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Abstract. Most memory research has assumed that our long-term
memories are somehow retained in our brain, usually by modified synap-
tic connections. This paper proposes a very different scenario, in which
the basic substrate of these memories are molecules which flow within a
newly discovered circulatory system similar to our lymph system. More-
over, the information bearing molecules are postulated to be cyclic pro-
tein polymers similar to the proteins found in all cell membranes.

Two network algorithms are presented which convert networks to,
and from, such cyclic structures and seem to mimic the psychological
processes of consolidation, recall, and reconsolidation.

1 Introduction

In 1968, Atkinson and Shiffrin [4] proposed a bipartite human memory consist-
ing of short-term and long-term storage. This division has permeated current
memory models because it is consistent with a considerable body of subsequent
research. It is assumed that short-term memory is encoded by synaptic connec-
tions in the frontal lobe. But, the actual mechanism of long-term memory has
never been very clear.

There is ample evidence that cognition and many memory processes occur
within the neural network we call our “brain”. The hippocampus seems to be
particularly involved with memory encoding and recall [35]. So is it not surprising
that it has been assumed that our long-term memories are stored within the brain
itself. The plasticity of synaptic connections is often cited as the mechanism [32].

But does this make sense? Many unexpected long-term memories, such as
“the color of our date’s gown at the Junior prom” or“the nonsense words of the
‘Jaberwocky’ ”, just seem to “flash back” unbidden. These are totally inconse-
quential (in a survival sense). Would an organism employ an expensive, high
energy system such as our brain to actually store such data for many years? We
think not.

In this paper we will propose a physically distributed, molecular long-term
memory encoded as cyclic protein polymers. This is not an entirely new idea.
Others have proposed molecular, non-neural, long-term memories e.g. [29], which
are usually thought to be encoded by means of protein phosphorylation e.g.
[13,14,27]. Similarly, the possibility that information might be distributed has
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been observed, particularly in experiments with Planaria flatworms e.g. [19].
But, we are unaware of any proposal that these all together could constitute
human long-term memory.

To do this we will make 6 key points.

• Storage of long-term data in a neural system is simply too expensive.
• Plants and other organisms without neural systems have mechanisms that

react to environmental change.
• Eposidic human information is initially represented, in some form, by neural

networks.
• There exist well-defined procedures that convert networks into “chordless

cycle” structures and back again.
• Chordless cycle structures abound in every cell of our bodies and illustrate

properties normally associated with vectors in a vector space.
• There have recently been found physical systems of unknown function that

could circulate information throughout our bodies.

We have addressed the first bullet above. Each of the latter 5 bullets will be
described in more detail in the remainder of this paper.

2 Primitive Memory

It is difficult to imagine any organism without a neural system having a “mem-
ory”. But there is ample evidence that plants, even one celled bacteria have a
rudimentary form.

Perhaps the most obvious, and first to be seriously studied, is phototropism
in which plants grow towards a light source. It was known to Darwin that the
colepotile (growing tip) is the sensor, and later the hormone auxin was identified
as having a role in transmitting this information to elongate the proper cells
in the stem [14]. One might not call this “memory”; but it clearly illustrates a
non-neural sensing and transmission of information.

It can be argued that any reaction to a changing environment at least requires
the ability to compare two time dependent states to determine a gradient.
Balus̆ka and Levin [5] cite many examples. Stock and Zhang [31] give a very
detailed description of the biochemistry of “the so-called nanobrain, a sensory-
motor regulatory organelle located at one or both poles of the [E. coli ] cell that
functions as a molecular brain to control motor function”. This mechanism con-
trols the movement of flagellar filaments so as to follow a nutrient gradient.
Gagliano et al. [11] describe a fascinating experiment in which pea seedlings
appear to “remember” an association between wind direction and a light source.

Even in multi-celled organisms with neural systems all information need not
be concentrated in the brain. Planaria (flat worms) with a neural system and
centralized brain have been widely studied. Like many primitive organisms, pla-
naria can reproduce by lateral division, giving half their body, brain and neural
system to each of the progeny. But, if cut transversely, the head will regenerate
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a new tail and the tail will regenerate a new head. This might be attributed
to DNA; but McConnell et al. [15] demonstrated that the tail “remembered”
episodic information with which it had been conditioned. This research has been
critized for a small sample size and primitive methodology. But more recently,
Neuhof, Levin and Rechavi [19] have reported similar results.

That shows that information can be represented and stored independent of
a neural network.

Plants, one celled Ecoli bacteria and other primitive organisms are capable
of storing information and reacting to change in their environment. But, these
processes are limited and relatively slow. The evolution of neural cells and neu-
ral networks that appeared in the Cambrian era support a much more rapid
response to environmental change, and a significant competitive advantage [27].
Yet, evolution often retains vestigal organs and procedures. Mechanisms found
in plants and planaria may well have been retained in our evolution as long term
storage.

3 Neural Systems

It is well established that the brain is the central organ by which we sense our
environment, recognize change and, in general, “think”. PET scans and other
research has identified specific regions of the brain where various processes take
place. For example, the prefrontal lobe of the hippocampus is associated with
memory [6,35]; the visual cortex is known to be associated with that particular
sense [28]. However, many finer details are still obscure. We do not know precisely
how data is encoded; but it is assumed that its network structure is involved
[9,30].

Fig. 1. A network graph G that might possibly model a neural configuration.

Graphs, such as Fig. 1, provide a reasonable model of network structure, in
which nodes correspond to neurons and edges (links) denote connections between
them. (Seven of the 53 nodes have been labeled for later reference.) In this
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network model, if x denotes a specific neuron, we let x.η denote its “neighbors”,
that is all neurons to which it is connected. We assume η is reflexive, so x ∈ x.η.
In Fig. 1, x.η = {v, w, x, y, z} and w.η = {v, w, x, y}.

“Closure” is a mathematical concept that has proven useful in the analysis of
a variety of network configurations [10]. We think closure is likely to be the basis
of concept formation [22]. There are many different closure operators, which we
generally denote by ϕ, but the one we use here is: “y is in the closure of x if all
of y’s neighbors are also neighbors of x”. Or symbolically, y ∈ x.ϕ if y.η ⊆ x.η.1

In Fig. 1, w is in x-closure because w.η ⊆ x.η. This is a very simple closure
process; but one which has been shown able to extract blobs within the visual
pathway [26].

4 Consolidation and Recall

It is generally thought that long-term memories undergo a process that is com-
monly called “consolidation” [18]. Assuming that episodic events and other
thoughts are somehow encoded in a neural configuration that can be modeled as
a graph, we coded the procedure ω below to eliminate redundant elements and
consolidate it into an irreducible form, I.2 A network is said to be irreducible if
every node x is closed.

while there exist reducible nodes

{

for_each x in G

{

get x.nbhd

for_each y in x.nbhd - x

{

if (y.nbhd contained_in x.nbhd

{

remove y and its connections from network

}

}

}

}

There is considerable indeterminism in this code; but we can prove that regard-
less of the order in which nodes are processed, every graph G has a unique
irreducible form I = G.ω. Of course, two distinct, but similar, network graphs
G1 and G2 may have the same irreducible form, that is G1.ω = I = G2.ω.

Long-term memories have to be recalled. Many have observed that “recall”
involves a measure of active processing in our mind and that the recalled memory
need not be a faithful copy of the stored episodic event [12,17]. Details are often
changed.

1 In mathematics, ∈ and ⊆ stand for “in” and “is a subset of” respectively.
2 C++ source code for the following algorithms is available from the author.
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The following simple procedure, ε, accepts an irreducible graph I and
expands it. Given a node y, lines 6 and 7 choose a random subset of y, η to
be the

for each y in I

{

while (|y.beta| > 1)

{

create new node z;

S = choose_random_in (y.nbhd);

z.nbhd = S;

add {z} to N;

}

}

neighborhood of the new node z. (The operator y.β in this code determines how
many nodes should be expanded near y. Its specification is irrelevant to this
paper.) Fig. 2(a) illustrates the irreducible graph I that results from applying
the procedure ω to the graph of Fig. 1, together with (b) which is an expanded
version of I which we might call G′. G′ is somewhat similar to G, but not the
same. Both networks of Fig. 2(a) and (b) were computer generated from that
of Fig. 1. Networks of several thousands of nodes have been reduced and re-
expanded using these codes.

Fig. 2. (a) The irreducible consolidation, I = G.ω of Fig. 1, (b) An expansion (or recall)
G′, given I.

If we consolidate the graph of Fig. 2(b) again, we will once again get the
irreducible graph of Fig. 2(b). Many memory experts believe that “reconsolida-
tion” is a fundamental aspect of memory maintenance [2]. We believe these two
computer procedures constitute a reasonable, if abstract, model of the memory
process.
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5 Chordless Cycle Systems

The consolidation of the network of Fig. 1 which is shown in Fig. 2(a) consists of
6 cyclic structures, each a sequence of nodes, sometimes called a “path” which
loops back to the starting node. This kind of cyclic structure, which we believe
may be the basis of biological signaling and storage, needs more explanation.

A chord is a single edge, or link, that “short circuits” the cycle. If the dotted
link between the nodes a and b were to exist, it would be a chord. The 6 cycles
of Fig. 2(a) have no chords. It is a chordless cycle system. Chordal graphs, in
which there are no chordless cycles, have been widely studied [16]; chordless
cycle networks less so. It can be shown [23] that every node in an irreducible
network, I, must be a member of a chordless cycle of length ≥ 4.

Chordless cycle systems have the unique property that no cycle (regarded
as a set of nodes) can be contained in another. This is sometimes called the
Sperner property. Because of it, we can define a cycle composition operator
which is analogous to vector composition in a vector space [24]. Indeed, each
chordless cycle system can be shown to be a “matroid”, or generalized vector
space. The cycle system (or matroid) of Fig. 2(a) has rank 6 because it has 6
independent (basis) cycles and 20 distinct simple cycles, each behaving as an
individual vector.

Vectors are often used to represent physical properties, and other forms of
information. Cyclic structures can as well. Moreover, such molecular networks
can be found throughout our bodies.

“Membrane proteins” are found in the membranes of every cell, separating
its interior from its exterior, and the nucleus of the cell from its cytoplasm (as
well as other organelles). These membranes are host to a vast number of protein
polymers. Almén et al. have identified at least 6,718 human membrane proteins
[3]. Membrane proteins control the movement of other proteins across these cell
membranes that enclose the nucleus and other organelles within the cell. Some
transport, or block, the protein movement [20,33], others relay signals across the
membrane. Figure 3 is a 2-D view of a membrane protein polymer, consisting of
several chordless cycles, known as Gr4 that has been studied at John’s Hopkins
[1]. The numerous non-cyclic filaments suggest an expanded form. In effect, these
protein structures “remember” what in the cell’s environment is “good” for the
cell and what is not. It is not hard to visualize a similar mechanism operating
on a multi-cellular level.

The “shape” of information can be important. The memory of our species,
that is our DNA, is tightly bound in a double helix. It is virtually a ROM
(read only memory) which must be essentially flawless. It is. But, our long-term
memories must be loose enough to be “writable”, and need not be perfect—just
good enough. Systems of chordless cycles provide this kind of shape.

6 Mechanisms of Distributed Storage

Encoding information with an underlying cyclic structure seems plausible. The
matroid properties ensure the expected mathematical richness; and the fact that
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Fig. 3. A 2-dimensional rendition of the membrane protein polymer, Gr4.

biological versions exist in abundance provides further confirmation. It is the fact
that the storage medium appears to be distributed (based on planaria and other
studies) that has always seemed problematic.

That is why the recent paper by Benias, Wells, Carr-Locke, Theise, et al.
[7] seems so important. The authors describe a new physiological system which
is somewhat similar to our lymph system in that it is body-wide and flows by
means of peristalsis. In their own words: “these anatomic structures may be
important in cancer metastasis, edema, fibrosis and mechanical functioning of
many or all tissues and organs. In sum, we describe the anatomy and histology
of a previously unrecognized, though widespread, macroscopic, fluid-filled space
within and between tissues, a novel expansion and specification of the concept
of the human interstitium.” Nowhere do the authors mention “memory”; but
if their speculation regarding its possible role in cancer metastasis, then this
unnamed structure is a conduit of protein information. It is reasonable to think
that the hippocampus might be able to inject coded protein based information
into this conduit, and later withdraw that information.

7 Discussion

While each of the 6 bullets presented in Sect. 1 can individually be well docu-
mented, the conclusion that taken all together they indicate a distributed cir-
culatory long-term information store seems rather startling. Yet, it can make
sense.

We envision processes in the hippocampus consolidating episodic experiences
into cyclic polymer structures for storage, and expanding (recalling) them by
means of phosphorylation to a more useful active form. The probability of recall
would then be based on traditional diffusion properties. Of course, recall expan-
sion must be a neural process based on a molecular stimulation.
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Such a model is rather novel. But since the years spent searching for a stor-
age mechanism, or “engram” have so far seemed to be futile [17,25], perhaps
we should consider an altogether different model. This model has the advantage
that it can be tested by mathematical considerations and by further physiolog-
ical research. If it is confirmed, it would create a firm base for psychological
investigation as well as a revised view of the cognitive structures of our body.

8 Appendix

Too much formal mathematics makes a paper hard to read. Yet, it is important
to be able to check some of the statements regarding chordless cycles made in the
body of the paper. In this appendix we provide a few propositions to formally
prove some of our assertions. If you dislike mathematics, ignore this section. It
is not essential.

The order in which nodes, or more accurately the singleton subsets, of N
are encountered can alter which points are subsumed and subsequently deleted.
Nevertheless, we show below that the irreducible form I = N .ω will be unique,
up to isomorphism.

Proposition 1. Let I = N .ω and I ′ = N .ω′ be irreducible subsets of a finite
network N , then I ∼= I ′.

Proof. Let y0 ∈ I, y0 �∈ I ′. Then y0 can be subsumed by some point y1 in I ′

and y1 �∈ I else because y0.η ⊆ y1.η implies y0 ∈ {y1}.ϕ and I would not be
irreducible.

Similarly, since y1 ∈ I ′ and y1 �∈ I, there exists y2 ∈ I such that y1 is
subsumed by y2. So, y1.η ⊆ y2.η.

Now we have two possible cases; either y2 = y0, or not.
Suppose y2 = y0 (which is often the case), then y0.η ⊆ y1.η and y1.η ⊆ y2.η

or y0.η = y1.η. Hence i(y0) = y1 is part of the desired isometry, i.
Now suppose y2 �= y0. There exists y3 �= y1 ∈ I ′ such that y2.η ⊆ y3.η,

and so forth. Since I is finite this construction must halt with some yn. The
points {y0, y1, y2, . . . yn} constitute a complete graph Yn with {yi}.η = Yn.η, for
i ∈ [0, n]. In any reduction all yi ∈ Yn reduce to a single point. All possibilities
lead to mutually isomorphic maps. ��
In addition to N .ω being unique, we may observe that the transformation ω is
functional because we can have {z}.ω = Ø, thus “deleting” z, so ω maps every
subset of N onto Nω , Similarly, ε is a function because Ø.ε = {y} provides for
the inclusion of new elements. Both ω and ε are monotone, if we only modify its
definition to be X ⊆ Y implies X.ε ⊆ Y.ε, provided X �= Ø.

The following proposition characterizes the structure of irreducible form.

Proposition 2. Let N be a finite symmetric network with I = N .ω being its
irreducible form. If y ∈ I is not an isolated point then either
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(1) there exists a chordless k-cycle C, k ≥ 4 such that y ∈ C, or
(2) there exist chordless k-cycles C1, C2 each of length ≥ 4 with x ∈ C1 z ∈ C2

and y lies on a path from x to z.

Proof. (1) Let y ∈ I. Since y is not isolated, we let y = y0 with y1 ∈ y0.η, so
(y0, y1) ∈ E. Since y1 is not subsumed by y0, ∃y2 ∈ y1.η, y2 �∈ y0.η, and since y2
is not subsumed by y1, ∃y3 ∈ y2.η, y3 �∈ y1.η. Since y2 �∈ y0.η, y3 �= y0.

Suppose y3 ∈ y0.η, then < y0, y1, y2, y3, y0 > constitutes a k-cycle k ≥ 4, and
we are done.

Suppose y3 �∈ y0.η. We repeat the same path extension. y3.η �⊆ y2.η implies
∃y4 ∈ y3.η, y4 �∈ y2.η. If y4 ∈ y0.η or y4 ∈ y1.η, we have the desired cycle. If not
∃ y5, . . . and so forth. Because N is finite, this path extension must terminate
with yk ∈ yi.η, where 0 ≤ i ≤ n − 3, n = |N |. Let x = y0, z = yk.

(2) follows naturally. ��
Proposition 3. Let ρ(x, z) denote a shortest path between x and z in N . Then
for all y �= x, z,∈ ρ(x, z), if y can be subsumed by y′, then there exists a shortest
path ρ′(x, z) through y′.

Proof. We may assume without loss of generality that y is adjacent to z in
ρ(x, z).

Let < x, . . . , xn, y, z > constitute ρ(x, z). If y is subsumed by y′, then y.η =
{xn, y, z} ⊆ y′.η. So we have ρ′(x, z) =< x. . . . , xn, y′, z > of equal length. (Also
proven in [21].) ��
In other words, y can be removed from N with the certainty that if there was
a path from some node x to z through y, there will still exist a path of equal
length from x to z after y’s removal.

Figure 4 visually illustrates the situation described in Proposition 3, which
we call a diamond. There may, or may not, be a connection between y and y′

as indicated by the dashed line. If there is, as assumed in Proposition 3, then
either y′ subsumes y or vice versa, depending on the order in which y and y′

are encountered by ω. This provides one example of the isomorphism described
in Proposition 1. If there is no connection between y and y′ then we have two
distinct paths between x and z of the same length.

Fig. 4. A network diamond

In the following, we merely sketch the steps needed to show that any collec-
tion of chordless cycles can be regarded as a “matroid”, or the analog of a vector
space.
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The cycles, Ci, Ck of an irreducible form I can be composed by retaining all
links (edges) in either Ci or Ck but not both. It will be a new chordless cycle
which we denote by Ci ◦ Ck. Let Y be a collection {Ci, . . . , Ck, . . . , Cn}. By the
span of Y , denoted Y.σ, we mean the collection of all possible cycles that can be
generated by composition of some subset of the cycles in Y .

Lemma 1. If Ck = Ci ◦ Cm then Ci = Ck ◦ Cm.

Proof. Let Ck = Ci ◦ Cm, then Ci = Ci ◦ C∅ = Ci ◦ (Cm ◦ Cm) =
(Ci ◦ Cm) ◦ Cm = Ck ◦ Cm ��

In Proposition 4, we show that the spanning operator is a closure operator.
This is a rather different form of closure than that in Sect. 3 created by the
neighborhood operator, η.

Proposition 4. The spanning operator, σ is a closure operator over sets Y of
cycles.

Proof. To show that σ is a closure operator, we need show that for all sets X,Y
(a) Y ⊆ Y.σ, (b) X ⊆ Y implies X.σ ⊆ Y.σ, and (c) Y.σ.σ = Y.σ. It is evident
that σ satisfies (a) and (b). Only (c) must be demonstrated.

Let Y be a set of cycles {Ci}. Suppose Cm ∈ Y.σ.σ implying that there
exists some sequence 1 ≤ i ≤ k such that Cm = C1 ◦ . . . ◦ Ci ◦ . . . ◦ Ck,
where Ci ∈ Y.σ, 1 ≤ i ≤ k. Hence Ci = Ci1 ◦ . . . ◦ Cin where Cij ∈ Y .
Thus, substituting for each i in the composition sequence for Cm above, we
get Cm = (C11 ◦ . . . ◦ C1n) ◦ (C21 ◦ . . . ◦ C2n) ◦ . . . ◦ (Ck1 ◦ . . . ◦ Ckn

)
implying Cm ∈ Y.σ. ��

A closure system is said to be a matroid if it satisfies the Steinitz-MacLane
exchange axiom [8,34], that is: if x, y �∈ Y.σ and y ∈ (Y ∪x).σ then x ∈ (Y ∪y).σ.

Proposition 5. Let C be a chordless cycle system and let σ be the spanning
operator. The system (C, σ) satisfies the Steinitz-Maclane exchange axiom and
is thus a matroid.

Proof. By Proposition 4, σ is a closure operator. Let Ci, Ck �⊆ Y.σ where Y =
{. . . , Cj , . . .}. Suppose Ck ∈ (Y ∪ Ci).σ implying that Ck = Ci ◦ (. . . Cj . . .) =
Ci ◦ Cm where Cm ∈ Y.σ. Consequently, by Lemma 1 we have Ci = Ck ◦ Cm

and Ci ∈ (Y ∪ Ck).σ. ��
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