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Abstract. To infer latent brain source activation patterns under dif-
ferent cognitive tasks is an integral step to understand how our brain
works. Traditional electroencephalogram (EEG) Source Imaging (ESI)
methods usually do not distinguish task-related and spurious non-task-
related sources that jointly generate EEG signals, which inevitably yield
misleading reconstructed activation patterns. In this research, we assume
that the task-related source signal intrinsically has a low-rank property,
which is exploited to infer the true task-related EEG sources location.
Although the true task-related source signal is sparse and low-rank, the
contribution of spurious sources scattering over the source space with
intermittent activation patterns makes the actual source space lose the
low-rank property. To reconstruct a low-rank true source, we propose a
novel ESI model that involves a spatial low-rank representation and a
temporal Laplacian graph regularization, the latter of which guarantees
the temporal smoothness of the source signal and eliminate the spurious
ones. To solve the proposed model, an augmented Lagrangian objective
function is formulated and an algorithm in the framework of alternating
direction method of multipliers (ADMM) is proposed. Numerical results
illustrate the effectivenesks of the proposed method in terms of recon-
struction accuracy with high efficiency.
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1 Introduction

As a direct measurement modality of neural electrical firing patterns, electroen-
cephalogram (EEG) has a higher temporal resolution up to millisecond. EEG
Source Imaging (ESI) aims to map from EEG recording on the scalp to the
electrical potentials in the brain sources. ESI enables high temporal resolution
noninvasive connectivity analysis in the source space, which is impossible using
fMIR (low temporal resolution) or intracranial EEG (invasive) [1]. Since the
number of electrodes usually is much smaller than that of brain sources, the ESI
problem is highly ill-posed. A variety of methods have been proposed to address
this challenging problem with different neurophysiological assumptions, formu-
lated by various regularization techniques such as �1 or �2 norm, total variation
norm [2] and others summarized in [3,4].

To encourage temporal smoothness, a number of regularization techniques
based on spatiotemporal mixed norms have been developed, including Mixed
Norm Estimates (MxNE) which uses �1,2-norm regularization [5], time-frequency
mixed-norm estimate (TF-MxNE) which uses structured sparse priors in time-
frequency domain for better estimation of the non-stationary and transient source
signal [6], and STOUT (spatio-temporal unifying tomography), which combines
the advantage of Sparse Basis Field Expansions and TF-MxNE by imposing source
current density into appropriate spatio-temporal basis functions.

One common limitation of the existing ESI algorithms is that they usually
consider noises on the sensor level or the noise covariance in the source space.
However, the spurious noise can be hard to estimate by a source covariance
prior. If reconstructed, the estimated source is consisted of task-related source
and spurious noise in the source space. The true task-related sources will be cor-
rupted by spurious sources, which motivates us to develop new algorithms to find
the true task-related source. There are two commonly accepted assumptions (1)
spatially sparse (2) temporally continuous for the task-related source activation
pattern, which inevitably leads to the low-rank property of the source space.
To better discover the task-related source, we impose the low-rank penalty for
source signal to estimate the latent sources with low-rank and sparse property,
hoping to get rid of spurious source in the source space. Also, instead of impos-
ing auto-regressive dynamical model, we use a nonparametric penalty term for
temporal smoothness, which directly penalize dissimilarity of temporally neigh-
boring samples. It is worth noting that we used the graph regularization term in
our previous paper, however the graph is defined to be fully connected among all
the points within one class [7–9], which inevitably drive all the activate patterns
at different time points having the same magnitude, thus the dynamic behav-
ior of the brain is oversimplified and its future application for realistic cases is
limited.

In this paper, we propose a novel EEG source imaging model based on tem-
poral graph regularized low-rank representation. The model is solved based on
the alternating direction method of multipliers (ADMM) [10]. We conducted
extensive numerical experiments to verify the effectiveness of discovering task
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related low-rank sources. The reconstructed solution is temporally smooth and
spatially sparse. The contributions of our paper are summarized as follows:

1. A low-rank representation model (LRR) is proposed on EEG inverse problem
from the low-rank property of true task-related source configurations.

2. We redefine the graph regularization to relieve the strong assumption in pre-
vious research and the newly defined graph regularization utilizes temporal
vicinity information of samples to promote temporal smoothness.

3. A algorithm based on ADMM is given which is efficient extracting the low-
rank task-related source patterns.

2 Inverse Problem and Temporal Graph Structures

2.1 The Inverse Problem

The cortex source electrical signal propagates to EEG sensors through a brain
conductivity model which can be described as a linear mapping matrix called
lead field matrix, given as follows,

X = LS + E (1)

where X ∈ R
Nc×Nt is the EEG data measured by Nc electrodes for Nt time

points, L ∈ R
Nc×Nd is the lead field matrix that maps the source signal to

sensors on the scalp, each column of L represents the electrical field of one source
at particular location to all the EEG electrodes, S ∈ R

Nd×Nt represents the
corresponding cortex potential in Nd sources locations for the Nt time instants.
Since the number of sources is much larger than electrodes, solving S given
EEG data X is ill-posed with infinite feasible solutions, which necessitates a
regularization term to be imposed. Generally, an estimate of S can be done by
minimizing a cost function, which is composed of a data fidelity term and a
regularization term:

arg min
S

‖E‖2F + γΘ(S) s.t. X − LS = E, (2)

where ‖·‖F is the Frobenius Norm. The penalty term Θ(S) is to encourage
neurophysiologically plausible explanation and guarantees a unique solution.

2.2 Temporal Graph Embedding

A graph can be viewed as geometric neighborhood relationship between each
vertex representing each data sample, the weight between vertex represents sim-
ilarity between two points [11]. Inspired by the manifold theory [12], we use a
regularization term to penalize the difference between two neighboring source
signal. In our previous work, we use a graph regularization term to promote
intra-class consistency [7], but the assumption is too strong by requiring all the
reconstructed sources at different time points has the same location as well as



Estimating Latent Brain Sources 307

signal magnitude as long as they belong to the same class. Now define a temporal
graph regularization as

Rt(S) =
N∑

i,j=1

‖si − sj‖22 Wij , (3)

where si is the i-th column of the matrix S, and a binary matrix W is designed
as follows,

Wij =
{

1, if si ∈ Nk(sj) or sj ∈ Nk(si)
0, otherwise.

The graph embedding matrix W contains temporal vicinity information. Nk(si)
is the set containing k temporally closest points to si. In this paper, we set
k = 1. This formulation intends to force neighboring source signal having sim-
ilar pattern. The benefits are twofold, one is for temporal smoothness of the
task related activated source, another advantage is to make the spurious sources
denoised since their intermittent pattern will otherwise increase the cost of objec-
tive function. By defining D as a diagonal matrix whose entries are row sums of
the symmetric matrix W , i.e., Dii =

∑
j Wij , and denoting G := D − W , Rt(S)

can be rewritten as:

Rt(S) =
N∑

i,j=1

(si
T si + sj

T sj − 2si
T sj)Wij =

N∑

i

sT
i siwii −

N∑

i,j=1

sT
i sjwij

= 2 tr(SDST ) − 2 tr(SWST ) = 2 tr(SGST ), (4)

where tr(·) is the trace operator of a matrix, i.e., adding up all diagonal entries
of a matrix.

3 Proposed EEG Source Imaging Model

3.1 Decomposition of True and Spurious Sources

In general, two types of noises should be considered, one originates from inac-
curate measurement of the sensors modeled by Gaussian white noise, which is
denoted as E in Eq.(1), the other type of noise is called biological noise that
comes directly from the spontaneous activations in the source space, which are
not task-related and termed as spurious source. The second types of noise (spuri-
ous sources) contributes to the EEG signal in the same way as the truth sources.
This assumption make sense since it is commonly known that under resting
states, our brain still generates EEG signal. A drawback of traditional models is
that they did not separate the spurious sources from the true sources. The esti-
mated source can be composed of both task-rated source and spurious sources.
To address the above-mentioned problem, we propose to use a low rank con-
straint to extract the task related activation. The illustration for decomposition
of source space as well as the whole procedure is given in Fig. 1, where S1 has
a low rank property and S2 is sparse, and the sum of S1 and S2 is no longer
low-rank, making X lose low-rank structure.
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Fig. 1. Extraction of the low-rank true source from spurious source pipeline: After
gathering the MRI scans of the head, tissue segmentation is conducted followed by
mesh generation. By assigning conductivity values to different tissues and electrodes
co-registered with the meshing model, boundary element method (BEM) was used to
solve the forward model. Each triangle represents a brain source. The factual source
signal S can be decomposed into two source matrix. The task related true sources S1

have a low-rank property and the spurious sources S2 are the sparse but not temporally
consistent. The low-rank source solution is projected to cortex voxels to illustrate the
activation pattern.

3.2 Low Rank Representation Model with Graph Regularization

We introduce our proposed model called Low-Rank Representation with Tempo-
ral Graph structures ESI (LRR-TG-ESI). The model is composed of data fitting
term to explain the EEG data, temporal graph embedding regularization term
that promotes temporal smooth, and a �1 norm for sparsity penalty and nuclear
norm for the low-rank structure of the true source. The objective function is
given below:

min
S,E

‖S‖∗ + λ‖E‖1,1 + β‖S‖1,1 + α tr(SGST )

s.t. X = LS + E, (5)

where λ, β, α > 0 are tuning parameters to balance the trade-off of different
terms. Our proposed model is able to enforce row-sparse via low-rank and sparse
regularization and temporal smoothness via temporal graph regularization while
fitting the EEG data X. Although the graph regularization term has been dis-
cussed in our early paper [7], it is not defined on the temporal manifold, and
the previous definition in [7] made a strong assumption to drive the magnitude
of source signal to be similar intra-class. To promote the spatial smoothness, a
total variation term can be imposed as another penalty term, such as first order
total variation (TV) regularization in Ref. [2,13], fractional order TV in [8,14],
and similar algorithm can be derived under the framework of ADMM, however
further investigation of using spatial smoothing TV is our future work.
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4 Optimization Algorithm

To solve (5), an algorithm in the framework of ADMM is developed. The aug-
mented Lagrangian function of (5) is

L(S,M,E, T1, T2, μ) = ‖S‖∗ + λ‖E‖1,1 + β‖M‖1,1 + α tr(SGST )

+ 〈T1,X − LS − E〉 + 〈T2,M − S〉 +
μ

2
× (‖X − LS − E‖2F + ‖M − S‖2F ).

(6)

By some simple algebra, (6) can be reformulated as

L(S,M,E, T1, T2, μ) = ‖S‖∗ + λ‖E‖1,1 + β‖M‖1,1 + α tr(SGST )

+
μ

2
× (‖X − LS − E +

T1

μ
‖2F + ‖M − S +

T2

μ
‖2F ) − 1

2
μ(‖T1‖2F + ‖T2‖2F ),

(7)

where T1 and T2 are Lagrangian multipliers and μ is a positive scalar which
can be used as a step size. M is an auxiliary variable for S. The inner product
of two arbitrary matrices A and B is denoted as 〈A,B〉, which is also equal to
tr(AT B). To minimize Eq. (7), the variables S, M , E, T1 and T2 can be updates
alternately in a Gauss-Seidel manner by minimizing the augmented Lagrangian
function with other variables fixed. For symbolic simplicity, we rewrite Eq.(7)
as:

L(S,M,E, T1, T2, μ) = ‖S‖∗ + λ‖E‖1,1 + β‖M‖1,1

+ h(S,E,M, T1, T2, μ) − 1
2
μ(‖T1‖2F + ‖T2‖2F ), (8)

where

h(S,E,M, T1, T2, μ) =α tr(SGST ) +
μ

2
× (‖X − LS − E +

T1

μ
‖2F

+ ‖M − S +
T2

μ
‖2F ). (9)

If the augmented Lagrangian function is difficult to minimize with respect to a
variable, a linearized approximate surrogate function can used, hence the algo-
rithm we used here bears the name Linearized Alternating Direction method
[11,15]. Updating S by minimizing h(S,Ek,Mk, T k

1 , T k
2 , μk) (suppose we are at

iteration k) is equivalent to minimize the following goal function with the other
variables fixed:

LS = ‖S‖∗ + h(S,Ek,Mk, T k
1 , T k

2 , μk), (10)

which is approximated by optimizing its linearizion at Sk plus a quadratic prox-
imal term:

S = argmin
S

‖S‖∗ +
〈∇Sh(Sk), S − Sk

〉
+

η

2

∥∥S − Sk
∥∥2

F
. (11)
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Here η is a constant satisfying

η > 2α‖G‖2 + μ(1 + ‖L‖22), (12)

where ‖·‖2 is the spectral norm of a matrix, i.e, the largest singular value. As
long as (12) is satisfied, (11) is a good approximate to (10). The solution to (11)
has a closed form using a singular value thresholding operator (SVT) [16] given
as:

Sk+1 = Θη−1(Sk − ∇Sh(Sk)/η), (13)

where Θε(A) = USε(Σ)V T is the SVT operator, in which UΣV T is the singular
value decomposition of A and Sε(s) is defined as sin(x)max(|x|−ε, 0). ∇S1h(Sk

1 )
is calculated as

∇Sh(Sk) = α(SkG + SkGT ) + μLT (LS − X + E − T1

μ
) + μ(S − M − T2

μ
)

To update M and E, it is equivalent to solve the following problem:

argmin
M

μ

2
‖M − S +

T2

μ
‖2F + β‖M‖1,1 (14)

argmin
E

μ

2
‖X − LS − E +

T1

μ
‖2F + λ‖E‖1,1 (15)

The general form of (14)–(15) is a �1 norm proximal operator defined as

proxμ(V ) = arg min
X

μ‖X‖1,1 +
1
2
‖X − V ‖2F , (16)

with μ > 0. The above problem (16) has a closed form solution, called soft
thresholding, defined by a shrinkage function,

shrink(V, μ) = (|V | − μ)+ sgn(V ),

where (x)+ is x when x > 0, otherwise 0. The shrinkage function is defined as
element-wise operator. Problem (14)–(15) has a close form solution described
with the shrinkage function. After updating all the variables, these Lagrange
multipliers are updated by

T1 = T1 + μ(X − LS − E), T2 = T2 + μ(M − S). (17)

The parameter μ is updated by μ = min(ρμ, μmax). A summarized algorithm is
given as Algorithm 1. We initialize the S with the estimate S0 from �1 solver.

It’s worth noting that the data fitting term we use is �1,1 norm of E in the
model, and there are other options. Generally, if the Gaussian noise E is small,
then the norm ‖E‖F , is an appropriate choice, but for random data corruption,
�1,1 should be used, and for sample specific data corruption, �2,1 [17–19], should
be used.

The above procedures are summarized in Algorithm 1. The convergence of
Algorithm 1 can be easily derived from [15].
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Algorithm 1. Source Imaging Based on Spatial and Temporal Graph Structures
INPUT: Lead field matrix L, preprocessed EEG signal matrix X, graph matrix G,
precalculated matrix Dα, parameters α, ζ > 0, and β > 0.
OUTPUT: Source matrix S.
Initialize: Set S = S0, J = 0, M = 0.
while not converged do

update S according to
Sk+1 = Θ̃η−1(Sk − ∇Sh(Sk)/η),

update M according to Equation (14),
update E according to Equation (15),
update T1, T2 according to Equation (17),
update μ = min(ρμ, μmax),

end while

5 Numerical Experiments

In this section, we conducted 2 experiments to illustrate the effectiveness of
our proposed method. In the beginning, we tested different values for λ and β
by setting α = 0. Later, we illustrate the temporal smoothing functionality of
the graph regularization term for corrupted source with abrupt signal jumps.
In the second experiment, we give comprehensive numerical results by testing
our algorithm against the benchmark algorithms to showcase the effectiveness of
the proposed method in reconstructing task-related source, where we show that
our algorithm can not only find the activated locations, but also reconstruct the
time-course of source activation with high precision.

5.1 Experiments 1: Test LRR with Temporal Graph Prior

At each location, a time series with length of 500 were generated to represent the
source activation time-course. At each time point, two randomly picked sources
are activated to simulate the non-task related spurious noise with mean of 0
and variance to be 1. The task-related activate pattern has low-rank property,
however, the noise corrupted source space is no longer low-rank. We repeated
our experiment 50 times for all the combinations of λ and β, where λ =
{0.01, 0.02, 0.03, 0.05, 0.1, 0.2, 0.5} and β = {0.005, 0.01, 0.015, 0.02, 0.05, 0.1}.
The reconstructed error (RE) metric used here is RE = ‖Ŝ − S‖2/‖S‖2. The
RE under different value of λ and β is given in Fig. 2. Next, we solve the LRR-
TG-ESI problem (5) with graph regularization term to test its impact on the
reconstructed signal. We assign different values {0.01, 0.02, 0.05, 0.1, 0.5} for the
graph regularization parameter α. The original source signal was smooth, then it
was corrupted by random noise at some time points. There are also 2 randomly
picked activated sources representing spurious sources with the mean of 0 and
variance to be 1. The “temporal smoothing” impact of the graph regularization
is shown in Fig. 3, where λ = 0.02 and β = 0.01. In Fig. 3, the original signal is
corrupted and not smooth at some time points, we set the neighbor size to be
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2 (the closest signal before and after the one to be estimated) when calculat-
ing the Laplacian matrix. It is evident from the formulation (3) that the graph
regularization term will decrease the dissimilarity of the temporally neighbored
reconstructed source. If α is set to be 0.5, the graph regularization term penal-
ized heavily on the curvature of the reconstructed signal as is illustrated in Fig. 3.
We can see that with the temporal graph prior, the reconstructed source is more
smooth. It is worth noticing that the main purpose of temporal graph prior is
not to smooth the time course for the activated locations, the main purpose is to
filter out the spurious activations that are short transients with abrupt jumps.
Combined with the low-rank prior, the temporal graph prior can filter the spuri-
ous activations and reconstruct the task related activated source. The randomly
planted spurious sources are filtered out by penalizing the graph regularization
and nuclear norm, and in most of the cases, the final rank is 2 can be achieved
within a wide range of parameters.

Fig. 2. Averaged reconstruction error
and rank varying λ and β over 50
experiments. Average of reconstruction
error for different λ and β

Fig. 3. Illustration of the smoothing
effect of temporal graph regularization:
reconstructed time courses from varied
graph regularization parameters.

5.2 Experiments 2: Comprehensive Comparison with Benchmark
Algorithms

The purpose of previous numerical experiments is to validate each term of the
objective function and to understand their properties. The trade-off between
low-rankness, data fidelity, sparsity, temporal smooth is fully discussed by vary-
ing different parameters. In this part, a comprehensive study is conducted to
compare the proposed algorithm with the popular ESI algorithms such as MNE
[20], sLORETA [21], and MCE with implementation of Homotopy and FISTA
[7]. We generated independent sources in different ROIs for easy validation pur-
pose, the number of independent sources of 2 and 3 corresponding to different
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rank of ground-truth source, and the spurious sources are generated by randomly
activating the sources on the cortex with a random scalar whose mean value to
be 0, and the variance is 1. Moreover, the noise on sensor level is also added to
the EEG data. Two of the MCE algorithms are selected, which are Homotopy
and FISTA [22].
To measure the performance, we introduced 5 metrics, including (1) CPU time in
seconds, (2) rank of the calculated source, (3) Sparsity, measuring the number of
nonzero elements in the source space at each time point, (4) Reconstruction Error
(RE) defined in Sect. 5.1, (5) Localization Error (LE), which is calculated using
the shortest path algorithm over the irregular meshes from the reconstructed
source location to the ground truth location. The LE metric is the most impor-
tant one since it measures the discrepancy in location, the other metrics give
information of the property of the rendered solution. To calculate LE for each
ROI with activated sources, we first locate the source with the largest activation
magnitude in this ROI, and calculate the shortest path distance from the located
source to the ground truth location. We conduct the same procedure for all the
activated ROI, and calculate the average value of all the distances at each time
point. The final LE is the averaged distance value for all the 500 time points for
each experiment.

For our proposed algorithm, we set λ = 0.01 and β = 0.01, which were
tested to have good performance for the same case when the rank is 2 and the
number of the spurious activated source is 2 in previous experiment, and the
graph parameter α is also set to be 0.01. 10 experiments were conducted under
the same setting and the performance of all the algorithms are summarized
in Tables 1 and 2 when true rank is 2 or 3. The SNR is calculated after the
noise signal is generated and it was averaged from 10 experiments under the
same experimental setting. As can be seen from the tables, our algorithm is the
most accurate to locate the task related activated source. The CPU time of our
algorithm is between Homotopy and FISTA algorithm.
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6 Conclusion

In this paper, unlike the traditional model, we propose to estimate the latent
source which is task-related but corrupted with spurious sources. To extract the
discriminative task related source activation pattern, we come up with a new
EEG source imaging model based on temporal graph structures and low-rank
representation. The model is solved with an algorithm based on ADMM. Numer-
ical experiments verified the effectiveness of the proposed work on discovering
task related low-rank sources.
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