
Chapter 7
The G-DINA Model Framework

Jimmy de la Torre and Nathan D. Minchen

Abstract The development of cognitive diagnosis models (CDMs) has been pro-
lific since the turn of the century; however, they have often been developed in such a
way that they lack an overall connective framework. The purpose of this chapter is to
review the G-DINA framework. As a general model, it subsumes several simpler and
widely-known CDMs; as a general framework, it has also served as the foundation
for a variety of model extensions and new methodological developments. We will
also discuss associated topics, which include model estimation, Q-matrix validation,
computerized adaptive testing, and model selection as they relate to the reviewed
models.

7.1 Introduction

Cognitive diagnosis models (CDMs) can be viewed as restricted versions of the
more general latent class models. In particular, the number of latent classes, as
well as their interpretation, are known a priori when CDMs are involved. Further
restrictions can be posited regarding how the underlying attributes interact to
produce the observed responses. These interactions (or condensation rules; Maris,
1999) include conjunctive, disjunctive, and additive processes (de la Torre, 2011).
Assuming a specific underlying process involves the use of a reduced or constrained
CDM such the DINA model (Haertel, 1989; Junker & Sijtsma, 2001), DINO
model (Templin & Henson, 2006), LLM (Maris, 1999), R-RUM (Hartz, 2002), and
A-CDM (de la Torre, 2011). Although more interpretable and requiring smaller
sample sizes, reduced models can also lead to poorer model-data fit when they
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are incorrectly specified (e.g., Chen & de la Torre, 2013). Notwithstanding their
own shortcomings, general or saturated CDMs, such as the G-DINA model (de la
Torre, 2011), LCDM (Henson, Templin, & Willse, 2009), and GDM (von Davier,
2008), can be used as an alternative to reduced CDMs to minimize the impact of
potential model misspecifications. With the exception of the GDM, which can be
specified more generally, the CDMs above are designed for dichotomous attributes
and dichotomous responses. It should be noted that when dichotomous attributes
and dichotomous responses are involved, the G-DINA model, which is typically
written using the identity link function, the LCDM and GDM, which are based on
the logit link function, and any saturated CDMs in other link functions (e.g., log) are
equivalent to each other. To accommodate a wider range of attribute and response
types, extensions of CDMs need to be considered.

An integral component of most, if not all, CDM specifications, general or
otherwise, is the Q-matrix (Tatsuoka, 1983). In its typical formulation, a Q-matrix
is a K × D matrix that identifies the subset of attributes measured by each item,
where K is the number of items and D the number of attributes measured by the
test. The attribute specification for item j is given in the binary D−length vector,
qj . Correspondingly, the latent variable in CDM is typically a binary D−length
vector, al , where l = 1, . . . , L = 2D, the number of latent classes. As will be
shown later, both qk and al may require some modifications before they can be used
in conjunction with CDM extensions.

The valid use of scores derived from CDMs presupposes that the model is
adequate for the data. To this end, steps need to be taken to ensure that a discrete
latent variable can fit the data, the correct CDMs are employed, and Q-matrix entries
are correctly specified. In addition, for greater efficiency, simpler models should be
preferred over more complex models whenever appropriate.

Given the large number of CDMs that currently exists, a unifying framework
from which these models can be viewed is needed to better understand their unique
natures and the extent to which these models relate to each other. Moreover, a coher-
ent framework that permits implementation of various CDM-related procedures can
allow for the appropriate use of CDMs to be evaluated more systematically. As will
be discussed below, the G-DINA model framework aims to accomplish this two-
pronged objective. In addition, the G-DINA as a model can serve as the foundation
on which CDM extensions can be built.

7.2 The G-DINA Model Framework

7.2.1 The G-DINA Model

Without loss of generality, assume that the first D∗
k attributes are required for item

k, and let a∗
lk be the D∗

k -length reduced attribute vector, l = 1, . . . , 2D∗
k , which

retains only the attributes required for item k. The item response function (IRF) of
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the G-DINA model is given by

g[P(Xk = 1 | a∗
lk)] = φk0 +

D∗
k∑

d=1

φkdald +
D∗

k∑

d ′=d+1

D∗
k −1∑

d=1

φkdd ′aldald ′ + . . .

+φ12...D∗
k

D∗
k∏

d=1

ald , (7.1)

where g[·] is either the identity, log, or logit link function, φk0 is the intercept, φkd

is the main effect due to mastering ad , and each of the remaining φk· represent all
possible higher-order interaction effects, ranging from two-way to D∗

k -way. When
g[·] is the logit link, it is equivalent to the LCDM, which has also been shown to be
equivalent to a GDM with an extended skill space (von Davier, 2014).

The G-DINA model is considered a saturated CDM because it contains 2D∗
k

parameters corresponding to the 2D∗
k latent groups in item k. As shown by de la

Torre (2011), several reduced models can be derived from the G-DINA model by
constraining its parameters. The DINA model is equivalent to the G-DINA model
with all but the intercept and the highest-order interaction effect set to zero. Its IRF
in the G-DINA notation is

g[P(Xk = 1 | a∗
lk)] = φk0 + φ12...D∗

k

D∗
k∏

d=1

ald . (7.2)

Similarly, the DINO model can be obtained from the G-DINA model using the
following constraints: φkdald = −φkdd ′ = · · · = (−1)D

∗
k +1φ12...D∗

k
. Thus, its IRF

can be written as

g[P(Xk = 1 | a∗
lk)] = φk0 + φkdald . (7.3)

Finally, when all the interaction effects are set to zero, as in,

g[P(Xk = 1 | a∗
lk)] = φk0 +

D∗
k∑

D=1

φkdald , (7.4)

the G-DINA model in the identity, log, or logit link is equivalent to the A-CDM,
R-RUM, or LLM, respectively. Although the additive property is inherent to a
particular link function (e.g., R-RUM is multiplicative when converted to the
identity link), Ma, Iaconangelo, and de la Torre (2016) noted the interchangeability
of the three additive models for some item parameter combinations. As a whole,
recognizing that the G-DINA model subsumes a number of reduced CDMs has
important implications in model comparison and model-data fit evaluation.
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7.3 Model Extensions

7.3.1 G-DINA Model for Polytomous Attributes

Although the G-DINA model is a general CDM, it is only so with respect
to dichotomous attributes. However, some educational applications may benefit
from a finer-grained, and therefore, more instructionally-relevant classification of
students. For example, classifying students as having no mastery, basic mastery, and
advanced mastery of the skills might be of interest. The middle-school proportional
reasoning (PR) assessment described by Tjoe and de la Torre (2013a,b) measures
two polytomous attributes, namely, (a) comparing and ordering of fractions, where
level 0 represents nonmastery of the attributes, level 1 the ability to compare two
fractions, and level 2 the ability to order three or more fractions; and (b) constructing
ratios and proportions, where level 0 again represents nonmastery, level 1 the ability
to construct a single ratio, and level 2 the ability to construct a proportion, which is
made up of two ratios. Such classifications require polytomous attributes.

Define al = {ald | ald ∈ (0, 1, . . . , Md)} as the polytomous attribute vector,
and again, assume that the first D∗

k attributes are required for item k. The reduced
attribute vector in this context can be written as a∗

lk = {ald , . . . ,alD∗
k
}. When there

are no constraints on the model, item k involves M1 · M2 · · ·MD∗
k

latent groups. A
saturated CDM for this item would require the same number of parameters, making
it too complex to be viable in most practical testing situations. Chen and de la Torre
(2013) proposed the polytomous G-DINA (pG-DINA) model as a lower-complexity
CDM that can accommodate polytomous attributes. To reduce the number of latent
groups, and hence complexity of the corresponding CDM, the pG-DINA model
assumes that, for each attribute within an item, an examinee can be classified as
either at or below the required attribute level. Examinees on or above the cutoff are
assumed to have the necessary attribute mastery level to answer the item correctly,
whereas those below it do not. Chen and de la Torre (2013) referred to this as
the specific attribute level mastery (SALM) assumption. The reduced polytomous
attribute vector a∗

lk can be converted to a reduced dichotomous attribute vector a∗
lk

as follows: a∗
lk = {I (ald ≥ qkd)}, for d = 1, . . . , D∗

k . After the conversion, a∗
lk can

be used in the IRF given in (7.1) to model a wide variety of attribute interactions.
In general, the conversion process in the pG-DINA model reduces the number of

latent groups to 2D∗
k for item k regardless of the number of levels of the attributes

involved. It should also be noted that the pG-DINA model differs from other
polytomous CDMs (e.g., GDM) in that the attribute level required for an item is
defined by domain or subject-matter experts a priori, whereas in other CDMs, only
the attribute, but not the level, need to be specified. This distinct feature of the pG-
DINA model implies a modification of the Q-matrix – instead of only 0 and 1,
qkd ∈ (0, 1, . . . ,Md − 1). Using the PR assessment data, Chen and de la Torre
(2013) and de la Torre (2015) have shown that the pG-DINA model provides a better
fit when compared to the G-DINA model. These results indicate that the pG-DINA
model is not only theoretically appealing, but also empirically more appropriate.



7 The G-DINA Model Framework 159

7.3.2 G-DINA Model for Polytomous Response

Although items that can be scored as either right or wrong (i.e., 1/0) remains
the most common item type in large-scale assessments, items that can be scored
with ordered polytomous categories are also available. In the CDM literature, it
is not uncommon for these scores to be dichotomized and analyzed using existing
CDMs for dichotomous response. In recent years, a number of CDMs for ordered
polytomous response have been proposed, including the GDM for graded responses
(von Davier, 2008), the polytomous LCDM (Hansen, 2013) and the sequential G-
DINA (sG-DINA; Ma & de la Torre, 2016) model. Of these, only the sG-DINA
model considers the possibility that, within the same item, the subset of attributes
being measured can vary from one response category to another.

The sG-DINA model assumes that the problem-solving process is sequential
in nature, and allows for different subsets of attributes to be associated with
different steps or categories. In the sG-DINA model, the Q-matrix is modified to
accommodate qkh, the q-vector for category h of item k, where h = 1, 2, . . . , Hk .
Note that for ordered polytomous response, 0 is one of the response categories (i.e.,
Xk = {h | h ∈ (0, 1, . . . , Hk)}), but this category does not require a q-vector.
Hence, instead of K rows, the modified Q-matrix contains

∑K
k=1 Hk rows.

We can again assume that the first D∗
k are the required attributes for category h of

item k. Conditional on the reduced attribute pattern a∗
lh, the probability of a correct

response to category h of item k given the previous step is correctly answered is
denoted by

Sk(h|a∗
lh) = P(Xk,h = 1 | Xk,h−1, a

∗
lh). (7.5)

Sk(h|a∗
lh) is referred to as the processing function in the item response theory

literature (Samejima, 1973). The processing function can be more generally for-
mulated by using various link functions. In doing so, the IRF of the G-DINA model
given in (7.1) can be used as the processing function to model a range of attribute
interactions associated with the category response. Based on the sG-DINA model,
the probability of obtaining a score of h on item k is given by

P(Xk = 1|a∗
lh) = [1 − Sk(h + 1|a∗

lh)]
h∏

h′=1

Sk(h
′|a∗

lh′), (7.6)

where

Sk(h|a∗
lh) =

{
1, if h = 0

0, if h = Hk + 1
.

The sG-DINA model is said to be restricted when the attribute-category associ-
ations are known. However, for some items, only the attribute-item associations
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can be ascertained. For these items, the unrestricted version of the sG-DINA is
used, where the same subset of attributes are specified for all categories. Although
more general, and therefore more flexible, fitting the unrestricted sG-DINA model
when the restrictions are appropriate can lead to suboptimal results. Originally the
unrestricted sG-DINA model was designed for ordered responses; however, Ma and
de la Torre (2016) have shown that the model can also be used in conjunction with
nominal response, and is equivalent to the partial credit DINA model (de la Torre,
2010) and the nominal response diagnostic model (Templin, Rupp, Henson, Jang, &
Ahmed, 2008). Finally, as expected, the sG-DINA model performs better than the
G-DINA model fitted to dichotomized polytomous data.

7.3.3 G-DINA Model for Continuous Response

Although a number of CDMs for dichotomous and polytomous responses are
available, modeling continuous response in the CDM context is in its infancy. With
the proliferation of computer-based testing, perhaps the most obvious and readily-
available source of continuous response is latency, or response time. However, other
item formats such as placing a mark on a line segment (e.g., Noel, 2014; Noel &
Dauvier, 2007) and probability testing (e.g., Ben-Simon, Budescu, & Nevo, 1997)
can also yield continuous responses. For illustration purposes, we will use response
time to represent continuous response throughout the chapter. As de la Torre and
Minchen (2016), Minchen and de la Torre (2018) and Minchen, de la Torre, and
Liu (2017) have shown, response time in the CDM context may itself be the work
product of interest, or it could be viewed as a type of process data and used in
conjunction with response accuracy.

The first CDM to handle responses of a strictly continuous type is the continuous
DINA (cDINA) model proposed by Minchen et al. (2017). Like the DINA model,
the cDINA model involves the same latent variable al , classifies the examinees into
one of two latent groups – those who have the required attributes for the items (ηlk =
1), and those who do not (ηlk = 0). However, instead of a single parameter (i.e., slip
or guessing) governing the response of one particular group, the item response of a
latent group in the cDINA model is governed by two parameters, representing the
mean and standard deviation of the group’s, say, response time on item k. It should
also be noted that unlike dichotomous response where examinees in group ηlk = 1
are expected to score higher, the expected response time of the same examinees can
be longer or shorter depending on the context of application. The real data example
in Minchen et al. shows that examinees in ηlk = 1 are more engaged with problems
that they are equipped to handle, resulting in longer response times.

Using the cDINA model, the cumulative distribution function for the response tlk
on item k given al can be written as

P(Tk ≤ t |al ) =
∫ t

0
fkη(tk)dtk, (7.7)
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where

fkη(tk) = 1

tk

√
2πσ 2

kη

exp
[

− (ln tk − μkη)
2

2σ 2
kη

]
, (7.8)

which is the lognormal distribution with group-specific parameters μkη and σkη for
η = 0, 1.

The continuous G-DINA (cG-DINA; Minchen & de la Torre, 2018) is a
straightforward generalization of the cDINA model. Instead of two latent groups,
the cG-DINA model allows for a unique response distribution to be associated with
each of the 2D∗

k latent groups; thus it is characterized by 2D∗
k +1 parameters. The

cumulative distribution of the cG-DINA model for the response tlk is similar to that
in (7.7) with the exception that the lognormal distribution in (7.8) involves μkη and
σkη for η = 1, 2, . . . , 2D∗

k , and a one-to-one correspondence between η and a∗
lk can

be made.
The cG-DINA model is a saturated model because each of the 2D∗

k latent groups
is characterized by a unique parameter set (μkη, σkη). By imposing the constraints
μk1 = · · · = μ

k,2D∗
k −1

and σk1 = · · · = σ
k,2D∗

k −1
, the cDINA model can be easily

derived from the cG-DINA model. Similar constraints can be imposed to derive
a disjunctive CDM from the cG-DINA model. However, as noted earlier, CDMs
for continuous response are in their nascent stages. At present, it is not clear how
additive CDMs in this context should be formulated or what constraints on μkη and
σkη are needed to derive them from the saturated model. Furthermore, the existence
of two parameters per latent group raises the possibility that the constrained model
for μkη may not be the same as that for σkη.

7.4 Estimation

An expectation-maximization (EM) implementation of marginalized maximum
likelihood estimation (MMLE) can be used to obtain parameter estimates of the
CDMs discussed above (e.g., de la Torre, 2009, 2011). Specifically, under the
assumption of local independence, the log-marginalized likelihood of the dichoto-
mous response data can be written as

�(X) = log
N∏

n=1

2D∑

l=1

P(Xn | al )p(al ), (7.9)

where

P(Xn | al ) =
K∏

k=1

P(Xnk = 1 | al )
Xnk [1 − P(Xnk = 1 | al )]

1−Xnk . (7.10)
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The MMLE/EM algorithm implements E-step and M-step iteratively item by item
until convergence. In particular, the E-step calculates Na∗

lk
= ∑N

n=1 P(a∗
lk|Xn),

the expected number of individuals having the attribute pattern a∗
lk , and Ra∗

lk
=

∑N
n=1 xnkP (a∗

lk|Xn), the number of individuals with attribute pattern a∗
lk expected

to answer item k correctly. Note that P(a∗
lk|Xn) is the posterior probability of

individual n having attribute pattern a∗
lk . In the M-step, as shown in de la Torre

(2011), the maximum likelihood estimate of P(Xk = 1 | a∗
lk) is given by

P̂ (Xk = 1 | a∗
lk) = Ra∗

lk

Na∗
lk

. (7.11)

The item parameters φ in (7.1) can be derived from (7.11) via the ordinal least-
squares approach.

For the DINA and DINO models, the 2D∗
k latent groups are further partitioned

into two non-overlapping groups ηk0 and ηk1, where individuals in the former and
latter groups are expected to answer item k incorrectly and correctly, respectively.
The maximum likelihood estimate of the probability of success for individuals in
group ηku where u ∈ (0, 1) is

P̂ (Xk = 1 | ηku) =
∑

a∗
lk∈ηku

Ra∗
lk∑

a∗
lk∈ηku

Na∗
lk

. (7.12)

For A-CDM, LLM and R-RUM, the maximum likelihood estimate can be found
using various optimization functions based on Ra∗

lk
and Na∗

lk
. The parameters of the

pG-DINA model can be estimated as in the G-DINA model after converting a∗
lk to

reduced dichotomous attribute vector a∗
lk . For the sG-DINA model, the following

objective function is maximized in the M-step,

�k =
2D∗

k∑

l=1

Hk∑

h=0

Ra∗
lkh

log
[
P(Xk = h|a∗

lk)
]
,

where Ra∗
lkh

= ∑N
n=1 I (xnk = h)P (a∗

lk|Xn) is the number of individuals with
attribute pattern a∗

lk expected to obtain a score of h on item k. Note that the
EM algorithm for estimating the sG-DINA model can also be implemented at the
category level after transforming the polytomous data to dichotomous data with
missing values using the mapping matrix (Ma, 2018).

For the cG-DINA model, the conditional likelihood given in (7.10) can be written
as

P(tn | al ) =
K∏

k=1

fj (tnk|al ). (7.13)
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Following several steps of derivation, the maximum likelihood estimates of μkη and
σ 2

kη can be shown to be equal to

μ̂kη =
N∑

n=1

p∗(alk|tn) log tnk, (7.14)

and

σ̂ 2
kη =

N∑

n=1

p∗(alk|tn)(log tnk − μ̂kη)
2, (7.15)

respectively, where p∗(alk|tn) is the posterior probability (normalized across the N

examinees) of examinee n being in the reduced attribute pattern alk .
Unlike traditional IRT, where the prior ability distribution can be reasonably

specified, for example, using N(0, 1), the multinomial attribute distribution p(al )

in CDM cannot be readily determined a priori. A convenient way of specifying
p(al ) is to employ the empirical Bayes estimate. In particular, we let p(c+1)(al ),
the prior distribution at iteration c + 1, be equal to the p(c)(al | X), the posterior
distribution at iteration c. It should be noted that in the CDM context, estimation
of the item response model can impact the joint attribute distribution estimate, and
vice versa. Therefore, in situations where the impact of model misspecification on
item parameter estimates needs to be isolated, one can use the G-DINA model to
arrive at the correct attribute distribution estimate in the first step, and, fixing the
attribute distribution, use the EM algorithm to obtain the item parameter estimates
of the reduced model in the second step.

7.5 G-DINA Model-Based Methodologies

7.5.1 Q-Matrix Validation

In typical CDM applications, Q-matrices are built by subject-matter experts. In
addition to subjective judgments, experts may not reach complete agreement on
each of the Q-matrix entries. For these reasons, the correctness of the entire Q-
matrix cannot be guaranteed. To address this issue, statistical procedures, referred
to in the literature as empirical Q-matrix validation methods, have been proposed.

De la Torre and Chiu (2016) proposed the G-DINA model discrimination index
(GDI) for an item with any q-vector. For simplicity of notation, let us assume again
that the first D∗

k attributes are required for item k. The GDI is defined as

ς2
1:D∗

k
=

2D∗
k∑

l=0

p(a∗
l )

[
P(Xk = 1|a∗

l ) − p̄k

]2
(7.16)
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where p(a∗
l ) is relative size of the reduced attribute pattern a∗

l , and p̄k is the mean
success probability on item k. As can be seen from (7.16), the GDI is simply the
variance of the success probabilities given a particular q-vector. For each item, 2D −
1 q-vectors can be specified, each corresponding to one GDI. De la Torre and Chiu
(2016) defined a q-vector that results in the maximum ς2

k as an appropriate q-vector
to item k. Of the appropriate q-vectors, the q-vector with the minimum number of
attributes specified is deemed correct.

The GDI serves as the basis of the EM-based data-driven algorithm (de la Torre &
Chiu, 2016) developed to validate the expert-based provisional Q-matrix. Compared
to other data-driven Q-matrix validation methods that are designed for specific
CDMs (e.g., the δ-method for the DINA model; de la Torre, 2008), the GDI is based
on a general model so it can be used with any reduced CDMs the G-DINA model
subsumes. In practice, the inequality established by de la Torre and Chiu (2016)
may not hold due to potential misspecifications in the provisional Q-matrix as well
as noise in the data. As a matter of fact, the maximum ς2

k is always achieved when
qk = 1, which, more often than not, is an overspecification. To address this issue,
they recommended examining the proportion of variance accounted for a particular
q-vector relative to the maximum ς2

k , and suggested selecting the simplest q-vector
from a set of q-vectors with GDIs above a particular cutoff (e.g., ς2 > 0.95).
Although it has been shown that the GDI-based procedure can be a reliable method
of empirically validating a provisional Q-matrix, particularly when high quality
items are involved, determining a single cutoff that is optimal across a variety of
conditions remains a challenge. To minimize dependence on a single cutoff and
to allow for quantitative and graphical information to be combined in determining
the correct q-vector for an item, de la Torre and Ma (2016) proposed the use of the
mesa plot. The mesa plot displays the GDIs of different q-vectors in ascending order.
Instead of a single recommendation, a number of q-vectors in the vicinity where the
plot plateaus or forms a tabletop are suggested from which the correct q-vector can
be selected.

7.5.2 Cognitive Diagnosis Computerized Adaptive Testing

As in traditional IRT, computerized adaptive testing can also be used to improve test
efficiency (i.e., shorter test or greater accuracy) in the CDM context by administer-
ing items that are tailored to an examinee’s most current attribute estimate. However,
due to the discrete and multidimensional nature of the attributes, the method for
determining the optimal item in cognitive diagnosis computerized adaptive testing
(CD-CAT) differs.

Kaplan, de la Torre, and Barrada (2015) used the GDI as an item selection index
for CD-CAT. Specifically, for examinee n, the GDI for item k at time t (i.e., after t

items have been administered) is computed as

ς
2(t)
k =

2D∗
k∑

l=0

p(al | X(t)
n )

[
P(Xk = 1|a∗

l ) − p̄
(t)
nk

]2
, (7.17)
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where p(al | X
(t)
n ) is posterior probability of a∗

l at time t , P(Xk = 1|a∗
l ) is the

time-invariant success probability on item k given a∗
l , and p̄

(t)
nk current overall item

difficulty. Note that, as a CD-CAT item selection index, (7.17) is a function of p(al |
X

(t)
n ), which changes over time. The item with the largest ς

2(t)
k is deemed most

informative, and hence administered at time t + 1.
To examine the viability of the GDI as a CD-CAT item selection index, Kaplan

et al. (2015) compared it with the posterior-weighted Kullback-Leibler (PWKL;
Cheng, 2009) index, as well as the doubly-posterior-weighted modified PWKL
(MPWKL) index, which they also introduced. They found that the GDI and
MPWKL outperformed the PWKL when the reduced model is either the DINA
or DINO model, but not when it is the A-CDM. In addition, although GDI and
MPWKL performed similarly in terms of correct classification rate or average test
length, the former was deemed more efficient in that it only required a fraction of
the time to be implemented.

7.5.3 Item-Level Model Comparison

Given the variety of CDMs currently available, it is not obvious how the choice
between these models can be made in practice. Previously, researchers assume a
particular underlying process (e.g., conjunctive, additive) to fit a particular CDM
(i.e., DINA model, R-RUM) to the data. With the availability of general models,
fitting CDMs with less restrictive assumptions has been advocated. However, recent
analyses of real data show that different items may require different types of CDMs,
both reduced and saturated. These findings imply that a single reduced CDM would
likely not provide a sufficient model-data fit. Moreover, even if a general model may
provide an adequate fit assuming CDMs are appropriate, the parsimony principle
(Beck, 1943) dictates that the simplest set of models that can provide equally good
fit to the data be chosen. These findings also imply that using a test-level comparison
using, say, Akaike (1973) or Bayesian information criterion, or the likelihood ratio
test to choose en masse from among the CDMs that have been specified a priori may
not lead to the selection of the optimal CDMs for the data.

To determine empirically (i.e., post hoc) the most appropriate CDM for each
item, de la Torre (2011) developed an item-level model selection method using the
Wald test. Assuming the Q-matrix has been validated, the Wald test can be used to
determine whether one or more reduced CDMs can be used in place of the saturated
CDM. For item k, the Wald statistic for comparing the reduced CDM 	 against the
saturated model is defined as

Wk	 = [
Rk	 × g(P k)

]′ [
Rk	 × V ar[g(P k)] × R′

k	

] [
Rk	 × g(P k)

]
, (7.18)

where g(P k) is g[P(Xk = 1 | a∗
lk)], V ar[g(P k)] is the corresponding variance

matrix, and Rk	 is the restriction matrix associated with the reduced CDM 	. The
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restriction matrix Rk	 is of size (2D∗
k − p) × 2D∗

k , where p is the number of
parameters in model 	. Below are examples of R for the (1) DINA model, (2) DINO
model, and (3) additive models when D∗

k = 2:

R(1) =
[

1 −1 0 0
0 1 −1 0

]
, R(2) =

[
0 1 −1 0
0 0 1 −1

]
, and R(3) = [

1 −1 −1 1
]
.

The Wald statistic Wk	 is assumed to be asymptotically χ2−distributed with (2D∗
k −

p) degrees of freedom. It should be noted that using the Wald test for the purpose of
evaluating the appropriateness of reduced CDMs is only meaningful when D∗

k ≥ 2.
With a sufficiently large sample size and reasonable item quality, the Wald

test has acceptable Type I error and power across various reduced models (de
la Torre & Lee, 2013; Ma & de la Torre, 2016). Furthermore, in comparing the
fit of CDMs selected via the Wald test against that of the G-DINA model, Ma,
Iaconangelo, and de la Torre (2016) found using simulated and real data that the
former provided higher correct classification rate than the latter, particularly when
lower item qualities and smaller sample sizes are involved. More recently, de la
Torre and Ma (2017) have shown that performing the Wald test is a necessary step
to accurately evaluate whether or not a test can potentially identify all the possible
attribute patterns. An evaluation of the expected item response profiles derived from
fitting a saturated model without considering the appropriateness of reduced CDMs
can lead to incorrect conclusions about the identifiability, or lack thereof, of the
attribute patterns. Lastly, the use of the Wald test in the CDM context extends
beyond item-level model comparison – it has also been used to evaluate differential
item functioning (e.g., Hou & Terzi, 2017).

7.6 Discussion

This chapter presents the G-DINA model as framework for conducting analysis
in the CDM context. As a general model and with appropriate link functions, the
G-DINA model can be shown to subsume a number of familiar reduced CDMs
in the literature. With it as the base model, the G-DINA model can be extended
in various directions to address a wider range of practical testing situation needs.
As a framework, the G-DINA model provides a coherent environment where
CDM-related procedures can be developed and implemented. Thus far, the CDM-
based methodologies that have been developed are largely applicable to CDM
for dichotomous responses and attributes. To further improve the practicability of
CDMs, these methodologies should be expanded to also apply to other CDM types.

The surge in the development of CDMs and related methodologies in recent years
is without a doubt a positive development in this field. However, using these models
and methodologies systematically and integratively can be daunting, particularly
to many applied researchers. If any suggestions could be proffered regarding this
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matter, they would be as follows. First, validate the Q-matrix specification. To do
so without conflating Q-matrix misspecifications with potential CDM misspecifica-
tions, fit the G-DINA model. Second, check whether reduced CDMs can be used
in place of the G-DINA model for items where D∗

k ≥ 2. More likely than not, this
would result in different items retaining different CDMs. Third, recalibrate the data
using the CDMs selected in the previous step to update the estimates of the item
parameters and attribute distributions. These are the estimates that one can use in
estimating the examinees’ attribute patterns. Optionally, in some applications, one
can also consider whether the attribute distribution, which is typically estimated
in saturated form (i.e., without constraints), can be simplified. An alternative is to
specify the attribute distribution using a higher-order formulation (de la Torre &
Douglas, 2004). As a final step, evaluate the absolute fit (i.e., goodness-of-fit) of the
model to the data. One way this can be accomplished is by comparing the expected
and observed moments, particularly the correlation and log-odds ratio, of each item
pair (Chen, de la Torre, & Zhang, 2013; de la Torre & Douglas, 2008).

As a last word, we should be cognizant that, despite the numerous developments
pertaining to CDM and related methodologies in the last two decades, these
advances represent but one side of the coin. To fully take advantage of the potential
of CDMs, we should also focus our attention on the other side of the same coin,
which is developing cognitively diagnostic assessments (CDAs; de la Torre &
Minchen, 2014). In particular, we need to develop diagnostic assessments from the
ground up using a CDM framework. On one hand, without the appropriate data,
psychometric tools no matter how sophisticated cannot produce the rich information
needed for precise diagnosis of student needs. On the other hand, without the
appropriate psychometric tools, information no matter how rich cannot be properly
extracted and utilized. Thus, for cognitive diagnosis modeling to break new ground
in the near future, CDMs and CDAs must be used hand in hand.
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