
Chapter 23
Applying the General Diagnostic Model
to Proficiency Data from a National Skills
Survey

Xueli Xu and Matthias von Davier

Abstract Large-scale educational surveys (including NAEP, TIMSS, PISA) utilize
item-response-theory (IRT) calibration together with a latent regression model to
make inferences about subgroup ability distributions, including subgroup means,
percentiles, as well as standard deviations. It has long been recognized that grouping
variables not included in the latent regression model can produce secondary bias
in estimates of group differences (Mislevy, RJ, Psychometrika 56:177–196, 1991).
To accommodate the ever-increasing number of background variables collected
and required for reporting purposes, a principal component analysis based on the
background variables (von Davier M, Sinharay S, Oranje A, Beaton AE, The
statistical procedures used in national assessment of educational progress: recent
developments and future directions. In: Rao CR, Sinharay S (eds) Handbook
of statistics: vol. 26. Psychometrics. Elsevier B.V, Amsterdam, pp 1039–1055,
2007; Moran R, Dresher A, Results from NAEP marginal estimation research on
multivariate scales. Paper presented at the annual meeting of the National Council
on Measurement in Education, Chicago, 2007; Oranje A, Li D, On the role of
background variables in large scale survey assessments. Paper presented at the
annual meeting of the National Council on Measurement in Education, New York,
NY, 2008) is utilized to keep the number of predictors in the latent regression
models within a reasonable range. However, even this approach often results in
the inclusion of several hundred variables, and it is unknown whether the principal
component approach or similar approaches (such as latent-class approaches) are
able to generate consistent estimates for individual subgroups (e.g., Wetzel E,
Xu X, von Davier M, Educ Psychol Meas 75(5):1–25, 2014). The primary goal
of the current study is to provide an exemplary application of diagnostic models for
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large-scale-assessment data. Specifically, a latent-class structure is used for covari-
ates while continuing to use IRT models for item responses in the analytic model.
Previous applications focused on adult literacy data (von Davier M, Yamamoto K,
A class of models for cognitive diagnosis. Paper presented at the 4th Spearman
invitational conference, Philadelphia, PA, 2004), as well as large-scale English-
language testing programs (von Davier M; A general diagnostic model applied to
language testing data (Research report no. RR-05-16). Educational Testing Service,
Princeton, 2005, von Davier M, The mixture general diagnostic model. In: Hancock
GR, Samuelsen KM (eds) Advances in latent variable mixture models. Information
Age Publishing, Charlotte, pp 255–274, 2008), while the current application uses
diagnostic modeling approaches on data from NAEP.

23.1 Background and Research Questions

The National Assessment of Educational Progress (NAEP) is often called the
“Nation’s Report Card” and can be considered the standard of measuring academic
progress across the United States for fourth-, eighth-, and 12th- grade students. It
covers a wide range of subjects, including reading, mathematics, writing, science,
and social science. Every 2 or 4 years, these assessments are administered to
nationally representative samples in order to measure trends in academic progress
over years. Depending on the assessment subject, the nationally representative
samples can have sizes from about 12,000 to about 140,000.

Because NAEP aims to measure the academic progress in policy-relevant
subgroups and is mandated not to provide measures at the individual level, a
sparse matrix sampling design (Johnson, 1992) is employed to administer NAEP
assessments so that individual students take only a portion of entire assessment. For
example, for subscales defined in the mathematics framework, students take only
about 10–30 items from a pool of 100–150 items, and each student is assigned
one of a number of different test forms with a different set of items from the
pool. The relatively small number of items within subscales does not provide
good ability estimates for individual students, but the aggregation of individual
ability distributions is suitable to provide precise estimates of subgroup ability
distributions. The methodologies utilized to achieve this were described by von
Davier et al. (2007) as well as von Davier and Sinharay (2014). For instance, in
order to estimate ability distributions for boys and girls, the item responses as well
as the self-reported gender variable needs be included in the model in order to obtain
precise estimates for the ability distributions (Mislevy, Beaton, Kaplan, & Sheehan,
1992; von Davier, Gonzalez, & Mislevy, 2009). Modeling approaches that include
both grouping variables as well as response variables are commonly referred to
as multiple group models. The multiple group model used in NAEP—and other
assessments—takes IRT to link the item responses and latent abilities and a latent
regression model, in which group differences are regressed on a potentially very
large number of background variables.
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To facilitate analyses and to enable researchers to answer this demand for
inclusion of a large variety of grouping variables, the predictors used in this
latent regression model (Mislevy, 1991) are preprocessed by extracting principal
components from the bulk of background variables (von Davier et al., 2007; Dresher,
2006; Moran & Dresher, 2007; Oranje & Li, 2008). In the currently operational
latent regression procedure used in NAEP, individual subgroup indicators are not
used directly. An analysis is conducted to extract principal components (PCs) that
explain 90% of the variance of the observed grouping variables. These principal
components are then used as the predictors in the latent regression model. This
preprocessing raises a question: Is this approach suitable for providing reasonably
good estimates of subgroup ability distributions, or does the preprocessing remove
some of the between-group differences since the set of predictors used in the model
might incompletely reflect differences in grouping variables? It is known that the
estimates for subgroups that are not included in the model are usually biased to a
certain degree (Mislevy, 1991), but, to our knowledge, the extent to which estimates
are biased for subgroups that are only partially represented by means of proxy
variables in the form of PCs is unknown. Existing studies were not able to provide
definitive answers. For example, Dresher (2006), via a simulation study, found that
with a reasonable number of items per students, the latent regression model with
PCs (that explains 90% of variance) outperformed the latent regression model with
only the subgroup variable of interest in terms of bias and root mean square error.
However, Oranje and Li (2008) did not find alarming differences between these two
types of models using real data. It is noted that both research studies used NAEP
operational software to obtain estimates, assuming that the students share a common
covariance structure and their abilities follow a multivariate normal distribution.
Their conclusions might change if we use estimation algorithms that allow the
assumption of a normal distribution to be relaxed.

The current chapter aims to demonstrate how the estimates of subgroup ability
distributions may change when using a different type of conditioning model.
For example, we want to obtain estimates of ability distributions of subgroups
defined by a background variable using relaxed assumptions. The data analysis
uses IRT to calibrate item parameters and takes a conditioning model (either the
operational model or some alternative) to estimate the ability distributions for
subgroups of interest. To estimate the ability distributions for subgroups, three
types of conditioning models were considered and compared (from simplest to most
complicated): (a) a model with only the subgroup variable of interest involved,
(b) a model with the subgroup variable of interest as well as another important
background variable, and (c) a model with preprocessed predictors—in the form
of latent class indicator variables. Unlike the approaches used in Wetzel, Xu, and
von Davier (2014) where the probabilities of latent classes were used as predictors
in the latent regression models, the latent class membership is used in this paper to
conduct a multiple-group/multi-dimensional analysis. If the number of latent classes
is large enough to sufficiently account for the variation among students, we assume
that all three conditioning models will produce approximately the same estimates for
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the ability distributions of the subgroup of interest. However, a full model with not-
saturated latent classes might incorrectly reflect the group differences. These three
conditioning models were analyzed under the general diagnostic model (GDM)
framework and compared using NAEP data.

The rest of this chapter is organized as follows: Section 23.2 briefly introduces
the GDM, Sect. 23.3 describes the data and procedures used in this study, and Sect.
23.4 shows the results obtained by using the GDM software mdltm (von Davier,
2005) for estimation. The last section discusses some of the results and provides
further thoughts on the research question.

23.2 The General Diagnostic Model

The GDM (von Davier, 2005) is one of the general frameworks for cognitive
diagnostic modeling. As the name suggests, the GDM, as the other cognitive
diagnosis models, is mainly developed to diagnose skill levels on finer-grained skills
for individual test takers. For example, in the analysis of the well-known fraction
subtraction data (Tatsuoka, 1983), the rule space approach, which can be viewed as
a deterministic cognitive diagnosis model, was used to make judgments on whether
certain skills that are related to fraction calculations are mastered by individual
students. Usually, for a test that requires multiple skills, a Q-matrix (Tatsuoka, 1983)
is defined based on expert judgments and describes which items require which skills.
Quite a few cognitive diagnosis models have been developed in the last two decades,
and many of these are described in the first part of this book.

Practically all probabilistic models for cognitive diagnosis can be described as
located latent class models (von Davier, 2009). This also applies to the GDM, which
expresses the levels for each of the skills as locations on the real line. While this
is straightforward for the GDM as it defines a dichotomous or polytomous latent
variable for each skill (von Davier, 2005, 2008), even the mastery/non-mastery
variable as used in the DINA model (see Chaps. 1 and 7 in this volume) can be
defined by two real numbers. This gives a meaning to mastery levels. By using real-
valued located latent class, the GDM can easily be extended to more than two ability
levels on each of the skills variables. In addition, the GDM bridges the gap between
diagnostic models and multidimensional IRT models, and it can be shown that this
approach can fit data as well as MIRT models with a multivariate normal ability
distribution (Haberman, von Davier, & Lee, 2009). Hence, the GDM can be used
to estimate item parameters and latent ability distributions just as commercial IRT
estimation programs such as Parscale/or software for MIRT estimation usually do
by specifying the skill levels as quadrature points. However, the multivariate ability
distribution used in the GDM implementation (Xu & von Davier, 2008a, 2008b)
can be estimated freely and, therefore, is more flexible than a (multivariate) normal
ability distribution.

http://dx.doi.org/10.1007/978-3-030-05584-4_1
http://dx.doi.org/10.1007/978-3-030-05584-4_7
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23.3 Methodology

23.3.1 Data

Data from a NAEP Grade four reading assessment administered to a national sample
was used in the analysis. The data includes 97 items in total and about 140,000 stu-
dents, each of whom received about 30 items in a balanced incomplete block design
(von Davier et al., 2007). The background information we considered for this study
includes gender, race/ethnicity, individualized education plan (IEP), limited English
proficiency (LEP), free school lunch, location, and computer access at home.

This NAEP instrument measures reading abilities in two content areas: (a) the
literary subscale (47 items) and (b) the informational subscale (50 items). By design,
the two subscales share no common items.

23.3.2 Analysis Procedure

For each subgroup under consideration (race/ethnicity subgroups, gender groups, as
well as school lunch groups), a number of models were estimated: (a) M1: subgroup-
based two-dimensional model and (b) M2:latent-class-based two-dimensional
model. The models were defined as follows:

M1: Subgroup-based two-dimensional model

In this model, item parameters and subgroup ability distributions are obtained
simultaneously by calibrating a two dimensional IRT model (literary and infor-
mational subscales as two dimensions) in multiple populations defined by the
grouping variables, while restricting item parameter estimates to be the same
across subgroups. Under model M1, we estimate a multiple-group model with
known assignment of each student to the subgroup of interest. Note that only
a single nominal or dichotomous grouping variable is used in these cases, and
that ability estimates are based on a Bayesian approach. The mdltm software
allows expected a-posteriori, or maximum a-posteriori, or imputations based on the
posterior distribution. Therefore, for race/ethnicity group comparisons, a model that
contains the race/ethnicity grouping variable is appropriate, while for the school-
lunch group-based analyses, comparisons of means of estimates between these
groups only are appropriate.1 This implies that any multiple-group analysis is a

1This is relevant in cases where Bayesian estimates of ability are used, and the knowledge
about grouping, including the differences in ability distributions across groups, is utilized in the
estimation. In cases where maximum-likelihood (ML), or bias-corrected ML is used, a multiple
group model with item parameter equality will not produce more than trivially different estimates
when different grouping variables are used, unless the item parameter estimates are affected by the
grouping variables used. Note however, that ML and bias-corrected ML do not reduce measurement
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one-time deal: If the grouping variable in the analysis model is not the same as the
variable of interest; the estimates obtained from the multiple group model cannot
be used for group comparisons. Based on the results reported by Mislevy (1991)
and other subsequent publications on the use of this methodology, the gender-
based calibration will not be suitable for race/ethnicity group comparisons, as these
will likely result in secondary-biased estimates since the analysis model had no
information on the race/ethnicity variable. The tables below contain four variants
of M1: The first one (M1.1) that includes only the variable of interest, the second
(M1.2) includes a grouping variable that is crossed with a second grouping variable
(e.g., gender by race/ethnicity with 6 groups fully crossed in the example below),
the third (M1.3) includes a grouping variable that is crossed with two other grouping
variables (e.g. race/ethnicity by gender and by school lunch eligibility, and a fourth
(M1.4) that includes a mismatched grouping variable (e.g., gender variable when
deriving race/ethnicity subgroup results).

M2: Latent-class-based two-dimensional model

This model is similar to M1 but differs with respect to how subgroups are defined
or, identified. In model M1, the subgroups are defined by observed background
variables such as self-reported gender and race/ethnicity. However, in model M2, the
subgroups are not assumed to be known, but rather are defined as clusters derived
from students’ background information. Specifically, the predictors in model M2 are
based on the following steps: (a) Fit latent class models to the background variables
available in addition to the response data and treat the estimated memberships as if
they are observed; (b) then fit a two-dimensional multiple group IRT model to the
item responses with groups defined by the estimated class membership.

Under this model, we used 5-latent-classes as groupings for the two-dimensional
calibration (M2.1), 10-latent-classes as groupings for a two-dimensional calibration
(M2.2) and 50-latent-classes as grouping for a two-dimensional calibration (M2.3).
The latent classes based on the background data (e.g., gender, ethnicity, IEP, LEP,
etc.) were obtained using the mdltm software (von Davier, 2005). The following
table lists the levels for each of the background variables included in the latent
class approach. The number of potential combinations of the levels of background
variables is 1152, which equals the product over the number of levels across these
variables given in Table 23.1 below. Each class profile can be represented by 14
parameters, so that there are sufficient degrees of freedom to estimate 10 (140 + 9
parameters) as well as 50 (700 + 49 parameters) latent classes.

This approach is different from assuming a mixture IRT model (e.g., von Davier
& Rost, 2007, 2016) which would assume that there are unobserved groups that
establish the differences in ability distributions. Instead, the background variables
are used in the process of defining populations, but instead of principal components,
class membership variables based on a latent class analysis involving all grouping
variables of interest are generated.

error due to information about covariates, which is the main reason why background variables are
used in latent regression models together with Bayesian ability estimates.
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Table 23.1 Background
variables used to derive latent
classes of the NAEP reading
student population

Variable Levels

Gender 2
Race 6
IEP 2
LEP 2
School lunch 3
Location 4
Computer access 2

23.4 Results

The two models M1 and M2 are compared in terms of subgroup mean and standard
deviation (SD) estimates, taking the correct-subgroup two-dimensional calibration
(M1.1) as the baseline for comparisons. For example, if the target of inference is
for a gender group, we examine the estimates of gender group means and SDs
from the multiple group model that contains the gender variable only (correct
grouping variable used) to the estimates from the other multiple-group models. The
comparisons on estimates for each subgroup have two tables. The first one lists the
mean and SD estimates from the different models and the second one shows the
difference ratio (other model/M1.1-1).

Tables 23.2, 23.3, 23.4, and 23.5 present the mean and standard deviation
estimates and difference ratios for gender, race/ethnicity, and school-lunch-status
subgroups. The subgroups comprise the following proportions of the total sample:
White students 51%, Black students 14%, Hispanic students 25%, school-lunch-
eligible students 52%, and school-lunch not-eligible students 42%.

The following patterns can be discerned:

• As expected, the incorrect-subgroup models produce estimates that are different
from the base model M1.1 (e.g., the model M1.4 for race/ethnicity-group
inferences and M1.4 for school-lunch-group inferences).

• The model with an interaction including the reporting subgroup of interest
produces estimates that are very close to the base model M1.1, such as M1.2
and M1.3 for race/ethnicity-group inference.

• The model with latent classes returns either a reasonably good estimate or
inconsistent estimates compared to the correct-subgroup models. For example,
the latent class models provide good estimates for White or Hispanic student
groups compared with the baseline model, but showed somewhat imprecise
estimates for the Black student group. It is unclear why this happens. One
potential explanation is that smaller subgroups may not be fully represented in
the 10 latent classes that were obtained. The Black student group makes up about
14% of the total sample, which is smaller than the proportions for the other two
ethnicity-based subgroups.
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23.5 Summary

With the increasing scope of policy questions being raised in the context of NAEP,
the number of background variables collected to obtain information for reporting
purposes increased steadily over past assessment cycles. Educational large-scale
survey assessments rely more and more on assumptions made in the latent regression
in order to include all available background data. These models may use principal
components as done in most operational programs (von Davier & Sinharay, 2014)
or latent classes, as proposed by Wetzel et al. (2014) as predictors. Both approaches
do not fully reflect the variability in the background data, but rather provide
statistical summaries of the associations between the background variables collected
in the assessment. The individual subgroup identification is replaced by such data
summaries. The study presented in this chapter had the goal to investigate the
possible effects of this data reduction. The findings reported above (a) confirm
that the estimates for subgroups not included in the analysis models are biased,
(b) confirm that the estimates for subgroups that are included in the form of
fully crossed interaction models are consistent, and (c) raise concern regarding
the use of data summaries (either latent classes or principal components) instead
of observed background data. It appears that somewhat inconsistent estimates can
result, in particular, if the subgroup information is only incompletely reflected in
the statistical summaries that were used as predictors in the latent regression model.
This implies that additional research may be needed to straighten this out. For
example, the use of latent class analysis for auxiliary background data (Thomas,
2002) such as self-reports on out-of-school activities and educational resources
at home together with a direct inclusion of the main reporting variables (gender,
ethnicity, LEP, IEP, free school lunch) could be a promising way forward.

Note that the results presented here are limited by the number of background
variables used to derive the latent classes. Only seven background variables were
used. This approach is not comparable to the number of background variables used
in the latent regression models applied in operational practice. A future study might
expand to include all available background information to derive the latent classes
(e.g., combined with the use of automatic variable selection methods).
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