))−1dt

) 1
q

≤ 1
Γ (β )

1
k− (α+β )

(∫ +∞

0

(
uk−α |∂

kPu f (x)
∂uk |

)q du
u

) 1
q
.

Therefore,

∥∥∥
(∫ +∞

0

(
tk−(α+β )|∂

kPth
∂ tk |

)q dt
t

) 1
q
∥∥∥

p,γ

≤ 1
Γ (β )(k− (α+β ))

‖
(∫ +∞

0

(
uk−α |∂

kPu f
∂uk |

)q du
u

) 1
q
∥∥∥

p,γ
< ∞,

because f ∈ Fα
p,q(γd). Thus Jβ f ∈ Fα+β

p,q (γd).

ii-2) If 0 < β < 1.

(∫ +∞

0

(
tk−(α+β )|∂

kPth(x)
∂ tk |

)q dt
t

) 1
q

≤ 1
Γ (β )

(∫ +∞

0
tq(k−(α+β ))

(∫ +∞

0
sβ e−s|∂

kPt+s f (x)
∂ (t + s)k |ds

s

)q dt
t

) 1
q

≤ C
Γ (β )

(
∫ +∞

0
tq(k−(α+β ))−1

(∫ t

0
sα−1e−s|∂

kPt+s f (x)
∂ (t + s)k |ds

)q
dt
) 1

q

+
C

Γ (β )
(

∫ +∞

0
tq(k−(α+β ))−1

(∫ +∞

t
sα−1e−s|∂

kPt+s f (x)
∂ (t + s)k |ds

)q
dt
) 1

q

= I + II.

Now, e−s < 1 and as β < 1, then sβ−1 < tβ−1 for t < s.
Hence, again by the change of variables u = t+s and using Hardy’s inequal-
ity, we get

II ≤ C
Γ (β )

(∫ +∞

0
tq(k−β−1)−1

(∫ +∞

t
|∂

kPt+s f (x)
∂ (t + s)k |ds

)q
dt
) 1

q

≤ C
Γ (β )

(∫ +∞

0
tq(k−β−1)−1

(∫ +∞

t
|∂

kPu f (x)
∂uk |du

)q
dt
) 1

q

≤ C
Γ (β )

(∫ +∞

0

(
uk−α |∂

kPu f (x)
∂uk |

)q du
u

) 1
q
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On the other hand, using e−s < 1 again,

Iq ≤ C
Γ (β )

∫ +∞

0
tq(k−(α+β ))−1

(∫ t

0
sβ−1|∂

kPt+s f (x)
∂ (t + s)k |ds

)q
dt

=
C

Γ (β )β q

∫ +∞

0
tq(k−α)−1

( β
tβ

∫ t

0
sβ−1|∂

kPt+s f (x)
∂ (t + s)k |ds

)q
dt

Now, as β > 0,
∫ t

0
sβ−1ds =

tβ

β
, then using Jensen’s inequality for the prob-

ability measure
β
tβ

sβ−1ds and Fubini’s theorem, we get

Iq ≤ C
Γ (β )β q

∫ +∞

0
tq(k−α)−1

( β
tβ

∫ t

0
sβ−1|∂

kPt+s f (x)
∂ (t + s)k |qds

)
dt

=
C

Γ (β )β q−1

∫ +∞

0
sβ−1

(∫ +∞

s
tq(k−α)−β−1|∂

kPt+s f (x)
∂ (t + s)k |qdt

)
ds

≤ C
Γ (β )β q−1

∫ +∞

0
sβ−1

(∫ +∞

s
(t + s)q(k−α)−β−1|∂

kPt+s f (x)
∂ (t + s)k |qdt

)
ds

as q(k−α)−β−1 > 0, because 0 < β < 1. Finally, again taking the change
of variables u = t + s and using Hardy’s inequality, we get

Iq ≤ C
Γ (β )β q−1

∫ +∞

0
sβ−1

(∫ +∞

2s
uq(k−α)−β−1|∂

kPu f (x)
∂uk |qdu

)
ds

≤ C
Γ (β )β q−1

∫ +∞

0
sβ−1

(∫ +∞

s
uq(k−α)−β−1|∂

kPu f (x)
∂uk |qdu

)
ds

≤ C
Γ (β )β q−1

∫ +∞

0

(
uk−β |∂

kPu f (x)
∂uk |

)q du
u
.

Hence,
∥∥∥
(∫ +∞

0

(
tk−(α+β )|∂

kPth
∂ tk |

)q dt
t

) 1
q
∥∥∥

p,γ

≤ Ck,α ,β

∥∥∥
(∫ +∞

0

(
uk−α |∂

kPu f
∂uk |

)q du
u

) 1
q
∥∥∥

p,γ
< ∞.

Thus, Jβ f ∈ Fα+β
p,q (γd), for 0 < β < 1.

Therefore, in both cases we have,

‖Jβ f‖
Fα+β

p,q
= ‖Jβ f‖p,γ +‖

(∫ +∞

0

(
tk−(α+β )|

∂ kPtJβ f

∂ tk |
)q dt

t

) 1
q
∥∥∥

p,γ

≤ Cβ‖ f‖p,γ +Ck,α ,β‖
(∫ +∞

0

(
uk−α |∂

kPu

∂uk |
)q du

u

) 1
q
∥∥∥

p,γ

≤ Ck,α ,β‖ f‖Fα
p,q
.

��
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Now, we study the boundedness of the Riesz fractional derivatives and of the
Bessel fractional derivatives on Triebel–Lizorkin spaces. Again, because they require
different techniques, we consider two cases:

• The bounded case, 0 < β < α < 1.
• The unbounded case 0 < β < α.

Let us start with the bounded case for the Riesz derivative.

Theorem 8.23. Let 1 ≤ p,q < ∞, for 0 < β < α < 1, Dβ is bounded from Fα
p,q(γd)

into Fα−β
p,q (γd).

Proof. Let f ∈ Fα
p,q(γd), using the fundamental theorem of calculus, and Hardy’s

inequality (10.100) with p = 1,

|Dβ f (x)| ≤ 1
cβ

∫ +∞

0
s−β−1

∣∣∣Ps f (x)− f (x)
∣∣∣ds

≤ 1
cβ

∫ +∞

0
s−β−1

∫ s

0

∣∣∣ ∂∂ r
Pr f (x)

∣∣∣dr ds ≤ 1
cββ

∫ +∞

0
r1−β

∣∣∣ ∂∂ r
Pr f (x)

∣∣∣dr
r
.

Thus,

‖Dβ f‖p,γ ≤ Cβ

∥∥∥
∫ +∞

0
r1−β

∣∣∣ ∂∂ r
Pr f

∣∣∣dr
r

∥∥∥
p,γ

≤Cβ‖ f‖Fα
p,q

< ∞, (8.52)

because Fα
p,q(γd) ⊂ Fβ

p,1(γd) (α > β and q ≥ 1). Now, using an analogous argument
using Hardy’s inequality (10.100) with p = 1,

∣∣∣ ∂∂ t
Pt(D

β f )(x)
∣∣∣ ≤ 1

cβ

∫ +∞

0
s−β−1| ∂

∂ t
Pt+s f (x)− ∂

∂ t
Pt f (x)|ds

≤ 1
cβ

∫ +∞

0
s−β−1

∫ s

0
|u(2)(x, t + r)|dr ds ≤ 1

cβ β

∫ +∞

0
r−β |u(2)(x, t + r)|dr.

This implies that

∫ ∞

0

(
t1−(α−β )| ∂

∂ t
Pt(Dβ f )(x)|

)q dt
t

≤ 1
cβ β

∫ ∞

0

(
t1−(α−β )

∫ +∞

0
r−β |u(2)(x, t + r)|dr

)q dt
t

≤ Cβ

∫ ∞

0

(
t1−(α−β )

∫ t

0
r−β |u(2)(x, t + r)|dr

)q dt
t

(8.53)

+Cβ

∫ ∞

0

(
t1−(α−β )

∫ +∞

t
r−β |u(2)(x, t + r)|dr

)q dt
t

= (I)+(II).
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Writing r−β = r
−β
q +−β

q′ , 1
q +

1
q′ = 1, and using Hölder’s inequality in the internal

integral, we have

(I)≤Cβ (1−β )1−q
∫ ∞

0
t(2−α)q−2+β

∫ t

0
r−β |u(2)(x, t + r)|qdr dt.

Then, according to the Fubini–Tonelli theorem, we get

(I)≤Cβ (1−β )1−q
∫ ∞

0
r−β

∫ ∞

r
t(2−α)q+β−2|u(2)(x, t + r)|qdt dr.

It is easy to prove that (2−α)q+β −2 >−1. We need to study two cases:

Case #1 – if (2−α)q+β − 2 < 0: as r < t and taking the change of variables
w = t + r, we have

(I) ≤ Cβ (1−β )1−q
∫ ∞

0
r(2−α)q−2

∫ ∞

r
|u(2)(x, t + r)|qdt dr

≤ Cβ (1−β )1−q
∫ ∞

0
r[(2−α)q−1]−1

∫ ∞

2r
|u(2)(x,w)|qdwdr

≤ Cβ (1−β )1−q
∫ ∞

0
r[(2−α)q−1]−1

∫ ∞

r
|u(2)(x,w)|qdwdr.

Then using Hardy’s inequality (10.101) as (2−α)q−1 > 0

(I) ≤ Cβ (1−β )1−q 1
(2−β )q−1

∫ ∞

0

(
w2−β |u(2)(x,w)|

)q dw
w

.

Case #2 – if (2−β )q+β −2 ≥ 0: taking the change of variables w = t + r, we get

(I) ≤ Cβ (1−β )1−q
∫ ∞

0
r−β

∫ ∞

r
(t + r)(2−α)q+β−2|u(2)(x, t + r)|qdt dr

= Cβ (1−β )1−q
∫ ∞

0
r−β

∫ ∞

2r
w(2−α)q+β−2|u(2)(x,w)|qdwdr

≤ Cβ (1−β )1−q
∫ ∞

0
r−β

∫ ∞

r
w(2−α)q+β−2|u(2)(x,w)|qdwdr,

and using Hardy’s inequality (10.101),

(I) ≤
Cβ

(1−β )q

∫ ∞

0

(
w2−α |u(2)(x,w)|

)q dw
w

.

Therefore, in both cases we have

(I) ≤ Cβ

∫ ∞

0

(
w2−α |u(2)(x,w)|

)q dw
w

.
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To estimate (II), observe that r−β < t−β , for r > t and β > 0, then using the same
argument as before to estimate (I) case #1, taking the change of variables w = t + r,
and using Hardy’s inequality (10.101), so that

(II) ≤
Cβ

1−α

∫ ∞

0

(
w2−α |u(2)(x,w)|

)q dw
w

.

Finally,

∥∥∥
(∫ ∞

0

(
t1−(α−β )| ∂

∂ t
Pt(D

β f )|
)q dt

t

)1/q∥∥∥
p,γ

≤C
∥∥∥(
∫ ∞

0

(
t1−(α−β )

∫ +∞

0
r−β |u(2)(·, t + r)|dr

)q dt
t
)1/q

∥∥∥
p,γ

≤C
∥∥∥
(∫ ∞

0

(
w2−β |u(2)(·,w)|

)q dw
w

)1/q∥∥∥
p,γ

< ∞, (8.54)

as f ∈ Fβ
p,q(γd). Using the previous estimate and (8.52)

‖Dβ f‖
Fα−β

p,q
≤C‖ f‖

Fβ
p,q
. ��

In the following theorem, we study the boundedness of the Bessel fractional
derivative on Triebel–Lizorkin spaces for the bounded case 0 < β < α < 1.

Theorem 8.24. Let 0 < β < α < 1, 1 ≤ p,q < ∞ then Dβ is bounded from Fα
p,q(γd)

into Fα−β
p,q (γd).

Proof. Let f ∈ Lp(γd), using the fundamental theorem of calculus, we can write

|Dβ f (x)| ≤ 1
cβ

∫ +∞

0
s−β−1|e−sPs f (x)− f (x)|ds

≤ 1
cβ

∫ +∞

0
s−β−1e−s|Ps f (x)− f (x)|ds+

1
cβ

∫ +∞

0
s−β−1|e−s −1|| f (x)|ds

≤ 1
cβ

∫ +∞

0
s−β−1

∫ s

0

∣∣∣ ∂∂ r
Pr f (x)

∣∣∣dr ds+
1
cβ

| f (x)|
∫ +∞

0
s−β−1

∫ s

0
e−rdr ds.

Now, using Hardy’s inequality (10.100) with p = 1 in both integrals, we have

|Dβ f (x)| ≤ 1
βcβ

∫ +∞

0
r1−β

∣∣∣ ∂∂ r
Pr f (x)

∣∣∣dr
r
+

1
βcβ

Γ (1−β )| f (x)|.

Thus,

|Dβ f (x)| ≤ 1
βcβ

∫ +∞

0
r1−β |u(1)(x,r)|dr

r
+

1
βcβ

Γ (1−β )| f (x)|.
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Therefore, if f ∈ Fα
p,q(γd), we get

‖Dβ f‖p,γ ≤ 1
βcβ

∥∥∥
∫ +∞

0
r1−β |u(1)(·,r)|dr

r

∥∥∥
p,γ

+
1

βcβ
Γ (1−β )‖ f‖p,γ

≤ Cβ‖ f‖
Fβ

p,1
≤C′

β‖ f‖Fα
p,q
, (8.55)

because Fα
p,q(γd)⊂ Fβ

p,1(γd), as α > β , and q ≥ 1.

Using a similar argument to that above, the fundamental theorem of calculus and
Hardy’s inequality (10.100) with p = 1, we get

∣∣∣ ∂∂ t
Pt(D

β f )(x)
∣∣∣ ≤ 1

cβ

∫ ∞

0
s−β−1

∣∣∣e−s ∂
∂ t

Pt+s f (x)− ∂
∂ t

Pt f (x)
∣∣∣ds

≤ 1
cβ

∫ ∞

0
s−β−1e−s

∣∣∣ ∂∂ t
Pt+s f (x)− ∂

∂ t
Pt f (x)

∣∣∣ds

+
1
cβ

∫ ∞

0
s−β−1|e−s −1|

∣∣∣ ∂∂ t
Pt f (x)

∣∣∣ds

≤ 1
cβ

∫ ∞

0
s−β−1

∫ s

0
|u(2)(x, t + r)|dr ds

+
1
cβ

|u(1)(x, t)|
∫ ∞

0
s−β−1

∫ s

0
e−rdr ds,

≤ 1
βcβ

∫ ∞

0
r−β |u(2)(x, t + r)|dr+

Γ (1−β )
βcβ

|u(1)(x, t)|.

Therefore,
∣∣∣ ∂∂ t

Pt(D
β f (x))

∣∣∣≤ 1
βcβ

∫ ∞

0
r−β |u(2)(x, t + r)|dr+

Γ (1−β )
βcβ

|u(1)(x, t)|.

Then, we have
∥∥∥
(∫ ∞

0

(
t1−(α−β )

∣∣∣ ∂∂ t
Pt(D

β f )
∣∣∣
)q dt

t

)1/q∥∥∥
p,γ

≤ C
βcβ

∥∥∥
(∫ ∞

0

(
t1−(α−β )

∫ ∞

0
r−β |u(2)(·, t + r)|dr

)q dt
t

)1/q∥∥∥
p,γ

+
C
βcβ

Γ (1−β )
∥∥∥
(∫ ∞

0

(
t1−(α−β )|u(1)(·, t)|

)q dt
t

)1/q∥∥∥
p,γ
.

Now, the first term can be estimated as in the proof of Theorem 3, estimates (8.53)
and (8.54), so that

∥∥∥
(∫ ∞

0

(
t1−(α−β )

∫ ∞

0
r−β |u(2)(·, t + r)|dr

)q dt
t

)1/q∥∥∥
p,γ

≤ C
∥∥∥
∫ ∞

0

(
t2−α

∣∣∣ ∂ 2

∂ t2 Pt f
∣∣∣
)q dt

t

)1/q∥∥∥
p,γ
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which is finite as f ∈ Fα
p,q(γd). For the second term, we have

∥∥∥
(∫ ∞

0

(
t1−(α−β )|u(1)(x, t)|

)q dt
t

)1/q∥∥∥
p,γ

≤ C‖ f‖
Fα−β

p,q
≤C‖ f‖Fα

p,q

as Fα
p,q(γd)⊂ Fα−β

p,q (γd); thus,

∥∥∥
(∫ ∞

0

(
t1−(α−β )| ∂

∂ t
Pt(D

β f )|
)q dt

t

)1/q∥∥∥
p,γ

≤C‖ f‖Fα
p,q
.

Therefore, Dβ f ∈ Fα−β
p,q (γd) and moreover, using the previous estimate and (8.55)

‖Dβ f‖
Fα−β

p,q
≤ C‖ f‖Fα

p,q
.

��

To study the general case for fractional derivatives (removing the condition that
the indexes must be less than 1), we need to consider forward differences again.
Also, we need the generalized version of Hardy’s inequality (see Theorem 10.26 in
the Appendix, and also the following technical results):

Lemma 8.25. For any positive integer k,

Δ k
s ( f , t) =

∫ t+s

t

∫ v1+s

v1

. . .
∫ vk−1+s

vk−1

f (k)(vk)dvk . . .dv2dv1

=
∫ s

0
. . .

∫ s

0
f (k)(t + v1 + . . .+ vk)dvk . . .dv1

For the proof of this result, see Lemma 10.30 in the Appendix, or [109]
Lemma 3.1, ii).

Lemma 8.26. Let t ≥ 0,β > 0 and let k be the smallest integer greater than β , and
let f differentiable up to order k, then

∫ +∞

0
s−β−1|Δ k

s ( f , t)|ds ≤Cβ ,k

∫ +∞

0
wk−β−1| f (k)(t +w)|dw

where Cβ ,k =
∫ 1

0
. . .

∫ 1

0
(v1 + . . .+ vk)

β−kdv1 . . .dvk

Proof. Using Lemma10.26, with p = 1, and Lemma 8.25 we have,

∫ +∞

0
s−β−1|Δ k

s ( f , t)|ds ≤
∫ +∞

0
s−β−1

∫ s

0
. . .

∫ s

0
| f (k)(t + v1 + . . .+ vk)|dv1 . . .dvkds

≤
∫ 1

0
. . .

∫ 1

0

(∫ +∞

0
(sk| f (k)(t + s(v1 + . . .+ vk)|)s−β−1ds

)
dv1 . . .dvk

=
∫ 1

0
. . .

∫ 1

0

(∫ +∞

0
(sk−β−1| f (k)(t + s(v1 + . . .+ vk)|)ds

)
dv1 . . .dvk
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taking r = s(v1 + . . .+ vk) then dr = (v1 + . . .+ vk)ds,

∫ +∞

0
sk−β−1| f (k)(t + s(v1 + . . .+ vk)|ds =

∫ +∞

0
rk−β | f (k)(t + r)|dr

r
(v1 + . . .+ vk)

β−k

=
∫ +∞

0
rk−β−1| f (k)(t + r)|dr(v1 + . . .+ vk)

β−k.

Therefore,
∫ +∞

0
s−β−1|Δ k

s ( f , t)|ds

≤
∫ 1

0
. . .

∫ 1

0

(∫ +∞

0
rk−β−1| f (k)(t + r)|dr(v1 + . . .+ vk)

β−k
)

dv1 . . .dvk

=
(∫ +∞

0
rk−β−1| f (k)(t + r)|dr

)∫ 1

0
. . .

∫ 1

0
(v1 + . . .+ vk)

β−kdv1 . . .dvk

= Cβ ,k

(∫ +∞

0
rk−β−1| f (k)(t + r)|dr,

where Cβ ,k =
∫ 1

0
. . .

∫ 1

0
(v1 + . . .+ vk)

β−kdv1 . . .dvk < ∞. ��

We need to use (8.47)

(Ps − I)k f (x) = Δ k
s (u(x, ·),0),

and (8.48)
Pt(Ps − I)k f (x) = Δ k

s (u(x, ·), t).
Let us consider the unbounded case 0 < β < α for the Riesz derivative,

Theorem 8.27. Let 0 < β < α , 1 ≤ p,q <∞, then Dβ is bounded from Fα
p,q(γd) into

Fα−β
p,q (γd).

Proof. Let f ∈ Fα
p,q(γd), using (8.47), (8.48) and Lemma 8.26,

|Dβ f (x)| ≤ 1
cβ

∫ +∞

0
s−β−1|(Ps − I)k f (x)|ds

=
1
cβ

∫ +∞

0
s−β−1|Δ k

s (u(x, ·),0)|ds

≤ Cβ ,k

∫ +∞

0
rk−β−1|u(k)(x,r)|dr.

Then

‖Dβ f‖p,γ ≤ Cβ ,k

∥∥∥
∫ +∞

0
rk−β |u(k)(·,r)|dr

r

∥∥∥
p,γ

< ∞,
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because Fα
p,q(γd)⊂ Fβ

p,1(γd), (α > β and 1 ≤ q < ∞).

Let n ∈ N,n > α; using Lemma 10.30(8.46) and Lemma 8.26, we get

∣∣∣ ∂ n

∂ tn Pt(Dβ f )(x)
∣∣∣ ≤ 1

cβ

∫ +∞

0
s−β−1|Δ k

s (u
(n)(x, ·), t)|ds

≤ 1
cβ

Cβ ,k

∫ +∞

0
rk−β−1|u(n+k)(x, t + r)|dr.

Therefore,

∫ ∞

0

(
tn−(α−β )

∣∣∣ ∂ n

∂ tn Pt(Dβ f )(x)
∣∣∣
)q dt

t

≤Cβ ,k

∫ ∞

0

(
tn−(α−β )

∫ +∞

0
rk−β−1|u(n+k)(x, t + r)|dr

)q dt
t

which is inequality (8.53) for n = k = 1. The rest of the proof follows the argument
used in Theorem 8.23, so that

(∫ ∞

0

(
tn−(α−β )

∫ +∞

0
rk−β−1|u(n+k)(x, t + r)|dr

)q dt
t

)1/q
(8.56)

≤C
(∫ ∞

0

(
sn+k−α |u(n+k)(x,s)|

)q ds
s

)1/q
,

taking Lp(γ)-norm both sides of the inequality, we get the result. ��

Finally, the following result extends Theorem 8.24 to the general case 0< β <α:

Theorem 8.28. Let 0 < β < α , 1 < p <∞ and 1 ≤ q <∞, then Dβ is bounded from

Fα
p,q(γd) into Fα−β

p,q (γd).

Proof. Let f ∈ Fα
p,q(γd), k be an integer such that k − 1 ≤ β < k and v(x,r) =

e−ru(x,r), using Lemma 8.26 and Leibniz’s differentiation rule for the product

|Dβ f (x)| ≤ 1
cβ

∫ +∞

0
s−β−1|(e−sPs − I)k f (x)|ds =

1
cβ

∫ +∞

0
s−β−1|Δ k

s (v(x, ·),0)|ds

≤ Cβ ,k

∫ +∞

0
rk−β |v(k)(x,r)|dr

r
≤Cβ ,k

( k

∑
j=0

(
k
j

)∫ +∞

0
rk−β e−r|u(k− j)(x,r)|dr

r

)

= Cβ ,k

( k−1

∑
j=0

(
k
j

)∫ +∞

0
rk−β e−r|u(k− j)(x,r)|dr

r

)
+Cβ ,k

∫ +∞

0
rk−β e−r|u(x,r)|dr

r
,
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then

‖Dβ f‖p,γ ≤ Cβ ,k

( k−1

∑
j=0

(
k
j

)∥∥∥
∫ +∞

0
rk−β |u(k− j)(·,r)|dr

r

∥∥∥
p,γ

)
+Cβ ,k

∥∥∥
∫ +∞

0
rk−β e−r|u(·,r)|dr

r

∥∥∥
p,γ

≤ Cβ ,k

( k−1

∑
j=0

(
k
j

)∥∥∥
∫ +∞

0
rk−β |u(k− j)(·,r)|dr

r

∥∥∥
p,γ

)
+Cβ ,k

∫ +∞

0
rk−β e−r‖u(·,r)‖p,γ

dr
r

≤ Cβ ,k

( k−1

∑
j=0

(
k
j

)∥∥∥
∫ +∞

0
rk− j−(β− j)|u(k− j)(·,r)|dr

r

∥∥∥
p,γ

)
+Cβ ,k‖ f‖p,γΓ (k−β )

≤ C‖ f‖Fα
p,q
,

because Fα
p,q(γd)⊂ Fβ− j

p,1 (γd), as α > β ≥ β − j ≥ 0, for j = 0, . . . ,k−1 and q ≥ 1.

Now, let n ∈ N,n > α and w(x, t) = e−tu(n)(x, t), using Lemma 8.26, we get

∣∣∣ ∂ n

∂ tn Pt(D
β f )(x)

∣∣∣ ≤ et

cβ

∫ +∞

0
s−β−1|Δ k

s (w(x, ·), t)|ds

≤ etCβ ,k

∫ +∞

0
sk−β−1|w(k)(x, t + s)|ds.

Now, using Leibniz’s rule, w(k)(x,r) =
k

∑
j=0

(
k
j

)
(−1) je−ru(k+n− j)(x,r) and then

|w(k)(x,r)| ≤
k

∑
j=0

(
k
j

)
e−r|u(k+n− j)(x,r)|,

for all r > 0. Thus,

∣∣∣ ∂ n

∂ tn Pt(D
β f )(x)

∣∣∣ ≤ Cβ ,k

k

∑
j=0

(
k
j

)∫ +∞

0
sk−β−1e−s|u(k+n− j)(x, t + s)|ds.

Therefore,

(∫ ∞

0

(
tn−(α−β )

∣∣∣ ∂ n

∂ tn Pt(D
β f )(x)

∣∣∣
)q dt

t

)1/q

≤ Cβ ,k

k

∑
j=0

(
k
j

)(∫ ∞

0

(
tn−(α−β )

∫ +∞

0
sk− j−(β− j)−1e−s|u(k− j+n)(x, t + s)|ds

)q dt
t

)1/q

For 0 ≤ j ≤ k − 1, we have β − j ≥ β − (k − 1) ≥ 0, and taking into account that
each term of the above sum is bounded by the left side of the inequality (8.56), with
k replaced by k− j and β replaced by β − j, we get that

∥∥∥
(∫ ∞

0

(
tn−(α−β )

∫ +∞

0
sk− j−(β− j)−1e−s|u(k+n− j)(x·, t + s)|ds

)q dt
t

)1/q∥∥∥
p,γ

<C‖ f‖Fα
p,q
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for 0 ≤ j ≤ k−1. Unfortunately, the remaining case j = k requires a special argument
that uses the following known inequality for the Poisson–Hermite semigroup:

∣∣∣ ∂ n

∂ tn Pt f (x)
∣∣∣≤CT ∗ f (x)t−n (8.57)

(see Lemma 3.4; see also [226, Lemma 1], or [224]). Then

(∫ ∞

0

(
tn−(α−β )

∫ +∞

0
sk−β−1e−s|u(n)(·, t + s)|ds

)q dt
t

)1/q

≤ C
(∫ ∞

0

(
tn−(α−β )

∫ t

0
sk−β−1e−s|u(n)(x, t + s)|ds

)q dt
t

)1/q

+C
(∫ ∞

0

(
tn−(α−β )

∫ +∞

t
sk−β−1e−s|u(n)(x, t + s)|ds

)q dt
t

)1/q

= (I)+(II).

We first consider the case k ≤ β . The term (I) is estimated as term (I) in the proof of
Theorem 8.23.

(I) ≤ C
(∫ ∞

0

(
vn−(α−k)|u(n)(x,v)|

)q dv
v

)1/q
.

Because β ≥ k−1, taking the change of variables v = t + s, we get

(II) ≤ C
(∫ ∞

0
t(n+k−α−1)q−1

(∫ +∞

t
|u(n)(x, t + s)|ds

)q
dt
)1/q

= C
(∫ ∞

0
t(n+k−α−1)q−1

(∫ +∞

2t
|u(n)(x,r)|dr

)q
dt
)1/q

≤ C
(∫ ∞

0
t(n+k−α−1)q−1

(∫ +∞

t
|u(n)(x,r)|dr

)q
dt
)1/q

.

Therefore, using Hardy’s inequality (10.101),

(II) ≤ C

(n+ k−α−1)1/q

(∫ ∞

0

(
rn−(α−k)|u(n)(x,r)|

)q dr
r

)1/q
,

Next, consider the case k > α . In this case, using inequality (8.57) and Hardy’s
inequality (10.100), we have

(I) ≤ Cn|T ∗ f (x)|
(∫ ∞

0
t−(α−β )q−1

(∫ t

0
sk−β−1e−sds

)q
dt
)1/q

≤ Cn|T ∗ f (x)| 1

(α−β )1/q

(∫ ∞

0
s(k−α)q−1e−sqds

)1/q

= Cn|T ∗ f (x)| 1

(α−β )1/qqk−α

(
Γ ((k−α)q)1/q.

On the other hand,
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(II) ≤
(∫ 1

0
t(n+k−α−1)q−1

(∫ +∞

t
e−s|u(n)(x, t + s)|ds

)q
dt
)1/q

+
(∫ ∞

1
t(n+k−α−1)q−1

(∫ +∞

t
e−s|u(n)(x, t + s)|ds

)q
dt
)1/q

= (III)+(IV ).

Using the usual argument the change of variables v = t + s and Hardy’s inequal-
ity (10.101), we get

(III) ≤
(∫ 1

0
t(n−1)q−1

(∫ +∞

t
|u(n)(x, t + s)|ds

)q
dt
)1/q

≤
(∫ ∞

0
t(n−1)q−1

(∫ +∞

t
|u(n)(x, t + s)|ds

)q
dt
)1/q

=
(∫ ∞

0
t(n−1)q−1

(∫ +∞

2t
|u(n)(x,r)|dr

)q
dt
)1/q

≤
(∫ ∞

0
t(n−1)q−1

(∫ +∞

t
|u(n)(x,r)|dr

)q
dt
)1/q

≤ 1
n−1

(∫ ∞

0

(
rn|u(n)(x,r)|

)q dr
r

)1/q
.

Finally, using inequality (8.57) again, we get

(IV ) ≤
(∫ ∞

1
t(n+k−α−1)q−1

(∫ +∞

t
e−sCn|T ∗ f (x)|t−nds

)q
dt
)1/q

= Cn|T ∗ f (x)|
(∫ ∞

1
t(k−α−1)q−1e−tqdt

)1/q

≤ Cn|T ∗ f (x)|
(∫ ∞

1
t(k−α−1)q−1dt

)1/q
=Cn|T ∗ f (x)|

( 1
(α+1− k)q

)1/q
.

Hence, in both cases, we get that

∥∥∥
(∫ ∞

0

(
tn−(α−β )| ∂

n

∂ tn Pt(D
β f )|

)q dt
t

)1/q∥∥∥
p,γ

< ∞,

as f ∈ Fα
p,q(γd). Therefore, Dβ f ∈ Fα−β

p,q (γd) and moreover,

‖Dβ f‖
Fα−β

p,q
≤ C‖ f‖Fα

p,q
. ��

8.6 Notes and Further Results

1. Observe that the arguments given in the proofs of theorems in this chapter are
still valid in the classical case taking the Poisson integral; therefore, they are
alternative proofs to those given in E. Stein’s book [252].
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2. Moreover, if instead of considering the Ornstein–Uhlenbeck operator and the
Poisson–Hermite semigroup, we consider the Laguerre differential operator in
R

d
+, for α = (α1, · · · ,αd) a multi-index,

L α =
d

∑
i=1

[
xi
∂ 2

∂x2
i

+(αi +1− xi)
∂
∂xi

]
(8.58)

and the corresponding Poisson–Laguerre semigroup, or if we consider the Jacobi
differential operator in (−1,1)d ,

L α ,β =−
d

∑
i=1

[
(1− x2

i )
∂ 2

∂x2
i

+(βi −αi − (αi +βi +2)xi)
∂
∂xi

]
, (8.59)

and the corresponding Poisson–Jacobi semigroup (for more details, we refer
the reader to [279]), the arguments are completely analogous. To see this, it
is more convenient to use the representation of Pt in terms of the one-sided

stable measure μ(1/2)
t (ds) and to write Lemma 3.3 in those terms (see [225]). In

other words, we can define in an analogous manner Laguerre–Lipschitz spaces
and Jacobi–Lipschitz spaces, and prove the corresponding notions of fractional
integrals and fractional derivatives (see [117, 25]).

3. Following similar arguments to those given in Chapter 7, we can define in
an analogous manner Laguerre–Besov–Lipschitz spaces and Jacobi–Besov–
Lipschitz spaces, in addition to Laguerre–Triebel–Lizorkin spaces and Jacobi–
Triebel–Lizorkin spaces, and then prove that the corresponding notions of
fractional integrals and fractional derivatives of corresponding operators L α ,β

and L α behave similarly.

4. In [146], G. E. Karadzhov & M. Milman show that the Gaussian Riesz potentials
Iβ maps Lp(logL)a continuously into Lp(logL)a+β , for 1 < p < ∞ and a ∈ R.
The proof is using extrapolation in an abstract setting. Moreover, their proof is
in fact valid for any hypercontractive semigroup (see [146, Theorem 5.7]).

5. We can also consider alternative Riesz potentials, alternative Bessel potential,
alternative Riesz and alternative Bessel fractional derivatives using the same
formulas as before, but with respect to L, the alternative Ornstein–Uhlenbeck
operator (2.14). This case is actually simpler, as 0 is not a eigenvalue of L. For
instance, for β > 0 the alternative Riesz potential Iβ can be defined as

Iβ = (−L)−β/2, (8.60)

meaning that any multi-index ν such that |ν |> 0 its action on the Hermite poly-
nomial Hν is

IβHν(x) =
1

(|ν |+d)β/2
Hν(x). (8.61)
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Iβ has the following integral representation, using the fact that L is the infinite-

simal generator of the semigroup {T (d)
t }t = {e−tdTt}t , the d-translated Ornstein–

Uhlenbeck semigroup (2.78),

Iβ f (x) = (−L)−β/2 f (x) =
1

Γ (β/2)

∫ ∞

0
t
β−2

2 T (d)
t f (x) dt (8.62)

=
1

Γ (β/2)

∫ ∞

0
t
β−2

2 e−dtTt f (x) dt

= Cβ e|x|
2
∫
Rd

(∫ 1

0
(− logr)

β−2
2 rd e

− |x−ry|2
1−r2

(1− r2)
d
2

dr
r

)
f (y) γd(dy).

= Cβ

∫
Rd

(∫ 1

0
(− logr)

β−2
2 rd e

− |y−rx|2
1−r2

(1− r2)
d
2

dr
r

)
f (y)(dy).

The integral representation (8.62) is crucial to getting the Lp(γd)-boundedness
results of some of the Gaussian singular integrals considered in Chapter 9.

Similar representations can be found for Bessel potentials and the fractional
derivatives associated with L.

6. In [164], alternate representations of Iβ and Dβ are obtained.

Proposition 8.29. Suppose f ∈C2
B(R

d) such that
∫
Rd f (y)γd(dy) = 0, then

Dβ f =
1

βcβ

∫ ∞

0
t−β

∂
∂ t

Pt f dt, 0 < β < 1, (8.63)

Iβ f =− 1
βΓ (β )

∫ ∞

0
tβ

∂
∂ t

Pt f dt, β > 0. (8.64)

Proof. Let us start proving (8.63). Integrating by parts in (8.26) ,we get

Dβ f (x) =
1
cβ

lim
a→0+
b→∞

∫ b

a
t−β−1 (Pt f (x)− f (x))dt

=
1
cβ

lim
a→0+
b→∞

{
t−β

−β (Pt f (x)− f (x))
∣∣∣b
a
+

1
β

∫ b

a
t−β

∂
∂ t

Pt f (x)dt

}

=
1

βcβ

∫ ∞

0
t−β

∂
∂ t

Pt f (x)dt

because, using (3.28) and (3.29), we have

lim
b→∞

(
Pb f (x)− f (x)

bβ

)
= 0
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and

lim
a→0+

∣∣∣∣Pa f (x)− f (x)

aβ

∣∣∣∣ ≤ lim
a→0+

1

aβ

∫ a

0

∣∣∣∣ ∂∂ s
Ps f (x)

∣∣∣∣ds

≤ Cd, f (d + |x|) lim
a→0+

1− e−a

aβ
= 0.

Let us prove now (8.64). Again, by integrating by parts, we have

Iβ f (x) =
1

Γ (β )
lim

a→0+
b→∞

∫ b

a
tβ−1Pt f (x)dt

=
1

Γ (β )
lim

a→0+
b→∞

{
tβ

β
Pt f (x)

∣∣∣b
a
− 1
β

∫ b

a
tβ

∂
∂ t

Pt f (x)dt

}

= − 1
βΓ (β )

∫ ∞

0
tβ

∂
∂ t

Pt f (x)dt,

because, using the previous result

lim
b→∞

∣∣∣Pb f (x)bβ
∣∣∣≤Cd, f (d + |x|) lim

b→∞
bβ e−b = 0

and
lim

a→0+

∣∣∣Pa f (x)aβ
∣∣∣= 0. ��

Observe that because the previous proposition holds for f = Hβ , the Hermite
polynomial of order β , |β |> 0, then it holds for any non-constant polynomial f
such that

∫
Rd f (y)γd(dy) = 0.

By using (3.3) and (8.63), Dβ can be expressed explicitly as

Dβ f (x) =
∫
Rd

Kβ (x,y) f (y)dy,

where,

Kβ (x,y) = Cd

∫ ∞

0

∫ 1

0
t−β et2/4logr(−logr)1/2 e

− |y−rx|2
1−r2

(1− r2)d/2

×
(

2r2 |y− rx|2 −2r(1− r2)〈y− rx,x〉−dr2(1− r2)

(1− r2)2

)
dr
r

dt.

Now, let us write

qt(x,y) =−t
∂
∂ t

⎛
⎜⎝
∫ 1

0
t
exp

(
t2/4logr

)
(− logr)3/2

exp
(

−|y−rx|2
1−r2

)

(1− r2)d/2

dr
r

⎞
⎟⎠ , (8.65)
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and define the operator Qt as

Qt f (x) =−t
∂
∂ t

Pt f (x) =
∫
Rd

qt(x,y) f (y)dy. (8.66)

Following [108] we immediately get from (8.63) and (8.64) the following for-
mulas:

Corollary 8.30. Suppose f ∈ C2
B(R

d) such that
∫
Rd f (y)γd(dy) = 0. Then, we

have

−βDβ f =
1
cβ

∫ ∞

0
t−β−1Qt f dt, 0 < β < 1, (8.67)

β Iβ =
1

Γ (β )

∫ ∞

0
tβ−1Qt f dt, β > 0. (8.68)

7. An interesting use of the family {Qt} is that it allows us to give a version of A.
P. Calderón’s reproducing formula for the Gaussian measure; see [164].

Theorem 8.31.
i) Suppose f ∈ L1(γd) such that

∫
Rd f (y)γd(dy) = 0, then we have

f =
∫ ∞

0
Qt f

dt
t
. (8.69)

ii) Suppose f a polynomial such that
∫
Rd f (y)γd(dy) = 0, then we have

f =Cβ

∫ ∞

0

∫ ∞

0
t−β sβQt (Qs f )

ds
s

dt
t

0 < β < 1. (8.70)

Also,

∫ ∞

0

∫ ∞

0
t−β sβQt (Qs f )

ds
s

dt
t
= dβ

∫ ∞

0
u
∂ 2

∂u2 Pu f du. (8.71)

Formula (8.70) is the aforementioned version of Calderón’s reproducing formula
for the Gaussian measure.

Proof.
i) Using (3.28) and (3.29) we have,

∫ ∞

0
Qt f

dt
t
= lim

a→0+
b→∞

(−
∫ b

a

∂
∂ t

Pt f dt) = lim
a→0+
b→∞

(−Pt f )
∣∣∣b
a
= f .

ii) Let us prove (8.70), given f , a polynomial such that
∫
Rd f (y)γd(dy) = 0, by

Corollary 8.30, we have

Dβ
(
Iβ f

)
=

1
βcβ

∫ ∞

0
t−β−1Qt

(
Iβ f

)
dt.
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Now, using the definition of Qt and Fubini’s theorem, we have

Qt
(
Iβ f

)
=

1
βΓ (β )

∫
Rd

∫ ∞

0
sβ−1Qs( f )(y)dsdy.

Again, using the definition of Qs, we obtain

f = Dβ
(
Iβ f

)
= dβ

∫ ∞

0

∫ ∞

0
t−β−1sβ−1Qt (Qs f )dsdt.

To show (8.71), we see that from (8.66)

Qt (Qs f )(x) = ts
∂
∂ t

∂
∂ s

Pt+s f (x).

But
∂
∂ t

∂
∂ s

Pt+s f (x) =
∂ 2

∂u2 Pu f (x)
∣∣∣
u=t+s

,

then

∫ ∞

0

∫ ∞

0
t−β−1sβ−1Qt (Qs f )dsdt =

∫ ∞

0

∫ ∞

0
t−β sβ

∂ 2

∂u2 Pu f
∣∣∣
u=t+s

dsdt

= dβ

∫ ∞

0
u
∂ 2

∂u2 Pu f du,

where dβ = B(−β+1,β+1)
aβ cβ

, B(−β + 1,β + 1) being the beta function of pa-

rameter (−β +1,β +1). ��

8. Also, in [117], P. Graczyk, J. J. Loeb, I. López, A. Nowak, and W. Urbina ob-
tained an analog of A. P. Calderón’s reproducing formula for the Laguerre case.

9. Using more abstract approaches to Besov and Triebel–Lizorkin spaces associ-
ated with a general differential operator, as in [154], many of the results con-
tained in this chapter would follow from the functional calculus for the Ornstein–
Uhlenbeck operator.



9

Singular Integrals with Respect to the Gaussian
Measure

Singular integrals are among the most important operators in classical harmonic
analysis. They first appear naturally in the proof of the Lp(T) convergence of Fourier
series, 1 < p < ∞, where the notion of the conjugated function is needed1

f̃ (x) = p.v.
1
π

∫ π

−π

f (x− y)
2tan y

2
dy = lim

ε→0

1
π

∫
π>|y|>ε

f (x− y)
2tan y

2
dy.

This notion was extended to the non-periodic case with the definition of the Hilbert
transform,

H f (x) = p.v.
1
π

∫ ∞

−∞

f (x− y)
y

dy = lim
ε→0

1
π

∫
|y|>ε

f (x− y)
y

dy,

and then to R
d , with the notion of the Riesz transform (see E. Stein [252, Chap III,

§1]),

R j f (x) = p.v.Cd

∫
Rd

yi

|y|d+1 f (x− y)dy

= lim
ε→0

Cd

∫
|y|>ε

y j

|y|d+1 f (x− y)dy, (9.1)

for j = 1, · · · ,d, f ∈ Lp(Rd) with Cd =
Γ ( d+1

2 )

π(d+1)/2 . Taking Fourier transform, we get

(̂R j f )(ζ ) = Cd

∫
Rd

[∫
Rd

y j

|y|d+1 f (x− y)dy
]
e−i<ξ ,x>dx

The original version of this chapter was revised. The correction to this chapter is available at
https://doi.org/10.1007/978-3-030-05597-4 10

1For a detailed study of this problem see, for instance, R. Weeden & A. Zygmund [294,
Chapter 12], E. Stein [252, Chapter II, III], J. Duoandikoetxea [72, Chapter 4, 5], L. Grafakos
[118, Chapter 4] or A. Torchinski [275, Chapter XI].
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= Cd

∫
Rd

y j

|y|d+1

[∫
Rd

f (x− y)e−i<ξ ,x>dx
]
dy

= Cd

∫
Rd

y j

|y|d+1 e−i<ξ ,y> f̂ (ξ )dy =Cd i
ξ j

|ξ | f̂ (ξ ).

Hence,

(̂R j f )(ζ ) = i
ζ j

|ζ | f̂ (ζ );

thus, R j f is a classical multiplier operator, with multiplier m(y) =Cd i
y j
|y| , and hence

R j =
∂
∂x j

(−Δ)−1/2 (9.2)

where Δ = ∑d
i=1

∂ 2

∂x2
i

is the Laplacian operator and (−Δ)−1/2 is the (classical) Riesz

potential of order 1/2. For more details on this, see E. Stein [252, Chap V].
Moreover, we have seen (see 2.2), ei<·,y>, |y|2 = −λ , for λ < 0 are the eigen-

functions of the Laplacian, then,

R j(e
<·,y>)(x) =− 1

|y|
∂
∂x j

ei<x,y> =−i
y j

|y|e
i<x,y> =−i

y j√
λ

ei<x,y>. (9.3)

In their seminal paper [43], A. P. Calderón and A. Zygmund considered a general
class of singular operators in R

d , which is nowadays called the Calderón–Zygmund
theory.

In this chapter, we consider singular integrals with respect to the Gaussian mea-
sure. Singular integrals have been, without any doubt, one of the topics in Gaussian
harmonic analysis that have been more extensively researched over the last 40 years.
We begin with the study of the Gaussian Riesz transform, then the higher-order Gaus-
sian Riesz transforms, and finally, we consider a fairly general class of Gaussian sin-
gular integrals initially studied by W. Urbina in [278] and later extended by S. Pérez
in [220]. For completeness, and to facilitate comprehension of the topic, we give full
proof of the boundedness properties in each case, even though the Gaussian Riesz
transform and higher-order Gaussian Riesz transforms are particular cases of the
general class of Gaussian singular integrals that we are going to study in Section 9.4.
Additionally, in Section 9.3, we study an alternative class of Riesz transforms intro-
duced by H. Aimar, L. Forzani, and R. Scotto in [5].

9.1 Definition and Boundedness Properties of the Gaussian Riesz
Transforms

In analogy with the classical case (9.2), the Gaussian Riesz transforms in R
d are

defined in terms of the Gaussian derivatives and Riesz potentials.
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Definition 9.1. The Gaussian j-th Riesz transform in R
d is defined spectrally, for

1 ≤ i ≤ d, as

R j = ∂ j
γ I1/2 =

1√
2

∂
∂x j

(−L)−1/2, (9.4)

where L= 1
2Δx−〈x,∇x〉 is the Ornstein–Uhlenbeck operator, I1/2 the Gaussian Riesz

potential of order 1/2, and ∂ γi = 1√
2

∂
∂xi

is the Gaussian partial derivative with re-
spect to the variable xi. The meaning of this is that for any multi-index ν such that
|ν |> 0, its action on the Hermite polynomial Hν is

R jHν =

√
2
|ν |ν jHν−e j (9.5)

where ej is the unitary vector with zeros in all coordinates except for the j-th coor-
dinate, which is one.

Observe that (9.5) is the Gaussian analogous to (9.3). Moreover, for the normal-
ized Hermite polynomials hν , we have

R jhν = R j

( Hν

(2|ν |ν!)1/2

)
=

1

(2|ν |ν!)1/2

√
2
|ν |ν jHν−ej = hν−ej . (9.6)

From the integral representation of the Riesz potential (8.8), obtained in Theo-
rem 8.3, using the kernel (8.9), we immediately get the kernel of R j,

K j(x,y) =
∂
∂xi

N1/2(x,y)

=
1

πd/2Γ (1/2)

∫ 1

0

(
1− r2

− logr

)1/2
y j − rx j

(1− r2)
(d+3)

2

e
− |y−rx|2

1−r2 dr; (9.7)

therefore, we get the integral representation of Ri,

R j f (x) = p.v.
∫
Rd

K j(x,y) f (y)dy (9.8)

= p.v.
1

πd/2Γ (1/2)

∫
Rd

(∫ 1

0

(
1− r2

− logr

)1/2
y j − rx j

(1− r2)
(d+3)

2

e
− |y−rx|2

1−r2
)

dr f (y)dy.

In particular, for d = 1, the Gaussian Hilbert transform is defined spectrally as

H = ∂ γ I1/2 =
1√
2

d
dx

(−L)−1/2. (9.9)

meaning that

H Hn(x) =
1√
2

d
dx

((−L)−1/2Hn(x)) =
1√
2n

d
dx

Hn(x) =
√

2nHn−1(x).

As a particular case of (9.8), we get the following integral representation of H
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H f (x) = p.v.
1
π

∫ ∞

−∞

(∫ 1

0
(

1− r2

− logr
)1/2 y− rx

(1− r2)2

×exp(
−r2x2 +2rxy− r2y2

1− r2 )dr f (y)
)
γ1(dy)

= p.v.
1
π

∫ ∞

−∞

(∫ 1

0
(

1− r2

− logr
)1/2 y− rx

(1− r2)2 e
−−|y−rx|2

1−r2 dr
)

f (y)dy.

Theorem 9.2. The Gaussian Riesz transforms R j, j = 1, · · · ,d are Lp(γd) bounded
for 1 < p < ∞, that is to say, there exists C > 0, depending on p, β and dimension d
such that

‖R j f‖p,γ ≤ ‖ f‖p,γ , (9.10)

for any f ∈ Lp(γd).

In 1969, B. Muckenhoupt considered the one-dimensional case of the Gaussian
Hilbert transform H , using real analysis methods, based on Natanson’s lemma (see
Lemma 10.27). Then, in 1984, P. A. Meyer [189] established the Lp(γd)-boundedness
of the Gaussian Riesz transforms R j with respect to the Gaussian measure γd(dx)
in R

d , for 1 < p < ∞, using probabilistic methods, by considering the Brownian
motion and the famous Burkholder–Gundy inequality (see also [82] for a simpler
proof of P. A. Meyer’s theorem). After these two landmark papers, several other
proofs of the Lp(γd)-boundedness of R j were obtained. In 1986, R. Gundy [121]
got one, also by using the Brownian motion and the notion of background radiation
as a stochastic process, and G. Pisier [227] got one by using the method of rotations
and transference methods introduced in [57] by R. Coifman and G. Weiss. In both
proofs, the estimates are independent of dimension. In 1988, W. Urbina [278], in his
doctoral dissertation, got the first proof using real analysis methods in R

d , d > 1
by studying the kernel directly, extending B. Muckenhoupt’s proof to the higher
dimensional case, but the constants are strongly dependent on dimension. Then, in
1994, C. Gutiérrez [122] got an alternative proof, using the Littlewood–Paley–Stein
theory, with constants independent of dimension. Finally, in 1996, S. Pérez, S. &
F. Soria [223] (see also [220]), got an alternative real analysis proof using refined
estimates of the kernel, with constants dependent on dimension, by using analog es-
timates of those they obtained for the maximal function of the Ornstein–Uhlenbeck
semigroup.

On the other hand, the weak type (1,1) with respect to γd of R j was proved by B.
Muckenhoupt, in the case d = 1, in his 1969 paper [194], and R. Scotto proved it for
the case d > 1 in his doctoral dissertation [244] (see also [77]), by using the method
developed by P. Sjögren in [247] to prove the weak type (1,1) of T ∗, the maximal
function of the Ornstein–Uhlenbeck semigroup already discussed in Chapter 4. Also,
S. Pérez has an alternative proof of this result (see [220, 221]).
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Theorem 9.3. (Scotto) There exists a constant C such that

γd

({
x ∈ R

d : R j f (x)> λ
})

≤ C
λ
|| f ||1,γd . (9.11)

for all f ∈ L1(γd).

Observe that, in general, if T is a linear operator associated with a given
kernel K(x,y), its adjoint with respect to the Gaussian measure has kernel
K (x,y) = K(y,x)e|x|

2−|y|2 . Then, as K j(y,x)e|x|
2−|y|2 = K j(x,y), it follows that

the adjoint of R j is also of weak type (1,1) with respect to γd .

To prove Theorem 9.2 and Theorem 9.3, we essentially follow the proof given by
S. Pérez, S. and F. Soria in [223]. As was done for the Ornstein–Uhlenbeck maximal
function T ∗, we split the operator R j into a local part and a global part. Given x ∈R

d ,
the local part of the operator R j is its restriction to the admissible ball

Bh(x) = B(x,d m(x)) = {y ∈ R
d : |y− x|< d m(x)},

and we have seen that the Gaussian density is essentially constant on admissible balls
(see 4.102). The global part of the operator R j is its restriction to the complement
of Bh(x). Thus,

R j f (x) = Cd

∫

|x−y|<d m(x)

K j(x,y) f (y)dy+Cd

∫

|x−y|≥d m(x)

K j(x,y)| f (y)|dy

= R j,L f (x)+R j,G f (x),

where R j,L f (x) = R j( f χBh(x))(x) is the local part and R j,G f (x) = R j( f χBc
h(x)

)(x)
is the global part of R j.

To study the local part of the Gaussian Riesz transform R j, we use Theorem 4.30,
to see that the local part R j,L corresponds essentially to a classical Calderón–
Zygmund singular integral. First, we need to verify the size and smooth condi-
tions (4.29),

|∇yK j(x,y)|=

∣∣∣∣∣∣∣
∇y

⎛
⎜⎝
∫ 1

0

(
1− r2

− logr

)1/2

(y j − rx j)
e
− |y−rx|2

1−r2

(1− r2)
d+3

2

dr

⎞
⎟⎠
∣∣∣∣∣∣∣

=

⎛
⎜⎝

d

∑
j=1

∣∣∣∣∣∣∣
∫ 1

0

(
1−r2

− logr

)
e
− |y−rx|2

1−r2

(1−r2)
d+3

2

(
δi, j−

2(y j−rx j)(yi−rxi)

1− r2

)
dr

∣∣∣∣∣∣∣

2⎞
⎟⎠

1
2

≤ Cd

∫ 1

0

e
− |y−rx|2

1−r2

(1− r2)
d+3

2

dr+Cd

∫ 1

0

|y− rx|2
1− r2

e
− |y−rx|2

1−r2

(1− r2)
d+3

2

dr,

where δi, j = 1 if i = j and δi, j = 0 otherwise.
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Let us recall the notation introduced in Proposition 4.23, given x,y ∈ R
d and

t > 0. Writing a = |x|2 + |y|2,b = 2〈x,y〉, u(t) = a
t −

√
1−t
t b−|x|2. Therefore, taking

the change of variables, t = 1− r2

|∇yK j(x,y)| ≤Cd

1∫

0

e−u(t)

t
d+3

2

dt√
1− t

+Cd

1∫

0

u(t)
e−u(t)

t
d+3

2

dt√
1− t

.

Also, it is easy to see that for the kernel K j we have

|K j(x,y)| ≤C|β |

∫ 1

0
(u(t))1/2 e−u(t)

t(d+2)/2
dt.

Therefore, using Lemma 4.35, with exponent d −1 instead of d, we get

|Kβ (x,y)| ≤
C

|x− y|d ,

and then, we can apply Theorem 4.30 to the kernel K j and the operator determined
by it.

The global part R j,G can be bounded using the following result.

Theorem 9.4. (Pérez) If |x− y| ≥Cd

(
1∧ 1

|x|

)
=Cdm(x), then, for 1 ≤ j ≤ d,

|K j(x,y)| ≤CdK (x,y), (9.12)

where K is the Gaussian maximal kernel defined in (4.40).

Proof. Let K (x,y) be the kernel defined as

K (x,y) =
∫ 1

0

|y− rx|
(1− r2)(d+3)/2

e
− |y−rx|2

1−r2 dr. (9.13)

Given that ( 1−r2

− logr )
2 is a bounded function for 0 ≤ r ≤ 1, then,

|K j(x,y)| ≤CdK (x,y).

Thus, it is enough to prove that

K (x,y)≤ K (x,y),

when |x− y| ≥Cdm(x). Making the change of variables t = 1− r2, we get

K (x,y) =
1
2

∫ 1

0

|y−
√

1− tx|
t1/2

1

td/2
e−

|y−
√

1−tx|2
t

dt

t
√

1− t

=
1
2

∫ 1

0
u1/2(t)e−u(t) dt

t
d
2 +1

√
1− t

.

Then, using Lemma 4.38, we immediately get

|K j(x,y)| ≤CdK (x,y)≤CdK (x,y). ��
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From the inequality obtained in Theorem 9.4 and using Theorem 4.24, we
immediately get that R j,G is of weak type (1,1) with respect to the Gaussian mea-
sure and with that we conclude the proof of Theorem 9.3. Moreover, observe that
in general, if T is the linear operator associated with a kernel K(x,y), its adjoint
with respect to the Gaussian measure has kernel K∗(x,y) = K(y,x)e|x|

2−|y|2 . As
K (y,x)e|x|

2−|y|2 = K (x,y), it follows easily that the adjoint of R j is also of weak
type (1,1) with respect to the Gaussian measure.

In [37], T. Bruno gives an alternative and simpler proof of Theorem 9.3 (see
[37, Theorem 1.1]), proving that K j, the kernel of the j-th Riesz transform is also
bounded by its kernel K̃, (4.59), in the global region, [37, Proposition 3.8], and then
apply [37, Lemma 3.5].

As we have mentioned earlier, the main goal of C. Gutiérrez’s article [122] is,
following Stein’s scheme in [253, Chapter IV], to prove Theorem 9.2, using the
Littlewood–Paley theory. Let us see the basics of his arguments. First, he gets the
following identity:

∂P(1)
t

∂ t
(R j f )(x) =− 1√

2

Pt f
∂x j

(x), j = 1, · · · ,d. (9.14)

To prove this identity, it is enough to check it for the Hermite polynomials {Hν}.
From (9.5),

∂P(1)
t

∂ t
(R jHν)(x) =

(√ 2
|ν |ν j

)∂P(1)
t

∂ t
(Hν−ej)(x)

=
(√ 2

|ν |ν j

) ∂
∂ t

(e−
√

|ν−ej|+1 tHν−ej(x))

=
(√ 2

|ν |ν j

) ∂
∂ t

(e−
√

|ν | tHν−ej(x)) =−
√

2ν je
−
√

|ν | tHν−ej(x),

and by (1.60)

∂PtHν
∂x j

(x) = e−
√

|ν | ∂Hν
∂x j

(x) = 2ν je
−
√

|ν | tHν−ej(x).

Thus,
∂P(1)

t

∂ t
(R jHν)(x) =− 1√

2

PtHν
∂x j

(x),

and the formula can be extended immediately to polynomial functions, which are
dense in Lp(γd). Therefore,
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g(1)t,γ (Ri f )(x) =
(∫ ∞

0

∣∣∣t ∂P(1)
t

∂ t
(Ri f )(x)

∣∣∣2 dt
t

)1/2
=

1√
2

(∫ ∞

0

∣∣∣t Pt f
∂x j

(x)
∣∣∣2 dt

t

)1/2

≤ 1√
2

gγ( f )(x).

Then, using Theorem 5.2 and Theorem 5.8, we get

1/C′
p‖Ri f‖p,γ ≤ ‖g(1)t,γ (Ri f )‖p,γ ≤

1√
2
‖gγ( f )‖p,γ ≤Cp‖ f‖p,γ .

An important advantage of this proof is that the constants Cp,C′
p are independent of

dimension.

Finally, the atomic definition of the Gaussian Hardy spaces, given by G. Mauceri
and S. Meda in [174], does not provide a fully satisfying theory. Unfortunately,
that may not relate to the Ornstein–Uhlenbeck operator as well as classical Hardy
spaces relate to the usual Laplacian (see [79]). In particular, G. Mauceri and S.
Meda in [174], proved that the imaginary powers of L, (−L)iα and the adjoint of
the Riesz transforms R∗

j are bounded from H1,r
at (γd) to L1(γd), but later in [176, The-

orem 3.1] G. Mauceri, S. Meda, and P. Sjögren proved that the Riesz transforms
R j are bounded from L∞ to the dual of H1,r

at (γd) = BMO(γd) in any dimension, but
they are not bounded from H1

at(γd) to L1(γd) in a dimension greater than one. Thus,
their definition does not contain all the machinery that makes Fefferman–Stein [79]
so outstanding, and has proven useful in a range of applications, specially in the
study of partial differential equations. This was the main reason why J. Maas, J. van
Neerven, and P. Portal developed a program to find an alternative definition of the
Hardy spaces. In [231, Theorem 6.1], P. Portal proved that the Riesz transforms R j

are bounded from H1
max(γd) = H1

quad(γd) to L1(γd), with a similar approach to that
in the proof of Theorem 7.16, using an appropriated Calderón reproducing formula
(see [231, Lemma 6.2]). More recently, T. Bruno proved that the Riesz transforms
are bounded from the atomic Gaussian Hardy space X1(γd) to L1(γd) (see [37, The-
orem 1.2]).

9.2 Definition and Boundedness Properties of the Higher-Order
Gaussian Riesz Transforms

In the Gaussian case, the higher-order Gaussian Riesz transforms are defined di-
rectly.

Definition 9.5. For β = (β1,β2, · · · ,βd)∈N
d
0 , the higher order Riesz transforms are

defined spectrally as
Rβ = ∂βγ (−L)−|β |/2, (9.15)

where |β | = ∑d
j=1β j and ∂ γβ = 1

2|β |/2 ∂
β1
x1 · · ·∂βd

xd . The meaning of this is that for any

multi-index ν such that |ν |> 0, its action on the Hermite polynomial Hν is
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RβHν =
( 2
|ν |

)|β |/2[ d

∏
i=1

νi(νi −1) · · ·(νi −βi +1)
]
Hν−β (9.16)

if βi ≤ νi for all i = 1,2, · · · ,d, and zero otherwise.

Observe that (9.16) follows directly from the definition of Rβ , because Hν is the
eigenfunction of the Ornstein–Uhlenbeck operator −L, with eigenvalue |ν |; there-
fore,

(−L)−|β |/2Hν =
1

|ν ||β |/2
Hν .

Hence, using (1.57) and (1.36), we get

RβHν(x) = ∂ γβ (−L)−|β |/2Hν(x) = ∂ γβ (
1

|ν ||β |/2
Hν(x))

=
1

2|β |/2|ν ||β |/2
∂β1

1 · · ·∂βd
d (

d

∏
i=1

Hνi(xi)) =
1

2|β |/2|ν ||β |/2

d

∏
i=1

(∂βi
i Hνi(xi))

=
1

2|β |/2|ν ||β |/2

d

∏
i=1

(2βi [νi(νi −1) · · ·(νi −βi +1)]Hνi−βi
(xi))

=
2|β |/2

|ν ||β |/2

d

∏
i=1

([νi(νi −1) · · ·(νi −βi +1)]Hνi−βi
(xi))

=
( 2
|ν |

)|β |/2[ d

∏
i=1

νi(νi −1) · · ·(νi −βi +1)
]
Hν−β (x).

Observe that this implies that

Rβhν(x) =
( 1
|ν |

)|β |/2[ d

∏
i=1

νi(νi −1) · · ·(νi −βi +1)
]1/2

hν−β (x), (9.17)

because

Rβhν(x) = Rβ

( Hν(x)

(2|ν |ν!)1/2

)
=

1

(2|ν |ν!)1/2

( 2
|ν |

)|β |/2

[ d

∏
i=1

νi(νi −1) · · ·(νi −βi +1)
]
Hν−β (x)

=
( 1
|ν |

)|β |/2[ d

∏
i=1

νi(νi −1) · · ·(νi −βi +1)

(νi!)1/2

] Hν−β (x)

(2|ν |−|β |)1/2

=
( 1
|ν |

)|β |/2[ d

∏
i=1

[νi(νi −1) · · ·(νi −βi +1)]1/2

(νi −βi!)1/2

] Hν−β (x)

(2|ν−β |)1/2

=
( 1
|ν |

)|β |/2 d

∏
i=1

[νi(νi −1) · · ·(νi −βi +1)]1/2 Hν−β (x)

(2|ν−β |(ν−β )!)1/2
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=
( 1
|ν |

)|β |/2[ d

∏
i=1

νi(νi −1) · · ·(νi −βi +1)
]1/2

hν−β (x).

The higher-order Gaussian Riesz transforms have a kernel given by

Kβ (x,y) = ∂βγ N|β |/2(x,y) (9.18)

=
1

πd/2Γ (|β |/2)

∫ 1

0

(− logr
1− r2

) |β |−2
2

r|β |Hβ

( y− rx√
1− r2

) e
− |y−rx|2

1−r2

(1− r2)d/2+1

dr
r
.

Therefore,

Rβ f (x) = p.v.
∫
Rd

Kβ (x,y) f (y)dy (9.19)

= p.v.
1

πd/2Γ (|β |/2)

∫
Rd

∫ 1

0

(− logr
1− r2

) |β |−2
2

r|β |Hβ

( y− rx√
1− r2

)

e
− |y−rx|2

1−r2

(1− r2)d/2+1

dr
r

f (y)dy.

Let us study the Lp(γd) boundedness of these operators, for 1 < p < ∞,

Theorem 9.6. The higher-order Gaussian Riesz transforms Rβ , |β |> 1 are Lp(γd)
bounded for 1 < p < ∞, that is, there exists C > 0, dependent only on p and
dimension such that

‖Rβ f‖p,γ ≤C‖ f‖p,γ , (9.20)

for any f ∈ Lp(γd).

There are several analytic proofs of this result. The first analytic proof was
given by W. Urbina in [278] with constants dependent on dimension. A clever
proof was given by G. Pisier [227], which combines probabilistic and analytic
techniques (method of rotations and transference methods), with constants inde-
pendent of dimension, but valid only for the case |β | odd. In [124], C. Gutiérrez,
C. Segovia, and J. L. Torrea obtained a proof, with constants independent of di-
mension, following the work of C. Gutiérrez in [122], by using the Littlewood–
Paley theory, with higher-order Gaussian Littlewood–Paley functions, which
were discussed in Chapter 6. In [223], S. Pérez and F. Soria provide an ana-
lytic proof, with constants dependent on dimension, with a similar technique to
that developed to study the Ornstein–Uhlenbeck maximal function T ∗ already
discussed in Chapter 4. We study their proof in detail. Finally, L. Forzani, R.
Scotto, and W. Urbina in [88] have a very simple proof, with constants inde-
pendent of dimension, based on Meyer’s multiplier theorem (Theorem 6.2; see
Corollary 9.12).
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Proof. As in the case of the Gaussian Riesz transforms, we follow the proof of S.
Pérez and F. Soria ([223]). Again, we split these operators into a local part and a
global part,

Rβ f (x) = Cd

∫

|x−y|<d m(x)

Kβ (x,y) f (y)dy+Cd

∫

|x−y|≥d m(x)

Kβ (x,y)| f (y)|dy

= Rβ ,L f (x)+Rβ ,G f (x),

where Rβ ,L f (x) = Rβ ( f χBh(·))(x) is the local part , Rβ ,G f (x) = Rβ ( f χBc
h(·))(x) is

the global part of Rβ , and Bh = B(x,Cd m(x)) = {y ∈ R
d : |y− x|<Cd m(x)}, is an

admissible ball.

I) It has been clear, since W. Urbina’s work in [278], that the local part, as in
the case of the Gaussian Riesz transforms, corresponds to a classical Calderón–
Zygmund singular integral.
Now, we see that the kernel Kβ satisfies the decay conditions (4.29) in the local

region. Observe that r|β |−2
(

− logr
1−r2

)|β |−2
is bounded for every r ∈ (0,1) and any

β , ≥ 2. We also use the fact that, |Hβ (x)| ≤C|x||β |. Then,

∣∣∣∣∣∇y

(
e
− |y−rx|2

1−r2 Hβ

(
y− rx√
1− r2

))∣∣∣∣∣

=
( d

∑
i=1

e
− |y−rx|2

1−r2
∣∣∣− 2(yi − rxi)

1− r2 Hβ

(
y− rx√
1− r2

)

− 2βi√
1− r2

Hβ1

(
y1−rx1√

1− r2

)
. . .Hβi−1

(
yi−rxi√

1−r2

)
. . .Hβd

(
yd−rxd√

1−r2

)∣∣∣2
) 1

2

≤Cβ

(
|y− rx||α |+1

(1− r2)
|β |+1

2

+
|y− rx||β |−1

(1− r2)
|β |−1

2

)
e
− |y−rx|2

1−r2

(1− r2)
1
2

.

Again, using the notation of Proposition 4.23, given x,y ∈R
d and t > 0, we write

a = |x|2+ |y|2,b = 2〈x,y〉 and u(t) = a
t −

√
1−t
t b−|x|2. We can conclude that the

above expression is bounded by

1∫

0

(
u

|α|−1
2 (t)+u

|α|+1
2 (t)

) e−u(t)

t
d+3

2

dt;

therefore, using Lemma 4.35, we have, in the local region,

∣∣∇yKβ (x,y)
∣∣≤ C

|x− y|d+1 .
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Also, it is easy to see that for the kernel Kβ we have

|Kβ (x,y)| ≤C|β |

∫ 1

0
(u(t))|β |/2 e−u(t)

t(d+2)/2
dt.

Therefore, again using Lemma 4.35, with exponent d −1 instead of d, we get

|Kβ (x,y)| ≤
C

|x− y|d .

Therefore, we can apply Theorem 4.30 to Kβ and the operator determined by it.

II) For the global part of Rα , we use a generalization of Theorem 9.4.

First, let us consider the following kernel:

Definition 9.7. For each m ≥ 2 the m-modified maximal Gaussian kernel is de-
fined as

K m(x,y)=

{
(|x+ y||x− y|)m−2

2 K (x,y) if 〈x,y〉 ≤ 0

(|x+ y||x− y|)m−2
2

(
|x+ y||x− y|) 1

2
|x| |y|

|x|2+|y|2 +1
)
K (x,y) if 〈x,y〉 ≥ 0

(9.21)
where K is the Gaussian maximal kernel defined in (4.40), and define the m-
modified maximal operator

T m f (x) =
∫
Rd

K m(x,y) f (y)dy. (9.22)

Theorem 9.8. (Pérez–Soria) For the kernel Kβ of the Gaussian Riesz transform of
order β , |β | ≥ 2. Then, we have

|Kβ (x,y)| ≤CK |β |(x,y), (9.23)

on the region |x− y|>Cd(1∧1/|x|).

Proof. Observe that the function r|β |−2
(

− logr
1−r2

)(|β |−2)/2
is bounded for any r ∈ (0,1)

and any β ≥ 2. Again, using the fact that |Hβ (x)| ≤ C|x||β |, and making the change
of variables t = 1− r2, we get

|Kβ (x,y)| ≤C
∫ 1

0

∣∣∣∣Hβ

(
y−

√
1− tx√
t

)∣∣∣∣ e−
|y−

√
1−tx|2
t

t
d+2

2

dt ≤C

1∫

0

u|β |/2(t)e−u(t)

t
d+2

2

dt.

Thus, it is enough to prove that the last integral is bounded by K ∗
|β |(x,y). We need to

analyze two cases:

• Case #1: b = 2〈x,y〉 ≤ 0. In this case, we see that

1∫

0

u|β |/2(t)e−u(t)

t
d+2

2

dt ≤Ca
|β |−2

2 e−|y|2 ,
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Using the inequality (4.76):

a
t
−|x|2 ≤ u(t)≤ 2a

t
,

from Proposition 4.23, the change of variables a
(

1
t −1

)
= s, and the fact that, in

the global region, a > 1/2, we obtain,

1∫

0

u|β |/2(t)e−u(t)

t
d+2

2

dt ≤ e−|y|2
1∫

0

exp
(
−a

t
+a

)(2a
t

)|α |/2 dt

t
d
2 +1

≤ Cβa
|β |−2

2 e−|y|2
∞∫

0

e−s(2s+1)
d+|β |−2

2 ds ≤Ca
|β |−2

2 e−|y|2 .

• Case #2: b = 2〈x,y〉> 0.
Using the same argument as in Theorem 9.4, we have that for d ≥ 2 (4.78) holds,

e−
d−2

d u(t)

t
d−2

2

≤C
e−

d−2
d u0

t
d−2

2
0

.

Then, using Lemma 4.37 for ν = 2/d, we get

1∫

0

u|α |/2(t)e−
2u(t)

d
dt
t2 ≤ Cde−

2u0
2

t0

(
u

|α|−1
2

0
b
a

u(t0)
|α|−2

2 +1

)
,

because u0 ≤ |x+ y||x − y|,b/a ≤ 2|x||y|/(|x|2 + |y|2) and d ≤ |x+ y||x − y| if
〈x,y〉 ≥ 0 and |x− y|>Cd(1∧1/|x|). ��

Similar to the case of the Riesz transforms, the symmetry of the non-exponential
factor of the kernel K |β |(x,y) allows us to obtain that the adjoint operator to the
higher-order Riesz transforms are also of weak type (1,1) with respect to the Gaus-
sian measure, as

K|α |
∗
(x,y) = K |α |(y,x)e

|y|2−|x|2 .

As mentioned already, the main goal of C. Gutiérrez, C. Segovia, and J. L. Tor-
rea’s article [124, Chapter 4] is, also following Stein’s scheme in [253], to prove
Theorems 9.2 using higher-order Littlewood–Paley functions. To do so, they first
get the following identity: given a multi-index β ∈ Γk of order k, i.e., |β | = k using

translated Poisson semigroups {P(k)
t }t≥0 (see 3.56),

∂ kP(k)
t

∂ tk (Rβ f )(x) = (− 1√
2
)k∂βPt f (x). (9.24)
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To prove this identity, it is enough to check it for the Hermite polynomials {Hν}.
From (9.16) and (1.60),

∂ kP(k)
t

∂ tk (RβHν(x)) =
( 2
|ν |

)|β |/2[ d

∏
i=1

νi(νi −1) · · ·(νi −βi +1)
]∂ kP(k)

t

∂ tk (Hν−β )(x)

=
( 2
|ν |

)k/2[ d

∏
i=1

νi(νi −1) · · ·(νi −βi +1)
]

× ∂ k

∂ tk

(
e−

√
|ν−β |+k t)hν−β (x)

=
( 2
|ν |

)k/2[ d

∏
i=1

νi(νi−1) · · ·(νi−βi+1)
]) ∂ k

∂ tk (e
−
√

|ν | t)Hν−β (x)

= (− 1√
2
)ke−

√
|ν | t

[ d

∏
i=1

νi(νi −1) · · ·(νi −βi +1)
]
Hν−β (x)

= (− 1√
2
)ke−

√
|ν | t(∂βHν)(x) = (− 1√

2
)k(∂βPtHν)(x).

Then, let Rk f = (Rβ f )β∈Λk

gk
t,γ(Rk f )(x) =

(∫ ∞

0
∑
β∈Λk

∣∣∣tk ∂ kP(k)
t

∂ tk (Rβ f )(x)
∣∣∣2 dt

t

)1/2

= C

(∫ +∞

0

∣∣∣tk(∂βPt f )(x)
∣∣∣2 dt

t

) 1
2

=Cgk
x,γ f (x).

Therefore, using Theorem 5.13, we get

|| |Rk f | |||p,γ ≤Cp||gk
t,γ(Rk f )||p,γ =Cp||gk

x,γ( f )||p,γ ≤Cp|| f ||p,γ .

Thus, we get the Lp(γd)-boundedness of Rβ , for any β , |β | > 1 with constants
independent of dimension.

The Riesz transforms of order 2 are of weak type (1,1) with respect to the Gaus-
sian measure, that is, they map L1(γd) into L1,∞(γd). This result has been shown,
by L. Forzani and R. Scotto for the case d = 1 in [86], and for general d > 1 by
J. Garcı́a-Cuerva, G. Mauceri, P. Sjögren and J. L. Torrea in [102], but their proof
contains a gap. Additionally, S. Pérez and F. Soria [223] have an alternative proof
using the fact that the 2-modified maximal Gaussian kernel K 2 bounds the kernels
of the Gaussian Riesz transforms of order 2, based on the following result (see [223,
Theorem 4.4]):

Theorem 9.9. The operator T 2 is of weak type (1,1) with respect to the Gaussian
measure.

The proof of this theorem involves heavily all the arguments used to prove Theo-
rem 4.24, with some slight modifications. In particular, it is important to recall some
of the notation and facts:
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• Let α := α(x,y) = sin∠(x,y), where ∠(x,y) ∈ [0,π] denotes the shortest angle
between the vectors x and y if 〈x,y〉> 0, we have ∠(x,y) ∈ [0,π/2]).

• Define for k = 1,2 and l ∈ N

Γ k
l (x) =

{
y : 〈x,y〉> 0, |x| ≤ |y|,α(x,y)≤ l/|x|k

}
,

(see (4.51)).
• Then, for fixed values of k and l, the average operator, defined by

Tk
l f (x) =

1

γd(Γ k
l (x))

∫
Γ k

l (x)
| f (y)|e−|y|2dy

(see (4.52)), is of weak type (1,1) with respect to γd .

The arguments follow closely the proof of Lemmas 4.25, 4.26 and 4.27 (see also
[185, Lemma 2.6, 2.7 and 2.8]).

Proof. Without loss of generality, we may assume that f ≥ 0. As the operator T ,
defined in (4.46), is of weak type (1,1) with respect to the Gaussian measure (see
Theorem 4.24), and K 2(x,y) is dominated by K (x,y) if 〈x,y〉> 0 and |x| ≤ 10, or
on the local region, the operator T 2 is also of weak type (1,1) with respect to the
Gaussian measure on those regions. Thus, it remains to consider the case when we
are outside of those regions.

When |x|> |y|, as |x+ y||x− y|> d, the kernel K 2(x,y) satisfies

K 2(x,y) ≤ |x+ y|d
(|x+ y||x− y|)(d−1)/2

exp
(
− |y|2 −|x|2

2
− |x+ y||x− y|

2

)

≤ C|x|d exp
(
− |x||x− y|

2

)
e|x|

2−|y|2 .

It is easy to check that K 2(x,y)e|y|
2−|x|2 ∈ L1(γd), uniformly in y; thus, the operator

is of strong type (p, p), 1 < p <∞ with respect to the Gaussian measure in the global
region.

Next, we consider for 〈x,y〉 > 0 and |x| > 10 two operators defined T̃1 and T̃2

defined by the restriction of K 2(x,y) to the regions,

B1 =
{
(x,y) ∈ R

2d : y /∈ Bh(x),〈x,y〉> 0, |x| ≤ |y| and α(x,y)> 1/|x|

or |x| ≤ 2|y|,α(x,y)≤ 1/|x|
}
,

B2 =
{
(x,y) ∈ R

2d : y /∈ Bh(x) : 〈x,y〉> 0, |y|/2 ≤ |x|< |y|,α(x,y)≤ 1/|x|
}
,

respectively.
On B1, we have K 2(x,y) ≤ C|x|K (x,y); therefore T̃1 f (x) ≤ T1 f (x), where T1

corresponds to the operator associated with the restriction of K (x,y) on B1. Now,
from the estimate (4.54) we obtain,
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T̃1 f (x)≤CT1
1 f (x)+C ∑

m≥1
e−m2/4T1

m+1 f (x),

similar to the proof of Lemma 4.25.
To estimate T̃2, we follow the same arguments and notation as in the proof of

Lemma 4.26. We have that

K 2(x,y)≤CA1/2K (x,y), if y ∈Λ(x),

as A ≥ cα(x,y)|x|2, and

K 2(x,y)≤Cα(x,y)1/2K (x,y), if y ∈ Γ 1
1 (x)\Λ(x),

as A ≤Cα(x,y)|x|2.
Consider now the average operator,

˜A2 f (x) =
1

γd(Λ(x))

∫
Λ(x)

G2(x,y) f (y)e−|y|2dy,

with G2(x,y) =A−d/2G(x,y) and G(x,y) =A−d/2eα
2|y|4/16A. Then, we conclude with

the same arguments as in the proof of Lemma 4.26, that

T̃2 f (x)≤C
∞

∑
l≥2

e−δ lT2
l f (x)+C ˜A f (x).

The value of δ > 0 can be chosen as before.
It remains only to show that ˜A2 is of weak type (1,1) and the proof of that is

similar to the proof of Lemma 4.27, replacing G(x,y) by G2(x,y). ��

Moreover, the Gaussian higher-order Riesz transforms Rβ are of weak type
(1,1) with respect to the Gaussian measure if and only if |β | ≤ 2; equivalently, it
can be proved that the result breaks down for |β | > 2. This is a surprising result,
compared with the classical case, and it was initially proved by R. Scotto and L.
Forzani in the one-dimensional case in [86]. The case for higher dimensions d > 1
was considered by J. L. Garcı́a-Cuerva, G. Mauceri, P. Sjögren, and J. L. Torrea in
[102], even though there are certain technical issues in their proof, and by S. Pérez
and F. Soria [223]. This fact implies then that the theory of Gaussian singular inte-
grals is different from the classical Calderón–Zygmund and, in particular, it cannot
be developed using interpolation results.

Now, let us discuss the counterexample that Riesz transforms of at least order
three are not of weak type (1,1) with respect to the Gaussian measure. This is taken
from [102]. The idea of the counterexample is to consider a function f ∈ L1(γd)
which is “equivalent” to a point mass at y ∈ R

d properly normalized in L1(γd), that
is to say, f ∼ e|y|

2δy, for |y| large.
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Theorem 9.10. Let |β | ≥ 3. Then, the Riesz transform Rβ is not of weak type (1,1)
with respect to the Gaussian measure.

Proof. Let y ∈ R
d with |y| = η large and yi ≥ Cη , i = 1, · · · ,d. Write x ∈ R

d as
x = ξ y

η + v with ξ ∈ R and v ⊥ y. Consider the tubular region

J = {x ∈ R
d : x = ξ

y
η
+ v with η/2 < ξ < 3η/4,v ⊥ y, |v|< 1}.

It follows that for x ∈ J, there is a C > 0 so that

yi − rxi√
1− r2

≥ Cη√
1− r2

≥Cη , i = 1, · · · ,d. (9.25)

Hence,

Hβ

( y− rx√
1− r2

)
>C|y|β .

In particular, the integrand in (9.18) is positive for 0 < r < 1, and observe that

e
− |y−rx|2

1−r2 = eξ
2−η2

e
− |ξ−rη |2+r2 |v|2

1−r2 , (9.26)

so that for 1/4 < r < 3/4 and x ∈ J

e
− |y−rx|2

1−r2 ≥ eξ
2−η2

e−C|ξ−rη |2 . (9.27)

These estimates imply that

|Kβ (x,y)| ≥ Cdηβ eξ
2−η2

∫ 3/4

1/4
e−C|ξ−rη |2dr ≥Cdη |β |−1eξ

2−η2
.

for x ∈ J.
Now, let f ∈ L1(γd), f ≥ 0 be a close approximation of a point mass at y, with

norm ‖ f‖1,γ = 1. Then, Rβ f (x) is close to eη
2
Kβ (x,y) when x ∈ J. We conclude

that
Rβ f (x)≥Cηβ−1eξ

2 ≥Cηβ−1e(η/2)2
,

for x ∈ J.
On the other hand, because γd(J)≥ C

η e−(η/2)2
, and

γd(J)≤ γd

({
x ∈ R

d : Rβ f (x)>Cηβ−1e(η/2)2
})

≤C
e−(η/2)2

ηβ−1
.

Then,
||Rβ f ||1,∞,γ ≥Cη |β |−2 → ∞,

if η → ∞, for |β | ≥ 3. ��
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In [85], L. Forzani, E. Harboure, and R. Scotto give a different and simpler proof
of this result for a more general class of Gaussian singular integrals that includes
the Gaussian higher-order Riesz transforms, which are discussed later (see Theo-
rem 9.18 and Theorem 9.19).

Additionally, S. Pérez and F. Soria [223, Theorem 4.5] obtained the following
result on the boundedness of Gaussian higher-order Riesz transforms of order greater
than or equal to 3 on Orlicz spaces, “near” L1(γd), using the estimates of the size of
the kernel of Rβ .

Theorem 9.11. The higher-order Gaussian Riesz transform Rβ , |β | ≥ 3 is of weak

type in the Orlicz space L(1+ log+ L)
|β |−2

2 (γd). In other words, there exists a constant
C such that

γd

({
x ∈ R

d : |Rβ ,G f (x)| ≥ λ
})

≤ C
λ
(‖ f‖

L(1+log+ L)
|β |−2

2 (γd)
+1), (9.28)

where, as before Rβ ,G f (x) = Rβ ( f χBc
h(·))(x), is the global part of the Riesz trans-

form Rβ and ‖ · ‖
L(1+log+ L)

|β |−2
2 (γd)

denotes the functional associated with the space

L(1+ log+ L)
|β |−2

2 (γd). Thus, Rβ ,G sends the space L(1+ log+ L)
|β |−2

2 (γd) continu-
ously into L1,∞(γd).

Proof. From Theorem 9.8, it is enough to work with the m-modified maximal opera-
tor T m, as it controls Rβ ,G, with m = |β |. Thus, we will prove that T m satisfies (9.28)
for m ≥ 3. When we restrict ourselves to the region |x| > |y|, the usual arguments,
which show that T or T 2 are of strong type 1 (see [185, Theorem 2.3] or [223, Theo-
rem 4.4]), tell us that T m, is also of strong type 1 in this region. This is easy to see,
for 〈x,y〉 ≤ 0 and |x|> |y|then

K m(x,y)≤C|x|me|y|
2
,

whereas 〈x,y〉> 0 and |x|> |y| then

K m(x,y) ≤ C(|x+ y||x− y|)m−1
2 |x|me−

|y|2−|x|2
2 e−

|x−y||x+y|
2 e|x|

2−|y|2

≤ C|x|m exp
(
− |x| |x− y|

3

)
e|x|

2−|y|2

In both cases, the integral in the variable x is uniformly bounded in y and the strong
type (1,1) follows.

For |x|< |y|, we use the crude estimate

K m(x,y)≤C(|x+ y||x− y|)m−2
2 K 2(x,y).
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Hence, ∫
|x|<|y|

K m(x,y)| f (y)|dy ≤C
∫
Rd

K 2(x,y)| f (y)||y|m−2dy.

We use a particular case of Young’s inequality: given positive u and v, we have
u · v ≤ u(1+ log+ u)+ ev, which implies with more generality that

u · v ≤ δ k
(

u1/k v1/k

δ

)k
≤Ckδ k(u(1+ log+ u)k + e(k/δ )v

1/k
).

Taking u = | f (y)|, v = |y|m−2 and k/δ = 1/2, we obtain
∫
|x|<|y|

K m(x,y)| f (y)|dy ≤ C
∫
Rd

K 2(x,y)| f (y)|(1+ log+ | f (y)|)m−2 dy

+
∫
Rd

K 2(x,y)e
|y|2/2dy

= T 2(| f |(1+ log+ | f |)m−2 + e|·|
2/2)(x).

Because T 2 is of weak type (1,1) with respect to the Gaussian measure, as we have
seen, we conclude that

γd

({
x ∈ R

d : T 2(| f |(1+ log+ | f |)m−2 + e|·|
2/2)(x)≥ λ

})

≤ C
λ

∫
Rd

[
| f (y)|(1+ log+ | f (y)|)m−2 + e|y|

2/2
]
γd(dy)

≤ C
λ
(‖ f‖

L(1+log+ L)
|β |−2

2 (γd)
+1). ��

Finally, as was mentioned before, the Lp(γd)-boundedness, 1 < p < ∞, of the
higher-order Riesz transforms, with constants independent of dimension, can be ob-
tained as a consequence of Meyer’s multiplier theorem (Theorem 6.2; see [88]).

Corollary 9.12. The higher-order Gaussian Riesz transforms Rβ , |β | > 1, are
Lp(γd) bounded for 1 < p < ∞, that is to say, there exists C > 0, dependent only
on p and β , but not on dimension, such that

‖Rβ f‖p,γ ≤C‖ f‖p,γ , (9.29)

for any f ∈ Lp(γd).

Proof. Given the multi-index β = (β1, . . . ,βd), from (9.17), we know that the action
of Rβ over the normalized Hermite polynomial hν is given by

Rβhν(x) =
( 1
|ν |

)|β |/2[ d

∏
i=1

νi(νi −1) · · ·(νi −βi +1)
]1/2

hν−β (x),

with βi ≤ νi for all i = 1, · · · ,d, otherwise Rβhν(x) = 0.
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Now, for the same multi-index β , let us consider the operator

Rβ1
1 Rβ2

2 . . .Rβd
d ,

the composition of powers of the Riesz transforms, Rβ1
1 ,Rβ2

2 , . . . ,Rβd
d . Then,

Rβ1
1 Rβ2

2 . . .Rβd
d hν(x) =

[ d

∏
i=1

νi(νi −1) · · ·(νi −βi +1)
|ν |(|ν |−1) . . .(|ν |−βi +1)

]1/2
hν−β (x).

Now, define the multiplier operator Tβ as

Tβhν(x) =
[∏d

i=1 |ν |(|ν |−1) . . .(|ν |−βi +1)

|ν ||β |
]1/2

hν(x)

=
[∏d

i=1(|ν |−1) . . .(|ν |− (βi −1))

|ν ||β |−d

]1/2
hν(x)

=
[ d

∏
i=1

(|ν |−1) . . .(|ν |− (βi −1))

|ν |βi−1

]1/2
hν(x)

=
[ d

∏
i=1

(1− 1
|ν | ) . . .(1− (βi −1)

|ν | )
]1/2

hν(x).

Then, Tβ is a Meyer’s multiplier (6.4), with multiplier φ defined using the function,

h(x) = [
d

∏
i=1

(1− x) . . .(1− (βi −1)x)]1/2.

By construction, Tβ satisfies,

Rβ = Rβ1
1 Rβ2

2 . . .Rβd
d ◦Tβ (9.30)

Therefore, the Lp(γd) boundedness of Rβ is obtained immediately from the Lp(γd)
boundedness of the Riesz transforms R j using Meyer’s multiplier theorem (Theo-
rem 6.2), where the constant is dependent on p and β , but independent of the di-
mension d, as long as we have proof of the Lp-boundedness of the (first-order) Riesz
transforms with constants independent of dimension2. ��

9.3 Alternative Gaussian Riesz Transforms

We have mentioned before in Chapter 2, that the Gaussian partial derivatives in
R

d , ∂ i
γ are not self-adjoint in L2(γd), and its adjoint is given by

2It has been mentioned before that there are several proofs of this fact (see, for instance,
G. Pisier [227] or C. Gutiérrez [122])
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(∂ i
γ)

∗ =− 1√
2

∂
∂xi

+
√

2xiId

(see 2.12). The Ornstein–Uhlenbeck operator can be written as

(−L) =
d

∑
i=1

(∂ i
γ)

∗∂ i
γ .

Therefore, there is another “natural” differential operator, the alternative Ornstein–
Uhlenbeck operator, (2.14), which is given by

(−L) =
d

∑
i=1

∂ i
γ(∂ i

γ)
∗ = (−L)+dI =−1

2
Δ + 〈x,∇x〉+dI.

H. Aimar, L. Forzani, and R. Scotto in [5] considered the following alternative
Riesz transforms, by taking the derivatives (∂ i

γ)
∗ and the operator (−L),

R j = (∂ γj )
∗(−L)−1/2, (9.31)

Moreover, we can also consider alternative higher-order Gaussian Riesz trans-
forms, that is, for a multi-index β , |β | ≥ 1 we use the gradient

(∂βγ )∗ =
(−1)|β |

2|β |/2
e|x|

2
(∂β e−|x|2I)

and the Riesz potentials associated with L. Then, these new singular integral opera-
tors are defined as follows:

Definition 9.13. The alternative Gaussian Riesz transform Rβ for |β | ≥ 1 is defined
spectrally as

Rβ f (x) = (∂βγ )∗(−L)−|β |/2 f (x).

Thus, the action of Rβ over the Hermite polynomial Hν is given by

RβHν =
1

2|β |/2(|ν |+d)|β |/2
Hν+β , (9.32)

because, using the fact that the Hermite polynomials {Hν} are eigenfunctions of
L,

(−L)−|β |/2Hν =
1

(|ν |+d)|β |/2
Hν ,

and using Rodrigues’ formula (1.28), we get

RβHν(x) = (∂βγ )∗(−L)−|β |/2Hν(x) =
(−1)|β |

(|ν |+d)|β |/2
e|x|

2
∂β (e−|x|2Hν(x))

=
(−1)|β+ν |

2|β |/2(|ν |+d)|β |/2
e|x|

2
∂β+ν(e−|x|2) =

1

2|β |/2(|ν |+d)|β |/2
Hν+β (x);
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therefore,

Rβhν(x) =
1

(|ν |+d)|β |/2

[ d

∏
i=1

(νi +βi)(νi +βi −1) · · ·(νi +1)
]1/2

hν+β (x), (9.33)

because,

Rβhν(x) = Rβ

( Hν(x)

(2|ν |ν!)1/2

)
=

1

(2|ν |ν!)1/2
RβHν(x)

=
1

(2|ν |ν!)1/2

1

2|β |/2(|ν |+d)|β |/2
Hν+β (x)=

1

(ν!)1/2(|ν |+d)|β |/2

Hν+β (x)

2|ν |/2+|β |/2

=
1

(|ν |+d)|β |/2

( (ν+β )!
ν!

)1/2 Hν+β (x)

(2|ν+β |(ν+β )!)1/2

=
1

(|ν |+d)|β |/2

[ d

∏
i=1

(νi +βi)(νi +βi −1) · · ·(νi +1)
]1/2

hν+β (x).

With an argument analogous to Lemma 8.3, we can get that the alternative higher-
order Gaussian Riesz transforms then have the following integral representation

Rβ f (x) = p.v. e|x|
2
∫
Rd

K β (x,y) f (y)γd(dy)

where

K β (x,y) =Cβ

∫ 1

0

(
− logr
1− r2

) |β |−2
2

rd−1Hβ

(
x− ry√
1− r2

)
e
− |x−ry|2

1−r2

(1− r2)
d
2 +1

dr.

Formally, K β is obtained by differentiating with respect to the adjoint of ∂ γ the
kernel corresponding to the Riesz potentials associated with L, (8.62),

(−L)−|β |/2 f (x) =
1

Γ (|β |/2)

∫ ∞

0
t
|β |−2

2 T (d)
t f (x) dt

= Cβ e|x|
2
∫
Rd

(∫ 1

0
(− logr)

|β |−2
2 rd e

− |x−ry|2
1−r2

(1− r2)
d
2

dr
r

)
f (y) γd(dy).

= Cβ

∫
Rd

(∫ 1

0
(− logr)

|β |−2
2 rd e

− |y−rx|2
1−r2

(1− r2)
d
2

dr
r

)
f (y) dy.

Similar to Corollary 9.12, the Lp(γd) boundedness of Rβ , 1 < p < ∞ can be
obtained from P. A. Meyer’s multiplier theorem (Theorem 6.2).

Corollary 9.14. The alternative Gaussian Riesz transforms Rβ are Lp(γd) bounded
for 1 < p < ∞, that is to say, there exists C > 0, dependent only on p and β , but not
on dimension, such that

‖Rβ f‖p,γ ≤C‖ f‖p,γ , (9.34)

for any f ∈ Lp(γd).
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Proof. Given the multi-index β = (β1, . . . ,βd), from (9.33), we know that the action
of Rβ over the normalized Hermite polynomial hν is given by

Rβhν(x) =
1

(|ν |+d)|β |/2

[ d

∏
j=1

(ν j +β j) · · ·(ν j +1)
]1/2

hν+β (x).

Now, for the same multi-index β , let us consider the operator

R
β1
1 R

β2
2 . . .R

βd
d ,

the composition of powers of the Riesz transforms, R
β1
1 ,R

β2
2 , . . .R

βd
d . Then,

R
β1
1 R

β2
2 . . .R

βd
d hν(x) =

d

∏
j=1

( β j

∏
i=1

( ν j + i

|ν |+d +(i−1)

))1/2
hν+β (x)

=
[ d

∏
j=1

(ν j +β j) · · ·(ν j +1)
(|ν |+d +β j −1) · · ·(|ν |+d)

]1/2
hν+β (x)

Consider the multiplier Tβ defined as

Tβhν(x) =
[∏d

j=1(|ν |+d +β j −1) · · ·(|ν |+d)

(|ν |+d)|β |

]1/2
hν(x)

=
[∏d

j=1(|ν |+d +β j −1) · · ·(|ν |+2)

(|ν |+d)|β |−d

]1/2
hν(x)

=
[ d

∏
j=1

( |ν |+d +β j −1) · · ·(|ν |+d +1)

(|ν |+d)β j−1

)]1/2
hν(x)

=
[ d

∏
j=1

( (|ν |+d)+(β j −1)
|ν |+d

)
· · · (|ν |+d)+1)

|ν |+d

)]1/2
hν(x)

=
[ d

∏
j=1

(
1+

(β j −1)
|ν |+d

)
· · ·

(
1+

1
|ν |+d

)]1/2
hν(x)

By construction, Tβ satisfies,

Rβ = R
β1
1 R

β2
2 . . .R

βd
d ◦Tβ (9.35)

As in the case of the Gaussian Bessel potentials, Tβ is the composition of two
Meyer’s multipliers 6.4), one of the multipliers defined using the function,

h(x) =
[ d

∏
j=1

(1+ x(β j −1)) · · ·(1+ x)
]1/2

.
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Therefore, the Lp(γd) boundedness of Rβ is obtained immediately from the
Lp(γd) boundedness of the Riesz transforms R j using Meyer’s multiplier theorem
(Theorem 6.2), where the constant is dependent on p and β , but independent of the
dimension d, as long as we have proof of the Lp-boundedness of the (first-order)
Riesz transforms with constants independent of dimension. ��

In [5], H. Aimar, L. Forzani, and R. Scotto obtained a surprising result: the alter-
native Riesz transforms Rβ are of weak type (1,1) for all multi-index β , i.e., inde-
pendently of their orders, which is a contrasting fact with respect to the anomalous
behavior of the higher-order Riesz transforms Rβ .

Theorem 9.15. For any multi-index β , there exists a constant C dependent only on
d and β such that for all λ > 0, f ∈ L1(γd), we have

γd

({
x ∈ R

d : Rβ f (x)> λ
})

≤ C
λ

∫
Rd

| f (y)|γd(dy),

i.e., Rβ f is of γd-weak type (1,1).

Proof. The main feature, to prove this theorem, is to apply Theorem 4.18 with an
special Φ . For each x ∈R

d , as usual, we write this operator as the sum of two opera-
tors that are obtained by splitting R

d into a local region, Bh(x) = {y ∈ R
d : |y− x|<

Cdm(x)}, an admissible ball and its complement Bc
h(x) called the global region. Thus,

Rβ f (x) = Rβ ,L f (x)+Rβ ,G f (x)

where Rβ ,L f (x) = Rβ ( f χBh(·))(x) is the local part of Rβ and Rβ ,G f (x) =

Rβ ( f (χc
Bh(·))(x) is the global part of Rβ .

We prove that these two operators are γd-weak type (1,1); thus, also Rβ is weak
type (1,1). To prove that Rβ ,L is of γ-weak type (1,1), we apply Theorem 4.30. In
our case,

T f (x) = p.v.
∫
Rd

K (x,y) f (y)dy

with

K (x,y) = e|x|
2
K β (x,y)e

−|y|2

= Cβ

∫ 1

0

(
− logr
1− r2

) |β |−2
2

rd−1Hβ

(
x− ry√
1− r2

)
e
− |y−ry|2

1−r2

(1− r2)
n
2+1

dr.

Therefore,

∂K

∂y j
(x,y) = 2Cβ

∫ 1

0

(
− logr
1− r2

) |β |−2
2

rd−1
[ −rβ j√

1− r2
Hβ−ej

(
x− ry√
1− r2

)

+Hβ

(
x− ry√
1− r2

)
(rx j − y j)

1− r2

]
e
− |rx−y|2

1−r2

(1− r2)
d
2 +1

dr.
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Now, we show that the hypotheses of Theorem 4.30 are fulfilled for this operator.
Thus, we prove that, in the local region Bh(x), we have,

|K (x,y)| ≤ C
|x− y|d

and

|∂K

∂y j
(x,y)| ≤ C

|x− y|d+1 .

There exists a constant C > 0 such that for every y ∈ Bh C−1 ≤ e|y|
2−|x|2 ≤C, then

|K (x,y)| ≤C|e−|x|2+|y|2K (x,y)|=C|K β (x,y)|

and ∣∣∣∣∂K

∂y j
(x,y)

∣∣∣∣≤C

∣∣∣∣e−|x|2+|y|2 ∂K

∂y j
(x,y)

∣∣∣∣ .
On the other hand, on Bh, for any c > 0,

e
−c |x−ry|2

1−r2 = e
−c |x−y|2

1−r2 e−c 1−r
1+r |y|2e−c (x−y)·y

1−r ≤Ce−c |x−y|2
1−r ;

thus, with thisinequality and taking into account that tme−ct2 ≤ Cm, for all t ≥ 0, we
get

∣∣∣∣Hβ

(
x− ry√
1− r2

)∣∣∣∣e
− |x−ry|2

1−r2 ≤C
|β |

∑
m=0

∣∣∣∣ x− ry√
1− r2

∣∣∣∣
m

e
− |x−ry|2

2(1−r2) e
− |x−ry|2

2(1−r2) ≤Ce−c |x−y|2
1−r .

Therefore, by combining all the above remarks, on Bh we have,

|K (x,y)| ≤ C
∫ 1

0

(
− logr
1− r2

) |β |−2
2 e−c |x−y|2

1−r

(1− r)
d
2 +1

dr

≤C

⎡
⎣∫ 1

2

0
(− logr)

|β |−2
2 dr+

∫ 1

1
2

e−c |x−y|2
1−r

(1−r)
d
2 +1

dr

⎤
⎦≤C

(
1+

1
|x−y|d

)
≤ C

|x−y|d

and

|∂K

∂y j
(x,y)| ≤ C

∫ 1

0

(
− logr
1− r2

) |β |−2
2 e−c |x−y|2

1−r

(1− r)
d+3

2

dr

≤ C

⎡
⎣∫ 1

2

0
(− logr)

|β |−2
2 dr+

∫ 1

1
2

e−c |x−y|2
1−r

(1− r)
d+3

2

dr

⎤
⎦

≤ C

(
1+

1
|x− y|d+1

)
≤ C

|x− y|d+1 .
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Let us prove that the operator Rβ is bounded on L2(γd). Given f ∈ L2(γd), with

Hermite expansion f =∑ν f̂γ(ν)hν =∑ν〈 f ,hν〉γhν . Then, because the action of Rβ
over the normalized Hermite polynomial hν is given by (9.33),

Rβhν(x) =
1

2|β |/2

∏d
j=1 [(ν j +d) · · ·(ν j +β j)]

1
2

(|ν |+d)|β |/2
hν+β (x).

Therefore,

‖Rβ f‖2
L2(dγ) =∑

ν

∏d
j=1 [(ν j +1) · · ·(ν j +β j)]

2|β |(|ν |+d)|β |
| f̂γ(ν)|2

≤∑
ν

d

∏
j=1

(β j +1)β j | f̂γ(ν)|2 ≤ (|β |+1)|β |∑
ν
| f̂γ(ν)|2 ≤C‖ f‖2

L2(γd)
.

Therefore, using Theorem 4.30, the γd-weak type (1,1) of Rβ ,L follows.

To prove that Rβ ,G is also γd-weak type (1,1), we prove on R
d \Bh,

|Rβ ,G f (x)| ≤CMΦ f (x), (9.36)

with Φ(t) = e−ct2
. Then, using Theorem 4.18, we get the weak type (1,1) inequality

for Rβ ,G.

|K β (x,y)| =

∣∣∣∣∣∣∣
∫ 1

0

(
− logr
1− r2

) |β |−2
2

rd−1Hβ

(
x− ry√
1− r2

)
e
− |x−ry|2

1−r2

(1− r2)
n
2+1

dr

∣∣∣∣∣∣∣

≤ C
∫ 3

4

0
(− logr)

|β |−2
2

e
− |x−ry|2

2(1−r2)

(1− r2)
n
2

dr

+C
∫ 1−ζ/|x|2

3
4

e
− |x−ry|2

2(1−r2)

(1− r2)
d−1

2

(|x|∨ (1− r2)−
1
2 )

dr

|x|(1− r2)3/2

+C
∫ 1

1−ζ/|x|2
e
−c |x−ry|2

1−r2

(1− r2)
d−1

2

(|x|∨ (1− r2)−
1
2 )

e−c |x−y|2
1−r

1− r
dr.

Hence,
|K β (x,y)| ≤C

(
K

1
β (x,y)+K

2
β (x,y)+K

3
β (x,y)

)
,

where the inequality is obtained by annihilating the Hermite polynomial with part
of the exponential, then splitting the unit interval of the integral into three subinter-
vals [0,3/4], [3/4,1−ζ/|x|2], and [1−ζ/|x|2,1] and taking into account that on the
second one |x|∨ (1− r2)−1/2 ≥ |x|, on the third one |x|∨ (1− r2)−1/2 ≥ (1− r2)−1/2
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and |x− ry| ≥ c̄|x− y|, and on the last two intervals, the function − logr/(1− r2) is
bounded by a constant.

Thus, by using the definition of kernels K
j
β with j = 1,2,3, interchanging the

order of integration on each operator Rβ ,G
j

with j = 1,2,3, using Lemma 1.23 and

taking Φ(t) = e−ct2
, we get, using Fubini’s theorem

Rβ ,G
1

f (x) = e|x|
2
∫
Rd

∫ 3
4

0
(− logr)

|β |−2
2

e
− |x−ry|2

2(1−r2)

(1− r2)
d
2

dr | f (y)| γd(dy)

=
∫ 3

4

0
(− logr)

|β |−2
2 e|x|

2
∫
Rd

e
− |x−ry|2

2(1−r2)

(1− r2)
d
2

| f (y)|γd(dy)dr

≤ C
∫ 3

4

0
(− logr)

|β |−2
2 dr MΦ f (x)≤C MΦ f (x),

Rβ ,G
2

f (x) = e|x|
2
∫
Rd

∫ 1−ζ/|x|2

3
4

e
− |x−ry|2

2(1−r2)

(1− r2)
d−1

2

(|x|∨ (1− r2)−
1
2 )

× dr

|x|(1− r2)3/2
| f (y)| γd(dy)

=
∫ 1−ζ/|x|2

3/4
e|x|

2
∫
Rd

e
−c |x−ry|2

(1−r2)

(1− r2)(d−1)/2
(|x|∨ (1− r2)−1/2)| f (y)|γd(dy)

× dr

|x|(1− r2)3/2

≤ C
1
|x|

∫ 1−ζ/|x|2

3/4

dr

(1− r)3/2
MΦ f (x)≤CMΦ f (x),

and, finally,

Rβ ,G
3

f (x) = e|x|
2
∫
Rd

∫ 1

1−ζ/|x|2
e
−c |x−ry|2

1−r2

(1−r2)
d−1

2

(|x|∨ (1−r2)−
1
2 )

e−c̄ |x−y|2
1−r

1−r
dr | f (y)| γd(dy)

=
∫ 1

1−ζ/|x|2
e|x|

2
∫
Rd

e
−c |x−ry|2

(1−r2)

(1− r2)(d−1)/2
(|x|∨ (1− r2)−1/2)

e−c̄ |x−y|2
1−r

1− r

×| f (y)| γd(dy) dr

≤
∫ 1

1−ζ/|x|2
e|x|

2
∫
Rd

e
−c |x−ry|2

(1−r2)

(1− r2)(d−1)/2
(|x|∨ (1− r2)−1/2)

× 1
|x− y|2 | f (y)|γd(dy) dr
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≤ C|x|2
∫ 1

1−ζ/|x|2
dr MΦ f (x)≤CMΦ f (x).

Thus, because |Rβ ,G f (x)| ≤Cβ ∑3
j=1 R

j
β ,G f (x), then (9.36) follows. ��

9.4 Definition and Boundedness Properties of General Gaussian
Singular Integrals

Finally, we define general Gaussian singular integrals, generalizing the Gaussian
higher-order Riesz transforms. We follow, essentially, the outline developed for them.
The first formulation of general Gaussian singular integrals was given by W. Urbina
in [278]. Later, S. Pérez [221] extended it. We consider S. Pérez’s class, as it is a
much larger class.

Definition 9.16. Given a C1-function F, satisfying the orthogonality condition
∫
Rd

F(x)γd(dx) = 0, (9.37)

and such that for every ε > 0, there exist constants, Cε y C′
ε such that

|F(x)| ≤Cεeε |x|
2

and |∇F(x)| ≤C′
εeε |x|

2
. (9.38)

Then, for each m ∈ N the generalized Gaussian singular integral is defined as

TF,m f (x) =
∫
Rd

∫ 1

0
(
− logr
1− r2 )

m−2
2 rmF

( y− rx√
1− r2

) e
− |y−rx|2

1−r2

(1− r2)d/2+1

dr
r

f (y)dy. (9.39)

TF,m can be written as

TF,m f (x) =
∫
Rd

KF,m(x,y) f (y)dy,

denoting,

KF,m(x,y) =
∫ 1

0
(
− logr
1− r2 )

m−2
2 rm−1F

( y− rx√
1− r2

) e
− |y−rx|2

1−r2

(1− r2)d/2+1
dr

=
∫ 1

0
ϕm(r)F

( y− rx√
1− r2

) e
− |y−rx|2

1−r2

(1− r2)d/2+1
dr (9.40)

=
∫ 1

0
ψm(t)F

(y−
√

1− t x√
t

) e−u(t)

td/2+1
dt,

with ϕm(r) = (− logr
1−r2 )

m−2
2 rm−1; and taking the change of variables t = 1− r2, with

ψm(t) = ϕm(
√

1− t)/
√

1− t, and u(t) = |
√

1−tx−y|2
t .
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In [278], instead of condition (9.38), it was asked that F and ∇F would have
at most polynomial growth, which of course is a particular case of (9.38). On the
other hand, the higher-order Riesz transforms Rβ are clearly particular cases of the
operators TF,m by simply taking F = Hβ , and m = |β |.

We will prove that the operator TF,m is a bounded operator in Lp(γd), 1 < p < ∞.

Theorem 9.17. The operators TF,m are Lp(γd)-bounded for 1 < p <∞; that is to say,
there exists C > 0, dependent only on p and on dimension such that

‖TF,m f‖p,γ ≤C‖ f‖p,γ , (9.41)

for any f ∈ Lp(γd).

Proof. As usual, we split TF,m into its local part and its global part,

TF,m f (x) = TF,m( f χBh(·))(x)+TF,m( f χBc
h(·))(x) = TF,m,L f (x)+TF,m,G f (x).

I) For the local part TF,m,L, we prove that it is always of weak type (1,1). The es-
timates needed follow from an idea that appeared initially in W. Urbina’s article
[278], that the local part differs from a Calderón–Zygmund singular integral by
an operator that is L1(γd)-bounded; in other words, the operator is defined by
the difference of TF,m and an appropriate approximation of it (which is an ope-
rator defined as the convolution with a Calderón–Zygmund kernel) is L1(Rd)-
bounded.
• First, observe that if F satisfies the orthogonality condition (9.37) and (9.38),

setting

K(x) =
∫ ∞

0
F
(
− x

t1/2

)
e−|x|2/t dt

td/2+1
,

then, K is a Calderón–Zygmund kernel of convolution type (see (4.67)), as
the integral is absolutely convergent when x �= 0. Taking the change of varia-
bles s = |x|/t1/2 we get

K(x) :=
2
∫ ∞

0 F
(
− x

|x| s
)

e−s2
sd−1ds

|x|d =
Ω(x)
|x|d ,

with Ω homogeneous of degree zero; therefore, K is homogeneous of degree
−d. Moreover, Ω is C1 with mean zero on Sd−1, because∫

Sd−1
Ω(x′)dσ(x′) = 2

∫ ∞

0

∫
Sd−1

F(−x′s)dσ(x′)e−s2
sd−1ds

= 2
∫
Rd

F(−y)e−|y|2dy = 0.

Therefore, according to the classical Calderón–Zygmund theory, the convo-
lution operator defined using convolution with the kernel K is continuous in
Lp(Rd), 1 < p < ∞ and weak type (1,1), with respect to the Lebesgue mea-
sure. Therefore, using Theorem 4.32, its local part SL is bounded in Lp(γd),
1 < p < ∞ and of weak type (1,1) with respect to γd .
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• Second, we need to get rid of the function ψm. Taking a limit from the right,
we can define ψ(0) :=ψm(0+) = 2−(m−2)/2, then ψm is continuous on [0,1).
Moreover,

|ψm(t)−ψm(0)| ≤C
t√

1− t
.

Thus, from (9.40), we can write,

KF,m(x,y) = ψm(0)
∫ 1

0
F
(y−

√
1− t x√
t

) e−u(t)

td/2+1
dt

+
∫ 1

0
(ψm(t)−ψm(0))F

(y−
√

1− t x√
t

) e−u(t)

td/2+1
dt.

Set

K1(x,y) :=
∫ 1

0
F
(y−

√
1− t x√
t

) e−u(t)

td/2+1
dt,

Now, over the local part we know that u(t) ≥ |y − x|2/t − 2d, then, using
condition (9.38), we get

∫ 1

0
|ψm(t)−ψm(0)|

∣∣∣F
(y−

√
1− t x√
t

)∣∣∣ e−u(t)

td/2+1
dt

≤
∫ 1

0
|ψm(t)−ψm(0)|

∣∣∣F
(y−

√
1− t x√
t

)∣∣∣ e−u(t)

td/2+1
dt

≤C
∫ 1

0

e−(1−ε)u(t)

td/2

dt√
1− t

≤C
∫ 1

0

e−
δ |x−y|2

t

td/2

dt√
1− t

.

Set

K2(x) :=
e−

δ |x|2
t

td/2
.

• Third, we need to control the difference between K1 and the Calderón–
Zygmund kernel K.
Claim

|K1(x,y)−K(x− y)| ≤C
1+ |x|1/2

|x− y|d−1/2
χ{|x−y|<d(1∧1/|x|)}(x,y)

Proof of the claim We need to estimate,

|K1(x,y)−K(x− y)| =
∣∣∣
∫ 1

0
F
(y−

√
1− t x√
t

) e−u(t)

td/2+1
dt

−
∫ ∞

0
F
(y− x

t1/2

)
e−|x−y|2/t dt

td/2+1

∣∣∣.
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Using again the notation of Proposition 4.23, consider t0 defined in (4.45),

t0 = 2

√
a2 −b2

a+
√

a2 −b2
.

Now, if t ≥ t0, because

t0 ∼
√

a2 −b2

a
∼

√
a−b√
a+b

=
|x− y|
|x+ y| ∧1,

and again using that on the local part u(t)≥ |y− x|2/t −2d, there is a δ > 0
such that,

∣∣∣
∫ 1

t0
F
(y−

√
1− t x√
t

) e−u(t)

td/2+1
dt −

∫ ∞

t0
F
(y− x√

t

)
e−|x−y|2/t dt

td/2+1

∣∣∣

≤
∫ 1

t0

∣∣∣F
(y−

√
1− t x√
t

)∣∣∣ e−u(t)

td/2+1
dt +

∫ ∞

t0

∣∣∣F
(y− x√

t

)∣∣∣e−|x−y|2/t dt

td/2+1

≤C
∫ 1

t0

e−δ |x−y|2/t

t(d−1)/2

dt

t3/2
≤C

1
|x− y|d−1

1

t1/2
0

≤C
1+ |x|1/2

|x− y|d−1/2
.

For t ≤ t0 setting v(s) = y−
√

1− sx, we then have

∣∣∣F
(v(t)

t1/2

)
e−

|v(t)|2
t −F

(v(0)

t1/2

)
e−

|v(0)|2
t

∣∣∣=
∣∣∣
∫ t

0

∂
∂ s

(
F
(v(s)

t1/2

)
e−

|v(s)|2
t

)
ds
∣∣∣

=
∣∣∣
∫ t

0

(〈v′(s)

t1/2
,(∇F)

(v(s)

t1/2

)〉
e−

|v(s)|2
t

−2
〈

v′(s),
v(s)

t

〉
F
(v(s)

t1/2

)
e−

|v(s)|2
t

)
ds
∣∣∣

≤
∫ t

0

∣∣∣v′(s)

t1/2

∣∣∣
∣∣∣(∇F)

(v(s)

t1/2

)∣∣∣e− |v(s)|2
t ds

+2
∫ t

0

|v′(s)|
t1/2

|v(s)|
t1/2

∣∣∣F
(v(s)

t1/2

)∣∣∣e− |v(s)|2
t ds.

Using the hypothesis (9.38) and the fact that in the local part

−|v(s)|2
t

≤ −|x− y|2
t

+2d
s
t
,

we get, for some δ > 0,
∫ t0

0

∣∣∣F
(v(t)

t1/2

)
e−

|v(t)|2
t −F

(v(0)

t1/2

)
e−

|v(0)|2
t

∣∣∣ dt

td/2+1

≤
∫ t0

0

∫ t

0

|v′(s)|
t1/2

e−δ
|v(s)|2

t ds
dt

td/2+1

≤C|x|
∫ t0

0

∫ t

0

1√
1− s

ds
1

t1/2
e−δ

|x−y|2
t

dt

td/2+1
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≤C|x|
∫ t0

0

1

t1/2

e−δ
|x−y|2

t

td/2
dt

≤C
|x|

|x− y|d
∫ t0

0

1

t1/2
dt ≤C

|x|t1/2
0

|x− y|d ≤C
1+ |x|1/2

|x− y|d−1/2
.

Set

K3(x,y) :=
1+ |x|1/2

|x− y|d−1/2
.

Observe that K3(x,y) defines a function in the variable x, which is L1(Rd),
uniformly in the variable y.

Hence, writing KF,m(x,y) as

KF,m(x,y) =
∫ 1

0
ψm(t)F

(y−
√

1− t x√
t

) e−u(t)

td/2+1
dt,

= ψm(0)
∫ 1

0
F
(y−

√
1− t x√
t

) e−u(t)

td/2+1
dt

+

∫ 1

0
(ψm(t)−ψm(0))F

(y−
√

1− t x√
t

) e−u(t)

td/2+1
dt

= ψm(0)
∫ 1

0

[
F
(y−

√
1− t x√
t

) e−u(t)

td/2+1
−F

(y− x√
t

)e−|x−y|2/t

td/2+1

]
dt

+ψm(0)
∫ 1

0
F
(y− x√

t

)e−|x−y|2/t

td/2+1
dt

+
∫ 1

0
(ψm(t)−ψm(0))F

(y−
√

1− t x√
t

) e−u(t)

td/2+1
dt.

Using the estimates above, we conclude that the local part TF,m,L can be bounded
as

|TF,m,L f (x)| = |TF,m f (χBh(x))(x)|=
∣∣∣
∫

Bh(x)
KF,m(x,y) f (y) dy

∣∣∣
≤ C

∫
Bh(x)

K3(x,y)| f (y)| dy+C
∣∣∣p.v.

∫
Bh(x)

K(x,y) f (y) dy
∣∣∣

+
∫

Bh(x)
K2(x− y)| f (y)| dy

= (I)+(II)+(III).

Using Theorem 4.32, (II) is bounded in Lp(γd), 1 < p < ∞ and is of weak type
(1,1) with respect to γd . Thus, it remains to prove that (I) and (III) are also
bounded. To do so, we use Lemma 4.3, taking a countable family of admissible
balls. F



9.4 Definition and Boundedness Properties of General Gaussian Singular Integrals 391

Now, given B ∈ F , if x ∈ B then Bh(x)⊂ B̂; therefore,

(I) = (1+ |x|1/2)
∞

∑
k=0

∫
2−(k+1)Cdm(x)<|x−y|<2−kCdm(x)

| f (y)|χB̂

|x− y|d−1/2
dy

≤ Cd2dM ( f χB̂)(x)(1+|x|2)m(x)1/2
∞

∑
k=0

2−(k+1)/2≤LCM ( f χB̂)(x)(χBh(·))(x).

On the other hand, let us consider ϕ(y) =Cδ e−δ |y|
2
, where Cδ is a constant such

that
∫
Rd ϕ(y)dy = 1. ϕ is a non-increasing radial function, and given t > 0, we

rescale this function as ϕ√
t(y) = t−d/2φ(y/

√
t), and, because 0 ≤ ϕ ∈ L1(Rd),

{ϕ√
t}t>0 is an approximation of the identity (see the Appendix). Then, because∫ 1

0 (1/
√

1− t)dt < ∞,

(III) =
∫

Bh(x)
K2(x− y)| f (y)| dy =

∫
Bh(x)

(∫ 1

0
ϕ√

t(x− y)
dt√
1− t

)
| f (y)|dy

≤
∫

Bh(x)

(
sup
t>0

ϕ√
t(x− y)

)(∫ 1

0

dt√
1− t

)
| f (y)|dy

≤ C
∫

Bh(x)

(
sup
t>0

ϕ√
t(x− y)

)
| f (y)|dy.

Again, using the family F , if x ∈ B, Bh(x) ⊂ B̂, and then, using a similar argu-
ment to previously,

(III) =
∫

Bh(x)
K2(x− y)| f (y)| dy ≤C

∫
Rd

(
sup
t>0

ϕ√
t(x− y)

)
| f (y)|χB̂(y)dy

which yields, using Theorem 4 in Stein’s book [252, Chapter II §4.],

(III) =
∫

Bh(x)
K2(x− y)| f (y)| dy ≤ ∑

B∈F

sup
t>0

∣∣∣(ϕ√
t ∗ | f χB̂|)(x)

∣∣∣χB(x)

≤ ∑
B∈F

M ( f χB̂)(x)χB(x).

Therefore, the local part TF,m,L is bounded in Lp(γd), 1 < p < ∞ and is of weak
type (1,1) with respect to γd ,

II) Now, for the global part TF,m,G, we prove that it is Lp(γd)-bounded for all 1 <
p < ∞ using similar techniques to those used for the Gaussian Riesz transform,
to estimate the kernel KF,m. The idea is to exploit the size of the kernel and treat
T as a positive operator.
Observe that the function ϕm(r) = (− logr

1−r2 )
m−2

2 rm−1 is bounded in (0,1) for any
m ∈ N. Hence, using (9.38), we get

|KF,m(x,y)| ≤
∫ 1

0

∣∣∣F
(y−

√
1− t x√
t

)∣∣∣ e−u(t)

td/2+1

dt√
1− t

≤Cε

∫ 1

0
eεu(t) e−u(t)

td/2+1

dt√
1− t

,

for some ε > 0 to be determined. As before, we consider two cases:
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• Case #1: b = 2〈x,y〉 ≤ 0. In this case we use again the inequality (4.76):

a
t
−|x|2 ≤ u(t) =

a
t
−

√
1− t
t

b−|x|2 ≤ 2a
t

;

thus, the change of variables s = a( 1
t −1) gives

∫ 1

0

e−(1−ε)u(t)

td/2+1

dt√
1− t

≤ e−(1−ε)|y|2 1

ad/2

∫ ∞

0
e−(1−ε)s(s+a)(d−1)/2 ds√

s

≤ Ce−(1−ε)|y|2 ,

as a > 1/2 over the global region. Therefore, using Hölder’s inequality

‖TF,m,G f‖p
p,γ ≤

∫
Rd

(∫
Bc

h(x)
|KF,m(x,y)|| f (y)|dy

)p
e−|x|2dx

≤ C
∫
Rd

(∫
Bc

h(x)
e−(1−ε)|y|2e|y|

2/pe−|y|2/p| f (y)|dy
)p

e−|x|2dx

≤ C
∫
Rd

(∫
Bc

h(x)
e−(1−ε)q|y|2eq|y|2/pdy

)p/q
e−|x|2dx ‖ f‖p

p,γ ,

where q = p
p−1 . Now, we select an appropriate ε > 0 so that the above inte-

gral is finite. We can see that any ε > 0, with ε < 1−1/p, suffices.

• Case #2: b = 2〈x,y〉> 0.
We have,

|KF,m(x,y)| ≤
∫ 1

0

∣∣∣F
(y−

√
1− t x√
t

)∣∣∣ e−u(t)

td/2+1

dt√
1− t

≤Cε
e−(1−ε)u(t0)

td/2
0

.

When d = 1, this inequality follows directly from Lemma 4.36, by taking
η = 0, and ν = 1− ε for 0 < ε < 1.
For d ≥ 2, we use (4.77) and the boundedness of F for ε smaller than 1/d.
Thus, using Lemma 4.36, we have

|KF,m(x,y)| ≤Cε
e

−d−1
d u(t0)

t(d−1)/2
0

∫ 1

0
eεu(t) e−u(t)/d

t3/2

dt√
1− t

≤Cε
e−(1−ε)u(t0)

td/2
0

,

with ε > 0 to be determined. Then,

‖TF,m,G f‖p
p,γ ≤

∫
Rd

(∫
Bc

h(x)
|KF,m(x,y)|| f (y)|dy

)p
e−|x|2dx

≤ C
∫
Rd

(∫
Bc

h(x)

e−(1−ε)u(t0)

td/2
0

| f (y)|dy
)p

e−|x|2dx

= C
∫
Rd

(∫
Bc

h(x)
e

|y|2−|x|2
p eεu(t0)

e−u(t0)

td/2
0

| f (y)|e−
|y|2

p dy
)p

dx.
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Therefore, it is enough to check that the operator defined using the kernel,

K̃(x,y) = e
|y|2−|x|2

p eεu(t0)
e−u(t0)

td/2
0

χBc
h(x)

(y),

is of strong type p with respect to the Lebesgue measure. Using the inequal-
ity ||y|2 − |x|2| ≤ |x + y||x − y|, and that, as b > 0, on the global region,
|x+ y||x− y| ≥ d, we have

e
|y|2−|x|2

p eεu(t0)
e−u(t0)

td/2
0

=
1

td/2
0

e(
1
p −

1−ε
2 )(|y|2−|x|2)e−

1−ε
2 |x+y||x−y|

≤ C|x+ y|de−αp|x+y||x−y|,

where αp = 1−ε
2 − | 1

p − 1−ε
2 |. Since p > 1, we can choose ε > 0 so that

αp > 0. Observe that the last expression is symmetric in x and y; therefore,
it suffices to prove its integrability with respect to one of the
∫
Rd

|x+ y|de−αp|x+y||x−y|dy ≤ C+C
∫
|x−y|<1

|x|de−αp|x||x−y|dy

+C
∫
|x−y|<1

|x+ y|de−αp|x+y|dy

≤C
∫
Rd

eαp|v|dv+Cd

∫ ∞

0
r2d−1e−αprdr ≤C.

Observe that, once p> 1 is chosen, then the operator defined using the kernel
K̃(x,y) is in fact Lq(Rd)-bounded for 1 ≤ q ≤ ∞, but for the proof of the
theorem, the case p = q is enough. ��

Now, we discuss the results corresponding to the weak type (1,1) for the opera-
tors TF,m. First of all, observe that condition (9.38) provides a function Φ satisfying
the property

iii) |F(x)| ≤ Φ(|x|) for some continuous function Φ : [0,∞) → [0,∞) for which
there exists a δ > 0 with 1−2/d < δ < 1, such that Φ(t)e−(1−δ )t2

is a non-increasing
function for all t ≥ 0.

Indeed, for 0 < ε < 2/d we set Φ(t) = Cεeεt2
and δ1− ε . In what follows, we

denote by Φ any function satisfying the property iii). We see that the smaller the
function Φ is taken, the better the result that can be obtained. The goal of the follow-
ing two theorems is to answer the question: what are the precise conditions needed
on F and on m to guarantee the weak type (1,1) with respect to the Gaussian measure
of TF,m? The answer is given in the following two theorems. First, let us consider the
negative result, which roughly says that if the function Φ(t) increases at infinity more
than t2, then the operator TF,m fails to be of weak type (1,1) and it is a generalization
of what is already known about the behavior on L1(γd) of the Gaussian higher-order
Riesz transforms.
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Theorem 9.18. Let Ωt =
{

z ∈ R
d : min1≤i≤d |zi| ≥ t

}
and Θ(t) = infΩt F(z)

t2 , if

limsupt→∞Θ(t) =∞, then the operator TF,m is not of weak type (1,1) with respect to
the Gaussian measure.

Proof. We follow the proof of Theorem 9.10. Again, let y ∈ R
d with |y| = η large

and yi ≥Cη , i= 1, · · · ,d. Write x ∈R
d as x= ξ y

η +v with ξ ∈R and v ⊥ y. Consider
the tubular region

J = {x ∈ R
d : x = ξ

y
η
+ v with η/2 < ξ < 3η/4,v ⊥ y, |v|< 1}.

It follows that for x ∈ J (9.25) holds; therefore,

F
( y− rx√

1− r2

)
≥Cη2Θ(cη).

Thus, for x ∈ J using this estimate and (9.26) and (9.27) we get

KF,m(x,y) ≥ Cdη2Θ(cη)
∫ 3/4

1/4

e
− |y−rx|2

1−r2

(1− r2)d/2+1
dr

≥ Cdη2Θ(cη)eξ
2−η2

∫ 3/4

1/4
e−C|ξ−rη |2dr ≥CdηΘ(cη)eξ

2−η2

Now, let f ∈ L1(γd), f ≥ 0 be a close approximation of a point mass at y, with norm
‖ f‖1,γ = 1. Then, for x ∈ J

TF,m f (x)≥CηΘ(cη)eξ
2 ≥CηΘ(cη)e(η/2)2

.

Let us assume that TF,m is of weak type (1,1) with respect to the Gaussian measure.
Then,

γd(J)≤ γd

({
x ∈ R

d : TF,m f (x)>CηΘ(cη)e(η/2)2
})

≤C
e−(η/2)2

ηΘ(cη)
,

but γd(J)≥ C
η e−(η/2)2

; therefore,Θ(η) is bounded for η large, which is a contradic-
tion with the assumption on Θ . ��

The positive result is contained in the following theorem. To get sufficient con-
ditions on F for the weak type (1,1) of TF,m, because the weak type is not true, the
natural question is: what weights can be put to get a weak type inequality? From
the proof of Theorem 9.11, it is clear that for |β | ≥ 3, the weight should be of the
form w(y) = 1+ |y||β |−2. Moreover, for every 0 < ε < |β |−2, there exists a function
F ∈ L1((1+ | · |ε)γd) such that Rβ f /∈ L1,∞(γd) (see [86]). The weights w that are
considered, to ensure that TF,m is bounded from L1(wγd) into L1,∞(γd), depend on
the function Φ.
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Theorem 9.19. The operator TF,m maps continuously L1(wγd) into L1,∞(γd) with
w(y) = 1∨max1≤t≤|y|η(t) and

η(t) =

{
Φ(t)/t if 1 ≤ m < 2,

Φ(t)/t2 if m ≥ 2,

The proof is long and technical; it is based on the refinement of several inequal-
ities used by S. Pérez in [220], and the application of a technique developed by
Garcı́a-Cuerva et al. in gmst4. For details, see [85, Theorem 2].

As an immediate consequence we get:

Corollary 9.20. If for t large either Φ(t)≤Ct when 1 ≤ m < 2 or Φ(t)≤Ct2 when
m ≥ 2, then the operator TF,m is of weak type (1,1) with respect to the Gaussian
measure.

9.5 Notes and Further Results

1. What is known as Meyer’s inequality in Malliavin calculus is given in the
following terms. Given L a self-adjoint, second-order differential operator on
L2(Rd ,dμ), for some probability measure μ , and suppose that L is the infinites-
imal generator of a Markov semigroup, then there exist constants cp,Cp such
that

cp‖L1/2 f‖p,μ ≤ ‖∇ f‖p,μ ≤Cp‖L1/2 f‖p,μ ,

holds for all p, 1 < p < ∞. Observe that that statement is equivalent to the
Lp(μ)-boundedness of the corresponding Riesz transforms.

2. In [194] B. Muckenhoupt introduces, for d = 1, the Gaussian Hilbert transform
in a different way. He follows the classical definition of the conjugated function
as the limit of the conjugated Fourier series, using the Cauchy–Riemann equa-
tions. In more detail, he considers the conjugated Poisson–Hermite semigroup
Pc

t f (x), based on the Gaussian Cauchy–Riemann equations (see section 3.4).
As we know from Chapter 3, the Poisson–Hermite operator Pt on f is defined
as

Pt f (x) = u(x, t) =

√
2
π

∫ ∞

−∞
p(t,x,y) f (y)dy,

t > 0, where

p(t,x,y) =
∫ 1

0

t exp( t2

2 logr )

r(− logr)3/2

exp(−r2x2+2rxy−r2y2

1−r2 )

(1− r2)1/2
dr,

then, u(x, t) satisfies:

∂ 2u(x, t)
∂ t2 +

∂ 2u(x, t)
∂x2 −2x

∂u(x, t)
∂x

= 0,
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which is equivalent to

∂ 2u(x, t)
∂ t2 + ex2 ∂

∂x
(e−x2 ∂u(x, t)

∂x
) = 0.

Then, considering a L-harmonic conjugated v given by the Gaussian Cauchy–
Riemann equations (3.44),

∂u(x, t)
∂x

= −∂v(x, t)
∂ t

∂u(x, t)
∂ t

= ex2 ∂
∂x

(e−x2 ∂v(x, t)
∂x

),

it is easy to see that v can be written as

Pc
t f (x) = v(x, t) =

∫ ∞

−∞
Q(t,x,y) f (y)dy,

t > 0, where

Q(t,x,y) =

√
2
π

∫ 1

0

(y− rx) exp( t2

2 logr )

(− logr)1/2

exp(−r2x2+2rxy−r2y2

1−r2 )

(1− r2)3/2
dr.

B. Muckenhoupt [194] proved that v is Lp(γ1)-bounded for p > 1, and for
f ∈ Lp(γ1), p > 1, v(x, t) tends to Gaussian Hilbert transform H , as t → 0+;
therefore,

H f (x) =

√
2
π

∫ ∞

−∞

∫ 1

0

(y− rx)

(− logr)1/2

exp(−r2x2+2rxy−r2y2

1−r2 )

(1− r2)3/2
dr f (y)γ1(dy).

The convergence is in Lp(γ1)-norm sense, 1 < p < ∞ and also almost every-
where (a.e.). He also proved the Lp(γ1)-boundedness and the weak type (1,1)
with respect to the Gaussian measure γ1 using analytic methods based on Natan-
son’s lemma, see (10.27).

3. In his doctoral dissertation, [244]3 R. Scotto got the extension of this approach
to the higher dimensions d > 1, by considering the Gaussian Cauchy–Riemann
equations in R

d (3.50),

∂u
∂x j

(x, t) = −∂v j

∂ t
(x, t), j = 1, . . . ,d

∂vi

∂x j
(x, t) =

∂v j

∂xi
(x, t), i, j = 1, . . . ,d

∂u
∂ t

(x, t) =
1
2

d

∑
j=1

e|x|
2 ∂
∂x j

(e−|x|2v j(x, t)).

3See also [77].
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Then, he defined a system of conjugates

(u(x, t),v1(x, t),v2(x, t), . . . ,vd(x, t)),

in a similar way to the one-dimensional case, and then, taking t → 0+, he proved
that the system of conjugates converges to the vector where the first coordinate
is the function f and the other coordinates are the Gaussian Riesz transforms of
f ,

( f (x),R1 f (x), · · · ,Rd f (x)).

The convergence is in Lp(γ1)-norm sense, 1 < p < ∞ and also a.e. For more
details, see [244, Chapter ] (see also section 3.4).

4. The definition used by B. Muckenhoupt and R. Scotto for the Gaussian Riesz
transforms using Cauchy–Riemann equations is, of course, equivalent (up to a
constant) to the one given in this chapter. To see this, observe that according to
the general semigroup theory, we have

−
∫ ∞

0
Psds = (−L)−1/2,

because, as (−L)1/2 is the infinitesimal generator of the Poisson–Hermite semi-
group {Pt}, then, at least formally

−(−L)1/2(

∫ ∞

0
Psds) = − lim

t→0+

1
t
[Pt(

∫ ∞

0
Psds)−

∫ ∞

0
Psds]

= − lim
t→0+

1
t
[(
∫ ∞

0
P(t+s)ds)−

∫ ∞

0
Psds]

= − lim
t→0+

1
t
[(
∫ ∞

t
Psds)−

∫ ∞

0
Psds]

= lim
t→0+

1
t
[(

∫ t

0
Psds)] = P0 = I.

Therefore, from (3.45) we know that the conjugated Poisson–Hermite integral
can be written as

v(x, t) =
∫ ∞

−∞
Q(t,x,y) f (y)dy,

and from (3.47), Q(t,x,y) can be written as

Q(t,x,y) =−
∫ ∞

t

∂ p(s,x,y)
∂x

ds =− ∂
∂x

∫ ∞

t
p(s,x,y)ds

then,

v(x, t) =
∫ ∞

−∞
Q(t,x,y) f (y)dy =− ∂

∂x

∫ ∞

−∞

∫ ∞

t
p(s,x,y)ds f (y)dy

= − ∂
∂x

∫ ∞

t

∫ ∞

−∞
p(s,x,y) f (y)dyds =− ∂

∂x

∫ ∞

t
Ps f (x)ds,
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formally we get, taking t → 0+,

v(x, t)→ ∂
∂x

(−L)1/2 f (x) =
√

2H f (x).

The argument for higher dimensions is analogous, using (3.51) and (3.52).

5. In [127], E. Harboure, R. A. Macı́as, M. T. Menárguez, and J. L. Torrea studied
the rate of convergence for the family of truncations of the Gaussian Riesz trans-
forms and Hermite–Poisson semigroup through the oscillation and variation
operators. More precisely, they search for their Lp(γd)-boundedness properties,
by looking at the oscillation and variation operators from a vector-valued point
of view.

6. We know that the Gaussian Hilbert transform is defined spectrally as

H =
1√
2

d
dx

(−L)−1/2,

then,

H Hn(x) = (−L)−1/2Hn(x) =
1√
2

1√
n

d
dx

Hn(x) =
√

2nHn−1(x),

which of course is a particular version of (9.5). Therefore,

H hn = H (
Hn

(2nn!)1/2
) =

√
2n

Hn−1

(2nn!)1/2
= hn−1. (9.42)

Hence, given f ∈ L2(γ1) with Hermite expansion f = ∑∞
n=0〈 f ,Hn〉γHn, then its

Gaussian Hilbert transform is the conjugated series

H f =
∞

∑
n=1

√
2n〈 f ,Hn〉Hn−1, (9.43)

This fact motivates the study of the Gaussian Hilbert transform H from the
operator theory point of view. These results are contained in M. D. Morán and
W. Urbina’s article [191]. Let D be the open unit disk, T the circumference,
consider the square integrable functions in T

L2(T) = { f : T→ C :
∫ π

−π
| f (eit)|2dt < ∞}.

Let {en}n∈Z be the trigonometric system, en(ξ ) = ξ n,ξ ∈T, which is a complete
orthonormal system in L2(T), and finally let S : setL2(T)→ L2(T) be the shift
operator given by

(S f )(ξ ) = ξ f (ξ ),

for all ξ ∈ T. For more details on the shift operator, we refer the reader to
Nikol’skii [206].
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If we consider

H2(D) = { f : D→ C : f =
∞

∑
n=0

anzn and
∞

∑
n=0

|an|2 < ∞},

then we can identify H2(D) with the subspace of L2(T) consisting of functions
such that

〈 f ,en〉= 0, ∀n < 0.

The restriction of the bilateral forward shift operator to H2(D), which, abusing
the notation, we also call S , is the unilateral forward shift, which leaves the
space H2(D) invariant and

S (
∞

∑
n=0

anzn) =
∞

∑
n=0

anzn+1 =
∞

∑
n=1

an−1zn.

The main result in this direction is that the Gaussian Hilbert transform is unitary
equivalent to the adjoint of the unilateral shift operator acting on H2(D); thus, we
are able to completely characterize the invariant subspaces and the commutant
of the Gaussian Hilbert transform. The main results are as follows:

Theorem 9.21. The Gaussian Hilbert transform H as an operator on L2(γ1)
is unitarily equivalent to the adjoint of the restriction of the shift operator on
H2(D).

Proof. Let us consider Ω : L2(γ1)→ H2(D) defined by

Ω(
∞

∑
n=0

〈 f ,hn〉hn) =
∞

∑
n=0

〈 f ,hn〉en.

It is easy to see, by Parseval’s identity, that Ω is a well-defined operator and
unitary, also Ω intertwining H and S ∗, that is, ΩH = S ∗Ω :

ΩH (
∞

∑
n=0

〈 f ,hn〉hn) = ΩH (
∞

∑
n=0

(
√

2nn!)−2〈 f ,Hn〉Hn)

= Ω(
∞

∑
n=1

(
√

2nn!)−2
√

2n〈 f ,Hn〉Hn−1)

= Ω(
∞

∑
n=1

〈 f ,hn〉hn−1) =
∞

∑
n=1

〈 f ,hn〉en−1

= S ∗(
∞

∑
n=0

〈 f ,hn〉en) = S ∗Ω(
∞

∑
n=0

〈 f ,hn〉hn). ��

There are several consequences of this result. The first completely characterizes
the invariant subspaces of the Gaussian Hilbert transform.
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Theorem 9.22. Given the Gaussian Hilbert transform H and A a proper and
closed subspace of L2(γ1), then, H (A)⊂ A if and only if there exists a sequence
of complex numbers {an} such that |∑∞

n=0 anzn|= 1 almost everywhere in T and

A = { f =
∞

∑
n=0

〈 f ,hn〉hn ∈ L2(γ1) :
∞

∑
n≥k

〈 f ,hn〉an−k = 0, ∀k ≥ 0}

Proof. We shall prove first that the condition is necessary. Let Ω intertwining
H and S ∗ as in the previous theorem. It is clear that H (A)⊂ A if and only if
S ∗(ΩA)⊂ΩA, and this is equivalent to

S(H2(D)%ΩA)⊂ H2(D)%ΩA.

Now H2(D)%ΩA = Ω(L2(γ1)% A) �= 0 according to the hypothesis, then
H2(D)%ΩA is a non-trivial, closed subspace of H2(D), then (see [31] or [132]),
there exists θ ∈ H2(D) with |θ(ξ )|= 1 for almost all ξ ∈ T such that

H2(D)%ΩA = θH2(D),

or equivalently

A =Ω−1[H2(D)%θH2(D)] = L2(γ1)%Ω−1θH2(D).

Let θ(z) = ∑∞
n=0 anzn, then f = ∑∞

n=0〈 f ,hn〉hn ∈ A if and only if

〈 f ,Ω−1θu〉= 0, for all u ∈ H2(D).

Given that k ≥ 0, let us take u = ek, then

0 = 〈 f ,Ω−1θek〉= 〈Ω f ,θek〉=
∞

∑
n=0

〈 f ,hn〉〈en,θek〉,

but we have that

〈en,θek〉=
{
{an−k, if k ≥ n,

0 if k < n,

then for all k ≥ 0, ∑∞
n=0〈 f ,hn〉an−k = 0.

We shall now prove the sufficiency. Let θ(z) = ∑∞
n=0 anzn. Then, given f ∈

L2(γ1),
f ∈ A if and only if for all k ≥ 0 〈Ω f ,θek〉= 0.

Thus, if u ∈ H2(D), then we have

|〈Ω f ,θu〉| ≤ |〈Ω f ,θ(u−
n

∑
k=0

〈u,ek〉ek)〉| ≤ ||Ω f ||H2 ||θ(u−
n

∑
k=0

〈u,ek〉ek)||H2

≤ || f ||L2(γ1)
||u−

n

∑
k=0

〈u,ek〉ek||H2 ,
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but

lim
n→∞

||u−
n

∑
k=0

〈u,ek〉ek||H2 = 0.

Therefore, 〈Ω f ,θu〉 = 0 for all f ∈ A,u ∈ H2(D); thus, ΩA = H2 % θH2(D),
and then

H A = Ω−1ΩH A =Ω−1S∗ΩA

= Ω−1S ∗(H2 %θH2(D))⊂Ω−1(H2 %θH2(D)) = A. ��

The next result characterizes the commutant of the Gaussian Hilbert transform.

Theorem 9.23. Let F be a linear operator on L2(γ1). If FH = H F then
there exists g ∈ H∞(D) such that

F f = F (
∞

∑
n=0

〈 f ,hn〉L2(γ1)
hn)

=
∞

∑
k=0

∞

∑
n≥k

〈 f ,hn〉L2(γ1)
〈g,en−k〉H2(D)hk.

Conversely, if this relation holds and P0 f = 〈 f ,h0〉L2(γ1)
h0, then

FH = H F (I −P0).

Proof. Let G =ΩFΩ−1. It is clear that G ∈ L(H2(D)) and

S ∗G = S ∗ΩFΩ−1 =ΩH FΩ−1 =ΩFH Ω−1 =ΩFΩ−1S ∗ = GS ∗;

thus,
S ∗G = GS ∗, and also G∗S = S G∗.

Let g = G∗e0. Then, it is easy to check that g ∈ H∞(D), G∗u = gu for all u ∈ D

and

F f = F (
∞

∑
n=0

〈 f ,hn〉L2(γ1)
hn) =

∞

∑
n=0

〈 f ,hn〉L2(γ1)
Fhn

=
∞

∑
n=0

〈 f ,hn〉L2(γ1)
Ω−1FΩhn =

∞

∑
n=0

〈 f ,hn〉L2(γ1)
Ω−1(

∞

∑
k=0

〈Gen,ek〉ek)

=
∞

∑
n=0

〈 f ,hn〉L2(γ1)
Ω−1(

∞

∑
k=0

〈en,gek〉ek) =
∞

∑
n=0

〈 f ,hn〉L2(γ1)
Ω−1(

n

∑
k=0

〈g,en−k〉ek)

=
∞

∑
n=0

n

∑
k=0

〈 f ,hn〉L2(γ1)
〈g,en−k〉hk =

∞

∑
k=0

(∑
k≥n

〈 f ,hn〉L2(γ1)
〈g,en−k〉hk).

Conversely,

FH f = FH (
∞

∑
n=0

〈 f ,hn〉L2(γ1)
hn) = F (

∞

∑
n=1

〈 f ,hn〉L2(γ1)
hn−1)
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= F (
∞

∑
n=0

〈 f ,hn+1〉L2(γ1)
hn) =

∞

∑
k=0
∑
n≥k

〈 f ,hn+1〉L2(γ1)
〈g,en−k〉hk

and

H F (I −P0) f = H F (
∞

∑
n=1

〈 f ,hn〉L2(γ1)
hn) = H (

∞

∑
k=0
∑
n≥k

〈 f ,hn+1〉L2(γ1)

×〈g,en−k〉hk)

= H (
∞

∑
k=0
∑
n≥k

〈 f ,hn〉L2(γ1)
〈g,en−k〉hk) =

∞

∑
k=1
∑
n≥k

〈 f ,hn〉L2(γ1)

×〈g,en−k〉hk−1

=
∞

∑
k=0

∑
n≥k+1

〈 f ,hn〉L2(γ1)
〈g,en−(k+1)〉hk =

∞

∑
k=0
∑
n≥k

〈 f ,hn+1〉L2(γ1)

×〈g,en−k〉hk;

thus, FH = H F (I −J0) . ��
Finally,

Theorem 9.24. Let A be a (closed) subspace of L2(γ1) that is invariant for H
and PA is the orthogonal projection of L2(γ1) onto A. If F is a linear operator
on A such that

F (PAH ∗) = (PAH ∗)F ,

then there exists F1 a linear operator acting on L2(γ1) such that F1H =H F1

and
F = PAF1

∗|A.
Proof. Recall that H (A)⊂ A implies that H (A⊥)⊂ A⊥. Set B =ΩA, then

S(H2(D)%B)⊂ H2(D)%B.

Let T be a linear operator in B given by T =ΩFΩ−1, then

T PBS |B = ΩFΩ−1PBS |B =ΩFPAΩ−1S |B =ΩFPAH ∗Ω−1|B
= ΩPAH ∗FΩ−1|B = PBΩH ∗Ω−1T |B = PBS T |B.

Thus, using the Sarason generalized interpolation theorem [241], there exists
g ∈ H ∞(D) such that T = PBMg|B (i.e., T f = PB( f g)∀ f ∈ B), and if F1 =
ΩMgΩ−1, then

PAF1|A = PAΩMgΩ−1|A =Ω−1PBΩΩ−1MgΩ |A
= Ω−1PBMgΩ |A =Ω−1TΩ |A = F ,

and

F1H
∗ = Ω−1MgΩH ∗ =Ω−1MgSΩ =Ω−1SMgΩ
= Ω−1SΩΩ−1MgΩ =Ω−1ΩH ∗F1 = H ∗F1. ��
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The generalization of these results to higher dimensions is an open problem.

7. G. Pisier’s proof of the Lp(γd)-boundedness of R j, 1 < p < ∞ is analytic in the
sense that it does not use the Brownian motion, but instead uses a variation of
the Calderón’s method of rotations and methods of transference developed by
R. R. Coifman and G. Weiss in [57]. It turns out that the inequalities needed,
also include the classical case, are consequences of the one-dimensional results.
Using the same method, he is also able to prove the Lp(γd)-boundedness of Rβ ,
if |β | is odd (see [227]).

8. In [69], O. Dragicevic and A. Volberg get the Lp(γd)-boundedness of the vector
of Gaussian Riesz transforms (R1, · · · ,Rd)

‖
( d

∑
j=1

|R j f |2
)1/2

‖p,γ ≤Cp‖ f‖p,γ ,

obtained from a dimensionless bilinear estimate of the Littlewood–Paley type,
using the Bellman function technique (see [203]). This technique also works in
the classical case.

9. The boundedness of the Riesz transforms can be used to obtain the Littlewood–
Paley estimates for the spatial gradient; that is to say, the opposite direction of
Stein’s scheme is also possible.

10. In [174], G. Mauceri and S. Meda also proved that imaginary powers of the
Ornstein–Uhlenbeck operator (−L)iα and Riesz transforms Rβ , of any order
|β | > 0, are bounded from L∞ to BMO(γd) (with a bound dependent on the
dimension). They also proved that imaginary powers are bounded from H1

at(γd)
to L1(γd).

11. In [63], E. Dalmaso and R. Scotto have studied the boundedness of general
Gaussian singular integrals in variable Lp(·) Gaussian spaces following S. Pérez’s
approach in [221].

12. The Jacobi–Riesz transform can be defined spectrally as

Rα ,β =
√

1− x2 d
dx

(L α ,β )−1/2, (9.44)

where (L α ,β )−ν/2 is the Jacobi–Riesz potential of order ν/2. (L α ,β )−ν/2 can
be represented as

(L α ,β )−ν/2 f =
1

Γ (ν)

∫ ∞

0
tν−1P(α ,β )

t f dt;
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moreover, it is easy to see that for f ∈ L2
(
[−1,1] ,μ(α ,β )

)
, with Laguerre expan-

sion

f =
∞

∑
k=0

〈 f ,P(α ,β )
k 〉

h(α ,β )k

P(α ,β )
k ,

where

h(α ,β )k =
2α+β+1

(2n+α+β +1)
Γ (n+α+1)Γ (n+β +1)
Γ (n+1)Γ (n+α+β +1)

,

then, (L α ,β )−ν/2 f will have a Jacobi expansion

(L α ,β )−ν/2 f =
∞

∑
k=0

〈 f ,P(α ,β )
k 〉

ĥk
(α ,β ) λ−ν/2

k P(α ,β )
k (9.45)

and since
d
dx

{
P(α ,β )

k (x)
}
=

(k+α+β +1)
2

P(α+1,β+1)
k−1 (x) , (9.46)

then its Jacobi–Riesz transform have an expansion

Rα ,β f =
∞

∑
k=1

〈 f ,P(α ,β )
k 〉

ĥk
(α ,β ) λ−1/2

k
(k+α+β +1)

2

√
1− x2P(α+1,β+1)

k−1 . (9.47)

where λk = k(k+α+β +1).

Observe that (9.47) is not a proper Jacobi expansion given the presence of the
factor

√
1− x2. This is different than the Hermite case, and complicates the ar-

guments. The Lp-boundedness of the Riesz–Jacobi transform Rα ,β , was proved
by Z. Li [157], in the case d = 1, and by A. Nowak and P. Sjögren, [213, Theo-
rem 5.1] in the case d ≥ 1,

Theorem 9.25. Assume that 1 < p < ∞ and α,β ∈ [−1/2,∞)d. There exists a
constant cp such that

‖Rα ,β
i f‖p,(α ,β ) ≤ cp‖ f‖p,(α ,β ). (9.48)

for all i = 1, · · · ,d.

For the particular case of the Gegenbauer polynomials, this result was obtained
in the one-dimensional case by B. Muckenhoupt and E. Stein in their seminal
article of 1965 [199].

13. The Laguerre–Riesz transform can be defined spectrally, as

Rα =
√

x
d
dx

(L α)−1/2; (9.49)
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therefore for f ∈ L2 ((0,∞),μα) with Laguerre expansion

f =
∞

∑
k=0

Γ (α+1)k!
Γ (k+α+1)

〈 f ,Lαk 〉Lαk

its Laguerre–Riesz transform has expansion

Rα f (x) =−
∞

∑
k=1

Γ (α+1)k!
Γ (k+α+1)

(
√

k)−1〈 f ,Lαk 〉
√

xLα+1
k−1 (x). (9.50)

Observe that (9.50) is not a Laguerre expansion given the presence of the factor√
x. This is different from the Hermite case, and complicates the arguments; thus,

the proofs in the Laguerre setting are more involved than that of the Hermite
case. The Lp boundedness of the Laguerre–Riesz transform was proved, for the
case d = 1 by B. Muckenhoupt [196], and the case d ≥ 1 was proved by A.
Nowak [209] using Littlewood–Paley’s theory and also following Stein’s scheme
in [253].

Theorem 9.26. Assume that 1 < p < ∞ and α ∈ [−1/2,∞)d. There exists a
constant Cp such that

‖Rα
i f‖p,α ≤Cp‖ f‖p,α . (9.51)

for all i = 1, · · · ,d,.

14. In [201], E. Navas and W. Urbina develop a transference method to obtain
the Lp-boundedness, 1 < p < ∞ of the Gaussian Riesz transforms Ri, and the
Lp-boundedness of the Laguerre–Riesz transform Rα

i from the Lp-boundedness

of the Jacobi–Riesz transform Rα ,β
i for the one-dimensional case by using the

well-known asymptotic relations between Jacobi polynomials and other classi-
cal orthogonal polynomials (10.64) and (10.67) (see also [262, (5.3.4),(5.6.3)]).
The transference for the higher dimensional case is open.

15. In [117], P. Graczyk, J. J. Loeb, I. López, A. Nowak, and W. Urbina proved
the Lp(μα)-boundedness of higher-order Laguerre–Riesz transforms and the
weak type (1,1) for the Riesz–Laguerre transform of order 2. However, the
methods they used impose substantial restrictions on the admissible values of
type multi-index α, because the result is obtained by means of transference
from the Hermite setting using the classical relations formulas that relate to
the Hermite polynomials and Laguerre polynomials (10.36). This method has
been used by many authors, for instance [152, 19, 68, 123], to study different
properties of Laguerre semigroups of half-integer type, which are related to Her-
mite semigroups. They provide a considerable extension of this technique, and
show how to transfer higher-order Riesz type operators and certain differential
operators. Although the corresponding formulas are rather complex, because
their combinatorial component, they shed some light on an interplay between
Hermite and Laguerre expansions.
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16. In [237], E. Sasso proved that the first-order Riesz–Laguerre transforms asso-
ciated with the Laguerre semigroup are of weak type (1,1) with respect to the
Gamma measure, analogous to the Gaussian case. She also presents a coun-
terexample showing that for the Riesz transforms of order three or higher, the
weak type (1,1) estimate fails.

17. In 2006, A. Nowak and K. Stempak in [210] proposed a fairly general and
unified approach to the theory of Riesz transforms and conjugacy in the set-
ting of multi-dimensional orthogonal expansions (polynomials and functions),
proving their L2-boundedness under certain conditions. Additionally, they at-
tempt to offer a unified conjugacy scheme that includes definitions of Riesz
transforms and conjugate Poisson integrals for a broad class of expansions.
The postulated definitions were supported by a good L2-theory, the existence of
Cauchy–Riemann-type equations, and numerous examples in the literature that
are covered by the scheme. There is, however, a shortcoming of this unified con-
jugacy scheme manifested in a lack of symmetry in the decomposition (2.13).
Asymmetry of the decomposition of L has, in fact, a deep impact on the whole
conjugacy scheme postulated in [210]. Then, in [211], they proposed a sym-
metrization procedure and consider the resulting symmetrized situation. The
construction is motivated to some extent by the setting of the Dunkl harmonic
oscillator with the underlying reflection group isomorphic to Z

d
2 = {0,1}d , and

gives a different notion of conjugacy (for more details see [211]).

18. In 2015, L. Forzani, E. Sasso, and R. Scotto [93] extended Nowak and Stem-
pak’s approach to the general case of multi-dimensional orthogonal polynomial
expansions, proving the Lp boundedness, 1 < p < ∞ of those Riesz transforms,
with constants independent of dimension.

19. In [296], B. Wróbel derives a scheme to deduce the Lp boundedness of cer-
tain d-dimensional Riesz transforms from the Lp boundedness of appropriate
one-dimensional Riesz transforms, by using an H∞ joint functional calculus for
strongly commuting operators. Moreover, the Lp bounds obtained are indepen-
dent of the dimension. The scheme is applied to Riesz transforms connected
with orthogonal expansions and discrete Riesz transforms on products of groups
with polynomial growth, which of course include the Gaussian case. For the
vector case, an explicit Bellman function is used to prove a bilinear embedding
theorem for operators associated with general multi-dimensional orthogonal
expansions on product spaces and as a consequence the Lp boundedness of the
vector of Riesz transforms is obtained (see [297]).
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C2 Correction to: Gaussian Harmonic Analysis

Page 34 line 12 ↑ it says

(−L) =
d

∑
i=1

∂ i
γ(∂ i

γ)
∗ = (−L)+ Id =−1

2
Δx + 〈x,∇x〉+ Id ,

it should say

(−L) =
d

∑
i=1

∂ i
γ(∂ i

γ)
∗ = (−L)+dI =−1

2
Δx + 〈x,∇x〉+dI,

Page 34 line 10 ↑ it says

L = L− Id =
1
2
Δx −〈x,∇x〉− Id .

it should say

L = L−dI =
1
2
Δx −〈x,∇x〉−dI.

Chapter 4

Page 157 line 11 ↑ it says

≤ C
m(cb)d

∫
|y−x|<Cdm(cb)

|( f χB̂(x))(y)|
|x− y|d dy ≤CM( f χB̂(·))(x).

it should say

≤ C
m(cb)d

∫
|y−x|<Cdm(cb)

|( f χB̂(x))(y)|dy ≤CM( f χB̂(·))(x).

Page 162 line 3 ↓ it says

h(v(s))+h(w(s))≤ a
a2−b2+

2a

(a2−b2)1/2
√

s(a2−b2)1/4
≤ C

t0

1

(a2 −b2)1/4

(
1+

1√
s

)
,

it should say

h(v(s))+h(w(s))≤ 2a
a2−b2+

2a

(a2−b2)1/2
√

s(a2−b2)1/4
≤ C

t0

1

(a2 −b2)1/4

(
1+

1√
s

)
,

Page 162 line 10 ↓ it says

≤C
e−νu0

t1/2
0

1

(a2 −b2)1/4

∫ ∞

0
(sη/2 +uη/2

0 )e−νu(s)
(√

s+
1√
s

)
ds
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it should say

≤C
e−νu0

t1/2
0

1

(a2 −b2)1/4

∫ ∞

0
(sη/2 +uη/2

0 )e−νs
(√

s+
1√
s

)
ds

Page 162 line 11 ↓ it says

≤C
e−νu0

t1/2
0

(
1+

uη/2
0

(a2 −b2)1/4

)∫ ∞

0

(√
s+

1√
s

)
ds

it should say

≤C
e−νu0

t1/2
0

(
1+

uη/2
0

(a2 −b2)1/4

)∫ ∞

0
e−νs

(
s+

1√
s

)
ds

Page 163 line 2–3 ↓ it says

∫ 1

0
(u(t))η/2e−νu(t) dt

t3/2
≤C

e−νu0

t1/2
0

1

(a2−b2)1/4

∫ ∞

0
(sη/2+uη/2

0 )e−νu(s)
(√

s+
1√
s

)
ds.

it should say

∫ 1

0
(u(t))η/2e−νu(t) dt

t3/2
≤C

e−νu0

t1/2
0

1

(a2−b2)1/4

∫ ∞

0
(sη/2+uη/2

0 )e−νs
(√

s+
1√
s

)√
1−ν(s) ds.

Chapter 8

Page 353 line 1 ↑ it says

IβHν(x) =
1

(|ν |+1)β/2
Hν(x).

it should say

IβHν(x) =
1

(|ν |+d)β/2
Hν(x).

Page 354 line 2 ↓ it says “{T (1)
t }t = {e−tTt}t , the 1-translated”

it should say “{T (d)
t }t = {e−tdTt}t , the d-translated”
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Page 354 line 4 ↓ it says

Iβ f (x) = (−L)−|β |/2 f (x) =
1

Γ (|β |/2)

∫ ∞

0
t
|β |−2

2 T (1)
t f (x) dt

=
1

Γ (|β |/2)

∫ ∞

0
t
|β |−2

2 e−tTt f (x) dt

= Cβ e|x|
2
∫
Rd

(∫ 1

0
(− logr)

|β |−2
2

e
− |x−ry|2

1−r2

(1− r2)
d
2

dr
)

f (y) γd(dy).

it should say

Iβ f (x) = (−L)−β/2 f (x) =
1

Γ (β/2)

∫ ∞

0
t
β−2

2 T (d)
t f (x) dt

=
1

Γ (β/2)

∫ ∞

0
t
β−2

2 e−dtTt f (x) dt

= Cβ e|x|
2
∫
Rd

(∫ 1

0
(− logr)

β−2
2 rd e

− |x−ry|2
1−r2

(1− r2)
d
2

dr
r

)
f (y) γd(dy).

= Cβ

∫
Rd

(∫ 1

0
(− logr)

β−2
2 rd e

− |y−rx|2
1−r2

(1− r2)
d
2

dr
r

)
f (y)(dy).

Chapter 9

Page 360 line 6 ↓ it says

R j =
∂
∂x j

(−L)−1/2

it should say

R j =
∂
∂x j

(−Δ)−1/2

Page 361 line 3 ↑ it says

R j = ∂ γj I1/2 =
1√
2

∂
∂x j

(−L)−1/2,

it should say

R j = ∂ j
γ I1/2 =

1√
2

∂
∂x j

(−L)−1/2,

Page 366 line 3 ↑ it says
Rβ = ∂ γβ (−L)−|β |/2,
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it should say
Rβ = ∂βγ (−L)−|β |/2,

Page 368 lines 3–7 ↓ it says

Kβ (x,y) = ∂ γβN|β |/2(x,y)

=
1

πd/2Γ (β )

∫ 1

0

(− logr
1− r2

) |β |−2
2

r|β |Hβ

( y− rx√
1− r2

) e
− |y−rx|2

1−r2

(1− r2)d/2+1

dr
r
.

Therefore,

Rβ f (x) = p.v.
∫
Rd

Kβ (x,y) f (y)dy

= p.v.
1

πd/2Γ (β )

∫
Rd

∫ 1

0

(− logr
1− r2

) |β |−2
2

r|β |Hβ

( y− rx√
1− r2

)

e
− |y−rx|2

1−r2

(1− r2)d/2+1

dr
r

f (y)dy.

it should say

Kβ (x,y) = ∂βγ N|β |/2(x,y)

=
1

πd/2Γ (|β |/2)

∫ 1

0

(− logr
1− r2

) |β |−2
2

r|β |Hβ

( y− rx√
1− r2

) e
− |y−rx|2

1−r2

(1− r2)d/2+1

dr
r
.

Therefore,

Rβ f (x) = p.v.
∫
Rd

Kβ (x,y) f (y)dy

= p.v.
1

πd/2Γ (|β |/2)

∫
Rd

∫ 1

0

(− logr
1− r2

) |β |−2
2

r|β |Hβ

( y− rx√
1− r2

)

e
− |y−rx|2

1−r2

(1− r2)d/2+1

dr
r

f (y)dy.

Page 379 line 7 ↓ it says

(−L) =
d

∑
i=1

∂ i
γ(∂ i

γ)
∗ = (−L)+ Id =−1

2
Δ + 〈x,∇x〉+ Id .
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it should say

(−L) =
d

∑
i=1

∂ i
γ(∂ i

γ)
∗ = (−L)+dI =−1

2
Δ + 〈x,∇x〉+dI.

Page 379 line 12 ↓ it says

(∂βγ )∗ =
(−1)|β |

2|β |/2
e|x|

2
(∂βγ e−|x|2)

it should say

(∂βγ )∗ =
(−1)|β |

2|β |/2
e|x|

2
(∂β e−|x|2I)

Page 379 line 6 ↑ it says

RβHν =
1

2|β |/2(|ν |+1)|β |/2
Hν+β ,

it should say

RβHν =
1

2|β |/2(|ν |+d)|β |/2
Hν+β ,

Page 379 line 4 ↑ it says

(−L)−|β |/2Hν =
1

(|ν |+1)|β |/2
Hν ,

it should say

(−L)−|β |/2Hν =
1

(|ν |+d)|β |/2
Hν ,

Page 379 lines 1–2 ↑ it says

RβHν(x) = (∂βγ )∗(−L)−|β |/2Hν(x) =
(−1)|β |

(|ν |+1)|β |/2
e|x|

2
∂βγ (e−|x|2Hν(x))

=
(−1)|β+ν |

2|β |/2(|ν |+1)|β |/2
e|x|

2
∂β+ν(e−|x|2) =

1

2|β |/2(|ν |+1)|β |/2
Hν+β (x);

it should say

RβHν(x) = (∂βγ )∗(−L)−|β |/2Hν(x) =
(−1)|β |

(|ν |+d)|β |/2
e|x|

2
∂β (e−|x|2Hν(x))

=
(−1)|β+ν |

2|β |/2(|ν |+d)|β |/2
e|x|

2
∂β+ν(e−|x|2) =

1

2|β |/2(|ν |+d)|β |/2
Hν+β (x);
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Page 380 line 2 ↓ it says

Rβhν(x) =
1

(|ν |+1)|β |/2

[ d

∏
i=1

(νi +βi)(νi +βi −1) · · ·(νi +1)
]1/2

hν+β (x),

it should say

Rβhν(x) =
1

(|ν |+d)|β |/2

[ d

∏
i=1

(νi +βi)(νi +βi −1) · · ·(νi +1)
]1/2

hν+β (x),

Page 380 lines 4–7 ↓ it says

Rβhν(x) = Rβ

( Hν(x)

(2|ν |ν!)1/2

)
=

1

(2|ν |ν!)1/2
RβHν(x)

=
1

(2|ν |ν!)1/2

1

2|β |/2(|ν |+1)|β |/2
Hν+β (x)=

1

(ν!)1/2(|ν |+1)|β |/2

Hν+β (x)

2|ν |/2+|β |/2

=
1

(|ν |+1)|β |/2

( (ν+β )!
ν!

)1/2 Hν+β (x)

(2|ν+β |(ν+β )!)1/2

=
1

(|ν |+1)|β |/2

[ d

∏
i=1

(νi +βi)(νi +βi −1) · · ·(νi +1)
]1/2

hν+β (x).

it should say

Rβhν(x) = Rβ

( Hν(x)

(2|ν |ν!)1/2

)
=

1

(2|ν |ν!)1/2
RβHν(x)

=
1

(2|ν |ν!)1/2

1

2|β |/2(|ν |+d)|β |/2
Hν+β (x)=

1

(ν!)1/2(|ν |+d)|β |/2

Hν+β (x)

2|ν |/2+|β |/2

=
1

(|ν |+d)|β |/2

( (ν+β )!
ν!

)1/2 Hν+β (x)

(2|ν+β |(ν+β )!)1/2

=
1

(|ν |+d)|β |/2

[ d

∏
i=1

(νi +βi)(νi +βi −1) · · ·(νi +1)
]1/2

hν+β (x).

Page 380 line 12 ↓ it says

K β (x,y) =Cβ

∫ 1

0

(
− logr
1− r2

) |β |−2
2

Hβ

(
x− ry√
1− r2

)
e
− |x−ry|2

1−r2

(1− r2)
n
2+1

dr.

it should say

K β (x,y) =Cβ

∫ 1

0

(
− logr
1− r2

) |β |−2
2

rd−1Hβ

(
x− ry√
1− r2

)
e
− |x−ry|2

1−r2

(1− r2)
d
2 +1

dr.
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Page 380 lines 10 ↑ it says

(−L)−|β |/2 f (x) =
1

Γ (|β |/2)

∫ ∞

0
t
|β |−2

2 T (1)
t f (x) dt

= Cβ e|x|
2
∫
Rd

(∫ 1

0
(− logr)

|β |−2
2

e
− |x−ry|2

1−r2

(1− r2)
d
2

dr
)

f (y) γd(dy).

it should say

(−L)−|β |/2 f (x) =
1

Γ (|β |/2)

∫ ∞

0
t
|β |−2

2 T (d)
t f (x) dt

= Cβ e|x|
2
∫
Rd

(∫ 1

0
(− logr)

|β |−2
2 rd e

− |x−ry|2
1−r2

(1− r2)
d
2

dr
r

)
f (y) γd(dy)

= Cβ

∫
Rd

(∫ 1

0
(− logr)

|β |−2
2 rd e

− |y−rx|2
1−r2

(1− r2)
d
2

dr
r

)
f (y) dy.

Page 381 line 3 ↓ it says

Rβhν(x) =
1

(|ν |+1)|β |/2

[ d

∏
j=1

(ν j +β j) · · ·(ν j +1)
]1/2

hν+β (x).

it should say

Rβhν(x) =
1

(|ν |+d)|β |/2

[ d

∏
j=1

(ν j +β j) · · ·(ν j +1)
]1/2

hν+β (x).

Page 381 lines 7–8 ↓ it says

R
β1
1 R

β2
2 . . .R

βd
d hν(x) =

d

∏
j=1

( β j

∏
i=1

( ν j + i

|ν |+ i

))1/2
hν+β (x)

=
[ d

∏
j=1

(ν j +β j) · · ·(ν j +1)
(|ν |+β j) · · ·(|ν |+1)

]1/2
hν+β (x)

it should say

R
β1
1 R

β2
2 . . .R

βd
d hν(x) =

d

∏
j=1

( β j

∏
i=1

( ν j + i

|ν |+d +(i−1)

))1/2
hν+β (x)

=
[ d

∏
j=1

(ν j +β j) · · ·(ν j +1)
(|ν |+d +β j −1) · · ·(|ν |+d)

]1/2
hν+β (x)
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Page 381 lines 10–15 ↓ it says

Tβhν(x) =
[∏d

j=1(|ν |+β j) · · ·(|ν |+1)

(|ν |+1)|β |

]1/2
hν(x)

=
[∏d

j=1(|ν |+β j) · · ·(|ν |+2)

(|ν |+1)|β |−d

]1/2
hν(x)

=
[ d

∏
j=1

( |ν |+β j) · · ·(|ν |+2)

(|ν |+1)β j−1

)]1/2
hν(x)

=
[ d

∏
j=1

( (|ν |+1)+(β j −1)
|ν |+1

)
· · · (|ν |+1)+1)

|ν |+1

)]1/2
hν(x)

=
[ d

∏
j=1

( (|ν |+1)+(β j −1)
|ν |+1

)
· · ·

( (|ν |+1)+1
|ν |+1

)]1/2
hν(x)

=
[ d

∏
j=1

(
1+

(β j −1)
|ν |+1

)
· · ·

(
1+

1
|ν |+1

)]1/2
hν(x)

it should say

Tβhν(x) =
[∏d

j=1(|ν |+d +β j −1) · · ·(|ν |+d)

(|ν |+d)|β |

]1/2
hν(x)

=
[∏d

j=1(|ν |+d +β j −1) · · ·(|ν |+2)

(|ν |+d)|β |−d

]1/2
hν(x)

=
[ d

∏
j=1

( |ν |+d +β j −1) · · ·(|ν |+d +1)

(|ν |+d)β j−1

)]1/2
hν(x)

=
[ d

∏
j=1

( (|ν |+d)+(β j −1)
|ν |+d

)
· · · (|ν |+d)+1)

|ν |+d

)]1/2
hν(x)

=
[ d

∏
j=1

(
1+

(β j −1)
|ν |+d

)
· · ·

(
1+

1
|ν |+d

)]1/2
hν(x)

Page 382 line 4 ↑ it says

=Cβ

∫ 1

0

(
− logr
1− r2

) |β |−2
2

Hβ

(
x− ry√
1− r2

)
e
− |y−ry|2

1−r2

(1− r2)
n
2+1

dr.

it should say

=Cβ

∫ 1

0

(
− logr
1− r2

) |β |−2
2

rd−1Hβ

(
x− ry√
1− r2

)
e
− |y−rx|2

1−r2

(1− r2)
n
2+1

dr.
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Page 382 line 2 ↑ it says

∂K

∂y j
(x,y) = 2Cβ

∫ 1

0

(
− logr
1− r2

) |β |−2
2

[ −rβ j√
1− r2

Hβ−ej

(
x− ry√
1− r2

)

it should say

∂K

∂y j
(x,y) = 2Cβ

∫ 1

0

(
− logr
1− r2

) |β |−2
2

rd−1
[ −rβ j√

1− r2
Hβ−ej

(
x− ry√
1− r2

)

Page 383 line 9 ↓ it says
∣∣∣∣∂K

∂y j
(x,y)

∣∣∣∣≤C

∣∣∣∣e−|x|2+|y|2 ∂K

∂y j
(x,y)

∣∣∣∣ .
it should say ∣∣∣∣∂K

∂y j
(x,y)

∣∣∣∣≤C

∣∣∣∣e−|x|2+|y|2 ∂K

∂y j
(x,y)

∣∣∣∣ .
Page 384 line 4 ↓ it says

Rβhν(x) =
1

2|β |/2

∏d
j=1 [(ν j +1) · · ·(ν j +β j)]

1
2

(|ν |+1)|β |/2
hν+β (x).

it should say

Rβhν(x) =
1

2|β |/2

∏d
j=1 [(ν j +d) · · ·(ν j +β j)]

1
2

(|ν |+d)|β |/2
hν+β (x).

Page 384 line 6 ↓ it says

‖Rβ f‖2
L2(dγ) =∑

ν

∏d
j=1 [(ν j +1) · · ·(ν j +β j)]

2|β |(|ν |+1)|β |
| f̂γ(ν)|2

it should say

‖Rβ f‖2
L2(dγ) =∑

ν

∏d
j=1 [(ν j +1) · · ·(ν j +β j)]

2|β |(|ν |+d)|β |
| f̂γ(ν)|2

Page 384 line 10 ↑ it says

|K β (x,y)| =

∣∣∣∣∣∣∣
∫ 1

0

(
− logr
1− r2

) |β |−2
2

Hβ

(
x− ry√
1− r2

)
e
− |x−ry|2

1−r2

(1− r2)
d
2 +1

dr

∣∣∣∣∣∣∣

≤ C
∫ 3

4

0
(− logr)

|β |−2
2

e
− |x−ry|2

2(1−r2)

(1− r2)
d
2

dr
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it should say

|K β (x,y)| =

∣∣∣∣∣∣∣
∫ 1

0

(
− logr
1− r2

) |β |−2
2

rd−1Hβ

(
x− ry√
1− r2

)
e
− |x−ry|2

1−r2

(1− r2)
n
2+1

dr

∣∣∣∣∣∣∣

≤ C
∫ 3

4

0
(− logr)

|β |−2
2

e
− |x−ry|2

2(1−r2)

(1− r2)
n
2

dr

Page 384 line 5 ↑ it says

|K β (x,y)|=C
(
K

1
β (x,y)+K

2
β (x,y)+K

3
β (x,y)

)
,

it should say

|K β (x,y)| ≤C
(
K

1
β (x,y)+K

2
β (x,y)+K

3
β (x,y)

)
,
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Appendix

10.1 The Gamma Function and Related Functions

Definition 10.1. The Gamma function, denoted by Γ (z), is defined as

Γ (z) =
∫ ∞

0
xz−1e−xdx, (10.1)

for Rez > 0.

It is easy to verify that the Gamma function satisfies the following functional
equation, using integration by parts:

Γ (z+1) = zΓ (z) , (10.2)

in particular,
Γ (n+1) = n!.

Moreover,

Γ (n+1/2) =
(2n)!

√
π

22nn!
, Γ (−n+1/2) = (−1)n 22nn!

√
π

(2n)!
,

Γ (1) = 1, Γ (1/2) =
√
π.

Stirling’s formula gives us asymptotics for the Gamma function and the factorial,

Γ (z)∼ (2π)1/2zz−1/2e−z, z → ∞, (10.3)

and
n! ∼

√
2πn(

n
e
)n, n → ∞. (10.4)
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The Beta function is closely related to the Gamma function, and is defined as
follows:

Definition 10.2. The Beta function is defined as

B(z,w) =
∫ 1

0
tz−1(1− t)w−1dt, (10.5)

Rez > 0,Rew > 0.

Observe that, by the change of variables t = 1 − u, we can prove that B(z,w)
is symmetric, i.e., B(z,w) = B(w,z). Moreover, by the change of variables t = 1+u

2 ,
yields

B(z,w) =
1

2z+w−1

∫ 1

−1
(1+u)z−1(1−u)w−1du.

The relation between the Gamma function and the Beta function is the following:

B(z,w) =
Γ (z)Γ (w)
Γ (z+w)

. (10.6)

Finally,

Definition 10.3. The Pochhammer symbol (α)n, for 0 �= α ∈R and n ∈N is defined
as

(α)n = α (α+1)(α+2) , n ≥ 0 . . .(α+n−1) , (10.7)

and
(α)0 = 1,

with α �= 0 a real number.

Note that (1)n = n!.
From (10.2), we have the following relation between the Pochhammer symbol

and the Gamma function:

(α)n =
Γ (α+n)
Γ (α)

. (10.8)

The binomial coefficients are defined, for any α ∈ R and n ∈ N, as(
α
n

)
=

α(α−1) · · ·(α−n+1)
n!

; (10.9)

therefore (
α
n

)
=

(α−n+1)n

n!
=

Γ (α+1)
Γ (α−n+1)Γ (n+1)

.

10.2 Classical Orthogonal Polynomials

The standard reference for the study of classical orthogonal polynomials is G.
Szegő’s book [262]. The bibliography on this subject is very long; among other ref-
erences, we should mention T. S. Chihara [54], G. E. Andrews, R. Askey & R. Roy
[9], N. N. Lebedev [156], and M. Abramowitz & I. A. Stegun [1].
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Hermite Polynomials

The Hermite polynomials {Hn}n∈N are defined (up to a multiplicative constant) as
the orthogonal polynomials associated with the Gaussian measure in R,

γ1(dx) =
e−x2

πd/2
dx;

therefore, they can be obtained from the canonical basis of the polynomials
{1,x,x2, · · · ,xn, · · ·} using the Gram–Schmidt orthogonalization process with re-
spect to the inner product in L2(γ1). Thus, the orthogonality property of the Hermite
polynomials with respect to ν is

∫ ∞

−∞
Hn(y)Hm(y)γ(dy) = 2nn!δn,m, (10.10)

n,m = 0,1,2, · · · , with the normalization

H2n+1(0) = 0, H2n(0) = (−1)n (2n)!
n!

. (10.11)

Before the study on Hermite polynomials by C. Hermite (1822–1901) was published,
they had been considered by P. L. Chebyshev; moreover, they appear for the first time
in Pierre Simon Laplace’s famous Celestial Mechanics.

Rodrigues’ formula

Hn(x) = (−1)nex2 dn

dxn (e
−x2

). (10.12)

The orthogonality relation can be obtained from Rodrigues’ formula using integra-
tion by parts.

Differential relations

H
′
n(x) = 2nHn−1(x), (10.13)

H
′′
n (x) − 2xH

′
n(x)+2nHn(x) = 0. (10.14)

Thus, the n-th Hermite polynomial is a polynomial solution to the Hermite equation
with parameter n.
Explicit representation

Hn(x) = n!
[n/2]

∑
k=0

(−1)k

k!
(2x)n−2k

(n−2k)!
. (10.15)

Integral representation

Hn(x) =
(−2i)nex2

√
π

∫ ∞

−∞
tne−t2

e2ixt dt. (10.16)
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Using Rodrigues’ formula, this representation is obtained from the equality,

e−x2
=

1√
π

∫ ∞

−∞
e−t2

e2ixtdt. (10.17)

Generating function
∞

∑
n=0

Hn(x)
n!

rn = e2xr−r2
. (10.18)

As Hermite polynomials are the only polynomials that satisfy this relation, the gen-
erating function can be used as an alternative definition. This formula is obtained,
almost immediately, by considering Taylor’s expansion of the function e2xy−y2

at
y = 0 and observing that we have

Hn(x) =
dn

dyn (e
2xy−y2

)|y=0,

by the Leibniz product formula.

Three-term recurrence relation

Hn+1(x) = 2xHn(x)−2nHn−1(x),n ≥ 0, (10.19)

where H0(x) = 1, H1(x) = 2x.
This formula can be obtained from Rodrigues’ formula for Hn+1 by using the

Leibniz product formula.

Christoffel–Darboux formula

n

∑
k=0

Hk(x)Hk(y)
2kk!

=
1

2n+1n!
Hn+1(x)Hn(y)−Hn(x)Hn+1(y)

x− y
. (10.20)

Using the generating function and the relation (10.17), we can prove Mehler’s for-
mula (F. G. Mehler, 1866)

∞

∑
n=0

Hn(x)Hn(y)
2nn!

rn =
1

(1− r2)1/2
e
− r2(x2+y2)−2rxy

1−r2 . (10.21)

The normalized Hermite polynomial of degree n, which is denoted by hn, is then

hn(x) =
Hn(x)

(π2nn!)1/2
. (10.22)

It follows that, with different constants, the normalized Hermite polynomials satisfy
relations similar to those that are satisfied by the Hermite polynomials, for example,

h
′
n(x) =

√
2nhn−1(x),
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and
h
′′
n(x)−2xh

′
n(x)+2nhn(x) = 0.

The Hermite polynomial in d-variables {Hν} for multi-indices ν =(ν1,ν2, · · · ,νd)∈
N

d , are defined in tensorial form, i.e., Hν is defined as the tensor product of one-
dimensional Hermite polynomials,

Hν(x) =
d

∏
i=1

Hνi(xi), (10.23)

where x = (x1,x2, · · · ,xd) ∈ R
d , and Hνi(xi) is the Hermite polynomial of degree αi

in the variable xi

The normalized Hermite polynomials in d-variables {hν} are the tensor products
of one-dimensional normalized Hermite polynomials,

hν(x) =
d

∏
i=1

hνi(xi),

where hνi(xi) is the normalized Hermite polynomial of degree αi in the variable xi;
therefore,

hν(x) =
Hν(x)

(πd2|ν |ν!)1/2
,

where, as usual, for each multi-index ν = (ν1,ν2, · · · ,νd), ν! = ∏d
i=1 νi! and |ν | =

∑d
i=1 νi. Mehler’s formula in d dimensions is then

∑
|α |≥0

Hν(x)Hν(y)

2|ν |ν!
rν = ∑

|ν |≥0

hν(x)hν(y)rν

=
1

(1− r2)d/2
e
− r2(|y|2+|x|2)−2r〈x,y〉

1−r2 . (10.24)

Laguerre Polynomials

The Laguerre polynomials (or Sonine–Laguerre polynomials) of type α >−1, {Lαn },
are defined (up to a multiplicative constant) as the orthogonal polynomials associated
with the Gamma measure on (0,∞),

να(dx) = χ(0,∞)(x)xαe−xdx;

therefore, they can be obtained from the canonical basis of the polynomials
{1,x,x2, · · · ,xn, · · ·} using the Gram–Schmidt orthogonalization process with re-
spect to the inner product in L2(μα). Therefore, the orthogonality property of the
Laguerre polynomials of type α with respect to μα , is

∫ ∞

0
Lαn (y)L

α
m(y)να(dy) = Γ (α+1)

(
n+α

n

)
δn,m =

Γ (n+α+1)
n!

δn,m, (10.25)
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n,m = 0,1,2, · · · , with the normalization

Lαn (0) =

(
n+α

n

)
=

(α+1)n

n!
. (10.26)

These polynomials were studied originally by E. N. Laguerre (1834–1886), but
they had appeared previously in the works of N. K. Abel, J. L. Lagrange, and P. L.
Chebyshev.
Rodrigues’ formula

Lαn (x) =
1
n!

exx−α
dn

dxn (x
n+αe−x), n ∈ N, x > 0. (10.27)

Differential relations
(Lαn (x))

′ =−Lα+1
n−1 (x). (10.28)

x(Lαn (x))
′′+(α+1− x)(Lαn (x))

′+nLαn (x) = 0. (10.29)

Thus, the n-th Laguerre polynomial of type α is a polynomial solution of the La-
guerre differential equation with parameters α,n.
Explicit representation

L(α)
n (x) =

d

∑
k=0

(−1)k
(

n+α
n− k

)
xk

k!
. (10.30)

Integral representation

Lαn (x) =
exx−α/2

n!

∫ ∞

0
tn+α/2Jα(2

√
xt)e−tdt, (10.31)

where Jα is the Bessel function of order α (see Watson [288]),1

Jα(x) =
∞

∑
ν=0

(−1)ν

22ν+|α |Γ (ν+1)Γ (|α|+ν+1)
xν+|α |, α �=±1/2.

Using Rodrigues’ formula, this representation is obtained from the identity,

xn+αe−x =
∫ ∞

0
(
√

xt)n+αJn+α(2
√

xt)e−tdt,

Generating function

∞

∑
n=0

Lαn (x)r
n =

1
(1− r)α+1 e−

xr
1−r . (10.32)

1And J−1/2(x) =
√

2
πx cosx, J1/2(x) =

√
2
πx sinx.
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The generating function can be obtained from the integral representation and it
gives us an alternative definition of the Laguerre polynomials, as they are the only
coefficients (depending on x) that verify that identity.

Three-term recurrence relation

(n+1)Lαn+1(x) = [(2n+α+1)− x]Lαn (x)− (n+α)Lαn−1(x), (10.33)

with Lα0 (x) = 1, Lα1 (x) =−x+α+1.

Christoffel–Darboux formula

n

∑
k=0

k!
Γ (k+α+1)

Lαk (x)L
α
k (y) =

(n+1)!
Γ (n+α+1)

Ln+1(y)Ln(x)−Ln+1(x)Ln(y)
x− y

.

(10.34)

Hille–Hardy formula

∞

∑
n=0

n!
Γ (n+α+1)

Lαn (x)L
α
n (y)r

n =
1

1− r
e−

(x+y)r
1−r (−xyr)−α/2Jα(

2
√−xyr
1− r

), (10.35)

with |r|< 1, α >−1 and Jα(x) is the Bessel function of order α .

Relation between Laguerre and Hermite polynomials

H2n = (−1)n22nn!L−1/2
n (x2) (10.36)

H2n+1 = (−1)n22n+1n!xL1/2
n (x2). (10.37)

The orthonormal Laguerre polynomials of type α are defined as

lαn (x) =
(n!)1/2L(α)

n (x)

(Γ (n+α+1))1/2
. (10.38)

It follows then that, with different constants, the normalized Laguerre polynomials
satisfy relations similar to those that are satisfied by the Laguerre polynomials.

Given the multi-indexes α =(α1, . . . ,αd), α ∈ (−1,∞)d , and ν =(ν1,ν2, · · · ,νd)∈
N

d the Laguerre polynomial in d-variables of type α and degree ν , which are
denoted as Lα

ν , is defined for x = (x1,x2, · · · ,xd) ∈ R
d as the tensor product of

one-dimensional Laguerre polynomials,

Lα
ν (x) =

d

∏
i=1

Lαi
νi (xi), (10.39)

where Lανi
(xi) is the Laguerre polynomial of degree νi in the variable xi; therefore,

the normalized Laguerre polynomial lαν is then
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lαν (x) =
(ν!)1/2Lα

ν (x)

(∏d
i=1Γ (νi +α+1))1/2

.

It can also be expressed as the tensor product of one-dimensional normalized La-
guerre polynomials,

lαν (x) =
d

∏
i=1

lανi
(xi),

where lανi
(xi) is the normalized Laguerre polynomial of degree νi in the variable xi.

The Hille–Hardy formula in d dimensions is then

∑
|ν |≥0

ν!

∏d
i=1Γ (νi +α+1)

Lαν (x)L
α
ν (y)r

ν

=
d

∏
j=1

1
1− r

e

(
− (x j+y j)r

1−r

)
(x jy jr)

−α j/2Jα j

(
2
√−rx jy j

1− r

)
,

with |r|< 1 and Jα(x) is the Bessel function of order α .

Generalized Hermite Polynomials

The generalized Hermite polynomials were defined by G. Szëgo in [262, Problem 25,
page 380] as being orthogonal polynomials with respect to the measure

dλ (x) = dλμ(x) = |x|2μe−|x|2dx,

with μ >−1/2.
There are two normalizations of these polynomials that have been considered. On

the one hand, T. S. Chihara in [53] (see also [54]) defines them with a normalization
so that their leading coefficient (i.e., the coefficient of xn) is 2n; on the other hand,
M. Rosenblum in [234] uses a different one.
Let Hμ

n denote the generalized Hermite polynomial of degree n, then for n even

Hμ
2m(x) = (−1)m(2m)!

Γ (μ+ 1
2 )

Γ (m+μ+ 1
2 )

L
μ− 1

2
m (x2) (10.40)

and for n odd

Hμ
2m+1(x) = (−1)m(2m+1)!

Γ (μ+ 3
2 )

Γ (m+μ+ 3
2 )

xL
μ+ 1

2
m (x2), (10.41)

Lγm being the Laguerre γ-polynomial of degree m.
Here, we list the first few generalized Hermite polynomials:

Hμ
0 (x) = 1, Hμ

1 (x) = (1+2μ)−12x, Hμ
2 (x) = (1+2μ)−14x2 −2,
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Hμ
3 (x) = (1+2μ)−1(3+2μ)−124x3 − (1+2μ)−112x,

Hμ
4 (x) = (1+2μ)−1(3+2μ)−148x4 − (1+2μ)−148x2 +12.

This class of generalized Hermite polynomials has a rather nice generating function
formula that involves the modified Bessel function Iμ . To get such a formula, we
need to consider a generalized exponential function eμ ,

eμ(x) = Γ (μ+
1
2
)(

2
x
)μ−1/2[Iμ− 1

2
(x)+ Iμ+ 1

2
(x)], (10.42)

where Iν is the modified Bessel function,

Iν(z) =
( z

2

)ν ∞

∑
k=0

(
z
2

)2k

k!Γ (ν+ k+1)
.

Thus,

eμ(z) =
∞

∑
m=0

zk

γμ(m)
, (10.43)

where γμ(m) is a generalized factorial

γμ(2m) =
22mm!Γ (m+μ+ 1

2 )

Γ (μ+ 1
2 )

= (2m)!
Γ (m+μ+ 1

2 )

Γ (μ+ 1
2 )

Γ ( 1
2 )

Γ (m+ 1
2 )
,

γμ(2m+1) =
22m+1m!Γ (m+μ+ 3

2 )

Γ (μ+ 1
2 )

= (2m)!
Γ (m+μ+ 3

2 )

Γ (μ+ 1
2 )

Γ ( 1
2 )

Γ (m+ 3
2 )
.

Then, clearly eμ is an entire function and indeed e0(x) = ex. The generating function
for {Hμ

n } is then

e−z2
eμ(2xz) =

∞

∑
k=0

Hμ
k (x)

zk

k!
. (10.44)

The three-term recurrence relation for {Hμ
n } can also be obtained

2nHμ
n−1(x)+

γμ(n+1)
(n+1)γμ(n)

Hμ
n+1(x) = 2xHμ

n (x), (10.45)

in addition to Mehler’s formula for x, y ∈ R and |z|< 1,

∞

∑
n=0

γμ(n)
2n(n!)2 Hμ

n (x)H
μ
n (y)z

n =
1

(1− z2)μ+1/2
e
− z2(x2+y2)

1−z2 eμ

(
2xyz

1− z2

)
. (10.46)

Let us note that each generalized Hermite polynomial satisfies the following
differential–difference equation (see [53]),

(Hμ
n )

′′(x)+2(
μ
x
− x)(Hμ

n )
′(x)+2(n−μ

θn

x2 )H
μ
n (x) = 0, (10.47)
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with

θn =

{
1 if n is odd,
0 if n is even.

and n ≥ 0.
Therefore, by considering the operator

Lμ =
1
2

d2

dx2 +(
μ
x
− x)

d
dx

−μ
I − Ĩ
2x2 , (10.48)

where I f (x) = f (x) and Ĩ f (x) = f (−x), Hμ
n turns out to be an eigenfunction of Lμ

with eigenvalue −n. The operator Lμ is one simple example of a Dunkl operator.

Jacobi Polynomials

The Jacobi polynomials, {P(α ,β )
n }n∈N, are defined (up to a multiplicative constant)

as the orthogonal polynomials associated with the Jacobi measure (or beta measure)
in (−1,1), defined as να ,β , α,β >−1,

να ,β (dx) = ωα ,β (x)dx = χ(−1,1)(x)(1− x)α(1+ x)βdx. (10.49)

The function ωα ,β is called the Jacobi weight. Thus, the Jacobi polynomials can
be obtained from the canonical basis of the polynomials {1,x,x2, · · · ,xn, · · ·} using
the Gram–Schmidt orthogonalization process with respect to the inner product in
L2(μα ,β ). Therefore, the orthogonality property of the Jacobi polynomials with re-
spect to να ,β , is

∫ ∞

−∞
P(α ,β )

n (y)P(α ,β )
m (y)να ,β (dy) = h(α ,β )n δn,m, (10.50)

n,m = 0,1,2, · · · , where

h(α ,β )n =
2α+β+1

(2n+α+β +1)
Γ (n+α+1)Γ (n+β +1)
Γ (n+1)Γ (n+α+β +1)

, (10.51)

with the normalization

P(α ,β )
n (1) =

(
n+α

n

)
=

(α+1)n

n!
=

Γ (n+α+1)
Γ (n+1)Γ (α+1)

. (10.52)

As we are working in a symmetric interval and the weight ωα ,β satisfies

ωα ,β (−x) = ωβ ,α(x), (10.53)

it is easy to prove that

P(α ,β )
n (−x) = (−1)dP(β ,α)

n (x) (10.54)
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and therefore

P(α ,β )
n (−1) = (−1)d

(
n+β

n

)
= (−1)d Γ (n+β +1)

Γ (n+1)Γ (β +1)
. (10.55)

These polynomials were studied originally by Karl Gustav Jacob Jacobi (1804–
1851), and they were introduced in 1850. We have as particular cases of the Jacobi
polynomials:

1. The Legendre polynomials, {Pn}, when α = β = 0.
2. The Chebyshev polynomials of the first type, {Tn}, when α = β =−1/2.
3. The Chebyshev polynomials of the second type, {Un}, when α = β = 1/2.
4. The Gegenbauer or ultraspherical polynomials, {Cλ

n }, when α = β = λ −1/2 >
−1/2.

Rodrigues’ formula

P(α ,β )
n (x) =

(−1)n

2nn!
(1− x)−α (1+ x)−β

dn

dxn

{
(1− x)α+n (1+ x)β+n

}
. (10.56)

Differential relations

d
dx

{
P(α ,β )

n (x)
}
=

(n+α+β +1)
2

P(α+1,β+1)
n−1 (x) . (10.57)

(
1− x2)y′′+[β −α− (α+β +2)x]y′+n(n+α+β +1)y = 0. (10.58)

Thus, the Jacobi polynomial P(α ,β )
n is a polynomial solution of the Jacobi differential

equation, with parameter α,β ,n.

Explicit representation

P(α ,β )
n (x) =

1
2n

∞

∑
k=0

(
n+α

k

)(
n+β
n− k

)
(x−1)n−k(x+1)k

=
n

∑
k=0

(
n+α
n− k

)(
n+α+β + k

k

)
(

x−1
2

)k

=

(
n+α

n

)
[1+

n

∑
k=1

(−n)k (n+α+β +1)k

k!(α+1)k
(

1− x
2

)k]. (10.59)

Integral representation

P(α ,β )
n (x) =

1
2πi

∮ (
1+

x+1
2

z

)n+α (
1+

x−1
2

z

)n+β
z−n−1dz, (10.60)

where x �= ±1 and the integral is over a closed curve around zero, in the positive
sense, such that the points −2(x±1)−1 are not in the interior.
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Generating function

∞

∑
n=0

P(α ,β )
n (x)rn = 2α+β

(
1−2xr+ r2)− 1

2

((
1−2xr+ r2) 1

2 − r+1

)−α

×
((

1−2xr+ r2) 1
2 + r+1

)−β
. (10.61)

The generating function can be obtained from the integral representation and
gives us an alternative definition of the Jacobi polynomials, as they are the only
coefficients (dependent on x) to satisfy that identity.

Three-term recurrence relation

2(n+1)(n+α+β +1)(2n+α+β )P(α ,β )
n+1 (x)

= (2n+α+β +1)
{
(2n+α+β +2)(2n+α+β )x+α2 −β 2}P(α ,β )

n (x)

−2(n+α)(n+β )(2n+α+β +2)P(α ,β )
n−1 (x) , (10.62)

with

P(α ,β )
0 (x) = 1,y P(α ,β )

1 (x) =
1
2
(α+β +2)x+

1
2
(α−β ) .

Christoffel–Darboux formula

n

∑
k=0

{
h(α ,β )k

}−1
P(α ,β )

k (x)P(α ,β )
k (y) =

2−α−β

2n+α+β +2
Γ (n+2)Γ (n+α+β +2)
Γ (n+α+1)Γ (n+β +1)

×
P(α ,β )

n+1 (x)P(α ,β )
n (y)−P(α ,β )

n (x)P(α ,β )
n+1 (y)

x− y
.

(10.63)

Asymptotic relations with other classical orthogonal polynomials

lim
β→∞

P(α ,β )
n (1−2x/β ) = Lαn (x). (10.64)

The Gegenbauer polynomials {Cλ
n } are defined by

Cλ
n (x) =

(2λ )n

(λ +1/2)n
P(λ−1/2,λ−1/2)

n (x), (10.65)

and their generating function is

∞

∑
n=0

Cλ
n (x)r

n =
1

(1−2xr+ r2)λ
. (10.66)
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The asymptotic relation for the Hermite polynomials,

lim
λ→∞

λ−n/2Cλ
n (x/λ ) =

Hn(x)
n!

. (10.67)

The Jacobi orthonormal polynomials are defined as

p(α ,β )n (x) =
P(α ,β )

n (x)

(h(α ,β )n )1/2
. (10.68)

It is immediately clear that the normalized Jacobi polynomials satisfy similar re-
lations to those that are satisfied by the Jacobi polynomials, with different constants.

Given the multi-index α = (α1, . . . ,αd),β = (β1, . . . ,βd) ∈ R
d , αi,βi > −1 and

ν = (ν1,ν2, · · · ,νd) ∈ N
d the Jacobi polynomial in d-variables of type (α,β ) and

degree ν , which is denoted by Pα ,β
ν , is defined for x = (x1,x2, · · · ,xd) ∈ R

d , as the
tensor product of one-dimensional Jacobi polynomials,

P(α ,β )
ν(x) =

d

∏
i=1

P(α ,β )
νi (xi), (10.69)

where P(α ,β )
νi (xi) is the Jacobi polynomial of degree νi in the variable xi, and the

normalized Jacobi polynomial p(α ,β )
ν is then the tensor product of one-dimensional

normalized Jacobi polynomials,

p(α ,β )
ν(x) = (h(α ,β )ν )−1/2

d

∏
i=1

p(α ,β )νi (xi), (10.70)

where h(α ,β )ν =∏d
i=1 h(αi,βi)

νi , with h(αi,βi)
νi = 2αi+βi+1

2νi+αi+βi+1
Γ (νi+αi+1)Γ (νi+βi+1)
Γ (νi+1)Γ (νi+αi+βi+1) .

10.3 Doubling Measures

Given a metric space (X ,d), we denote by Bρ(x) the open ball and by Bρ(x) the
closed ball centered at x ∈ X with radius ρ > 0. With the notation B(X) we mean the
collection of all closed balls of X , and with B(X) the collection of all Borel sets. If
B = Bρ(x) is any ball, we denote with 2B the ball with the same center x as B and
with the double radius, i.e., 2B = B2ρ(x). A measure is said to be doubling if there
exists a constant C > 0 such that the following doubling condition holds for every
ball Bρ(x) ∈ B(X)

μ(2Bρ(x)) = μ(B2ρ(x))≤Cμ(Bρ(x)).

We denote by CD the least constant that satisfies the doubling condition, i.e., we
define

CD = sup
B∈B(X)

μ(2B)
μ(B)

.
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i) There exists a lower bound for the density of the space X ; more precisely,
if we set s = log2 CD, then

μ(Bρ(x))

μ(BR(x))
≥ 1

C2
D

(ρ
R

)s
, 0 < ρ ≤ R < ∞, x,y ∈ X .

This means that in some sense, the number s = log2 CD, defines a dimen-
sion on X ; it is called the homogeneous dimension of X . We point out
that this is not the topological dimension of X (it can be greater), and it
depends on μ and on the metric d. It can be proved that, if the metric d is
changed, then the homogeneous dimensions may change as well.

ii) A measure μ is finite if and only if the diameter of X is finite. In fact, if
d = diam(X) is finite, then trivially, taking an arbitrary ball Bρ with ρ > 0,
for n such that n > d/ρ , we get

u(X)≤ μ(Bnρ)≤Cn
D μ(Bρ).

Conversely, assume that diam(X) = ∞. Then, fix a point y ∈ X and two
radii ρ ,R with 0 < ρ < R/2. Then, for infinitely many n ∈ N there is a
ball Bρ(xn) contained in the annulus B2nR(y)\B2n−1R(y) with the property
that any point x ∈ X lies at most in two of such balls. From the observation
above, we know that, for every n

μ(Bρ(xn))≥
1

C2
D

(ρ
R

)s
μ(BR(y)),

from which
μ(X)≥ 1

2∑n
μ(Bρ(xn)) = ∞.

As a consequence, even in a finite-dimensional space, probability mea-
sures are not doubling.

iii) The doubling condition implies the Lebesgue differentiation theorem and
obtains the same Lp(X ,μ)-boundedness results for the Hardy–Littlewood
maximal function with respect to the measure μ as in the classical case.

For more details on doubling measures in general, see for instance [6].

10.4 Density Theorems for Positive Radon Measures

This section is taken from [89].

Theorem 10.4. Let μ be a positive Radon measure on R
d, then for 1 ≤ p < ∞,

C∞
0 (R

d) the space of infinitely differentiable functions on R
d with compact support

is dense in Lp(μ)
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Proof. To prove this theorem, we are going to use a fact from functional analysis.
Let B be a Banach space and D a linear subspace of B, then D is dense in B if and
only if every bounded linear functional on B that vanishes on D must be the zero
functional. In this case, C∞

0 (R
d) is a linear subspace of Lp(μ) for 1 ≤ p < ∞. On

the other hand, we know that the dual space of Lp(μ) is identified with Lp′(μ) with
1
p +

1
p′ = 1; therefore, let f ∈ Lp′(μ) be given such that

∫
Rd

f (x) g(x) μ(dx) = 0, (10.71)

for all g ∈C∞
0 (R

d). Thus, we have to prove that f = 0 μ-a.e.
According to the proof we are going to give, we can assume without loss of

generality that μ is a finite measure (otherwise we write R
d =

⋃∞
k=1 B̄(0,k) where

B̄(0,k) = {x ∈ R
d : |x| ≤ k}, and take into account that μ(B̄(0,k))< ∞ for all k).

For λ > 0, let

Eλ :=
{

x ∈ R
d : | f (x)|> λ

}
=
{

x ∈ R
d : f (x)> λ

}
∪
{

x ∈ R
d : − f (x)> λ

}

= : E1
λ ∪E2

λ

If μ(E1
λ )> 0, because μ is a finite Radon measure, then there exists a compact set K

and an open set G such that K ⊂ E1
λ ⊂ G,

μ(K)> μ(E1
λ )/2, and μ(G\K)1/p <

λμ(E1
λ )

2‖ f‖p′
.

Let g be a C ∞
0 (Rd) such that 0 ≤ g ≤ 1, g = 1 on K, and supp(g)⊂ G, then
∫
Rd

f (x) g(x) μ(dx) =
∫

K
f (x) μ(dx)+

∫
G\K

f (x) g(x) μ(dx)

≥λ μ(K)−μ(G\K)1/p‖ f‖p′ > 0,

which is a contradiction with (10.71). Thus, μ(E1
λ ) = 0. To prove that μ(E2

λ ) = 0,
we use the same reasoning as before applied to the function − f instead of f . Hence,
μ(Eλ ) = 0 for all λ > 0. Therefore, f = 0 μ-a.e. ��

Corollary 10.5. For 1 ≤ p < ∞, C∞
0 (R) is a dense subspace of Lp(R) and Lp(γ1).

Also, we have immediately,

Corollary 10.6. For 1 ≤ p < ∞, C∞
0 (R

d) is a dense subspace of Lp(Rd) and Lp(γd).

Also, we want to prove that for 1 ≤ p <∞, P(R) is a dense subset of Lp(γ1) and
E = span{ψn(x) : n ∈ Z

+
0 } is a dense subset of Lp(R). To this end, we are going to

prove a density theorem obtained by C. Berg and J. P. Christensen [29], which says:

Theorem 10.7. Let μ be a positive Radon measure on R and suppose that there
exists a number α > 0 such that
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∫ +∞

−∞
eα |x| μ(dx)<+∞. (10.72)

Then, the set P(R) is dense in Lp(μ) for 1 ≤ p < ∞.

Proof. Before getting into the proof of this theorem, let us recall that the Fourier
transform of an integrable function f , with respect to the Lebesgue measure is de-
fined as

f̂ (ξ ) =
∫ +∞

−∞
e−2πiξ t f (t) dt.

On S (R), the space of test functions on R, the Fourier transform has an inverse, i.e.,
for f ∈ S (R),

f̌ (x) =
∫ +∞

−∞
e2πixξ f (ξ ) dξ

is the inverse Fourier transform of f .
Now, the condition (10.72) implies that all moments associated with μ are finite.
Let us observe that P(R) is a linear subspace of Lp(μ) for 1 ≤ p < ∞ and the

dual space of Lp can be identified with Lp′(μ) with 1
p +

1
p′ = 1. Thus, let us start with

a function f ∈ Lp′(μ) such that

∫ +∞

−∞
xn f (x) μ(dx) = 0 (10.73)

for all n ∈ N0. We should conclude that f = 0 μ−a.e.
Now, let us define

F(z) =
∫ +∞

−∞
e−2πizx f (x) μ(dx) for z ∈Ω := {z ∈ C : |Im(z)|< α/4π p}.

Using Hölder’s inequality, F is an analytic function in Ω . Indeed, for z ∈Ω ,

F ′(z) =
∫ +∞

−∞
e−2πizx (−2πi)x f (x) μ(dx)

and the integral defining the derivative exists because using Hölder’s inequality for
the exponents 1

2p +
1

2p +
1
p′ = 1, we have

∫ +∞

−∞
|x| e2π|Im (z)||x| | f (x)| μ(dx)≤

∫ +∞

−∞
|x| e

α
2p |x| | f (x)| μ(dx)

≤
(∫ +∞

−∞
|x|2p μ(dx)

)1/2p(∫ +∞

−∞
eα |x| μ(dx)

)1/2p

(∫ +∞

−∞
| f (x)|p′ μ(dx)

)1/p′

< ∞
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Similarly, we can calculate out

F(n)(z) = (−2πi)n
∫ +∞

−∞
e−2πizx xn f (x) μ(dx)

According to hypothesis F(n)(0) = 0 for all n ∈N0 because 0 ∈Ω and F is holomor-
phic in Ω , then for all z ∈Ω ,

F(z) = ∑
n≥0

F(n)(0)
n!

zn = 0.

In particular, for z = ξ +0i ∈Ω , we get that

Fμ f (ξ ) :=
∫ +∞

−∞
e−2πiξx f (x) μ(dx) = 0,

for all ξ ∈ R. Now, let g ∈C∞
0 (R) then

0 =
∫ +∞

−∞
Fμ f (ξ ) ǧ(ξ ) dξ =

∫ +∞

−∞

∫ +∞

−∞
e−2πiξx ǧ(ξ ) dξ f (x) μ(dx)

=
∫ +∞

−∞
ˆ̌g(x) f (x) μ(dx)

=

∫ +∞

−∞
g(x) f (x) μ(dx)

for any g ∈ C∞
0 (R). Hence, from the proof of Theorem 10.4 we can conclude that

f = 0 μ-a.e. ��

Corollary 10.8. For 1 ≤ p < ∞, P(R) is a dense subspace of Lp(γ1) and so is E of
Lp(R).

Proof. As E =P(R), the conclusion follows directly from this theorem with μ = γ1.
On the other hand, E is a linear subspace of Lp(R); thus, to prove that E is dense in
Lp(R), it is enough to show that for a given function f ∈ Lp′(R) such that∫ +∞

−∞
f (x) ψn(x) dx = 0,

for all n ∈ N0, then f = 0 μ-a.e. Observe that the above condition is equivalent to∫ +∞

−∞
f (x) xn e−x2

dx = 0,

for all n ∈ N0. Now, from the proof of Theorem 10.7 with μ(dx) = e−x2
dx, we get

the conclusion. ��
Corollary 10.9. The family {hn}n≥0 is an orthonormal basis in L2(γ1) and so is
{ψn}n≥0 in L2(R), that is, for f ∈ L2(γ1),

f = ∑
n≥0

〈 f ,hn〉hn

in L2(γ1) with 〈 f ,hn〉 =
∫ +∞
−∞ f (y) hn(y) γ1(y); similarly for the basis of Hermite

functions.



424 10 Appendix

Proof. This is a result that has to do with the Hilbert space structure. Let H be an
infinite dimensional Hilbert space and {xn}n≥0 be an orthonormal family in H, then
∑∞

n=0〈x,xn〉xn is always convergent because using Bessel’s inequality for all N,

‖
N

∑
n=0

〈x,xn〉xn‖ ≤ ‖x‖.

Let y = ∑∞
n=0〈x,xn〉xn, if we want to prove that y = x, we should ask the family to

satisfy an extra condition: the only vector orthogonal to every xn is the null vector,
i.e., let z be in H such that 〈z,xn〉 = 0 for all n ∈ N0, then z = 0. If this is the case,
then

〈y− x,xk〉=
∞

∑
n=0

〈x,xn〉〈xn,xk〉−〈x,xk〉= 0,

for all k ∈ N0, then x = y. In this case, {xn}n≥0 is called a basis for H. ��

Corollary 10.10. For 1 ≤ p<∞, and f ∈ Lp(γ1) is such that 〈 f ,hn〉= 0 for all n ≥ 0,
then f = 0 a.e. Similarly, if f ∈ Lp(dx) is such that 〈 f ,ψn〉 :=

∫ +∞
−∞ f (x)ψn(x) dx = 0

for all n ≥ 0, then f = 0 a.e.

Proof. The proof of this corollary follows the same steps as the proof of corol-
lary 10.9. In the case of the Hermite polynomials, we also get that the function f = 0
a.e. because the Lebesgue measure is also absolutely continuous with respect to the
Gaussian measure γ1. ��

Observe that this theorem might be useful for other orthogonal expansions as
well, as in the case of Jacobi or Laguerre polynomials and functions.

In our case, we have two Hilbert spaces, one H = L2(γ1) with the orthonormal
family {hn}n≥0 and the other one H = L2(R) with the family {ψn}n≥0. If we want
to prove that our two families are the basis of the corresponding Hilbert spaces, we
have to show that the only function orthogonal to every member of the family has to
be the zero function. For the first, let f ∈ L2(γ1) be such that

〈 f ,hn〉=
∫ +∞

−∞
f (x) hn(x) γ1(dx) = 0

for all n ∈ N0, then f = 0, but from (1.70) we get that

∫ +∞

−∞
f (x) xn γ1(dx) = 0

for all n ∈ N0 and the conclusion follows from the proof of Theorem 10.7 with μ =
γ1. On the other hand, for the second, let f ∈ L2(R) be such that

〈 f ,ψn〉=
∫ +∞

−∞
f (x) ψn(x) dx = 0



10.4 Density Theorems for Positive Radon Measures 425

for all n ∈ N0, but this implies that
∫ +∞

−∞
f (x) xn e−x2/2dx = 0

for all n ∈ N0 and again the result follows from the proof of Theorem 10.7 with
μ = e−x2

dx and as the Lebesgue measure is absolutely continuous with respect to
this measure, we also get that f = 0 a.e.

We know that {hν} is an orthonormal basis in L2(γd), so it is {ψν} in L2(Rd).
As in the one-dimensional case, these statements are a consequence of a more

general result about density theorems involving polynomials.
Let {μ j}d

j=1 be d positive Radon measures defined on R, and let μd = μ1 ×·· ·×
μd be the product measure on R

d of them. We want to prove under what conditions
the μ j’s the subspace P(Rd) is dense in Lp(μd).

Theorem 10.11. Let {μ j}d
j=1 be a family of d positive Radon measures defined on

R satisfying condition (10.72) from Theorem 10.7 and let μd = μ1 × ·· ·× μd, then
P(Rd) is dense in Lp(μd) for 1 ≤ p < ∞.

Proof. For 1 ≤ p < ∞, let f be a function in Lp′(μd) with 1
p +

1
p′ = 1 such that

∫
Rd

xα f (x) μd(dx) = 0, (10.74)

for all α ∈ N
d
0 , we want to prove that f = 0 μd −a.e. As we mentioned before, this

statement would imply that P(Rd) is dense in Lp(μd).
By using Fubini’s theorem, condition (10.74) can be written as

∫
R

xαd
d

(∫
Rd−1

(xd−1)α
d−1

f (xd−1,xd) μd−1(dxd−1)

)
μd(dxd) = 0

for all αd ∈ N
+
0 , where xs = (x1,x2, · · · ,xs) and αs = (α1,α2, · · · ,αs), 1 ≤ s ≤ d.

Observe that∫
Rd−1

(xd−1)α
d−1

f (xd−1,xd) μd−1(dxd−1) ∈ Lp′(μd(dxd)).

Then, from the proof of Theorem 10.7, there exists a Borel subset N(αd−1) of R with
μd(N(αd−1)) = 0 such that

∫
Rd−1

(xd−1)α
d−1

f (xd−1,xd) μd−1(dxd−1) = 0 (10.75)

for all xd ∈ R\N(αd−1). Let Nd =
⋃
αd−1∈Nd−1

0
N(αd−1), then μd(Nd) = 0 and con-

dition (10.75) is satisfied for all xn ∈ R\Nd and for all αd−1 ∈ (N0)
d−1.

Proceeding in this way, we can find one-dimensional Borel sets Nd−1, · · · ,N1

such that μ j(Nj) = 0 and f (x) = 0 for all x ∈ (R\N1 ×·· ·×R\Nd) = R
d \N with

N = (N1 ×R
d−1)∪ (R×N2 ×R

d−2)∪·· ·∪ (Rd−1 ×Nd)

and μd(N) = 0, i.e., f = 0 μd −a.e. ��
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From the proof of this theorem, we have the following corollaries, which are
stated without proofs, as they are similar to those of the one-dimensional case.

Corollary 10.12. For 1 ≤ p < ∞,

E = span{hν(x) : ν ∈ N
d
0 ,x ∈ R

d}= P(Rd)

is a dense subspace of Lp(γd) and so is

E := span{ψν(x) : ν ∈ N
d
0 ,x ∈ R

d}
of Lp(Rd).

Corollary 10.13. The family {hν}ν∈Nn
0

is an orthonormal basis in L2(γd) and so is

{ψν}ν∈Nd
0

in L2(Rd), that is, for f ∈ L2(γd),

f = ∑
k≥0

∑
|ν |=k

〈 f ,hν〉γhν

in L2(γd) with 〈 f ,hν〉γ =
∫
Rd f (y) hν(y) γd(dy); and for f ∈ L2(Rd),

f = ∑
k≥0

∑
|ν |=k

〈 f ,ψν〉ψν

in L2(Rd) with 〈 f ,ψν〉=
∫
Rd f (y) ψν(y) dy.

Corollary 10.14. For 1 ≤ p < ∞, and f ∈ Lp(γd) is such that 〈 f ,hν〉γ = 0 for all
ν ∈ N

d
0 , then f = 0 a.e. Similarly, if f ∈ Lp(Rd) is such that 〈 f ,ψν〉 = 0 for all

ν ∈ N
d
0 , then f = 0 a.e.

10.5 Classical Semigroups in Analysis: The Heat and the Poisson
Semigroups

The Heat Semigroup

Let us consider the function

k(x) =
1

(4π)d/2
e

−|x|2
4 ,x ∈ R

d , (10.76)

which is a C∞ function, integrable, radial, bounded, and such that∫
Rd

k(x)dx = 1,

and consider the heat kernel (or Gauss–Weierstrass kernel),

kt(x) =
1

td/2
k(

x√
t
) =

1

(4πt)d/2
e

−|x|2
4t . (10.77)

Then, according to the properties of k, we have that {kt : t > 0} is an approximation
of the identity in R

d .2

2An approximation of the identity in R
d , {kε}ε>0 is a family of functions in L1(Rd), such

that



10.5 Classical Semigroups in Analysis: The Heat and the Poisson Semigroups 427

Given f ∈ Lp(Rd),1 ≤ p ≤ ∞, let us define

Tt f (x) = (kt ∗ f )(x) =
1

(4πt)d/2

∫
Rd

e
−|x−y|2

4t f (y)dy

=
1

(4πt)d/2

∫
Rd

f (x+
√

ty)e
−|y|2

4 dy, t > 0. (10.78)

Using Young’s inequality, we have that Tt f is well defined for f ∈ Lp(Rd), 1 ≤
p ≤ ∞. On the other hand, if f ∈ L2(Rd), given that

∫
Rd

e−4π2t|ξ |2e−2π<x,ξ>dξ =
1

(4π)d/2
e−|x|2/4t

(see [256, Theorem 1.13]), we have that Tt f can be written as

Tt f (x) =
∫
Rd

f̂ (ξ )e−4π2t|ξ |2e2π<x,ξ>dξ . (10.79)

The heat semigroup {Tt}t≥0, also called the Gauss–Weierstrass semigroup, is a
positive, conservative, symmetric, convolution semigroup of diffusions, strongly Lp-
continuous in Lp(Rd), 1 ≤ p < ∞, with infinitesimal generator, the Laplace operator
Δ . More precisely,

Theorem 10.15. The family of operators {Tt}t≥0 satisfies the following properties:

i) Semigroup property:
Tt1+t2 = Tt1 ◦Tt2 , t1, t2 ≥ 0.

ii) Positivity and conservative property:

Tt f ≥ 0, for f ≥ 0, t ≥ 0,

and
Tt1 = 1.

iii) Contractivity property:

||Tt f ||p ≤ || f ||p, t ≥ 0, 1 ≤ p ≤ ∞.

• There exists a constant C such that ‖kε‖ ≤C for anyε > 0.
•

∫
Rd kε = 1 for anyε > 0.

•
∫
|x|≥δ |kε (x)dx → 0.

Observe that, given ϕ ∈ L1(Rd),
∫
Rd ϕ(x)dx = 1 defining ϕε (x) = ε−dϕ(x/ε),ε > 0, the

family {ϕε} is an approximation of the identity in R
d ,

T ∗ f (x) = sup
t>0

|Tt f (x)|= sup
t>0

|kt ∗ f (x)| ≤CdM f (x).

For a detailed study of the approximations of the identity in R
d , we refer to E. Stein [252,

Chapter III], J. Duoandikoetxea, [72, Chapter 2 ] or L. Grafakos [118, Chapter 1].
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iv) Strong Lp-continuity property: The mapping t → Tt f is continuous from [0,∞)
to Lp(Rd), for 1 ≤ p < ∞ and f ∈ Lp(Rd).

v) Symmetry property: Tt is a self-adjoint operator in L2(Rd),
∫
Rd

Tt f (x)g(x)dx =
∫
Rd

f (x)Ttg(x)dx, t ≥ 0. (10.80)

In particular, we have that the Lebesgue measure is the invariant measure for
{Tt} ∫

Rd
Tt f (x)dx =

∫
Rd

f (x)dx, t ≥ 0. (10.81)

vi) Infinitesimal generator: the Laplacian operator Δ =∑d
i=1

∂ 2

∂x2
i

is the infinitesimal

generator of {Tt : t ≥ 0}
lim
t→0

Tt f − f
t

= Δ f . (10.82)

Proof.

i) The semigroup property can also be obtained using the Fourier transform for
functions in S (Rd), using the Schwartz test function space. Using the properties
of the Fourier transform with respect to convolutions and dilations, we have

(Tt1+t2 f )∧(ξ ) = [kt1+t2 ∗ f ]∧(ξ ) = [kt1+t2 ]
∧(ξ ) f̂ (ξ )

= e(−4π2(t1+t2)|ξ |2) f̂ (ξ ) = e(−4π2t1|ξ |2)(e(−4π2t2)|ξ |2) f̂ (ξ ))
= K̂t1(ξ )K̂t2(ξ ) f̂ (ξ ) = [kt1 ∗ (kt2 ∗ f )]∧(ξ ) = (Tt1(Tt2 f ))∧(ξ ).

Now, because S (Rd) is dense in Lp(Rd),1 ≤ p ≤ ∞ there exists an extension
of this equality to Lp(Rd).

Alternatively, we can prove the semigroup property directly by a change of vari-
ables and by completing squares. Using Fubini’s theorem and the change of
variables v = y−u

Tt1(Tt2 f (x)) =
1

(4πt1)d/2

∫
Rd

e
−|y−x|2

4t1
( 1

(4πt2)d/2

∫
Rd

e
−|u−y|2

4t2 f (u)du
)

dy

=
1

(4π)d(t1t2)d/2

∫
Rd

(∫
Rd

e
− |y−x|2

4t1
− |u−y|2

4t2 dy
)

f (u)du

=
1

(4π)d(t1t2)d/2

∫
Rd

(∫
Rd

e
− |u−x−v|2

4t1
− |v|2

4t2 dy
)

f (u)du,

but completing the square,

−|u− x− v|2
4t1

− |v|2
4t2

= −|u− x|2
4t1

+2
〈v,(u− x)〉

4t1
− |v|2

4t1
− |v|2

4t2

= −|u− x|2
4t1

+
2t2〈v,(u− x)〉− (t1 + t2)|v|2

4t1t2
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=−|u−x|2
4t1

− t1+t2
4t1t2

|v− t2
t1+t2

(u−x)|2− t2
4t1(t1+t2)

|u− x|2

= −|u− x|2
4t1

[1− t2
t1 + t2

]− t1 + t2
4t1t2

|v− t2
t1 + t2

(u− x)|2

= − |u− x|2
4(t1 + t2)

−
|v− t2

t1+t2
(u− x)|2

4t1t2/(t1 + t2)
.

Therefore, making the change of variables ω =
v− t2

t1+t2
(u−x)

2(t1t2/(t1+t2))1/2

Tt1(Tt2 f (x)) =
1

(4π)d(t1t2)d/2

∫
Rd

e
− |u−x|2

4(t1+t2)
(∫

Rd
e
−

|v− t2
t1+t2

(u−x)|2

4t1t2/(t1+t2) dv
)

f (u)du

=
1

(4π)d(t1t2)d/2

∫
Rd

e
− |u−x|2

4(t1+t2)
2d(t1t2)d

(t1 + t2)d/2

(∫
Rd

e−|ω|2 dω
)

f (u)du

=
1

(4π(t1 + t2))d/2

∫
Rd

e
− |u−x|2

4(t1+t2) f (u)du = Tt1+t2 f (x).

ii) The first equality is the conservative property and it follows immediately by
a simple change of variables and the translation invariance property of the
Lebesgue measure,

1

(4πt)d/2

∫
Rd

e−
|y−x|2

4t 1dy =
1

(4πt)d/2

∫
Rd

e
−| (y−x)√

4t
|2

dy =
1

πd/2

∫
Rd

e−|y|2dy = 1.

The positivity is clear as the kernel is positive.

iii) Because the heat semigroup is a convolution semigroup, this property follows
directly from Young’s inequality,

||Tt f ||p = ||kt ∗ f ||p ≤ || f ||p||kt ||1 = || f ||p.

Then, for each t > 0,Tt is a contraction in Lp(Rd),1 ≤ p < ∞. The case p = ∞
is trivial, because Tt1 = 1, using ii).

iv) We need to prove that Tt f → Tt0 f in Lp(γd) if t → t0. Using the semigroup
property, it is enough to show that Tt f → f in Lp(γd) if t → 0. This is a conse-
quence of the general theory of approximations of the identity (see [252]).

v) To prove (10.80), using Fubini’s theorem, we have

∫
Rd

Tt f (x)g(x)dx =
1

(4πt)d/2

∫
Rd
(

∫
Rd

e−
|y−x|2

4t f (y)dy)g(x)dx

=
1

(4πt)d/2

∫
Rd
(
∫
Rd

e−
|y−x|2

4t g(x)dx) f (y)dy=
∫
Rd

f (y)Ttg(y)dy.



430 10 Appendix

Because the Lebesgue measure is the invariant measure of {Tt}, the symmetry
property follows immediately, taking g ≡ 1 and using the conservative property.

vi) Let f ∈ C2
b(R

d) be a function with continuous and bounded second derivatives,
then, using the representation (10.78), we have

(
Tt f − f

t
)(x)−Δ f (x) =

1

t(4π)d/2

∫
Rd
[ f (x+

√
ty)− f (x)]e

−|y|2
4 dy−

d

∑
k=1

∂ 2 f (x)

∂x2
k

=
1

t(4π)d/2

∫
Rd
[ f (x+

√
ty)− f (x)

−t
d

∑
k=1

∂ 2 f (x)

∂x2
k

]e
−|y|2

4 dy

=
1

t(4π)d/2

∫
Rd
[ f (x+

√
ty)− f (x)

− t
2

d

∑
k=1

y2
k
∂ 2 f (x)

∂x2
k

]e
−|y|2

4 dy.

Now, using Taylor’s expansion of order 2 for f , we have that for some θ , with
0 ≤ θ ≤ 1,

f (x+
√

ty)− f (x) =
√

t
d

∑
k=1

yk
∂ f
∂xk

(x)+
t
2

d

∑
i, j=1

yiy j
∂ 2 f

∂xi∂x j
(θx+(1−θ)

√
ty).

Then, according to the symmetry of e−|y|2/4,

(
Tt f − f

t
)(x)−Δ f (x) =

1

2(4π)d/2

∫
Rd
[

d

∑
i, j=1

yiy j
∂ 2 f

∂xi∂x j
(θx+(1−θ)

√
ty)

−
d

∑
k=1

y2
k
∂ 2 f

∂x2
k

(x)]e−
|y|2

4 dy

=
1

2(4π)d/2

∫
Rd

d

∑
k=1

y2
k [
∂ 2 f
∂ 2xk

(θx+(1−θ)
√

ty)

−∂ 2 f

∂x2
k

(x)]e−
|y|2

4 dy.

Therefore,

|(Tt f − f
t

)(x) −Δ f (x)| ≤ 1

2(4π)d/2

d

∑
k=1

∫
Rd

y2
k |
∂ 2 f
∂ 2xk

(θx+(1−θ)
√

ty)

−∂ 2 f

∂x2
k

(x)|e−
|y|2

4 dy,
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and using Lebesgue’s dominated convergence theorem, we have that these terms
go to zero as t → 0.

Observe that, in this case, the square field operator is given by

Γ ( f ,g)(x) =
1
2
[Δ( f g)(x)− f (x)Δg(x)−Δ f (x)g(x)] =< ∇ f (x),∇g(x)>;

therefore,
Γ ( f )(x) = Γ ( f , f )(x) = |∇ f (x)|2. (10.83)

The maximal function of the heat semigroup is defined as,

T ∗ f (x) = sup
t>0

|Tt f (x)| (10.84)

The maximal function T ∗ is weak (1,1) and strong (p, p) 1 < p ≤∞ with respect to
the Lebesgue measure.

Proposition 10.16. The maximal function T ∗ satisfies

i) T ∗ is weak (1,1) with respect to the Lebesgue measure, i.e., there exists a con-
stant C, dependent only on the dimension d, such that for each f ∈ L1(Rd)

m({x ∈ R
d : |T ∗ f (x)|> λ})≤ C

λ
|| f ||1. (10.85)

for any λ > 0.
ii) If 1 < p ≤∞T ∗ is strong (p, p) with respect to the Lebesgue measure, i.e., there

exists a constant Ap, dependent only on p and on the dimension d, such that for
each f ∈ Lp(Rd), then T ∗ f ∈ Lp(Rd) and

||T ∗ f ||p ≤ Ap|| f ||p. (10.86)

Proof. Observe that for f ∈ Lp(Rd)+L∞(Rd) with ‖ f‖Lp(Rd)+L∞(Rd) ≤ 1, consider-

ing t > 0 fixed and x ∈ R
d taking ak =

√
k,Bk(x) = {y ∈ R

d : |y− x| ≤ ak
√

4t} and
Ak(x) = Bk(x)\Bk−1(x),k ∈ N, then,

|Tt f (x)| ≤
∫
Rd

e−
|y−x|2

4t | f (y)|dy ≤
∞

∑
k=1

∫
Ak(x)

e−
|y−x|2

4t | f (y)|dy

≤
∞

∑
k=1

e−(ak−1)
2
∫

Ak(x)
| f (y)|dy ≤

∞

∑
k=1

e−(ak−1)
2
∫

Bk(x)
| f (y)|dy.

Thus,

∫
Rd

e−
|y−x|2

4t | f (y)|dy ≤
∞

∑
k=1

e−(ak−1)
2
∫

Bk(x)
| f (y)|dy
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≤
∞

∑
k=1

e−(ak−1)
2
Cd(ak

√
4t)d 1

|Bk(x)|

∫
Bk(x)

| f (y)|dy

= Cd

∞

∑
k=1

e−(k−1)(
√

4tk)dM f (x),

where M f is the Hardy–Littlewood maximal function with respect to the Lebesgue
measure. Hence,

|Tt f (x)| ≤ 1

(
√

4πt)d
Cd

∞

∑
k=1

e1−k(
√

k
√

4t)d
∫

Bk(x)
| f (y)|dy

= Cd

∞

∑
k=1

e−kkd/2M f (x) =CdM f (x),

as the series ∑∞
k=1 e−kkd/2 converges. Therefore

T ∗ f (x)≤CdM f (x),

Alternatively, these results can be obtained immediately from the fact that the
heat semigroup is a convolution semigroup, which is an approximation of the
identity.

Properties i) and ii) are then consequences of the boundedness properties of M f .

An interesting result obtained by Gian Carlo Rota [233] establishes that, for a
very large class of semigroups, the constant Ap for the maximal function of the semi-
group does not actually depend on the dimension, using probabilistic results from
the martingale theory (see also [253]).

According to the second representation of the heat semigroup (10.78), it is easy
to see that

Tt f (x)→ 0, as t → ∞,

in other words, the heat semigroup decays to 0 at infinity. Moreover,

Proposition 10.17. If f ∈ Lp(Rd), u(x, t) = Tt f (x) is a C∞(Rd ×R+) solution of
the parabolic equation

∂u
∂ t

(x, t) = Δu(x, t), x ∈ R
d , t > 0, (10.87)

with boundary condition u(x,0) = f (x), x ∈ R
d .

Proof. According to the general semigroup theory, given that Δ is the infinitesimal
generator of {Tt : t ≥ 0}, we have

∂u
∂ t

(x, t) =
∂Tt f
∂ t

(x) = ΔTt f (x) = Δu(x, t).

This can also be proved directly:
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Δu(x, t) = Δ [kt ∗ f ](x) = [Δkt ∗ f ](x)

=
1

2(4πt)d/2

∫
Rd
[
|y− x|2

2t2 − n
t
]e−

|y−x|2
4t f (y)dy =

∂u
∂ t

(x, t).

The boundary condition holds according to the properties of the approximations of
the identity.

From this result, we say that u(x, t) is a parabolic extension of f to the half-space
R

d ×R+.
On the other hand, the heat semigroup is closely related to the Brownian motion

in R
d . The Brownian motion in R

d is a random process in R
d such that

i) B0 = 0 a.e.
ii) Bt has Gaussian distribution N(0, tId), with covariance function

cov(Bt ,Bs) = (s∧ t)Id ,

being Id identity matrix d ×d.
iii) If s < t,Bt −Bs is independent of Fs = σ({Bu : u ≤ s}).
This process describes the motion of a particle in R

d with no friction and it can be

constructed using the functions pt(x,y) = 1
(4πt)d/2 e−

|x−y|2
4t as the transition probability

density, in the usual formula to construct a Markov process (see [20]). Then, we have
that the heat semigroup can be represented by Brownian motion as

Tt f (x) = E[ f (Bt)|B0 = x], f ∈ L2(Rd)∩L∞(Rd).

The Poisson Semigroup

The Poisson semigroup is obtained from the heat semigroup, using Bochner’s sub-
ordination formula,

e−λ =
1√
π

∫ ∞

0

e−u
√

u
e−λ

2/4udu

(see E. Stein [252]). Thus, we define

Pt f (x) =
1√
π

∫ ∞

0

e−u
√

u
Tt2/4u f (x)du. (10.88)

Therefore, we have the following explicit representation of Pt ,

Pt f (x) =
1√
π

∫ ∞

0

e−u
√

u
Tt2/4u f (x)du =

1√
π

∫ ∞

0

e−u
√

u
ud/2

(πt2)d/2

∫
Rd

e
−u|x−y|2

t2 f (y)dydu

=
1

tdπ(d+1)/2

∫
Rd

∫ ∞

0
e−u( |x−y|2

t2
+1)u(d−1)/2 du f (y)dy

=
Γ ( d+1

2 )

π(d+1)/2

∫
Rd

1

(|x− y|2 + t2)(d+1)/2
f (y)dy = (qt ∗ f )(x),
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where

qt(x) =
Γ ( d+1

2 )

π(d+1)/2

1

(|x|2 + t2)(d+1)/2
=

cd

(|x|2 + t2)(d+1)/2
, (10.89)

with cd =
Γ ( d+1

2 )

π(d+1)/2 .

Let us consider the Poisson kernel,

q(x) =
cd

(|x|2 +1)(d+1)/2
, x ∈ R

d , (10.90)

which is a C∞ function, integrable, radial, bounded, and such that
∫
Rd

qt(x) = 1

(see [256, pages 9–10]). Then,

qt(x) =
1
td q(

x
t
).

According to the properties of q, we have that {qt : t > 0} is an approximation of the
identity in R

d .
Observe that, according to Young’s inequality, Pt f is well defined for f ∈

Lp(Rd), 1 ≤ p ≤ ∞. Moreover, similar to the heat semigroup’s case, if f ∈ L2(Rd),
given that ∫

Rd
e−2πt|ξ |e−2π<x,ξ>dξ =

cd

(|x|2 + t2)(d+1)/2

(see [256, Theorem 1.14]), we have that Pt f can be written as

Pt f (x) =
∫
Rd

f̂ (ξ )e−2πt|ξ |e2π<x,ξ>dξ . (10.91)

This result can be obtained from the analogous representation of the heat semi-
group (10.79) and the subordination formula.

The Poisson semigroup {Pt}t≥0 is a conservative, symmetric, convolution semi-
group, strongly Lp-continuous of positive contractions in Lp(Rd), 1 ≤ p < ∞, with
infinitesimal generator (−Δ)1/2. More precisely,

Theorem 10.18. The family of operators {Pt}t≥0 satisfies the following properties:

i) Semigroup property:

Pt1+t2 = Pt1 ◦Pt2 , t1, t2 ≥ 0.

ii) Positivity and conservative property:

Pt f ≥ 0, for f ≥ 0, t ≥ 0,

and
P1 = 1.
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iii) Contractivity property:

||Pt f ||p ≤ || f ||p, t ≥ 0, 1 ≤ p ≤ ∞.

iv) Strong Lp-continuity property: The mapping t → Pt f is continuous from [0,∞)
to Lp(Rd)), for 1 ≤ p < ∞ and f ∈ Lp(Rd).

v) Symmetry property: Pt is a self-adjoint operator in L2(Rd),
∫
Rd

Pt f (x)g(x)dx =
∫
Rd

f (x)Ptg(x)dx, t ≥ 0.

vi) Infinitesimal generator: (−Δ)1/2 is the infinitesimal generator of {Pt : t ≥ 0},

lim
t→0

Pt f − f
t

= (−Δ)1/2 f . (10.92)

Proof. These results can be obtained immediately from Theorem 10.15 for {Tt : t ≥
0} by using the subordination formula.

The proof that the infinitesimal generator of {Pt}t≥0 is (−Δ)1/2 can be obtained
directly using the Fourier transform.

The maximal function of the Poisson semigroup is defined as

P∗ f (x) = sup
t>0

|Pt f (x)| (10.93)

Again, the maximal function P∗ is weak (1,1) and strong (p, p) 1 < p ≤ ∞ with
respect to the Lebesgue measure,

Proposition 10.19. The maximal function P∗ satisfies

i) P∗ is weak (1,1) with respect to the Lebesgue measure, i.e., there exists a con-
stant C, dependent only on the dimension d, such that for each f ∈ L1(Rd)

m
({

x ∈ R
d : |P∗ f (x)|> λ

})
≤ C

λ
|| f ||1. (10.94)

for any λ > 0.
ii) If 1 < p ≤∞P∗ is strong (p, p) with respect to the Lebesgue measure, i.e., there

exists a constant Ap, dependent only on p and on the dimension d, such that for
each f ∈ Lp(Rd) then P∗ f ∈ Lp(Rd) and

||P∗ f ||p ≤ Ap|| f ||p. (10.95)

Proof. These results can be obtained immediately from the fact that the Poisson
semigroup is a semigroup generated by an approximation of the identity; therefore,

P∗ f (x) = sup
t>0

|Pt f (x)|= sup
t>0

|qt ∗ f (x)| ≤ M f (x),

where M f is the Hardy–Littlewood maximal function with respect to the Lebesgue
measure (see E. Stein [252]).

Properties i) and ii) are then consequences of the properties of M f .
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Observe that, using the representation of the Poisson semigroup, it is easy to see
directly that

Pt f (x)→ 0,as t → ∞,

in other words, the Poisson semigroup also decays to 0 at infinity.

On the other hand,

Proposition 10.20. If f ∈ Lp(Rd), u(x, t) = Pt f (x) is a C∞(Rd ×R+) solution of
the elliptic equation

∂ 2u
∂ t2 (x, t)+Δu(x, t) = 0, x ∈ R

d , t > 0, (10.96)

with boundary condition u(x,0) = f (x), x ∈ R
d .

Proof. According to the general semigroup theory, given that (−Δ)1/2 is the in-
finitesimal generator of {Pt : t ≥ 0}, we have ∂Pt

∂ t (x) = (−Δ)1/2Pt f (x); therefore,

∂ 2u
∂ t2 (x, t) =

∂ 2Pt f
∂ t2 (x) = (−Δ)Pt f (x) =−Δu(x, t).

This can also be proved directly:

Δu(x, t) = Δ [qt ∗ f ](x) = [Δqt ∗ f ](x) =−∂ 2u
∂ t2 (x, t),

because qt is harmonic in the half-space R
d ×R+, i.e.,

∂ 2qt

∂ t2 (x, t)+Δqt = 0.

(Exercise) The boundary condition holds according to the properties of the approxi-
mations of the identity.

From this result, we can say that u(x, t) is a harmonic extension of f to the half-
space R

d ×R+.

10.6 Interpolation Theory

The two most important results in interpolation theory that are used more frequently
in harmonic analysis are the Riesz–Thorin and the Marcinkiewicz interpolation the-
orems (see for instance [256, Chapter 5], [72, Chapter 2], [118, §1.3]or [275,
Chapter 4]). The Riesz-Thorin theorem is the basis of the complex method and the
Marcinkiewicz theorem is the basis of the real method.
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Theorem 10.21. (Riesz–Thorin interpolation theorem) Let (X ,μ) and (Y,ν) be two
measure spaces. Let T be a linear operator defined on the set of all simple functions
on X taking values in the set of measurable functions on Y . Let 1 ≤ p0, p1,q0,q1 ≤∞
and assume that

‖Tu‖Lq0 ≤ M0‖u‖Lp0 ,

‖Tu‖Lq1 ≤ M1‖u‖Lp1 ,

for all simple functions u on X. Then, for all 0 < θ < 1 we have

‖Tu‖Lq ≤ M1−θ
0 Mθ

1 ‖u‖Lp

for all simple functions u on X, where

1
p
=

1−θ
p0

+
θ
p1

and
1
q
=

1−θ
q0

+
θ
q1

. (10.97)

Using density, T has a unique extension as a bounded operator from Lp(X ,μ) to
Lq(Y,ν) for all p and q as in (10.97).

Definition 10.22. Let (X ,μ) and (Y,ν) be two measure spaces, and let T be an
operator from Lp(X ,μ) into the space of measurable functions from Y to C. We say
that T is weak type (p,q), if

ν({y ∈ Y : |T f (y)|> λ})≤
(C‖ f‖p

λ

)q
, (10.98)

and we say that it is weak type (p,∞) if it is a bounded operator from Lp(X ,μ) to
L∞(Y,ν). We say that T is strong type (p,q) if it is bounded from Lp(X ,μ) to Lq(Y,ν)

The weak-type (p,q) condition can be rewritten using the weak-Lp spaces, Lp,∞,
which are defined as,

Definition 10.23. For f : X → R a measurable function on X, the distribution func-
tion of f is the function m f : [0,∞)→ [0,∞] defined as follows:

m f (λ ) := μ({x ∈ X : | f (x)|> λ}). (10.99)

For 0 < p < ∞ the weak space Lp,∞, is defined as the set of all μ-measurable func-
tions f such that

‖ f‖Lp,∞ := sup
{
λm f (λ )

1
p : λ > 0

}
,

is finite.

Then, an operator is said to be of weak type (p,q) if it maps Lp to weak-Lq.
Observe that if an operator T is of strong type (p,q), then it is of weak type (p,q),
because if Eλ = {y ∈ Y : |T f (y)|> λ}, then

ν(Eλ ) =
∫

Eλ
dν ≤

∫
Eλ

|T f (y)
λ

|qdν ≤ ‖T f‖q
q

λ q ≤
(C‖ f‖p

λ

)q
.
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Theorem 10.24. (Marcinkiewicz interpolation theorem) Let (X ,μ) and (Y,ν) be
measure spaces and let 0 < p0 < p1 ≤ ∞. Let T be a sublinear operator from
Lp0(X)+Lp1(X) to the space of the measurable functions on Y , that is, weak type
(p0,q0) and weak type (p1,q1),

ν({y ∈ Y : |T f (y)|> λ})≤
(A0‖ f‖p0

λ

)q0
,

and

ν({y ∈ Y : |T f (y)|> λ})≤
(A1‖ f‖p1

λ

)q1
.

Then, T is of strong type (p, p) for all p0 < p < p1, i.e., and for all f in Lp(X) we
have the estimate

‖T f‖Lp(Y ) ≤ A‖ f‖Lp(X),

where the constant A only depends on p, p0, p1,A0, and A1.

For the proof, we refer the reader to [72, 118, 254] or [275].

10.7 Hardy’s Inequalities

Hardy’s inequalities are very important tools in analysis.

Theorem 10.25. For f ≥ 0, p ≥ 1 and r > 0,
∫ +∞

0

(∫ x

0
f (y)dy

)p
x−r−1dx ≤ p

r

∫ +∞

0
(y f (y))py−r−1dy, (10.100)

and ∫ +∞

0

(∫ ∞

x
f (y)dy

)p
xr−1dx ≤ p

r

∫ +∞

0
(y f (y))pyr−1dy, (10.101)

For more details (see [299] Vol I (9.16) page 20). A generalization of these in-
equalities was obtained in [111], and it is used in Chapter 6.

Theorem 10.26. (Generalized Hardy’s inequality) Let f ≥ 0,r > 0, p ≥ 1 and k ∈N

then

(∫ +∞

0

(∫ x

0
. . .

∫ x

0
f (r1, . . . ,rk)dr1 . . .drk)

)p
x−r−1dx

)1/p
(10.102)

≤
∫ 1

0
. . .

∫ 1

0

(∫ +∞

0
(xk f (xv1, . . . ,xvk))

px−r−1dx
)1/p

dv1 . . .dvk

Proof. Taking r1 = xv1, . . . ,rk = xvk, we get

(∫ +∞

0

(∫ x

0
. . .

∫ x

0
f (r1, . . . ,rk)dr1 . . .drk)

)p
x−r−1dx

)1/p

=
(∫ +∞

0

(∫ 1

0
. . .

∫ 1

0
f (xv1, . . . ,xvk)x

kdv1 . . .dvk)
)p

x−r−1dx
)1/p
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=
(∫ +∞

0

(∫
(0,1)k

f (xv1, . . . ,xvk)x
kdv1 . . .dvk)

)p
x−r−1dx

)1/p

Now, consider the spaces Lp((0,+∞),x−r−1) and Lp((0,1)k). Then, using
Minkowski’s inequality,

(∫ +∞

0

(∫
(0,1)k

f (xv1, . . . ,xvk)x
kdv1 . . .dvk)

)p
x−r−1dx

)1/p

≤
∫
(0,1)k

(∫ +∞

0

(
f (xv1, . . . ,xvk)x

k)p
x−r−1dx

)1/p
dv1 . . .dvk

=
∫ 1

0
. . .

∫ 1

0

(∫ +∞

0

(
xk f (xv1, . . . ,xvk)

)p
x−r−1dx

)1/p
dv1 . . .dvk.

��

10.8 Natanson’s Lemma and Generalizations

The discussion of these results is taken from [47]; the original reference is [200].

Lemma 10.27. (Natanson)
Given −∞ ≤ a < b ≤ ∞ and a non-negative kernel K(x, ·) ∈ L1(a,b), such that

K(x,y) is monotone increasing for a < y < x and monotone decreasing for b > y > x,
and ∫ b

x
K(x,y)dy = M1,

∫ x

a
K(x,y)dy = M2,

where M1,M2 are constants independent of x, then, for f ∈ L1(a,b) and f ≥ 0,

∫ b

x
f (y)K(x,y)dy ≤ M1 f ∗+(x), (10.103)

and ∫ x

a
f (y)K(x,y)dy ≤ M2 f ∗−(x), (10.104)

where

f ∗+(x) = sup
h>0

1
|[x,x+h]|

∫ x+h

x
f (y)dy,

and

f ∗−(x) = sup
h>0

1
|[x−h,x]|

∫ x

x−h
f (y)dy,

are the one-sided Hardy–Littlewood maximal functions.
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Observations 10.28.

i) Observe that as

|[x,x+h]|= |[x−h,x]|= 1
2
|[x−h,x+h]|,

then
f ∗−(x)≤ 2 f ∗(x), and f ∗+(x)≤ 2 f ∗(x),

where

f ∗(x) = sup
h>0

1
|[x−h,x+h]|

∫ x+h

x−h
f (y)dy,

is the (centered) Hardy–Littlewood maximal function. Thus, the conclusion of
the lemma can be given in terms of the (centered) Hardy–Littlewood maximal
function instead of the one-sided functions, i.e.,

∫ b

x
f (y)K(x,y)dy ≤ 2M1 f ∗(x), (10.105)

and ∫ x

a
f (y)K(x,y)dy ≤ 2M2 f ∗(x). (10.106)

ii) We can take M1 = supx
∫ b

x K(x,y)dy and M2 = supx
∫ x

a K(x,y)dy.
iii) As is clear from the proof, this lemma is still true if we consider a Borel measure

μ is R, i.e., K(x,y)∈ L1(μ) such that K(x,y) is monotone increasing for a < y <
x and monotone decreasing for b > y > x, and

∫ b

x
K(x,y)μ(dy) = M1,

∫ x

a
K(x,y)μ(dy) = M2,

where M1,M2 are constants independent of x, then, for f ∈ L1(μ) and f ≥ 0,

∫ b

x
f (y)K(x,y)μ(dy)≤ M1 f ∗+,μ(x), (10.107)

and ∫ x

a
f (y)K(x,y)μ(dy)≤ M2 f ∗−,μ(x), (10.108)

where

f ∗+,μ(x) = sup
h>0

1
μ([x,x+h])

∫ x+h

x
f (y)μ(dy),

and

f ∗−,μ(x) = sup
h>0

1
μ([x−h,x])

∫ x

x−h
f (y)μ(dy),

are the one-sided Hardy–Littlewood maximal functions with respect to the mea-
sure μ . Nevertheless, to get the bound with the centered Hardy–Littlewood maxi-
mal function with respect to μ , we need the measure μ to be a doubling measure.
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Proof. Let us first consider the case that K(x, ·) is a step function in y, i.e., it can be
written as

K(x,y) =∑
i

ci(x)χ[x,yi] +∑
j

d j(x)χ[y j ,x].

Then,
∫ b

x
f (y)K(x,y)dy =∑

i
ci(x)

∫ yi

x
f (y)dy =∑

i
ci(x)

∫ yi

x
|[x,yi]|

1
|[x,yi]|

f (y)dy

≤∑
i

ci(x)|[x,yi]|
1

|[x,yi]|
f ∗+(x) =

∫ b

x
K(x,y)dy f ∗+(x)≤ M1 f ∗+(x),

and similarly for the estimate of the integral
∫ x

a f (y)K(x,y)dy

The general case follows by approximating the kernel K by functions. ��

There is a more general version of this result, obtained by A. Zygmund,

Lemma 10.29. (Zygmund)
Given −∞ ≤ a < b ≤ ∞, a Borel measure μ with support in (a,b) and a kernel

K(r,x, ·) dependent on a parameter r, such that

∫ b

a
|K(r,x,y)|μ(dy)≤ M1 (10.109)

and
∫ b

x
μ(x,y)V2(K(r,x,dy))≤ M2,

∫ x

a
μ(y,x)V2(K(r,x,dy))≤ M2, (10.110)

where M1,M2 are constants independent of x and r, and V2(K(r,x, ·)) is the (first)
variation of the kernel K(r,x,y) in the variable y, i.e.,

V2(K(r,x, ·)) = sup∑
i
|K(r,x,yi)−K(r,x,yi−1)|,

where the supremum is taken over all partitions of [a,b] and the integrals are con-
sidered in the Lebesgue–Stieltjes sense.

Then, for f ∈ L1(μ),

|
∫ b

a
K(r,x,y) f (y)μ(dy)| ≤ M f ∗μ(x), (10.111)

where M depends only on M1,M2 and

f ∗μ(x) = sup
x∈I

1
μ(I)

∫
I

f (y)μ(dy),

is the non-centered Hardy–Littlewood maximal function for f with respect to the
measure μ .
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Proof. Using the integration by parts formula for Stieltjes integrals, we have
∫ b

x
K(r,x,y)μ(dy) = (

∫ b

x
μ(du))K(r,x,b)−

∫ b

x
(
∫ y

x
μ(du))K(r,x,dy)

= μ(x,b)K(r,x,b)−
∫ b

x
μ(x,y)K(r,x,dy).

Therefore, according to hypothesis

|μ(x,b)K(r,x,b)| ≤
∫ b

x
|K(r,x,y)|μ(dy)+

∫ b

x
μ(x,y)K(r,x,dy)

≤
∫ b

x
|K(r,x,y)|μ(dy)+

∫ b

x
μ(x,y)V2(K(r,x,dy))≤ M1 +M2.

Now, for f ∈ L1(μ), again using the integration by parts formula,
∫ b

x
f (y)K(r,x,y)μ(dy) = (

∫ b

x
f (y)μ(dy))K(r,x,b)−

∫ b

x
(
∫ y

x
f (y)μ(dy))K(r,x,dy)

= (
∫ b

x
f (y)μ(dy))K(r,x,b)−

∫ b

x
(
∫ b

x
f (y)μ(dy))K(r,x,dy)

= (
1

μ(x,b)

∫ b

x
f (y)μ(dy))μ(x,b)K(r,x,b)

−
∫ b

x
(

1
μ(x,y)

∫ b

x
f (y)μ(dy))μ(x,y)K(r,x,dy).

Thus,

|
∫ b

x
f (y)K(r,x,y)μ(dy)| ≤ f ∗μ(x)|μ(x,b)K(r,x,b)|+ f ∗μ(x)

∫ b

x
μ(x,y)V2(K(r,x,dy))

≤ (M1 +M2) f ∗μ(x)+M2 f ∗μ(x) = (M1 +2M2) f ∗μ(x).

��
Given a μ measure as before, observe that for a Natanson’s kernel K(r,x,y), i.e.,

K(r,x, ·) ∈ L1(μ) and for every x fixed K(r,x, ·) is non-decreasing for y < x and is
non-increasing for y > x, if K then trivially satisfies the conditions of Zygmund’s
lemma.

10.9 Forward Differences

Let

Δ k
s ( f , t) =

k

∑
j=0

(
k
j

)
(−1) j f (t +(k− j)s)

be the k-th order forward difference of f starting at t with increment s.
Here are some results regarding forward differences. These are well-known re-

sults (see for instance [95]), and have already been listed in Chapter 6. For the sake
of completeness, their proofs are given here.
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Lemma 10.30. The forward differences satisfy the following properties:

i) For any positive integer k,

Δ k
s ( f , t) = Δ k−1

s (Δs( f , ·), t) = Δs(Δ k−1
s ( f , ·), t).

ii) For any positive integer k,

Δ k
s ( f , t) =

∫ t+s

t

∫ v1+s

v1

· · ·
∫ vk−2+s

vk−2

∫ vk−1+s

vk−1

f (k)(vk)dvkdvk−1 · · ·dv2dv1.

iii) For any positive integer k,

∂
∂ s

(Δ k
s ( f , t)) = kΔ k−1

s ( f ′, t + s),

and for any integer j > 0,

∂ j

∂ t j (Δ
k
s ( f , t)) = Δ k

s ( f ( j), t).

Proof.

i) Let us prove the first equality; the second one is totally analogous.

Δ k−1
s (Δs( f , ·), t) =

k−1

∑
j=0

(
k−1

j

)
(−1) jΔs( f , t +(k−1− j)s)

=
k−1

∑
j=0

(
k−1

j

)
(−1) j f (t +(k− j)s)

−
k−1

∑
j=0

(
k−1

j

)
(−1) j f (t +(k−1− j)s)

= f (t + ks)+
k−1

∑
j=1

(
k−1

j

)
(−1) j f (t +(k− j)s)

+
k−2

∑
j=0

(
k−1

j

)
(−1)( j+1) f (t +(k− ( j+1))s)+(−1)k f (t)

= f (t + ks)+
k−1

∑
j=1

(
k−1

j

)
(−1) j f (t +(k− j)s)

+
k−1

∑
j=1

(
k−1
j+1

)
(−1) j f (t +(k− j)s)+(−1)k f (t)

= f (t + ks)+
k−1

∑
j=1

[

(
k−1

j

)
+

(
k−1
j+1

)
](−1) j f (t +(k− j)s)

+(−1)k f (t)
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= f (t + ks)+
k−1

∑
j=1

(
k
j

)
(−1) j f (t +(k− j)s)+(−1)k f (t)

= Δ k
s ( f , t).

ii) By induction in k. For k = 1, using the fundamental theorem of calculus

Δs( f , t) = f (t + s)− f (t) =
∫ t+s

t
f ′(v)dv.

Let us assume that the identity is true for k−1,

Δ k−1
s ( f , t) =

∫ t+s

t

∫ v1+s

v1

· · ·
∫ vk−2+s

vk−2

f (k−1)(vk−1)dvk−1 · · ·dv2dv1,

and let us prove it for k. Using i) and the fundamental theorem of calculus, we
get, after performing k−1 change of variables,

Δ k
s ( f , t) = Δs(Δ k−1

s ( f , ·), t) = Δ k−1
s ( f , t + s)−Δ k−1

s ( f , t)

=

∫ t+2s

t+s

∫ v1+s

v1

· · ·
∫ vk−2+s

vk−2

f (k−1)(vk−1)dvk−1 · · ·dv2dv1

−
∫ t+s

t

∫ v1+s

v1

· · ·
∫ vk−2+s

vk−2

f (k−1)(vk−1)dvk−1 · · ·dv2dv1

=

∫ t+s

t

∫ v1+s

v1

· · ·
∫ vk−2+2s

vk−2+s
f (k−1)(vk−1)dvk−1 · · ·dv2dv1

−
∫ t+s

t

∫ v1+s

v1

· · ·
∫ vk−2+s

vk−2

f (k−1)(vk−1)dvk−1 · · ·dv2dv1

=
∫ t+s

t

∫ v1+s

v1

· · · [
∫ vk−2+2s

vk−2+s
f (k−1)(vk−1)dvk−1

−
∫ vk−2+s

vk−2

f (k−1)(vk−1)dvk−1] · · ·dv2dv1 · · ·dv2dv1

=
∫ t+s

t

∫ v1+s

v1

· · ·
∫ vk−2+s

vk−2

[ f (k−1)(vk−1 + s)− f (k−1)(vk−1)]dvk−1 · · ·dv2dv1

=
∫ t+s

t

∫ v1+s

v1

· · ·
∫ vk−2+s

vk−2

∫ vk−1+s

vk−1

f (k)(vk)dvkdvk−1 · · ·dv2dv1.

iii) Let us prove (8.45),

∂
∂ s

(Δ k
s ( f , t)) = Ds

( k

∑
j=0

(
k
j

)
(−1) j f (t +(k− j)s)

)

=
k

∑
j=0

(
k
j

)
(−1) j ∂

∂ s
( f (t +(k− j)s))

=
k−1

∑
j=0

(
k
j

)
(−1) j(k− j) f ′(t +(k− j)s)
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= k
k−1

∑
j=0

(
k−1

j

)
(−1) j f ′((t + s)+(k−1− j)s)

= kΔ k−1
s ( f ′, t + s).

Finally, let us prove (8.46)

∂ j

∂ t j (Δ
k
s ( f , t)) =

∂ j

∂ t j

( k

∑
j=0

(
k
j

)
(−1) j f (t +(k− j)s)

)

=
k

∑
j=0

(
k
j

)
(−1) j ∂ j

∂ t j ( f (t +(k− j)s))

=
k

∑
j=0

(
k
j

)
(−1) j f ( j)(t +(k− j)s)) = Δ k

s ( f ( j), t).
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semigroup. Divulgaciones Matemáticas 16, no. 1 (2007), 107–124. MR
2587011 (2010m:60121)

226. E. Pineda, W. Urbina Some results on Gaussian Besov–Lipschitz spaces and
Gaussian Triebel–Lizorkin spaces. Journal of Approximation Theory, Volume
161, Issue 2, December (2009), 529–564.

227. G. Pisier Riesz Transform: a simpler analytic proof of P. A. Meyer inequality.
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248. P. Sjögren Operators associated with the Hermite semigroup – a survey. J.
Fourier Anal. Appl. 3 (1997), 813–823.
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297. B. Wróbel Dimension Free Lp Estimates for Vectors Riesz Transforms As-
sociated with Orthogonal Expansions. Anal PDE no 3. (2018) 745–773.
MR3261112

298. K. Yosida Functional Analysis. Springer. Berlin (1965).
299. A. Zygmund Trigonometric Series. 2nd ed. Cambridge Univ. Press. Cambridge

(1959).



Glossary of Symbols

• C will always denote a constant, not necessarily the same in each occurrence.
• δi, j is the Dirac delta,

δi, j =

{
1, if i = j,

0, otherwise.

• sgna is the sign of a ∈ R

sgn a =

{
1, if a ≥ 0,

−1, if a < 0.

• a∧b = min{a,b}.
• a∨b = max{a,b}.
• [a] is the integer part of a, i.e., the largest integer not greater that a ∈ R.
• A ⊂ B means A is a subset of B.
• Ac denotes the complement of A

Ac = {ζ : ζ /∈ A}.
• A∪B is the union of A and B,

A∪B = {ζ : ζ ∈ A or ζ ∈ B}.
• A∩B is the intersection of A and B,

A∩B = {ζ : ζ ∈ A and ζ ∈ B}.
• A\B is the set difference,

A\B = {ζ : ζ ∈ A and ζ /∈ B}.
• χE denotes the characteristic function of the set E,

χE(x) =

{
1 if x ∈ E,

0 otherwise.

© Springer Nature Switzerland AG 2019
W. Urbina-Romero, Gaussian Harmonic Analysis, Springer Monographs
in Mathematics, https://doi.org/10.1007/978-3-030-05597-4

463

https://doi.org/10.1007/978-3-030-05597-4


464 Glossary of Symbols

• N is the set of natural numbers

N= {1,2,3, · · ·}.

• N0 = N∪{0} is the set of non-negative integers.
• R

d is the d-dimensional real space,

R
d =

{
x = (x1, · · · ,xd) : xi ∈ R, i = 1, · · · ,d

}
.

• Given x = (x1, · · · ,xd) ∈ R
d ,

|x|=
(

d

∑
i=1

x2
i

)1/2

is its Euclidean norm in R
d .

• Given x,y ∈ R
d , 〈x,y〉 is the inner product in R

d ,

〈x,y〉=
(

d

∑
i=1

xiyi

)1/2

.

• |A| is the Lebesgue measure of the Borel set A in R
d , A ∈ B(Rd).

• γd is the Gaussian measure in R
d ,

γd(dx) =
1

πd/2
e−|x|2dx.

• {Hn}n≥0 are the Hermite orthogonal polynomials in one variable.
• {hn}n≥0 are the Hermite orthonormal polynomials in one variable

hn(x) =
Hn(x)

(2nn!)1/2
.

• {Hν}ν are the Hermite orthogonal polynomials in d variables,

Hν(x) =
d

∏
i=1

Hνi(xi),

where x = (x1,x2, · · · ,xd) ∈R
d , and Hνi(xi) is the Hermite polynomial of degree

νi ≥ 0 in the variable xi.
• {hν}ν are the Hermite orthonormal polynomials in d variables,

hν(x) =
d

∏
i=1

hνi(xi),

where hνi(xi) is the normalized Hermite polynomial of degree νi ≥ 0 in the vari-
able xi.



Glossary of Symbols 465

• Sd−1
r = {x ∈ R

d : |x|= r} is the hypersphere of radius r in R
d , and in particular,

Sd−1 = Sd−1
1 is the unit hypersphere.

• dσ is the area measure on Sd−1 and ωd−1 is the (surface) measure of Sd−1.
• β = (β1, · · · ,βd) ∈ N

d or ν = (ν1, · · · ,νd) ∈ N
d is called a multi-index.

• Λk the set of multi-indexes with k coordinates, i.e., β ∈Λk if β = (β1, · · · ,βk).

• |β |= ∑d
i=1βi, β ! =∏d

i=1βi! and xβ =∏d
i=1 xβ1

i , for β ∈ N
d multi-index.

• ∂i is the standard partial derivative, ∂i =
∂
∂xi

.

• ∇x = (∂1,∂2, . . . ,∂d) is the gradient operator.

• ∇=
(

∂
∂ t ,

1√
2
∇x

)
is the (total) gradient.

• ∂β = ∂β1
1 · · ·∂βd

d is the partial derivative of order |β |.
• ∇k

x = (∂β )|β |=k = (∂β1
1 · · ·∂βd

d )|β |=k is the gradient operator of order k.
• ∂ i

γ the Gaussian derivative

∂ I
γ =

1√
2
∂i.

• ∂βγ is the Gaussian partial derivative of order |β |

∂βγ =
1

2|β |/2
∂β1

1 · · ·∂βd
d .

• (∂ i
γ)

∗ is the alternative (adjoint) Gaussian derivative,

(∂ i
γ)

∗ =
√

2xiId −
1√
2
∂i.

• (∂βγ )∗ = 1
2|β |

(∂β1
1 )∗ · · ·(∂βd

d )∗ is the Gaussian alternative partial derivative of order
|β |.

• m(x) is the admissibility function,

m(x) = 1∧ 1
|x| .

• Ba,b and Ba are the families of admissible (or hyperbolic) balls,

Ba,b =
{

B(x,r) : x ∈ R
d , 0 < r < a∧ b

|x|
}
,

and

Ba =
{

B(x,r) : x∈R
d , 0< r < a

(
1∧ 1

|x|
)}

=
{

B(x,r) : x∈R
d , 0< r < am(x)

}
.

• Bh(x) =
{

y ∈ R
d : |y− x|<Cdm(x)

}
an admissible (or hyperbolic) ball with its

center at x ∈ R
d and radius Cdm(x) for certain constant Cd dependent only on d,

usually Cd = d or 2d.



466 Glossary of Symbols

• P(Rd) is the set of all polynomials with real coefficients in d-variables, d ≥ 1.
• C2

b(R
d) is the space of continuous functions on R

d , with bounded derivatives up
to second order.

• C0(R
d) is the space of continuous functions on R

d , with compact support.
• C∞

0 (R
d) the space of smooth functions on R

d , with compact support.
• S (Rd) is the space of rapidly decreasing infinitely differentiable functions on

R
d , also called the Schwartz space or the space of test functions.

• Lp(Rd), 1 < p < ∞, is the classical Lebesgue space: the space of measurable
functions f : Rd → R, such that

∫
Rd

| f (x)|p dx < ∞.

with norm

‖ f‖p =

(∫
Rd

| f (x)|pdx

)1/p

.

• Lp(γd), 1 < p < ∞ is the Gaussian Lebesgue space: the space of measurable
functions f : Rd → R, such that

∫
Rd

| f (x)|pγd(dx)< ∞.

with norm

‖ f‖p,γ =

(∫
Rd

| f (x)|pγd(dx)

)1/p

.

• 〈 f ,g〉γ is the internal product in L2(γd),

〈 f ,g〉γ =
∫
Rd

f (x)g(x)γd(dx).

• f̂γ(ν) is the ν-th Fourier–Hermite coefficient of a function f ∈ L2(γd) with re-
spect to the Hermite polynomial hν ,

f̂γ(ν) = 〈 f ,hν〉γ .

• The Fourier–Hermite expansion of a function f ∈ L2(γd) is given by

f =
∞

∑
k=0

∑
|ν |=k

〈 f ,hν〉γhν .

• Ck is the closed subspace of L2(γd) generated by {hν : |ν |= k},

Ck = span({hν : |ν |= k})L2(γd)
.
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• Jk is the orthogonal projection of L2(γd) onto Ck,

Jk f = ∑
|ν |=k

〈 f ,hν〉γhν ,

so

f =
∞

∑
k=0

∑
|ν |=k

〈 f ,hν〉γhν =
∞

∑
k=0

∑
|ν |=k

Jk f ,

which implies the Wiener chaos or Ito–Wiener decomposition of L2(γd),

L2(γd) =
∞⊕

k=0

Ck.

• Δx is the Laplace differential operator,

Δx =
d

∑
i=1

∂ 2
i .

• {Tt}t≥0 is the heat semigroup,

Tt f (x) =
1

(4πt)d/2

∫
Rd

e
−|x−y|2

4t f (y)dy.

• Γa(x) is the (classical) cone with vertex at x ∈ R
d , and aperture a > 0

Γa(x) =
{
(y, t) ∈ R

d+1
+ : |x− y|< at

}
.

• T ∗
a is the non-tangential maximal function of the heat semigroup,

T ∗
a f (x) = sup

(y,t)∈Γa(x)
|Tt2 f (y)|.

• Sa is the conical square function of the heat semigroup,

Sa f (x) =
1

|B(y, t)|
(∫

Γa(x)

∣∣∣tTt2 f (y)
∣∣∣2 dy

dt
t

) 1
2
.

• L is the Ornstein–Uhlenbeck differential operator,

L =
1
2
Δ −〈x,∇x〉=

d

∑
i=1

[
1
2
∂ 2

i − xi∂i].

• L is the alternative Ornstein–Uhlenbeck differential operator,

L = L− Id =−1
2
Δ + 〈x,∇x〉− Id =

d

∑
i=1

[−1
2
∂ 2

i − xi∂i].
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• {Tt}t≥0 is the Ornstein–Uhlenbeck semigroup,

∞

∑
ν

e−t|ν |〈 f ,hν〉γd hν =
1

(1− e−2t)d/2

∫
Rd

e
− e−2t (|y|2+|x|2)−2e−t 〈x,y〉

1−e−2t f (y)γd(dy).

• Mt(x,y) is Mehler’s kernel

Mt(x,y) =
1

(1− e−2t)d/2
e
− e−2t (|x|2+|y|2)−2e−t 〈x,y〉

1−e−2t =
1

πd/2(1− e−2t)d/2
e
− |y−e−t x|2

1−e−2t .

• Ep is the Epperson region

Ep := {z = x+ iy : |siny| ≤ tanφp sinhx}, φp = arccos |2/p−1|.

• T ∗ is the Ornstein–Uhlenbeck maximal function,

T ∗ f (x) = sup
t>0

|Tt f (x)| .

• T∗ is the multiparametric Ornstein–Uhlenbeck maximal function

T∗ f (x) = sup
0<t1<∞
0<t2<∞···
0<td<∞

[
1

πd/2

d

∏
i=1

1

(1− e−2ti)1/2

∫
Rd

e
− |y−e−ti x|2

1−e−2ti f (y)dy

]
.

• Γ∗
p, is the maximal function for the holomorphic Ornstein–Uhlenbeck semigroup

{Tz : Rez ≥ 0}
Γ∗

p f (z) = sup
z∈Ep

|Tz f (x)|.

• K ∗(x,y) is Mehler’s maximal kernel,

K ∗(x,y) = sup
t>0

Mt(x,y) = sup
0<r<1

1

π d
2 (1− r2)

d
2

e
− |y−rx|2

1−r2 .

• T∗ is the multiparametric Gaussian maximal operator

T∗ f (x) = sup0<t1<∞
0<t2<∞···
0<td<∞

[
1

πd/2

d

∏
i=1

1

(1− e−2ti)1/2

∫
Rd

e
− |y−e−ti x|2

1−e−2ti f (y)dy

]
.

• T∗ f is the maximal Mehler’s transform

T∗ f (x) =
∫

Rd

K ∗(x,y) f (y)dy.
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• K (x,y) is the maximal Gaussian kernel,

K (x,y) =

⎧⎨
⎩

e−|y|2 , if 〈x,y〉 ≤ 0(
|x+y|
|x−y|

)d/2
e−

|y|2−|x|2
2 e−

|x−y||x+y|
2 , if 〈x,y〉> 0.

• T f is the maximal Gaussian operator,

T f (x) =
∫
Rd

K (x,y) f (y)dy.

• K m(x,y) is the m-modified maximal Gaussian kernel,

K m(x,y)=

{
(|x+ y||x− y|)m−2

2 K (x,y) if 〈x,y〉 ≤ 0

(|x+ y||x− y|)m−2
2

(
|x+ y||x− y|) 1

2
|x| |y|

|x|2+|y|2 +1
)
K (x,y) if 〈x,y〉 ≥ 0

• T m f is the m-modified maximal Gaussian operator,

T m f (x) =
∫
Rd

K m(x,y) f (y)dy.

• Γ A,a
γ (x) =

{
(y, t) ∈ R

d+1
+ : |y− x|< At, t < a(1∧ 1

|x| ) = am(x)
}
, and

Γ a
γ (x) =

{
(y, t) ∈ R

d+1
+ : |y− x|< t, t < a(1∧ 1

|x| ) = am(x)
}

are the Gaussian

or admissible cones.
• T ∗

γ (A,a) is the non-tangential maximal function associated with the Ornstein–
Uhlenbeck semigroup,

T ∗
γ (A,a) f (x) = sup

(y,t)∈Γ A,a
γ (x)

| Tt2 f (y) | .

• ϒ∗
γ(A,a) is the “averaged version” of the non-tangential maximal function de-

fined as,

ϒ∗
γ(A,a) f (x) = sup

(y,t)∈Γ A,a
γ (x)

(
1

γd(B(y,At))

∫
B(y,At)

|Tt2 f (z)|2γd(dz)

)1/2

.

• {T (κ)
t }t≥0 is the translated Ornstein–Uhlenbeck semigroup

T (κ)
t = e−κtTt .

• {P}t≥0 is the Poisson semigroup,

Pt f (x) =
Γ ( d+1

2 )

π(d+1)/2

∫
Rd

1

(|x− y|2 + t2)(d+1)/2
f (y)dy.
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• {Pt}t≥0 is the Poisson–Hermite semigroup,

Pt f (x) =
1

π(n+1)/2

∫
Rd

∫ ∞

0

e−u
√

u

exp(−|y−e−t2/4ux|2

1−e−t2/2u
)

(1− e−t2/2u)d/2
du f (y)dy

=
1

2π(n+1)/2

∫
Rd

∫ 1

0
t
exp(t2/4logr)

(− logr)3/2

exp(−|y−rx|2
1−r2 )

(1− r2)d/2

dr
r

f (y)dy.

• p(t,x,y) is the Poisson–Hermite kernel,

p(t,x,y) =
1

π(n+1)/2

∫ ∞

0

e−u
√

u

exp(−|y−e−t2/4ux|2

1−e−t2/2u
)

(1− e−t2/2u)d/2
du

=
1

2π(n+1)/2

∫ 1

0
t
exp(t2/4logr)

(− logr)3/2

exp(−|y−rx|2
1−r2 )

(1− r2)d/2

dr
r
.

• P∗ is the maximal function of the Poisson–Hermite semigroup or Poisson–
Hermite maximal function,

P∗ f (x) = sup
t>0

|Pt f (x)| .

• P∗
γ (A,a) is the non-tangential Poisson–Hermite maximal function,

P∗
γ (A,a) f (x) = sup

(y,t)∈Γ A,a
γ (x)

|Pt f (y)|.

• {P(κ)
t }t≥0 is the translated Poisson–Hermite semigroup, that is to say, the subor-

dinated semigroup to {T (κ)
t }t≥0.

• M f is the centered Hardy–Littlewood maximal function with respect to the
Lebesgue measure on balls,

M f (x) = sup
r>0

1
|B(x,r)|

∫
B(x,r)

| f (y)|dy.

• Mγ f is centered Gaussian Hardy–Littlewood maximal function on balls,

Mγ f (x) = sup
r>0

1
γd(B(x,r))

∫
B(x,r)

| f (y)|γd(dy).

• MQ is the centered Hardy–Littlewood maximal function with respect to the
Lebesgue measure on cubes,

MQ f (x) = sup
Q(x)

1
|Q(x)|

∫
Q(x)

| f (y)|dy.
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• M Q
γ is the centered Gaussian Hardy–Littlewood maximal function on cubes,

M Q
γ f (x) = sup

Q(x)

1
γd(Q(x))

∫
Q(x)

| f (y)|γd(dy).

• M̃ f is the non-centered Hardy–Littlewood maximal function with respect to the
Lebesgue measure,

M̃ f (x) = sup
r>0,x∈B(z,r)

1
|B(z,r)|

∫
B(x,r)

| f (y)|dy.

• Me f is the spherical maximal function

Me f (h) = sup
R>0

1
σ(|z′ −h| ≤ R)

∫
|z′−h|≤R

| f (z′)| dσ(z′), h ∈ Sd−1.

• M̃γ f is the non-centered Gaussian Hardy–Littlewood maximal function,

M̃γ f (x) = sup
r>0,x∈B(z,r)

1
γd(B(z,r))

∫
B(z,r)

| f (y)|γd(dy).

• Ma,b f is the (a,b)-truncated centered Hardy–Littlewood maximal function,

Ma,b f (x) = sup
0<r<a∧ b

|x|

1
|B(x,r)|

∫
B(x,r)

| f (y)|dy.

• M a,b
γ f is the Gaussian (a,b)-truncated centered Hardy–Littlewood maximal

function

M a,b
γ f (x) = sup

0<r<a∧ b
|x|

1
γd(B(x,r))

∫
B(x,r)

| f (y)|γd(dy).

• MΦ f is the generalized Gaussian maximal function,

MΦ f (x) = sup
0<r<1

1

γd((1+δ )B( x
r ,

|x|
r (1− r))

∫
Rd
Φ
( |ry− x|√

1− r2

)
| f (y)|γd(dy),

where Φ : R+
0 → R

+
0 is a non-increasing function, such that

S = ∑
v≥1

Φ
(1

2
(v−1)

)
v2d < ∞ and δ = δr,x =

r
|x|(1− r)

min

{
1
|x| ,

√
1− r

}
.

• gγ is the Gaussian Littlewood–Paley–Stein g-function,

gγ( f )(x) =

(∫ ∞

0
|t∇Pt( f )(x)|2 dt

t

)1/2

.
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• gt,γ is the time Gaussian Littlewood–Paley g function,

gt,γ( f )(x) =

(∫ ∞

0

∣∣∣∣t ∂Pt f
∂ t

(x)

∣∣∣∣
2 dt

t

)1/2

.

• gx,γ is the spatial Gaussian Littlewood–Paley g function

gx,γ( f )(x) =

(∫ ∞

0
|t∇xPt f (x)|2 dt

t

)1/2

.

• g(1)+,γ is the Gaussian Littlewood–Paley g function for the translated Poisson–

Hermite semigroup {P(1)
t }{t≥0}.

g(1)+,γ( f )(x) =
(∫ ∞

0
(|t∇P(1)

t f (x)|2 +(tP(1)
t f (x))2)

dt
t

)1/2
.

• g(1)t,γ is the time Gaussian Littlewood–Paley g function for the translated Poisson–

Hermite semigroup {P(1)
t }{t≥0}

g(1)t,γ ( f )(x) =
(∫ ∞

0

∣∣∣t ∂P(1)
t f
∂ t

(x)
∣∣∣2 dt

t

)1/2
.

• gk
t,γ is the higher-order time Gaussian Littlewood–Paley g function

gk
t,γ( f )(x) =

(∫ +∞

0

∣∣∣∣tk ∂ kPt f
∂ tk (x)

∣∣∣∣
2

dt
t

) 1
2

.

• gk
x,γ is the higher-order spatial Gaussian Littlewood–Paley g function

gk
x,γ( f )(x) =

(∫ +∞

0
|tk∇k

xPt f (x)|2 dt
t

) 1
2

.

• gk
t,γ is the vector version of the higher-order time Gaussian Littlewood–Paley g

function

gk
t,γ(f)(x) =

(∫ ∞

0
∑
β∈Λk

∣∣∣tk ∂
kP(k)

t fβ
∂ tk (x)

∣∣∣2 dt
t

)1/2
,

where f(x) = ( fβ (x))β∈Λk
.

• m(L) is a Gaussian spectral multiplier operator,

m(L) f =
∞

∑
k=0

m(k)Jk f ,

where f = ∑∞
k=0 Jk f and m : N0 → R.
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• Iβ is the Gaussian fractional integral or Riesz potential of order β ,

Iβ = (−L)−β/2Π0,

where Π0 = I −J0.
• Jβ is the Gaussian Bessel potential of order β > 0,

Jβ = (I +
√
−L)−β .

• Dβ is the Gaussian Riesz fractional derivative of order β > 0,

Dβ = (−L)β/2.

• Dβ is the Gaussian Bessel fractional derivative of order β ,

Dβ = (I +
√
−L)β .

• Lp
β (γd) is the Gaussian Sobolev space of order α > 0, 1 < p < ∞.

• T 1,q(γd) is the Gaussian tent space, for 1 < q < ∞.
• H1

at(γd) is the (Mauceri–Meda) atomic Gaussian Hardy space.
• H1

max(γd) and H1
quad(γd) are the (Portal) maximal and quadratic Gaussian Hardy

spaces respectively.
• BMO(γd) is the Gaussian space of functions of bounded mean oscillations.
• Lipα(γd) is the Gaussian Lipschitz space of order α > 0.
• Bα

p,q(γd) is the Gaussian Besov–Lipschitz space for α ≥ 0 and 1 ≤ p,q ≤ ∞.
• Fα

p,q(γd) is the Gaussian Triebel–Lizorkin space for α ≥ 0 and 1 ≤ p,q ≤ ∞.
• R j is the j-th Gaussian Riesz transform, 1 ≤ j ≤ d,

R j = ∂x j(−L)1/2.

• R j is the j-th alternative Gaussian Riesz transform, 1 ≤ j ≤ d,

Ri = (∂ γi )
∗(−L)−1/2.

• Rβ , |β |> 0, is the higher-order Riesz transform,

Rβ = ∂ γβ (−L)−|β |/2.

• Rβ , |β |> 0, is the higher order alternative Riesz transform,

Rβ = (∂βγ )∗(−L)−|β |/2.

• TF,m is a general Gaussian singular integral,

TF,m f (x) =
∫
Rd

∫ 1

0

(− logr
1− r2

)m−2
2

rmF
( y− rx√

1− r2

) e
− |y−rx|2

1−r2

(1− r2)d/2+1

dr
r

f (y)dy,

for an appropriate function F.
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H
Hardy’s inequalities, 438
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Heat semigroup, 77, 426
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semigroup, 70

Higher order Gaussian Littlewood–Paley g
function, 212

Higher order Gaussian Riesz transforms, 366
Hille–Hardy formula, 74, 413
Hörmander multiplier theorem, 236
Hypercontractivity property, 57, 75

I
Interpolation

Marcinkiewicz interpolation theorem, 438
Riesz–Thorin interpolation theorem, 437

Iterated square field operator, 36, 71, 75

J
Jacobi

Hardy spaces, 302
Littlewood–Paley theory, 228
operator, 71
polynomials, 416
Riesz transforms, 403, 404
semigroup, 73
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L
Laguerre

holomorphic semigroup, 191
hypercontractivity, 75, 244
Littlewood–Paley theory, 228
maximal function, 191
operator, 73
P. A. Meyer’s multiplier theorem, 244
polynomials, 411
Riesz transforms, 404, 405
semigroup, 75
spectral multipliers of Laplace transform,

244
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Logarithmic Sobolev inequality, 57, 61, 64,

73, 75

M
Marcinkiewicz multiplier theorem, 236
Mean value inequality, 89
Mehler’s formula, 39, 410
Mehler’s kernel, 40, 55
Meyer’s multiplier, 233
Meyer’s multiplier theorem, 65, 232, 247

N
Natanson’s lemma, 362, 396, 439
Number operator, 61

O
Ornstein–Uhlenbeck

alternative operator, 34, 69
generalized semigroup, 75
higher order derivatives, 54
holomorphic maximal function, 51
holomorphic semigroup, 49, 243
hypercontractive property , 57
logarithmic Sobolev inequality, 57
maximal function, 51, 126
multiparametric maximal function, 51
non-tangential convergence, 172
non-tangential maximal function, 165
operator, 24, 31
semigroup, 38
translated semigroups, 69
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P
Parabolic Caccioppoli inequality, 36
Pochhammer symbol, 408
Poisson–Hermite

conjugated semigroup, 94
generalized semigroups, 92
maximal function, 85, 149
non-tangential convergence, 172
non-tangential maximal function, 170
semigroup, 77
translated semigroups, 98, 205, 226

Poisson semigroup, 77, 433

Q
Gaussian Hardy–Littlewood maximal

function, 112, 114

S
Sobolev inequality, 70, 73
Spherical maximal function, 116
Square field operator, 35, 63, 71, 74

T
Tensorization argument, 35, 55, 64, 73, 75
Transference method, 227

W
Weak-Lp, 437
Weak type (p,q), 437
Whitney covering lemma, 106
Wiener chaos decomposition, 24
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