
Handbook of 
Diagnostic 
Classifi cation
Models 

Matthias von Davier
Young-Sun Lee Editors

Models and Model Extensions,
Applications, Software Packages

Methodology of Educational Measurement and Assessment



Methodology of Educational Measurement
and Assessment

Series Editors
Bernard Veldkamp, Research Center for Examinations and Certification (RCEC),
University of Twente, Enschede, The Netherlands
Matthias von Davier, National Board of Medical Examiners (NBME), Philadelphia,
USA



This book series collates key contributions to a fast-developing field of education
research. It is an international forum for theoretical and empirical studies exploring
new and existing methods of collecting, analyzing, and reporting data from
educational measurements and assessments. Covering a high-profile topic from
multiple viewpoints, it aims to foster a broader understanding of fresh developments
as innovative software tools and new concepts such as competency models and skills
diagnosis continue to gain traction in educational institutions around the world.
Methodology of Educational Measurement and Assessment offers readers reliable
critical evaluations, reviews and comparisons of existing methodologies alongside
authoritative analysis and commentary on new and emerging approaches. It will
showcase empirical research on applications, examine issues such as reliability,
validity, and comparability, and help keep readers up to speed on developments in
statistical modeling approaches. The fully peer-reviewed publications in the series
cover measurement and assessment at all levels of education and feature work
by academics and education professionals from around the world. Providing an
authoritative central clearing-house for research in a core sector in education, the
series forms a major contribution to the international literature.

More information about this series at http://www.springer.com/series/13206

http://www.springer.com/series/13206


Matthias von Davier • Young-Sun Lee
Editors

Handbook of Diagnostic
Classification Models
Models and Model Extensions, Applications,
Software Packages

123



Editors
Matthias von Davier
National Board of Medical
Examiners (NBME)
Philadelphia, PA, USA

Young-Sun Lee
Teachers College
Columbia University
New York, NY, USA

ISSN 2367-170X ISSN 2367-1718 (electronic)
Methodology of Educational Measurement and Assessment
ISBN 978-3-030-05583-7 ISBN 978-3-030-05584-4 (eBook)
https://doi.org/10.1007/978-3-030-05584-4

© Springer Nature Switzerland AG 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, express or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG.
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-05584-4


Preface

The Handbook of Diagnostic Classification Models represents a collection of chap-
ters reviewing diagnostic models, their applications, and descriptions of software
tool, written by leading experts in the field. This volume covers most (one can never
claim completeness) of the current major modeling families and approaches as well
as provides a resource that can be used for self-study, teaching, or research that
applies or extends the materials included in the book.

While virtually any project of this type takes longer than expected, and many will
be tempted to remind us that Murphy’s law strikes almost surely, we were amazed
by the willingness of all contributors to put in the hours to finish their chapters and
to review other chapters and, finally, to revise their contributions in order to help
putting together a coherent volume. We hope that this process, together with some
occasional assistance from the editors and the publisher, helped to compile a multi-
authored work together that covers most aspects of doing research around diagnostic
modeling.

We also want to remind readers as well as ourselves of colleagues who passed
away and who leave a void in the research community. We lost Kikumi Tatsuoka, of
whom one can truthfully say that her rule space approach is one of the major roots,
maybe even the most important one, of this field. In her long career, she shaped
many aspects of diagnostic modeling, and we should recall that, among these, the
Q-matrix is one of the central building blocks present in the vast majority of these
methods. The rule space method is described along with other early approaches in
Chap. 1.

We furthermore would like to remember Lou DiBello, who made important
contributions to the field, notably in his modified rule space work, and his work
on the unified model together with colleagues. The work around extensions of the
unified model is described in Chap. 3. We also want to remind readers of Wen-
Chung Wang who just recently passed away. Wen-Chung and his coauthors worked
on many topics around diagnostic models and other psychometric approaches. His
work around DIF methods for use with diagnostic modeling approaches is found in
Chap. 18. We hope that the friends we lost would have liked this volume.

v
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vi Preface

Ending on a more positive note: working in a dynamic field that produces
new knowledge every day, we are aware that the handbook is one stepping stone
on the long path to fully understanding the potential of these powerful modeling
approaches. We are expecting to see books that extend the material we have put
together here; moreover, we expect to see this handbook be replaced or superseded
by a new edition in a couple of years. If we are lucky, we may be involved in putting
together some of the chapters of these future collections describing what will then
be the state of the art in diagnostic modeling.

Philadelphia, PA, USA Matthias von Davier
New York, NY, USA Young-Sun Lee
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Chapter 1
Introduction: From Latent Classes
to Cognitive Diagnostic Models

Matthias von Davier and Young-Sun Lee

Abstract This chapter provides historical and structural context for models and
approaches presented in this volume, by presenting an overview of important
predecessors of diagnostic classification models which we will refer to as DCM
in this volume, or alternatively cognitive diagnostic models (CDMs). The chapter
covers general notation and concepts central to latent class analysis, followed by an
introduction of mastery models, ranging from deterministic to probabilistic forms.
The ensuing sections cover knowledge state and rule space approaches, which can
be viewed as deterministic skill-profile models. The chapter closes with a section on
the multiple classification latent class model and the deterministic input noisy and
(DINA) model.

1.1 Introduction

This chapter provides historical and structural context for models and approaches
presented in this volume, by presenting an overview of important predecessors of
diagnostic classification models which we will refer to as DCM in this volume, or
alternatively cognitive diagnostic models (CDMs). We are attempting to organize
the growing field somewhat systematically to help clarify the development and
relationships between models. However, given the fact that DCMs have been
developed based on at least two, if not three traditions, not all readers may
necessarily agree with the order in which we put the early developments. While
there is a multitude of approaches that can be considered predecessors of current

M. von Davier (�)
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2 M. von Davier and Y.-S. Lee

approaches to cognitive diagnostic modeling, there are many connections between
these seemingly different approaches, while several different lines of development
may be later understood as variants of one common more general approach (e.g.,
von Davier, 2013, 2014). In essence, any attempt to organize the many different
approaches that exist today may lead to simplifications, and potentially omissions
of related approaches.

The aim of all these approaches, however, can be summarized as the attempt to
provide powerful tools to help researchers learn about how observed behaviors, such
as responding to test items, can be used to derive information about generalizable
behavioral tendencies.

We begin the chapter with a section on general notation and concepts central to
latent class analysis, followed by an introduction of mastery models, ranging from
deterministic to probabilistic forms. The ensuing sections cover knowledge state and
rule space approaches, which can be viewed as deterministic skill-profile models.
The chapter closes with a section on the multiple classification latent class model
and the deterministic input noisy and (DINA) model.

1.2 Notation, Log-linear Models, and Latent Class Analysis

This section introduces notation used in subsequent chapters. We use the case of
binary observed variables as a standard example but note that all definitions can
be directly extended to polytomous nominal or ordinal response variables. Let
X = (X1, . . . , XK) denote K binary (or polytomous) response variables and let
xn = (xn1, . . . , xnK) denote the observed responses for test takers n= 1, . . . , N. Let
G denote a grouping variable with gn ∈ {1, . . . , M} for all test takers. In the case of
discrete mixture (or latent class) models, gn is unobserved, while for multiple group
models, gn is completely or partially observed (von Davier & Yamamoto, 2004; von
Davier & Carstensen, 2007).

The probability of observing x = (x1, . . . , xK) will be denoted by

P (X = x) = P (x1, . . . , xK) .

Obviously, these probabilities are unknown, while we may have some idea which
observed variables have higher or lower probability of exhibiting certain values. For
cognitive tasks, we may have some idea about the order of items with respect to the
likelihood of successful completion, but typically, there is no complete knowledge
about the joint distribution of response variables.

The aim of modeling response data is to provide a hypothesis of how this
unknown joint distribution can be constructed in a systematic way, either through
associations and interactions between observables, or by means of predictors, or
through assumed unobserved variables, or a combination of these.
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1.2.1 Log-linear Models

One customary way to model the joint distribution of the responses x1, . . . , xK

is using log-linear models (e.g., Haberman, 1979; Hagenaars, 1993). Log-linear
models can be used with or without assuming latent variables. Log-linear models
describe transformed probabilities, using the natural logarithm. We can write

lnP (x1, . . . , xK) = f (x1, . . . , xK) ,

where f (x1, . . . , xK) is a function of the observed responses. One possible
assumption is that the log of the response probabilities can be expressed as

f (x1, . . . , xK) = λ0 +
K∑

i=1

λ1ixi +
∑

{i �=j}
λ2ijxixj + . . .+

∑

{i �=... �=k}
λKi...k

[
K∏

v=1

xv

]
.

Log-linear models in the context of CDMs have been discussed for example by
von Davier and Yamamoto (2004) and Xu and von Davier (2008) for dichotomous
and ordinal skill attribute variables. von Davier (2018) showed how certain log-
linear models used in the context of CDMs can be considered generalizations of
models recently discussed under the term network psychometrics (e.g., Marsman
et al., 2018; von Davier, 2018). In the example above, all products of any possible
subset of observed variables are included, however, it is customary to also consider
models that only include terms up to a certain degree D, assuming for higher degrees
E > D that λEi...,iE = 0.

One central issue when estimating log-linear models for large num-
bers of observables is that a normalization factor is needed. Since, 1 =∑
(x1,...,xK)

P (x1, . . . , xK) =∑(x1,...,xK)
exp f (x1, . . . , xK), it follows that

λ0=log
⎡

⎣
∑

(x1,...,xK)

exp

⎡

⎣
K∑

i=1

λ1ixi+
∑

{i �=j}
λ2ijxixj+ . . .+

∑

{i �=... �=k}
λKi...k

[
K∏

v=1

xv

]⎤

⎦

⎤

⎦ .

This normalization factor involves a sum over all possible configurations
(x1, . . . , xK). For K binary variables, this is a sum involving 2K terms, for K = 30
items this is a summation over 1,073,741,824 terms. von Davier (2018) describes
how noise contrastive estimation (e.g., Guttmann & Hyvärinen, 2010, 2012) can
be used for estimation of log-linear and network psychometrics models, as well as
extended log-linear models for polytomous and dichotomous CDMs.

Log-linear models can be extended by assuming latent variables (Haberman,
1979; Hagenaars, 1993) so that the distribution of observed response variables
depends on an unobserved variable α,

f (x1, . . . , xK |α) = λ0 (α)+
K∑

i=1

λ1i (α) xi + . . .+
∑

{i �=... �=k}
λKi...k (α)

[
K∏

v=1

xv

]
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and by definition

P (x1, . . . , xK |α)= exp

⎡

⎣λ0 (α)+
K∑

i=1

λ1i (α) xi+ . . .+
∑

{i �=... �=k}
λKi...k (α)

[
K∏

v=1

xv

]⎤

⎦ .

If the latent variable is discrete, it can be written as α ∈ {g1, . . . , gG}, with G sets
of each parameter type λdgi1...,id = λdi1...,id (g) for g= g1, . . . , gG and d = 0, . . . ,
K. With this modification, the model becomes more complex. All parameters
may depend on some unobserved quantity α, some grouping variable g, or some
combination of both.

1.2.2 Latent Class Analysis

Latent Class Analysis (LCA) can be understood as an approach that assumes the
dependence of response probabilities on an unobserved discrete variable, which we
denote by c. In this sense, LCA is a direct application of the definition of conditional
response probabilities, as introduced above. LCA assumes a latent categorical
variable that cannot be directly observed. The LCA model equation follows from
a set of three assumptions, some of which match assumptions commonly used in
other latent variable models:

1. Class dependent response probabilities: For response variables xi, LCA assumes
class specific response probabilities. While there is no direct constraint that
imposes

P (xi |cv) �= P (xi |cw) ,

it is a prerequisite for class separation so that respondents who are mem-
bers of different classes cv �= cw can be reliably classified given their observed
responses.

2. Local independence: A central assumption is local independence given class
membership c,

P (x1, . . . , xK |c) =
∏K

i=1
P (xi |c) .

In LCA the class membership variable c is the latent variable that is expected
to ‘explain’ the dependencies between observed responses. Once conditional prob-
abilities are considered, the dependencies between observed variables vanish, under
this assumption.
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3. Classes are mutually exclusive and exhaustive: For each examinee v there is one,
and only one, ‘true’ latent class membership cv ∈ {1, . . . , G}. While the latent
variable in LCA is nominal, this assumption is analogous to the assumption of
a true (but unobserved expected) score in classical test theory (CTT) or a true
ability θ in item response theory (IRT).

These three assumptions make the LCA a discrete mixture distribution model,
since it follows from this set of assumptions that the marginal probability of a
response pattern is given by

P (x1, . . . , xK) =
G∑

c=1

πcP (x1, . . . , xK |c) =
G∑

c=1

πc
∏K

i=1
P (xi |c)

with mixing proportions (class sizes) πc = P(C = c). A logarithmic transform
following assumption 2 above yields,

lnP (x1, . . . , xK |c) =
K∑

i=1

lnP (xi |c) =
K∑

i=1

[xi lnP (Xi = 1|c)

+ (1− xi) lnP (Xi = 0|c)]

and further, using standard rules for the logarithm,

lnP (x1, . . . , xK |c) =
K∑

i=1

lnP (Xi = 0|c)+
K∑

i=1

xi

[
ln
P (Xi = 1|c)
P (Xi = 0|c)

]
.

As such, LCA can be understood as a log-linear model without interactions (as
local independence is assumed), conditional on a nominal latent variable. This can

be seen by setting λ1ci =
[
ln P(Xi=1|c)
P (Xi=0|c)

]
(a term that represents the log-odds for item

i conditional on class membership c) and λ0c =∑K
i=1 lnP (Xi = 0|c) (an intercept

term) and observing that

lnP (x1, . . . , xK |c) = λ0c +
K∑

i=1

xiλ1ci .

Note that the log-odds λ1ci and the conditional response probabilities have the
following relationship:

exp (λ1ci)

1+ exp (λ1ci)
= P (Xi = 1|c) .

While the within-class model of LCA is rather restrictive, as independence of
all responses is assumed, the LCA is a very flexible model, since the number of
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classes C is not specified a priori. Any dependence between observed variables can
be modeled by increasing the number of classes, however, identifiability may be an
issue (e.g., Goodman, 1974; Allman, Matias, & Rhodes, 2009; Xu, this volume).
Therefore, this flexibility is also a weakness of the LCA. With the addition of
classes to the model the fit between model predictions and observed data will
always improve, which may result in a LCA solution that overfits the observed
dependencies. In addition, the increase in number of classes leads to a substantial
increase in the number of parameters to be estimated. For additional details on
applications of LCA, see the volumes by Langeheine and Rost (1988), Rost and
Langeheine (1997), and Hagenaars and McCutcheon (2002), as well as the chapter
by Dayton and Macready (2006).

Confirmatory approaches to LCA constrain the number of classes and often also
impose inequality or equality constraints on class specific response probabilities
(e.g., Croon, 1990). Most DCMs covered in this volume can be written as
constrained variants of LCA (von Davier, 2009). Some constrained versions of
LCA share many interesting similarities with (M-)IRT models (e.g., Haberman, von
Davier, & Lee, 2008) and can be used to replace these models.

1.3 Mastery Models

Mastery models assume a skill domain for which we can sort any person into one of
two classes: expert versus novice, master versus non-master, or professional versus
amateur. This may not be adequate for most domains, even if there is a distinct ‘can
do’ versus ‘cannot do’; there are often gradual differences in the ‘can do’. In this
section, however, we use this notion of mastery and assume all respondents can be
classified into two groups without further distinction.

While these types of distinctions may be oversimplifications, can they still be
useful categories to describe how test takers respond to a test? If we consider
ideas from developmental psychology (e.g., Piaget, 1950; Wilson, 1989), we find
that some things in life are thought of as being acquired or learned in terms of
qualitative jumps. We may want to entertain the idea of mastery learning for a
while and examine where this leads us in terms of how a latent variable model may
represent this concept. For example, young children cannot perform or solve task
X until they mature and ‘get it’, after which the same task becomes quite easy for
them.

The mastery-state can be represented by a random variable that takes on two
values: ‘1’ = mastery and ‘0’ = non-mastery. Formally, we define a latent variable
A, with av ∈ {0, 1} for all respondents v = 1, . . . , n, and with

av = 1 if person v masters the skill of interest
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and

av = 0 if person v does not master the skill.

The two mastery levels are expected to differ with respect to the probabilities of
success, just as in assumption 1 presented in the section on LCA above. However,
in mastery models, there is an order expectation, or even an order restriction in place:
it is expected (and potentially specified directly in the model) that for all response
variables the probability of success is larger for masters than for non-masters. More
formally,

P (Xi = 1|a = 1) = 1− si ≥ gi = P (Xi = 1|a = 0)

may be assumed for all response variables X1, . . . , XK . For each item, there are
four probabilities to consider, the conditional probabilities of success and failure
under mastery and non-mastery. These are often denoted as follows (e.g., Dayton &
Macready, 1977):

• Guessing correctly by non-masters: gi = P(Xi = 1| a = 0)
• Incorrect response by non-masters: 1 − gi = P(Xi = 0| a = 0)
• Slipping = unexpected incorrect response by masters: si = P(Xi = 0
| a = 1)

• Correct response by masters: 1 − si = P(Xi = 1| a = 1)

A variety of constraints on these parameters have been suggested in the literature,
some examples are discussed by Macready and Dayton (1977). Nowadays, the
term ‘slipping’ is often used instead of ‘unexpected error’ while ‘guessing’ is
still in use (Junker & Sijtsma, 2001). Just like LCA, mastery models also assume
local independence and that masters and non-masters are mutually exclusive and
exhaustive. Based on the equivalency shown in the previous section, a mastery
model with two levels can be written either in the form of a 2-class LCA or as a
log-linear model with latent variables:

P (x1, . . . , xK |a) =
K∏

i=1

P (Xi = 0|a)
[
P (Xi = 1|a)
P (Xi = 0|a)

]xi

and with the definitions above, we have P (Xi=1|a)=(1−si)ag[1−a]
i , and for the

complement we have P (Xi = 0|a) = sai (1− gi)[1−a]. A logarithmic transforma-
tion and insertion of the definitions yields the following:

lnP (x1, . . . , xK |a)=
K∑

i=1

ln sai (1−gi)[1−a]+
K∑

i=1

xi ln

[
(1−si)
si

]a[
gi

(1−gi)
][1−a]

.
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As before, by setting
∑K
i=1 ln sai (1− gi)[1−a] = λ0a and ln

[
(1−si )
si

]a[
gi

(1−gi )
][1−a] =

λ1ai , the equivalency of the mastery model to a log-linear model with a binary latent
variable is obtained. Note that λ1ai can be written as

a ln

[
P (Xi = 1|a = 1)

P (Xi = 0|a = 1)

]
+ [1−a] ln

[
P (Xi = 1|a = 0)

P (Xi = 0|a = 0)

]
=λ10i+a [λ11i−λ10i] ,

which again contains the log-odds for masters and non-masters, multiplied by the
mastery status.

1.4 Located Latent Class or Multi State Mastery Models

The additional model specifications needed to move from LCA, which is character-
ized by a nominal latent class variable, to located classes are easily introduced.
The last section that examined mastery models provides the basis for these
developments. For a correct response xi = 1, the term λ1ai = λ10i + a[λ11i − λ10i]
is part of the sum. This term is linear in the mastery level a ∈ {0, 1} and if λ11i > λ10i

or equivalently, P(Xi = 1| a = 1) > P(Xi = 1| a = 0), the term λ1ai is monotone
increasing over the (in the case of mastery models: two) ordered mastery levels.

With more than two levels of mastery, for example an ordinal variable that
represents non-mastery as zero, but allows multiple levels of mastery represented
as successive integer, i.e., a

′ ∈ {0, 1, 2, . . .M}, a model can be defined as

lnP
(
x1, . . . , xK |a′

) = λ0a′ +
K∑

i=1

xiλ1a′i

with

λ1a′i < λ1a′′i for all a′ < a′′.

This ensures that

P
(
Xi = 1|a′) < P (Xi = 1|a′′) for all a′ < a′′.

This produces a monotone increasing sequence of response probabilities over
a
′ ∈ {0, 1, 2, . . .M}. Note, however, that this type of constraints (still) produces a

comparably large number of quantities that need to be estimated. However, this
model includes equality constraints (e.g., Formann, 1985, 1992) which may be
imposed via additional assumptions about how model parameters relate to the
ordered levels of mastery. Essentially, each latent class in this model becomes an
ordered mastery level, but the distances between classes differ by item i and class
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level a
′ ∈ {0, 1, 2, . . .M}. This model requires (M + 1)K parameters one set of K

item parameters for each class. As before, probabilities can be derived using the
equivalency

P
(
Xi = 1|a′) = exp (λ1a′i )

1+ exp (λ1a′i )
.

A more parsimonious model can be implemented by imposing the following
constraint

λ1a′i = βi + γiθa′
which requires 2K item location β i and slope parameters γ i and M + 1 ordered
class specific locations θa′ < θa′ ′ for a

′
< a

′ ′ ∈ {0, . . . , M}. With the transformation

βi + γiθa′ = a (θ − b)

it can be easily observed that located latent class models define the class specific
response probabilities as

P (Xi = 1|θa′ = θ) = exp (a (θ − b))
1+ exp (a (θ − b))

which is very similar to IRT (Lord & Novick, 1968), while assuming a discrete
latent variable with located latent classes (e.g., Formann, 1992; Haberman et al.,
2008).

1.5 Rule Space Methodology and Knowledge Spaces

Rule space (RS; e.g., Tatsuoka, 1983, 1990, 2009) and knowledge spaces (KS;
Doignon & Falmagne, 1985, 1998; Albert & Lukas 1999) are independently
developed approaches to the question of how the association between performance
on heterogeneous tasks and multiple skills can be conceptualized. Much like
mastery models, RS and KS assume that a respondent who masters a certain number
of skills is on a regular basis capable of solving tasks that require these skills. In
contrast to the first generation of mastery models, both RS and KS assume that
there are multiple skills to be considered, and that each respondent is characterized
by a skill pattern or attribute pattern – or a knowledge state – and that every task
requires a subset of the skills represented in the skill space of respondents.

Consider an example with two skills, addition and multiplication, ignoring for
a moment that there is an additional skill required that tells us in what order these
operations have to be executed. If asking examinees to solve tasks of the type
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(a) 3 + 4 =?
(b) 4 * 5 =?
(c) 3 * 3 + 2 =?

one could argue that there are four potential groups of test takers. Group 1 does
neither master addition nor multiplication and cannot solve any of the task types;
Group 2 masters only addition and can solve tasks of type (a) only; Group 3 only
masters multiplication (no matter how unlikely that may seem to a math educator)
and hence can solve only tasks of type (b); and Group 4 masters both addition and
multiplication, and hence can solve tasks of type (a), (b), and (c) on a regular basis.

More formally, for tasks that require a subset of D skills, we can assign to each
task i = 1, . . . , K a vector of skill requirements qi = (qi1, . . . , qiD) ∈ {0, 1}D that
indicates which skill (or attribute) is required for that task. The matrix

Q =
⎛

⎝
q11 . . . q1D

. . . . . . . . .

qK1 . . . qKD

⎞

⎠

is referred to as Q-matrix and represents a hypothesized relationship of how a skill
vector (skill state) or attribute pattern a = (a1, . . . , aD) is connected to expected
performance on each task. The ideal (the most likely, or expected given a skill
pattern) response on item i given can be written as

x
[I ]
i

(
qi , a

) =
D∏

d=1

a
qid
d ∈ {0, 1}

which equals one if the attribute mastery pattern a matches or exceeds non-zero
entries of the skill requirements qi, i.e., if at least all required skills are mastered,
and is zero otherwise. The above equation can be applied to all items to construct
an ideal response pattern

x[I ] (a) =
(
D∏

d=1

a
q1d
d , . . . ,

D∏

d=1

a
qKd
d

)

for each attribute mastery pattern a. The observed response pattern xv produced
by respondent v can then be compared to each of these ideal response vectors,
and the closest match determined. This can be done in a variety of ways; for
example, Tatsuoka (1983, 1985) discussed methods based on distance measures,
but also presents classification based on IRT ability estimates and person fit. von
Davier, DiBello, and Yamamoto (2008) provide a summary of the IRT and fit based
approach. A simple measure of agreement can be defined as

sim (xv, a) =
∑K
i=1 xvi ∗ x[I ]

i

(
q i , a

)
√(∑K

i=1x
2
vi

)(∑K
i=1

[
x

[I ]
i

(
qi , a

)]2
)
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which equals the cosine similarity of the observed and ideal vectors. The cosine
similarity is a correlation related measure commonly used in data mining, machine
learning and natural language processing (Tan, Steinbach, & Kumar, 2005). Respon-
dents can be assigned to the attribute pattern that produces the largest similarity
measure relative to the observed vector xv.

Tatsuoka’s RS has demonstrated its utility in many applications over the years.
Recently, the method gained new interest under the name ‘attribute hierarchy
method’ (AHM; Leighton, Gierl, & Hunka, 2004). The authors describe the AHM as
being an instantiation of rule space that differs from Tatsuoka’s (1983, 1985, 1990,
2009) methodology in that it allows attribute hierarchies. Attribute hierarchies limit
the permissible attribute space, as some attributes have to be mastered before other
can be mastered, by definition of what a hierarchy encompasses. von Davier and
Haberman (2014) show how the assumption of hierarchical attributes restricts the
number and type of parameters of diagnostic classification and multiple mastery
models.

Both RS and KS were initially conceptualized as deterministic classification
approaches. Respondents would be classified according to their similarity to ideal
response patterns, regardless of the observation that only very few respondents will
produce exactly the ‘ideal’ patterns that can be expected based on the Q-matrix.
Attempts to produce a less deterministic version of these approaches have been
made, and Schrepp (2005) describes similarities between KS approaches and latent
class analysis. The next section describes models that share many of the features
of RS and KS approaches, but provide a structured latent attribute space, and a
probabilistic approach to define how multiple mastery levels relate to response
probabilities in a systematic way, rather than by means of unstructured class profiles
as used in LCA.

1.5.1 Multiple Classification Models and Deterministic Input
Noisy and (DINA) Models

Latent class models with multiple latent variables (Haberman, 1979; Haertel, 1989)
or multiple classification latent class models (MCLCM; Maris, 1999) extend latent
class analysis (LCA) in such a way that multiple nominal or ordinal latent variables
can be identified simultaneously. This approach retains the defining properties
of LCA, local independence given latent class, assumption of an exhaustive and
disjunctive latent classification variable, and distinctness of conditional probabilities
across classes.

The MCLCM approach can be viewed as a non-parametric precursor to many of
the diagnostic models introduced in subsequent chapters. For a MCLCM with two
latent variables c1 ∈ {0, . . . , C1}, c2 ∈ {0, . . . , C2} denote the joint distribution of
these with πc1,c2 and define

P (x1, . . . , xK) =
C1∑

c1=0

C2∑

c2=0

πc1,c2

K∏

i=1

P (xi |c1, c2) .
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This is a well-defined LCA that can be rewritten as a single latent1 variable
LCA with ‘attribute’ a = {c1, c2} and MNCL = (C1 + 1) (C2 + 1) latent classes
representing all possible combinations. However, one may introduce additional
structure – constraints on the response probabilities – for the two-variable case to
specify whether the conditional probabilities may for some items depend on only
one or the other component c1 or c2. More specifically, one may assume

P (xi |c1, c2) = P (xi |fi1 (c1) , fi2 (c2)) .

As a special case with specific relevance to diagnostic models, we will consider the
following form of these constraints in the example

fid (cd) = cqidd
for d = 1, 2 and with qi1, qi2 ∈ {0, 1}.

Basically, if one or the other qi∗ is zero, the dependency on that component of
the multiple classification LCM variable vanishes from the conditional probability
of item response xi. This is true because

c0
d = 1

for all levels of cd whenever qi1 = 0. With this constraint, the conditional
probabilities of a response variable may depend on both c1, c2 in MNCL levels
for some items, on c1 only in (C1 + 1) levels for some other items, or on c2 with
(C2 + 1) levels for a third set of items, or on neither one of them in a fourth group
of response variables.

Two additional restrictions lead to the model that is commonly known as the
DINA (Deterministic Input, Noisy And) model (Macready & Dayton, 1977; Junker
& Sijtsma, 2001). First, all components of the latent skill pattern a are assumed to
be binary (and as before, we use ad for binary attributes, while for nominal classes,
we use c1, c2, . . . ), that is

a = (a1, . . . , aD) ∈ {0, 1}D

and for the conditional probabilities we assume

P (xi |a1, . . . , aD) = P
(
xi |

D∏

d=1

a
qid
d

)
.

1Class variables are represented as integers, but the use of integers do not imply any ordering here;
only equivalence classes are used in the context of LCA.
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Note that the conditional probability depends on a binary variable ξaqi =∏D
d=1 a

qid
d ∈ {0, 1} which is a function of the skill pattern a and one row of

the Q-matrix, a vector that specifies the skill requirements for a specific item. Just
as in the section on mastery models, applying this definition leads to the following
expressions:

P
(
Xi = 1|ξaqi = 1

) = 1− si
and

P
(
Xi = 1|ξaqi = 0

) = gi.

The DINA model is said to be conjunctive because it reduces the respondent-skill
by item-attribute comparison to only two levels

∏D
d=1 a

qid
d = 1 or

∏D
d=1 a

qid
d = 0.

With this, we can write

P (xi |a1, . . . , aD) =
[
(1− si)ξaqi gi1−ξaqi

]xi[
si
ξaqi (1− gi)1−ξaqi

]1−xi
.

Only those respondents who possess all necessary skills have a “high” probability
1 − si of solving an item, while respondents who lack at least one of the required
skills have a “low” probability gi —the same “low” probability no matter whether
only one or all required skills are not mastered.

Note that the gi and the si denote the item parameters in the DINA model,
so that there are two parameters per item in this model. In addition, the skill
vectors av = (av1, . . . avK) are unobserved, so we typically have to assume that
the distribution of skills P (A = (a1, . . . aK)) = π(a1,...aK) is unknown. Therefore,
there are ‖{0, 1}K‖ − 1 = 2K − 1 independent skill pattern probabilities with∑
(a1,...aK)

π(a1,...aK) = 1.0 if an unconstrained estimate of the skill distribution is
attempted. There may be fewer parameters if a constrained distribution over the skill
space (von Davier & Yamamoto, 2004; Xu & von Davier, 2008) is used. For model
identification, no constraints are needed on the guessing and slipping parameters
(even though it is desirable that 1 − si > gi for somewhat sensible results).

While de la Torre (2009) does not make statements about identifiability of the
DINA model and the uniqueness of the model parameters, Junker and Sijtsma
(2001) discuss (a lack of) empirical identification in the context of their data
example used in conjunction with Markov chain Monte Carlo (MCMC) estimation.
Haertel (1989) describes identification of latent class skill patterns in the DINA
model, and notes that “it may be impossible to distinguish all these classes
empirically using a given set of items. Depending upon the items’ skill requirements,
latent response patterns for two or more classes may be identical (p.303).” One
of the remedies Haertel (1989) suggests is the combination of two or more latent
classes that cannot be distinguished. In subsequent chapters, identifiability of
diagnostic models is discussed in more detail (Xu, this volume; Liu & Kang, this
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volume; DeCarlo, this volume) and von Davier (2014) provides an example of how
the (lack of) empirical identifiability of diagnostic models can be checked.

The DINA model is a very restrictive model as it assumes only two parameters
per item, and skill attributes only enter the item functions through conjunction
function ξaqi =

∏D
d=1 a

qid
d . This restricts the probability space so that different

attribute mastery patterns, in particular those that are not a perfect match of the
Q-matrix for an item, are all mapped onto the same low “guessing” probability.
There are several issues with the assumption made in the DINA model. Formally,
this assumption is equivalent to assuming a log-linear model (see Eq. 1) in which
all parameters are set to zero except the one that parameterizes the highest order
interaction term. Additionally, from the point of view of most applications of
skills, compensation happens: Multiplication can be replaced by repeated addition,
a lack of vocabulary when acquiring a new language, or even learning disabilities
can be compensated for (and eventually remedied) by higher general intelligence
(e.g., Reis, McGuire, & Neu, 2000), etc. In total darkness, hearing can be used
to, admittedly poorly, compensate for lack of vision. For diagnostic models and
compensatory and non-compensatory MIRT models, it was found that real data
examples are often fit better (in terms of item fit, or overall goodness of fit assessed
with information criteria or similar) with additive/compensatory models rather than
conjunctive models (de la Torre & Minchen, this volume; von Davier, 2013).

In addition, it was found that the DINA model may be affected by model
identification issues. DeCarlo (2011) and Fang, Liu, and Ying (2017) show that the
DINA model is not identified unless there are what some may call ‘pure’ items in the
Q-matrix, that is, items that only measure a single attribute. DeCarlo (2011) shows
that the DINA model with the Q-matrix provided for the Fraction Subtraction data
(Tatsuoka, 1985) is not able to identify all attribute patterns. Fang, Liu, and Ying
(2017) provide more general results on the requirements for the Q-matrix. Xu (this
volume) and Liu and Kang (this volume) provide further results and more recent
examples.

1.6 Summary

The notation and models introduced in this chapter form the basis for many of the
subsequent chapters. Most, if not all DCMs can be written as constrained latent class
models or alternatively, log-linear models with discrete latent variables.

This introduction does not provide an in-depth coverage of how to evaluate the
different approaches. However, all models presented in this volume are approaches
that provide marginal probability distributions for multivariate discrete observables.
This means that methods from categorical data analysis can be used to compare
models and to evaluate model data fit.

While some of the models introduced above may be considered approaches for
diagnostic classification and may have been used as such, many more sophisticated
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approaches have been developed since, based on these initial modeling attempts.
The aim of the current volume is providing a systematic overview of these more
recent approaches.

The Handbook Diagnostic Classification Models aims at capturing the current
state of research and applications in this domain. While a complete overview of this
broad area of research would require a multi-volume effort, we tried to capture a
collection of major research streams that have been developed over several years
and that continue to produce new results.

The first part of the volume covers major developments of diagnostic models
in the form of chapters that introduce the models formally, provide information
on parameter estimation and on how to test model-data fit, and applications or
extensions of the approach.

The second part of the volume describes special topics and applications. Special
topics such as Q-matrix issues are covered, including the data driven improvement
and construction, as well as issues around model identifiability. The third part
presents applications of diagnostic models, as these are a centerpiece to reasons why
not only methodologists but also applied researchers may want to study the volume.
These applications show how diagnostic models can be used to derive more fine-
grained information about respondents than what traditional methods such as CTT
or IRT can provide.

The fourth part of the book includes a range of available software packages,
including the use of general purpose statistical software, specialized add-on pack-
ages, and available stand-alone software for estimation and testing of CDMs.

In many cases, latent class analysis, customary IRT, and other latent variable
models can directly be considered alternatives to diagnostic models, as these are
often more parsimonious (in the case of IRT) or do not make as strong (parametric)
assumptions about the latent structures and how these structures are related to the
conditional response probabilities in the levels of the latent variables. Standard
procedure should therefore be used as a comparison of more complex modeling
approaches with customary standard examples of latent variable models such as
IRT or LCA. Such a practice will ensure that researchers can compare their findings
to those obtained from less complex models to check whether the increased model
complexity provides added value, through improved model-data fit, and by means
of more useful derived quantities such as estimated mastery states.
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Chapter 2
Nonparametric Item Response Theory
and Mokken Scale Analysis,
with Relations to Latent Class Models
and Cognitive Diagnostic Models

L. Andries van der Ark, Gina Rossi, and Klaas Sijtsma

Abstract As the focus of this chapter, we discuss nonparametric item response
theory for ordinal person scales, specifically the monotone homogeneity model and
Mokken scale analysis, which is the data-analysis procedure used for investigating
the compliance between the monotone homogeneity model and data. Next, we
discuss the unrestricted latent class model as an even more liberal model for investi-
gating the scalability of a set of items, producing nominal scales, but we also discuss
an ordered latent class model that one can use to investigate assumptions about item
response functions in the monotone homogeneity model and other nonparametric
item response models. Finally, we discuss cognitive diagnostic models, which are
the core of this volume, and which are a further deepening of latent class models,
providing diagnostic information about the people who responded to a set of items.
A data analysis example, using item scores of 1210 respondents on 44 items
from the Millon Clinical Multiaxial Inventory III, demonstrates how the monotone
homogeneity model, the latent class model, and two cognitive diagnostic models
can be used jointly to understand one’s data.
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2.1 Introduction

Nonparametric item response theory (IRT; Mokken, 1971; Sijtsma & Molenaar,
2002; Sijtsma & van der Ark, 2017; van Schuur, 2011), which is the focus of
this chapter, is a set of psychometric measurement models implying ordinal person
measurement using the sum score on a set of items. The sum score provides a
summary of the ability or the trait the items measure but does not inform us
about sub-attributes needed for one or more subsets of items in the test. Latent
class models (LCMs) aim at classifying persons in unordered or nominal classes
based on the set of scores on the items that comprise the test (Hagenaars &
McCutcheon, 2002; Heinen, 1996); in LCMs the sum score does not play a role.
Although parametric LCMs exist (e.g., Goodman, 1974; Formann & Kohlmann,
2002), the typical LCM is nonparametric. Nonparametric IRT and LCMs may
appear to be different, but Croon (1990) and Vermunt (2001) showed how imposing
an ordering of the latent classes renders LCM analysis suitable for assessing the fit
of a nonparametric IRT model to the data. This application identifies an interesting
link between LCMs and nonparametric IRT. Haertel (1989) argued that LCMs are
stepping-stones to what later became known as cognitive diagnostic models (CDMs;
Leighton & Gierl, 2007; Rupp, Templin, & Henson, 2010; von Davier, 2010, 2014).
CDMs constitute the core of this volume. The models classify persons based on a
set of skills, abilities or attributes the researcher hypothesizes persons need to solve
a set of items. In this sense, CDMs provide information about persons’ proficiency
to solve particular sets of items that is finer-grained than the summary sum score
that nonparametric IRT models provide. Junker and Sijtsma (2001) demonstrated
how nonparametric IRT and CDMs are related.

The three types of models—nonparametric IRT models, LCMs, and CDMs—
have in common that they rely on assumptions about the data that are sufficiently
strong to classify or order persons. On the other hand, the assumptions are not
so demanding that they all too easily lead to the rejection of items that may not
satisfy stronger models but contribute to reliable person classification or person
ordering. In this sense, the models are “item-preserving”, asking as little as possible
from the data and still being able to measure people’s attributes at the nominal and
ordinal levels (Michell, 1999; Stout, 2002). Although there is much to say about the
relationships between the three types of models and much more work that remains
to be done to further unravel these relationships, given the goal of this volume we
will only briefly discuss the models’ assumptions and main ideas. We focus on
nonparametric IRT, specifically the version Mokken (1971) introduced and many
other researchers further developed. We conclude the chapter discussing a real-data
example of a Mokken scale analysis, with brief reference to LCM and CDM data
analysis.
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2.2 Three Types of Models, Their Properties, and Their
Relations

We focus on tests and questionnaires that use a set of K items to measure
an attribute, such as a cognitive ability or a personality trait (psychology), an
educational achievement and skills (educational measurement), quality of life or
pain experience (health sciences), an attitude (sociology) or an opinion (political
science). The measurement of a certain type of attributes is not the privilege
of a particular research area, hence educational measurement may also measure
cognitive abilities (e.g., verbal ability), psychology may also measure attitudes (e.g.,
towards significant others), health science may also measure personality traits (e.g.,
introversion), et cetera. Random variable Xk (k = 1, . . . , K) represents the score on
item k, and attains ordered scores xk = 0, . . . , mk. For simplicity, we assume that
within one measurement instrument all items are scored similarly, so that mk = m.
Items are often scored dichotomously, for example, incorrect/correct, no/yes, or
disagree/agree, in which case x = 0, 1. The test score or the sum score summarizes
the performance on the K items, X+ =∑K

k=1Xk .
Nonparametric IRT models have in common that they use X+ to order persons

on a scale for the attribute. Each of the models does this by ordinally restricting the
relation between the score on an item and the scale of measurement represented
by one or more latent variables, but without the use of a parametric function
such as the normal ogive or the logistic; see van der Linden (2016) for examples.
Mokken (1971) considered the use of IRT models based on parametric functions
for the relation between the item score and the latent variable, called item response
functions (IRFs), for short, prohibitive of successful measurement of attributes for
which foundational theory often was absent or poorly developed, and proposed his
nonparametric IRT models (also, see Sijtsma & Molenaar, 2016). Nonparametric
IRT models differ with respect to the assumptions they posit to describe the structure
of the data, such that they imply an ordinal person scale. Stout (1990, 2002)
developed assumptions that were as weak as possible, that is, imposing as few
restrictions as possible on the data, and still enabling the ordering of persons.
Ramsay (1991, 2016) used kernel smoothing and spline regression to arrive at an
ordinal scale for person measurement. Holland and Rosenbaum (1986) derived a
broad class of what one might call nonparametric IRT models and studied the
mathematical properties of these models. Other work is due to, for example, Junker
(1993), Douglas (2001), and Karabatsos and Sheu (2004), and recent work is due
to, for example, Straat, van der Ark, and Sijtsma (2013), Tijmstra, Hessen, van
der Heijden, and Sijtsma (2013), Ellis (2014) and Brusco, Köhn, and Steinley
(2015). Each of the nonparametric approaches has their merits, but in this chapter,
we focus on Mokken’s approach and present the state of the art of this line of
research.
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2.2.1 Monotone Homogeneity Model

Mokken’s model of monotone homogeneity (Mokken, 1971, pp. 115–169) for
ordering persons using the sum score X+, is based on three assumptions:

1. Unidimensionality (UD). One latent variable denoted Θ stands for the attribute
the K items measure.

2. Monotonicity (M). The probability of obtaining a score of at least x on item k,
Xk ≥ x, increases or remains constant but cannot decrease as latent variable
Θ increases: P(Xk ≥ x|Θ) is non-decreasing in Θ , for x = 1, . . . , m,
while P(Xk ≥ 0|Θ) = 1 by definition; hence, it is uninformative about the
relation between the item score and the latent variable. Conditional probability
P(Xk ≥ x|Θ) is called the item step response function (ISRF), and Fig. 2.1 shows
an example of two items each with x = 0, . . . , 3; hence, both items have three
IRSFs for x = 1, 2, 3. For dichotomous items, P(Xk = 1|Θ) is non-decreasing
in Θ , while P(Xk = 0|Θ) = 1 − P(Xk = 1|Θ) and thus is uninformative when
P(Xk = 1|Θ) is known.

3. Local Independence (LI). When latent variable Θ explains the relations between
the K items and no other latent variables or observed variables such as covariates
explain the relations between at least two of the other items, conditioning on Θ
renders the K-variate distribution of the item scores equal to the product of the
K marginal item-score distributions. This property is called local independence
(LI),

Fig. 2.1 Three nondecreasing item step response functions for two items; solid lines for one item,
dashed lines for the other item
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P(X1 = x1, . . . ,XK = xK |Θ) =
K∏

k=1

P(Xk = xk|Θ) . (2.1)

LI implies weak LI, meaning that the conditional covariance between any pair of
items j and k equals 0 (Stout, 1990); that is, Eq. (2.1) implies σ (Xj, Xk|Θ) = 0.

The three assumptions UD, M, and LI together do not enable direct estimation
of Θ . However, for dichotomous items, the monotone homogeneity model implies
that sum score X+ orders persons stochastically on latent variableΘ; that is, for any
value θ ofΘ and any pair of values x+a and x+b of X+ such that 0≤ x+a < x+b ≤ K,

P(Θ > θ |X+ = x+a) ≤ P(Θ > θ |X+ = x+b) (2.2)

(Grayson, 1988). Hemker, Sijtsma, Molenaar and Junker (1997) called the property
in Eq. (2.2) stochastic ordering of the latent trait by means of the sum score (SOL).
SOL is important, because it shows that if one orders persons by their sum scores,
they are also stochastically ordered byΘ . Hence, the monotone homogeneity model
implies that Θ is an ordinal scale for persons, and that one can use X+ to order
persons on this scale. An interesting and insightful implication of Eq. (2.2) pertains
to conditional expectations; that is,

E(Θ|X+ = x+a) ≤ E(Θ|X+ = x+b) , (2.3)

meaning that sum score X+ orders persons by expectation, that is, subgroups
characterized by increasing mean Θs. Obviously, because random error affects
measurement, one cannot unambiguously conclude at the level of individuals n1
and n2 that when one observes x+n1 < x+n2 , then θn1 ≤ θn2 . Random measurement
error may obscure the real ordering θn1 > θn2 , but for homogeneous sum-score
groups, identified by θa and θb, Eq. (2.3) assures an ordering by mean Θs.

For polytomous items, Hemker et al. (1997) showed that the monotone homo-
geneity model does not imply SOL, hence the model does not produce an ordinal
person scale; also see Hemker, van der Ark and Sijtsma (2001). They further showed
that among the class of parametric IRT models for polytomous items, only the
parametric partial credit model (Masters, 1982), and its special cases such as the
rating scale model (Andrich, 1978), implies SOL. Other well-known polytomous
IRT models, such as the generalized partial credit model (Muraki, 1992) and the
graded response model (Samejima, 1969) do not possess the SOL property. This
result suggested that sum score X+ may not be useful for ordering people on Θ in
most polytomous IRT models, but one may also argue that this is not a problem
because such models allow the assumption of a real-valued variable Θ and its
estimation, thus enabling person measurement using Θ and without X+.

However, two additional results provide hope for X+. First, based on multiple
simulated latent variable distributions and ISRFs, van der Ark (2005) found that, as
a rule, X+ correctly orders people on Θ . When reversals with respect to Θ happen,
they mostly concern X+ values that are close, often just one unit apart. When K and
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m decrease, and ISRFs are more similar, the proportions of person pairs showing
ordering violations decrease. Reversely, short tests containing items with, say, five
ordered scores, and ISRFs that vary greatly produced more ordering violations than
long tests containing items with, say, three ordered scores and ISRFs that are similar.

One may argue that SOL must hold for models to justify ordinal person scales
and that failure of SOL is unacceptable, thus rendering X+ useless as a statistic
that orders persons on Θ . Two arguments mitigate this position. One argument is
that for realistic K, say, K ≤ 40, measurement of psychological attributes suffers
greatly from measurement error in any measurement value including X+, which
probably causes many accidental ordering reversals that cannot be distinguished
from systematic reversals caused by failure of SOL (Eq. 2.2), and may even have a
greater impact on ordering. Hence, irrespective of whether the IRT model implies
SOL, random measurement error probably overshadows the damage a violation of
SOL does to person ordering. The other argument concerns an ordering property van
der Ark and Bergsma (2010) called weak SOL, which is an implication of Eq. (2.2),
SOL, and which the authors proved holds for all polytomous IRT models assuming
UD, M, and LI. Hence, weak SOL provides some relief when a model fails to imply
the stronger SOL.

Weak SOL is defined as follows. Assume polytomous items, a fixed integer value
x+c, such that 1 ≤ x+c ≤ Km, and assume UD, M, and LI; then weak SOL means

P(Θ > θ |X+ < x+c) ≤ P(Θ > θ |X+ ≥ x+c) . (2.4)

It may be noted that for x+c < 1 and x+c > Km, Eq. (2.4) is undefined. Weak SOL
does not imply Eq. (2.2), SOL, and is thus a weaker ordering property; see van der
Ark and Bergsma (2010) for a computational example showing that SOL can fail
while weak SOL is satisfied. SOL Eq. (2.2) implies Eq. (2.3) concerning expected
values, and weak SOL Eq. (2.4) implies a similar ordering property concerning
expected values,

E(Θ|X+ < x+c) ≤ E(Θ|X+ ≥ x+c) . (2.5)

Equation (2.5) shows that, for x+c = 1, . . . , Km, weak SOL enables the ordering
of two groups defined by X+ < x+c and X+ ≥ x+c on Θ . For example, if one selects
the 20% best students from a sample using the test scores as a selection criterion,
then weak SOL implies that the expected Θ value for the selected respondents is at
least as high as the expected Θ value for the respondents who were not selected.
However, weak SOL does not allow the ordering of more than two mutually
exclusive groups (e.g., three groups defined by X+ < x+c, x+c ≤ X+ < x+c + u,
and X+ ≥ x+c + u; u ∈ {1, 2, . . . , Km − x+c − 1}); two non-exclusive groups
(e.g., two groups defined by X+ < x+c + u and X+ ≥ x+c) or two non-exhaustive
groups (e.g., two groups defined by X+ < x+c and X+ ≥ x+c + u; u ≥ 1) (van
der Ark & Bergsma, 2010, proposition; also see Douglas, Fienberg, Lee, Sampson,
& Whitaker, 1991). One can check that for three persons, n1, n2, and n3, with
x+n1 < x+n2 , x+n2 < x+n3 , and consequently, x+n1 < x+n3 , for each person pair
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one can always find cut scores x+c, such that for each person pair weak SOL implies
a pairwise ordering, but one can also check that an ordering of all three persons is
not possible because three subgroups based on two cut scores always overlap.

We conclude that, based on theoretical considerations, the monotone homo-
geneity model for polytomous items only allows pairwise person ordering but
not complete person ordering. Van der Ark’s (2005) computational results give
us enough confidence to use sum scores X+ to order people on Θ in practical
applications of tests and questionnaires.

2.2.2 Latent Class Model

The LCM assumes a discrete latent variable but refrains from specifying its
dimensionality, thus defining unordered measurement values that represent latent
classes. The model can be used to identify subgroups characterized by the same
pattern of scores on K observables, and here we assume that N persons provide
discrete integer scores on K items, just as with the discussion of the monotone
homogeneity model. Like the monotone homogeneity model, the LCM assumes
LI, but now given class membership. Let latent variable Φ have W discrete values
denoted w = 1, . . . , W; then LI is defined as in Eq. (2.1), but for Φ = w.

Only assuming a discrete latent variable and LI would provide too little structure
to restrict the probability structure governing the data (Suppes & Zanotti, 1981).
Assuming every observation falls into one of just a few latent classes, W, restricts
the LCM and makes it a feasible approach. One can write the probability of a
particular pattern of item scores, denoted X = (X1, . . . , XK) with realization
x = (x1, . . . , xK), and being in class Φ = w, P(X = x ∧ Φ = w), as the product of
the probability of being in class Φ = w, P(Φ = w), and the probability of obtaining
score pattern X = x conditional on class membership, P(X = x|Φ = w); that is,

P(X = x ∧Φ = w) = P(Φ = w)P (X = x|Φ = w) . (2.6)

Applying LI to conditional probability P(X= x|Φ =w) in Eq. (2.6), and summation
across discrete classes yields the foundational equation of LCM analysis,

P(X = x) =
W∑

w=1

P(Φ = w)
J∏

j=1

P
(
Xj = xj|Φ = w

)
. (2.7)

The discrete IRFs (rather, for each item, W separate response probabilities),
P(Xk = xk|Φ = w), appear on the right-hand side in Eq. (2.7). The model is typically
used in an exploratory fashion, because the classes are unknown, hence latent, and
the quest is for the number W that explains the data structure best using the model in
Eq. (2.6). Conducting an analysis involves estimating the class weights, P(Φ = w),
for each w, and the item response probabilities, P(Xk = xk|Φ = w), for each k and w.
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One can use these probabilities in conjunction with Bayes theorem to assign people
to the class with best fit; that is, for person n, one finds the class w for which

P(Φ = w|Xn = xn) = P(Xn = xn|Φ = w)P (Φ = w)∑W
w=1 P(Φ = w)

∏K
k=1 P(Xk = xk|Φ = w)

, (2.8)

is maximized and assigns person n to this class. This application of the model
assigns individuals to latent classes, thus producing a nominal scale. Another
application of LCM analysis is to identify latent classes in an effort to understand
the structure of the data. Different applications use the LCM to impute scores
(Vermunt, van Ginkel, van der Ark, & Sijtsma, 2008), to model population ability
distributions (Wetzel, Xu, & von Davier, 2015), to smooth large sparse contingency
tables (Linzer, 2011), and to estimate the reliability of sum scores on tests (van der
Ark, van der Palm, & Sijtsma, 2011) and of the scores on individual items (Zijlmans,
van der Ark, Tijmstra, & Sijtsma, 2018).

LCMs have been extended with explanatory structures, such as regression
models, multilevel models and factor models (Hagenaars & McCutcheon, 2002),
but also IRT models such as the partial credit model (e.g., Bouwmeester, Vermunt,
& Sijtsma, 2007), and led to numerous applications in a variety of research areas.
In an effort to tie the LCM to the monotone homogeneity model, we briefly
focus on Ligtvoet and Vermunt (2012; also, see Croon 1990, 1991; Hoijtink &
Molenaar, 1997; van Onna, 2002; Vermunt, 2001) who used ordered LCM analysis
to investigate assumption M of the monotone homogeneity model.

The unconstrained LCM (Eq. 2.7) is typically estimated using an EM algorithm,
but can be estimated using a Gibbs sampler. Both methods yield estimates for the
class weights P(Φ = w) and the item-response probabilities P(Xk = xk|Φ = w).
Ligtvoet and Vermunt (2012) explain how to use the LCM to test assumption
M of the monotone homogeneity model by rephrasing that assumption as fol-
lows. Replace continuous latent variable Θ with discrete latent variable Φ = w,
w = 1, . . . , W, and define the expectation

E(Xk|Φ = w) =
∑m

x=1
x · P(Xk = x|Φ = w) , (2.9)

(Sijtsma & Hemker, 1998). We assume that E(Xk|w) is non-decreasing in Φ.
The conditional expected item score, E(Xk|Φ = w), summarizes the m item step
response functions, P(Xk ≥ x|Φ = w), for each item, while losing information
present at the lower aggregation level, but simplifying the investigation of assump-
tion M. Because for one item, conditional probabilities are dependent, in the Gibbs
sampler, investigating assumption M by means of E(Xk|Φ = w) entails sampling
transformations of conditional probabilities, P(Xk ≥ x|Φ = w), that are independent
of one another, and together satisfy assumption M at the higher aggregation level
of conditional expected item scores. Parameter estimates can be generated after
convergence of the algorithm from the posterior distributions of the parameters.
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A standard goodness of fit statistic is available for assessing the overall fit of
the constrained LCM relative to competing models, and specialized fit statistics
assess the fit of individual items. A model fitting strategy first entails choosing a
value for W, the number of latent classes based on the best overall fit, and in the
second analysis round determining for which items assumption M is satisfied. This
is done by comparing the fit of the constrained W-class LCM to the unconstrained
W-class LCM. The constrained model fits worse by definition but if the discrepancy
between models is large, item fit statistics may be used to suggest which badly fitting
items should be removed to improve the overall fit (rather than removing the item,
the constraint M on the item is removed). Because inactivating constraint M for
one or two items probably affects overall fit, the first analysis round is redone and
depending on the fit, other items may be flagged for removal. After some iterations,
the result is a W-class LCM for K∗ items (K∗ ≤ K) for which assumption M holds,
if applicable.

2.2.3 Cognitive Diagnostic Model

CDMs allow the assessment of mastery or non-mastery of multiple attributes
or skills needed to solve items. CDMs have been applied most frequently to
cognitive items in an educational context, but applications are also known to the
evaluation and diagnosis of pathological gambling (Templin & Henson, 2006) and
the understanding and scoring of situational judgment tests (Sorrel et al., 2016).
Several models are available that have in common that they assume that the solution
of an item depends on the availability of a set of latent attributes, and for different
items different albeit partly overlapping subsets of latent attributes may be required.
The most important difference between the two models we discuss here is that one is
conjunctive or non-compensatory, and the other disjunctive or compensatory. Con-
junctive models assume the tested person needs to master all attributes necessary
to solve an item, and non-mastery of a required attribute cannot be compensated
by mastery of another attribute. Disjunctive models require a subset of attributes to
solve an item but not all attributes, and non-mastery of one or more attributes can be
compensated by mastery of others. The models have in common that they compare
a person’s ideal item-score pattern with her observed item-score pattern, and posit
an IRF that relates the two patterns and allows persons lacking attributes the item
requires for its solution to solve it correctly (guessing), and likewise persons in
possession of the necessary attributes to fail the item (slipping). Von Davier (2014)
studied the relationship between non-compensatory and compensatory models,
and showed mathematically how their differences may be understood in more
detail.
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Some notation needed for both models is the following. Let Xn = (Xn1, . . . , XnK)
be the vector of binary (incorrect/correct) scores for person n’s responses on the
K items, and let An = (An1, . . . , AnD) be the binary latent attribute vector, where
And = 1 means that person n possesses attribute d, and And = 0 that the person
does not possess the attribute. Another building block of CDMs is the Q-matrix,
which contains for each item (rows) and attribute (columns) elements qkd indicating
whether item k requires attribute d for its solution (qkd = 1) or not (qkd = 0). We
discuss two ways in which An and matrix Q can be combined to produce a latent
item-score vector, �n = (�n1, . . . ,�nK), with realization (ξn1, . . . , ξnK). �n

may be considered ideal and can be compared to the observed item-score vector,
Xn, to determine how well the model fits the data. The two models we discuss
are representatives of conjunctive and disjunctive approaches, and we discuss
the models for didactical reasons, but notice that other, more flexible models are
available. These alternative models are discussed elsewhere in this book.

The deterministic inputs, noisy “and” gate model (DINA; Junker & Sijtsma,
2001; Haertel, 1989; Macready & Dayton, 1977) is a conjunctive model that defines
binary latent response variable, �nk, to indicate whether person n possesses all the
attributes needed for solving item k (�nk = 1) or not (�nk = 0). The ideal responses
are defined as

�nk =
∏D

d=1
A
qkd
nd . (2.10)

Equation (2.10) shows that if item k requires an attribute d (i.e., qkd = 1) that person
n lacks (i.e., And = 0), then Aqndnd = 01 = 0, yielding �nk = 0; otherwise, Aqndnd =
1, and only if all power terms equal 1 we obtain �nk = 1. The IRFs relate the
ideal latent item-score vector to the fallible real-data item-score vector by allowing
masters (�nk = 1) to fail an item accidentally, called slipping, and quantified by the
slipping parameter,

sk = P(Xnk = 0|�nk = 1) , (2.11)

and non-masters (�nk = 0) to succeed accidentally, quantified by the guessing
parameter,

gk = P(Xnk = 1|�nk = 0) . (2.12)

Using the definitions in Eqs. (2.10), (2.11), and (2.12), the IRF of the DINA model
is defined as

P(Xnk = 1|An, sk, gk) = (1− sk)ξnk gk1−ξnk . (2.13)

Equation (2.11) shows that for non-masters (ξnk = 0), we have P(Xnk = 1|An, sk,
gk) = gk and for masters (ξnk = 1), we have P(Xnk = 1|An, sk, gk) = 1 − sk.
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Hence, the class of non-masters has a probability at the guessing level to solve the
item correctly, and the class of masters has a probability reflecting non-slipping
or, indeed, mastery. A feature of the IRF in Eq. (2.13) is that it is coordinate-wise
monotone in An if and only if 1− sk > gk. One can check this monotonicity property
by checking that changing zeroes in An in ones can change ξnk = 0 into ξnk = 1, but
not vice versa; hence, by adding attributes, a non-master can become a master, but
this makes sense only if scoring Xij = 1 becomes more likely, i.e., if 1 − sk > gk.

We briefly consider the disjunctive deterministic input, noisy “or” gate model
(DINO; Templin & Henson, 2006) to illustrate a disjunctive process model. The
DINO model assumes that the person needs to master only one attribute, And, and
the latent response variable is defined as

nk = 1−
∏D

d=1
(1− And)qkd . (2.14)

From Eq. (2.14) it can be seen that the combination of the item requiring an attribute
that the person masters (And = qkd = 1), is the only combination that produces
(1− And)qkd = 0, hence a product equal to 0 and latent response, nk = 1. Thus,
one needs to master at least one attribute necessary for item k to produce a latent
response nk = 1. Several authors have suggested flexible frameworks that include
the DINA and DINO models and several other CDMs (e.g., de la Torre, 2011; von
Davier, 2008). This volume witnesses the wealth of CDMs and we therefore refrain
from further discussion, except for two notes.

First, the joint distribution of the data conditional on the latent variables, here the
D binary attributes, is the product of the conditional distributions of the item scores;
that is, LI is assumed,

P(Xn|an) =
∏K

k=1
P(Xnk|an) . (2.15)

Also assuming that the data records of different persons are independent, the
conditional likelihood of the data matrix X is written as

L(X|a) =
∏N

n=1
L(Xn|an) . (2.16)

This joint likelihood can be maximized for the parameters g = (g1, . . . , gK)
and s = (s1, . . . , sK), but because they are known to have unfavorable statistical
properties, alternatively one rather uses the marginal likelihood approach,

L(X) =
∏N

n=1
L(Xn) =

∏N

n=1

∑H

h=1
L(Xn|ah) P (ah) , (2.17)

where the number of possible skills patterns equals H = 2D. The latent class
structure is apparent on the right-hand side of Eq. (2.17). De la Torre (2009)
discussed two estimation algorithms based on Eq. (2.17). One estimation method
uses EM, which is labor-intensive due to the huge number of different latent attribute
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vectors Ah. The other estimation method avoids this problem by assuming that the
elements of vector A are locally independent given a continuous higher-order latent
variable Θ , having the structure of Eq. (2.1),

P(A|θ) =
∏D

d=1
P(ad |θ) , (2.18)

and P(ad| θ ) is modeled as a two-parameter logistic model,

P(ad |θ) = exp (λ0d + λ1θ)

1+ exp (λ0d + λ1θ)
, (2.19)

in which λ0d is the intercept, λ1 > 0 is the slope, and θ ∼ N (0, 1) by assumption.
Equation (2.19) renders the probability monotone in θ and dependent on an intercept
parameter and a slope parameter that is equal across attributes. This is the higher-
order DINA (de la Torre & Douglas, 2004), and an MCMC algorithm is used
to estimate D − 1 intercept and 1 slope parameter. Yang and Embretson (2007)
discussed an equation similar to Eq. (2.18) for inferring a person’s most likely latent
class ah given her item-score pattern Xn, the item parameters g and s, and design
matrix Q.

Second, Junker and Sijtsma (2001) studied the properties of the DINA model
from the perspective of the monotone homogeneity model and focused on mono-
tonicity properties. Before we consider their result, we first notice a stochastic
ordering result different from SOL, which reverses the roles of latent and manifest
variables, and therefore is called stochastic ordering of the manifest variable by the
latent variable (SOM). Starting from UD, M, and LI, and Eq. (2.4), for any pair of
persons with θn1 < θn2 , Hemker et al. (1997) defined SOM as

P
(
X+ ≥ x+c|θn1

) ≤ P (X+ ≥ x+c|θn2

)
. (2.20)

The monotone homogeneity model thus supplies a latent structure justifying order-
ing people on the observable X+ total score. Older approaches, such as classical
test theory, did not supply such a justification, but simply recommended the use of
X+. With the exception of the Rasch model, modern IRT approaches based on UD,
M, and LI missed that they also justify SOM and even the more useful SOL, which
allows one making inferences about latent, explanatory structures—an ordinal latent
scale—from observable data. Holland and Rosenbaum (1986) introduced the notion
of non-decreasing summaries of the item scores, denoted g(Xn), non-decreasing
coordinate-wise in Xk (k = 1, . . . , K), and Junker and Sijtsma (2001) noticed that
in the DINA model,

P [g(Xn) |an] is coordinate-wise non-decreasing in an (2.21)

Obviously, this is a SOM property, meaning that the mastery of more attributes
yields a higher summary score. The authors were unable to derive similar SOL
properties for the DINA model.
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2.3 Example

2.3.1 Data: Millon Clinical Multiaxial Inventory-III

We used the item scores of 1210 Caucasian patients and inmates in Belgium (61%
males) on 44 items of the Dutch version of the Millon Clinical Multiaxial Inventory-
III (MCMI-III; Millon, Millon, Davis, & Grossman, 2009; Dutch version by Rossi,
Sloore, & Derksen, 2008). For more details about the sample, see Rossi, Elklit,
and Simonsen (2010), and for a previous data analysis, see de la Torre, van der
Ark, and Rossi (2018). The MCMI-III consists of 175 dichotomous items defining
14 personality scales, 10 clinical syndrome scales, and 5 correction scales. The 44
items we used pertain to the clinical syndrome scales anxiety (A), somatoform (H),
thought disorder (SS) and major depression (CC). Several items are indicative for
more than one clinical disorder (Table 2.1). For example, a positive response to
Item 148 (“Few things in life give me pleasure”) is believed to be an indicator for
somatoform, thought disorder, and major depression. The 44 × 4 Q-matrix (Table
2.2) reflects the contributions of each item to each scale.

Table 2.1 The number of
items per scale measuring
one, two, or three disorders

Scale Number of disorders Total

1 2 3
A 9 5 0 14
H 2 9 1 12
SS 11 5 1 17
CC 6 11 1 18

Note: A Anxiety, H Somatoform, SS
thought disorder, CC major depression

Table 2.2 Q-matrix of 44 items by four clinical disorders

Disorder Disorder Disorder Disorder

k A H SS CC k A H SS CC k A H SS CC k A H SS CC
1 0 1 0 1 61 1 0 1 0 108 1 0 0 0 147 1 0 0 0
4 0 1 0 1 68 0 0 1 0 109 1 0 0 0 148 0 1 1 1
11 0 1 0 0 72 0 0 1 0 111 0 1 0 1 149 1 0 0 1
22 0 0 1 0 74 0 1 0 1 117 0 0 1 0 150 0 0 0 1
34 0 0 1 1 75 1 1 0 0 124 1 0 0 0 151 0 0 1 1
37 0 1 0 0 76 1 0 1 0 128 0 0 0 1 154 0 0 0 1
40 1 0 0 0 78 0 0 1 0 130 0 1 0 1 162 0 0 1 0
44 0 0 0 1 83 0 0 1 0 134 0 0 1 0 164 1 0 0 0
55 0 1 0 1 102 0 0 1 0 135 1 0 0 0 168 0 0 1 0
56 0 0 1 0 104 0 0 0 1 142 0 0 1 1 170 1 0 0 0
58 1 0 0 0 107 0 1 0 1 145 1 1 0 0 171 0 0 0 1

Note: k Item number, A Anxiety, H Somatoform, SS thought disorder, CC major depression
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We screened the data for outliers using the number of Guttman errors as an outlier
score (Zijlstra, van der Ark, & Sijtsma, 2007), which identifies inconsistent item-
score patterns given the item ordering based on item-total scores. Two respondents
had an unexpectedly large number of Guttman errors, well beyond the cutoff
value suggested by the adjusted boxplot (Hubert & Vandervieren, 2008). These
respondents were removed from the data, yielding a final sample size of N = 1208.
The data contained no missing values.

2.3.2 Analysis of the Data

Nonparametric IRT Analysis. We investigated the assumptions of the monotone
homogeneity model by means of Mokken scale analysis (Mokken, 1971; Sijtsma &
Molenaar, 2002; Sijtsma & van der Ark, 2017), using the R package mokken (van
der Ark, 2007, 2012). First, we conducted a confirmatory Mokken scale analysis
assuming all items belonged to the same scale. For all 946 item-pairs, scalability
coefficient Hjk was significantly greater than 0 (.10 < Hjk < .88). Except for item
117 (H117 = .28), item 154 (H154 = .25), and item 168 (H168 = .29), for each of
the other 41 items, item-scalability coefficient Hk was significantly greater than .30
(.25 < Hk < .60). These results support the fit of the monotone homogeneity model
and suggest that the 44 items form a unidimensional scale. Total-scale scalability
coefficient H = .42 (se = .01), a value which Mokken labeled as a medium scale.
Hence, based on scalability coefficients alone, we did not find support that the four
scales represent different clinical disorders. This first result might imply that a CDM
with four attributes is superfluous.

Second, we conducted an exploratory Mokken scale analysis. For lower-bound
values c ∈ {.00, .05, .10, .15, . . . , .60}, we partitioned the 44 items into scales
requiring that items admitted to a scale have Hk > c. This means that items may
drop out of scales and remain unscalable. For c ≤ .20, all 44 items constituted a
single scale. For .20 < c ≤ .35, some items were unscalable (i.e., item 154 was
unscalable at c = .25, items 22, 117, 154, and 168 were unscalable at c = .35) but
the remaining items constituted a single scale. For c > .35, the one-scale structure
fell apart into multiple scales (3 scales at c = .40 to 11 scales at c = .60) and
up to 7 unscalable items. At first glance, these results also support the hypothesis
that the data are approximately unidimensional suggest. However, when one applies
stricter criteria for scalability, the items represent a smaller number of attributes, and
a closer look may be in order.

Third, we inspected local independence using the W indices (notation W not to
be confused with the number of latent classes) proposed by Straat, van der Ark,
and Sijtsma (2016). Space limitations do not permit a discussion of these indices;
hence, we refer the interested reader to Straat et al. (2016). Index W1, which is used
for the detection of positive locally dependent item pairs, flagged 106 of the 946
item pairs; index W3, which is used for the detection of negative locally dependent
item pairs, flagged two of the 946 item pairs. Because we did not have benchmarks
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Fig. 2.2 Forty-four item response functions estimated by means of kernel smoothing (h = 2.5)

for W indices for so many items, we tentatively concluded that some items may be
positive locally dependent, which suggests that within the unidimensional scale a
more refined structure may be present.

Fourth, another in-depth analysis concerned the investigation of monotonicity
using the property of manifest monotonicity (Junker & Sijtsma, 2000; Sijtsma &
van der Ark, 2017). We did not find violations. This finding supports the fit of the
monotone homogeneity model. Figure 2.2 shows the 44 IRFs estimated by means
of kernel smoothing (Ramsay, 1991, 1996), using smoothing parameter h = 2.5.

To conclude, using the monotone homogeneity model, different clinical disorders
remained unidentified and the data were unidimensional, but the unidimensionality
signal was moderate. When we used stricter scaling criteria, the item set did not
break down into four smaller scales that related to the four clinical disorders. To find
out whether this result was a nonparametric-method effect, we also computed Yen’s
(1981) Q1 statistic based on ten groups for testing goodness of fit of the parametric
two-parameter logistic model (Table 2.3). The two-parameter logistic model is a
special case of the monotone homogeneity model. Using Bonferroni correction (i.e.,
p ≈ .001), based on the Q1 statistic, none of the items showed misfit. Thus, the
global goodness of fit measure for the two-parameter logistic model produced a
result similar to that obtained from the confirmatory analysis in the context of the
monotone homogeneity model, so that we could exclude a method effect.

Latent Class Analysis. We estimated twelve LCMs with W = 1, 2, . . . , 12 classes
using the R package poLCA (Linzer & Lewis, 2011), and computed information
indices AIC3 (Andrews & Currim, 2003) and BIC (Schwarz, 1978). For large
sample sizes and modest numbers of latent classes, both AIC3 and BIC are known



36 L. A. van der Ark et al.

Table 2.3 Q1 statistic for fit of two-parameter logistic model to each of 44 items

k χ2 p k χ2 p k χ2 p k χ2 p

1 4.3 .828 61 14.3 .075 108 13.9 .085 147 16.3 .038
4 10.6 .226 68 6.8 .561 109 12.8 .120 148 8.9 .347
11 5.2 .735 72 9.7 .289 111 5.3 .727 149 16.5 .036
22 17.5 .025 74 15.5 .049 117 16.6 .035 150 16.9 .031
34 6.8 .561 75 10.6 .228 124 11.8 .162 151 6.6 .575
37 17.6 .025 76 10.0 .267 128 13.6 .093 154 2.2 .973
40 9.3 .320 78 23.1 .003 130 10.2 .252 162 18.2 .020
44 5.5 .703 83 10.3 .244 134 8.6 .378 164 10.0 .263
55 15.1 .057 102 11.8 .162 135 2.8 .948 168 9.9 .269
56 9.1 .337 104 12.5 .128 142 6.6 .580 170 19.9 .011
58 15.8 .046 107 13.8 .088 145 10.8 .213 171 9.5 .299

Note: k Item number, χ2 chi-squared statistic with 10 degrees of freedom, p p value

Fig. 2.3 BIC (black) and AIC3 (red) values for LCMs with 1, 2, . . . , 12 latent classes

to identify the correct number of classes reasonably well, but BIC tends to be
conservative (Yang & Yang, 2007). To decrease the risk of local maxima, we
estimated each model 10 times. We discuss results for the four-class LCM, because
the number of classes is conveniently small, its interpretation relatively easy, while
the fit of the model in terms of BIC seems adequate, and for the six and eleven-
class LCMs, because these models provided the smallest values of AIC3 and BIC,
respectively (Fig. 2.3).
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Fig. 2.4 Endorsement probabilities for the four-class LCM

Because it did not provide the smallest AIC3 and BIC values, the four-class LCM
may have missed some of the heterogeneity in the data but the model corroborated
the results from the nonparametric IRT data analysis. The four classes, with class
probabilities P(Φ = w) equal to .288, .266, .159, and .291, are strictly ordinal,
because for all 44 items, the estimated endorsement probability P(Xi = 1|Φ = w)
increased as w increased (Fig. 2.4).

Except for classes 3 and 4, the six-class LCM showed increasing endorsement
probabilities (Fig. 2.5). The class probabilities P(Φ = w) equal .112, .264, .194,
.111, .134, and .184. Figure 2.5 shows absence of consistent ordering between
classes 3 and 4: For 17 of the 44 items (solid lines) the endorsement probability
was larger in Class 4 than in Class 3. Fourteen of the 17 items relate to major
depression or somatoform disorder. Hence, in addition to the ordinal trend, the six-
class LCM seemed to distinguish a class with moderate endorsement probabilities
leaning towards major depression and somatoform disorders (Class 3) and a class
with moderate endorsement probabilities leaning towards anxiety disorders and
thought disorders (Class 4). The eleven-class LCM was too difficult to interpret
without an a priori hypothesized structure. Next, we investigated whether CDMs
can provide additional information about the data structure.

Cognitive Diagnosis Models. Because this chapter discusses CDMs relative to
nonparametric IRT and nonparametric LCMs, we compared these models with
nonparametric CDMs. Our ambition was not to be complete with respect to the
discussion of CDMs, but to discuss the general idea using a few simple models. The
choice of two nonparametric CDMs, the basic DINA and DINO, reflect this modest
ambition. Because these models are rather restrictive, we did not expect them to
fit the data but used them instead for didactical purposes. We estimated the models
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Fig. 2.5 Endorsement probabilities for the six-class LCM. Black solid lines pertain to 17 items
that have higher endorsement probabilities in Class 3 than in Class 4

using the R package NPCD (Zheng & Chiu, 2016). First, the attribute profiles A were
estimated using a nonparametric algorithm minimizing the plain Hamming distance
(Chiu & Douglas, 2013), and given estimate Â, maximum likelihood estimates of
the guessing parameters and slip parameters were obtained. Table 2.4 shows DINA
results and Table 2.5 shows DINO results. Items printed in boldface had a high
slipping or a high guessing parameter estimate, and the models fitted worse for
these items. For global model fit, R package NPCD provides AIC and BIC but not
AIC3. For the DINA model, AIC = 50,705 and BIC = 51,154, and for the DINO
model, AIC = 50,296 and BIC = 50,745. One may notice that one cannot compare
the AIC and BIC values of the these CDMs to the AIC and BIC values of the
LCMs in Fig. 2.3. The reason is that for the CDMs, the likelihood is derived under
the assumption that the Hamming distance-based class assignments (Â) are fixed,
whereas for the LCMs, the class assignments are part of the likelihood (von Davier,
personal communication). Comparing AIC and BIC of the CDMs and LCMs would
be unfair and in favor of the DINO and the DINA given fixed Â.

For this example, �nk = 1 (DINA) means that respondent n suffers from all
the disorders item k assesses, and nk = 1 (DINO) means that respondent n
suffers from at least one of the disorders item k assesses. Slipping parameter
sk = P(Xnk = 0|�nk = 1) (Eq. 2.11) is the probability that respondent n does not
endorse item k, even though respondent n suffers from all the disorders related
to item k; and guessing parameter gk = P(Xnk = 1|�nk = 0) (Eq. 2.12) is the
probability that respondent n endorses item k, even though respondent n does not
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Table 2.4 Slipping and guessing parameters for the 44 items estimated from the DINA model

k sk gk k sk gk k sk gk k sk gk

1 .08 .26 61 .03 .40 108 .34 .13 147 .05 .42
4 .10 .26 68 .17 .26 109 .16 .30 148 .15 .24
11 .73 .03 72 .15 .26 111 .28 .19 149 .38 .13
22 .44 .11 74 .22 .19 117 .64 .08 150 .38 .04
34 .11 .35 75 .20 .21 124 .51 .05 151 .33 .13
37 .63 .03 76 .18 .18 128 .47 .06 154 .39 .22
40 .19 .23 78 .72 .02 130 .16 .16 162 .19 .25
44 .07 .25 83 .13 .38 134 .33 .12 164 .31 .13
55 .15 .21 102 .60 .07 135 .24 .19 168 .52 .12
56 .12 .33 104 .45 .11 142 .12 .19 170 .48 .08
58 .19 .30 107 .48 .09 145 .08 .36 171 .35 .09

Note: k Item number, sk slipping parameter, gk guessing parameter. If sk + gk > .5, the values are
printed in boldface

Table 2.5 Slipping and guessing parameters for the 44 items estimated from the DINO model

k sk gk k sk gk k sk gk k sk gk

1 .09 .19 61 .07 .24 108 .34 .16 147 .05 .45
4 .13 .20 68 .14 .31 109 .15 .32 148 .28 .14
11 .47 .06 72 .14 .32 111 .32 .15 149 .48 .07
22 .40 .14 74 .26 .15 117 .59 .09 150 .29 .08
34 .16 .29 75 .32 .14 124 .48 .06 151 .43 .10
37 .44 .09 76 .29 .08 128 .42 .10 154 .34 .25
40 .18 .25 78 .69 .03 130 .21 .12 162 .14 .28
44 .04 .32 83 .10 .42 134 .27 .15 164 .30 .14
55 .19 .16 102 .55 .08 135 .25 .23 168 .47 .14
56 .11 .38 104 .41 .15 142 .19 .11 170 .47 .09
58 .17 .31 107 .52 .07 145 .14 .23 171 .28 .12

Note: k Item number, sk slipping parameter, gk guessing parameter. If sk + gk > .5, the values are
printed in boldface

suffer from all the disorders related to item k. Because in the clinical context, one
assumes that one endorses an item if one possesses at least one of the disorders, the
DINO model seems more in line with this assumption than the DINA model. Based
on the BIC, the DINO model fitted better than the DINA model, but for both models,
proportions of slipping and guessing were high; see Tables 2.4 and 2.5.

For the DINO model, slipping parameter estimates were generally higher than
guessing parameter estimates, and for 14 items, slipping parameter estimates
exceeded .40 (Table 2.5). Hence, respondents suffering from a relevant disorder
did not always endorse the item. An explanation could be that some items refer
to rare circumstances. An example is item 78, “Even when I’m awake, I don’t
seem to notice people who are near me” (s78 = .69) that even respondents suffering
from thought disorder may find too unlikely to endorse. Some other questions were
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Table 2.6 Class sizes based
on the Hamming
distance-based attribute
profiles for the DINO model
in percentages

Class Prevalence Class Prevalence

No disorder 45.3% H and SS 1.6%
CC 1.9% A and SS 4.7%
SS 2.4% A and H 1.7%
H 2.1% All but A 0.5%
A 8.7% All but H 12.6%
CC and SS 1.3% All but SS 1.1%
CC and H 0.2% All but CC 3.4%
CC and A 6.5% All disorders 6.0%

Note A anxiety, H somatoform, SS thought disorder, CC
major depression

double barreled, which may explain low endorsement. An example is item 107, “I
completely lost my appetite and have trouble sleeping most nights”. Only for item
83, “My moods seem to change a great deal from one day to the next”, the guessing
parameter estimate exceeded .40 (g83 = .42). Item 83 relates to thought disorder,
but given its high popularity, respondents not suffering from thought disorder also
seemed to endorse the item.

Based on the estimated attribute profiles Â of the DINO model, four attribute
profiles had substantial size (Table 2.6): no disorder (45.3%), only A (8.7%), CC
and A (6.5%), and SS, CC and A (12.6%). Approximately 73% of the respondents
belonged to one of these four classes. If one adds the percentages in Table 2.6 that
pertain to A, one finds that the DINO model identified anxiety (44,7%) as the most
common disorder, followed by thought disorder (32,5%), major depression (30.2%),
and somatoform (16,6%).

2.4 Discussion

This chapter discussed the relation between nonparametric IRT models and CDMs.
The two approaches are related via the LCM, and both IRT models and CDMs
may be viewed as restricted LCMs with a large number of classes. For IRT models,
the number of classes equals the number of distinct θ values, but IRT models are
mainly used for measuring individuals on a scale for the attribute of interest, and for
this purpose the IRFs or ISRFs are nonparametrically or parametrically restricted.
For CDMs, the number of classes equals 2D attribute profiles, and a parametric
functional form restricts the response probabilities within a class.

The nonparametric IRT models, LCMs, and CDMs are related, but researchers
use the models in different situations. Nonparametric IRT models are useful
for ordinal measurement and as a preliminary analysis for measurement using
parametric IRT models, whereas LCMs are useful for nominal measurement; that
is, identifying prototypes of respondents in the data, but also as a density estimation
tool. CDMs are also used for nominal measurement. Yet by identifying the presence
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or the absence of cognitive skills or clinical disorders, CDMs provide insight into
the attribute of interest.

Comparing the fit of the nonparametric IRT models to an LCM or a CDM is
not straightforward. Nonparametric IRT models have many methods to investigate
the local fit, but a global goodness of fit statistic is unavailable. If one uses an
ordinal LCM to investigate goodness of fit of a nonparametric IRT model, relative fit
measures such as AIC or AIC3 are available. However, these measures suffer from
the problem that they indicate which of the models the researcher compares fits best
to the data, but not whether the best fitting of these models actually fits the data well.
The data analysis using local fit methods showed that the nonparametric IRT model
fitted well, and the nonparametric CMDs fitted well relative to the LCM.

The interpretation of the nonparametric IRT model and the CDMs was different.
Using the IRT models, one uses a single continuous attribute to explain the responses
to four comorbid disorders. The CDMs provide additional information. First, one
could argue that the CDM analyses corroborated the conclusion from nonparametric
IRT and LCA that the data were largely unidimensional, because classes showed
a cumulative structure. That is, Class 0000 represents no disorders (45.3%),
Class 1000 represents only an anxiety disorder (8.7%), Class 1010 represents
anxiety and thought disorder (6,5%), Class 1110 represents all disorders but major
depression (12.6%), and Class 1111 represents all disorders (6%). The classes can
be considered ordered. Because over 73% of the sample belonged to these classes,
a unidimensional scale may be appropriate for the majority of the sample (also, see
von Davier & Habermann, 2014). However, to obtain a finer-grained picture, CDMs
can retrieve information from the data that IRT models cannot.
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Chapter 3
The Reparameterized Unified Model
System: A Diagnostic Assessment
Modeling Approach

William Stout, Robert Henson, Lou DiBello, and Benjamin Shear

Abstract This chapter considers the Reparameterized Unified Model (RUM).
The RUM a refinement of the DINA where which particular required skills that
are lacking influences the probability of a correct response: Hartz, A Bayesian
framework for the Unified Model for assessing cognitive abilities: blending theory
with practicality. Dissertation, University of Illinois at Urbana-Champaign, 2001;
Roussos, DiBello, Stout, Hartz, Henson, and Templin. The fusion model skills diag-
nosis system. In: JP Leighton and MJ Gierl (eds) Cognitive diagnostic assessment
for education: Theory and applications. New York, Cambridge University Press,
pp 275–318, 2007). The RUM diagnostic classification models (DCM) models
binary (right/wrong scoring) items as the basis for a stills diagnostic classification
system for scoring quizzes or tests. Refined DCMs developed from the RUM are
discussed in some detail. Specifically, the commonly used “Reduced” RUM and
an extension of the RUM to option scored items referred to as the Extended RUM
model (ERUM; DiBello, Henson, & Stout, Appl Psychol Measur 39:62–79, 2015)
are also considered. For the ERUM, the latent skills space is augmented by the
inclusion of misconceptions whose possession reduces the probability of a correct
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response and increases the probability of certain incorrect responses, thus providing
increasing classification accuracy. In addition to discussion of the foundational
identifiability issue that occurs for option scored DCMs, available software using
the SHINY package in R and including various appropriate “model checking” fit
and discrimination indices is discussed and is available for users.

3.1 Introduction

Restricted latent class modeling (RLCM) is a major diagnostic classification model-
ing (DCM) approach. The parametrically lean DINA RLCM (Haertel, 1989; see also
Chap. 1: von Davier & Lee, this volume) and the more nuanced parametrically rich
Unified Model (DiBello, Stout, & Roussos, 1995), denoted UM, have helped initiate
a strong renaissance of RLCM-based DCM research and applications. This chapter
considers the Reparameterized Unified Model (Hartz, 2001) for binary data, denoted
RUM, and the option scoring based Extended RUM model (DiBello et al., 2015),
denoted ERUM. The chapter’s central focus is how the RUM and its ERUM gener-
alization provide a highly useful approach for statistically analyzing multiple choice
(MC) test data to diagnose student knowledge when using diagnostic assessments
(DAs). Herein, we define a diagnostic assessment (DA) to be any assessment that
classifies students in multidimensional detail, such as classifying examinees as one
of 2D elements of a discrete 0/1 mastery/nonmastery D dimensional latent “skills”
space.

This chapter summarizes the RUM/ERUM model-based diagnostic test data
analysis system, which for simplicity is referred to as the RUM diagnostic system.
Here “system” refers to the combination of DCM model, estimation procedure
and classification algorithm, model-data-checking (namely, fit and discrimination),
and software that carries out the complete RUM system. In addition to the RUM
and its “Reduced RUM” (RRUM) reduction, which are introduced below, the
RUM diagnostic system also allows selection of the ERUM model. The main
goals of a RUM/RRUM or ERUM based analysis are model estimation (especially
the item response functions, IRFs) and subsequent examinee classification. To
adequately carry out these inferences, the RUM diagnostic system includes a user-
available simulation option that uses the estimated DCM model, allowing the user
to roughly predict the RUM diagnostic system’s classification performance for her
DA application. As explained in the Software section, the various components of
the RUM diagnostic system are available in a SHINY (see Beeley, 2013) driven
user interface. Of course, there are other software options available when using the
RUM/RRUM DCM model (e.g., Chiu, Kohn, & Wu, 2016: uses an EM algorithm
approach; Feng, Habing, & Huebner, 2014: also uses an EM approach; Chung &
Johnson, 2017: uses MCMC; and Chap. 24: Zhang, Douglas, Wang, & Culpepper,
this volume: also uses MCMC). That is, no claim is being made here that one should
use our RUM system software, nor our MCMC approach!: it is merely available for
interested users.

http://dx.doi.org/10.1007/978-3-030-05584-4_1
http://dx.doi.org/10.1007/978-3-030-05584-4_24
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In addition, this chapter discusses the challenging foundational issue of the
intrinsic non-identifiability that can occur for ERUM and similarly structured
option-scoring-based DCM modeling of multiple choice (MC) items. Also, the
chapter summarizes a large number of simulation studies (largely unpublished) and
surveys various RUM-system-based real data applications. These simulation and
real data studies combine to demonstrate the RUM system’s DA potential, both
when using right/wrong scoring RUM/RRUM and option scoring ERUM.

3.2 The RUM and RRUM

We first introduce the more often used and parametrically simpler RRUM and then
present the less parsimonious RUM, RRUM’s historical precursor. The RRUM
(unlike the RUM, as clarified below) is a RLCM. In particular, its D dimensional
latent space {a} of examinees with latent distribution (or prior distribution from the
Bayesian viewpoint) P(a) consists entirely of binary “skills”, referred to sometimes
as attributes (mastered or not: αd = 1 or 0 respectively; d = 1, . . . , D),
resulting in a RLCM with 2D possible latent classes. Let P (x|α) denote the RRUM
RLCM where x denotes the test response vector of a K item test. Assuming local
independence (LI) and examinees responding independently, specifying the RRUM
model amounts to specifying the IRF P(xk|a) for each item k with xk=1 denoting a
correct response and 0 an incorrect response, thus producing the RLCM.

The RRUM, like many other DCMs, requires that an (item × skill) 0/1 incidence
matrix Q[K × D] be specified for the test. The test’s design matrix Q specifies for
each item which skills are required to produce an “item master”: An examinee
a is an item master of item k provided all the item’s required skills (all d such
that qkd = 1) are mastered. Ideally, P(xk|item master) ≈ 1, at least roughly so.
A critical requirement for effective RRUM, or other DCM, modeling is that the
Q matrix be reasonably accurate, either as developed via expert assignment (via
cognitive scientist, curriculum specialist, student think-alouds, classroom teacher,
etc.) alone or, ideally, augmented by data-driven Q estimation and/or by Q model fit
considerations, noting the issue of Q matrix determination for DCMs is discussed
in Chap. 12 (Liu & Kang, this volume) and is briefly addressed for RUM/ERUM
below. By “reasonably accurate” is meant that the specified latent space includes
most of the important skills affecting item performance and further that Q captures
for each item the particulars of which skills influence the item responses.

The RRUM IRF defines the probability of a correct response given an examinee’s
mastery profile as

P
(

Xk = 1 a
)
= πk

D∏

d=1

rqkd(1−αd)
kd , (3.1)

http://dx.doi.org/10.1007/978-3-030-05584-4_12
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where 0 < rkd ≤ 1, 0 < πk ≤ 1 are assumed. If a is an item master and thus has
mastered all the required attributes for that item (d required if qkd = 1), according
to Eq. 3.1, πk = P(Xk = 1| a), thus providing the substantive interpretation of πk.
When a lacks one or more required skills, a is termed an item non-master. As Eq.
3.1 states, for each required skill αd not mastered, rkd < 1 supplies a skill-specific
penalty, providing the interpretation of rkd. Note from the conjunctive modeling
viewpoint that the DINA is fully conjunctive (except for noise) in the sense that
P(Xk = 1 a) for DINA is the same value for all levels of non-mastery. By
contrast, the more nuanced RRUM distinguishes between the various levels of item
non-mastery and thus can be thought of as a merely “semi (as opposed to fully)
-conjunctive” model in the sense that when lacking one (or more) skill, mastery of
some of the other skills increases the probability of a correct response. Thus the
RRUM, in contrast to the DINA, has the characteristic that differing levels of item
non-mastery a < a

′
imply that P(Xk = 1| a) < P(Xk = 1| a′)< P(Xk = 1| item master),

and thus the closer to item mastery the more nonmastery is compensated for.
In its original non-reduced form, RUM also includes a Pc(η) multiplicative

factor: according to

P (Xk = 1|a) =
[
πk
∏D

d=1
r
qkd (1−αd)
kd

]
Pc (η) , (3.2)

where Pc(η) ≡ Logit(η + c) is a Rasch IRF probability with the posited continuous
N(0, 1)1 latent η encapsulating the combined influence of any influential skills not
built into the specified latent class space, with c defining a completeness factor. A
large value, e.g., c = 2 would indicate that the specified discrete D dimensional
latent skills space captures most of the systematic IRF variation for item k and
hence that approximate completeness of the posited latent learning space holds.
Interestingly, sometimes RUM-based applications analyses display better fit with
this continuous latent trait present whereas other analyses do not benefit from it (see
the RUM/ERUM Applications section).

The RUM diagnostic system (RUM model, MCMC Estimator, Model-Data
Checks, Simulator, Classifier)

The RUM diagnostic system was originally developed in the pivotal Hartz
thesis and is further refined and summarized in the Roussos, DiBello, Stout, Hartz,
Henson, and Templin (2007) chapter. Its user-available software package is named
Arpeggio (see the manual; DiBello & Stout, 2008). Hartz proposed the RUM as a
reparameterized version of the Unified Model, with the RUM parameters identified

1The original RUM (DiBello et al., 1995) also allowed compensatorily for mixing in the possible
influence of non-Q based alternative cognitive strategies, but this added complexity has not been
implemented anywhere and is thus not discussed herein. Indeed this multi-strategy generalization
seems unrealistically complex and further in most cases not necessary for effective use of the
RUM. Further, the original RUM had a slightly richer nonidentifiable parameterization than the
RUM does with πk in 3.2 replaced by a product of D substantively meaningful but nonidentifiable
multiplicands πkd .
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unlike for the original Unified Model by DiBello et al. (1995). An MCMC-based
hierarchical Bayesian estimation system was developed by Hartz together with
customized fit and discrimination indices (this in cooperation with Louis Roussos).
The RUM system software, Arpeggio, classifies examinees using this estimated
RUM, possibly reduced to RRUM, as detailed in the Software section below.

The RUM Versus Fusion Model (FM) Terminology Confound The original RUM
diagnostic system built around Arpeggio was dubbed the “Fusion Model Skills
Diagnostic System” in Roussos et al. (2007). Although appropriately stressing the
need for and carefully describing the complete RUM diagnostic package, the paper’s
terminology choice of “Fusion Model” produced an unnecessary terminology
confound in that FM and RUM are exactly the same family of DCM model IRFs,
sometimes including the Pc(η) completeness factor as in Eq. 3.2 but sometimes
without it as in Eq. 3.1. Following the literature, it would be correct to call Eq.
3.1 either the FM or the RRUM IRF. However, going forward, in this paper and
elsewhere, “RRUM” (or “RUM” if the η factor is present) is recommended for
clarity. Also, for clarity note that below throughout “the RUM diagnostic system”
indicates the current diagnostic system (see Software section below) that allows the
user to also choose the option scoring ERUM extension in addition to RUM or its
RRUM reduction.

3.3 ERUM, the Option Scoring and Skills/Misconceptions
Based Latent Space RRUM Generalization

As an extension of the RRUM, the ERUM models an examinee’s MC item response
beyond only correct or incorrect. Specifically, the ERUM is a multinomial extension
of the RRUM. Furthermore, the ERUM latent space includes “misconceptions”,
defined below, in addition to “skills” in its latent space. ERUM’s purpose is to
improve upon the effectiveness of the RRUM and other right/wrong scoring DCMs
by capturing most of the diagnostic information available from a DA-focused well-
designed MC test.

3.3.1 The Formative Assessment MC Challenge
as Aided by ERUM

DAs have many uses, among which DAs are sometimes used to assist in conducting
classroom formative assessments. We define a formative assessment (FA) to be any
assessment whose goal is to enhance learning while instruction and learning are
occurring. FAs can include many different item types of varying complexities and
formats, noting that this includes MC items, the modeling focus of the RUM system.
Indeed, the authors’ belief is that well-designed MC assessments, especially when
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modeled by ERUM, will prove to be effective enough to become a valuable FA
tool in the classroom. To illustrate, suppose the broad goal of a 6 week 8th grade
algebra unit is the mastery of 8 essential curriculum-specified skills that combine to
approximately capture unit competence. Then, can a 15–20 item MC mid-unit quiz
be designed that reasonably assesses each student’s attribute profile, with respect to
the 256 possible profiles, as an interim assessment to guide instruction during the
final 3 weeks?

Currently, most DCM modeled MC DAs only assess skills mastery/nonmastery
and indeed do so only via right/wrong item scoring. In addition, instructors using
MC tests to do FAs are often forced to use a curriculum-provided summative MC
quiz or test not designed as a FA, which is also suboptimal. The use of MC tests
should and can be improved upon in several critically important ways, which also
adds to the motivation for introducing the ERUM. Specifically, MC FAs can be
designed to detect incorrect or incomplete modes of thinking via test MC (or coded
short answer) items created with carefully designed distractors that are attractive to
examinees possessing particular incorrect or incomplete modes of thinking, labeled
“misconceptions” for convenience.

Incomplete or incorrect modes of understanding often occur during the learning
process. So FAs, in addition to assessing desirable modes of thinking and under-
standing (deemed “skills”), need to assess such misconceptions with the goal of
supplanting them with improved states of understanding. Thus, both “skills” and
“misconceptions” are merely convenient generic labels to encompass a wide variety
of cognitive/instructional constructs that, conditional on the student’s latent state,
control (via each item’s IRF) the probabilistic attractiveness of each option of each
item. Both skills and misconceptions are called “attributes”. As an illustration,
suppose that, for a MC question with stem 1

3 + 2
5 , the responded MC option is 3

8 .

This response clearly provides evidence of a particular misconception about adding
fractions, even though it is possible that in individual cases this option was chosen
via guessing.

We argue that an essential step in having truly effective MC instruments used
for DA purposes is the introduction of useful DCMs that model option scoring and
hence can capture diagnostic information given by “distractors”. Using information
from distractors is one main motivation for the ERUM generalization of the RRUM.
We note that there are other existing psychometric approaches besides ERUM that
link MC options to both desirable and undesirable modes of thinking, including the
Ordered Multiple Choice Model (Briggs, Alonso, & Wilson, 2006), the MC-DINA
model (de la Torre, 2009, see also Kuo et al., 2017), and the Scaling Individuals and
Classifying Misconceptions (SICM) model (Bradshaw & Templin, 2014).

It must be noted there is a “catch 22” aspect for achieving effective DCM
modeled MC DAs: Well-designed option scored MC tests will likely fail to provide
effective diagnostics, especially of misconceptions, if the DCMs used are not option
scored with misconceptions as well as skills present in the latent space. On the
other hand, effective option scoring based DCMs like ERUM could seem not more
useful than right/wrong scoring DCMs because many of the existing MC DAs fail
to have been constructed to provide valuable information about both skills and
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misconceptions via carefully chosen incorrect option responses. That is, effective
option scoring based DCMs and MC DAs with much information in their incorrect
options must coexist for MC DA effectiveness to be realized.

3.3.2 ERUM Generalization of the RRUM

Modeling Details Let a given DA have D attributes as its latent space. Such
attributes must be carefully selected and can include both skills and misconceptions.
Ideally, these attributes were defined as a first step in a DA test design. However, the
attributes could be defined as the result of an analysis of an existing assessment
being retrofitted as a DA, which may still be useful even if less desirable. For
simplicity, ERUM assumes dichotomously coded attributes of thinking that a
student either possesses or lacks. That is, for ERUM we do not (yet) model
polytomous attribute levels, nor a continuous residual completeness factor as in the
RUM, noting 3.2.

The latent space for a given set of D attributes can be represented by the
set of all 2D vectors a = (α1, . . . ,αD), where αd = 1/0 according as the
student possesses/lacks, respectively, attribute d. Note the shift in language from
“master/non-master of a skill” to “possession/non-possession of an attribute”.
Whether αd = 1 is encoded as increasing or decreasing option attractiveness or
not depends on whether αd is a desirable or problematic component of thinking
combined with whether the option is a correct or incorrect option. Importantly, it
may be or likely will be the teacher’s focus to identify misconceptions possessed
as much as or more than detecting skills mastered. Clearly correct/incorrect scoring
and construction of MC tests with incorrect options that are not designed from this
FA perspective (i.e., the detection of misconceptions being instructionally desirable)
are both seriously suboptimal.

3.3.3 Expanded Definition of Q

The required ERUM Q matrix is a generalization of the usual DCM Q in two vital
ways. First, Q must have a row for each response option of each item, instead of
just one row per item as in the dichotomous scoring case. The Q matrix link vector
for option h = 1, . . . , H of item k is the (k, h) row qkh = (qkh1, . . . , qkhD) of Q.
So, the Q matrix {qkh} for a test with 30 items for which each item has 4 options
will have 30 × 4 = 120 rows and D columns. Second, if incorrect options and
misconceptions are to be well modeled, each Q matrix entry for the ERUM needs
to be any of three possible values, chosen to be 0/1/N for convenience: The latent
states a that are cognitively most strongly attracted to option h of item k must satisfy
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for each d = 1, . . . , D for which qkhd �= N that αd must match qkhd (i.e., both = 0
or both = 1). In other words, to maximize probabilistic attractiveness:

• if qkhd = 0 then the student must lack attribute d, i.e., αd = 0,
• If qkhd = 1 then the student must possess attribute d, i.e., αd = 1, and
• If qkhd =N then αd regardless of its value does not affect the strength of attraction

to option h.

The key difference between this enhanced Q and the usual DCM Q is the
introduction of lacking an attribute (in addition to the usual possessing of an
attribute) as increasing or decreasing the relative attractiveness of an option. For
example, lacking a misconception can make the correct answer more attractive and
lacking a skill can make a particular incorrect option more attractive. Similarly,
lacking a misconception can make a particular incorrect option less attractive and
lacking a skill can make a particular incorrect option more attractive.2

One clerical detail becomes important here: Notice that the value qkhd = 0 for
ERUM (must lack attribute d) has a very different interpretation from that of qkd = 0
(attribute d value has no influence) in the dichotomous DCM case, namely qkhd = 0
means the lacking of attribute d makes option h more attractive. qkhd = 1 has the
same meaning in both cases. An ERUM Q value N has the same meaning that 0 has
in the traditional dichotomous Q DCM case discussed in many other chapters in this
handbook, namely qihk = N means that neither possessing nor lacking attribute k
matters for option h attractiveness.

3.3.4 The ERUM IRF

Given the forced choice (one option must be selected) imposed by the standard
MC format, ERUM posits that a student’s strategy for responding to an item can
be categorized as one of two types: “cognitive” or “guessing”. A cognitive strategy
means the student’s possession of or lack of the various components of her a guide
the option selection via a reasoned pattern of thinking. A “guessing” strategy
occurs when the student selects randomly from the available options with equal
probability.3 The ERUM is a mixture model of these two strategies, as follows.
Suppressing item index k, the ERUM’s cognitive kernel FERUM, h(a) is defined by:

FERUM,h (a) = πh

∏
d:qhd �=N

r|qhd−αd |
hd . (3.3)

2It is perhaps mathematically equivalent to let misconceptions be represented by the negation of
skills. We avoid this because it seems cumbersome for users.
3Restricted options guessing has been modeled but is not discussed here.
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Then the ERUM item mixture model IRF is given by

P (h|a) = FERUM,h (a)
Sa

ωa + 1

H
(1− ωa) =

⎧
⎪⎪⎨

⎪⎪⎩

FERUM,h (a)+ (1− Sa)
1

H
if Sa < 1

FERUM,h (a)
Sa

if Sa ≥ 1

(3.4)

where

Sa ≡
H∑

h=1

FERUM,h (a) ; ωa = min {1, Sa.} .

Note that both FERUM, h(a) and P(h| a) for each item form a matrix of dimensionality
(# options) ×2D.

In some sense, the guessing strategy occurs when the options combine to be
relatively unattractive. Then examinee responding is a mixture of a weak cognitive
strategy overlaid with some guessing. For example, taking H = 3, if a column of F

is
(

1
4

1
8

1
16

)
′ then S = 7

16 and the student augments this weak cognitive signal to

produce the P column
(

1
4 + 9

48
1
8 + 9

48
1

16 + 9
48

)
.The cognitive kernel captures how

the examinee would respond to each option if there was no interference (guessing
or competition) from the other options, that is if Sa = 1 for every a. Note a that the
model assumes that the mixture cognitive probability ωa is controlled by the item
specific cognitive kernel F H × 2Dmatrix’s column sum Sa. The intuition is that if
the combined cognitive attractiveness of the various options is weak then guessing
(G: Sa < 1) is likely to occur and this guessing probability is then parsimoniously
modeled by the RHS’s second summand in the first line of Eq. 3.4. Note, of
serious consequence, that if the opposite occurs and the combined attractiveness
of the options is cognitively strong, “competition” (C: Sa > 1) occurring among the
options, then the natural attractiveness of each option h is multiplicatively diluted by
the sum of their attractiveness, i.e., via 1/Sa in the second line of 3.4. This dilution
implies that excessive competition or excessive guessing both degrade the diagnostic
power of the item to diagnose examinee a, and it is a strength of the ERUM model
that it validly captures this important C/G degradation aspect of MC testing.

3.3.5 Identifiability of the ERUM4

Non-identifiability (“nonid”) for an item is defined as holding if there exist item
parameterization values β �= β

′
that both produce the same model IRF model P

4This somewhat technical section can be skipped over, but with the caveat that identifiability
is endemic to DCM option scored MC modeling, and this section helps explain this perhaps
surprising claim.
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in Eq. 3.4. Whereas identifiability (“id”) always holds for RRUM and, closely
associated, the RRUM item parameters are nicely interpreted as discussed above, by
contrast, nonid and hence non-interpretability may hold for some ERUM models,
this in an algebraically deep way. There is not space, nor is it appropriate given
the focus of this article, for a deep analysis of this nonid to be given herein (a
thorough discussion of the issue is being submitted elsewhere in the near future).
Certain aspects of this ERUM nonid illuminate and relate to (i) statistical inference
of the ERUM and user interpretation of its estimated parameters and (ii) the intrinsic
nature of nonid when well modeling MC examinee behavior at the option level.
Both (i) and (ii) are important from the user perspective. First, given a reasonable
sized dataset (that is, sufficient number of examines and of items to produce
effective estimation of identifiable parameters), the ERUM model IRF probabilities
Pk(h| a)h, k, a can always be well estimated because the item model Ps are always
identifiable. The hope would then be that the ERUM model’s item parameters
β ≡ {π , r} (see Eqs. 3.3 and 3.4) would also all be id and hence well estimated.
But ERUM parameter id is simply not the case in general!

The reason for this is informative, not only statistically but substantively: First,
for a fixed item we note from Eq. 3.4 it follows for every h �= h

′
pair and every

latent a that one of the following two relationships holds between model P and the
cognitive kernel F:

FERUM,h (a)

FERUM,h′ (a)
= PERUM,h (a)

PERUM,h′ (a)
when Sa ≥ 1 (competition, C, holds) and

FERUM,h (a)− FERUM,h′ (a) = PERUM,h (a)
− PERUM,h′ (a)when Sa < 1 (guessing,G, holds) .

(3.5)

Equation 3.3 shows how a given set of item parameter values β produces the
cognitive kernel F appearing in Eq. 3.4. Each actual MC item has its own unique
true F. We have mathematically proved elsewhere that β �= β

′
translates to their

corresponding pair of cognitive kernels satisfying F �= F
′
. So nonid holding for some

specified β parameterization is thus equivalent to nonid holding for the cognitive
kernel F.That is, nonid holding implies one can have different items, thus each with
their own unique different F, yet all having the same IRF P of Eq. 3.4. That is, nonid
is intrinsically about the relationship of the cognitive kernel F to the overall item
probability model P. As a consequence, informally put, the data, while telling us
what the item’s model P is at least approximately, sometimes cannot tell us anything
about which item cognitive structure F has produced it.

More deeply, nonid is caused by the fact that in the F → P ERUM model
specification process given by Eqs. 3.3 and 3.4, the true cognitive structure F
gets distorted and hence masked by the intrinsic forced competition and/or forced
guessing among options that occurs when an actual examinee responds to an
actual MC item. Specifically, when for Examinee a, Sa �= 1, then F gets modified
(distorted) via Eq. 3.5 to produce P. All this suggests to the authors that other option
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scoring well-fitting MC DCMs, such as EDINA (DiBello et al., 2015), will have
nonid analogous to ERUM nonid occurring.

Finally, when parametric nonid is discovered, namely multiple β producing the
same P for at least one of the items of the test, we then know that there are multiple
sets of item parameters capable of producing the item’s IRF P and we cannot
know from the data which one is the true set of item parameters that produced
the data. And, it thus follows that estimated item parameter interpretation becomes
impossible for nonid parameters. To be absolutely clear, suppose we do a simulation
of a nonid item using a particular “true” item kernel F with ERUM data produced
via the simulation. Then when we MCMC estimate the item’s ERUM model from
this simulated data, we plausibly could infer that a substantively different item (a
different kernel F

′
and thus a corresponding different β

′
that also would produce the

simulation’s model P) produced the data, noting all such admissible Fs here seem
equally plausible from the data-driven statistical inference perspective. [Statistically
speaking, MCMC estimation of β and hence of F, may simply fail of course because
of nonid, which the RUM system thus must deal with, as explained below.] This
is sufficient background for the reader to understand how nonid comes about for
ERUM. However, noting this discussion is quite abstract, we give a simple concrete
numerical example of a nonid ERUM item next.

Example Let H = 2 and D= 2 (for simplicity and clarity) and let Q=
(

0 1
N 0

)
. Let

the a column order for F, P be 11, 10, 01, 00. For convenience replace the double
subscripted rhd by rd, sd.Then

F = π1r1 π1r1r2

π2s2 π2

π1 π1r2

π2s2 π2
.

Suppose the 5 parameter values β =(π1, π2, r1, r2, s2) are such that the column
sums Sa >1 for all four a, the CCCC column case for F. The id question is whether
“knowing” the 8 Phj(h = 1, 2; j = 1, 2, 3, 4) values, either because P is known as
in a simulation study or because P is well estimated, determines the five parameter
values and thus id would hold. First, via Eq. 3.5, these eight P values only determine
F via determining the four

Fhj
Fh′j

= Phj
Ph′j

equations. Thus, there would appear to be

four P-determined ratio-based constraints on F and hence on β, leaving 1 degrees
of freedom (DF). Not true!: First, the determined third column ratio and the first
column ratio combine to determine π1r1

π2s2
/ π1
π2s2

= r1. Out of the four column ratios,
we first find two algebraically independent determined ratios: π1

π2s2
and π1r2

π2

. There
are no more independent expressions! Because r1 is known, the second and fourth
column ratios contribute only one independent determined ratio. We thus have five
parameter unknowns with three independent column ratios determined constraints,
producing DF = 5 − 3 = 2. (DF being the dimensionality of the nonid space) Thus
the nonid β space is two dimensional.

This is aptly illustrated by giving two distinct sets of β → β
′

transformations
that produce the same model P. First, let for some c > 0
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π ′1 = cπ1, π
′
2 = cπ2 with r1, r2, s2 held constant.

We claim this transformation leaves the model’s P values unchanged. To see this,
first note by Eq. 3.5 that P (h|a) = FERUM,h(a)

Sa
for all four columns. Consider

Column 2 (the 10 column). S10 = π1r1r2 + π2. Then, taking h = 1 for example,
P (1|10) = π1r1r2

π1r1r2+π2
. Thus, substituting π ′1 = cπ1, π ′2 = cπ2, (rescaling the π )

with r1, r2, s2 held constant,

P ′ (1|10) = cπ1r1r2

cπ1r1r2 + cπ2
= π1r1r2

π1r1r2 + π2
= P (1|10) .

In this manner, we see the π are scaling-wise nonid because P = P’. This is typical
of course of nominal scoring models where division by column sum occurs and
hence a resulting scaling nonid occurs.

But there is a second source of nonid that is demonstrated by a second β → β
′

distinctly different transformation that leaves the model’s P values unchanged. Let
for some c’ > 0 that preserves the all columns C structure

π ′2 = c′π2, r′2 = c′r2, s′2 =
1

c′
s2, π

′
1 = π1, r

′
1 = r1

To see that nonid holds, consider P
′
(1| 11) = π ′1r1

π ′1r1+π ′2 1
c′ s2
= 1

1+ π ′2
π ′1

s2
r1c
′
= 1

1+ π2
π1

s2
r1

=
P (1|11), etc. Clearly this second transformation, without giving the justification
that produced it, has a certain opaque quality about it. But it is nonetheless a
simple consequence of our general ERUM nonid theory (applies for all H, D, Q;
to be submitted soon). Let’s do a numerical reification: Let c′ = 3

4 . π1 = π2 =
1 and r1 = r2 = s2 = 2

3 . T hen F =
2
3

4
9

2
3 1

1 2
3

2
3 1

and F ′ =
2
3

1
3

2
3

3
4

1 1
2

2
3

3
4

, noting both

have all C columns. Note, by direct substitution that P = F
S
= F ′

S′ and hence both
F and F’ produce the same P.

Because the interpretation of a model’s parameters is always important, we
consider the issue of the user interpretation of ERUM item parameters when
nonid holds: In general, a model is well parameterized if distinct parameterizations
β �= β

′
produce distinct substantive interpretations, or, simply put, the parameter

values always have intrinsic (substantive) meaning. Interestingly, the ERUM is well
parameterized by β = (π , r) even though nonid can hold. Nonid simply means
that the data does not reveal the unobservable, but still substantively meaningful,
cognitive structure that would hold if there was no guessing or competition (if all
the item’s S= 1 actually, forcing P= F) among the options. So, this provides a clear
interpretation of the ERUM β (even if we sometimes cannot estimate it because of
nonid!). β simply quantifies the item cognitive structure F we would observe if
there was no interaction among the item’s options, which never happens in practice
of course. But, the whole point, β still has substantive meaning! But, we cannot
estimate β and moreover its virtual meaning is useless to the user.
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Fortunately, when ERUM is assumed for the RUM diagnostic system, an alter-
native identifiable β0 = (π0, r0), and hence estimable from data, parameterization
has been derived. This alternative parametrization β0 has essentially the same useful
interpretation as the 0/1 scored RRUM β = (π , r) parametrization described in the
paragraph following Eq. 3.1. Thus, importantly, evaluation of ERUM modeled item
classification quality is possible via this alternative ERUM parameterization even
though the RRUM β = (π , r) parametrization is sometimes not identifiable and
its estimation will in general fail. Space constraints preclude a detailed description
of the definition of this user-interpretable identifiable transformation, which allows
users to evaluate item quality via well estimated (π0, r0) ERUM parameter values.

Now we consider MCMC estimation of β in the face of nonid. Clearly, if
nonid holds then to successfully estimate β we need to constrain one or more β

components so β, and hence F, then becomes id. The number of such components of
β required to be constrained is labeled the degrees of freedom (DF). DF5 is thus the
dimensionality of the nonid indeterminacy. Thus nonid holds if and only if DF > 0.
Our ERUM id producing MCMC item parameter estimation algorithm carefully
constrains, as it must, DF5 components of β for each nonid item, noting that which
components are constrained matters to achieve id estimation success. Suppose for an
item that the Ps are determined (i.e., known), or at least well estimated from the data.
The algebraic structure of the ERUM model produces an algebraically deep theory
concerning the DF constraints needed to produce id, as the above example suggests.
Here we simply state the two structural entities that control the DF, sometimes
producing DF = 0, namely id, and sometimes DF > 0, namely nonid, first noting
via Eq. 3.5 that knowing the item’s H × 2D values determines only (H − 1)× 2D of
the H × 2D F values, opening up the possibility of nonid.

However,

• The columns of the matrix F that are G (i.e., Sa < 1 for Column a), as determined
by the parameter values of β, each have their H component values determined
by the either known or well estimated P, thus reducing the DF, as desired. For
example, for a determined model P (well estimated say) if πr is in a G column
then πr is determined, but not necessarily its separate values.

Similarly, but in a more complex manner:

• Ns in Q determine, via the “known” Ps, certain parameter values of β in ways
too complex to describe herein, thus reducing the DF, as desired.

Thus, guessing columns occurring in F and Ns occuring in Q each determine
additional parameter values and thus reduce the DF and hence either reduce the

5DF has a mathematical meaning: the number of elements that need to be constrained to uniquely
determine the full vector. That is how DF is used herein. Note here however that DF > 0 is a bad
thing that has to be changed to DF = 0. This is contrary to many statistical applications where
DF > 0 is beneficial, such as in linear models where DF > 0 allows the size of the residual variance
to be estimated and estimated well when DF > 0 is large.
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dimensionality of the nonid β space or even cause id to hold. Specifically, enough
G columns and/or enough Ns in Q produce id, as desired.

3.4 The GDCM Generalization of the ERUM

Other cognitive kernels besides in Eq. 3.3 can be used in our option scored DCM
framework, which we refer to as Generalized Diagnostic Classification Models
(GDCM). For example, various compensatory models, such as a compensatory
version of the RRUM can be introduced. Parametrically simpler models, such as
the DINA could also be used, producing the Extended DINA (EDINA) form of the
GDCM:

FEDINA,kh (a) =
{

1− skh if αd = qkhd for all d such that qkhd �= N

gkh if there exists a d such that qkhd �= N and αd �= qkhd
. (3.6)

Here, the DINA-based cognitive kernel converts the DINA- matching of required
skills to matching all non-N elements of {qkhd}, with “slip” parameters skh and
“guessing parameters” gkh. The non-negative kernel function FEDINA, kh(a) results
in an “all-or-nothing matching of all non-N elements” for EDINA that is analogous
to DINA’s P(Xk = 1| a) determined via the matching or non-matching in a of all the
required item k skills. Note that nonid can hold for other GDCM mixture models
similarly as it does for ERUM. Indeed, largely undeveloped herein, nonid seems a
problem for non GDCM option scoring-based DCM models.

3.5 Model-Data Checking of the RUM/ERUM

Some Introductory Remarks “Model-data checking” refers to both model-data-fit
and discrimination investigations, often involving specific indices. Both fit and
discrimination are qualities of the model that should be examined in a thorough
RUM system application. All the fit and discrimination approaches described in
this section can be applied to both RRUM and ERUM. However, in each case, we
explain via either RRUM or ERUM, with the understanding that each approach also
transfers to the other model.

Fit A model can fit the data poorly for two main reasons, lack of theoretical
model fit or poor model estimation due to insufficient data or a poor choice of
the statistical estimation procedure (to illustrate the latter, even if a perfect fitting
quadratic regression is chosen, failing to adjust for overly influential data points
can for some data sets produce poor estimation of the true regression line). Thus,
the performance of the statistical methodology (and even the quality of the data)
is a component of model-data fit assessment. Simply put, a good fit requires a
good model choice, a good choice of statistical methodology, and good data. Thus
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fit indices and approaches address both model and methodology, and involve the
data too. DCMs have several major components: the latent space {α}, as specified
in the ERUM case by the listing of the major skills and misconceptions assumed
to influence examinee responding, “design matrix” Q, the test’s IRFs as specified
by item parameters, and the latent space distribution P(α), possibly parameterized.
Thus, in order to claim a good model fit for the intended purpose of DCM analysis
namely examinee diagnosis and/or test design and evaluation, the fit of Q, of the
IRFs, and even of P(α) all can come into play.

In this regard, the importance of the latent class distribution P(α) needs clari-
fying. First, a goal of the inference itself can be to know certain aspects of P(α).
Such knowledge can be used to learn how the various skills and misconceptions
are associated with each other in the population of test takers. Further, if the test-
taking population is of user focus, then P(α) provides aggregated information on
classroom learning. Second, even if inference about P(α) is not of importance to the
user, estimating P(α) accurately will improve both IRF estimation and examinee
classification. In this regard, the RUM system does estimate P(α). Related, our
MCMC approach casts the RUM family of models in a Bayesian framework,
which requires defensible specification of a prior for the model’s parameters, which
includes the parameterization of P(α).

Next some of the RUM system’s fit methods are summarized. For more detailed
descriptions, including some applications to real data settings, the reader is directed
to Roussos et al. (2007), DiBello et al. (2015), Shear and Roussos (2017), and the
DiBello and Stout (2008) RUM system Arpeggio software manual. Related, Chap.
13 (Han & Johnson, this volume) discusses fit for DCM models in general.

A MAD (Predicted − Observed) Based Index of Fit (MAD = Mean Absolute
Deviation). We consider the ERUM setting, with the simplification to the RRUM
setting obvious. Our Dk, h fit index measures estimated model predicted IRF misfit
with the data at the individual item, option level. Viewed over all items k and options
h, if the fit is good, the estimated DCM IRF probabilities P(Xk = h | α̂, β̂) should
typically deviate at most moderately from the corresponding observed proportions
Nα̂,k(h)

Nα̂
, where Nα̂ is the number of examinees who were classified as α̂ via the

MMAP (Marginal Maximum a Posteriori) classifier (or other) using the fitted
model. Here Nα̂,k(h) denotes the number of examinees classified as α̂ who selected
response option h for item k. Our Dk, h index developed from these building blocks is
a weighted average of MADs using the proportion of examinees in each α̂ category
as weights,

Dk,h =
∑

α̂

Nα̂

N

∣∣∣∣P(Xk = h
∣∣̂α, β̂

)− Nα̂,k(h)

Nα̂

∣∣∣∣ . (3.7)

Note that a particular Dk, h may be large for any of three intertwining reasons: model
bias (i.e., poor model choice), model estimation error, and/or classification error.
Because we want to detect lack of fit caused by the presence of any combination
of these, this item option specific set of indices seems to provide a good overall

http://dx.doi.org/10.1007/978-3-030-05584-4_13
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assessment of fit. Note that via simulation studies, these three sources can be
disentangled, for example via substituting the true β for β̂ and thus isolating the
performance of the MMAP classification procedure (our usual classification method
choice).

AIC and BIC Standard indices of fit, particularly AIC and BIC, are available for
both RUM and ERUM. For example, see Shear and Roussos (2017) geometry DA
ERUM study.

MCMC Chain Convergence Assessment As remarked, poor statistical performance
will produce lack of fit. MCMC is at the core of the RUM system’s statistical
approach. Thus, poor RUM system MCMC convergence will produce poor fit. Lack
of MCMC chain convergence can have various causes including a poor MCMC
design (such as having an inadequate burn-in period), a badly fitting model, or just
poor data. The point is that good chain convergence is a necessary condition for a
successful RUM system application and hence must be checked as part of the RUM
System Fit protocol. An informal visual check of chain graphs is recommended,
with lack of drift, sufficient noisiness (jiggle), etc., all indicators of appropriate
convergence (Gilks, Richardson, & Spielgelhalter, 1996). Beyond visual inspection
of the chains, Gelman and Rubin (1992) defined the widely used index R to measure
the extent of convergence when using multiple chains, this multiple chain with index
R computation being built-in option for the RUM system. It is recommended that
both visual inspection and index computation(s) be used to assess convergence.
In the software section of the chapter we note that specific approaches have been
developed to assess convergence of MCMC chains. The reader is also referred to
Chap. 31 on MCMC estimation of CDMs (Liu & Johnson, this volume)

Q Fit An important topic is the issue of the creation, estimation, and fit of the Q
matrix, as discussed in Chap. 12 (Liu & Kang, this volume). The estimation of Q
is becoming a topic of interest in the literature; see for example Chen, Culpepper,
Chen, and Douglas (2018). One could develop fit indices tuned to our option scoring
based Q matrix selection, but this has not been done yet. Of particular interest,
competing substantive explanations for the latent space to be chosen can produce
different Qs, and one could compare their relative fit to help assess the relative
validities of competing explanations. The interested reader is referred to Shear
and Roussos (2017), a geometry DA study for an ERUM based example of this
approach.

Uninfluencial IRF Model Parameter Elimination One useful interaction between
Q, model fit, and the item parameter estimated values is that large r estimates
(̂r ≈ 1) suggest for RRUM that the corresponding 1 in Q should be replaced by
a 0 (or 0 or 1 replaced by N if doing an ERUM analysis), thus accepting the data
driven conclusion that the skill is not affecting that item’s responding and thus that
the corresponding r be eliminated from the item’s (“option” in the ERUM case)
modeling. The reader is directed to Roussos et al. (2007) for a thorough discussion
of this suggestion.

http://dx.doi.org/10.1007/978-3-030-05584-4_31
http://dx.doi.org/10.1007/978-3-030-05584-4_12
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Even if an r does not satisfy r̂ ≈ 1 for an item (or option in the ERUM case),
it is still possible that the corresponding attribute’s influence on the option is small.
Notice that this idea is analogous to eliminating variables in multiple regression that
have little predictive influence even when their coefficients are statistically judged
“different” from 0. Such a situation would suggest that changing the Q matrix to
eliminate the parameter’s role upon the option would not affect the fit of the model.
Such model complexity reduction both can produce a more interpretable model and
further make estimation better and classification easier. See Roussos et al. (2007)
for details in the RRUM case.

Discrimination For the RUM diagnostic system, “discrimination” refers to indices
and methodologies that assess various aspects the system’s ability to classify
examinees accurately. It has two distinct aspects: providing information to improve
DAs at the design and development (pretest) stage and providing information to
users about diagnostic strengths and weaknesses of DAs at the actual testing stage.
Thus, importantly, in addition to evaluating an existing DA, discrimination indices
can assist in test design, allowing the identification, with subsequent improvement or
elimination, of weakly performing items, even at the option level where individual
options can be modified to improve their capacity to detect attribute possession
versus non-possession.

Note that discrimination indices function at the test level and the individual
item level, the latter including sometimes at the individual option level. Similarly,
discrimination indices function either at the overall latent space level (i.e., joint
or vector level) or at the individual attribute component level. Also, these two
foci of discrimination, attribute and item, can interact to assess discrimination. For
example, an index could address how well an item k is functioning with respect
to the attribute it is best discriminating about (see L′k in Eq. 3.8 below). Correct
classification rates, joint (CCR) and marginal (CCRd), are the most important
indicators of test classification performance from the user perspective, in part
because they directly measure classification performance rather than producing
indices that correlates well with performance:

Notation CCR (i.e., P(CC)) denotes the correct classification (CC) rate for the
entire attribute vector, that is, correctly classifying the examinee on all D com-
ponents simultaneously. Importantly this is in contrast to CCRd (i.e., P(CCd)),
denoting the correct classification (CCd) rate for attribute d.

P(CC), P(CCd), Pk(CC), Pk(CCd) as Discrimination Indices As with certain other
discrimination indices, correct classification rates can be at the individual attribute
component level or for the entire attribute vector and also can be used for the entire
test or item by item. This produces four kinds of indices, as the notation captures.
Computing item by item or attribute by attribute both can be especially useful in
the design phase, for example improving a test by modifying or eliminating weakly
performing items or by adding items that measure certain attributes well. For the
user it can be helpful to know how well various attributes are being measured and
by which items. Formulas have been derived that make these computations feasible
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given the estimated model, especially for individual items (unpublished, available
from authors). When easy to estimate, even approximately, these probability-scaled
indices are highly useful.

Marginal vs. Joint Correct Classification Rates Clearly both CCR (joint) and
CCRd (marginal) are of interest. However, from the instructional perspective,
teachers usually want to know separately attribute by attribute which skills and
misconceptions are possessed and not possessed. Thus, P(CCd) and Pk(CCd) are
usually the more important discrimination indices from the classroom perspective.

Other Customized Item and Attribute Specific Indices of Discrimination One
might wish to assess discrimination power without the computational challenge of
estimating P(CCd)s or P(CC), which can sometimes be hard to estimate when test
length K is large (something being worked on). Moreover, for a specific item, one
may wish to target a single option. Or, one may wish to use a globally informative
graphical approach. Thus even though correct classification forms the core of our
discrimination approach, other indices and approaches are of value and are part of
the RUM system discrimination approach. We discuss several of these:

IMSTATS When using the RRUM, a set of statistics, called Item Mastery Statistics
(IMSTATS) by Roussos et al. (2007), is used to quantify various discriminatory
aspects of an item. This customized and graphically aided approach to discrimi-
nation posits that a well-designed item will differentiate well between examinees
who have mastered the item’s required skills, named item masters, and those who
have not, named item non-masters (for ERUM, the modified IMSTATS deals with
individual option matching vs. non-matching as determined by Q) and other DCMs
are natural extensions. For every item k, IMSTATS compares the item correct
proportions for the item masters versus the item nonmasters. If a set of items
collectively are effective (a substantive assessment goal), and if the estimated model
fits the data at least moderately well (which indicates that fit plays a role in this item
level index of discrimination), then for every k item k masters should be performing
noticeably better than item k nonmasters.

Note that a test with little diagnostic information concerning the targeted latent
attribute space could be fit well and yet the IMSTATS results would still be weak.
Figure 3.1 below shows an IMSTATS graph for an English as a Second language
(ESL) FA test analyzed using the RUM system (Jang, 2005). Two things are
worth noting: The fit seems good with the average masters versus nonmasters item
proportion correct difference being approximately +0.4 and further for most items
the positive difference being substantial. Further, notice that this provides a valuable
tool for finding poorly performing items, for example Items 5, 6, 11, 14, 16, 17, 21,
27 and 30 have small differences, some even reversals, due either to poor item-
specific discrimination or, possibly, bad fit. Also, some items perform exceptionally
well such as Items 24 and 26.

EMSTATS Examinee Statistics (called EMSTATS) can also be computed in an
approach analogous to IMSTATS but the focus is shifted to examinees. It detects
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examinees for whom discrimination is poor or the fit is poor. Details about the
approach are given by Roussos et al. (2007).

The Henson Discrimination Index We consider the Henson, DiBello, and Stout
(2018) ERUM discrimination index (as modified by Shear & Roussos, 2017) L′k,d
that measures the discrimination power of an item k to measure an attribute d well.
We also consider the index L′k that measures the discrimination power of an item to
well measure the attribute it measures best:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

L′k,d = max
h

⎧
⎨

⎩
�β−d

[∣∣∣P̂
(
Xk = h|αd = 1,β−d

)− P̂
(
Xk = h|αd = 0,β−d

)∣∣∣
]

2D−1

⎫
⎬

⎭

L′k = MaxdL′k,d

.

(3.8)

In the above equation, β−d denotes a D − 1 dimensional attribute vector via the dth

attribute of β removed. That is, via Eq. 3.8, for each item by attribute combination,
one maximizes over all options h the average over β−d of the absolute difference in
model-predicted probabilities of choosing each option h for examinees who differ
only in whether they possess attribute d or not. The larger the index the better the
discrimination of item k in diagnosing attribute d. The above summand differences
(removing the max operator via inserting the hd that maximizes L′k,d )

P̂
(
Xk = hd |αd = 1,β−d

)− P̂ (Xk = hd |αd = 0,β−d
)
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thus compares the model-predicted probability of selecting option hd for two
examinees who have the same attribute profile except for differing on attribute d.
Because there are 2D − 1 possible different profiles when we exclude attribute d, this
formula in effect uses the option hd with the largest average absolute difference.

Stout & DiBello Option Specific Discrimination Index Another discrimination
index, proposed by Stout and DiBello (unpublished), and available in the RUM
System Software, assesses how well each option discriminates with respect to the
attribute it is most discriminating of and is given by

L′′(h,k) = Max

{
max
d

P (Xk = h|αd = 1)

P (Xk = h|αd = 0)
, max

d

P (Xk = h|αd = 0)

P (Xk = h|αd = 1)

}
. (3.9)

Software note: These fit and discrimination indices are currently available and
further will be available in a “user friendly” SHINY R based version of the RUM
system in Spring 2019.

3.6 Rum/ERUM Based Estimation and Classification
Software

We discuss three software choices for researchers and practitioners wishing to use
the RUM/RRUM/ERUM approaches discussed in this chapter, two of which will be
combined as callable functions in a single SHINY interface-based R package with a
release date in Winter 2018. This package will allow for RUM/RRUM and ERUM
to be estimated, and further a small set of GDCM cognitive kernels such as EDINA.

Arpeggio RUM System The first choice is the RUM/RRUM using Markov Chain
Monte Carlo (MCMC) based estimation and classification procedure named
the Arpeggio Suite (DiBello & Stout, 2008). As background, estimation of
the right/wrong scored RUM model, with inclusion of the continuous residual
Pc(η) component optional, was accomplished by Hartz (2001) using MCMC
estimation and Marginal Maximum a Posteriori (MMAP; doing MAP marginally at
the individual attribute level recall) classification and programmed in FORTRAN,
our basic computational language. It is easily proved that MMAP is the optimal
classification method in the sense that for each d it maximizes (PCCd) over all
possible classification procedures. The resulting MCMC parameter estimation
algorithm uses Metropolis Hastings within Gibbs sampling. Further, a Bayes
approach is adopted that places (non-hierarchical) uniform priors on all item
parameters with range [0,1] (thus, including the values 0 and 1), but which could
easily be converted to a hierarchical empirical Bayes treatment when the test’s item
parameter distribution justifies doing so.

In addition, the joint distribution of the latent attribute patterns, P(α, η), was
modeled hierarchically using a prior that assumed the discrete skills were the results
of a discretized D-dimensional multivariate normal with mean vector μ, which
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controls population mastery proportions, and tetrachoric correlation theory inspired
correlation matrix ρ. The resulting (D+ 1)× (D+ 1) correlation matrix coefficients
represent the estimated tetrachoric correlations between any given pair of skills or
the estimated biserial correlation between any skill with the continuous η trait in
the RUM. The probability of mastery for any given attribute Ad is thus equal to the
probability of its associated random latent component of the multivariate normal
distribution being ≥ 0.

Via MCMC, post burn-in posterior means are used to provide item parameter
estimates and the proportion of times that an examinee is identified as a master, post
burn-in, is used to estimate the probability of mastery for any given attribute, this
trivially convertible to classification via MMAP. As remarked above, convergence
of the chains can be examined either through visual inspection or by use of available
software such as the CODA package in R (Plummer, Best, Cowles, & Vines,
2006). After inspecting convergence, as detailed in Roussos et al. (2007), various
customized fit and discrimination indices are available in Arpeggio, including
IMSTATS and EMSTATS, as discussed briefly above in the Model-data Checking
section. Concerning the user need to assess a test’s classification performance,
simulation-based estimates of skill αd correct classification rates (CCRds) are
available for all the D skills. In this regard, note that, contingent upon their
estimation accuracy, the simulation-based estimated CCRds seem a very direct and
interpretable way to assess classification discrimination.

In summary, the Arpeggio Suite contains software that allows for (i) estimation of
the chosen model; (ii) computation of various measures of fit that can help assess fit
and moreover improve on it via reductions or modifications of the estimated model
(importantly, including the fit of the Q-matrix); (iii) classification of examinees
using the “known” (i.e., well estimated) item parameters, noting the items might
only need to be calibrated and as such to be available in a test or test pool
intended for future classification usage; (iv) the ability to simulate responses from
the estimated RRUM model; and (v) the computation of various discrimination
indices. We note that most, but not all, of the real data studies reported on herein
used Arpeggio. A detailed Arpeggio user manual is available (DiBello & Stout,
2008) and the Roussos et al. (2007) paper is very accessible. The ERUM model is
also a callable part of the RUM system and as such has almost all the capabilities
described above in the callable Arpeggio suite.

MPlus RUM Availability Since the publication of Arpeggio, efforts to make user
estimation of DCMs widely available have resulted in software packages that allow
for the estimation of various RLCMs. For example, the software package Mplus
has been used to obtain estimates for various diagnostic models from the literature
including the RRUM (see Chiu et al., 2016; Templin & Hoffman, 2013). The use
of Mplus for estimation of RLCMs is also discussed in Chap. 28 (Sullivan, Pace,
& Templin, this volume). Although the inclusion of the residual continuous ability
measure (in the RUM) is not available in these frameworks, Mplus based DCM
treatments do provide some advantages. For instance, Mplus is a general statistical
software package in which examinee covariates can be included to help predict item

http://dx.doi.org/10.1007/978-3-030-05584-4_28
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performance, improve CCRs, or more easily address questions of applied interest.
In addition, measures of fit can be easily invoked, like AIC and BIC. Further, not
an advantage necessarily but a difference, the estimation approach is MMLE (M for
marginal, in d) using the EM algorithm rather than MCMC. However, one challenge
is that more demanding model estimation such as when the test length is at all long
or the number of skills is sizable can be quite time consuming, when compared to
MCMC estimation using the Arpeggio Suite.

The SHINY R RUM/ERUM Package. (Winter 2018 Release) The third choice, which
is beyond the use of command-based software and Mplus, are a new set of RRUM
and ERUM MCMC based procedures that have been programmed using the R
language. R is a widely used statistics programming computation and graphics
language that allows users to create customized packages that can be used for a
wide range of specialized statistical analyses. In the DCM context, we note that R
based packages have been created for the DINA and G-DINA, which are discussed
in detail in Chap. 26 (Robitzsch & George, this volume) and Chap. 29 (Ma, this
volume). In addition to the ability to create customized statistical packages, R
now has a set of tools such as the R “SHINY” interface facilitator that allow
for the creation of easy to use and flexible web interfaces for any given statistics
computational package, noting SHINY will be our new medium for our Spring 2019
release. This release of all of our RUM and ERUM procedures will use SHINY. It
will include as a callable function the 0/1 scored RUM/RRUM Arpeggio suite, as
described above, and also a callable option scored ERUM model-based suite and
a small callable set of other option scored GDCM-based cognitive kernels such as
EDINA.

3.7 RUM and ERUM Simulation Studies

In addition to theoretical considerations discussed above and the real data studies
reported below, a wide range of realistic simulation studies have been carried out to
help practitioners and researchers understand and assess the performance capabili-
ties of the RUM system. In this section we give a short incomplete summary of the
various simulations studies conducted. These were conducted from the viewpoint of
how much information typical, but instead sometimes carefully designed, DAs can
provide RUM system using practitioners and researchers. Because it is anticipated
that ERUM usage may subsume RUM/RRUM usage, and because RUM/RRUM
simulations have been reported elsewhere in the literature (e.g., see Hartz, 2001;
DiBello et al., 1995), the emphasis below is on ERUM simulation studies.

Parameter estimation accuracy can be assessed by mean absolute deviations
(MADs) for model parameters, noting that unlike in real data situations, in
simulation studies the model parameters are known and hence MADs can be
computed directly. We report here also on the individual attribute CCRds, denoted
P(CCd) recall. This, as previously noted, is appropriate because teachers usually

http://dx.doi.org/10.1007/978-3-030-05584-4_26
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want to know separately attribute by attribute which skills and misconceptions are
possessed and not possessed.

In our simulation studies, the model assumed by the estimation procedure is the
true simulation model generating the data, and hence there is no model misfit studied
in the simulations. Such robustness studies are planned in the future. Sometimes,
we have bypassed estimation via the MMAP classification procedure using the true
model, thus eliminating model estimation error. When this is done, the simulation
study isolates the classification accuracy potential of the test by removing model
misfit and model estimation error. Thus, the quality of the test itself becomes the
only source of classification error. We give below a summary of results from various
simulation studies run (results available from authors and to be published elsewhere
in the future).

Based on emulation of parameter estimation values obtained in real data
studies, we simulated items as having “high” (H) and “moderate” (M) item
parameter discrimination values. High parameter value ranges of r∼U(0.05,0.2) and
π∼U(0.7,0.9) represent well designed items, both for the correct and the incorrect
options. Moderate parameter ranges of r∼U(0.1,0.3) and π∼U(0.5,0.9) represent
typical ranges of items not specially designed for DA usage. Omitting details, we
note that nonid plays no role here in the interpretation of the discrimination level of
item parameters.

The Population Sampling Was Done so that the Marginal Attribute Proportions Were
Always Between 0.4 and 0.6 This was done for several reasons. First, in practice
these proportions may vary considerably but of course we don’t know what they
might be in an application. Choosing proportions close to ½ seems like an excellent
“baseline” approach. Further, it has the advantage that the Kruskal and Goodman
λ (or other) adjustment needed to properly interpret resulting simulation CCRds
when population attribute proportions seriously deviate from ½ is minor and can be
ignored for practical purposes.

Noting that the ERUM option scoring enhancement of right/wrong scoring RUM
is analogous to the MC-DINA enhancement of DINA, further corroboration of the
superiority of option scoring is provided by a comparative simulation study (de la
Torre, 2009) that found that the option scored MC-DINA improved on the skill
correct classification rates (CCRds) over right wrong scored DINA on average over
all students and attributes from 91% to 97%. This is a striking improvement, noting
that the error rate was reduced from approximately 9% to approximately 3%.

Because of the improvement realized by replacing right/wrong scoring by option
scoring, it is important to observe that right/wrong scoring RUM/RRUM has already
performed well both in simulation studies and real data analyses, and hence ERUM
analyses should only do noticeably better, especially for well-designed DAs. To
illustrate such RUM/RRUM results, Hartz (2001) did a simulation study of a 40
item, 7 skills, H and M cognitive structure, 1500 examinee test administration
using the RUM Arpeggio system. She showed that individual attribute correct
classification occurred 93% of the time for H cognitive structure and 84% for the
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Table 3.1 Summary of the factors varied in the ERUM Simulation Studies

# attributes
(skills and
misconceptions) Test length Cog. πr structure

Sample size,
including True
model (T)
bypassing
estimation

Correlational
Structure (0 or
ρ) : 0 denoting
independent
attributes

2(skills) + 2
(misc)

8, 15, 20, 30 HM,HH,MH,MM 125,250,500,
1000, 2000, T

0, ρ

4 + 3 = 7 8, 15, 30 “ 1000 0
3 + 4 = 7 8, 15, 30 “ 1000 ρ

4 + 6 = 10 15, 20, 25, 30 “ T 0
5 + 7 = 12 23 “ T 0

M cognitive structure, thus displaying reasonable classification accuracy, especially
for the H structure.

We now briefly summarize our various ERUM simulation studies, where an effort
has gone into realism, both for randomly generated item parameters and for the ran-
domly generated Q matrices. As with all DCMs, the two major ERUM performance
issues are (i) how accurately the ERUM model parameters are estimated and (ii) how
accurately students can be classified, which is studied as a function of test length,
examinee calibration sample size, Q matrix structure, item discrimination power as
delineated by the simulated π and r ranges, and sometimes the latent attribute space
correlational structure.

The ERUM simulation studies reported below are of short to long length MC
tests that thus have the potential to provide accurate classification information of
significant usefulness for teachers without (hopefully) taking up disproportionate
amounts of classroom time. For instance, one could imagine using half of a class
period to administer a 15-item MC quiz or a full class period for a 30-item test.

Table 3.1 summarizes the simulation design, including the various (usually
partially crossed) factors considered for the ERUM simulation studies conducted,
with actual simulation results summarized following the table. It and the brief
summaries reported below for many of the simulation studies done substitute for
fully reported results (available from authors) (Table 3.1).

Baseline Simulation Studies, as Proof of Concept First, as a baseline, we studied
D = 2 skills +2 misconceptions =4 attributes (too small a number of attributes
for most –but not all– practical applications, hence “baseline”) with varying test
lengths K = 15, 20, 30 and sample sizes N = 250, 500, 1000 and always 4
options/item, usually uncorrelated (0) but occasionally correlated (ρ) attributes
(always MCMC estimated, regardless of whether the assumed simulation model
structure is uncorrelated or not), highly discriminating items with π U [0.6,0.9] and
r U[0.05, 0.2]; i.e., HM. We note that the MADs were suitably moderate to small
depending on sample size, with both π and r MADs around 0.1 for N = 250, around
0.07 for N = 500 and around 0.04 for N = 2000. Further, the average marginal
CCRd rates ≥0.95 for all the studies, even the extreme case of N = 250, K = 15.
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This is strong evidence that the methodology works in ideal baseline cases and
suggests that π , r MAD rates as high as 0.1 do not seem to be deleterious. One
study with a “reasonable correlational structure was done ( ρSS = 0.6, ρSM = − 0.4,
ρMM = 0.3, where S denotes skill and M denotes misconception) with N = 1000 and
K = 15 and resulted in an extremely high average CCRd of 0.98 and an associated
ρ MAD = 0.03, surprisingly small. Clearly, estimation of the correlational structure
improves on CCR rates.

Realistic Simulation Settings D= 7, D= 10, D= 12 were chosen as representative
numbers of attributes for instruction-driven latent spaces. For example, a 20 min.
quiz of 15 items might be designed to assess 7 attributes and a full period test of
30 items designed to assess 10 or 12 attributes, each space a mixture of skills and
misconceptions. Of course, there are realistic settings (not yet simulated) where a
longer test could be used to assess a relatively large number of attributes, say a
2 hour K = 60 item test designed to assess 8 skills +12 misc. =20 attributes.

As previously discussed, most DA usage is “low stakes” in the sense that
moderate misclassification rates occurring are not overly detrimental in classroom
FA settings, as contrasted obviously with high stakes settings where one might want
to guarantee high CCRds, say ≥0.9. Thus a 0.78 rate (for attributes with possession
rates close to ½) could be considered “effective”, even though likely not so for
a high stakes test. In interpreting the CCRds, it is essential to note if one were
ignoring test data information and merely randomly guessing at possession and
non-possession of attributes, noting that attribute proportions were approximately
0.5 in our simulations, that this chance CCRd rate for each attribute would be
approximately 0.5. We thus propose the following table for interpretation of our
simulation results CCRd rates, merely stated to evocatively fix ideas, noting that
each classroom, or other, setting will induce its own acceptable versus unacceptable
CCRd error rates. Bluntly put, Table 3.2 should not be in any way taken as
suggesting acceptable DA classification standards!

To save space, we summarize broadly the results of the large number of realistic
ERUM simulation settings conducted, referring to averaged CCRds (over options)
and, where appropriate, averaged MADs. First, if the number of attributes is modest,
say 2 + 2 or even the 3 + 4 or 4 + 3 cases, and if the length of the test is not
short, say ≥15, then high cognitive structure (HM) always produced very effective
to highly effective CCRds and moderate cognitive (MH) structure produced either
close to or within the very effective category. For larger numbers of attributes, say 10
or 12, then if the length of the test was ≥15 then high cognitive structure produced

Table 3.2 Ranges for
interpreting our CCRd
simulation values

Interpretation of the given CCRd range CCRd range

Not effective <0.7
Effective [0.7, 0.8)
Very effective [0.8,. 0.9)
Highly effective ≥0.9



72 W. Stout et al.

very effective CCRds. Whereas, for the same larger numbers of attributes, moderate
cognitive structure produced effective to very effective CCRds. As one concrete
example high cognitive structure (H) coupled with a moderately long test length
K = 23 and a large number of attributes D = 5 + 7 = 12 still yielded the very
effective CCRd = 0.85.

Concerning item parameter estimation, the results were also very encouraging.
Even smaller sample sizes such as N = 250, produced reasonable MADs, especially
as interpreted by how estimation errors influenced the CCRds. As a side note,
when a plausible latent space correlational structure was introduced ( ρSS = 0.6,
ρSM = − 0.4, ρMM = 0.3, where S denotes skill and M denotes misconception),
MCMC estimation recovered the latent correlational structure well. And, this
improved, sometimes significantly, the resulting CCRd rates.

Even when challenging non-small D numbers of attributes or small test length
settings were studied the results were usually surprisingly good. For example, for
D = 3 + 4 and K = 8, this interpretable as a very short “quiz” and with a moderate
number of 7 attributes and high cognitive structure items, yielded an average CCRd
rate of 0.76, namely “effective”.

The ERUM “Simulator” randomly generates the Q structure with the result that
the number of options that touch (touch ≡[an attribute is influencing an option
response]) an attribute can vary considerably from attribute to attribute, exactly
as is true for real tests, especially if not carefully designed for attribute balance.
This suggests that variation in the CCRd rates from attribute to attribute should
correspondingly vary as a function of number of touches. Omitting details, this
turned out to be strongly the case.

In summary, ERUM simulation studies seem to (cautiously) suggest that DAs
taking up a moderate amount of class time can effectively classify a large enough
number of skills and misconceptions to be worth the class time expended.

3.8 Real Data Applications of RUM and ERUM

To date the RUM/RRUM has been applied most extensively in the area of language
assessment (e.g., Jang, 2009; A.-Y. (Alicia) Kim, 2015; Y.-H. Kim, 2011; Lee &
Sawaki, 2009a; Li & Suen, 2013a, 2013b), including a special issue devoted to
the use of DCMs published in the journal Language Assessment Quarterly (Lee
& Sawaki, 2009b). As noted by Roussos et al. (2007), DCMs can be applied
in two primary ways: to revisit or re-analyze existing tests (sometimes called
“retrofitting”) or as part of a test development process wherein assessments are
developed with the explicit purpose of conducting skills (or, now, misconceptions
too) diagnosis. Most applications of the RUM/RRUM (and DCMs in general)
have been of the former type, with one recent latter instance described below
(Ranjbaran & Alavi, forthcoming). Such DCM designed tests are becoming more
frequent (see, for example, Kunina-Habenicht, Rupp, & Wilhelm, 2009). It is also
useful to differentiate between two types of retrofitting: applying a DCM to a



3 The Reparameterized Unified Model System: A Diagnostic Assessment. . . 73

test (likely with summative intentions) initially designed to yield unidimensionally
based conclusions versus one intentionally designed to make multidimensionally
based diagnostic inferences, but without RUM based or other DCM playing a role at
the design level. Here we describe four applications: (1) use of the RRUM to provide
validity evidence for a pre-existing test of English language reading comprehension
test used formatively, (2) use of the RUM to inform development of a new diagnostic
test of English language reading comprehension, (3) use of the RRUM to analyze
a pre-existing multi-dimensional concept inventory, and (4) use of the ERUM to
analyze a pre-existing diagnostic assessment of middle school geometry concepts.

Researchers vary in whether they use the full RUM or the RRUM, recalling
that the interpretation of the continuous ηd latent trait is that it is a unidimensional
summary of all the attributes influencing item performance other than those spec-
ified in the Q modeled latent space. Li and Suen (2013a) found that excluding the
residual ηd parameter from the model resulted in poor convergence of the MCMC
chains for many item parameters, and hence used the full RUM with better results.
Their think-aloud studies indicated the ηd factor may reflect construct-irrelevant
test-taking strategies. Jang (2009), however, found that including the additional ηd

parameter reduced the interpretability of the rkd item parameters and opted to use
the RRUM. Jang and Roussos et al. (2007) hypothesize that when fitting the RUM
to pre-existing and often essentially unidimensional tests, the primary dimension
may tend to overwhelm other parameters through the ηd term. We include this to
sensitize potential RUM/RRUM users that the decision to include or exclude the
ηd factor can be consequential. When in doubt, one perhaps should use the RRUM,
especially if the latent space is judged reasonably “complete”.

A series of studies by Jang (2005, 2009) provides the most comprehensive appli-
cation of the RUM. Jang applied the RUM to two forms of a pre-existing English
language reading comprehension test developed at ETS. The RUM framework was
used to provide validity evidence to support use of the test as a diagnostic formative
assessment in English language courses. Jang used think-aloud protocols with a
sample of test-takers as well as content experts’ judgments to identify a set of skills
required by the test and construct a Q matrix. The RUM was then used to refine
the Q matrix, evaluate the adequacy of model fit, and determine the consistency
of estimated skill profiles of test takers. Finally, students and teachers in TOEFL
preparation courses provided feedback about the perceived utility of the “diagnostic
score reports” generated from the RUM. Subsequent applications of the RUM have
followed a similar methodology, relying on a combination of expert judgment,
think-aloud protocols, and statistical modeling to create and refine Q matrices for
pre-existing tests (e.g., A.-Y. (Alicia) Kim, 2015; Li & Suen, 2013a). While these
studies tend to find evidence of adequate model-data fit and interpretable item
parameter estimates, there has been little reporting on applied uses of the test results,
either for instructional purposes or to inform the revision and improvement of the
tests. It is hoped that future efforts will move in this direction.

Ranjbaran and Alavi (2017) used the RUM in the process of developing a new
diagnostic second-language English reading comprehension test intended to be used
formatively. They used an evidence-centered design (ECD) framework to create a
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20-item MC test. As with prior studies, think-alouds and content expert judgments
were used to create and refine an appropriate Q matrix for the test. Although
revisions to the test have not yet been made, the results of fitting the RUM to the data
have provided useful insights about the nature and quality of the items that could be
used to guide future test and item revisions. These researchers used the full RUM,
although they found that the ηd parameter only seemed to be relevant for a small
number of items on the test. Nonetheless, this still suggests use of the full RUM
improved the fit of the model.

Distractor-driven tests provide a promising but under-utilized avenue for apply-
ing DCMs, particularly the RUM and ERUM. Distractor-driven tests are, as the
name suggests, MC tests with systematically written distractors (incorrect response
options) intended to provide additional information beyond simple right/wrong
answer scoring. Concept inventories (CI’s) are a form of distractor-driven test
designed to assess non-quantitative understanding of key disciplinary concepts,
often in the sciences. The distractors are written based on common student
misconceptions or errors and are intended to provide useful diagnostic information
for instructors. CI’s are thus inherently multi-dimensional and are intended to be
used formatively, to help teachers diagnose student reasoning and plan instruction.
Santiago-Román and colleagues (Santiago-Román et al., 2010a, b) used the RRUM
to analyze data from a Concept Assessment Tool for Statics (CATS; Steif &
Dantzler, 2005), a CI designed to assess students’ understanding of nine important
concepts in (engineering) statics. Through a combination of conceptual and sta-
tistical analyses based on the RRUM, they identified 10 attributes of understanding
assessed by the CATS that could be identified with high levels of consistency. Jorion
et al. (2015) provide an extensive discussion regarding the use of DCMs to provide
important validity evidence for CI’s.

More recently, Shear and Roussos (2017) used the ERUM model to analyze data
from a distractor-driven test of middle school geometry concepts developed by the
Diagnostic Geometry Assessment (DGA) project (Masters, 2012). The DGA project
developed a series of MC tests, each written to assess student understanding of
geometry concepts and identify students reasoning with systematic misconceptions.
The incorrect response options on the DGA tests were written to correspond to
common student misconceptions. Previously, DGA tests reported two separate
scores – a “knowledge” score indicating the number of correct response options
selected and a “misconception” score indicating the number of misconception
response options selected. Because these scores required separate scoring keys, they
could not be analyzed in a single model using traditional psychometric methods
such as CTT or unidimensional IRT models. This made it difficult to a) model the
internal structure of the test while taking into account the correct, incorrect and
misconception responses simultaneously, and b) determine appropriate cut scores
for the “knowledge” and “misconception” scores that could be used to classify
examinees

Shear and Roussos (2017) used the ERUM to address these challenges, focusing
on a single DGA test form. First, by comparing the fit of multiple Q matrices,
they concluded that the test was likely assessing two misconceptions rather than
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one, as was initially hypothesized. While earlier analyses had suggested this might
be a possibility, the hypothesis had not been evaluated in a systematic modeling
framework. Second, the ERUM provided a defensible, model-based method for
identifying which students were likely to understand the targeted concept and
that were likely to be reasoning with each of the targeted misconceptions. The
results also provided information that could be used by test developers to identify
items functioning best for diagnostic purposes. Although the DGA tests were not
developed within a DCM framework, the multidimensional nature of the tests and
the intended diagnostic uses made the ERUM a valuable tool for evaluating and
refining the test. The applications by Santiago-Román et al. and Shear and Roussos
suggest the RUM and ERUM appear to have significant potential for supporting and
improving the use of multi-dimensional, distractor-driven tests, including those that
are pre-existing. Given the potential value of such tests for formative assessment
practice, this remains an important and exciting area for further research.

3.9 Discussion and Summary

The RUM diagnostic system holds the promise of providing accurate psychometri-
cally assisted diagnostic classifications via MC (or finite response category coded
short answer) diagnostic assessments (DAs), especially Formative Assessments
and Interim Assessments (interior to the unit but not necessarily intended for
formative purposes). Such DAs can assess learning progress and thus enhance
instruction. And, the diagnostic system can be useful during DA development
and refinement stage. Further, applied research questions concerning the nature
of cognitive processing and the validity of MC assessments can be addressed
via RUM/ERUM, including at the fine-grained individual attribute and individual
item/option level, as suggested by some of the real data studies reported upon above.

The RUM system, even when the ERUM model with its nonid parameters is
being employed, outputs identifiable and usefully interpretable model parameters
and resulting examinee attribute classifications. Because of its estimable and
interpretable parameters, evaluation of item and hence test quality becomes possible,
even at the fine-grained individual attribute and individual item option level. Indeed,
it is recommended that when possible future MC DAs be optimally designed with
items functioning in concert to well classify examinees on all of the attributes
in the latent attribute space, misconceptions as well as skills. Psychometrically
informed DA MC test design, with item redesign or replacement, becomes possible.
Importantly, via ERUM modeled individual option scoring, incorrect “distractor”
options provide useful recoverable diagnostic information, especially about mis-
conceptions. Thus, combining RUM system modeling with well-designed (possibly
psychometrically aided) DAs, suggests the resulting classification accuracy should
be good, a conclusion our simulation and real data studies reported upon above
cautiously supports.
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This chapter provides a user-oriented description of the RUM/RRUM and then
introduces the ERUM GDCM generalization, noting that ERUM is a mixture model
with a cognitive and a guessing component, as seems realistic for MC items, where
guessing and competition are forced to occur. The issue of ERUM non-identifiability
is briefly discussed, making clear that the intrinsic competition and guessing nature
of MC items can sometimes produce DCM non-identifiability because cognitively
distinct items (with varying amounts of guessing and competition) can produce the
same ERUM or other realistic DCM MC probability model. This non-identifiability
of ERUM is foundational and as such is not a superficial modeling flaw that might
be eliminated by a better parameterization. When ERUM non-identifiability holds,
the ERUM MCMC estimation software produces identifiability via adding in DF
(in number) parameter constraints. Alternatively, and not reported on herein, a
Bayesian approach under development removes ERUM non-identifiability via the
introduction of an appropriately chosen prior on the F column sums Sα , a prior that
favors item models that reduce guessing and competition among all the equivalent
nonidentifiable ERUM modeling choices.

In the Model-data Checking Section, both fit and discrimination are considered.
In addition to standard fit approaches such as AIC/BIC, several specialized indices
of fit have been developed that are tuned to the special nature and purposes of
DCMs and the RUM system. The fit approach also includes the fit of Q with some
tools available in the RUM system that allow minor modifications of Q that can
improve fit. However, more work on the fit of Q for the RUM system is needed,
likely drawing on the work of researchers focusing on Q development and will be
carried out in the future.

Use of correct classification rates (CCRs), marginal for each attribute separately
but also available for all the attributes simultaneously, were identified as the major
discrimination approach, noting that from the instructional perspective, marginal
rates are the main interest usually. In addition, specialized, easily computed, and
useful discrimination indices were presented as well.

The RUM/ERUM system has three distinct applications foci, namely existing
test evaluation/new test construction, examinee classification, and test validity
studies, including at the individual attribute and item levels: First, aided by the
system’s discrimination indices described above, the RUM/ERUM system can be
a valuable tool in the design and evaluation of proposed diagnostic MC items
and in the subsequent construction of DAs. Second, the system has the potential
to capture most of the diagnostic attribute classification information in a DA,
especially including the capture of classification information in incorrect options.
Thus, misconceptions as well as skills can be well classified. One important use
of such diagnostic assessments is that they can help drive remedial instruction, at
both the classroom level and the individual student level. Another use is assessing
the validity of existing tests: for example, is a studied test measuring the attributes
the designer of the test intended and/or does it measure other attributes, especially
non-construct-valid attributes that could contribute to DIF?

The large number of simulation studies we have carried out have been only
briefly summarized, noting these studies combine to suggest the levels of perfor-
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mance one can expect from RRUM/ERUM associated DAs. The studies suggest that
MC tests, even relatively short tests or quizzes, can in fact assess a reasonable num-
ber of attributes (skills and misconceptions) with good to very good classification
accuracy, as quantified by reported marginal CCRds. Further, a number of real data
studies have been reported upon above, both for RUM and for ERUM, for existing
tests, some of which were “retrofitted” and some actually designed for DA usage. In
the Ranjbaran and Alavi ESL study, the RUM model was used to enhance DA test
construction, as this chapter highly recommends for optimal DA development. And,
in the Shear and Roussos ERUM study reported upon, interesting attribute level
validity conclusions resulted. These real data studies display a variety of successful
applications of RUM or ERUM, and further have helped suggest realistic ranges for
IRF parameters to be used in current and future ERUM simulation studies, noting
defensible realism is a major goal.

The authors believe that the RUM (includes ERUM recall) system can be a
valuable tool in bringing psychometrically supported DAs heavily into the instruc-
tional process and further can aid cognitive and test validity research. Relatively
easy to use RUM system software will be available in Winter 2018, driven by the
SHINY interface embedded within R, with the heavy estimation, simulation and
classification computation done by our existing Fortran embedded code.
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Chapter 4
Bayesian Networks

Russell G. Almond and Juan-Diego Zapata-Rivera

Abstract Bayesian networks (or Bayes nets) are a notation for expressing the joint
distribution of probabilities over a number of variables. Variables in a Bayesian
network can be continuous or discrete (Lauritzen SL, Graphical models. Oxford
University Press, New York, 1996), however, when all variables are discrete, all
calculations can be represented as a series of sums and products. As such, Bayes
nets provide a notation for expressing a wide variety of cognitive diagnostic
models, including ones described in other chapters of this book. Several commer-
cial software packages are available for supporting Bayesian networks including
HUGIN (Andersen SK, Olesen KG, Jensen FV, Jensen F, Hugin—a shell for
building Bayesian belief universes for expert systems. In: IJCAI’89, Detroit, MI,
1989. Reprinted in Shafer and Pearl 1990), Netica (Norsys, Inc., Netica [Computer
software manual], 2004. Retrieved from http://www.norsys.com), Genie (BayesFu-
sion, LLC, Genie, 2017. Retrieved from http://bayesfusion.com (Bayesian network
Computer Software)) and BayesiaLab (Bayesia, Bayesialab, 2017. Retrieved from
http://www.bayesia.com (Bayesian Network Computer Software)) as well as a
number of free software packages.

4.1 Introduction to Bayesian Networks

Bayesian networks (or Bayes nets) are a notation for expressing the joint distribution
of probabilities over a number of variables. As such, they provide a notation for
expressing a wide variety of cognitive diagnostic models (CDMs), including ones
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described in other chapters of this book. In a Bayesian network, the variables (both
latent proficiency variables and observable outcome variables) are expressed as
nodes of an acyclic directed graph. In this respect, Bayes nets and structural equation
models (SEMs) are similar. However, unlike SEMs, separation in a Bayesian
network always implies conditional independence: this allows the network structure
to be used to design efficient computational algorithms for a particular model.

Bayes nets have been well studied in computer science since Pearl (1988) with
several volumes describing both the representations and algorithms for computing
with them (e.g., Jensen, 1996; Cowell, Dawid, Lauritzen, & Spiegelhalter, 1999;
Neapolitan, 2004). Almond, Mislevy, Steinberg, Yan, and Williamson (2015)
describe the specific application to educational models, and this article follows the
notation used in that book. Variables in a Bayesian network can be continuous
or discrete (Lauritzen, 1996), however, when all variables are discrete, all of the
calculations can be represented as a series of sums and products. Several commer-
cial software packages are available for supporting Bayesian networks including
HUGIN (Andersen et al., 1989), Netica (Norsys, 2004), Genie (BayesFusion,
2017) and BayesiaLab (Bayesia, 2017) as well as a number of free software
packages.

The existence of this software makes it straightforward to score a single
student. The variables corresponding to the observed performance of a student on a
collection of tasks or items are instantiated to their observed values. The software
propagates the information about the observed variables to all of the unobserved
variables, drawing inferences about both latent proficiency variables and unobserved
task outcomes. This makes Bayes nets an attractive model for embedding in an
intelligent tutoring system which would make use of the inferences about student
performance to select appropriate instruction and tasks.

4.1.1 Graphical Representation of Joint Probability
Distribution

Consider a collection of variables, X1, . . . , XK . This collection includes both the
observable outcome variables from the tasks and items and the latent proficiency
variables. Consider an ordering of the variables 1, . . . , K . Then the joint distribution
can be written as Pr(X1, . . . , XK) = Pr(X1)

∏K
k=2 Pr(Xk|Xk−1, . . . , X1). Often

some of the conditioning variables drop out of the factor Pr(Xk|Xk−1, . . . , X1). Let
pa(Xk) be the parents of Xk , the set of remaining variables. Drawing a directed
edge from each parent variable to its child produces an acyclic directed graph (it is
acyclic because parents are always earlier in the ordering), G. The equation for the
joint probability then becomes

Pr(X1, . . . , XK) =
K∏

k=1

Pr(Xk| pa(Xk)) , (4.1)
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Fig. 4.1 A simple acyclic directed graph. (Reprinted from Almond, Mislevy, Williamson, & Yan
2007 with permission from ETS)

where Pr(Xk| pa(Xk)) is understood to be an unconditional probability if pa(Xk)
is empty. If the variables are all discrete, then the factors Pr(Xk| pa(Xk)) are
conditional probability tables (CPTs).

Figure 4.1 shows a simple directed graph. Terms related to ancestry are used to
express the relationship among variables. Node A is a parent of Node C; Node C
is a child of Nodes A and B; Nodes C, D, E, and F are descendants of Node A;
Nodes C, B and A are ancestors of Node D; Nodes D and E are siblings with
common parent Node C. Nodes which are connected by a single edge regardless of
direction, for example Nodes C and D, are called neighbors and the set of nodes
directly connected to a given node is called its neighborhood. For example, the
neighborhood of Node E is Nodes C and F . A set of nodes which are all connected
to each other is called a complete set and a maximal complete set (i.e., one to which
another node connected to all of the others in the set cannot be found) is called a
clique.

Associating a conditional probability table with each node in the graph turns it
into a Bayes net. For Fig. 4.1 the Bayesian network is represented by the factors:

Pr(A,B,C,D,E, F ) = Pr(A)Pr(B)Pr(C|A,B)Pr(D|C)Pr(E|C)Pr(F |D,E) .

Note that there could be more than one graph which can be used to represent a
given joint probability distribution (Pearl, 1988). In particular, the saturated graph
(the one with every pair of variables connected) can always be used; however, it is
usually inefficient. The computational cost for most Bayesian network algorithms
is driven by the size of the largest clique (before calculating the largest cliques,
the common parents of nodes need to be connected, see Cowell et al., 1999 or
Almond et al., 2015 for details). In the Cowell et al. algorithm, computational
cost is linear in the total number of nodes, but exponential in the size of the
largest clique. Finding an optimal graphical representation can be difficult; how-
ever, graphs in which the edges are oriented according to a causal theory are
generally more efficient. In applications in educational testing, the edges usually
point from latent proficiency variable to observable outcome variables (although
edges between proficiency variables and between observable variables are also
allowed).
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4.1.2 Conditional Independence

When a Bayes net is factored according to Eq. 4.1, then a number of conditional
independence conditions hold. Basically, nodes which are separated in the graph
are conditionally independent given the separating set. This is called a Markov
property. With directed graphs, a more complicated version of separation called
d-separation (Pearl, 1988) is needed. The rules for d-separation can be complex,
but can be understood through three simple examples.

Evidence Chain or . If the variable in the middle
(Node B) is known, then it makes the outer variables (Nodes A and C) independent;
otherwise, they are dependent. For example, if A is that the student has good study
habits, B is whether or not the student has mastered the class material, and C is
that the student performs well on the test, then knowing whether or not the student
knows the material renders the student’s performance independent of the student’s
study habits.

Common Cause . If the common parent (Node B) is known, then
it makes the two child variables (Nodes A and C) independent; otherwise, they
are dependent. For example, if B is mastery of the material, and A and C are
performance on two different tasks or items on a test, then knowing B renders A
and C independent (This is the local independence assumption of item response
theory, IRT).

Competing Explanations . When Nodes A and C have a common
child (or common descendant), then A and C are independent when the common
descendant is unknown. Let B be performance on a mathematics word problem
and A and C be skill in English and mathematics respectively. If A and C are
assumed to be independent a priori, learning that the student did poorly on the
problem would change that independence. In particular, if the student did poorly
then learning that the student had good command of English would indicate that
the student has difficulty with mathematics. Similarly, learning that the student has
good mathematical skills would point towards difficulty in English. So learning that
the student was unable to solve the problem induces a negative correlation between
the two explanations.

Together, these three rules make up the rules for d-separation. Two nodes A and
C are conditionally independent given the values of a set of nodes B if every path
from A to C is blocked by at least one node in B, for every route from A to C which
travels through a common ancestor, at least one common ancestor common ancestor
is in B, and no common descendant of A and C is in B.

Establishing these conditional independence properties is the hard part of
building a Bayesian network. However, it is also these conditional independence
relationships that make possible the message passing algorithms described in
Sect. 4.2.
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For educational testing models, the set of nodes in the Bayes net are often par-
titioned into a set of proficiency variables, {X1, . . . , Xk}, and observable outcome
variables, {Y1, . . . , YJ }. Let qjk = 1 if and only if there is a directed edge from Xk
to Yj . (In educational models it is usually more efficient to parameterize Bayesian
networks with edges flowing from proficiency to observable variables.) This is the
same as theQ-matrix used in many other CDMs (see other chapters in this volume);
the Q-matrix is the incidence matrix for edges between proficiency and observable
variables. (Note that this is not a complete description of a Bayesian network, a
complete specification also requires the analyst to specify a graphical structure for
the proficiency variables, Almond, 2010).

If there are no edges between the observable variables, the graphical structure
implied by the Q-matrix gives that the observable outcomes are independent
given the proficiency variables. This is the multivariate extension of the local
independence property of IRT models. Note that the Bayes net notation is not
restricted to strict local independence; the analyst can model additional dependence
among observables by adding edges between observables.

4.1.3 Parameterization of Conditional Probability Tables

When all of the variables in the Bayes net are discrete, the parameters of the Bayes
net are the conditional probability tables (CPTs), Pr(Xk| pa(Xk)). Let s be an index
for the state ofXk and c be an index of the configuration (assignment of the variables
to values) of the parent variables. Then pcs is the conditional probability thatXk = s
given that pa(Xk) are in configuration c. In particular, each row corresponds to a
conditional probability distribution for the child given a specific parent configuration
and each column corresponds to a state of the child variable. Note that this implies
that

∑S
s=1 pcs = 1.

When learning the CPTs from data, it is helpful to have a prior distribution
over the CPT. A standard parameterization is to give every row of the CPT an
independent Dirichlet distribution; this is called a hyper-Dirichlet distribution. The
parameters of the hyper-Dirichlet distribution are a table of pseudo-counts, where
acs represents the number of times Xk was observed in State s when its parents
where in Configuration c. The row sums Ac =∑S

s=1 acs represent the total amount
of information about the row and are inversely related to the precision. The expected
value for the cells of the CPT are E[pcs] = acs/Ac.

The hyper-Dirichlet model has two drawbacks. First, the number of parameters
that must be specified or learned rises exponentially with the number of parents.
Second, in many educational applications, the parent and child variables are ordered
categories, and there is a certain implied monotonicity: better skills should lead to
better expected performance. To overcome these problems a number of alternative
parameterizations have been suggested.

The noisy-or (or more commonly in education noisy-and) was one of the first
parameterizations proposed (Pearl, 1988; Díez, 1993; Srinivas, 1993). Let Yj be the
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child variable, and X1, . . . , XK be the parents of Yj . With each parent variable,
associate a guessing parameter, gk , and let sj be a slipping parameter for the item.
Assume that all of the parents and children are binary. Then for the noisy-and model,

Pr(Yj = 1|X1, . . . , Xk) = sj
∏

k

g
1−Xk
k . (4.2)

For certain restrictions of the parameters, these correspond to the noisy-input
deterministic-and (NIDA) and deterministic-input noisy-and (DINA) models of
Junker and Sijtsma (2001) (see also Rupp, Templin, & Henson, 2010). If the
parents are ordered categorical variables, the noisy-and and noisy-or models extend
into the noisy-min and noisy-max models. Certain Bayes net packages have
special algorithms can exploit the noisy-and and noisy-or parameterizations (Li &
D’Ambrosio, 1994).

DiBello introduced another paradigm for creating CPTs based on multivariate
IRT models (Almond et al., 2001). The key idea is that if each state of each parent
variable can be mapped onto a point on an IRT theta scale, then existing multivariate
IRT models can be used to calculate the conditional probability tables. The method
has three steps:

1. Effective θs . For each state xks of each parent variableXk , let θ̃ks be a correspond-
ing real number. Almond et al. (2015) suggests assigning these numbers based
on quantiles of the normal distribution (corresponding to the number of states of
Xk).

2. Combination Rule. Each row of the CPT corresponds to an assignment of
parent variables to states and hence effective θs . These are combined using
a combination rule, Z(·) to produces a single effective θ for the row θ̃c =
Z(θ̃1c, . . . , θ̃Kc).

3. Link Function. The effective θ (s) for each row are placed in a link function, g(·)
which converts the effective θs into conditional probabilities.

Although presumably an infinite number of combination rules and link functions
is possible, in practice, only a small set is regularly used. The ones coded in the R
(R Development Core Team, 2007) package CPTtools (Almond, 2015, 2017a) are
listed below.

First the combination rules:

Compensatory This is appropriate for situations in which more of one skill
compensates for less of another. The combination rule is a weighted average
of the inputs: Z(θ̃1c, . . . , θ̃Kc) = 1√

K

∑
k akθ̃kc − b. The 1√

K
is a variance

stabilization term which keeps the variance of Z(·) from growing as the number
of parents grows.

Conjunctive This is appropriate for situations in which all skills are neces-
sary to solve the problem. The combination rule is a weighted minimum:
Z(θ̃1c, . . . , θ̃Kc) = mink(akθ̃kc)− b.



4 Bayesian Networks 87

Offset Conjunctive In many applications, it is not that the input skills have
different slopes, but rather different offsets, so should have different intercepts.
This rule swaps the numbers of slope and intercept parameters for the conjunctive
rule: Z(θ̃1c, . . . , θ̃Kc) = amink(θ̃kc − bk).

Disjunctive and Offset Disjunctive These are appropriate in situations for
which the skills represent different solution paths so that performance is
dominated by the strongest skill. The rules are formed by substituting a max
for the min in the equations for the conjunctive and offset conjunctive rules
respectively.

There are three structure functions in common use.

Normal Link (Almond et al., 2015). This link function represents a discretized
regression. It uses a single structure function representing the expected position
on the scale given the parent inputs, and a link scale function giving the residual
standard deviation around that expected value. It is most useful for representing
the relationship between proficiency variables.

Graded Response (Almond et al., 2001). This link function is based on the
graded response model (Samejima, 1969). There is a different structure function
for each state of the child variable, Y , and Zs(·) = logit[Pr(Y ≥ ys | pa(Y ) = c)].
The entries in the CPT are found by differencing these curves. Some care must
be taken so that curves do not cross, which could cause negative probabilities.
This is generally achieved by using the same form for the structure function at
each step, using the same discrimination (slope) parameters and ensuring that
the difficulties (intercepts) are in increasing order.

Partial Credit This link function is based on the generalized partial credit model
(Muraki, 1992). There is a different structure function for each state of the
child variable, Y , and Zs(·) = logit[Pr(Y ≥ ys |Y ≥ ys−1, pa(Y ) = c)]. The
probabilities for each level can be calculated by multiplying the conditional
probabilities together and then normalizing. Note that this link function is more
flexible than the graded response link function in that the structure functions do
not need to have the same discriminations or even be of the same structural form.

Detailed formulas are given in Almond (2015) and code is available in the
CPTtools package (Almond, 2017a).

4.1.4 Evidence-Centered Assessment Design and Bayesian
Networks

Bayesian networks can describe a large universe of possible models with detailed
information needed to specify both the model graph and the CPT for each node
in the graph. Evidence-centered assessment design (ECD; Mislevy, Steinberg,
& Almond, 2003) was developed in part to support the knowledge engineering
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efforts required to build Bayes nets for assessment. For this reason, it is com-
mon to use the terminology of ECD when building Bayes nets for education
(Almond et al., 2015).

In ECD, the complete Bayesian network is split between the central proficiency
model—models which describe the relationship among proficiency variables (often
called attributes in other forms of CDMs) in the target population—and the
statistical part of the evidence models—models which link the observable outcome
variables (often called item responses) to the relevant proficiency models—for each
task in the assessment. This makes a hub-and-spoke model of the assessment, with
the proficiency model forming the central hub and the evidence models plugging
into the central model. Note that in a particular form of the assessment, only certain
tasks need to be used, in which case only the evidence models associated with those
tasks are plugged into the central hub.

The proficiency model is a complete Bayesian network. The evidence models,
however, are only fragments: they contain references to the proficiency variables
(stubs) and not the complete variable definitions. The probability distribution over
the proficiency variables is given in the proficiency model. The set of proficiency
variables referenced in the evidence model is known as the footprint of the evidence
model. The probability distribution for the observable outcome variables is given in
the evidence model. If enough data are available, evidence models’ parameters can
be calibrated, giving task-specific values for the parameters.

In many assessments, each task is associated with a single outcome variable.
In this case, specifying the evidence model involves mostly specifying which
proficiency variables are relevant (the footprint), and the form and the parameters
for the CPT. Almond (2010) suggests doing this with an augmented Q-matrix, in
which additional columns in the Q-matrix are used to select the combination rule
for the CPT for the evidence model. (Almond, 2017d, extends this notation to work
with the more complex CPTs available with the partial credit link function.) In these
situations (single observable per task) the Bayes net model looks much like many
other CDMs.

There are two differences between a Bayes net expressed through aQ-matrix and
other CDMs. First, the decision about whether to use a compensatory, conjunctive,
or disjunctive model is made at the level of the observable outcome and not the
whole model. (This is more an issue of implementation than a limitation of theory.
There is no reason why multiple forms of a CDM could not be supported at
once, it is just that most software packages do not offer a mechanism for doing
customization at the item level.) Almond (2010) suggested augmenting the Q-
matrix with additional information about which structure function should be used
(as well as parameter values) for each observable.

Second, the Bayes net requires the relationship among the proficiency variables
(attributes) to be explicitly stated and modeled. In particular, the proficiency model
defines the distribution of proficiency profiles in the target population. Almond
(2010) suggests this can be done through an inverse correlation matrix (possibly
found through factor analysis). Most other forms of CDMs also define a population
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distribution for the attributes, but it is often done through a default (such as assuming
that the attributes are a priori uncorrelated and then learning the CPT from data).

One distinct difference between Bayesian networks and most other forms of
assessment is how they handle complex tasks with multiple observed outcome vari-
ables. In this case, the psychometrician is free to develop a more complex Bayesian
network which describes the relationship among proficiencies and observables.
The local independence assumptions for a Bayesian network is slightly different
for that of an item-based models. Observables associated with different tasks are
conditionally independent given the footprint variables for the tasks. Within tasks,
the limits are left to the modeler’s imagination.

4.2 Single Student Inference

A completely specified Bayesian network (one whose conditional probability tables
are all known) is a description of the joint probability of the latent and observable
variables for the population of interest. Scoring a single student is straightforward
and the required operations are supported by almost all Bayesian network software.
First, a student specific copy of the network is made. Next, all of the observed
variables are instantiated (set) to their observed values. Then a simple message
passing algorithm is used to update the marginal probabilities for all nodes in the
network. Statistics of these marginal probability distributions can be reported as
scores.

The Bayesian network inference engine is available a shared code library in
both free and commercially supported versions; this makes Bayesian networks an
attractive model for embedding in an intelligent tutoring system, adaptive testing
system, or other system that needs real-time scoring. As many other CDMs can be
represented as Bayes nets, first translating the estimated models to a Bayes net and
then using the Bayes net for scoring is an attractive method for using those models
in embedded applications.

4.2.1 Calculating Posterior Proficiency Profiles

Kim and Pearl (1983) described the first version of the message passing algorithm.
Messages going in the direction of the arrows would sum across states of the parent
variables, giving the prior distribution of the child variable. Messages going in the
opposite direction of the arrows would apply Bayes’ theorem, passing the likelihood
of observing the evidence below in the graph given the various states of the parent
variable. Combining the message coming from the parents with the message coming
from the children produces the marginal distribution of the target node.
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The Kim and Pearl (1983) algorithm was restricted to polytrees, a special kind of
directed graph with no undirected cycles, but Pearl (1988) noted that this limitation
could be overcome by clustering nodes together. Eventually, it was determined
that the optimal clusters of nodes were related to the cliques of the original graph
(after the common parents of any node were connected) and the tree of cliques
(the cliques arrayed in a tree structure) could be used for message passing. Adding
nodes representing the intersection of the cliques between the clique nodes produces
the junction tree, and the message passing algorithm is known as the junction tree
algorithm (Cowell et al., 1999). The cost of the junction tree algorithm is related
to the size of the largest clique in the graph (the treewidth). While alternative
algorithms exist for cases with large treewidths, for most educational applications
the junction tree algorithm works with an acceptable computational cost.

Although the junction tree algorithm was described using repeated applications
of Bayes’ rule to combine prior probabilities and likelihoods, the denominator
of Bayes theorem, the normalization constant, does not need to be calculated
until probability is interpreted. Saving the normalization step for the end has two
consequences. First, it improves the numerical stability of the calculation. Second,
the normalization constant is the prior probability of all of the evidence entered
into the network. This quantity is useful in a number of model-fit and person-fit
calculations.

Almond and Mislevy (1999) propose a variation on the junction tree algorithm
for the situation where the Bayes net is distributed according to a hub-and-spoke
model. The complete model of the assessment consists of the core proficiency model
(calibrated to the population of interest) and a collection of task-specific evidence
models (evidence models whose parameters have been calibrated to a particular
task). The system then supports the following operations:

– When a new student starts the assessment, the proficiency model is copied for
that student. The student-specific copy is the student model.

– When the scoring engine receives a message from other parts of the system that
a particular student has completed a particular task along with the values for the
observables for that task:

1. The scoring engine fetches the student model for that student and the evidence
model for that task, respectively.

2. The scoring engine adjoins the evidence model, which is a fragment, to the
student model, connecting the footprint variables.

3. The observable variables are instantiated and the evidence is propagated into
the student model variables.

4. Once the evidence has been absorbed, the variables unique to the evidence
model can be discarded.

– The student model for a particular student can be queried at any time to make
score reports or decisions about what content to provide next.
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– The scoring engine can combine a student model and a task-specific evidence
model to predict how a student might perform on a task. This can be useful for
adaptive selection or sequencing of items.

– A student model can be saved and restored either by writing its current
information out to a database or by saving the sequence of tasks and observables
and then replaying them to recalculate the score.

This algorithm takes advantage of the equivalence under Bayes theorem of
incorporating all evidence at once or in batches (here corresponding to specific
tasks). As a consequence, at any time the student model for a particular student
contains the joint probability distribution of proficiency profiles (assignments of
proficiency variables to states) based on the observed evidence for that student.
Initially, this value is based on the population distribution, but as evidence for more
tasks are observed it should become more student specific. A score for a Bayes net
can be any statistic of that joint distribution, although there are a few commonly
used choices.

The most commonly used score is the marginal probability of a single proficiency
variable. This is usually a vector of numbers between 0 and 1 that sum to 1, with one
number corresponding to each state of the proficiency variable. For example {Low :
.05,Medium : .80,H igh : .15} corresponds to a student who is thought to be in the
middle category with probability .8. This probability of mastery is a combination of
the direct evidence of mastery for that skill (from nodes that are descendants of the
target proficiency), the probability of mastery in the population (from the proficiency
model) and indirect evidence of mastery from other proficiency variables which are
correlated with the target variables. In this sense, it resembles the augmented scores
of Wainer et al. (2001).

Typically the proficiency variables are ordered categorical variables. One way to
summarize the posterior distribution over those scores is to give the modal value
(in the example above, this would be ‘M’). This is sometimes called the MAP
(maximum a posteriori) estimate. The probability that the person is in the middle
category (.8 in the example) is then a measure of certainty of the MAP estimate. If
one is willing to assign a real value to each category, it is also possible to calculate
an expected value (EAP or expected a posteriori) and a variance. This is often useful
for rank ordering students on a particular attribute.

Sometimes the most likely probability profile is of interest. This is not necessarily
the same as the MAP estimate for each individual proficiency. Fortunately, a varia-
tion of the junction tree algorithm (that uses maximization in place of summation)
is available that produces the most likely configuration. This is supported by most
Bayes net engines. In general, the engines can calculate the joint distribution over
any set of proficiency variables, correctly taking into account the correlation among
the variables.

It is also straightforward to sample from a Bayesian network (either using the
prior distribution or the posterior distribution given partial evidence). First, use
the message passing algorithm to calculate the marginal distribution for a single
node. Sample from that distribution, and instantiate the node to the sampled value.
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Propagate the new information and sample the next node. The result is a sample
from the joint distribution of all variables. Many software packages support this
operation, which can be used for simulation studies. Again, this may be useful for
other CDMs. If they can first be converted into a Bayes net, then, if more specialized
software is not available, Bayes net software can be used to draw samples for
simulation studies.

4.2.2 Weight of Evidence

At the student level, it is also possible to provide an explanation of how the model
arrived at a particular score. Madigan, Mosurski, and Almond (1997) suggest a
statistic called the weight of evidence. Let H be a binary hypothesis, and let H
be its complement. This can be any partition of the space of possible proficiency
profiles; however, the most frequent example is corresponds to Xk ≥ x for some
proficiency variable Xk . Let E be a particular observation (which corresponds to
a set of observable values Y1, . . . , YJ taking on values y1, . . . , yj ). The weight of
evidence that E provides for H ,W(H :E) is

W(H :E) = log
Pr(E|H)
Pr(E|H) = log

Pr(H |E)
Pr(H |E) − log

Pr(H)

Pr(H)
. (4.3)

Note that the right hand size of Eq. 4.3 is Bayes’ theorem using log-odds. The
posterior log-odds is equal to the prior log-odds plus the log of the likelihood ratio.
Similar to the way that Bayes theorem applications can be chained so can the weight
of evidence. However, this requires defining a conditional weight of evidence,

W(H :E2|E1) = log
Pr(E2|H,E1)

Pr(E2|H,E1)
. (4.4)

It follows thatW(H :E1, E2) = W(H :E1)+W(H :E2|E1), and this calculation can
be extended for any number of observations. Using this model, a contribution can be
assigned to each piece of evidenceE1, . . . , EJ (that is the observations from Tasks 1
through J). Note that the conditional weights of evidence are order sensitive (pieces
of evidence observed earlier in the sequence tend to provide more weight) but that
the total evidence is always the same no matter the sequence it is observed in.

Madigan et al. (1997) suggest a graphical display showing the contribution of
each piece of evidence in sequence. Almond, Kim, Shute, and Ventura (2013) apply
this to the game Physics Playground, which was scored using a Bayes net. In
Fig. 4.2, the large bars in the third column represent game levels where the estimate
of the student’s physics ability had a large shift. Looking at replays of those levels
helped the researchers understand how the student was approaching the problems
and indicated game levels that might need additional work.
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***BASELINE***
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Fig. 4.2 Weight of evidence balance sheet for student S259 (Copyright Almond et al., 2013. Used
by permission of the authors.) The leftmost column shows the observations in the order processed.
The middle column shows the running probability that the target node (Physics Understanding) is
in the high, medium or low state. The rightmost column shows the weight of evidence, cyan bars
for positive evidence and red for negative evidence

Another use for weight of evidence is in item or task selection. Let {yjm,m =
1, . . . ,M} represent the possible outcomes of the observation Yj . Then the expected
weight of evidence for Yj for the hypothesis H is

EW(H :E) =
M∑

m=1

W(H :yjm)Pr(yjm | H) . (4.5)

The joint expected weight of evidence can also be calculated across several
observables. A simple task selection algorithm would select the task at any time
that has the greatest EW. Note that this is a greedy search algorithm and does not
always yield an optimal form of the assessment.
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4.3 Estimation of Model Parameters

Algorithms for estimating Bayesian networks from data is an active topic of research
in computer science (Neapolitan, 2004). These algorithms can be roughly divided
into ones which take the structure of the Bayesian network as fixed (this section),
and ones which attempt to learn the structure from data (Sect. 4.4). The difference is
similar to the difference between exploratory and confirmatory factor analysis. Both
classes of algorithm can take advantage of the graphical structure of the model.

Educational models have two features which are only sometimes present in
the broader class of Bayesian network models. First, the proficiency variables
(attributes) are usually latent variables. (Some of the learning algorithms require
fully observed data). Second, the variables (both proficiency variables and observ-
able outcomes) are usually ordinal in educational applications, and the CPTs
are monotonic (greater skill should lead to better performance). Most parameter
estimation algorithms do not force monotonicity constraints on the CPTs.

Rather than exhaustively survey all of the available parameter estimation tech-
niques, this chapter focuses on two. First, it describes the basic expectation
maximization (EM) algorithm with Bayes nets (Sect. 4.3.1), which is supported
by many Bayes net software packages. Second, it describes some considerations
necessary when doing Markov chain Monte Carlo (MCMC) with Bayes nets
(Sect. 4.3.2).

4.3.1 EM Algorithms

If all nodes of a discrete Bayesian network are fully observed in a sample of size N ,
the CPTs can be updated via a simple counting algorithm. Consider first node Xk
which has no parents and which can take on S states. Let pk = (pk1, . . . , pkS) be
probabilities for the S values Xk can take. The data will follow a multinomial dis-
tribution with parameters N and p. The natural conjugate prior for the multinomial
family is the Dirichlet distribution, with parameters ak = (ak1, . . . , akS) (which
must all be non-negative). If yk = (yk1, . . . , ykS) are the observed counts, and ãk
are the prior parameters, then a∗k = (ãk1 + yk1, . . . , ãkS + ykS) are the posterior

parameters. Note that N =∑S
s=1 yks , so that the prior distribution can be expressed

as a expected probability, p̃k and a pseudo-count Ñ , with higher counts expressing
more certainty in the prior.

Next consider an arbitrary node, Xk with parents pa(Xk). Let c be an index
which runs over the configurations of the parent variables. The observed data are
now classified two ways, so that Yk is now a matrix, with ykcs the number of cases
where Xk = xks when pa(Xk) are in configuration c. Here Yk follows a conditional
multinomial distribution where Nkc = ∑S

s=1 ykcs . Under the local parameter
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independence assumption1 the rows of the CPT are independent. As before, assign
each row a Dirichlet distribution with parameters ãkc and stack these vectors to
make a matrix Ãk the prior distribution for the CPT is a hyper-Dirichlet distribution
with parameter Ãk . The posterior distribution is also a hyper-Dirichlet distribution
with parameter A∗k = Ãk + Yk . As in the no parent case, this can be expressed as
an expected conditional probability table P∗k and vector of pseudo counts for each

row, N∗kc =
∑S
s=1 a

∗
kcs . The pseudo-counts for the rows need not be the same, and

the posterior pseudo-counts will depend on the pattern of observations.
Spiegelhalter and Lauritzen (1990) show that under the global parameter

independence assumption (parameters from different CPTs are independent given
the observed data) and the local parameter independence assumption, that the global
hyper-Dirichlet distribution (the one where every CPT has a hyper-Dirichlet prior)
is the natural conjugate of the conditional multinomial distribution of the Bayes net.
Thus, when the data are fully observed a simple counting algorithm can be used
to calculate either the maximum likelihood or Bayesian estimate of the CPTs. The
maximum likelihood estimate can have difficulties if one of the cell counts is zero,
so generally the Bayesian estimates are preferred. A Bayesian prior can be created
by putting expert values into the CPTs and then assigning them an effective samples
size weight Ñk . A noninformative prior can be produced by setting all of the cells to
1/S, however, when informative priors are available they can help keep the estimates
from violating the monotonicity assumptions when the sample size is small. In our
experience, giving the priors an effective sample size between 10 and 100 strikes a
good balance between making them responsive to data, and stabilizing the estimates
when sample sizes are small.

If there are missing values, or latent variables, then the CPTs can be calculated
using the expectation maximization (EM) algorithm. Under the global parameter
independence assumption, the observed table of counts, Yk is a sufficient statistic for
the CPT for nodeXk . Let A(0)k be the initial parameters for the distribution. Dropping
these into the Bayes net produces initial values for all of the conditional probability
tables. The E-step (expectation step) of the EM algorithm calculates the expected
value of the sufficient statistics, Ŷ(r)k from the current values of the CPTs at Step (r).
This is done variable-by-variable. For each variable create a table filled with zeros.
Now for each observation, look at the Xk and pa(Xk). If these are fully observed,
add one to the appropriate cell. If not, calculate the joint probability distribution over
the variables using the junction tree algorithm. Then add that probability distribution
to the table. The M-step (maximization step) now just uses the counting rule to
produce new posterior parameters. These are used to calculate the new CPTs which
are dropped into the Bayes net. Both the counting algorithm and the EM algorithm
are built into many Bayesian network software packages.

1This is different from the usual psychometric local independence assumption which assumes
that the observable outcomes from different items or tasks are independent given the proficiency
variables.
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There are two problems with using the EM algorithm with hyper-Dirichlet priors
to estimate the CPTs of a Bayes net in educational applications. First, the hyper-
Dirichlet does not support the monotonicity constraint, so there is no guarantee
that increasing skill will lead to increasing probability of success in the estimated
CPTs. Second, if the parent variables are moderately correlated (often true in many
educational settings) then the amount of information in certain configurations of the
parent variables (rows of the table) will be small. In particular, if the there will be
very few cases in which the test taker is very high on one skill and very low on
another skill. This increases the chance that the estimated CPT will not satisfy the
monotonicity constraint.

To get around this problem, Almond (2015) proposed an extension to the usual
EM algorithm for CPTs that uses a parameterization other than the hyper-Dirichlet
distribution. The E-step is the same as the one for the hyper-Dirichlet case, as the
sufficient statistics are still the table of expected counts Ŷ(r)k . The M-step then
applies an optimizer to get the parameters for the CPT that are most likely to
produce the observed data. The optimizer only needs to run for a few steps to
produce a generalized EM algorithm. The Peanut (Almond, 2017b) package in
R (R Development Core Team, 2007) is available to use this algorithm.

As many other CDMs can be expressed as Bayesian networks, parameter
estimation software designed for those models can be used to estimate
Bayes net CPTs. A particularly important case is structural equation models
(SEMs). If the model graph for the SEM can be turned into a directed graph
(by orienting bidirectional edges), then the biggest difference between the
discrete Bayes net and the SEM is that in the latter, the latent variables are
continuous. In this case, it is straightforward to convert the SEM to a Bayes net
(Almond, 2010).

4.3.2 Markov Chain Monte Carlo

An alternative to the EM algorithm is Markov chain Monte Carlo (MCMC). Once
again the graphical structure can provide guidance for the algorithm. In particular,
a Gibbs sampler only needs to look at the Markov blanket of a particular node
(the parents, children and certain siblings) when sampling the value of a particular
node. Also, if the global independence assumption holds, the conditional probability
tables for each node can be considered independently. If all of the conditional
probability tables have a hyper-Dirichlet distribution, then the posterior distribution
of a discrete Bayesian network can be sampled using a Gibbs sampler (Spiegelhalter
& Lauritzen, 1990).

There are two model identification issues that need to be addressed. First, unless
the conditional probability tables are constrained to be monotonic, there exists a
possibility for label switching (Frühwirth-Schnatter, 2001). Suppose a Bayes net is
constructed with binary skills in which 1 represents mastery and 0 lack of mastery.
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Then the model with 0 representing mastery will have equal likelihood. Frühwirth-
Schnatter (2001) suggests letting the chains mix over the states with inverted labels
and then sorting the labels out after the sampling is complete.

The second issue is related to the scale invariance in IRT models. In an IRT
model if a constant is added to the difficulty of all items and added to the ability
of all students, then the likelihood is unchanged. The same happens in the Bayes
nets through shifts to the conditional probabilities. Bafumi, Gelman, Park, and
Kaplan (2005) recommend letting the model range over the possible values and
then centering scale after the MCMC run. Note that each proficiency variable must
have its scale anchored. Almond, Mislevy, and Yan (2007) recommend constructing
a set of items which have an average of 0 difficulty to identify each scale.

There is no Bayes net package currently available for doing MCMC with
educational models. (StatShop; Almond, Yan, Matukhin, & Chang, 2006; was
developed for this purpose but is only available as a research release.) Building
the sampler in a general purpose MCMC package such as OpenBUGS (Lunn,
Spiegelhalter, Thomas, & Best, 2009) or JAGS (Plummer, 2012) requires a great
deal of coding. Another problem is that because of the discrete variables the
deviance is not automatically calculated for model fit measures such as DIC
(Spiegelhalter, Best, Carlin, & van der Linde, 2002) or WAIC (Gelman et al., 2013,
Chapter 7).

4.4 Assessment of Fit

The question of model fit to data encompasses several specific questions: (1) How
well does a given individual fit the assessment models? (Sect. 4.4.1) (2) Are the
modeling assumptions for a particular item or task correct? (Sect. 4.4.2) (3) Is the
current assessment design adequate for estimating the proficiency of candidates?
(Sect. 4.4.3) (4) What is the best Bayes net structure for fitting a given set of data?
(Sect. 4.4.4) Almond et al. (2015) provide fairly extensive discussion of methods
for the first three. The last topic is the subject of fairly extensive research in the
artificial intelligence community under the names structural learning and causal
modeling (Neapolitan, 2004). These developments are only briefly surveyed here
and this survey is almost certainly out of date at the time of printing.

4.4.1 Person Fit

Because the normalization constant calculated through the junction-tree algorithm
is the likelihood for the observed response pattern (for a randomly selected person
from the target population of the assessment), it is relatively simple to create fit
metrics based on likelihood. In particular, calculating the likelihood of all observed
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response patterns provides a reference distribution for the person likelihood statistic.
Looking for outliers in this distribution provides a way of flagging unusual response
patterns.

The weight of evidence balance sheet shown in Sect. 4.2.2 provides another
mechanism for spotting unusual response patterns. Unusually large positive or
negative evidence indicates that the candidate made an unusual response to a
particular task. This has proved useful for both identifying unusual response vectors
and identifying problematic tasks (Almond et al., 2013).

4.4.2 Item and Task Fit Measures

Just as the junction-tree algorithm can rapidly calculate marginal distributions for
proficiency variables, it can rapidly calculate predictive distributions for observable
variables given other observations. These can be used for a wide variety of item
fit and task fit measures (Almond et al., 2015). The observable characteristic plot
which gives the discrete analog of the item characteristic curve is particularly
promising (Sinharay, Almond, & Yan, 2004; Sinharay & Almond, 2007).

The display focuses on a single CPT; for simplicity assume that the child
variable is binary. Let c ∈ {1, . . . , C} be an index for the parent configurations.
(Note that in some test designs, certain configurations may be indistinguishable. In
these cases, replace the parent configurations with equivalence classes of configu-
rations.) The CPT gives a predictive probability pc for the observable under each
configuration.

If the parent variables are fully observed, a simple counting algorithm can be
used to update the conditional probability tables. Let c be a configuration of the
parent variables, let Nc be the total number of cases that have that configuration,
and let Xc be the number of successful cases with that configuration. The value
Xc/Nc provides an estimate for pc. As it is possible that Xc = 0 or Xc = Nc,
it is better to use a Bayesian estimate using either a uniform prior or using pc as
a prior. This latter gives a beta distribution with parameters ac = Xc + pc and
bc = Nc − Xc + 1 − pc (1/2 can be substituted for pc in those expressions). Use
the beta distribution to calculate a 95% interval for pc and plot that against pc for
each parent configuration. Figure 4.3 shows two examples.

Figure 4.3a is a conjunctive CPT that works fairly well. The conditional
probability values which should be low are low, and the value which should be
high is high. Figure 4.3b shows a conjunctive CPT that does not work well. The
conditional probability when the parents are in configuration (1, 0) should be low,
but the data are indicating it is moderate. The conjunctive combination rule is not
appropriate for this task. These plots were made with the R package CPTtools
(Almond, 2017a).

When the parent variables are not fully observed (the usual case), then expected
configurations of the parent distributions can be used. Let Yik be the value of observ-
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Fig. 4.3 Observable characteristic plot. (Reprinted with permission from ETS)
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Fig. 4.4 Observable characteristic plot for additional skill. (Reprinted with permission from ETS)

able Yk for test taker i, and let qic = Pr(pa(Yk) = c|Yi1, . . . , Yi(k−1), Yi(k+1), YiK),
that is the probability that test taker i is in configuration c given all of the other
observations in the model. This can be calculated using the Bayes net to find the joint
distribution over pa(Yk) or via MCMC. Then Nc = ∑i qic and Xc = ∑i Yikqic.
This can be used to form beta credibility intervals as above.

Note that ac and bc form a 2× C contingency table, with expected values Ncpc
and Nc(1 − pc), respectively. This can be used to calculate a χ2 statistic with C
degrees of freedom. This statistic may not have a χ2 distribution if the expected
values are for the parent variables, but it can be used as a heuristic for screening
which observables to examine in detail.

A simple extension of this procedure can be used to test for missing parent
variables (Fig. 4.4). Simply create an augmented parent set pa∗(Yk) = pa(Yk)∪{Y ′}
and produce the observable characteristic plot using this augmented set. Figure 4.4a
shows a plot which works fairly well. The conditional probabilities seem to have the
same value for all values of the extra variable (the fastest moving one). Figure 4.4b
shows an example that does not work as well. If the extra variable is in the
higher state, the task appears to be easier. In this case, Y ′ is a possible missing
parent.
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4.4.3 Simulation Studies for Profile Recovery

Another important question in diagnosing problems with an assessment is whether
or not the mix of tasks and items provides adequate coverage for the intended
purpose. As most Bayes net engines support simulating from the joint distribution, it
is straightforward to do a simulation experiment. First simulate both the proficiency
variables and observable outcome variables for the target test form. Next, mask the
proficiency variables, and estimate them using the observed data. If MAP estimates
are used, this produces a 2 × 2 table for each proficiency variable comparing the
actual and estimated proficiencies. Also, using the marginal distributions for the
proficiency variables, an expected table can be constructed (Almond et al., 2015).

Two statistics are useful for evaluating how close the actual and estimated
proficiencies are. The first is Cohen’s kappa. The second is Goodman and Kruskal’s
lambda. The latter is similar to kappa, except it takes as its reference point
not random agreement, but assigning everybody to the most prevalent category.
Therefore, it provides an estimate of the improvement in classification accuracy
over not testing at all.

4.4.4 Learning Model Structure from Data

As mentioned previously, there is a substantial literature on inferring the graphical
structure from a set of data (e.g., Neapolitan, 2004). Much of this literature is
devoted to discovering causal structure, assuming that the arrows of the directed
graph point in a causal direction. While the algorithms often reveal that two
nodes are connected, often they cannot determine the direction of the edge. In

particular, the three graphs , and
all express the same conditional independence relationships, they just re-arrange

the ordering of the variables. On the other hand, the graph has
different conditional independence conditions, so can be distinguished from the
others.

Another problem is that latent variables can be added as full or partial mediators
between any two observed variables yielding the same probability distribution
over the observed variables. As educational models usually center around latent
proficiency variables, additional information is needed. Often an exploratory fac-
tor analysis, followed by discretizing the latent variables works well. Martin
and VanLehn (1994) develop a discrete factor analysis for use with Bayesian
networks.
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4.5 Exemplary Applications

This section looks at two applications. ACED (Sect. 4.5.1) is an assessment and
tutoring system that uses many simple tasks, each with a single observable outcome.
NetPASS (Sect. 4.5.2) is a simulation-based assessment that has multiple observable
outcomes per task.

4.5.1 ACED

Adaptive content with evidence-based diagnosis (ACED) is an adaptive, diagnostic
assessment of mathematics sequences that makes use of a Bayesian network scoring
model (Shute, Graf, & Hansen, 2005; Shute, Hansen, & Almond, 2007). The ACED
prototype (a) uses expected weight of evidence to select the next task (Madigan
& Almond, 1995), (b) implements targeted diagnostic feedback (Shute, Hansen, &
Almond, 2008), and (c) uses technology to make it accessible to students with visual
disabilities (Shute et al., 2007).

The ACED proficiency model is represented as a tree-shaped Bayesian network
with an overall sequences proficiency node at the top and nodes for arithmetic,
geometric, and other recursive sequences as its immediate children (Graf, 2003).
The proficiency model consisted of 42 nodes. A total of 174 items were developed,
63 of them were connected to nodes in the geometric sequences branch of the
proficiency model. Human experts provided information for the evidence model
(i.e., indicators of the relative difficulty of the tasks associated with a particular
node, and a correlation that indicated the strength of the relationship between the
node and its parent). Evidence rules for each proficiency were defined at three levels
of proficiency (high, medium and low). Prior probabilities for top-level proficiencies
were elicited based on the probability that a student is at each of the three proficiency
levels while prior probabilities for the other proficiency nodes was specified based
on relative difficulty of the tasks associated with each of them. A task selection
algorithm based on the expected weight of evidence was employed (Madigan &
Almond, 1995).

The assessment-instruction cycle implemented in ACED included the following
steps: (1) selecting an instructional area for testing based on heuristics, (2) identi-
fying tasks associated to the current instructional area, (3) calculating the expected
weight of evidence for each task, (4) selecting the task with highest expected weight
of evidence, (5) administering the task, (6) updating the student’s proficiency model
based on the response, and (7) stop or iterate depending on a predefined criteria.

A study comparing the effects of adaptive sequencing and feedback showed
that students benefited the most (greater pre-post learning gains) from elaborated
feedback in the adaptive sequencing condition (Shute et al., 2008) and found out that
despite the presence of feedback, the ACED system showed strong psychometric
properties (i.e., split-half reliability of 63 ACED tasks associated with Geometric
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Sequences was high, 0.88, and the top parent proficiency reliability was 0.88). The
complete data for ACED, as well as a complete model description (including the
Q-matrix) are available at https://ecd.ralmond.net/ecdwiki/ACED/ACED/.

4.5.2 NetPass

The Networking Performance Skill System (NetPASS) project is a performance-
based assessment for designing and troubleshooting computer networks (Behrens,
Mislevy, Bauer, Williamson, & Levy, 2004; Williamson, Bauer, Steinberg, Mislevy,
& DeMark, 2004; Levy & Mislevy, 2004). The main purpose of NetPASS is to
provide students with opportunities to practice their computer networking skills and
receive diagnostic feedback based on their performance. The NetPASS prototype
informed the development of other simulation system and game systems in this
domain that have been used by many students around the world (Scalise et al., 2007).

The NetPASS student model includes variables such as Networking Disciplinary
Knowledge (top node), Network Modeling and Networking Proficiency (top nodes’
children) and Designing, Implement/Configure, and Troubleshoot (Children of
Network Proficiency) (Levy & Mislevy, 2004).

The design team and a group of subject matter experts worked on identifying
features of work products that provide evidence for particular claims. For example,
aspects of the network that students should verify during troubleshooting and
the evidence that could be elicited from students’ troubleshooting processes.
Cognitive Task Analysis (CTA) (Newell & Simon, 1972) was used to identify
task features and situations for eliciting student behaviors of interest to mea-
sure the intended construct (Williamson et al., 2004). Data from 24 students
at three ability levels (8 lower, 8 average, 8 high) of the Cisco Networking
Academy Program curriculum were used to inform the CTA. Students took a
pretest and solved four scenarios following a think-aloud protocol. Data collected
included transcripts of think-aloud solutions, log files, diagrams, and calculations.
These data were analyzed and discussed by the researchers and subject matter
experts. Reusable observables and patterns of behaviors associated with claims were
identified.

In another study, Levy and Mislevy (2004) used data from 216 test takers to
estimate the parameters of a Bayesian model for NetPASS using MCMC. Data
included an average of 28 values for each observable. Three chains were run
in parallel for 100,000 iterations using different starting values and convergence
diagnostics were collected. Results showed an increase of precision on the posterior
distributions for the parameters that define the conditional probability distributions
for most of the parameters. Higher precision was observed at the observable level
while mild increases in precision were observed for latent variables (i.e., student
and evidence model variables). The authors elaborated on the broad application of
Bayesian approaches for modeling educational assessments and described future

https://ecd.ralmond.net/ecdwiki/ACED/ACED/
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work involving the comparison of the existing model to models that require fewer
parameters and evaluating the need for adding context variables to the evidence
models.

4.6 Bayes Net Software Packages

A number of software packages are available for basic manipulation of Bayesian
networks. These packages include academic and commercial packages. A
list of available software can be found here (http://www.cs.ubc.ca/~murphyk/
Software/bnsoft.html). There is also a Wikipedia article on Bayesian networks
that includes general information about software (https://en.wikipedia.org/wiki/
Bayesiannetwork).

A set of tools that allows domain experts to quickly build Bayesian networks
from tabular representations (e.g., using a spreadsheet program) and make use of
software such as Netica (Norsys, 2004) to make them functional is now available
(Almond, 2017c). These tools include:

– RNetica: serves as the “glue” layer between the open source statistical
programming language R and the proprietary Bayesian network engine Netica.
RNetica uses the functionality of the Netica API inside of R.

– CPTtools: includes R functions for constructing and manipulating conditional
probability tables. It also contains tools for displaying and analyzing the output
of Bayesian network analyses.

– Peanut: an object oriented layer designed to rest on top of CPTtools. Peanut
was designed as a high level interface that is compatible with multiple Bayesian
network engines.

These tools are available at https://pluto.coe.fsu.edu/RNetica/.

4.7 Discussion

This chapter describes processes for authoring, calibrating and evaluating Bayesian
networks that can provide diagnostic information. As Bayesian networks are a
notation for describing models, many popular CDMs can be represented as Bayes
nets. This in turn, allows the users of these models to exploit existing Bayes
net software for building systems with embedded scoring for use in simulation
experiments.

The use of Bayesian networks for designing and implementing diagnostic
models has long been recognized. Among the ten reasons for considering Bayesian
networks cited in Almond et al. (2015), are capabilities such as: reporting scores in
terms of “Probability of Claim;” using a graphical representation for the proficiency
model; incorporating expert knowledge about the cognitive domain; learning from

http://www.cs.ubc.ca/~murphyk/Software/bnsoft.html
http://www.cs.ubc.ca/~murphyk/Software/bnsoft.html
https://en.wikipedia.org/wiki/Bayesiannetwork
https://en.wikipedia.org/wiki/Bayesiannetwork
https://pluto.coe.fsu.edu/RNetica/
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data; handling complex models and tasks; being fast; providing profile scores and
real-time diagnosis; easily employed in the context of evidence-centered design; and
their models can be considered “useful.”

The examples provided show that Bayesian networks can be used to implement
diagnostic models for adaptive assessment and learning systems that provide
teachers and students with relevant feedback (Shute et al., 2008; Almond, Shute,
Underwood, & Zapata-Rivera, 2009).
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Chapter 5
Nonparametric Methods in Cognitively
Diagnostic Assessment

Chia-Yi Chiu and Hans-Friedrich Köhn

Abstract Parametric estimation is the prevailing method for fitting diagnostic
classification models. In the early days of cognitively diagnostic modeling, publicly
available implementations of parametric estimation methods were scarce and often
encountered technical difficulties in practice. In response to these difficulties, a
number of researchers explored the potential of methods that do not rely on a
parametric statistical model—nonparametric methods for short—as alternatives to,
for example, MLE for assigning examinees to proficiency classes. Of particular
interest were clustering methods because efficient implementations were readily
available in the major statistical software packages. This article provides a review of
nonparametric concepts and methods, as they have been developed and adopted for
cognitive diagnosis: clustering methods and the Asymptotic Classification Theory
of Cognitive Diagnosis (ACTCD), the Nonparametric Classification (NPC) method,
and its generalization, the General NPC method. Also included in this review are
two methods that employ the NPC method as a computational device: joint MLE for
cognitive diagnosis and the nonparametric Q-matrix refinement and reconstruction
method.

5.1 Introduction

Cognitive diagnosis (CD), a relatively recent development in educational measure-
ment (DiBello, Roussos, & Stout, 2007; Haberman & von Davier, 2007; Leighton
& Gierl, 2007; Nichols, Chipman & Brennan, 1995; Rupp, Templin, & Henson,
2010) explicitly targets mastery of the instructional content and seeks to provide
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immediate feedback to students about their strengths and weaknesses in terms of
skills learned and skills needing study. CD terminology refers to skills, specific
knowledge, aptitudes—any cognitive characteristic required to perform tasks—
collectively as “attributes.” CD models—or “Diagnostic Classification Models”
(DCMs), as they are called here—describe an examinee’s ability as a composite
of these attributes, each of which an examinee may or may not have mastered.
Mastery of attributes is recorded as a binary vector; different zero-one combinations
define attribute vectors of distinct proficiency classes to which examinees are to
be assigned based on their test performance (i.e., examinees’ individual attribute
vectors must be estimated).

The prevailing method for fitting DCMs uses either marginal maximum likeli-
hood estimation relying on the Expectation Maximization algorithm (MMLE-EM)
or Markov chain Monte Carlo (MCMC) techniques (de la Torre, 2009, 2011;
DiBello et al., 2007; von Davier, 2008). In the early days of CD modeling,
publicly available implementations of these parametric estimation methods were
scarce and often encountered technical difficulties in practice (e.g., excessive CPU
times, computational feasibility). In response to these difficulties, a number of
researchers (Ayers, Nugent, & Dean, 2008, 2009; Chiu, 2008; Chiu & Douglas,
2013; Chiu, Douglas, & Li, 2009; Park & Lee, 2011; Willse, Henson, & Tem-
plin, 2007) explored the potential of nonparametric methods—that is, methods
that do not rely on a parametric statistical model—as alternatives to MMLE-
EM and MCMC for assigning examinees to proficiency classes. Of particular
interest were clustering methods because efficient implementations were readily
available in the major statistical software packages. Today, efficient implemen-
tations of MMLE-EM algorithms for fitting DCMs are available; for example,
through the R packages CDM (Robitzsch, Kiefer, George, & Uenlue, 2016) and
GDINA (Ma & de la Torre, 2017) (for further software options for fitting DCMs,
consult “Part IV” in this book). They work well for large-scale assessments,
where the data of hundreds or thousands of examinees are available. However,
nonparametric methods are still useful for analyzing assessment data from educa-
tional micro-environments, say, for monitoring the instruction and learning process
at the classroom level, where CD-based methods would be most useful and
needed, but sample sizes are simply too small for maximum likelihood estimation
to guarantee reliable estimates of item parameters and examinees’ proficiency
classes.

This article provides a review of nonparametric concepts and methods, as they
have been developed and adopted for CD: clustering methods and the Asymptotic
Classification Theory of Cognitive Diagnosis (ACTCD) (Chiu, 2008; Chiu et al.,
2009; Chiu & Köhn, 2015a,b, 2016), the NonParametric Classification (NPC)
method (Chiu & Douglas, 2013) and its generalization, the General NPC method
(Chiu, Sun, & Bian, 2018). Further exploration of the potential of nonparametric
methods for CD also revealed the particular usefulness of the nonparametric clas-
sification methods for implementing joint maximum likelihood estimation for CD
(Chiu, Köhn, Zheng, & Henson, 2016) and for the effective refinement and recon-
struction of Q-matrices (Chiu, 2013), which are, therefore, included in this review.



5 Nonparametric Methods in Cognitively Diagnostic Assessment 109

5.2 Review of Technical Key Concepts: Cognitive Diagnosis
and Diagnostic Classification Models

DCMs are constrained latent class models equivalent to a certain form of finite
mixture models (Fraley & Raftery, 2002; Grim, 2006; McLachlan & Basford,
1988; McLachlan & Peel, 2000; von Davier, 2009). Let Yij denote the response
to binary test item j , j = 1, 2, . . . , J , obtained for examinee i, i = 1, 2, . . . , N ;
the J -dimensional item-score vector of examinee i is written as the row vector
Y i = (Yi1, Yi2, . . . , YiJ )

′. Consider N examinees who belong to M distinct
latent proficiency classes. For the general latent class model (Bartholomew, 1987;
Bartholomew & Knott, 1999; Heinen, 1996; Langeheine & Rost, 1988; Lazarsfeld
& Henry, 1968; Vermunt, 1997, see also Chap. 1 of this book for more details), the
(conditional) probability of examinee i in proficiency class Cm, m = 1, . . . ,M ,
answering correctly binary item j is defined by the item response function
(IRF) P(Yij = 1 | i ∈ Cm) = πmj , where πmj is constant for item j

across all examinees i in proficiency class Cm. The Yij are assumed independent
conditional on proficiency-class membership (local independence); no further
restrictions are imposed on the relation between the latent variable—proficiency-
class membership—and the observed item response. DCMs, in contrast, constrain
the relation between proficiency-class membership and item response such that the
probability of a correct response is a function of attribute mastery, as it is determined
by an examinee’s proficiency class.

Suppose ability in a given domain is modeled as a composite of K latent
binary attributes α1, α2, . . . , αK . The K-dimensional binary vector αm =
(αm1, αm2, . . . , αmK)

′ denotes the attribute vector of proficiency class Cm, where
the kth entry, αmk ∈ {0, 1}, indicates (non-)mastery of the corresponding attribute.
If the attributes do not have a hierarchical structure, then there are 2K = M distinct
proficiency classes. The entire set of realizable attribute vectors, given a set of K
attributes, defines the latent attribute space (Tatsuoka, 2009). The attribute vector of
examinee i ∈ Cm, αi∈Cm , is written as αi = (αi1, αi2, . . . , αiK)′.

The individual items of a test are also characterized by K-dimensional attribute
vectors qj that determine which attributes are required to respond correctly to an
item (qjk = 1, if a correct answer requires mastery of the kth attribute, and 0 oth-
erwise). Given K attributes, there are at most 2K − 1 distinct item-attribute vectors
(item-attribute vectors that consist entirely of zeroes are considered inadmissible).
The J item-attribute vectors of a test constitute its Q-matrix, Q = {qjk}(J×K),
(Tatsuoka, 1985) that summarizes the specific item-attribute associations. The Q-
matrix must be known (or the data cannot be analyzed within the CD framework)
and complete. A Q-matrix is said to be complete if it guarantees the identifiability of
all realizable proficiency classes among examinees (Chiu et al., 2009; Köhn & Chiu,
2017). An incomplete Q-matrix may cause examinees to be assigned to proficiency
classes to which they do not belong. Formally, a Q-matrix is complete if the equality
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of two expected item response vectors, S(α) and S(α∗), implies that the underlying
attribute vectors, α and α∗, are also identical: S(α) = S(α∗) ⇒ α = α∗, where
S(α) = E(Y | α) denotes the conditional expectation of the item response vector
Y , given attribute vector α. Completeness of the Q-matrix is a general requirement
for any diagnostic classification regardless of whether MMLE-EM, MCMC, or
nonparametric methods are used to assign examinees to proficiency classes.

A plethora of DCMs has been proposed in the literature (e.g., Fu & Li, 2007;
Rupp & Templin, 2008). They differ in how the functional relation between
mastery of attributes and the probability of a correct item response is mod-
eled. DCMs have been distinguished based on criteria like compensatory versus
non-compensatory (can lacking certain attributes be compensated for by pos-
sessing other attributes or not), or conjunctive (all attributes specified for an
item in q are required; mastering only a subset of them results in a success
probability equal to that of an examinee mastering none of the attributes) ver-
sus disjunctive (mastery of a subset of the required attributes is a sufficient
condition for maximizing the probability of a correct item response) (de la
Torre & Douglas, 2004, Henson et al., 2009; Maris, 1999) (for a different per-
spective on these criteria, see von Davier, 2014a,b). The Deterministic Input
Noisy “AND” Gate (DINA) Model (Haertel, 1989; Junker & Sijtsma, 2001;
Macready & Dayton, 1977) is the standard example of a conjunctive DCM. Its
IRF is

P(Yij = 1 | αi ) = (1− sj )ηij g(1−ηij )j

subject to 0 < gj < 1 − sj < 1 for each item j . The conjunction parameter
ηij is defined as ηij = ∏K

k=1 α
qjk
ik indicating whether examinee i has mastered

all the attributes needed to answer item j correctly. The item-related parameters
sj = P(Yij = 0 | ηij = 1) and gj = P(Yij = 1 | ηij = 0) refer to
the probabilities of slipping (failing to answer item j correctly despite mastery of
the required attributes) and guessing (answering item j correctly despite lacking
the attributes required to do so), respectively. The DINA model is conjunctive
because an examinee must master all required attributes for maximal probability
of answering an item correctly. (Thus, the conjunction parameter ηij can be
interpreted as the ideal item response when neither slipping nor guessing occur.)
The Deterministic Input Noisy “OR” Gate (DINO) Model (Templin & Henson,
2006) is the prototypical disjunctive DCM. The disjunction parameter, ωij =
1 − ∏Kk=1(1 − αik)qjk , indicates whether at least one of the attributes associated
with item j has been mastered. (Like ηij in the DINA model, ωij corresponds to
the ideal item response when neither slipping nor guessing occur.) The IRF of the
DINO model is

P(Yij = 1 | αi ) = (1− sj )ωij g(1−ωij )j

subject to 0 < gj < 1− sj < 1 for each item j .
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The DINA model and the DINO model are rather limited in their flexibility
to model the relation between response probabilities and attribute mastery. The
Reduced Reparameterized Unified Model (Reduced RUM; Hartz, 2002; Hartz &
Roussos, 2008) offers far greater flexibility in modeling the probability of correct
item responses for different attribute vectors. Specifically, the DINA model cannot
distinguish between examinees who master none and those who master a subset
of the attributes required for an item. Only if all required attributes are mastered
can an examinee realize a high probability of answering the item correctly. This
restriction has been relaxed in case of the Reduced RUM, as it allows for incremental
probabilities of a correct response along with an increasing number of required
attributes mastered.

General DCMs have been proposed with an even more flexible parameterization
such that they can be used as meta-models for expressing the IRFs of specific DCMs
in unified mathematical form and parameterization (de la Torre, 2011; Henson et al.,
2009; Rupp et al., 2010; von Davier, 2005, 2008, 2014b). von Davier’s General
Diagnostic Model (GDM; 2005, 2008) is the archetypal general DCM. The IRF
of (presumably) the most popular version of the GDM is formed by the logistic
function of the linear combination of all K attribute main effects. Henson et al.
(2009) proposed to use the linear combination of the K attribute main effects and
all their two-way, three-way, . . ., K-way interactions

vij=βj0+
K∑

k=1

βjkqjkαik+
K∑

k′=k+1

K−1∑

k=1

βj(kk′)qjkqjk′αikαik′+ · · · +βj12...K

K∏

k=1

qjkαik

(5.1)
for constructing the IRF of a general DCM called the Loglinear Cognitive Diagnosis
Model (LCDM)

P(Yij = 1 | αi ) = exp
(
vij
)

1+ exp
(
vij
) (5.2)

(see Equation 11 in Henson et al., 2009). de la Torre (2011) presented the
Generalized DINA (G-DINA) model that, in addition to the logit link, allows for
constructing the IRF based on the identity link, P(Yij = 1 | αi ) = vij , and the
log link, P(Yij = 1 | αi ) = exp

(
vij
)
. By imposing appropriate constraints on the

β-coefficients in vij , the IRFs of specific DCMs can be reparameterized as general
DCMs. For example, the IRF of the DINA model becomes

P(Yij = 1 | αi ) =
exp

(
βj0 + βj(∀k∈Lj )

∏
k∈Lj αik

)

1+ exp
(
βj0 + βj(∀k∈Lj )

∏
k∈Lj αik

)

subject to βj(∀k∈Lj ) > 0. The set Lj = {k | qjk = 1} contains the non-zero
elements in qj . (If k ∈ Lj , then qjk = 1 is always true; hence, qjk has been dropped
from the IRF.)
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5.3 Clustering Adapted to Cognitive Diagnosis

As mentioned earlier, clustering algorithms were among the first nonparametric
methods that researchers studied for use in CD as an approximation to the com-
putationally expensive parametric methods for assigning examinees to proficiency
classes (Ayers et al., 2008, 2009; Chiu, 2008; Chiu et al., 2009; Willse et al., 2007).
Efficient implementations of various techniques for clustering a set of objects were
readily available in the major statistical software packages. The principal objective
shared by all these techniques is the identification of maximally homogeneous
groups (“clusters”) that are maximally separated. Back then, researchers focused
on hierarchical clustering methods (HACA) and K-means clustering.

Independent of the particular algorithm used, as a specific feature of the applica-
tion of clustering in CD, examinees’ raw score item vectors Y i were aggregated into
aK-dimensional vector of attribute sum-scores W i that served as input to clustering.
They are defined as W i = (Wi1, . . . ,WiK)

′ = Y iQ. Because each cell entry of
Q = {qjk} indicates the association between item j and attribute αk , each element
of W i is the sum of the correct answers of examinee i to all items requiring mastery
of the kth attribute. (Items that require mastery of more than one attribute for their
solution contribute to multiple elements of W i .) Across examinees, the attribute
sum-score vectors W i form the rows of a rectangular N ×K matrix W.

Among HACA algorithms, of particular interest were complete-link, average-
link HACA (Johnson, 1967), and Ward’s (1963) method. All three algorithms
require as input an N × N square-symmetric matrix of Euclidean inter-examinee
distances computed from examinees’ item score vector matrix W. The HACA
link algorithms sequentially group (“agglomerate”) examinees—or groups of
examinees—closest to each other at each step into an inverted tree-shaped hierarchy
of nested classes that represents the relationship between examinees. After each
agglomeration, the inter-examinee distances are recalculated to reflect the latest
status of cluster cohesion as input for the next agglomeration step. The specific
method of updating distances distinguishes the link algorithms. Ward’s method uses
a different strategy that does not rely upon inter-examinee distances but instead
attempts to minimize the increase in total within-cluster variance after merging. (As
an aside, one should note that the complete-link algorithm amounts to minimizing
the within-cluster diameter; for further technical details, consult, for example,
Arabie, Hubert, & De Soete 1996; Everitt, Landau, & Leese, 2001; Gordon, 1999;
and the classic reference, Hartigan, 1975; or Chapter 14 in Hastie, Tibshirani, &
Friedman, 2009)
K-means clustering is presumably the most popular technique for identifying an

exhaustive disjoint (i.e., non-hierarchical) grouping of a data set (called a partition)
(Bock, 2007; Forgy, 1965; Hartigan & Wong, 1979; MacQueen, 1967; Steinhaus,
1956; Steinley, 2006). The number of clusters, K , to be extracted must be specified
in advance. Different from the HACA algorithms, K-means uses the N ×K matrix
of attribute sum scores W directly as input. The grouping process attempts to
minimize the loss function of within-cluster heterogeneity (which is equivalent to
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maximizing between-cluster heterogeneity). A collection of M mutually exclusive
and exhaustive subsets of the entire set of N examinees, C1, C2, . . . , CM , is sought
so that the overall sum of squared within-cluster deviations of examinees from the
K-vector of their cluster centroids, WCSS(W) = ∑M

m=1
∑
i∈Cm ‖W i − Wm‖2,

is minimized. Wm denotes the centroid (mean) vector of cluster Cm obtained by
averaging the observed attribute sum-score vectors, W i∈Cm , where the K elements,
Wmk , are defined as Wmk = 1

Nm

∑
i∈Cm Wik , with Nm indicating the number of

examinees in Cm. The typical K-means clustering algorithm starts by selecting
an initial set of examinees as cluster centers (“seeds”). The distances of the
remaining examinees to these seeds determine the initial value of the loss function.
The algorithm follows an iterative improvement strategy by repeatedly relocating
examinees to clusters according to minimum distance; cluster centroids are re-
calculated and examinees re-grouped until no further decreases in the loss function
can be realized (that is, until each examinee is located closest to the centroid of the
cluster to which he or she is assigned). To avoid an only locally-optimal solution,K-
means is recommended to be used with a large number of random re-starts (Steinley,
2003).

The clustering methods described in the previous paragraphs as well as related
computational procedures and algorithms discussed in Chiu et al. (2009) are
implemented as the software package ACTCD in R (Chiu & Ma, 2016).1

5.3.1 The Asymptotic Classification Theory of Cognitive
Diagnosis

The Asymptotic Classification Theory of Cognitive Diagnosis (ACTCD) provides
the theoretical justification for using HACA for assigning examinees to proficiency
classes in CD.2 The original version of the ACTCD, developed by Chiu (2008) in
her dissertation, consisted of three lemmas, each of which specified a necessary
condition for a consistency theorem of classification to hold. (Chiu et al., 2009,
provided a detailed presentation of the ACTCD, as it applies to the DINA model).
Lemma 1 stated that the Q-matrix of a test is guaranteed to be complete if each

1R is an open source statistical computing language available through the Comprehensive R
Archive Network (CRAN) for free public use.
2Recall that “classification” typically refers to supervised learning—that is, the groups are known
a priori—and “clustering” to unsupervised learning, where the groups are to be discovered in the
analysis. Thus, strictly speaking, neither classification nor clustering seem accurate descriptions of
the use of HACA with CD because (a) the number of realizable proficiency classes is known in
advance and used to “cut” the HACA tree accordingly so that assigning examinees to clusters might
be legitimately addressed as “classification” and (b) HACA produces unlabeled groups (i.e., not
identified in terms of the underlying attribute vectors α) that require additional steps to determine
the underlying α so that “clustering” might also appear as a fairly accurate characterization of the
use of HACA in CD.
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attribute is represented by at least one single-attribute item—so, Q has rows,
e1, . . . , eK , among its J rows, where ek is a 1×K vector, with the kth element, ek ,
equal 1, and all other entries equal 0. Chiu et al. (2009) proved for the DINA model
that Lemma 1 describes a necessary condition for completeness: Q is complete if
and only if it contains a K ×K identity matrix as a submatrix. Lemma 2 described
the condition under which the different proficiency classes are well-separated, given
Q is complete. (The center of the proficiency class with attribute vector α is defined
as the conditional expectation of the attribute sum-score vector E(W | α) = T (α),
where the kth entry, Tk(α), is E(Wk | α) =∑J

j=1 E(Yj | α)qjk . Chiu et al. (2009)
proved for the DINA model that α �= α∗ ⇒ T (α) �= T (α∗) is always true, given
Q is complete. Thus, Lemma 2 provided the theoretical justification to use W as
a statistic for α because the centers of different proficiency classes are guaranteed
to be distinct if the DINA model holds.) Lemma 3 established that complete-link
HACA assigns examinees to their true proficiency classes provided the data conform
to a finite mixture model with M latent classes (recall that DCMs are constrained
finite mixture models). Building on these three lemmas, the consistency theorem
of classification maintained that the probability of HACA assigning examinees
correctly to their true proficiency classes using W as input approaches 1 as the
length of a test (i.e., the number of items J ) increases.

In a series of papers, Chiu and Köhn (2015a,b, 2016) proved the theoretical
propositions of the ACTCD for the DINO model, the Reduced RUM, and, finally,
for general DCMs. The general version of the ACTCD required modifications
of Lemma 1 (Q-completeness) and Lemma 2 (separation of proficiency-class
centers) so that the regularity conditions required for the consistency theorem of
classification to hold would suit any DCM.

Lemma 1 Completeness is not an intrinsic property of the Q-matrix, but can only
be assessed in relation to a specific DCM supposed to underlie the data—that is,
the Q-matrix of a given test can be complete for one model and incomplete for
another. An even more complicated situation arises if the test items do not conform
to a single DCM, but to a mix of several DCMs. In addition, completeness of the
Q-matrix is often difficult to establish, especially, for tests with a large number of
items involving many attributes. Recently, Köhn and Chiu (2017) investigated the
technical requirements and conditions of Q-completeness, and how to use them to
determine whether a given Q-matrix is complete. One of the key results is that any
Q-matrix containing aK×K identity matrix as a submatrix—that is, each attribute
is represented by at least one single-attribute item—is guaranteed to be complete
for any DCM. For the DINA model and the DINO model, this is a necessary
condition. For all other DCMs, inclusion of the K different single-attribute items
is a sufficient, but not a necessary condition for Q-completeness—said differently,
alternative compositions of the Q-matrix not including the K different single-
attribute items also guarantee completeness. Köhn and Chiu (2017) showed that
having full rank K is a necessary condition for Q-completeness. In most practical
instances, Q-completeness can be assumed if this condition is fulfilled. However,
there are certain rare constellations of the values of the item parameters where a
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full-rank-K Q-matrix may not be complete. Specifically, if for α �= α∗, S(α) and
S(α∗) are not nested—and thus, are not guaranteed to be distinct—then Q might
be incomplete because ambiguous constellations of the item parameters can occur
that may prevent a clear distinction of proficiency classes.3 Thus, any Q-matrix that
is of full rank must be further inspected for completeness. But how?—Recall the
definition of completeness: α �= α∗ ⇒ S(α) �= S(α∗). The right-hand inequality
implies the existence of at least one item j such that

∑K
k=1 βjkqjk(αk − α∗k ) �= 0.4

This inequality is always true for at least one item j if the Q-matrix contains
all single-attribute items. However, this inequality is also always true if α and
α∗ are nested within each other. Thus, if a Q-matrix has rank K , and α � α∗,
then S(α) �= S(α∗) is always true. (see Proposition 2 in Köhn & Chiu, 2017).

Hence, instead of inspecting all
(2K−2

2

)
pairs of α-vectors—note that pairs involving

α1 = (00 . . . 0)T and αM = (11 . . . 1)T need not be inspected—only the non-nested
pairs of α-vectors and their associated S(α) and S(α∗) need to be evaluated—that
is, for all j , check if all the coefficients in Sj (α∗) also appear in Sj (α), or vice
versa.

Lemma 2 Chiu et al. (2009) proposed the K-dimensional vector of attribute-
related sum-scores W = YQ as a statistic for α. The conditional expectation of W ,
T (α) = E(W |α), corresponds to the center of the proficiency class characterized by
α. If Q is complete, then, as Chiu et al. (2009) proved, α �= α∗ ⇒ T (α) �= T (α∗)
is true for the DINA model, which implies that the centers of distinct proficiency
classes are well-separated (Chiu & Köhn, 2015a, proved the equivalent claim for
the DINO model). For DCMs other than the DINA model and the DINO model,
however, the sum-score vector W is not a legitimate statistic for α because, as Chiu
and Köhn (2016) showed, distinct proficiency classes can have identical conditional
expectations of W—that is, W cannot guarantee well-separated proficiency-class
centers—which invalidates Lemma 2: α �= α∗ � T (α) �= T (α∗).

The inability of the attribute sum-score vector W to guarantee well-separated
proficiency-class centers is resolved by an augmented attribute sum-score statistic
W aug that restores the separation guarantee for the centers of distinct proficiency
classes (Chiu & Köhn, 2015b, 2016). Specifically, the J ×K Q-matrix is augmented
by a matrix of the same dimensionality denoted by Qe, which is constructed by
retaining from the original Q-matrix the item-attribute vectors of all single-attribute
items—that is, qj = ek in Q—whereas all other rows consist of zero vectors,
(0, 0, . . . , 0). Said differently, only the q-entries of the single-attribute items are
repeated. The augmented Q-matrix has dimensionality J × 2K and is written as

Qaug = [Q | Qe].

3A K-dimensional vector α∗ �= α is said to be nested within the vector α—written as α � α∗—if
α∗k ≤ αk , for all elements k, and α∗k < αk for at least one k.
4Parameterization and notation refer to a general DCM as defined in Eqs. 5.1 and 5.2.



116 C.-Y. Chiu and H.-F. Köhn

Here is an example for J = 7 items and K = 3 attributes:

Q =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0
0 1 0
0 0 1
1 1 0
1 0 1
0 1 1
1 1 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⇒ Qaug = [Q | Qe] =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1
1 1 0 0 0 0
1 0 1 0 0 0
0 1 1 0 0 0
1 1 1 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Thus, Qaug preserves the information in the original Q-matrix but enhances the
effect of the single-attribute items, resulting in well-separated proficiency-class
centers. The definitions of the augmented sum-score statistic for α, W aug, and its
expectation are readily derived from Qaug

W aug = YQaug = Y [Q | Qe] = [W | W e],
T aug(α) = E(W aug | α) = E

([W | W e] | α
) = [T (α) | T e(α)

]
.

In conclusion, the augmented sum-score statistic W aug guarantees well-separated
proficiency-class centers for distinct α—that is, α �= α∗ ⇒ T aug(α) �= T aug(α

∗).

5.3.2 Clustering in Cognitive Diagnosis: Issues and
Limitations

5.3.2.1 Only HACA Is Covered by the ACTCD

Generally, it has been shown that nonhierarchical clustering obtains better classi-
fication results than HACA. Consider Ward’s method as an example: it has been
demonstrated repeatedly that K-means clustering can always improve (at least it
does not deteriorate) if it is initialized with the clustering solution obtained from
Ward’s method (e.g., Steinley & Brusco, 2007). Similarly, Chiu et al. (2009),
could demonstrate in their simulation studies thatK-means clustering outperformed
HACA when used for assigning examinees to proficiency classes. So, why does the
ACTCD not cover K-means clustering as well?

Unfortunately, no theoretical justification currently exists that would legitimize
using K-means clustering as a method for assigning examinees to proficiency
classes within the context of diagnostic classification. Recall that Lemma 3 of the
ACTCD states that if a finite mixture model with M latent classes underlies the
data, then HACA accurately assigns examinees to their true proficiency classes.
Chiu et al. (2009) proved Lemma 3 for complete-link HACA. At present, such a
proof seems not available forK-means clustering because the asymptotic theory for
K-means clustering is an unresolved problem. Specifically, as Chiu et al. (2009)
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remarked, the asymptotic theory for K-means has been worked out in some general
cases, showing that estimates of the cluster centers converge with certain rates (see,
for example, Hartigan, 1978; Pollard, 1981, 1982); however, these centers do not
necessarily correspond to the expected values of different sum-score statistics as
they define the centers of distinct proficiency classes, which is one of the key ideas
of the ACTCD.

5.3.2.2 HACA—and Cluster Analysis in General—Have a Labeling
Problem

Examinee clusters obtained from clustering methods serve as proxies for the
proficiency classes. But, different from parametric techniques for classifying exam-
inees, clustering methods cannot estimate the attribute vectors underlying the
clusters, and so do not provide labels of the groups of examinees in terms of
the attribute vectors as they characterize distinct proficiency classes. Hence, the
clusters must be interpreted—labeled—that is, their underlying attribute vectors
must be reconstructed from the chosen input data, which can be tedious if the
number of examinees is large. Thus, as cluster analysis cannot inform on examinees’
specific strengths and weaknesses regrading attribute mastery, does using clustering
for classifying examinees not take away one of the main advantages of cognitive
diagnosis?

Through the Q-matrix, the attribute sum-score vectors, W and W aug, are
directly related to the attribute vectors of the proficiency classes, which allows
for a relatively straightforward rationale for interpreting the clusters obtained from
HACA because their underlying attribute vectors, α, can be deduced from the cluster
members’ attribute sum-score vectors, as they are of the same dimensionality as
α. In fact, for W as input to clustering, Chiu et al. (2009) presented an automatic
cluster labeling algorithm that seeks to identify an optimal match between exam-
inees’ within-cluster sum-score vectors and candidate attribute vectors potentially
underlying this cluster. This algorithm has been further developed so that now also
W aug as input to clustering can be accommodated.

5.3.2.3 Alternative Statistics for Estimating α

The two attribute sum-score statistics for α, W and W aug, are theoretically well-
supported by the ACTCD: the Consistency Theorem of Classification states that the
probability of assigning examinees to their true proficiency classes using HACA
with W or W aug as input approaches one as the length of a test (i.e., the number
of items) approaches infinity. However, W and W aug require that the true Q-matrix
underlying a given test be known. Unfortunately, in practice, the Q-matrix for most
tests is unknown and must be estimated to determine the associations between
items and attributes, risking a misspecified Q-matrix that may result in the incorrect
classification of examinees. Another difficulty, as Köhn, Chiu and Brusco (2015)
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demonstrated, is that aggregating the observed item scores of examinees who may
belong to different proficiency classes can result in their having identical attribute
sum-score vectors and therefore risks misclassification of those examinees.

Hence, Köhn et al. (2015) considered clustering examinees into proficiency
classes using their item-score vectors Y rather than their attribute sum-score vectors,
as the former do not require knowledge of the Q-matrix. Of course, the crucial
question was whether Y is also consistent—does the Consistency Theorem of
Classification also hold for Y ? As a necessary condition for consistency, Y must
satisfy Lemma 2 of the ACTCD. In fact, Köhn et al. (2015) proved that, given a
complete Q-matrix, Y guarantees well-separated centers of the different proficiency
classes; that is, Y is a legitimate statistic for α and covered by Lemma 2. But,
unfortunately, so far at least, the Consistency Theorem of Classification cannot be
proven for Y because the dimensionality of Y depends on J : if J goes to infinity,
then Y contradicts the fundamental assumption of any classification algorithm that
its input be finite. This difficulty is elegantly avoided by the attribute sum-score
vectors because their dimensionality depends onK and not on J . Finally, one might
raise the question whether assigning examinees to proficiency classes based on Y ,
without having to know the Q-matrix of the test in question, does not essentially
mean the elimination of the theoretical connection between individual items and
the attribute vectors, α, that define the different proficiency classes. More to the
point, does using Y as input to clustering not abandon the theoretical framework of
cognitive diagnosis?

5.4 Nonparametric Classification of Examinees

5.4.1 The Nonparametric Classification Method

The Nonparametric Classification (NPC) method developed by Chiu and Douglas
(2013) does not rely on parametric estimation of examinees’ proficiency class
membership, but uses a distance-based algorithm on the observed item responses for
classifying examinees. Different from the use of clustering in CD, the NPC method
is a genuine classification method because the 2K = M proficiency classes to which
to assign examinees are known a priori.

Proficiency class membership is determined by comparing an examinee’s
observed item response vector Y with each of the ideal item response vectors
of the realizable 2K = M proficiency classes. The ideal item responses are a
function of the Q-matrix and the attribute vectors characteristic of the different
proficiency classes. Hence, an examinee’s proficiency class is identified by the
attribute vector αm underlying that ideal item response vector which is closest—or
most similar—to an examinee’s observed item response vector. The ideal response
to item j is the score that would be obtained by an examinee if no perturbation (e.g.,
slipping or guessing) occurred.
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Let ηi denote the J -dimensional ideal item response vector of examinee i.
(Recall that ηi is a function of the Q-matrix of a test and αi = αi∈Cm = αm,
an examinee’s attribute vector, as it is determined by his or her proficiency class
because all examinees in proficiency class Cm share the same attribute vector; hence,
ηi = ηi∈Cm = ηm.) As the Q-matrix and the M realizable proficiency classes are
known, the construction of all possible ideal item response vectors η1, η2, . . . , ηM
is straightforward.

Formally, the NPC estimator α̂ of an examinee’s attribute vector is defined as the
attribute vector underlying the ideal item response vector that among all ideal item
response vectors minimizes the distance to an examinee’s observed item response
vector:

α̂i = arg min
m∈{1,2,...,M}

d(yi , ηm) (5.3)

Hence, the choice of the specific distance measure d(·) for the loss function of
Eq. 5.3 is of critical importance in determining α̂i .

A distance measure often used for clustering binary data is the Hamming distance
that simply counts the number of disagreements between two vectors:

d
H
(y, η) =

J∑

j=1

| yj − ηj |

If the different levels of variability in the item responses are to be incorporated, then
the Hamming distances can be weighted, for example, by the inverse of the item
sample variance, which allows for larger impact on the distance functions of items
with smaller variance:

d
wH
(y, η) =

J∑

j=1

1

p̄j (1− p̄j ) | yj − ηj |

(p̄j is the proportion of correct responses to the j th item). A purported advantage of
the weighted Hamming distance is the substantial reduction in the number of ties,
which can be an issue especially with short tests. (As a second variety of a weighted
Hamming distance, Chiu and Douglas (2013) discuss a differential item weighting
scheme that incorporates slipping and guessing.)

Simulation studies conducted by Chiu and Douglas (2013) showed that the NPC
method (a) can be implemented in a computationally inexpensive and effective
way; (b) can be used—different from parametric methods—essentially with any
sample size, and is therefore particularly suited for small-scale testing programs;
(c) is robust to Q-matrix misspecifications; and (d) can be used with observed item
responses that conform to any DCM that uses the concept of an ideal item response
to link the vector of required attributes q of an item with the attributes mastered by
an examinee. The Noisy Input Deterministic “AND” Gate (NIDA) model (Maris,
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1999) and the DINA model use conjunctive ideal item response vectors η
(c)
i , with

elements η(c)ij =
∏K
k=1 α

qjk
ik defined already in connection with the DINA model as

the conjunction parameter of item j . The DINO model uses disjunctive ideal item
response vectors η

(d)
i , with elements η(d)ij = 1 −∏Kk=1(1 − αik)qjk defined already

in connection with the DINO model as the disjunction parameter ωij of item j .
Wang and Douglas (2015) proved that under certain regularity conditions α̂

obtained by the NPC method is a statistically consistent estimator of an examinee’s
attribute vector for any DCM:

“. . . the only general condition required of the underlying item response function is that the
probability of a correct response for masters of the attributes is bounded above 0.5 for each
item, and the probability for non-masters is bounded below 0.5. If the true model satisfies
these simple conditions, nonparametric classification will be consistent as the test length
increases” (Wang & Douglas, 2015, p. 99).

For example, for conjunctive DCMs the conditions P(Yij = 1 | η(c)ij = 0) < 0.5

and P(Yij = 1 | η(c)ij = 1) > 0.5 guarantee consistency of α̂.
In summary, the NPC method allows for the computationally inexpensive and

robust classification of examinees. Perhaps its most attractive feature is the ability
to handle small and very small samples (say, of classroom size), without the
requirement to specify a DCM supposedly underlying the data. The key idea of
the NPC method—estimating examinees’ proficiency class in comparing observed
and ideal item responses—is integral also to the nonparametric Q-matrix refinement
method and the joint maximum likelihood estimation of DCM item parameters
presented below. An implementation of the NPC method is available in the R
package NPCD (Zheng & Chiu, 2016).

5.4.2 The General Nonparametric Classification Method

The consistency conditions of the NPC-estimator α̂ identified by Wang and Douglas
(2015) are often difficult to meet for more complex DCMs like the Reduced RUM
and general DCMs because the probability of a correct response to an item increases
as a function of the number of required attributes that are mastered by an examinee
(known as the “monotonicity assumption”). Hence, η(c) and η(d) might not offer the
necessary flexibility to model the relation between required and mastered attributes
for these advanced DCMs. As an illustration, consider a domain characterized
by two attributes; the realizable proficiency classes are α1 = (00), α2 = (10),
α3 = (01), and α4 = (11). Given an item having attribute vector q = (11), the
corresponding conjunctive ideal item responses are η(c)1 = 0, η(c)2 = 0, η(c)3 = 0,

and η(c)4 = 1. Assume this item conforms to the DINA model, with g = 0.1
and 1 − s = 0.9. (The equivalent parameterization using the G-DINA model is
β = (β0, β1, β2, β12)

′ = (0.1, 0, 0, 0.8)′.) The probabilities of answering the item
correctly for the four proficiency classes are 0.1, 0.1, 0.1, and 0.9, respectively.
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Thus, the conjunctive ideal responses 0, 0, 0, and 1 are, indeed, the most likely
responses of the four proficiency classes. However, this may no longer be true if
the data conform to a more complex model, say, the saturated G-DINA model with
parameter vector β = (β0, β1, β2, β12)

′ = (0.1, 0.4, 0.6,−0.2)′. Then, for the four
proficiency classes, the probabilities of a correct item response are 0.1, 0.5, 0.7, and
0.9. Thus, the conjunctive ideal item responses 0, 0, 0, and 1 are no longer the most
likely responses, and using η(c) in that instance may result in a substantial number
of examinee misclassifications.

The two prototypic conjunctive and disjunctive DCMs, the DINA model and
the DINO model, define the two extremes of a continuum describing the relation
between q and α (in fact, the two DCMs have a “dual” relation such that—
loosely speaking—the one can be seen as the inverse of the other; Köhn & Chiu,
2016). Based on this observation, Chiu et al. (2018) proposed a weighted ideal
response η(w), defined as the convex combination of η(c) and η(d), that allowed
to overcome the limitations of conjunctive and disjunctive ideal item responses for
the development of the General Nonparametric Classification (GNPC) method.

Suppose item j requires K∗j ≤ K attributes that, without loss of generality,
have been permuted to the first K∗j positions of the item attribute vector qj .
Thus, the original K-dimensional vector qj can be reduced to the K∗j -dimensional
item attribute vector q∗j because the remaining K − K∗j entries beyond the first
K∗j positions of qj are irrelevant for distinguishing among proficiency classes
as these attributes are not required for item j . Said differently, item j requiring
K∗j ≤ K attributes allows to distinguish only between 2K

∗
j latent classes because

the attributes beyond the first K∗j positions of α and qj are uninformative for
distinguishing among proficiency classes. Define the set l = {m | αm = (α∗l , ·)},
where (·) denotes the irrelevant entries in the original examinee attribute vector
beyond position K∗j (with values 0 or 1). Assume that a group of examinees shares
the attributes in the first K∗j positions of their attribute vectors. Consequently, they
are all classified as Cl although the remaining K − K∗j entries in their attribute
vectors might identify these examinees as belonging to different proficiency classes.
But because in case of item j these additional K − K∗j attributes are disregarded
they cannot contribute to distinguish further among examinees. In other words, the
possibly distinct proficiency classes of these examinees have been “collapsed” into
Cl =⋃m∈l Cm.

For each item j and Cl , the weighted ideal response η(w)lj is defined as the convex
combination

η
(w)
lj = wljη(c)lj + (1− wlj )η(d)lj (5.4)

where 0 ≤ wlj ≤ 1. (As an aside, Eq. 5.4 identifies η(c) and η(d) as special cases
of η(w); for example, if the underlying model is indeed conjunctive, then wlj = 1

and η(w)lj = η(c)lj .) As an important feature of the GNPC method, the weights wlj
are estimated from the data and do not require a priori knowledge of the DCM
underlying the data that—as one might suspect—would be needed to specify the
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relative contributions of η(c)lj and η(d)lj to η(w)lj ; thus, wlj is “automatically” adjusted
to the level of complexity and variability of the data. The distance between the
observed responses to item j and the weighted ideal responses η(w)lj of examinees in
Cl is defined as the sum of squared deviations:

dlj =
∑

i∈Cl
(yij − η(w)lj )2 =

∑

i∈Cl

(
yij − wljη(c)lj − (1− wlj )η(d)lj

)2

Thus, ŵlj can be estimated by minimizing dlj :

ŵlj =
∑
i∈Cl (yij − η(d)lj )

‖ Cl ‖ (η(c)lj − η(d)lj )
(5.5)

where ‖ Cl ‖ indicates the number of examinees in the “collapsed” proficiency class
Cl . Equation 5.5 implies that an initial classification of examinees is required as input
to the estimation of wlj . The NPC method is used to obtain this initial classification.

After ŵlj has been determined, ŵmj can be derived immediately because m ∈ l
and therefore, ŵmj = ŵlj for allm. As an illustration, considerK = 3 attributes and
item j having attribute vector qj = (110). Because only the first two attributes are

required for item j , just 2K
∗
j = 22 = 4 proficiency classes can be identified, but not

all of theM = 23 = 8 realizable proficiency classes. For example, C2 and C6 having
attribute vectors α2 = (100) and α6 = (101), respectively, cannot be separated
based on item j . Thus, m = 2, 6 and l = {2, 6}, and proficiency classes C2 and C6
are “collapsed” into Cl = C{2,6} = C2

⋃
C6 implying that w2j = w6j = w{2,6}j .

Then, ŵ{2,6}j is estimated from the observed responses of examinees in Cl according
to Eq. 5.5 resulting in the estimates ŵ2j and ŵ6j : suppose ŵ{2,6}j = 0.6, then ŵ2j =
ŵ6j = ŵ{2,6}j = 0.6. Subsequently, η̂(w)mj is computed from ŵmj based on Eq. 5.4.

In this manner, all possible weighted ideal response patterns η̂
(w)
1 , η̂

(w)
2 , . . . , η̂

(w)
M

can be constructed for theM realizable αm.
The distance between the observed item response vector and a particular

weighted ideal item response vector η
(w)
m is defined as

d(yi , η̂
(w)
m ) =

J∑

j=1

d(yij , η̂
(w)
mj ) =

J∑

j=1

(yij − η̂(w)mj )2

The GNPC estimator α̂ of an examinee’s attribute vector is defined as the attribute
vector underlying the weighted ideal item response vector that among all weighted
ideal item response vectors minimizes the loss function defined in terms of the
distance to an examinee’s observed item response vector:

α̂i = arg min
m∈{1,2,...,M}

d(yi , η̂
(w)
m )
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A few concluding remarks seem in order. First, the GNPC method allows
for estimating examinees’ proficiency class when the DCMs underlying the data
use a more complex approach than the DINA model and the DINO model to
modeling the functional relation between mastery of attributes and the probability
of a correct item response. Second, the algorithm of the GNPC method is easy
to implement and computationally inexpensive. Its ability to handle even smallest
sample sizes resolves the difficulties arising from unstable and unreliable estimates
that parametric methods typically encounter in such situations. These features
qualify the GNPC method as an analysis tool for classrooms and other small-
scale educational programs, where formative assessments devised within the CD
framework are needed most. Due to its fast algorithm, the GNPC method might
also be an option for constructing CD-based computerized adaptive tests (CAT) to
be used in classrooms. Third, one should recall that the GNPC method relies on
initial estimates of α (for calculating the estimated proficiency class size needed in
the denominator of Eq. 5.5) that, by default, are obtained by using the NPC method
with η(c). But depending on the true model underlying the data, this choice might
not provide the best estimates of α for initializing the GNPC method. As a viable
alternative to η(c) for obtaining initial estimates of the proficiency classes, Chiu et al.
(2018) suggested to use an ideal response with fixed weights defined as

η
(fw)
lj =

∑K
k=1 αkqjk

K
η
(c)
lj +

(
1−

∑K
k=1 αkqjk

K

)
η
(d)
lj . (5.6)

In contrast to the freely estimated weight in Eq. 5.4, the weight
∑K
k=1 αkqjk
K

in Eq. 5.6
is fixed for item j and proficiency class m regardless of the underlying model.

5.5 Methods in Cognitive Diagnosis That Rely on
Nonparametric Classification

5.5.1 Joint Maximum Likelihood Estimation for Cognitive
Diagnosis

The assumption of local independence of the observed item responses allows writing
the joint likelihood function as

L(α1,α2, . . . ,αN,�;Y) =
N∏

i=1

Li(αi ,�; yi ) =
N∏

i=1

J∏

j=1

f (yij |θ j ,αi ) (5.7)

where � = (θ1, θ2, . . . , θJ ) is the matrix of item parameters, and the matrix Y =
(y1, y2, . . . , yN)′ consists of N rows corresponding to examinees’ J -dimensional
observed item response vectors. Despite the mathematical convenience of simple
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likelihood functions, the joint estimation of α1,α2, . . . ,αN and � through
iteratively maximizing Eq. 5.7—called “joint maximum likelihood estimation”
(JMLE)—has been mostly avoided in psychometrics because the JMLE parameter
estimators typically lack statistical consistency (Baker & Kim, 2004; Haberman,
2004; Neyman & Scott, 1948).

Chiu, Köhn, Zheng, and Henson (2016) developed a JMLE procedure for
CD that resolved the consistency issue by substituting the examinee attribute
vectors α1,α2, . . . ,αN in the joint likelihood function by an external, statistically
consistent estimator of examinees’ proficiency classes denoted by α̂. Thus, the joint
likelihood of Eq. 5.7 is reduced to a function of only a single set of unknowns, the
item parameters, L(�;Y, α̂1, α̂2, . . . , α̂N), which then allows for the construction
of item parameter estimators that are also consistent, as Chiu et al. (2016) proved.

The JMLE algorithm proposed by Chiu et al. (2016) is an adaptation of
Birnbaum’s paradigm (Birnbaum, 1968), a two-stage procedure for JMLE (Baker
& Kim, 2004; Embretson & Reise, 2000). Examinees’ attribute vectors and the item
parameters are treated as two sets: the former is assumed to be known, whereas
the parameters in the second set are to be estimated. The algorithm is initialized
with the estimates of examinees’ attribute vectors α̂ as input, which are obtained
from one of the nonparametric classification methods, NPC or GNPC, described
in the previous section. (Hence, α̂ does not depend on the JMLE procedure—α̂ is
an external estimator.) The estimators of the item parameters can then be derived
immediately by maximizing the item log-likelihood

lnLj (θ j ; yj , α̂1, α̂2, . . . , α̂N) =
N∑

i=1

ln
(
f (yij | θ j , α̂i )

)
. (5.8)

As an example, consider the LCDM having IRF

P(Yij = 1 | αi ) = exp(vij )

1+ exp(vij )
.

(See Eq. 5.2; recall that vij was defined in Eq. 5.1 as the linear combination of all
attribute main effects, two-way effects, . . .,K-way effects.) Suppose all proficiency
class attribute vectors α have been estimated using the GNPC method. Then, the
item likelihood is

Lj (βj ; yj , α̂1, α̂2, . . . , α̂N) =
N∏

i=1

f (yij | βj , α̂i )

=
N∏

i=1

( exp(vij )

1+ exp(vij )

)yij ( 1

1+ exp(vij )

)1−yij
.
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Estimators of the elements of the item parameter vector, βj = (βj0, βj1, βj2, . . . ,

βj12...K)
′, can be derived by maximizing the item log-likelihood lnLj (βj ; yj ,

α̂1, α̂2, . . . , α̂N).
The item parameter estimators have closed-form expressions that are functions of

the means of theM proficiency classes (identifiable by their specific attribute vectors
α). Define the proficiency class Ĉ(A) = {i | α̂ik = 1,∀k ∈ A and α̂ik′ = 0,∀k′ ∈
Ac}. Chiu et al. (2016) derived the closed-form expressions of the estimators of the
item parameters as β̂j0, β̂jk , and β̂jkk′ ,

β̂j0 = ln
( ȳ

j Ĉ(∅)
1− ȳ

j Ĉ(∅)

)

β̂jk = ln
( ȳ

j Ĉ({k})
1− ȳ

j Ĉ({k})

)
− β̂j0

= ln
( ȳ

j Ĉ({k})
1− ȳ

j Ĉ({k})

)
− ln

( ȳ
j Ĉ(∅)

1− ȳ
j Ĉ(∅)

)

β̂jkk′ = ln
( ȳ

j Ĉ({k,k′})
1−ȳ

j Ĉ({k,k′})

)
−β̂jk−β̂jk′−β̂j0

= ln
( ȳ

j Ĉ({k,k′})
1−ȳ

j Ĉ({k,k′})

)
− ln

( ȳ
j Ĉ({k})

1−ȳ
j Ĉ({k})

)
− ln

( ȳ
j Ĉ({k′})

1−ȳ
j Ĉ({k′})

)
+ ln

( ȳ
j Ĉ(∅)

1−ȳ
j Ĉ(∅)

)

The expressions of the estimators of the remaining parameters can be readily
deduced from the pattern emerging from the equations of β̂j0, β̂jk , and β̂jkk′ .

Simulation studies conducted by Chiu et al. (2016) for evaluating the perfor-
mance of their JMLE algorithm showed that the accuracy of the JMLE-based
examinee classification and item parameter estimates was comparable to those
obtained from MMLE using the EM algorithm. (As an aside, the numerical accuracy
of the estimates can be further increased by iterating the algorithm; Theorem 4.2 in
Junker (1991) suggests that the consistency property of the parameter estimators is
preserved while iterating.)

5.5.2 Q-Matrix Reconstruction and Refinement

The development of methods for the identification and validation of the Q-matrix
underlying a test is one of the long-standing topics in CD that has always inspired
researchers. Examples are Barnes (2010), Chen (2017), Chen, Culpepper, Chen, and
Douglas (2018), de la Torre (2008), de la Torre and Chiu (2016), DeCarlo (2012),
and Liu, Xu, and Ying (2012, 2013). Chiu (2013) proposed the Q-Matrix Refinement
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(QMR) method for identifying and correcting misspecified entries in the Q-matrix
of a given test when the underlying DCM is conjunctive (i.e., involves ηij ) like the
DINA model and the NIDA model.5

The QMR method relies on the NPC method for estimating examinees’ profi-
ciency classes. Consider the attribute vector of item j , corresponding to the j th row
of the Q-matrix to be evaluated; qj is linked with the estimated attribute vector α̂i of
examinee i to generate the ideal item response ηij , the score of examinee i on item j
if no perturbation had occurred. The squared difference between the observed item
response Yij and the ideal item response ηij is defined as the residual sum of squares
(RSS) of examinee i for item j :

RSSij = (Yij − ηij )2.

The RSS for item j across all N examinees in theM proficiency classes is

RSSj =
N∑

i=1

(Yij − ηij )2 =
M∑

m=1

∑

i∈Cm
(Yij − ηmj )2. (5.9)

(Note that the index of the ideal response to item j has been changed from ηij
to ηmj because ideal item responses are class-specific: they depend on examinees’
attribute vectors as they are determined by proficiency class membership such that
all examinees in proficiency class Cm share the same attribute vector: αi = αi∈Cm =
αm.) For each item j , there are 2K − 1 admissible candidate item attribute vectors
qj , and for each of them, the loss function defined in Eq. 5.9 can be computed. The
value of RSSj is expected to be smallest for the correct q-vector among the 2K − 1
candidates. As the item specific loss functions of RSSj are independent of each
other, the total RSS of the entire test is minimized if each of the individual RSSj is
minimized. Chiu (2013) established the validity of the rationale of the QMR method
in demonstrating that if examinees have been correctly classified, then for a given
item j , RSSj of the correct q-vector is always less than RSSj of any misspecified
q-vector.

The algorithm executing the QMR method first obtains an initial estimate of
examinees proficiency class using the NPC method. Based on the Q-matrix to be
evaluated and the α̂, the ideal item responses ηmj and the associated RSSj for each
item are computed. The item with the largest RSSj is identified as most likely
having a misspecified q-vector. For the remaining 2K − 2 candidate q-vectors of
this item, the RSSj are then computed, and the j th row of the Q-matrix under
inspection is replaced by the q-vector resulting in the smallest RSSj value. In this
manner, the remaining J − 1 items are evaluated, and, eventually, have their q-

5Notation: As the QMR method relies on the NPC method that can be used for conjunctive as
well as disjunctive models, instead of η(c)ij and η(d)ij , in this section only ηij is used to denotes the
conjunctive as well as the disjunctive case.
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vectors replaced. After the first cycle through the entire set of J items is completed,
examinees’ α̂ are re-estimated based on the updated Q-matrix using again the NPC
method. For the second cycle, the ideal item responses are updated, followed by the
evaluation of all candidate q-vectors of the J items, and the possible replacement
of q-vectors resulting in large RSSj . After the completion of the second cycle,
examinees’ α̂ are again re-estimated based on the updated Q-matrix, and so on.
The algorithm continues until the stopping criterion—the RSSj of each item does
no longer change—has been met.

In summary, the QMR method does not require large samples, which, together
with its computational efficiency, recommend this approach to Q-matrix reconstruc-
tion and refinement especially for use in small and medium-sized educational testing
programs. However, the QMR method is not without limitations; for example, a
proficiency class may have too few examinees so that identifying a misspecified
item q-vector by minimizing RSSj might be difficult. As a solution to this problem,
Chiu (2013) developed a re-scaled loss function that is independent of class size,
and that was shown to improve the detection rate for misspecified q-vector entries
if proficiency classes were sparse. As a downside, the re-scaled loss function
consumed considerably more CPU time.

5.6 Conclusion and Final Remarks

While specialized software offering efficient implementations of parametric, para-
metric methods for fitting DCMs to (educational) assessment data—for example,
the R packages CDM (Robitzsch et al., 2016) and GDINA (Ma & de la Torre, 2017)
(for further software options for fitting DCMs, consult “Part IV” in this book),
however, where parametric methods may fail or be difficult to implement. Recall
that algorithms like MMLE-EM work best for large-scale assessments, where the
data of at least several hundred examinees are available. If assessment data collected
in educational micro-environments are to be analyzed, then sample sizes may be
simply too small for MLE to provide reliable estimates of examinees’ proficiency
classes (see the small-sample simulations reported in Chiu et al., 2018). (Within
an applied context, the focus is typically on the evaluation of instruction and the
assessment of students’ learning; hence, estimation of the item parameters is not
necessarily a primary goal.) In such settings, nonparametric methods—especially,
the NPC and GNPC methods—may be the only viable tools for monitoring and
assisting “the teaching and learning process while it is occurring” (Stout, 2002, p.
506)—that is, at the classroom level, where CD-based methods are most useful
and needed. Similar considerations apply to the use of CD-based computerized
adaptive testing (CD-CAT) in small-scale educational settings, where it would be
most beneficial. But due to the lack of an efficient and effective computational
engine for the reliable assessment of examinees’ proficiency classes, CD-CAT is
currently not available for use in classrooms.
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Within a wider context, one should recall that the conditions and demands of
American higher education have changed dramatically over the past years, including
the pressure to increase degree-completion rates and calls for greater instructional
accountability in general, mandating educational institutions to change, especially
in the realm of instruction (Brown & Diaz, 2011; Picciano, 2012). Initiatives in edu-
cation for reform and change have required that tests for monitoring instruction not
only assess overall educational progress, but provide specific diagnostic information
on students knowledge and processing skills that are instrumental for problem
solving in a curricular domain. The development and use of computer-/web-based
facilities in teaching and learning and a shift in the focus of educational assessment
to monitoring small-sample settings like individual classrooms are perhaps among
the effective responses from many higher education institutions to cope with the
challenges posed by calls for greater instructional accountability. Nonparametric
methods, as they have been reviewed in this article, will play an important role in
the development of assessment systems tailored to support a better understanding
of human learning and provide guidance in improving instruction in the classroom.
Within this context, a promising avenue for future research is the application of
nonparametric methods to the analysis of the individual learning trajectories of
students, as they have been recently studied within a CD-based framework (see,
for example, Chen, Culpepper, Wang, & Douglas, 2018; Wang, Yang, Culpepper, &
Douglas, 2018).
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Chapter 6
The General Diagnostic Model

Matthias von Davier

Abstract The general diagnostic model (GDM) allows modeling dichotomous
and polytomous item responses under the assumption that respondents differ with
respect to multiple latent skills or attributes, and that these may be distributed
differently across populations. Item responses can be of mixed format, dichoto-
mous and/or polytomous, and skills/attributes can be binary, polytomous ordinal,
or continuous. Variables that define populations can be observed, latent as in
discrete mixture models, or partially missing. Unobserved grouping variables can be
predicted based on hierarchical extensions of the GDM. It was shown that through
reparameterization, the GDM contains the DINA as well as the logistic G-DINA,
which is the same as the log-linear cognitive diagnostic model (LCDM), as special
cases, and hence can fit all models that can be specified in these frameworks.
Taken together, the GDM includes a wide range of diagnostic models, as well as
item response theory (IRT), multidimensional IRT (MIRT), latent class models,
located latent class models, multiple group and mixture versions of these models,
as well as multilevel, and longitudinal extensions of these. This chapter introduces
the GDM by means of a formal description of basic model assumptions and their
generalizations and describes how models can be estimated in the GDM framework
using the mdltm software. The software is free for research purposes, can handle
very large databases up to millions of respondents and thousands of items, and
provides efficient estimation of models through utilization of massively parallel
estimation algorithms. The software was used operationally for scaling the PISA
2015, 2018, and PIAAC 2012 main study databases, which include hundreds of
populations, grouping variables, and weights, and hundreds of test forms collected
over five assessment cycles with a combined size of over two million respondents.
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6.1 The General Diagnostic Model

The general diagnostic model (GDM) is a solution for modeling dichotomous
or polytomous item responses collected in mixed format assessment under the
assumption that respondents differ with respect to multiple latent skills or attributes,
and that these traits may be distributed differently across populations. In the GDM,
latent skills/attributes can be binary as in most diagnostic models (e.g., von Davier,
DiBello, & Yamamoto, 2008; Rupp, Templin, & Henson, 2010; von Davier & Lee,
Chap. 1, this volume) indicating mastery or non-mastery, or ordered polytomous
attributes as in discrete IRT models (e.g., Heinen, 1996; Haberman, von Davier, &
Lee, 2008), or continuous latent variables, approximated by numerical integration
over a discretized ability interval as customarily done in IRT and multidimensional
IRT (MIRT) estimation.

Item responses can be of mixed format, i.e., dichotomous or polytomous, as
can be the latent structure, combining dichotomous, polytomous, and continuous
latent skill variables. Variables that define populations can be observed, missing, or
partially missing. Unobserved grouping variables can be predicted based on higher-
order covariates when using hierarchical extensions of the GDM.

The GDM is one of the most general models for diagnostic classification. It was
shown that through reparameterization, the GDM contains the DINA as well as the
log-linear cognitive diagnostic model (LCDM) (and with that, the logistic G-DINA,
which is identical to the LCDM), as special cases, and hence can fit all models that
can be specified within these frameworks. Taken together, these results on the GDM
show that this approach includes a wide range of diagnostic models, as well as IRT,
MIRT, latent class models, located latent class models, as well as multiple group
and mixture distribution versions of these models, and finally multilevel extensions
of these.

This chapter introduces the GDM and provides a mathematical description of
model assumptions and their formalization. In addition, this chapter describes GDM
extensions that provide longitudinal, as well as discrete mixture models and multiple
population versions of the approach, which are particularly useful for the assessment
of measurement invariance across populations. The chapter closes with a section on
model equivalencies and a summary.

6.2 Notation

In this chapter capital letters are used to denote random variables, and lower-case
letters for realizations of random variables. The following notation is used for
response variables, covariates, and latent skill variables:

Let X = (X1, . . . , XK) denote K binary or polytomous response variables and
let xn = (xn1, . . . , xnK) denote the observed responses for test takers n = 1, . . . ,
N. Let Y = (Y1, . . . , YJ) and yn = (yn1, . . . , ynJ) denote a vector of J covariates

http://dx.doi.org/10.1007/978-3-030-05584-4_1
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and their realizations observed on test taker n. Finally, consider a grouping variable
with gn ∈ {1, . . . , G} for all test takers. For mixture models, gn is unobserved,
for multiple group models, gn is completely or partially observed (von Davier &
Yamamoto, 2004a, 2004b; von Davier & Carstensen, 2007).

Let the dimensionality of the latent structure (i.e., the number of latent variables)
in the model be denoted by D, and let A = (A1, . . . , AD) denote the vector of
latent attributes, and let the attribute pattern of person n = 1, . . . , N be denoted by
an = (an1, . . . , anD). Alternatively for continuous traits � = (�1, . . . ,�D) and
θn = (θn1, . . . , θnD) may be used.

Let P(A = a), P(A = (a1, . . . , aD)) denote probabilities of the latent trait or
attribute distribution, if space requires a short form we may use P(a1, . . . , aD)
where needed, and the same for marginal distributions of observed variables such as
P(y1, . . . , yJ). For conditional probabilities, we use P(Xi = xni|A= (a1, . . . , aD))
or alternatively, P(xni| a1, . . . , aD), as well as P(a1, . . . , aD| g) and P(g| y1, . . . ,
yJ) for conditional attribute distributions, and conditional population distributions
given covariates.

Like most latent trait, and more general, most latent structure models, the GDM
assumes local independence given skill attribute vector, that is,

P (X = (x1, . . . , xK) |A = (a1, . . . , aD)) =
K∏

i=1

P (xi |a1, . . . , aD) .

For a given attribute distribution P(a1, . . . , aD), the marginal probability of a
response pattern can be calculated as

P (X = (x1, . . . , xK)) =
∑

A=(a1,...,aD)

P (a1, . . . , aD)

K∏

i=1

P (xi |a1, . . . , aD) .

Note that the attribute distributions P(a1, . . . , aD) pose an estimation challenge
if the number of skills D grows large, or the number of skill levels per skill grows,
or both. For D = 5, the number of binary skill patterns is 32 = 25, for 5 skills with
4 levels each, we look at 1024 different skill patterns, the same as for 10 binary
skill attributes. Instead of estimating potentially thousands of nuisance parameters,
von Davier and Yamamoto (2004a) and Xu and von Davier (2006, 2008) propose a
log-linear skill-attribute distribution. This provides a more parsimonious approach
by assuming

lnP (a1, . . . , aD) = λ0 +
D∑

d=1

λd1ad +
D−1∑

d=1

D∑

e=d+1

λde2adae

as a model for the skill distributions. This log-linear skill attribute model involves
main effects and first order interactions, and can approximate the unobserved distri-
bution of skill attributes for a wide range of cases. Xu and von Davier (2006, 2008)
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provide examples and show how this approach compares well in terms of balancing
parsimony and model fit to fully parameterizing the skill attribute distribution. von
Davier (2018) notes that the skill distribution defined above generalizes the second
order exponential distribution (Tsao, 1967; Holland, 1990) to a model that provides
a polytomous extension of the Ising (1926) model, an approach that recently gained
interest in what is sometimes called network psychometrics (Marsman et al., 2018).

The GDM for binary and polytomous variables, as well as extensions involving
multiple observed and unobserved populations, longitudinal data structures, as well
as data structures with covariates and multilevel structure will be introduced in the
subsequent sections.

6.3 GDM for Binary and Ordinal Skill Attributes

This section introduces the GDM (von Davier, 2005) for dichotomous and polyto-
mous response variables as well as binary and ordinal skill attributes. For simplicity,
all variables, responses and attributes, can be considered binary, however, the GDM
does not require this, unlike other diagnostic models. In the binary case, the skill
levels of any attribute can be interpreted as mastery ad = 1 versus non-mastery
ad = 0 of skill d. Let a= (a1, . . . , aD) be a D-dimensional skill profile consisting of
polytomous skill attributes ad, d = 1, . . . , D. Then, the probability of a polytomous
response x ∈ {0, . . . , mi} to item i under the GDM, for a person with skill attributes
a = (a1, . . . , aD) is given by

P (Xi = x|A = (a1, . . . , aD)) =
exp

[
βix +∑D

d=1γixdhi (qid , ad)
]

1+∑mi
y=1 exp

[
βiy +∑D

d=1γiydhi (qid , ad)
]

with item parameters β ix, γ ixd for x = 1, . . . , mi and i = 1, . . . , I and d = 1, . . . ,
D. The rows of the Q-matrix qi = (qi1, . . . , qid) are constants. As customary in
other diagnostic models, the qid relate item i to skill dimension d and determine
whether the skill is required for that item. If the skill d is required for item i, then
qid = 1, and qid = 0 otherwise. The helper functions hi(qid, ad) map the dichotomous
or polytomous skill levels ad and Q-matrix entries qid to the real numbers. In
most cases, the same mapping will be adopted for all items, so one can drop the
index i. While different mappings are conceivable, for the sake of parsimony and
replicability, it appears not assuming variations of item level models is sensible,
unless different (mixed format) item types are used. The h() mapping defines how
the Q-matrix entries and the skill levels interact (von Davier, 2005; von Davier et
al., 2008).

For polytomous data, the number of slope parameters γ ixd in the equation above
grows with the number of response categories x = 1, . . . , mi per item, as is
easily verified. For a more parsimonious model, a restriction γ ixd = xγ id can be
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implemented. In addition, the helper functions can be specified as hi(qid, ad)= qidad

for all items i. This defines the partial credit GDM:

P (Xi = x|A = (a1, . . . , aD)) =
exp

[
βix +∑D

d=1xγ idqidad

]

1+∑mi
y=1 exp

[
βiy +∑D

d=1yγ idqidad

]

with item parameters β ix, γ id for x = 1, . . . , mi and i = 1, . . . , I and d = 1, . . . ,
D. For binary responses, this model reduces to

P (Xi = 1|A = (a1, . . . , aD)) =
exp

[
βi +∑D

d=1γidqidad

]

1+ exp
[
βi +∑D

d=1γidqidad

]

with vector-valued item parameter (β i, γ i1, . . . , γ iD) which will be also written
using the alternative notation λi = (λi0, λi1, . . . , λiD), as used in some of the
chapters in this volume. Component-wise equivalency holds, i.e., λid = γ id and
λi0 = β i. DefineMqi ,a = (1, qi1a1, . . . , qiDaD). Then we can write

exp
[
βi +∑D

d=1γidqidad

]

1+ exp
[
βi +∑D

d=1γidqidad

] = exp
[
λT
i Mqi ,a

]

1+ exp
[
λT
i Mqi ,a

] .

The GDM contains a large class of well-known psychometric models as special
cases, including IRT, MIRT, latent class models, located latent class models,
HYBRID models, as well as MIRT models for longitudinal data (von Davier, Xu, &
Carstensen, 2011).

Several cognitive diagnostic models (CDMs), including the G-DINA (de la Torre,
2011) with logistic link, the DINA (Junker & Sijtsma, 2001), and the LCDM
(Henson, Templin, & Willse, 2009) turn out to be special cases of the GDM (von
Davier, 2014, 2016) as well.

This following paragraph summarizes how the equivalent GDM that includes
LCDM and G-DINA can be defined, while a more in depth derivation is provided in
an extended section below. For the vector-valued skill variable A = (A1, . . . , AD)
with realizations (a1, . . . , aD) define the extended E = 2D − 1 dimensional
skill attribute space A∗ = (A1, . . . , AD, A12, A13, . . . , AD − 1D, A123, A124, . . . .,
A123 . . . D) = (A∗1, . . . , A∗E), where the realizations are based on a constraint of
the extended skill space defined by a12 = a1a2, a13 = a1a3, . . . , a123...D = ∏d ad
which implies the following restriction on the distribution of A∗ :

P
(
Aij = 1|a1, . . . , aD

) =
{

1 aiaj = 1
0 otherwise

,
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and analog for P(Aijk = 1| a1, . . . , aD) . . . P(A1 . . . D = 1| a1, . . . , aD). This
restriction ensures that the number of independent parameters remains 2D − 1. Then
we can define

P
(
Xi = x|

(
a∗1, . . . , a

∗
E

)) =
exp

[
βix +∑E

e=1xγ idq
∗
iea

∗
e

]

1+∑mi
y=1 exp

[
βiy +∑E

e=1yγ ieq
∗
iea

∗
e

]

where Q∗ is the extended Q-matrix that includes the specification which of the
extended skill variables (representing the skill interactions) are included. For the
DINA, for example, only q∗iE = q∗i1...D = 1 while all other entries are equal to
zero. The subsequent sections present how this model can be used in the extensions
of the GDM that allow specification of multilevel/hierarchical as well as mixture
IRT and hierarchical latent class models within the GDM framework. Within this
family, multi-level, mixture and multiple group versions of the LCDM/G-DINA can
be estimated for dichotomous and polytomous response variables and attributes.

6.4 Mixture Distribution Extensions of the GDM

von Davier (2008b) introduced the discrete mixture distribution version of the
GDM, referred to as the MGDM subsequently. In discrete mixture models for
item response data (Mislevy & Verhelst, 1990; Rost, 1990; von Davier & Rost,
2006, 2016), the probability of observed responses x = (x1, . . . , xK) depends
on the unobserved latent trait x = (a1, . . . , aD) and a subpopulation indicator
g ∈ {1, . . . , G}, which may also be unobserved. The rationale for mixture
distribution models is that observations from different subpopulations may either
differ in their skill distribution, or in their item parameters, or both. The complete
data for a test taker n is Dn = (xn, an, gn), of which only xn is observed in mixture
distribution models. In multiple population models, (xn, gn) is observed, and in
partially observed mixtures (von Davier & Yamamoto, 2004b) an is unobserved
and some (or most) of the gn are missing.

To accommodate multiple observed or unobserved populations, the conditional
independence assumption as well as the expression for the marginal probability are
augmented by a population indicator g. The conditional independence assumption
becomes

P (X = (x1, . . . , xK) | (a1, . . . , aD) , g) =
K∏

i=1

P (xi | (a1, . . . , aD) , g)

and the marginal probability of the response vector is extended to include population
indicator g as well as the conditional attribute distribution given population g. That
is
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P (x1, . . . , xK) =
G∑

g=1

πg
∑

a1,...,aD

P (a1, . . . , aD|g)
K∏

i=1

P (xi |a1, . . . , aD, g)

with population specific weights πg = P(G = g), also referred to as mixing
proportions or class sizes. The probability of a response vector (x1, . . . , xK) for
a respondent in population g with skill attribute pattern (a1, . . . , aD) is

P (x1, . . . , xK | (a1, . . . , aD) , g)=
K∏

i=1

exp
[
βixg+∑D

d=1γixdgh (qid , ad)
]

1+∑mi
y=1 exp

[
βiyg+∑D

d=1γiydgh (qid , ad)
]

with class-specific item difficulties β ixg and class specific slope parameters γ ixdg.
The item parameters of the MGDM can be constrained across populations, or
estimated freely across populations, with only those constraints imposed that are
required for identification (von Davier, 2008b). Three important special cases of the
MGDM can be distinguished:

1. The measurement invariance model, which assumes the same item parameters
across populations.

2. The equivalent groups model, which assumes equivalent skill distributions, while
item parameters may differ across populations.

3. The naïve scale alignment or equating model, which allows different item
parameters, and different ability distributions, while identification constraints
assure that item parameters maintain the same average difficulties and slope
parameters across populations.

The measurement invariance model assures that item functions are the same
across populations, while ability (or skill attribute) distributions P(a1, . . . , aD| g)
may vary. Xu and von Davier (2008) show how to apply this approach in a cross-
sectional design, and von Davier et al. (2011) demonstrate the use of the multi-group
GDM in a longitudinal design. The model that assumes the same ability distributions
across populations, and allows different item parameters across populations is useful
when looking at differences in item functioning across populations. Models of this
type can be used to look at adaptations of assessments to new delivery platforms,
for example when moving tests from paper to computer, or from PCs to tablets (von
Davier et al., in press). A multiple group model that only includes basic constraints
to ensure identifiability may or may not use the same types of constraints across
populations. The sum of item difficulties could be equal to −1.0 in one group,
and + 1.5 in another group, as any constant would work. Using the same constants
for item parameter constraints across populations does not provide any stronger
equality constraint than using different constants (von Davier & von Davier, 2007,
2011). However, the use of same constants is used for example in IRT equating and
mimics classical observed score equating in this regard.
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The MGDM can be used to implement complex population structures to reflect
linking designs and to test invariance assumptions across multiple populations,
including mode effect studies and differential item functioning (von Davier et al.,
2011; von Davier & Rost, 2016). In order to utilize covariates that are available
in addition to response data and population indicators, the MGDM can be further
extended to a multilevel/hierarchical diagnostic model. The next section introduces
the hierarchical GDM, which is based on the mixture distribution extensions of the
GDM.

6.5 Hierarchical/Multilevel Extensions of the GDM

This section introduces the hierarchical GDM, an extension of the mixture distribu-
tion GDM based on a multilevel version of latent class analysis (Vermunt, 2003).
There are many examples of models that accommodate grouping variables as the
driver of varying associations between observed and latent variables. Hierarchical
linear models allow random intercepts and random slopes (Bryk & Raudenbush,
1992). Hybrid models (Yamamoto, 1989; von Davier, 1996) assume that in some
subpopulations, there is systematic co-variation between latent trait and observed
response variables, whereas in other subpopulations, there is no such relationship.
Multiple group models (e.g., Bock & Zimowski, 1997) assume that the same item
response model with different sets of parameters holds in different groups. Mixture
distribution item response models (von Davier & Rost, 2016) assume that an IRT or
MIRT holds, but with different parameters in different subpopulations.

The hierarchical extension of the GDM presented by von Davier (2010) allow
checking the impact of clustering or nesting of the sample, such as data collected for
students nested within schools in large scale educational surveys, on the structural
parameter estimates of the model. Moreover, the hierarchical version of the GDM
allows studying differences of skill attribute distributions across clusters.

For the developments presented here, the extension of the LCA to a hierarchical
model (e.g., Vermunt, 2003, 2004) is of importance. In addition to the latent class
or grouping variable g, the hierarchical extension of the LCA assumes that each
observation n is characterized by additional variables (y1n, . . . , yxn). Respondents
are then sorted into equivalency classes or clusters s = S(y1n, . . . , yxn) with the
same vector of covariates, that is, we have

sn = sm if (y1n, . . . , yxn) = (y1m, . . . , yxm) .

The clusters s identified by these covariates may represent schools or school
types, or groups with homogeneous background, so that the cluster s may either
represent the hierarchical structure of the data collection, or equivalency classes
based on respondents who share a common background. Class membership gn is
thought of as an individual outcome. While two respondents may share the same
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cluster, i.e., sn = sm, they may belong to the same, or to different unobserved
populations, or latent classes: Both gn �= gm and gn = gm are permissible. In
addition, it is assumed that the skill attribute distribution depends only on the group
indicator g and no other variable, that is,

P (a1, . . . , aD|g, z) = P (a1, . . . , aD|g)

for any random variable z, including the clustering of respondents. More specifically,
the hierarchical GDM (HGDM) assumes that the distribution of classes g may differ
across clusters s, so that one may have πg|s1 = P (g|s1) �= P (g|s2) = πg|s2 , while
the differences in distribution of skill attributes across clusters are fully explained
by differences across classes, i.e., it is assumed that

P (a1, . . . , aD|s) =
∑

g

P (g|s) P (a1, . . . , aD|g) .

The marginal distribution of observed responses x1, . . . , xK under the HGDM is
given by

P (x1, . . . , xK) =
∑

s

P (s)

G∑

g=1

πg|s
∑

a1,...,aD

P (a1, . . . , aD|g)
K∏

i=1

P (xi |a1, . . . , aD, g)

with the P(a1, . . . , aD| g) representing the distribution of the skill patterns in group
g, and the P(xi| a1, . . . , aD, g) denote the distribution of the responses xi conditional
on skill pattern a1, . . . , aD and group g. A HGDM that assumes measurement
invariance across clusters and across groups can be written as

P (x1, . . . , xK) =
∑

s

P (s)

G∑

g=1

πg|s
∑

a1,...,aD

P (a1, . . . , aD|g)
K∏

i=1

P (xi |a1, . . . , aD)

which assumes conditional response probabilities P(xi| a1, . . . , aD) that do not
depend on g. The increased complexity of HGDMs over nonhierarchical versions
lies in the fact that the mixing proportions P(g| s) depend on the cluster variable s.
If effects of the group membership are considered fixed effects, this increases the
number of group or class size parameters linearly with the number of clusters. If the
clusters are considered to be random draws from a population, the effects πg � s can
be modeled with a Dirichlet distribution. von Davier (2010) describes estimation of
class-specific item difficulties β ixg and the class specific slope parameters γ idg as
well as the estimation of the other quantities, including the fixed and random effect
versions of the πg � s.



142 M. von Davier

6.6 Estimation of the GDMs

The GDM, being a constrained latent class model (von Davier, 2009a, 2009b)
can be estimated with the expectation-maximization (EM) algorithm (Dempster,
Laird, & Rubin, 1977). While other approaches are also viable, the EM-algorithm
has a proven track record of providing a solution to a wide range of missing
data problems. Estimation of complex models for large scale data collections with
sample sizes in the millions is possible with this approach, as well as estimation
involving moderate sample sizes.

6.7 Standard EM-Algorithm

The EM-algorithm is an iterative solution for maximizing a likelihood function that
involves an incomplete data problem. Recall that in terms of respondent level vari-
ables, the complete data for respondent n is (xn1, . . . , xnK , sn, gn, an1, . . . , anD),of
which only xn1, . . . , xnK , sn is observed. If there are no clusters s, or no
subpopulations g, we may leave out sn, gn. This means that, at a minimum, the
skill attribute vector (an1, . . . , anD) is missing for all respondents.

The necessary expressions for expected counts needed in the E-step and estima-
tion equations for the M-step are provided by von Davier (2005). The EM algorithm
for estimating the GDM was implemented in the mdltm software (von Davier, 2005,
2008a). von Davier (2008b, 2010) describes the estimation of the mixture GDM,
and the hierarchical GDM, respectively. Here, we provide the steps and calculations
involved in the EM-algorithm as pseudo code for the GDM without mixture or
hierarchical extensions:

• E-step: Calculate expected counts of the skill attribute distribution, and the con-
ditional distribution of observed variables given latent skills. The E-step involves
Bayesian methods to calculate the posterior distribution of skill attributes given
observed variables and aggregates these posteriors across respondents in order to
generate the required expected counts.

• M-Step: Maximize the likelihood of the observed data, given expected counts, by
conducting a single optimization step and updating item parameters by means of
a Newton Raphson, a Quasi-Newton, or Gradient based method.

E-step and M-step are alternated and repeated until a convergence criterion is
reached. von Davier (2005, 2008a) provides detailed maximization and expectation
equations for each of the parameter types. Typically, convergence is assessed by
comparing the log-likelihood of the data under two sets of parameters, the current
ones, and the ones from the previous iteration. If the difference is smaller than
a pre-specified amount, iterations are terminated and the current parameters are
considered final.
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6.8 Parallel EM Algorithm

von Davier (2016) develops a parallel EM algorithm for the latent variable models
presented above. In an empirical comparison of results from a parallel EM algorithm
developed for the GDM and the customary (serial) execution of the EM iterations
it is shown that parallel execution is able to speed up the calculations by orders
of magnitude. In particular, both versions of the algorithm yield identical results,
while the runtime reduction, due to the parallel implementation of the EM, is
substantial. von Davier (2017) reports on the second generation of this parallel
EM algorithm for generalized latent variable models on the basis of the GDM
(von Davier, 2005, 2008a, 2014). This new development further improves the
performance of the parallel-E parallel-M algorithm presented by von Davier (2016).
This is achieved by means of parallel language constructions that produce additional
gains in performance. The additional gain over the factors of 6 to 20 seen when
testing the first parallel version is ranging from 20–30% depending on the nature
of the model being estimated. The estimation of a MIRT model for large scale
data may show a larger reduction in runtime compared to a multiple-group model
which has a structure that is more conducive to parallel processing of the E-step.
Multiple population models can be arranged such that the parallelism directly
exploits the ability to estimate multiple latent variable distributions separately in
independent threads of the algorithm. Table 6.1 shows results for a 12-core Intel
XEON workstation. von Davier (2016, 2017) also report results obtained from a 32-
core AMD server with four 8-core CPUs, in which case speedups are obtained that
reach a factor of 20 or more.

The examples cover a wide range of latent variable models from IRT to MIRT,
confirmatory models, multi-trait multi-method models, and latent class models. The
items are mixed format, and their number varies from 54 to 293, the number of
respondents varies from 2026 to 1.8 million, the number of populations ranges from
1 to 312, and the number of dimensions d ranges from 1 to 5.

Table 6.1 Results of the comparison of parallel-E parallel-M versions 1 and 2 on a 12-Core Xeon
workstation as well as the sequentially executed algorithm

Scales Model Groups Items Sample Serial EM Parallel EM Speedup

1 2PL/GPCM 312 293 1,614,281 1356 153 807%
1 2PL/GPCM 283 133 1,803,599 1127 96 963%
7 MTMM 1 214 7377 2465 343 785%
2 MIRT 1 175 5763 44 11 400%
2 MIRT 1 175 5763 1155 145 708%
NA LCA 54 54 246,112 7444 964 716%
5 MIRT 1 150 2026 2499 726 263%

Times for Serial EM and Parallel EM are given in seconds. Likelihoods of the converged solutions
and numbers of iterations are identical for parallel and serial EM
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The development of this high-performance computational approach facilitates
estimating advanced psychometric models for very large datasets in a matter
of minutes rather than hours. Unlike methods relying on simplifications of the
likelihood equations that are only available for some constrained problems such as
the bifactor model (Gibbons & Hedeker, 1992; Rijmen & Jeon, 2013), the approach
presented by von Davier (2016, 2017) is applicable to any multidimensional latent
variable model, including MIRT models, multi-group and mixture models, as well
as longitudinal approaches such as growth curve and growth mixture models.
Massive gains in processing speed can be realized by using the Parallel-E Parallel-
M algorithm with Tile Reduction (PEPM-TR) for estimating generalized latent
variable models.

The parallel version of the EM algorithm was utilized operationally in the
analyses of the PISA 2015 main assessment data. This dataset was linked to previous
cycles of the PISA assessment through data stemming from three prior assessment
rounds. Together, the calibration sample that covers four cycles from 2006 to 2015
contains response patterns from roughly two million students, sampled from 300 or
more populations, and up to 300 items. While the serial EM algorithm would take
up to 20 min or more per calibration, depending on the actual size of the database,
the parallel EM based calibrations took between 2–3 min. per run on a workstation
with two CPUs and six CPU-cores each. Given that multiple calibrations (often 8
or more) are needed to iteratively evaluate fit and differential item functioning and
apply item treatments, these gains reduce the operational burden considerably.

6.9 Testing Model Fit

Since the GDM and many other diagnostic models can be understood as constrained
latent class models, all methods that are available in the context of model checking
and goodness of fit for categorical data analyses can be applied to these models as
well. Examples of these global model fit approaches that aim at the level of selecting
a model will be discussed in the next section.

In addition, more specific fit diagnostics commonly used in IRT can be readily
applied to the GDM, as it contains IRT and MIRT models as special cases. The
second subsection discusses examples of fit diagnostics such as item and person fit
measures that are available in the mdltm software evaluating the fit of the GDM.

6.10 Global Goodness of Fit

Goodness of fit, in the context of models for categorical data analysis can be either
assessed using statistical testing procedures, if certain regularity conditions are met,
or by means of resimulation (von Davier, 1997), or posterior predictive checks (e.g.,
Sinharay, 2003). Alternatively, information criteria providing a heuristic decision
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rule can be applied (e.g., Akaike, 1974). In this section, the focus is on model
selection using heuristics. The reason for this is that for very large sample sizes,
and sparse data structures that come naturally with applications of these models
to data from educational assessments, the power to detect deviations at the global
level is such that practically all models would be rejected if the selection was
based on a significance testing procedure. It is a long-standing observation that
when the sample is large enough, all models can be proven wrong (Berkson, 1938;
Box, 1976). Model selection heuristics based on information criteria, however, are
helping in the comparison of a range of models in order to select the relatively best
fitting model.

A list of model selection tools that can be used for selection among competing
model specifications within the family of GDM is provided below. These model
selection tools are available through the mdltm software (von Davier, 2005, 2008a)
and are provided by default in the output that is produced upon completion of a
GDM estimation.

• Information criteria: Among the most commonly used model selection heuris-
tics, information criteria (Akaike, 1974) are customary for use with models for
continuous and categorical data. Information criteria have the general form

AnyICModel = −2 ∗ LogLikModel +WAnyIC ∗NParModel
where NParModel is the number of free model parameters, LogLikModel as the log-
likelihood of the data under the model, and WAnyIC is the weight of the parameter
penalty term. The Akaike (1974) information criterion (AIC) specifies this as a
constant WAnyIC = 2, for Schwarz (1978) BIC it is WAnyIC = ln (N) where N is
the sample size. For Bozdogan’s consistent AIC, it is WAnyIC = (1 + ln (N)).

• Log-penalty: The log-penalty criterion is a transform of an estimate of the
expected log-likelihood per response. It is based on work by Gilula and Haber-
man (1994) referencing Savage’s (1972) work. The log-penalty uses the expected
log likelihood per item response, but is also subjected to a penalty function. The
log-penalty can be calculated as a simple transformation that modifies the AIC
index, namely,

LogPen = AIC

N∗K

where N is the sample size and K is the number of items, in the case of complete
data without missing responses. For designs with planned missingness or for data
with a lot of omitted responses the ratio needs to involve only the actual number
of observed responses.

• Classification consistency: Vermunt (2010) emphasizes that classification-
based approaches are often evaluated with respect to classification accuracy.
For models such as LCA, mixture IRT, and mixture GDM the following
two related fit measures can be used: The average classification error
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E = 1
N

∑N
n=1

[
1−max{c}

(
P
(
C = c|x1n, .., xkn

)]
and the reduction of

classification error λ = 1 − E
1−max{c}(P (C=c)) compared to the classification

based on marginal probabilities only. The closer this measure is to 1.0, the better
the classification accuracy is compared to classification based on the marginals
only.

The GDM software mdltm provides the above global measures of fit for all
models in the GDM framework. This allows model comparisons across models with
discrete and continuous latent traits, and with varying numbers of latent populations.

6.11 Item and Person Fit

Item and Person Fit are customary fit indices (Molenaar, 1983) used to assess the
extent to which a test-takers or an item response profile agree with the assumed
model regularities that are at the basis of the inferences we wish to make. While
there are likelihood-based item fit indices (e.g., Rost & von Davier, 1994; von Davier
& Molenaar, 2003), we focus here on response residuals. To test whether a response
vector is ‘expected’ or ‘aberrant’, response residuals have been used for extended
periods of time in categorical data analysis (e.g., Haberman, 2009). For a binary
response xui of person u on item i, define

Z (xui) = xui − P (X = 1|u, i)√
P (X = 1|u, i) [1− P (X = 1|u, i)] .

Note that the probabilities in the above equation are not known constants, but
need to be approximated. In mdltm, these are estimated by means of plugging in
the item parameter estimates, and integrating over the posterior distribution of skill-
attributes for each respondent.

For polytomous responses, the expected and the observed response are compared,
and the variance is calculated accordingly. To identify aberrant response vectors,
sums of squared residuals across respondents are used to evaluate items, or sum
of squared residuals across all responses of a person to evaluate person fit. A
standardized person fit index is given by

ξn =
∑I
i=1 [Z (xni)]2 − I√

2I

which can be considered approximately normally distributed for larger numbers
of items. For small I, the statistic

∑I
i=1 [Z (xui)]2 is used with the chi-square

distribution for I degrees of freedom (see, e.g., Haberman, 2009; Adams, 2010).
A standardized item fit index can be calculated as

ξi =
∑N
n=1 [Z (xni)]2 −N√

2N
.
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The mdltm software allows generating response residuals that are appended to
the output file containing person estimates. In addition, the GDM software mdltm
also generates measures of root mean square deviation and mean deviation of item
response functions.

6.12 The GDM Includes LCDM and DINA

The sections above presented the GDM for dichotomous, polytomous, and mixed
format tests, as well as with latent skill structures that can contain combinations
of binary skills, ordinal skills, and continuous latent variables, for data that is
potentially sampled from multiple populations. This yields a modeling framework
that contains IRT, MIRT, discrete latent trait, and latent class, localized latent class
models, as well as mixture and multilevel extensions of these models.

In addition to these properties of the GDM, it can be shown that the approach
is also a more general model than the LCDM (Henson & Templin, Chap. 8, this
volume) and the G-DINA with logistic link function (de la Torre & Minchen,
Chap. 7, this volume). von Davier (2011, 2013) showed that the GDM contains
the DINA model as a special case, and this result was generalized using the LCDM
as an example of a GDM special case by von Davier (2014). The following section
demonstrates how the DINA and the LCDM can be specified as special cases in the
GDM framework.

This presentation follows von Davier (2014) and shows that the LCDM (and with
it, the DINA, and logistic G-DINA, which is the same as the LCDM) are equivalent
to a special case of the GDM. This constrained GDM yields identical parameter
estimates compared to the LCDM (and G-DINA . . . ) based on a transformed set
of compensatory skills. Recall that the GDM for binary data can be rewritten with
Mqi ,a = (1, qi1a1, . . . , qiDaD). Then we can write

P (Xi = 1|a1, . . . , aD) =
exp

[
λi0 +∑D

d=1λidqidad

]

1+ exp
[
λi0 +∑D

d=1λidqidad

] = exp
[
λT
i Mqi ,a

]

1+ exp
[
λT
i Mqi ,a

] .

With item parameter (β i, γ i1, . . . , γ iD) written as λi = (λi0, λi1, . . . , λiD).
Using the same notation, the LCDM was defined by Henson, Templin, and Willse
(2009) as a model that additionally contains skill interactions, that is, the exponent
in the above equation, λi0 +∑D

d=1λidqidad , becomes

λi0 +
∑D

d=1
λidqidad +

∑

d<e

λiedqideadae

+
∑

d<e<f

λidef ridef adaeaf + · · · + λi1..Dri1..Da1..aD

http://dx.doi.org/10.1007/978-3-030-05584-4_8
http://dx.doi.org/10.1007/978-3-030-05584-4_7
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where the interaction terms of up to order D-1 are included if the interaction
inclusions indicators are ri . . . = 1 for that term.

Reorganizing and collecting terms by defining the conjunctions ade = adae,
adef = adaeaf , . . . , a1..D =∏Dd=1 adand optionally renaming ri . . . = qi . . . yields

λi0 +
∑D

d=1
λidqidad +

∑

d<e

λiedqideade

+
∑

d<e<f

λidef qidef adef + · · · + λi1..Dqi1..Da1..D.

Note that the ri . . . = qi . . . in the LCDM and G-DINA are essentially the rows of
a second design matrix that includes information about which interactions of order
2 to D are included in the model. This extra design matrix can be made part of
the Q-matrix by defining additional skills, and assigning these skills a constrained
distribution that reflects whether the underlying source skills are present or not.

With the notations introduced earlier, let a∗ = (
a∗1 , . . . , a∗t

)
denote an

E = (2D − 1)-dimensional skill vector that we refer to as the transformed skill
space. Similarly, let q∗i denote the E-dimensional transformed Q-matrix entry for
item i. We define the entries of the transformed q∗i for a given source qi and the
distributional constraints required for P

(
A∗ = (a∗1 , . . . , a∗E

))
in the following. Von

Davier (2014) defines the extended Q-matrix, Q∗ , as follows. The total number of
skills in the transformed skill space is given by

E = 2D − 1 =
D∑

d=1

(
D

d

)
= D!
d! (D − d)!

where each of the d = 1 . . . D summands in this equation represents the number of

terms

(
D

d

)
that involve d skills. This is the number of transformed skill columns

required for each interaction of order v − 1. If we look at a Q-matrix with four
skills, there are four main effects, corresponding to the λid parameters. There are

6 = 4∗3
2 interactions involving two skills (for the λide parameters) and

(
4
3

)
=

4 interactions involving three skills (for the λidef parameters), and one,

(
4
4

)
=

1, that involves all four skills, λi1..4. Implicitly, there is also

(
4
0

)
= 1 zero-skill

“interaction” that corresponds to the baseline item parameter λi0 present in all items.
Note that 1 + 4 + 6 + 4 + 1 = 16 = 24. Instead of having different types of skills
and skill interaction parameters, one can rename the skills again, that is,

(
a1, a2, a3, a4,a12, a13, a14, a23,a24,a34,a123,a124,a134,a234, a1234

)
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becomes

(a1, . . . , a15)

and

(
q1, q2, q3, q4,r12, r13, r14, r23,r24,r34,r123,r124,r134,r234, r1234

)

becomes

(q1, . . . , q15)

and one obtains a GDM with 24 - 1 = 15 skills. von Davier (2014) provides general
equations that allow an algorithmic renaming to retain the association between the
interaction based LCDM and the transformed skills GDM.

The only additional requirement to make this model equivalent to the LCDM
is a constraint on the skill attribute distribution. Each transformed GDM skill a∗v
corresponds to a conjunction of some number of source skills, i.e., for each a∗v there
are skill indices d, e, . . . with

P
(
a∗v = 1|ad = 1, ae = 1, . . .

) = 1.

The general case showing that this produces an LCDM-equivalent compensatory
skill space that is used in the GDM as presented in von Davier (2014), together with
an empirical example that provides evidence that the LCDM, and the transformed
skill space based GDM indeed produce identical results. The key to seeing this is
that for each of the potential skill interactions in the source LCDM, one defines the
required skill entries in the transformed skill space as additional skills, but with a
constrained skill distribution that fulfills the condition given above. This defines an
item model that is equivalent to the LCDM definition but operates on a transformed
additive/compensatory skill space.

One could argue that this ‘unnecessarily’ explodes the skill space beyond need:
However, this should be evaluated on the basis that the transformed skill space
distribution is constrained. For 2D − 1 = E skills, an unconstrained distribution
would involve 2E − 1 = 2

(
2D−1

)
− 1 free probabilities, in our example with 4 skills

LCDM, this would mean 215 − 1= 32767 free parameters. However, the constraints
on the skill space enforce that

1− P (a∗v = 1|ad = 1, ae = 1, . . .
) =

P
(
a∗v = 1|ad = 0 or ae = 0 or . . .

) = 0.
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Hence, among the potentially 32,767 free probabilities, many are fixed to zero,
and the remainder includes large numbers of equality constraints. Indeed, it turns
there are only 24 − 1 = 15 freely estimated skill probabilities in the example with 4
skills, just as in the equivalent LCDM formulation. This also holds for the general
case of D skills. For a discussion of the general case, refer to von Davier (2013,
2014).

6.13 Summary

The GDM provides a general modeling framework for skills diagnosis suitable for
dichotomous and polytomous response variables, and for skill variables with binary
or ordinal levels. The GDM framework allows comparative analyses of data from
educational assessments with a wide range of models. IRT and MIRT approaches as
well as diagnostic models such as the DINA and the LCDM, and logistic G-DINA
turn out to be special cases of the GDM (von Davier, 2013, 2014). This chapter
provided and overview of these results as well as relevant references for further
study.

The GDM can be estimated with the standard EM-algorithm, and multiple
implementations are available, either as stand-alone programs, or as packages
implemented on top of statistical computation tools such as R. In addition, the GDM
can be estimated with high-performance tools that utilize state-of-the-art parallel
programming paradigms (von Davier, 2016, 2017) allowing analysis of very large
complex data bases with multidimensional models in considerably less time than
standard algorithms.

Examples of operational use include the analysis of the international databases
of the PIAAC 2012 and the PISA 2015 and 2018 data collections, which include
estimation of models with more than 300 populations, about 2,000,000 student
response patterns, and up to 300 items. These applications included IRT, MIRT
and analyses with diagnostic models. These examples show that this general
modeling family that includes diagnostic modeling approaches has become a part
of large scale operational data processing, while providing innovative approaches to
modeling and linking assessments across samples.
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Chapter 7
The G-DINA Model Framework

Jimmy de la Torre and Nathan D. Minchen

Abstract The development of cognitive diagnosis models (CDMs) has been pro-
lific since the turn of the century; however, they have often been developed in such a
way that they lack an overall connective framework. The purpose of this chapter is to
review the G-DINA framework. As a general model, it subsumes several simpler and
widely-known CDMs; as a general framework, it has also served as the foundation
for a variety of model extensions and new methodological developments. We will
also discuss associated topics, which include model estimation, Q-matrix validation,
computerized adaptive testing, and model selection as they relate to the reviewed
models.

7.1 Introduction

Cognitive diagnosis models (CDMs) can be viewed as restricted versions of the
more general latent class models. In particular, the number of latent classes, as
well as their interpretation, are known a priori when CDMs are involved. Further
restrictions can be posited regarding how the underlying attributes interact to
produce the observed responses. These interactions (or condensation rules; Maris,
1999) include conjunctive, disjunctive, and additive processes (de la Torre, 2011).
Assuming a specific underlying process involves the use of a reduced or constrained
CDM such the DINA model (Haertel, 1989; Junker & Sijtsma, 2001), DINO
model (Templin & Henson, 2006), LLM (Maris, 1999), R-RUM (Hartz, 2002), and
A-CDM (de la Torre, 2011). Although more interpretable and requiring smaller
sample sizes, reduced models can also lead to poorer model-data fit when they
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are incorrectly specified (e.g., Chen & de la Torre, 2013). Notwithstanding their
own shortcomings, general or saturated CDMs, such as the G-DINA model (de la
Torre, 2011), LCDM (Henson, Templin, & Willse, 2009), and GDM (von Davier,
2008), can be used as an alternative to reduced CDMs to minimize the impact of
potential model misspecifications. With the exception of the GDM, which can be
specified more generally, the CDMs above are designed for dichotomous attributes
and dichotomous responses. It should be noted that when dichotomous attributes
and dichotomous responses are involved, the G-DINA model, which is typically
written using the identity link function, the LCDM and GDM, which are based on
the logit link function, and any saturated CDMs in other link functions (e.g., log) are
equivalent to each other. To accommodate a wider range of attribute and response
types, extensions of CDMs need to be considered.

An integral component of most, if not all, CDM specifications, general or
otherwise, is the Q-matrix (Tatsuoka, 1983). In its typical formulation, a Q-matrix
is a K × D matrix that identifies the subset of attributes measured by each item,
where K is the number of items and D the number of attributes measured by the
test. The attribute specification for item j is given in the binary D−length vector,
qj . Correspondingly, the latent variable in CDM is typically a binary D−length
vector, al , where l = 1, . . . , L = 2D, the number of latent classes. As will be
shown later, both qk and al may require some modifications before they can be used
in conjunction with CDM extensions.

The valid use of scores derived from CDMs presupposes that the model is
adequate for the data. To this end, steps need to be taken to ensure that a discrete
latent variable can fit the data, the correct CDMs are employed, and Q-matrix entries
are correctly specified. In addition, for greater efficiency, simpler models should be
preferred over more complex models whenever appropriate.

Given the large number of CDMs that currently exists, a unifying framework
from which these models can be viewed is needed to better understand their unique
natures and the extent to which these models relate to each other. Moreover, a coher-
ent framework that permits implementation of various CDM-related procedures can
allow for the appropriate use of CDMs to be evaluated more systematically. As will
be discussed below, the G-DINA model framework aims to accomplish this two-
pronged objective. In addition, the G-DINA as a model can serve as the foundation
on which CDM extensions can be built.

7.2 The G-DINA Model Framework

7.2.1 The G-DINA Model

Without loss of generality, assume that the first D∗k attributes are required for item
k, and let a∗lk be the D∗k -length reduced attribute vector, l = 1, . . . , 2D

∗
k , which

retains only the attributes required for item k. The item response function (IRF) of
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the G-DINA model is given by

g[P(Xk = 1 | a∗lk)] = φk0 +
D∗k∑

d=1

φkdald +
D∗k∑

d ′=d+1

D∗k−1∑

d=1

φkdd ′aldald ′ + . . .

+φ12...D∗k

D∗k∏

d=1

ald , (7.1)

where g[·] is either the identity, log, or logit link function, φk0 is the intercept, φkd
is the main effect due to mastering ad , and each of the remaining φk· represent all
possible higher-order interaction effects, ranging from two-way to D∗k -way. When
g[·] is the logit link, it is equivalent to the LCDM, which has also been shown to be
equivalent to a GDM with an extended skill space (von Davier, 2014).

The G-DINA model is considered a saturated CDM because it contains 2D
∗
k

parameters corresponding to the 2D
∗
k latent groups in item k. As shown by de la

Torre (2011), several reduced models can be derived from the G-DINA model by
constraining its parameters. The DINA model is equivalent to the G-DINA model
with all but the intercept and the highest-order interaction effect set to zero. Its IRF
in the G-DINA notation is

g[P(Xk = 1 | a∗lk)] = φk0 + φ12...D∗k

D∗k∏

d=1

ald . (7.2)

Similarly, the DINO model can be obtained from the G-DINA model using the
following constraints: φkdald = −φkdd ′ = · · · = (−1)D

∗
k+1φ12...D∗k . Thus, its IRF

can be written as

g[P(Xk = 1 | a∗lk)] = φk0 + φkdald . (7.3)

Finally, when all the interaction effects are set to zero, as in,

g[P(Xk = 1 | a∗lk)] = φk0 +
D∗k∑

D=1

φkdald , (7.4)

the G-DINA model in the identity, log, or logit link is equivalent to the A-CDM,
R-RUM, or LLM, respectively. Although the additive property is inherent to a
particular link function (e.g., R-RUM is multiplicative when converted to the
identity link), Ma, Iaconangelo, and de la Torre (2016) noted the interchangeability
of the three additive models for some item parameter combinations. As a whole,
recognizing that the G-DINA model subsumes a number of reduced CDMs has
important implications in model comparison and model-data fit evaluation.
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7.3 Model Extensions

7.3.1 G-DINA Model for Polytomous Attributes

Although the G-DINA model is a general CDM, it is only so with respect
to dichotomous attributes. However, some educational applications may benefit
from a finer-grained, and therefore, more instructionally-relevant classification of
students. For example, classifying students as having no mastery, basic mastery, and
advanced mastery of the skills might be of interest. The middle-school proportional
reasoning (PR) assessment described by Tjoe and de la Torre (2013a,b) measures
two polytomous attributes, namely, (a) comparing and ordering of fractions, where
level 0 represents nonmastery of the attributes, level 1 the ability to compare two
fractions, and level 2 the ability to order three or more fractions; and (b) constructing
ratios and proportions, where level 0 again represents nonmastery, level 1 the ability
to construct a single ratio, and level 2 the ability to construct a proportion, which is
made up of two ratios. Such classifications require polytomous attributes.

Define al = {ald | ald ∈ (0, 1, . . . ,Md)} as the polytomous attribute vector,
and again, assume that the first D∗k attributes are required for item k. The reduced
attribute vector in this context can be written as a∗

lk = {ald , . . . ,alD∗k }. When there
are no constraints on the model, item k involves M1 ·M2 · · ·MD∗k latent groups. A
saturated CDM for this item would require the same number of parameters, making
it too complex to be viable in most practical testing situations. Chen and de la Torre
(2013) proposed the polytomous G-DINA (pG-DINA) model as a lower-complexity
CDM that can accommodate polytomous attributes. To reduce the number of latent
groups, and hence complexity of the corresponding CDM, the pG-DINA model
assumes that, for each attribute within an item, an examinee can be classified as
either at or below the required attribute level. Examinees on or above the cutoff are
assumed to have the necessary attribute mastery level to answer the item correctly,
whereas those below it do not. Chen and de la Torre (2013) referred to this as
the specific attribute level mastery (SALM) assumption. The reduced polytomous
attribute vector a∗

lk can be converted to a reduced dichotomous attribute vector a∗lk
as follows: a∗lk = {I (ald ≥ qkd)}, for d = 1, . . . , D∗k . After the conversion, a∗lk can
be used in the IRF given in (7.1) to model a wide variety of attribute interactions.

In general, the conversion process in the pG-DINA model reduces the number of
latent groups to 2D

∗
k for item k regardless of the number of levels of the attributes

involved. It should also be noted that the pG-DINA model differs from other
polytomous CDMs (e.g., GDM) in that the attribute level required for an item is
defined by domain or subject-matter experts a priori, whereas in other CDMs, only
the attribute, but not the level, need to be specified. This distinct feature of the pG-
DINA model implies a modification of the Q-matrix – instead of only 0 and 1,
qkd ∈ (0, 1, . . . ,Md − 1). Using the PR assessment data, Chen and de la Torre
(2013) and de la Torre (2015) have shown that the pG-DINA model provides a better
fit when compared to the G-DINA model. These results indicate that the pG-DINA
model is not only theoretically appealing, but also empirically more appropriate.
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7.3.2 G-DINA Model for Polytomous Response

Although items that can be scored as either right or wrong (i.e., 1/0) remains
the most common item type in large-scale assessments, items that can be scored
with ordered polytomous categories are also available. In the CDM literature, it
is not uncommon for these scores to be dichotomized and analyzed using existing
CDMs for dichotomous response. In recent years, a number of CDMs for ordered
polytomous response have been proposed, including the GDM for graded responses
(von Davier, 2008), the polytomous LCDM (Hansen, 2013) and the sequential G-
DINA (sG-DINA; Ma & de la Torre, 2016) model. Of these, only the sG-DINA
model considers the possibility that, within the same item, the subset of attributes
being measured can vary from one response category to another.

The sG-DINA model assumes that the problem-solving process is sequential
in nature, and allows for different subsets of attributes to be associated with
different steps or categories. In the sG-DINA model, the Q-matrix is modified to
accommodate qkh, the q-vector for category h of item k, where h = 1, 2, . . . , Hk .
Note that for ordered polytomous response, 0 is one of the response categories (i.e.,
Xk = {h | h ∈ (0, 1, . . . , Hk)}), but this category does not require a q-vector.
Hence, instead of K rows, the modified Q-matrix contains

∑K
k=1Hk rows.

We can again assume that the firstD∗k are the required attributes for category h of
item k. Conditional on the reduced attribute pattern a∗lh, the probability of a correct
response to category h of item k given the previous step is correctly answered is
denoted by

Sk(h|a∗lh) = P(Xk,h = 1 | Xk,h−1, a
∗
lh). (7.5)

Sk(h|a∗lh) is referred to as the processing function in the item response theory
literature (Samejima, 1973). The processing function can be more generally for-
mulated by using various link functions. In doing so, the IRF of the G-DINA model
given in (7.1) can be used as the processing function to model a range of attribute
interactions associated with the category response. Based on the sG-DINA model,
the probability of obtaining a score of h on item k is given by

P(Xk = 1|a∗lh) = [1− Sk(h+ 1|a∗lh)]
h∏

h′=1

Sk(h
′|a∗lh′), (7.6)

where

Sk(h|a∗lh) =
{

1, if h = 0

0, if h = Hk + 1
.

The sG-DINA model is said to be restricted when the attribute-category associ-
ations are known. However, for some items, only the attribute-item associations
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can be ascertained. For these items, the unrestricted version of the sG-DINA is
used, where the same subset of attributes are specified for all categories. Although
more general, and therefore more flexible, fitting the unrestricted sG-DINA model
when the restrictions are appropriate can lead to suboptimal results. Originally the
unrestricted sG-DINA model was designed for ordered responses; however, Ma and
de la Torre (2016) have shown that the model can also be used in conjunction with
nominal response, and is equivalent to the partial credit DINA model (de la Torre,
2010) and the nominal response diagnostic model (Templin, Rupp, Henson, Jang, &
Ahmed, 2008). Finally, as expected, the sG-DINA model performs better than the
G-DINA model fitted to dichotomized polytomous data.

7.3.3 G-DINA Model for Continuous Response

Although a number of CDMs for dichotomous and polytomous responses are
available, modeling continuous response in the CDM context is in its infancy. With
the proliferation of computer-based testing, perhaps the most obvious and readily-
available source of continuous response is latency, or response time. However, other
item formats such as placing a mark on a line segment (e.g., Noel, 2014; Noel &
Dauvier, 2007) and probability testing (e.g., Ben-Simon, Budescu, & Nevo, 1997)
can also yield continuous responses. For illustration purposes, we will use response
time to represent continuous response throughout the chapter. As de la Torre and
Minchen (2016), Minchen and de la Torre (2018) and Minchen, de la Torre, and
Liu (2017) have shown, response time in the CDM context may itself be the work
product of interest, or it could be viewed as a type of process data and used in
conjunction with response accuracy.

The first CDM to handle responses of a strictly continuous type is the continuous
DINA (cDINA) model proposed by Minchen et al. (2017). Like the DINA model,
the cDINA model involves the same latent variable al , classifies the examinees into
one of two latent groups – those who have the required attributes for the items (ηlk =
1), and those who do not (ηlk = 0). However, instead of a single parameter (i.e., slip
or guessing) governing the response of one particular group, the item response of a
latent group in the cDINA model is governed by two parameters, representing the
mean and standard deviation of the group’s, say, response time on item k. It should
also be noted that unlike dichotomous response where examinees in group ηlk = 1
are expected to score higher, the expected response time of the same examinees can
be longer or shorter depending on the context of application. The real data example
in Minchen et al. shows that examinees in ηlk = 1 are more engaged with problems
that they are equipped to handle, resulting in longer response times.

Using the cDINA model, the cumulative distribution function for the response tlk
on item k given al can be written as

P(Tk ≤ t |al ) =
∫ t

0
fkη(tk)dtk, (7.7)
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where

fkη(tk) = 1

tk

√
2πσ 2

kη

exp
[
− (ln tk − μkη)

2

2σ 2
kη

]
, (7.8)

which is the lognormal distribution with group-specific parameters μkη and σkη for
η = 0, 1.

The continuous G-DINA (cG-DINA; Minchen & de la Torre, 2018) is a
straightforward generalization of the cDINA model. Instead of two latent groups,
the cG-DINA model allows for a unique response distribution to be associated with
each of the 2D

∗
k latent groups; thus it is characterized by 2D

∗
k+1 parameters. The

cumulative distribution of the cG-DINA model for the response tlk is similar to that
in (7.7) with the exception that the lognormal distribution in (7.8) involves μkη and
σkη for η = 1, 2, . . . , 2D

∗
k , and a one-to-one correspondence between η and a∗lk can

be made.
The cG-DINA model is a saturated model because each of the 2D

∗
k latent groups

is characterized by a unique parameter set (μkη, σkη). By imposing the constraints
μk1 = · · · = μ

k,2D
∗
k−1

and σk1 = · · · = σ
k,2D

∗
k−1

, the cDINA model can be easily

derived from the cG-DINA model. Similar constraints can be imposed to derive
a disjunctive CDM from the cG-DINA model. However, as noted earlier, CDMs
for continuous response are in their nascent stages. At present, it is not clear how
additive CDMs in this context should be formulated or what constraints on μkη and
σkη are needed to derive them from the saturated model. Furthermore, the existence
of two parameters per latent group raises the possibility that the constrained model
for μkη may not be the same as that for σkη.

7.4 Estimation

An expectation-maximization (EM) implementation of marginalized maximum
likelihood estimation (MMLE) can be used to obtain parameter estimates of the
CDMs discussed above (e.g., de la Torre, 2009, 2011). Specifically, under the
assumption of local independence, the log-marginalized likelihood of the dichoto-
mous response data can be written as

�(X) = log
N∏

n=1

2D∑

l=1

P(Xn | al )p(al ), (7.9)

where

P(Xn | al ) =
K∏

k=1

P(Xnk = 1 | al )Xnk [1− P(Xnk = 1 | al )]1−Xnk . (7.10)
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The MMLE/EM algorithm implements E-step and M-step iteratively item by item
until convergence. In particular, the E-step calculates Na∗lk =

∑N
n=1 P(a

∗
lk|Xn),

the expected number of individuals having the attribute pattern a∗lk , and Ra∗lk =∑N
n=1 xnkP (a

∗
lk|Xn), the number of individuals with attribute pattern a∗lk expected

to answer item k correctly. Note that P(a∗lk|Xn) is the posterior probability of
individual n having attribute pattern a∗lk . In the M-step, as shown in de la Torre
(2011), the maximum likelihood estimate of P(Xk = 1 | a∗lk) is given by

P̂ (Xk = 1 | a∗lk) =
Ra∗lk
Na∗lk

. (7.11)

The item parameters φ in (7.1) can be derived from (7.11) via the ordinal least-
squares approach.

For the DINA and DINO models, the 2D
∗
k latent groups are further partitioned

into two non-overlapping groups ηk0 and ηk1, where individuals in the former and
latter groups are expected to answer item k incorrectly and correctly, respectively.
The maximum likelihood estimate of the probability of success for individuals in
group ηku where u ∈ (0, 1) is

P̂ (Xk = 1 | ηku) =
∑

a∗lk∈ηku Ra∗lk∑
a∗lk∈ηku Na∗lk

. (7.12)

For A-CDM, LLM and R-RUM, the maximum likelihood estimate can be found
using various optimization functions based on Ra∗lk and Na∗lk . The parameters of the
pG-DINA model can be estimated as in the G-DINA model after converting a∗

lk to
reduced dichotomous attribute vector a∗lk . For the sG-DINA model, the following
objective function is maximized in the M-step,

�k =
2D
∗
k∑

l=1

Hk∑

h=0

Ra∗lkh log
[
P(Xk = h|a∗lk)

]
,

where Ra∗lkh =
∑N
n=1 I (xnk = h)P (a∗lk|Xn) is the number of individuals with

attribute pattern a∗lk expected to obtain a score of h on item k. Note that the
EM algorithm for estimating the sG-DINA model can also be implemented at the
category level after transforming the polytomous data to dichotomous data with
missing values using the mapping matrix (Ma, 2018).

For the cG-DINA model, the conditional likelihood given in (7.10) can be written
as

P(tn | al ) =
K∏

k=1

fj (tnk|al ). (7.13)
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Following several steps of derivation, the maximum likelihood estimates of μkη and
σ 2
kη can be shown to be equal to

μ̂kη =
N∑

n=1

p∗(alk|tn) log tnk, (7.14)

and

σ̂ 2
kη =

N∑

n=1

p∗(alk|tn)(log tnk − μ̂kη)2, (7.15)

respectively, where p∗(alk|tn) is the posterior probability (normalized across the N
examinees) of examinee n being in the reduced attribute pattern alk .

Unlike traditional IRT, where the prior ability distribution can be reasonably
specified, for example, using N(0, 1), the multinomial attribute distribution p(al )
in CDM cannot be readily determined a priori. A convenient way of specifying
p(al ) is to employ the empirical Bayes estimate. In particular, we let p(c+1)(al ),
the prior distribution at iteration c + 1, be equal to the p(c)(al | X), the posterior
distribution at iteration c. It should be noted that in the CDM context, estimation
of the item response model can impact the joint attribute distribution estimate, and
vice versa. Therefore, in situations where the impact of model misspecification on
item parameter estimates needs to be isolated, one can use the G-DINA model to
arrive at the correct attribute distribution estimate in the first step, and, fixing the
attribute distribution, use the EM algorithm to obtain the item parameter estimates
of the reduced model in the second step.

7.5 G-DINA Model-Based Methodologies

7.5.1 Q-Matrix Validation

In typical CDM applications, Q-matrices are built by subject-matter experts. In
addition to subjective judgments, experts may not reach complete agreement on
each of the Q-matrix entries. For these reasons, the correctness of the entire Q-
matrix cannot be guaranteed. To address this issue, statistical procedures, referred
to in the literature as empirical Q-matrix validation methods, have been proposed.

De la Torre and Chiu (2016) proposed the G-DINA model discrimination index
(GDI) for an item with any q-vector. For simplicity of notation, let us assume again
that the first D∗k attributes are required for item k. The GDI is defined as

ς2
1:D∗k =

2D
∗
k∑

l=0

p(a∗l )
[
P(Xk = 1|a∗l )− p̄k

]2
(7.16)
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where p(a∗l ) is relative size of the reduced attribute pattern a∗l , and p̄k is the mean
success probability on item k. As can be seen from (7.16), the GDI is simply the
variance of the success probabilities given a particular q-vector. For each item, 2D−
1 q-vectors can be specified, each corresponding to one GDI. De la Torre and Chiu
(2016) defined a q-vector that results in the maximum ς2

k as an appropriate q-vector
to item k. Of the appropriate q-vectors, the q-vector with the minimum number of
attributes specified is deemed correct.

The GDI serves as the basis of the EM-based data-driven algorithm (de la Torre &
Chiu, 2016) developed to validate the expert-based provisional Q-matrix. Compared
to other data-driven Q-matrix validation methods that are designed for specific
CDMs (e.g., the δ-method for the DINA model; de la Torre, 2008), the GDI is based
on a general model so it can be used with any reduced CDMs the G-DINA model
subsumes. In practice, the inequality established by de la Torre and Chiu (2016)
may not hold due to potential misspecifications in the provisional Q-matrix as well
as noise in the data. As a matter of fact, the maximum ς2

k is always achieved when
qk = 1, which, more often than not, is an overspecification. To address this issue,
they recommended examining the proportion of variance accounted for a particular
q-vector relative to the maximum ς2

k , and suggested selecting the simplest q-vector
from a set of q-vectors with GDIs above a particular cutoff (e.g., ς2 > 0.95).
Although it has been shown that the GDI-based procedure can be a reliable method
of empirically validating a provisional Q-matrix, particularly when high quality
items are involved, determining a single cutoff that is optimal across a variety of
conditions remains a challenge. To minimize dependence on a single cutoff and
to allow for quantitative and graphical information to be combined in determining
the correct q-vector for an item, de la Torre and Ma (2016) proposed the use of the
mesa plot. The mesa plot displays the GDIs of different q-vectors in ascending order.
Instead of a single recommendation, a number of q-vectors in the vicinity where the
plot plateaus or forms a tabletop are suggested from which the correct q-vector can
be selected.

7.5.2 Cognitive Diagnosis Computerized Adaptive Testing

As in traditional IRT, computerized adaptive testing can also be used to improve test
efficiency (i.e., shorter test or greater accuracy) in the CDM context by administer-
ing items that are tailored to an examinee’s most current attribute estimate. However,
due to the discrete and multidimensional nature of the attributes, the method for
determining the optimal item in cognitive diagnosis computerized adaptive testing
(CD-CAT) differs.

Kaplan, de la Torre, and Barrada (2015) used the GDI as an item selection index
for CD-CAT. Specifically, for examinee n, the GDI for item k at time t (i.e., after t
items have been administered) is computed as

ς
2(t)
k =

2D
∗
k∑

l=0

p(al | X(t)n )
[
P(Xk = 1|a∗l )− p̄(t)nk

]2
, (7.17)
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where p(al | X
(t)
n ) is posterior probability of a∗l at time t , P(Xk = 1|a∗l ) is the

time-invariant success probability on item k given a∗l , and p̄(t)nk current overall item
difficulty. Note that, as a CD-CAT item selection index, (7.17) is a function of p(al |
X
(t)
n ), which changes over time. The item with the largest ς2(t)

k is deemed most
informative, and hence administered at time t + 1.

To examine the viability of the GDI as a CD-CAT item selection index, Kaplan
et al. (2015) compared it with the posterior-weighted Kullback-Leibler (PWKL;
Cheng, 2009) index, as well as the doubly-posterior-weighted modified PWKL
(MPWKL) index, which they also introduced. They found that the GDI and
MPWKL outperformed the PWKL when the reduced model is either the DINA
or DINO model, but not when it is the A-CDM. In addition, although GDI and
MPWKL performed similarly in terms of correct classification rate or average test
length, the former was deemed more efficient in that it only required a fraction of
the time to be implemented.

7.5.3 Item-Level Model Comparison

Given the variety of CDMs currently available, it is not obvious how the choice
between these models can be made in practice. Previously, researchers assume a
particular underlying process (e.g., conjunctive, additive) to fit a particular CDM
(i.e., DINA model, R-RUM) to the data. With the availability of general models,
fitting CDMs with less restrictive assumptions has been advocated. However, recent
analyses of real data show that different items may require different types of CDMs,
both reduced and saturated. These findings imply that a single reduced CDM would
likely not provide a sufficient model-data fit. Moreover, even if a general model may
provide an adequate fit assuming CDMs are appropriate, the parsimony principle
(Beck, 1943) dictates that the simplest set of models that can provide equally good
fit to the data be chosen. These findings also imply that using a test-level comparison
using, say, Akaike (1973) or Bayesian information criterion, or the likelihood ratio
test to choose en masse from among the CDMs that have been specified a priori may
not lead to the selection of the optimal CDMs for the data.

To determine empirically (i.e., post hoc) the most appropriate CDM for each
item, de la Torre (2011) developed an item-level model selection method using the
Wald test. Assuming the Q-matrix has been validated, the Wald test can be used to
determine whether one or more reduced CDMs can be used in place of the saturated
CDM. For item k, the Wald statistic for comparing the reduced CDM � against the
saturated model is defined as

Wk� =
[
Rk� × g(P k)

]′ [
Rk� × V ar[g(P k)] ×R′k�

] [
Rk� × g(P k)

]
, (7.18)

where g(P k) is g[P(Xk = 1 | a∗lk)], V ar[g(P k)] is the corresponding variance
matrix, and Rk� is the restriction matrix associated with the reduced CDM �. The
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restriction matrix Rk� is of size (2D
∗
k − p) × 2D

∗
k , where p is the number of

parameters in model �. Below are examples of R for the (1) DINA model, (2) DINO
model, and (3) additive models when D∗k = 2:

R(1) =
[

1 −1 0 0
0 1 −1 0

]
, R(2) =

[
0 1 −1 0
0 0 1 −1

]
, and R(3) = [1 −1 −1 1

]
.

The Wald statisticWk� is assumed to be asymptotically χ2−distributed with (2D
∗
k −

p) degrees of freedom. It should be noted that using the Wald test for the purpose of
evaluating the appropriateness of reduced CDMs is only meaningful when D∗k ≥ 2.

With a sufficiently large sample size and reasonable item quality, the Wald
test has acceptable Type I error and power across various reduced models (de
la Torre & Lee, 2013; Ma & de la Torre, 2016). Furthermore, in comparing the
fit of CDMs selected via the Wald test against that of the G-DINA model, Ma,
Iaconangelo, and de la Torre (2016) found using simulated and real data that the
former provided higher correct classification rate than the latter, particularly when
lower item qualities and smaller sample sizes are involved. More recently, de la
Torre and Ma (2017) have shown that performing the Wald test is a necessary step
to accurately evaluate whether or not a test can potentially identify all the possible
attribute patterns. An evaluation of the expected item response profiles derived from
fitting a saturated model without considering the appropriateness of reduced CDMs
can lead to incorrect conclusions about the identifiability, or lack thereof, of the
attribute patterns. Lastly, the use of the Wald test in the CDM context extends
beyond item-level model comparison – it has also been used to evaluate differential
item functioning (e.g., Hou & Terzi, 2017).

7.6 Discussion

This chapter presents the G-DINA model as framework for conducting analysis
in the CDM context. As a general model and with appropriate link functions, the
G-DINA model can be shown to subsume a number of familiar reduced CDMs
in the literature. With it as the base model, the G-DINA model can be extended
in various directions to address a wider range of practical testing situation needs.
As a framework, the G-DINA model provides a coherent environment where
CDM-related procedures can be developed and implemented. Thus far, the CDM-
based methodologies that have been developed are largely applicable to CDM
for dichotomous responses and attributes. To further improve the practicability of
CDMs, these methodologies should be expanded to also apply to other CDM types.

The surge in the development of CDMs and related methodologies in recent years
is without a doubt a positive development in this field. However, using these models
and methodologies systematically and integratively can be daunting, particularly
to many applied researchers. If any suggestions could be proffered regarding this
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matter, they would be as follows. First, validate the Q-matrix specification. To do
so without conflating Q-matrix misspecifications with potential CDM misspecifica-
tions, fit the G-DINA model. Second, check whether reduced CDMs can be used
in place of the G-DINA model for items where D∗k ≥ 2. More likely than not, this
would result in different items retaining different CDMs. Third, recalibrate the data
using the CDMs selected in the previous step to update the estimates of the item
parameters and attribute distributions. These are the estimates that one can use in
estimating the examinees’ attribute patterns. Optionally, in some applications, one
can also consider whether the attribute distribution, which is typically estimated
in saturated form (i.e., without constraints), can be simplified. An alternative is to
specify the attribute distribution using a higher-order formulation (de la Torre &
Douglas, 2004). As a final step, evaluate the absolute fit (i.e., goodness-of-fit) of the
model to the data. One way this can be accomplished is by comparing the expected
and observed moments, particularly the correlation and log-odds ratio, of each item
pair (Chen, de la Torre, & Zhang, 2013; de la Torre & Douglas, 2008).

As a last word, we should be cognizant that, despite the numerous developments
pertaining to CDM and related methodologies in the last two decades, these
advances represent but one side of the coin. To fully take advantage of the potential
of CDMs, we should also focus our attention on the other side of the same coin,
which is developing cognitively diagnostic assessments (CDAs; de la Torre &
Minchen, 2014). In particular, we need to develop diagnostic assessments from the
ground up using a CDM framework. On one hand, without the appropriate data,
psychometric tools no matter how sophisticated cannot produce the rich information
needed for precise diagnosis of student needs. On the other hand, without the
appropriate psychometric tools, information no matter how rich cannot be properly
extracted and utilized. Thus, for cognitive diagnosis modeling to break new ground
in the near future, CDMs and CDAs must be used hand in hand.
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Chapter 8
Loglinear Cognitive Diagnostic
Model (LCDM)

Robert Henson and Jonathan L. Templin

Abstract The Log-Linear Cognitive Diagnosis Model (LCDM; Henson RA, Tem-
plin J, Willse J, Psychometrika 74:191–210, 2009) provides a general approach
to diagnostic modeling that is deeply tied to log-linear models. As a result, the
parameterization and concepts of the LCDM can be directly tied to the concepts of a
general linear model for use of a multiple way ANOVA. By using these concepts, the
LCDM provides a general framework that does not require the user to specifically
determine the relationship between the attributes and the probability of a correct
response. Furthermore, because of its flexibility, this chapter will show that the
LCDM can be used to discuss similarities and differences between many common
diagnostic models. This chapter will first provide a theoretical introduction to the
motivation and the definition of the LCDM. Next, typical tools that have been used
to estimate the LCDM and measures of fit are discussed. Finally, this chapter will
discuss the relationship of other diagnostic models to the LCDM and, as a result,
provide a succinct definition of what is meant by disjunctive, compensatory, and
conjunctive models.

8.1 The Log-Linear Cognitive Diagnostic Model

Diagnostic classification models (DCMs; also known as cognitive diagnosis models
(CDMs)) were becoming more popular in the early 2000’s. Prior to this time some
approaches such as the work on Rule Space (Tatsuoka, 1983), the Unified Model
(DiBello, Stout, & Roussos, 1995), and Knowledge Space Theory (Doignon &
Falmagne, 1999) had been published that focused on determining the state of a
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test taker’s knowledge. As this field continues to expand, many of the diagnostic
models define the probability of a correct response for the nth person to the kth item,
P(xnk = 1), as a function of a set of item parameters and a test takers knowledge, an
attribute profile. An attribute profile is an indicator vector of ability that is sometimes
referred to as a mastery profile. More specifically, many diagnostic models define
ability of a test taker as a D-dimensional vector A = (A1, A2, . . . , AD), where A1,
A2, . . . AD are thought to be indicators of mastery or non-mastery of a set of D
attributes. Note that attributes have also be described or defined as specific skills or
facets that influence performance on a test.

Most models do not assume that all attributes influence the performance of
all items. For example, it is possible that there are two attributes that describe
math ability such as basic addition (A1) and basic subtraction (A2). Thus, the item
“2 + 3 =?” is expected to only be influenced by whether the test taker has mastered
basic addition, A1, whereas the item “4−1 + 3 =?” would require mastery of both
basic addition and basic subtraction. The Q-matrix is used as an indicator matrix
such that any element qkd = 1 of the dth attribute is measured by the kth item and
otherwise qkd = 0. In this example, the vector for the Q-matrix related to the item
“2 + 3 =?” would be qk = (1, 0) indicating that only mastery/non-mastery of A1
influences the probability of correctly answering that item. Whereas, qk = (1, 1)
would be specified for the second example item, “4−1 + 3 =?”

Given the attribute profile and the Q-matrix, the relationship between the attribute
profile and the probability of a correct response varies based on the model used.
Each model provides a specific functional form with model specific parameters.
However, very few models considered the possibility of modeling the response
patterns based on a log-linear model with latent variables. Specifically, dichotomous
items and mastery/non-mastery on each of a set of D attributes can be thought
of as creating a large contingency table. For example, if there are only two
items and two attributes, then the contingency table would be a 2 × 2 × 2 × 2
table representing the two dichotomous items and the two dichotomous attributes.
Furthermore, because all items are assumed to be independent given the examinees
attributes (the assumption of conditional independence) one could consider a
separate contingency table for each item crossed with the attributes measured by
that item. For example, focusing only on the item, “4−1 + 3=?”, a three-way table
could be created to represent the joint distribution of the kth item with attributes
A1 and A2 (basic math and basic subtraction respectively). Table 8.1 provides
an example table that contains this joint distribution P(XK , A1, A2). Note that the
sum across all of the cells is 1. In addition, it can be said that, across the total
population, 20% of the examinees did not master either attribute and missed the
item, P(Xk = 0, A1 = 0, A1 = 0) = 0.20.

This table shows that for test takers that missed this item, the attribute pattern
An = (0, 0) is most likely. Whereas of the attribute patterns that answered the
item correctly, An = (1, 1) is most likely. Note that these probabilities could also
be expressed in terms of the probability of a correct response given a specific
attribute pattern. For example, given that a test taker has the attribute pattern
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Table 8.1 Example of the
joint distribution of response
and attributes

Xk = 0 Xk = 1
A2 = 0 A2 = 1 A2 = 0 A2 = 1

A1 = 0 0.200 0.125 A1 = 0 0.050 0.125
A1 = 1 0.150 0.025 A1 = 1 0.100 0.225

An = (0, 0), the probability of a correct response is 0.05
0.05+0.20 = 0.20, which is equal

to (Xk = 1, A1 = 0, A1 = 0)/[(Xk = 0, A1 = 0, A1 = 0) + (Xk = 1, A1 = 0, A1 = 0)].
Furthermore, if the attributes were observed quantities, this would represent a
contingency table, where one could use the log-linear model as a diagnostic model
that predicts the probability of any combination of Xk, A1, and A2 (Henson et al.,
2009).

In this setting, the log-linear model would be used to model the joint distribution
of Xk, A1, and A2 (i.e., Table 8.1) for each k. Using the example item in Table 8.1, this
log-linear model would include main effects for each variable (λXK , λA1 , and λA2 ,
respectively), in addition to all 2-way interactions (λXKA1, λXkA2 , and λA1A2 ) and a
three way interaction (λXkA1A2 ). For a more thorough description of the log-linear
model see Agresti (2003). Of particular importance are effects that only describe
the attributes. For example, the main effect λA1 is related to a shift or change in the
joint distribution when considering A1 = 1 versus the reference category A1 = 0,
whereas the value λA1A2 describes the shift of joint probability above and beyond
what would be expected based on the marginal when both A1 = 1 and A2 = 1.
Finally, in this example, the three-way interaction expresses the fact that when
computing the joint probability there is an effect for the specific combination of
Xk = 1, A1 = 1, and A2 = 1 that is above and beyond what could be exampled by
the marginal and two-way interactions. This specific parameterization assumes that
non-mastery represents a reference category for each attribute.

Although the log-linear model could be used to predict the joint probability,
P(Xk, A1, A2), in diagnostic models, the focus is not typically on this joint distri-
bution, but instead it is on the conditional distribution of the item given the attribute
profile. Furthermore, because it is assumed that the Xk are dichotomous 0/1 items
(i.e., right/wrong scoring), the conditional distribution can be specified in terms
of the log-odds of the probability that Xk = 1. Thus, the Log-Linear Model for
Cognitive Diagnosis Models (LCDM; Henson et al., 2009) re-expresses the log-
linear model in terms of the log-odds of correctly responding (Agresti, 2003).
Note that in doing this, all effects with respect to Xk are not included because the
conditional distribution of the item is modeled as the log-odds of Xk. Thus, in this
example, the LCDM is defined as

ln

(
P (Xk = 1|An)
P (Xk = 0|An)

)
= λ0 + λA1 + λA2 + λA1A2 . (8.1)

Here, the value λ0 represents the log-odds of a correct response for the reference
category, which are test takers who have not mastered either of the attributes (i.e.,
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A1 = 0 and A2 = 0). The main effects, λA1 and λA2 , represent the marginal change
in the log-odds when that specific attribute is mastered. Finally, the interaction
term, λA1A2 represents the additional change in the log-odds when both of the
attributes have been mastered. As described in Henson et al. (2009) and in more
detail in Rupp, Templin, and Henson (2010), the model parameters are subject
to monotonicity constraints that specify that the probability of correct response
increases monotonically with the number of attributes mastered. Without such
constraints, the LCDM is incomplete as the specification of constraints aids in
estimation and attribute interpretation. In addition to the typical assumptions of a
log-linear model, conditional independence of the item responses is assumed given
an examinees attribute mastery profile.

By defining the log-odds of a correct response in this way, the LCDM is directly
related to traditional multidimensional models that assume continuous traits. In
addition, the LCDM is related to two other models that were defined previously
in the literature, the Compensatory Reparameterized Unified Model (Compensatory
RUM; Hartz, 2001) and the General Diagnostic Model (GDM; von Davier, 2008).
Although both the Compensatory RUM and the GDM where defined from different
perspectives, both where expressed as linear models with a logit link for the
probability of a correct response (the GDM also models polytomous responses and
polytomous attributes). Both the Compensatory RUM and the GDM had a primary
focus on the main effects. However, given the general definition of the GDM,
it can be shown that the LCDM is a special case of the GDM that emphasizes
the interactions. Specifically, the GDM defines the probability for a dichotomous
response as

P (Xnk = 1|An) = eλ
T h(An,qk)

1+ eλT h(An,qk)
(8.2)

where the LCDM specifically defines the value

λT h (An, qk) = λ0 +
D∑

d=1

λdAdqkd +
D−1∑

i=1

D∑

j=i+1

λAiAj AniAnjqkiqkj . . . (8.3)

Thus, the LCDM defines the log-odds as a linear function that includes all attribute
main effects and all possible interactions. Often, the model is expressed as in Eq.
8.2, as the probability of a correct response as opposed to modeling the log-odds. In
addition, for those attributes that are not measured by the item, qkd = 0 and therefore
those effects drop out and are not estimated.

The presentation of the LCDM in this chapter demonstrates the relationship
between diagnostic models and the log-linear model. In addition, because the
relationship of the log-linear model to the logistic model, we ultimately express
the LCDM as a generalized linear model where a linear relationship between the
attributes and their potential interactions and the log-odds of a correct response is
defined. Alternative parameterizations were later explored and named the GDINA



8 Loglinear Cognitive Diagnostic Model (LCDM) 175

by de la Tore (2011) by modeling different links of the probability of a correct
response as opposed to the log-odds (e.g., the identity link or the log link).
The general fit of the GDINA should be identical to the LCDM although the
interpretation of the parameters is different depending on the link used. That said,
the interpretation will be the same when the log-odds link is used with the GDINA.

In defining the LCDM in this way, the LCDM is a general model that subsumes
many of the diagnostic models that have been discussed in the literature. However,
there may be concerns related to the number of parameters that would need to
be estimated. For example, if an item measured four attributes, the LCDM would
define the probability of a correct response as a function of 16 parameters, which
correspond to an intercept, 4 main effects (one for each attribute), 6 two-way
interactions, 4 three-way interactions, and a four-way interaction. As a result, an
approach similar to what is used in an ANOVA or other linear models may be
applied where it is desirable to reduce the model by eliminating the higher-order
interactions. Note that reducing the higher order interactions naturally moves the
LCDM toward a compensatory model, which may be reasonable. However it is also
possible to reduce the model by eliminating lower order effect or to place constraints
on the model such that it is equivalent to many of the models defined in the literature.
Submodels of the LCDM will be discussed later in this chapter.

8.2 LCDM Estimation

In the original LCDM paper, Henson et al. (2009) estimated the LCDM through
use of a Metropolis-Hastings within Gibbs MCMC algorithm. As outlined in
the paper, uniform priors for all item parameters were assumed and constraints
of monotonicity were defined. In addition, a hierarchical Bayes approach was
described such that the attribute space was defined to be the result of a dichotomized
multivariate normal distribution and thus a “cut point” was estimated for each
attribute representing the portion of masters for each attribute. In addition, the
correlation matrix, which represented the tetrachoric correlation between attributes
was estimated using a common factor model. However, a number of possible
methods could be used to model the attribute space as described by Rupp et al.
(2010).

Shortly thereafter, marginal maximum likelihood algorithms were also used for
the LCDM, starting in Mplus, which is described in Chap. 28 (see also Rupp et al.,
2010; Templin & Hoffman, 2013), and subsequently in several R packages. It should
also be noted that because the LCDM is a special case of the GDM and because
the GDINA builds on the concepts of the LCDM, software that fits both the GDM
and GDINA could also be used to estimate the LCDM. The specific estimation
of the GDM and GDINA are discussed in the Chaps. 6 and 7 of this handbook.
Regardless of the type of estimation approach, a primary consideration of any
algorithm is the inclusion of the LCDM monotonicity constraints. Without such
constraints, the LCDM becomes a very general latent class model, and is subject to

http://dx.doi.org/10.1007/978-3-030-05584-4_28
http://dx.doi.org/10.1007/978-3-030-05584-4_6
http://dx.doi.org/10.1007/978-3-030-05584-4_7
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optimality issues prevalent in latent class models, primarily a multi-mode likelihood
surface and nominally-defined classes that may switch meaning during the analysis.
Both of which are demonstrated to occur when using estimation procedures without
constraints (for example see Lao, 2016). At the time of this writing, two common
packages that allow the estimation of the LDCM, the CDM package in R (George,
Robitzch, Kiefer, Gross, & Uenlue, 2016) and flexMIRT (Cai, 2017) do not impose
constraints and therefore may suffer from inaccurate results. The user should be
aware of this potential limitation in that results in higher dimensional may be
difficult to interpret, which would be true even if alternative software packages are
used. In addition to the monotonicity constraints it is possible that very complex
Q-matrices may result in a non-identified solution. The identifiability conditions of
diagnostic models are discussed to some extent in Chap. 16 of the volume.

The other big consideration that has largely driven the choice of an estimation
framework is estimation time. Marginal maximum likelihood algorithms often see
algorithm completion times that increase exponentially as the number of attributes
in an analysis increases linearly. Most MCMC algorithms have completion times
that increase linearly in the number of attributes. That said, most Q-matrices with
five or fewer attributes tend to be faster using MML whereas MCMC is faster for
larger Q-matrices.

8.3 Evaluation of Model Fit

The evaluation of model fit for the LCDM is not generally different than the
evaluation of model fit for any other latent variable model, particularly for models
for categorical data. Two broad classes of model fit exist: (1) absolute fit – where
a model is compared against properties of the data used for estimation and (2)
relative fit – where competing models are compared against each other. In general,
for estimated models to be considered as candidates for use, each must achieve
a reasonable level of absolute fit prior to being compared for relative fit. Many
methods for model fit have been developed, stemming from multiple disciplines
including factor analysis/structural equation modeling, item response theory, and
computer science, including machine learning. As such, the treatment given in this
chapter is appropriately incomplete. Here, we focus on several methods for absolute
and relative fit that have been used in empirical research with the LCDM. We further
restrict our conversation to cases where the LCDM is used with binary items (i.e.,
scored dichotomously with two values: 0 and 1). For more information on broader
methods of model fit, we refer the reader to the model fit chapter of Rupp et al.
(2010) for a broader set of references.

http://dx.doi.org/10.1007/978-3-030-05584-4_16
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8.3.1 Absolute Fit

Absolute fit methods involve a comparison of estimated model predictions with that
of the data set used in the estimation process. The most general method for absolute
model fit is the comparison of the distribution of observed item response patterns in
the data with the distribution expected by the estimated LCDM. With k = 1, . . . , K
binary items, a total of 2K response patterns are possible. The model-based expected
frequency is given by the LCDM likelihood function:

P (X = x) =
C∑

c=1

ηe

K∏

k=1

π
xk
kc (1− πkc)1−xk . (8.4)

Here, the summation is across the c = 1, . . . , C attribute mastery profiles (latent
classes), marginalizing the conditional item response likelihood function (provided
by the product term, which is in place due to the assumption of conditional
independence of items given attribute profile). The ηc parameter provides the
proportion of people with attribute profile c from the structural model. The πkc

parameter is the LCDM item response function for item k for a person with attribute
profile c. The model-based expected probability can be found for each of the 2I

response patterns, leading to the expected number of examinees with that response
pattern when multiplied by the number of people in the sample. From here, a
Pearson or likelihood χ2 value can be obtained through customary methods of
comparing expected versus observed responses. The degrees of freedom for the test
statistic is given by the number of response profiles minus the number of model
parameters minus one. If the test statistic is significant (at a tolerable level of Type-
I error), then the expected distribution of the data does not match the observed
distribution of the data, which indicates the model does not fit absolutely. One
concern of such a test is that, in a reasonably large sample size, the power may
be too high and one would determine the model does not fit even when the model
does an reasonable job of describing the data. Because these models are sometimes
estimated using Bayesian approaches, it might also be reasonable to use posterior
predictive checks, which are not the focus of this chapter.

In principle, the global absolute fit test using response patterns is ideal; however,
in practice, few situations exist where the test can be used. The reason the test is
limited comes from the use of the χ2 test, which is invalid when there are response
patterns with zero observed examinees present. As the number of items increases,
the number of possible response patterns increases exponentially, and with that
exponential increase comes an increasingly high chance of observing many response
patterns with zero examinees, particularly for tests with more than eight or nine
items (with a total of 256 and 512 response patterns, respectively). In such situations,
limited information goodness-of-fit measures are available for use (e.g., Maydeu-
Olivares & Joe, 2005). Limited information fit measures examine absolute model fit
to contingency tables with smaller sets of items (such as all item pairs), which are
much more likely to have non-zero counts of examinees observed. The measures
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also create comparisons where if a test statistic is significant, the model is said to
not fit the data. The downside of these measures is that if a model fit measure is
not significant, leading one to believe a model fits the data, then it is still possible
for the model to not fit the data absolutely if a fit to a higher-level table (e.g., three-
way) is poor. Such measures are increasingly available for psychometric models
with categorical data and exist in software such as the mirt package in R (Chalmers,
2012) and flexMIRT (Cai, 2017), the latter of which allows for such measures to be
calculated with the LCDM.

Although absolute fit measures indicate model fit with an overall test across
all items, more localized versions of fit measures are available and are useful in
considering how to modify an ill-fitting model. One easily attainable measure of
localized model fit is the comparison of expected and observed counts of examinees

for pairs of items. Each pair of items (across the

(
K

2

)
possible combinations) are

the atomic portions that together constitute the limited-information goodness-of-fit
to two-way tables, but can be used individually to investigate why a model is not
fitting. Such tables are obtainable in Mplus (Muthén & Muthén, 2017) using the
TECH10 option and in the CDM package in R (George et al., 2016; although at the
time of writing this chapter, the latter has suspect estimation results due to a lack of
monotonicity constraints). If an item consistently shows up in mis-fitting pairs, that
item may not be modeled correctly (missing Q-matrix entries or columns) or it may
be a poorly worded or understood item.

8.3.2 Relative Fit

Relative fit measures for the LCDM also follow relative fit measures used in
conventional psychometric models. Relative model fit measures compare the model
fit of two or more candidate models, often contrasting the quality of fit of a model
with the number of parameters in the model. It is worth reiterating, however,
some conditions necessary for relative model fit. First, all candidate models must
approximately fit the data based on some standard (a standard that seems to be
rarely applied in practice). Second, the candidate models must also be estimated
using the exact same data (the same examinees taking the same items). Third, if
one model is nested within another (meaning the model with fewer parameters is
achieved through a set of parameter constraints placed on the model with more
parameters), then the model with fewer parameters can never achieve absolute fit
better than the model with more parameters and at best can only fit as well as the
model with more parameters (in which case the model with fewer parameters is
more parsimonious). Should these conditions be satisfied, then model comparisons
using relative model fit measures can be conducted.

For models estimated using marginal maximum likelihood, relative fit measures
often involve likelihood ratio tests (for pairs of models where one is nested within
another) and, for non-nested models, the calculation and comparison of information
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criteria such as (but not limited to) the Akaike and Bayesian information criteria
(AIC and BIC, respectively). Examples of reduced nested models are specifically
discussed in the next section. Thus, it will be shown that popular models such as
the DINA are a nested model of the LCDM and so a likelihood ration test could be
used to compare these two models. The likelihood ratio tests provide a p-value that,
when below a pre-specified level of Type-I error, indicates that the model with fewer
parameters does not fit as well as the model with more parameters, or that the model
with more parameters should be chosen. For information criteria, the selection is
typically done by choosing the model with the lowest value of a given criterion,
although what happens when different models are selected when different criteria
are used is subject to debate. In models estimated through Bayesian methods, Bayes
Factors may be able to be constructed and Bayesian versions of information criteria,
such as the Deviance Information Criterion (DIC) exist as well.

8.4 Submodels of the LCDM

The LCDM is among a few diagnostic models that are considered general models.
Diagnostic models define the probability of a correct response based on mastery
or non-mastery of a set attributes. Assume an exam is designed to measure for
attributes. If an item in that exam measures the first two attributes, then a diagnostic
model predicts the probability of a correct response for four different types of test
takers. The four different types of test takers are (i) a test taker who has mastered
both attributes, A = (1, 1, ∗ , ∗), (ii) a test taker who has mastered only the first,
but not the second, A = (1, 0, ∗ , ∗), (iii) a test taker who has mastered the second,
but not the first, A = (0, 1, ∗ , ∗), and (iv) a test taker who has not mastered either
attribute, A = (0, 0, ∗ , ∗). The “*” indicates that the mastery of that attribute does
not matter and thus could be either a master or a non-master. A saturated model
is a model that has as many parameters as the number of classes in the model,
which would be 24 = 16 in this example. Although not completely saturated, the
LCDM defines as many possible parameters estimated as there are unique attribute
patterns for each item, which is based on the attributes measured by each item. In
this example, the LCDM would have an intercept, two main effects, and a single
interaction. Although, the complexity of such a model can be a possible detriment
(e.g., it may require large sample sizes), the advantage of complex models is that
they provide a framework that can be used to discuss other models in the literature
in addition to defining specific concepts of diagnostic models. Specifically, the
LCDM can be used to define previous models in the literature and, in doing so,
a better understanding of how they are similar or different can be provided. For
example, the LCDM provides a more specific definition of what should be meant
by disjunctive, compensatory, and conjunctive. Note that these terms are not always
used consistently in the literature. First, an example of a compensatory model that
is similar to the traditional compensatory IRT model is discussed. Then examples of
disjunctive and conjunctive models are provided. It should also be noted that while
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the sub-models presented are fairly common in the literature, they are usually an
over simplification and, thus, the LCDM with possibility lower order interactions
would be more appropriate.

One of the most natural reductions of the LCDM is the compensatory RUM
(Hartz, 2001), which is also commonly discussed in the context of the GDM (von
Davier, 2008). Using the compensatory RUM the log-odds of the probability of a
correct response is defined as a function of an item specific intercept and a main
effect for each attribute measured by that item. Because no interactions are defined
for this model, the Compensatory RUM is the model most similar to a traditional
multidimensional IRT model. The Compensatory RUM is defined, such that

λT h (An, qk) = λ0 +
D∑

d=1

λdAdqkd (8.5)

where λ0 is related to the probability of a correct response for non-masters of all
measured attributes and each λd represents the change in the log-odds when a
specific attribute is mastered. Often the sum of a set of latent abilities is referred
to as a compensatory model because of the ability to compensate or “make up”
for what is lacked in one ability by having even more of another ability. Although
the compensatory RUM does have a summation of effects, the idea of making-up
even more for an attribute is complicated by the fact that often attributes are only
dichotomous. As will be discussed later in this chapter, using the LCDM a more
consistent definition of what is meant to be compensatory model will be provided.

Although the Compensatory RUM has been provided as an example of a
compensatory model in which an examinee can “make up” for what is lacked in one
attribute by mastering another, the best example of a fully compensatory model is
the Deterministic Input Noisy “Or” gate model (DINO; Templin & Henson, 2006),
which is also referred to as a disjunctive model. For any given item, the DINO
model divides test takers in to two different groups. The first group represents those
test takers who have not mastered any of the measured attributes by that item. The
second group has mastered at least one of the attributes measured by that item.
The DINO model then defines the probability of getting the item correct for each
of the two groups. Specifically, the probability of a correct response for the group
that has not mastered any of the measured attributes is equal to the probability that
they “guess” the correct answer, which is indicated by the parameter gk. Whereas
the probability of a correct response for the group that has mastered at least one
attribute is equal to one minus the probability that an examinee “slips” up, sk, even
though he or she should have correctly responded to the item.

Because of how the two groups are defined, an examinee can make up for
lacking a given attribute by having mastered another attribute and thus the DINO
does provide the best example of compensation for diagnostic models. That is, an
examinee must only master one of the measured attributes to be considered a master
for that item and, as a result, have a high probability of correctly responding to the
item. It is also true that the DINO does not distinguish as to which attributes have
been mastered (i.e., all attributes have equal weights).
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Table 8.2 The probabilities defined using the DINO and LCDM parameterizations

Attribute Profile DINO LCDM

A = {0, 0} P(Xnk = 1|An) = gk P (Xnk = 1|An) = eλ0

1+eλ0

A = {1, 0} P(Xnk = 1|An) = 1 − sk P (Xnk = 1|An) = eλ0+λA
1+eλ0+λA

A = {0, 1} P(Xnk = 1|An) = 1 − sk P (Xnk = 1|An) = eλ0+λA
1+eλ0+λA

A = {1, 1} P(Xnk = 1|An) = 1 − sk P (Xnk = 1|An) = eλ0+λA
1+eλ0+λA

The LCDM can model the DINO by imposing a set of constraints of the estimated
weights. For example, if an item measured only two attributes A1 and A2 then the
LCDM would be defined using eq. (8.2) where

λT h (An, qk) = λ0 + λAA1 + λAA2 + (−1) λAA1A2 (8.6)

Notice that Eq. 8.6 defines all main effects as being equal to a single value λA.
Furthermore, the interaction is defined as the negative of any of the main effects
(all main effects are equal). Table 8.2 provides the probabilities for all possible
combinations of mastery for these two attributes.

Note in Table 8.2 that ultimately both models, the DINO and the LCDM, use
only two parameters. As will be emphasized later, disjunctive models will have
negative two-way interactions, which is in contrast to the compensatory RUM where
all interactions were equal to zero.

The last submodel that will be discussed is the Deterministic Input; Noisy “And”
gate model (DINA; Junker & Sijtsma, 2001). This model is commonly referred to as
a non-compensatory or conjunctive model because a test taker cannot make up for
lacking an attribute by having mastered another attribute. Like the DINO, the DINA
model divides people in two groups for each item. However, the DINA assumes that
test takers who have not mastered at least one of the measured attributes will be
in a group. Whereas test takers who have mastered all measured attributes will be
in another group. Given the two groups, like the DINO, a slip and guess parameter
are used to define the probability of a correct response. Where the profile mastering
all measured attributes by that item has a probability of a correct response equal
to one minus the probability of slipping and all other profiles (those who lack
at least one of the measured attributes) have a probability of a correct response
equal to the probability of guessing. To model the DINA using the LCDM all
main effects and lower order interaction terms must be fixed to zero. Thus, only
the intercept and the highest order interaction are estimated. Furthermore, that
interaction must be positive. Table 8.3 provides the probability of a correct response
for the same theoretical item, which measures only two attributes) using both the
DINA parameterization and the LCDM.
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Table 8.3 The probabilities defined using the DINA and LCDM parameterizations

Attribute profile DINA LCDM

A = {0, 0} P(Xnk = 1|An) = gk P (Xnk = 1|An) = eλ0

1+eλ0

A = {1, 0} P(Xnk = 1|An) = gk P (Xnk = 1|An) = eλ0

1+eλ0

A = {0, 1} P(Xnk = 1|An) = gk P (Xnk = 1|An) = eλ0

1+eλ0

A = {1, 1} P(Xnk = 1|An) = 1 − sk P (Xnk = 1|An) = e
λ0+λA1A2

1+eλ0+λA1A2

Notice that again, when constrained, the LCDM has as many estimated param-
eters as the DINA. In addition, as will be discussed next, because the interaction is
positive this will be referred to as a conjunctive model.

8.4.1 Disjunctive, Compensatory, and Conjunctive Models

The LCDM provides a flexible framework such that, when fully estimated, the
specific nature of the relationship between the attributes and the probability of a
correct response does not have to be defined a priori. Prior to the LCDM, researchers
would usually select the model and thus assume the relationship between the
attributes and the response. For example, a researcher may select the DINA
(assuming a conjunctive model) or the DINO (assuming a disjunctive model). Using
the LCDM one can determine the nature of the relationship between the attributes
and a correct response based on the interaction. Furthermore, it is possible that the
estimated item parameters can be reduced or constrained to less complex models.
There may even be instances where the relatively extreme models such as the DINO
or DINA or any other sub-model are appropriate. For a more complete description
see Henson et al. (2009).

Given the specific parameterization of the LCDM it is possible to provide a more
complete definition of what is meant when terms such as compensatory, disjunctive
or conjunctive are used. The following discussion will be given in the context of an
item that measures only two attributes, however these concepts can be extended to
items measuring more than two attributes.

For a more complete definition what is meant by disjunctive, compensatory, and
conjunctive using the LCDM, one must focus on how the LCDM is reduced to
fit the sub-models discussed in the chapter, which represent extreme examples of
disjunctive and conjunctive models. Table 8.4 provides a summary of each of the
three models discussed previously, the type of model, and the needed constraints for
the LCDM to fit these models.

Although only three specific examples are provided, in many ways the distinction
of disjunctive, compensatory, and conjunctive models can be thought of more along
a continuum. Specifically, the DINO can be thought of as the “most” disjunctive
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Table 8.4 Description of the Models, Type of relationship between attributes and response and
the necessary constraints for the LCDM

Model Type LCDM constraints

DINO Disjunctive Main effects are estimated
Negative interaction

Compensatory RUM Compensatory Main effects are estimated and must be positive
No interactions

DINA Conjunctive Main effects are fixed to 0
Only the highest order interaction is estimated
and must be positive

model in which the main effects are large and positive and the interaction is as large
as the main effects and negative. A model becomes less disjunctive as the interaction
becomes smaller in magnitude, but is still negative, and the main effects become
slightly smaller. Models should be considered disjunctive until the interaction term
becomes zero. At that point, a model with no interaction (the weight associated
with the interaction term is equal to zero) and smaller positive main effects should
be considered a compensatory model. Finally, as the interaction becomes positive
and the main effects continue to approach zero the model should be considered
conjunctive. Notice that this continuum ends when the interaction term is large and
positive and all main effects are zero, which results in the DINA model.

To further describe the continuum of models ranging from disjunctive to
conjunctive the two-attribute example will be expanded. Using two attributes, the
log-odds of the probability of a correct response can be written out as is shown in
Eq. 8.7,

ln

(
P (Xk = 1|An)
P (Xk = 0|An)

)
= λ0 + λA1A1 + λA2A2 + λA1A2A1A2. (8.7)

In addition, Eq. 8.7 can be rewritten to focus on the effect of the first attribute, A1,

ln

(
P (Xk = 1|An)
P (Xk = 0|An)

)
= λ0 +

(
λA1 + λA1A2A2

)
A1 + λA2A2. (8.8)

Equation 8.8 shows that the effect of a test taker moving from non-mastery of
Attribute 1 (A1 = 0) to mastery of Attribute 1 (i.e., A1 = 1) is equal to λA1 +
λA1A2A2. Note that this effect could also be described as the difference in the
log-odds of the probability of a correct response when comparing masters to non-
masters of Attribute 1. This effect depends on the main effect of Attribute 1, which
is always nonnegative and on the interaction. The dependency on the interaction
term means that the actual effect of becoming a master for Attribute 1 also depends
on whether Attribute 2 has or has not been mastered. Although this concept can
become more complex when an item measures more than two attributes, the point
can be made without the loss of generality using only two.

Recall that in Table 8.3 this interaction is equal to a large negative number
for the DINO model (a disjunctive model), zero for the compensatory RUM (a
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compensatory model), and a larger positive value for the DINA (a conjunctive
model). Using these three models as examples along the continuum of possible
models, a general more accurate definition of disjunctive, compensatory, and
conjunctive models can be provided.

The DINO model as a disjunctive model is defined in such a way that the two-
way interaction is negative and equal to the negative of all main effects. Thus, the
effect of becoming a master of Attribute 1 for a test taker is equal to λA1 − λA1A2.
Because the value A2 can only be 0 or 1, this change or difference is either 0, which
is when A2 = 1 or equal to λA1 when A2 = 0. Thus, in the DINO model, the effect
of mastering Attribute 1 is largest when A2 has not been mastered.

The effect of becoming a master of Attribute 1 when assuming the compensatory
RUM is slightly different. Specifically, all interactions of the LCDM are equal to
zero when modeling the compensatory RUM. Thus, the effect of mastering Attribute
1 is equal to λA1 + (0)A2. Because A2 is always multiplied by 0 (the interaction),
this effect is always the same value. When using a compensatory RUM the effect
of becoming a master is always equal to the main effect and does not depend on
whether any other attributes have been mastered.

Finally, the DINA model, when specified by the LCDM has main effects equal
to zero and the highest order interaction is large and positive. In this example,
using only 2 attributes the effect of a test taker mastering Attribute 1 is equal to
(0) + λA1A2A2. Again, because A2 is either equal to 0 or 1, the effect of mastering
Attribute 1 is either equal to 0 (when A2 = 0) or equal to a large positive value when
A2 = 1. Thus, the effect of mastering Attribute 1 is only nonzero when all other
measured attributes have been mastered.

The LCDM allows for a direct comparison between disjunctive, compensatory,
and conjunctive models based on the estimation of the interaction terms. As opposed
to using “loose” terminology that describes whether an individual can make up
for what is lacked in one attribute based on mastery of another attribute, which
is particularly difficult for dichotomous attributes. Because of the interaction, one
can see that in disjunctive models the effect of mastering a given attribute is
maximized only when all other attributes measured by that item have not be
mastered. This effect is smaller as additional attributes measured by that item have
been mastered. In contrast, when considering conjunctive models, the effect of
mastering an attribute is maximized when all other attributes measured by that item
have been mastered. As these attributes are not mastered, the effect of mastering a
given attribute are reduced. Finally, in a compensatory model the effect of mastering
a given attribute is constant, regardless of mastery or non-mastery of all other
attributes.

8.5 Summary

In this chapter, the general motivation of the LCDM was discussed to provide direct
ties to basic concepts of linear models and more specifically log-linear models and
the use of interactions. Then the LCDM was specifically defined and available
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methods of estimation were discussed. Given the LCDM and its estimation, a
summary of methods used to measure data fit, which could also be used for model
reduction where provided. Finally, using the LCDM many models that have been
previously defined in the literature were discussed as a tool to present a more
succinct definition of what is meant by disjunctive, compensatory, and conjunctive
models.
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Chapter 9
Diagnostic Modeling of Skill Hierarchies
and Cognitive Processes with MLTM-D

Susan E. Embretson

Abstract This chapter formally describes the multicomponent latent trait model
for diagnosis (MLTM-D; Embretson S.E., Yang X, Psychometrika 78:14–36, 2013)
and then provides examples of applications to diagnose broad and narrow skills, as
well as measure processing complexity and attainment. MLTM-D can be applied
to diagnose either skill mastery or cognitive processing capabilities of examinees.
MLTM-D is readily applicable to diagnose hierarchically-structured skills or to
assess cognitive processes with postulated sources of complexity. That is, MLTM-D
is a multidimensional conjunctive model for item responses that are impacted by
varying underlying components with specifiable sources of complexity. MLTM-D
can be applied to assess both processing competencies of examinees and the impact
of the postulated features on process difficulty.

9.1 Introduction

Successful problem solving on complex tests, such as mathematical or reading
achievement tests, depends not only on both broad and narrow skills, but also on the
cognitive processes that are involved in item solving. The multicomponent latent
trait model for diagnosis (MLTM-D; Embretson & Yang, 2013) can be applied
to diagnose either skill mastery or cognitive processing capabilities of examinees.
Several diagnostic models are applicable to complex combinations of skills or
attributes in items (e.g., Henson, Templin, & Willse, 2009; von Davier, 2005, 2008).
MLTM-D, however, is readily applicable to diagnose hierarchically-structured skills
or to assess cognitive processes with postulated sources of complexity. That is,
MLTM-D is a multidimensional conjunctive model for item responses that are
impacted by varying underlying components with specifiable sources of complexity.
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Fig. 9.1 Involvement of hierarchically organized skills in items

Blueprints for achievement tests often distinguish between two or more areas
or skill clusters. For example, the blueprints for mathematical achievement tests
typically distinguish between four or five general areas. The National Assessment
for Educational Progress (NAGB, 2017) has test content organized into five areas;
Number, Algebra, Geometry, Measurement and Data skills. Diagnosis of mastery
at this level can have implications for remedial classes available to examinees.
Consider the skill hierarchy shown on Fig. 9.1. The skill clusters represent three
domains of skills that differ in content. That is, students with non-mastery only
for Skill Cluster 2 would not need remedial instruction for Skill Cluster 1 or Skill
Cluster 3. Under each skill cluster are more narrowly defined skills. Diagnosis of
mastery at this level would have implications for specific remedial instructional
units. MLTM-D can provide diagnosis at both levels.

Cognitive processing requirements also can vary substantially between items on
global tests of aptitude or achievement. Consider the four cognitive processes that
are postulated to be involved in mathematics items (Mayer, 2003) as follows: (1)
Translation, encoding the meaning of the words and terms in the item, (2) Inte-
gration, bringing together the encoded aspects of the problem into equations to be
solved, (3) Solution Planning, developing a strategy to solve for the unknowns and
(4) Solution Execution, finding numerical solutions for the unknowns. Figure 9.2
shows mathematical problems that vary in process involvement, which are assumed
to be executed sequentially. Notice that although Item 1 and Item 2 involve all four
processes, the other items involve only one or two processes. For some multiple-
choice items, a fifth stage (Decision) could be added to the model (see Daniel &
Embretson, 2010; Embretson & Daniel, 2008).

Underlying the difficulty of the processes in specific items are postulated content
features that impact cognitive complexity. For example, Translation becomes more
difficult as vocabulary level, number of words and density of propositions increases
(Morrison & Embretson, 2014). MLTM-D can be applied to assess both processing
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Item3
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Item1

Item2

Integration

Solution Planning

Solution Execution

Item4
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Fig. 9.2 Involvement of processes in mathematical items

competencies of examinees and the impact of the postulated features on process
difficulty.

This chapter formally describes MLTM-D and then provides examples of
applications to diagnose broad and narrow skills, as well as measure processing
complexity and attainment.

9.2 Multicomponent Latent Trait Model for Diagnosis

In this section, MLTM-D will be presented as an explanatory conjunctive model
for diagnosis for specifiable attributes at two levels. The first section includes a
formulation of the basic model, followed by a consideration of the alternative
types of scores that are appropriate for explanatory modeling. Also, an extended
consideration of diagnosing component and attribute mastery will be presented.
The second section concerns model estimation and includes model identification,
estimation of item parameters and person trait levels. The third section concerns
assessment of fit. This section includes methods for assessing model and item fit,
as well as the assessment of score reliability and decision confidence for mastery
categorizations.
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9.2.1 Formulation of the Model

Basic Form of MLTM-D It is assumed that the test is complex, with items,
X = (X1, . . . , XK), varying in which latent components underlie the probability of a
correct response. The probability that examinee n solves item k, P(Xkn = 1), is given
by MLTM-D as the product of the component probabilities P(Xdkn = 1) for item k
as follows:

P (Xkn = 1) =
∏D

d=1
P(Xdkn = 1)cdk (9.1)

where cdkis a binary variable for the involvement of component d in item k. For
components in item k, where cdk = 0, then P(Xdkn = 1)cdk = 1. If cdk = 1 for only
one component d in item k, then P(Xkn = 1) = P(Xdkn = 1).

For all components in which cdk = 1, the component probabilities depend on
component ability, θdn, for person n and the difficulty of component d in item k as
follows:

P (Xdkn = 1) =
exp

(
θdn −

M∑
m=1

ηdmqdkm + ηd0

)

1+ exp

(
θdn −

M∑
m=1

ηdmqdkm + ηd0

) , (9.2)

where qdkm is the score for stimulus feature m in component d for item k, ηdm is
the weight of feature m on the difficulty of component d and ηd0 is the intercept for
component d.

Combining Eqs. 9.1 and 9.2 yields MLTM-D as follows:

P (Xkn = 1) =
∏D

d=1

⎡

⎢⎢⎢⎣

exp

(
θdn −

M∑
m=1

ηdmqdkm + ηd0

)

1+ exp

(
θdn −

M∑
m=1

ηdmqdkm + ηd0

)

⎤

⎥⎥⎥⎦

cdk

(9.3)

If qdkm is the involvement of a specific skill on item k in component d, as in a
skill hierarchy as shown on Fig. 9.1, then ηdm represents the relative difficulty of
skill m. If components in items represent cognitive processes, qdkm could be a score
to represent the cognitive complexity of the stimulus features for component d.

A special case of MLTM-D occurs if items are scored within components for
difficulty rather than for stimulus features or skills. That is, qdkm would consist of
K binary scores (0,1) to represent difficulty for item k on component d. In this case,
ηd0 = 0 and ηdm in Eqs. 9.2 and 9.3 would be item difficulties in a Rasch model for
component d. That is, if βdk is item difficulty, then

∑K
m=1ηdmqdkm = βdk . MLTM-

D would be written as follows:
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P (Xkn = 1) =
∏D

d=1

[
exp (θdn − βdk)

1+ exp (θdn − βdk)
]cdk

. (9.4)

If all items involve a single component, which is the same across items, then Eq. 9.4
becomes the unidimensional Rasch model.

Alternative Forms of MLTM-D MLTM-D is expressed in Eq. 9.4 as a logistic
multidimensional Rasch model with LLTM at the component level. For convenience
in specific applications, MLTM-D can be expressed in alternative forms. That is,
MLTM-D can be specified in the normal metric as follows:

P (Xkn = 1) =
∏D

d=1

⎡

⎢⎢⎢⎣

exp

(
1.7

(
θdn −

M∑
m=1

ηdmqdkm + ηd0

))

1+ exp

(
1.7

(
θdn−

M∑
m=1

ηdmqdkm+ηd0

))

⎤

⎥⎥⎥⎦

cdk

. (9.5)

Also, MLTM-D can be expressed as one parameter (1PL) logistic model, with
the constant item discrimination α,

P (Xkn = 1) =
∏D

d=1

⎡

⎢⎢⎢⎣

exp

(
αd

(
θdn −

M∑
m=1

ηdmqdkm + ηd0

))

1+ exp

(
αd

(
θdn −

M∑
m=1

ηdmqdkm + ηd0

))

⎤

⎥⎥⎥⎦

cdk

. (9.6)

Scoring Items for Components and Attributes For K items, a component structure
matrix, Ckxd, must be specified to determine the component d in item k, cdk.
Scoring for components should be conducted by two or more raters with relevant
expertise. The structure of Ckxd can vary substantially in different applications.
Table 9.1 shows four different sets of hypothetical component scores for a small
set of items. In Set 1, all items involve a single component which varies across
items. This specification results in four unidimensional models. In Set 2, component
involvement follows a simplex pattern in which progressively more components are
involved in the items. In Set 3, all items involve two of the three components, but
each component is not involved in some items. In Set 4, component involvement
varies from one to all three. Not all structures, however, are feasible. See the section
below on model identification.

Within components, item difficulty is modeled as a weighted combination of
attributes that are relevant for the component. The attribute structure matrix, Qdkxm,
contains scores on the Md attributes that impact component item difficulty for the K
items in which cdk = 1. The qdkm may consist of binary or continuous variables to
predict item difficulty. The Md variables scored for the attribute structure matrices
Qdkxm typically will differ between components. For MLTM-D hierarchical skill
structures, attributes defined within each component represent the narrow skills
within a broad skill cluster. For MLTM-D components that represent cognitive
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Table 9.1 Four different sets of scores for component involvement in items

Set 1 Set 2 Set 3 Set 4
Item c1k c2k c3k c1k c2k c3k c1k c2k c3k c1k c2k c3k

1 1 0 0 1 0 0 1 1 0 1 0 0
2 1 0 0 1 0 0 1 1 0 0 1 0
3 0 1 0 1 1 0 0 1 1 1 1 0
4 0 1 0 1 1 0 0 1 1 1 0 1
5 0 0 1 1 1 1 1 0 1 0 1 1
6 0 0 1 1 1 1 1 0 1 1 1 1

processes, the relevant stimulus features are derived from theory and/or empirical
results.

As noted above, if Qdkxm consists of M binary scores (i.e., dummy variables)
to represent each item involving the component, then the resulting weights are
item difficulties. As for the component score matrix, Ckxd, model identification at
the attribute level requires some limits on Qdkxm, which will be described in the
estimation section.

9.2.2 Diagnosing Component and Attribute Mastery

Diagnosis of persons’ mastery can be obtained at both the component and attribute
level. Since MLTM-D is formulated for binary items, classification for mastery can
be obtained by specifying a mastery probability, y. Applied at the component level,
a mastery cutline, γ d can be obtained and applied to each person’s component θdn

to define mastery versus non-mastery. That is, define Pd as the mean predicted
probability of solving component d on the items for θd. Then the cutline, γ d, for
mastery on component d is the value of θd for which Pd ≥ y. Of course, the value
of γ d, will vary substantially with the specified value of y, with the lower bound
often defined at y= .50. However, higher values are often specified by expert panels
in the substantive area for which diagnosis is obtained.

For diagnosis of specific attributes or skill mastery, a probability for mastery, y,
also must be specified. Since MLTM-D is a Rasch family model, common scale
measurement of specific attributes and component traits can be used to obtain
mastery diagnosis. If qdkm are binary variables to represent narrow skills within
component d, the predicted location for the skills, ηdmqdkm + ηd0, indicates the
position on the theta scale where P(Xdkn = 1) = .50. As for component mastery, if
the specified mastery probability for skills within a component is greater than .50,
then the skill location can be adjusted accordingly. That is, the location of skill m in
component d, τ dm, is determined by the θd for which the probability of solving skill
m equal y.

Figure 9.3 presents an alignment of Geometry skills from a Grade 6 mathematical
achievement test with τ dm located at P(Xdkn = 1) = .70. Fig. 9.3 also shows the
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Fig. 9.3 Geometry skill difficulty continuum and an examinee’s estimated trait distribution

plausible trait distribution from an examinee with the estimated component theta
as the mean and the standard error of measurement as the standard deviation (i.e.,
θd ∼ N(θdn, σθdn )).

Mastery for examinee n on skill m in component d is scored as 1 if θdn ≥ τ dm,
otherwise skill mastery is scored as 0. The number of skills mastered for component
d is the sum of the mastered skills. For the examinee on Fig. 9.3, θdn ≥ τ dm for
only one skill. It should be noted that interpretability of skill mastery depends on
the strength of prediction of item difficulty from variables that represent the narrow
skills involved.

9.3 Estimation

9.3.1 Model Identification

MLTM-D can be applied to tests in which component involvement varies across
items. For K items, a component structure matrix, Ckxd, must be specified to
determine the involvement of component d in item k. The number of item blocks
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involving the same combination of components is 2D − 1, as items that involve no
components is not a viable pattern. To identify the model, the matrix resulting by
pre-multiplying Ckxd by its transpose must result in a matrix with full rank, such
that Ckxd

’Ckxd = Sdxd. Similarly, requirements for model identification involve the
structure of, Qdkxm within each component. That is, pre-multiply by the transpose,

Qd’kxm′, should result in a matrix of full rank for each component d.
Further, as for other multidimensional latent trait models, model identification

requires fixing the scale of measurement. Assume for convenience that trait level
is distributed as multivariate normal (θ∼MVN(0,

∑
)). If MLTM-D is estimated

as traditional Rasch models at the component level, as in Eq. 9.3, then the mean
component trait levels must be fixed (e.g., θ = 0). If a 1PL variant of MLTM-D is
estimated, then the diagonal of � must be set to 1.

9.3.2 Estimating Item Parameters

The item parameters for MLTM-D may be estimated by a variety of methods,
including marginal maximum likelihood (MML), which will be reviewed in this
section. Let xn = {X1n, X2n, . . . , XKn} be the response pattern for examinee n,
on K items, k = 1,2, . . . , K. Then, the probability of the response pattern for the
component trait levels, θ = {θ1, θ2, . . . , θD}, may be given as follows:

P (xn|θ) =
K∏

k=1

Pkn
Xkn(1− Pkn)1−Xkn . (9.7)

Thus, the log likelihood for the observed data, X, on K items for N examinees is

lnL (X) =
N∑

n=1

lnP (xn) . (9.8)

For MML, the probability of a specific response pattern, xn, is expressed in terms
of the population distribution as follows:

P (xn) =
∫ ∞

−∞
. . .

∫ ∞

−∞
P (xn|θ) g (θ) dθ =

∫

θ

P (xn|θ) g (θ) dθ, (9.9)

where g(θ) is the probability density function of θ. Typically θ is assumed to be
distributed as MVN(0,�) and, for convenience, assume that � = I.

The log likelihood for X may be expressed as
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lnL(X) =
N∑

n=1

ln

[∫

θ

P (xn|θ) g (θ) dθ
]
. (9.10)

The expectation-maximization (EM; Bock & Aitkin, 1981) algorithm involves
expectations at various trait levels, θ, for the number of persons, Ñ , and for the
number of persons passing item k, τ̃k . For a particular response pattern, xn, these
expectations are given as follows:

Ñ =

⎡

⎢⎢⎢⎣

N∑
n=1
L (xn|θ)
P (xn)

⎤

⎥⎥⎥⎦ τ̃k =

⎡

⎢⎢⎢⎣

N∑
n=1
xknL (xn|θ)
P (xn)

⎤

⎥⎥⎥⎦ . (9.11)

To estimate item parameters, ηdm, for MLTM-D with MML, the derivative of the
log likelihood of the data may be expressed with the expectations as follows:

∂ lnL
∂ηdm

= ∫ θ

[
K∑
k=1

(
r̃k−ÑPkn
Pkn(1−Pkn)

∂Pkn
∂ηdm

)]
g (θ) dθ.

(9.12)

And, finally,

∂ lnL

∂ηdm

=
∫

θ

⎡

⎣
n∑

k=1

⎛

⎝ r̃k−ÑPkn
Pkn (1−Pkn)cdk

D∏

h=1,h �=d
P
ckh
knh (−qdkm) Pdkn (1− Pdkn)

⎞

⎠

⎤

⎦ g (θ) dθ,

(9.13)

where qdkm consists of K binary variables to define component item difficulty.
Integration for the D components can be implemented with Hermite-

Gaussian quadrature. For S quadrature points within each of the D components,
X = {Xq1, Xq2,�XqS}, the total number of quadrature points is SD. Each quadrature
point, Xq, has an associated weight W(Xq). The parameter r̃k•q1q2...qD represents
the number of examinees expected to respond positively to item k with trait vector
defined by a D-tuple of quadrature points. Similarly, Ñq1q2...qD is the expected
number of examinees in the sample with the D-tuple of quadrature points. The
integrals in Eq. 9.11 may be approximated by applying Hermite-Gauss quadrature
as follows:
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∂ lnL

∂ηdk
≈

Q∑

q1=1

Q∑

q2=1

. . .

Q∑

qD=1

⎡

⎣
K∑

k=1

(
r̃k•q1q2 ...qD − Ñq1q2 ...qM Pkn

Pkn
(
1− Pkn

) ∂Pkn

∂ηdk

)⎤

⎦W
(
Xq1

)
W
(
Xq2

)
. . .W

(
XqD

)
.

(9.14)

9.3.3 Person Estimation

Person estimates for component trait levels and associated standard errors can be
estimated by customary methods such as expected a posteriori (EAP) and maximum
a posteriori (MAP) as well as by Bayesian sampling methods (e.g., Markov-
chain Monte Carlo). For either EAP or MAP, normal priors are typically specified,
θ∼MVN(0,�). Multidimensional EAP, as implemented for MLTM-D, involves QD

quadrature points.

9.4 Assessing Fit of MLTM-D

9.4.1 Model and Item Fit

Comparisons based on the log likelihood of the data can be used to examine the fit of
MLTM-D. Nested models can be compared using likelihood ratio chi-square tests.
For example, the multicomponent nature of the data is examined by comparing the
log likelihood of MLTM-D with an appropriate unidimensional model as follows:

χ2 = (−2lnL1PL)− (−2lnLMLTM−D) , (9.15)

since the unidimensional 1PL model is a special case of MLTM-D (i.e., the 1PL
model is a single component model). Non-nested models can be compared with the
AIC index, where a lower AIC index indicates better model fit.

Another global index, the delta statistic (Embretson, 1997), involves comparing
the log likelihoods of alternative MLTM-D’s; (1) lnLnull, for a null model in which
items are modeled as equally difficult within components, (2) lnLsaturated, for the
saturated model in which items within a component have unique difficulty estimates
and (3) lnLrestricted, for a restricted model in which predictors of item difficulty
within a component are postulated (e.g., narrow skill categories). The index may
be written as follows:

� = √lnLnull − lnLrestricted/lnLnull − lnLsaturated . (9.16)

The magnitude of � is similar to a multiple correlation.
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At the item level, fit can be analyzed by comparing observed to expected
frequencies within groups of examinees with similar expected total scores on the
test. That is, examinees are categorized by their mean expected probabilities of item
solving on the test, P (Xkn = 1). The observed and expected frequencies for each
item can be compared by either likelihood ratio fit statistics or standardized residuals
(see Embretson, 2015 for further details).

9.4.2 Assessment of Person Reliability and Decision
Confidence

Component trait levels and their associated standard errors can be estimated by
customary methods, such as expected a posteriori (EAP) and maximum a posteriori
(MAP). As noted in du Toit (2003), a composite reliability estimate can be obtained
for a population. For EAP estimates, the empirical reliability on component d is
given as follows:

ρd = σ 2
θd/
(
σ 2
θd + σ 2

nd

)
, (9.17)

where σ 2
θd and σ 2

nd are the variance of θd and the mean error variance, respectively.
For MLTM-D estimates of person mastery, determined using the cutlines as

described above, IRT-based indices of decision confidence (e.g., Lewis & Sheehan,
1990; Rudner, 2005) are appropriate. Assume that the component d trait estimate
for person n, θnd , with associated error variance, σ 2

θdn
defines a plausible normal

distribution of component trait levels, θ∗nd ∼ N
(
θnd, σ

2
θdn

)
. The mastery cutline

for the component, γ d, as defined above, can be located on the estimated plausible
distribution of theta for each person. Decision accuracy depends on both distance
from the cutline and the standard error of measurement. That is, the proportion of
θ∗nd ≥ γd indicates decision accuracy for person n if θnd > γ d. However, if θnd < γ d,
the proportion of θ∗nd < γd indicates decision accuracy.

Diagnosing skills within components reliably also depends on the distribution of
plausible trait levels for each person. As explicated above, assessing skill mastery
depends on the location of skill m at defined mastery level, τ dm, on the component
latent trait continuum. If θnd > τ dm, then the proportion of the plausible distribution
of θ∗nd ≥ τdm is decision confidence. If θnd < τ dm, then the proportion of the
plausible distribution of θ∗nd < τdm is decision confidence.

A more complete formulation of decision accuracy for components and attributes
is presented in Embretson, Morrison and Jun (2015).
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9.5 Application

In this study, MLTM-D is applied to a year-end mathematical achievement test for
Grade 7 that is used for state accountability purposes. Thus, the test is high stakes
for assessing overall student competency estimates. MLTM-D is applied to item
responses to assess student mastery of both broad and narrow skills. The data were
also analyzed to assess students’ cognitive processing capabilities in solving the
mathematical items and compared between students with varying proficiency levels
and background variables.

9.5.1 Method

Tests The Grade 7 mathematics achievement test consisted of 71 items with
heterogeneous content to represent broad achievement. Item content was specified
by hierarchically organized skills, as shown on Fig. 9.1, with the specific skills
nested within four areas, Number, Algebra, Geometry and Data. The blueprint for
each area included specifications for several skills. For example, the Number area
contained 6 skills, ranging from “Understanding the Impact of Multiples of 10” to
“Multiplication and Division with Decimals”. Similar ranges of skills are specified
for the other three areas. The items were developed to represent the narrow skills
defined within the areas.

The standard for basic proficiency on the overall test was determined by expert
panels at two levels. This evaluation resulted in a test cutline of 54% (y = .54) of
items passed.

9.5.1.1 Examinees

A random sample of 5087 Grade 7 students was selected from the complete
operational data in the participating state. All tests were computer administered at
the end of the school year.

9.5.1.2 Item Scores

Items were scored to represent the components (i.e., skill clusters) and specific
skills for MLTM-D. These scores were included in the estimation of MLTM-D item
parameters as the C and Q matrices, respectively, as described above. Although the
items were written for a specific skill, some items involved more than one skill. A
panel, consisting of educators, a mathematician and an educational psychologist,
scored the items for involvement of multiple skills. The skill clusters for the
component C matrix were defined by the four areas in the blueprint (i.e., Number,
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Algebra, Geometry and Data) and the specific skills for the Q matrices by the
indicators listed within each area. While rater scores always included the intended
indicator for an item, several items were reliably scored as involving additional
indicators. If an item involved a specific skill within an area, it was scored as
involving the area. Rater reliabilities for skill involvement were sufficiently high
(the mean for Cohen’s alpha was .709). Items with different categorizations across
raters were resolved with panel discussion.

The 71 mathematical items were also scored for the involvement of Mayer’s
(2003) postulated cognitive processes by a panel with expertise in cognitive
psychology. It was found that three stages could be distinguished in the 71 items,
defined as follows: (1) Translation, interpreting words into mathematically relevant
terminology, (2) Integration, organizing the terms in the problem into equations and
(3) Solution Planning/Execution, finding solutions for the unknown quantities. The
item scores provided a Ckxd for the test to estimate individual differences in pro-
cessing capabilities. Both rater reliabilities (Cohen’s alpha = .690) and procedures
for discrepant categorization were similar to the skill panel. The items were also
scored for stimulus complexity variables that were postulated to impact the difficulty
of the cognitive components, based on prior research (Morrison & Embretson,
2014). These variables were as follows: (1) Translation included Number of Context
Words, Number of Symbols or Numbers, Undefined Mathematical Terms, (2)
Integration included Generate Equations, Translate Equations, Translate Diagrams
Visualization, Infer Patterns and (3) Solution Planning/Execution included Number
of Subgoals, Relative Definitions of Variables, Number of Procedures, Number of
Computations and Procedural Knowledge Level.

9.5.1.3 Mastery Status

Mastery status for the four skill clusters, Number, Algebra, Geometry and Data, was
determined by cutlines on θ as described above. In this analysis, the probability, y,
to establish the mastery cutlines, γ d, was the minimum proportion of items solved
for basic proficiency on the overall test (i.e., y = .54). Also, in some comparisons,
instructional proficiency is included (where y is specified as a traditional standard
of .70). Mastery of specific skills within areas for each examinee was obtained by
estimating skill location on the relevant components, in accordance with y, and then
aligning the skill locations with individual component competencies.

9.5.2 Results

9.5.2.1 Item Parameter Estimates

Item parameters for the 1PL variant of MLTM-D were estimated by MML. For all
models, it was assumed that θ∼MVN(0,�), with the diagonal of � set to 1.0.
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For skill cluster diagnosis, MLTM-D parameters for four components were
estimated to represent the skill clusters of Number, Algebra, Geometry and Data,
with component involvement based on the scored matrix, Ckxd. Three variants
of MLTM-D were estimated; a null model, a restricted model and a saturated
model. The saturated MLTM-D (−2lnL = 365,390, AIC = 365,574) had 94
parameters, with unique item difficulty estimates for each relevant component. For
comparison, a unidimensional 1PL model (−2lnL= 369,081, AIC= 369,225) with
72 parameters was estimated. The unidimensional model fit significantly worse than
the saturated MLTM-D (χ2 = 3691, df = 22, p < .001) and had a higher AIC index.
Thus, the multidimensionality of the data was supported.

The restricted model contained parameters to represent the narrow skills (i.e.,
indicators) within each component, Qdkxm. That is, qdkm are binary variables to
represent the narrow skill category m for item k on component d. The fit of
this restricted model (−2lnL = 386,978, AIC = 387,062) with 42 parameters
differed significantly from the saturated model (χ2 = 21,588, df = 52, p < .001),
indicating that the skill clusters do not fully account for item differences within
components. However, the strength of the relationship of skill clusters to item
difficulty was examined by further comparisons with the null model. That is, the
null model (−2lnL = 418,283, AIC = 418,311), with a single item difficulty
and item discrimination within each component, was estimated. The likelihood
ratio fit statistic of .769 obtained from in Eq. 9.16 above, which quantifies the
relative differences of the saturated and restricted model from the null model,
indicated strong alignment of the skills on the latent dimensions underlying the four
components.

Item fit was examined using the standardized residuals (SR) of expected versus
observed frequencies of item solving. A total of 14 score categories of examinees
with similar overall item solving probabilities were used to compute SR for each
item. Only two of the 71 items had standardized residual (SR) values that exceeded
expectation from SR N(0, 1).

MLTM-D item parameter estimates for the three cognitive processes were also
obtained by MML as described above. As for skills, three variants of MLTM-
D were estimated; a null model, a restricted model and a saturated model.
The saturated MLTM-D for cognitive processes, with unique item difficulty esti-
mates within each relevant component, had 111 parameters. The model overall fit
(−2lnL = 364,915, AIC = 365,319) differed significantly from the unidimensional
1PL model (χ2 = 4166, df = 39, p < .001) and had a lower AIC index. Thus,
as for the saturated MLTM-D for skills, the multicomponent nature of the data
also was supported for the cognitive process model. However, the AIC index for
the cognitive model was somewhat lower than for the saturated skill cluster model
(AICdiff = 255), indicating better overall fit.

Model comparisons of the null, restricted and saturated models indicated mod-
erately strong prediction of component item difficulty by the stimulus complexity
factors. The restricted model with 14 cognitive complexity predictors had 23
parameters and the model overall fit (−2lnL = 395,808, AIC = 395,854) differed
significantly from the saturated cognitive model (χ2 = 30,893, df = 88, p < .001)
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and had a higher AIC index. The null model (−2lnL = 417,830, AIC = 418,311)
had 9 parameters, a single item difficulty and item discrimination within each
component, plus three covariances of the theta estimates. The likelihood ratio fit
statistic, based on comparisons to the restricted and saturated model to the null
model, indicated moderately strong fit (� = .645).

9.5.3 Competency and Mastery of Broad and Narrow Skills

Component competency levels for persons were estimated by EAP, using normal
priors. Table 9.2 presents descriptive statistics on competency levels for the four
skill cluster components. It can be seen that empirical reliability (rtt) is moderately
strong for Number, Algebra, and Geometry, but somewhat weaker for Data. Basic
mastery was obtained for the four areas using the proficiency cutline of y = .540,
based on the state standards for proficiency on the test as a whole. Proportions
of examinees assessed for basic mastery ranged from .783 to .862. The decision
confidence indices (DCI) were high, ranging from .853 to .939, which indicates
a high degree of reliability for basic mastery assessments. A repeated measures
analysis of variance, with the Huyhn-Feldt correction for sphericity, indicated that
mastery proportions differed significantly between the four areas (F = 102.462,
p < .001). Relatively fewer students had proficiency in Number and Data than in
Algebra and Geometry. Further, the correlations between mastery categorizations
were moderate, ranging from .418 to .493.

Table 9.3 presents mastery pattern frequencies from two different cutlines; basic
proficiency (y = .54) and instructional proficiency (y = .70). These are the actual
cutlines as established by the department of education in the participating state for
this particular test. Although most students are classified as having basic proficiency
(i.e., 65.1%), the higher cutline for instructional proficiency classifies the majority of
students as having one or more non-mastered area. For both basic and instructional
proficiency, the two patterns with the highest frequencies are (1) non-mastery in
all four areas and (2) non-mastery in only Data. However, all 15 patterns of non-
mastery were observed.

Narrow skills were assessed based on skill alignment and the plausible distri-
butions of component competencies for each student, as described above. That is,
skills were aligned on a continuum within each component based on the estimated
parameters for the skill in the restricted MLTM-D. The aligned skills within each

Table 9.2 Descriptive
statistics on components and
mastery for skill clusters from
1PL variant of MLTM-D

Component trait level Component mastery
Mean SD rtt Mean SD DCI

Number −.000 .907 .767 .783 .412 .889
Algebra .189 .935 .802 .862 .345 .939
Geometry −.013 .941 .801 .848 .359 .912
Data −.001 .811 .654 .790 .407 .853
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Table 9.3 Mastery patterns based on basic proficiency and instructional proficiency cutlines

Pattern Basic Proficiency y = .54 Instructional y = .70
NAGD Frequency Percent Frequency Percent

0000 271 5.3 991 19.5
0001 71 1.4 120 2.4
0010 90 1.8 162 3.2
0011 63 1.2 77 1.5
0100 106 2.1 299 5.9
0101 83 1.6 130 2.6
0110 158 3.1 214 4.2
0111 263 5.2 269 5.3
1000 38 .7 70 1.4
1001 37 .7 37 .7
1010 52 1.0 61 1.2
1011 80 1.6 81 1.6
1100 59 1.2 125 2.5
1101 109 2.1 130 2.6
1110 294 5.8 435 8.6
1111 3313 65.1 1886 37.1
Total 5087 100.0 5087 100.0

Table 9.4 Number of skills mastered at two cutlines

Basic proficiency y = .54 Instructional y = .70
Total skills Mean SD Mean SD

Number 6 5.121 1.506 4.364 1.913
Algebra 7 6.090 1.742 5.398 2.135
Geometry 6 4.813 1.540 4.105 1.769
Data 6 4.461 1.737 3.077 1.917

component were compared to lower bound theta for each student, defined as the
point for which 85% of the student’s plausible distribution was above. Table 9.4
presents the number of skills that are mastered for each area. It can be seen that
the number of mastered skills varies both by area and by the proficiency cutlines.
It should be noted that students’ mastery in an area do not necessarily not imply
mastery of all skills within an area. The difficult skills may not be mastered by
students close to the cluster cutline.

9.5.4 Cognitive Processes

Table 9.5 presents descriptive statistics on the component process estimates for the
students. It can be seen that moderate to strong empirical reliability was found for
individual differences on the three processes.
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Table 9.5 Descriptive
statistics on cognitive process
competencies

Component trait level
Mean SD rtt

Translation .16 .758 .71
Integration .12 .843 .84
Solution .13 .923 .88

The relationship of individual differences on the component processes to student
variables was examined using a multivariate analysis of variance, using Roy’s
largest root. The background variables examined included Gender (Male, Female),
First Language (English, Spanish and Other), Race-ethnicity (White, Black and
Hispanic) and Proficiency Category (Warning, Approaches, Meets, Exceeds and
Exemplary). Significant overall effects were found for Gender (p < .001, η2 = .014),
First Language (p < .001, η2 = .038), Race (p < .001, η2 = .071) and Proficiency
Category (p < .001, η2 = .906), with varying effect sizes.

The repeated measures analysis of the three cognitive processes were conducted
using Huynh-Feldt’s correction. Significant interactions of Cognitive Processes
(Translation, Integration, Solution) were not observed with Race (p = .053,
η2 = .001) or with First Language (p < .716, η2 < .001). However, Cognitive
Processes did interact significantly with Gender (p = .005, η2 = .001), but with
a very small effect size, and with Proficiency Category (p < .001, η2 = .887),
which had a very large effect size. Figure 9.4 shows that Translation is relatively
higher than Integration and Solution within the lower three categories. In the highest
category, Translation is relatively lower than the other two categories.

9.5.5 Discussion

This application of MLTM-D to a mathematical achievement test provides an
example of the diverse findings that are available. Competency levels and mastery
for broad skills in four areas were examined. Individual differences in overall
competency levels were observed between the skill areas, and they were assessed
with moderately strong reliability. Further, the mastery assessments, obtained by
applying cutlines, had high levels of decision confidence. Also, distinct patterns of
mastery for the four areas were observed. These results are potentially important
for individualizing remedial instruction for the areas. For narrow skills, strong
alignment of skill difficulty on the component dimensions was observed. Thus,
individual skill mastery could be assessed with relatively strong levels of decision
confidence. These results provide further information that is relevant to individual-
izing instruction.

Individual differences in the cognitive processes that are involved in item solving
were also assessed with MLTM-D. Competency levels in the three assessed cogni-
tive processes differed significantly between students with different backgrounds.
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Fig. 9.4 Cognitive process means by proficiency category

These results suggest that instruction can be further individualized to focus on
relevant cognitive processes involved in item solving.

It should be noted that MLTM-D is applicable to tests with complex and
somewhat heterogeneous content with respect to required skills and cognitive
processes. MLTM-D would not be applicable to tests with narrow and homogeneous
content. Many items in the achievement test domain tend to be heterogeneous. For
mathematical achievement, currently items may be increasing in heterogeneity due
to increased emphasis on real world problems. In contrast, ability test items are
typically somewhat less heterogeneous than achievement test items as indicated by
higher internal consistency indices. However, heterogeneity in cognitive processing
could be designed in these items to allow differential diagnosis by models such as
MLTM-D.
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9.6 Summary

The purpose of this chapter was to provide an overview of the multicomponent
latent trait model for diagnosis (MLTM-D). Alternative variants of the model were
formulated, along with procedures for diagnosis. Estimation procedures and model
fit indices were also presented, with special emphasis on reliability for assessing
competency levels and mastery for both broad and narrow skills. Cognitive process
assessment was also described throughout the chapter. The application to a broad
test of mathematical achievement was presented to illustrate the full scope of
MLTM-D applications to broad skills, narrow skills and cognitive processes.
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Chapter 10
Explanatory Cognitive Diagnostic Models

Yoon Soo Park and Young-Sun Lee

Abstract Student- and school-level information from large-scale educational data
have been shown to explain trends in test taker performance and to inform factors
that can enhance the learning environment. This study presents methods to specify
and model predictive relationships of latent and observed explanatory variables
within a cognitive diagnostic model, referred to as the Explanatory Cognitive Diag-
nostic Model (ECDM) framework. Explanatory factors can be incorporated simul-
taneously as observed covariates or latent variables (estimated using item response
theory) that can explain patterns of attribute mastery. This chapter is divided into
two studies that demonstrate real-world application using large-scale international
testing data and simulation studies, which examine parameter recovery and classifi-
cation for varying sample sizes and number of attributes. Simultaneous estimation of
multiple observed and latent (using dichotomous and polytomous items as indicators
for the latent construct) predictors show consistency in attribute classification and
parameter recovery. Extensions of the ECDM framework are discussed.

10.1 Introduction of the Model

10.1.1 Background

Large-scale data collected from surveys and assessments often contain relational
information that can explain associations between educational or psychological
outcomes and background variables. Explanatory variables refer to either observed
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or latent variables that can be used as predictors to model relationships in cognitive
diagnostic models (CDMs). While explanatory approaches for CDMs have been
limited in the literature, explanatory models in item response theory (IRT) have
been used widely and include applications that incorporate both observed and latent
variables (De Boeck & Wilson, 2004; Fox & Glas, 2003). Prior studies within
the CDM framework have used explanatory variables in the form of covariates by
using a latent regression modeling approach (Dayton & Macready, 1988; Huang &
Bandeen-Roche, 2004; Mislevy et al., 1992; Park, Xing, & Lee, 2018). For example,
access to educational resources such as computer or calculator can enhance the
quality of learning, thereby increasing the mastery of knowledge and skills (Park,
Lawson, & Williams, 2012). In this manner, identifying variables collected from
students, schools, or types of learning environment such as access to educational
tools (e.g., calculator) or examining the impact of student’s psychological behavior
or attitude (e.g., affect or confidence in subject area) can serve to explain the per-
formance of students and also facilitate answering important substantive questions
that can yield better student outcomes in the form of attribute mastery (Park & Lee,
2014).

Traditionally, analyses of assessment data have focused on two areas: (1)
descriptive measurement, where the aim of the psychometric approach is to increase
the precision of examinee performance measuring an underlying construct, or (2)
explanatory models, which examine the association between item response data and
related factors (De Boeck & Wilson, 2004). This chapter focuses on the explanatory
tradition of psychometric models, targeting the relationship between test taker
performance, as modeled using CDMs and explanatory variables.

In Chap. 10, a generalized explanatory approach to analyze relational data for
CDMs is presented, following the framework used in Park et al. (2018). In the
explanatory CDM framework, both observed and latent variables are modeled
simultaneously – combining both structural and measurement components for
CDMs – following a structural equation model (SEM) approach for CDMs. In the
explanatory cognitive diagnostic model (ECDM) framework, observed and latent
predictors can be specified to explain (1) mastery of attributes, (2) item response
probabilities, or (3) higher-order latent trait of the CDM. When observed and
latent predictors are specified on attributes, one can study how the explanatory
variables affect attribute mastery. When they are specified on items, such predictors
can provide information on possible differential item functioning (DIF). Moreover,
when explanatory variables are specified on the higher-order latent trait, this can
be used to examine how the predictor affects the overall ability measured in
the assessment. The observed and latent variables can be either continuous or
discrete, where latent explanatory factors can be estimated using IRT. We use the
deterministic inputs noisy “and” gate (DINA; Junker & Sijtsma, 2001) model to
demonstrate the framework, which can be applied to other CDM families and
generalizations of DINA models (e.g., de la Torre, 2011; von Davier, 2008).

This chapter summarizes models presented in Park and Lee (2014) and in
Park et al. (2018), as the foundation to presenting the explanatory framework for

http://dx.doi.org/10.1007/978-3-030-05584-4_10
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CDMs. The focus of models and examples presented in this chapter are based on
explanatory factors affecting attribute classification.

10.1.2 Explanatory Cognitive Diagnostic Models (ECDM)

CDMs are semi-parametric models that specify the classification of examinees
into profiles of mastery that reflect fine-grained areas of skill (de la Torre, 2009;
Rupp, Templin, & Henson, 2010; von Davier, 2008). CDMs include a latent class
component that specifies skills as discrete latent variables with a parametric item
response function (DiBello, Roussos, & Stout, 2007). To date, various CDMs have
been developed and proposed depending on a variety of situations that range in the
types of constructs, responses, and dimensionality of the data. Attributes have been
modeled as latent classes (e.g., Haertel, 1989; Henson, Templin, & Willse, 2009)
and also polytomous levels of mastery (von Davier, 2008). More generalized forms
of CDMs include the log-linear cognitive diagnosis model (LCDM; Henson et al.,
2009), general diagnostic model (GDM; von Davier, 2008), and the generalized
DINA model (G-DINA; de la Torre, 2011).

The explanatory cognitive diagnostic model (ECDM) presented in this chapter
uses the reparameterized DINA (RDINA; DeCarlo, 2011) to specify the explanatory
factors. Prior studies have proposed alternative approaches to incorporating covari-
ates to CDMs including discrete forms and multiple-group extensions (von Davier,
Xu, & Carstensen, 2011; Xu & von Davier, 2008). Unobserved covariates can be
examined using mixtures of diagnostic models, as presented in von Davier (2007,
2008).

ECDMs are motivated from explanatory IRT models that include latent or
observed explanatory factors (see De Boeck & Wilson, 2004) and are extended
here for latent class models that subsume CDMs. In RDINA, the DINA model is
reparameterized using a logit transformation, where the probability of examinee i’s
response to item j (Yij) is modeled using item parameters fj and dj and binary latent
variable ηij. The parameter fj indicates the log odds of guessing (gj); the parameter dj

provides a measure of how well the item discriminates an examinee with or without
the mastery of required attribute; and the binary latent variable ηij indicates whether
the examinee has mastered all required attributes (αk) specified for the item in the
Q-matrix:

logit p
(
Yij = 1|ηij

) = fj + djηij (10.1)

Covariate Approach The simplest case of ECDM is a covariate model (Park &
Lee, 2014). From Eq. (10.1), when an observed covariate, Z, is introduced, the
examinee’s response probability conditioned on the covariate can be represented
into two parts. As presented in Eq. (10.2), the response probability conditioning on
the covariate can be partitioned into the response probabilities, p(Yij | α, Z), or on
the attribute probability, p(α | Z) (see DeCarlo, 2011; Park & Lee, 2014). As such,
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the equation for the observed variable affecting the response probability is shown in
Eq. (10.3), and Eq. (10.4) represents the observed variable affecting the attributes
(assuming independence):

p
(
Yi1,Yi2, . . . ,YiJ |Z

) =
∑

α
p
(
α|Z)

∏
j
p
(
Yij|α,Z

)
(10.2)

logit p
(
Yij |α,Z

) = fj + djηij + ljZ (10.3)

logit p
(
αk|Z, ξ

)
= bk + hkZ (10.4)

When the covariate Z is conditioned on the distribution of an attribute, parameters
for item j are adjusted by lj, which represents the magnitude for which the guessing
and slip rates shift (see Eq. (10.3)). In the DINA model, the guessing parameter
indicates the probability that an examinee gets an answer correct without having
mastered all required attributes; the slip parameter indicates the probability that
an examinee gets an answer wrong, even if they mastered all required attributes.
When the covariate is conditioned on in the distribution of an attribute, it adjusts the
attribute parameters by hk (see Eq. (10.4)).

In the covariate-only model, only observed variables are specified as predictors;
that is, latent variables are not included. The covariate-only model (Park & Lee,
2014) includes the structural component, meaning that only observed covariates can
be specified. This means that if a latent variable consisting of item response data is
to be incorporated into the analysis, a two-step approach is required. For example,
the latent variable will need to be estimated using IRT first, then the estimated latent
variable can be used as an observed variable in either Eq. (10.3) or (10.4), following
a covariate-only model.

Explanatory Cognitive Diagnostic Model: Incorporating Both Observed
and Latent Predictors The ECDM approach presented in this chapter allows
for simultaneous estimation of both observed and latent predictors, such that they
can be specified within a single model (rather than a two-step process), as described
in Park et al. (2018). An illustration is presented in Fig. 10.1 using graphic notation
from Rupp et al. (2010) to demonstrate the attribute- and item-level explanatory
RDINA, which allows estimation of factors that explain mastery of attributes and
item responses.

In Fig. 10.1, the ECDM is presented in generalized form to include both observed
and latent explanatory variables, where a latent variable (simultaneously estimated
with items as indicators of the latent variable using IRT) is also specified as a
predictor, in addition to the observed covariate. The shaded area indicates the
explanatory latent variable (ξ ) that is simultaneously estimated using item response
data from XM (for M items) as indicators. The right side of the figures represents the
CDM where attributes are linked to items using the Q-matrix, following standard
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Fig. 10.1 Graphical representation of ECDM. (a) Explanatory factors (observed or latent) speci-
fied on attributes. (b) Explanatory factors (observed or latent) specified on items



212 Y. S. Park and Y.-S. Lee

specification in CDMs; the left side represents the explanatory variables. The top
figure represents the attribute-level explanatory RDINA, with predictors specified at
the attribute; the bottom figure shows the item-level explanatory RDINA.

In the ECDM which includes the explanatory latent variable (ξ ), the conditional
response probability becomes modified from Eq. (10.2), as represented in Eq. (10.5).
Moreover, the structural components linking the explanatory variables are expressed
in Eqs. (10.6) and (10.7) for the item- and attribute-levels, respectively.

p
(

Yi1,Yi2, . . . ,YiJ |Z, ξ
)
=
∑

α
p
(
α|Z, ξ

)∏
j
p
(

Yij|α,Z, ξ
)

(10.5)

logit p
(
Yij |α,Z, ξ

)
= fj + djηij + ljZ + lj ′ξ (10.6)

logit p
(
αk|Z, ξ

)
= bk + hkZ + hk ′ξ (10.7)

Parameters in Eqs. (10.6) and (10.7) show the regression parameters for item
and attribute levels, respectively, where parameters with a prime (′) denote the
explanatory regression effects corresponding to latent variable predictors. The
parameter lj

′
indicates shift in the item parameter due to the latent variable; likewise,

the parameter hk
′
represents shift in the attribute parameter due to the latent variable.

The measurement model associated with the latent explanatory variable (ξ ) is
estimated using IRT. For dichotomous item response XM , the 2PL-IRT model is
used (see Eq. 10.8), where parameters am and bm represent discrimination and
difficulty parameters for item m. For ordinal item response of N categories, the
graded response model (GRM; Samejima, 1969) can be used (see Eq. 10.9), where
am is the discrimination parameter and bnm is the category threshold parameter.

logit p (Xim = 1|ξi) = am (ξi − bm) (10.8)

log

[
p (Xim ≥ n|ξi)
p (Xim < n|ξi)

]
= am (ξi − bnm) (10.9)

Estimation of ξ can incorporate other variants of IRT models as justified based on
theoretical considerations.

10.1.3 Relationship Between RDINA and General Diagnostic
Model (GDM)

The parameterization used in the ECDM can be extended and reparameterized as
special cases of the general diagnostic model (GDM; von Davier, 2005). In the
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GDM, the observed response X is modeled for i items, x response categories, and j
respondents as follows:

P (X = x|i, j) = exp
[
f
(
λxi, θj

)]
/
{
1+�m exp

[
f
(
λxi, θj

)]}
(10.10)

GDM item parameters are the λxi = (βxi, qi,γ xi), which include slope parameters
and the Q-matrix specification, qi. In the DINA where attributes are binary, the
skill vector for examinee j, θ j = (aj1, . . . , ajk), are binary values. As shown in von
Davier (2014, p.58), the DINA can be parameterized as a special case of the GDM
as follows:

P
(
Xυi = 1|qi∗, a∗

) = exp
(
βi +�kγika∗kq∗ik

)

1+ exp
(
βi +�kγika∗kq∗ik

) (10.11)

When a covariate Z or latent variable (ξ ) is introduced to Eq. (10.11), the following

hk and h
′
k parameters are added:

P
(
Xυi = 1|qi∗, a∗,Z, ξ

) = exp
(
βi +�kγika∗kq∗ik + hkZ + hk ′ξ

)

1+ exp
(
βi +�kγika∗kq∗ik + hkZ + hk ′ξ

)

(10.12)

Taking the logit simplifies the model to the item-level ECDM as presented in Fig.
10.1.

10.2 Estimation

10.2.1 Estimation

Estimation of ECDM used the expectation-maximization (EM) algorithm, followed
by the Newton-Raphson (NR) to obtain maximum likelihood (ML) or posterior
mode (PM) estimates in case the maximum likelihood estimation does not exist
(Park et al., 2018). For identification, the mean and variance of ξ was fixed to (0,
1). The observed Fisher information matrix was examined to be of full rank for
local identification (Huang & Bandeen-Roche, 2004). Estimation for ECDMs in
Fig. 10.1 was fit using Latent GOLD 5.0 (Vermunt & Magidson, 2013). Syntax for
fitting ECDM using Latent Gold is available from the authors and also presented in
Park et al. (2018; see Online Supplemental Material for syntax to fit model).
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10.2.2 Parameter Recovery

This section summarizes the estimation results based on the following simulation
conditions (Park et al., 2018):

1. Explanatory RDINA with 1 latent predictor (3 dichotomous items fit using 2PL),
2. Explanatory RDINA with 1 latent predictor (4 polytomous items fit using GRM),
3. Explanatory RDINA with 1 latent (GRM) and 1 observed dichotomous predictor,

and
4. Explanatory RDINA with 2 latent predictors (GRM and 2PL) and 1 observed

dichotomous predictor.

The simulation studies examined the conditions above for two sample size con-
ditions (1000 and 2000 examinees) and two attribute sizes (3 attributes and 5
attributes) using the Q-matrix in Park and Lee (2014) and in Park et al. (2018).

When a single latent or observed predictor was specified in the ECDM, parameter
recovery was consistent across conditions, number of attributes, and sample sizes
(Conditions 1, 2, and 3). For these conditions, the recovery of the measurement
component (recovery of IRT parameters) was particularly notable, as % bias was
all less than 2.3%. In addition, RDINA item parameters had % bias less than 2.3%.
For attribute parameters, when only a single predictor was specified at the attribute
level, the bias for attribute difficulty (bk) was modest. When multiple predictors
were specified (Condition 4), bias increased. For the 3-attribute condition, % bias
was all less than 8.4%. However, for the 5-attribute condition, % bias was 22.2%
for the observed variable, while the latent variables estimated using IRT had % bias
less than 27.5%. Overall, bias in estimation was modest for single-predictor ECDM
or when predictors were either a single observed or a single latent explanatory
variable. When more than one latent explanatory variable was included, bias was
noticeably larger. For example, in the condition with 5 attributes (see Table 10.1),
bias associated with covariate effects ranged between 19.0% and 27.4% for sample
size of 2000. For parameter recovery of latent class sizes, bias was all less than
1.5%, indicating excellent recovery of the attribute distribution.

10.3 Assessment of Fit

10.3.1 Evaluating Model Fit

For the ECDM, model fit can be evaluated using likelihood-based information
criteria such as Akaike Information Criterion (AIC) and Bayesian Information
Criterion (BIC). For classification, the proportion correctly classified (Pc; Clogg,
1995; de la Torre & Douglas, 2004; Park & Lee, 2014) statistic can be used, which is
based on the accuracy in the recovery of latent classes using the maximum posterior
probability for each attribute.
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Table 10.1 Parameter recovery for condition with two latent variables (estimated using 2PL and
GRM) and one observed covariate

Attrib Model Parameter n = 1000 n = 2000
Bias % Bias MSE Bias % Bias MSE

3 RDINA attribute bk .022 12.1% .132 −.011 8.3% .074
hk1 (observed) −.005 6.4% .769 −.022 3.4% .375
h′k2 (latent 1: 2PL) .129 6.1% .535 .013 3.9% .311
h′k3 (latent 2: GRM) −.095 5.7% .526 −.022 3.1% .323

RDINA item fj .002 2.1% .018 −.007 2.2% .009
dj .008 1.0% .033 .013 .8% .017

2PL bj −.010 1.2% .021 −.008 1.6% .010
aj .050 1.9% .173 .019 1.9% .091

GRM bnm .011 .9% .026 .005 .3% .011
am .015 1.0% .016 .007 .5% .007

5 RDINA attribute bk .225 28.4% .186 .178 9.1% .130
hk1 (observed) −.020 36.9% .772 .071 22.2% .568
h′k2 (latent 1: 2PL) −.173 31.0% .656 −.152 19.0% .401
h′k3 (latent 2: GRM) .303 41.5% .910 .261 27.4% .609

RDINA item fj −.017 3.5% .023 −.007 2.6% .010
dj .026 1.4% .040 .013 1.1% .019

2PL bm .225 28.7% .023 .209 29.0% .013
am .012 .9% .014 .012 1.0% .007

GRM bnm .001 1.7% .018 −.009 .7% .012
am .001 2.2% .166 .027 1.3% .108

Note: Results pertain to parameter recovery from Condition 4

10.3.2 Simulation Studies Comparing ECDM with Two-Step
Covariate CDM

Simulated data were fit comparing the ECDM to a two-step covariate RDINA
model, where latent explanatory factors were estimated first and subsequently used
to fit the covariate model. When comparing these results to a covariate RDINA with
only observed predictors, the largest % bias for the structural attribute parameters
(h and h′ parameters in the 3- and 5-attribute conditions based on sample size of
2000) was 3.9% and 27.4% in the ECDM, whereas they were 14.2% and 36.3% in
the covariate RDINA model, respectively. This reflects larger bias when a two-step
covariate model is used, rather than the ECDM.

For the four simulation conditions, classification based on Pc was greater than
.92, regardless of condition, number of attributes, and sample size. Moreover, bias
in latent class sizes was all less than 1.5% across conditions.
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10.4 Exemplary Application

10.4.1 Methods

To demonstrate an application of the ECDM, real data from Booklet 14 of the
2007 Trends in International Mathematics and Science Study (TIMSS) 4th grade
mathematics were used (n = 1975 examinees).1 The Q-matrix was adopted from
Park and Lee (2014) for 25 items, measuring 5 attributes: α1: Whole Numbers
(Number Domain), α2: Fractions & Number Patterns (Number Domain), α3: Lines
& Angles (Geometric Shapes and Measures Domain), α4: Dimensions & Locations
(Geometric Shapes and Measures Domain), and α5: Data Display (Data Domain).

Data included item responses from 25 items and three explanatory variables:
confidence (latent variable measured using 4 items), affect (latent variable measured
using 3 items), and calculator (observed covariate). The explanatory variables
were selected based on their association (correlation) with the mathematics score
(rcalculator = .14, raffect = .13, and rconfidence = .33, all p < .001).

1. Confidence (latent variable): 4-item self-reported measure of self-confidence in
mathematics rated on a 4-point scale, ranging from “1: Disagree”, “2: Agree a
little”, “3: Somewhat agree”, and “4: Agree a lot”. The items are: (1) I usually
do well in mathematics, (2) Mathematics is easier for me than for many of
my classmates, (3) I am good at mathematics, and (4) I learn things quickly in
mathematics (Cronbach’s alpha = .70; Mean = 2.02, SD = .71).

2. Affect (latent variable): 3-item self-reported measure of affect in mathematics,
reported as “Yes= 1” or “No= 0”. The items are as follows: (1) I enjoy learning
mathematics, (2) Mathematics is fun, and (3) I like mathematics (Cronbach’s
alpha = .80; Mean = .76, SD = .34).

3. Calculator (observed variable): Self-reported status of calculator ownership (82%
own calculators).

The attribute-level ECDM was fitted to the data. GRM and 2PL IRT were used to
estimate “confidence” and “affect”, respectively; “calculator” was included as an
observed dichotomous variable. In addition, to compare the attribute-level effects of
the predictors, a covariate RDINA model was also fitted, using a two-step approach
by separately estimating “confidence” and “affect” via IRT and using the predicted
values as covariates. The variance of “confidence” and “affect” was fixed to 1.0 for
identification.

1Available at https://timssandpirls.bc.edu/TIMSS2007/idb_ug.html

https://timssandpirls.bc.edu/TIMSS2007/idb_ug.html
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Table 10.2 Explanatory measurement model parameters: GRM and 2PL IRT models

Construct Item Step (bm)
Discrimination
(am) R2

Confidence: 1. I usually do well in b1 −4.47 (.18) 1.50 (.09) .73
Polytomous (Graded mathematics b2 −2.42 (.10)
response) b3 .49 (.07)

2. Mathematics is b1 −2.35 (.09) 1.32 (.08)
easier for me than for b2 −.73 (.06)
many of my classmates b3 .78 (.06)
3. I am good at b1 −2.67 (.11) 1.54 (.09)
mathematics b2 −1.05 (.07)

b3 .32 (.07)
4. I learn things b1 −3.15 (.12) 1.26 (.08)
quickly in mathematics b2 −1.34 (.07)

b3 .85 (.06)
Affect: Dichotomous
(2 PL)

1. I enjoy learning
mathematics

−1.30 (.09) 2.53 (.22) .65

2. Mathematics is fun −.64 (.04) 1.28 (.10)
3. I like mathematics −1.44 (.15) 3.44 (.45)

Note:
1. Items measuring “confidence” are polytomous, scored using a 4-point scale (“Disagree”, “Agree
a little”, “Somewhat agree”, “Agree a lot”). GRM was used to fit the model; variance for θ was
fixed to 1 for identification
2. Items measuring “affect” are dichotomous (“No”, “Yes”). The 2PL was used to fit the model;
variance for θ was fixed to 1 for identification
3. Values in parenthesis are standard errors
4. R2 is the proportion of reduction in error between total error and predicted error (see Vermunt &
Magidson, 2013)

10.4.2 Results

The attribute-level model converged (tolerance criteria = 1.0 × 10−8;
–2LL = 77,572.76). The mean guessing and slip item parameter estimates were
.28 and .27, respectively.

IRT Parameters IRT parameters for “confidence” and “affect” are presented in
Table 10.2 and in Fig. 10.2.

Note that items that relate to “affect” and “confidence” are described in Table
10.2. Figure 10.2 provides a graphical illustration of parameters based on the ECDM
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Fig. 10.2 IRT Parameter Estimates for the ECDM: Affect (ξ1) and Confidence (ξ2). Note: See
Table 10.2 for descriptors of items (e.g., “Enjoy”, “Fun”, and “Like” for items that contribute to
“affect”)

estimated. The item discrimination for “confidence” ranged between 1.26 and 1.54;
for “affect”, item discrimination ranged between 1.28 and 3.44.

Attribute Parameters The attribute-level ECDM results are presented in Table
10.3, where parameters indicate significant effects as predictors shifting attribute
difficulty (bk). Adjacent to the ECDM results, the two-step covariate RDINA
results are also presented. To compare the simultaneous estimation provided by the
explanatory RDINA and the two-step covariate RDINA models, parameter estimates
are presented together.

Estimates varied by the type of model (ECDM versus two-step covariate RDINA)
used. Differences between the ECDM and the covariate models were larger when
the predictor was based on a latent variable (“affect” and “confidence”). The
largest difference in attribute difficulty was in attribute 2 (Fractions & Number
Patterns). The structural parameters remained similar for hk1 (calculator) and for
h′k3 (confidence), while the estimates themselves varied. Estimates for the observed
predictor (owning a calculator) and for the latent variable (having higher self
confidence in mathematics) had significant effects for attributes 1 (Whole Numbers),
2 (Fractions & Number Patterns), and 4 (Dimensions & Locations). However,
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Table 10.3 Attribute difficulty (bk) and predictors (hkq)

Attribute Parameter Explanatory RDINA Covariate RDINA
Estimate p-value Estimate p-value

1. Whole numbers b1 −1.26 (.48) −.71 (.13)
h11 (calculator) 3.82 (.80) < .001 1.36 (.14) < .001
h′12 (affect) −5.30 (1.55) .001 −.27 (.08) .001
h′13 (confidence) 6.73 (2.15) .002 .60 (.07) < .001

2. Fractions and b2 −.20 (.54) .78 (.25)
number patterns h21 (calculator) 1.74 (.58) .003 1.05 (.24) < .001

h′22 (affect) −2.21 (.52) < .001 −.08 (.14) .600
h′23 (confidence) 2.96 (.71) < .001 .60 (.14) < .001

3. Lines and b3 5.65 (2.23) 5.34 (2.72)
angles h31 (calculator) −1.07 (2.08) .610 −.70 (2.84) .810

h′32 (affect) .95 (.82) .250 .24 (.84) .770
h′33 (confidence) .41 (.89) .640 .68 (.86) .430

4. Dimensions b4 −1.38 (.44) −.63 (.15)
and locations h41 (calculator) 3.25 (.50) < .001 1.55 (.15) < .001

h′42 (affect) −3.45 (.44) < .001 −.14 (.09) .100
h′43 (confidence) 4.17 (.54) < .001 .47 (.08) < .001

5. Data display b5 1.41 (.53) 2.00 (.46)
h51 (calculator) .38 (.45) .400 .09 (.47) .850
h′52 (affect) −.52 (.51) .310 −.23 (.21) .280
h′53 (confidence) .60 (.46) .190 .28 (.18) .110

Note:
1. “Explanatory RDINA” used item-level affect and confidence measures as indicators (using GRM
and 2PL) to predict αk. “Covariate RDINA” used estimated covariates to predict αk
2. “Calculator” is dichotomous (1 = “Yes”, 0 = “No”); “affect” and “confidence” are continuous
(Mean = 0, SD = 1)
3. Values in parenthesis are standard errors
4. Given that h′k2 (affect) estimates were negative, a separate analysis treating the three affect
items to directly regress on the attributes was conducted. Results showed that item 3 (“I like
mathematics”) had negative effects on attributes for all five attributes, while the effects for the
two remaining items were either positive or negative depending on the attribute

estimates for “affect” had negative effects on attribute mastery for attributes 1, 2,
and 4.

With respect to differences between models, the latent measure of affect, as
estimated using the explanatory model, was significant for attributes 2 (Fraction
& Number Patterns; h′22 = −2.21, p < .001) and 4 (Dimensions & Location;
h′42 = −3.45, p < .001), whereas it was not significant for the covariate model
(Fraction & Number Patterns: h22 = −.08, p = .600; Dimensions & Location:
h42 =−.14, p= .100), indicating differential attribute difficulty due to the inclusion
of the measurement model, as opposed to only a structural component to the model.

Classification and Latent Class Sizes Pc estimates based on posterior probabili-
ties ranged between .86 and .98, with similar estimates between the explanatory and
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covariate RDINA models. Latent class sizes for single attributes were similar, except
for attribute 2 (Fractions & Number Patterns), which was .62 for the explanatory and
.82 for the covariate RDINA models.

10.5 Discussion

Incorporating observed and latent predictors into an ECDM addresses both method-
ological and substantive issues that arise when analyzing large-scale data. Edu-
cational data often contain rich array of variables that can provide relational
information and can promote answering important substantive questions for applied
educational and psychological research. For example, access to educational tech-
nology (e.g., computer and Internet access) has been shown previously to be
positively associated with computational ability of students in elementary and
middle school mathematics and science performance (e.g., Chang & Kim, 2009;
Tienken & Wilson, 2007). Therefore, linking explanatory variables with CDMs can
inform instructional needs and facilitate identifying the effectiveness of educational
resources and interventions that can be aligned with the fine-grained mastery of
skills.

This chapter presents an overview of the ECDM as well as implications for
estimation, model fit, and analysis of real-world data. While this chapter focused
on explanatory factors that are specified on attributes to examine attribute mastery,
predictors can be specified on items to study DIF or on the higher-order latent trait,
depending on the context and substantive needs of the analysis. As such, additional
studies on explanatory factors specified on items or higher-order latent trait would
provide additional understanding of ECDMs.

Estimation results as noted in the simulation study showed consistency in the
recovery of model parameters even with sample sizes of 1000. Moreover, only
modest differences were found between the 3- and 5-attribute conditions, and
attribute-level estimates were stable. Generally, results from the simulation study
indicate that incorporating both latent and observed predictors at the attribute
level of the RDINA did not affect estimation greatly. The simulation results
did also highlight caution when multiple predictors are estimated in the ECDM,
particularly when more than one latent explanatory factor is used. Classification
was also consistent, regardless of conditions examined. These simulation results
demonstrating larger bias in parameter recovery when multiple latent variables are
simultaneously estimated, indicate a need to investigate the effect of multiple latent
predictors when large number of attributes are used in CDMs.

In the real-world data analysis application, two sets of items (dichotomous and
polytomous) were used as indicators of the latent construct, by fitting IRT models
(2PL and GRM), and as such, were simultaneously specified to predict attribute
mastery. Results revealed differences in effect sizes by attribute. In addition, real-
world data example demonstrated varied results when compared to a two-step
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approach (covariate model), where latent variables were first estimated and then
used to regress as covariates on the attributes. In particular, estimates from the
two-step approach were different for some attributes. These findings underscore
the value of simultaneously estimating latent predictors, as specified in the ECDM.
These findings shed light on related results from the SEM literature (e.g., Bedeian,
Day, & Kelloway, 1997), where the ECDM can provide meaningful implications for
simultaneously estimating latent factors.

Further extensions of the ECDM proposed in this chapter are also viable. For
example, extensions of the ECDM using more generalized CDMs could yield
more flexible and generalized estimation of skill profiles to allow specification of
explanatory predictors. Other extensions to models such as the von Davier (2010)
multilevel diagnostic model or other higher-order CDMs can also be made to
incorporate the ECDM framework.

Additional studies may be needed to examine whether the coefficient estimates
may have collinearity issues, potentially leading to a model with weakly identified
predictors. As such, additional studies examining specific conditions for identifi-
cation are needed; for example, the effect of centering to enhance estimation may
warrant additional study. Such extensions may promote answering other substantive
questions and contribute to the development of other explanatory models for
CDMs.
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Chapter 11
Insights from Reparameterized DINA
and Beyond

Lawrence T. DeCarlo

Abstract The purpose of cognitive diagnosis is to obtain information about the set
of skills or attributes that examinees have or do not have. A cognitive diagnostic
model (CDM) attempts to extract this information from the pattern of responses of
examinees to test items. A number of general CDMs have been proposed, such as the
general diagnostic model (GDM; von Davier M, Brit J Math Stat Psychol 61:287–
307, 2008), the generalized DINA model (GDINA; de la Torre J, Psychometrika
76:179–199, 2011), and the log-linear cognitive diagnostic model (LCDM; Henson
RA, Templin JL, Willse JT, Psychometrika 74:191–210, 2009). These general
models can be shown to include well-known models that are often used in cognitive
diagnosis, such as the deterministic inputs noisy and gate model (DINA; Junker
BW, Sijtsma K, Appl Psychol Meas 25:258–272, 2001), the deterministic inputs
noise or gate model (DINO; Templin JL, Henson RA, Psychol Methods 11:287–305,
2006), the additive cognitive diagnosis model (ACDM; de la Torre J, Psychometrika
76:179–199, 2011), the linear logistic model (LLM; Maris E, Psychometrika
64:187–212, 1999), and the reduced reparameterized unified model (rRUM; Hartz
SM, A Bayesian framework for the unified model for assessing cognitive abilities.
Unpublished doctoral dissertation, 2002).

This chapter starts with a simple reparameterized version of the DINA model and
builds up to other models; all of the models are shown to be extensions or variations
of the basic model. Working up to more general models from a simple form helps to
illustrate basic aspects of the models and associated concepts, such as the meaning
of model parameters, issues of estimation, monotonicity, duality, and the relation
of the models to each other and more general forms. In addition, reparameterizing
CDMs as latent class models allows one to use standard software for latent class
analysis (LCA), which offers a connection to latent class analysis and also allows
one to take advantage of recent advances in LCA.
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11.1 The Reparameterized DINA Model

A well-known CDM, the DINA model (Haertel, 1989; Junker & Sijtsma, 2001;
Macready & Dayton, 1977), provides a useful starting point. Let Yij be a binary
variable that indicates whether the response of the ith examinee to the jth item is
correct or incorrect (1 or 0) and let α = (α1, α2, . . . ,αK)’ denote the vector of K
attributes that are needed to solve the items. The Q-matrix consists of elements qjk

that specify which of the K attributes are needed to solve the jth item. Thus, the Q-
matrix elements consist of zeroes and ones, with a value of zero indicating that the
kth attribute is not needed, and a value of one indicating that the attribute is needed.
For the DINA model, the probability that an examinee gets an item correct is

p
(
Yij = 1|α) = (1− sj

)ηij g1−ηij
j ,

with

ηij =
∏K

k=1
α
qjk
ik .

Note that ηij is simply a binary indicator with a value of one indicating that an
examinee has all of the required attributes and a value of zero indicating that an
examinee is lacking one or more of the required attributes. Thus, if an examinee has
all of the required attributes, then ηij = 1 and

p
(
Yij = 1|α) = (1− sj

)
,

where the parameter sj is the slip rate for examinee j. If an examinee is missing one
or more of the required attributes, then ηij = 0 and

p
(
Yij = 1|α) = gj,

where the parameter gj is the guess rate.
Although ‘slipping’ and ‘guessing’ were suggested as useful mnemonics by

Junker and Sijtsma (2001), the relation of the concepts to basic ideas of signal
detection theory (SDT) is also informative (Green & Swets, 1966; Macmillan &
Creelman, 2005; Wickens, 2002). In SDT, (1 − sj) is the hit rate – the examinee
has the requisite attributes and gets the item correct, whereas sj is the miss rate –
the examinee has the requisite attributes, but gets the item incorrect. If an examinee
does not have the requisite attributes yet gets the item correct, then that’s a false
alarm; note that guessing is an interpretation of false alarms.

It has previously been shown that a simple re-parameterization of the DINA
model can be obtained by re-writing the false alarm rate, gj, as

gj = exp
(
fj
)

1+ exp
(
fj
) ,
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where exp is the exponential function and the parameter fj is the transformed false-
alarm rate. Similarly, one minus the slip rate, the hit rate, can be re-written as

1− sj = exp
(
fj + dj

)

1+ exp
(
fj + dj

) ,

where dj is a discrimination parameter. The DINA model can then be re-written as

logit p
(
Yij = 1|α) = fj + dj

K∏

k=1

α
qjk
ik , (11.1)

which has been referred to as the reparameterized DINA model (rDINA; DeCarlo,
2011). The model is a special case of the general diagnostic model of von Davier
(2008), with a change in notation to emphasize the signal detection aspects of the
model. In particular, fj is a transformed false alarm rate whereas dj is a difference
of transformed hit and transformed false alarm rates that indicates the level of
discrimination between having and not having the attributes (i.e., ηij = 1 versus
ηij = 0). Note that the discrimination parameter in SDT is a function of both hits and
false alarms, in contrast to looking at slips and guesses separately, in that it follows
from the theory that one needs to examine the hit rate relative to the false alarm
rate (to get the distance measure d); other variations of the discrimination parameter
have also been considered (e.g., differences, ratios, etc.). From a statistical point of
view, the intercept fj is the log odds of a correct response given ηij = 0, and the
slope dj is the log odds ratio of a correct response given ηij = 1 versus ηij = 0. The
rDINA model is equivalent to the DINA model and so estimates of fj and dj can be
transformed to get estimates of gj and sj.

11.2 Monotonicity

Note that, when fitting the model, a constraint must be used so that monotonicity is
satisfied. In terms of the DINA model, monotonicity holds if

0 < gj < 1− sj < 1.

Without the monotonicity constraint, examinees who have a required attribute could
have a lower probability of getting an item correct than if they did not have the
attribute (although this could be appropriate in certain situations). It is informative
to interpret the monotonicity constraint in terms of signal detection theory, in that
it simply implies that the hit rate (1 − sj) must be greater than the false alarm rate
(gj), in which case the receiver operating characteristic curve (ROC; see Macmillan
& Creelman, 2005) – a plot of hits versus false alarms – will lie above the diagonal
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(the diagonal represents zero discrimination) and the discrimination parameter d
will be greater than zero. In terms of the rDINA model, monotonicity holds if

0 <
exp

(
fj
)

1+ exp
(
fj
) <

exp
(
fj + dj

)

1+ exp
(
fj + dj

) < 1,

and so monotonicity holds if the discrimination parameter dj is greater than zero (for
finite fj and dj). This constraint can be implemented in many software packages; the
Appendix, for example, provides Latent Gold programs that show how to implement
monotonicity by using the (+) command, which constrains the parameter to non-
negative values.

11.3 Estimation

A benefit of the rDINA model as written in Eq. (11.1) is that it is simple to fit
with standard software for latent class analysis, such as Latent Gold (LG; Vermunt
& Magidson, 2016) or the freely available LEM (Vermunt, 1997), given that Eq.
(11.1) is simply a logistic latent class model with latent dichotomous interaction
terms. The program provided in the Appendix shows that it is straightforward to fit
the rDINA model in LG by specifying interaction terms for the latent dichotomous
attributes; the Q-matrix being used is also made transparent in the program.

Note that the rDINA model discussed so far is the ‘examinee-level’ part of the
model, whereas the complete model also includes a higher-level model for the
attributes, that is, an ‘attribute-level’ model. This is a model for the probabilities of
the various skill combinations, that is, p(α1, α2, . . . , αK). LG and LEM programs
to fit the rDINA model with either an independence structure or a higher-order
structure (with a continuous latent variable) for the attribute-level model have
previously been provided (DeCarlo, 2011). Here it is shown how to specify an
unstructured attribute-level model (not previously shown) in LG or other latent class
software. Note that when CDM researchers refer to fitting ‘the DINA model’, they
usually mean the DINA model with an unstructured attribute-level model.

To implement the unstructured attribute model one merely needs to use a
saturated model as the higher-level model. A simple way to do this in LG is to
specify a saturated association model (Agresti, 2002) for the attribute-level model,
with one parameter set to zero, so that the model includes 2k − 1 parameters for the
2k attribute patterns (and so it is saturated). An example of this approach is given
by the first rDINA LG program provided in the Appendix. In this case, the first cell
is restricted to be zero, using the command r[1,1] = 0, for identification. Estimates
of the class sizes for each attribute pattern, and their standard errors, are given in
the section of LG output that is labeled as “Profile”, along with estimates of the
marginal class sizes, that is, estimates of p(αk).
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Another option is to specify a sequence of path models, which gives the same
results as when an association model is used, given that both models are saturated.
The LG program in the Appendix also illustrates this approach (in the comments,
which are specified in LG by the symbol ‘//’); running the program shows that
the results are the same as those obtained using the saturated association model.
Depending on the software that one uses, one or the other of the approaches for the
attribute-level model might be simpler to implement.

Philipp, Strobl, de la Torre, and Zeilis (2018) recently noted that there is a
problem with respect to estimation of the standard errors in CDMs. In particular, “it
is common to compute the standard errors only for the parameters that are used to
specify the item response function while ignoring the parameters used to specify the
joint distribution of the attributes.” (p. 2). They note that this common approach can
lead to underestimation of the standard errors in both parts of the model (also see von
Davier, 2014). Note that, with the LCA approach, the standard errors are estimated
for both the examinee-level parameters (i.e., the item response function) and the
attribute-level parameters. LG also offers a robust (sandwich) estimator of the SEs,
as well as others, details of which are given in the technical manual (Vermunt &
Magidson, 2016).

Using software for LCA also makes available a wide array of tools and output
for CDMs. For example, with LG, one obtains estimates of the parameters for
both the examinee-level and attribute-level models, along with their standard errors,
absolute and relative fit statistics (e.g., Chi-square goodness of fit, information
criteria such BIC and AIC, etc.), bivariate residuals, various classification statistics
and tables, different types of plots, output files with posterior classifications for
each examinee, as well as details about the iterations and any convergence or
identification problems. In addition, different algorithms are available, such as
versions of the Newton-Raphson (NR) and Expectation-Maximization algorithms
(LG starts with the EM and moves to NR when in the vicinity of the solution), as
well as the option to use posterior mode estimation with different Bayes constants,
which controls the degree of smoothing, along with many other options.

11.4 Boundary Problems

A well-known problem that often arises in latent class analysis is known as a
boundary problem (Clogg & Eliason, 1987; DeCarlo, 2011; Maris, 1999). Boundary
problems occur when parameter estimates and SEs are large or indeterminate, or
probability estimates are close to zero or one, which is also related to identification
problems (such as weak identification). This problem has been somewhat neglected
in CDMs (some exceptions are noted below), partly because the SEs are sometimes
not reported, and partly because, in the original probability version of the model,
finding slipping or guessing parameters close to zero, for example, is not in and
of itself cause for alarm (not having slipping or guessing can be viewed as a good
thing), whereas it could actually be reflecting an overlooked boundary problem.
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The reparameterized model is useful in this regards because the model transforms
the zero-one probability scale (for gj and sj) to a minus infinity to positive infinity
scale for fj and greater than zero to infinity scale for dj (because of the monotonicity
constraint), and so boundary problems or weak identifiability will tend to be more
obvious, in that they will appear as overly large or infinite parameter estimates
and/or estimated standard errors. For example, Table 4 of de la Torre (2009) shows
parameter estimates for a fit of the DINA model to a subset of 15 items (out of 20)
of the well-known fraction subtraction data. The estimate of g1 for the first item is
shown as 0.00 with a standard error of 0.05 (which is the largest standard error in the
table) and the estimate of s1 is 0.28 (the highest in the table) with a standard error of
0.013. A fit of the rDINA model with LG to this data (with unstructured attributes)
gives an estimate of f1 of about −24 (whereas the lowest fj for all the other items is
around −4.5) with an SE of 0.12, and an estimate of d1 of 25 with an SE of 1000
(i.e., infinite), and so there are clearly identification problems for this item.

In addition to boundary problems appearing in the examinee-level part of the
model, they can also appear in the attribute-level part of the model, particularly
when the unstructured attribute model is used. For the fraction subtraction example
with 15 items just discussed, LG shows that there are 22 boundary problems in
the unstructured attribute model (with 22 SEs appearing as 1000). It is interesting
to note that if one fits the original 20 item version of the fraction subtraction
data with an unstructured attribute model, as has been widely used in many
studies, then LG reports that there are 198 non-identified parameters (note that
the unstructured model has 28 – 1 = 255 parameters; problems also appear for
a higher-order model). Estimates of the standard errors for the attribute-level
model parameters are also all excessively large (>20), again reflecting identification
problems. Thus, even though the unstructured attributes model has been widely
used, identification problems with the attribute-level model, and the possible effects
of this on estimation for the examinee-level model, have generally not been
considered.

Boundary problems for fits of the DINA model, ACDM, and GDINA model
to real-world data given in the R package pks (Heller & Wickelmaier, 2013)
were recently noted by Philipp et al. (2018); they noted boundary problems
in both the examinee-level and attribute-level parts of the model (p. 20). von
Davier (2014) discussed identification problems for the well-known Examination
for the Certificate of Proficiency in English (ECPE) data; he noted that, even with
constraints, weak identifiability still appeared for the LCDM used by Templin and
Bradshaw (2014).

11.5 Posterior Mode Estimation and Bayesian Estimation

A number of authors have discussed the use of posterior mode estimation (PME) to
deal with boundary problems (e.g., DeCarlo, 2011; DeCarlo, Kim, & Johnson, 2011;
Maris, 1999; Vermunt & Magidson, 2016). PME is less computationally intense than
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a full Bayesian analysis in that it does not require that the full posterior distribution
be generated, but rather only the mode needs to be found. As a result, PME has a
computational speed advantage over a full Bayesian analysis, which is useful when
performing computer simulations. In addition, standard algorithms that implement
maximum likelihood estimation can often easily be modified to implement PME.
The approach basically smooths infinite or large parameter estimates and/or esti-
mates of the standard errors. The use of PME in CDMs is a topic for future research;
this option is currently available in LG. The use of PME for a simple latent class
signal detection model (DeCarlo, 2002, 2005), which is the same as a CDM with a
single latent dichotomous attribute (the latent signal), has been examined in simu-
lations presented in DeCarlo (2008, 2010); the use of PME for a hierarchical rater
signal detection model with ordinal latent classes has been examined in simulations
presented in Kim (2009), and the use of PME with real-world data was examined in
DeCarlo et al. (2011).

Another option is to use a full Bayesian analysis to fit CDMs (e.g., Culpepper,
2015; de la Torre & Douglas, 2004; DeCarlo, 2012; Henson et al., 2009). For
example, an OpenBugs program (Spiegelhalter, Thomas, Best, & Lunn, 2014)
to fit the rDINA model with Bayesian estimation was given in DeCarlo (2012;
with a monotonicity constraint implemented by restricting dj to be greater than
zero). The approach also generalized the model by allowing for uncertainty about
some elements of the Q-matrix, and simulations suggested adequate recovery
of those elements using posterior distributions. The Bayesian approach allows
for interesting extensions; for example one can extend the model with a few
uncertain Q-matrix elements to allow all of the Q-matrix elements to be uncertain;
this approach was examined by DeCarlo and Kinghorn (DeCarlo & Kinghorn,
2016; with monotonicity restrictions) and by Culpepper (2015; with completeness
restrictions).

11.6 Classification

Classification in latent class analysis is typically done using the modal posterior
probabilities (e.g., Clogg, 1995; Dayton, 1998). For example, one approach,
maximum a posteriori (MAP) classification, is to simply classify each examinee
into the attribute set with the largest posterior probability. Another option is
to use marginal probabilities to classify examinees for each skill separately, as
in expected a posteriori (EAP) classification. In maximum likelihood estimation
(MLE), classification is accomplished by finding attribute patterns that maximize
the posterior. The various approaches were compared in the context of CDMs by
Huebner and Wang (2011).
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11.7 Identifiability

Identifiability is concerned with whether one can obtain unique estimates of the
model parameters. Xu and Zhang (2016) gave necessary and sufficient conditions
for identifiability of the model parameters for the DINA model (also see Chen, Liu,
Xu, & Ying, 2015). They also noted that their results could be extended to the DINO
model, because of the duality of the models (see below). The issue of boundary
problems discussed above is also related to the issue of identifiability, with large
standard errors often indicating ‘weak identification’, in which case the data (or
model) are not informative about the parameters.

The effect of identifiability on classification has also been discussed. Chiu,
Douglas, and Li (2009) noted that completeness of a Q-matrix is generally needed
for identification of all possible attribute patterns. For the DINA and DINO models,
for example, completeness is satisfied if, for each attribute, there is an item that
measures that attribute alone. Köhn and Chiu (2017) noted that the conditions for
completeness depend on the model and examined completeness for several CDMs.

For the fraction subtraction data, DeCarlo (2011) noted that, because of incom-
pleteness of the Q-matrix, some of the posterior classifications from the DINA
model depend solely on the priors, and so the data offers no additional information
over the priors. Zhang, DeCarlo, and Ying (2013) noted that, although certain
attribute patterns are in the same equivalence class for the fraction-subtraction data
and so are not identifiable, individual attributes within an equivalence class may still
be identifiable. They proposed a measure of the marginal identifiability rate, which
is the proportion of the population for which each attribute is marginally identifiable,
and suggested that it can be viewed as a measure of test (and model) quality. Zhang
et al. also proposed classification algorithms that took into account the effects of
marginal identifiability.

11.8 Reparameterized DINO

Here it is shown that a reparameterized version of the DINO model (Templin &
Henson, 2006) clarifies issues about the relations between the DINO and DINA
models (duality) and their parameters. The DINO model is similar to the DINA
model with the exception that, instead of requiring that all of the skills be present in
order to solve an item, only one or more of the skills need to be present. The DINO
condensation rule is usually referred to as being disjunctive, whereas the DINA
condensation rule is conjunctive (Rupp, Templin, & Henson, 2010). The model is

p
(
Yij = 1|α) =

(
1− s′j

)ωij
g′1−ωijj ,

where ωij = 1 −∏Kk=1 (1− αik)qjk equals one if any required skill is present, and
zero only if all the required skills are absent.
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It is important to note that slips and guesses, s′j and g′j , are defined differently in
the DINO model as compared to the DINA model. In the DINO model, the hit rate
1−s′j is the probability of a correct response given that an examinee has at least one
of the attributes, whereas in the DINA model, the hit rate 1 − sj is the probability
of a correct response given that an examinee has all of the attributes. Similarly,
the false alarm rate g′j in the DINO model is the probability of a correct response
given that an examinee has none of the attributes, whereas the false alarm rate gj in
the DINA model is the probability of a correct response given that an examinee is
missing at least one attribute.

The DINO model can be reparameterized using the same approach used above
for the DINA model, which gives,

logit p
(
Yij = 1|α) = f ′j + d ′j

[
1−

K∏

k=1

(1− αik)qjk
]
, (11.2)

which will be referred to as the rDINO model; the model was also recently derived in
terms of the GDM by Köhn and Chiu (2016). Once again, monotonicity is satisfied
if d ′j is greater than zero.

As for the rDINA model, the model in this form is straightforward to fit using
software for latent class analysis. Suppose, for example, that Item 1 requires the
first three skills. The model for the first item is then

logit p (Yi1 = 1|α) = f ′1 + d ′1 (αi1 + αi2 + αi3 − αi1αi2 − αi1αi3 − αi2αi3 + αi1αi2αi3) ,

which is a logistic model with all main effects and higher order interaction terms.

Further, the coefficients
(
d ′j
)

are restricted to be equal across all terms and have

alternating signs across the two and three way interactions, as was also noted by de
la Torre (2011) for the G-DINA model. A sample rDINO program that shows how
to implement the parameter constraints of Eq. (11.2) in LG is given in the Appendix.

11.9 DINO/DINA Duality

The rDINO model of Eq. (11.2) can be re-written as.

logit p
(
Yij = 1|α) =

(
f ′j + d ′j

)
− d ′j

K∏

k=1

(1− αik)qjk . (11.3)

Note that, if one replaces 1 − αik in the above with reverse coded α∗ik = 1 −
αik , then Eq. (11.3) has the same form as the rDINA model of Eq. (11.1), with a
redefined intercept and a negative slope. This was also shown by Köhn and Chiu
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(2016, see Section 3.3) by replacing 1 − αik with α∗ik and by reverse coding the
data, so that Y ∗ij = 1− Yij which merely reverses the signs of Eq. (11.3), given that
logit p = −logit (1 − p), and so.

logit p
(
Y ∗ij = 1|α∗

)
=
(
−f ′j − d ′j

)
+ d ′j

K∏

k=1

(
α∗ik
)qjk . (11.3a)

Equation (11.3a) is clearly related in form to the rDINA model of Eq. (11.1), with
a redefined intercept (and different parameters). In this respect, there is a duality
between the rDINA and rDINO models (and so between the DINA and DINO
models as well; Chen et al., 2015; Köhn & Chiu, 2016; Liu, Xu, & Ying, 2011).

An important consequence of the duality between the DINA and DINO models
(and rDINA and rDINO) is that theoretical results developed for one model can be
applied to the other model (Liu et al., 2011). For example, Köhn and Chiu (2016)
used this duality to determine the conditions necessary for completeness of the Q-
matrix for both the DINA and DINO models.

Köhn and Chiu (2016) noted another interesting consequence of duality, which
is that it implies that the DINO model can be fit by using a DINA program. The
simple reparameterized versions of the models presented here are helpful in that
they suggest more than one way that this can be done. To start, note that the rDINO
model can be fit directly as given in Eq. (11.2), as shown by the rDINO program
given in the Appendix. In this case, the program is a little more involved than the
rDINA program because of the parameter restrictions implied by the rDINO model
(i.e., equal d ′j and alternating signs).

Equation (11.3a) suggests another option, also suggested by Köhn and Chiu
(2016), which is to use a DINA program to fit the DINO model. This can be
done if one can fit the DINA model with reverse coded α∗ik in lieu of αik,
which is the key to the difference between the models. Köhn and Chiu (2016)
accomplished this by reverse coding the data and maintaining the monotonicity
constraint. Note that, for symmetric links such as the logit, reverse coding the data
simply reverses the parameter signs. However, because the monotonicity constraint
is also maintained, the model cannot account for the reversed Y with a negative sign
for the discrimination parameter, but rather with a reversed α (i.e., α*). Thus, reverse
coding the data and maintaining monotonicity is simply a way to induce the use α*

in the model in lieu of α.
A practical advantage of the above approach is that one can then fit the rDINO

model using the simpler rDINA program given in the Appendix by reverse coding
the data and keeping the monotonicity constraint (i.e., positive values of d ′j ). Note
that if the monotonicity constraint is removed, then fitting the reverse coded data
will simply give results for the rDINA model with reversed parameter signs, and not
the rDINO model, as the reader can verify.

Another interesting option is suggested by Eq. (11.3) – fit the rDINO model
with an rDINA program, but impose a negative monotonicity constraint, that is,
restrict d ′j in Eq. (11.3) to be less than zero. An interesting aspect of this approach
is that it again allows one to fit the rDINO model with an rDINA program, but



11 Insights from Reparameterized DINA and Beyond 233

there is no need to reverse code the data. That is, one can fit the original data,
again using an rDINA program, by simply replacing (+) in the LG program given
in the Appendix with (−), to give a negative monotonicity constraint. Specifying a
negative monotonicity constraint will tend to lead to α∗ik being used in the model in
lieu of αik, in which case the rDINO model of Eq. (11.3) is fit (and not the rDINA
model).

It is apparent that the simplest approach in LG is the third one – simply use the
original data and impose a negative monotonicity constraint in an rDINA program to
get the rDINO model of Eq. (11.3). It would be interesting in future research to see
if there are any differences across the three approaches to fitting the rDINO model,
in terms of estimation advantages or disadvantages.

It should be noted that using a negative monotonicity constraint or reverse coding
the data and using a positive monotonicity constraint may not be sufficient to lead
to α∗ik being used in the model in lieu of αik (this is also related to ‘label switching’
issues discussed in latent class analysis, although it is not simply label switching in
this case in that the likelihood differs, but this is beyond the scope of the current
chapter), this needs to be considered more closely in future research. For example,
if Eq. (11.3a) is used, then one must check that all of the d ′j estimates have positive
signs, so that monotonicity holds. Another useful check is to compare the latent
class size estimates, that is, the estimates of p(αk) for the rDINO model, to those
obtained for a fit of the rDINA model – the class size estimates will usually differ
(beyond a simple reversal in categories). If they are the same, apart from a category
reversal, then it is likely that the rDINA model was fit, not the rDINO model.

Equations (11.2), (11.3), and (11.3a) are useful in that they also show exactly
what estimates are obtained with each of the three approaches. That is, if one fits
the rDINO model as specified in Eq. (11.2), then the intercept and slope of the
logistic model will give direct estimates of f ′j and d ′j respectively; the estimates of
p(αk), the latent class sizes, will be given in LG as Class Size 2 (i.e., the class size
for having the attribute). If the data are reverse coded and Köhn and Chiu’s (2016)
approach is used, then the intercept gives an estimate of −f ′j − d ′j and the slope
gives an estimate of d ′j (see Eq. (11.3a)). Thus, one must add the estimate of d ′j
to the intercept and then reverse the sign to get an estimate of f ′j . The latent class
sizes will also be reversed, so that Class Size 1 in LG will give the class size for
having the attribute. Finally, if one fits rDINO with Eq. (11.3), then the intercept
will give an estimate of f ′j + d ′j and the slope will give an estimate of −d ′j . Thus,
one simply adds the slope estimate to the intercept estimate to get an estimate of
f ′j and reverses the sign of the slope to get d ′j . The latent class sizes will again be
reversed, and so Class Size 1 again gives the desired estimate. It is instructive to use
the three approaches and compare the results; simulated DINO data is available at
the author’s website, along with LG programs, so that the three approaches can be
implemented and compared.

The equations also help to clarify similarities and differences between the DINA
and DINO models. First, the relation between Eqs. (11.1) and (11.3a) does not imply
that the rDINA model and the rDINO model are equivalent; they can and will give
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different log likelihoods when fit to the same data (and different log posteriors, in
a Bayesian approach), given that they impose a different structure on the data (for
items that involve two or more attributes). Note that Köhn and Chiu (2016; Section
3.3) showed that the expected item response function for DINO with Y* and α* is
equivalent to that for DINA with Y and α, as also shown by Eq. (11.3a). This does
not mean however that the DINO model is equivalent to the DINA model. Rather,
it should be recognized that if one uses a DINA program to fit the model with α∗ik ,
regardless of whether or not Y is reverse coded, then the DINO model is being fit, as
shown by Eqs. (11.3) and (11.3a), and not the DINA model. That is, using notation
suggested by a reviewer, Eqs. (11.3) and (11.3a), respectively, show that.

rDINO (Y, α) = rDINA
(
Y ∗, α∗

) = rDINA
(
Y, α∗

)
,

with the parameters related as shown above. This is what allows one to use a DINA
program to fit the DINO model – use α* in the DINA model in lieu of α, irrespective
of whether Y or Y* is used, and the DINO model is being fit. However, this does not
mean that the DINO model is equivalent to the DINA model, that is,

rDINO (Y, α) �= rDINA (Y, α)

as can be seen by comparing Eqs. (11.1) and (11.2) (for items that load on two or
more attributes). Thus, rDINO and rDINA (and DINO and DINA) are structurally
different models, the above just shows that using α* in place of α in a DINA
program, and maintaining monotonicity, results in the DINO model being fit. A
useful exercise is to use the rDINA LG program given in the Appendix with reverse
coded data, but remove the monotonicity constraint; the result is that the rDINA
model is fit, not the rDINO model, and the parameter signs are simply reversed
from those obtained for a fit of the rDINA model to the original data. On the other
hand, if the monotonicity constraint is enforced for the reverse coded data, then the
rDINO model will be fit, not the rDINA model, and the parameter estimates and
likelihood will differ.

Another point of clarification is that the models also differ with respect to the
parameter estimates, that is, the DINO parameter estimates are not transformations
of the DINA parameter estimates (contrary to some claims). The models are
structurally different and involve different parameters. Table 11.1 shows a simple
example with two attributes. The third column shows the condensation rule ηj for
the DINA model and the fourth column shows the condensation rule ωj for the
DINO model. The fifth column shows the DINA parameters for a correct response.
The column shows that, for the DINA model, false alarms, gj, occur for the first
three rows, whereas the last row represents hits, 1 − sj. The sixth column shows
the DINO parameters; in this case, only the first row represents false alarms, g′j ,
whereas the other rows all correspond to hits, 1− s′j .

A comparison of the second and third rows of Table 11.1, where only one of the
skills is present, helps to highlight differences between the models. For DINA, the
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Table 11.1 Relation
between terms and
parameters for the DINA and
DINO models

α1 α2 ηj ωj DINA DINO

0 0 0 0 gj g′j
1 0 0 1 gj 1− s′j
0 1 0 1 gj 1− s′j
1 1 1 1 1 − sj 1− s′j

Table notes: for DINA, ηj=∏Kk=1α
qjk
k ; for

DINO, ωj=1−∏Kk=1(1−αk)qjk ; the DINA
and DINO columns show the parameters
that correspond to a correct response

second and third row parameters are the same as the first row, that is, they are all
false alarms gj. In contrast, for DINO, the second and third row parameters are the
same as the fourth row, the hit rate 1− s′j . Thus, different parameter estimates will
generally be obtained for fits of the two models (for items that involve two or more
attributes) and one set of parameters are not simply transformations of the other set,
that is, g′j �= gj and 1− s′j �= 1− sj .

To summarize, if one uses a DINA program and induces the use of α* in place of
α, either by reverse coding the data or enforcing negative monotonicity, then one is
fitting the DINO model and not the DINA model.

11.10 A General Reparameterized Model

The rDINA and rDINO models show a clear and simple pattern. Consider the rDINA
model for an item that requires three skills,

logit p
(
Yij = 1|α) = fj + dj αi1αi2αi3,

whereas the corresponding rDINO model is

logit p
(
Yij = 1|α) = f ′j + d ′j (αi1 + αi2 + αi3 − αi1αi2 − αi1αi3 − αi2αi3 + αi1αi2αi3) ,

and similarly for the other items. It is clear that the rDINA model only includes the
highest-order interaction term whereas the rDINO model also includes main effects
and lower order interaction terms. Further, rDINO restricts the coefficients of all the
terms to be equal and the signs to be alternating.

It is immediately obvious that both the rDINA and rDINO models, as well as
others, are simply special cases of a more general model that includes all main
effects and higher order interactions. For example, for the above item with three
attributes, a general reparameterized model is.

g
[
p
(
Yij = 1|α)] = fj + dj1αi1 + dj2αi2 + dj3αi3 + dj,12αi1αi2 + dj,13αi1αi3

+ dj,23αi2αi3 + dj,123αi1αi2αi3,
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where g is a link function, such as the logit, probit, or complementary log-log link
(all available in LG, along with others). Note that the discrimination parameters
are now attribute-specific, that is, dj in the rDINA and rDINO models is replaced
with the attribute-specific djk, for the first-order terms. For the interaction terms,
the discrimination parameter subscripts indicate which attributes are involved; for
example, for a three-way interaction term the discrimination parameter is dj,kk′k′ ′ ,
where the j indicates the item, as before, and kk′k′′ indicates the three attributes
involved in the interaction (giving dj, 123 in the example above). Applying the model
to every item, according to the Q-matrix structure, gives a general reparameterized
model (GRM), which is simple to fit with software such as LG. The notation
makes clear that the added parameters are discrimination parameters that show how
(transformed) hits increase compared to (transformed) false alarms.

The GRM with logit link gives a saturated version of the GDM of von Davier
(2008) and the LCDM of Henson et al. (2009); with an identity link it is a
saturated version of the GDINA model of de la Torre (2011); also see von
Davier (2013, 2014). With appropriate parameter restrictions, the GRM includes
the rDINA and the rDINO models discussed above. Another simplification is
to only include main effects, which gives the linear logistic model (LLM) of
Maris (1999); using an identity link gives the ACDM of de la Torre (2011). With
constraints placed on the coefficients of the higher-order interaction terms, one can
obtain the reduced reparameterized unified model (rRUM; Hartz, 2002), given that
Chiu and Köhn (2016) recently showed that rRUM is a (non-saturated) logistic
model with parameter constraints. The parameter constraints for rRUM, however,
are somewhat complex (and apparently cannot be implemented in LG at this
time).

Although an unrestricted saturated model is quite simple to fit in software such
as LG, one has to pay close attention to parameter restrictions that might need to
be imposed. For example, if the monotonicity constraint is to be satisfied, then
the coefficients djk of single attribute terms should be restricted to be greater than
zero. Note that if one fits the model (as GDINA) using ‘rule = GDINA2’ in the
CDM package in R (George, Robitzsch, Kiefer, Gross, & Uenlue, 2016; also see
Chap. 26 in this volume), for example, then monotonicity is not enforced, as can
be verified using the ECPE data – the first item gives a negative djk for the first
attribute, and so monotonicity does not hold for the first item. The GDINA package
in R (Ma & de la Torre, 2017; also see Chap. 29 in this volume) allows one to
place monotonicity constraints on the parameters. As before, in LG, non-negativity
for djk is implemented by using the monotonicity constraint (+), whereas negative
monotonicity is implemented by using (−), as shown by the programs given in the
Appendix.

Another consideration has to do with whether or not restrictions should be
placed on the coefficients of the interaction terms. For example, if they are left
unrestricted, then it is possible that the probability of a correct response can be
lower when an examinee has two required attributes as compared to only one of
the attributes. If this is viewed as being theoretically undesirable (although in some
cases one could possibly argue for an interference effect) then restrictions should

http://dx.doi.org/10.1007/978-3-030-05584-4_26
http://dx.doi.org/10.1007/978-3-030-05584-4_29
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be placed on the interaction parameters. For example, for an item that requires two
attributes, the restriction dj,kk′ > −1*min(djk, djk′) will ensure that the probability
of a correct response when an examinee has both attributes will not be lower than
when they only have one of the attributes (namely the one that gives the highest
probability of a correct response). The restriction can also be written as dj,kk′ >−djk

and dj,kk′ > −djk′ , which is the form used by Templin and Hoffman (2013) for an
implementation of the model in Mplus.

With respect to fitting the model in LG, although there is a way to implement
order restrictions (as shown below), the multiple restrictions required above cannot
currently be implemented simultaneously (to my knowledge). For example, for
items that require two attributes, there are four required restrictions: dj1 > 0, dj2 > 0,
dj,12 > −dj1, and dj,12 > −dj2; three of the four restrictions can be implemented in
LG, but not all four. A simple work-around is to use a two-step approach: in the
first step, fit the GRM with monotonicity constraints on the first order terms but
without restrictions on the interaction terms and examine the parameter estimates;
in the second step constrain interaction parameters where necessary (i.e., they
violate the above order condition) using information gained in the first step. That
is, if one finds that the estimate of dj2 is greater than the estimate of dj1, then
only the restriction dj,12 > −dj2 is needed, in addition to the two monotonicity
restrictions.

To illustrate the suggested approach, consider the well-known ECPE data, where
the saturated LCDM with appropriate restrictions has previously been fit (using
Mplus; Templin & Bradshaw, 2014). The first step is to fit a saturated model in LG
with a monotonicity constraint on the first-order terms, but unrestricted interaction
terms; the program in the Appendix shows that this is very simple to do in LG. The
results then allow one to see (1) if and where the above restriction on the interaction
term is violated and (2) if it is, which discrimination parameter is smallest, which
gives one information about min(djk, djk′), and so only three of the four restrictions
noted above are needed. For example, for the ECPE data, it was apparent from a
fit of the GRM that there were problems with Item 7; the coefficient for the second
attribute for this item was also clearly smaller than for the first attribute. Thus, for
the second step, the saturated model was fit adding the constraint dj,12 > −dj2 to
Item 7, and the results reproduce those shown in Table 1 and Figure 1 of Templin
and Bradshaw (2014) to two decimal places; the log-likelihood was also identical
to that obtained with Mplus. This is not to say that the two-step approach will work
in general, but the point here is to show possible ways to implement more complex
restrictions in current software.

The program given in the Appendix shows how to implement the order constraint
for Item 7 in LG; a ‘trick’ is used of adding a positive constant to the coefficient
that must be greater than zero by introducing an additional interaction term that is
restricted to be greater than zero, which implements the order constraint.

It should be noted that there is also a computational speed advantage of LG for
CDMs, which is useful when conducting simulations. For example, on a machine
with 8GB RAM, 2.30 GHz Intel Core processor, and 64-bit OS, an Mplus program
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to fit the saturated LCDM to the ECPE data (retrieved from https://jonathantemplin.
com/dcm-workshop-spring-2012-ncme/) took 47 min to converge, whereas the
model fit with LG (using the program provided in the Appendix) took less than
3 s (packages in R also have shorter run times).

Several researchers have suggested starting with a saturated model and attempt-
ing to determine which sub-model might be more appropriate (e.g., Rupp et al.,
2010). Recent studies have examined this approach using information criteria (Chen,
de la Torre, & Zhang, 2013) and the Wald test (de la Torre & Lee, 2013) for the
DINA, DINO, and ACDM models. Given the ability to fit the saturated model and
the various sub-models in LG, it is straightforward to implement these types of
model comparisons.

11.11 Discussion

Reparameterized diagnostic models are useful both for illustrating and understand-
ing basic aspects of CDMs, as well as providing a bridge to latent class models
and accompanying software. The importance of recognizing the signal detection
nature of the parameters is emphasized. Monotonicity, for example, is seen to be
a simple restriction on the discrimination parameter (i.e., that it is greater than
zero) which ensures that the corresponding ROC curves lie above the diagonal
line (which represents zero discrimination). The reparameterized models also help
make concepts such as duality more transparent and are useful for showing how
different models are related. For example, the models show that duality leads to
a simple way to fit the rDINO model with a program for the rDINA model by
using a negative monotonicity constraint. It also clarifies that DINA and DINO
are structurally different models with different parameters. All the options for
estimation, classification, and other output and tools available in latent class
software become immediately available for CDMs. One can also go beyond the
GRM, in that one can consider models with nominal or ordinal indicators with
more than two categories, models with continuous indicators, models with nominal,
ordinal, or continuous latent variables, and models with other link functions
besides the logit, all in a very straightforward manner, and all available in current
software.

Appendix

Complete Latent Gold program to fit the rDINA model, 15 items, 4 unstructured
attributes.

model
options

maxthreads=all;

https://jonathantemplin.com/dcm-workshop-spring-2012-ncme/
https://jonathantemplin.com/dcm-workshop-spring-2012-ncme/
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algorithm
tolerance=1e-008 emtolerance=0.01 emiterations=250
nriterations=50 ;

startvalues
seed=0 sets=16 tolerance=1e-005 iterations=50;

bayes
categorical=0 variances=0 latent=0 poisson=0;

montecarlo
seed=0 sets=0 replicates=500 tolerance=1e-008;

quadrature nodes=10;
missing excludeall;
output

parameters=effect betaopts=wl standarderrors
profile probmeans=posterior
bivariateresiduals estimatedvalues=model;

variables
dependent y1 cumlogit, y2 cumlogit, y3 cumlogit,
y4 cumlogit, y5 cumlogit,
y6 cumlogit, y7 cumlogit, y8 cumlogit, y9 cumlogit,
y10 cumlogit, y11 cumlogit,
y12 cumlogit, y13 cumlogit, y14 cumlogit, y15 cumlogit;
latent
a1 ordinal 2 score=(0 1), a2 ordinal 2 score=(0 1),
a3 ordinal 2 score=(0 1), a4 ordinal 2 score=(0 1);

equations
//next line uses a saturated association model for the
attribute model//
(r~full) a1 <-> a2 <-> a3 <-> a4;

//for sequential path approach, replace above with://
//a1 <- 1; a2 <- 1 + a1; a3 <- 1 + a1 + a2 + a1 a2//
//a4 <- 1 + a1 + a2 + a3 + a1 a2 + a1 a3 +

a2 a3 + a1 a2 a3//
y1 <- 1 + (+)a1;
y2 <- 1 + (+)a2;
y3 <- 1 + (+)a3;
y4 <- 1 + (+)a4;
y5 <- 1 + (+)a1 a2;
y6 <- 1 + (+)a1 a3;
y7 <- 1 + (+)a1 a4;
y8 <- 1 + (+)a2 a3;
y9 <- 1 + (+)a2 a4;
y10 <- 1 + (+)a3 a4;
y11 <- 1 + (+)a1 a2 a3;
y12 <- 1 + (+)a1 a2 a4;
y13 <- 1 + (+)a1 a3 a4;
y14 <- 1 + (+)a2 a3 a4;
y15 <- 1 + (+)a1 a2 a3 a4;

//remove next line for the sequential path approach//
r[1,1]=0;
end model
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Latent Gold program to fit the rDINO model of Eq. (11.2) (starting from variables
statement)

variables
dependent y1 cumlogit, y2 cumlogit, y3 cumlogit,
y4 cumlogit, y5 cumlogit,

y6 cumlogit, y7 cumlogit, y8 cumlogit, y9 cumlogit,
y10 cumlogit, y11 cumlogit,

y12 cumlogit, y13 cumlogit, y14 cumlogit, y15 cumlogit;
latent
a1 ordinal 2 score=(0 1), a2 ordinal 2 score=(0 1),
a3 ordinal 2 score=(0 1), a4 ordinal 2 score=(0 1);

equations
(r~full) a1 <-> a2 <-> a3 <-> a4;
y1 <- 1 + (+)a1;
y2 <- 1 + (+)a2;
y3 <- 1 + (+)a3;
y4 <- 1 + (+)a4;
y5 <- 1 + (+a)a1 + (+a)a2 + (-a)a1 a2;
y6 <- 1 + (+b)a1 + (+b)a3 + (-b)a1 a3;
y7 <- 1 + (+c)a1 + (+c)a4 + (-c)a1 a4;
y8 <- 1 + (+d)a2 + (+d)a3 + (-d)a2 a3;
y9 <- 1 + (+e)a2 + (+e)a4 + (-e)a2 a4;
y10 <- 1 + (+f)a3 + (+f)a4 + (-f)a3 a4;
y11 <- 1 + (+g)a1 + (+g)a2 + (+g)a3 + (-g)a1 a2
+ (-g)a1 a3 + (-g)a2 a3 + (+g)a1 a2 a3;
y12 <- 1 + (+h)a1 + (+h)a2 + (+h)a4 + (-h)a1 a2
+ (-h)a1 a4 + (-h)a2 a4 + (+h)a1 a2 a4;
y13 <- 1 + (+i)a1 + (+i)a3 + (+i)a4 + (-i)a1 a3
+ (-i)a1 a4 + (-i)a3 a4 + (+i)a1 a3 a4;
y14 <- 1 + (+j)a2 + (+j)a3 + (+j)a4 + (-j)a2 a3
+ (-j)a2 a4 + (-j)a3 a4 + (+j)a2 a3 a4;
y15 <- 1 + (+k)a1 + (+k)a2 + (+k)a3 + (+k)a4
+ (-k)a1 a2 + (-k)a1 a3 + (-k)a1 a4 + (-k)a2 a3
+ (-k)a2 a4 + (-k)a3 a4 + (+k)a1 a2 a3 +(+k)a1 a2 a4
+ (+k)a1 a3 a4 + (+k)a2 a3 a4 + (-k)a1 a2 a3 a4;

r[1,1]=0;
end model

Latent Gold program to fit the restricted (and unrestricted) GRM to the ECPE data

variables
dependent i1 cumlogit, i2 cumlogit, i3 cumlogit, i4 cumlogit,

i5 cumlogit, i6 cumlogit,
i7 cumlogit, i8 cumlogit, i9 cumlogit, i10 cumlogit,

i11 cumlogit, i12 cumlogit, i13 cumlogit,
i14 cumlogit, i15 cumlogit, i16 cumlogit, i17 cumlogit,

i18 cumlogit, i19 cumlogit,
i20 cumlogit, i21 cumlogit, i22 cumlogit, i23 cumlogit,

i24 cumlogit, i25 cumlogit,
i26 cumlogit, i27 cumlogit, i28 cumlogit;
latent

a1 ordinal 2 score=(0 1), a2 ordinal 2 score=(0 1),
a3 ordinal 2 score=(0 1);

equations
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(r~full) a1 <-> a2 <-> a3;
i1 <- 1 + (+)a1 + (+)a2 + (+)a1 a2;
i2 <- 1 + (+)a2;
i3 <- 1 + (+)a1 + (+)a3 + (+)a1 a3;
i4 <- 1 + (+)a3;
i5 <- 1 + (+)a3;
i6 <- 1 + (+)a3;

//i7 <- 1 + (+)a1 + (+)a3 + (+)a1 a3;//
//order restriction on Item 7 can be done as follows//
i7 <- 1 + (+)a1 + (+a)a3 + (-a)a1 a3 + (+)a1 a3;
i8 <- 1 + (+)a2;
i9 <- 1 + (+)a3;
i10 <- 1 + (+)a1;
i11 <- 1 + (+)a1 + (+)a3 + (+)a1 a3;
i12 <- 1 + (+)a1 + (+)a3 + (+)a1 a3;
i13 <- 1 + (+)a1;
i14 <- 1 + (+)a1;
i15 <- 1 + (+)a3;
i16 <- 1 + (+)a1 + (+)a3 + (+)a1 a3;
i17 <- 1 + (+)a2 + (+)a3 + (+)a2 a3;
i18 <- 1 + (+)a3;
i19 <- 1 + (+)a3;
i20 <- 1 + (+)a1 + (+)a3 + (+)a1 a3;
i21 <- 1 + (+)a1 + (+)a3 + (+)a1 a3;
i22 <- 1 + (+)a3;
i23 <- 1 + (+)a2;
i24 <- 1 + (+)a2;
i25 <- 1 + (+)a1;
i26 <- 1 + (+)a3;
i27 <- 1 + (+)a1;
i28 <- 1 + (+)a3;
r[1,1]=0;

end model
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Chapter 12
Q-Matrix Learning via Latent Variable
Selection and Identifiability

Jingchen Liu and Hyeon-Ah Kang

Abstract Much of the research and application in cognitive diagnostic assessments
to date has been centered on a confirmatory approach where a Q-matrix is pre-
identified using content experts’ opinion or test developers’ knowledge on test
items. As opposed to the traditional methods, which require prior knowledge about
latent dimensions and underlying structure of test items, the approaches described
in this chapter attempt to identify a Q-matrix solely relying on the observed test
response data and thus avoid probable decision error. There are several important
aspects to consider when estimating a Q-matrix from the observed data. First, a
fundamental question of identifiability arises, that is, whether and to what extent Q
can be estimated from data. The second aspect to consider in learning Q concerns
the computational intensity that arises from estimation. The third aspect pertains
to the presence of missing data, more precisely, the latent attributes underlying
the observed data. The completeness of a Q-matrix, the other important aspect to
consider in identifying Q, is beyond the scope of the present chapter.

12.1 Introduction

Much of the research and application in cognitive diagnostic assessments to date
has been centered on a confirmatory approach where a Q-matrix is pre-identified
using content experts’ opinion or test developers’ knowledge about test items. The
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Q-matrix constructed this way however is often subject to mis-specification, which
can consequently have an adverse impact on the estimation of model parameters and
assessment accuracy (e.g., de la Torre, 2008; Rupp & Templin, 2008). The focus of
the present chapter is on statistical methods that can estimate aQ-matrix objectively
from observed data. As opposed to the traditional methods, which require prior
knowledge about latent dimensions and underlying structure of test items, the
approaches described in this chapter attempt to identify a Q-matrix solely relying
on the observed test response data and thus avoid probable decision error.

There are several important aspects to consider when estimating aQ-matrix from
the observed data. First, a fundamental question of identifiability arises, that is,
whether and to what extentQ can be estimated from data. The identifiability ofQ is
a nontrivial question especially when a multitude of diagnostic classification models
(DCMs) are conceivable for a given data set. In many cases, a Q-matrix cannot be
uniquely identified, and it is not uncommon for different Q-matrices to lead to an
identical response distribution. The present chapter outlines results suggested in the
current literature concerning the extent to which a Q-matrix can be identified from
data in the absence of prior information. In particular, the chapter recounts some
of the theoretical results derived in Liu, Xu, and Ying (2013) and Chen, Liu, Xu,
and Ying (2015) within the framework of the DINA model (Haertel, 1989; Junker
& Sijtsma, 2001). The more recent study of Fang, Liu, and Ying (2017b) is also
introduced, which discusses identifiability within the general latent class models
that subsume most of the DCMs currently in use.

The second aspect to consider in learningQ concerns the computational intensity
that arises from estimation. When a Q-matrix is considered as one of the model
parameters and estimated via standard inference method such as maximum likeli-
hood estimation, the optimization of the estimation procedure is typically saddled
with significant computational overhead. Since Q is a discrete matrix, standard
calculus tools are not applicable; instead, one needs to search through all matrices
in the possible domain. Suppose a test is designed to measure D distinct attributes
with K items. Then, a most likely Q-matrix is found by rummaging through the
discrete domain {0, 1}K×D . Notice that this space grows exponentially with K and
D, and the computational intensity is substantial even for a test with small K or
D. The present chapter discusses a number of approaches that can cope with this
computational issue in estimating Q. The methods are categorized in two schemes:
(1) the estimation based on the empirical distribution (e.g., Liu, Xu, & Ying, 2012;
Liu et al., 2013), and (2) the estimation via latent variable selection (e.g., Chen et al.,
2015; Fang, Liu, & Ying, 2017a).

The third aspect pertains to the presence of missing data, more precisely, the
latent attributes underlying the observed data. In DCMs, the relationship between
the responses and latent attributes is specified by a nonlinear discrete function, and
the particular distributional assumptions are often imposed on the latent attributes.
The standard approach to estimating the model parameters in the presence of
missing data is to use a marginalized likelihood function where the unobservable
latent attributes are integrated out. Such procedure is commonly implemented
via well-known expectation-maximization (EM) algorithm. In like manner, the
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procedures of estimating Q (e.g., Chen et al., 2015, Fang et al., 2017a) employ
the EM algorithm and iteratively update the marginal probability distribution of
the latent attributes during parameter estimation. The present chapter discusses
the application of the EM algorithm when the Q-matrix is estimated through the
latent variable selection problem. We also refer the readers to Friedman, Hastie, and
Tibshirani (2010), and Tseng (1988, 2001) for related optimization methods.

Associated with the current issue, the present chapter also briefly introduces a
method that estimates a factor loading matrix within the context of multidimensional
item response theory (MIRT). The MIRT posits continuous latent trait variables to
account for examinees’ test performance, and the links between the test items and
trait variables are specified by a so-called factor loading matrix. While the nature of
the underlying latent space differs between the MIRT models and DCMs, similar
approaches can be applied to estimate the factor loading matrix in MIRT. The
present chapter introduces one of such procedures that has been proposed in the
same spirit with theQ-matrix estimation.

As a final note, it is to be noted that several other strategies that have been
proposed in relation to construction of Q are not the focus of this chapter.
For example, some studies considered creating an initial matrix by applying the
available knowledge and executing statistical algorithms to refine the provisionalQ-
matrix (e.g., Chiu, 2013; de la Torre, 2008; de la Torre & Chiu, 2016) or to estimate
the elements of Q (e.g., DeCarlo, 2012; Templin & Henson, 2006). A Bayesian
approach for objectively estimating a Q-matrix has also been proposed by Chen,
Culpepper, Chen, and Douglas (2017). In addition, the completeness of aQ-matrix,
the other important aspect to consider in identifying Q, is beyond the scope of the
present chapter. Interested readers may refer to Chiu, Douglas, and Li (2009), de la
Torre and Chiu (2016), and Köhn and Chiu (2017). See also Liu (2017) for a further
theoretical discussion.

12.2 Identifiability of Q-Matrix

Cognitively diagnostic assessments hinge on a Q-matrix that specifies loading
structure of test items on a set of cognitive attributes being measured. Based on the
specification of item-attribute association, cognitive diagnosis attempts to classify
individuals into a number of homogeneous groups. The groups are commonly
characterized by a two-level latent vector though multi-level latent status is possible,
and each dimension of the latent vector indicates mastery (or level of mastery) of
the corresponding attribute.

Suppose a test measures D distinct latent attributes with K binary items. For
simplicity of discussion, the current chapter focuses on the two-level attributes and
binary-response items; most of the conclusions made in the following however can
be extended to multi-level attributes and multi-category responses. Given the set
of D attributes measured by the test, a Q-matrix consists of K × D elements,
each indicating the relationship between the item and attribute being assessed. An
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individual entry of the Q-matrix, qkd , equals 1 if attribute d is required to respond
to item k correctly, and 0 otherwise. For a given item k, the kth row vector of Q,
qk = (qk1, . . . , qkD), specifies the set of attributes that are measured by, or relevant
to, item k.

A standard definition of identifiability of a parameter θ requires that distinct
values of θ correspond to the distinct probability distributions, or equivalently,
there exist no θ ′ �= θ that satisfies f (X | θ) = f (X | θ ′). In many cases of
DCM analyses, however, an exact Q-matrix cannot be uniquely identified because
permuting columns of a matrix (or equivalently, relabeling the attributes) can lead
to an identical response distribution. That is to say, a Q-matrix can be identified
only up to a column permutation when estimated from data. In fact, “up to a column
permutation” is the finest identifiability result one can draw regarding the specific
meaning of each attribute in the absence of prior knowledge. To indicate that two
matrices Q and Q′ are identical up to a column permutation, we write Q ∼ Q′;
otherwise, denote as Q � Q′. The notion Q ∼ Q′ implies that Q and Q′ have
identical column vectors if rearranged in the different orders.

The first study on identifiability ofQwas presented in Liu et al. (2013). The study
provides sufficient conditions under which aQ-matrix can be estimated consistently
up to a column permutation within the DINA model framework. The current
chapter introduces some of the essential results from Liu et al. as well as from the
ensuing studies. To begin the discussion, some necessary notation is introduced as
follows. Continuing the assumption that a test measures D distinct attributes, an
underlying attribute profile is denoted by A = (A1, . . . , AD) with a realization
a = (a1, . . . , aD), where ad ∈ {0, 1} indicates the presence or absence of the
dth attribute. Among the 2D possible attribute patterns, the probability distribution
for a particular pattern, a, is denoted by pa = P(A = a). For the population of
interest, p = (pa : a ∈ {0, 1}D) subject to the constraint that pa ∈ [0, 1] and∑

a pa = 1. Suppose that responses of N individuals have been observed and are
denoted by (Xnk : n = 1, . . . , N, k = 1, . . . , K). For notational simplicity,
the responses of a generic subject will be denoted by X1, . . . , XK without the
subscript n.

In the DINA model, the observable response is dictated by an ideal response,
denoted by ηk:

ηk =
D∏

d=1

(ad)
qkd = I(ad ≥ qkd : d = 1, . . . , D), (12.1)

where I(·) is an indicator function, that is, I(ad ≥ qkd : d = 1, . . . , D) = 1 if all
ad are greater than or equal to qkd across all different values of d. The ηk denotes
the individual’s ideal response to an item k when the individual has attribute profile
a = (a1, . . . , aD). The cognitive process of responding to item is considered
conjunctive in the DINA model in the sense that it requires an examinee to master
all the attributes assessed by the item for providing a correct response. Given ηk , the
DINA model defines the probability of a positive response to item as
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P(Xk = 1 | a, Q, sk, gk) = (1− sk)ηkg1−ηk
k ,

where sk and gk are the slipping and guessing parameters for item k, respectively.
The complement of sk , 1 − sk , is often reparameterized as ck , indicating the
probability that masters of item k answer the item correctly.

Assuming local independence of item responses given the latent class a, the
probability distribution of a set of responses X = (X1, . . . , XK) is obtained as

f (X = x |Q, p, c, g) =
∑

a

pa

K∏

k=1

P(Xk = xk |Q, a, c, g), (12.2)

where x = (x1, . . . , xK) denotes a realization of X, c = (c1, . . . , cK), and
g = (g1, . . . , gK). Equation (12.2) serves as an expected probability distribution
of response vector X. The empirical distribution is obtained from the observed data
as

P̂ (X = x) = 1

N

N∑

n=1

I(Xn = x). (12.3)

If the Q-matrix and the other parameters (p, c, g) were correctly specified, the
empirical distribution P̂ (x) converges to its theoretical value (12.2) as the sample
size grows. An estimator of Q can be then constructed such that it minimizes the
discrepancy between the theoretical and empirical probability distributions of the
response patterns.

The sufficient conditions under which theQ-matrix can be consistently estimated
(subject to a column permutation) are (Liu et al., 2013)

C1. pa > 0 for all a ∈ {0, 1}D;
C2. 1− sk > gk for all k; and
C3. The true matrix Q0 is complete, that is, {ed : d = 1, . . . , D} ⊂ {qk :

k = 1, . . . , K}, where ed is the standard basis vector in the D-dimensional
Euclidean space.

C1 states that the examinee population should be fully diversified such that all
attribute patterns exist in the population. C2 requires all test items have positive
discriminating power. C3 presents a sufficient and necessary condition for a set of
items to consistently identify examinees’ attribute profiles.

Under these conditions, one can construct a consistent estimator Q̂ up to a
column permutation. Specifically, the estimator for the DINA model satisfies

lim
N→∞ P(Q̂ ∼ Q0) = 1
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when the guessing parameters are known. The same conclusion can be derived when
the guessing parameters are unknown, yet with additional conditions (Chen et al.,
2015):

C4.
∑K
k=1 qkd ≥ 3 for all d; and

C5. After some row permutation corresponding to the reordering of items, Q0 is
reformulated as

Q0 =
⎛

⎝
ID

ID

Q′

⎞

⎠ , (12.4)

where ID is the D × D identity matrix, and Q′ denotes the rest of the Q0-
matrix.

C4 requires that each latent attribute be measured by at least three items. C5 states
that, for each latent attribute, there exist at least two items measuring the attribute
exclusively. Under the conditions C1, C2, C4, and C5, the Q-matrix is identifiable
with

lim
N→∞ P(Q̂ ∼ Q0) = 1. (12.5)

In addition, if the conditions C1, C2, C4, and C5 hold, p, c, and g are all identifiable.
While the above identifiability results are derived primarily for the DINA model,

the established theorems can be readily extended to the DINO model as a result
of duality of the two models (Chen et al., 2015; Köhn & Chiu, 2016). To put it
concretely, let s′k , g′k , and a′ denote the parameters pertaining to the DINO model.
Equating

1− sk = s′k, 1− gk = g′k, and a = 1− a′

results in the identical probability distribution for the observed response pattern x

under the DINA and DINO models. Hence, the identifiability results established for
the DINA model are also applicable to the DINO model.

As a matter of fact, identifiability results can be further extended to the
generic restricted latent class models. Fang et al. (2017b) consider the problem
of identifiability within the framework of the general latent class model, which
subsumes DCMs with special constraints on the latent attribute space and loading
structure. Note that the item response function depends on specific parametrization
of a latent space, and hence, it is generally difficult to derive a unified theory
applicable to all DCMs. As such, Fang et al. approach the identifiability problem
by considering partial information that each item can provide for differentiating the
latent classes. The motivation is that a single item in usual cognitive assessments
does not provide sufficient information for differentiating all dimensions of attribute
profiles; rather, an individual item induces an equivalence relation over the latent
classes.
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Formally, two distinct latent classes a and a′ are said equivalent in view of item
k if

P(Xk = xk | a) = P(Xk = xk | a′)

for all xk . Let a
k∼ a′ denote the item-specific equivalence relation and [a]k represent

the equivalence class corresponding to “
k∼”. If [a]k = [a′]k , it is said that item

k provides no information for distinguishing between a and a′, and consequently,
item k identifies a only up to the equivalence relation of [a]k . In other words, the

equivalence relation
k∼ characterizes the partial information that item k provides on

the latent space, and a Q-matrix can be seen as a parameterization of the items’
partial information structure.

Among the several identifiability results provided in Fang et al. (2017b), the
present chapter introduces the theorem pertinent to the current context below. Under
the following conditions,

A1. For each attribute d, there exist at least three non-overlapping sets of items,
each of which measures the attribute d only;

A2. Each set of items provides information to identify all levels of ad ; and
A3. pa > 0 for all a ∈ {0, 1}D .

The partial information of all items are identifiable up to a permutation of the latent
classes. That is, one can estimate equivalence class for item k, denoted by 〈·〉k , such
that there exists a permutation on the latent class space σ that follows

lim
N→∞ P (〈σ(a)〉k = [a]k) = 1. (12.6)

The results can also be generalized to more complex models that are comprised of
multi-category responses and/or multi-class attributes. For other results regarding
the partial information identification, see Fang et al. (2017b).

12.3 Q-Matrix Learning

The present section introduces several approaches to estimating a Q-matrix. Most
of the methods are generic and applicable to general DCMs.

12.3.1 Maximum Likelihood Estimation

The standard approach to estimating Q is to consider a maximum likelihood (ML)
estimator:

Q̂ML = argsup
Q

sup
(p, c,g)

L(p, c, g, Q), (12.7)
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where

L(p, c, g, Q) =
N∏

n=1

∑

an

pan

[
K∏

k=1

Pk(an)
Xnk (1− Pk(an))1−Xnk

]
,

and Pk(an) = P(Xk = 1 | an, ck, gk, Q). Under the identifiability conditions
discussed through C1 to C5, the estimator Q̂ML is consistent in the sense of (12.5).
The ML estimators of the other parameters are likewise consistent; see Liu et al.
(2012) for more details.

12.3.2 Using an Empirical Distribution

The second approach utilizes the empirical distribution of observed data and
compares against the marginal probability distribution under the presumed model.
Suppose the marginal distribution of X, f (X = x |Q, p, c, g), is given by (12.2),
and the empirical distribution of X is given by (12.3). An estimator can be
then obtained by minimizing the L2 distance between the marginal and empirical
distributions of X:

min
Q,p, c,g

∑

x∈{0,1}D

∣∣∣P̂ (X = x)− f (X = x |Q, p, c, g)

∣∣∣
2
. (12.8)

The estimator obtained by (12.8) is consistent and can identify the trueQ-matrix up
to an equivalence class under some sufficient conditions (Liu et al., 2013).

12.3.3 Latent Variable Selection

While the above estimators have sound theoretical properties, they tend to induce
substantial computational overhead. In order to maximize the likelihood function
or to minimize the L2 distance, one needs to search through the entire space of
K × D binary matrices, which is often practically infeasible even for moderate
K and D. Although there exist some iterative algorithms that can be used for
optimizing the objective function over the large discrete space (e.g., Liu et al.,
2012), computation remains a critical challenge for estimating aQ-matrix. Recently,
more viable alternatives have been proposed that cast the Q-matrix estimation as
a latent variable selection problem. These methods piggyback on well-developed
optimization techniques and demonstrate more computational efficiency than the
classic inference methods.

To illustrate the connection between the variable selection andQ-matrix estima-
tion, consider a simple example. Suppose that a test measures three attributes, and
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a q-vector for an item has the form of q = (1, 1, 0). When it comes to responding
to the item, having or not having mastery of the third attribute has no impact on the
response distribution, and hence, the following identity holds

P(X = x | a) = P(X = x | a1, a2).

This identity holds for all DCMs although the specific form of the item response
distribution may vary by the model. The above example suggests that the problem of
estimating q can be seen as identifying an array of attributes associated with the item
response. If the attributes were observed, the analysis of P(X = x | a) simplifies to
the variable selection problem in a usual regression model as it attempts to single
out the relevant elements in a predictor variable a. When estimating the parameters
of the DCM, however, the attribute profile is not directly observable and assumed
latent. Hence, identifying the pertinent attributes (i.e., estimating q) is equivalent to
selecting the latent variables related to the item response. The methods described
in the following are based on this idea and attempt to estimate Q through the well-
developed latent variable selection technique.

12.3.3.1 DCM as a Generalized Linear Model

To cast the Q-matrix estimation problem as a latent variable selection problem, the
DCM is reformulated as a generalized linear model (e.g., de la Torre, 2011; Henson,
Templin, & Willse, 2009; von Davier, 2005, 2008). The response distribution
then belongs to a natural exponential family. For each attribute profile a =
(a1, . . . , aD), let

α = (1, a1, . . . , aD, a1a2, . . . , a1a2 · · · aD)�

be the 2D-dimensional binary latent vector containing all interactions among the
components in a. The corresponding vector of regression coefficients for item k is
denoted as

βk = (βk0, βk1, . . . , βkD, βk12, . . . , βk12···D)�. (12.9)

Using the canonical link function, the response distribution is expressed as

P(Xk = x |α) = f (x) exp{T (x)β�k α − ϕ(β�k α)}, (12.10)

where T (x) is sufficient statistic of x. The T (x) can be of multiple dimensions
whereby βk becomes a matrix. In the case that Xk is a binary variable (i.e., x ∈
{0, 1}), (12.10) reduced to a logistic model

P(Xk = 1 |α) = exp{β�k α − ϕ(β�k α)}
1+ exp{β�k α − ϕ(β�k α)} . (12.11)
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If D = 2 and α = (a1, a2), for instance, the above model is expressed as

P(Xk = 1 |α) = exp{βk0 + βk1a1 + βk2a2 + βk12a1a2}
1+ exp{βk0 + βk1a1 + βk2a2 + βk12a1a2} . (12.12)

Note that the above models are expressed in a saturated form without any constraints
on the response distribution. The specific DCMs may however place additional
constraints or parametric forms. For example, a two-attribute DINA model of the
form (12.12) requires two elements in each βk be non-zero—one for βk0 and the
other for the highest interaction among the attributes required by item k. To put it
concretely, if q = (1, 0), both βk0 and βk1 are nonzero; if q = (0, 1), βk0 and βk2
are nonzero; and if q = (1, 1), βk0 and βk12 have nonzero values. Hence, it can be
seen that the Q-matrix estimation for the DINA model corresponds to identifying
the nonzero coefficients in βk , which may again be subject to parametric constraint
of the specific DCM of concern. Similar correspondence between theQ-matrix and
nonzero pattern in β can be identified for other DCMs; see Chen et al. (2015) for a
discussion.

12.3.3.2 Regularized Likelihood Estimation of Q for Parametric DCMs

A standard way to estimating a Q-matrix within the generalized linear modeling
framework similarly involves the evaluation of the likelihood function. Recall that
the ML estimator will result in substantial computational overhead in consequence
of searching through 2K×D matrices. To relieve the computational intensity, Chen
et al. (2015) propose a regularized ML estimator, the method of which has been
widely-studied and well-established for variable selection problems in regression
models. Specifically, the likelihood function within the generalized linear modeling
framework is expressed as follows.

L(B, p; Xn, n = 1, . . . , N) =
N∏

n=1

∑

αn

pαn

[
K∏

k=1

Pk(αn)
Xnk (1− Pk(αn))1−Xnk

]
,

where B = (βk : k = 1, . . . , K), and Pk(αn) = P(Xk = 1 |αn). For identifying
the nonzero coefficients, Chen et al. (2015) consider maximizing the regularized
likelihood:

(B̂, p̂) = arg max
(B,p)

l(B, p; Xn, n = 1, . . . , N)−N
K∑

k=1

pλk (βk), (12.13)

where l(·) = logL(·), and pλk (·) is a penalty function with λk being a regularization
parameter. The above regularized ML estimator naturally incorporates the principle
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of parsimony in the sense that the optimization tends to penalize complexity in βk .
The resulting estimate of βk contains as few nonzero elements as possible while
accomplishing the desired level of explanation.

To simplify computation even more in (12.13), one can constrain the value of λk
such that they are equal across the items, thus resulting in λk = λ. Two commonly
examples of the penalty function are the L1 penalty and SCAD penalty (e.g., Fan &
Li, 2001; Friedman et al., 2010; Tibshirani, 1996). The L1 penalty is given by

pλ(β) = λ
∑

l

|βl |, (12.14)

where l runs through the 2K elements of β. The SCAD penalty is defined based on
the derivative of the penalty term:

dpλ

dx
(x) = λ

{
I (x ≤ λ)+ max(0, γ λ− x)

(γ − 1)λ

}
, for x > 0

where γ is another tuning parameter that is generally suggested to be set at γ = 3.7
according to a prior simulation study (Fan & Li, 2001). Chen et al. (2015) suggest
that the regularized estimator (12.13) admits the oracle property both under the
identifiability conditions and other regularity conditions if λ→ 0 and

√
Nλ→∞

as N →∞.

12.3.3.3 Q-Matrix Learning for Nonparametric DCMs

The idea of the regularized estimator ofQ can be further extended to nonparametric
latent class model settings. Fang et al. (2017a) consider a general latent class model
with Dirichlet allocation and propose the regularized ML estimator that penalizes
complexity of βk at the group level. Revisiting the example of the two-attribute
DINA model, suppose a q vector for an item is (1, 0). Then, all the coefficients
related to the second attribute will become zero. In such case, it appears natural
to group the coefficients of β in a way that elements in the same group are either
all zero or all nonzero. Specifically, in the simple example (12.12), there are two
parameter groups:

θ1 = (βk1, βk12), and θ2 = (βk2, βk12),

each of which contains all coefficients related to the individual attribute. For each
attribute d and item k, we define a vector containing all coefficients related to
attribute j as follows:

θkj = (βkj , βk1j , . . . , βkjD︸ ︷︷ ︸
2nd order

, βk12j , . . . , βkj (D−1)D︸ ︷︷ ︸
3rd order

, . . . , βk12...D︸ ︷︷ ︸
Dth order

). (12.15)
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Imposing a group LASSO penalty yields

pλ(βk) =
D∑

j=1

λ|θkj |

where | · | is the usual L2 norm of a vector. The group LASSO penalty regularizes
coefficients such that all elements in the vector θkj are shrunk toward zero
simultaneously. If θkj is regularized to a zero-vector, then all the coefficients related
to attribute j are zero and thus the response distribution of Xk does not depend
on the attribute aj and therefore qkj = 0; otherwise, qkj = 1. Notice that this
approach does not require to specify a particular loading structure and thus is ideal
for exploratory study in which the precise model parameterization is undefined.

Once θ̂kj is obtained as an estimate of θkj , one can obtain qkj such that q̂kj = 1
if θ̂kj �= 0 and q̂kj = 0 otherwise. This map from β̂ to Q̂ is applicable to all DCMs.

12.3.4 Some Related Issues in Latent Variable Selection

The following discusses several issues regarding the implementation of the latent
variable selection methods.

12.3.4.1 Selection of a Penalty Parameter λ

To determine λ in the penalty function (12.13), one can consider a model selection
criterion. For example, Chen et al. (2015) make use of the solution path that
minimizes Bayesian information criterion (Schwarz, 1978)

BIC(M) = −2l(β̂(M))+ |M| logN,

where M is the currently fitted model, l(β̂(M)) is the maximum log-likelihood
under M, and |M| is the number of free parameters in M. For each λ, the regularized
likelihood estimator yields a separate model, denoted by Mλ. The tuning parameter
λ can be then selected so that it minimizes the BIC:

BIC(Mλ) = −2 max
B∈Mλ

{l(B)} + |Mλ| logN, (12.16)

where |Mλ| equals the number of nonzero coefficients of the regularized estimator
corresponding to λ.
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12.3.4.2 Computation via EM Algorithm

The optimization of the regularized likelihood function can be implemented apply-
ing the standard expectation-maximization (EM) algorithm. Let l(B; Xn, An, n =
1, . . . , N) denote the compete-data log-likelihood for individual that includes both
the observed responses Xn and missing data An. The EM algorithm is then carried
out in two steps: E- and M-step. In the E-step, the expectation of the complete-data
log-likelihood is computed with respect to the posterior predictive distribution of
the missing data:

Q(B, pα |p(t)α , B
(t)) = E[l(B, pα; Xn, An, n = 1, . . . , N)

∣∣ p(t)α , B
(t),

Xn, n = 1, . . . , N
]
,

where p(t)α and B(t) are the estimated parameter values from step t . Note that the E-
step involves a closed-form computation. Due to the local independence assumption
of Xn given the latent attribute profile, the log-likelihood functions of the different
observations are additive. Furthermore, since the latent attribute profile is defined
on a discrete space, the marginal probability distribution is computed explicitly.

The M-step maximizes the Q-function together with the penalty term:

(B(t+1), p(t+1)
α ) = arg max

(B, pα)

Q(B, pα |p(t)α , B
(t))−N

K∑

k=1

pλ(βk).

For optimizing the above function with respect to B, the coordinate descent
algorithm (Friedman et al., 2010) can be employed that optimizes one parameter
at a time. Since the function Q is convex and differentiable, and pλ is convex when
defined by the L1 penalty, the coordinate descent algorithm will converge to its
maximizer (Tseng, 1988, 2001). Furthermore, each step in the computation is either
a closed-form solution or convex optimization.

12.3.4.3 Multi-categorical Responses

The above latent variable selection approach is also applicable to multi-category
response data. The basic idea is to make use of the general form of the natural
exponential family in (12.10) together with the multidimensional sufficient statistic
T (x). For a response taking h different values {0, 1, . . . , h− 1}, the general form
of T (x) is an (h − 1)-dimensional vector with binary entries. That is, T (x) =
(t1, . . . , th−1) and ti = 1 if x = i; and T (x) = 0 if x = 0. The corresponding
β becomes a 2D × (h − 1) matrix, each column of which represents one response
type of X. Specifically, β = (β1, . . . , βh−1) and each βi is of the same dimension
as that in (12.9). Then, the response distribution is

P(X = x |α) = f (x) exp{T (x)β�α − ϕ(β�α)}.
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If one chooses a uniform base function f , the above distribution can be equivalently
written in a more friendly form as follows.

P(X = i |α) = exp(α�βi )

1+∑h−1
j=1 exp(α�βj )

.

With the item response function specified in the above generalized linear form, the
regularized likelihood approach can be applied in a similar fashion.

12.4 Latent Variable Selection for MIRT Models

Identifying the item-attribute relationship is also of importance in MIRT models.
The key difference between the MIRT models and DCMs is that the former assumes
continuous latent traits while the latter assumes discrete latent attributes. Let θ ∈
RD denote the D-dimensional vector consisting of continuous latent trait variables.
The item response function of a compensatory two-parameter MIRT model is given
by

P(Xk = 1 | θ , ak, bk) = exp (a�k θ + bk)
1+ exp (a�k θ + bk)

, (12.17)

where k (= 1, . . . , K) indexes the item, ak = (ak1, . . . , akD) is the vector of
discrimination parameters, and bk is known as the easiness parameter (i.e., the
complement of the difficulty parameter).

The analysis of an MIRT model largely falls into two categories, exploratory
and confirmatory. In exploratory analysis, there is often little to no prior knowledge
available, and the parameters are estimated without any constraints. In confirmatory
analysis, on the other hand, each item is known to be associated with a distinct
subset of latent traits, and this relationship is specified a priori via a factor loading
matrix, denoted by here �. The confirmatory analysis based on an MIRT model is
often considered one of the nonlinear versions of the confirmatory factor analysis.
Typical confirmatory analysis requires that � be completely specified and that the
item parameters be estimated subject to the constraints induced by �.

Analogously to theQ-matrix estimation in DCMs, a key question can arise as to
how to estimate a�-matrix when it is not known or partially known. Sun, Chen, Liu,
Ying, and Xin (2016) present a data-driven approach to estimating � via a similar
regularized estimation method as that for the Q-matrix discussed in the previous
section. Let � be an incidence matrix that corresponds to the nonzero pattern of the
K-by-D factor loading matrix, expressly, � = (λkd)K×D, where λkd = I(akd �= 0)
with I being the indicator function. Assuming conditional independence of item
responses given θn, the complete-data likelihood for the two-parameter logistic
MIRT is given by
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L(A, b; Xn) =
∫

�

pθn

[
K∏

k=1

Pk(θn)
Xnk
(
1− Pk(θn)

)1−Xnk
]
dθn,

where A = (a�k : k = 1, . . . , K) is the K-by-D matrix of item factor loadings,
b is the vector of item intercept parameters with length K , Pk(θn) = P(Xk =
1 | θn, ak, bk), and pθn is the prior distributional weight of θn. Analogously
with (12.13), the L1-regularized estimator is obtained as

(Â, b̂)η = arg max
(A, b)

l(A, b; Xn, ∀n)−Nδ
K∑

k=1

D∑

d=1

|akd |,

where l(A, b; Xn, ∀n) =∑N
n=1 logL(A, b; Xn).

Similar to the previous discussion, the value of δ is obtained as the one that
minimizes the BIC. The computation of (Â, b̂) follows the similar scheme as
presented in Sect. 12.3.3 while some modifications are needed to address the issues
related to the continuous latent variables (see Sun et al., 2016 for details). Once the
model parameter estimates are obtained, the �-matrix can be simply obtained as
λ̂kd = I(âkd �= 0).

12.5 Discussion

The present chapter has focused on an empirical approach for constructing a Q-
matrix. In contrast to traditional methods, which utilize experts’ prior knowledge
and thus can be subject to decision error, the methods presented in this chapter
are driven by observed response data and can result in consistent estimation of
Q. The chapter has also introduced theoretical results concerning identifiability
of a Q-matrix as well as several estimation methods. The estimation of Q was in
particular cast as a variable selection problem, and the corresponding estimator was
derived from the regularized likelihood function that penalizes the complexity in
Q. While the usual inference methods typically induce considerable computational
intensity, the procedures introduced here are computationally workable and have
mathematically sound properties.

Throughout the chapter, the estimators are obtained assuming no supplemental
prior knowledge regarding theQ-matrix. It is however possible in practice to impart
experts’ knowledge in the subject matter for drafting aQ-matrix. Such information,
if correct, cannot only serve as a guideline for estimating the remaining unknown
parameters but also substantially reduces the computational load in that one only
needs to search in the vicinity of the pre-constructedQ. Furthermore, theQ-matrix
incorporating experts’ opinion can oftentimes lead to better interpretation of the
estimated parameters. In applications, the introduced procedures can be customized
to combine the prior knowledge. If a Q matrix can be completely pre-specified,
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one can utilize this matrix as a starting point of the algorithm. If the pre-specified
matrix is largely correct, then the algorithm will converge very fast. If the matrix is
partially identifiable, one may impose regularization on the portion of parameters
that correspond to the unspecified elements of Q. This type of analysis is often
case-by-case.
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Chapter 13
Global- and Item-Level Model Fit Indices

Zhuangzhuang Han and Matthew S. Johnson

Abstract One of the primary goals in cognitive diagnosis is to use the item
responses from a cognitive diagnostic assessment to make inferences about what
skills a test-taker has. Much of the research to date has focused on parametric
inference in cognitive diagnosis models (CDMs), which requires that the parametric
model used for inference does an adequate job of describing the item response
distribution of the population of examinees being studied. Whatever the type of
model misspecification or misfit, users of CDMs need tools to investigate model-
data misfit from a variety of angles. In this chapter we separate the model fit
methods into four categories defined by two aspects of the methods: (1) the level
of the fit analysis, i.e., global/test-level versus item-level; and (2) the choice of the
alternative model for comparison, i.e., an alternative CDM (relative fit) or a saturated
categorical model (absolute fit).

13.1 Introduction

One of the primary goals in cognitive diagnosis is to use the item responses from
a cognitive diagnostic assessment to make inferences about what skills a test-
taker has. Much of the research to date has focused on parametric inference in
cognitive diagnosis models (CDMs), which requires that the parametric model used
for inference does an adequate job of describing the item response distribution of
the population of examinees being studied. Given the importance of data-model fit
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for inference, it is necessary to have methods for investigating the ability of a model
to fit observed data from an assessment.

Misfit for CDMs can come from a variety of sources. Incorrectly specifying
the form of item-response model (e.g., DINA versus DINO) and using it for
inference is a typical source of misfit. In some cases misfit might stem from
some common assumptions of the model. For example, the local independence
assumption presumes that items on the assessment are conditionally independent
given the skills being measured, that is, given a specific latent attribute class. Such
assumptions may be too strong to fit the actual data. Also, there are some specific
types of misfit for CDMs. For instance, the misspecification of the Q-matrix and
the distribution of the latent attribute pattern (e.g., the number of attributes and
the hierarchy among skills). Whatever the type of model misspecification or misfit,
users of CDMs need tools to investigate model-data misfit from a variety of angles.

In this chapter we separate the model fit methods into four categories defined
by two aspects of the methods: (1) the level of the fit analysis, i.e., global/test-level
versus item-level; and (2) the choice of the alternative model for comparison, i.e.,
an alternative CDM (relative fit) or a saturated categorical model (absolute fit).

Global model fit has been a major focus in preceding research (de la Torre
& Douglas, 2008; Sinharay & Almond, 2007). In this category, global relative fit
utilizes conventional information-based indices to select one from several models.
In contrast, global absolute fit tries to find out how exact the model reproduces
the observed data by examining squared-residual based statistics (e.g., model-level
χ2, G2 and root mean square error of approximation (RMSEA)) or non-inferential
indices (e.g., mean absolute difference (MAD)). Typically, these measures can serve
as general-purpose statistics to test the model assumptions such as specification of
the model parametric form, the local independence, specification of the Q-matrix
and the dimensionality.

Some additional attention should be drawn on the issue of Q-matrix specification.
The Q-matrix often constructed by domain experts could be misspecified and then
result in model misfit. Q-matrix refinement and validation methods (de la Torre &
Chiu, 2016; Chiu, 2013) have shown promising empirical performance in addressing
this concern. However, the problem of Q-matrix misspecification and refinement
should not be isolated from the Q-matrix learning and identification (see Chaps. 12
and 16 in this volume). An integrated view on these problems is constructive to the
understanding of CDMs.

Item-level fit analysis focuses on the local misfit caused by the misspecified
parametric form of individual or subsets of items. It allows practitioners to identify
these aberrant items and provide guidance about how to refine the measurement
instrument. Such analyses have been supported by recent empirical evidence (de la
Torre & Lee, 2013; de la Torre, van der Ark, & Rossi, 2015) showing that the
assessment with items assumed to follow different models (e.g., including both
DINA and DINO items) instead of uniformly having a single form might better fit
the real data. To achieve the refinement, item-level relative fit methods offer a way
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by comparing nested models via Likelihood Ratio (LR), Wald (W), and Lagrange
multiplier (LM) tests. Absolute fit methods can be adapted to the item-level as well.
For example, item-level goodness-of-fit statistics (Orlando & Thissen, 2000; Wang,
Shu, Shang, & Xu, 2015) are constructed on the basis of the squared residual of
observed and expected proportion of correctness that are obtained by grouping
respondents. Different grouping strategies lead to various types of fit statistics,
which has been a focus in recent studies. Item-level absolute fit statistics can also
be extended to detect misfit for item pairs or triplets. It is particularly useful if one
is interested in locating the source of misfit and taking remedial action when the
global model test identifies the existence of overall misfit and local dependence is
the potential culprit.

It is also worth mentioning that person-fit analysis, which is not discussed in this
chapter, offers another perspective to investigate model-data fit. Person-fit methods
focus on the misfit happening in individual response vectors. Theses methods are
helpful to detect aberrant test-taking behaviors such as cheating or a speeded test.
Several person-fit indices and tests have been proposed particularly for CDMs such
as the hierarchy consistency index (Cui & Leighton, 2009) and the generalized LR
test (Liu, Douglas, & Henson, 2009). Well-developed person-fit analysis in other
latent variable models such as the item response theory (IRT) (Meijer & Sijtsma,
2001) might be adaptable to CDMs.

In this chapter we restrict our focus on relative and absolute model-level
and item-level fit. After reviewing several methods that have been introduced in
the literature, we illustrate the implementations of some methods by a real-data
example. The review is outlined along the categories we defined previously. For
each category of methods, pros and cons are discussed based on current simulation
studies. Some general guidance on which measures one should use is included as
well.

13.2 The Model Framework

Here we use the generalized DINA (G-DINA) model (de la Torre, 2011) as the
basic framework to discuss model fit methods. As other general CDMs, such as
the general diagnostic model (von Davier, 2008) and the log-linear CDM (LCDM)
(Henson, Templin, & Willse, 2009), the G-DINA model relates several CDMs by its
flexible parameterization. See Chaps. from 6, 7, and 8 for more details about those
general frameworks.

The G-DINA model requires a K × D Q-matrix (with binary elements {qkd}).
The required number of attributes for item k is D∗k , where D∗k =

∑D
d=1 qkd .

Such representation efficiently reduces the attribute vector of item k from al =
(al1, al2 . . . , alD) to a�lk = (a�l1, a

�
l2, . . . , a

�
lD∗i
), where the number of classes

partitioned by item k is reduced from 2D to 2D
∗
k . For example, if D = 3 and the
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kth has q-vector qk = (1, 1, 0)�, then the full attributes vectors al = (0, 1, 0) and
al′ = (1, 1, 0) are simplified as reduced vectors a�lk = (0, 1) and a�

l′k = (1, 1).
The probability of respondents with latent profile a�lk answering item k correctly is
denoted by P(Xk = 1|a�lk) = P(a�lk), more specifically,

P(a∗lk) = δk0+
D∗i∑

d=1

δkda
�
ld+

D∗k∑

d=1

D∗k∑

d ′=d+1

δkdd ′a
�
lda

�
ld ′ +· · ·+δk12...D∗k

D∗k∏

d=1

a�ld , (13.1)

where δk0 is the intercept for item i; δkd is the main effect due to ad ; δkdd ′
and δk12...D∗k are interactions for the two-way and other higher orders among
a1, . . . , aD∗k . In some applications, monotonicity constraints are imposed on item
parameters to make sure that subjects having more skills answer an item correctly
with the probability no less than those having fewer skills. See Chap. 7 for details
on the monotonicity constraints. The model representation (13.1) uses a identity-
link function which can be simply modified and extended through putting other
transform functions (e.g., logistic- and log-link) on P(a�lk).

It is not hard to tell the flexibility of such a formulation. For example, the DINA
model can be obtained by using identity-link function and setting all parameters to 0
except for δk0 and δi12...D∗k ; in which case the guessing parameter follows gk = δk0
and the slipping parameter satisfies sk = 1−δk0+δk12...D∗k . Notice that the flexibility
enables us to summarize and estimate the parameters of multiple CDMs by a single
parametric framework. It also provides a convenient basis for comparing nested
models and allows us to examine one item at a time.

13.3 Relative Fit Indices

Relative fit indices evaluate the fit of a model compared to some competing model.
In the following two subsections, we first review the indices suitable for the global-
level fit and then look at how some of them can be used at the item-level.

13.3.1 Global Level

One way to evaluate the comparative fit of a model relative to a competing model,
when it is a nested model, is the likelihood ratio test (LRT). A nested model is one
that can be defined by enforcing some constraints on some of the model parameters.
For example, within the G-DINA framework, the DINA model is nested within the
G-DINA model because it can be obtained by setting all coefficients other than the
intercept and the highest-order interaction term equal to zero. The LRT compares
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the fit of the two models by comparing the log-likelihoods �r and �f evaluated at the
maximum likelihood estimates (MLEs) for the reduced and full models respectively,
where the log-likelihood is defined as

�(X|δ, γ ) =
N∑

n=1

log
L∑

l=1

p(al |γ )
K∏

k=1

P(a�lk)
Xnk
[
1− P(a�lk)

](1−Xnk) , (13.2)

where N is the number of participants and L = 2D; p(al |γ ) is the prior probability
of al . The item response probability P(a�lk) is obtained by compressing alk as shown
in the previous section. The MLEs of the item parameter vector, δ = (δ1, . . . , δK),
and the latent class proportion parameters γ = (γ1, . . . , γL′) (L′ = L and
p(al |γ ) = γl if an unrestricted attribute space is assumed) can be estimated with an
expectation-maximization (EM) algorithm (de la Torre, 2011; George, Robitzsch,
Kiefer, Groß, & Ünlü, 2016) for example.

The likelihood ratio test statistic that is typically used is two times the difference
between the log-likelihoods,

λ = 2
(
�f (X|δf , γ f )− �c(X|δc, γ c)

)
,

in the case where observations have been randomly sampled, the statistic λ is
approximately chi-squared distributed when the reduced model is the correct model;
the degrees of freedom of the distribution is equal to the difference in the number
of parameters in the two models. For example, if the full model is the G-DINA
model and the reduced model is the DINA, the number of parameters are pf =∑K
k=1 2D

∗
k + L− 1 and pr = 2K + L− 1 respectively.

The LRT has a couple of limitations. First, according to the old adage, ‘all models
are wrong’, the LRT tends to find evidence against simpler models when the sample
size N is large. Second, the likelihood ratio test requires the reduced model to be
nested within the full model framework.

Two information-based criteria attempting to address these issues are Akaike’s
information criterion (Akaike, 1974) and the Bayesian information criterion
(Schwarz, 1978), which are defined as

AIC = −2�(δ̂, γ̂ )+ 2p

BIC = −2�(δ̂, γ̂ )+ p ln(N),

To use AIC and/or BIC for model evaluation, the user should estimate multiple
competing models. In both cases, the model that should be selected is the one that
minimizes the criterion. So, if one is interested in whether the DINA model fit a
specific data set, the researchers would fit the DINA model and other candidates
from the G-DINA framework and then check if the AIC and/or BIC for the DINA
model is the smallest.
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The difference between the penalty terms makes the BIC penalize the model
with a larger number of parameters more than the AIC does. This is partially
due to the purposes of each; AIC attempts to find the model that best predicts
future observations, whereas BIC attempts to quantify evidence for a model in
model-selection problems. Kunina-Habenicht, Rupp, and Wilhelm (2012) found
that AIC and BIC are effective in selecting the model with a correctly specified
Q-matrix against those with misspecified Q-matrices within the framework of
the log-linear CDM. Chen, de la Torre, and Zhang (2013) showed that AIC
and BIC perform well in selecting among nested models within the G-DINA
framework.

Another way to compare non-nested model is the log-penalty index (Gilula
& Haberman, 1994) which is obtained by dividing the AIC by the number of
observations in the sample. It is more like the BIC penalizing the number of
parameters while accounting for the sample size. The index has been used in
comparing models within the framework of GDM (von Davier, 2008) and shown
promise of its implementation.

The LRT, AIC, BIC and log-penalty index all require MLEs for the model
parameters, and thus are used in frequentist applications. The deviance information
criterion (Spiegelhalter, Best, Carlin, & van Der Linde, 2002) and the Bayes factor
(Kass & Raftery, 1995), in contrast, are applicable for global relative fit within the
Bayesian modeling framework. The DIC is defined as

DIC = D̄ + pD,

where D̄ is the expectation of −2�(δ, γ ) over the joint posterior distribution of
(δ, γ ) given the observed assessment data. The quantity pD = D̄− 2�(δ̄, γ̄ ), where
(δ̄, γ̄ ) are the posterior mean vectors is a measure of the complexity of the Bayesian
model.

The Bayes factor is the Bayesian analog to the frequentist LRT.

BF12 = P(X|M1)

P (X|M2)

where

P(X|Mm) =
∫

exp
[
�(δm, γm)

]
p(δm, γm|Mm)dδmdγm

and p(δm, γm|Mm) is the joint prior density of parameters from the mth model. In
most applications exact calculation of the Bayes factor is difficult or impossible. A
possible approach for approximating the marginal likelihoods needed to calculate
the Bayes factor is with the Laplace-Metropolis estimator as proposed by Raftery
(1996).

DIC and Bayes factors have been suggested for use with CDMs. For example,
de la Torre and Douglas (2004, 2008), and Sinharay and Almond (2007) showed
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the effectiveness of these statistics for model selection. Specifically, de la Torre and
Douglas (2004, 2008) implemented the Bayes factor to compare the Higher-order
DINA and multiple-strategy DINA models to the traditional DINA model.

13.3.2 Item Level

The G-DINA framework allows us to evaluate the parametric form of an assumed
CDM used at the item-level by performing specific hypothesis tests. In these
hypothesis tests, the null hypothesis (H0) assumes the reduced model (e.g., DINA)
is correct and the alternative (H1) states that the general (or full) model (e.g., G-
DINA) is correct. Notice that this test does not touch the Q-matrix. Thus, the size
of parameter space for the full model is determined by the number of skills required
by the item. Let’s say, for instance, the Q-matrix specifies up to 3 skills but the
item only requires 2 skills. The full model of the item can have up to 4 parameters
according to the Eq. (13.1): an “intercept”, two “main effect”, and an “interaction”.

The likelihood ratio (LR) introduced earlier for model-level fit evaluation could
be applied to item-level fit by fitting the assumed model as the reduced model, and a
second model that assumes a G-DINA structure for that item. To check the fit of all
K items would require estimating K + 1 models, the reduced model, and a separate
“full” model for each item; this issue somewhat limits the use of the likelihood ratio
statistic for item-level evaluation.

Unlike the LR statistic and testing procedure, the Lagrange multiplier (LM), or
score test only requires estimation of the reduced model, which makes it particularly
useful for evaluating item-level fit of a model. The general idea of the score test
is that if the null hypothesis is correct, then the first derivative of the full model
likelihood evaluated at the reduced model maximum likelihood estimates should be
close to zero. If δ̂

0
k denotes the maximum likelihood estimator of the item parameters

for item k under the reduced model, then the LM statistic is

LM =
[
∂�f (δk)

∂δk
|

δk=δ̂
0
k

]T
I−1(δk)

[
∂�f (δk)

∂δk
|

δk=δ̂
0
k

]
, (13.3)

where I (δk) = V
[
∂�f (δk)

∂δk
|

δk=δ̂
0
k

]
is the information matrix (from the full model)

for the item parameter vector δk evaluating at δ̂
0
k; in practice the information

matrix is approximated using the observed information matrix I (δ̂
0
k). Under the null

hypothesis the distribution of the LM approaches a chi-squared distribution with
degrees of freedom equal to df = pf − pr , where pf and pr , by an abuse of the
notation, denote the number of item parameters for the item k in the full and reduced
models.

The LRT and the Lagrange multiplier test are asymptotically equivalent to
one another, so the results tend to be similar for large sample sizes. A third
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asymptotically equivalent test statistic is the Wald test statistic. The Wald test for
item-level model fit assessment requires fitting the full model (e.g., G-DINA) in
order to evaluate the fit of the reduced model (e.g., DINA). As discussed earlier, the
DINA model can be obtained from the G-DINA model by assuming all parameters
other than the intercept and the highest-order interaction term are equal to zero.
For example, suppose we have an item measuring two skills. Then the full model
parameter vector is δk = (δk0, δk1, δk2, δk12)

�; the test to evaluate fit of the DINA
model assumes a null hypothesis of the form H0 : δk = (δk0, 0, 0, δk12)

�, or
equivalently H0 : Rkδk = (0, 0)�, where Rk is the restriction matrix

Rk =
(

0 1 0 0
0 0 1 0

)
.

For general models Rk is a (pf − pr) × pf matrix describing the null model
restrictions; see de la Torre (2011) for examples. The Wald test is then defined

W =
[
Rk δ̂

1
k

]� [
RkV (δ̂

1
k)R

�
k

]−1 [
Rk δ̂

1
k

]
, (13.4)

where δ̂
1
k is the maximum likelihood estimator under the full model (H1) and V (δ̂

1
k).

It should be noted that V (δ̂
1
k) is the sub-matrix of the covariance matrix of the MLEs

for all item parameters and latent attribute distribution parameters. The covariance
matrix is usually approximated with the inverse of the observed information matrix.
The asymptotic distribution under the null hypothesis is also χ2

(pf−pr ).
Simulation studies by Torre and Lee (2013) and Sorrel, Abad, Olea, de la Torre,

and Barrada (2017) shown the statistics have accurate Type I error rates and high
power with large N and small D for typical significance levels. Sorrel et al. (2017)
found that the LR and Wald tests perform better than the Lagrange multiplier test
in terms of the Type I error and power across cases with N ≤ 1000, K ≤ 36 and
D = 4. However, all statistics are found (Sorrel et al., 2017; Ma, Iaconangelo, &
de la Torre, 2016) to be highly affected when items have low discrimination.

13.4 Absolute Fit Indices

In this section we start by reviewing the global-level statistics and then move to
introduce the item-level indices. A review of posterior predictive methods assessing
model misfit within the Bayesian approach is included as the end of the section.
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13.4.1 Global Level

Classical goodness-of-fit (GOF) statistics such as Pearson’s χ2 and the likelihood
ratio G2 are fundamental overall fit indices in categorical data analysis. For a test
with K dichotomous items,

χ2 = N
2K∑

c=1

(pc − π̂c)2
π̂c

and G2 = 2N
2K∑

c=1

pc ln(
pc

π̂c
)

where pc and π̂c are the observed and model-based expected proportions for one
cell c in the 2K contingency table (for all possible response patterns). The model-
based proportions, π̂c, is calculated by the marginal likelihood in the right-hand
side of (13.2) with estimated parameters. For small K and under the null hypothesis
that the assumed CDM is the correct model, the statistics follow the chi-square
distribution with degrees of freedom (df ) 2K − p − 1, where p is the total number
of model parameters.

These full-information statistics suffer from the problem of sparsity when the
number of items, K , is large or when the sample size, N , is small, which leads to
unknown asymptotic properties. One way out of this is using the resampling and
bootstrapping techniques but the computation is prohibitively expensive. Maydeu-
Olivares and Joe (2005) introduced the limited-information family of statistics to
address such concerns for item response models in general. Hansen, Cai, Monroe,
and Li (2016) and Liu, Tian, and Xin (2016) have implemented statistics in this
family to evaluate global fit for CDMs.

The idea is to utilize the up-to-rth-order moments, π r , rather than the proportions
of all possible response patterns (or referred as all cells in the contingency table, π),
to formulate the fit statistic. For instance,

π2 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

π̇1

π̇2

π̇3

π̇12
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⎞

⎟⎟⎟⎟⎟⎟⎟⎠

= T 2π =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 1 1 0 1
0 0 1 0 1 0 1 1
0 0 0 1 0 1 1 1
0 0 0 0 1 0 0 1
0 0 0 0 0 1 0 1
0 0 0 0 0 0 1 1

⎞
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⎛
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⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(13.5)

for the case of K = 3; T 2 is the matrix transforming π to π2. The limited-
information statisticMr is written as

Mr = N(pr − π̂ r )
T Ĉr (pr − π̂ r )
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on the basis of the up-to-rth moments. Given a specified CDM model being the
null model, Mr follows the chi-square distribution with df = sr − p, where
sr = ∑r

i=1

(
K
i

)
is the number of elements in π r . The detailed derivation of Ĉr

is described in Maydeu-Olivares and Joe’s (2005) paper.
Hansen et al. (2016) and Liu et al. (2016) examined the limited information statis-

tic for the evaluation of CDMs. Simulations in both studies show thatM2 has more
stable performance in detecting misfit simulated from Q-matrix misspecification
than χ2 and G2 for moderate sample sizes. Hansen et al. (2016) also found that
M2 is sensitive to misfit from item-level model misspecification and to violations
of local independence, but insensitive to the misspecification of the higher-order
structure of the attributes.

One of the shortcomings of the goodness-of-fit is that they treat the null
hypothesis as the desired model, and the alternative model as the saturated model.
In practice the true data generation process is likely to be more complex than any
assumed model, and therefore will be rejected with a sufficiently large sample
size. To deal with this issue, Browne and Cudeck (1992) introduced the root
mean squared error of approximation (RMSEA), which attempts to measure the
discrepancy between the population (πT ) and the null model (π0) probability
vectors.

RMSEA =
√

max

(
χ̂2 − df
N × df , 0

)

where χ̂2 is the observed χ2 statistic for the data set. Maydeu-Olivares and Joe
(2014) give the limited-formation version is

RMSEAr =
√√√√max

(
M̂r − dfr
N × dfr , 0

)
.

The 90% of confidence interval of RMSEAr is derived from the non-central
chi-square distribution Fχ2(M̂r ; dfr). Maydeu-Olivares and Joe (2014) show that
RMSEAr (r ≤ 3) has more accurate confidence intervals than RMSEA when
2K > 300 using simulations generated under dichotomous IRT models.

In practice, the cut-off values for RMSEA are suggested to determine the degree
of fit. For example, Oliveri and von Davier (2011) suggest using RMSEA1 > 0.1
as poor fit when they measure the item-level misfit for the PISA (Programme for
international Student Assessment) data with the GDM; Liu et al. (2016) recommend
the cut-off values (less than) 0.030 and 0.045 for RMSEA2 as “excellent” and
“good” fit under the LCDM.

Using item-level and item-pairwise fit indices to assess overall misfit has been
suggested in the item response literature. Two examples are

MADk = |ṗk − ˆ̇πk|,
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χ2
kk′ = N

1∑

xk=0

1∑

xj ′=0

(pxkxk′ − π̂xkxk′ )2
π̂xkxk′

,

where ˆ̇πk is the model-implied proportion of answering the item k correctly; π̂xkxk′
is the expected probability of cell in the bivariate table for item k and k′; ṗk and
pxkxk′ are observed probabilities. Other item-pairwise indices not described in this
chapter, such as the Fisher transformation of item-pair correlations and the item-
pairwise log-odds ratio, were studied in Chen et al. (2013). Researchers (Chen et al.;
Lei & Li, 2016) applied these statistics by simply taking the average or conducting
Bonferroni-adjusted multiple comparisons. Both studies show that the pairwise fit
indices perform with better power in detecting global misfit than item-level statistics
fit do.

13.4.2 Item Level

Squared-residual based statistics play a vital role in item-level fit. To collect the
squared residuals, we partition the test-takers into groups by certain criteria. Once
the groups are given, we can calculate oks and eks denoting the observed and
expected proportion of answering the item k right for the test-takers in group s.
It’s easy to see that different grouping variables lead to different statistics.

Yen (1981) proposed Q1 by grouping the test-takers according to their latent
abilities. In the context of CDMs, the examinees are grouped by their attribute
patterns. In practice the assignment of a subject to her latent attribute class is given
by the posterior P(âl |xn) where âl and xn are the attribute pattern l and response
vector for subject n. Yen (1981) approximated the limiting distribution ofQ1 by the
chi-square distribution with df 2D − pk − 1, where pk is the number of parameters
for item k. The statistic is criticized for two reasons. First, some latent attribute
classes are extremely rare, especially when D is large, which means that almost no
test-taker will be assigned in these classes. Some researchers suggested binning the
classes to reduce the effect of sparsity. But how to bin them appropriately is still a
complex question. Second, the uncertainty of the class assignment is not considered
in the approximation ofQ1’s limiting distribution.
S − χ2

k and S − G2
k proposed by Orlando and Thissen (2000) address these

problems. The statistics are defined as

S − χ2
k =

S−1∑

s=1

Ns
(oks − eks)2
eks(1− eks)

S −G2
k = 2

S−1∑

s=1

Ns

[
oks log

(
oks

eks

)
+ (1− oks) log

(
1− oks
1− eks

)]
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where s indicates the group of test-takers who score s; Ns is the number of
examinees in group s; oks and eks are what we define before; eks is calculated as

eks =
∑2D
l=1 P(Xik = 1|al )P

(
S(−k) = s − 1|al

)
p(al )

∑2D
l=1 P (S = s|al ) p(al )

.

P
(
S(−k) = s − 1|al

)
is recursively computed via the algorithm developed by Lord

and Wingersky (1984) as described in detail by Orlando and Thissen (2000).
Orlando and Thissen (2000) approximated the distribution of S−χ2

k and S−G2
k

by the chi-square with df = K−1−pk , where pk is the number of item parameters
for item k. Notice that the squared residuals are grouped by (or conditioned on) raw
scores rather than by estimated latent ability groups. Orlando and Thissen (2000) in
simulation studies showed that their statistics have more sensible Type-I error than
Q1 does.

Wang et al. (2015) suggested applying Stone’s method (2000) in Q1 to take the
uncertainty of âl into consideration. Instead of using observed counts grouped by
point estimated âl to create squared residuals inQ1, Stone (2000) computed

O∗kl =
N∑

n=1

xnkp(âl |xn)

to account for the uncertainty by the posterior distribution of âl . The chi-square
is no longer a good approximation to the limiting distribution of the new statistic
given the dependence among examinees introduced from p(âl |xn). A Monte Carlo
resampling technique is suggested to construct the distribution for inference.

Simulation studies conducted by Wang et al. (2015) show that Stone’s Q1 has
more promising power and Type I error than its original counterpart to detect
Q-matrix and model-type misspecification under the DINA model. One of the
drawbacks of Stone’s methods is that they are computationally expensive. Sorrel
et al. (2017) noted that S − χ2

k avoids inflated Type I error when detecting the item-
level misfit within the G-DINA. But they also remarked that the power of S − χ2

k is
quite unacceptable in many cases.

13.4.3 Posterior Predictive Assessment

The posterior predictive model-checking (PPMC) method (Rubin, 1984) is one of
the popular approach within the Bayesian paradigm, not because of its intuitive
appeal and ease of implementation, but more importantly, its strong theoretical
basis.
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Sinharay (2006a) argued that S − χ2
k and S − G2

k do not have the assumed
limiting distribution due to the use of item parameters estimated from ungrouped
observations. Sinharay (2006a) suggested using the PPCM method, working along
with Markov chain Monte Carlo (MCMC) sampling technique, to sample the
empirical distributions for S−χ2

k and S−G2
k that approximate their actual posterior

distributions.
The idea behind the PPMC is to compare the observed data x with replicated

data xrep generated from the posterior predictive distribution

p
(
xrep|x) =

∫
p
(
xrep|θ)p(θ |x)dθ . (13.6)

θ contains δ, γ , or hyper-parameters according to the prior assumption; p (xrep|θ)
is the joint likelihood function and p(θ |x) is the posterior distribution given the
observed data.

In practice test quantities/discrepancy measures, D(xθ), are defined (Gelman,
Meng, & Stern, 1996) to evaluate the adequacy of a model; the lack-of-fit can be
summarized by the posterior predictive p-value (ppp)

ppp =
∫

θ

∫

xrep
I[D(x,θ)≤D(xrep,θ)]p

(
xrep|θ)p(θ |x)dxrepdθ , (13.7)

where I [·] is the indicator function. The analytical difficulty in (13.6) and (13.7) can
be reduced by numerically carrying these out along with the MCMC steps. Model
parameters θ (1), θ (2), . . . , θ (M) are simulated from the (approximate) posterior
distribution p(θ |x) within the converged MCMC algorithm. The replicated data,

xrep(m), is generated from the likelihood p
(
xrep|θ (m)

)
for m = 1, . . . ,M . This

process leads to M draws from the joint distribution p(xrep, θ |x), which can then
be used to approximate the ppp by calculating the proportion of times the replicated
data has a larger discrepancy than the observed data to approximate the integral
in (13.7).

The choice of D(x, θ) is vital but also flexible for the PPMC method. Sinharay
and Almond (2007) suggested examining the item-fit by Q1. Wang et al. (2015)
employed the power-divergence (PD; a more general statistic family including
Q1) and Stone-type PD to check item-level fit. Sinharay and Almond (2007)
assessed the overall fit by looking at the residual between individual raw score and
expected score. GOF statistics and RMSEA mentioned above could be chosen as
the discrepancy measure for detecting overall misfit.

Robins, van der Vaart, and Ventura (2000) show that the ppp tends to be
conservative for some choices of discrepancy measure. Similar issues were found
in Wang et al. (2015) that the ppp is more conservative than its classic GOF
counterparts. However, as many researchers argued, a conservative diagnostic with
reasonable power is better than tests with unknown properties or poor Type I error
rates.
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Other posterior predictive based methods, such as the direct display (for overall
fit) and the odds ratios (for item association/pairs fit), are not covered in this chapter.
We refer readers to Sinharay (2006b) for more details about these methods which
have been used in model diagnostics for Bayesian networks.

13.5 Empirical Illustration

A real dataset for the 28-item Examination for the Certificate of Proficiency in
English (ECPE) is analyzed in this section as an example. ECPE is developed and
scored by the English Language Institute of the University of Michigan. The data has
been used to investigate multidimensional cognitive attributes (Buck & Tatsuoka,
1998; Templin & Hoffman, 2013) and to examine attribute hierarchy (Templin &
Bradshaw, 2014).

Current discussions on the attribute hierarchy is worthy of mention. Von Davier
and Haberman (2014) point out that the hierarchical diagnostic classification models
(HDCMs; Templin & Bradshaw, 2014) are equivalent to an ordered latent class
model. Also, Templin and Hoffman (2013) argue that HDCM and G-DINA models
perform not substantially better than the unidimensional two-parameter IRT model.
Von Davier and Haberman (2014) suggest to start with the simplest possible model
rather than with a potentially overly complex model.

In this illustrative example, the hierarchy among attributes is not be considered
for the model assumption. But we still focus on the CDM framework. Global fit
for several common CDMs are compared by information criteria and the absolute
overall fit is also examined. Item-level fit is checked when the DINA framework is
assumed to fit the data.

In specific three attributes in ECPE dataset (Buck & Tatsuoka, 1998) are
measured: morphosyntactic rules, cohesive rules, and lexical rules. The data with
a sample of 2,922 test-takers and its Q-matrix have been included in R packages
such as G-DINA (Ma, de la Torre, & Sorrel, 2018) and CDM (Robitzsch, Kiefer,
George, & Ünlü, 2018).

13.5.1 Global Model Fit Results

13.5.1.1 Relative Fit

Table 13.1 presents the performance of AIC, BIC and sample-size adjusted BIC
across the saturated G-DINA, the Additive-CDM (ACDM) and a mixed form (MIX)
of G-DINA and ACDM. ACDM only contains terms in (13.1) up-to main effects.
For the mixed form, items 3, 11, 12, 17 and 21 are set as the ACDM since their
estimated second-order interaction coefficients are not significantly different from
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Table 13.1 Global relative
fit indices

p AIC BIC sBIC

DINA 63 85,813.98 86,190.72 86,191.24

G-DINA 81 85,642.67 86,127.05 86,127.71

NC-GDINA 81 85,639.19 86,123.57 86,124.24

ACDM 72 85,639.01 86,069.57 86,070.16

MIX 76 85,642.17 86,096.65 86,097.27

Table 13.2 Global absolute fit indices

M2 df RMSEA2 max(χ2
kk′ )

ACDM 474.557 (0.000) 325 0.013 (0.010, 0.015) 38.712 (0.000)

MIX 500.841 (0.000) 330 0.013 (0.010, 0.016) 39.639 (0.000)

DINA 515.707 (0.000) 343 0.013 (0.011, 0.015) 26.608 (0.000)

0 under the G-DINA model. Non-constrained G-DINA (NC-GDINA) denotes the
saturated G-DINA without monotonicity constraints.

The information criterion in Table 13.1 picks out the ACDM. It also shows
that G-DINA and NC-GDINA are different models, which should be noted when
choosing a model. Notice that the NC-GDINA model is probably not identified in
this case. The general discussions on the identification issue related to monotonicity
constraints are considered in von Davier (2014). Here we just use this model to
emphasize that the monotonicity constraints should not be ignored in model fitting
and selection. The standard AIC and BIC statistics examined here do not capture
the identification issue for the unconstrained model, and so are must be interpreted
when comparing the constrained G-DINA model to the unconstrained NC-GDINA
model.

13.5.1.2 Absolute Fit

Following the relative fit, Table 13.2 provides the absolute fit of ACDM, MIX, and
DINA. The statistics M2 and RMSEA2 are limited-information based statistics as
mentioned previously. The p-values for the test statistics and the 95% confidence
intervals for the RMSEA are given in parentheses following the various statistics.
The final column, max(χ2

kk′), is the largest χ2
kk′ among all pairs of items; the p-value

for the statistic is obtained by the Holm-Bonferroni procedure.
Both limited-information and item-pairwise test statistics suggest that none

of the three models provide adequate fit to the data. A possible reason is the
misspecification (underspecification) of the Q-matrix, which would lead to local
dependence among the items. In contrast the RMSEA suggests that the models
produce an adequate and similar fit to the data. The different results provided by
RMSEA and other absolute fit support what we mention in the review section.
Absolute fit statistics such as limited-information M2 tend to reject the null model
when sample size is large, whereas RMSEA takes the effect of sample size into
consideration.
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13.5.2 Item-Level Fit Results

13.5.2.1 Relative Fit

Table 13.3 lists the chi-square statistics based on the Wald test. The Wald test, given
in the first column of the table, examines the null hypothesis that the item is DINA
against its alternative that is the G-DINA. The second column is for the ACDM case.

The table lists the items rejected under the DINA null. Among them, items 3, 7,
and 21 are not rejected under the ACDM null. The df is 2 for the DINA null and 1
for the ACDM null since there are only 2 attributes required by these items.

13.5.2.2 Absolute Fit

The Wald test is useful to select the parametric form for each item but it relies
heavily on the nested model structure. The most saturated case is G-DINA within
this framework. Absolute fit methods offer a way to check if items fit the data when
the G-DINA is assumed.

Table 13.4 shows the absolute fit results. RMSEAk (Oliveri & von Davier, 2011)
is the item-level RMSEA based on RMSEA1. S − χ2 is the raw-score based
Pearson’s chi-square statistic from Orlando and Thissen (2000). S − RR − χ2

and S − DN − χ2 are Rao-Robson (RR) and Dzhaparidze-Nikulin (DN) adjusted
versions for S − χ2 described in more detail below.

Chernoff and Lehmann (1954) have shown that a χ2 statistic computed from the
cells of probabilities (e.g., eks in S − χ2) based on grouped individual observations
while its estimates (e.g., item parameters δ̂k) are from ungrouped observations does
not have the expected limiting distribution.

To address the issue, Rao and Robson (1975) modified the squared-residual based
statistics, in the item-level case vk = (vk,1, vk,2, . . . , vk,K−1)

T , as

RR − χ2 = vTk

(
IK−1 − BJ−1BT

)−1
vk,

Table 13.3 Item-level
relative fit indices

DINA χ2
Wald ACDM χ2

Wald

Item 1 39.823 (0.000) 26.342 (0.000)

Item 3 23.871 (0.000) 0.102 (0.750)

Item 7 213.444 (0.000) 36.029 (0.000)

Item 11 98.963 (0.000) 1.173 (0.279)

Item 12 201.990 (0.000) 201.607 (0.000)

Item 16 106.427 (0.000) 5.966 (0.015)

Item 17 27.508 (0.000) 4.194 (0.041)

Item 20 76.782 (0.000) 37.586 (0.000)

Item 21 130.965 (0.000) 2.399 (0.121)
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Table 13.4 Item-level absolute fit indices

RMSEA S − χ2 S − RR − χ2 S −DN − χ2

Item 2 0.012 46.723 (0.000) 46.727 (0.000) 39.465 (0.002)

Item 10 0.032 54.763 (0.000) 54.791 (0.000) 29.236 (0.032)

Item 15 0.026 49.838 (0.000) 49.854 (0.000) 33.857 (0.009)

Item 19 0.033 51.656 (0.000) 51.689 (0.000) 28.647 (0.038)

Item 22 0.042 61.712 (0.000) 61.754 (0.000) 27.957 (0.045)

Item 23 0.016 59.212 (0.000) 59.225 (0.000) 38.331 (0.002)

Item 24 0.029 75.482 (0.000) 75.521 (0.000) 45.462 (0.000)

where

vk,s(δ̂k) =
√
Nk(oks − eks(δ̂k))√
eks(δ̂k)(1− eks(δ̂k))

;

J is the information matrix w.r.t the kth item parameters δ̂k and B is the Jacobian
matrix of ek = (ek,1, . . . , ek,K−1)

T w.r.t δ̂k . The statistic is essentially

vTk Cov (vk)
−1 vk

which follows χ2
K−1 instead of χ2

K−1−pk . Dzaparidze and Nikulin (1975) proposed
a similar statistic

DN − χ2 = vTk

(
IK−1 − B(BT B)−1BT

)−1
vk,

which follows χ2
K−1−pk . The connection between the statistics has been dis-

cussed by McCulloch (1985). Simply put, the idea is to approximate the actual
covariance matrix for residual vk based on the MLEs calculated from ungrouped
data.

Table 13.4 presents the significant items across the three statistics under the
saturated G-DINA model. The df s are 20 − 1 − 2 = 17, 20 − 1 = 19, and
20−1−2 = 17 for each column respectively. Notice thatK = 20 since we merge the
cells with observed counts less than 20. For the item-level fit detection, parameters
for the other items and the size of latent classes are assumed to be invariant; plus, all
flagged items are DINA items. Therefore, pk = 2. The result suggests that a more
flexible parametric form or a more sophisticated Q-matrix is needed to account for
the misfit.
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13.6 Discussion

While this chapter has attempted to review some of the most common measures
and methods for evaluating model fit, it is by no means complete. New methods are
appearing quite regularly for the evaluation of fit.

An example is the study by Chalmers and Ng (2017), who modify the square-
residual based statistics by using plausible value imputation to generate and account
for the uncertainty coming from the use of latent trait estimates. The idea is very
similar to the resampling-based and the PPMC methods.

Also, for item-level absolute fit methods within the Bayesian approach, residual-
based display techniques are not covered in this chapter. Display methods in model
diagnosis for Bayesian networks (Sinharay, 2006b) can be employed to examine
item fit in CDM. Developing more intuitive display methods to visualize and
measure the item-level misfit for CDM is a potential topic.

Further generalizations are needed as well. Current studies focus on CDMs with
binary skills and binary item scores. Extending current methods to address the
polytomous variants is certainly an area need more research, as is evaluating those
methods. More comprehensive simulation and empirical studies on comparable
methods could offer researchers further guidance and insights.

It is necessary to consider and assess the practical significance and consequence
of model misfit since no model is perfect. The issue has been stressed in the
context of IRT framework by Hambleton and Han (2005) and Sinharay and
Haberman (2014). Whereas Sinharay and Haberman (2014) focus on the item misfit
significance for high stakes tests, van Rijn, Sinharay, Haberman, and Johnson (2016)
investigate low-stakes assessment. Two studies both find that the misfit hardly
impacts the test outcome. To the best of the authors’ knowledge, the methodologies
or guidance for this topic have not been comprehensively studied in CDMs, which
implies a promising research direction.
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Chapter 14
Exploratory Data Analysis for Cognitive
Diagnosis: Stochastic Co-blockmodel and
Spectral Co-clustering

Yunxiao Chen and Xiaoou Li

Abstract Exploratory data analysis (EDA) is an essential stage in statistical anal-
ysis that extracts information from data to assist confirmatory statistical modeling.
Diagnostic classification models (DCMs) are a confirmatory approach to cognitive
diagnosis, for which EDA tools need to be developed to assist the design of
DCM-based tests. In this chapter, we propose a stochastic co-blockmodel that
approximates the structure of many DCMs and an efficient spectral co-clustering
algorithm for fitting the model. The proposed approach explores the structure of
assessment data by clustering students and items into latent classes and analyzing
the relationship between the student classes and the item classes. The performance
of the proposed algorithms is evaluated through simulation studies. A real data
example is provided to illustrate the use of the proposed method.

14.1 Introduction

In educational testing research, diagnostic classification models (DCMs) for cog-
nitive diagnosis have been developed to classify students’ mastery or nonmastery
of multiple skill variables (e.g., Rupp & Templin (2008); Rupp et al. (2010); von
Davier (2008)). The DCMs are restricted latent class models (Haertel, 1989), which
assume each student comes from a latent class defined by the profile of mastery
or nonmastery of multiple attributes. Due to the confirmatory nature of DCMs, the
design of a DCM-based test depends on domain knowledge and test development
can be labor-intensive, requiring the specification of a set of attributes, and a Q-
matrix that provides a formal description of the item-attribute relationship, and some
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rationale whether skills are functioning in a compensatory, conjunctive, or some
other way.

Exploratory data analysis (EDA) is a set of quantitative approaches for data anal-
ysis that extracts information from data beyond confirmatory statistical modeling.
It has become an essential stage in statistical data analysis. In psychometrics, the
idea of EDA has been fully implemented through the extensive use of exploratory
factor analysis, principal component analysis, and cluster analysis. In cognitive
diagnosis modeling, not many exploratory data analysis approaches are available
for simultaneous exploration of data structure among both students and items,
except for data-driven approaches for learning the Q-matrix in cognitive diagnosis
modeling (Chen, Liu, Xu, & Ying, 2015; Liu, Xu, & Ying, 2012, 2013) and
regularized latent class analysis (Chen, Li, Liu, & Ying, 2017).

In this chapter, we propose a stochastic co-blockmodel as an EDA model
for cognitive diagnosis item response data. This model is closely related to the
stochastic blockmodel (Holland, Laskey, & Leinhardt, 1983), which is widely used
for analyzing network data. The proposed model imposes latent class structure
among both students and items to capture the key features of cognitive diagnosis
modeling. Specifically, a student latent class may represent a group of students who
share the same cognitive attribute profile and an item latent class may represent a
set of items which measure the same set of attributes. As will be further explained,
this model can be viewed as an approximation to many DCMs.

We develop an efficient spectral co-clustering algorithm for fitting the proposed
model. Using this algorithm, the latent class memberships of both the students and
items are estimated, resulting in non-overlapping homogeneous groups of students
and items. Such a task is typically known as co-clustering or bi-clustering (Choi
& Wolfe, 2014; Dhillon, 2001; Hartigan, 1972). This algorithm can be viewed as
an extension of the spectral bi-clustering algorithm proposed in Dhillon (2001) for
co-cluster analysis of documents and words. The proposed algorithm is also closely
related to the spectral clustering method in Chen et al. (2017) for unsupervised item
classification. The proposed model, together with the algorithm, can be a useful and
easy-to-implement EDA tool for examining a pool of items before going through
the potentially costly work of developing a confirmatory DCM, in particular, when
having rich data with many students and items. It may provide the researchers a
better understanding of the item pool and the student population, which further
facilitates the development of a DCM-empowered cognitive diagnosis test.

The rest of this chapter is organized as follows. The stochastic co-blockmodel is
proposed in Sect. 14.2 and an efficient spectral co-clustering algorithm is described
in Sect. 14.3. Section 14.4 reports results of simulation studies designed to evaluate
the proposed methods, followed by a real data example in Sect. 14.5. We conclude
with discussions in Sect. 14.6.
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14.2 Stochastic Co-blockmodel

14.2.1 Proposed Model

Consider N students answering K assessment items. Let Xnk ∈ {0, 1} be a random
variable, denoting student n’s response to item k, where 0 and 1 code the incorrect
and correct answers, respectively. In addition, let xnk be the realization of Xnk . For
ease of exposition, we further denote X = (Xnk)N×K as the response matrix and
x = (xnk)N×K be its realization. The proposed stochastic co-blockmodel assumes
that there exist S latent classes among the students and T latent classes among
items. We use An ∈ {1, 2, . . . , S} and �k ∈ {1, 2, . . . , T } to denote the latent class
memberships of students and items, respectively. Our model assumes that students
and items from the same latent class are stochastically equivalent, in the sense that

P(Xnk = 1|An = s,�k = t) = bst , (14.1)

that is, the distribution of Xnk only depends on the latent class memberships of
student n and item k. We further use the matrix B = (bst )S×T to denote all such
item response probabilities, characterizing the performance of each student latent
class on each item latent class. We call this matrix the relation matrix. Moreover,
P(An = s) = ps, s = 1, . . . , S and P(�k = t) = πt , t = 1, . . . , T . Given S and
T , the model parameters include B, p = (p1, . . . , pS) and π = (π1, . . . , πT ). In
practice, S and T are unknown and also estimated from data. This model is closely
related to Holland et al. (1983)’s stochastic blockmodel for undirected networks and
Rohe, Qin, and Yu (2016)’s stochastic co-blockmodel for directed networks, both of
which are widely used statistical models for network data analysis.

The proposed model describes homogeneous groups of students and items using
latent classes. By doing so, the dimensionality of the data is substantially reduced
from anN byK data matrix to an S by T relation matrix. In the context of cognitive
diagnosis, a student latent class may represent a group of students with the same
proficiency levels on a set of skills being measured, and an item latent class may
represent a set of equally difficult items that measure the same set of skills. It
simplifies reality by assuming that the distribution of Xnk only depends on the
latent class memberships of student n and item k, but not any other student or item
specific information. In other words, under this model, two students/items within the
same latent class are not distinguishable based on the item response data. Although
possibly over-simplified, the proposed model provides a statistical framework for
identifying homogeneous student and item groups from item response data and
for analyzing the inter-group relationship. Results from fitting this model may
provide education researchers insights into the latent structures of students and
items, facilitating the design of the measurement and learning of cognitive abilities.

Like many other latent class models, the proposed model is also invariant
under “label swapping”, that is both the student and item latent classes can be
freely relabeled without affecting the distribution of response data. Consequently,
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parameter identifiability can only be established up to label swapping. Allman,
Matias, and Rhodes (2009) have established the “generic identifiability” for a
wide class of latent class models, which says that up to label swapping the set
of nonidentifiable parameters has Lebesgue measure zero in the parameter space.
Following Allman et al. (2009)’s method, it is not difficult to establish the generic
identifiability of the proposed model.

14.2.2 Connection with DCMs

We explain the connection between the proposed model and DCMs, using the
Deterministic Input, Noisy-And gate (DINA) model (Junker & Sijtsma, 2001) as an
illustrative example. Consider the setting thatD binary attributes are measured. The
DINA model assumes that each student n is represented by his/her attribute profile,
denoted by an = (an1, . . . , anD), where and = 0 and 1 represent the nonmastery
and mastery of the dth attribute, respectively. Moreover, each item k is characterized
by a D-dimensional vector qk = (qk1, . . . , qkD), where qkd = 1 if item k measures
attribute d and 0 otherwise. The DINA model assumes that

P(Xnk = 1|an,qk) =
{

1− sk if an � qk,
gk otherwise,

(14.2)

where an � qk denotes and ≥ qkd , for all d = 1, . . . , D. Equation (14.2) implies
that if student n has mastered all the attributes measured by the item, the probability
of correctly answering is 1 − sk and if at least one necessary attribute has not been
mastered, the probability of correctly answering is gk , where sk and gk are known as
the slipping and guessing parameters, respectively, which typically take small values
(e.g., less than 0.3). The indicator 1{an�qk} is known as the ideal response, which is
the response that student n supposed to provide when both the slipping and guessing
parameters are zero. When the slipping and guessing parameters are nonzero, the
observed response can be viewed as a perturbation to the ideal response.

In panel (a) of Fig. 14.1, we plot a realization of X = (Xnk)N×K from a DINA
model using a heat map, where N = 400, K = 60, and D = 2. For this
simulated data set, the students and items are ordered a priori, so that students
1–100, 101–200, 201–300, and 301–400 have attribute profiles (0, 0), (1,0), (0,1),
and (1,1), respectively, and items 1–20, 21–40, and 41–60 have q-vectors (1, 0),
(0,1), and (1,1), respectively. Moreover, the slipping and guessing parameters are
randomly generated from the uniform distribution over interval [0.1, 0.3]. The heat
map provides a visualization of the data matrix, where the entries of the matrix are
represented as colors. In Fig. 14.1, we use white and black colors for xnk = 0 and
1, respectively. A clear block structure is observed, which is due to the combination
of the latent classes of students labeled by the attribute profiles and latent classes of
items labeled by the q-vectors.
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Fig. 14.1 (a) Heat map of a realization of response data X under a DINA model. (b) Heat map of
a realization of response data X under a stochastic co-blockmodel

This block structure of the DINA model can be approximated by a stochastic co-
blockmodel with S = 4 student classes and T = 3 item classes. In particular, panel
(b) of Fig. 14.1 presents a realization from such a stochastic co-blockmodel, where
the relation matrix B is specified as

B =

⎛

⎜⎜⎝

0.2 0.2 0.2
0.8 0.2 0.2
0.2 0.8 0.2
0.8 0.8 0.8

⎞

⎟⎟⎠ . (14.3)

In fact, by visual inspection, one can hardly find systematic differences in the global
structures of the two heat maps in Fig. 14.1. In this example, the stochastic co-
blockmodel is an approximation to the generating DINA model, where the four
student classes correspond to the attribute profiles (0, 0), (1, 0), (0, 1), and (1, 1),
respectively, and the three item classes correspond to the q-vectors (1, 0), (0, 1),
and (1, 1), respectively. This stochastic co-blockmodel simplifies the DINA model
by assuming that P(Xnk = 1) = P(Xnk′ = 1) as long as k and k′ belong to
the same item class, while the DINA model allows for item-specific slipping and
guessing parameters.

Not specific to the DINA model, the stochastic co-blockmodel can provide good
approximations to other DCMs as well, including the Deterministic Input, Noisy-Or
gate model (DINO; Templin & Henson, 2006), Noisy-Input Deterministic-And-gate
(NIDA) and Noisy-Input Deterministic-Or-gate (NIDO) models (e.g., Rupp et al.,
2010), and the Reduced Reparameterized Unified Model (RRUM; e.g., Rupp et al.).
For example, the RRUM can be viewed as an extension of the DINA model, with
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the following item response function:

P(Xnk = 1|an,qk) = βk0
D∏

d=1

β
qkd (1−and )
kd , (14.4)

where βk0 is the correct response probability for subjects who possess all required
attributes for item k, and βkd ∈ (0, 1) is the penalty parameter for not possessing the
dth attribute. When βk0 = 1 and βkd = 0, d �= 0, the item response function (14.4)
is consistent with the DINA model with the corresponding slipping and guessing
parameters being zero. Therefore, one would expect the proposed stochastic co-
blockmodel to approximate the RRUM model well, at least when βk0 is close to 1
and the penalty parameters βkd are close to 0.

14.2.3 Limitations

The proposed model has its limitations due to its simple form. First, the proposed
model does not approximate all the DCMs, in particular, the general families
of DCMs, such as the general diagnostic model (GDM; von Davier, 2008) and
Loglinear Cognitive Diagnosis Model (LCDM; Henson, Templin, & Willse, 2009).

Second, results from fitting the proposed model do not directly suggest what
diagnostic classification model should be used or suggest the Q-matrix for the
items. Instead, analysis based on this model only suggests homogeneous groups of
items which may measure similar content areas, homogeneous groups of students
sharing similar skills, and the relationship between the student and the item groups.
Domain experts may find practical interpretations of the item and student groups
based on these results, by examining the contents of the items, possibly assisted by
additional information about the items and students from sources other than the item
response data. This deeper understanding of the item pool and the student population
may further lead to a DCM-empowered cognitive diagnosis test, given additional
efforts, such as fitting and comparing different confirmatory DCMs and collecting
additional data for model validation.

14.3 Spectral Co-clustering Algorithm

14.3.1 Spectral Co-clustering Algorithm

Stochastic co-blockmodel based analysis aims at learning the latent class mem-
berships of both students and items. A traditional method is an empirical Bayes
approach which first fits the model by maximizing the marginal likelihood function
of item responses and then infers the latent class memberships of students and items
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via a maximum a posteriori probability (MAP) estimator. The marginal likelihood
function can be written as

L(B,p,π) =
S∑

s=1

T∑

t=1

{
N∏

n=1

K∏

k=1

b
xnk
st (1− bst )1−xnkpsπt

}
, (14.5)

which is difficult to optimize using the classical expectation-maximization algo-
rithm (EM; Dempster, Laird, & Rubin, 1977) due to an intractable E-step.

In this chapter, we provide an alternative, the spectral co-clustering algorithm
(Algorithm 1), for fitting the model. This algorithm extends the spectral bi-
clustering algorithm (Dhillon, 2001) by introducing regularization to the Laplacian
matrix, a key quantity of the algorithm. As shown via both empirical studies and
theoretical results (Amini, Chen, Bickel, & Levina, 2013; Joseph & Yu, 2016; Qin
& Rohe, 2013), regularizing the Laplacian matrix can lead to better performance
in cluster analysis. Unlike the empirical Bayes approach, this algorithm does
not explicitly optimize an objective function. Instead, this algorithm first embeds
students and items into a low dimensional Euclidean space, such that students/items
from the same latent class tend to be close to each other after the embedding.
As described in Algorithm 1, the dimension of the embedding space is set to be
min{S, T }, the minimum value of S and T . Then a K-means algorithm is applied
to the embedded data for the clustering of both the students and items. Given
the classification recorded by Âns and �̂ks, we then estimate the relation matrix
B, the population proportions of both students and items, p = (p1, . . . , pS) and
π = (π1, . . . , πT ), by a moment based method. That is,

b̂st =
∑N
n=1

∑K
k=1 xnk1{Ân=s,�̂k=t}∑N

n=1
∑K
k=1 1{Ân=s,�̂k=t}

,

p̂s =
∑N
n=1 1{Ân=s}
N

,

π̂t =
∑K
k=1 1{�̂k=t}
K

.

(14.6)

The proposed spectral co-clustering algorithm is described as follows and the
rationale behind the approach is discussed in Sect. 14.3.2.

Algorithm 1 (Spectral Co-clustering)
Input: response data matrix x = (xnk)N×K , regularization parameter τ ≥ 0, the
number of student clusters S, and the number of item clusters T .

(1) Compute diagonal matrices

Dτ = diag(dnn)N×N + τ IN×N
Oτ = diag(okk)K×K + τ IK×K,

(14.7)
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where

dnn =
K∑

k=1

xnk,

okk =
N∑

n=1

xnk,

(14.8)

diag(dnn)N×N and diag(okk)K×K denote the diagonal matrices with diag-
onal entries (d11, . . . dNN) and (o11, . . . , oKK), respectively, and IN×N and
IK×K are identity matrices.

(2) Compute the regularized Laplacian matrix

Lτ = (Dτ )− 1
2 x(Oτ )−

1
2 . (14.9)

(3) Apply singular value decomposition to the matrix Lτ and compute the top
C left and right singular vectors U = (u1, . . . ,uC) ∈ R

N×C and V =
(v1, . . . , vC) ∈ R

K×C , where C = min{S, T }.
(4) Cluster the N rows of U into S clusters and cluster the K rows of V into T

clusters via a K-means algorithm.

Output: The student latent class memberships Ân ∈ {1, 2, . . . , S} and item latent
class memberships Λ̂k ∈ {1, 2, . . . , T } from step (4).

A default value of the regularization parameter in Algorithm 1 is chosen as

τ = 2
N∑

n=1

K∑

k=1

xnk/(N +K), (14.10)

which follows from a similar spectral clustering algorithm for analyzing undirected
network data (Qin & Rohe, 2013). We illustrate the use of Algorithm 1 via its
application to the simulated data set from the DINA model in the left panel of
Fig. 14.1, for which S = 4 and T = 3 are assumed known. Consequently, the
dimension of the embedding space is C = min{S, T } = 3. Figures 14.2 and 14.3
show the embedding of students and items into three-dimensional spaces, where the
panels (a), (b), and (c) in both figures correspond to the pairwise scatter plots of
column vectors of U and V, respectively, and the true attribute profiles of students
and the true q-vector of items are indicated by different point symbols. As we
can observe from these two figures, the true latent classes of the students and the
items are well distinguished geometrically under this three dimensional embedding.
Consequently, applying the K-means algorithm to U and V yields desirable results,
that is, only 22 out of 400 students are misclassified and no item is misclassified.
Moreover, an estimate of the B-matrix is obtained as given in (14.11), which
provides a simple but informative summary of the original data. It implies that the



14 Exploratory Data Analysis for Cognitive Diagnosis: Stochastic... 295

l
ll

l

l

l

l

l

ll

l

l
l

l
l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l
l

l

l

l
l

l

l l

l

l
l

l

l

l

l
ll

l

l

l
l

l
ll

l

l

l

ll
l

l

l
l

l
l

l

l

ll
ll

ll

l

l

ll

l

l

l

l

ll
ll

l

l

l
l

l

l
ll

l

l

l
l

l

l

−0.08 −0.06 −0.04 −0.02

−0
.1

0
−0

.0
5

0.
00

0.
05

0.
10

(a)

l (0,0)
(1,0)
(0,1)
(1,1)

l

l

l

l

l

l

l

l

l

l

l l
l

l

l

l

l l

l

l

ll
l

l

l

ll
l

l

l

l

l

l

l l
l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l
l

l

l
l

ll
l

l l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

ll

−0.08 −0.06 −0.04 −0.02
−0

.1
0

−0
.0

5
0.

00
0.

05
0.

10

(b)

l (0,0)
(1,0)
(0,1)
(1,1)

l

l

l

l

l

l

l

l

l

l

l l
l

l

l

l

ll

l

l

l l
l

l

l

ll
l

l

l

l

l

l

l l
l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l
l

l

l
l

ll
l

ll

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l l

−0.10 −0.05 0.00 0.05 0.10

−0
.1

0
−0

.0
5

0.
00

0.
05

0.
10

(c)

l (0,0)
(1,0)
(0,1)
(1,1)

Fig. 14.2 Scatter plots of (a) u1 versus u2, (b) u1 versus u3, and (c) u2 versus u3
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Fig. 14.3 Scatter plots of (a) v1 versus v2, (b) v1 versus v3, and (c) v2 versus v3

first class of students is not good at any type of items, the second and third classes
are only good at the first and second types of items, respectively, and the fourth one
is good at all types of items.

B̂ =

⎛

⎜⎜⎝

0.21 0.24 0.20
0.79 0.20 0.18
0.19 0.80 0.17
0.79 0.79 0.80

⎞

⎟⎟⎠ . (14.11)

14.3.2 Discussion of the Proposed Algorithm

An ideal case We first point out that if data are generated from a DINA model with
all the slipping and guessing parameters being zero (sk = gk = 0, k = 1, . . . , K),
the proposed algorithm can exactly recover the student and item latent classes.
Under this situation, only the top C = min{S, T } singular values of Lτ are nonzero,
where Lτ is defined in (14.9). Moreover, it is straightforward to show via linear
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Fig. 14.4 Scatter plots of (a) u1 versus u2, (b) u1 versus u3, (c) u2 versus u3, (d) v1 versus v2, (e)
v1 versus v3, and (f) v2 versus v3

algebra that un· = un′· (vk· = vk′·) if and only if n and n′ have the same attribute
profile (k and k′ have the same q-vector), where un· and vk· denote the nth row
of U and kth row of V , respectively. This is because, under this ideal setting with
no measurement error, two students n and n′ have the same response pattern and
thus the corresponding rows in Lτ are the same, if and only if they share the same
attribute profile. This further leads to un· = un′· if and only if an = an′ , based on
the properties of singular value decomposition (e.g., Banerjee & Roy, 2014). For a
similar reason, vk· = vk′·, if and only items k and k′ have the same q-vector.

For example, Fig. 14.4 shows the embedding of a data set generated from the
DINA model that has the same setting as the one in Sect. 14.2 except that the
slipping and guessing parameters are set to be zero, where panels (a)–(c) and panels
(d)–(f) display the embedding of students and items, respectively. In these plots,
students/items from the same class are mapped to a single point. This ideal situation
provides some intuition on the use of the proposed algorithm. Moreover, we point
out that such an ideal case can be constructed under other DCMs, such as the DINO,
NIDA, NIDO, and RRUM models.

Choosing S and T via cross-validation Algorithm 1 requires the numbers of
student classes and item classes as inputs, which are typically not available a priori.
We suggest to try different values of S and T for a comprehensive exploration of data
and then choose the combination of S and T that best describes the data structure. In
addition, a Monte Carlo cross-validation approach is proposed for choosing S and T ,
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Fig. 14.5 Data splitting in
the cross-validation for the
selection of S and T

as described in Algorithm 2. We remark that as cluster analysis is an unsupervised
learning approach, its cross-validation is more complicated than that for supervised
learning (e.g. under a regression setting).

Algorithm 2 (Monte Carlo cross-validation for choosing S and T )
Input: Candidate sets of S and T , denoted by S and T, and the number of Monte
Carlo replicationsM .
For each Monte Carlo replication m:

1. As illustrated in Fig. 14.5, in each step of the cross-validation, randomly select
80% of the students and 80% of the items to compose a training data set x1.
Denote the set of selected students as S1 and the rest as S2 and denote the set of
the selected items as I1 and the rest as I2.

2. For each S ∈ S and T ∈ T, apply Algorithm 1 to x1, which gives an estimate of
B, p, and π , denoted by B̂, p̂, and π̂ . We also obtain the estimated latent class
memberships of students and items in S1 and I1, respectively. Denote them by
Ân, n ∈ S1 and Λ̂k , k ∈ I1.

3. Based on Ân, n ∈ S1, and the estimated stochastic co-blockmodel, predict the
latent class membership of items in I2 using a Bayesian classifier, based on the
prediction data set x2. More precisely,

Λ̂k = arg max
t∈{1,...,T }

∏

n∈S1

(
b̂
Ân,t

)xnk (1− b̂
Ân,t

)1−xnk π̂t , (14.12)

for k ∈ I2.
4. Similarly, predict the latent class membership of students in S2 based on the

prediction data set x3, by
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Ân = arg max
s∈{1,...,S}

∏

k∈I1

(
b̂
s,Λ̂k

)xnk (1− b̂
s,Λ̂k

)1−xnk p̂s , (14.13)

for n ∈ S2.
5. We then use the validation set x4 to evaluate the predictions above, by calculating

the log-likelihood given the fitted stochastic co-blockmodel and the predicted
latent class membership of students and items in S2 and I2, respectively. That is,

lm(S, T ) =
∑

n∈S2

∑

k∈I2
xnk log

(
b̂
Ân,Λ̂k

)+ (1− xnk) log
(
1− b̂

Ân,Λ̂k

)
. (14.14)

Aggregate theM Monte Carlo replications by

l̄(S, T ) = 1

M

M∑

m=1

lm(S, T ). (14.15)

and its standard error

SE(S, T ) = 1√
(M − 1)M

√√√√
M∑

m=1

(
lm(S, T )− l̄(S, T )

)2
. (14.16)

We then select S and T using the one standard error rule (e.g., Hastie, Tibshirani,
& Friedman, 2009). That is,

Ŝ = min

{
S ∈ S : max

T ∈T
l̄(S, T ) ≥ l̄(S̃, T̃ )− SE(S̃, T̃ )

}
, (14.17)

T̂ = min

{
T ∈ T: max

S∈S
l̄(S, T ) ≥ l̄(S̃, T̃ )− SE(S̃, T̃ )

}
, (14.18)

where (S̃, T̃ ) = arg maxS∈S,T ∈Tl̄(S, T ).
Output: Ŝ and T̂ .

An example is shown in Fig. 14.6, where Algorithm 2 is applied to the simulated
data set in Fig. 14.1 generated from a DINA model. The candidate sets S and Tare
both chosen as {2, 3, 4, 5, 6}, and the number of replicationsM is chosen as 20. The
left and right panels of Fig. 14.6 display the functions

l1(S) = max
T ∈T

l̄(S, T ) and l2(T ) = max
S∈S

l̄(S, T ), (14.19)

and the dashed lines in both panels show the value of l̄(S̃, T̃ ) − SE(S̃, T̃ ). In this
example, both S and T are correctly selected. In addition, the one standard error
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Fig. 14.6 Application of Algorithm 2 to a simulated data set generated from a DINA model. The
left and right panels display l1(S) and l2(T ) as defined in (14.19), respectively. The dashed line
indicates the value l̄(S̃, T̃ ) − SE(S̃, T̃ ). According to the left panel, Ŝ = 4, because S = 4 is the
smallest value of S for which l1(S) ≥ l̄(S̃, T̃ )− SE(S̃, T̃ ). Similarly, according to the right panel,
T̂ = 3

rule, which is commonly used for variable selection in regression analysis (chapter
3, Hastie et al., 2009), avoids the over-selection of the number of student latent
classes. That is, the values of l1(S) at S = 4, 5, and 6 are approximately the same.
The one standard error rule tends to avoid the possible selection of S = 5 or 6.

Computational efficiency We remark on the computational efficiency of the
proposed algorithms. The computation time of Algorithm 1 is dominated by step
(3) of the algorithm, the singular value decomposition of an N × K matrix. As
an extension of eigenvalue decomposition, singular value decomposition is a well
developed algorithm for decomposing any N × K matrix (Golub & van Loan,
2012) into the form Ũ�̃Ṽ�, where Ũ is an N × N unitary matrix, �̃ is a diagonal
N × K matrix with non-negative real numbers on the diagonal, and Ṽ is a K × K
unitary matrix. The singular value decomposition can be efficiently computed even
for large values of N and K , with the computational complexity of the order
O(min{N2K,K3}) for the most efficient algorithms (Golub & van Loan, 2012).
For Algorithm 2, the computation is mainly due to the application of singular
value decomposition C times. The above analysis, including the application of both
Algorithms 1 and 2 to the simulated data set from the DINA model, takes less than
1 s, where the Algorithms are implemented in statistical software R (R Core Team,
2013) and run on a personal computer.1

1The processor of the computer is: Intel (R) Core(TM) i5-5300 CPU @ 2.29 GHz.
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14.4 Simulation Studies

14.4.1 Study I: Recovery of Latent Classes

We first evaluate the performance of Algorithm 1 based on simulated data from two
diagnostic classification models, the DINA model and the RRUM. Specifically, we
assume four attributes, which results in S = 16 student classes. The population
proportion satisfies P(an = a) = 1/16, for all a ∈ {0, 1}4. In addition, we consider
T = 10 item classes that are of equal size, corresponding to all item types that
measure one or two attributes. Sample sizes N = 500 and 1000 and the number of
items K = 200 and 400 are considered. Under the DINA model, the slipping and
guessing parameters are generated from the uniform distribution U [0.1, 0.3]. Under
the RRUM, βk0s are generated from the uniform distributionU [0.85, 0.95] and βkds
are generated from the uniform distribution U [0.2, 0.3], for d = 1, . . . , D. For each
combination of model, sample size, and number of items, 100 independent data sets
are generated to evaluate Algorithm 1. Note that in this study, S and T are assumed
to be known.

The evaluation of the clustering results is not straightforward, due to “label
swapping”. We measure the inconsistency between the clustering results of students
Âns and the true attribute profiles ans by

IC1 = 2

N(N − 1)

∑

n �=n′

(
1{Ân=Ân′ ,an �=an′ } + 1{Ân �=Ân′ ,an=an′ }

)
. (14.20)

Here,
∑
i �=j 1{Âi=Âj ,ai �=aj } is the number of student pairs who are classified into the

same latent class while having different attribute profiles and
∑
i �=j 1{Âi �=Âj ,ai=aj } is

the number of pairs who are classified into different latent classes while sharing the
same attribute profile. Thus, (14.20) is the proportion of inconsistent student pairs.
Note that this index is invariant under “label swapping”. Similarly, the inconsistency
index for items is defined as

IC2 = 2

K(K − 1)

∑

k �=k′

(
1{�̂k=�̂k′ ,qk �=qk′ } + 1{�̂k �=�̂k′ ,qk=qk′ }

)
. (14.21)

Results are shown in Table 14.1. The proportions of inconsistently classified pairs
of students and pairs of items are low under all settings, which indicates the good
performance of Algorithm 1. In addition, IC1 and IC2 decrease when the sample
size N or the number of items K increases.
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Table 14.1 Results from Study I: Mean values of IC1 and IC2 over 100 independent replications,
under different combinations of models, sample sizes, and numbers of items

N = 500 N = 1000

K = 200 K = 400 K = 200 K = 400

DINA IC1 1.1× 10−2 1.3× 10−3 6.6× 10−3 7.6× 10−4

IC2 1.2× 10−3 4.2× 10−4 0 0

RRUM IC1 1.6× 10−2 3.8× 10−3 8.9× 10−3 1.8× 10−3

IC2 4.9× 10−4 6.6× 10−5 2.6× 10−5 0

Table 14.2 Results from Study II: number of times that each candidate in S and Tis chosen

DINA RRUM

N = 500 N = 1000 N = 500 N = 1000

K = 200 K = 400 K = 200 K = 400 K = 200 K = 400 K = 200 K = 400

Ŝ 12 0 0 0 0 0 0 0 0

14 0 0 0 0 0 0 0 0

16 91 100 100 100 50 93 83 100

18 9 0 0 0 50 7 17 0

20 0 0 0 0 0 0 0 0

T̂ 6 0 0 0 0 0 0 0 0

8 0 0 0 0 0 0 0 0

10 100 100 100 100 100 100 100 100

12 0 0 0 0 0 0 0 0

14 0 0 0 0 0 0 0 0

14.4.2 Study II: Selection of Numbers of Latent Classes

This study investigates the performance of Algorithm 2 under the same simulation
settings as in Study I. We consider candidate sets S = {12, 14, 16, 18, 20} and
T = {6, 8, 10, 12, 14}. The number of cross-validation replications M is set to
be 50. Results are shown in Table 14.2, which shows the number of times that
each candidate in S and T is chosen. In particular, the number of item classes is
perfectly recovered under all settings, which may be due to the large amount of
information available for the item classes. Except under the RRUM when K = 200
and N = 500, Ŝ recovers the number of students classes with reasonable accuracy.
This accuracy improves when either the sample size N or the number of items K
increases. Finally, the recovery of the number of student classes is less accurate
under the RRUM than that under the DINA model, which may be due to the more
complex model structure of the RRUM.
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14.5 Real Data Example

In this section, we illustrate the use of the proposed method via a real data example
based on the Examination for the Certificate of Proficiency in English (ECPE), a
test developed and scored by the English Language Institute of the University of
Michigan. The test measures advanced English skills in examinees whose primary
language is not English and is administered internationally once a year. The ECPE
data considered in this study contain 2922 examinees’ responses to 28 items from
a single year’s administration. Initially, the ECPE was scored with unidimensional
item response theory models and retrofitted with cognitive diagnostic models in
Templin and Hoffman (2013) and Templin and Bradshaw (2014).

We apply the proposed method to this data set to investigate its latent structure.
We first apply Algorithm 2, with inputs M = 50, and candidate sets S = T =
{2, 3, 4, 5}. This analysis suggests that Ŝ = T̂ = 2. We then apply Algorithm 1 to
the data set with S = T = 2, which leads to estimated parameters p̂ = (0.5, 0.5),
π̂ = (0.36, 0.64), and

B̂ =
(

0.43 0.73
0.79 0.82

)
. (14.22)

According to p̂, the two student latent classes are of equal sizes. Suggested by B̂,
students in the second class tend to have better English proficiency than those in the
first class. This result suggests the underlying unidimensionality of the data. Based
on π̂ , the first item latent class is substantially smaller than the second class. In
addition, according to B̂, items in the first latent class tend to be more difficult than
those in the second class. The second type of items may not distinguish the two
student groups well, with the corresponding success probabilities 0.73 versus 0.82.

We further explore the structure of data under different combinations of S and T .
The results are listed below. When T = 4, the smallest item class has only one item
and thus the corresponding results are not presented.

(1) S = 2, T = 3:

p̂ = (0.5, 0.5), π̂ = (0.14, 0.46, 0.39), and B̂ =
(

0.25 0.57 0.81
0.74 0.78 0.86

)
.

(2) S = 3, T = 2:

p̂ = (0.30, 0.38, 0.32), π̂ = (0.36, 0.64), and B̂ =
⎛

⎝
0.36 0.72
0.59 0.76
0.86 0.84

⎞

⎠ .

(3) S = 3, T = 3:
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p̂ = (0.33, 0.31, 0.36), π̂ = (0.14, 0.11, 0.75), and B̂ =
⎛

⎝
0.22 0.66 0.68
0.43 0.35 0.77
0.79 0.82 0.85

⎞

⎠ .

(4) S = 4, T = 2:

p̂ = (0.19, 0.29, 0.28, 0.24), π̂ = (0.36, 0.64), and B̂ =

⎛

⎜⎜⎝

0.32 0.72
0.49 0.73
0.69 0.80
0.88 0.84

⎞

⎟⎟⎠ .

(5) S = 4, T = 3:

p̂=(0.25, 0.19, 0.23, 0.33), π̂=(0.14, 0.11, 0.75), and B̂=

⎛

⎜⎜⎝

0.20 0.44 0.71
0.28 0.80 0.68
0.55 0.36 0.80
0.80 0.83 0.85

⎞

⎟⎟⎠ .

For the cases (1) S = 2, T = 3, (2) S = 3, T = 2, and (4) S = 4,
T = 2, the corresponding student latent classes can be ordered from the least
to the most proficient, according to the estimated relation matrix B̂. These results
echo the finding under S = T = 2, suggesting that the data may be essentially
unidimensional.

Some weak evidence on the multidimensionality of data is found from the results
from the settings (3) S = 3, T = 3 and (5) S = 4, T = 3. Under setting (3) S = 3
and T = 3, the first two student classes cannot be ordered. Specifically, the first
student class has better performance on the second type of items, while the second
class is better at both the first and third types of items. The third student class may
contain the most proficient students with dominantly better performance on all three
types of items. The results under setting (5) S = 4 and T = 3 are similar to those
from setting (3). According to the estimated relation matrix B̂, students in the first
class perform poorly on all types of items. The second student class substantially
outperforms the third class on the second type of items, but underperforms the
third class on the first and third types of items. Finally, the four student class may
contain the most proficient students, according to the large success probabilities in
the last row of B̂. These results suggest that the first and second types of items
may measure distinct latent dimensions. It is worth pointing out that, however, the
evidence of multidimensionality is quite weak, since there are only 4 and 3 items
in the first and the second item latent classes, respectively. To better investigate the
latent dimensions measured by the ECPE, it is worth analyzing a larger item pool of
ECPE.

In summary, our analysis suggests that the data may be essentially unidimen-
sional and thus retrofitting DCMs to the data set may extract little additional
information. This finding is consistent with the conclusion in von Davier (2014)
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that a model with multiple skills and interactions between skills is not supported
by this data set, as well as the comment in von Davier and Haberman (2014) that
the skill distribution presented for this data set in Templin and Bradshaw (2014)
provides support for a single ordered latent trait or a continuous latent trait being
sufficient. Finally, it is worth pointing out that our results are exploratory that need
to be validated by carefully examining the student profiles and item contents within
each class and by further statistical inference.

14.6 Discussion

In this chapter, we propose a stochastic co-blockmodel as an exploratory model
for cognitive diagnosis. This model reduces the dimensionality of data by co-
clustering students and items into latent classes, where student classes may be due
to students’ attribute profiles and item classes may be explained by the attributes
the items measure. A computationally efficient spectral co-clustering algorithm
is proposed for fitting the model. We conjecture that this algorithm leads to
statistical consistency in clustering under suitable conditions, which may be proved
using the techniques in Rohe, Chatterjee, and Yu (2011) that are developed to
prove the statistical consistency of a similar spectral clustering for fitting Holland
et al. (1983)’s stochastic blockmodel. A cross-validation based approach is also
developed for choosing the numbers of student and item classes. By making the
connection between the proposed model and diagnostic classification models, and
through simulated and real examples, we demonstrate that the proposed approach
may be a good EDA tool for cognitive diagnosis modeling.

The proposed spectral co-clustering algorithm performs well when both the
numbers of students and items are large. If eitherN orK is small, a likelihood based
approach may be statistically more efficient. Although the classic EM algorithm is
computationally infeasible for maximizing the marginal likelihood function of the
proposed model, full information estimation may still be available using stochastic
optimization algorithms, such as the stochastic EM algorithm (Celeux & Diebolt,
1985; Nielsen et al., 2000) and the Metropolis-Hastings Robbins-Monro algorithm
(Cai, 2010). The performance of these algorithms and the comparison between
different model fitting approaches are left for future investigations.

Finally, we point out that the proposed method has limitations. It does not directly
suggest what diagnostic classification model should be used or suggest the Q-
matrix for the items. To arrive at a confirmatory DCM for cognitive diagnosis, much
subsequent analysis is need, including the development, estimation, and comparison
of DCMs and the validation of the attributes, requiring inputs from both domain
experts and psychometricians.
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Chapter 15
Recent Developments in Cognitive
Diagnostic Computerized Adaptive
Testing (CD-CAT): A Comprehensive
Review

Xiaofeng Yu, Ying Cheng, and Hua-Hua Chang

Abstract In this chapter, we provide a comprehensive and up-to-date review of
cognitive diagnosis computer adaptive testing (CD-CAT). Similar to Cheng and
Keng (Computerized adaptive testing in criterion-referenced testing. In Smith E,
Stone G (eds) Applications of Rasch measurement in criterion-reference testing:
practive analysis to score reporting. JAM Press, Maple Grove, 2009), which
provided a flowchart for a typical CAT, we provide a typical CD-CAT flowchart.
Compared to regular CAT, a key distinction is that in CD-CAT the goal is to
obtain the latent mastery profile for each respondent in an efficient fashion, or
alternatively to obtain both the latent mastery profile (formative) and the latent
ability (summative) simultaneously. The former is referred to as single-purpose
CD-CAT, and the latter dual-purpose CD-CAT. We discuss the main components of
CD-CAT in this chapter. These components will be covered in the following order:
starting rule, item selection strategies, stopping rule, scoring rule, and item bank
development and more specifically online calibration.
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15.1 Introduction

15.1.1 Basics of Computerized Adaptive Testing

An adaptive test is a computer-based test that dynamically adjusts itself to the
estimated latent trait(s) level of each respondent during the test process to efficiently
measure a test taker’s latent trait(s) (e.g., math ability or English proficiency). A
typical computerized adaptive testing (CAT) system includes five major compo-
nents: a calibrated item bank, a starting rule, an item selection strategy, a scoring
method, and a stopping rule. The adaptive feature, the key element of a CAT system,
lies in the adaptive item selection, meaning different items are chosen for different
examinees, or adaptive test termination, meaning that the test length varies among
test takers, or both.

In general, an item bank with well-calibrated items is required for any CAT
system. Given the bank, CAT begins with applying a certain rule, which is the
starting rule, to start the test by selecting a first item (or first set of items) for
an examinee. The scoring method refers to the estimation method used to obtain
interim estimate of the latent trait(s), such as maximum likelihood (ML). Based on
the most recent estimate, the item selection strategy (ISS) then determines which
item or items to pick next. If a test consists of several stages where ISS selects a
set of items for each stage, it is often referred to as multistage testing (MST; Yan,
Lewis, & von Davier, 2014). MST adopts a group-level sequential design, whereas
a typical CAT adopts item-level sequential design (Wang, Lin, Chang, & Douglas,
2016). In this regard, MST can be considered a variation of CAT. Depending on
the stopping rule, CAT is often categorized into two types: fixed-length CAT and
variable-length CAT.

Abundant literature exists on each of these important components of CAT. Item
bank development requires an adequate number of items to be written and calibrated
given a chosen item response theory (IRT) model. Most of the current operational
CAT systems are built on unidimensional IRT models (e.g., the three-parameter
logistic (3PL) model). There is an important line of CAT research on how to develop
and maintain an item bank for CAT (He & Reckase, 2014; Reckase, 2010; Veldkamp
& van der Linden, 2000), and online calibration of item parameters (Chen, Xin,
Wang, & Chang, 2012; Stocking, 1988; Wainer & Mislevy, 2000).

Researchers have also proposed different starting rules. Note that initial items
need to be selected in a non-deterministic manner; otherwise those items that are
used often in the beginning of the test may quickly become known to test takers,
which jeopardizes test security. Random selection is therefore a popular choice.
Eggen and Straetmans (2000) suggested random selection from relatively easy items
in the bank to start the test. Or a short pretest can be administered first so the testing
program can collect additional information. Given the preliminary information, the
formal testing will start with different items for different examinees (Riley, Conrad,
Bezruczko, & Dennis, 2007).
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There has also been a long-standing history of research on the ISS. In 1980, the
maximum Fisher information (MFI) method was proposed by Lord (Lord, 1980;
Thissen & Mislevy, 2000), which was the most popular ISS in the early days of
CAT. The Fisher information measures the amount of information for the unknown
ability θ produced by a response pattern. It can be determined by:

I (θ) = −E

{[
∂2 ln f (x; θ)

∂θ2

]}
, (15.1)

where f (x; θ ) represents the likelihood function, θ is the underlying latent trait, and
x refers to the observed response pattern. The item k’s Fisher information is given
by

Ik (θ) =
[
P ′k (θ)

]2

Pk (θ)Qk (θ)
, (15.2)

where Pk(θ ) is the item response function of item k specified by the chosen IRT
model, and Qk(θ ) = 1 − Pk(θ ), and P ′k (θ) refers to the first derivative of the
item response function with respect to θ . Assuming local independence the test
information I(θ ) is additive in item information, that is, I(θ) = ∑

Ik(θ).
For the three-parameter logistic (3PL) model, Pj(θ ) is given by

Pk (θ) = ck + (1− ck) eak(θ−bk)

1+ eak(θ−bk) , (15.3)

where ak, bk and ck refer to the discrimination, difficulty, and guessing parameter for
the kth item, respectively. If the MFI method is used for item selection, an eligible
item in the bank with the largest Fisher information given the current estimate of
θ will be picked as the next item for administration. As the asymptotic variance
of θ̂ML, the maximum likelihood estimate of θ , is inversely proportional to the
test information, the MFI method is widely regarded as a method to minimize the
asymptotic variance of the θ estimate, or in other words, to asymptotically maximize
measurement precision.

However, the ability estimate may not be accurate yet in the early stage of
CAT. Maximizing information based on an unstable and inaccurate θ estimate
can be characterized as “capitalization on chance”. Thus, using the MFI early in
a CAT program may not be ideal. Researchers also found that the MFI tends to
select items with large discrimination parameters, but rarely uses items with smaller
discrimination parameters. This means that a portion of items in the item bank can
be grossly underutilized. Meanwhile, overexposure of a small number of highly
discriminating items may pose a serious threat to test security. Additionally, to
ensure face and content validity of CAT, the number of items from different content
areas or subdomains oftentimes need to be balanced. Motivated by these concerns,
many researchers have proposed alternative ISSs than the MFI method to address (a)



310 X. Yu et al.

capitalization on chance, particularly early in CAT (Patton, Cheng, Yuan, & Diao,
2013; van der Linden & Glas, 2000); (b) the balance in item bank usage and control
of item overexposure (Chang, 2015; Chang & Ying, 1999); and (c) the balance in
test content (Cheng, Chang, & Yi, 2007; Yi & Chang, 2003).

Any ISS would rely on a suitable scoring rule that provides an efficient update of
the ability estimate. Three mostly widely used methods for scoring in regular CAT
are the maximum likelihood estimation (MLE), the maximum a posterior (MAP),
and the expected a posterior (EAP) (Baker & Kim, 2004). The advantage of MLE
lies in its asymptotic consistency and efficiency. A limitation of MLE, however,
is that it leads to undefined estimates for those respondents with all incorrect or
all incorrect answers, which can be common in the early stage of a test. The two
Bayesian methods in contrast assume a prior of θ and therefore could avoid an
undefined estimate. Once the posterior distribution P(θ | x) is obtained, the MAP
and EAP takes the mode or the mean of the posterior distribution as the estimate
of θ .

Another important component of CAT is the stopping rule and there are two
main types. In a fixed-length CAT system, the test would be terminated when a
pre-specified number of items are administered to a test taker. In a variable-length
CAT system, the test would be ended when a pre-specified level of precision of the
ability estimate is reached, or when a classification decision is ready to be made
with pre-specified level of confidence.

15.1.2 Cognitive Diagnostic Computerized Adaptive Testing
(CD-CAT)

Cognitive Diagnostic Assessment (CDA) has both features of model-based mea-
surement and formative assessment (Embretson, 2001). Instead of focusing on
providing a summative score for each test taker, CDA tries to pinpoint the strengths
and weaknesses on fine-grained skills (often referred to as attributes) for test takers.
As described in Gierl and Zhou (2008), CDA oftentimes employs a cognitive
diagnostic model (CDM; Rupp, Templin, & Henson, 2010), which assumes that
one’s responses to a test are governed by one’s latent profile of mastery. Similar to an
IRT model, a CDM specifies the probability of answering an item correctly given the
item characteristics and the latent mastery profile of a test taker. Over the past decade
or so, researchers have proposed dozens of CDMs with different parameterizations.
For most of them, item characteristics include structural parameters that resemble
the item parameters in IRT models, and the Q matrix is a K by D matrix that specifies
the item-attribute relationship, where K is the total number of items on the test and
D is the number of attributes. Elements in the Q matrix indicate whether an attribute
is required to answer the item correctly or not. The entry qkd equals 1 if the item
k requires the mastery of attribute d, and qkd = 0 otherwise, d = 1, 2, . . . , D, and
k = 1, 2, . . . , K. The latent mastery profile for the nth examinee is denoted by αn,
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where αn =
(
αn1, αn2, · · · , αnd, · · · , αnD

)′
, with αnd = 1 if the nth examinee

has mastered the dth attribute, and αnd = 0 otherwise, where n = 1, 2, . . . , N, N
being the total sample size.

CD-CAT, as suggested by its name coined in Cheng (2009), is computerized
adaptive testing built on a CDM. As the CDMs evolve, CD-CAT has also received
increasing amount of attention. Xu, Chang, and Douglas (2003) conducted one of
the earliest studies on developing ISSs for CD-CAT. Cheng (2008, 2009) further
proposed and examined the performance of new ISSs for CD-CAT and examined
their performances through simulation studies. An overview of CD-CAT was
provided by Huebner (2010), which covered the major components of CD-CAT,
such as item selection for the initial stage, item selection strategy, the methods for
updating the attribute mastery patterns, and the stopping rule. These mirrored the
components in a typical CAT system.

However, Huebner (2010) did not cover the development and maintenance of an
item bank for CD-CAT. In addition, fueled by the demand of formative assessment,
there has been numerous developments of CD-CAT since 2010. In this chapter, we
will provide a more comprehensive and up-to-date review of CD-CAT. Similar to
Cheng and Keng (2009), which provided a flowchart for a typical CAT, we created a
typical CD-CAT flowchart in Fig. 15.1. A key distinction here is that in CD-CAT, the
goal is to obtain the latent mastery profile for each respondent in an efficient fashion,
or alternatively to obtain both the latent mastery profile (formative) and the latent
ability (summative) simultaneously. The former is referred to as single-purpose CD-
CAT, and the latter dual-purpose CD-CAT. Depending on the goal, some of the
components of CD-CAT such as ISSs can be very different.

Next, we will discuss the corresponding components of CD-CAT. For the sake of
convenience, these components will be covered in the following order: starting rule,
ISS, stopping rule, scoring rule, and item bank development and more specifically
online calibration.

15.2 Starting Rules

Theoretically, a CAT system can start at any level of difficulty. The simplest rule is
to start the test for each respondent with the same item, or assuming the same ability
level, such as 0, and then use some ISS to find the best item. In a CD-CAT, one can
start the test by assuming the same attribute profile such as the most common profile
in the population for every test taker. Such a simplistic rule may cause problem
because the frequently used items in the beginning of the test may quickly become
known to test takers. Therefore, some randomization mechanism is often introduced
to the starting rule. For example, one rule is to start the test assuming a random θ

chosen from an interval (e.g., [−0.5, 0.5]). Or one can randomly select the first
item(s) among a predetermined set of items, often items in the middle range of
difficulty. Riley et al. (2007) suggested administering a short pretest to gain initial
information on each respondent before the test starts. For a CD-CAT system, some
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Fig. 15.1 The flowchart of a typical CD-CAT system

researches proposed to start the test with the same randomly chosen items for each
respondent (e.g., Xu et al., 2003), some considered assigning a randomly generated
mastery profile to each respondent and then pick items based on some ISS to suit that
randomly generated profile (e.g., Chen et al., 2012). Von Davier and Cheng (2014)
discussed the approach taken by the Programme for the International Assessment
of Adult Competencies (PIAAC), which was to use auxiliary information collected
from a background questionnaire to determine an initial set of items.

15.3 Item Selection Strategies

Most ISSs under a regular CAT are not directly applicable in CD-CAT, because the
latter is based on constrained latent classes instead of continuous latent trait(s). To
address this, researchers began to look for new algorithms that can be adopted in



15 Recent Developments in Cognitive Diagnostic Computerized Adaptive. . . 313

CD-CAT. On one hand, the main purpose for ISSs under CD-CAT is to estimate
each respondent’s latent mastery profile α, or θ and α simultaneously. On the other
hand, the concerns in a typical CAT such as content and exposure control apply in
CD-CAT as well. ISSs that have been developed for CD-CAT can be categorized
into three groups: single-purpose for α estimation, dual-purpose for estimation of
both α and θ , and ISSs that account for non-statistical constraints.

15.3.1 Single-Purpose ISS for Estimation of α

Two fundamental ISSs were proposed in the early 2000’s. One is based on Kullback-
Leibler information (Xu et al., 2003), and the other based on Shannon entropy
(Tatsuoka, 2002).

Kullback-Leibler Information (KL) Method The Kullback–Leibler (K-L) infor-
mation measures the divergence between two probability distributions (Cover &
Thomas, 1991). Let K(f‖g) represent K-L information between probability density
functions f (x) and g(x). K(f‖g) is defined as:

K (f ‖g) =
∫

log

(
f (x)

g(x)

)
f (x)dx. (15.4)

If x is a discrete random variable, the integral in Eq. (15.4) can be replaced by
summation.

K (f ‖g) =
∑
f (x) log

(
f (x)

g(x)

)
. (15.5)

Suppose t items have been selected and administered in a CD-CAT program.
Denote the set of items in the bank that are currently eligible for selection as R(t)

and consider item h in R(t). Our focus is the conditional distribution of examinee n’s
response based on his or her cognitive profile αn (Cheng, 2009). The K-L distance
between the distribution of xnh, the response of person n to item h, given the most
recent latent mastery profile estimate α̂

(t)
n and the distribution of xnh given any latent

state αc can be computed as follows:

Kh

(
α̂(t)n ‖αc

)
=

1∑

x=0

log

⎛

⎝
P
(
xnh = x |̂α(t)n

)

P (xnh = x|αc)

⎞

⎠P
(
xnh = x |̂α(t)n

)
. (15.6)

A large Kh
(
α̂
(t)
n ‖αc

)
suggests that item h provides large information to differ-

entiate α̂
(t)
n and αc. If αc is the true latent state, selecting such an item would help

telling α̂
(t)
n apart from the truth. In reality the true state is unknown. When there are
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D attributes, there are 2D possible latent states. Thus, Xu et al. (2003) suggested the
following index for item selection:

KLh

(
α̂(t)n ‖α

)
=

2D∑

c=1

Kh

(
α̂(t)n ‖αc

)
. (15.7)

A large KLh
(
α̂
(t)
n ‖α

)
indicates that the item h contains a large amount of

information to differentiate between α̂
(t)
n from any possible αc. Hence Xu et al.

(2003) suggested to select items with the largest KLh
(
α̂
(t)
n ‖α

)
, h ε R(t) as the

(t + 1)-th item. This is referred to as the KL method in Cheng (2009).

Shannon Entropy (SHE) Method The Shannon entropy is a function of a random
variable’s probability distribution, which measures the uncertainty associated with
the distribution (Shannon, 1948). Let �= (F, p) be a discrete probability space with
M elements. In other words, each Fm has its probability pm, m = 1, 2, . . . M. The
Shannon entropy of � can be determined as

SH (�) =
M∑

m=1

pmlogb
1

pm
, (15.8)

where b without a subscript is the base of the logarithm used.

Denote the prior of the latent class as

p (αc) = π0c, c = 1, 2, · · · , 2D, (15.9)

subject to
∑2D
c=1 π0c = 1 and π0c ≥ 0. The corresponding posterior distribution of

the latent state after t items have been administered is

πt

(
αc|x(t)

)
∝ π0c

t∏

k=1

p
xk
kc(1− pkc)(1−xk), (15.10)

where pkc is the response probability to item k given latent state αc specified by a
CDM, and x(t) is the response vector to the t items that have been administered,
which contains t elements, from x1 to xt. The SHE of the posterior distribution
π t can be determined as

SH
(
πt |x(t)

)
= −

2D∑

c=1

πt (αc) logb (πt (αc)) . (15.11)

When item h is administered, the expected SHE can be determined as
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SH (πh (αc)) = −
1∑

x=0

SH
(
πt |x(t), xh = x

)
.p
(
xh = x|x(t)

)
. (15.12)

Naturally, Tatsuoka (2002) proposed to select items that minimize the expected SHE
of the posterior distribution of the latent state as quantified in Eq. (15.12). This is
referred to as the SHE method in Cheng (2009).

Since the early 2000’s many variations have been proposed based on the KL
method and the SHE method. For example, Cheng (2009) noted that the KL
algorithm assumed that all the latent states are equally likely, which is not necessary
and might cause inefficiency. Cheng (2009) therefore proposed two alternative
methods: the posterior-weighted KL method and the hybrid method.

Posterior-Weighted KL (PWKL) method The PWKL method modifies the
original KL index in Eq. (15.7) by weighting each KL divergence with its respective
probability of each possible latent state and created the PWKL index:

PWKLh

(
α̂(t)n

)
=

2D∑

c=1

KLh

(
α̂(t)n ‖αc

)
πt (αc) , (15.13)

where π t(αc) is the probability of the latent state αc after t items have been
administered. Cheng (2009) proposed to select the item in R(t) that maximizes

PWKLh

(
α̂
(t)
n

)
. Compared to the original KL method, thePWKLh

(
α̂
(t)
n

)
gives

higher weight to the latent states that are more likely given previous responses.

Hybrid KL (HKL) Method Based on the PWKL index, HKL can be further
weighted by the inverse of the distance between the current α̂

(t)
n and other latent

states:

HKLh

(
α̂(t)n

)
=

2D∑

c=1

KLh

(
α̂(t)n ‖αc

)
πt (αc)

1

dis
(
αc, α̂

(t)
n

) , (15.14)

where dis
(
αc, α̂

(t)
n

)
represents the Euclidean distance between αc and α̂

(t)
n :

dis
(
αc, α̂

(t)
n

)
=
√√√√

D∑

d=1

(
αcd − α̂(t)nd

)2
. (15.15)

Such weighting favors items that can tell apart latent states that are close, or in
other words, that are difficult to be distinguished from each other. Cheng (2009)
proposed to select items that maximize the HKL index and reported that the PWKL
and HKL methods outperform the KL and SHE methods in terms of efficiency.
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Furthermore, Cheng (2009) showed the relationship between the KL and SHE
methods, that is, “minimizing the expected SHE of the predicted posterior is
equivalent to maximizing the expected KL distance between the predicted posterior
and the discrete uniform distribution”. It also discussed the connection between the
KL method for CD-CAT and the global information method proposed by Chang and
Ying (1996) for regular CAT, as well as the relationship between the SHE method
for CD-CAT and the minimum expected posterior variance (MEPV) method for the
regular CAT (van der Linden, 1998).

The methods described above were built with asymptotic statistical efficiency
in mind. Similar as under regular CAT, there exist concerns over capitalization on
chance in the beginning of a test, or for a short test. Some methods were developed
to specifically address such concerns, for example, the mutual information method
(MI; Wang, 2013), the modified PWKL and GDI method (Kaplan, de la Torre, &
Barrada, 2015), and methods based on the CDM discrimination index or the CDI
(Henson & Douglas, 2005; Zheng & Chang, 2016).

Mutual Information (MI) Method Mutual information is a measure of mutual
dependence for two random variables, or information that can be obtained on one
random variable from the other. Consider two discrete random variables Y and Z
with joint distribution p(y,z), the corresponding MI between Y and Z is given by

MI (Y | |Z) =
∑

y,z

p (y, z) log
p (y, z)

p(y)p(z)
. (15.16)

Suppose π(α| x(t))and p(xh| x(t)) are the posterior distribution of the latent state
and the Bernoulli distribution of the next response given the responses on the
first t items, respectively. Then the mutual information between them indicates the
information obtained about the unknown α when the item h is added to the test,
which is:

MI
(
π
(
α|x(t)

)
‖p
(
xh|x(t)

))

=
1∑

x=0

2D∑

c=1

p
(
αc, xh = x|x(t)

)
log

[
p
(
αc, xh = x|x(t)

)

π
(
αc|x(t)

)
p
(
xh = x|x(t)

)
]
.

(15.17)

The elements p(xh = x| x(t)) and p(αc, xh = x| x(t)) both involve summations
over 2D possible latent classes. Wang (2013) noted that MI-based algorithm
requires a triple summation over 2D possible cognitive profiles and is therefore
computationally intensive. She provided the computational simplification for the
MI-based algorithm in the paper. Based on the simulation results of Wang (2013),
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MI is more efficient than the other competing indices for short tests. This is because
it utilizes the full posterior of π(α| x(t)) instead of a point estimate from π(α| x(t)).

Modified Posterior-Weighted Kullback-Leibler (MPWKL) Method The moti-
vation of the PWKL method (MPKWL; Kaplan et al., 2015) is to consider the entire
posterior distribution of 2D possible latent states when the test is relatively short,
instead of focusing on the latest latent state estimate α̂

(t)
n . Again, this is because α̂

(t)
n

may not be stable or reliable yet at the beginning of CAT. The MPWKL index can
be computed as

MPWKL
(t)
h

=
2D∑

c1=1

⎡

⎣
2D∑

c2=1

[
1∑

x=0

log

(
p (Xh = x|αc1)
p (Xh = x|αc2)

)
p (Xh = x|αc1) πt (αc2)

]
πt (αc1)

⎤

⎦ .

(15.18)

Generalized Model Discrimination Index (GDI) Method Kaplan et al. (2015)
proposed the GDI index which takes the (weighted) variance of the probabili-
ties of answering an item correctly given a particular attribute distribution into
consideration. Let A∗h denote the set of attributes measured by item h, and α∗h
the reduced mastery vector for the corresponding A∗h attributes (de la Torre,
2011). Ph refers to the mean probability of answering item h correctly: Ph =
∑2A

∗
h

c=1 π
(t)
(
α∗ch
)
P
(
Xh = 1|α∗ch

)
, where π(t)

(
α∗ch
)

is the posterior probability of
the reduced attribute vector α∗ch after t items have been administered. The GDI is
defined as:

GDI
(t)
h =

2D
∗
h∑

c=1

π(t)
(
α∗ch
) [
P
(
Xh = 1|α∗ch

)− Ph
]2
. (15.19)

It is the weighted variance of the probability of answering item h correctly. Items
with larger GDI are better at differentiating among the reduced attribute vectors.
Kaplan et al. (2015) showed that maximizing the GDI works well for short tests,
and by using a reduced attribute vector the GDI is computationally more efficient.

Posterior-Weighted/Posterior-Weighted Attribute-Level CDM Discrimination
Index (PWCDI/PWACDI) Method Based on the CDI index (CDM discrimination
index; Henson & Douglas, 2005), Zheng and Chang (2016) proposed two algorithms
that can be used for short-length CD-CAT, namely PWCDI and PWACDI. The
original purpose for developing the CDI index is to facilitate test construction based
on CDM. For a specific item h, the CDI DISh is a 2D × 2Dmatrix whose entry DIShuv

is the expected KL distance between the response distributions given latent classes
αu and αv:
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DIShuv = Eαu
[

log

(
P (Xh|αu)
P (Xh|αv)

)]
, (15.20)

The posterior-weighted DIShuv is referred to as the PWDhuv:

PWDhuv = Eαu
[
π (αu) π (αv ) log

(
P (Xh|αu)
P (Xh|αv)

)]
, (15.21)

where αuand αv are two candidate latent classes (u, v = 1, 2, · · · , 2D), and π (αu)
and π (αv ) are the posterior probabilities of these two states, respectively.

The PWCDI and PWACDI indices can be determined as follows:

PWCDIh = 1
∑
u�=v H(αu,αv)−1

∑
u�=vH(αu,αv)

−1PWDhuv, (15.22)

PWACDIh =
K∑

k=1

1

2K
∑

all relevant cells

PWDhuv, (15.23)

where H (αu,αv) = ∑D
d=1 |αu1 − αv1| refers to the Hamming distance between

αu and αv. All relevant cells denote the entries in the DISh matrix where only the
dth attribute is different for attribute patterns αuand αv. Because the calculation of
CDI does not rely on the provisional attribute profile, Zheng and Chang (2016)
showed that maximizing the PWCDI and PWACDI leads to better performance than
maximizing the KL index in the early stage of CD-CAT.

15.3.2 Dual-Purpose ISS for Both α and θ Estimation

The different ISS discussed in the previous sections are designed for tests that
focus on the estimation of each test taker’s latent profile. However, in applications,
providing the latent trait information (i.e., a summative score) can also be desirable.
Thus, it is of practical importance to integrate the ability estimation into the ISSs
under a CD-CAT system.

Dual-Information Method (DIM) To efficiently estimate both θ and α simulta-
neously, Cheng and Chang (2007a) proposed the dual-information method, which
incorporated the information from both θ and α by using a weighted sum of them.

KLh

(
θ̂ (t)n , α̂

(t)
n

)
= ω ·KL

(
θ̂ (t)n

)
+ (1− ω)KL

(
α̂(t)n

)
, (15.24)
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where ω is a weight with (0 ≤ ω ≤ 1), and KL
(
θ̂
(t)
n

)
is the global information

(Chang & Ying, 1996) for item selection under the regular CAT, andKL
(
α̂
(t)
n

)
can

be the KL index defined in Eq. (15.7), or the PWKL index defined in Eq. (15.13)

or the HKL index in Eq. (15.14). The item with the largest KLh
(
θ̂
(t)
n , α̂

(t)
n

)
will be

chosen as the next item.

Along this line of research, numerous methods that serve dual purposes have
been developed, such as McGlohen and Chang (2008), Wang, Chang, and Douglas
(2012), Wang, Zheng, and Chang (2014), Dai, Zhang, and Li (2016), and Kang,
Zhang, and Chang (2017).

Two-Stage Method McGlohen and Chang (2008) proposed a two-stage process. In
the first stage, a shadow test (van der Linden, 2000) is assembled at the provisional
ability estimate θ̂ (t)n . A shadow test refers to a test that is assembled at each step of
item selection that maximizes test information at the current ability estimate, while
meeting all non-statistical constraints (see the next section for the discussion of non-
statistical constraints). Then in the second stage the SHE or KL method is used to
pick the next item for administration from the shadow test. Thus, this method selects
items that are suitable for both θ and α estimation.

Aggregated Ranked Information Method (ARI) One notable problem with the
DIM is that the information from θ and α can be on different scales. Wang et al.
(2014) modified the DIM by combining the percentile ranks of information coming
from θ and α:

ARI = ω · pe
(
KL

(
θ̂ (t)n

))
+ (1− ω)pe

(
PWKL

(
α̂(t)n

))
, (15.25)

where pe(·) refers to percentile rank, ω refers to the weight (0 ≤ ω ≤ 1), and

KL
(
θ̂
(t)
n

)
is the global information (Chang & Ying, 1996) evaluated at θ̂ (t)n . Wang

et al. (2014) chose three weighting schemes for the weightω: Theory-based weights,
empirical weights, and attribute-level weights.

When both KL and PWKL index are standardized, the ARI turns into Aggregated
standardized information (ASI) method:

Z
KL∗

(
θ̂
(t)
n

) =
(
KL

(
θ̂
(t)
n

)
−mean

(
KL

(
θ̂
(t)
n

)))

SD
(
KL

(
θ̂
(t)
n

)) , (15.26)

Z
PWKL∗

(
α̂
(t)
n

) =
(
PWKL

(
α̂
(t)
n

)
−mean

(
PWKL

(
α̂
(t)
n

)))

SD
(
PWKL

(
α̂
(t)
n

)) , (15.27)
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ASI = ω · Z
KL
(
θ̂
(t)
n

) + (1− ω)
(
Z
PWKL∗

(
α̂
(t)
n

)
)
. (15.28)

Dapperness with Information (DWI) Dai et al. (2016) combined SHE for α

estimation and Fisher information for θ estimation into one single index as a ratio
between the two:

DWIh =
Ih

(
θ̂
(t)
n

)

SHEh

(
α̂
(t)
n

) , (15.29)

where Ih
(
θ̂
(t)
n

)
and SHEh

(
α̂
(t)
n

)
are the Fisher information based on the interim

ability estimate and SHE index based on the interim posterior density given item h
for the nth respondent. By maximizing the ratio, the DWI method favors items that
lead to large Fisher information for θ and small SHE for or α.

Jensen-Shannon Based Index (JS) To place information for θ and α on the same
scale, Kang et al. (2017) proposed a new index JS(fα‖fθ ) based on Jensen-Shannon
divergence,

JS (fα| | fθ ) = ωKL (fα‖g)+ (1− ω)KL, (fθ | |g ) , (15.30)

where g= ωfα + (1− ω)fθ , ω refers to the weight which was set as ω(k)= k/(L+ 1)
in Kang et al. (2017), and L denotes the test length. fα and fθ are the two mass
functions corresponding to P(xk = 1|α) and P(xk = 1| θ ), respectively. They also
showed the relationship between JS(fα‖fθ ) and other common indices, such as SHE
and MI.

15.3.3 Constrained ISSs

Different from the above ISSs, constrained ISSs refer to those methods that take
non-statistical constraints (van der Linden & Chang, 2003) or exposure control into
consideration.

ISSs for Attribute Balancing As mentioned in Cheng (2010), attribute balancing,
which is analogous to content balancing in a traditional CAT program, is very
important for a CD-CAT program. Content balancing typically means balancing the
proportion of items from different content areas or subdomains. A content balancing
constraint is often imposed by test developers to ensure face validity and content
validity of a test. It may come in the form of an upper bound of the number of items
that can appear on the test from a certain content area, or in the form of both upper
and lower bounds (Cheng & Chang, 2007b; Cheng, Chang, & Yi, 2007). The goal
is to ensure that a content area is neither under- nor –over represented on a regular
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CAT. In a CD-CAT program, attribute balancing means that the representation of
each attribute on the test needs to be balanced.

MGDI Method Based on the KL index, Cheng (2010) proposed selecting items
with the maximum MGDI, or the modified global discrimination index (MGDI), for
the purpose of attribute balancing in CD-CAT. The MGDI index is formulated by
weighting the KL index with an attribute-balancing index. The attribute-balancing
index takes the following form,

D∏

d=1

(
Bd − bd
Bd

)qhd
, (15.31)

and the MGDI can be determined as follows:

MGDIh

(
α̂(t)n

)
=

D∏

d=1

(
Bd − bd
Bd

)qhd
KLh

(
α̂(t)n ‖αc

)
, (15.32)

where Bd is the minimum number of items required to measure the dth attribute, and
bd represents the number of items measuring the dth attribute that have already been

selected. As we can see, if qhd = 0,
(
Bd−bd
Bd

)qhd
is 1. This indicates that qhd does

not affect the corresponding MGDI. If Bd equals bd, it means the dth attribute has
been measured by the minimum required number of items, and then MGDI would
equal 0. Under these circumstances, items measuring the dth attribute will have a
MGDI of 0, and hence will not be favored by the MGDI method. On the other hand,
items that tap into an under-represented attribute will be favored by the MGDI. The
MGDI method can be viewed as analogous to the flexible content balancing method
proposed in Cheng, Chang and Yi (2007) for regular CAT, when only lower bounds
are imposed on attributes. It could also be viewed as an extension to CD-CAT of the
maximum-priority-index (MPI) method proposed in Cheng and Chang (2009) for
regular CAT when only simple content balancing constraints are present.

Q-control Method Wang et al. (2012) proposed the Q-control method to handle
both upper and lower bounds in attribute balancing. Let qhd denote the dth entry in
the Q matrix for the hth item, ud and ld denote the upper and lower bounds on how
many times each attribute should be measured, respectively. Let vd represent the
number of items that have been selected that measure attribute d. The control index
Ph can be determined as

Ph =
D∏

d=1

[
ud − vd − qhd

ud

] [
(L− ld )− (t − vd − qhd)

L− ld
]
. (15.33)

The control index Ph is then multiplied to the appropriate information index,
for example, the KL information in Eq. (15.7) to formulate an item selection index
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with built-in attribute balancing. For instance, Wang et al. (2012) proposed the MIQ
index as follows:

MIQh = Ih
(
θ̂ (t)n

)
Ph, (15.34)

where Ih
(
θ̂
(t)
n

)
denotes the item Fisher information at the current ability estimate.

The MIQ index can serve as a dual-purpose item selection method.

ISSs for Exposure Control The ISSs may lead to some items to be overexposed,
and some other items underexposed. Overexposed items may pose a threat to test
security, and many underexposed items imply wasted resources on item writing and
item bank development. It is therefore desirable to control item overexposure and
balance item exposure in the bank.

RP_PWKL Method Wang, Chang, and Huebner (2011) proposed two methods for
expose control based on the PWKL index, namely the P_PWKL method and the
RP_PWKL method. The P_PWKL index is defined as follows:

P–PWKLh =
(

1− t

L

)
Rh + β t

L
PWKLh, (15.35)

where L is the test length, t refers to the number of items that have been
administered, β > 0 is the weight which can be adjusted to exert more or less
stringent control of item exposure, and Rh is a random number generated from U(0,
max {PWKLh, h ε R(t) }). The P_PWKL index is essentially a weighted sum of
a random number and the PWKL. By adding that random number component, the
P_PWKL method introduces more uncertainty to item selection and therefore results
in more balanced item usage.

To further suppress item overexposure, the RP_PWKL index was proposed:

RP–PWKLh =
(

1− exph
r

)
P–PWKLh, (15.36)

where r refers to the maximum exposure rate allowed, and exph is the exposure rate
for item h. Wang et al. (2011) suggested selecting items with the largest RP_PWKL
index at every step. Items that have already been administered very frequently
would have high exph and consequently less favored by the RP_PWKL method. The
P_PWKL method mimics the progressive approach for exposure control in a regular
CAT proposed in Revuelta and Ponsoda (1998), where P_ means that the method is
“progressively” relying more on the information component as test progresses. The
RP_PWKL method is the restricted-progressive approach which added a restrictive
cap on the maximum exposure rate (Georgiadou, Triantafillou, & Econimides, 2007;
Revuelta & Ponsoda, 1998).

RT_PWKL Method To avoid deterministic item selection using other ISSs, Wang
et al. (2011) suggested selecting an item among those lead to the largest PWKLs,
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instead of selecting the one item with the largest PWKL. In other words, an item
will be randomly picked from the item set that contains all items that fall in the
information interval defined as follows

[max (PWKLh)− δ,max (PWKLh)] , h ε R(t), (15.37)

where δ is a constant that regulates the size of the interval, or the size of the item set.
Wang et al. (2011) suggested that δ should be larger in the beginning and smaller
towards the end of the test. This makes the RT_PWKL method progressive, similar
to the P_PWKL method. By adding the restrictive limit of maximum exposure rate,
the RT_PWKL is similar to the RP_PWKL method.

Apparently some ISSs such as the P_PWKL and RP_PWKL methods were
“developed from information indices in information science and attempted to
achieve a balance among several objectives by assigning different weights” (Zheng
& Wang, 2017). It is tricky how the weights should be assigned and often researchers
must use “trial and error” to find appropriate weights. Zheng and Wang (2017)
therefore proposed to adapt the classic binary searching algorithm to CD-CAT. The
key idea of dynamic binary searching (DBS) is to select those items whose attribute
vectors can split all possible attribute patterns into two mastery/non-mastery groups
of equal size (i.e., the same number of attribute patterns in each group), or two
groups of size that are as close as possible.

Q discrimination-control method. An innovative approach to balance item bank
usage in regular CAT was the a-stratified method (Chang & Ying, 1999). It should
be noted that under the MFI method items that are highly discriminating are
favored and used most frequently. On the other hand, items with low discrimination
parameters are seldom selected for administration. Chang and Ying (1999) therefore
proposed to pre-stratify the item bank according to the a-parameter values into
high-, medium- and low-discrimination stratum. Initially items are restricted to be
selected from the low-discrimination stratum. Gradually as test progresses items can
be chosen from higher strata.

The Q discrimination-control method (Wang et al., 2012) assumes that items
with high “noise” parameters such as the guessing (gh) and slipping (sh) parameters
in the deterministic input, noisy “and” gate (DINA; Junker & Sijtsma, 2001) model
are low-quality items. They therefore proposed the MIQD index in contrast to the
MIQ method by including the component(1 − sh)(1 − gh) as follows:

Ph = (1− sh) (1− gh)
D∏

d=1

[
ud − xd − qhd

ud

] [
(L− ld )− (t − xd − qhd)

L− ld
]
,

(15.38)

MIQDh = Ih
(
θ̂ (t)n

)
Ph. (15.39)
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Items with larger (1 − sh)(1 − gh) would be favored under the MIQD method.
This again is a dual-purpose ISS as information from both the IRT model and
CDM is considered. It can also be viewed as a variation of the MFI method by
adding attribute balancing and item quality control. Therefore, it can still suffer
from unbalanced item exposure. The StraQD method applies the MIQD to pre-
stratified item bank, to address the potential item exposure issue by using the MIQD.
The StraQD method serves dual-purpose and has built in attribute balancing and
exposure control.

15.4 Stopping Rules

Depending on the stopping rule, a CD-CAT program can be of fixed length or
variable-length. If the fixed-length rule is applied, a test will end when a pre-
specified number of items are administered to each test taker. There are different
stopping rules for variable-length CD-CAT programs. For example, Tatsuoka (2002)
utilized a stopping rule when the maximum posterior probability of the respondent
belonging to an attribute master pattern reaches 0.8. Hsu, Wang, and Chen (2013)
further addressed the stopping rule issue and proposed two stopping rules for
variable-length CD-CAT. The first rule is that a test would be stopped when the
largest posterior probability (over all possible latent states) is no smaller than a pre-
specified value (e.g., 0.7). The second rule requires not only the largest posterior
probability to be greater than or equal to a pre-specified value (such as 0.7), but also
that the second largest posterior probability is less than or equal to a pre-specified
value (such as 0.1).

15.5 Respondent Classification Methods (Scoring Rules)

In a CD-CAT program, ISS or the termination rule or both may rely on sequential
update of α̂

(t)
n . Similar to estimation of θ , MLE, MAP and EAP are currently the

prevailing methods for estimation of α. Under the DINA model, the MLE, MAP
and EAP estimates for α can be obtained as follows:

α̂
(t)
ML = argmax

c

{
L
(
x(t)n ;αc

)}
, (15.40)

α̂
(t)
MAP = argmax

c

{
P
(
αc|x(t)n

)}
, (15.41)

where c = 1, 2, . . . 2D,L
(
x
(t)
n |αc

)
is the likelihood of responses on the first t items

given an latent state αc, and P
(
αc|x(t)n

)
is the posterior probability of αc given x

(t)
n .
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The EAP method estimates the latent class by estimating the mastery status on each
attribute:

α̂
(t)
EAP,d =

2D∑

c=1

P
(
αc|x(t)n

)
1 (αcd = 1) , (15.42)

where 1(·) is an indicator function, α̂
(t)
EAP,d is the mastery probability for the dth

attribute after administered t items. The final latent class estimate α̂
(t)
EAP can be

obtained by rounding each α̂
(t)
EAP,d to 0 or 1.

Huebner and Wang (2011) compared these three methods and examined the
agreement among them on the classification of a given respondent. Based on their
results, the performance of MLE and MAP is very similar. For total individual
attribute classifications, EAP is superior to MLE and MAP. For tests of low
diagnosticity (e.g., with large slipping and guessing parameters), there can be large
discrepancies between EAP and MLE/MAP.

15.6 Online Calibration Under CAT

To maintain a large item bank, online calibration of new items is almost a necessity
for large adaptive testing programs. Online calibration refers to estimating the item
parameters of new items when they are administered to examinees, typically while
they are administered in conjunction with previously calibrated, operational items
during testing (Wainer & Mislevy, 2000). Then the calibrated new items can be
added to the item bank to replenish the pool. Meanwhile, overexposed or obsolete
items can be retired from the bank.

As discussed in Zheng (2014), it is possible to select an optimal sample of
examinees to more efficiently calibrate item parameters during CAT. This is a cost-
effective approach to maintain and replenish the item bank. It is also useful for the
purposes of recalibrating existing items in the bank whose parameters may have
drifted. Under a regular CAT, Stocking (1988) introduced two methods for online
calibration: The Stocking-A method and the Stocking-B method. The Stocking-A
method estimates examinee ability θs based on all the administered operational
items first, and then estimate the parameters of new items by means of conditional
maximum likelihood estimate (CMLE; Baker & Kim, 2004) assuming the estimated
θs are fixed. The Stocking-B method extended the Stocking-A method by plugging
in an equating step to correct the scale drift. Since then, numerous methods have
been proposed and below we provide a brief review of several popular methods.

The OEM Method To calibrate the new items, Wainer and Mislevy (2000) used all
the administered operational items to estimate the posterior θ distribution, and then
marginalized the likelihood function with respect to the posterior distribution of θ
based on the MMLE/EM algorithm with one EM cycle. The E-step is used to find
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the posterior expectation of the log-likelihood of those new items, and the M-step is
used to find the item parameter vector that maximizes the posterior expectation of
the log-likelihood.

The MEM Method Different from the OEM, Ban, Hanson, Wang, and Harris
(2001) increased the number of EM cycles until the predefined convergence
condition was met and named this method Multiple EM cycles method (MEM).
The first cycle of MEM is the same as the OEM. Starting from the second cycle, the
posterior θ distribution will be updated based on both operational and pretest items,
and then the pretest item parameters are updated. The E-step and the M-step then
iterate until the predefined convergence condition is met.

The Bayesian Version of Stocking-A, OEM and MEM Methods To alleviate the
non-convergence problems caused by small sample sizes and “bad” starting values
for the Newton-Raphson algorithm, Zheng (2014) proposed Bayesian versions of
the algorithms, that is, Bayesian Stocking-A, Bayesian OEM, and Bayesian MEM,
by adding priors of item parameters to the likelihood function.

In addition to the calibration of item parameters (for example, slipping parameter
and guessing parameter under the DINA model), the item attribute vector (which
defines which attributes are measured by an item) also need to be specified. The Q
matrix can be considered a compilation of item attribute vectors. Because of this,
additional challenges may exist in online calibration under CD-CAT. So far there
are two types of online calibration methods under CD-CAT. The first type, akin to
its counterpart in regular CAT, estimates only the item parameters. The second type,
on the other hand, estimates both the item parameters and the item attribute vector.

The Chen et al. (2012) method belongs to the first type. The paper extended
the Stocking-A, OEM and MEM methods to CD-CAT, and denoted them as CD-
Method A, CD-OEM and CD-MEM, respectively. The CD-Method A first estimates
examinees’ latent state based on the operational items (whose item parameters are
known), and then calibrates the new items. It only employs a single EM cycle
for calibration, the same as in the CD-OEM. In contrast to the CD-Method A,
CD-OEM method does not fix estimated latent state; instead, it employs the full
posterior distribution of the latent state. The difference between the CD-MEM and
the CD-OEM is that the former includes multiple EM cycles until the predefined
convergence criterion is met, whereas the latter includes only one single EM cycle.

Chen, Liu, and Ying (2015) proposed two methods to estimate both the item
parameters and the corresponding attribute vectors for new items under the DINA
model. They assume that there exists a set of operational items that have been well
calibrated. Then they treat the attribute vector of the new items as additional item-
specific parameters and estimated them in conjunction with item parameters. The
two proposed methods are: the single-item estimation (SIE) method and the simul-
taneous item estimation (SimIE) method. The SIE method calibrates new items
individually, while SimIE calibrates multiple new items simultaneously. Among the
2D − 1 possible attribute vectors, the SIE method picks the one resulting in the largest
likelihood function, and then obtains the corresponding item parameters as well as
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latent class estimates. The SimIE adopts SIE to calibrate each new item and treats
the new item as an additional operational item. The latent states of test takers were
then updated via maximum likelihood or Bayesian estimation. Repeat this procedure
to calibrate the next new item until all the new items are calibrated.

Granted, online calibration is one important piece to item bank development and
maintenance, but not the only piece. Right now there hasn’t been much research in
CD-CAT on other aspects of item bank development, for example, the required size
of the bank in relation to test length, optimal design of the item bank and so on.
Further research is needed in these areas.

In summary, we have covered the main components of CD-CAT: Starting rule,
ISS, stopping rule, scoring rule, and item bank development and more specifically
online calibration. As a variation of CAT, multi-stage testing (MST) has lately
become increasingly popular. Next we will discuss the CD-MST in relation to CD-
CAT.

15.7 CD-MST

In both CAT and MST, items are selected sequentially based on respondent’s
provisional ability or proficiency estimates, be it latent trait(s) or latent class(es).
Different from CAT, which is a fully sequential testing model, MST is a group-
sequential testing model. The advantages of MST manifest in the use of stages,
modules or panels, which allows test developers to preassemble a set of items for
selection. Constraints such as content balancing can be met in the preassembly
process. This means constraints do not need to be met on the fly as in CAT. It
allows test developers to play a more important role in the process rather than only
relying on the adaptive algorithm. See Yan, von Davier, and Lewis (2014) for more
details on the comparison between CAT and MST. For a CD-MST program, there
are several stages, and in each stage, choices need to be made to determine which
block of items is administered next. Item blocks are pre-assembled. The reader is
referred to von Davier and Cheng (2014) for a detailed discussion of CD-MST.

15.8 Large Scale Implementation

Numerous studies have been found on the various aspects of CD-CAT, but very
few studies address its implementation. Liu, You, Wang, Ding, and Chang (2013)
first reported on a large-scale development and implementation of a web-based CD-
CAT in China. They developed an on-line assessment system to combine CAT with
CDM and provided cognitive diagnostic feedback to the respondents on the Level 2
English Achievement. Based on the test blueprint, researchers and content experts
constructed the Q matrix, which has 8 attributes covered by 400 items. They used
3PLM as the IRT model, and the DINA model as the CDM. For the ISS, they used
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the SHE method to select items from the item bank and used Maximum a Posterior
(MAP) method to estimate respondents’ latent state. Liu et al. then evaluated the
consistency between the results from the CD-CAT system and those obtained from
an academic achievement test to obtain evidence of convergent validity. Von Davier
and Cheng (2014) discussed the implementation of CD-MST in the Programme for
the International Assessment of Adult Competencies (PIAAC).

15.9 Discussion

In this chapter we provided a comprehensive overview of the main components of
CD-CAT, as well as up-to-date summary of existing research on these components.
Apparently, there exists a large amount of research on ISS but relatively less
attention on other aspects of CD-CAT. It is important to recognize the gaps in
existing research and hopefully future research will fill in the gaps.

Besides these main components, other research topics may also be highly
relevant to CD-CAT, for example, research on the validation and estimation of the
Q matrix. Item selection and scoring under CD-CAT certainly relies heavily on
the accuracy of the Q matrix. Researchers have proposed many approaches to deal
with Q matrix estimation and validation, such as exploratory methods (Xiang, 2013;
Chung, 2014), validation methods (de la Torre, 2008; de la Torre & Chiu, 2016), and
hybrid methods (Liu, Xu, & Ying, 2012). These methods have their own strengths
and weaknesses. Exploratory methods do not need an “initial Q matrix” to start
but have a lower probability to obtain the correct Q matrix. On the other hand,
validation methods require an “initial Q matrix” which may contain a small number
of misspecifications but are more efficient. In contrast, hybrid methods only require
part of the “initial Q matrix”.

Another closely related topic is test assembly, that is, how to assemble an optimal
test based on CDM. As alluded to in the section of CD-MST, test assembly may play
an important role in the assembly of testing modules or panels of MST. Another
important line of research in formative assessment is based on multidimensional
item response theory (MIRT; Reckase, 1985, 1997) models. MIRT assumes a
multi-dimensional vector for latent traits, in contrast to latent classes as in CDM.
Discussion of CAT based on MIRT, or M-CAT, is beyond the scope of this chapter,
but they clearly have important and close connections to CD-CAT.
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Chapter 16
Identifiability and Cognitive Diagnosis
Models

Gongjun Xu

Abstract Cognitive Diagnosis Models (CDMs) are popular statistical tools in
cognitive diagnosis assessment. CDMs can be viewed as restricted latent class
models with constraints introduced by the Q-matrix and assumptions of how skill
variables that are assigned to items via theQ-Matrix interact in the item function. As
many other latent variable models do, the CDMs often suffer from nonidentifiability.
This chapter focuses on the identifiability issue of the CDMs and present conditions
to ensure identifiability, which can be directly applied to most of the CDMs.

16.1 Introduction

Cognitive diagnosis is a type of assessment or measurement aiming to achieve
a fine-grained description of an individual’s latent traits, such as skills, knowl-
edge, personality traits, or psychological disorders, based on his or her observed
responses to certain diagnostic items. Compared with traditional tests for measuring
proficiency that is usually characterized as a unidimensional latent trait, cognitive
diagnosis focuses on detecting the presence or absence of multiple fine-grained
latent traits, which are usually called attributes. Therefore, cognitive diagnosis
assessment would provide more informative diagnostic profiles on each individual’s
attribute profile, such as school students mastery of the necessary component skills
of mathematics. This feedback information allows for the design of more effective
intervention strategies for remedy, such as to improve those latent attributes that a
student has not sufficiently mastered yet.

Cognitive diagnosis models (CDMs), also called the diagnostic classification
models (DCMs) in the literature, are statistical and psychometric tools in cognitive
diagnosis assessment with the aim to estimate individuals’ diagnostic attribute
profiles from the response data of the assessment. Specifically, CDMs model
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the complex relationship among items, multivariate binary latent trait vector, and
categorical item responses for a set of items and a sample of respondents. Even
though the earliest cognitively diagnostic models were proposed in 1980s, the topic
of cognitive diagnosis modeling has gained great popularity in recent years due
to the advancement of computation power to handle complex models and also
due to the models’ desirable diagnostic nature of providing informative cognitive
profiles for every respondent. Various CDMs have been developed with different
cognitive diagnosis assumptions, including the deterministic input noisy “and”
gate (DINA) model and the noisy input deterministic “and” gate (NIDA) model
(Junker & Sijtsma, 2001), the deterministic input noisy “or” gate (DINO) and
noisy input deterministic “or” gate (NIDO) models (Templin & Henson, 2006),
the reparameterized unified models (RUM; DiBello, Stout, & Roussos, 1995), the
higher-order DINA model (de la Torre & Douglas, 2004), the general diagnostic
model (GDM; von Davier, 2008), the loglinear CDM (LCDM; Henson, Templin, &
Willse, 2009), and the generalized DINA model (GDINA; de la Torre, 2011), among
others.

To achieve reliable and valid diagnostic assessment, a fundamental issue is to
ensure that the CDMs applied in cognitive diagnosis are statistically identifiable,
which is a necessity for statistically consistent estimation of the model parameters of
interest and correct statistical inferences. The study of model identifiability has been
an important topic in statistics and psychometrics, which dates back to Koopmans
(1950) and Koopmans and Reiersøl (1950); see also McHugh (1956), Rothenberg
(1971), Goodman (1974) and Gabrielsen (1978) for further developments. Identi-
fiability issues of the CDMs have long been a concern, as noted in the literature
(DiBello et al., 1995; Maris & Bechger, 2009; Tatsuoka, 2009a; DeCarlo, 2011;
von Davier, 2014a). In practice, due to a lack of theoretical development on easy
checkable identifiability conditions, there is often a tendency to overlook the issue,
in part because available software tools tend not to provide checks of identifiability
for applied research. Recently there have been several studies in the literature on the
identifiability of the CDMs, including the DINA and DINO models (e.g., Liu, Xu, &
Ying, 2013; Chen, Liu, Xu, & Ying, 2015; Xu & Zhang, 2016; Gu & Xu, 2018a,b)
and general CDMs (e.g., Xu, 2017; Xu and Shang, 2018; Gu and Xu, 2018a).

This chapter presents practically checkable identifiability conditions with a
selected review of recent developments and provides various examples for further
illustration. It also aims to clarify some related concepts on the identifiability and
estimability of the CDM parameters. For most CDMs, identifiability conditions can
be characterized by the structure of the Q-matrix, a key component in cognitive
diagnosis that describes the relationships between the items and the target latent
attributes. A direct application of such results is that it would provide a guideline
for designing statistically valid diagnostic tests. For instance, to ensure the model
identifiability and consistent estimation, practitioners only need to construct Q-
matrices that satisfy the identifiability structures when designing the diagnostic
tests.

The rest of the chapter is organized as follows. In the following section, we
give a review of several popularly used CDMs under the general framework of
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the restricted latent class models. In what follows we introduce the identifiability
definition and clarify some important concepts, such as the relationship between
identifiability and consistent estimation; we also present an equivalent definition to
check the identifiability of the model parameters, which is used to established the
identifiability results. First, we consider two basic CDMs – the DINA and DINO
models; due to their duality, we focus on the DINA model and present the sufficient
and necessary conditions for identifying the slipping, guessing and population
proportion parameters. Subsequently, we discuss the identifiability of general CDMs
under the restricted latent class framework. Various examples, including a real data
set, are given to illustrate the importance of the identifiability issue and how to check
the proposed conditions. Some other interesting problems are further discussed in
the closing section.

16.2 A Review of CDMs as Restricted Latent Class Models

We consider the setting of a cognitive diagnosis test with binary responses. The test
contains J diagnosis items and a subject (such as an examinee or a patient) provides
a J -dimensional binary response vector X = (X1, . . . , XJ )

� to the items, where the
superscript “�” denotes the transpose operator. These responses are assumed to be
dependent in a certain way onK unobserved latent attributes. Moreover, conditional
on the K latent attributes, the responses are assumed to be independent, which is
called the local independence assumption and is commonly used in the literature of
CDMs and item response theory (e.g., Reckase, 2009; Rupp, Templin, & Henson,
2010; van der Linden & Hambleton, 2013; Embretson & Reise, 2013).

A complete set of theK latent attributes is known as an attribute profile, which is
denoted by a column vector α = (α1, . . . , αK)

�, where αk ∈ {0, 1} is assumed to be
binary to indicate the absence or presence, respectively, of the kth attribute. Both α

and X are subject-specific; a particular subject i’s attribute and response vectors are
denoted by αi and Xi , respectively, for i = 1, . . . , N , where N denotes the number
of subjects, i.e., the sample size.

Most CDMs assume the following two-step data generating process. The first
step models the attribute profile α from a population distribution. A common
assumption is that the subjects’ attribute profiles are a random sample of size N
from a designated population so that their attribute profiles αi , i = 1, . . . , N are
random variables following a categorical distribution with probabilities

pα := P(αi = α),

where pα ∈ (0, 1), for any α ∈ {0, 1}K , and
∑

α∈{0,1}K pα = 1. The distribution of

α is thus characterized by the column vector p = (pα : α ∈ {0, 1}K)�.
The second step of the CDMs follows a restricted latent class model setting

with incorporated constraints according the cognitive processes. Given a subject’s
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attribute profile α, the responseXj to item j under the corresponding model follows
a Bernoulli distribution: Xj | α ∼ Bernoulli(θj,α), where

θj,α := P(Xj = 1 | α)

is the probability of providing positive response to item j for subjects with α.
CDMs can be viewed as restricted latent class models where the parameters � =
(θj,α)J×2K are constrained by the relationship between the J items and theK latent
traits. Such relationship is specified through aQ-matrix (Tatsuoka, 2009b), which is
defined as a J ×K binary matrix with entries qjk ∈ {0, 1} indicating the absence or
presence, respectively, of a link between the j th item and the kth attribute. The
j th row vector, denoted by qj of the Q-matrix correspond to the full attribute
requirements of each item. For instance, we consider the following 3× 2Q-matrix,
which gives the corresponding item and attribute relationships.

Q =

Attributeα1 Attributeα2

(addition) (multiplication)
Item1 :1+ 3 1 0
Item2 :4× 2 0 1
Item3 :(1+ 3)× 2 1 1

To define the Q-introduced constraints, we need some notation for vector
ordering: given an attribute profile α and the j th item’s Q-matrix vector qj , we
write α � qj if αk ≥ qjk for any k ∈ {1, . . . , K}, and α � qj if there exists k such
that αk < qjk; similarly we define the operations � and �.

For most CDMs, a common assumption is that mastering non-required attributes
will not change the response probability; if α � qj , then a subject with α has all
the attributes for item j specified by the Q-matrix and would be most “capable”
to provide a positive answer. On the other hand, if α′ � qj , the subject with
α′ lacks some required attribute and is not expected to have a higher positive
response probability than α � qj . In addition, subjects without mastery of any
latent traits (α = 0) are expected to have the lowest positive response probability.
Such constraints on � are proposed through the following monotonicity relations
(Xu, 2017):

max
α:α�qj

θj,α = min
α:α�qj

θj,α ≥ θj,α′ ≥ θj,0, for any α′; (16.1)

in addition, for any k ∈ {1, · · · ,K} and any item j such that it only requires the kth
attribute, i.e., qj = ek, we assume

θj,1 > max
α:α�ek

θj,α for qj = ek. (16.2)
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The key assumption in (16.1) and (16.2) is maxα:α�qj θj,α = minα:α�qj θj,α , which
is equivalent to

θj,α = θj,α′ , for any α � qj and α′ � qj .

The other assumptions in (16.1) and (16.2) are monotonicity requirements to
avoid label-switching issue that occurs in all unrestricted latent class models. The
requirements in (16.1) and (16.2) are satisfied by most of the CDMs, including
the DINA, DINO, Reduced-RUM, LCDM, GDINA, and GDM. The identifiability
results in the following section are established under this general framework in the
sense that for any CDM, as long as (16.1) and (16.2) are satisfied, the theoretical
results can be applied. To help with further discussions, we use the following
examples to give a brief review of some of the popularly used CDMs.

Example 1 (DINA model) One of the basic cognitive diagnosis model is the
deterministic input noisy “and” gate (DINA) model (Junker & Sijtsma, 2001), which
assumes a conjunctive relationship among attributes. That is, it is necessary to
possess all the attributes indicated by the Q-matrix to be capable of providing a
positive response. In addition, having additional unnecessary attributes does not
compensate for the lack of necessary attributes. For item j and attribute vector
α, we define the ideal response ξDINAj,α = I (α � qj ). The uncertainty is further
incorporated at the item level, using the slipping and guessing parameters s and g.
For each item j , the slipping parameter

sj = P(Xj = 0 | ξDINAj,α = 1)

denotes the probability of an incorrect response despite mastering all necessary
skills; similarly, the guessing parameter

gj = P(Xj = 1 | ξDINAj,α = 0)

denotes the probability of a positive response despite an incorrect ideal response.
The response probability θj,α then takes the form

θj,α = (1− sj )ξ
DINA
j,α g

1−ξDINAj,α

j .

It is usually assumed that 1 − sj > gj for any item j , which implies (16.1)
and (16.2).

Example 2 (DINO model) In contrast to the DINA model, the DINO model
assumes a disjunctive relationship among attributes, that is, one only needs
to have one of the required attributes to be capable of providing a positive
response. The ideal response of the DINO model is given by ξDINOj,α = I (αk ≥
qjk for at least one k). Similar to the DINA model, there are two parameters s and
g for each item, and

θj,α = (1− sj )ξ
DINO
j,α g

1−ξDINOj,α

j .
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Again, assumptions (16.1) and (16.2) are satisfied if 1− sj > gj for any j .
For the DINA or DINO model, if some item j does not require any of the

attributes, then the guessing parameter of this item is not needed in the model
specification. Without loss of generality, in the following discussion we define the
guessing parameter of any item with qj = 0 to be a known value gj ≡ 0.

Example 3 (Reduced-RUM model) Under the reduced version of the Reparameter-
ized Unified Model (R-RUM; see DiBello et al., 1995; Rupp et al., 2010), we have

θj,α = πj
K∏

k=1

rj,k
qjk(1−αk), (16.3)

where πj is the positive response probability for subjects who possess all required
attributes and rj,k , 0 < rj,k < 1, is the penalty parameter for not possessing the kth
attribute. Note that the model is equivalent to the log-link model

log θj,α = βj0 +
K∑

k=1

βjk(qjkαk).

For the reduced RUM in (16.3), it is easy to see that assumptions (16.1) and (16.2)
are satisfied by the definition.

Example 4 (GDINA model) de la Torre (2011) generalizes the DINA model to
the GDINA model. The formulation of the GDINA model based on θj,α can be
decomposed into the sum of the effects due the presence of specific attributes and
their interactions. Specifically,

θj,α = βj0 +
K∑

k=1

βjk(qjkαk) +
K∑

k′=k+1

K−1∑

k=1

βjkk′(qjkαk)(qjk′αk′)+ · · ·

+ βj12···K
∏

k

qjkαk.

Note that for any 1 ≤ h ≤ K and any 1 ≤ k1 < · · · < kh ≤ K , if
∏h
l=1 qj,kl = 0,

then βj,k1···kh is not needed in the model and can be set as 0. For instance, when
qj �= 1�, we do not need parameter βj12···K since

∏
k(qjkαk) = 0. To interpret the

model parameters, βj0 represents the probability of a positive response when none
of the required attributes is present; when qjk = 1, βjk is included in the model and
it shows the change in the positive response probability as a result of mastering a
single attribute αk; when qjk = qjk′ = 1, βjkk′ is in the model and it shows the
change in the positive response probability due to the interaction effect of mastery
of both αk and αk′ ; when qj = 1�, βj12···K represents the change in the positive
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response probability due to the interaction effect of mastery of all the required
attributes. Note that the assumption in (16.1), maxα:α�qj θj,α = minα:α�qj θj,α ,
is satisfied from the model definition.

Under the local independence assumption, the likelihood function of a subject’s
observed responses (X) is

f (p,�;X) =
∑

α∈{0,1}K
pα

J∏

j=1

θ
Xj
j,α(1− θ j,α)

1−Xj .

For subjects 1, · · · , N , the joint likelihood is

f (p,�;X1, · · · ,XN) =
N∏

i=1

∑

αi=α∈{0,1}K
pα

J∏

j=1

θ
Xi,j
j,α (1− θ j,α)

1−Xi,j .

Note that we consider the attribute profiles (α’s) as random effects and the
above likelihood integrated out α’s through their population distribution that is
characterized by p. The likelihood function plays a central role in the identifiability
research as well as statistical inference problems.

Remark 1 (Random effects CDMs vs. Fixed effects CDMs) There are two types of
models for CDMs in terms of the interpretation of the attribute profiles. This work
considers the attribute profile α as random effects and further models the population
distribution of α. On the other hand, we may consider the attribute profile α as fixed
effects, in which case the α′s are considered as model parameters and the population
distribution of the attribute profiles as well as the p parameters are no longer needed
under the fixed effects CDMs. The likelihood of the fixed effects model for a subject
with attribute profile α can be written as

f (α, θ;X) =
J∏

j=1

θ
Xj
j,α(1− θ j,α)

1−Xj .

For subjects 1, · · · , N with attribute profiles α1, · · · ,αN , the joint likelihood of the
fixed effects model is

f (α1, · · · ,αN, θ;X1, · · · ,XN) =
N∏

i=1

J∏

j=1

θ
Xi,j
j,αi
(1− θ j,αi )

1−Xi,j .

For the fixed effects CDMs, however, it is known that the fixed effect model
parameters, including the item parameters and the fixed effects αi’s, may not be
consistently estimated even the sample size N goes to infinity. See Remark 2 for
more details.
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In this work, we focus on the by far overwhelmingly used random effects CDMs and
consider the identifiability of item parameters and population mixture proportion
parameters p. We give identifiability definitions, identifiability conditions, and
various examples in the following sections.

16.3 Identifiability and Related Concepts

16.3.1 Identifiability Definition

Following the statistics literature (e.g., Casella & Berger, 2002), we say a set
of parameters β in the parameter space B for a family of distribution functions
{f (·|β) : β ∈ B} is identifiable if distinct values of β correspond to distinct
probability density (mass) functions, i.e., for any β there is no β̃ ∈ B\{β} for which

f (·|β) ≡ f (·|β̃). (16.4)

In addition, we say that a set of parameters β is locally identifiable if there exists a
neighborhood of β, Nβ ∈ B, such that there is no β̃ ∈ Nβ\{β} such that f (·|β) ≡
f (·|β̃).

Both identifiability and local identifiability of latent class models are well studied
concepts in latent class analysis (McHugh, 1956; Goodman, 1974). Developments
in the item response theory models can be found in Bechger, Verstralen, and Verhelst
(2002), Maris and Bechger (2004), San Martín, Rolin, and Castro (2013) and others.
Identifiability is an important prerequisite for many types of statistical inference,
such as parameter estimation and hypothesis testing. Local identifiability is a weaker
form of identifiability, which ensures that the model parameters are identifiable in a
neighborhood of the true parameter values.

Remark 2 (Identifiable vs. Consistently Estimable) Identifiability is a prerequisite
and necessary condition for the statistical consistency of an estimator. However,
identifiability conditions are not always sufficient for consistent estimation. Here we
say the parameter is consistently estimable if we can construct a consistent estimator
for the parameter. That is, for parameter β, there exists β̂N such that β̂N − β → 0
in probability as the sample size N →∞.

An example of identifiable but not consistently estimable is the fixed effects
CDMs, where the attribute profiles (α’s) are taken as parameters. Consider a simple
example of the DINA model with nonzero slipping and guessing parameters. Under
the fixed effects setting, the model parameters include αi , i = 1, · · · , N . In this
case, α’s are identifiable if the Q-matrix has an identity submatrix (Chiu, Douglas,
& Li, 2009). But with fixed number of items, even when the sample size N goes
to infinity, the parameters cannot be consistently estimated. In this case, to have the
consistent estimation of each α, the number of items needs to go to infinity and the
number of identity sub-Q-matrices also needs to go to infinity (Wang & Douglas,
2015).
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For the random effects CDMs as considered in this chapter, the identifiability
conditions ensure consistent estimation of the model parameters. In particular, when
the identifiability conditions are satisfied, the maximum likelihood estimators of the
corresponding cognitive diagnosis model parameters are consistent as the sample
size N increases. The result is applicable for all the CDMs under the restricted
latent class model framework as introduced above.

Remark 3 (Model identifiability vs. partial identifiability) We say a model is
identifiable if all parameters in the model are identifiable, and a model is partially
identifiable if some but not all parameters are identifiable. Below, we present partial
identifiability results of the CDMs parameters and illustrative examples, in addition
to the model identifiability results.

Consider the CDMs under the restricted latent class model framework introduced
in above. The model parameters can be equivalently represented as the parameter
matrix � = (θj,α)J×2K and proportion parameter p = (pα)2K×1, as shown in
the examples, and the identifiability of (�,p) is equivalent to that of the CDM
parameters. Without loss of generality, we focus on (�,p) in the following. Note the
joint distribution of X, conditional on the latent class α, is given by a J -dimensional
2× · · · × 2 table

T(Q,�,α) =
J⊗

j=1

[
1− θj,α
θj,α

]
,

where ⊗ denotes the tensor product and the x = (x1, · · · , xJ )-entry of the table
T(Q,�,α) is P(X = x | Q,�,α), i.e., the probability of observing x given
(Q,�,α). Following the above notation, we can write

P(X = x | Q,�,p) =
∑

α∈{0,1}K
P (X = x | Q,�,α)pα.

We introduce the following identifiability definition.

Definition 1 We say that (�,p) is identifiable if for any (�̄, p̄) �= (�,p), there
exists at least one response pattern x ∈ {0, 1}J such that

P(X = x | Q,�,p) �= P(X = x | Q, �̄, p̄). (16.5)

Definition 1 follows from the definition in (16.4) that different parameter values
result in different probability distributions when the model is identifiable. Note that
the above definition does not involve label swapping of the latent classes due to
the fact that the labels of attributes are pre-specified from the knowledge of the
Q-matrix and the monotonicity assumptions in (16.1) and (16.2). On the other
hand, for unrestricted latent class models, the latent classes can be freely relabeled
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without changing the distribution of the data and the model parameters are therefore
identifiable only up to label swapping.

16.3.2 An Equivalent Definition of Identifiability

This subsection gives a brief introduction of some techniques to establish identifia-
bility, which is based on an equivalent definition of identifiability.1

To establish (16.5) for the restricted latent class models, directly working with
the vectors P(X = x | Q,�,p) is technically challenging. To better incorporate the
induced restrictions by theQ-matrix, we consider the marginal response probability
matrix as introduced in the following. The marginal response probability matrix
is called the T -matrix, denoted by T (Q,�), which is defined as a 2J × 2K matrix,
where the entries are indexed by row index x ∈ {0, 1}J and column index α. The x =
(x1, · · · , xJ )th row and αth column element of T (Q,�), denoted by tx,α(Q,�), is
the marginal probability that a subject with attribute profile α answers all items in
subset {j : xj = 1} positively. Thus tx,α(Q,�) is the marginal probability that,
givenQ,�,α, the random response X � x, i.e.,

tx,α(Q,�) = P(X � x | Q,�,α).

When x = 0, t0,α(Q,�) = P(X � 0) = 1 for any α.When x = ej , for 1 ≤ j ≤ J ,

tej ,α(Q,�) = P(Xj = 1 | Q,�,α) = θj,α.

Let Tx,·(Q,�) be the row vector corresponding to x. Then we know that for
j = 1, · · · , J , Tej ,·(Q,�) = �j,·. In addition, for any x �= 0, we can write
Tx,·(Q,�) = ⊙

j :xj=1 Tej ,·(Q,�), where  is the element-wise product of the
row vectors.

By definition, multiplying the T -matrix by the distribution of attribute profiles p
results in a vector, T (Q,�)p, containing the marginal probabilities of successfully
responding each subset of items correctly. The xth entry of this vector is

Tx,·(Q,�)p = ∑

α∈{0,1}K
tx,α(Q,�)pα =

∑

α∈{0,1}K
P (X � x | Q,�,α)pα

= P(X � x | Q,�,p).

1For readers who are more interested in how to use the identifiability results in practice, this section
can be skipped, as well as the discussion of Eqs. (16.12) and (16.13) and Remark 5, which are based
on this section.
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We can see that there is a one-to-one mapping between the T -matrix and the vectors
P(X = x | Q,�,p), x ∈ {0, 1}J . Therefore, (16.5) directly implies the following
proposition.

Proposition 1 (An equivalent definition of identifiability) (�,p) is identifiable
if and only if for any (�̄, p̄) �= (�,p), there exists x ∈ {0, 1}J such that

Tx,·(Q,�)p �= Tx,·(Q, �̄)p̄. (16.6)

From Proposition 1, to show the identifiability of (�,p), we only need to focus on
the T -matrix and prove that if

T (Q,�)p = T (Q, �̄)p̄, (16.7)

then � = �̄ and p = p̄. This argument is used in the proofs of the identifiability
results in Xu and Zhang (2016), Xu (2017), Xu and Shang (2018), and Gu and Xu
(2018b).

16.4 Identifiability of the DINA and DINO Models

In this section we focus on the DINA model, a basic and popularly used CDM.
Thanks to the duality of the DINA and DINO models (Chen et al., 2015; Xu
& Zhang, 2016), the results can be directly applied to the DINO model. As
introduced in Example 1, the model parameters under the DINA model include
slipping parameters s = (s1, · · · , sJ ), guessing parameters g = (g1, · · · , gJ ),
and population mixture proportion parameters p = (pα,α ∈ {0, 1}K). We assume
that for each item, students mastering the required skills always have higher correct
response probability than the students lacking one or more of the required skills, that
is, 1− sj > gj , for j = 1, · · · , J . In addition, we assume that theQ-matrix is pre-
specified and correct. Under various model assumptions, we present the conditions
for the identifiability of the unknown model parameters, most of which are based on
the work of Xu and Zhang (2016) and Gu and Xu (2018b).

16.4.1 Identifiability Conditions When Both the Slipping and
the Guessing Parameters Are Known

We first consider the ideal case when the j th item’s response Xj = ξj,α , where
ξj,α denotes ξDINAj,α as defined in Example 1. In this ideal case, s = g = 0 and the
only unknown parameters are p. Note that P(X = ej | α,Q,�) = ξj,α and the
identifiability condition is equivalent to

(ξj,α; j = 1, · · · , J ) �= (ξj,α′ ; j = 1, · · · , J ) (16.8)
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for all α �= α′. Otherwise, if there exists α �= α′ such that (ξj,α; j = 1, · · · , J ) =
(ξj,α′ ; j = 1, · · · , J ), this implies the nonidentifiability of p from the definition.
To guarantee (16.8), the requirement on the Q-matrix structure is specified in the
following definition.

Definition 2 AQ-matrix is said to be complete under the DINA model if {e�j : j =
1, . . . , K} ⊂ {qj : j = 1, · · · , J }; otherwise, we say thatQ is incomplete.

Remark 4 The completeness concept was first introduced in Chiu et al. (2009)
when studying the identification of an individual’s attribute profile (α) in the fixed
effects CDMs. The differences between the fixed effects CDMs and the random
effects CDMs are discussed in Remarks 1 and 2. This work considers the random
effects CDMs and focuses on the identifiability of item parameters and population
parameters p.

The Q-matrix is complete under the DINA model if there exist K rows of Q
that can be ordered to form the K-dimensional identity matrix IK , that is, for each
attribute there must exist a pure item requiring only that attribute. Note that even if
the guessing and slipping parameters are known (which they are never in practice),
the DINA (and equivalently the DINO) are not identifiable with respect to the
attribute distribution unless there are pure items measuring each attribute separately
in the test. Therefore, in most of the practical applications of the DINA, we would
suffer from non-identifiability of the attribute distribution due to the incompleteness
of the Q-matrix (e.g., see the analysis of the fraction subtraction data in DeCarlo,
2011).

A simple (and minimal) example of a completeQ-matrix under the DINA model
is the K × K identity matrix IK . Completeness ensures that there is enough
information in the response data for each attribute profile to have its own distinct
ideal response vector. When a Q-matrix is incomplete, we can easily construct a
non-identifiable example. For instance, consider the incompleteQ-matrix

Q =
(

1 1
0 1

)
. (16.9)

The population parameter p is non-identifiable. Subjects with attribute profiles α1 =
(1, 0)� and α2 = (0, 0)� have the same ideal responses, so (16.8) is not satisfied. It
is easy to see that such an argument holds for general incompleteQ-matrices.

We further consider the case in which both the slipping and the guessing
parameters are known but may be nonzero. This corresponds to the applications
where the item parameters are pre-calibrated. We need the following completeness
condition for the identifiability of p.

(C1) Q is complete. When this holds, we assume without loss of generality that the
Q-matrix takes the following form:

Q =
(
IK

Q′
)
. (16.10)
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Theorem 1 Population proportion parameters p are identifiable only if Condi-
tion C1 is satisfied. Moreover, Condition C1 is sufficient and necessary when both
the slipping and the guessing parameters are known.

Theorem 1 states that when s and g are known, the completeness of theQ-matrix
is a sufficient and necessary condition for the identifiability of p. Similarly to the
ideal case with s = g = 0, for the incomplete Q-matrix in (16.9), the population
parameter p is non-identifiable even if s and g are known. Subjects with attribute
profiles α1 = (1, 0)� and α2 = (0, 0)� still have the same conditional response
probabilities P(X = x | Q, s, g,α), so weight can be transferred between pα1 and
pα2 with no effect on the distribution probabilities P(X = x | Q, s, g,p).

16.4.2 Identifiability Conditions When the Guessing
Parameters Are Known

We now weaken our assumptions by taking only the guessing parameters g as
known. Applications in this case may involve confirmatory type diagnosis analysis
with the guessing parameters pre-determined due to the low possibility of correctly
answering an item by guessing or certain multiple choice problem settings. Stronger
conditions than Theorem 1 are needed for the identifiability of the unknown slipping
parameters s and population proportion parameters p.

(C1) Q is complete. When this holds, we assume without loss of generality that the
Q-matrix takes the form in (16.10).

(C2) Each attribute is required by at least two items.

Condition C1 means the Q-matrix is complete, which is necessary to distinguish
different latent attribute profiles. Condition C2 requires each attribute is needed by
more than one item, which is necessary to identify the slipping parameters. The
necessary and sufficient conditions for the identifiability of s and p are given in
Theorem 2 below, which was proved in Xu and Zhang (2016).

Theorem 2 (Sufficient and Necessary Identifiability Conditions) Under the
DINA model with known guessing parameters g, the slipping parameters s and the
population proportion parameters p are identifiable if and only if Conditions C1
and C2 hold.

Conditions C1 and C2 are easy to check. We use an example to illustrate.

Example 5 Consider theQ-matrices

Q1 =
⎛

⎝
1 0
0 1
1 0

⎞

⎠ , Q2 =
⎛

⎝
1 0
0 1
1 1

⎞

⎠ . (16.11)
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From Theorem 2, we can see that when the guessing parameters g are known Q1
describes a non-identifiable model whileQ2 describes an identifiable one.

The necessary of Condition C1 is shown in the previous section. To see why
Condition C2 is necessary, consider any set of parameters (s,p) such that 1− sj ∈
(gj , 1] for all j ∈ {1, . . . , J } and p ∈ (0, 1)2K ,

∑
α pα = 1. In the following

we construct a set of parameters (s̄, p̄) such that (s̄, p̄) �= (s,p) and they are not
identifiable if Condition C2 is not satisfied. We first choose s̄1 such that it is close
enough to s1 so that 1− s̄1 ∈ (g1, 1]. We further choose p̄α ∈ (0, 1) in the following
way such that for any α ∈ {0, 1}K ,

p̄α =
{
pα(1− s1)/(1− s̄1) if α1 = 1

pα + pα+e1 [1− (1− s1)/(1− s̄1)] if α1 = 0
.

Under the above construction, we can see that for α with the first attribute α1 = 0,

p̄α+p̄α+e1 = pα+pα+e1[1−(1−s1)/(1−s̄1)]+pα+e1(1−s1)/(1−s̄1) = pα+pα+e1 .

We further take s̄j = sj for j > 1. Without loss of generality, in the following we
consider g = 0; otherwise, we can perform a linear transformation of the response
T -matrices under the two sets of parameters in Proposition 1 to obtain equivalency
(Xu & Zhang, 2016). With the above constructed parameters (s̄, p̄), we have that
for any x ∈ {0, 1}J satisfying x1 = 0, P(X = x | Q, s, g = 0,α) = P(X =
x | Q, s̄, g = 0,α) and equivalently Tx,·(Q, s, 0) = Tx,·(Q, s̄, 0). Therefore, we
have

Tx,·(Q, s, 0)p = ∑

{α:α1=0}
tx,α(Q, s, 0)(pα + pα+e1)

=
∑

{α:α1=0}
tx,α(Q, s̄, 0)(p̄α + p̄α+e1) = Tx,·(Q, s̄, 0)p̄.

(16.12)

Similarly, for any x ∈ {0, 1}J satisfying x1 = 1, we have

Tx,·(Q, s, 0)p = ∑

α:α1=1

tx−e1,α(Q, s, 0)s1pα

=
∑

α:α1=1

tx−e1,α(Q, s̄, 0)s̄1p̄α = Tx,·(Q, s̄, 0)p̄. (16.13)

Thus we have found distinct sets of parameters satisfying (16.7), and shown
that Condition C2 is necessary for the identifiability of slipping parameters. In
summary, the above discussion and the proof of Theorem 2 give the following
corollary.
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Corollary 1 (Partial identifiability) Consider a Q-matrix satisfying Condition
C1. When the guessing parameters are known, the slipping parameters sj , j > K ,
are all identifiable.

For an item j with 1 ≤ j ≤ K , which is single attribute item under C1, the
following holds: (1) if the item’s attribute only appears in itself in theQ-matrix, i.e.,
Q′ does not require the attribute, then the slipping parameter sj is not identifiable;
(2) otherwise sj is identifiable.

To explain the result of the corollary, considerQ1 in (16.11). When the guessing
parameters are known, the first and third items have their attributes appear twice
and therefore s1 and s3 identifiable; on the other hand, the second item requires α2
which only appears once in theQ-matrix and therefore s2 not identifiable.

16.4.3 Identifiability Conditions When the Slipping and
Guessing Parameters Are Unknown

When the slipping and guessing parameters are unknown, we need the following
regularity conditions to establish identifiability of all model parameters.

(C1) Q is complete. When this holds, we assume without loss of generality that the
Q-matrix takes the form in (16.10).

(C3) Each attribute is required by at least three items.
(C4) Any two different columns of the sub-matrixQ′ in (16.10) are distinct.

Condition C1 is the same as previous sections and requires the Q-matrix to be
complete. Condition C3 extends C2 and requires each attribute to be needed by
more than two item, which is necessary to identify both the slipping and guessing
parameters. Condition C4 assumes that any two different columns of the sub-matrix
Q′ in (16.10) are different, which is easy to check in practice.

When neither the slipping nor the guessing parameters are known, we have the
following necessary and sufficient identifiability result, which was proved in Gu and
Xu (2018b).

Theorem 3 (Sufficient and Necessary Identifiability Conditions) Under the
DINA model, s, g and p are identifiable if and only if Conditions C1, C3 and C4
hold.

Corollary 2 (Partial identifiability) Suppose Conditions C1 and C3 hold but
C4 does not hold. Then s = (s1, · · · , sJ ) and (gK+1, · · · , gJ ) are identifi-
able while there exists at least one item k ∈ {1, · · · ,K} such that gk is not
identifiable.

Remark 5 Condition C1 requires the Q-matrix to be complete and is necessary for
the identifiability of all DINA parameters. When the Q-matrix is incomplete, Gu
and Xu (2018a) studied the partial identifiability of the DINA model and proposed
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easily checkable conditions to ensure the identifiability of all item parameters. For
instance, the slipping and guessing parameters are identifiable under the 20× 8 Q-
matrix of the fraction subtraction data specified in de la Torre and Douglas (2004).
In addition, the following Q-matrices are incomplete under the DINA model, but
they give identifiable slipping and guessing parameters:

Q1 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0
1 0 1
0 1 1
1 1 0
1 0 1
0 1 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

, Q2 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0
1 0 1
0 1 1
1 1 0
1 0 1
1 1 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

.

Theorem 3 and Corollary 2 give relatively simple conditions to check the
identifiability of the DINA model. Proofs of these results are found in Gu and
Xu (2018b). According to Theorem 3, neither Q1 nor Q2 from (16.11) describe
identifiable DINA models when s, g, and p are all unknown. Particularly, since each
attribute appears in less than three items, any of the item parameters (s, g,p) is not
identifiable due to the necessity of the Condition C3. We further use the following
example to illustrate the necessity of C4.

Example 6 (Necessity of C4 whenK = 2) To illustrate the importance of Condition
C4, consider the case when K = 2. For easy discussion, we assume there is no item
requiring none of the attributes; then if C1 is satisfied but C4 is not satisfied, the Q
can only have the following form (up to row switching)

Q =

⎛

⎜⎜⎜⎜⎜⎝

1 0
0 1
1 1
...
...

1 1

⎞

⎟⎟⎟⎟⎟⎠

J×2

, (16.14)

that is, the first two items give an identity Q-matrix while all other items require
both attributes. Without loss of generality, we assume C3 is also satisfied (but
not C4) and show the necessity of C4. Suppose the true model parameters are
(s, g,p). Next we construct another set of parameters (s̄, ḡ, p̄) �= (s, g,p) which
give the same response probabilities and therefore not distinguishable from the true
parameters.

From Corollary 2, {sj , j = 1, · · · , J } and {gj , j = 3, · · · , J } are identifiable
and we set s̄j = sj , j = 1, · · · , J and ḡj = gj , j = 3, · · · , J . We
further let p̄(11) = p(11). We next show (g1, g2, p(00), p(10), p(01)) are not
identifiable. Following the identifiability condition in Definition 1 and equivalently
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Proposition 1, a direct calculation gives that (ḡ1, ḡ2, p̄(00), p̄(10), p̄(01)) and
(g1, g2, p(00), p(10), p(01)) are not identifiable if the following equations can be
satisfied:

p̄(00) + p̄(10) + p̄(01) = p(00) + p(10) + p(01);
(ḡ1 + s1 − 1)(p̄(00) + p̄(01)) = (g1 + s1 − 1)(p(00) + p(01));
(ḡ2 + s2 − 1)(p̄(00) + p̄(10)) = (g2 + s2 − 1)(p(00) + p(10));

(ḡ1 + s1 − 1)(ḡ2 + s2 − 1)p̄(00) = (g1 + s1 − 1)(g2 + s2 − 1)p(00).

(16.15)

Here for any given set of true parameters (g1, g2, p(00), p(10), p(01)), there are four
constraints in (16.15) but there are five parameters (ḡ1, ḡ2, p̄(00), p̄(10), p̄(01)) to
solve. Since we have more free parameters than the equations, we have the non-
identifiability of (g1, g2, p(00), p(10), p(01)).

The following types of completeQ-matrices satisfy C4:

Q =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0
0 1
1 0
∗ ∗
...
...

∗ ∗

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

J×2

or equivalently

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0
0 1
0 1
∗ ∗
...
...

∗ ∗

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

J×2

, (16.16)

where “∗” can be either “0” or “1”. Note that the two Q-matrices in (16.16) are
equivalent up to the first two rows and the columns switching. For the Q-matrices
in (16.16), if C3 is also satisfied (each attribute appears in at least three items), then
all model parameters are identifiable.

Example 7 We consider more examples. The following Q-matrices satisfy Condi-
tion C4:

Q1 =
⎛

⎝
IK

IK

Q′′

⎞

⎠ , Q2 =
⎛

⎝
IK

1−IK

Q′′

⎞

⎠ .

Therefore, if Condition C3 is satisfied for them, then all model parameters are
identifiable. Note that for the aboveQ2, C3 is automatically satisfied when K ≥ 3.

Example 8 We use this example to show that Theorem 3 extends the identifiability
result in Xu and Zhang (2016). Xu and Zhang (2016) gave a set of sufficient iden-
tifiability conditions, which however is not necessary. For instance, the following
Q-matrix, which is given on page 633 in Xu and Zhang (2016), does not satisfy
their sufficient condition, but still gives an identifiable model since it satisfies C1,
C2 and C4.
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Q =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
1 1 1 0
1 1 0 1
1 0 1 1
0 0 0 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Example 9 (Real data example) This example considers a real data set collected
by the Examination for the Certificate of Proficiency in English (ECPE) which is
designed and organized by University of Michigan English Language Institute. The
examination is developed to test high-level English language skills to determine
the language proficiency of non-native speakers. It contains questions to evaluate
grammar, vocabulary and reading skills of examinees. We use the data from 2003
to 2004 ECPE grammar section with 2922 subjects. In previous studies (e.g., Chiu
et al. (2009)), 30 out of 40 items are selected to fit CDMs after 10 trial items are
removed. The proposed Q-matrix contains three attributes: Morphosyntactic Form,
Cohesive Form and Lexical Form. The Q-matrix is provided in Table 16.1. We can
see it satisfies Conditions C1, C3 and C4; therefore under the DINA model, the
model parameters are all identifiable. The identifiability under other CDMs, such as
the Reduced-RUM, LCDM, and GDINA are considered in the next section.

When the identifiability conditions are satisfied, the maximum likelihood esti-
mators of s, g and p are consistent as the sample size N → ∞. This can be
proved following the argument given in Remark 5. If Bayesian estimation methods
are employed, such as MCMC methods, the proposed identifiability conditions
ensure the convergence of the estimates. When the identifiability conditions are not
satisfied, the Bayesian estimators, such as MAP estimators, would depend on the
modes of the priors; see Chen, Culpepper, Chen, and Douglas (2018). In practice,
when researchers find that the proposedQ-matrix does not satisfy the identifiability
conditions, it is recommended to design new items such that the identifiability
conditions are satisfied.

16.5 Identifiability of General CDMs

We present the identifiability results of general CDMs under the restricted latent
class model framework introduced in the section above, which include most of the
existing CDMs as special cases, such as the R-RUM, LCDM and GDINA that are
discussed in Examples 3, 4, and 5.

For diagnostic models introduced above, we provide in the following a unified
sufficient condition that ensures their identifiability. Since the DINA model is a
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Table 16.1 Q-matrix for the
English proficiency test

Q

Item Morphosyntactic Cohesive Lexical

1 1 1 0

2 0 0 0

3 0 1 0

4 1 0 1

5 0 0 1

6 0 0 1

7 0 0 0

8 0 0 1

9 1 0 1

10 0 1 0

11 0 0 1

12 1 0 0

13 1 0 1

14 1 0 1

15 1 0 0

16 1 0 0

17 0 0 1

18 1 0 1

19 0 1 1

20 0 0 1

21 0 0 1

22 1 0 1

23 1 0 1

24 0 0 1

25 0 1 0

26 0 1 0

27 1 0 0

28 0 0 1

29 1 0 0

30 0 0 1

special case of the restricted latent class models including higher order interaction
effects of the attributes, such as GDINA and LCDM, it is recommended that we
need to use a complete Q-matrix for the diagnostic models and we need at least
three items for each attribute. To establish identifiability for the general class of
models, we list below the conditions that will be used.

(D1) We assume that theQ-matrix takes the following form (after row swapping):

Q =
⎛

⎝
IK

IK

Q′

⎞

⎠ . (16.17)
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(D2) Suppose Q has the structure defined in (16.17). We assume that for any k ∈
{1, · · · ,K}, (θj,ek ; j > 2K)� �= (θj,0; j > 2K)�. That is, there exist at
least one item in Q′ such that subjects with α = ek have different positively
response probability from that of subjects with α = 0.

Condition D1 is a little stronger than the necessity of the complete matrix by
requiring two identity submatrices. D1 itself implies that each attribute is required
by at least two items. We need this condition to ensure enough information to
identify the model parameters for each attribute. Condition D2 is a mild condition.
For a general CDM such as LCDM and GDINA, it is satisfied if the main effects
parameters are nonzero and each attribute appears once in Q′. Another example is
that Condition D2 is automatically satisfied for all CDMs if Q′ can be written as
(after row swapping):

Q′ =
(
IK

· · ·
)
,

equivalently, if there are three identity matrices in the Q-matrix, both D1 and D2
are satisfied. A third case is that if a general CDM allows that for one item j (j >
2K), θj,0 < minα �=0 θj,α; that is, for subjects without any latent traits, the positive
response probability is the lowest among all latent classes, then D2 is satisfied.

Our main identifiability results for general CDMs are as follows, which were
established in Xu (2017).

Theorem 4 (Identifiability Conditions) For any CDM satisfying the model setup
in the sections above and Conditions D1–D2, the model parameters (�,p) are
identifiable.

Condition D1 itself is not enough to establish the identifiability of all parameters
(�,p). An example is that under the DINA model withQ taking the form of (16.17)
but Q′ has at least one column being all zeros; such a Q-matrix satisfies D1 but as
discussed above, the model parameters are not all identifiable since Condition C3 is
not satisfied. However, Condition D1 ensures the identifiability of item parameters
for items j , j > 2K . These partial identifiability results are given as follows.

Corollary 3 (Partial identifiability) Under the model setup above, there exist Q-
matrices satisfying D1 but the model is non-identifiable.

On the other hand, if D1 is satisfied, the item parameters of items j , j > 2K , are
identifiable.

The above theorem specifies the sufficient condition under which the CDM
parameters (�,p) are identifiable from the response data. We use the following
example to illustrate.

Example 10 (Example 9 continued) For the English proficiency data considered in
Example 9, we can see that the Q-matrix in Table 16.1 satisfies Conditions D1 and
D2 since it has three identity submatrices. Therefore, for popularly used CDMs,
such as the DINA, DINO, R-RUM, LCDM, and GDINA, the model parameters are
all identifiable.
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Note that even when the CDMs are identifiable, empirically the estimation of the
model parameters may still not be identifiable if the data does not support it, such as
limited sample size, highly unbalanced attribute distribution, or misspecification of
the dimensionality of the attribute profiles; see more discussions and further analysis
of the English proficiency data in Templin and Bradshaw (2014) and von Davier
(2014b).

Remark 6 (Consistency of MLE) When the identifiability conditions are satisfied,
the maximum likelihood estimators of � and p are consistent as the sample size
N → ∞. Specifically, we introduce a 2J -dimensional response vector γ =
{1, N−1∑N

i=1 I (Xi � e1), · · · , N−1∑N
i=1 I (Xi � eJ ),N−1∑N

i=1 I (Xi � e1 +
e2), · · · , N−1∑N

i=1 I (Xi � 1)}. From the definition of the T -matrix and the law of
large numbers, we know γ → T (Q,�)p almost surely as N → ∞. On the other
hand, the maximum likelihood estimators �̂ and p̂ satisfy

‖γ − T (Q, �̂)p̂‖ → 0,

where ‖ · ‖ is the L2 norm. Therefore,

‖T (Q,�)p− T (Q, �̂)p̂‖ → 0

almost surely. Then from the proof of the identifiability results, we can obtain the
consistency result that (�̂, p̂) → (�,p) almost surely. Furthermore, following
a standard argument of the asymptotic theory, we take Taylor’s expansion of the
loglikelihood function at (�,p) and the central limit theorem would give the
asymptotic normality of the estimators (�̂, p̂).

Remark 7 The proof of Theorem 4 in Xu (2017) is not based on the trilinear
decomposition result in Kruskal (1976), which is applied in Allman, Matias, and
Rhodes (2009) to show the generic identifiability up to label swapping. The generic
identifiability results in Allman et al. (2009) can not be directly applied in the current
model setting. This is because under the sameQ-matrix, there may be several CDMs
of interest. For instance, the DINA model can be taken as a submodel of the LCDM
under the same Q-matrix, while more generally, the LCDM is a submodel of the
GDM by extending the skill space (von Davier, 2014b). In this case, the parameters
under the DINA model lie in a subspace of the parameter space under the LCDM
and GDM, and generic identifiability results for the more general CDMs may not
ensure the identifiability of the DINA model.

In addition, we would like to point out that Conditions D1 and D2 are different
from the rank condition required by Kruskal’s result and may be weaker in some
cases. To apply Kruskal’s result, a key condition is that there is a row partition of
theQ-matrix,Q1,Q2,Q3, such that

rankk("(Q1,�))+ rankk("(Q2,�))+ rankk("(Q3,�)) ≥ 2K+1 + 2, (16.18)
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where the Kruskal rank of a matrix A, rankk(A), is the maximum number r such
that any collection of r columns of A are linearly independent. The Kruskal rank is
not larger than the matrix rank and generally the Kruskal rank and the matrix rank
do not equal. Under Conditions D1 and D2, consider the case when K = 2 and
Q′ = e�1 , i.e.,

Q =
⎛

⎝
I2

I2

e�1

⎞

⎠ .

We have rank("(Q′,�)) = 2 but rankk("(Q′,�)) < 2 since the column
vectors corresponding to e1 and 1 are the same. Then if we decompose the Q-
matrix as I2,I2 and Q′, we can see that the sum of the Kruskal’s ranks of the
three parts is less than 2K+1 + 2, due to the fact that rankk("(IK,�)) ≤ 2K

and rankk("(Q′,�)) < 2. Similarly, for the other decompositions of the Q-
matrix, we can verify the rank condition is also not satisfied. Therefore the rank
condition (16.18) may not be satisfied under our conditions.

Theorem 4 gives the strict identifiability of general CDMs. A key requirement is
the identity submatrix in Q. When such a requirement is not satisfied, researchers
have recently considered the generic identifiability of the restricted latent class
models (Gu & Xu, 2018a). The generic identifiability is defined following algebraic
geometry terminology. It implies that the set of parameters for which the identifi-
ability does not hold has Lebesgue measure zero (Allman et al., 2009). As for the
general CDMs, Gu and Xu (2018a) proposed mild conditions on the form of theQ-
matrix that lead to generic identifiability, which ensures that the model parameters
(�,p) are identifiable almost everywhere in the restricted parameter space except
a Lebesgue measure zero set. In particular, Gu and Xu (2018a) established the
following result.

Theorem 5 (Generic Identifiability Conditions) a Q matrix takes the following
form up to row permutations

Q =
⎛

⎝
Q1

Q2

Q�

⎞

⎠ ; Qi =

⎛

⎜⎜⎜⎝

1 ∗ . . . ∗
∗ 1 . . . ∗
...
...
. . .
...

∗ ∗ . . . 1

⎞

⎟⎟⎟⎠

K×K

, i = 1, 2, (16.19)

where each “ ∗ ′′ can either be 1 or 0 and each attribute is required by at least
one item in Q�, then the main-effect CDMs, such as R-RUM and ACDM, and the
all-interaction-effect CDMs, such as the LCDM, GDINA and GDM, are generically
identifiable.

The result in Theorem 5 would be helpful for practitioners, especially when
it becomes difficult or even impossible to design pure items with single attribute
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specifications. The identifiability results in Theorems 4 and 5 would also provide
a helpful guideline for designing diagnostic tests. For the diagnostic classification
models introduced in above, the model parameters are identifiable if the Q-matrix
satisfies the proposed conditions. The theoretical results would also help to improve
existing diagnostic tests. For instance, when researchers find that the estimation
results are problematic and the Q-matrix does not satisfy the identifiability condi-
tions, it is then recommended to add new items to satisfy them.

16.6 Further Discussions

This chapter reviews some of the existing identifiability results for CDMs. The
completeness of the Q-matrix plays an important role for identifiability. When the
Q-matrix is incomplete, the model parameters (�,p) are not identifiable under
Definition 1. A particular case is when each row of the Q-matrix is 1�, then the
model becomes similar to the unrestricted latent class models with 2K classes.
As shown in the literature (Gyllenberg, Koski, Reilink, & Verlaan, 1994), the
unrestricted general latent class model is not identified. In such case, generic
identifiability results would be practically useful as shown in Theorem 5.

When the identifiability conditions are not satisfied, we may expect to obtain
partial identification results as discussed above. It is also possible in practice that
there exist certain hierarchical structures among the latent attributes. For instance, a
certain attribute may be a prerequisite for other attributes. In this case, some p’s are
restricted to be 0. In this chapter the attribute profile is modeled using a saturated
model with 2K − 1 attribute profile parameters. It would be also interesting to
consider the identifiability conditions under the unsaturated models. For these case,
weaker conditions are expected for the identifiability of the model parameters, as
studied in Gu and Xu (2018a).

The Q-matrix in this chapter is assumed to be correctly specified. In practice,
the Q-matrix is usually constructed by the users and may not be accurate. A
misspecified Q-matrix could lead to substantial lack of fit and, consequently,
erroneous classification of subjects (Rupp & Templin, 2008; de la Torre, 2008).
Thus it is recommended to apply the proposed identifiability results after validating
the constructed Q-matrix. Various methods for Q-matrix validation and estimation
can be found in recent works (e.g., Liu, Xu, & Ying, 2012; Liu et al., 2013, DeCarlo,
2012; Chen et al., 2015, 2018; de la Torre & Chiu, 2016; Gu, Liu, Xu, & Ying, 2018;
Xu & Shang, 2018).
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Chapter 17
Measures of Agreement: Reliability,
Classification Accuracy, and
Classification Consistency

Sandip Sinharay and Matthew S. Johnson

Abstract Gierl, Cui, and Zhou (J Educ Meas 46:293–313, 2009), Cui, Gierl, and
Chang (J Educ Meas 49:19–38, 2012), Templin and Bradshaw (J Classif 30:251–
275, 2013), Wang, Song, Chen, Meng, and Ding (J Educ Meas 52:457–476, 2015),
Johnson and Sinharay (J Educ Meas, 55: 635–664, 2018), and Johnson and Sinharay
(J Educ Behav Stat, in press) suggested reliability-like measures for the estimates
obtained from a diagnostic classification model. These measures mostly express
the agreement between the estimated skill and the true skill, or between estimated
skills from parallel assessments. This paper provides a review of these measures and
demonstrates some of them for a real data example.

17.1 Introduction

Diagnostic classification models (DCM; e.g., Rupp, Templin, & Henson, 2010) or
cognitive diagnostic models (CDMs) have been suggested several decades ago; for
example, DiBello, Stout, and Roussos (1995), Maris (1999), and Mislevy, Almond,
Steinberg, and Yan (1999) suggested such models in the 1990s. Further, DCMs
have been fitted to data from a wide variety of assessments including the National
Assessment of Educational Progress (Xu & von Davier, 2006), international large-
scale survey assessments (Lee, Park, & Taylan, 2011; Oliveri & von Davier, 2011),
language testing (von Davier, 2008), and the SAT (Gierl et al., 2009).

DCMs are mostly used to estimate the mastery status or probability of mastery of
examinees. Standards 1.14 and 2.3 of the Standards for Educational and Psycholog-
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ical Testing (American Educational Research Association, American Psychological
Association, & National Council for Measurement in Education, 2014) recommend
reporting of the reliability of subscores.1 Because the estimated attributes from a
DCM can be considered to be types of subscores, the standards imply that the
reliability of the estimated mastery or of the estimated probability of mastery
should be reported. However, as Sinharay and Haberman (2009) commented, those
applying DCMs rarely reported the reliability of the estimated attributes with a few
exceptions such as von Davier (2008); furthermore, no reliability-like measures
existed for the estimates obtained from DCMs until recently.2 Such a lack of
research on the reliability of the estimates from DCMs is surprising given the
abundance of research on the quality of subscores (e.g., Haberman, 2005; Haladyna
& Kramer, 2004; Harris & Hanson, 1991) and on classification consistency and
accuracy in the context of item response theory and strong true score theory (e.g.,
Hanson & Brennan, 1990; Lee, Hanson, & Brennan, 2002).

More recently, researchers such as Cui et al. (2012), Gierl et al. (2009), Johnson
and Sinharay (2018, in press), Templin and Bradshaw (2013), and Wang et al.
(2015) have recognized the importance of reporting reliability-like measures for
the estimates obtained from the application of a DCM. Because the estimated
attributes can be viewed as discrete mastery classifications (that denote what skills or
attributes an examinee possesses), Cui et al. (2012) and Wang et al. (2015) suggested
the use of measures of classification accuracy or classification consistency as
indicators of reliability. Classification accuracy is the probability that the estimated
classification is equal to the true classification; classification consistency is the
probability that two parallel forms of the assessment result in the same estimated
classification. Whereas Cui et al. (2012) discussed measures of accuracy and
consistency for the entire vector of attributes, Wang et al. and Johnson and Sinharay
(2018) suggested several measures of classification accuracy and consistency of
the individual attributes. Templin and Bradshaw (2013) and Johnson and Sinharay
(in press) developed, for each attribute in an application of a DCM, measures of
reliability for the posterior probability of mastery or skill attainment of a randomly
selected examinee.

The measures of Cui et al. (2012), Gierl et al. (2009), Johnson and Sinharay
(2018, in press), Templin and Bradshaw (2013), and Wang et al. (2015) can all
be considered to be measures of agreement, either between the true attributes and
estimated attributes or between attributes estimated from two parallel forms. We will
focus on DCMs that involve binary classifications, but several concepts discussed
in this paper apply in a straightfoward manner to DCMs involving polytomous
classifications. As in Johnson and Sinharay (2018), we define parallel forms of a
DCM as two tests with the same Q-matrix and identical item parameters. We only

1The 1999 version of the standards also recommended the reporting of the reliability of subscores.
2von Davier (2008) used Monte Carlo simulation to examine classification accuracy, but only
considered simulation studies where the true mastery patterns of the examinees were known.
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consider dichotomous items in this paper, but most of the concepts discussed in this
paper apply to polytomous items as well.

17.2 Existing Methods

17.2.1 Notation

To formalize the problem of developing reliability-like measures in applications
of DCMs, consider an assessment that includes K items and measures D binary
attributes. Let Ad denote the binary latent variable indicating whether a randomly
chosen examinee truly possesses the attribute d (where Ad = 1 if the examinee
possesses attribute d and Ad = 0 otherwise). Let A = (A1, A2, · · · , AD)′ denote
the collection of the Ad ’s, or the true attribute mastery pattern, for the examinee.
Let # denote the set of all possible values of A; thus, # consists of 2D attribute
patterns. Let a = (a1, a2, · · · , aD)′ denote a realization of A, with ad being a
realization of Ad . Let X = (X1, X2, . . . , Xk, . . . , XK)

T denote the random vector
of the item scores of a randomly chosen examinee on a K-item test. Now let
ãd (x) denote a binary estimate of ad based on the set of observed item responses
x = (x1, x2, . . . , xK)

T, and ã(x) = (ã1(x), ã2(x), · · · , ãD(x))′ denote the vector
of all attribute estimates for an examinee. One could set ãd (x) equal to the maximum
a posteriori (MAP) estimator as did Wang et al. (2015) or Johnson and Sinharay
(2018) or to any other satisfactory dichotomous estimator of the attribute.

17.2.2 Reliability of Each Attribute for the Attribute Hierarchy
Method

Leighton, Gierl, and Hunka (2004) suggested the attribute hierarchy model (AHM)
for diagnostic assessments in which the attributes can be ordered according to some
hierarchy, that is, when an individual must possess, for example, attribute a1 in order
to possess attribute a2, etc. For such assessments, Gierl et al. (2009) developed
a reliability measure based on Cronbach’s α for modified observed scores. The
measure is of the form

αAHMd =
Kd

Kd − 1

⎛

⎝1−
∑
k∈Sd W

2
kdσ

2
xk

σ 2∑
k∈Sd Wkdxk

⎞

⎠ ,

where Sd is the set of items that measures attribute d, Kd is the size of Sd , Wkd is
the weight for item k in the calculation of attribute d and is fixed by the investigator,
σ 2
xk

is the variance of the observed scores on item k and σ 2∑
k∈Sd Wkdxk

is the variance
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of the weighted observed number-correct scores. The measure of Gierl et al. (2009)
is the first reliability-like measure for any DCM according to the knowledge of the
authors of this chapter, but applies only to applications of the AHM and does not
easily generalize to applications of other DCMs.

17.2.3 Classification Accuracy and Consistency of the
Attribute Pattern

Cui et al. (2012) suggested examining the agreement at the attribute pattern level
using the measures

Classification Accuracy = Pc = P(ã(X) = A), and

Classification Consistency = Pa = P(ã(X1) = ã(X2)),

where X1 and X2 are the item-scores of the same randomly selected examinee
on two parallel assessments. Cui et al. (2012) noted that a DCM classifies each
observed response pattern into one of H mutually exclusive latent classes where
ideally, each latent class is associated with a distinct attribute pattern and H = 2D .
Let Ch denote the h-th latent class and πh denote the set of all possible item-reponse
patterns that lead to an examinee being classified intoCh. Cui et al. (2012) suggested
computing classification accuracy and classification consistency using the formulas

Pa =
∑

A∈#

∑

x∈πA

P(X = x|A)rA,

and

Pc =
∑

A∈#

⎡

⎣
H∑

h=1

(
∑

x∈πh
P (X = x|A)

)2
⎤

⎦ rA,

respectively, where rA is the relative frequency of the attribute pattern A and πA

is the set of all x’s that produce an estimated classification equal to A. Wang et
al. (2015) noted that the computation of either of the two above measures requires
a summation over all possible item-response patterns for the test—therefore these
measures can be extremely computation-intensive for tests with a modestly large or
a large number of items.3

3Cui et al. (2012) considered test length of up to 20 in their data examples. Most likely, computation
for tests consisting of much more than 20 items would take very long.
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17.2.4 Classification Accuracy for Each Attribute

Wang et al. (2015) suggested examining agreement measures at the attribute level,
in the same manner as Gierl et al. (2009). They defined the following measure of
attribute-level classification accuracy:

PCAd = P(ãd(X) = ad)· (17.1)

The above measure and several other measures discussed below are simple
summaries of agreement for a hypothetical 2×2 table that consists of the proportions
of the examinee population cross-classified by their true attribute indicator Ad and
their estimated attribute ãd (X).

Table 17.1 shows such a cross-classification. If the true proportions, pij , i =
0, 1, j = 0, 1,where pij = P(Ad = i, ãd (X) = j), were known, then the attribute-
level accuracy would simply be

PCAd = p00 + p11. (17.2)

Given a specific DCM such as the Deterministic Inputs, Noisy And gate (DINA)
model, Noisy Inputs, Deterministic And gate (NIDA) model, or Loglinear Cognitive
Diagnosis Model (LCDM; e.g., Rupp et al., 2010), a Q-matrix specifying which
item requires which attribute, and a set of estimated item parameters, the pij ’s can
be calculated exactly by noting that

pij ≡ P(Ad = i, ãd (X) = j)
=

∑

{x: ãd (x)=j}
P(Ad = i,X = x)

=
∑

{x: ãd (x)=j}
P(Ad = i|X = x)P (X = x).

Noting that P(Ad = i|X = x) is the posterior probability of Ad being equal to i,
the cell proportion pij is the average of the mean posterior probability, where the
average is computed over all possible item response patterns.

While the accuracy indices can be calculated exactly with knowledge of the
model parameters, if the number of items is large, the computation, which requires
a summation over 2K item response patterns, would be computationally prohibitive.

Table 17.1 The contingency
table classifying individuals
by their true and estimated
attributes

Estimate ãd
True ad 0 1 Total

0 p00 p01 p0+
1 p10 p11 p1+
Total p0+ p1+ 1
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However, the pij ’s, and therefore, the classification accuracy and consistency
indices, can be estimated using a summation only over the response patterns
observed in a random sample of examinees. Wang et al. (2015) and Johnson and
Sinharay (2018) showed that one can estimate the pij s by

p̂ij = 1

N

N∑

n=1

Pr{Ad = i|X = xn}I {ând = j} (17.3)

for all d = 1, . . . , D, i = 0, 1, and j = 0, 1, where and is the observed value of ad
for individual n whose item-score vector is denoted as xn, and ând = ãd (xn) is the
binary estimate of and .

Using Eqs. 17.2 and 17.3, Wang et al. (2015) estimated the classification accuracy
of skill d with

P̂CAd=
1

N

N∑

n=1

ãd (xn)P (Ad = 1|X = xn)+ 1

N

N∑

n=1

(1−ãd (xn))P (Ad = 0|X=xn)·
(17.4)

Note that Wang et al. (2015) used the notation τ̂d (see their Eq. 17.6) to denote the
quantity that is denote here as P̂CAd . The estimator P̂CAd allows for consistent
estimation of the true classification accuracy given a random sample from the
population.

Wang et al. (2015) offered an additional method for estimating the attribute-
level classification accuracy index in equations 25 through 27 in their paper, but
Johnson and Sinharay (2018) argued that this method does not lead to a satisfactory
estimation of PCAd .

17.2.5 Classification Consistency for Each Attribute

Classification consistency for an attribute is the probability that a randomly selected
individual would receive the same score on the attribute on two parallel forms of
a test. Wang et al. (2015) suggested computing classification consistency at the
attribute level as

PCCd = P(ãd(X1) = ãd (X2))· (17.5)

Wang et al. (2015) suggested two approaches for estimating PCd . The first
estimator, denoted as γ̂d , is defined (Wang et al., Equation 9) as

γ̂d = 1

N

N∑

n=1

(
[P(Ad = 1|X = xn)]

2 + [P(Ad = 0|X = xn)]
2
)
. (17.6)
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Table 17.2 The contingency table classifying individuals on two parallel forms

Estimate from Parallel Form 2 (ãd (X2))

Estimate from Parallel Form 1 (ãd (X1)) 0 1 Total

0 r00 r01 r0+
1 r10 r11 r1+
Total r0+ r1+ 1

Wang et al. (2015) justified this estimator by claiming that the posterior probability
P(Ad = 1|X = xn) is constant across parallel forms of the test (at least almost
surely). In an application of a DCM, the equality of the posterior probability would
require individuals to produce the exact same item response vectors on parallel
forms of the assessment (that is, X1 = X2). However, Wang et al. did not provide
any theoretical proof or empirical results to support this claim and Johnson and
Sinharay (2018) used a simple example to prove that the claim does not hold
in general and that the estimator γ̂d was biased. Wang et al. suggested another
estimator of PCCd in their equation 24, but Johnson and Sinharay (2018) found
in their simulations that this estimate is biased as well.

Whereas the attribute-level classification accuracy index can be viewed as a
summary of the 2 × 2 table formed by cross-classifying individuals by their true
and estimated attributes, classification consistency examines agreement in a 2 × 2
table formed by classifying individuals by their estimates on two parallel forms of a
test. The cell proportions of such a table are

rij = P(ãd(X1) = i, ãd (X2) = j)·

Table 17.2 shows such a table. Then the (true) classification consistency index is

PCCd = r00 + r11. (17.7)

Given estimated item parameters, these proportions can be calculated by applying
the result that

rij = P(ãd(X1) = i, ãd (X2) = j)
=
∑

a

P(ãd(X1) = i, ãd (X2) = j |A = a)P (A = a)

=
∑

a

P(ãd(X1) = i|A = a)P (ãd(X2) = j |A = a)P (A = a).

The final equality holds because of the assumption of conditionally independent test
responses given the true latent attribute vector a.
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Johnson and Sinharay (2018) suggested estimating the proportions rij ’s with
their consistent estimators

r̂ij=
∑

a∈#

(∑N
n=1 P(A=a|X=xn)I {ând=i}

) (∑N
n=1 P(A=a|X=xn)I {ând=j}

)

N2P(A=a)
·

(17.8)
Johnson and Sinharay (2018) suggested estimating PCCd by

P̂CCd = r̂00 + r̂11· (17.9)

The estimator P̂CCd is different from the two suggested by Wang et al. (2015) and
can be computed using data from only one form. In addition, P̂CCd is a consistent
estimator of the classification consistency index if the model parameters are known
and the examinees are randomly sampled from the population of interest, since both
r̂00 and r̂11 are consistent estimators of r00 and r11.

17.2.6 Reliability of the Posterior Probability of Mastery

Templin and Bradshaw (2013) noted that in applications of DCMs, one often reports
the marginal posterior probabilities of mastery given the observed item responses,
that is, reports

âd (xn) = P(And = 1|X = xn) ≡ E[And |xn], (17.10)

where And is the random variable indicating whether examinee n possesses
attribute d. Templin and Bradshaw (2013) developed a reliability measure using
this estimator by constructing a 2× 2 contingency table that is shown in Table 17.3,
where

m̂ij = 1

N

N∑

n=1

P(Ad = i|X = xn)P (Ad = j |X = xn). (17.11)

Table 17.3 Hypothetical
contingency table used to
calculate the reliability
measure proposed by Templin
and Bradshaw

a2

a1 0 1

0 m̂00 m̂01

1 m̂10 m̂11
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The reliability measure proposed by Templin and Bradshaw (2013), denoted
henceforth as ρ̂TB , is the tetrachoric correlation calculated from the contingency
table (shown in Table 17.3) defined by the proportions m̂ij ’s.

Templin and Bradshaw (2013) did not make it clear whether ρ̂TB measures the
reliability of the estimated attributes or of the posterior probability of mastery.4

Based on the facts that

• the heading used by the authors is “Measuring the Reliability of Diagnostic
Model Examinee Estimates”,

• the heading used also by the Templin & Bradshaw (2013) is “Diagnostic
Classification Model Examinee Estimates”,

• they did not include a binary classification as an examinee estimate,
• in their article on examinee estimates, they stated that “Examinees are more

often provided with marginal probabilities of attribute mastery . . . ” and listed
the probability of attribute mastery as an examinee estimate,

• the probabilities of attribute mastery play a major role in the computation of their
measure,

we decided to treat ρ̂TB as a measure of the reliability of the posterior probability of
mastery.

Templin and Bradshaw (2013) derived ρ̂TB on the basis of their assumption
that the posterior probability P(Ad = 1|X) is constant for an examinee across
parallel forms of the test. This assumption is virtually identical to the assumption
that Wang et al. (2015) made in deriving γ̂d and was proved incorrect by Johnson
and Sinharay (in press, 2018) under the traditional definition of parallel forms;
Johnson and Sinharay (in press) found ρ̂TB to overestimate the reliability of the
posterior probability of mastery; the overestimation can most likely be attributed to
the incorrect assumption.

Johnson and Sinharay (in press) suggested three measures of reliability of the
posterior probability of mastery for DCMs. The first one of them is the squared
point biserial correlation between the binary attribute mastery status Ad and its
posterior expectation E[Ad |X],

ρbis(E[Ad |X]) = (cor(Ad,E[Ad |X]))2 .

Johnson and Sinharay (in press) provided alternative expressions of this measure in
terms of agreement statistics suggested by Yule (1912) and Youden (1950). Johnson
and Sinharay (in press) also expressed ρbis(E[Ad |X]) as the ratio of the observed
score variance to the total variance in the context of DCMs. This ratio of observed
to true score variance has been called the generic form of reliability in classical test
theory (see Lord & Novick, 1968, Section 9.7). If we have a random sample of size

4They mentioned “reliability for the categorical attribute” and “reliability of the attribute” in a few
places, but these are ambiguous regarding what ρ̂TB actually measures.
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N from the population of interest and the estimated item parameters are available,
ρbis(E[Ad |X]) can be consistently estimated by

ρ̂bis(E[Ad |X]) =
1
N

∑N
n=1 (E[Ad |X = xn])2 − p2

d

pd(1− pd) , (17.12)

where pd = P(Ad = 1).
The second measure suggested by Johnson and Sinharay (in press) is the parallel-

forms reliability defined as

ρpf (E[Ad |X])) = cor(E[Ad |X1], E[Ad |X2])·

This correlation can be expressed as

ρpf (E[Ad |X]) =
∑

a

[∑
x E[Ad |x]P(X = x|A = a)

]2
P(A = a)− p2

d

var(E[Ad |X]) ·
(17.13)

When a single skill is assessed, ρbis(E[Ad |X]) and ρpf (E[Ad |X]) are equivalent.
However, when more than one skill is assessed, they need not be equal. Given
a DCM, Q-matrix, and parameters, ρpf (E[Ad |X]) can be calculated exactly.
However, because it requires a double summation, one over both the entire set of the
2D possible attribute patterns and the other over all 2K possible item score vectors,
it could be computationally prohibitive. Given a random sample from the population
of interest, one can estimate ρpf (E[Ad |X]) consistently with the estimator

ρ̂pf (E[Ad |X])=
∑

a
1

P(A=a)

[
1
N

∑N
n=1 E[Ad |X=xn]P (A = a|X = xn)

]2 − p2
d

1
N

∑N
n=1 (E[Ad |X = xn])2 − p2

d

·
(17.14)

The third measure suggested by Johnson and Sinharay (in press), referred to as
the informational reliability, is the squared informational correlation (e.g., Linfoot,
1957) between Ad and âd (X), that is,

ρI= 1− exp
{
2(H(Ad)−H(Ad |âd (X)))

}
, (17.15)

where âd (X) is defined in Eq. 17.10. The term H(Ad) is the prior entropy and is
defined as

H(Ad) = −pd lnpd − (1− pd) ln(1− pd).
The other term in Eq. 17.15, H(Ad |âd (X)), is the conditional entropy and is
computed as
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H(Ad |âd (X)) = −
∑

x

P(X = x)
[
âd (x) ln âd (x)+ (1− âd (x)) ln(1− âd (x))

]
.

Given a random sample from the population of interest, H(Ad |âd (X)) can be
estimated with

Ĥ (Ad |âd ) = − 1

N

N∑

n=1

(
âd (xn) ln â(xn)+ (1− âd (xn)) ln(1− âd (xn))

)
,

and the informational reliability can be estimated with

ρ̂I= 1− exp
{

2(H(Ad)− Ĥ (Ad |âd ))
}
. (17.16)

17.2.7 Measures of Agreement Beyond Classification Accuracy
and Consistency

While classification accuracy and consistency measures are intuitive and widely
used, it has long been established that some of the properties of the probability of
agreement in 2 × 2 tables render the measures difficult to interpret in many cases
(e.g., Goodman & Kruskal, 1954; Youden, 1950). For example, if the proportion
of individuals with the skill is 0.9 and the proportion of individuals estimated to
have the skill is also 0.9, then the probability of agreement is equal to 0.9(0.9) +
(0.1)(0.1) = 0.82 even if the true and estimated attributes are independent of each
other. When trying to quantify the quality of a CDA or the associated DCM, this
issue can lead to very surprising results. For example, suppose that we know that
90% of the population possess an attribute. Now suppose that we fit a DCM that
provides absolutely no information about the attribute. The MAP estimator will
be 1 for all examinees, since the prior distribution and the posterior distribution
are equal to one another.5 Therefore, p11 = 0.9, p01 = 0.1, p10 = p00 = 0,
r11 = 1, and the accuracy and consistency measures of the assessment will be
PCAd = 0.9 and PCCd = 1.0 respectively. These values would make the CDA
and DCM appear very informative on the attribute when they actually provide no
information.

Johnson and Sinharay (2018) suggested the following measures that overcome
these limitations of the probability of agreement:

• Youden’s statistic. Youden’s statistic J (Youden, 1950), which, in the case of
DCMs, compares the probability that a DCM correctly classifies an individual

5That is because for each examinee, the posterior distribution for the attribute will be a discrete
distribution with a probability of 0.9 on the value of 1 and a probability of 0.1 on the value 0, which
would result in a MAP of 1.
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that has the skill (true positive) to the probability that the DCM incorrectly
classifies an examinee that does not have the skill (false positive); that is,

J= P(ãd(x) = 1|Ad = 1)− P(ãd(x) = 1|Ad = 0)

= p11

p11 + p10
− p01

p00 + p01
·

The statistic ranges from−1 to+1. It is+1 only when there are no classification
errors, and is zero when the same proportions of individuals with and without
the skill are estimated to have the attribute. For example, in the above non-
informative example, the Youden’s statistic for accuracy would be 0.

• Goodman & Kruskal’s Lambda. Goodman and Kruskal (1954) introduced the
statistic � which, in applications of DCMs, adjusts for a baseline case where the
DCM would always choose the modal category. The statistic is computed as

� = p11 + p00 −max{p1+, p0+}
1−max{p1+, p0+} ·

The values of � will usually be non-negative. The statistic will be zero if the
posterior mode never differs from the prior modal classification (as in the above
non-informative test example) and will be one if there is perfect classification.

• Cohen’s kappa. Cohen (1960) suggested computing the difference of the
observed agreement (between the two classifications) and the agreement that
is expected if they are independent, and normalizing the difference as described
by the following equation

κ = p11 + p00 − p1+p+1 − p0+p+0

1− p1+p+1 − p0+p+0
·

The statistic will be zero when classifications are independent (as with a non-
informative test) and one when there is perfect agreement.

• Tetrachoric correlation. The tetrachoric correlation describes the association
between two binary variables as the correlation between two correlated normal
random variables that would result in quadrant probabilities (p11, p01, p10, p00)

′,
where, e.g., p11 = P(Z1 > 0, Z2 > 0). When any of the four proportions is zero
(as in the non-informative test example), the tetrachoric correlation is not defined.

• Sensitivity and Specificity. The true positive (TP) rate or sensitivity is the
proportion of those with the skill that are correctly identified as having the skill.
The true negative (TN) rate or specificity is the proportion of those lacking the
skill that correctly identified as lacking the skill. They are computed as

TP ≡ P(ãd(X) = 1|Ad = 1) = p11

p1+
, and

TN ≡ P(ãd(X) = 0|Ad = 0) = p00

p0+
·
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For the non-informative test example, T P = 1 and TN = 0. The classification
index PCAd is simply a weighted average of the true positive and true negative
rates, where the weights are equal to the prevalence of the attribute in the
population, PCAd = T P × p1+ + TN × p0+.

While the association measures described above were described as measures of
accuracy, and thus computed with pij ’s, they can also be described as measures of
consistency and hence can be calculated using the estimates of rij ’s.

17.2.8 Other Measures

The CDM package in R (Robitzsch, Kiefer, George, & Uenlue, 2014) includes a
function cdm.est.class.accuracy that calculates accuracy and consistency
measures at both the pattern level like Cui et al. (2012) and at the attribute level like
Wang et al. (2015). However, there is no peer-reviewed publication supporting the
method used in this function at the current time. In the simulation study in Johnson
and Sinharay (2018), the results from the R function differs substantially from the
accuracy and consistency indices of Wang et al. (2015) or Johnson and Sinharay
(2018).

17.2.9 A List of the Existing Reliability-Like Measures

Table 17.4 provides a list of most of the statistics described above, states whether
they are measures of consistency or accuracy or both, or of reliability, and provides
the source of each statistic.

17.3 A Real Data Example

To demonstrate the measures discussed above, we calculated them for a data set
from the grammar section of the Examination for the Certificate of Proficiency in
English (ECPE). The data set was analyzed by Templin and Hoffman (2013) and von
Davier (2014). The grammar section includes 28 multiple choice items in which a
set of words is missing. Examinees are asked to select the appropriate word(s) for
the missing part of the statement from four response options; for example, in an
item, the examinees had to fill the blank in the statement “Mary had to lean
the counter to open the window.” by choosing one word from the four following
options: (a) above, (b) over, (c) after, and (d) around. The data set is included in
the CDM package in R (Robitzsch et al., 2014) and includes the responses of 2922
examinees to the items. The Q-matrix for the data appears in Table 1 of Templin
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Table 17.4 Summary of accuracy, consistency, and reliability (of posterior probability of mastery)
measures

Statistic Notation Proposed by Accuracy/Consistency

Accuracy index P̂CAd Wang et al. (2015) Accuracy

Consistency est γ̂d Wang et al. (2015) Consistency

Corrected consistency P̂CCd Johnson and Sinharay (2018) Consistency

Youden’s statistic J Johnson and Sinharay (2018) Both

Goodman & Kruskal � Johnson and Sinharay (2018) Both

Cohen κ Johnson and Sinharay (2018) Both

Tetrachoric correlation ρT Johnson and Sinharay (2018) Both

Sensitivity &
Specificity

TP, TN Johnson and Sinharay (2018) Both

Tetrachoric correlation ρ̂TB Templin and Bradshaw (2013) Reliability

Biserial correlation ρbis(E[Ad |X]) Johnson and Sinharay (in press) Reliability

Parallel-forms
reliability

ρpf (E[Ad |X]) Johnson and Sinharay (in press) Reliability

Informational
reliability

ρI Johnson and Sinharay (in press) Reliability

Note: “Both” means “Both Accuracy and Consistency”

and Hoffman (2013). The items measure knowledge of one or more of the three
following attributes: (1) morphosyntactic rules; (2) cohesive rules; and (3) lexical
rules. The test includes respectively five, four, and ten items that measure only
the first attribute, only the second attribute, or only the third attribute. Two items
measure both the first two attributes, seven measure the first and third attribute, and
one measures the second and third attribute.

As in Templin and Hoffman (2013), we fitted a saturated log-linear CDM
(Henson, Templin, & Willse, 2009) to the ECPE data, where items measuring more
than one skill contain both main effects and the interaction effect of the skills.

The estimated pattern-level accuracy and consistency measures (Cui et al., 2012)
were 0.75 and 0.67, respectively, for the data set. We examined classification
accuracy and consistency for the MAP estimators and the reliability of the posterior
probability of mastery of the three individual attributes. In addition, we also
produced Monte Carlo approximated measures of the accuracy and consistency,
denoted ACCR and ATRCR. These Monte Carlo approximated indices were
obtained by performing the following steps:

1. Generate 100,000 attribute patterns ai from the categorical distribution with
probabilities P̂r{A = a}.

2. For each generated attribute pattern ai , generate two parallel sets of item
responses from the loglinear CDM.

3. For each of the 100,000 generated examinees, calculate two sets of MAP
estimators from the parallel sets. For example, âi1 and âi2 are two pattern level
estimators for individual i.
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Table 17.5 Reliability-like measures for the ECPE data

Measure Symbol Attribute 1 Attribute 2 Attribute 3

Prevalence πd 0.39 0.55 0.67

Accuracy ACCR 0.91 0.87 0.95

P̂CAd 0.90 0.86 0.92

� 0.74 0.68 0.75

κ 0.72 0.70 0.65

J 0.79 0.71 0.81

ρT 0.95 0.90 0.96

TP 0.87 0.88 0.95

TN 0.92 0.82 0.86

Consistency ATRCR 0.85 0.82 0.88

P̂CCd 0.83 0.81 0.86

� 0.57 0.56 0.56

κ 0.72 0.68 0.63

J 0.65 0.61 0.68

ρT 0.85 0.82 0.88

TP 0.78 0.83 0.90

TN 0.86 0.78 0.78

Reliability ρ̂TB 0.89 0.80 0.92

ρbis(E[Ad |X]) 0.70 0.59 0.74

ρpf (E[Ad |X]) 0.74 0.73 0.76

ρI 0.58 0.51 0.59

4. Calculate the Monte Carlo approximated accuracy and consistency indices. For
example, for the attribute d,

ACCR = 1

2M

M∑

i=1

2∑

m=1

I {âimd = aid},

ATRCR = 1

M

M∑

i=1

I {âi1d = âi2d},

whereM = 100, 000 is the total number of generated examinees and âimd is the
estimate for individual i for attribute d calculated from parallel form m.

Note that ACCR and ATRCR, because of the way they are computed using sim-
ulated data, provide the estimated classification accuracy of consistency when the
DCM perfectly fits the data whereas measures such as P̂CAd provide corresponding
estimates irrespective of how well the data set fits the DCM. In addition, the
computation of ACCR and ATRCR involves simulations whereas the computation
of measures such as P̂CAd and P̂CCd does not involve simulations.
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Table 17.5 includes the values of some of the abovementioned reliability-like
measures for the ECPE data. The table shows that the values of the classification
accuracy measure P̂CAd (Wang et al., 2015) are very similar to the results obtained
through Monte Carlo simulation. The values of the classification consistency
measure proposed by Johnson and Sinharay (2018), P̂CCd , are also very similar
to those derived by Monte Carlo approximation. For any skill, the value of a
consistency measure is smaller than that of the corresponding accuracy measure;
this is expected and researchers such as Cui et al. (2012) also found the consistency
measures to be smaller than accuracy measures. The values of ρ̂TB (Templin &
Bradshaw, 2013) are considerably larger than the corresponding values of the
measures suggested by Johnson and Sinharay (in press). The values of ρ̂TB are
not close to the ATRCR’s either; therefore, even if one considers ρ̂TB as an
estimate of classification consistency, the measure does not perform very well for
these data. Overall, the accuracy and consistency measures in Table 17.5 seem
to indicate that the assessment does a decent job of estimating the attributes of
examinees.6

17.4 Discussion

In an application of a DCM, it is important to provide the end-user with some
measure of the quality of the CDA and the associated DCM. It is also important
to recognize the limitations of those reliability measures. This chapter reviews most
of such existing measures, referred to as measures of agreement—they primarily
consist of measures of classification consistency and accuracy of the individual
attributes and measures of reliability of the posterior probability of mastery.

Researchers and practitioners often wonder about the interpretation of reliability
and reliability-like measures, mainly because of the lack of unanimous guidelines
on what values of reliability can be considered large enough for a given test. Johnson
and Sinharay (2018) suggested some guidelines on measures of classification con-
sistency and accuracy of the individual attributes, but more research on establishing
further guidelines on these measures would be helpful.

An important and practically relevant question, given the prevalence of all the
measures discussed in this paper, is “Which measure(s) should be reported in an
application of a DCM to a real data set?” Our recommendation is to report a
collection of different types of measures. For example, one may report a measure of
classification accuracy and classification consistency,7 and one of the measures of
the reliability of the posterior probability of mastery. We also think that one should,

6However, von Davier and Haberman (2014) found that a located latent class analysis with four
levels also fits the data well.
7In their simulation study, Johnson and Sinharay (2018) found the Goodman & Kruskal � for
accuracy to have the best properties among such measures.
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in addition, report a couple of measures from Rows 4–8 of Table 17.4 given that
classification accuracy and classification consistency can be misleading for skills
that have very high or low prevalence. One option would be to report the prevalence
of each attribute, the TP and TN rates. These three numbers would allow the users
to weight the different types of errors (false positive and false negative) differently,
depending on the type of application. For example, for one test user, it may be more
of a problem to inaccurately estimate the skill of someone who does not have it, i.e.,
to make a false positive; in this case, the user could give more importance to the true
negative rate (that is equal to one minus the false positive rate) than the true positive
rate.

While reliability-like measures provide information about the quality of DCMs,
there exist other ways to obtain information about the quality of DCMs. The fit of a
DCM to the data also provide information about the quality of DCMs. Researchers
such as de la Torre and Lee (2013), Oliveri and von Davier (2011), and Park,
Johnson, and Lee (2015) have investigated the issue of goodness of fit of DCMs.

There are several topics related to reliability of DCMs that can be further
investigated. First, the simulations and the real data examples in existing research
on reliability-like measures focused only a few DCMs such as the DINA model; it
is possible to consider other DCMs such as NIDA, LCDM (e.g., Rupp et al., 2010),
and general diagnostic model (von Davier, 2008) in future research. Second, most
researchers who investigated the reliability of DCMs considered only binary items;
therefore, it is possible to examine reliability-like measures for polytomous data.
Third, it is possible to consider more simulated and real data sets in future research
on such measures. Fourth, it will be interesting to examine how the reliability-like
measures are affected by misfit of DCMs. Finally, all the measures of agreements are
computed under the assumption that the item parameters are known and the DCM
fits the data. While Johnson and Sinharay (2018) performed a brief investigation of
how the agreement measures are affected by uncertainty in the item parameters and
by misfit of the DCM, more research on these areas would be useful.
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Chapter 18
Differential Item Functioning
in Diagnostic Classification Models

Xue-Lan Qiu, Xiaomin Li, and Wen-Chung Wang

Abstract Assessment of differential item functioning (DIF) in diagnostic classifi-
cation models (DCMs) has begun to attract research attention. In previous studies,
authors found that DIF detection in DCMs appeared to be very powerful even
when most or all the items on the studied test had DIF and no scale purification
was necessary. This surprisingly good result was built on studies that made the
unrealistic assumption of equality of the model and the Q-matrix across groups. The
present study clarifies these weaknesses in previous studies, identifies various types
of DIF, and proposes new DIF detection methods that are powerful in detecting
DIF in DCMs. An illustrative simulation study was conducted to demonstrate the
feasibility and advantages of the new methods. Finally, conclusions and suggestions
for future studies are provided.

Given the wide use of educational and psychological tests all over the world, it is
a logical and moral imperative for test developers and users to ensure test fairness.
One serious threat to test fairness is differential item functioning (DIF). An item is
deemed to expose DIF when two test-takers who have an identical level of the latent
variable the test intends to measure but belong to different groups (e.g., gender
or ethnicity) have different probabilities of success or endorsement on the item
(Holland & Wainer, 1993). Expressed mathematically, an item exhibits DIF when
the following equation does not hold:

f (Y |θ,G) = f (Y |θ) , (18.1)

where Y is the item response; θ is the latent variable that the test intends to measure,
which can be continuous as in classical test theory (CTT) or item response theory
(IRT) or an attribute profile as in diagnostic classification models (DCMs); and G
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is the group membership, which can be categorical (such as gender), continuous
(such as age), or latent (such as a problem-solving strategy). If a test contains DIF
items, then the test measures different latent variables for different groups of test-
takers (i.e., measurement invariance does not hold across groups); therefore, the
raw total score in CTT, the person ability measure in IRT, or the attribute profile
in DCM is no longer comparable across groups (Holland & Wainer, 1993, p. xi). If
theoretically incomparable scores are compared across groups (e.g., boys and girls),
the resulting hypothesis testing (e.g., whether boys have a higher mean ability than
girls, whether John has a higher ability than Mary) and subsequent decision making
will be erroneous. Acknowledging these consequences, practitioners usually remove
DIF items from a test to ensure score comparability across groups.

Many DIF detection methods have been developed in which responses are
assumed to follow IRT models, subsequently referred to as IRT-DIF in this chapter.
When item responses are generated from DCMs, the corresponding DIF detection
methods are referred to as DCM-DIF in this chapter. Given the great similarity
between IRT-DIF and DCM-DIF, the following review of IRT-DIF will shed light
on DCM-DIF.

18.1 Review of IRT-DIF

There are two major categories of DIF detection methods in IRT-DIF: One is
IRT-based methods, and the other is non-IRT-based methods. In IRT-based DIF
detection methods, an IRT model is fit to the data, and the item parameter estimates
for different groups of test-takers are estimated, placed on the same scale, and
compared. If the item parameter estimates are found to differ systematically across
groups, then the studied item is deemed to have DIF. Lord’s (1980) method and the
likelihood ratio test (Thissen, Steinberg, & Wainer, 1988) belong to this category.
In non-IRT-based detection methods, raw scores are usually used to match test-
takers from different groups so that the performances of the different groups on
the studied item can be compared. If the response probabilities are statistically
different given comparable test performance, then the studied item is deemed to
have DIF. The Mantel-Haenszel (MH; Mantel & Haenszel, 1959) method (Holland
& Thayer, 1988) and the logistic regression (LR) method (Swaminathan & Rogers,
1990) belong to this category.

Based on the definition of DIF, test-takers from different groups must be
matched on the target latent variable θ that the test intends to measure to enable
DIF assessment. When tests contain DIF items, the raw total score or the IRT
person measure that is calibrated from the contaminated test no longer has the
same meaning for different groups. Therefore, these scores do not represent the
uncontaminated latent variable, and cannot be used to match test-takers. Take an
English-version logical reasoning test as an example. For English speakers, the test
measures logical reasoning as intended, whereas the test may measure a composite
of English proficiency and logical reasoning for non-English speakers. It is not
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possible to match English speakers and non-English speakers because the logical
reasoning test measures different latent variables for these two groups of test-takers.
Only when the matching variable consists exclusively of DIF-free items, so the
latent variable has the same meaning across groups, can it be used to match test-
takers from different groups for subsequent DIF detection of the other items.

This logic is not as widely recognized as one would expect. Consider the
following scenario: The item responses for each group are generated from the Rasch
(1980) model with a mean item difficulty of zero for each group, but every item has
different difficulties across groups (i.e., all items have DIF). Then, simulated data
are analyzed with the Rasch model separately (one group at a time) or jointly, with
the constraint that the mean item difficulty is zero for each group, which is the
default model identification for many computer programs, such as ConQuest and
BILOG-MG. In other words, the data-generating Rasch model together with the
correct constraint for model identification is fit to the simulated data. Under such
an ideal situation, the item and person parameters can be recovered well. Then, one
can test every item for evidence of DIF using the Wald test if the standard errors
are estimated accurately (Wright & Stone, 1979) or the likelihood ratio test for two
nested models (Thissen et al., 1988). If the sample size is sufficiently large, then the
null hypothesis of no DIF will be rejected. As a result, all items will be deemed to
have DIF, which is identical to the generating setup so the DIF detection is perfect.
Thus, it is tempting to conclude that matching variables is not necessary and DIF
detection is accurate even when all items have DIF. In addition, because the person
parameters are recovered accurately, it is also tempting for practitioners to compare
person measures across groups.

Assuming the mean item difficulty is equal across groups, referred to as the
equal-mean-difficulty (EMD) method, is not uncommon in DIF studies (Wang,
2004, 2008). In this method, each group has its own scale so the latent variable
measured by the test is different for different groups, just like the logical reasoning
test example. There is no way to match test-takers from different groups. A major
drawback of the EMD method is that the assumptions made are in most cases wrong
when one item on the studied test has DIF because the mean item difficulty will not
be equal across groups. Even when there are multiple DIF items, it is very unlikely
that their DIF magnitudes will cancel out exactly across groups so that the mean
item difficulty is equal across groups.

There are other methods that are more appropriate than the EMD method. The
all-other-item (AOI) method is an example. All items except the studied item on the
test are assumed to be DIF-free and thus serve as the basis for a matching variable,
and the studied item is evaluated for DIF (Wang, 2004, 2008). This procedure
repeats until all items on the test have been evaluated for DIF. Unfortunately, the
AOI method is theoretically correct only when the test does not have a DIF item
(the test is perfect) or when the studied item is the only DIF item on the test. To
make the AOI method more applicable for real (imperfect) tests, scale purification
procedures are advocated. Specifically, when all items have been evaluated for DIF
with the AOI method, and a few items have been identified as having DIF while
the other items are DIF-free, we then use these presumably DIF-free items as the
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matching variable and examine all items on the test again. This procedure repeats
until the same set of items is detected as having DIF at two successive iterations or
a maximum number of iterations is reached. This purified AOI method, denoted as
AOI-P, outperforms the AOI method when tests have multiple DIF items, but the
AOI-P begins to lose control of Type I error rates (false positive rates) when tests
consist of a high percentage (say, 20% or higher) of DIF items (French & Maller,
2007; Wang, Shih, & Yang, 2009; Wang & Su, 2004).

Because scale purification procedures such as the AOI-P method cannot com-
pletely purify the matching variable to yield good DIF detection when tests have
many DIF items, other methods should be pursued. The DIF-free-then-DIF (DFTD)
strategy (Wang, Shih, & Sun, 2012) is such an attempt, in which DIF detection
involves two steps: (a) identify a set of items that are most likely to be DIF-free and
(b) use these presumably DIF-free items as the matching variable and evaluate the
other items for DIF. This strategy can be applied to any DIF detection method. For
example, we can adopt the AOI-P method to identify a set of items that are most
likely DIF-free, use them to match test-takers from different groups, and evaluate
the other items for DIF. In a series of simulations, the DFTD strategy demonstrates
its superiority in DIF detection over traditional methods, such as the AOI and the
AOI-P, especially when the tests have a high percentage of DIF items (Chen, Chen,
& Shih, 2014; Chen & Hwu, 2017; Wang et al., 2012).

18.2 Review of DCM-DIF

A DCM can provide a fine-grained profile of multiple latent binary attributes to
support learning and teaching. Popular DCMs include the deterministic inputs, noisy
and gate (DINA) model (Junker & Sijtsma, 2001), the deterministic input, noisy or
gate (DINO) model (Templin & Henson, 2006), and the (reduced) reparameterized
unified model (RUM; Hartz, 2002). General forms of DCMs have also been
proposed, such as the log-linear cognitive diagnosis model (LCDM; Henson,
Templin, & Willse, 2009), the generalized DINA model (de la Torre, 2011), and
the general diagnostic model (GDM; von Davier, 2008).

Recently, several DIF detection methods have been developed. Zhang (2006) fit
the DINA model to simulated data generated from the DINA model with or without
DIF items, obtained the attribute profile estimate for each test-taker, and compared
the performances in DIF detection of two methods: (a) the standard MH method
with the total score as matching variable and (b) the MH method with the estimated
attribute profile as matching variable (denoted as the profile MH [PMH] method).
Zhang (2006) found the PMH method outperformed the standard MH method.
Similar results were found by Zhang (2006) when the simultaneous item bias test
method was compared with the raw score and the estimated attribute profile as the
matching variables.

Li (2008) modified the higher-order DINA model (de la Torre & Douglas, 2004)
to simultaneously detect differential functioning at the item and attribute levels, by
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adding a group indicator at the attribute level while allowing for differences in item
parameters across groups at the item level. Li (2008) found the method performed
well in controlling Type I error rates at the item level but poorly at the attribute level
when the tests included 20% DIF items. Bozard (2010) adapted methods of testing
measurement invariance in confirmatory factor analysis models into the LCDM by
testing the invariance of the intercepts, loadings of the main effects and interaction
effects as well as the residual variance, but the performance of the method were not
evaluated with simulations. Hou, de la Torre, and Nandakumar (2014) utilized the
Wald test to compare differences in the item parameters that were obtained by fitting
the DINA model to the reference and focal groups separately. Results showed that
the method yielded well-controlled Type I error rates and high statistical power, even
when all items on the test had DIF, although the method’s performance decreased
when guessing and slip parameters increased.

Hou et al. (2014) focused on DIF detection between two groups (e.g., gender).
More recently, Li and Wang (2015) developed a flexible approach to detecting DIF
based on the LCDM to accommodate various DCMs (e.g., DINA or DINO), more
than two groups of test-takers, and multiple grouping variables that are categorical,
continuous, observed, or latent (e.g., strategy usage). Li and Wang (2015) replaced
the Wald statistic used by Hou et al. (2014), which is often inappropriate because
of inaccurate estimation of standard errors, with the Bayesian Markov chain Monte
Carlo method (MCMC) and observed good parameter recovery and superiority in
DIF detection to the Wald method in a series of simulation studies.

In these previous studies, all items were simulated from the same DCM (e.g.,
the DINA model), the reference and focal groups shared the same Q-matrix, and
DIF was simulated by specifying different guessing and/or slip parameters for
different groups. Then, the simulated data were analyzed jointly for all test-takers
(assuming all items had DIF) or separately for each group, based on the data-
generating DCM and the correctly specified Q-matrix. These settings ensure that the
model parameters are identifiable (Chiu, Douglas, & Li, 2009; Xu & Zhang, 2016).
Because different groups are assumed to share the same DCM and Q-matrix, this
method is referred to as the equal model and Q-matrix (denoted as EMQ) method.
It was observed that the item parameters and person attributes were recovered well
and DIF detection was good even when most or all items had DIF (Hou et al., 2014;
Li & Wang, 2015). Given these excellent results, it is tempting to conclude that
no matching variable or scale purification is needed, and the person attributes are
comparable across groups. This is exactly what happens in the EMD method in
IRT-DIF.

18.3 New Methods in DCM-DIF

There are many conditions in which Eq. 18.1 will not hold. Allowing different
groups to have different guessing and/or slip parameters is one possibility. Other
possibilities include that different groups have different Q-matrices or follow
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different measurement models. For demonstration, we adopt the LCDM because
it not only includes many DCMs as special cases but also allows for further
model generalization in the logistic framework. Nevertheless, the new DIF detection
methods proposed in this study can apply easily to other general DCMs, such as the
generalized DINA model (de la Torre, 2011) and the GDM (von Davier, 2008).

Let αT
n = (αn1, . . . αnK) be the attribute profile for person n, and Pni1 and let

Pni0 denote the probabilities of scoring 1 and 0 for person n on item i, respectively.
Under the LCDM, the log-odds of scoring 1 over scoring 0 are defined as follows:

logit (Pni) ≡ log (Pni1/Pni0) = λi,0 + λT
i h (αn,qi ) , (18.2)

where λi,0 defines the probability of success for persons who have not mastered any
of the attributes required by item i; λT

i is a vector of weights for item i with a length
of 2K – 1; K is the number of latent binary attributes; qik (k = 1, . . . , K) is the entry
for item i in the Q-matrix, indicating whether attribute k is required to answer item i
correctly; qi is a collection of qik; h(αn, qi) is a set of linear combinations of αn and
qi; and λT

i h (αn,qi ) can be expressed as

λT
i h (αn,qi ) =

∑K

k=1
λik (αnkqik)+

∑K

k=1

∑
v>k
λikv (αnkαnvqikqiv)+ · · · ,

(18.3)

which includes an intercept, all the main effects of the attributes, and all possible
interaction effects between the attributes, presenting compensatory and noncompen-
satory combinations. By constraining some of these effects, many common DCMs
can be formed.

Below, we identify several conditions in which Eq. 18.1 does not hold. First, as
simulated in previous studies (Hou et al., 2014; Li & Wang, 2015; Zhang, 2006),
DIF occurs when different groups have different item parameters (e.g., the guessing
and/or slip parameters in DINA model). For simplicity, this type of DIF is denoted as
GS-DIF in this study. To formulate GS-DIF in the LCDM framework, the log-odds
can be defined as follows:

logit
(
Pnig

) = λi,0,g + λT
igh
(
αng,qi

)
, (18.4)

where g stands for group membership; the other variables were defined previously.
Note that qi does not have a subscript g, suggesting the q elements of item i are
identical across groups.

Second, Eq. 18.1 does not hold when different groups have different Q-matrices
(more specifically different q elements on the studied item), which is referred to as
Q-DIF. Consider the following analogical reasoning item:

strawberry: red ≡
(A) peach: ripe
(B) leather: brown
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(C) grass: green
(D) orange: round
(E) lemon: yellow

The correct answer is (E). For test-takers in the majority group, this item may
measure three attributes: (a) encoding, (b) inference, and (c) mapping. Because
some test-takers in the minority group have never seen yellow lemons, option (E) is
not an option to them. For the minority group, this item requires not only the three
attributes but also the attribute “life experience.”

Another example is an arithmetic item measuring fraction subtraction (de la Torre
& Douglas, 2004):

4
4

12
− 2

7

12
=

Two strategies can be used to solve this item. For strategy 1, the following
four attributes are required: separating a whole number (4 4

12 − 2 7
12 = 2 4

12 − 7
12 ),

borrowing one from a whole number (2 4
12 = 1 16

12 ), basic operation (1 16
12 − 7

12 ), and
simplifying (1 9

12 = 1 3
4 ). For strategy 2, the following three attributes are required:

converting a mixed number (4 4
12 −2 7

12 = 52
12 − 31

12 ), basic operation ( 52
12 − 31

12 = 21
12 ),

and simplifying ( 21
12 = 1 9

12 = 1 3
4 ).

In these two examples, different attributes are required for different strategy
groups, and the items are said to have Q-DIF. To create Q-DIF in the LCDM
framework, the log-odds can be defined as follows:

logit
(
Pnig

) = λi,0,g + λT
igh
(
αng,qig

)
, (18.5)

where qig has a subscript g, indicating different groups have different q elements on
studied item i. In this study, we focus on the case in which the focal group requires
more attributes than the reference group to answer the studied item correctly. The
additional attributes can be internal (already included in the Q-matrix, denoted as
IQ-DIF) or external (not included in the Q-matrix, denoted as EQ-DIF).

Third, DIF can occur when different groups follow different measurement
models on the studied item, which is denoted as MM-DIF. For example, the
reference group may follow the DINA model while the focal group follows the
DINO model or the RUM. In the LCDM framework, MM-DIF can be defined as
follows:

logit
(
Pnig

) = λi,0,g + λT
ighg

(
αng,qig

)
, (18.6)

where hg has a subscript g, indicating different groups have different functions to
combine αn and qi, resulting in different measurement models.

To detect GS-DIF, the EMQ method is ideal as shown in previous studies.
Because misspecification of the Q-matrix leads to biased parameter estimates and
poor classification of person attributes (Kunina-Habenicht, Rupp, & Wilhelm, 2012;
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Madison & Bradshaw, 2015; Rupp & Templin, 2008), it is expected the EMQ
method will be inappropriate for detecting IQ-DIF, EQ-DIF, and MM-DIF. In
practice, we are seldom (if ever) sure which type of DIF the studied item may have;
therefore, it is desirable to develop methods that are sensitive to any type of DIF.

In IRT-DIF, when a test has DIF items, it measures different latent variables
for different groups so that the latent variables are not comparable across groups.
Therefore, a clean matching variable is essential in DIF detection, scale purification
is advocated, and the DFTD strategy is helpful. This study applies the same logic
and adapts those scale purification procedures and the DFTD strategy to DCM-DIF.

We focus on the PMH method in this study. Because the latent variables in
most DCMs are binary attributes and every test-taker belongs to one of the possible
attribute profiles, DIF occurs when test-takers have the same attribute profiles but
belong to different groups and have different probabilities of success of endorsement
on the studied item. To statistically test the null hypothesis of no DIF on the studied
item, the PMH method appears feasible. Specifically, a DCM is fit to the data
to obtain an attribute profile for each test-taker. The MH statistic on the studied
item is computed by using attribute profiles to match test-takers. If the statistic is
statistically significant, then the studied item is deemed to exhibit DIF. The standard
PMH method (denoted as PMH-S), in which no scale purification is implemented,
should be appropriate when tests do not have a DIF item (Zhang, 2006) or when the
studied item is the only item on the test which might have DIF. However, empirical
results indicate that most real tests usually have multiple DIF items. Therefore,
we propose to implement the following scale purification procedure in the PMH
method:

1. When detecting the studied item (e.g., item 1), assume all the other items are
DIF-free and fit a DCM (e.g., DINA model) to all the other items to obtain an
attribute profile for each test-taker. Compute the MH statistic for the studied item
and conduct hypothesis testing for evidence of DIF.

2. Repeat step 1 until all items have been checked for DIF. (Steps 1 and 2 are the
PMH-S method.)

3. Fit the DCM to those presumably DIF-free items found previously and obtain an
attribute profile for each test-taker. Compute the MH statistic using the obtained
attribute profiles to match test-takers from different groups and evaluate all items
for DIF.

4. Repeat Step 3 until the same set of items is deemed to have DIF at two successive
iterations or a maximum number of iterations (say, 10) is reached.

This purified PMH method, denoted as PMH-P, is similar to the AOI-P method
in IRT-DIF, except that the attribute profile serves as the matching variable in the
PMH method.

As documented in the IRT-DIF literature, scale purification procedures are
helpful but begin to lose control of Type I error rates when the tests consist of a high
percentage of DIF items. The DFTD strategy was developed to solve the problem.
In DCM-DIF, this strategy can be implemented as follows:
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1. Use the PMH-P method to classify items into two categories: DIF items and
DIF-free items.

2. Among those classified as DIF-free items, select a subset of items (e.g., a fixed
number, say 10 items, or a fixed percentage, say 50%) which have the largest p
values for the MH statistic (meaning that these items are less likely to have DIF).
Fit a DCM to these selected DIF-free items to obtain an attribute profile for each
test-taker. Compute the MH statistic using the obtained attribute profiles to match
test-takers from different groups and detect the other items for DIF.

This PMH method together with the DFTD strategy, denoted as PMH-D, should
outperform the PMH-S and the PMH-P when tests contain a high percentage of DIF
items.

18.4 An Illustration Using Simulated Data

We conducted a small-scale simulation study to illustrate the four types of DIF (GS-,
IQ-, EQ-, and MM-DIF) and compare the performances in DIF detection of various
PMH-based methods and others.

18.4.1 Design

The test had 30 items measuring five attributes. To facilitate estimation, the popular
and parsimonious DINA model, which is a special case of LCDM, was used to
generate item responses. The specifications of the Q-matrix were similar to those in
Li and Wang (2015). Both groups had a sample size of 500 test-takers. Previous
studies (de la Torre & Lee, 2010; Hou et al., 2014; Li, 2008) showed the item
parameter for the DINA model can be well recovered with this sample size. Two
independent variables were manipulated: (a) number of DIF items: 0, 3, 6, and 12
DIF items, representing 0%, 10%, 20%, and 40% DIF items on the test, respectively;
(b) DIF type: GS-, IQ-, EQ-, and MM-DIF. For GS-DIF, similar to the settings in
Li and Wang (2015), the guessing and slip parameters for the focal group were set
0.1 or 0.2 larger than those for the reference group. For IQ-DIF, the focal group
required one additional attribute compared to the reference group to answer the DIF
items correctly, and the additional attribute was part of the Q-matrix. For EQ-DIF,
the additional attribute was outside the Q-matrix. For MM-DIF, the DIF items for
the focal group followed the RUM (Hartz, 2002), which can be expressed as follows:

Pnic =
[
πi
∏K

k=1
ω
(1−αnk)qik
ik

]
× exp (γc + δi )

1+ exp (γc + δi )
, (18.7)
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where Pnic is the probability of success on item i for person n with attribute profile
c, πi is the baseline probability of success on item i when all required attributes
have been mastered, ωik is the penalty for the probability of success on item i for
not mastering attribute k, γc is the latent variable for attribute profile c, and δi is the
easiness parameter of item i for the attributes that are not indicated in the Q-matrix;
the other variables have already been defined. In this study, we set πi = 0.9 for item
i, ωik = 0.2 for attribute k in item i, and γc and δi as generated from N(0, 1).

Five PMH-based methods were used to detect DIF: (a) the PMH-S method, (b)
the PMH-P method in which scale purification procedures were implemented, (c)
the PMH-D method in which the DFTD strategy was incorporated and 50% of items
that had the largest p values for the MH statistic in the first step were selected as
anchor items, (d) the optimal PMH method (denoted as PMH-O) in which all DIF-
free items by design were used as anchors, and (e) the EMQ method.

To implement the PMH-S, PMH-P, PMH-D, and PMH-O methods, the CDM
package in R was used to analyze the item responses to obtain attribute profiles for
the test-takers, and the difMH function in the difR package in R was modified to
allow using the attribute profiles as matching variable to test whether the studied
item had DIF at the .05 nominal level. The customized R code is available upon
request. To implement the EMQ method, the item responses were estimated with the
freeware Just Another Gibbs sampler (JAGS; Plummer, 2003), which implements
Bayesian MCMC methods. DIF detection was conducted by checking whether the
95% credible intervals of the DIF magnitude in the item parameters contained zero.
A total of 100 replications were conducted. The dependent variables were Type I
error rates and power rates of DIF detection.

It was expected that all methods would perform well when the test did not have a
DIF item. When there were DIF items, the PMH-O method would perform the best
because it was the true model. When the test had a high percentage of DIF items,
the PMH-D method would outperform the PMH-P and PMH-S methods because it
used a presumably clean matching variable. The PMH-P would perform well when
tests did not contain a high percentage of DIF items. The PMH-S would perform
well when tests had only a few DIF items. The EMQ method would perform well in
detecting GS-DIF but poorly in detecting other types of DIF.

18.4.2 Results

Due to space constraints, we are not able to show the Type I error rates and power
rates for individual items. Instead, we present the mean Type I error rate across
all DIF-free items and the mean power rate across all DIF-items in Table 18.1. In
general, the results confirm our expectations. Specifically, all methods controlled the
Type I error rates at the .05 nominal level when there was no DIF item. The PMH-O,
PMH-D, and PMH-P methods yielded well-controlled Type I error rates and higher
power rates under all conditions in detecting IQ-DIF, EQ-DIF and MM-DIF, and
the PMH-O method had the highest power rates, followed by the PMH-D method
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Table 18.1 Mean type I error rates (%) and mean power rates (%) in the simulation study

DIF PMH-O PMH-D PMH-P PMH-S EMQ

Percentage DIF Type Type I Power Type I Power Type I Power Type I Power Type I Power

0 4.9 4.2 3.7 3.9 5.2

10 GS-DIF-0.1 5.1 78.0 4.0 77.0 4.8 74.0 5.1 76.3 8.2 93.7

GS-DIF-0.2 4.1 99.3 3.7 99.3 3.9 99.1 4.2 99.0 8.2 100.0

IQ-DIF 4.4 100.0 5.9 100.0 4.6 100.0 6.5 100.0 9.7 100.0

EQ-DIF 5.1 100.0 4.7 100.0 4.7 100.0 5.9 99.6 8.6 100.0

MM-DIF 4.4 94.7 3.9 92.0 4.1 90.0 4.5 89.7 7.9 99.7

20 GS-DIF-0.1 5.4 57.6 4.5 56.8 5.4 53.7 5.4 53.5 8.3 93.2

GS-DIF-0.2 4.5 83.8 5.3 85.2 3.8 84.0 4.2 83.5 8.9 100.0

IQ-DIF 3.8 100.0 4.7 100.0 4.1 100.0 9.5 99.2 8.4 100.0

EQ-DIF 4.3 100.0 5.1 100.0 4.1 100.0 6.3 99.8 9.4 100.0

MM-DIF 4.9 83.3 4.2 82.3 4.5 84.0 7.3 83.5 8.4 91.5

40 GS-DIF-0.1 4.4 49.7 5.3 48.5 4.5 48.1 4.6 48.4 8.1 92.4

GS-DIF-0.2 4.1 67.3 4.9 66.8 4.9 66.8 4.6 66.7 8.6 99.9

IQ-DIF 4.6 98.7 5.6 94.3 5.6 92.3 16.7 45.3 18.5 99.2

EQ-DIF 3.9 98.2 5.6 95.6 5.2 94.5 18.6 37.4 16.4 99.4

MM-DIF 5.0 89.3 5.2 88.3 5.1 87.2 13.8 81.2 9.7 90.3

Note: PMH-O = PMH method using all DIF-free items by design as anchors, PMH-D = PMH
method with the DIF-free-then-DIF strategy, PMH-P= PMH method with scale purification procedures,
PMH-S = standard Mantel-Haenszel method using the attribute profile as the matching variable,
EMQ= equal model and Q-matrix method. GS-DIF-0.1/0.2: DIF occurs in guessing and slip parameters
in DINA model with DIF size of 0.1/0.2, IQ-DIF: DIF occurs in the Q-matrix where the additional
attribute for focal group is already included in the Q-matrix, EQ-DIF: DIF occurs in the Q-matrix where
the additional attribute for focal group is not included in the Q-matrix, MM-DIF: DIF occurs when
different groups have different DCMs

and then the PMH-P method. Because the differences in the power rates among the
three methods were not large, it appeared that they performed very similarly under
all conditions. In contrast, the PMH-S began to yield inflated Type I error rates and
deflated power rates when tests contained 20% or more DIF items. For example, in
the detection of IQ-DIF, when tests had 10%, 20%, and 40% DIF items, the PMH-S
yielded mean Type I error rates of 6.5%, 9.5%, and 16.7%, respectively, and mean
power rates of 100.0%, 99.2%, and 45.3%, respectively. It appeared that the larger
the inflation in the Type I error rates, the larger the deflation in the power rate.

In terms of GS-DIF which was the focus of previous studies (Hou et al., 2014;
Li & Wang, 2015; Zhang, 2006), it was found the four new PMH-based methods
(i.e., the PMH-O, the PMH-D, the PMH-P and the PMH-S) yielded well-controlled
Type I errors in all conditions. The larger DIF effect, the higher power rates of
detection. For example, when tests contained 10% DIF items, the PMH-D methods
yielded mean power rates of 77.0% and 99.3%, respectively, for DIF size of 0.1
and 0.2. However, the power rates decreased as the DIF percentage increased. For
instance, when the DIF percentage increased to 40%, the mean power rates of PMH-
D methods decreased to about 48.5% and 66.8%, respectively, for DIF size of 0.1
and 0.2.
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As anticipated, the EMQ method performed well in detecting GS-DIF, in terms
of only a slight inflation on Type I error rates (between 8.1% and 8.9% for 10–40%
DIF items) and high power rates (between 92.4% and 100%). The power rates were
much higher than those yielded by the other methods, which was because the EMQ
method directly modeled the difference in the guessing and slip parameters between
groups, whereas the other methods obtained the attribute profiles and used them
to assess DIF indirectly. However, the EMQ method performed poorly in detecting
other types of DIF. For example, in detection of IQ-DIF, the EMQ yielded mean
Type I error rates of 9.7%, 8.4%, and 18.5% when tests had 10%, 20%, and 40%
DIF items, respectively. Because the Type I error rates were seriously inflated, the
corresponding high power rates were meaningless.

18.5 Discussion and Conclusions

Many DIF detection methods have been developed and evaluated for use in IRT.
Because real tests often contain multiple DIF items, the biggest challenge in IRT-
DIF is to find a clean matching variable to match test-takers from different groups.
Scale purification procedures and the DFTD strategy appear effective in overcoming
this challenge. Although research on DCM has increased rapidly in recent years, few
studies have been conducted on DCM-DIF. One reason for this phenomenon is that
the EMQ method, without the necessity of matching variables, has been found to be
very promising for detecting DIF, even when many or all items on a test have DIF.
It appears that the troublesome challenge in IRT-DIF does not exist in DCM-DIF.
Similar to the EMD method in IRT-DIF, the EMQ method in DCM-DIF performs
well only when the true model and the correct model constraints are implemented,
which can seldom (if ever) happen in practice. Thus, the troublesome challenge
remains unresolved in DCM-DIF.

Many reasons can cause DIF. That different groups have different guessing
and/or slip parameters but an identical DCM and Q-matrix (GS-DIF) is only one
possibility. Other possibilities include different groups have different Q-matrices or
follow different DCMs. It is desirable to develop DIF detection methods that are
sensitive to all types of DIF. In this study, we identified four types of DIF (GS-, IQ-
, EQ-, and MM-DIF) and proposed four new PMH-based methods, including the
PMH-S, PMH-P, PMH-D, and PMH-O methods.

We conducted a small-scale simulation study to demonstrate the superiority of
the PMH-P and PMH-D methods when tests have many DIF items and different
types of DCM-DIF. For comparison, we also adopted the EMQ method and the
PMH-O method. The simulation study showed that (a) all methods performed well
when the tests were perfect, (b) the EMQ method performed well only for GS-
DIF, (c) the PMH-P method outperformed the PMH-S method, indicating scale
purification procedures were helpful, (d) the PMH-D method outperformed the
PMH-P method when the tests had 40% DIF items, indicating the advantages of
the DFTD strategy in high percentages of DIF items, and (e) the PMH-O performed
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very well under all conditions, indicating the necessity of a long and pure matching
variable. In sum, when detecting IQ-, EQ-, and MM-DIF, the PMH-P and PMH-D
methods outperformed the EMQ method in controlling type I error rate and yielding
high power. When detecting GS-DIF for which the EMQ method performed very
well, it appeared that the larger the DIF size, the higher power of the new methods.
When the test contains 10% DIF items and the DIF size is 0.2, the new methods
yielded type I error rate close to the nominal level and as high power rate as
the EMQ method. In this study, the EMQ method (implemented with JAGS) took
approximately 1 hour on average to converge for 30 items and 500 persons in each
group; whereas the proposed PMH-based methods (implemented with customized
R) took only seconds. Thus, the new methods are more suitable for practical use.

This study is not without limitations. The simulation study did not cover a large
number of different conditions. Future studies should evaluate the new methods
under more conditions, such as different DCMs, Q-matrices, test lengths, sample
sizes, and DIF magnitudes. This study opens up several research lines that can
facilitate a deeper understanding of DCM-DIF. First, we focused on adapting the
MH method to DCM-DIF. As a competitor of the MH method, the LR method that
is commonly used in IRT-DIF can be adapted, in which raw total scores are replaced
with attribute profiles to match test-takers. How these new LR methods perform
in DCM-DIF deserves further investigation. Second, there was only one grouping
variable with two categories in this study. As studied by Li and Wang (2015),
there may be multiple variables underlying DIF with more than two categories,
and these variables can be not only categorical but continuous (e.g., age) or latent
(e.g., problem solving strategy). Future studies should adapt the new methods
to accommodate these more complex situations. Third, the methods focused on
modeling DIF effects in dichotomous items. It is of great interest to assess DIF
in polytomous items. The GDM (von Davier, 2008) which is not only applicable
for both binary and polytomous responses, but also include many common DCMs
as special cases (von Davier, 2013, 2014), can be used as the framework to assess
DIF in the future. Finally, we identified only four types of DIF in this study. Future
studies should aim to identify other types of DIF and evaluate how the new methods
will perform in detecting these types.
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Chapter 19
Bifactor MIRT as an Appealing
and Related Alternative to CDMs in the
Presence of Skill Attribute Continuity

Daniel M. Bolt

Abstract For virtually all tests analyzed using CDMs, low-dimensional compen-
satory item response theory (IRT) models with continuous abilities appear to provide
an equivalent or better statistical fit, as noted in a recent commentary by von
Davier and Haberman (Psychometrika, 79:340–346, 2014). We examine these issues
using both simulation and real data analyses. We suggest that the results motivate
consideration of bifactor MIRT models as an attractive alternative for diagnostic
measurement, particular in cases where skill attribute continuity is suspected or can
be confirmed. The potential usefulness of bifactor MIRT for diagnostic scoring is
also based on other considerations. For example, bifactor MIRT reflects a tendency
for items to measure primarily one of the required conjunctively interacting skill
attributes (the most difficult of the required attributes), and also makes it possible
to address the estimation limitations of MIRT models of high dimensionality (Cai
L, Psychometrika, 75(4):581–612, 2010). Additionally, the bifactor MIRT model
uses orthogonal statistical dimensions, making it easier to quantify the incremental
contribution provided by attending to specific factors that can provide the foundation
for diagnosis.

The primary applications of CDMs are their use toward the scoring of item score
patterns. As CDMs typically make use of a large number of discrete (typically
binary) skills, the models often yield many potential skill attribute patterns for
diagnostic classification. At the same time, a recent commentary by von Davier
and Haberman (2014) notes that for virtually all tests analyzed using CDMs, low-
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dimensional compensatory item response theory (IRT) models with continuous
abilities appear to provide an equivalent or better statistical fit. Such findings
naturally raise questions regarding CDM assumptions about the discrete nature of
skill attribute mastery/nonmastery, as well as the meaningfulness of skill attributes
as statistical dimensions in the data. In this chapter we examine the possibility that
these findings might also be attributed to the tendency for items that in theory require
multiple conjunctively interacting skills to in actuality only statistically discriminate
with respect to a small number (perhaps as few as one) of such attributes. Such an
explanation seems especially likely in the presence of a higher-order factor structure
underlying the attribute correlations, where the mastery status of the “most difficult”
(i.e., least frequently mastered) of the required skill attributes is often the most
informed by performance on an item.

The potential for a low dimensional compensatory IRT model to approximate
a high dimensional non-compensatory model is informed by a previous study by
Bolt and Lall (2003). Non-compensatory IRT models typically associate a separate
difficulty parameter with each ability dimension in the data (see e.g., Sympson,
1978; Whitely, 1980; Embretson, 1984). Bolt and Lall (2003) demonstrated that
when a non-compensatory interaction exists between continuous and positively
correlated abilities, the relative difficulties across ability dimensions in the non-
compensatory model function analogously to how item discrimination parameters
function in compensatory models. Specifically, for a given item, dimensions asso-
ciated with higher difficulty in a non-compensatory model are more discriminating
(i.e., have higher loadings) for comparable dimensions in a compensatory model.
Certain necessary skills for an item in a non-compensatory model are often only
trivially, if at all, measured by the item when portrayed in a compensatory model. A
similar phenomenon may well be occurring in CDMs.

In this chapter, we examine these issues using both simulation and real data anal-
yses. We suggest that the results motivate consideration of bifactor MIRT models
as an attractive alternative for diagnostic measurement, particular in cases where
skill attribute continuity is suspected or can be confirmed. The potential usefulness
of bifactor MIRT for diagnostic scoring is also based on other considerations. For
example, bifactor MIRT makes it possible to address the estimation limitations
of MIRT models of high dimensionality (Cai, 2010). Additionally, the bifactor
MIRT model uses orthogonal statistical dimensions, making it easier to quantify the
incremental contribution provided by attending to specific factors that can provide
the foundation for diagnosis.

Using both simulation analysis and the frequently studied fraction subtraction
dataset (Tatsuoka, 1990), we examine the nature of the student-level diagnostic
information provided when bifactor MIRT is used as a basis for score reporting and
compare its results against diagnoses provided by CDMs. We suggest that the results
also simultaneously yield important practical suggestions related to the design of
tests for purposes of diagnosis with CDMs.
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19.1 The DINA and Higher-Order (HO-) DINA Models

For purposes of illustration, we consider the frequently studied DINA (“Determin-
istic Input Noisy And”) models. We assume a Q-matrix where qik = 1 implies that
item i (=1, . . . I) requires skill attribute k (=1, . . . K). Table 19.1 defines the
item-attribute relationships for a fraction subtraction dataset (Tatsuoka, 1990) that
is frequently analyzed using the DINA and related models and that will be used later
in the chapter. The skill attribute assignments are shown for both the 20-item test
and a 15-item subset that have been frequently analyzed in past work (de la Torre &
Douglas, 2004; de la Torre & Lee, 2010).

For these data, the skill attribute mastery status of a student is typically
represented as binary, where αjk = 1 denotes mastery and 0 non-mastery, and j
(=1, . . . J) indexes students. It then becomes possible to characterize a student’s
expected or “ideal” response to an item, denoted ηij = 0, 1, as:

ηij =
K∏

k=1

αjk
qik

implying an expected correct response (i.e., ηij = 1) if all attributes required for the
item have been mastered by the student, and an incorrect response (i.e., ηij = 0)
otherwise. Unexpected (“Error”) responses, either an incorrect response for an ideal

Table 19.1 Skill attributes required for the 15-item and 20-item fraction subtraction data analyses
(Tatsuoka, 1990; de la Torre & Lee, 2010)

Item 20-item 15-item Item 20-item 15-item

1 4,6,7 1 11 2,5,7 1,3
2 4,7 1,2,3,4 12 7,8 1,3,4
3 4,7 1 13 2,4,5,7 1,2,3,4
4 2,3,5,7 1,2,3,4,5 14 2,7 1,2,3,4,5
5 2,4,7,8 3 15 1,7 1,2,3,4
6 7 1,2,3,4 16 2,7 NA
7 1,2,7 1,2,3,4 17 2,5,7 NA
8 7 1,2 18 2,5,6,7 NA
9 2 1,3 19 1,2,3,5,7 NA
10 2,5,7,8 1,3,4,5 20 2,3,5,7 NA

Note: The items and attributes do not align across the 15- and 20-item datasets
20-item dataset attributes: Attribute 1 = convert a whole number to a fraction, Attribute
2 = separate a whole number from a fraction, Attribute 3 = simplify before subtracting, Attribute
4 = find a common denominator, Attribute 5 = borrow from whole number part, Attribute
6 = column borrow to subtract the second numerator from the first, Attribute 7 = subtract
numerators, and Attribute 8 = reduce answers to simplest form
15-item dataset attributes: Attribute 1 = basic fraction subtraction, Attribute 2 = simplify/reduce
fraction or mixed number, Attribute 3= separate whole number from fraction, Attribute 4= borrow
from the whole number in a given mixed number, Attribute 5= convert a whole number to a fraction
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correct or a correct response for an ideal incorrect, may occur. These events are
accounted for by nonzero slip and guessing probabilities, respectively:

sj = P
(
Yij = 0|ηij = 1

)
and gj = P

(
Yij = 1|ηij = 0

)
,

such that the resulting probability of correct response on the item conditional upon
the attribute mastery pattern is given by:

P
(
Yij = 1|α) = (1− sj

)ηij gj 1−ηij .

The resulting “independence” DINA model, where no particular correlational
structure is assumed among the attributes, contains two parameters per item. Added
to these are parameters representing the proportion of students associated with each
of the 2K possible attribute mastery patterns, implying 2 J + 2K -1 parameters in
total.

The Higher-Order DINA (HO-DINA) model constrains the DINA model by
introducing a correlational factor structure among attributes across students. A
probability of attribute mastery is defined in relation to a higher-order factor(s) θ
as:

P (αk = 1|θ) = exp (λ0k + λ1kθ)

1+ exp (λ0k + λ1kθ)

where λ0k, λ1k define an intercept and slope vector related to attribute k. Relative
to an independence model, the HO-DINA has been found to provide a better
comparative fit to actual test data using information-based model comparison
indices (de la Torre & Douglas, 2004), as skill attributes in most realistic settings
are expected to correlate. The HO-DINA also substantially reduces the number of
model parameters.

19.2 Simulation Study

As noted above, it might be theorized that in the presence of a higher-order factor
against which attributes can be ordered in terms of difficulty, DINA items that
theoretically require multiple attributes may in fact measure far fewer. We explore
this issue initially through a small simulation study. Specifically, we simulate HO-
DINA item response data from a series of conditions manipulated with respect
to several factors: (1) the strength of a higher-order factor, as reflected by the
magnitude of higher-order factor loadings; (2) the dispersion of attribute mastery
thresholds, (3) the overall number of items; and (4) the slip/guessing probabilities.

Table 19.2 illustrates the Q matrix used in the simulation for a 15-item condition.
We use a Q matrix in which each combination of the four attributes are assessed
once across items. A 30-item condition was created by replicating the Q-matrix. A
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Table 19.2 Q matrix,
simulation study, 15-item
condition

Item Att1 Att2 Att3 Att4

1 1 0 0 0
2 0 1 0 0
3 0 0 1 0
4 0 0 0 1
5 1 1 0 0
6 1 0 1 0
7 1 0 0 1
8 0 1 1 0
9 0 1 0 1
10 0 0 1 1
11 1 1 1 0
12 1 1 0 1
13 1 0 1 1
14 0 1 1 1
15 1 1 1 1

higher-order factor is introduced in which λ1 is manipulated as a factor at constant
values of 1, 2, or 3 across attributes; the λ0s were set at levels of −2, −1, 0, 1
across attributes, respectively; or at−1,−.5, 0, .5, so that the attributes were always
increasing in difficulty from attribute 1 (easiest) to attribute 4 (hardest). As the
λ1 slope parameters relate the higher order factor to the binary latent skill attributes,
the chosen values represent conditions of weak to strong higher order-dependence;
in the fraction subtraction analysis reported by de la Torre and Douglas (2004), the
slopes ranged from 1 to 5. The manipulation of the λ0s reflects a high versus a low
threshold dispersion condition.

Finally, the generating guessing/slip parameters are set equal across items but
were varied as a factor at levels of .1/.1 and .25/.25.

To evaluate how well the items measure the individual skill attributes, a “hold-
one-item-out” logistic regression approach was used in which for each item on the
test, a separate HO-DINA is first fit to all but one studied item so as to estimate the
attributes for each examinee. We then model performance on the studied item using
the posterior probabilities of attribute mastery for each of the four attributes, as
defined by HO-DINA, as predictors. The logistic regression coefficient estimates
were recorded. We used 10 replications per condition. The resulting regression
coefficients for each analysis reflect how well the item held out actually measures
each of the attributes it is theorized to measure.

Tables 19.3 and 19.4 illustrate by item the mean logistic regression coefficient
estimates with respect to each of the four attributes under conditions where λ1 = 2
and the slip/guessing probabilities were .1/.1. We observed only small effects
related to the λ1 and slip/guessing parameter factors, so the resulting tables display
effects associated with the other two manipulated factors (the number of items
and threshold dispersion factors). Boldface identifies the most “difficult” (highest
threshold) attribute of the attributes required by the item. Italics identify the



400 D. M. Bolt

Ta
bl

e
19

.3
M

ea
ns

(s
ta

nd
ar

d
de

vi
at

io
ns

)
of

es
tim

at
ed

lo
gi

st
ic

re
gr

es
si

on
co

ef
fic

ie
nt

s
pr

ed
ic

tin
g

ite
m

sc
or

es
as

a
fu

nc
tio

n
of

H
O

-D
IN

A
ba

se
d

pr
ob

ab
ili

ty
of

at
tr

ib
ut

e
m

as
te

ry
,λ

1
=

2;
λ

0
=
−2

,−
1,

0,
1;

sl
ip

/g
ue

ss
pa

ra
m

et
er

s
=

.1
/.1

(1
0

re
pl

ic
at

io
ns

)

15
ite

m
30

ite
m

It
em

A
tt1

(S
D

)
A

tt2
(S

D
)

A
tt3

(S
D

)
A

tt4
(S

D
)

A
tt1

(S
D

)
A

tt2
(S

D
)

A
tt3

(S
D

)
A

tt4
(S

D
)

1
1.

32
(.

12
)

−0
.0

8(
.0

6)
−0

.0
3(

.0
3)

−0
.0

2(
.0

2)
0.

94
(.

05
)

−0
.0

3(
.0

2)
−0

.0
2(

.0
2)

0.
00

(.
03

)
2

−0
.0

6(
.0

2)
1.

05
(.

03
)

−0
.0

8(
.0

2)
−0

.0
5(

.0
2)

−0
.0

1(
.0

2)
0.

85
(.

01
)

−0
.0

2(
.0

2)
−0

.0
1(

.0
1)

3
−0

.0
2(

.0
2)

−0
.0

3(
.0

1)
0.

92
(.

02
)

−0
.0

5(
.0

2)
−0

.0
2(

.0
2)

0.
00

(.
01

)
0.

82
(.

02
)

−0
.0

1(
.0

1)
4

0.
00

(.
01

)
−0

.0
1(

.0
2)

−0
.0

2(
.0

1)
0.

93
(.

01
)

0.
00

(.
02

)
0.

00
(.

02
)

0.
00

(.
02

)
0.

81
(.

02
)

5
0.

18
(.

05
)

0.
50

(.
03

)
0.

08
(.

02
)

0.
05

(.
02

)
0.

29
(.

03
)

0.
66

(.
02

)
0.

02
(.

02
)

0.
02

(.
02

)
6

0.
10

(.
04

)
0.

07
(.

03
)

0.
59

(.
03

)
0.

07
(.

02
)

0.
11

(.
03

)
0.

00
(.

02
)

0.
78

(.
01

)
0.

01
(.

02
)

7
0.

05
(.

03
)

0.
04

(.
02

)
0.

08
(.

03
)

0.
52

(.
03

)
0.

03
(.

04
)

0.
00

(.
01

)
0.

01
(.

01
)

0.
79

(.
02

)
8

0.
14

(.
02

)
0.

18
(.

05
)

0.
52

(.
03

)
0.

08
(.

02
)

−0
.0

3(
.0

3)
0.

21
(.

03
)

0.
68

(.
01

)
0.

03
(.

02
)

9
0.

03
(.

02
)

0.
07

(.
03

)
0.

08
(.

02
)

0.
49

(.
03

)
−0

.0
3(

.0
3)

0.
06

(.
01

)
0.

00
(.

01
)

0.
75

(.
02

)
10

0.
01

(.
04

)
0.

03
(.

02
)

0.
17

(.
02

)
0.

40
(.

03
)

−0
.0

2(
.0

3)
−0

.0
1(

.0
2)

0.
14

(.
01

)
0.

59
(.

02
)

11
0.

05
(.

03
)

0.
18

(.
03

)
0.

53
(.

05
)

0.
09

(.
03

)
0.

02
(.

04
)

0.
21

(.
03

)
0.

66
(.

02
)

0.
03

(.
01

)
12

0.
01

(.
03

)
0.

04
(.

03
)

0.
01

(.
01

)
0.

75
(.

06
)

0.
01

(.
02

)
0.

07
(.

02
)

0.
03

(.
01

)
0.

71
(.

02
)

13
−0

.0
1(

.0
4)

−0
.0

2(
.0

2)
0.

14
(.

03
)

0.
61

(.
05

)
−0

.0
1(

.0
4)

−0
.0

1(
.0

3)
0.

14
(.

02
)

0.
59

(.
02

)
14

−0
.0

1(
.0

5)
0.

03
(.

04
)

0.
15

(.
03

)
0.

54
(.

06
)

−0
.0

2(
.0

3)
0.

01
(.

02
)

0.
13

(.
01

)
0.

57
(.

01
)

15
−0

.0
3(

.0
2)

0.
00

(.
04

)
0.

14
(.

02
)

0.
58

(.
07

)
0.

00
(.

02
)

0.
04

(.
02

)
0.

14
(.

02
)

0.
54

(.
02

)



19 Bifactor MIRT as an Appealing and Related Alternative to CDMs in the. . . 401

Ta
bl

e
19

.4
M

ea
ns

(s
ta

nd
ar

d
de

vi
at

io
ns

)
of

es
tim

at
ed

lo
gi

st
ic

re
gr

es
si

on
co

ef
fic

ie
nt

s
pr

ed
ic

tin
g

ite
m

sc
or

es
as

a
fu

nc
tio

n
of

H
O

-D
IN

A
ba

se
d

pr
ob

ab
ili

ty
of

at
tr

ib
ut

e
m

as
te

ry
,λ

1
=

2;
λ

0
=
−1

,−
.5

,0
,.

5;
sl

ip
/g

ue
ss

pa
ra

m
et

er
s
=

.1
/.1

(1
0

re
pl

ic
at

io
ns

)

15
ite

m
30

ite
m

It
em

A
tt1

(S
D

)
A

tt2
(S

D
)

A
tt3

(S
D

)
A

tt4
(S

D
)

A
tt1

(S
D

)
A

tt2
(S

D
)

A
tt3

(S
D

)
A

tt4
(S

D
)

1
1.

18
(.

05
)

−0
.1

2(
.0

4)
−0

.0
9(

.0
3)

−0
.0

8(
.0

2)
0.

92
(.

02
)

−0
.0

2(
.0

1)
−0

.0
2(

.0
1)

−0
.0

1(
.0

1)
2

−0
.0

3(
.0

2)
1.

14
(.

06
)

−0
.1

6(
.0

4)
−0

.1
4(

.0
4)

−0
.0

1(
.0

2)
0.

88
(.

02
)

−0
.0

3(
.0

1)
−0

.0
2(

.0
2)

3
−0

.0
3(

.0
2)

−0
.0

3(
.0

2)
1.

07
(.

06
)

−0
.1

9(
.0

5)
−0

.0
1(

.0
1)

−0
.0

1(
.0

1)
0.

84
(.

01
)

−0
.0

2(
.0

1)
4

−0
.0

4(
.0

1)
−0

.0
4(

.0
2)

−0
.0

5(
.0

2)
1.

10
(.

07
)

−0
.0

1(
.0

2)
−0

.0
1(

.0
2)

−0
.0

1(
.0

2)
0.

82
(.

01
)

5
0.

19
(.

05
)

0.
26

(.
06

)
0.

05
(.

03
)

0.
04

(.
03

)
0.

34
(.

03
)

0.
57

(.
02

)
0.

03
(.

01
)

0.
04

(.
02

)
6

0.
16

(.
02

)
0.

03
(.

02
)

0.
29

(.
09

)
0.

04
(.

03
)

0.
22

(.
02

)
0.

01
(.

02
)

0.
66

(.
04

)
0.

03
(.

02
)

7
0.

12
(.

02
)

0.
03

(.
02

)
0.

03
(.

02
)

0.
28

(.
09

)
0.

14
(.

03
)

−0
.0

1(
.0

2)
0.

01
(.

02
)

0.
72

(.
02

)
8

0.
04

(.
02

)
0.

18
(.

02
)

0.
25

(.
08

)
0.

04
(.

02
)

0.
00

(.
03

)
0.

30
(.

02
)

0.
55

(.
02

)
0.

04
(.

02
)

9
0.

04
(.

01
)

0.
15

(.
02

)
0.

05
(.

02
)

0.
25

(.
09

)
0.

00
(.

02
)

0.
17

(.
03

)
0.

01
(.

02
)

0.
64

(.
03

)
10

0.
03

(.
02

)
0.

03
(.

02
)

0.
17

(.
03

)
0.

22
(.

05
)

−0
.0

1(
.0

2)
−0

.0
1(

.0
2)

0.
26

(.
02

)
0.

53
(.

02
)

11
0.

11
(.

02
)

0.
14

(.
03

)
0.

20
(.

08
)

0.
04

(.
02

)
0.

10
(.

02
)

0.
27

(.
02

)
0.

49
(.

01
)

0.
05

(.
02

)
12

0.
07

(.
02

)
0.

08
(.

01
)

0.
00

(.
02

)
0.

42
(.

08
)

0.
08

(.
03

)
0.

16
(.

02
)

0.
02

(.
01

)
0.

58
(.

02
)

13
0.

03
(.

03
)

−0
.0

1(
.0

1)
0.

23
(.

04
)

0.
34

(.
06

)
0.

05
(.

02
)

0.
00

(.
01

)
0.

24
(.

01
)

0.
49

(.
02

)
14

0.
02

(.
04

)
0.

11
(.

02
)

0.
14

(.
04

)
0.

25
(.

08
)

−0
.0

2(
.0

2)
0.

10
(.

02
)

0.
22

(.
02

)
0.

45
(.

01
)

15
0.

05
(.

04
)

0.
11

(.
03

)
0.

16
(.

03
)

0.
24

(.
07

)
0.

02
(.

02
)

0.
08

(.
02

)
0.

20
(.

02
)

0.
44

(.
02

)



402 D. M. Bolt

attributes that were required for the item as defined by the Q matrix. Table 19.3
displays results under the high threshold dispersion condition; Table 19.4 the low
dispersion condition.

From both tables, it is consistently observed that the required attributes with high-
est thresholds have the highest regression coefficients, and thus are best measured
by each item. Along these lines, those items measuring a single attribute emerge
by far as the most discriminating across items, a result that has been observed and
discussed previously (e.g., Bradshaw & Madison, 2016). The differential discrimi-
nation between single-attribute and multiple-attribute items appears to decrease as
the number of items increases. At the same time, the relative contribution of the
most difficult attribute appears to increase as the number of items increases. These
two effects appear relatively stable across the two threshold dispersion conditions,
as seen in comparing the coefficients of Tables 19.3 and 19.4.

The results of the simulation have several potential implications. The first
concerns the design of tests for CDMs, and the desirability of including for
each attribute at least some items for which the attribute is the most difficult
of the required skill attributes. Most of the information obtained for attribute
classification appears to be due to such items. Second, despite the desirability of
complex (i.e., multi-attribute) items in educational tests, the role such items play
in diagnostic classification appears substantially diminished, especially for less
difficult attributes. Third, the results clarify that certain attributes may as a whole be
better measured than others, and that such results have a lot to do with the difficulty
(threshold) of the attribute. The assumption that the presence of an attribute in the Q-
matrix makes it a measured attribute is often questionable, as the requirement of an
attribute by an item should not be taken to imply that the attribute is well-measured.
Finally, and of greatest relevance to this chapter, it would appear not much is lost
with respect to the diagnostic information provided by an item if it is statistically
allowed to inform with respect to only one attribute. The majority of information
provided by an item appears to occur with respect to the coefficients identified in
bold in Tables 19.3 and 19.4. This suggests the potential to build a bifactor MIRT
model as an effective alternative to CDMs, particularly where simultaneous concern
may exist over the presence of continuously distributed skill attributes.

19.3 The Bifactor MIRT Model

The results observed in the simulation suggest the potential diagnostic value of a
model that is able to attend to just one attribute per item as opposed to all implied
by the Q-matrix. In MIRT applications, such conditions can be reflected in a bifactor
MIRT model, where the probability of correct response to an item is given by:

P
(
Uj = 1|θGEN, θSP1, . . . , θSPK

)

= g (αjGENθGEN + αjSP1θSP1 + · · · + αjSPKθSPK + γj
)
,
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where Uj = 1 denotes a correct response to item j, θGEN , θSP1, . . . , θSPK

denote a general ability dimension and K specific (group) dimensions, αjGEN ,
αjSP1, . . . αjSPK are the corresponding discrimination parameters, γ j is an item
threshold parameter, and g defines a link function, typically a logistic or probit
function. Under the bifactor MIRT model, each item has a nonzero discrimination
(αjSP∗ �= 0) parameter for no more than one specific factor. Further, the θGEN ,
θSP1, . . . , θSPK are mutually uncorrelated. As a result, the bifactor MIRT model
effectively provides a decomposition of an item’s shared latent item variance with
respect to a dimension measured by all items (a general proficiency dimension) and
a dimension specific to the item group to which the item belongs (a specific factor).

Bifactor MIRT models (Gibbons & Hedeker, 1992; Holzinger & Swineford,
1937) and related testlet models (Wainer, Bradlow & Wang, 2007) have received
much attention in the recent psychometric literature, due both to their frequently
good empirical fit to data as well as advances related to their estimation (Rijmen,
2009; Cai, 2010) that have made the models estimable even in cases of high
dimensionality. The high dimensionality problem is noted as a primary limitation
to the use of MIRT in comparison to CDMs (Rupp & Templin, 2008).

From the simulation study, it would appear that if specific factors are defined
so as to represent only the most informative skill attribute measured by an item,
very little may be lost with respect to diagnosis. Moreover, due to the continuity of
factors in the model, a bifactor MIRT approach may have the benefit of addressing
misspecification related to continuity of the skill attributes. As psychometric
models, the bifactor and higher-order factor models possess strong similarities
(Reise, 2012) in which the general factor of the bifactor model often assumes an
interpretation similar to the higher-order factor. Of course one other difference
between the bifactor approach and the HO-DINA approach is the presence of a
compensatory interaction between the specific and general factors, as opposed to the
conjunctive (i.e., “non-compensatory”) interaction between skill attributes used in
the HO-DINA model. While the psychological distinction between these alternative
forms of interaction is clear, the practical relevance is questionable (e.g., van der
Linden, 2012). Prior work has found compensatory models to provide a close
fit to response data that might be theoretically believed to be conjunctive (non-
compensatory) in nature (e.g., Bolt & Lall, 2003).

19.4 Real Data Illustration – Fraction Subtraction Dataset

We consider the fraction subtraction data of Tatsuoka (1990) here because it likely
represents a setting where the specificity of skills is high and CDMs are seemingly
most applicable. We initially replicated logistic regression analyses of the form
applied in the simulation. As a first step we fit the HO-DINA to the 20-item and
15-item datasets using Q-matrices implied by Table 19.1. Table 19.5 shows the
parameter estimates related to the higher-order factor model obtained using the cdm
R package (Robitzsch et al., 2017).
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Table 19.5 HO-DINA
parameter estimates for
higher-order factor model,
20-item and 15-item fraction
subtraction analyses

20 item analysis 15 item analysis
Attribute λ̂0 λ̂1 λ̂0 λ̂1

1 .14 4.15 −2.52 2.84
2 −1.67 1.58 −2.10 2.80
3 −1.39 .53 −3.38 4.04
4 −.55 2.04 −.02 1.37
5 .07 2.09 −.08 1.35
6 −1.88 1.78
7 −3.26 3.39
8 −1.32 1.41

Table 19.6 Items for which skill attribute is most difficult, 20-item and 15-item HO-DINA
analysis of fraction subtraction data (Tatsuoka, 1990)

Skill
Attribute

Items for which attribute is most
difficult of required attributes (20
item analysis)

Items for which attribute is most
difficult of required attributes (15
item analysis)

1 7,15,19 1,3
2 9,14,16 8
3 None 5, 9, 11
4 1,2,3,5 2,6,7,12,13,15
5 4,10,11,13,17,18,20 4,10,14
6 None NA
7 6,8 NA
8 12 NA

For the 20-item analysis, we observe the following ordering of the attributes
based on their estimated marginal skill probabilities (proportion of masters in
parentheses): 1 (.486), 5 (.489), 4 (.596), 8 (.778), 2 (.814), 7 (.822), 6 (.822) and
3 (.891). For the 15-item analysis the order is: 5 (.474), 4 (.496), 2 (.757), 3 (.793),
and 1 (.800). Based on the Q-matrix, we can then identify for each item the required
skill attribute of highest “difficulty”, here taken to be the required attribute that is
the least frequently mastered. Table 19.6 reports the corresponding items for each
attribute.

Note that for the 20-item analysis, attribute 5 is the most difficult of the required
attributes for seven of the twenty items. Attributes 4, 1, and 2 follow with the
next highest frequencies, four, three and three items, respectively. For the 15-item
analysis, attribute 4 is the most difficult of the required attributes for six of the items,
followed by attributes 3 and 5 with three items each.

In mimicking the logistic regression analyses of the simulation, we fit the HO-
DINA model twenty (or fifteen) times, each time holding out one studied item, and
then use the posterior probabilities of attribute mastery as predictors in a logistic
regression model of the binary score on the studied item.

Tables 19.7 and 19.8 report results. As before, bold coefficients identify the
required attribute that is of greatest difficulty for the item. Largely consistent with
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Table 19.7 Hold-one-item-out logistic regression results, 20-item fraction subtraction analysis

Skill attributes
Item Att1 Att2 Att3 Att4 Att5 Att6 Att7 Att8

1 0.02 −0.10 −0.10 0.76 −0.09 3.47 −3.05 −0.06
2* 0.07 −0.03 0.00 0.88 0.05 −0.11 0.14 −0.02
3* 0.14 0.08 −0.04 0.77 −0.01 0.08 0.04 −0.03
4 0.03 −0.24 1.13 −0.02 0.64 −0.05 −0.06 −0.19
5* 0.17 0.31 0.01 0.34 0.13 0.03 −0.17 0.23

6* −0.01 −0.20 0.03 −0.03 −0.04 0.03 1.09 0.02
7* 1.36 −0.01 −0.03 −0.15 −0.21 −0.08 0.00 −0.05
8* 0.10 0.11 0.28 0.07 0.26 −0.04 0.06 −0.02
9* 0.14 2.54 −0.05 −0.02 −0.01 0.04 −1.55 0.14
10* 0.06 −0.03 −0.58 0.02 0.98 −0.08 −0.08 0.34

11* 0.12 −0.17 0.05 −0.05 0.81 0.02 0.02 0.15
12 0.02 0.14 0.06 −0.02 0.08 0.12 0.32 0.12
13* 0.06 −0.09 −0.08 0.19 0.45 −0.07 −0.04 0.22
14 0.09 0.28 −0.10 0.01 0.09 −0.01 0.49 0.11
15* 0.56 −0.02 −0.09 0.13 0.20 0.02 0.00 0.11
16* 0.02 0.42 −0.02 0.03 0.11 −0.05 0.32 0.15
17* 0.15 0.10 0.02 −0.06 0.72 −0.02 0.02 −0.06
18* 0.12 0.10 0.02 0.05 0.51 0.02 0.04 0.13
19* 0.52 0.16 −0.96 0.13 0.44 −0.18 0.39 0.12
20* 0.04 0.00 0.35 −0.09 0.77 −0.41 0.23 0.03

*Items for which most difficult required attribute is also the most discriminating; italics imply the
attribute is required by the item, bold identifies the most difficult of the required attributes for the
item

the simulation results, in the 20-item analysis, for 16 of the items the attribute of
highest difficulty also emerges as the attribute that is most highly discriminated by
the item. For the 15-item analysis, this result is observed in 12 of the 15 items. In
one of the items (item 1 of the 20-item analysis), the failure to see the most difficult
attribute emerging appears to reflect a multicollinearity problem related to attributes
6 and 7, whose posterior probabilities of mastery show a very high correlation (.98)
in the HO-DINA analysis.

Importantly, even for items where the most difficult attribute is not the most
discriminating, the results need not be viewed as detrimental to the application of
bifactor MIRT. By assuming a continuous representation of attributes, under the
bifactor MIRT model the “difficulty” of an attribute can naturally be viewed as
varying by item. The notion of skill attributes as continuous as opposed to discrete
carries an implication that for certain of the items, a higher level of mastery may
be required, implying that the difficulty order of required attributes could vary
across items. For example, application of the subtraction of numerators (attribute
7) could naturally be more difficult if the numerators are larger as opposed to
smaller numbers. In this respect, we might view the Q matrix as ultimately defining
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Table 19.8 Hold one item
out logistic regression results,
15 item fraction subtraction
analysis

Skill attributes
Item Att1 Att2 Att3 Att4 Att5

1* 0.82 −0.11 −0.08 0.39 0.19
2* 0.35 0.71 −0.58 0.74 −0.01
3* 0.37 −0.35 0.41 0.00 0.00
4* 0.16 0.01 0.12 0.20 1.06
5* −0.81 −1.89 2.75 0.09 0.21
6* 0.15 0.43 0.00 0.80 −0.03
7* 0.12 0.53 −0.08 0.92 −0.02
8 0.29 0.25 0.16 NA −0.02
9 0.34 0.21 0.19 −0.04 0.01
10 0.33 0.42 −0.04 0.33 0.31
11* −0.07 −0.15 0.98 −0.03 −0.01
12* 0.09 0.16 0.24 0.65 0.30
13* 0.27 0.22 0.22 0.42 0.01
14* 0.10 0.14 0.12 0.33 0.82
15* 0.12 0.15 0.19 0.73 0.21

*Items for which most difficult required attribute is also the
most discriminating; italics imply the attribute is required
by the item, bold identifies the most difficult of the required
attributes for the item

constraints as to which of the skill attributes has the potential to emerge as the most
difficult, and thus accommodate settings in which the most relevant attribute for an
item need not be the attribute that is on average the most difficult.

Returning to Table 19.6 and the attribute difficulties as defined by HO-DINA,
it appears that for the 20-item analysis, two of the attributes have either one or
no items for which the attribute is most difficult, namely attributes 3, 6, and 8.
The results would suggest attending to attributes 1, 2, 4, 5, and possibly 7, where
better overall measurement of the attributes would be anticipated. For the 15-item
analysis, attributes 3, 4, and 5, and possibly 1, seem most relevant. However, as
noted previously, bifactor MIRT models based on these specifications can be altered,
either based on closer inspection of the items and/or statistical criteria, such as
modification indices under the bifactor MIRT analyses. Some modification seems
likely in the current analysis given the very close mastery proportions of certain
attributes as estimated using HO-DINA, and the potential for an attribute with a
lower average difficulty to emerge as the most difficult for a given item.

Inspection of modification indices led us to see that for the 20-item analysis, there
seemed to be greater value in attending to attribute 7 as opposed to attribute 2. A rea-
son for this is that the attribute is both the most frequently invoked across items and
appears to be an attribute of moderate difficulty. Thus attribute 7 might be expected
to emerge as the most difficult of the required attributes for a significant number of
items. This result appears to a large extent consistent with Table 19.5, where items
such as item 14 appear to be affected more by attribute 7 than attribute 2.
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Following this re-specification, we are ultimately led to a bifactor MIRT model
with four specific factors for the 20-item analysis corresponding to attributes 1, 4,
5, and 7. For comparison purposes, we also considered a bifactor MIRT model
with three specific factors, dropping the specific factor related to attribute 1. For
the 15-item analysis, we retained models with specific factors as defined by the
item/factor correspondences in Table 19.6 (i.e., attributes 1, 3, 4 and 5), as well as a
model with 3 specific factors that drops attribute 1. An important feature of all the
bifactor MIRT models considered is that the specified relationship between items
and specific factors is consistent with the corresponding Q-matrix. Items that do not
require any of the attended-to attributes load only on the general dimension and no
specific factors.

For comparison purposes, we also considered for both the 20-item and 15-item
datasets the independence DINA, the HO-DINA, as well as unidimensional IRT
and exploratory MIRT models. The bifactor MIRT model, unidimensional IRT and
exploratory MIRT models were all fit using the R mirt package (Chalmers, 2012);
the DINA and HO-DINA models were fit using the R cdm package (Robitzsch et
al., 2017).

As seen in Table 19.9, the bifactor MIRT models consistently outperform the
DINA and HO-DINA models with respect to traditional information criteria (AIC,
BIC). Moreover, the bifactor MIRT models appear to fit better than exploratory
MIRT models, particularly with respect to the BIC criterion. For simplicity,
hereafter we focus on the 20-item analysis. Table 19.10 displays the discrimination
estimates for both the general and specific factors for each of the items for the 20-
item analysis.

For the 20-item analysis, consistent with prior findings (e.g., de la Torre &
Douglas, 2004), it would appear that item 8 is not useful. The problems with this
item, “2/3 – 2/3 =?”, have been noted elsewhere (DeCarlo, 2011), and are here
seen from its negative loading on its specific factor (although note that the item is
still informative in regard to the general factor). As noted earlier, another appealing
aspect of the bifactor routine in mirt is the potential to allow items to load only on
the general factor. It is conceivable that certain items may not provide additional

Table 19.9 Model comparison results, fraction subtraction data (N = 536; Tatsuoka, 1990)

20 items/8 attributes 15 items/5 attributes
Model Loglik #pars AIC BIC Loglik #pars AIC BIC

DINA −4402.4 295 9395 10,659 −3455.8 91 7034 7295
HO-DINA −4423.3 56 8959 9198 −3456.0 40 6992 7163
3 Bifactor −4415.7 56 8943 9183 −3369.5 42 6823 7003
4 Bifactor −4406.9 59 8932 9185 −3365.9 44 6820 7008
Uni-IRT −4641.0 40 9362 9533 −3452.9 30 6966 7094
2D MIRT −4454.5 59 9027 9280 −3368.6 44 6825 7014
3D MIRT −4378.6 77 8911 9241 −3320.6 57 6755 6999
4D MIRT −4346.4 94 8881 9283 −3311.7 69 6761 7057
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Table 19.10 Bifactor slope estimates, bifactor MIRT models with 4 specific factors, 20-item
fraction subtraction data (Tatsuoka, 1990)

Item G S1(Att1) S2(Att4) S3(Att5) S4(Att7)

1 0.789 0.000 0.511 0.000 0.000
2 0.845 0.000 0.510 0.000 0.000
3 0.820 0.000 0.520 0.000 0.000
4 0.661 0.000 0.000 0.365 0.000
5 0.592 0.000 0.247 0.000 0.000
6 0.802 0.000 0.000 0.000 0.383
7 0.854 0.430 0.000 0.000 0.000
8 0.662 0.000 0.000 0.000 −0.188
9 0.467 0.000 0.000 0.000 0.000
10 0.832 0.000 0.000 0.342 0.000
11 0.804 0.000 0.000 0.488 0.000
12 0.747 0.000 0.000 0.000 0.441
13 0.864 0.000 0.000 0.170 0.000
14 0.804 0.000 0.000 0.000 0.433
15 0.876 0.299 0.000 0.000 0.000
16 0.770 0.000 0.000 0.000 0.443
17 0.840 0.000 0.000 0.397 0.000
18 0.792 0.000 0.000 0.276 0.000
19 0.924 0.216 0.000 0.000 0.000
20 0.820 0.000 0.000 0.505 0.000
SS loadings 12.34 .32 .85 1.01 .76
Prop Var .62 .02 .04 .05 .04

specific information regarding any of the specific factors despite their measurement
of the general factor. For example, item 9 is handled this way in the 20-item analysis.
A respecification of the model might treat item 8 similarly.

A second advantage of the bifactor parameterization relates to its ability to clarify
the overall capacity of a test to discriminate with respect to measurement of the
specific attributes. It becomes clear from inspecting the columns of Table 19.10
how well individual specific factors are being measured by the test. This distinction
of bifactor MIRT and its implications for student-level diagnostic reports will be
discussed further in the next section.

19.5 Applications of Bifactor MIRT for Student-Level
Diagnostic Assessment

A comparison of CDMs and bifactor MIRT naturally leads to questions regarding
the similarities and differences of the diagnostic information provided by each
approach. First, we examine at the individual student level the change in fit



19 Bifactor MIRT as an Appealing and Related Alternative to CDMs in the. . . 409

associated with each of the bifactor MIRT and HO-DINA models in comparison
to a unidimensional IRT model. Specifically, we examined the log-likelihoods of
student-level score patterns conditional on proficiency estimates for (1) the 2PL,
(2) HO-DINA, and (3) the bifactor MIRT models, focusing on the change in
log-likelihood provided by the HO-DINA and bifactor MIRT in comparison to
the 2PL. For each model we define the loglikelihood for an observed response
pattern conditional upon the MAP proficiency estimates as well as the estimated
item parameters for each model. Across student response patterns, these 2PL- and
HO-DINA-based log-likelihoods correlated at .756, while the 2PL- and bifactor-
MIRT-based log-likelihoods correlated at .893. When quantifying the change in
loglikelihood between the 2PL and HO-DINA versus the 2PL and bifactor MIRT,
we observe a correlation between the log-likelihood differences of .778, suggesting
both HO-DINA and bifactor MIRT are attending to similar information in improving
fit over the 2PL. However, for 411 of the 536 students, the log-likelihood based on
the bifactor MIRT analysis resulted in a higher log-likelihood value than that based
on the corresponding HO-DINA.

Despite the similarities between the HO-DINA and bifactor MIRT results against
the 2PL, the nature of the diagnostic information provided by the general and
specific factor estimates of bifactor MIRT is different. As noted above, the general
factor estimate of the bifactor model tends to reflect overall performance, while
the mutually uncorrelated specific factor estimates identify a type of profile. As
each of the factors also has a mean of 0, specific factor estimates different from 0
imply performances on the specific factor items that are below (negative) or above
(positive) expectations based on the level of the general factor. We consider below
two ways in which such estimates might be used for score reporting purposes.
The first reports the continuous factor estimates themselves; the second provides
mastery/nonmastery binary skill attribute reports similar to CDMs.

Given the bifactor MIRT model item parameter estimates, maximum a priori
(MAP) estimates of the general and specific factors can be obtained for a given
response pattern. One of the appealing aspects of this form of score reporting is that
it becomes possible to selectively report diagnostic information (i.e., in the form of
specific factor estimates) where statistical evidence supports it. A basis for such a
report could attend either to the change in likelihood observed at the student level, or
alternatively a Wald test applied to the specific factor estimates. Such an approach
makes apparent the need for collecting sufficient empirical data when making a
diagnosis; interestingly in virtually none of the cases with the 20-item fraction
subtraction data do we obtain such evidence, likely owing to the relatively small
number of items based on those factor estimates.

A second possibility would use the bifactor MIRT general and specific factor
estimates to produce a binary skill attribute classification analogous to CDMs
by imposing thresholds of mastery applied to suitable linear combinations of
the general and specific factor estimates. The thresholds and linear combinations
implied by a HO-DINA classification provide one possibility, but others could be
chosen (or alternatively, imposed based on a previous analyses). As an illustration,
a logistic regression analysis was applied in which the HO-DINA MAP estimate
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of a single attribute was the outcome, and the bifactor MIRT factor estimates were
entered as predictors. Conveniently, this approach also provides a way of examining
the consistency of classification results between HO-DINA and bifactor MIRT.
The logistic regression results can subsequently be used to classify students as
masters and nonmasters for each of the attributes using the logistic-regression-based
probabilities from the logistic regression (>=.50 implies mastery, <.50 nonmastery).
Using this approach, we find very close agreement between mastery/nonmastery
classification results for each of attributes 1 (98%), 4 (100%), 5 (99%), and 7
(97%) specifically attended to in the bifactor MIRT analysis of the 20-item dataset.
Interestingly, even for the unattended-to attributes (2, 3, 6, and 8), if we wished to
make a prediction of attribute mastery based only on the general factor estimate,
we still observe quite consistent results. The classification consistencies results for
attributes 2 (93%), 3 (99%), 6 (96%), and 8 (93%) are quite high. Of course, in
the presence of attribute continuity under bifactor MIRT, it also is possible to use
the same regression weights with adjusted thresholds so as to yield higher or lower
numbers of masters of a particular attribute.

Tables 19.11a and 19.11b provide some examples of observed response patterns
in the 20-item fraction subtraction data. Each row of Table 19.11a corresponds
to a different student, identified by case number and item response pattern. The
subsequent columns identify the MAP proficiency estimates based on HO-DINA,
the 2PL, and the bifactor MIRT, as well as the loglikelihood of the pattern at the
corresponding estimates for each model. Table 19.11b provides a comparison of the
HO-DINA and bifactor MIRT-based binary attribute classifications for each of the
same response patterns using the logistic regression approach described above.

We first consider examples of some of the 125/536 patterns for which HO-DINA
displayed a higher log-likelihood than bifactor MIRT. As might be expected, several
of these patterns involve conditions where atypical results emerge with respect to
attributes 2, 3, 6, or 8. Examples include student IDs 3 and 373. For student 3, the
higher loglikelihood under HO-DINA can be explained by the non-mastery status
assigned to attribute 8 (predicted as a master in the bifactor model); for case ID 373,
a similar effect is observed for a student identified as a non-master on both attributes
6 and 8 (both estimated as masters based on bifactor MIRT estimates). For other
patterns on which HO-DINA has the higher loglikelihood, the result appears not
due to a unique attribute mastery classification, specifically, but rather the unique
functioning of slip/guessing parameters as sources of stochasticity in the HO-DINA
model. For example, case ID 105 yields a higher loglikelihood due to the fact that
incorrect responses occur on the items with the highest slip parameters.

As noted above, there are many cases (411/536) where the bifactor MIRT model
produces the higher log-likelihood. In certain instances, this appears to be related
to the capacity of the bifactor MIRT model to provide a continuous representation
of the general and specific factors. For example, case ID 234 represents a student
that despite overall poor performance on attribute 4 items (3 of the 5 items requiring
attribute 4 in the Q-matrix are answered incorrectly) is nevertheless classified as
a master under HO-DINA; however the θ̂SP2 (attribute 4) of −1.37 under bifactor
MIRT clearly identifies the attribute as an area of relative weakness for the student.
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Table 19.11b Classification
results

HO-DINA Bifactor MIRT
Case α̂ α̂

239 01101111 00101111
119 11101111 11101111
38 11110111 11110111
285 11111111 11111110
3 11110110 11110111
373 01110010 01110111
105 11111111 11111111
234 11111111 11111111
171 00100000 00100111
28 00100000 00100000
48 01001111 01100111
220 11111111 11111111
431 11111111 11111111
44 00100111 01100110
414 01100111 01100111
200 10111111 01110110
237 11110111 11110111

For ID 171, the relative strength of the student on attribute 5 is identified (based
on the θ̂SP3 of 1.44), while for HO-DINA this student is viewed as a master of
only attribute 3. Finally, it is important to note that through the general factor, the
bifactor MIRT model is able to highlight differences in overall performance beyond
that explained by the binary classification. In particular, the response pattern of all
correct (see case ID 431; of which there are 30 in the entire dataset) can be accounted
for by a high general factor estimate (θ̂GEN= 1.31) that exceeds those of other
students who may have as few as 12 items correct (e.g., case ID 220) but were
nevertheless also classified as masters under HO-DINA of all eight attributes.

As noted above, in most cases, bifactor MIRT leads to similar diagnostic
classification results. Examples from Table 19.9 include IDs 119 and 38. As seen
in Table 19.11b, if using the logistic regression approach based on bifactor MIRT
estimates to obtain a binary classification, we obtain equivalent results for these (and
many other) response patterns.

A deeper understanding of the differences between HO-DINA and bifactor MIRT
should attend to the attributes not explicitly modeled in the bifactor MIRT analysis
and for which the classification results were less consistent. Noticeably, some of
the more atypical diagnostic classifications observed under HO-DINA involved the
status of these attributes. Consider, for example, ID 28 (of which there are 13
identical cases). Despite having answered all of items incorrectly, the examinee
is declared a “master” of attribute 3. This result contrasts with that of examinee
48, who despite having answered 6 items correctly, is declared a non-master of
attribute 3. The result provides an example of a type of “paradox” discussed by
Hooker, Finkelman, and Schwartzman (2009) in the context of compensatory MIRT
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models, whereby better overall performances can result in a decline in certain ability
estimates. The problem arguably becomes even greater with binary skills models
having well-ordered attributes, as knowledge gained regarding mastery of certain
attributes is often necessary before evidence can be accumulated regarding the
mastery status of others. We might view this as implying a type of “conditional”
mastery assessment. In this case, the mastery/non-mastery status of attribute 3
cannot be determined when all other attributes appear to be non-mastered. As noted
by DeCarlo (2011), the classification as a master of attribute 3 is consequently only
a reflection of the prior.

Similarly peculiar results are observed for IDs 44, 414 and 200. For these
example respondents, a disproportionately large number of attributes are declared
mastered despite very few overall items having been answered correctly. Not
surprisingly, such attribute mastery patterns frequently entail mastery classifications
for the attributes (i.e., 3, 6 and 8) that from Table 19.6 had no items for which the
attribute was most difficult. Consequently, it would again appear that the mastery
designation is often not based on evidence in support of mastery, but rather the lack
of evidence implying non–mastery. Another example of the Hooker et al. paradox
is seen in comparing ID 200 to ID 237. While the response pattern for ID 200 is
entirely nested within ID 237 (with five additional items being answered correctly
in ID 237) ID 200 is declared a master of attribute 5 while ID 237 is a non-master.
In this case there would also appear to be a “conditional” mastery assessment issue,
now in regard to attribute 5.

Beyond being a curiosity, such results arguably have the potential to create
confusion, particularly in longitudinal applications. A student displaying overall
gains in test performance from one year to the next may nevertheless observe a
transition from a mastery to non-mastery status on certain attributes. Likewise, a
non-mastery diagnosis may simply imply a lack of evidence in support of mastery
as opposed to clear evidence implying non-mastery, such as when a student may
have mastered a more difficult attribute, but the mastery is unseen because all items
requiring the relevant attribute require other attributes the student may not have
mastered.

19.6 Modeling Advantages of Bifactor MIRT

The previously discussed issues in regard to student scoring help identify a couple
of potential advantages to the use of bifactor MIRT for diagnostic scoring. The
first concerns the potential use of bifactor MIRT in designing tests that eliminate
the occurrence of Hooker’s paradox. Note that for the two examples of Hooker’s
paradox in the previous section, the paradox is resolved when using the bifactor
MIRT estimates. Importantly, such paradoxes can still occur in the context of
bifactor MIRT. However, bifactor models make it possible to design tests so
as to eliminate their potential for occurrence. Space limitations preclude further
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discussion of this issue here, but we refer the interested reader to Hooker and
Finkelman (2010) and van Rijn and Rijmen (2015) for details.

A second advantage concerns the potential for equating/linking calibrations so
as to accommodate comparisons of students administered different tests. While in
theory CDMs possess invariance properties, the presence of skill attribute continuity
often coincides with violations of parameter invariance for which there are not clear
methods that can be applied to preserve invariance of the skill attribute metrics (Bolt,
2017). By contrast, the use of linking/equating methods to create common metrics
across populations that may differ substantially in ability is more straightforward in
MIRT (see e.g., Weeks, 2015).

Third and finally are advantages related to bifactor MIRT as a generalization of
unidimensional IRT. One advantage of this feature that was previously discussed
concerns the capacity to statistically evaluate, either at the level of the student
or entire sample, whether attending to the specific factors appears statistically
justified. A second relates to the capacity of bifactor MIRT to resolve the challenges
associated with simultaneous application of CDM and unidimensional IRT models
to the same data, as happens in computerized adaptive testing applications, for
example (Wang, Zheng, & Chang, 2017). In such settings, both overall performance
and diagnostic evaluations are often of interest. The simultaneous use of two
different statistical models is not just an inconvenience but requires practical
resolution in relation to item selection algorithms, for example. Use of bifactor
MIRT, as seen above, can allow both elements of performance to occur within the
same statistical model.

19.7 Discussion

In this chapter, the bifactor MIRT model is suggested as an appealing alternative
to CDMs, especially under conditions where attribute continuity is suspected or
can be confirmed. A separate paper (Bolt, 2017) shows attribute continuity to be
clearly present even in Tatsuoka’s fraction subtraction data set, for which CDMs
have been extensively applied. The results in this chapter remind that the assumption
that a particular skill is required in solving an item should not always be taken
to imply that the skill is statistically measured by the item. The applicability of
bifactor MIRT follows in part from the tendency for items measuring multiple
conjunctively interacting skill attributes to primarily distinguish only with respect
to the most difficult of the required skill attributes, especially when a higher order
factor underlies the skill attributes. The result observed by Bolt and Lall (2003)
regarding noncompensatory MIRT models appears to apply also to CDMs, namely
that attributes (traits) of lower difficulty seem to be not well measured, if at all. In
addition, the computational cost of a bifactor MIRT model is minimal, even in the
presence of high dimensionality.

The findings of the simulation also speak to aspects of test design for CDMs. On
the one hand, the results help clarify why items that measure just one skill attribute
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are frequently found to be most useful in measurement of an attribute (Bradshaw &
Madison, 2016). For optimal measurement of an attribute, it also appears important
to have items designed for which the attribute emerges as the most difficult of the
required skill attributes for some items. Skill attributes having no such items can
still contribute to diagnoses, but often do so in asymmetric and conditional ways.
For example, the ability to see a student as a non-master on a particular attribute may
require that the student have mastered a more difficult attribute. This feature of the
HO-DINA may become problematic when diagnostic assessments occur repeatedly
over time (such as within an academic year or across years), as improvements in
overall performance can nevertheless lead students to move from mastery to non-
mastery diagnoses on certain attributes.

Our results suggest a close correspondence between dimensions defined in
CDMs and those of MIRT. As seen in the fraction subtraction data analyses, the
skills that emerge as dimensions in the analysis of fraction subtraction data appear
to conceptually be the same as the skill attributes of CDMs; there are simply fewer
of them that emerge under the bifactor MIRT analysis. In terms of student-level
diagnoses, the results also suggest a closer relationship between the diagnostic
information provided by the bifactor and CDM approach than might have otherwise
been anticipated. Where there are differences, bifactor MIRT appears to afford some
value in how the general factor can distinguish performances among students that
are otherwise all declared as masters on the studied attributes. HO-DINA appears to
offer some advantages in making use of attributes that fail to emerge as statistically
meaningful in the bifactor MIRT analyses.

From a score interpretation perspective, seeing how items frequently vary
(often quite substantially) in their measurement of skill attributes within CDMs
is important. There can naturally be a perception that for a given skill attribute
all items identified by the Q matrix as measuring the attribute contribute equally;
this is clearly not the case. It seems likely that a given student’s mastery status
on an attribute could well have been informed by largely just one item, in which
case the item might be scrutinized more carefully for validity and any consequential
decisions based on that diagnosis might be evaluated more cautiously.

We acknowledge some limitations in our current analyses. Naturally, there exist
other criteria by which the bifactor MIRT and CDM models could be compared
empirically, both to the fraction subtraction data as well as other datasets. There also
exists a wide range of simulation conditions against which the modeling approaches
could be compared, not just in terms of overall fit, but also in the scoring of
individual examinees. We suggest that the combination of results from the studies
above motivate further considerations of bifactor MIRT models in contexts that
frequently motivate consideration of CDMs.

Acknowledgements The author would like to thank Nana Kim and the two assigned reviewers
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Chapter 20
Utilizing Process Data for Cognitive
Diagnosis

Hong Jiao, Dandan Liao, and Peida Zhan

Abstract Process data, different from item responses, essentially shows the
interactions between test-takers, item presentation including stems and options,
technology-enhanced help features, as well as the computer interface. With
the availability of process data in addition to product data, additional auxiliary
information from the response process can be utilized to serve different assessment
purposes such as enhancing accuracy in ability estimation, facilitating cognitive
diagnosis, and aberrant responding behavior detection. Response time (RT) is the
most frequently studied process data contained in log files in current psychometric
modeling, although other process data is available such as the number of clicks,
the frequency of use of help features, frequency of answer changes, and data
collected using eye-tracking devices. Process data is worthy of exploration and
the integration with product data can enhance our evidence base for assessment
purposes. This chapter will focus on the use of RT as one important type of process
data in cognitive diagnostic modeling.
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20.1 Introduction

Cognitive diagnosis intends to provide fine-grained information about the strengths
and weaknesses in learning. Such information can help remedial instruction and
learning adapted to learners’ deficiency. Cognitive diagnosis can be conducted using
different theoretical frameworks such as latent trait based models (e.g., de la Torre
& Douglas, 2004; de la Torre & Song, 2009; Embretson, 2015; Embretson & Yang,
2013; Haberman & Sinharay, 2010; Yao & Boughton, 2007), latent class based
models (e.g., de la Torre, 2011; Macready & Dayton, 1977; Maris, 1995, 1999;
von Davier, 2008; von Davier & Yamamoto, 2004) such as the deterministic inputs,
noisy “and” gate (DINA) model (Haertel, 1989; Junker & Sijtsma, 2001; Macready
& Dayton, 1977), and item-feature related models (e.g., Embretson & Yang, 2013).
There are multiple generalized frameworks such as the general diagnostic model
(GDM; von Davier, 2008), the generalized DINA model (G-DINA; de la Torre,
2011), and the loglinear CDM model (LCDM; Henson, Templin, & Willse, 2009).
Among the three, the GDM can be viewed as the most general approach as it allows
both continuous latent traits and discrete attributes as latent variables. All these
models utilize item response data, which are item scores based on the answer to
each item in a test.

With the latest advances in computer technology, computer-based assessment is
becoming common practice in large-scale testing and classroom assessment. The
use of computers in assessment makes it easy to collect more data in addition to
item responses. Rupp, Gushta, Mislevy, and Shaffer (2010) defined two types of
data collected in game-based assessment, process data and product data. Process
data is related to the interactions of test-takers with other test-takers and computers
or games during the process of assessment or game play while product data is the
outcome of the assessment tasks or items such as item scores. Both types of data are
on a regular basis collected in computer-based assessment.

Process data, different from product data or item responses, essentially shows
the interactions between test-takers, item presentation including stems and options,
technology-enhanced help features, as well as the computer interface. With the
availability of process data in addition to product data, additional auxiliary infor-
mation from the response process can be utilized to serve different assessment
purposes such as enhancing accuracy in ability estimation, facilitating cognitive
diagnosis, and aberrant responding behavior detection. Response time (RT) is the
most frequently studied process data contained in log files in current psychometric
modeling, although other process data is available such as the number of clicks, the
frequency of use of help features, frequency of answer changes, and data collected
using eye-tracking devices. Process data is worthy of exploration and the integration
with product data can enhance our evidence base for assessment purposes. This
chapter will focus on RT as one important type of process data.

RT, as a continuous variable, contains information that may not be directly
decoded from discrete product data like item responses, which are often scored
dichotomously representing correct and incorrect answers or polytomously repre-
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senting different degrees of correctness. Given the same outcome, an item score,
different RTs may reveal the psychometric properties of the task or the level of
cognitive challenge a test-taker may face with. RT can further provide information
about the working speed of test-takers. For example, when test-takers do not have
enough time to complete items on a test, their RTs may display a different pattern
compared to test takers who have enough time to fully engage in problem-solving.
Similarly, test-takers may not be motivated enough in a low-stakes test. Thus, they
may be engaged in speeded responding behaviors (e.g., Klein Entink, van der
Linden, & Fox, 2009; Locke, 1965; Logan, Medford, & Hughes, 2011). Further,
test-takers with prior knowledge of items or those who are cheating on a test may
exhibit shorter RT than other test-takers (e.g., Qian, Staniewska, Reckase, & Woo,
2016). Thus, information in RTs can potentially be used as collateral information in
addition to item responses to serve additional psychometric purposes.

RT data has been utilized to deal with different psychometric issues and
challenges. For instance, van der Linden, Klein Entink, and Fox (2010) used RT
as collateral information for IRT parameter estimation. Gaviria (2005) explored
using RT to increase model parameter estimation precision in computer-based tests.
Ranger and Kuhn (2012) conducted a similar exploration in psychological tests.
Other studies explored the use of RT in detecting abnormal response behaviors
(e.g., Holden & Kroner, 1992; Lee & Wollack, 2017; van der Linden & Guo, 2008)
or for better understanding response behaviors (e.g., Schnipke & Scrams, 2002).
Others also developed new person fit indexes based on RT (e.g., Fox & Marianti,
2017; Man, Jiao, & Ouyang, 2016; Marianti, Fox, Avetisyan, Veldkamp, & Tijmstra,
2014). Recently, researchers proposed different models for response times (e.g.,
Klein Entink, van der Linden, et al., 2009; Ranger & Kuhn, 2013; Ranger & Ortner,
2012; van der Linden, 2006; Wang, Chang, & Douglas, 2013) and the joint modeling
of responses and response times (e.g., Bolsinova, De Boeck, & Tijmstra, 2016; Klein
Entink, Fox, & van der Linden, 2009; Loeys, Rosseel, & Baten, 2011; Maris &
van der Maas, 2012; Molenaar, Bolsinova, Rozsa, & De Boeck, 2016; Molenaar,
Oberski, Vermunt, & De Boeck, 2016; Molenaar, Tuerlinckx, & van der Maas, 2015;
Ranger & Kuhn, 2014; van der Linden, 2007; Wang, 2006; Wang, Fan, Chang, &
Douglas, 2013; Wang & Hanson, 2005).

Joint modeling of responses and RT accounts for the dependence between
accuracy and speed. However, some empirical data analyses indicated RT depends
on item responses (e.g., Bolsinova & Maris, 2016; Bolsinova & Tijmstra, 2016; Glas
& van der Linden, 2010; van der Linden & Glas, 2010) and item characteristics
(Bolsinova, Tijmstra, & Molenaar, 2017; Goldhammer, Naumann, & Greiff, 2015;
Liao, 2018) after controlling for the relation between latent ability and speed.
Further, as observed in real data analyses, the relationship between accuracy and
speed is not invariant across diverse groups of test-takers. Some studies reported
positive relation while others reported negative correlation between accuracy and
speed. Such differential or conditional differences have been explored in several
studies (e.g., Bolsinova et al., 2016, 2017; Fox & Marianti, 2016; Jiao, Zhan, Liao,
& Man, 2017; Liao, 2018; Meng, Tao, & Chang, 2015; Molenaar, Bolsinova, et al.,
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2016; Molenaar, Bolsinova, & Vermunt, 2018; Wang & Xu, 2015) using conditional
modeling, multigroup structure or mixture modeling. However, all these modeling
approaches were developed within the item response theory framework.

RT has been applied in adaptive testing as well for increasing the precision of
parameter estimation and for detecting aberrant responses (e.g., van der Linden &
van Krimpen-Stoop, 2003) or response time patterns (e.g., van der Linden & Guo,
2008; van Rijn & Ali, 2017). Several researchers (e.g., Minchen, 2017; Minchen &
de la Torre, 2016; Zhan, Jiao, & Liao, 2018) proposed using RT or joint modeling
of response and response time for cognitive diagnosis.

20.2 Joint Modeling of Responses and Response Time for
Cognitive Diagnosis

Minchen and de la Torre (2016) first proposed to use RT to improve ability
estimation in cognitive diagnosis models (CDMs). They followed the hierarchical
framework proposed by van der Linden (2007) for joint modeling response and
RT. To model item responses, a higher order attribute distribution (de la Torre &
Douglas, 2004) with the DINA model (Haertel, 1989; Junker & Sijtsma, 2001;
Macready & Dayton, 1977) was used while a lognormal model was used for RT with
speed intensity parameters. Zhan et al. (2018) proposed a similar perspective for
integrating responses and RTs for cognitive diagnosis. However, these two studies
differ in that Zhan, Jiao, and Liao’s model takes into account the dependency
between item accuracy and speed parameters which was ignored in Minchen and
de la Torre’s formulation.

Following what Zhan et al. (2018) presented in their paper for the joint RT-
DINA model, the subsequent sections present the graphical and the numerical
representations of the joint model. Bayesian estimation of the model parameters
are discussed as well.

20.2.1 The Joint RT-DINA Model

Like the hierarchical modeling framework for joint modeling of responses and RT
(van der Linden, 2007) for accuracy and speed, item responses, Yji, and log response
time, log(Tji), are separately modeled at level 1 in the joint RT-DINA model. Level 2
contains two correlational structures to take into account dependencies among item
parameters and among person parameters, respectively.
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20.2.1.1 Level 1 Models: RT and DINA Models

The Lognormal RT Model

The lognormal RT model (van der Linden, 2006) is one of the most commonly
used RT models. Thus, this model is used for illustration of joint modeling of
responses and RT for cognitive diagnosis. Let Tji be the observed item RT for person
j (j= 1, . . . , J) and item i (i= 1, . . . , I). The logarithm of RT is used to transform the
positively skewed RT, and a normal distribution for this transformation is assumed.
That is,

log
(
Tji
) = ζi − τj + εj i , εj i ∼ N

(
0, σ2

εi

)
, (20.1)

where τj is the person speed parameter representing the average speed of person j
on a test; ζi is the time-intensity parameter representing the population-average time
needed to complete item i; εji is the normally distributed error term indicating that
this is a lognormal RT model. Thus, log

(
Tji
) ∼ N (ζi − τj, σ

2
εi

)
.

Equation (20.1) can be extended to include a slope parameter for speed as
a time-discrimination parameter (Klein Entink, Fox, et al., 2009; Klein Entink,
van der Linden, et al., 2009). Further, a person-specific growth parameter can be
included to allow for variable working speed throughout a test (Fox & Marianti,
2016). In addition, other methods could be used to model RT such as the Box-Cox
transformation by Klein Entink, Fox, et al. (2009) and Klein Entink, van der Linden,
et al. (2009) or a linear transformation model by Wang, Chang, et al. (2013).

The DINA Model

The DINA model is one of the commonly used and frequently studied models for
cognitive diagnosis. Let Yji be the observed response of person j to item i. Equation
20.2 presents the relationship among attributes and the probability of an observed
response.

P
(
Yji = 1

) = gi + (1− si − gi)
∏K

k=1
α
qik
jk , (20.2)

where P(Yij = 1) is the probability of a correct response by person j to item i;
the two parameters, si and gi are the slipping and guessing probability for item i
respectively, indicating the item-level aberrant response probabilities; (1 − si − gi)
is the item discrimination index (IDIi; de la Torre, 2008) indicating item quality;
the higher the value, the more discriminating an item is. αjk is the mastery status of
attribute k (k = 1, . . . , K) for person j, with 1 if person j masters attribute k, and
0 otherwise. The Q-matrix (Tatsuoka, 1983) is a I-by-K matrix with elements qik

indicating whether attribute k is required to answer item i correctly; it takes a value
of 1 if the attribute is required for item i, and 0 otherwise.
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Two reparameterizations are applied to transform the binary variable, αjk, si, and
gi, so that multivariate normal distributions can be assumed at level 2 to consider
the dependency of parameters on item and person sides respectively. The two item
parameters, si and gi, can be reparameterized from the probability scale to the logit
scale (DeCarlo, 2011; Henson et al., 2009; von Davier, 2014) as follows.

βi = logit (gi) , (20.3)

δi = logit (1− si)− logit (gi) , (20.4)

where logit(x) = log
(
x

1−x
)

. Thus, Eq. (20.2) can be reformulated as:

logit
(
P
(
Yji = 1

)) = βi + δi
∏K

k=1
α
qik
jk , (20.5)

where βi and δi are the item intercept and interaction parameter respectively in this
reparameterized DINA model (DeCarlo, 2011).

Further, to account for the dependency among assessed attributes that are often
conceptually related and statistically correlated, a higher-order latent structure (de
la Torre & Douglas, 2004) could be formulated, as follows.

logit
(
P
(
αjk = 1

)) = γkθj − λk, (20.6)

where P(αjk = 1) is the probability of person j mastering attribute k; θj is a general
(higher-order) ability of person j; γk and λk are the slope and intercept parameter for
attribute k, respectively. The higher the θ value, the higher the mastery probability
of attribute k (assuming a positive slope). The use of a higher-order structure
alleviates the computational burden by reducing the number of model parameters
to be estimated, explains the correlations among attributes, and estimates an overall
performance for every test-taker in addition to an attribute profile of mastery. Other
options for a more parsimonious skill distribution are given by Xu and von Davier
(2008a, 2008b).

20.2.1.2 Level 2 Models: Correlational Structures

Two correlational structures are formulated at level 2, one for item parameters and
the other for person parameters. For the joint RT-DINA model, item parameters are
assumed to follow a trivariate normal distribution with the mean vector and variance
and covariance matrix specified as follows.

�i =
⎛

⎝
βi

δi

ζi

⎞

⎠ ∼ N
⎛

⎝

⎛

⎝
μβ

μδ

μζ

⎞

⎠ ,�i

⎞

⎠ . (20.7)
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Fig. 20.1 A graphical representation of the joint RT-DINA model

Modeling correlations among item parameters captures the often-ignored relation-
ship among guessing and slipping parameters in the DINA model (see Lee, de la
Torre, & Park, 2012; Zhan, Jiao, Liao, & Bian, 2017). The error variance, σ2

εi
, is

assumed to be independently distributed, thus it is not included in � i.
Similarly, person parameters of the joint RT-DINA model are assumed to follow

a bivariate normal distribution:

�j =
(

θj

τj

)
∼ N

((
μθ

μτ

)
,�j

)
, �j =

(
σ2

θ ρθτσθστ

ρθτσθστ σ2
τ

)
. (20.8)

To sum up, Eqs. (20.1), (20.2), (20.3), (20.4), (20.5), (20.6), (20.7), and (20.8)
together are the joint RT-DINA model. A graphical representation of the joint RT-
DINA model is presented in Fig. 20.1 following van der Linden (2007).

For scale identification, three aspects need to be considered for this joint model:
the identifiability between θj and τj, the identifiability between θj and attribute
intercept (λk) and attribute slope (γk), and the identifiability between τj and ζi. Three
constraints are set as μθ = 0, σθ = 1, and μτ = 0, fixing the location and variation of
the scale of the latent ability and the location of τj. The first two constraints set the
scale and the third centers the scale for τj allows ζi to vary freely across items solving
the third identifiability issue. In addition, four local independence assumptions are
imposed: (a) latent attributes, αjk, are conditionally independent given θj; (b) item
responses, Yji, are conditionally independent given αj; (c) the log response time,
log(Tji), are conditionally independent given τj; (d) Yji and log(Tji) on item i are
conditionally independent given all person parameters.
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Some constraints could be further imposed such as γk > 0 indicating higher
ability leads to higher probability of mastery; constraints such as δi > 0, i.e., gi < 1 –
si or IDIi > 0 (e.g., Culpepper, 2015; DeCarlo, 2012; Henson et al., 2009; Junker &
Sijtsma, 2001) need further exploration.

20.2.2 Bayesian Parameter Estimation

Bayesian estimation using the Markov chain Monte Carlo (MCMC) method can be
used to estimate parameters in the joint RT-DINA model. In Bayesian estimation,
prior distributions of model parameters and the observed data likelihood functions
lead to a joint posterior distribution for the model parameters. Zhan et al. (2018)
used the JAGS and the R2jags package (Version 0.5–7; Su & Yajima, 2015)
in R (Version 3.3.1 64-bit; R Core Team, 2016) to estimate parameters. Model
specification is illustrated as follows.

First, Yji, log(Tji), and αjk are assumed conditionally and independently dis-
tributed and specified as follows:

Yji ∼ Bernoulli
(
P
(
Yji = 1

))
, log

(
Tji
) ∼ Normal

(
ζi − τj , σ

2
εi

)
, αjk ∼ Bernoulli

(
P
(
αjk = 1

))

The priors of item parameters are assumed to follow a multivariate normal
distribution with

⎛

⎝
βi

δi

ζi

⎞

⎠ ∼ N
⎛

⎝

⎛

⎝
μβ

μδ

μζ

⎞

⎠ ,�i

⎞

⎠ , σ2
εi
∼ InvGamma (1, 1)

where the hyper priors are specified as:

μβ ∼ Normal (−2.197, 2) ,μδ ∼ Normal (4.394, 2) I (μδ > 0)

μζ ∼ Normal (3, 2) ,�i ∼ InvWishart (R, 3)

where R denotes a three-dimensional identity matrix. Hyper priors specified above
are on a logit scale for both β and δ. The mean guessing effect is set at 0.1, which
is approximately equivalent to a logit value of −2.197 for μβ. With a standard
deviation of

√
2 on the logit scale for μβ, the assumed mean guessing effects range

from 0.026 to 0.314. The mean slipping effect is also set at 0.1, indicating that μδ

would approximately be 4.394 on the logit scale. With a standard deviation of
√

2 on
the logit scale for μδ, the assumed mean slipping effects range from 0.007 to 0.653.
The hyper prior specified above is on a log scale for ζ. Then, the mean RT is set at
20.086, which is equivalent to a log value of 3 for μζ. With a standard deviation of√

2 on the log scale for μζ, the simulated mean RTs range from 4.883 s to 82.617 s.
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In addition, the priors of person parameters are set as

(
θj

τj

)
∼ N

((
0
0

)
,�j

)
.

Please note that an inverse-Wishart prior cannot be used for the �j, because the
variance of θj is set to 1 for identifiability. To solve this problem, �n can be
reparameterized in terms of its Cholesky decomposition as �n = �n�

′
n, where

�n =
(

1 0
ϕ ψ

)

is a lower triangular matrix with positive entries on the diagonal and unrestricted
entries below the diagonal, and �’

n is the conjugate transpose of �n. Thus, the
priors of elements in �n are specified as ϕ Normal(0, 1), ψ Gamma(1, 1).

Then, the priors of higher-order structure parameters are specified as:

γk ∼ Normal (0, 4) I (γk > 0) ,λk ∼ Normal (0, 4)

Finally, as a categorical value, the posterior mode of α̂jk is treated as the
estimated value, following Zhan et al. (2018). As an alternative, the posterior mean
of α̂jk (i.e., α̂jk≡ 1 if α̂jk> 0.5, and α̂jk ≡ 0 otherwise) suggested by de la Torre
and Douglas (2004) can also be used.

Given the priors specified above and each sampled model parameter given in S
as follows:

S =
{
αj , θj , τj ,λk, γk, βi , δi , ζi ,μβ,μδ,μζ,�i ,�j , σ

2
εi

}
,

The joint posterior probability for the joint RT-DINA model can be expressed as
follows:

P (S|Y, log (T)) ∝ L (Y, log (T) |α, β, δ, ζ, τ,σ2
ε

)

× P (α|λ, γ, θ) P (λ) P (γ) P (θ, τ|0,�j
)
P
(
�j
)

× P (β, δ, ζ|μi ,�i
)
P
(
μβ

)
P
(
μδ

)
P
(
μζ

)
P (�i ) P

(
σ2

ε

)
,

(20.9)

where L
(
Y, log (T) |α, β, δ, ζ, τ,σ2

ε

) =
J∏
j=1

I∏
i=1
P
(
Yji |αj , βi , δi

)
f
(
log
(
Tji
)

|ζi , τj , σ2
εi

)
is the likelihood of the joint RT-DINA model.
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20.3 Potential Extensions

The previous section demonstrated how RT can be combined with item responses
for cognitive diagnosis using the lognormal RT model and DINA model as
examples. As reviewed, RT could be modeled in multiple ways following different
distributions such as Exponential, Gamma, Weibull, the Box-Cox normal model,
Cox-proportional transformation, and linear transformation model; further, different
CDMs such as DINA, DINO, and general CDMs (GDM, generalized DINA, and
loglinear CDMs), could be formulated for different item response structures. Thus,
it is quite possible that different models for RT and item responses could be used
jointly to better reflect the nature of specific RT and item responses in an assessment.
Further, the current demonstration is for dichotomous item responses. An extension
to polytomous item response data (e.g., Ma & de la Torre, 2016; von Davier, 2008)
awaits further exploration.

Recently, innovative assessment has been increasingly used in testing practice to
measure higher-order thinking skills. Items in these assessments are often embedded
in different contexts such as scenarios, passages, and graphs or tables; local item
independence is likely to be violated. Different researchers (e.g., Jiao, Liao, & Zhan,
2018; Zhan, Liao, & Bian, 2018) have explored extended models taking into account
local item dependence from one or multiple sources in joint modeling of RT and
item responses for cognitive diagnosis.

As Embretson and Yang (2013) demonstrated, using a multicomponent or non-
compensatory multidimensional latent trait model with linear logistic test model
(LLTM) modeling item features to cognitive diagnosis, a multidimensional latent
trait model with RT could be another potential extension to provide cognitive
diagnosis based on latent trait-based model and/or item feature-based model for
cognitive diagnosis.

20.4 Summary and Discussion

It is expected that the inclusion of RT in addition to item responses in psychometric
modeling provides additional sources of information which may improve the latent
trait estimation and attribute estimation in cognitive diagnosis. Both Minchen and
de la Torre (2016) and Zhan et al. (2018) indicate that when a test has an adequate
test length containing items of good quality (i.e., with low guessing and slipping
effects) and the Q-matrix is identifiable, the use of RT did not provide added value
in improving the precision in model parameter estimation and the accuracy for
attribute mastery for cognitive diagnosis. This is not beyond expectation as the
information containing in item responses would be sufficient to provide accurate
cognitive diagnosis. However, when a test was not ideally designed for cognitive
diagnosis, i.e., the Q-matrix is not identified, the test length is short, and items
are of low quality with high guessing and slipping effects, the improvement in
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model parameter estimation is evident. The joint RT-DINA model provides a good
starting point for future exploration in how to utilize RT in CDM and using RT and
item responses simultaneously in aberrant responding behavior detection such as a
mixture version of joint RT-CDM.

Though the use of process data and RT could be beneficial to cognitive diagnosis,
the added value of integrating process data strongly depends on whether the process
data are substantiated and meaningful from a theoretical perspective. Goldhammer
et al. (2014) reported that the interpretation of RT is intricate, and the statistical
considerations should not be separated from substantial considerations (task-related,
domain-specific, psychological).

Modeling RT is not a simple task. Modeling RT and item responses jointly
takes into account the dependency between RT and item responses. This is one
type of within-subject dependency. Many researchers have already noticed the
challenges in RT modeling. Though different distributions or models have been
proposed for RT, some of these perspectives simplify the relationship between RT
and item responses in real-world applications. One of the challenges is related to the
within-subject differential speed effects. That is, some test-takers may demonstrate
different patterns of speed effects depending on ability and/or item difficulty.
Different models and approaches to dealing with this within-subject dependency
have been explored (e.g., Bolsinova et al., 2016, 2017; Fox & Marianti, 2016; Liao,
2018; Molenaar, Bolsinova, Rozsa, et al., 2016; Molenaar, Oberski, et al. 2016;
Molenaar, Bolsinova, & Vermunt, 2018). However, none of the research integrating
RT and responses has integrated this more complex within-subject dependency into
cognitive diagnostic modeling. This could be a future exploration.

Further, other estimation methods such as the maximum likelihood estimation
method for the joint RT-CDM could be explored in future studies. The application
of RT-CDM in computerized adaptive test Finkelman, et al. (2014) would be worthy
of more extensive investigation. Using process data other than RT awaits further
exploration for cognitive diagnosis. Further, how to integrate data from multiple
sources for cognitive diagnosis in linear and adaptive test delivery algorithms
deserves more investigation.

Recently, other methods have been proposed for analyzing process data in
large-scale assessments. For instance, Liu and Cheng (2018) explored support
vector machine (SVM), a popular supervised learning method to conduct cognitive
diagnosis given a training dataset and found that SVM provided as least comparable
attribute and profile classification accuracy with small sample sizes as the traditional
CDMs. Another example, He and von Davier (2015, 2016) conducted a case study
for one problem-solving item using the response data and log files from PIAAC
2012. They treated consecutive actions in the log files as a sequence and utilized
two n-gram model and two feature selection methods, chi-square statistics and
weighted log-likelihood ratio test to identify sequences of features from process
data for comparisons among performance groups and across countries. Though this
method has not been used for cognitive diagnosis, it is worthy of exploration. Given
the advantages of artificial intelligence, more and more researchers explore to apply
machine (or deep) learning algorithms for large-scale assessment data analysis. In
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the near future, as the availability and types of process data grow, the joint modeling
approach may not be the only method in handling the computational complexity.
Thus, machine learning algorithms are likely to bloom for cognitive diagnosis.

Overall, while taking advantage of the auxiliary information provided in process
data, caution should be exercised in that whether the integration of multiple data
sources from assessment really serves the assessment purpose better or it introduces
more noise in the decoding of assessment data awaits further exploration. More
empirical investigation and theoretical justification of integrating item response data
and process data should be provided to address the validity considerations when
using process data such as RT as auxiliary information.
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Chapter 21
Application of Cognitive Diagnostic
Models to Learning and Assessment
Systems

Benjamin Deonovic, Pravin Chopade, Michael Yudelson, Jimmy de la Torre,
and Alina A. von Davier

Abstract Over the past few decades, cognitive diagnostic models have generated
a lot of interest due in large part to the call made by the No Child Left Behind Act
of 2001 (No Child Left Behind, Act of 2001 Public Law No. 107–110, § 115. Stat,
1425, 2002) for more formative assessments in learning systems. In this chapter,
we provide an overview of learning and assessment systems, including the rise
in popularity of online and personalized learning systems; we contrast the role of
summative and formative assessments in learning systems; and we provide a review
of cognitive diagnostic models and the challenges of retrofitting models to data not
designed for cognitive diagnostic models.

21.1 Introduction

Learning, broadly defined as the acquisition of knowledge, skills, values, beliefs,
and habits through experience, study, or instruction, takes place within a variety
of frameworks. The framework of interest in this chapter is a learning system,
which also takes shape in various forms and formats. Traditional examples include
schools and textbooks, but computers and online forums can also be utilized as
learning systems. Over the past few decades, cognitive diagnostic models have
generated a lot of interest due in large part to the call made by the No Child Left
Behind Act of 2001 (No Child Left Behind, 2002) for more formative assessments
in learning systems. In this chapter, we provide an overview of learning and
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assessment systems, including the rise in popularity of online and personalized
learning systems; we contrast the role of summative and formative assessments
in learning systems; and we provide a review of cognitive diagnostic models and
the challenges of retrofitting models to data not designed for cognitive diagnostic
models. We conclude the chapter with a novel, personalized, online learning system
developed by ACTNext, the ACTNext Educational Companion App, which utilizes
concepts from cognitive diagnostic models.

21.2 Learning Systems

21.2.1 Smart Learning

Zhang and Chang (2016) highlight the rise in interest of personalized learning and
assessment models citing the push made by industry leaders such as IBM to utilize
technology to help shape the future of education (Palmisano, 2008; Rudd, Davia,
& Sullivan, 2009). The concept of driving innovation in education by utilizing
technology has been referred to as ‘Smart Education’ and has been described by Zhu
and Shen (2013) as “creating a smart environment for learning that promotes the
development of both the learner’s well-roundedness and specialized competency,
which, ultimately, will create value for the entire society”. Advances in technology
have played a pivotal role in providing personalized and equitable learning to
everyone.

21.2.2 Online Learning

One technological advancement that has been a great advantage to personalized
learning in the past few decades is online learning. Online learning is a learning
system that is entirely virtual. In secondary school education, Khan Academy
(Dijksman & Khan, 2011), a free online resource that offers instructional videos
and interactive tasks, has been a significant contributor to online learning resources.
Online learning, as offered by the Khan Academy, and blended learning, a combi-
nation of traditional and online learning systems, are extensively employed in the
USA. Another company that provides a repository for online learning material is
OpenEd. OpenEd is the only K-12 educational resource library focused on aligning
resources to learning objectives and a variety of standards including Common
Core State Standards (CCSS) and Next Generation Science Standards (NGSS) by
utilizing machine learning algorithms. According to Journell, McFadyen, Miller,
and Brown (2014), more than one million secondary students take online courses
from resources such as Khan Academy and OpenEd as part of their curriculum each
year. The need to provide high-quality public education at a low cost is one of the
key drivers of this phenomenon.
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In higher education, the Massachusetts Institute of Technology (MIT) was one
of the pioneering institutes in creating online learning systems. As early as 2001,
MIT provided access to audio lectures and slides on their open courseware (OCW)
website (Abelson, 2008). Many institutions around the world followed suit includ-
ing Rice University, which created the Connexions Project in 1999, now known
as OpenStax (OpenStax, 2018) and Carnegie Mellon University, which created
the Open Learning Initiative (Open Learning Initiative, 2018). This sparked the
open education resources (OER) movement, a movement to increase the availability
of teaching, learning, and research materials in any medium (Atkins, Brown, &
Hammond, 2007).

21.2.3 Learning and Assessment

Assessments are utilized to ascertain whether learners have indeed learned the
objectives set out by a learning system, whether that is a traditional learning system
or an online/adaptive learning system. An assessment is an instrument designed to
observe performance in a learner and produce data used to draw inferences about the
material which the learner has learned. Research in assessment focuses on ensuring
that assessments are reliable (produce similar results under consistent conditions)
and valid (the extent to which the assessment measures the underlying construct of
interest).

21.2.3.1 Connection Between Learning and Assessment

Historically, there has been a lack of connection between assessments and learning,
due to the use of assessments for ranking individuals, which is a different goal
than that of learning systems, and due to the lack of ability to collect learning data.
This led to a focus of psychometrics on models for assessment. Classical models in
the assessment literature were primarily concerned with measuring an individual’s
latent ability without connecting this to a model for the content the learners
were learning. In recent years, with the advances and affordances of technologies,
there has been a renewed interest to connect assessment to learning. This idea
of connecting assessment with learning is not new though. As far back as 1957,
there have been aspirations to incorporate theories of cognition and learning into
assessment (Cronbach, 1957). The past few decades especially have seen a revival of
this concept (Embretson & Gorin, 2001; Gorin, 2006; Leighton, 2004; Leighton &
Gierl, 2007; NRC, 2001; Pellegrino, Baxter, & Glaser, 1999). In 2001 the National
Research Council (NRC) released a report entitled “Knowing what Students Know”
(NRC, 2001) in which they assert the need to rethink the fundamental scientific
principles of current approaches to assessment, and to broaden the assessment
framework to incorporate advances in cognitive sciences as well as apply the
expanded capabilities in psychometrics.
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21.2.3.2 The Psychometric Perspective: Formative Assessment

Formative assessments have seen increased interest in recent years. Formative
assessments monitor learning and provide the learner and/or the instructor with
information to help guide learning/instruction. Examples include weekly quizzes
or homework in a traditional learning system. At the other end of the spectrum are
summative assessments. Summative assessments are used to evaluate how much an
individual knows at a particular point in time. These assessments are often high
stakes tests, such as a college readiness exam.

21.2.3.3 The Perspective of the Educational Data Mining and Learning
Analytics & Knowledge Communities: Domain Modeling
and Knowledge Modeling

While psychometricians focused on modeling assessment data, researchers in
educational data mining (EDM) and learning analytics & knowledge (LAK) com-
munities focused on modeling data collected during the process of learning directly.
Although superficially the models built by psychometricians for assessment and the
models built by researchers in the learning fields share the goal of ascertaining what
the learner has learned, they have diverged significantly and are entirely different in
practice.

The EDM/LAK tradition provides models for tracking learning and models for
the learning content itself. This is referred to in a 2017 review of the field by
Pelanek (2017) as knowledge modeling and domain modeling, respectively, and
made explicit in the knowledge-learning-instruction (KLI) framework of Koedinger,
Corbett, and Perfetti (2012). This framework connects learning processes such
as fluency building, induction, refinement, understanding, and sense-making to
knowledge components (i.e., skills/attributes). By defining models for the domain
and for learning, researchers in these fields can make explicit the link between the
domain and knowledge model, achieving the same goals as those set up by formative
assessments, that is, to ascertain what the learner knows.

Here we briefly describe the learning progressions, knowledge maps, and the Q-
matrix as three approaches to domain modeling. The Q-matrix representation has
been mostly used in psychometric modeling.

21.2.3.4 Learning Progressions

Once a framework is in place to connect the domain and knowledge model, the
question remains of how to help a learner through the steps necessary to learn new
skills. One answer to this question is the application of learning progressions. The
concepts underlying learning progressions are relatively old, but the specific term
was coined in the 2005 (NRC, 2005) NRC report, was featured in the 2007 report
(NRC, 2007), and utilized soon after in an application to describe possible levels
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of student development of skills and concepts for science assessment (Corcoran,
Mosher, & Rogat, 2009).

A learning progression refers to the sequencing of learning materials and
resources across time (e.g., developmental stages, ages, or grade levels). It dictates
what skills should be taught to learners at a particular point in time based on the
learners’ ability and the skills they already have mastered. In the context of assess-
ments, learning progressions can be incorporated into a Rasch/IRT (Item Response
Theory) model using Wright maps (Wilmot, Schoenfeld, Wilson, Champney, &
Zahner, 2011; DiBello & Stout, 2007). A Wright map is a graphic which overlays the
latent ability distribution of the learners with the locations of items (Wilson, 2005).
This organization suggests a particular traversal of the items based on a person’s
ability.

21.2.3.5 Knowledge Maps

A concept similar to learning progressions in the field of EDM/LAK is the idea
of knowledge maps or domain models (Pelanek, 2017). Knowledge maps reflect
the assignment of individual items to particular knowledge components and with
the modeling of the relationship between different knowledge components (e.g.,
prerequisite information). A simple construction of a knowledge map is one in
which the knowledge concepts are considered independent, disjoint sets of items.
Pelanek (2017) extends this idea in three main directions: multiple knowledge
concepts per item, a hierarchy of knowledge concepts (which allows for capturing
skills of different granularity), and a directed graphical representation of the
knowledge concepts that capture their prerequisite structure. These formations
of knowledge maps can be modeled using Bayesian networks (Millan, Loboda,
& Perez-de-la-Cruz, 2010; Conati, Gertner, & Vanlehn, 2002; Käser, Klingler,
Schwing, & Gross, 2014; Carmona, Millán, Pérez-de-la-Cruz, Trella, & Conejo,
2005) or knowledge space theory (Doignon & Falmagne, 2012).

21.2.3.6 Q-Matrix and Multidimensionality of Latent Ability

Psychometric models used to analyze summative assessments tend to utilize
unidimensional latent variable models, in which the latent variable represents the
learner’s ability. Such models are suitable to analyze summative assessments, but
may be less useful for formative assessments, and for other learning systems, in
which one is interested in observing and manipulating learning. A unidimensional
measure of a person’s ability does not lend itself to inferring what aspects of the
material the individual has mastered or not mastered. For a formative assessment
to be successful, it needs a statistical model that is capable of identifying specific
aspects of the material particularly difficult for the learner.

Psychometric models suitable for analyzing formative assessments are cognitive
diagnostic models (CDMs). An integral aspect of the CDM is the Q-matrix (Embret-
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son, 1984; Tatsuoka, 1985). A Q-matrix is a mapping which skills or attributes are
tested by an item or which skills or attributes are required to successfully complete
an item on an assessment. In this way, it serves a similar function as the domain
models and knowledge maps of EDM/LAK.

21.3 Models for Learning Systems

Statistical models can be used to track and ascertain the learning that occurs in a
learning system. The models described in this section can be used to track both the
current state of student knowledge as well as the process of knowledge progression
(learning) by administering assessments to the learner. In the following section, the
models mentioned above that are utilized in learning system are described. The
two models including Bayesian Knowledge Tracing (BKT), the de-facto standard
approach used in intelligent tutoring systems (ITSs) and CDMs, a model suggested
by educational measurement research for (formative) assessments are discussed.
Concepts from both of these models are utilized by the ACTNext Educational
Companion App that is illustrated later in the chapter.

21.3.1 Overview of Bayesian Knowledge Tracing Used for
Learning

The first paper describing Bayesian Knowledge Tracing (BKT) was published in
1995 (Corbett & Anderson, 1995). Since then, this approach has been widely used
in the field of ITS. BKT uses a formalism of Hidden Markov Models (HMM)
(Levinson, Rabiner, & Sondhi, 1983) to model student learning. For every student-
skill combination, there is a separate BKT instance that relates an observed sequence
of successful/failed attempts to apply a skill (binary variable) to a hidden binary
variable capturing whether a student mastered this skill. One of BKT’s main goals
is to provide an estimate of mastery because mastery is a latent variable.

An illustration of a BKT model for a single skill is shown in Fig. 21.1. Here,
unobserved states of the skill mastery at various time slices are shown as empty
circles; observed performance nodes are shown as shaded circles. As per the
Markovian assumption, the current level of skill mastery depends only on the
previous state. Students’ performance depends only on the current state of skill
mastery.
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Fig. 21.1 An unrolled view
of a BKT model States
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The standard BKT model has the following parameters.

• p-init or p(L0) – is the probability the skill was mastered a priori.
• p-learn or p(T) – is the probability the skill will transition into the mastered state

after a practice attempt.
• p-forget or p(F) – is the probability that the skill will transition into the un-

mastered state after a practice attempt. Traditionally, p(F) is set to zero – there is
no forgetting in standard BKT.

• p-slip or p(S) – is the probability that a student fails to apply a mastered skill.
• p-guess or p(G) – is the probability that an un-mastered skill will be applied

correctly.

Given that it is assumed that the skill mastery is not forgotten, that is p(F) is set to
zero, there are four parameters for every student-skill combination in standard BKT.
In addition to the parameters described above, there are also two more parameters
that are frequently mentioned. First, the running estimate of the probability that
student has mastered the skill: p(L) or p-mastery. Second, the expected value of
student responses being correct: p-correct, or p(C). The parameters of the BKT
model are estimated using the EM algorithm or a brute force grid search. The BKT
model is described by Eqs. (21.1a), (21.1b), (21.1c), (21.1d) and (21.1e).

p (L1) = p (L0) (21.1a)

P (Lt+1|e = correct) = p (Lt ) · (1− p(S))
p (Lt ) · (1− p(S))+ (1− p (Lt )) · p(G) (21.1b)

P (Lt+1|e = wrong) = p (Lt ) · p(S)
p (Lt ) · p(S)+ (1− p (Lt )) · (1− p(G)) (21.1c)

p (Lt+1) = p (Lt+1|e)+ (1− p (Lt+1|e)) · p(T ) (21.1d)

p (Ct+1) = p (Lt ) · (1− p(S))+ (1− p (Lt )) · p(G) (21.1e)
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Equation (21.1a) sets the running estimate of the mastery to the prior in the
beginning. Equations (21.1b) and (21.1c) define conditional probability given
evidence (e) of student being right or wrong. Equation (21.1d) shows how to
update the running estimate of mastery using the conditional probability. Finally, Eq.
(21.1e) is a conversion of the running estimate of latent mastery into the probability
of a correct response on the next opportunity to apply the skill.

21.3.2 Overview of Traditional CDM for (Formative)
Assessment

One class of models used to identify mastery of skills/attributes in assessment
data are CDMs. CDMs are multivariate, discrete latent variable models developed
primarily to identify the mastery, or lack thereof, of skills (or more generically,
attributes) measured in a particular domain. Two features distinguish CDMs when
compared to traditional item response models, namely, the finer-grained nature of
the inferences that can be derived from the models, and the interpretability and
relevance of these inferences to the student learning process.

At its core, we use CDMs to summarize the relationship in the response vector
Xi = (Xi1, . . . , Xij, . . . , XiJ) using a lower dimensional discrete latent variable
Ai = (Ai1, . . . , Aik, . . . , AiK) where Xij represents the response of the ith
individual to the jth item and Aik is a discrete latent variable for individual i
for latent dimension k. Specifically, we use CDMs to set up the model P(Xi|Ai),
the conditional probability of observing Xi given Ai. By assuming conditional
independence, we can write this probability as given in Eq. (21.2),

P (Xi|Ai) =
J∏

j=1

P
(
Xij|Ai

)
(21.2)

where P(Xij|Ai) represents a particular CDM of the response of individual i to item
j. The specific form of the CDM depends on the assumptions we make regarding
how the elements of Ai interact to produce the probabilities of response Xij.

A wide range of CDMs have been proposed in the psychometric literature,
Chaps. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, and 13 in this volume cover many
of the more commonly applied CDMs. Although various ways of classification
exist, particularly for CDMs that involve binary attributes, these models can be
differentiated based on whether or not they assume a particular process that
underlies how the attributes interact with the item characteristics to produce the item
responses. CDMs that do model the interaction of attributes and item characteristics
are referred to as reduced, or specific CDMs; those that do not are referred to as
saturated or general CDMs. Examples of the former are the deterministic inputs,
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noisy “and” gate (DINA) (Haertel, 1989; Junker & Sijtsma, 2001; de la Torre,
2009) model, the deterministic input, noisy “or” gate (DINO) (Templin & Henson,
2006; Templin, 2016) model, the linear logistic model (LLM) (Hagenaars, 1993;
Maris, 1999), the reduced reparametrized unified model (rRUM) (Hartz, 2002;
Dibello, Roussos, & Stout, 2007), the additive-CDM (A-CDM) (de la Torre, 2011);
examples of the latter are the generalized DINA (G-DINA) (de la Torre, 2011)
model, the general diagnostic model (GDM) (von Davier, 2005), and the log-linear
CDM (LCDM) (Henson, Templin, & Willse, 2009). In addition to accommodating
a wider range of underlying processes, constraining general CDMs reduces them to
specific CDMs. There are advantages to using one type of CDM over the other. For
example, general CDMs require fewer assumptions, so they are more likely to fit the
data, however, they are also more like to exhibit identification issues. On the other
hand, reduced CDMs can be used with smaller sample sizes and provide for more
straightforward interpretation (Huebner, 2010).

In practice, instead of picking a general CDM or one particular reduced CDM,
a reasonable compromise is to consider using different CDMs for different items.
However, deciding a priori correct CDM to use for an item is a difficult, if not
thorny, undertaking. Rather, the task can be accomplished empirically once test
data become available. The Wald test (de la Torre, 2011; de la Torre & Lee, 2013)
is a statistical procedure that can be used to determine the appropriate item level
CDM. Compared to the likelihood ratio test, Akaike Information Criterion (AIC),
or Bayesian Information Criterion (BIC), which are used for test-level comparisons,
the Wald test is an item-level procedure that determines the best CDM for an item
by statistically comparing the fit of the G-DINA model with those of a number
of reduced CDMs. Consequently, the Wald test allows multiple CDMs to be used
within a single test simultaneously. Ma, Iaconangelo, and de la Torre (2016) have
shown that employing that Wald test to determine the most appropriate CDM for
each item can result in a higher classification accuracy compared to fitting a single
general or potentially incorrect reduced CDM to all items.

21.3.2.1 Q-Matrices for the CDM

An implicit, yet integral component of a CDM specification is the Q-matrix. The
jth row of the Q-matrix identifies which specific elements of Ai are involved in
answering item j. In typical CDM applications, Q-matrices are constructed by
domain experts. As such, Q-matrix construction involves some degree of sub-
jective judgment, resulting in potential misspecifications. These misspecifications
can affect the quality of item parameter estimates, and ultimately the examinee
classification accuracy (de la Torre, 2008; Rupp & Templin, 2008). For this reason,
expert-based Q-matrices need to be empirically validated to engender a greater
degree of confidence in the inferences derived from CDMs.
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21.3.2.2 Q-Matrix Validation

One empirical Q-matrix validation procedure that can be used with a wide class of
CDMs is the method based on the G-DINA discrimination index (GDI) proposed by
de la Torre and Chiu (2016). Given a provisional Q-matrix and item response data,
the procedure searches for the correct q-vector for each item. A q-vector is deemed
correct if it is the simplest q-vector and the proportion of variance accounted for
(PVAF) by the q-vector is high relative to the maximum GDI of the item. The mesa
plot of the GDIs, which combines quantitative and graphical GDI information, can
be used to complement the PVAF (de la Torre & Ma, 2016). Another approach to
Q-matrix validation using regularized ML can be found in Chap. 12 of this volume.

21.3.2.3 Q-Matrix Retrofitting

The optimal use of CDMs is in conjunction with cognitively diagnostic assessments
(i.e., assessments specifically designed using a CDM framework; de la Torre
& Minchen, 2014). However, for various reasons, some applications necessitate
retrofitting CDMs to existing test data. A number of challenges can arise from such
applications, particularly when the breadth of the domain is relatively wide. These
challenges include the attributes with coarse granularity (or equivalently, a large
number of the attributes), items of poor quality, the q-vectors lacking variability,
and the identifiability of model parameters under the validated or retrofitted Q-
matrix. When retrofitted data are involved, sufficient care needs to be taken to
ensure that a minimum examinee classification accuracy is attained for individual
attributes or attribute vectors. As likely would be the case, additional information
(e.g., extra test items, ancillary variables) that can supplement test data, at least for
some examinees, may be needed to ensure that every examinee is reliably classified
and any subsequent actions that would be taken are sufficiently warranted. These
challenges are discussed in Haberman and von Davier (2006) and von Davier and
Haberman (2014). The issue of identifiability is discussed in detail in Zhang (2014).

21.4 Applications

21.4.1 ACTNext Educational Companion App

A promising trend in learning systems is the move from a generalized, dis-
crete, fixed time/place delivery method towards a personalized, continuous, mobile
anytime/anywhere approach. Universities, school classrooms, and educational tech-
nology companies are offering mobile solutions that allow students to consume
lecture materials, hold learning sessions, and take tests – all from the palm of their
hand. However, many of these solutions are simply mobile-friendly applications of

http://dx.doi.org/10.1007/978-3-030-05584-4_12
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web portals providing access to data stored in backend school/institution systems
(grade books, learning management systems, etc.). Mobile devices hold the promise
for richer, intelligent interactions that can be tailored adaptively to each learner.
ACTNext, an innovative research arm of ACT, Inc. is working on a new mobile
app called the Educational Companion App (ECA) to change that status quo.
ECA makes the promise to deliver an integrated, comprehensive mobile learning
experience. Students can review a fused perspective of their abilities drawn from a
range of inputs including formative and high-stakes test results, social-emotional
assessments, skill practice, and targeted quizzes. These results are seamlessly
linked to a suite of Skill Up activities and open educational resources (OER)
from ACT’s OpenEd that allows students to practice the skills they have yet to
master. The ECA leverages the ACT Holistic Framework (HF; Camara, O’Connor,
Mattern, & Hanson, 2015) – a publically released, hierarchical set of skills and skill
areas that covers all aspects of development: cognitive, emotional, cross-cutting
and navigational. The ECA is in the pilot stage, and the overarching goal is to
demonstrate an advanced adaptive technology that could drive significant scholastic
improvement for the students. The ECA framework consists of six functional
modules and is described in Fig. 21.2.

1. The Learning Analytics Platform (LEAP) is a data storage repository that holds
a vast amount of student/learner data from a variety of platforms in its native
format until it is needed.

2. LEAP leverages student/learner metadata to perform data matching. To deliver
feedback to individual learners, we identify and connect all the data we have
about them. Doing this effectively is a fundamental capability for the ACT
ecosystem of products and services.

3. A diagnostic model based on a CDM is developed to identify a student’s areas
of weakness in the HF based on their available data in LEAP (Chopade et al.,
2017; von Davier et al., 2017).

4. A feedback model is constructed on top of the diagnostic model. The feedback
model uses information provided by the diagnostic model to provide learners
with actionable feedback: What do they do next? For example, the feedback
model provides a user with a Skill Up activity that would allow the user to

Fig. 21.2 ECA framework. (Chopade et al., 2017; von Davier et al., 2017)
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practice the skills they have yet to master. This work is built directly on the
psychometric and statistical development of the diagnostic model and on the HF.

5. A feedback dashboard provides users with the readable/understandable output.
The dashboard appears in various services, platforms, modes, or apps as shown
in Fig. 21.3, and it will go beyond mere reporting to include new information
and perspectives on what an individual might explore or do next. Good user
experience design is critical to this module because the learner must stay engaged
and revisit as often as they need to for the app to be effective and help the student
achieve mastery.

6. Link feedback to ACT resources. The OpenEd platform is an excellent basis
for this because the content is well curated, and we can link the results of our
feedback model to the appropriate resources. To our knowledge, only ACT is
able to provide this level of integration.

7. ACTNext ECA Mobile Interface. This app demonstrates an advanced adaptive
technology that could drive significant scholastic improvement for students using
it. Figure 21.3 shows several ECA screenshots.

Fig. 21.3 ECA screenshots. (Chopade et al., 2017; von Davier et al., 2017)
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The ECA faced three major research challenges which are described below. The
first challenge was how to leverage a large bank of assessment data which has been
tagged and associated with multiple sets of attributes. This is the mapping problem.
The second challenge, after mapping and aligning the data properly, was designing a
model capable of drawing inference from the data available to the ECA about users’
skills and attributes. The solution utilized by the ECA is an extension of the standard
IRT model which takes into account concepts from CDMs. The final challenge was
how to validate this model. To validate the approach taken by the ECA we performed
an intensive analysis of the data using the standard CDM approach.

21.4.2 Data

The ECA leverages rich test item metadata and student test-taking data. Test-taking
data are comprised of tens of thousands of student test attempts across a set of testing
solutions available from several testing instruments. The volume of test-taking data
allows a large sample of students to be leveraged to build the skill-diagnostic model
for the app.

Test item metadata comes in the form of indexing by attributes of, ideally,
a single overarching taxonomy of attributes that covers the full spectrum of the
knowledge students would be tested on. The HF is such a taxonomy that, in addition
to accounting for traditional competency-level constructs, identifies non-cognitive
and behavioral constructs (e.g., socio-emotional). This taxonomy allows for the
construction of a Q-matrix for the items with skills/attributes corresponding to the
HF taxonomy.

The HF is still relatively new and the metadata data that is most commonly
available for the old items is from a legacy taxonomy that is a less fine-grained
approach for indexing test items. To make HF indexing more widely available,
three lines of activities were set up. First, some test items were manually indexed
with HF attributes. Second, a crosswalk document, connecting the older legacy
taxonomy to new HF taxonomy, was created. Third, the doubly-indexed test items
and the crosswalk document were used to create a machine learning solution to
automatically map the legacy taxonomy attributes to the HF attributes.

21.4.3 Mapping Problem

We formulated the mapping from the legacy taxonomy to HF as a bipartite mapping
problem. Namely, we have graph G = (U, V, E), where nodes U are all possible
attributes from the legacy taxonomy, nodes V are all possible attributes from the
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HF, and E are hyper-arcs (arcs that connect n nodes to m nodes, rather than 1 to 1
node) connecting one set of vertices from V and one set of vertices from U, i.e., the
ith edge, ei is of the form ei =

(
vei ,uei

)
, where vei is the set of legacy taxonomy

attributes that are mapped via edge ei to uei which is the set of all HF attributes
mapped to by edge ei Here, i is the index of all edges that runs from 1 to I, where I
is the number of all edges.

The attributes from the HF and legacy taxonomy are structured hierarchically. For
example, a legacy taxonomy attribute ADA-MAT-BOM denotes Advanced algebra
➔ Matrices ➔ Basic operations on matrices. The hierarchical nature of the attribute
is coded in three nodes denoting ADA, ADA-MAT, and ADA-MAT-BOM – all three
levels of the attribute hierarchy. The HF also has hierarchical attributes that are
treated the same way.

As a result, we need to solve the equation Y = F(X). Here, Y is a matrix of 0 s
and 1 s of the size I × � U� that codes ui parts of the hyper-arcs (from the HF), X
is a matrix of 0 s and 1 s of the size I × � V � that codes vi parts of the hyper-arcs
(legacy attribute taxonomy), where I is the number of all cases from the training
data (doubly-coded items and crosswalk document specifications), |U| and |V| is
the total number of HF and legacy attributes, respectively. Every ith row of Y has
1’s in positions denoting the elements of the HF attribute that are associated with the
elements of the legacy attribute taxonomy specified by the 1’s in the ith of matrix X.

The mapping function F is what we wanted to “learn.” From the available
machine learning approaches, we chose three: multinomial logistic regression (mlr),
Support Vector Machines (SVM), and k-nearest neighbors. We used the mlr (Bischl
et al., 2016) package from the CRAN R (R Core Team, 2017) statistical library.
All three models predict a single binary variable (such as a HF tag), so, to achieve
prediction of multiple binary variables (the whole pallet of HF tags) a form of multi-
label classifier called a binary multi-label relevance learner was constructed using
standard mlr functionality (Tsoumakas & Katakis, 2006). A binary relevance multi-
label relevance learner creates multiple binary classifiers one for each different
attribute in a taxonomy. It transforms the original data set of taxons U into |U|
data sets that contain all examples of the original data set. The accuracy of the joint
multi-label classifier is estimated as an average of the accuracies of each individual
binary classifier.

The accuracy of the multinomial regression achieved 91.2% correct classification
of training data. The accuracy of Support Vector Machine mapping was a little lower
and reached 87.9%, and finally, k-nearest neighbors achieved the highest mapping
accuracy of 93.8% with respect to correctly classification of the cases.

Due to the small size of the available doubly-coded set of items and the severely
skewed density of the attribute counts the Y and X matrices were very sparse. As
a result, we could not cross-validate our fitting models and our current models are
overly specific (and could be slightly overfit). More work is being conducted at the
time of writing this chapter by adding more doubly coded items.
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21.4.4 Linear Logistic Test Model

To convert student test-taking records into student proficiency records, we devised
a linear logistic test model (LLTM) by extending the Rasch model (Rasch, 1960).
The formulation of the model is given below by Eqs. (21.3) and (21.4).

mij = 1+ θi + βj +
K∑

k=1

qjk · wk (21.3)

pij = 1

1+ e−mij (21.4)

The model captures three classes of parameters: unidimensional student ability
parameter θ i, item difficulty (we defined it as item easiness) β j, and wk skill (HF
tag) easiness; also qjk captures the elements of the Q-matrix – the tagging of every
assessment item to a set of skills. The probability of student i correctly responding to
item j is expressed as pij. The model is set up as a logistic regression with dependent
variable mij being the logit-transformation on student’s binary (Bernoulli) response.
Student abilities, item and skill easiness (a measure of how easy an item requiring
a particular skill is relative to student ability) are treated as random factors based
on the fact that they are sampled from the universe of possible conceptualizations
of skills and items and the universe of available students where θ i∼N(0, σθ ),
β j∼N(0, σβ ), and wk∼N(0, σw). We are continuing our work in this direction to
increase the variance of student performance accounted for. In particular, we are
working on extending the conceptualization of the skill vocabulary.

21.4.5 Utilizing CDMs to Validate the ECA

This section examines the extent to which cognitive diagnostic and test models can
be used, in conjunction with large-scale summative tests that students have taken
in the past, to diagnostically inform learning and assessment systems. We look
at two components of these systems, namely, attribute and Q-matrix development
and the CDM model selection process, as they pertain to a large scale mathematics
assessment. This work serves as validation of the linear logistic test model used
in the ECA. This project is still a work in progress, and here we describe the
considerations made thus far.

As mentioned in the previous section, the Q-matrix, which maps the test items
and skills, is an important component of CDM formulation because they determine
the integrity of any subsequent actions. The Q-matrix development process for four
forms of the large-scale mathematics assessment test started with the recognition
that the test forms are aligned with the HF and CCSS. Thus, content experts defined
attributes and developed Q-matrices that aligned with the HF and the standards. In
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doing so, information provided to each student based on his/her performance on the
test can be readily linked to available resources (i.e., the OpenEd platform), which
makes the feedback directly actionable. To enhance the reliability and validity of
the scores derived from the large-scale assessment test, the Q-matrices developed
by experts were empirically validated; moreover, the most appropriate skills for
each item was also selected. Below are the details of the Q-matrix development and
validation, and model selection processes.

The Q-matrices for the math test were developed by content experts. Four test
forms each with 60 items were considered in this study. Twenty-four attributes were
defined across the three domains: ten skills for Operations, Algebra, & Functions
(OAF); five skills for Geometry (G); and nine skills for Number (N). Due to a
large number of attributes, each domain was analyzed separately. The domain-
specific skills in a target domain were the focus of the analysis; irrelevant skills were
collapsed into coarser nuisance attributes. The total numbers of target and nuisance
attributes for OAF, G and N were 13, 8, and 12, respectively. The definitions of the
target and nuisance attributes are given in Table 21.1.

The number of times that each attribute was measured across four forms and
across three domains is shown in Fig. 21.4. Ignoring the nuisance attributes (i.e.,
Attributes 11–13 for Domain 1, Attribute 6–8 for Domain 2, and Attributes 10–12
for Domain 3), it can be observed that the number of times the target attributes were
measured are quite disparate: 7–24 times for Attributes in Domain 1, 3–18 times for
attributes in Domain 2, and 5–24 times for attributes in Domain 3. Cross-tabulations
of the number of the target against the number of nuisance attributes measured are
given in Tables 21.2, 21.3, and 21.4 for Domains 1–3, respectively. Most of the items
measure one to three target attributes and zero or one nuisance attributes in Domain
1, one or two target attributes and one or two nuisance attributes in Domain 2, and
one to three target attributes and zero or one nuisance attribute in Domain 3.

It can be gleaned from Tables 21.2, 21.3, and 21.4 that, for a particular target
domain, not all 60 items were relevant in that some items solely measure nuisance
attributes. The number of relevant items averaged across four test forms for each
domain was approximately 54. By computing the row totals of Tables 21.2, 21.3,
and 21.4, we can also examine the distribution of the number of target attributes
required by each of the items. Across the three domains, the majority of the items
measured one to three attributes; specifically, 91% of the items in Domain 1 and
95% of the items in Domain 3.

The G-DINA model (de la Torre, 2011; Ma & de la Torre, 2017) was fit to
response data using a subset of N = 5000 examinees. A Q-matrix validation was
then conducted using the data-driven approach based on the GDI and mesa plot. A
mesa plot shows the PVAF for some possible q-vectors for a given item. It always
starts with all-zero q-vector. The cutoff for a q-vector to be considered appropriate
was set at PVAF = .85. The validation results given in Table 21.5 show that the
attribute-wise agreement between the provisional and suggested Q-matrices across
all test forms and domains was very high: the minimum was 93% and the average
was 95%. After validating the Q-matrix using GDI, the attribute-wise agreements



21 Application of Cognitive Diagnostic Models to Learning and Assessment Systems 453

Ta
bl

e
21

.1
A

ttr
ib

ut
es

de
fin

ed
fo

r
th

re
e

do
m

ai
ns

D
om

ai
n

O
pe

ra
tio

ns
,A

lg
eb

ra
,&

Fu
nc

tio
ns

(O
A

F)
G

eo
m

et
ry

(G
)

N
um

be
r

(N
)

Ta
rg

et
at

tr
ib

ut
es

A
dd

iti
on

&
Su

bt
ra

ct
io

n,
M

ul
tip

lic
at

io
n

&
D

iv
is

io
n

w
ith

W
ho

le
N

um
be

rs
(A

SM
D

.W
N

)
2-

D
an

d
3-

D
Fi

gu
re

s
&

T
he

ir
Pr

op
er

tie
s

–
2-

D
im

en
si

on
al

Fi
gu

re
s

an
d

T
he

ir
Pr

op
er

tie
s;

Pl
an

es
,P

oi
nt

s,
L

in
es

,a
nd

A
ng

le
s;

C
ir

cl
es

;
3-

D
im

en
si

on
al

Fi
gu

re
s

(P
F.

2D
FP

,P
F.

PP
L

A
,

PF
.C

,3
D

F)

U
nd

er
st

an
di

ng
Si

gn
ed

N
um

be
rs

,O
pe

ra
tio

ns
w

ith
Si

gn
ed

N
um

be
rs

(N
.S

N
,

O
A

F.
A

SM
D

.S
N

)

A
dd

iti
on

&
Su

bt
ra

ct
io

n,
M

ul
tip

lic
at

io
n

&
D

iv
is

io
n

w
ith

Fr
ac

tio
ns

an
d

D
ec

im
al

s
(A

SM
D

.F
,D

)

Pl
an

e
Fi

gu
re

s
–

C
oo

rd
in

at
e

Pl
an

e
(P

F.
C

P)
U

nd
er

st
an

di
ng

R
ea

l&
C

om
pl

ex
N

um
be

rs
,

O
pe

ra
tio

ns
w

ith
R

ea
l&

C
om

pl
ex

N
um

be
rs

(N
.R

C
N

,O
A

F.
O

R
C

N
)

A
dd

iti
on

&
Su

bt
ra

ct
io

n,
M

ul
tip

lic
at

io
n

&
D

iv
is

io
n

w
ith

Si
gn

ed
N

um
be

rs
(A

SM
D

.S
N

)
Pl

an
e

Fi
gu

re
s

–
Pe

ri
m

et
er

,A
re

a
(P

F.
P,

PF
.A

)
A

dd
iti

on
&

Su
bt

ra
ct

io
n,

M
ul

tip
lic

at
io

n
&

D
iv

is
io

n
w

ith
W

ho
le

N
um

be
rs

(A
SM

D
.W

N
)

M
ul

tis
te

p
Pr

ob
le

m
(M

P)
C

on
gr

ue
nc

e,
Si

m
ila

ri
ty

,a
nd

T
ra

ns
fo

rm
at

io
ns

;
R

ig
ht

T
ri

an
gl

es
;T

ri
go

no
m

et
ry

(C
ST

,R
T,

T
)

A
dd

iti
on

&
Su

bt
ra

ct
io

n,
M

ul
tip

lic
at

io
n

&
D

iv
is

io
n

w
ith

Fr
ac

tio
ns

an
d

D
ec

im
al

s
(A

SM
D

.F
,D

)
R

at
io

&
Pr

op
or

tio
n

(R
P)

O
th

er
G

eo
m

et
ry

do
m

ai
n

to
pi

cs
no

ta
lr

ea
dy

in
cl

ud
ed

in
th

e
at

tr
ib

ut
es

(G
eo

m
et

ry
ot

he
r)

M
ul

tis
te

p
Pr

ob
le

m
(M

P)

E
xp

re
ss

io
ns

(E
X

)
E

xp
re

ss
io

ns
(E

X
)

Fu
nc

tio
n

C
on

ce
pt

s
(F

C
)

Fu
nc

tio
n

C
on

ce
pt

s
(F

C
)

E
qu

at
io

ns
&

In
eq

ua
lit

ie
s

(E
I)

E
qu

at
io

ns
&

In
eq

ua
lit

ie
s

(E
I)

O
pe

ra
tio

ns
w

ith
R

ea
la

nd
C

om
pl

ex
N

um
be

rs
(O

R
C

N
)

O
th

er
N

um
be

r
do

m
ai

n
to

pi
cs

no
ta

lr
ea

dy
in

cl
ud

ed
in

th
e

at
tr

ib
ut

es
(N

um
be

r
ot

he
r)

O
th

er
O

pe
ra

tio
ns

,A
lg

eb
ra

,&
Fu

nc
tio

ns
do

m
ai

n
to

pi
cs

no
ta

lr
ea

dy
in

cl
ud

ed
in

th
e

at
tr

ib
ut

es
(O

A
F

ot
he

r)
N

ui
sa

nc
e

at
tr

ib
ut

es
N

um
be

r
do

m
ai

n
(N

um
be

r)
N

um
be

r
do

m
ai

n
(N

um
be

r)
O

th
er

O
pe

ra
tio

ns
,A

lg
eb

ra
,&

Fu
nc

tio
ns

do
m

ai
n

to
pi

cs
no

ta
lr

ea
dy

in
cl

ud
ed

in
th

e
at

tr
ib

ut
es

(O
A

F
ot

he
r)

G
eo

m
et

ry
do

m
ai

n
(G

eo
m

et
ry

)
O

pe
ra

tio
ns

,A
lg

eb
ra

,&
Fu

nc
tio

ns
do

m
ai

n
(O

A
F)

G
eo

m
et

ry
do

m
ai

n
(G

eo
m

et
ry

)

St
at

is
tic

s
&

Pr
ob

ab
ili

ty
do

m
ai

n
(S

TA
T

PR
B

)
St

at
is

tic
s

&
Pr

ob
ab

ili
ty

do
m

ai
n

(S
TA

T
PR

B
)

St
at

is
tic

s
&

Pr
ob

ab
ili

ty
do

m
ai

n
(S

TA
T

PR
B

)



454 B. Deonovic et al.

Att12

20

T
im

es
 M

ea
su

re
d

T
im

es
 M

ea
su

re
d

T
im

es
 M

ea
su

re
d

10

0

53.75
16.5

12.25
9.25
8.25
5.75

4
2

20

10

0

Att6 Att5 Att1 Att2 Att4 Att8 Att3 Att7

Att1 Att10 Att4 Att8 Att6 Att11
Domain 1 Attributes

Domain 2 Attributes

Domain 3 Attributes

Att3 Att2 Att5 Att7 Att9 Att13

Att11 Att3 Att5 Att8 Att1 Att10 Att6 Att2 Att4 Att7 Att12 Att9

Fig. 21.4 Frequency that attributes are measured by items for three domains

Table 21.2 Cross table of
number of target and nuisance
attributes, domain 1

# Nuisance attributes
None One Two Three

# Target attributes None 0 19 5 1
One 14 43 4 0
Two 20 41 6 0
Three 32 30 6 0
Four 5 7 5 0
Five 1 0 1 0

Table 21.3 Cross table of
number of target and nuisance
attributes, domain 2

# Nuisance attributes
None One Two Three

# Target attributes None 0 74 58 1
One 10 50 14 0
Two 6 18 6 0
Three 1 1 1 0

Table 21.4 Cross table of
number of target and nuisance
attributes, domain 3

# Nuisance attributes
None One Two Three

# Target attributes None 0 22 2 0
One 14 40 9 0
Two 33 49 11 1
Three 30 17 2 0
Four 5 4 1 0
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Table 21.5 Percent attribute-wise agreement between provisional and suggested Q-matrices
across domains and test forms

OAF G N
Form 1 2 3 4 1 2 3 4 1 2 3 4

Agreement 93 97 97 98 94 94 94 95 95 94 96 97

Table 21.6 Models selected by the Wald test for the three domains – Form A

CDM
Domain G-DINA DINA DINO LLM rRUM A-CDM

OAF 26 2 0 10 11 4
G 14 3 0 15 6 4
N 28 3 1 10 9 1

across all test forms and domains reach 95% in average, so the suggested Q-matrices
are deemed to be reliable.

The Wald test was used in conducting item-level comparisons of the G-DINA
model and a number of reduced CDMs, namely, the DINA model, DINO model,
LLM, rRUM, and A-CDM, to find the optimal set of CDMs for a given test. The
models selected for each domain are given in Table 21.6.

Comparing three domains (OAF, G, and N) on math test form A, as shown in
Table 21.6, we found the G-DINA model was selected as the best model most
frequently, especially in Domain 1: OAF and Domain 3: N. There are 10 target
attributes and 3 nuisance attributes in Domain 1. Across four forms of tests,
approximately 26 items favor the G-DINA model, 10 items favor LLM and 11
items favor rRUM. Note that, some reduced models were also selected frequently
including LLM and rRUM. All of the above models relax the constraint of fixing the
number of latent classes that an item could distinguish into only two latent classes
to different extents. Finally, few items were suggested to be DINA, DINO or A-
CDM. Similar to the results from Domain 1, three models: the G-DINA model,
LLM, and rRUM are selected as the three best models for most of the items for
Domain 2:G. The A-CDM and the DINA model are selected by fewer items. Again,
for Domain 3: N, the G-DINA model with LLM and rRUM are selected as the best
models most frequently, and the A-CDM and the DINA model are selected less
frequently. Interestingly, we did find only one item that favored the DINO model
in Form A. The DINO model also assumes a restricted number of latent classes.
Besides it also assumes mastering one of the required attributes suffice to achieve
the highest probability of success.

As shown in Table 21.5, results showed the suggested Q-matrices, and the
provisional Q-matrices have approximately 95% element-wise agreement rate
(EAR) and 76% vector-wise agreement rate (VAR) across all forms and options,
which provides evidence to the construct validity of the Q-matrices developed by
content experts.
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21.5 Discussion

In this chapter, we discussed similarities and differences between the learning
systems and assessments and described the traditional models that have been
used by different research communities to identify the gaps in the students’
knowledge. We emphasized the similarities of the Q-matrix used in CDMs and
the skill/knowledge components from the BKT. We also discussed briefly the role
of domain modeling (attributes, learning progressions, learning maps, knowledge
components) and students’ skill modeling. In doing so, we attempted to bring the
psychometric and EDM/LAK literature together.

In our application, the ACTNext Educational Companion, we applied both
classes of methodologies, the CDMs, and the EDM-inspired models. In this chapter,
we reported some of the preliminary results from both approaches. The ML
approach of matching taxonomies seems promising, mainly because it can handle
multiple test forms and large datasets simultaneously. Nevertheless, more work is
needed to validate the approach. The CDM works well, and we validated it; however,
it remains an open question on how to create an automatic CDM that can be scaled-
up across (parallel) test forms and very large data sets.

What we illustrated here is an example of computational psychometrics (CP),
where traditional psychometric models are blended with machine learning algo-
rithms (see von Davier, 2017). In future work, we will focus on validation and
scalability of both methodologies. We will also aim for a better integration of the
various approaches.
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Glossary

A-CDM The additive-CDM
ADA-MAT-BOM Algebra-Matrices-Basic operations on matrices.
AIC Akaike Information Criterion
BIC Bayesian Information Criterion
BKT Bayesian Knowledge Tracing
CCSS Common Core State Standards
CDM Cognitive Diagnostic Models
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CP Computational Psychometrics
DINA The deterministic inputs, noisy “and” gate
DINO The deterministic input, noisy “or” gate
DM Data Mining
EAR Element-wise agreement rate
ECA Educational Companion App
EDM Educational Data Mining
EM Expectation Maximization
G Geometry
G-DINA The generalized DINA
GDI G-DINA discrimination index
GDM The general diagnostic model
HF The ACT Holistic Framework
HMM Hidden Markov Model
IRT Item Response Theory
ITS Intelligent Tutoring System
KC Knowledge Component
KLI The Knowledge-learning-instruction
LAK Learning Analytics & Knowledge
LAS Learning at Scale
LCDM The log-linear CDM
LEAP The Learning Analytics Platform
LLM The log-linear model
LLTM Linear Logistic Test Model
ML Machine Learning
NGSS Next Generation Science Standards
NRC The National Research Council
OAF Operations, Algebra, & Functions
OCW Open Courseware
OER Open Education Resources
OpenEd Open educational resources (OER) from ACT’s OpenEd that

allows students to practice the skills they have yet to master.
PFA Performance Factors Analysis
PVAF The proportion of variance accounted for
Q-matrix A Q-matrix is a mapping which identifies which skills or

attributes are tested by an item or which skills or attributes are
required to successfully complete an item on an assessment.

rRUM The reduced reparametrized unified model
SRL Self-regulated Learning
VAR Vector-wise agreement rate
1PL One-parameter Logistic Model
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Chapter 22
CDMs in Vocational Education:
Assessment and Usage of Diagnostic
Problem-Solving Strategies in Car
Mechatronics

Stephan Abele and Matthias von Davier

Abstract The aim of this chapter is to use psychometric models including DCMs
to assess diagnostic problem-solving strategies and to investigate the usage of these
strategies in car mechatronics. The present study not only advances research on the
strategies’ assessment, but also informs professional and vocational education. From
the educational perspective, it is not only important to know how to assess diagnostic
problem-solving strategies but also to gather information about the strategies’ usage.
Such knowledge helps teaching when and under which conditions the strategies are
applicable.

22.1 Introduction

The aim of this chapter is to use psychometric models including DCMs to assess
diagnostic problem-solving strategies and to investigate the usage of these strategies
in car mechatronics. The present study not only advances research on the strategies’
assessment, but also informs professional and vocational education. From the
educational perspective, it is not only important to know how to assess diagnostic
problem-solving strategies but also to gather information about the strategies’ usage.
Such knowledge helps teaching when and under which conditions the strategies are
applicable.
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Diagnostic problem-solving strategies are employed to solve diagnosis problems.
Diagnosis problems refer to situations in which causes of undesired states (e.g.,
diseases or machine defects) must be identified. Solving diagnosis problems is
relevant in many professional and vocational domains: Faced with a syndrome of
symptoms physicians must find the underlying cause or disease; teachers must find
reasons for observed learning difficulties to facilitate learning progress; technicians
must find causes of malfunctioning machines, and so forth. Most of the research
on diagnostic problem solving has been conducted in medical (e.g., Croskerry,
2009; Elstein, Shulman, & Sprafka, 1990; Norman, 2005) and technical domains
(e.g., mechanics or electronics; Hoc & Amalberti, 1995; Rasmussen, 1993; Rouse,
1983). In these domains, researchers have often used the terms “clinical reasoning”
(Kassirer, Wong, & Kopelman, 2010) or “troubleshooting” (Perez, 2012) instead
of “diagnostic problem solving” and also consider treatment options (e.g., repair
in technical domains). The emphasis, however, typically is on diagnostic problem
solving, that is on finding the cause(s) of undesired states (Jonassen, 2011, p. 78).
This study investigates diagnostic problem solving in a technical domain, more
specifically, in the domain of car mechatronics, but also draws on research from
other professional and vocational domains where diagnostic problem solving is
involved. Car mechatronics is a multidisciplinary field integrating mechanical and
electrical technologies as well as computer and information systems relevant to
troubleshooting and other tasks of auto technicians (Baethge & Arends, 2009).

Diagnostic problem-solving strategies related to car mechatronics are taught
in vocational education settings. Vocational education has traditionally played an
important role in many European countries and in Australia (Billett, 2011), due to its
social impact (e.g., on the national employment rate) and its economic significance,
to name but a few reasons. In the USA, vocational education has recently started
to gain attention of policy-makers and the public (Lerman, 2016). The relevance
of vocational education is also documented by the recent study of Hanushek,
Schwerdt, Woessmann, and Zhang (2017), who compared the vocational education
system to the general education system, using an interesting yet limited sample
of countries and focusing on a specific aspect of educational systems: their labor-
market outcomes.

With respect to the assessment of diagnostic problem-solving strategies, the
available literature clearly shows some challenges and research desiderata: There is
no or at least little consensus on how to operationalize diagnostic problem-solving
strategies (Konradt, 1995; Schaper, Hochholdinger, & Sonntag, 2004) and there is
little research on how to distinguish between different types of diagnostic problem-
solving strategies based on their empirical correlates (i.e., observable diagnostic
problem-solving behavior). As will be discussed later, diagnostic problem-solving
strategies refer to different approaches that regulate the diagnostic problem-solving
process. Consequently, any assessment of these strategies requires diagnosticians’
process data before the advent of computer-based assessments commonly collected
with think-aloud protocols or interviews (Konradt, 1995). These procedures are
time-consuming, which often leads to small sample studies and hence findings
that are difficult to generalize. In this assessment context, computer-generated
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log-file data could be particularly beneficial: Such process data can be gathered
automatically with computer-based assessments and can subsequently be analyzed
applying diagnostic classification models.

In the following, we clarify the term “diagnostic problem-solving strategy”,
delineate the assessment framework and conceptualize the diagnostic problem-
solving strategies under investigation. We then discuss the usage of the strategies
and introduce research hypotheses regarding the strategies’ assessment and usage.
Afterwards, we present the results of our empirical study. Finally, we evaluate the
research hypotheses relative to our main findings and discuss implications as well as
limitations of our study. To test the research hypotheses, a sample of car mechatronic
apprentices was drawn from vocational schools and each member was confronted
with diagnosis problems of car mechatronics in an authentic (i.e., highly realistic)
computer-based assessment.

22.2 Assessment of the Diagnostic Problem-Solving
Strategies

22.2.1 Focus: Knowledge-Based Diagnostic Strategies

The focus here is on diagnostic problem-solving strategies that require domain-
specific knowledge. Van Merriënboer (2013) differentiates between weak and
knowledge-based methods to solve problems. Weak methods such as the trial-
and-error strategy, the means-ends-analysis strategy or the heuristic search strategy
can be applied to unfamiliar types of problems and domains as they do not rely
on domain-specific knowledge. In contrast, knowledge-based strategies are closely
related to domain-specific knowledge. Research suggests that diagnostic problem-
solving outcomes depend on many factors in vocational contexts (Abele, 2014).
With respect to individual characteristics, domain-specific knowledge, however, has
turned out to be especially important for successful diagnostic problem solving
(Boshuizen & Schmidt, 2008), although general mental abilities (e.g., intelligence
and metacognition, Jonassen, 2011, p. 78 ff.), self-regulation, motivation, interest
(Rausch, Seifried, Wuttke, Kögler, & Brandt, 2016) and emotion (Sembill, Rausch,
& Kögler, 2013) appear to be relevant as well.

Knowledge-based diagnostic strategies imply several problem-solving activities.
Imagine a situation in which a diagnostician observes that the car’s “check
engine” light is on. He hypothesizes (makes an “assumption”) that a defective fuel
temperature sensor is responsible for this symptom, knowing this is one of many
possible causes of the light being on. He decides to test the sensor and obtains an
abnormal test result. Drawing on this result, he concludes that the fuel temperature
sensor is broken and that the broken sensor causes the symptom. This simple
example shows that the solution of a diagnosis problem is in general the result
of a sequence of several activities. Some of these activities are overt and directly
observable (e.g., the sensor test) and are called diagnostic problem-solving behavior;
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some of these activities are not directly observable and are called mental problem-
solving activities. Individuals use mental problem-solving activities and observed
problem-solving behaviors to manage the diagnostic problem-solving process.

The diagnostic problem-solving process starts with the perception of the diag-
nosis problem and ends with individuals offering either the (correct or incorrect)
problem’s solution or giving up. Abele (2017) presents a theory of the diagnostic
problem-solving process and distinguishes between the following sub-processes:
(1) representing information, (2) formulating diagnostic hypotheses, (3) testing
diagnostic hypotheses, and (4) evaluating diagnostic hypotheses.

(1) To begin with, diagnosticians mentally represent problem-related information
(e.g., an active “check engine” light). (2) Using this information, they formulate
diagnostic hypotheses. A diagnostic hypothesis is an assumption of a potential
but untested cause of the undesired state (e.g., a defective fuel temperature sensor
might cause the “check engine” light to come on). (3) In order to test diagnostic
hypotheses, diagnosticians collect relevant evidence (e.g., by testing the fuel
temperature sensor). (4) Afterwards, the diagnostic hypotheses can be evaluated
using the evidence from the tests. In case of confirming evidence, the hypothesis can
be accepted, and the diagnostician can specify the problem’s solution. If evidence
refutes the hypothesis, problem solvers must develop and test additional diagnostic
hypotheses and so forth. Real diagnostic problem-solving processes can deviate
from this ideal chronological sequence, but it seems reasonable to suppose that
the four sub-processes reflect main requirements of diagnostic problem solving in
vocational and professional domains (Abele, 2017).

Diagnosticians use different knowledge-based diagnostic strategies to solve
diagnosis problems (Konradt, 1995). The following knowledge-based diagnostic
strategies are considered here and discussed in the next sections: the computer-
based strategy, the case-based strategy, and the mental-model-based strategy (in
short: model-based strategy). The common ground of these strategies is that
individuals apply them to regulate the diagnostic-problem solving process. That is,
diagnosticians apply knowledge-based diagnostic strategies to represent problem-
related information as well as to formulate, test, and evaluate diagnostic hypotheses.
A difference between the knowledge-based diagnostic strategies is that they are
associated with different mental problem-solving activities and observable diag-
nostic problem-solving behavior. These differences facilitate the assessment and
empirical distinction of the strategies.

22.2.2 Assessment Framework

This paper provides a first step toward a theory-based framework to assess diag-
nostic problem-solving strategies using psychometric models. The assessment
framework comprises two steps: First, idiosyncratic patterns of the diagnostic
problem-solving strategies are defined theoretically. Second, the patterns are used
as a search template to scan the log-file data and to find out if and which
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individuals showed the respective patterns (i.e., strategies). A central assumption
of this framework is that knowledge-based diagnostic strategies can be inferred
from patterns of observable problem-solving behavior represented in computer-
generated log files. Such log files usually include fine grained records over time
of interactions between diagnosticians and the computer-based assessment (Fig.
22.1). Computer-generated log-files can contain many hundreds or more records
of human-computer interactions that can be linked to diagnostic problem-solving
behavior per individual and diagnosis problem (Abele, 2017). Research on the
analysis of computer-generated log files has recently made significant progress
(Goldhammer, Kröhne, Keßel, Senkbeil, & Ihme, 2014; Greiff, Wüstenberg, &
Avvisati, 2015; He & von Davier, 2015, 2016) but has also clearly shown that log-
file analyses benefit from focusing on a selection of log-file entries. It is an open
question which entries should be included.

The following problem-solving behavior is included here: critical test behavior
and critical information behavior. These behaviors turned out to correlate with the
problem-solving success and thus are called “critical” (Abele, 2017). To identify
the critical test behavior and critical information behavior, the following three-step
procedure must be executed: (1) identification of critical diagnostic hypotheses; (2)

Fig. 22.1 Example of a log file showing an individual’s problem-solving behavior exhibited
during diagnostic problem solving in the domain of car mechatronics; each line stands for a specific
observed problem-solving behavior
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using these hypotheses to identify critical information and critical tests; (3) using
the critical information and critical tests to identify the critical information behavior
and the critical test behavior.

(1) Critical diagnostic hypotheses provide potential causes of undesired observed
states that makes sense from a substantive viewpoint and in terms of a specific
diagnosis problem. For example, regarding the “check engine” light coming on,
it makes sense to hypothesize a broken fuel temperature sensor causes the defect.
In contrast, it does not make sense to suppose an empty fuel tank is responsible
for this symptom. Whereas the first assumption represents a critical diagnostic
hypothesis, the second hypothesis does not, as an empty tank is not a plausible
explanation of the symptom. We identified the critical diagnostic hypotheses by
applying problem-specific expertise to the symptoms (e.g., the check engine light
coming on) given in the problem description. A symptom commonly allows for
generating (many) critical diagnostic hypotheses. For example, broken sensors,
broken cables, and so forth can cause the “check engine” light. Note that each
critical diagnostic hypothesis gives a reasonable explanation for the symptoms but
only one of these hypotheses relates to the “true” cause, assuming a single cause is
responsible for the symptom. (2) Drawing on the critical diagnostic hypotheses,
the critical information and the critical tests can be identified. For example, to
generate critical diagnostic hypotheses, problem solvers must know (i.e., mentally
represent) symptoms of a diagnosis problem and they must reflect on how to
test critical diagnostic hypotheses. (3) The critical information behavior and the
critical test behavior follow from the critical mental problem-solving activities.
For instance, to represent symptoms mentally, problem solvers must retrieve the
problem description; to test the critical diagnostic hypotheses, they usually conduct
specific tests.

22.3 Knowledge-Based Diagnostic Strategies:
Conceptualization and Behavioral Patterns

We consider differences in how critical diagnostic hypotheses are formulated as an
important reason for different behavioral patterns relating to three major strategies:
With the computer-based strategy, the critical diagnostic hypotheses come from
a computer-based expert system, that is, an external source. With the case-based
strategy, the critical diagnostic hypotheses originate from previous experiences
(cases), that is, from long-term memory. Diagnosticians using the model-based
strategy build mental models that represent details of the problem-related system
(e.g., details of a car’s motor) and use these models to derive critical diagnostic
hypotheses systematically.
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22.3.1 Computer-Based Strategy

When diagnosticians follow the instructions given in a computer-based expert
system to solve a diagnosis problem they apply the computer-based strategy.
Computer-based expert systems are computer programs that aid individuals to
solve (diagnosis) problems. The computer-based strategy requires domain-specific
knowledge of how to handle a computer-based expert system and how to execute the
system generated instructions. This strategy resembles a specific type of instruction-
based strategy, that is, an approach to solve problems following the instructions
provided by an external source (a computer-based expert system, a user guide, a
human mentor, etc.).

With the computer-based strategy, the critical diagnostic hypotheses are provided
by an expert system. Such systems do not necessarily give the critical diagnostic
hypotheses explicitly; sometimes they supply instructions that are implicitly con-
nected to critical diagnostic hypotheses only. For example, if a computer-based
expert system suggests testing the fuel temperature sensor, it is assumed implicitly
that a broken fuel temperature sensor might cause the car’s symptom of the check
engine light. Computer-based expert systems frequently cover the most likely or
most relevant hypotheses but not necessarily all the possible critical diagnostic
hypotheses of a diagnosis problem in car mechatronics.

The specific behavioral pattern emerging from the computer-based strategy can
be identified by executing the steps described above and focusing on the critical
diagnostic hypotheses offered by the computer-based expert system. Diagnosti-
cians employing the “pure” computer-based strategy exclusively show the critical
information behavior and critical test behavior related to the critical diagnostic
hypotheses suggested by the computer and do not show other critical problem-
solving behavior. More specifically, they do not exhibit critical information behavior
to build a mental model, as they do not formulate critical diagnostic hypotheses
independently from the computer-based expert system. Finally, diagnosticians do
not show critical test behavior related to critical diagnostic hypotheses not provided
by the computer-based expert system.

22.3.2 Case-Based Strategy

The case-based strategy activates knowledge about a previous case to solve a current
diagnosis problem. For example, if a broken fuel temperature sensor was responsible
for a “check engine” light in the past, the broken sensor is hypothesized to be
responsible for the same symptom in the current situation as well. A previous case
reflects a diagnosis problem that was mastered in the past and induces the activation
of specific knowledge due to similarities with the current diagnosis problem. The
similarity between the previous case and the current diagnosis problem activates
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the case and the related piece of knowledge. The symptom (e.g., a check engine
light) commonly represents the similarity (i.e., link) between the current diagnosis
problem and the previous case.

The label “case-based strategy” was inspired by the study of Jonassen and
Hernandez-Serrano (2002, p. 65) who introduced the term “case-based reasoning”
to describe situations in which problems “are solved by retrieving similar past
experiences”. The case-based strategy largely corresponds to the symptomatic
strategy identified by Rasmussen (1993) and utilized by many other authors in
technical domains (Konradt, 1995; Schaper et al., 2004). The symptomatic strategy
starts with exploring and mentally representing symptoms of a diagnosis problem.
Then, the mental representation of the symptoms “is used as a search template to
find a matching set in a library of symptoms” (Rasmussen, 1993, p. 987); the library
of symptoms is stored in long-term memory and connected to other problem-related
information.

The dual-process theory (Croskerry, 2009; Schwartz & Elstein, 2008, p. 229)
and the study of Norman, Young, and Brooks (2007) suggest that the case-based
strategy can be classified as a non-analytical strategy. Non-analytical strategies
imply automatic, fast, effortless and, compared to analytical strategies, fewer mental
problem-solving activities and problem-solving behaviors. From the perspective
of cognitive psychology, the case-based strategy resembles analogical reasoning
(van Merriënboer, 2013). Taking the perspective of research on expertise, the
case-based strategy draws upon pattern recognition (Norman et al., 2007): If a
well-known symptom pattern is recognized, problem solvers retrieve and apply
corresponding pieces of knowledge. Boshuizen and Schmidt (2008) termed such
pieces of knowledge “illness scripts”. An illness script develops in dependence
of diagnosing a disease (i.e., a diagnosis problem) and encodes information on
symptoms, the cause and other characteristics of the disease as well as a diagnosis
procedure (p. 115). An illness script is activated automatically as a whole, meaning
that all components are immediately available and applicable when diagnosticians
perceive relevant symptoms (p. 115). Semantically, it seems appropriate to replace
the term “illness script” by “(car) defect script” in the domain of car mechatronics.
Following the previous argumentation, a defect script encodes information on the
symptoms of a car’s defect, its cause as well as on how to test for and evaluate the
cause.

In terms of the case-based strategy, the critical diagnostic hypotheses are
available through the defect scripts. Please note that defect scripts link symptoms
to causes, that is, (implicitly) provide critical diagnostic hypotheses. To assess
the case-based strategy, we introduce an auxiliary assumption: A diagnostician’s
number of case scripts (i.e., critical diagnostic hypotheses) depends on his diag-
nostic experience. This study was based on a sample of car mechatronic apprentices
nearing the end of their three-year formal training. We assume that these apprentices
had only the “very common” case scripts available. In view of a lighting system
problem, such scripts relate to a blown fuse or a broken lightbulb.

To identify idiosyncratic pattern of critical information behavior and critical test
behavior found when the case-based strategy is applied, the common case scripts
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for a specific symptom must be determined a priori. In any case, the “pure” case-
based strategy does not imply critical information behavior exhibited to retrieve
critical diagnostic hypotheses from the computer-based expert system. Furthermore,
this strategy is not associated with critical information behavior necessary to build
mental models.

22.3.3 Model-Based Strategy

Diagnosticians applying the model-based strategy use mental models to solve
diagnosis problems. Mental models facilitate to mentally derive critical diagnostic
hypotheses systematically. In case of the “check engine” light, problem solvers
mentally model relevant parts of the motor, including several components of
the system (fuel temperature sensor, engine control unit, cables, etc.) and the
dependencies between these components. Based on the mental representation, they
specify causes of the “check engine” light in a first step and test them subsequently.
For example, they might assume a broken fuel sensor causes the “check engine”
light and then test that sensor.

The model-based strategy shares features with the hypothethico-deductive strat-
egy, which is a very prominent concept in medical education (Schwartz & Elstein,
2008): Both strategies stress the role of formulating and testing diagnostic hypothe-
ses. There is, however, an important difference: Whereas the formulation of
critical diagnostic hypotheses depending on mental models is a key component
of the model-based strategy, the hypothethico-deductive strategy ignores where
diagnostic hypotheses come from (Norman et al., 2007). This aspect is covered
by the scheme-inductive strategy (Coderre, Mandin, Harasym, & Fick, 2003).
When the scheme-inductive strategy is applied, knowledge structures (schemes)
are activated. Such schemes can include different causes for certain symptoms
(i.e., they imply different critical diagnostic hypotheses, Coderre et al., 2003, p.
703). A scheme is retrieved from memory and does not give information about
problem-related systems. The scheme-inductive strategy implies searching through
schemes to develop critical diagnostic hypotheses. In contrast, with the mental-
based strategy, the critical diagnostic hypotheses are derived from mental models
depicting (parts) of the problem-related system. Such mental models typically
integrate internal information (e.g., system knowledge) and external information
(Perez, 2012). In technical domains, system knowledge encodes topographical
(locations of components), structural (functional relations between components) and
functional (purpose of components) information about technical systems and their
components (Kluwe & Haider, 1990). Relevant external information comes from
interactions with the problem environment, that is, critical information behavior
and may refer to retrieving wiring diagrams, for example. The topographic strategy
also rests upon mental models (Rasmussen, 1981). In case of the topographic
strategy, the models, however, focus on the location of components (their topos)
and neglect the functional relations between the components. Thus, topographical
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models usually enable the formulation of only some but not all critical diagnostic
hypotheses. Considering the dual-process theory, the model-based strategy mirrors
a systematic, analytical, slow and effortful approach to solve diagnosis problems
(van Merriënboer, 2013).

The model-based strategy is associated with a complete collection of critical
diagnostic hypotheses of a diagnosis problem in principle: An adequate mental
model allows generating all critical diagnostic hypotheses related to a specific
symptom or set of symptoms. Consequently, a more complete selection of critical
information behavior and critical test behavior is to be expected when the model-
based strategy is employed: Unlike the computer-based strategy and the case-based
strategy, the model-based strategy includes critical information behavior related to
build mental models (e.g., retrieving the circuit diagram of the fuel temperature
sensor). The model-based strategy is not associated with the instructions given in
the computer-based expert system.

22.4 Usage of Knowledge-Based Diagnostic Strategies

We assume that the three knowledge-based diagnostic strategies being considered
differ in terms of their individual costs and that the strategies’ probability of usage
depends in part on their individual cost. The individual costs of the model-based
strategy are particularly high, as this strategy requires both the availability and the
adequate use of deep diagnostic knowledge, that is, system knowledge. Moreover,
this analytical strategy is associated with a relatively high degree of mental effort
and time for information processing. In comparison to the model-based strategy,
the individual costs of the computer-based strategy and the case-based strategy
are lower. When applying these two strategies, problem solvers do not need deep
knowledge as they do not intend to model and understand problem-related systems.
Furthermore, the mental effort for and the time spent on information processing is
relatively low as the computer-based expert system and the defect scripts directly
provide the critical diagnostic hypotheses and a template to solve the diagnosis
problem.

Following Schwartz and Elstein (2008, p. 226), we assume that the probability
of usage of the strategies depends on the difficulty of diagnosis problems. The
difficulty of diagnosis problems is closely correlated with the familiarity of these
problems in the context of car mechatronics (Nickolaus, Abele, Gschwendtner,
Nitzschke, & Greiff, 2012), where “familiarity” indicates a (very) high frequency
of exposure to a diagnosis problem in practice/real-life. This implies that the case-
based strategy should have a high probability of usage with familiar and easy
diagnosis problems. A diagnosis problem can be familiar in view of its symptoms
and its cause(s). In case of familiar symptoms and unfamiliar causes (i.e., difficult
problems), a shift from the case-based strategy to another strategy seems plausible,
as the case-based strategy is not successful.
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Nickolaus et al. (2012) also found that a computer-based expert system is helpful
to solve easy but not difficult diagnosis problems in car mechatronics, if available
and applicable. One plausible explanation for this is that computer-based expert
systems are especially well suited to provide familiar critical diagnostic hypotheses
but less so for unfamiliar ones. What happens if the computer-based strategy is
applied to a diagnosis problem and the computer-based expert system does not
provide the correct cause of the problem? In that case, the computer-based strategy
is not successful and a change in strategy is needed. In line with this argumentation,
the probability of usage of the computer-based strategy should be higher for easy
than for difficult diagnosis problems.

It is possible that diagnosticians switch from the case-based strategy to the
computer-based strategy or vice versa. These changes in strategy, however, are prob-
ably not particularly helpful to solve difficult diagnosis problems: As mentioned
before, neither the case-based strategy nor the computer-based strategy seem to
have a great potential to solve difficult diagnosis problems. If both strategies are not
successful, some diagnosticians might give up or stop due to a lack of competence
and some diagnosticians might switch to the model-based strategy.

To sum up, the usage probability of the computer-based strategy and the
case-based strategy should generally be higher than the usage probability of the
model-based strategy because of differences in costs associated with each. The
usage probability of the computer-based strategy and the case-based strategy is
expected to be higher when faced with easy diagnosis problems than with difficult
problems due to a difficulty-induced change to the model-based strategy. At the
same time, it can be expected that the usage probability of the model-based strategy
is higher for difficult than for easy diagnosis problems.

22.5 Research Hypotheses

Given the reasoning with regard to the three types of distinct strategies developed in
the previous section, we investigated the following hypotheses in the context of car
mechatronics:

H1: Diagnosticians use the computer-based strategy, the case-based strategy and
the model-based strategy to solve diagnosis problems. This hypothesis was
examined by applying the three-step procedure described above to identify
and score individuals’ critical problem-solving behavior as extracted from
computer-generated log-files. To identify behavioral patterns, a range of model-
ing approaches, including diagnostic classification models, item response theory,
and latent class analysis, was applied. Empirically, we expected to find patterns
of critical information behavior and critical test behavior that can be related to
the likelihood of the three knowledge-based diagnostic strategies.

H2: Diagnosticians more often employ computer-based and case-based strategies
than the model-based strategy independent of the difficulty of the diagnostic
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problem. Empirically, we expected to observe fewer diagnosticians employing
the model-based strategy than the other strategies both for easy and difficult
diagnosis problems.

H3: Diagnosticians apply the model-based strategy more often when facing difficult
than when facing easy diagnosis problems. Part of the theoretical foundation
of this hypothesis is that (some) diagnosticians may switch strategies from
computer-based or case-based to the model-based strategy when they attempt
to solve difficult rather than easy diagnosis problems. As the choice of which
knowledge-based diagnostic strategy to apply probably does not depend on
a problem’s difficulty alone but also on other problem characteristics, we
investigated this hypothesis using two pairs of diagnosis problems. Each pair
consisted of very similar diagnosis problems but varied in difficulty. Empirically,
we expected that more diagnosticians would apply the model-based strategy in
the difficult problem than in the easy diagnosis problem.

22.6 Method

22.6.1 Sample and Design

To test the research hypotheses, 369 car mechatronic apprentices1 nearing the end
of the third year of formal training were sampled from three German federal states
(Baden-Württemberg, Bavaria and Hesse) and 25 classes of vocational schools. The
sample size varied slightly in the statistical analyses, mainly due to apprentices that
did not complete the full set of problem-solving assessments (from N = 369 to
N = 336). In this line of training for a job in car mechatronics, most apprentices are
male in Germany, and consequently almost all the participants were male (96.6%);
the apprentices were 20.8 years old on average and their age ranged from 17 to
41 years.

Two pairs of simulated problem scenarios were administered: One pair covered
diagnosis problems concerning the fuel temperature sensor (sensor problems), the
other two diagnosis problems related to the lighting system (lighting problems).
Each pair represented diagnosis problems that were very similar in terms of their
symptoms but differed in terms of the symptoms’ causes and their difficulty (Abele,
Walker, & Nickolaus, 2014, p. 174; Gschwendtner, Abele, & Nickolaus, 2009, p.
573). Within the pairs there was one rather easy and one rather difficult problem. The
diagnosis problems were given in an authentic computer simulation, using computer

1The occupational field of car mechatronics covers, among other things, troubleshooting, repair
and maintenance of cars (Baethge & Arends, 2009, p. 33–47). In Germany, car mechatronic
apprentices usually attend a 3.5 years training programme including a school-based and workplace-
based training (“dual apprenticeship system”). The training of car mechatronic technicians differs
significantly from one country to the next (Baethge & Arends, 2009, p. 34).
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Fig. 22.2 Screenshots of the computer simulation in German (top left: start page giving an
overview of the car systems; top right: the upper part shows the icons of the toolbox, below the
motor compartment referring to the system “electronic engine management” is shown; bottom left:
measurement of a signal using the oscilloscope, cockpit and adapter; bottom right: circuit diagram
retrieved from the computer-based expert system)

labs of the vocational schools. The total time provided for the testing session was
85 min (20 min for the easy sensor problem and 25 min for the difficult one, 15 min
for the easy lighting problem and 25 min for the difficult one). To control for position
effects, problem presentation was rotated in a Latin square design (Frey, Hartig, &
Rupp, 2009, p. 45).

22.6.2 Assessment of the Knowledge-Based Diagnostic
Strategies

22.6.2.1 Computer-Based Test: An Authentic Computer Simulation for
Car Mechatronics

The computer-based assessment of diagnostic problem solving uses authentic
graphic material (pictures, screenshots, etc.) and represents the following parts of
the work environment of car mechatronics: (1) a selection of car systems, (2) a
toolbox and (3) a computer-based expert system (Fig. 22.2).

(1) The simulation covers four systems of a VW Golf, which were identified
to be of high practical relevance by experienced car mechatronic technicians,
teachers/trainers of car mechatronic apprentices and academic experts (Baethge &
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Arends, 2009, p. 16). Here, the “lighting system” and the system “electronic engine
management” are relevant. In the “electronic engine system”, for example, 17
components (plugs of actuators and sensors, the battery, etc.) are accessible. (2) The
toolbox is available in both systems and contains icons representing different work
equipment (e.g., problem description, multimeter, fuse box, computer-based expert
system). (3) Computer-based expert systems are an integral part of a car mechatronic
technicians’ work environment. The simulation covers relevant segments of the
ESI[tronic] from Bosch, which is an internationally widespread system and is
used by a broad range of car manufacturers. It offers a great variety of relevant
information material.

The computer simulation provides a large number of authentic diagnostic
problem-solving steps: The “electronic engine management” alone allows more
than a 1000 different user actions to measure voltage, resistance and signals. A
guiding principle when developing the simulation was to allow interactions that
closely align with occupational reality of car mechatronics. The computer-based
assessment proved to produce valid test score interpretations, that is, measures
indicating authentic diagnostic problem-solving skills (Gschwendtner et al., 2009).

To solve a diagnosis problem (i.e., to detect the problems’ causes), electrotech-
nical measurements had to be conducted. The sensor problems allowed using the
computer-based expert system to retrieve location diagrams, circuit diagrams and
test instructions as well as to read out error-messages of the car’s electronic control
unit. Test instructions contained information on electrotechnical measurements
useful for solving the diagnosis problem. For the lighting problems, the computer-
based expert system was not useful as the lighting system is not connected to an
electronic control unit, which is a precondition of using the expert system. Instead,
electronic copies of relevant circuit diagrams were made available in the computer
simulation.

As described in a previous article (Abele, 2017), the standardized instruction for
the assessment took 30 min. Initially, the instructor demonstrated the handling of the
simulation by means of a video presentation. Afterwards, the apprentices worked
individually on standardized tasks concerning the handling of the simulation. In
very rare cases, apprentices could not complete a task. Then, the instructor provided
explanations to the class using a projector. Finally, the apprentices were instructed
how to document their problem-solving results.

22.6.2.2 Strategy Patterns of Critical Information Behavior and Critical
Test Behavior

To score critical information behavior and critical test behavior, the three-step
procedure described above was applied: Based on the symptoms given in the
problem descriptions, critical diagnostic hypotheses were identified. Drawing on
these hypotheses, the critical information and the critical tests were determined
and used to identify critical information behavior and critical test behavior. To
detect whether diagnosticians exhibited the relevant behavior to solve the diagnosis
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problem, relevant data was extracted from the computer-generated log-files. Diag-
nosticians showing relevant behavior received the score “1”, the others the score
“0”.

The symptoms in the sensor problem descriptions were quite general implying
many critical diagnostic hypotheses. In this study, only the four critical diagnostic
hypotheses directly connected to the fuel temperature sensor were included. Fur-
thermore, some critical diagnostic hypotheses of the lighting problems could not be
considered, as the computer simulation did not allow for testing them (e.g., light
switch defect). The apprentices received information about this limitation in the
test instruction. Five critical diagnostic hypotheses were formulated for the lighting
problems.

Tables 22.1 and 22.2 document the strategy patterns of critical information
behavior and critical test behavior. These patterns were determined based on
theoretical conceptualizations of the knowledge-based diagnostic strategies. As can
be seen in the tables, each strategy is associated with a high probability in selecting
the problem description, which is very plausible as this behavior is the fundamental
requirement to apply any of the strategies.

For the sensor problems (Table 22.1), there were no expectations in view of
retrieving the location diagram to find the fuel temperature sensor: Information
on the location of components is not indicative of any of the strategies. Therefore,
the probability of conducting that behavior could be anything, low, middle or high
for each of the strategies. The computer-based strategy is associated with high
probabilities of critical information behavior needed to retrieve information from
the computer-based expert system. Moreover, diagnosticians using the computer-
based strategy very likely test the fuel temperature sensor: This critical test behavior
directly follows from the information given by the expert system. The case-based
strategy also relates to a high probability in testing the sensor assuming a broken fuel

Table 22.1 The strategies’ patterns of critical information behavior and critical test behavior for
the sensor problems

Critical problem-solving behavior

Computer-
based
strategy

Case-
based
strategy

Model-
based
strategy

Information behavior Sensor problem description + + +
Expert system instruction 1 + − −
Expert system instruction 2 + − −
Sensor circuit diagram − − +
Sensor location diagram +/− +/− +/−

Test behavior Sensor test + + +
Sensor cable test 1 − − +
Sensor cable test 2 − − +
Engine control unit test − − +

Note: +: high probability; −: low probability; +/−: low, middle or high probability depending on
knowledge about the location of the sensor
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Table 22.2 The strategies’ patterns of critical information behavior and critical test behavior for
the lighting problems

Critical problem-solving behavior
Case-based
strategy

Model-based
strategy

Information behavior Lighting problem description + +
Lighting circuit diagram − +
Fuse diagram +/− +/−

Test behavior Fuse test + +
Lightbulb test + +
Lighting cable test 1 − +
Lighting cable test 2 − +
Lighting cable test 3 − +

Note: +: high probability; −: low probability; +/−: high, middle or low probability depending on
knowledge about the location of the relevant fuse

temperature sensor occurs frequently in practice and, therefore, many diagnosticians
may have activated a corresponding defect script. In this context, it is important
to note that the study sample included individuals having a significant yet limited
diagnostic problem-solving experience reducing the chance that many respondents
acquired additional defect scripts. Other critical test behavior than “sensor test” refer
to more specific and rare critical diagnostic hypotheses and are shown less likely
by apprentices using the case-based strategy. Turning to the model-based strategy,
retrieving the circuit diagram was considered very important as viewing this diagram
greatly facilitates the development of a mental model needed to systematically
derive critical diagnostic hypotheses. As the model-based strategy allows testing all
critical diagnostic hypotheses, each of the listed critical test behaviors are expected
to have a higher probability compared to the other strategies.

In terms of the lighting problems, the computer-based expert system was not
applicable: The car’s lighting system did not have an electronic control unit, which
is a precondition to use the computer-based expert system. We supposed that a
substantial number of apprentices had two defect scripts available: The first defect
script referred to a broken fuse causing the lighting system defect, the second
script referred to a broken headlight lamp. From this it follows, that the case-based
strategy should have high probabilities in testing the fuse and the respective lamp
(Table 22.2). In contrast, the probabilities of the other critical test behavior should
be rather low. Apart from “fuse test”, we expected low probabilities in retrieving
the circuit diagram. “Fuse diagram” represented retrieving the fuse diagram to
identify the location of the relevant fuse and was neither indicative of the case-
based nor the model-based strategy. For the model-based strategy, we anticipated a
high probability of critical information behavior (except for “fuse diagram”) and the
critical test behavior.
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22.6.3 Statistical Analysis

The data were analyzed by means of model selection procedures based on esti-
mates obtained using a range of customary psychometric models. This allows an
evaluation of whether the assumed multiple strategy model, implemented as a
diagnostic classification model, can fit the observed behavioral data better than
standard psychometric models that would provide alternative explanations of the
data.

The psychometric models used in the analyses are aimed at testing the four
research hypotheses described above:

1. Unidimensional item response theory (IRT; e.g., Lord & Novick, 1968; van der
Linden, 2018) which is a family of models implementing the assumption of a
single underlying continuous latent variable responsible for monotonic differ-
ences in the observed data. Respondents with higher levels of the latent variable
show a higher propensity of the observed behavior. This would correspond to the
assumption that the different strategies can be characterized as ordered levels of
proficiency when interacting with diagnosis problems of the type studied here.

2. Latent Class Analysis (LCA; Lazarsfeld & Henry, 1968) is a model that imple-
ments the assumption of qualitative differences between respondents without
imposing a monotonic relationship between strategy variables and observed
behaviors: Respondents that are members of different latent strategy classes may
have different, potentially intersecting, profiles of propensities with respect to the
set of observed behaviors.

3. Diagnostic classification models (e.g., Junker & Sijtsma, 2001; von Davier,
DiBello, & Yamamoto, 2008) are analytic approaches that can be considered
constrained latent class models (von Davier, 2009) implementing multiple latent
dichotomous or ordinal variables (von Davier, 2005, 2008; von Davier & Rost,
2016) representing an expert generated hypothesis of how multiple skill (here:
strategy) variables are related to observed behaviors. The strategy patterns given
in Tables 22.1 and 22.2 were used in conjunction with the general diagnostic
model, one of the most general frameworks in this domain (GDM; von Davier,
2008, 2013, 2014) as input for the skill-attribute design matrix that is commonly
referred to as Q-matrix (Tatsuoka, 1983) in this context.

This range of models, while independently developed over more than half a
century, can be represented as special cases of general latent variable models (e.g.,
McDonald, 1999; Moustaki & Knott, 2000; Skrondal & Rabe-Hesketh, 2004; von
Davier, 2008; von Davier & Yamamoto, 2004) and analyzed with toolkits that
allow specification of these models within a common framework. The analyses of
response data with this range of models was carried out with the software mdltm
(von Davier, 2008), which is a general stand-alone program that was developed for
large scale psychometric analyses including operational psychometric analyses for
international large scale studies such as OECD PIAAC and PISA 2015 & 2018 (von
Davier et al., 2019; Yamamoto, Khorramdel & von Davier, 2013).
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22.7 Results

22.7.1 Descriptive Statistics

Tables 22.3 and 22.4 display descriptive statistics for the sensor problems and
lighting problems. As expected, the difficulty of the problems differed remarkably
within the pairs. Moreover, the relative frequencies of the critical problem-solving
behavior varied considerably depending on problem difficulty.

Table 22.3 Descriptive statistics for the critical problem-solving behavior and the sensor problems

Easy Difficult
Critical problem-solving
behavior Sensor problems:

Relative (absolute)
frequencies

Relative (absolute)
frequencies

Sensor problem description .98 (351) .98 (351)
Expert system instruction 1 .41 (146) .45 (161)
Expert system instruction 2 .31 (111) .37 (131)
Sensor circuit diagram .13 (46) .35 (124)
Sensor location diagram .34 (121) .33 (119)
Sensor test .59 (214) .49 (177)
Sensor cable test 1 .03 (10) .15 (52)
Sensor cable test 2 .03 (9) .12 (42)
Engine control unit test .01 (5) .10 (37)
Difficulty .56 (196) .16 (54)

Note: N = 348–360

Table 22.4 Descriptive statistics of the critical problem-solving behavior and the lighting prob-
lems

Easy Difficult
Critical problem-solving
behavior Sensor problems:

Relative (absolute)
frequencies

Relative (absolute)
frequencies

Lighting problem description .97 (358) .97 (354)
Lighting circuit diagram .69 (253) .59 (214)
Fuse diagram .25 (92) .71 (259)
Fuse test .76 (279) .79 (286)
Lightbulb test .75 (278) .85 (308)
Lighting cable test 1 .08 (29) .16 (59)
Lighting cable test 2 .03 (12) .16 (59)
Lighting cable test 3 .02 (8) .10 (35)
Difficulty .72 (239) .12 (41)

Note: N = 332–369
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22.7.2 Model Selection

Tables 22.5 and 22.6 provide information criteria (AIC, BIC, CAIC) used for
model selection, balancing the likelihood of the data under the model, and model
complexity (Akaike, 1973; Bozdogan, 1987; Schwarz, 1978). The smaller the
information criteria, the better the model is considered to fit the data, taking the
number of parameters needed to fit the model into account.

For the sensor problems, it appears that the GDM, that is, the model that
explicitly imposes strategy-based probability differences, fits the data best among
the models estimated here. While for the ‘difficult’ version of the sensor problem,
the BIC and CAIC point to the GDM and the AIC points to the 4-class LCA
solution, the GDM is favored by AIC, BIC, and CAIC in the case of the ‘easy’
sensor problem.

Given that the AIC tends to over-fit data and favors more complex than necessary
solutions (Bozdogan, 1987; Schwarz, 1978), we accept the GDM as the preferred
solution in both sensor cases. This has the added value that the GDM allows
classifications of each test taker into strategy classes that can be considered direct
indicators of the application of the case-based, computer-based and model-based
strategies described above.

Tables 22.7 and 22.8 summarize the model selection criteria for the lighting
problems. It turns out that the model selection procedures show a less well-
determined distinction between the models estimated for these datasets: While 2
separate strategies were assumed, the empirical data do not clearly support this
hypothesis. The AIC supports assuming 3 or even 4 latent classes, which would

Table 22.5 Information criteria for the ‘easy’ sensor problem data fitted using IRT, LCA and DCM
models, all estimated in the software mdltm (von Davier, 2008) as special cases of the general
diagnostic model (GDM)

Model AIC BIC CAIC Likelihood Parameters

IRT 2835.90 2916.71 2936.71 −1397.95 20
LCA 2 classes 2879.94 2960.74 2980.74 −1419.97 20
LCA 3 classes 2589.22 2714.46 2745.46 −1263.61 31
LCA 4 classes 2553.01 2722.70 2764.70 −1234.50 42
GDM 2591.59 2700.68 2727.68 −1268.79 27

Table 22.6 Information criteria for the ‘difficult’ sensor problem data fitted using IRT, LCA and
DCM models, all estimated in the software mdltm (von Davier, 2008) as special cases of the general
diagnostic model (GDM)

Model AIC BIC CAIC Likelihood Parameters

IRT 2251.05 2331.76 2351.76 −1105.52 20
LCA 2 classes 2152.97 2233.67 2253.67 −1056.48 20
LCA 3 classes 2084.48 2209.58 2240.58 −1011.24 31
LCA 4 classes 2082.09 2251.58 2293.58 −999.04 42
GDM 2078.92 2187.87 2214.87 −1012.46 27
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Table 22.7 Information criteria for the ‘difficult’ lighting problem data fitted using IRT, LCA and
DCM models, all estimated in the software mdltm (von Davier, 2008) as special cases of the general
diagnostic model (GDM)

Model AIC BIC CAIC Likelihood Parameters

IRT 2244.19 2308.84 2328.84 −1106.09 20
LCA 2 classes 2309.00 2381.72 2401.72 −1136.50 20
LCA 3 classes 2214.35 2327.48 2358.48 −1079.17 31
LCA 4 classes 2214.19 2367.72 2409.72 −1069.10 42
GDM 2304.44 2397.37 2424.37 −1129.22 27

Table 22.8 Information criteria for the ‘easy’ lighting problem data fitted using IRT, LCA and
DCM models, all estimated in the software mdltm (von Davier, 2008) as special cases of the general
diagnostic model (GDM)

Model AIC BIC CAIC Likelihood Parameters

IRT 1997.92 2062.49 2082.49 −982.96 20
LCA 2 classes 2016.93 2089.57 2109.57 −990.46 20
LCA 3 classes 1946.90 2059.89 2090.89 −945.45 31
LCA 4 classes 1948.24 2101.58 2143.58 −936.12 42
GDM 2013.41 2106.23 2133.23 −983.70 27

provide some support for the hypothesis, the BIC and CAIC favor a unidimensional
IRT model. As these results only partially support the expected strategy types, we
will focus on the sensor problems for which a diagnostic model with 3 distinct
strategies is supported by the data analyses in the following sections. An in-depth
analyses of the sensor problems and lighting problems using the LCA modeling
approach is provided in Abele and von Davier (2018).

22.7.3 Distribution of Strategy Types

The distribution of strategy types is represented in what diagnostic classification
models call the skill attribute distribution. For three binary skill variables represent-
ing the application of the case-based, computer-based and model-based strategies,
respectively, we obtain a discrete distribution with 23 = 8 potential outcomes.

It is important to note that strategy variables were not assumed to be mutually
exclusive, respondents may have used more than one strategy, or they may have
produced observed behavior that was compatible with more than one strategy.

(a) Easy sensor problem

For the easy sensor problem, the distribution of strategy types is given in Table
22.9. It can be observed that a certain percentage of respondents were identified
as not having applied any strategy, these respondents were not using any of the
diagnostic actions given in Table 22.1.
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Table 22.9 Distribution of
strategy types for the easy
sensor problem. Multiple
strategies or no strategy could
be indicated, depending on
the observed behavior of
diagnosticians

Computer Case Model %

− − − 22.4
+ − − 14.1
− + − 37.0
+ + − 23.3
− − + 0.7
+ − + 0.4
− + + 1.2
+ + + 0.7

Table 22.10 Distribution of
strategy types for the difficult
sensor problem. Multiple
strategies or no strategy could
be indicated, depending on
the observed behavior of
diagnosticians

Computer Case Model %

− − − 22.7
+ − − 16.8
− + − 25.9
+ + − 19.2
− − + 4.1
+ − + 3.0
− + + 4.6
+ + + 3.4

There is an obvious result to be gleaned from this table: The model-based
strategy appears to be not applied by most respondents when working on the
easy sensor problem. Only 3% appear to select the model-based strategy in this
case. The computer-based strategy (consulting the expert system) was applied by
(14.1 + 23.3 + 0.4 + 0.7) = 38.5% of respondents, while the case-based strategy
was applied by (37 + 23.3 + 1.2 + 0.7) = 62.2% of cases. Note that 22.4% of the
sample did not get assigned any strategy use, as these respondents did not choose
any of the behavioral indicators that are associated with the three strategies.

(b) Difficult sensor problem

The difficult sensor problem shows a higher proportion of respondents who
are classified as having applied the model-based strategy. Based on the estimates
provided in Table 22.10, about 15.1% of respondents appear to have selected
a model-based strategy. Again, about 22.7% (compared to 22.4% in the easy
case) of respondents did not show any of the behaviors associated with the
strategies described in this chapter. The computer-based strategy was applied by
(16.8 + 19.2 + 3.0 + 3.4) = 42.4% and the case-based strategy was applied by
(25.9 + 19.2 + 4.6 + 3.4) = 53.1% of respondents.

Note that those who exclusively used the case-based strategy were about 37.0%
in the easy sensor case, but only 25.9% selected exclusively a case-based strategy in
the difficult sensor case.
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(c) Maximum a Posteriori Strategy Classification and Changes from Easy to
Difficult Sensor Problem

While the previous two subsections examined the distribution of strategy appli-
cation based on the model parameters, this section looks at the distribution of
strategy usage if the task is to provide the best guess for each respondent based on
their observed data. For that purpose, maximum a-posteriori (MAP) classifications
were generated using the mdltm software (von Davier, 2008), and imported to a
spreadsheet software for further processing.

Table 22.11 shows the frequencies of the three strategies based on MAP classifi-
cations separately for each of the sensor problems. Note that some respondents may
not have employed any strategy, while others may have shown response behavior
that is indicative of more than one strategy. This is the reason why the total will
not add up to the sample size and is therefore not a meaningful summary. The
sample size differed by 2 ( 0.6%) between difficult and easy sensor cases in the
data available for this analysis, and 351 respondents could be matched between the
two experiments.

Ignoring for now the minimal difference of 2 cases in sample size between
experiments, it is evident that more respondents appear to use the model-based
strategy while working on the difficult sensor problem than when working on the
easy problem. The same holds for the computer-based strategy, while it appears
that the change is more moderate. At the same time, fewer respondents appear to
employ the case-based strategy when faced with the difficult sensor problem, which
also agrees with expectations in that fewer respondents may have a readily available
‘defect script’ when working on a more difficult, or a less common, problem.

Table 22.12 looks at the 351 cases that are common between samples that
took the two sensor problems and provides a cross-table of the joint frequency
distribution for the separately computed MAP classifications.

Visual examination of the table makes it apparent that the movement from non-
model-based strategies (only case-based or computer-based) to a strategy pattern
that also involves model-based aspects is seen in the hypothesized way. Respondents
who were classified in the groups (−,−,−), (+,−,−), (−,+,−) or (+,+,−) are
representing the vast majority of 341 out of 351 respondents for the easy sensor
problem, and 42 of these are moving to a strategy that involves model-based
behaviors (−,−,+) (+,−,+) (−,+,+) or (+,+,+) when working on the difficult
problem, while only 2 respondents who were classified as having applied the model-
based strategy for the easy problem appear not to have done so in the difficult
problem.

Table 22.11 Frequency distribution of the case-based, computer-based and model-based strategy
types using maximum a-posteriori classifications

Computer Case Model Sample size

Easy sensor problem 144 226 10 351
Difficult sensor problem 160 157 50 353
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Only eight respondents (frequencies printed in boldface) appear to have used the
model-based strategy for both the easy and the difficult sensor problem, while the
other 343 respondents relied at least once on only case-based or computer-based
strategies, and 299 respondents appear not to have used the model-based strategy
at all, neither in the easy sensor problem, nor when attempting to solve the difficult
problem.

While 35 respondents only employed the computer-based strategy (characterized
as (+,-,-) in terms of attribute patterns in the diagnostic model) when working on
the easy problem, this number more than doubled to 78 respondents who utilized
only the computer-based strategy in the difficult sensor problem.

22.8 Discussion

The results presented in this chapter show that applications of DCMs can be
useful for the identification of problem-solving strategies used by respondents
in a computer-based diagnosis task. Trouble-shooting, bug-fixing, diagnosis of
faulty technical systems, or diagnostic work in health care all require that the
agent who tries to solve one of these problems applies the best possible strategy
or combination of strategies to maximize outcomes. Computer-based tests that
authentically simulate diagnostic problems can be used to trace what respondents
faced with these types of problems do to successfully complete real-world tasks.

This chapter showed how a theory developed around the problem-solving process
can be used to derive what types of evidence may be relevant for the identification
of strategy types. The log-files produced by a computer-based assessment system
provide a rich basis for this type of analyses, often containing several hundred
or thousands of log-entries per respondent. However, expert knowledge about the
problem-solving process is needed to derive higher-level aggregates of these very
fine-grained log entries to define construct relevant behavioral indicators that can be
used as indicator variables in a statistical analysis aimed at identification of problem
solving strategies.

The model selection strategies applied here follow best statistical practice by
balancing model-data fit with model parsimony. In doing so, it appears that the
sensor problems produced a clear picture and the model favored by information
criteria was indeed the diagnostic model we set out to examine. However, for the
lighting problems, no such result could be obtained, so further analyses are required
in a future study to examine the behaviors of respondents based on data collected
for this less complex problem type. It should be noted that only using a diagnostic
model in isolation would not have resulted in a rejection of the diagnostic model
for the lighting problems. It is therefore recommended to follow a procedure that
tests diagnostic models against other, more parsimonious models to ensure that the
interpretations made when selecting a model can be made with some confidence
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that the model chosen holds up well in terms of model data fit against a range of
alternative models.

The results for the difficult and easy sensor problems largely agree with the
research hypotheses developed in the theory sections of this chapter: More respon-
dents appear to use the model-based strategy when faced with a difficult problem,
and fewer use the case-based strategy here, compared with the easy sensor problem.
It appears that the strategy shift seen also confirms the expected move when looking
at a cross tabulation of the movement between strategy groups when the problem
type changes from easy to difficult. Although not stated as research hypothesis, the
findings also suggest another difficulty-induced strategy shift from the case-based
to the computer-based strategy: Comparing both strategies, the computer-based
strategy is associated with higher costs (e.g., more time and activities) and therefore
especially applied when the case-based strategy is not successful (i.e., when difficult
problems are solved).

Future directions of research could involve a direct modeling of strategy shift,
potentially involving covariates of strategy classifications that could be based on, for
example, variables that represent relevant experience of respondents, curricula, or
institutions in a multilevel diagnostic model (e.g., von Davier, 2007), or diagnostic
models that incorporate the change or growth (von Davier, Xu, & Carstensen, 2011)
over the course of multiple encounters with diagnostic problems.
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Chapter 23
Applying the General Diagnostic Model
to Proficiency Data from a National Skills
Survey

Xueli Xu and Matthias von Davier

Abstract Large-scale educational surveys (including NAEP, TIMSS, PISA) utilize
item-response-theory (IRT) calibration together with a latent regression model to
make inferences about subgroup ability distributions, including subgroup means,
percentiles, as well as standard deviations. It has long been recognized that grouping
variables not included in the latent regression model can produce secondary bias
in estimates of group differences (Mislevy, RJ, Psychometrika 56:177–196, 1991).
To accommodate the ever-increasing number of background variables collected
and required for reporting purposes, a principal component analysis based on the
background variables (von Davier M, Sinharay S, Oranje A, Beaton AE, The
statistical procedures used in national assessment of educational progress: recent
developments and future directions. In: Rao CR, Sinharay S (eds) Handbook
of statistics: vol. 26. Psychometrics. Elsevier B.V, Amsterdam, pp 1039–1055,
2007; Moran R, Dresher A, Results from NAEP marginal estimation research on
multivariate scales. Paper presented at the annual meeting of the National Council
on Measurement in Education, Chicago, 2007; Oranje A, Li D, On the role of
background variables in large scale survey assessments. Paper presented at the
annual meeting of the National Council on Measurement in Education, New York,
NY, 2008) is utilized to keep the number of predictors in the latent regression
models within a reasonable range. However, even this approach often results in
the inclusion of several hundred variables, and it is unknown whether the principal
component approach or similar approaches (such as latent-class approaches) are
able to generate consistent estimates for individual subgroups (e.g., Wetzel E,
Xu X, von Davier M, Educ Psychol Meas 75(5):1–25, 2014). The primary goal
of the current study is to provide an exemplary application of diagnostic models for
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large-scale-assessment data. Specifically, a latent-class structure is used for covari-
ates while continuing to use IRT models for item responses in the analytic model.
Previous applications focused on adult literacy data (von Davier M, Yamamoto K,
A class of models for cognitive diagnosis. Paper presented at the 4th Spearman
invitational conference, Philadelphia, PA, 2004), as well as large-scale English-
language testing programs (von Davier M; A general diagnostic model applied to
language testing data (Research report no. RR-05-16). Educational Testing Service,
Princeton, 2005, von Davier M, The mixture general diagnostic model. In: Hancock
GR, Samuelsen KM (eds) Advances in latent variable mixture models. Information
Age Publishing, Charlotte, pp 255–274, 2008), while the current application uses
diagnostic modeling approaches on data from NAEP.

23.1 Background and Research Questions

The National Assessment of Educational Progress (NAEP) is often called the
“Nation’s Report Card” and can be considered the standard of measuring academic
progress across the United States for fourth-, eighth-, and 12th- grade students. It
covers a wide range of subjects, including reading, mathematics, writing, science,
and social science. Every 2 or 4 years, these assessments are administered to
nationally representative samples in order to measure trends in academic progress
over years. Depending on the assessment subject, the nationally representative
samples can have sizes from about 12,000 to about 140,000.

Because NAEP aims to measure the academic progress in policy-relevant
subgroups and is mandated not to provide measures at the individual level, a
sparse matrix sampling design (Johnson, 1992) is employed to administer NAEP
assessments so that individual students take only a portion of entire assessment. For
example, for subscales defined in the mathematics framework, students take only
about 10–30 items from a pool of 100–150 items, and each student is assigned
one of a number of different test forms with a different set of items from the
pool. The relatively small number of items within subscales does not provide
good ability estimates for individual students, but the aggregation of individual
ability distributions is suitable to provide precise estimates of subgroup ability
distributions. The methodologies utilized to achieve this were described by von
Davier et al. (2007) as well as von Davier and Sinharay (2014). For instance, in
order to estimate ability distributions for boys and girls, the item responses as well
as the self-reported gender variable needs be included in the model in order to obtain
precise estimates for the ability distributions (Mislevy, Beaton, Kaplan, & Sheehan,
1992; von Davier, Gonzalez, & Mislevy, 2009). Modeling approaches that include
both grouping variables as well as response variables are commonly referred to
as multiple group models. The multiple group model used in NAEP—and other
assessments—takes IRT to link the item responses and latent abilities and a latent
regression model, in which group differences are regressed on a potentially very
large number of background variables.
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To facilitate analyses and to enable researchers to answer this demand for
inclusion of a large variety of grouping variables, the predictors used in this
latent regression model (Mislevy, 1991) are preprocessed by extracting principal
components from the bulk of background variables (von Davier et al., 2007; Dresher,
2006; Moran & Dresher, 2007; Oranje & Li, 2008). In the currently operational
latent regression procedure used in NAEP, individual subgroup indicators are not
used directly. An analysis is conducted to extract principal components (PCs) that
explain 90% of the variance of the observed grouping variables. These principal
components are then used as the predictors in the latent regression model. This
preprocessing raises a question: Is this approach suitable for providing reasonably
good estimates of subgroup ability distributions, or does the preprocessing remove
some of the between-group differences since the set of predictors used in the model
might incompletely reflect differences in grouping variables? It is known that the
estimates for subgroups that are not included in the model are usually biased to a
certain degree (Mislevy, 1991), but, to our knowledge, the extent to which estimates
are biased for subgroups that are only partially represented by means of proxy
variables in the form of PCs is unknown. Existing studies were not able to provide
definitive answers. For example, Dresher (2006), via a simulation study, found that
with a reasonable number of items per students, the latent regression model with
PCs (that explains 90% of variance) outperformed the latent regression model with
only the subgroup variable of interest in terms of bias and root mean square error.
However, Oranje and Li (2008) did not find alarming differences between these two
types of models using real data. It is noted that both research studies used NAEP
operational software to obtain estimates, assuming that the students share a common
covariance structure and their abilities follow a multivariate normal distribution.
Their conclusions might change if we use estimation algorithms that allow the
assumption of a normal distribution to be relaxed.

The current chapter aims to demonstrate how the estimates of subgroup ability
distributions may change when using a different type of conditioning model.
For example, we want to obtain estimates of ability distributions of subgroups
defined by a background variable using relaxed assumptions. The data analysis
uses IRT to calibrate item parameters and takes a conditioning model (either the
operational model or some alternative) to estimate the ability distributions for
subgroups of interest. To estimate the ability distributions for subgroups, three
types of conditioning models were considered and compared (from simplest to most
complicated): (a) a model with only the subgroup variable of interest involved,
(b) a model with the subgroup variable of interest as well as another important
background variable, and (c) a model with preprocessed predictors—in the form
of latent class indicator variables. Unlike the approaches used in Wetzel, Xu, and
von Davier (2014) where the probabilities of latent classes were used as predictors
in the latent regression models, the latent class membership is used in this paper to
conduct a multiple-group/multi-dimensional analysis. If the number of latent classes
is large enough to sufficiently account for the variation among students, we assume
that all three conditioning models will produce approximately the same estimates for
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the ability distributions of the subgroup of interest. However, a full model with not-
saturated latent classes might incorrectly reflect the group differences. These three
conditioning models were analyzed under the general diagnostic model (GDM)
framework and compared using NAEP data.

The rest of this chapter is organized as follows: Section 23.2 briefly introduces
the GDM, Sect. 23.3 describes the data and procedures used in this study, and Sect.
23.4 shows the results obtained by using the GDM software mdltm (von Davier,
2005) for estimation. The last section discusses some of the results and provides
further thoughts on the research question.

23.2 The General Diagnostic Model

The GDM (von Davier, 2005) is one of the general frameworks for cognitive
diagnostic modeling. As the name suggests, the GDM, as the other cognitive
diagnosis models, is mainly developed to diagnose skill levels on finer-grained skills
for individual test takers. For example, in the analysis of the well-known fraction
subtraction data (Tatsuoka, 1983), the rule space approach, which can be viewed as
a deterministic cognitive diagnosis model, was used to make judgments on whether
certain skills that are related to fraction calculations are mastered by individual
students. Usually, for a test that requires multiple skills, a Q-matrix (Tatsuoka, 1983)
is defined based on expert judgments and describes which items require which skills.
Quite a few cognitive diagnosis models have been developed in the last two decades,
and many of these are described in the first part of this book.

Practically all probabilistic models for cognitive diagnosis can be described as
located latent class models (von Davier, 2009). This also applies to the GDM, which
expresses the levels for each of the skills as locations on the real line. While this
is straightforward for the GDM as it defines a dichotomous or polytomous latent
variable for each skill (von Davier, 2005, 2008), even the mastery/non-mastery
variable as used in the DINA model (see Chaps. 1 and 7 in this volume) can be
defined by two real numbers. This gives a meaning to mastery levels. By using real-
valued located latent class, the GDM can easily be extended to more than two ability
levels on each of the skills variables. In addition, the GDM bridges the gap between
diagnostic models and multidimensional IRT models, and it can be shown that this
approach can fit data as well as MIRT models with a multivariate normal ability
distribution (Haberman, von Davier, & Lee, 2009). Hence, the GDM can be used
to estimate item parameters and latent ability distributions just as commercial IRT
estimation programs such as Parscale/or software for MIRT estimation usually do
by specifying the skill levels as quadrature points. However, the multivariate ability
distribution used in the GDM implementation (Xu & von Davier, 2008a, 2008b)
can be estimated freely and, therefore, is more flexible than a (multivariate) normal
ability distribution.

http://dx.doi.org/10.1007/978-3-030-05584-4_1
http://dx.doi.org/10.1007/978-3-030-05584-4_7
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23.3 Methodology

23.3.1 Data

Data from a NAEP Grade four reading assessment administered to a national sample
was used in the analysis. The data includes 97 items in total and about 140,000 stu-
dents, each of whom received about 30 items in a balanced incomplete block design
(von Davier et al., 2007). The background information we considered for this study
includes gender, race/ethnicity, individualized education plan (IEP), limited English
proficiency (LEP), free school lunch, location, and computer access at home.

This NAEP instrument measures reading abilities in two content areas: (a) the
literary subscale (47 items) and (b) the informational subscale (50 items). By design,
the two subscales share no common items.

23.3.2 Analysis Procedure

For each subgroup under consideration (race/ethnicity subgroups, gender groups, as
well as school lunch groups), a number of models were estimated: (a) M1: subgroup-
based two-dimensional model and (b) M2:latent-class-based two-dimensional
model. The models were defined as follows:

M1: Subgroup-based two-dimensional model

In this model, item parameters and subgroup ability distributions are obtained
simultaneously by calibrating a two dimensional IRT model (literary and infor-
mational subscales as two dimensions) in multiple populations defined by the
grouping variables, while restricting item parameter estimates to be the same
across subgroups. Under model M1, we estimate a multiple-group model with
known assignment of each student to the subgroup of interest. Note that only
a single nominal or dichotomous grouping variable is used in these cases, and
that ability estimates are based on a Bayesian approach. The mdltm software
allows expected a-posteriori, or maximum a-posteriori, or imputations based on the
posterior distribution. Therefore, for race/ethnicity group comparisons, a model that
contains the race/ethnicity grouping variable is appropriate, while for the school-
lunch group-based analyses, comparisons of means of estimates between these
groups only are appropriate.1 This implies that any multiple-group analysis is a

1This is relevant in cases where Bayesian estimates of ability are used, and the knowledge
about grouping, including the differences in ability distributions across groups, is utilized in the
estimation. In cases where maximum-likelihood (ML), or bias-corrected ML is used, a multiple
group model with item parameter equality will not produce more than trivially different estimates
when different grouping variables are used, unless the item parameter estimates are affected by the
grouping variables used. Note however, that ML and bias-corrected ML do not reduce measurement
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one-time deal: If the grouping variable in the analysis model is not the same as the
variable of interest; the estimates obtained from the multiple group model cannot
be used for group comparisons. Based on the results reported by Mislevy (1991)
and other subsequent publications on the use of this methodology, the gender-
based calibration will not be suitable for race/ethnicity group comparisons, as these
will likely result in secondary-biased estimates since the analysis model had no
information on the race/ethnicity variable. The tables below contain four variants
of M1: The first one (M1.1) that includes only the variable of interest, the second
(M1.2) includes a grouping variable that is crossed with a second grouping variable
(e.g., gender by race/ethnicity with 6 groups fully crossed in the example below),
the third (M1.3) includes a grouping variable that is crossed with two other grouping
variables (e.g. race/ethnicity by gender and by school lunch eligibility, and a fourth
(M1.4) that includes a mismatched grouping variable (e.g., gender variable when
deriving race/ethnicity subgroup results).

M2: Latent-class-based two-dimensional model

This model is similar to M1 but differs with respect to how subgroups are defined
or, identified. In model M1, the subgroups are defined by observed background
variables such as self-reported gender and race/ethnicity. However, in model M2, the
subgroups are not assumed to be known, but rather are defined as clusters derived
from students’ background information. Specifically, the predictors in model M2 are
based on the following steps: (a) Fit latent class models to the background variables
available in addition to the response data and treat the estimated memberships as if
they are observed; (b) then fit a two-dimensional multiple group IRT model to the
item responses with groups defined by the estimated class membership.

Under this model, we used 5-latent-classes as groupings for the two-dimensional
calibration (M2.1), 10-latent-classes as groupings for a two-dimensional calibration
(M2.2) and 50-latent-classes as grouping for a two-dimensional calibration (M2.3).
The latent classes based on the background data (e.g., gender, ethnicity, IEP, LEP,
etc.) were obtained using the mdltm software (von Davier, 2005). The following
table lists the levels for each of the background variables included in the latent
class approach. The number of potential combinations of the levels of background
variables is 1152, which equals the product over the number of levels across these
variables given in Table 23.1 below. Each class profile can be represented by 14
parameters, so that there are sufficient degrees of freedom to estimate 10 (140 + 9
parameters) as well as 50 (700 + 49 parameters) latent classes.

This approach is different from assuming a mixture IRT model (e.g., von Davier
& Rost, 2007, 2016) which would assume that there are unobserved groups that
establish the differences in ability distributions. Instead, the background variables
are used in the process of defining populations, but instead of principal components,
class membership variables based on a latent class analysis involving all grouping
variables of interest are generated.

error due to information about covariates, which is the main reason why background variables are
used in latent regression models together with Bayesian ability estimates.
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Table 23.1 Background
variables used to derive latent
classes of the NAEP reading
student population

Variable Levels

Gender 2
Race 6
IEP 2
LEP 2
School lunch 3
Location 4
Computer access 2

23.4 Results

The two models M1 and M2 are compared in terms of subgroup mean and standard
deviation (SD) estimates, taking the correct-subgroup two-dimensional calibration
(M1.1) as the baseline for comparisons. For example, if the target of inference is
for a gender group, we examine the estimates of gender group means and SDs
from the multiple group model that contains the gender variable only (correct
grouping variable used) to the estimates from the other multiple-group models. The
comparisons on estimates for each subgroup have two tables. The first one lists the
mean and SD estimates from the different models and the second one shows the
difference ratio (other model/M1.1-1).

Tables 23.2, 23.3, 23.4, and 23.5 present the mean and standard deviation
estimates and difference ratios for gender, race/ethnicity, and school-lunch-status
subgroups. The subgroups comprise the following proportions of the total sample:
White students 51%, Black students 14%, Hispanic students 25%, school-lunch-
eligible students 52%, and school-lunch not-eligible students 42%.

The following patterns can be discerned:

• As expected, the incorrect-subgroup models produce estimates that are different
from the base model M1.1 (e.g., the model M1.4 for race/ethnicity-group
inferences and M1.4 for school-lunch-group inferences).

• The model with an interaction including the reporting subgroup of interest
produces estimates that are very close to the base model M1.1, such as M1.2
and M1.3 for race/ethnicity-group inference.

• The model with latent classes returns either a reasonably good estimate or
inconsistent estimates compared to the correct-subgroup models. For example,
the latent class models provide good estimates for White or Hispanic student
groups compared with the baseline model, but showed somewhat imprecise
estimates for the Black student group. It is unclear why this happens. One
potential explanation is that smaller subgroups may not be fully represented in
the 10 latent classes that were obtained. The Black student group makes up about
14% of the total sample, which is smaller than the proportions for the other two
ethnicity-based subgroups.
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23.5 Summary

With the increasing scope of policy questions being raised in the context of NAEP,
the number of background variables collected to obtain information for reporting
purposes increased steadily over past assessment cycles. Educational large-scale
survey assessments rely more and more on assumptions made in the latent regression
in order to include all available background data. These models may use principal
components as done in most operational programs (von Davier & Sinharay, 2014)
or latent classes, as proposed by Wetzel et al. (2014) as predictors. Both approaches
do not fully reflect the variability in the background data, but rather provide
statistical summaries of the associations between the background variables collected
in the assessment. The individual subgroup identification is replaced by such data
summaries. The study presented in this chapter had the goal to investigate the
possible effects of this data reduction. The findings reported above (a) confirm
that the estimates for subgroups not included in the analysis models are biased,
(b) confirm that the estimates for subgroups that are included in the form of
fully crossed interaction models are consistent, and (c) raise concern regarding
the use of data summaries (either latent classes or principal components) instead
of observed background data. It appears that somewhat inconsistent estimates can
result, in particular, if the subgroup information is only incompletely reflected in
the statistical summaries that were used as predictors in the latent regression model.
This implies that additional research may be needed to straighten this out. For
example, the use of latent class analysis for auxiliary background data (Thomas,
2002) such as self-reports on out-of-school activities and educational resources
at home together with a direct inclusion of the main reporting variables (gender,
ethnicity, LEP, IEP, free school lunch) could be a promising way forward.

Note that the results presented here are limited by the number of background
variables used to derive the latent classes. Only seven background variables were
used. This approach is not comparable to the number of background variables used
in the latent regression models applied in operational practice. A future study might
expand to include all available background information to derive the latent classes
(e.g., combined with the use of automatic variable selection methods).
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Chapter 24
Reduced Reparameterized Unified
Model Applied to Learning Spatial
Rotation Skills

Susu Zhang, Jeff Douglas, Shiyu Wang, and Steven Andrew Culpepper

Abstract There has been a growing interest in measuring students in a learning
context. Cognitive diagnosis models (CDMs) are traditionally used to measure
students’ skill mastery at a static time point, but recently, they have been combined
with longitudinal models to track students’ changes in skill acquisition over time. In
this chapter, we propose a longitudinal learning model with CDMs. We consider
different kinds of measurement models, including the reduced-reparameterized
unified model (r-RUM) and the noisy input, deterministic-“and”-gate (NIDA)
model. We also consider the incorporation of theories on skill hierarchies. Different
models are fitted to a data set collected from a computer-based spatial rotation
learning program (Wang S, Yang Y, Culpepper SA, Douglas JA, J Educ Behav Stat,
2016. https://doi.org/10.3102.1076998617719727) and we evaluate and compare
these models using several goodness-of-fit indices.

24.1 Introduction

With the increasing use of online and computer-based instruction there is an
opportunity for the development of psychometric models that can utilize this rich
source of data and capture the dynamic nature of learning. Cognitive diagnosis
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models (CDMs) are naturally suited for this setting, because they allow for a fine
breakdown of skills and abilities that can be monitored for discrete changes from
nonmastery to mastery.

Computer-based learning also allows for the possibility of instruction to be
administered together with assessment, which affords a chance to examine factors
related to learning and assess when learning takes place. Utilizing CDMs in this
setting requires that the latent attribute vector be allowed to change, which would
typically be in a monotone fashion over a short duration, that is, within the course of
learning, learners do not forget a mastered skill. There has been research on dynamic
CDMs in the longitudinal setting, under which the respondents’ attribute patterns are
allowed to change over time (Kaya & Leite, 2016; Li, Cohen, Bottge, & Templin,
2015). These cases differ from our application in that much time could expire
between assessments, and the attribute vector is seen as static within an assessment.
Li et al. (2015) used the deterministic input, noisty-“and”-gate (DINA; e.g., Haertel,
1989; Junker & Sijtsma, 2001; Macready & Dayton, 1977) model together with
a transition model to measure the effects of an educational intervention. Through
simulation studies Kaya and Leite (2016) studied such transition models for
longitudinal applications using both the DINA and the DINO (Templin & Henson,
2006) models.

Our application to a spatial rotation skills intervention differs in that we consider
learning taking place within a short time span. This could take place between items
or between blocks of items, depending on how the intervention is administered.
Using the same spatial rotation data as in this study, Wang et al. (2016) considered
a hidden Markov model for attribute patterns to examine individual learners’
attribute pattern trajectories. Both latent and observed covariates were incorporated
to capture the effects of general learning ability, practice, and differences in how
the intervention was administered. Chen, Culpepper, Wang, & Douglas (2017) also
used the spatial rotation data to implement a learning model that considered a hidden
Markov model for transition probabilities between all pairs of attribute patterns.
Both Wang et al. and Chen et al. used the DINA model as the measurement model.

A similar approach to dynamic CDMs is the method of Knowledge Tracing
(Corbett & Anderson, 1994), which has become popular in applications of intel-
ligent tutoring systems. Knowledge Tracing has mostly focused on one attribute at a
time. Studer (2012) proved that Knowledge Tracing is mathematically equivalent
to an extension of the NIDA (Junker & Sijtsma, 2001; Maris, 1999) model for
multiple time points, with a further strong restriction that each item can only depend
on a single attribute. However, there have been several recent developments in
Knowledge Tracing that allow for items to depend on several attributes at once,
and have a wider variety of parameterizations (Xu & Mostow, 2012; González-
Brenes & Mostow, 2013; González-Brenes, Huang, & Brusilovsky, 2014; Pardos &
Heffernan, 2010).
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24.1.1 Spatial Rotation Data

A computer-based assessment and training program was developed to conduct a
study of learning spatial rotation skills (Wang et al., 2016). Subjects were students
recruited from the paid subject pool of the Department of Psychology at the
University of Illinois at Urbana-Champaign. Each subject was asked to complete
a series of 50 items on a computer-based assessment of spatial rotation skills. The
assessment items were comprised of an extended version of the Purdue Spatial
Visualization Test (PSVT; Yoon, 2011). The assessment consisted of 5 test blocks
each containing 10 questions. Following each test block, except the final one, was
a learning intervention. Participants first answered the questions in a test block and
then proceeded to a learning block in order to get feedback and instruction. In the
learning block, they were able to revisit previously taken assessment items, and
manipulate a figure with both x-axis and y-axis rotations to better visualize the
operations needed to answer assessment items.

Each item in an assessment block (Fig. 24.1) featured a reference object (i.e., the
one in the question stem) that had undergone a rotation. Subjects then considered
a new object and attempted to determine which of five options corresponded to
the same rotation as the reference object. All items included either an x-axis or y-
axis rotation, or both, and varied in complexity. In the learning block, two types
of learning interventions were developed. In the first type (Fig. 24.2), for each item
in the learning block, a graphical box was provided that allowed the participant
to use a left-to-right or an up-and-down bar to rotate the 3D object in the question
along either the horizontal or vertical axis into the correct position. This opportunity

Fig. 24.1 Test Block
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Fig. 24.2 Learning Block: Type 1

Fig. 24.3 Learning Block: Type 2

to interact and manipulate the objects was meant to promote learning the spatial
rotation skills. In the second type (Fig. 24.3), an additional short clip was provided
to show the participants how the reference items are rotated to the correct position.
Four spatial rotation skills were identified: (1) 90◦ x-axis rotation, (2) 90◦ y-axis
rotation, (3) 180◦ x-axis rotation and (4) 180◦ y-axis rotation. For the 90◦ rotations,
clockwise and counter-clockwise rotations are treated indifferently.

An unresolved question in fitting dynamic CDMs is whether item parameter
estimates can be affected by item position. This concern stems from the notion of
attributes being mastered throughout the assessment, and if learning would then
be confounded with the perceived difficulty of the item. In order to account for
this possible source of nonidentifiability, five different versions of the assessment
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were constructed and subjects were randomly assigned to them. This was done by
rotating the position of each of the five blocks so that the position of each item in the
assessment was balanced in the data set. Simulation studies (e.g., Wang et al., 2016;
Chen et al., 2017) indicated that this ensured that item parameters could be identified
and there was little bias in parameter estimates. A total of 351 University of Illinois
students participated in this experiment, with 177 experiencing the first type of
learning intervention and 174 receiving the second type of learning intervention.

24.2 Model Description

Our proposed model can be regarded as the combination of two parts, a learning
model that describes the transition of attribute patterns over time, and a measure-
ment model that assesses learners’ attribute mastery at each time point. The section
below provides an overview for these two components.

24.2.1 Learning Model

We denote the attribute pattern for subject n ∈ {1, . . . , N} at time t ∈ {0, . . . , T } by
αn,t = (αnt1, . . . , αntD)′. Here, t = 0 represents the initial time point before any
learning takes place, and t = 1, . . . , T represent each subsequent time point. Thus,
the total number of time points is T + 1. Two transition models are considered
below, a general monotonic Markov model and a restricted model with attribute
hierarchies. We note that both transition models we consider here impose the
Markovian assumption on the transitions of the attribute patterns over time, that is,
given the attribute pattern at the current time point (t), the learner’s attribute pattern
at the next time point (t+1) is independent from the attribute patterns at all previous
time points (0, . . . , t − 1).

Monotonic Markov model Given the attribute pattern of subject n at time t , αn,t =
(αn1, . . . , αnD)

′, the probability that s/he masters attribute d ∈ {1, . . . , D} at time
t + 1 is given by

P(An,t+1,d = 1 | αn,t ) =
{

1, αn,t,d = 1;
τd, αn,t,d = 0,

(24.1)

where A is the random variable for attribute mastery with realization α, and τd
is the probability of transitioning from non-master to master on attribute d at any
given time point. In addition, we assume that the transitions on each attribute are
independent conditioning on the attribute pattern at the current time point. If we
denote the observed mastery status on attribute d at time t + 1 by αn,t+1,d we have
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P(An,t+1,d = αn,t+1,d | αn,t,d , τd)
= P(An,t+1,d = 1 | αn,t , τd)αn,t+1,d

×[1− P(An,t+1,d = 1 | αn,t , τd)]1−αn,t+1,d . (24.2)

The probability of attribute pattern αn,t+1, given αn,t and τ = (τ1, . . . , τD)′, is

P(An,t+1 = αn,t+1 | αn,t , τ ) =
D∏

d=1

P(An,t+1,d = αn,t+1,d | αn,t,d , τd). (24.3)

Restricted model with attribute hierarchies The monotonic Markov model
above assumes that the probability of learning an attribute does not depend on
whether another attribute is also learned. In practice, however, some attributes may
be prerequisite to others, and as a result, we may have a restricted set of possible
attribute patterns. This will limit the number of possible attribute patterns from all
2D possibilities. Denote the set of prerequisites to attribute d as {d̄}, then instead of
Eq. (24.1), the probability of the transition is given by

P(An,t+1,d = 1 | αn,t , τd) =
{∏

d ′∈{d̄} αn,t+1,d ′ , αn,t,d = 1;
τd ·∏d ′∈{d̄} αn,t+1,d ′ , αn,t,d = 0.

(24.4)

Intuitively, the probability of transitioning from 0 to 1 on skill d is still τ , provided
that the prerequisites to d are all mastered. If at time t + 1, any of the prerequisites
to d are missing, the probability that αn,t+1,d = 1 will be 0. The hierarchical
relationship between attributes can be captured by using a D × D reachability
matrix, R (e.g., Leighton, Gierl, & Hunka, 2004), where Rdd ′ = 1 if attribute d
requires attribute d ′ as a prerequisite, and Rdd ′ = 0 otherwise.

24.2.2 Measurement Models

At each time point, the learners’ attribute mastery status (αn,t ) cannot be directly
observed, and hence they need to be measured through assessment items. We
therefore have a hidden Markov model, where the underlying transitions are
modelled in a Markovian manner, but the states (i.e., attribute patterns) of the
learners are latent, or hidden. To model the relationship between the observed
item responses and the underlying attribute patterns at each time point, here we
consider two possible response models, the noisy input, deterministic-“and”-gate
model (NIDA; Junker & Sijtsma, 2001) and the reduced reparameterized unified
model (rRUM; Hartz, 2002; Leighton & Gierl, 2007; DiBello, Stout, & Roussos,
1995). At a certain time point, we index the items by k = 1, . . . , Kt , where Kt is
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the number of items administered at time t . Under the NIDA model, the probability
of a correct response is given by

P(Xn,t,k = 1 | αn,t , s, g) =
D∏

d=1

[(1− sd)αn,t,d g(1−αn,t,d )d ]qk,d , (24.5)

where s = [s1, . . . , sD]′, g = [g1, . . . , gD]′ can be interpreted as the probabilities
of incorrectly applying an acquired attribute (slipping) and probabilities of correctly
applying an unacquired attribute (guessing), respectively, and qk,d = 1 if attribute
d is required by item k, qk,d = 0 otherwise. Intuitively, on an item following the
NIDA model, the learner has a probability of correctly/incorrectly applying each
skill. Given that all required skills by the item are correctly applied, the probability
of correct response is 1, 0 otherwise.

By relaxing the slipping and guessing parameters to be item-specific (sk, gk), we
have the Generalized NIDA (GNIDA) model, given by

P(Xn,t,k = 1 | αn,t , sk, gk) =
D∏

d=1

[(1− sk,d)αn,t,d g(1−αn,t,d )k,d ]qk,d . (24.6)

Hartz (2002) reparameterized the GNIDA model through the following conversions,

π∗k =
D∏

d=1

(1− sk,d)qk,d , (24.7)

r∗k,d =
gk,d

1− sk,d , (24.8)

and obtained the rRUM model, where the probability of correct response is given by

P(Xn,t,k = 1 | αn,t ,qk, π∗k , rk) = π∗k
D∏

d=1

r
∗(1−αn,t,d )qk,d
k,d . (24.9)

Intuitively, the probability of correct response for someone who has mastered all
requisite skills to an item k, under the rRUM, is π∗k . Missing each requisite skill d
to item k results in a discount in the probability of correct response at r∗k,d .

24.3 Parameter Estimation

A Bayesian formulation is adopted to estimate the learning model’s parameters.
Similar to Culpepper and Hudson (2017), a data augmentation approach is used for
updating the generalized NIDA (NIDA and rRUM) model parameters, and similar
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to Wang et al. (2016) and Chen et al. (2017), the forward-backward algorithm was
used for sequentially updating the learning model and the attribute parameters under
the hidden Markov model. The basic idea behind the forward-backward algorithm is
that when we estimate the αns, we sequentially update the attribute pattern at each
time point. For a time point 0 < t < T , the distribution of αn,t depends on the
previous time point (αn,t−1) and the next time point (αn,t+1).

24.3.1 Prior Distribution

We assume that the prior distribution for the initial population membership proba-
bilities, �, is

� ∼ Dirichlet (δ0),where δ0 = (δ01, . . . , δ0C)
′,with C = 2D. (24.10)

We further assume the prior distributions for the transition probabilities T , are

p(T = τ ) ∝
D∏

d=1

τa−1
d (1− τd)b−1. (24.11)

In addition, for both the NIDA and the rRUM model, truncated Beta priors were
used for Sk,ds and Gk,ds, the slipping and guessing parameters under the G-NIDA
formulation (note that under the NIDA model, the Sk,ds andGk,ds were constrained
to be equal across items and hence could be simplified to sd and gd ):

p(sk,d , gk,d) ∝ sas−1
k,d (1−sk,d )bs−1g

ag−1
k,d (1−gk,d)bg−1I(0 ≤ gk,d < 1−sk,d ≤ 1).

(24.12)

24.3.2 Full Conditional Distributions

Let Zn,t,k,· = (Zn,t,k,1, . . . , Zn,t,k,D)
′ denote the augmented latent responses to

item k by subject n at time t , whereZn,t,k,d = 1 if subject n has successfully applied
attribute d on item k at time t , and Zn,t,k,d = 0 otherwise. In addition, let Zn,t,k,(d)
denote the vector of the latent responses on item k by subject n at time t except on
attribute d. With the assumed prior distributions of the parameters described above,
the full conditional distributions for the parameters, given the observed responses
xn,t,ks, are described below.

• For Zn,t,k,ds such that the corresponding qk,d = 1:
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Zn,t,k,d | (Xn,t,k = xn,t,k,Zn,t,k,(d), αn,t,d , sk,d , gk,d) ∼ Bernoulli(π̃n,t,k,d ),
(24.13)

where

π̃n,t,k,d

= P(xn,t,k | Zn,t,k,(d), Zn,t,k,d = 1)P (Zn,t,k,d = 1 | αn,t,d , sk,d , gk,d )
∑1
zn,t,k,d=0 P(xn,t,k | Zn,t,k,(d), Zn,t,k,d = zn,t,k,d )P (Zn,t,k,d = zn,t,k,d | αn,t,d , sk,d , gk,d )

= {(1−
∏

d ′ �=d
z
qk,d′
n,t,k,d ′ )[(1− sk,d )αn,t,d g

1−αn,t,d
k,d

]qk,d }1−xn,t,k . (24.14)

• For An,t,d ’s: Let s·d, g·d denote the vectors of slipping and guessing parameters
associated with applying attribute d for all items administered to subject n at time
t , and let α∗ denote the attribute vector of lengthD, whose dth entry is αn,t,d and
the other entries are equal to αn,t,(d). Then

p(An,t,d = αn,t,d | zn,t,·,d , s·,d ,g·,d ,αn,t,(d))

∝ p(zn,t,·,d | αn,t,d , s·,d ,g·,d )π̃n,t,d (24.15)

∝ [
Kt∏

k=1

P(zn,t,k,d | αn,t,d , sk,d , gk,d)]π̃n,t,d , (24.16)

where

π̃n,t,d =

⎧
⎪⎪⎨

⎪⎪⎩

P(An,t = α∗ | π)P (αn,t+1 | An,t = α∗, τ ), t = 0;
P(An,t = α∗ | αn,t−1, τ )P (αn,t+1 | An,t = α∗, τ ), 1 ≤ t < T ;
P(An,t = α∗ | αn,t−1, τ ), t = T , and

(24.17)

P(zn,t,k,d | αn,t,d , sk,d , gk,d)
= [(1− sk,d)αn,t,d g(1−αn,t,d )k,d ]zn,t,k,d [sαn,t,dk,d (1− gk,d)1−αn,t,d ]1−zn,t,k,d . (24.18)

• For � : Denote the attribute patterns of all subjects at time t = 0 by α·,0, then

� | α·,0 ∼ Dirichlet (δ0 + δ̃),where δ̃

= (
N∑

n=1

I(αn,0 = α1), . . . ,

N∑

n=1

I(αn,0 = αC))
′. (24.19)

• For Sk,Gk’s: Given an item k, let t∗n denote the time at which item k was
administered to subject n, and let α·,· represent the attribute patterns for all



512 S. Zhang et al.

subjects across all time points. Then

P(sk,d , gk,d | z·,·,·,·,α·,·) ∝ sas,k,d−1
k,d (1− sk,d)bs,k,d−1g

ag,k,d−1
k,d

× (1− gk,d)bg,k,d−1×
I(0 ≤ gk,d < 1− sk,d ≤ 1), (24.20)

where, under the rRUM model,

as,k,d =
N∑

n=1

αn,t∗n ,d (1− zn,t∗n ,k,d )qk,d + as; (24.21)

bs,k,d =
N∑

n=1

αn,t∗n ,dzn,t∗n ,k,dqk,d + bs; (24.22)

ag,k,d =
N∑

n=1

(1− αn,t∗n ,d )zn,t∗n ,k,dqk,d + ag; (24.23)

bg,k,d =
N∑

n=1

(1− αn,t∗n ,d )(1− znt∗n ,k,d )qk,d + bg. (24.24)

Under the NIDA model, the sk,d and gk,ds are the same across items, thus
as,k,d , bs,k,d , ag,k,d , and bg,k,d can be simplified to as,d , bs,d , ag,d , and bg,d ,
where

as,d =
N∑

n=1

Kt∗n∑

k=1

αn,t∗n ,d (1− zn,t∗n ,k,d )qk,d + as; (24.25)

bs,d =
N∑

n=1

Kt∗n∑

k=1

αn,t∗n ,dzn,t∗n ,dqk,d + bs; (24.26)

ag,d =
N∑

n=1

Kt∗n∑

k=1

(1− αn,t∗n ,d )zn,t∗n ,k,dqk,d + ag; (24.27)

bg,d =
N∑

n=1

Kt∗n∑

k=1

(1− αn,t∗n ,d )(1− zn,t∗n ,k,d )qk,d + bg. (24.28)

• For T : Let α·,t denote the attribute patterns for all subjects at time t , and let {d̄}
denote the set of prerequisites to attribute d. Then
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P(T = τ | α·,t ,α·,t+1) ∝
D∏

d=1

τ
aτd−1
d (1− τd)bτd−1,with (24.29)

aτd =
T−1∑

t=0

N∑

n=1

{
(1− αn,t,d )αn,t+1,d

∏

d ′∈{d̄}
αn,t+1,d ′

}
+ a; (24.30)

bτd =
T−1∑

t=0

N∑

n=1

{
(1− αn,t,d )(1− αn,t+1,d )

∏

d ′∈{d̄}
αn,t+1,d ′

}
+ b. (24.31)

24.3.3 A Gibbs Sampling Algorithm

We developed a Markov Chain Monte Carlo (MCMC) algorithm to sample the
parameters from the posterior distribution, by iteratively sampling each parameter
from its corresponding conditional distribution given the other parameters. Because
the conditional distributions of all parameters can be directly sampled from, we can
use a Gibbs sampler to iteratively draw samples of the parameters from the full
conditional distributions. More specifically, the parameters were updated following
these steps:

1. Assign initial values to all parameters, namely π [0],α[0], s[0],g[0], τ [0], and
z[0].

2. At each iteration r:

(a) For each n, k, t, and d where qk,d = 1, draw z[r+1]
n,t,k,d based on Eqs. (24.13),

and (24.14), given xn,t,k, z
[r]
n,t,k,(d), α

[r]
n,t,d , s

[r]
k,d , and g[r]k,d;

(b) For each n, t, and d, draw α[r+1]
n,t,d based on Eqs. (24.15), (24.16), (24.17),

and (24.18), given z[r+1]
n,t,·,d , s

[r]
·,d ,g

[r]
·,d ,α

[r+1]
n,t−1,α

[r]
n,t+1,π

[r], and τ [r];
(c) Draw π [r+1] based on Eq. (24.19), given α

[r+1]
·,0 ;

(d) For the rRUM model, for each item k and attribute d, draw g
[r+1]
k,d based

on Eqs. (24.20), (24.21), (24.22), (24.23), and (24.24), given z[r+1]
·,·,k,d ,α

[r+1]·,·
and s[r]k,d . Then, draw s[r+1]

k,d based on Eqs. (24.20), (24.21), (24.22), (24.23),

and (24.24) given z[r+1]
·,·,k,d ,α

[r+1]·· and g[r+1]
jk . The corresponding π∗[r+1]

k

and r
∗[r+1]
k can be obtained via algebraic transformations in Eqs. (24.7)

and (24.8). For the NIDA model, for each attribute d, draw g
[r+1]
d based

on Eqs. (24.20), (24.25), (24.26), (24.27), and (24.28), given z[r+1]
·,·,·,d ,α

[r+1]·,· ,

and s[r]d , and draw s[r+1]
d based on Eqs. (24.20), (24.25), (24.26), (24.27),

and (24.28) given z[r+1]
·,·,·,d ,α

[r+1]·,· , and g[r+1]
d .
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(e) For each d, sample τ [r+1]
d from the conditional distribution in Eqs.

(24.29), (24.30), and (24.31), given α
[r+1]·,· , [τ1, . . . , τd−1]′[r+1], and

[τd+1, . . . , τD]′[r+1].

24.4 Application: A Spacial Reasoning Test with Learning
Interventions

Six different models, with two types of measurement models (NIDA or rRUM) and
three types of attribute relationships, were compared in terms of fit to the spatial
rotation learning data set (Wang et al., 2016; Chen et al., 2017). The three different
types of attribute relationships were captured by the corresponding reachability
matrices. Specifically,

• Relationship 1: No attribute hierarchies exist, thus

R1 =
⎛

⎜⎝
0 . . . 0
...
. . .
...

0 . . . 0

⎞

⎟⎠ . (24.32)

• Relationship 2: 180◦ rotation along the y-axis requires 90◦ rotation along the y-
axis as a prerequisite, and 180◦ rotation along the x-axis requires 90◦ rotation
along the x-axis as a prerequisite. The reachability matrix is hence

R2 =

⎛

⎜⎜⎝

0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0

⎞

⎟⎟⎠ . (24.33)

• Relationship 3: The 180◦ rotations (along x-axis and y-axis) has both the 90◦
rotation along x-axis and the 90◦ rotation along y-axis as prerequisites. The
corresponding reachability matrix is

R3 =

⎛

⎜⎜⎝

0 0 0 0
0 0 0 0
1 1 0 0
1 1 0 0

⎞

⎟⎟⎠ . (24.34)

Note that when R2 or R3 are used to define the hierarchical relationships between
skills, some of the attribute patterns will not be realizable under the hierarchical
assumptions. For example, when R2 is used, attribute pattern (0, 0, 1, 0) would
not be possible, because by assumption, one cannot master 180◦ x−axis rotation
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without mastering 90◦ x-axis rotation. Therefore, at every time point (including
t = 0), we need to restrict the parameter space for attribute patterns to the realizable
ones based on the attribute hierarchies.

The MCMC algorithm described in the section above was applied to estimate the
model parameters. Uninformative (i.e., uniform) priors were chosen for �,S,G,

and T . The initial value of � was randomly sampled from Dirichlet(1), the initial
values for each τd were sampled from the Uniform(0,1) distribution, and the initial
values for the sk,d , gk,d ’s were randomly sampled from U(.1, .3). Using these
random initial values, the initial values for α’s were simulated. Lastly, z[0]n,t,k,d was
set to 1 for all n, t, k and d.

24.4.1 MCMC Convergence

To evaluate the parameter convergence using the MCMC algorithm, five separate
chains with different starting values were run with chain lengths of 50,000
iterations under the rRUM model with no attribute hierarchies. The Gelman-Rubin
proportional scale reduction factor (PSRF), commonly known as R̂, was calculated
for each parameter at different chain lengths. The progression of the maximum R̂

out of all estimated parameters is displayed in Fig. 24.4.
The Gelman-Rubin R̂ compares the within-chain variance and the between-chain

variance of the parameter samples. If the chains have mixed well, then R̂, the ratio
between the pooled (between and within) variance and the within-chain variance,
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Fig. 24.4 Progression of maximum R̂ as chain length increases. Dashed horizontal line indicates
R̂ = 1.2
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should be close to 1. An R̂ value below 1.2 is commonly used to indicate the
convergence of that parameter estimate. We can see that at around 25,000 iterations,
the maximum R̂ stabilizes to less than or slightly above (up to 0.02 above) 1.2, and
the R̂ of all the other estimated parameters stay below 1.2. Thus for subsequent
analyses, a chain length of 40,000 was used for each of the 6 models, with 25,000
iterations as the burn-in.

24.4.2 Model Comparison

The fit of the six models were compared in terms of a few aspects, the Deviance
Information Criterion (DIC), and posterior predictive model checks on the item
means (first moments, M1), item pair-wise odds ratios (second moments, M2), and
on the subjects’ total scores across time points. The procedures for computing each
are detailed below.

• DIC: DIC is commonly used to assess the relative global fit of the model, and
intuitively, it is related to the likelihood of the observed data given the estimated
model parameters. As described in Spiegelhalter, Best, Carlin, and van der Linde
(2002), if we denote the set of unknown model parameters by θ , then the DIC
can be calculated as

DIC = pD + D̄(θ), (24.35)

where pD = D̄(θ)−D(θ̄), and

D(θ) = −2 log[P(x | θ)] + C (24.36)

= −2 log[P(x | π , τ , s,g)] + C (24.37)

= −2 log
{ N∏

n=1

[ ∑

∀αl∈AT+1

P(αl )

T∏

t=0

P(xn,t | An,t = αl,t , st ,gt )
]}+ C.

(24.38)

Here, αl = (αl,0,αl,1, . . . ,αl,T ) is any learning trajectory from time t = 0 to T ,
and P(αl ) can be computed as

P(αl ) = P(An,0 = αl | π)
T∏

t=1

P(An,t = αl,t | An,t−1 = αl,t−1, τ ). (24.39)

To calculate D̄(θ), at each post-burnin iteration t of the MCMC, we compute
the D(θ [t]) based on the parameter samples in the t th iteration, namely θ [t]. The
average of D(θ [t])s across all post-burnin iterations is computed to obtain D̄(θ).
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• Posterior predictive check for the item means (M1): Posterior predictive model
checking (PPMC) is commonly used in Bayesian modeling to assess the local
(e.g., item-level or person-level) fit of the model to the observed data. Intuitively,
it assesses the position of the observed data in the posterior predictive distribution
of the model. After burnin, at each iteration of the MCMC, the model parameter
samples were used to simulate responses of the subjects. For each item, the
item means (M1), that is the proportion of people who answered correctly was
calculated based on the simulated responses as well as the observed data. Then
the posterior predictive probability (PPP) of each item’s mean is given by the
proportion of simulated item means that lie below the observed item mean.

• Posterior predictive check for the item pairwise odds ratios (M2): For any
given item pair, Sinharay, Johnson, and Stern (2006) suggested using OR =
(N11N00)/(N01N10), where N11 is number of respondents responding to both
items correctly, N01 is number of respondents who answered item 1 wrong and
item 2 correctly, etc., as a measure of item-pairwise associations. Similar to that
of the item means, the item pair-wise ORs based on the simulated responses from
sampled model parameters and those from the observed responses are obtained,
and the PPP of each item pair’s odds ratio is given by the proportion of simulated
odds ratios for the item pair that lie below the observed.

• Posterior predictive model check for the subjects’ total scores at each time point:
Like above, simulated and observed responses were used to obtain the number of
correct responses (total score) by each subject at each time point. Then, for each
subject and each time point, the PPP for total score is given by the proportion of
simulated total scores below the observed.

Table 24.1 summarizes the DIC statistics and the proportions of posterior
predictive probabilities below 0.05 or above 0.95 (which indicates misfit, or in the
extreme range) for item means (M1), item ORs (M2), and subject total scores for
the six models. A smaller DIC value and a smaller proportion of PPPs outside the
90% interval would indicate better fit.

Table 24.1 suggests that out of the six models, the one assuming a rRUM
measurement model and no attribute hierarchies achieved the best fit, indicated
by the lowest DIC, the lowest proportion of extreme PPPs on item means and
pair-wise odds ratios, and comparable proportion of extreme PPPs as the other
models. We also see that compared to models with NIDA as the measurement model,

Table 24.1 Summary of fit statistics of the six different models

Model DIC % M1 misfit % M2 misfit % total misfit

NIDA R1 16129.61 74.0 46.4 24.1

NIDA R2 16154.09 70.0 47.1 23.1

NIDA R3 16233.26 72.0 48.2 23.1

rRUM R1 14860.91 0.0 25.1 23.5

rRUM R2 15099.09 0.0 26.4 23.6

rRUM R3 15188.04 0.0 27.3 23.8



518 S. Zhang et al.

models using rRUM as the measurement model performed much better in terms of
item level fit. However, there was not an obvious difference between the NIDA-
based and rRUM-based learning models in terms of total score posterior predictive
probabilities.

Figure 24.5 presents the posterior predictive probabilities of each item’s mean
under the rRUM model without attribute hierarchies. The shaded area in each
circle represents the proportion of simulated item means below the observed item
mean. None of the observed item means were within the extreme range. There is
a consistent tendency for the model to slightly underestimate the item means, as
indicated by the PPPs above 50% on all items.

Figure 24.6 presents the density of the posterior predictive probability of
the item pair-wise odds ratios. We observe that the distribution of the PPPs is
skewed to the left, indicating a tendency for the model to underestimate the ratio
(N00N11)/(N10N11).

Figure 24.7 presents the density curves of the posterior predictive probabilities
for total scores at different time points. For all time points, we observe a tendency
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Fig. 24.5 Posterior Predictive Probabilities (PPPs) of the item means (i.e., proportion correct)
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Fig. 24.6 Density of the posterior predictive probability for item pair-wise odds ratios
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Fig. 24.7 Density of posterior predictive probability for total scores at different time points

for the model to underestimate the total scores of the subjects, as suggested by
the higher densities at higher PPPs. This pattern seems to be most salient after the
learning begins (i.e., for T = 1, . . . , 4) than for the initial time point, T = 0.

The plots for PPPs of total scores over observed total score at each time point
are shown in Fig. 24.8. Across all time points, we observe a consistent trend for
the model to overestimate total scores for subjects with low observed scores and
underestimate for those with high observed scores. The reason for this is not clear.
One might suspect that it is either due to the measurement model or due to the
learning transition model. We have investigated this by fitting the data separately at
each timepoint with the more general GDINA model (see Chap. 7 in this volume),
but the same phenomenon was observed. This suggested that perhaps it was due to
the rather simple transition model that assumes independent transitions. However,
this underestimation was also seen when fitting a Markov model for patternwise
transitions (Chen et al., 2017). So we remain uncertain of the source of this bias.
Perhaps it lies in the more elusive problem of Q-matrix misspecification, or reflects
some degree of individual person misfit, such as those who were rapidly guessing.
This behavior was seen in the response times of some subjects on some test blocks.

24.4.3 Observed Progression of Learning

Based on the estimated attribute patterns under the rRUM learning model without
attribute hierarchies, we looked at the progression of attribute mastery rate over
time, as well as the frequency for the number of mastered attributes at each time
point. Table 24.2 summarizes the distribution of the number of mastered attributes
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Fig. 24.8 Relationship between posterior predictive probability of total score and observed total
score at each time point

at each time point, and Fig. 24.9 shows the progression of mastery rate of each
attribute across time, for learners who received learning block 1 (dashed lines) and
learners who received learning block type 2 (solid lines). For both types of learning
interventions, as the learning time increases, the percentage of students mastering
each attribute also increases, and a shift towards mastering more attributes over time
is observed. Compared to individuals who received the first type of learning block,
those who received the second kind consistently had slightly higher mastery rate on
each skill across time points.
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Table 24.2 Frequency distribution (and percentage) of number of skills mastered at each time
point

Number of
skills mastered t =0 t =1 t =2 t =3 t =4

0 53(15.1%) 40(11.4%) 35(9.97%) 31(8.83%) 27(7.69%)

1 53(15.1%) 57(16.24%) 56(15.95%) 56(15.95%) 56(15.95%)

2 77(21.94%) 76(21.65%) 70(19.94%) 58(16.52%) 45(12.82%)

3 0(0%) 6(1.71%) 13(3.7%) 28(7.98%) 38(10.83%)

4 168(47.86%) 172(49%) 177(50.43%) 178(50.71%) 185(52.71%)
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Fig. 24.9 Progression of mastery rate of each attribute across time for learners receiving the two
types of treatments. Dashed line represents the mastery rate progression of learners who received
the first type of learning block. Solid line represents that of the learners who received the second
type of learning block

24.5 Discussion

CDMs for learning allow examining the rate at which students learn, and factors
associated with learning, when using models with covariates. Learning models are
also more realistic than static models for testing data collected with intermittent
educational interventions, because the entire purpose of the interventions promote
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learning. Even merely completing items can be a form of learning, which is the
essence and purpose of the ages old practice of homework. Extensions to CDMs
for learning may even include item parameters to describe the educational quality
of items and how they can promote learning, for example by incorporating item-
specific characteristics to the modeling of the transition probability from nonmastery
to mastery.

In this chapter, we presented a model that combines the rRUM or NIDA
measurement model with a simple Markov model for learning that treats the
separate attributes independently. A MCMC algorithm for parameter estimation was
described, and methods of assessing model fit using deviance information criteria
and posterior predictive model checking were discussed. In practice, researchers
can use the DIC and posterior predictive model checking to examine the fit of a
proposed learning model to a data set, or to compare different models and select
the one providing the best fit. For example, a researcher might be interested in
which measurement model, rRUM or DINA, would be the most appropriate for
the longitudinal data set at hand, and DICs and PPMC could be used to select the
best fitting one. As an example of the use of posterior predictive model checking for
learning model with the DINA measurement model, readers can refer to Wang et al.
(2016), where the posterior predictive probabilities of item means were calculated
under the high-order hidden Markov CDM.

In the application to spatial rotation data, a reasonably good but imperfect fit was
seen. In particular, posterior predictive checks found the predicted total scores over
time did not advance like observed scores. After some analysis, we do not believe
this misfit was due to the measurement model or the learning model, but may be due
to Q-matrix misspecification or person misfit. Analysis of response times indicates
aberrant behavior of some subjects, which could manifest in this observed bias. The
application also considered the notion of attribute hierarchies, which when present
could greatly simplify the learning model. However, in this application goodness
of fit measures indicated the superior fit of the unrestricted model without attribute
hierarchies.

Modeling learning requires additional parameters, but this application shows that
somewhat complex models can be fitted with as few as 350 subjects. Computer
administered assessments are becoming more and more prevalent and will provide
ample subjects for fitting learning models and even assessing item quality. Such
models can be informative for item selection when the goal is promoting and
verifying learning.
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Chapter 25
How to Conduct a Study with Diagnostic
Models

Young-Sun Lee and Diego A. Luna-Bazaldua

Abstract In recent years there has been a wave of new assessment designs,
measurement methods, and frameworks to connect psychometrics with cognitive
science due to the need to enhance traditional and new assessments in order to
provide more information about the examinees and the quality of the assessment
tools. The purpose of this chapter is to explore the use of a set of guidelines
developed for CDM retrofitting using data from the 2007 TIMSS test administration
as an example. Three research questions for the study are: Is it feasible to use
a retrofitting approach using TIMSS data? Does relative model fit improve when
using CDMs compared to IRT models? What additional information regarding the
examinees’ skills and items are gained from using CDM retrofitting?

25.1 Introduction

Traditional educational testing practice has tended to follow a normative assessment
approach. This trend has been supported by the development of psychometric
frameworks that inform researchers and test developers about examinees’ ability
and tests psychometric characteristics under a unidimensional model (Embretson
& Reise, 2000). In recent years there has been a wave of new assessment designs,
measurement methods, and frameworks to connect psychometrics with cognitive
science due to the need to enhance traditional and new assessments in order to
provide more information about the examinees and the quality of the assessment
tools (Embretson & Gorin, 2001; Mislevy et al., 2014; Park & Lee, 2014; von
Davier, 2009; Yan, Mislevy, & Almond, 2003). Recently, there has been growth
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in the number of new diagnostic psychometric methods, which either expand the
Classical Test Theory (CTT) or the Item Response Theory (IRT) frameworks or
propose new latent variable models (Embretson & Daniel, 2008; Embretson & Yang,
2013; Magidson & Vermunt, 2001; Mislevy & Verhelst, 1990; Rupp, Templin, &
Henson, 2010; Wilson, 2008; Yamamoto, 1989).

Among these methods, the different models for cognitive diagnosis stand out
because of their integration of fine-grained information on skills measured by
the test within a psychometric framework (Geisinger, 2012; Rupp, 2007; Rupp
& Templin, 2008). From a statistical perspective, Cognitive diagnostic models
(CDMs) are characterized as a confirmatory psychometric extension of the latent
class model (von Davier, 2005). From an assessment perspective, CDMs are useful
to provide feedback to the examinees on their strengths and weaknesses based on
the mastered and non-mastered skills, rather than reporting only a single score with
respect to a reference group such as those commonly obtained in the traditional
CTT and IRT frameworks in psychological measurement (Crocker & Algina,
1986; Geisinger, 2012). Moreover, CDMs are intrinsically multidimensional models
given their capacity to analyze fine-grained skills that interact with each other
to produce a correct answer to the items in a test (Rupp & Templin, 2008). In
contrast, the majority of the models developed in the CTT and IRT frameworks
are unidimensional, producing a single total score that reflects an overall ability in
the general domain assessed by the test (Crocker & Algina, 1986).

In some instances a researcher, instructor, or examinee may want to obtain
supplementary performance feedback on specific skills measured by an already
developed test but not fully reflected by the test score, as well as additional
information about how the skills are related to the general domain ability measured
by the test (Park & Lee, 2014). However, the differences among the traditional and
new psychometric frameworks produce several challenges when trying to analyze
data from standardized tests originally developed under the CTT or IRT frameworks,
using new models developed under the CDM framework (Liu, Huggins-Manley,
& Bulut, 2017). For instance, conventional practices in test construction are
usually focused on increasing the total test score reliability by selecting items with
psychometric features that are in harmony with a unidimensional construct (Liu et
al., 2017). Similarly, the IRT framework has generated robust research on areas such
as scale linking and equating and the development of item banks, but such processes
intrinsically require unidimensionality of the construct measured by the items and
tests (Embretson & Reise, 2000).

Because of the underlying differences between the traditional and new psycho-
metric frameworks and the difficulties in analyzing an already developed test using
CDM approaches, both Gierl and Cui (2008) and Liu et al. (2017) have discussed the
use of retrofitting. In this context, retrofitting refers to the secondary data analysis
process of fitting a model for cognitive diagnosis to test data from assessments
originally designed under a different measurement (e.g., CTT or unidimensional
IRT) framework. It is important to note that while retrofitting is presented here as
an approach to analyze assessment data not originally generated under a cognitive
diagnostic framework, some authors consider that retrofitting is not to a suitable
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approach in psychometric data analysis (see Haberman & Davier, 2006; von Davier
& Haberman, 2014).

An optimal approach to retrofitting starts by gathering comprehensive infor-
mation about the test to identify subdomains or skills measured by each item,
as well as any additional information about the test psychometric characteristics,
the examinees, and the general purpose of the assessment. In this sense, the
researcher seeks to recover multidimensional information from a test narrowed
to fit unidimensional models. Once the skills have been identified, the researcher
proceeds to work with test content experts in the development of a Q-matrix, which
is defined as an item-by-skill matrix that specifies the skills that are required to
correctly answer each item in a test (Tatsuoka, 1990). If there is disagreement or
uncertainty among the experts about the definition of specific cell entries in the
Q-matrix, then the researcher explores additional analyses proposed for Q-matrix
validation (Chiu, 2013; de la Torre, 2008; de la Torre & Chiu, 2016; DeCarlo, 2012;
Liu, Xu, & Ying, 2012). Ideally, the Q-matrix presents conditions that guarantee the
identifiability or local identifiability of the conjunctive CDMs, such as having items
requiring only a single skill, having skills measured by at least two or three items,
and having two items with identical skill requirements for every skill defined in the
Q-matrix (Xu & Zhang, 2016).

The subsequent step in the retrofitting process is focused on the CDM mod-
eling process. First, one or more CDMs are fit to educational and psychological
measurement data. The model selection process may be based on theory regarding
the relationships and hierarchy among the latent skills or on information produced
by the fit statistics (de la Torre & Douglas, 2004; Leighton, Gierl, & Hunka,
2004; Liu et al., 2017; Templin & Bradshaw, 2014). Some general models for
cognitive diagnosis have been proposed in the literature, such as the general
diagnostic model (GDM; von Davier, 2005), the log-linear cognitive diagnostic
model (LCDM; Henson, Templin, & Willse, 2009), and the generalized DINA
model (G-DINA; de la Torre, 2011). Specific constrained models nested within these
general models correspond to models formerly proposed in the literature such the
reduced reparametrized unified model (R-RUM; DiBello, Stout, & Roussos, 1995),
the deterministic inputs, noisy “and” gate model (DINA; Junker & Sijtsma, 2001),
and the deterministic inputs, noisy “or” gate model (NIDO; Templin & Henson,
2006). General CDMs tend to provide better model fit to data when compared to
the specific models, but more parsimonious and straightforward interpretations can
results from the use of specific models. Moreover, if the adequate specific model
is used to fit the data, then a higher rate of correct skill patterns is estimated (de la
Torre & Lee, 2013; Rojas, de la Torre, & Olea, 2012). In this sense, a retrofitting
analysis could start by fitting a general model followed by its nested models, which
usually differ from each other in the way the attributes interact to produce a correct
answer to the items. Then, a specific model is selected depending on its fit statistics
and classification of the latent attributes.

Assessing model fit and selecting an optimal model is a relevant topic given the
wide variety of models that exist within the CDM framework. Liu et al. (2017)
present an exhaustive review of overall model fit, item fit, and person fit indices
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formerly proposed for CDM model selection. Model fit, also referred as test-level
fit, is used to analyze if the selected model fits the data in their entirety (de la Torre
& Lee, 2013). Model level fit measures can be further separated into absolute fit
measures and relative fit measures (Chen, de la Torre, & Zhang, 2013). Absolute
fit measures indicate the capacity of the model to reproduce the data. Relative fit
measures compare fit of two or more models, so the model with the best relative
fit statistics is chosen. For most measures, smaller values for both absolute and
relative fit indices indicate better fit of the model to the data. The absolute fit
indices mentioned in Chen et al. (2013) and in Liu et al. (2017) are the limited
information fit statistics (Hansen, Cai, Monroe, & Li, 2016), the residuals between
the observed and predicted correlations and log-odds ratios of item pairs and the
residuals between the observed and predicted proportion correct of individual items
(de la Torre & Douglas, 2008), the maximum of all pairwise χ2 statistics (Chen et
al., 2013; Rupp et al., 2010), and the standardized root mean square root of squared
residuals (Maydeu-Olivares & Joe, 2014). Relative fit measures commonly reported
in psychometric literature on CDMs are the −2 log likelihood (LL; Neyman &
Pearson, 1992), Akaike Information Criterion (AIC; Akaike, 1987), the Bayesian
Information Criterion (BIC; Schwarz, 1976); the deviance information criterion
(DIC; Spiegelhalter, Best, Carlin, & van der Linde, 2002), and the Bayes factor
(Kass & Raftery, 1995).

Item level fit measures indicate if the model fits to individual items (de la Torre
& Lee, 2013). Measures of item fit include the Wald test statistic (de la Torre &
Lee, 2013), the mean absolute deviations between the observed and predicted item
conditional probabilities of success (MAD; Henson et al., 2009), and the root mean
square error of approximation between the observed and predicted item conditional
probabilities of success (RMSEA; Kunina-Habenicht, Rupp, & Wilhelm, 2012; von
Davier, 2005). The Wald test, developed for the G-DINA approach (de la Torre,
2011), compares item fit of a general model against a reduced nested model. The
MAD and RMSEA item fit measures compare predicted and observed probabilities
for different latent classes; the two indices differ in the unweighted or weighted
manner in which they compare these probabilities for each latent class (Kunina-
Habenicht et al., 2012). RMSEA and MAD can be averaged across items to create
a test-level fit index (Lei & Li, 2016).

In the context of CDMs, person fit refers to the correspondence between an
examinee’s observed response pattern and her expected response pattern given her
estimated skill profile. Liu, Douglas, and Henson (2009) proposed a likelihood
ratio test that identifies how well the estimated skill profile describes the observed
response pattern for each examinee. Lack of person fit for a considerable proportion
of examinees may be due to model selection. However, person misfit could also
reflect strategies used by the examinees that are not correctly explained by the
model (Liu et al., 2009). Cui and Leighton (2009) have introduced the hierarchy
consistency index (HCI), which ranges from −1.0 to 1.0 and identifies examinee
misfit, by comparing observed and expected response patterns.

Once a model has shown good fit to the data, the last step in the retrofitting
process involves the interpretation of the results (Liu et al., 2017). This final process
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may involve the examination of attribute distribution in the sample of examinees,
the examination of relationships between general latent traits measured by the test
and the attributes estimated by the CDM, and the examination of any additional
analyses (e.g., attribute correlations and hierarchies) that further inform about the
constructs measured by the test.

The use of CDMs in standardized assessment remains rare compared to tradi-
tional psychometric models, despite being theoretically appealing and informative.
In addition, most cases of CDM retrofitting reported in the literature have not
followed guidelines as explicit as those presented in Liu et al. (2017). Nevertheless,
previous research has reported cases in which CDMs have been fitted to data
from tests originally constructed and fitted using other psychometric models. For
instance, the Fraction Subtraction data set has been widely analyzed in CDM
research (Chen & de la Torre, 2013; Chiu, 2013; Chiu & Douglas, 2013; de la
Torre, 2008, 2009, 2011; de la Torre & Lee, 2010; DeCarlo, 2011), the Revised
Purdue Spatial Visualization Test-Visualization of Rotations (PSVT-R; Culpepper,
2015), the Force Concept Inventory (FCI; Bradshaw & Templin, 2013), the National
Assessment of Educational Progress (NAEP; Xu & von Davier, 2008, 2003) Trends
in International Mathematics and Science Study mathematics test (TIMSS; Skaggs,
Wilkins, & Hein, 2016), the Examination for the Certificate of Proficiency in
English test (ECPE; Chiu, Douglas, & Li, 2009; Templin & Bradshaw, 2014;
Templin & Hoffman, 2013, von Davier, 2014), and the Test of English as Foreign
Language Internet-based testing (TOEFL-IBT; von Davier, 2005), as well as TOEFL
preparation tests (Liu et al., 2017).

Moreover, despite the additional item and examinee information and gains from
retrofitting test data, authors such as Gierl and Cui (2008) and Haberman and Davier
(2006) warn about limitations in the use of retrofitting. First, since the original test
was not constructed with the objective of diagnostic feedback, it is likely that CDM
retrofitting may not produce a better fit to the data compared to other psychometric
models. Moreover, it is unlikely that an appropriate CDM will be optimal to fit
the data, but researchers are encouraged to test goodness of fit using different
models that differ in complexity and underlying skill condensation rules. Finally,
it may be the case that the test does not include an acceptable number of items
to measure the latent skills, which in an extreme case may become a limitation to
model identifiability (Xu & Zhang, 2016).

Considering this background, the purpose of this chapter is to explore the use
of these explicit guidelines for CDM retrofitting using data from the 2007 TIMSS
test administration as an example. Three research questions for the study are: Is it
feasible to use a retrofitting approach using TIMSS data? Does relative model fit
improve when using CDMs compared to IRT models? What additional information
regarding the examinees’ skills and items are gained from using CDM retrofitting?
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25.2 Methods

25.2.1 Data

The models were fitted using the 25 mathematics items included in the Booklet 4
from the 4th grade TIMSS 2007 test (Foy & Olson, 2009). The data set is composed
of 960 examinees from Germany (N = 362), Iran (N = 278), and Japan (N = 320).
These three countries were selected because, on average, their students reached
different levels of achievement. Japan was among those countries with the highest
proportion of students in the top benchmark and an average scale score of 568 points
on the mathematics test. A fair proportion of students in Germany reached a high
benchmark in the test with an average scale score of 525 points, while examinees
from Iran tended to score on the lowest achievement benchmark with an average
scale score of 402 points (Mullis et al., 2007, 2009). Each examinee answered a
total of 25 mathematics items.

Following the first step for CDM retrofitting, a review of the test design and
its psychometric properties indicates that TIMSS 2007 shows a median reliability
across countries equal to 0.83 for the 4th grade mathematics test (Mullis et al., 2007,
2009). The TIMSS assessment scores are scaled using a three-parameter logistic IRT
model (Mullis et al., 2007). The test specifications make reference to three domains
of content assessed by the test: Numbers, Geometric Shapes and Measures, and
Data Displays. Each domain measures specific understandings and skills as listed in
Table 25.1.

Thus, the test specifications and the reliability evidence may suggest the presence
of multidimensionality in the constructs measured in TIMSS. In this scenario,
it seems feasible to use a retrofitting framework to gather additional diagnostic
information about the examinees and psychometric information about the test.

A Q-matrix was constructed to reflect the measurement of the skills in the 25
items. Table 25.2 includes the resulting Q-matrix representing the measurement of 7
attributes. The item-by-skill structure in Table 25.2 was generated using information
reported by the test developers (Mullis et al., 2007, 2009) and validated using the
insight from researchers and practitioners in the field of Mathematics Education. An

Table 25.1 Domains, understandings and skills measured in the 4th grade TIMMS 2007 mathe-
matics test

Domain Understandings and skills

Number Whole numbers
Fractions and decimals
Number sentences, patterns, and relationship

Geometric shapes and measures Lines and angles
Two- and three-dimensional shapes
Location and movement

Data display Reading, interpreting, organizing, and representing data
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Table 25.2 Q-matrix of 4th grade TIMSS 2007 mathematics booklet 4

Number
Geometric shapes
and measures Data display

Item α1 α2 α3 α4 α5 α6 α7

Number of
attributes per item

1 1 0 0 0 0 0 0 1
2 0 1 0 0 0 0 0 1
3 0 1 0 0 0 0 0 1
4 1 1 0 0 0 0 0 2
5 1 0 1 0 0 0 0 2
6 0 0 0 0 1 1 0 2
7 0 0 0 1 1 1 0 3
8 1 0 0 0 1 0 0 2
9 0 0 0 0 1 0 0 1
10 0 0 0 0 1 0 0 1
11 1 0 0 1 0 0 0 2
12 1 0 0 0 0 0 1 2
13 1 0 0 0 0 0 1 2
14 1 1 0 0 0 0 1 3
15 1 0 0 0 0 0 0 1
16 1 0 0 0 0 0 0 1
17 1 0 1 0 0 0 0 2
18 1 0 1 0 0 0 0 2
19 1 0 0 0 0 0 1 2
20 1 0 1 0 0 0 1 3
21 1 0 1 0 0 0 0 2
22 0 0 0 0 1 1 0 2
23 1 0 0 0 0 0 0 1
24 0 0 0 0 1 0 0 1
25 1 0 0 0 0 0 1 2
Total 17 4 5 2 7 3 6 46

Note: α1 is linked to whole numbers; α2 to fractions and decimals; α3 to number sentences,
patterns, and relationships; α4 to lines and angles; α5 to two- and three-dimensional shapes; α6
to location and movement concepts; and α7 to skills on reading, interpreting, organizing, and
representing data

additional empirical validation using the approach suggested in DeCarlo (2012) was
done to confirm the structure of the Q-matrix. It is relevant to highlight that while
the Q-matrix was generated following the guidelines for retrofitting and with the
support of experts in the domains of content, the Q-matrix lacks of some necessary
conditions for full identifiability of conjunctive CDMs outlined by Xu and Zhang
(2016). Specifically, although about a third of the items in the test measured only one
skill, some skills were not uniquely measured by any item (e.g., the skills number
sentences, patterns, and relationships, and reading, interpreting, organizing, and
representing data), but they were always measured in conjunction with other skills.



532 Y.-S. Lee and D. A. Luna-Bazaldua

25.2.2 Models

Several unidimensional and multidimensional IRT models and CDMs were fitted
and compared with respect to their relative fit indices. The unidimensional logistic
IRT models included the one-parameter (1-PL), two-parameter (2-PL), and three-
parameter (3-PL) models (Baker & Kim, 2004). Two multidimensional IRT (MIRT;
Reckase, 2009) models were also fitted, one model using item-by-latent trait
structure analogous to the Q-matrix in Table 25.2, and a second MIRT model with an
item-by-general domain (i.e., Number, Geometric Shapes and Measures, and Data
Display) structure. For the item-by-general domain matrix, if any fine-grained skill
within a domain is measured by a given item as indicated in Table 25.2, then it is
assumed that the item is also measuring the general domain.

With respect to the CDMs, variations of the G-DINA model (de la Torre, 2011)
were fitted. Among the general models for cognitive diagnosis, the G-DINA model
is particularly flexible in terms of the link function included in the estimation of
the model: identity, logit, or log link functions can be used (de la Torre, 2011). In
addition, there has been extensive research on extensions of the G-DINA framework
(Chen et al., 2013; de la Torre & Lee, 2013). The G-DINA model also makes it
feasible to estimate simpler nested models such as the DINA model, the DINO
model, and models with additive skill effects (A-CDM; de la Torre, 2011). In our
analysis, a saturated G-DINA model with main effects and interactions among the
latent skills was estimated, as well as nested models corresponding to the DINA
model, the DINO model, and the A-CDM model. Additionally, a higher-order
DINA model (HO-DINA; de la Torre & Douglas, 2004) was also fitted allowing for
conditional independence among the latent skills given a higher-order continuous
latent trait parameter. All models for cognitive diagnosis were estimated using a
logit link function. The reader can review more information on the G-DINA model
and its specific nested models in the corresponding chapter (de la Torre & Minchen,
Chap. 7 of this volume) in this book.

Data analyses were done in R (R Core Team, 2015). The R packages ‘CDM’
(George, Robitzsch, Kiefer, Gross, & Uenlue, 2016), ‘ltm’ (Rizopoulos, 2006),
‘mirt’ (Chalmers, 2012), and ‘TAM’ (Robitzsch, Kiefer, & Wu, 2017) were used for
the estimation of the psychometric models. The EM algorithm was used to estimate
the psychometric models (McLachlan & Krishnan, 1996).

25.3 Results

25.3.1 Absolute Fit

The root mean square error approximation (RMSEA) and the standardized root
mean square root (SRMSR) of squared residuals indices were estimated to deter-
mine absolute fit (see Table 25.3). Optimal fit is reached when RMSEA and/or

http://dx.doi.org/10.1007/978-3-030-05584-4_7
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Table 25.3 Absolute fit
indices

Model RMSEA SRMSR

1-PL IRT 0.062 0.084
2-PL IRT 0.054 0.047
3-PL IRT 0.047 0.045
MIRT 1 0.073 0.155
MIRT 2 0.060 0.114
G-DINA 0.061 0.050
DINA 0.063 0.066
DINO 0.061 0.061
A-CDM 0.052 0.051
HO-DINA 0.067 0.057

Note: RMSEA refers to the root mean square error
approximation, SRMSR corresponds to the standardized
root mean square root of squared residuals

Table 25.4 Relative fit indices

Model Number of parameters LL AIC BIC

1-PL IRT 25 −12978.93 26007.86 26129.54
2-PL IRT 50 −12732.13 25564.26 25807.61
3-PL IRT 75 −12675.91 25501.83 25866.85
MIRT 1 69 −14743.23 29624.46 29960.28
MIRT 2 50 −12893.05 25902.11 26184.39
G-DINA 123 −12705.30 25656.61 26255.24
DINA 79 −12887.92 25933.83 26318.32
DINO 79 −12960.97 26079.95 26464.44
A-CDM 98 −12724.16 25644.29 26121.29
HO-DINA 108 −12746.40 25708.79 26234.42

Note: LL corresponds to the log-likelihood

SRMSR are below 0.05 (Liu et al., 2017; Maydeu-Olivares, Cai, & Hernández,
2011). As shown in Table 25.3, the 2-PL and 3-PL IRT models showed the best
absolute fit. The G-DINA model showed the best fit among the CDMs in terms of
SRMSR index. While the absolute fit measures cannot be used to compare among
models, the better absolute fit of the 3-PL model over any CDM may reflect the fact
that the test was originally constructed under the principles of the IRT framework.

25.3.2 Model Relative Fit

The CDM and IRT models were compared using fit metrics of log-likelihood, AIC,
and BIC. Results for the model relative fit indices are presented in Table 25.4. In
terms of log-likelihood, the best fit was reached by the 3-PL IRT model, then the
G-DINA and the A-CDM models. These same models also obtained the lowest AIC
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values. However, the 2-PL IRT model yielded the lowest BIC among all estimated
models, and the A-CDM model among the CDMs.

25.3.3 Item Fit

Item fit was determined using the item level RMSEA index. In Table 25.5, the two
IRT models tended to show the best item level fit, each model having 18 items with
RMSEA values below 0.05. Among the CDM model, the A-CDM model showed
the best item level fit with 15 items below the fit threshold. Moreover, the A-CDM
model reached lower RMSEA values in 9 items (i.e., items 3, 6, 7, 13, 17, 19, 20,
21, and 24) compared to the 3-PL IRT model. The DINA and DINO models showed
the worst item level fit.

25.3.4 Person Fit

Person fit was assessed using the likelihood ratio test for aberrant behavior (Liu et
al., 2009). Table 25.6 summarizes the proportion of examinees showing misfit due
to spuriously high and low scores given their estimated skill profile. Once again, the
G-DINA and the A-CDM presented the lowest proportion of examinees showing
misfit, whereas the DINA and DINO models showed the highest. Consistently
across models, a higher proportion of examinees showed misfit due to incongruence
between their corresponding lower observed scores and their estimated skill profile.

The evidence from the absolute and relative fit indices favored the 3-PL IRT
model followed by the 2-PL IRT model, and then the A-CDM and G-DINA models.
The item and person fit results also confirmed a better fit to the data for the G-DINA
and the A-CDM models. With the aim to put emphasis on the most parsimonious
CDM that showed good fit to the data, the next results only focus on item and
examinee estimates produced by the 3-PL IRT model and the A-CDM model.

25.3.5 Item Psychometric Characteristics

With respect to the item characteristics, Table 25.7 presents the 3-PL IRT and A-
CDM item parameter estimates. Most items showed an average level of difficulty,
with only item 6 being visibly easier than the rest. Item 6 also showed the lowest
discrimination among all items in the test. Most items showed very low probability
of a correct answer due to guessing, only items 7 and 24 showed guessing estimates
above the probability of random chance considering the number of answer options
for those items.
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Table 25.5 RMSEA item fit indices

Item 2-PL 3-PL G-DINA DINA DINO A-CDM HO-DINA

1 0.02 0.02 0.079 0.029 0.039 0.024 0.039
2 0.056 0.056 0.064 0.033 0.034 0.056 0.048
3 0.048 0.048 0.056 0.04 0.031 0.039 0.049
4 0.018 0.018 0.037 0.037 0.124 0.036 0.049
5 0.024 0.024 0.015 0.134 0.064 0.036 0.048
6 0.065 0.065 0.055 0.077 0.067 0.054 0.075
7 0.063 0.064 0.029 0.045 0.022 0.024 0.061
8 0.043 0.043 0.109 0.079 0.064 0.085 0.087
9 0.04 0.04 0.143 0.068 0.061 0.121 0.115
10 0.051 0.052 0.079 0.059 0.065 0.06 0.087
11 0.023 0.023 0.032 0.041 0.062 0.027 0.054
12 0.017 0.017 0.055 0.046 0.027 0.032 0.052
13 0.052 0.051 0.048 0.082 0.032 0.028 0.049
14 0.032 0.031 0.03 0.074 0.076 0.033 0.049
15 0.017 0.018 0.095 0.044 0.057 0.047 0.056
16 0.036 0.038 0.107 0.07 0.058 0.085 0.083
17 0.064 0.064 0.028 0.145 0.145 0.027 0.118
18 0.011 0.011 0.119 0.033 0.052 0.182 0.198
19 0.022 0.023 0.055 0.08 0.037 0.019 0.058
20 0.043 0.042 0.023 0.039 0.057 0.031 0.058
21 0.022 0.022 0.028 0.071 0.071 0.018 0.014
22 0.038 0.038 0.037 0.058 0.059 0.054 0.06
23 0.022 0.023 0.103 0.06 0.08 0.076 0.078
24 0.057 0.057 0.057 0.065 0.067 0.053 0.06
25 0.018 0.019 0.04 0.073 0.074 0.048 0.038
Minimum 0.011 0.011 0.015 0.029 0.022 0.018 0.014
Median 0.036 0.038 0.055 0.06 0.061 0.039 0.058
Maximum 0.065 0.065 0.143 0.145 0.145 0.182 0.198

Table 25.6 Proportion of examinees with aberrant scores

Model
Proportion of examinees with
aberrant high scores

Proportion of examinees with
aberrant low scores

G-DINA 0.095 0.125
DINA 0.108 0.145
DINO 0.117 0.144
A-CDM 0.096 0.130
HO-DINA 0.098 0.128

In terms of the A-CDM item parameter estimates, the intercept can be interpreted
as the baseline probability of correctly answering an item if the examinee has not
mastered the skills measured by the item yet. For the most part, these intercept
coefficients were negative indicating a low probability for the correct answer if the
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examinee has not acquired the knowledge and skills measured by the test. When
it comes to the skill coefficients, most items showed large coefficients indicating
that the mastery of each skill would increase the probability of correctly answering
the item. Only item 17 presented a negative coefficient for the whole numbers skill,
but even the negative impact of the mastery of such skill was compensated by the
mastery of the number sentences, patterns, and relationships skill also measured by
the item.

The skill coefficients also help to determine what skills are potentially more
relevant in order to boost the performance in the test. For instance, item 7 measures
the three skills linked to the Geometric Shapes and Measures domain, but it is more
relevant to master the skill linked to concepts of location and movement in order to
correctly answer this item.

25.3.6 Examinee Skill Profile and Ability Estimates

As depicted in Table 25.8, the estimated skill distributions produced by the A-
CDM model showed that some skills have been mastered by more than half of
the examinees in the sample (e.g., lines and angles, or whole numbers), whereas
others have been acquired only by a small number of examinees (e.g., fractions and
decimals, or number sentences, patterns and relationships).

The A-CDM model estimated 105 different skill profiles out of 128 possible skill
arrangements. Because of the large number of skill profiles, Table 25.9 reports only
the estimated skill profiles that account for at least 1% of the sample of examinees.
Average 3-PL IRT abilities θ were calculated for the group of examinees classified
within each one of these skill profiles. As shown in Table 25.9, examinees classified
as not being proficient in any of the skills measured by the test (i.e., those having
the skill profile 0000000) presented the lowest average IRT ability among all skill
profile groups. On the other side, those examinees that have mastered the seven skills
reached the highest average IRT ability. The most frequent skill profile corresponded
to those examinees that are considered to be proficient in some skills (α4 Lines and
angles and α6 Location and movement concepts) corresponding to the Geometric

Table 25.8 Skill mastery distribution

Skill Not mastered Mastered

α1 Whole numbers 0.362 0.637
α2 Fractions and decimals 0.773 0.226
α3 Number sentences, patterns, and relationships 0.750 0.249
α4 Lines and angles 0.382 0.617
α5 Two- and three-dimensional shapes 0.621 0.378
α6 Location and movement concepts 0.551 0.448
α7 Reading, interpreting, organizing, and representing data 0.482 0.517
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Table 25.9 A-CDM skill profiles and 3-PL IRT average ability

Skill profile α1α2α3α4α5α6α7 θ SD # of examinees

0000000 −1.429 0.398 58
0000010 −1.275 0.361 11
0001000 −1.153 0.324 30
0001010 −1.098 0.335 60
0010000 −1.011 0.506 10
0001100 −0.876 0.310 10
0000001 −0.847 0.243 11
0000110 −0.838 0.318 14
0001001 −0.633 0.332 17
0001011 −0.456 0.300 22
1000000 −0.232 0.188 19
1001000 −0.119 0.243 17
1000100 −0.016 0.183 20
1001010 0.008 0.227 19
1000110 0.073 0.236 22
1000001 0.123 0.176 12
1001001 0.240 0.187 16
1000011 0.279 0.155 32
1000101 0.465 0.203 17
1001011 0.480 0.181 27
1000111 0.576 0.152 30
1001111 0.692 0.167 26
1011011 0.718 0.263 10
1011101 0.813 0.173 12
1100111 0.875 0.225 21
1010111 1.044 0.244 10
1101111 1.098 0.199 19
1011111 1.128 0.118 15
1110101 1.279 0.362 17
1111101 1.401 0.330 14
1110111 1.488 0.318 23
1111111 1.649 0.334 32

Note: θ corresponds to the average ability for each skill profile group, SD to the standard deviation
of the ability estimates for each skill profile group

Shapes and Measures domain. In general, the higher number of mastered skills, the
higher average ability by skill profile group.

Tetrachoric correlations between every pair of latent skills αk, and biserial
correlations between the skills αk and the estimated ability θ from the 3-PL model
were computed. As shown in Table 25.10, most latent skills showed positive
correlations among them, being the correlation between skill α1 the capacity to
perform operations using whole numbers and α5 the understanding and properties of
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Table 25.10 Tetrachoric correlations among latent skills and biserial correlations with IRT ability

α1 α2 α3 α4 α5 α6 α7 θ

α1 1
α2 0.456 1
α3 0.183 0.484 1
α4 −0.210 0.020 0.109 1
α5 0.638 0.513 0.421 −0.161 1
α6 0.316 0.191 0.019 0.107 0.098 1
α7 0.502 0.372 0.352 0.102 0.393 0.187 1
θ 0.788 0.664 0.549 0.028 0.754 0.320 0.752 1

Note: α1 is linked to whole numbers; α2 to fractions and decimals; α3 to number sentences,
patterns, and relationships; α4 to lines and angles; α5 to two- and three-dimensional shapes; α6 to
location and movement concepts; α7 to skills on reading, interpreting, organizing, and representing
data, and θ is the estimated 3-PL IRT ability

Table 25.11 Mastered skill distribution and average IRT ability by country

Latent variable Germany Iran Japan

α1 Whole numbers 0.756 0.258 0.762
α2 Fractions and decimals 0.146 0.169 0.496
α3 Number sentences, patterns, and
relationships

0.223 0.161 0.443

α4 Lines and angles 0.469 0.510 0.525
α5 Two- and three-dimensional shapes 0.408 0.276 0.631
α6 Location and movement concepts 0.624 0.561 0.537
α7 Reading, interpreting, organizing, and
representing data

0.624 0.068 0.831

θ(SD) 0.159 (0.651) −0.769 (0.681) 0.542 (0.845)

two- and three-dimensional shapes the largest. Skill α4 corresponding to knowledge
about lines and angles in geometric figures showed an inconsistent pattern of
correlations with the rest of the skills, including negative correlations with other
skills linked to the geometry domain. The estimated IRT ability θ showed positive
correlations with the majority of the latent skills, being α4 the only skill with a
correlation close to zero.

Additional analyses of the skills and ability estimates by country showed that,
on average, test takers from Japan presented a higher proportion of mastered skills
and an average ability θ higher than the other two countries. In contrast, examinees
from Iran tended to have a lower proportion of mastered skills; the average ability
of students in Iran was also lower than that of the other two countries. Interestingly,
more than half of the students in Iran were proficient in skills linked to the Geometric
Shapes and Measures domain (e.g., lines and angles, and location and movement
concepts) (Table 25.11).
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25.4 Discussion

This paper showed an example of how to conduct CDM research retrofitting
data from a test originally developed under a different psychometric framework
(Gierl & Cui, 2008; Liu et al., 2017). The retrofitting was facilitated by the
systematic compiled documentation about the test and items produced by the
TIMSS and PIRLS International Study Center (Mullis et al., 2007, 2009; Olson,
Martin, & Mullis, 2008). This information allowed us to identify the mathematics
domains measured in TIMSS 2007, as well as fine-grained understandings and skills
measured by each one of the items. Having this contextual information and the
feedback from experts permitted the construction of a Q-matrix that reflected the
multidimensionality of the test items.

The results showed that the best absolute- and relative-model fit was produced
by the 3-PL and 2-PL IRT models. This result reflects the fact that, after the
test administration and to create an item bank, TIMSS 2007 items were analyzed
using the IRT framework (Olson et al., 2008). Thus, items may be potentially
removed from the test if they do not satisfy strict psychometric criteria. Among the
CDMs estimated, the G-DINA and A-CDM models showed the best model fit when
compared to the unidimensional 1-PL IRT model, MIRT models, and other CDMs.
These two models for cognitive diagnosis also showed better item- and person-fit
compared to other CDMs.

Item and skill estimates of the A-CDM model also revealed that the mastery of
each skill increases the probability of a correct answer on most of the mathematics
items in TIMSS 2007. Similarly, the increase of mastered skills in the estimated
skill profiles was associated with a higher average IRT ability estimate. Biserial
correlations between each dichotomous skill and the IRT ability estimate in most
instances also showed positive correlations. These results showed the convergence
of examinee information from the IRT and CDM frameworks; however, whereas
the IRT models produce an overall continuous ability estimate, the CDM frame-
work permits a more fine-grained multidimensional analysis of dichotomous skills
measured by the items (Rupp & Templin, 2008).

The aggregated analysis by country produced new diagnostic information for
the examinees from the three countries. Overall, 4th grade students from Japan
have mastered a higher proportion of the skills measured by the mathematics test,
followed by their peers from Germany, and then by examinees from Iran. While
showing a good performance in the test, German examinees may benefit from more
in-depth instruction and practice to promote their understanding on topics such as
fractions and decimals or number sentences, patterns, and relationships. Iranian
students require even more opportunities to expand their knowledge in most of the
domains and skills assessed in the TIMSS 2007 mathematics test. These results for
each country are consistent with the academic achievement trends reported by the
test developers (Mullis et al., 2007).

This study presents some limitations that have been previously documented in
the context of CDM research and retrofitting (Gierl & Cui, 2008; Haberman &
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Davier, 2006; Liu et al., 2017; Xu & Zhang, 2016; von Davier & Haberman, 2014).
First, the Q-matrix lacks of some necessary characteristics to support the model
identifiability for conjunctive models. This situation will probably be encountered
in most retrofitting contexts where the researcher generates a Q-matrix using a test
not originally designed to inform about fine-grained attributes linked to the items.
Future studies on CDM retrofitting should pay attention to the minimum conditions
that must be present in the Q-matrix to achieve model identifiability.

A second limitation comes from the evidence produced by the tetrachoric
correlations. The correlation patterns showed that the skill corresponding to lines
and angles in Geometric Shapes is not internally consistent with the rest of the
skills measured by the test. This skill also presented a low biserial correlation close
to zero with the IRT ability estimate. The Q-matrix revealed that this skill was only
measured twice, so probably these results may suggest that more items measuring
this skill should be included in order to reach more consistent results.

Acknowledgements Dr. Luna Bazaldua thanks UNAM for the PAPIIT research grant IA303018.
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Chapter 26
The R Package CDM for Diagnostic
Modeling

Alexander Robitzsch and Ann Cathrice George

Abstract In this chapter, the R (R Core Team, R: a language and environment for
statistical computing. R Foundation for Statistical Computing. Vienna, 2017) pack-
age CDM (Robitzsch A, Kiefer T, George AC, Uenlue A, CDM: cognitive diagnosis
modeling. R package version 6.0-101. https://CRAN.R-project.org/package=CDM,
2017; George AC, Robitzsch A, Kiefer T, Groß J, Ünlü A, J Stat Softw 74(2):1–
24. 10.18637/jss.v074.i02, 2016) for estimating diagnostic classification models
is introduced. First, the model classes that can be estimated with the CDM
package are introduced. Second, the CDM package structure and some of its
features are discussed. Third, the usage of the CDM package is demonstrated in
a data application. Finally, potential future developments of the CDM package are
discussed.

In this chapter, the R (R Core Team, 2017) package CDM (George et al., 2016;
Robitzsch et al., 2017) for estimating diagnostic classification models is introduced.
Diagnostic classification models (DCMs; often also labeled as cognitive diagnostic
models, CDMs) are latent variable models in which the multidimensional latent
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variables are mostly assumed to be discrete (Rupp & Templin, 2008). DCMs can
be considered to be restricted latent class models (von Davier, 2009; von Davier &
Lee, Chap. 1, this volume). DCMs are often applied to estimation and reporting of
individual profiles (e.g., Jang, 2009; see also Rupp & Templin, 2008).

In the following, the model classes that can be estimated with the CDM
package are introduced. Second, the CDM package structure and some of its
features are discussed. Third, the usage of the CDM package is demonstrated in
a data application. Finally, potential future developments of the CDM package
are discussed. Readers who are interested in estimation details should additionally
consult George et al. (2016). Readers with a particular interest in a step-by-step
tutorial of how to use the CDM package are referred to George and Robitzsch (2015)
or Ravand and Robitzsch (2015).

26.1 Model Classes

In this section, we introduce the main model classes that can be estimated with the
CDM package. We discuss the estimation of DCMs within the frameworks of the
generalized DINA model, the generalized diagnostic model, structured latent class
analysis, and regularized latent class analysis.

26.1.1 Generalized Deterministic Inputs, Noisy “and” Gate
Model (G-DINA)

The generalized deterministic inputs, noisy “and” gate model (G-DINA; de la Torre
& Minchen, Chap. 7, this volume; de la Torre, 2011) is a general class of DCMs
and is implemented as the CDM::gdina() function in the CDM package. In the
G-DINA model, the skill vector A = (A1, . . . ,AD) containing dichotomous skills
creates L= 2D latent classes. For a moderate to large number of skills, estimating all
L – 1 skill probabilities is often not necessary because a model with some parametric
reduction often leads to a comparable fit. In more detail, the vector of skill class
sizes π can be represented as π = f(δ) with a specified function f and an unknown
vector of distribution parameters δ. Examples of these parametric reductions are (1)
a higher-order model that approximates the D-dimensional skill distribution by a
continuous latent variable (de la Torre & Douglas, 2004), (2) an approximation by
the representation of a tetrachoric correlation matrix (Templin & Henson, 2006),
(3) a log-linear smoothing of skill class sizes (Xu & von Davier, 2008b), or (4)
fixing some skill class sizes to zero (Leighton, Gierl, & Hunka, 2004). All of these
possibilities are available in the CDM::gdina() function (see the arguments
HOGDINA, reduced.skillspace and zeroprob.skillclasses).The
linking of items to skill classes is specified in the Q-matrix (see Rupp & Templin,
2008). Let qi denote the ith row vector of the Q-matrix corresponding to item i.
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The nonzero elements in qi indicate the skills that are necessary for solving item
i. The G-DINA model specifies the probabilities pic = P(Xi = 1 | ai), where the
latent class c (c = 1, . . . ,2D) is associated with the skill vector ai. A link function
g (identity, log, or logit link) and the item-specific design matrices Mi are chosen
such that g(pic) =mic

T γi, where γi contains all parameters belonging to item i and
the vector mic is a row vector of Mi corresponding to class c. It is assumed that
the pic are only affected by skills that correspond to nonzero elements in qi. The
G-DINA model contains the DINA and DINO models (von Davier & Lee, Chap.
1, this volume), compensatory RUM (Stout, Henson, DiBello, & Shear, Chap. 3,
this volume), and the log-linear CDM (LCDM; Henson & Templin, Chap. 8, this
volume) as submodels. These models can be specified by the rule argument in
the CDM::gdina() function. Polytomous item responses can be handled by a
sequential item modeling approach (Tutz, 1997; see also Ma & de la Torre, 2016).

The G-DINA implementation in the CDM package estimates the model based
on marginal maximum likelihood (MML) using an expectation maximization (EM)
algorithm (de la Torre, 2009b; George & Robitzsch, 2014; George et al., 2016).
By employing the argument method the user can choose different approaches
of the M-step estimation: the unweighted and weighted least squares approach,
as originally proposed by de la Torre (2011), or likelihood-based. The parabolic
acceleration method (P-EM) is implemented to accelerate the EM algorithm
(Berlinet & Roland, 2012). The CDM::gdina() function allows using sampling
weights and accommodates multiple group estimation (George & Robitzsch, 2014).
Missing data in item responses is allowed in the MML estimation and consistent
parameter estimates are obtained if the data is missing at random (MAR).

The variance matrix of the estimated item and distribution parameters in the
CDM package can be obtained with resampling methods that are particularly
suitable for stratified clustered samples (George & Robitzsch, 2015, 2018; see
also Hsieh, Xu, & von Davier, 2010; Park, Lee, & Johnson, 2017). In future
versions of CDM, we plan to include variance estimates based on the observed
log-likelihood Philipp, Strobl, de la Torre, & Zeileis, 2018) and robust maximum
likelihood estimation based on the sandwich formula (Liu, Xin, Andersson, & Tian,
2018; White, 1982). It has been demonstrated in item response theory (IRT) models
that the variance estimation method of Oakes (1999) is very promising from the
perspective of computational efficiency and unbiasedness (Chalmers, 2018; Pritikin,
2017).

Normal prior distributions can be specified for item parameters and, in this
case, the MML estimation becomes a maximum posterior (MAP) estimation. Some
researchers prefer to use monotone item response functions in the G-DINA model
(Templin & Hoffman, 2013; cf. von Davier, 2014), which can also be requested in
CDM::gdina(). Monotonicity constraints are handled in the EM algorithm with
a penalty function approach (Fiacco & McCormick, 1968). A nonnegative penalty
results in the case of monotonicity violation.
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In order to apply the G-DINA model, the Q-matrix must be specified. Substantial
efforts have been made in DCM research to estimate the Q-matrix from data (for
example, Chiu, 2013; de la Torre, 2008; DeCarlo, 2012; Desmarais & Naceur,
2013; Liu, Xu, & Ying, 2013; see Liu & Kang, Chap. 12, this volume, for an
overview). These methods either assume that the Q-matrix is partially known or
that it needs a substantial amount of prior information, or the proposed methods
are computationally very demanding. Researchers Xu and Shang (2018, see also
Xu, Chap. 16, this volume) emphasized that the problem of Q-matrix estimation
is essentially a variable selection problem and proposed a computationally feasible
regularization method (Chen, Li, Liu, & Ying, 2017; Chen, Liu, Xu, & Ying, 2015).
In a nutshell, a regularization method substitutes the log-likelihood function with an
optimization function that is defined as the difference between the log-likelihood
function and a penalty function (for an overview of regularization methods see
Hastie, Tibshirani, & Wainwright, 2015, and for applications in item response and
structural equation modeling, see Huang, Chen, & Weng, 2017; Sun, Chen, Liu,
Ying, & Xin, 2016). A penalty function penalizes the occurrence of a large number
of item parameters of negligible size in a DCM. Penalty functions that set the values
of coefficients of main or interaction effects that are near to zero to exactly zero
are of particular interest. The CDM::gdina() function allows the regularization
of item parameters and the choice of the penalty functions lasso, elastic net, SCAD,
MCP, ridge and truncated L1 (Breheny & Huang, 2011; Fan & Lv, 2010; Hastie
et al., 2015; Shen, Pan, & Zhu, 2012). These different penalty functions show
different behavior with respect to statistical bias of item parameters. In the M-step
of the EM algorithm, the coordinate descent method is applied which successively
maximizes the expected log-likelihood function for every item parameter (Xu &
Shang, 2018; see also Sun et al., 2016). Even if the Q-matrix is known, we argue
that regularization is worth considering as the full G-DINA model is often highly
parameterized. Selecting only the important effects stabilizes the estimation and
may facilitate the interpretability of the results.

The G-DINA model has also been extended to multiple choice items. The
resulting MC-DINA model (de la Torre, 2009a) needs a Q-matrix specification in
which the necessary skills have to be determined for every response option of every
item. The most flexible parametrization for the MC-DINA model (Chen & Zhou,
2017) is implemented in the CDM::mcdina() function and MML can be used for
its estimation. Future versions of the CDM package will include some constrained
versions of the MC-DINA model (Ozaki, 2015) and regularization methods.

26.1.2 General Diagnostic Model (GDM)

The general diagnostic model (GDM; von Davier, 2008; von Davier, Chap. 6,
this volume) is a general item response model that allows for discrete and con-
tinuous latent variables. Each component Ad of the D-dimensional skill vector

http://dx.doi.org/10.1007/978-3-030-05584-4_12
http://dx.doi.org/10.1007/978-3-030-05584-4_16
http://dx.doi.org/10.1007/978-3-030-05584-4_6
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A = (A1, . . . ,AD) possesses a finite number of values (e.g., −1 and 1 for dichoto-
mous skills or −6, −5.4, . . . , 5.4, 6 for a variable that should be modeled with
a continuous distribution). In the GDM, a log-linear smoothing as a parametric
reduction is typically assumed for the skill class probabilities P(a) (Xu & von
Davier, 2008b). In more detail, the logarithm of the probabilities is modeled as a
linear function: log[P(a)] = za

Tδ, where Z = {za} is an appropriate design matrix
linking the class probabilities to a distribution parameter δ. Hence, unidimensional
and multidimensional normal distributions can be represented by modeling the first-
order and second-order moments of the distribution (Xu & von Davier, 2008a).
Moreover, a consideration of moments larger than two allows the specification of
skewed latent variables (Xu & von Davier, 2008a).

The GDM also allows for polytomous item responses. However, in order to
simplify the presentation, in this chapter we only consider the case of dichotomous
responses. The probability of a correct item response, conditional on a skill vector
a, is given as

logit P (Xi = 1|a) = hi (a,qi )Tγi (26.1)

where the multidimensional function hi models the relationship between skill vector
a and the required skills. Equation (26.1) is linear in the item parameter vector γi

but allows for nonlinear functions (such as interactions) due to the flexibility of
choosing hi. It is evident that a G-DINA model with a logistic link function can be
rephrased as a specific GDM. The GDM includes many DCMs as special cases (von
Davier, 2014). Moreover, the GDM allows for the estimation of multidimensional
2PL models (von Davier, 2008; Xu & von Davier, Chap. 23, this volume) and it has
been extended to accommodate mixture distributions (von Davier, 2010).

The GDM is implemented as the CDM::gdm() function in the CDM package.
The user can either supply a Q-matrix, which results in a linear compensatory DCM
incorporating only main effects, or can use the functions hi(a,qi) as input, to allow
for nonlinear functions (e.g., interactions). As in the CDM::gdina() function,
MML estimation with the option for P-EM acceleration is used. The function can
handle multiple groups, sampling weights, and MAR data.

The CDM::gdm() function also allows the estimation of the unidimensional
and multidimensional located latent class model (Bartolucci, 2007; De Leeuw &
Verhelst, 1986) in which the values of the D-dimensional skill vector are estimated.
This model can be regarded as a semiparametric item response model in which the
trait distribution can have an (almost) arbitrary form. The CDM::gdm() function
in its current form can also be used to estimate mixture distribution models (e.g., the
mixed Rasch model or mixed 2PL model) by making appropriate specifications of
the design matrix Z, which represents the skill class distribution and the functions
hi, which appear in the item response functions. We believe that there is a growing
need to investigate the GDM and to promote the understanding of it because the
corresponding mdltm software (Khorramdel, Shin, & von Davier, Chap. 30, this
volume) is now in operational use in the PIAAC and PISA studies.

http://dx.doi.org/10.1007/978-3-030-05584-4_23
http://dx.doi.org/10.1007/978-3-030-05584-4_30
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26.1.3 Structured Latent Class Analysis (SLCA)

Structured latent class analysis (SLCA; Formann, 1985, 1992; Formann &
Kohlmann, 1998) is a general approach used for estimating restricted latent class
models. Again, we focus on dichotomous item responses in order to simplify our
presentation. Let c = 1, . . . ,L denote the latent classes and let pic = P(Xi = 1 | c)
be the probability that persons in class c solve an item correctly. The class sizes are
πc = P(C = c). The SLCA model poses functional restrictions on pic and the πc. In
more detail, Formann (1985) assumes a logistic transformation of the item response
probabilities: logit pic = wic

Tγ, where wic is a vector relating the item response
probability to a general item parameter γ. All vectors wic (for items i = 1, . . . ,I
and classes c = 1, . . . ,L) can be collected in a three-dimensional array W. As in
the G-DINA model and the GDM, the skill class probabilities are represented as
log π = Zδ with a design matrix Z and a class distribution parameter δ. Because
the logistic transformation of item response probabilities is employed, SLCA is also
referred to as linear logistic latent class analysis (Formann, 1992).

The SLCA model is implemented as the CDM::slca() function. Again, MML
is used by applying an EM algorithm with P-EM acceleration. The CDM::slca()
function allows for positivity constraints on the γ vector. As in the G-DINA
model, regularization methods can be applied by defining penalty functions for item
parameters. Multiple group estimation, sampling weights, and MAR missing data
are accommodated in the CDM::slca() function.

It has been emphasized that DCMs are a special case of restricted latent class
models (von Davier, 2009). Many DCMs can therefore be reformulated as a SLCA
model. All possible values of the skill vector A = (A1, . . . ,AD) can be equivalently
represented as latent classes c= 1, . . . ,L. In the case of a D-dimensional skill vector
containing dichotomous skills, there are L= 2D latent classes. The application of the
G-DINA model to a given Q-matrix partitions the set of L latent classes for each item
into classes with equal item response probabilities. These equality constraints can be
formulated by specifying an appropriate design matrix W in the SLCA model (see
Templin & Hoffman, 2013, and Sullivan, Pace, & Templin, Chap. 28, this volume,
for a similar approach to estimating DCMs as restricted latent class models in the
Mplus software).

The SLCA model also covers unrestricted latent class models, the linear logistic
test model, unidimensional and multidimensional IRT models with continuous
traits, located latent class analysis, and mixture distribution models such as the
mixed Rasch or the mixed 2PL model (Formann, 2007; Formann & Kohlmann,
1998). An extension of the SLCA (Formann & Kohlmann, 2002) contains even
more complex IRT models, such as ability-based guessing models (San Martin, del
Pino, & De Boeck, 2006) or models that parametrize person misfit (Raiche, Magis,
Blais, & Brochu, 2012). Therefore, we consider the SLCA model to be a unifying
framework that contains many important latent variable models.

It has been argued for many newly proposed DCMs that maximum likelihood
estimation would be difficult to implement and only a Bayesian MCMC approach

http://dx.doi.org/10.1007/978-3-030-05584-4_28
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would be computationally feasible. Interestingly, there are several useful examples
of DCMs that can be reformulated as a SLCA. The multiple strategy DINA model,
for example, is a SLCA model for which MML estimation is efficient (de la Torre
& Douglas, 2008; Huo & de la Torre, 2014). Further examples include a restricted
version of the MC-DINA model (Ozaki, 2015), the continuous conjunctive model
of Hong, Wang, Lim, and Douglas (2015), the random-effect DINA model (Huang
& Wang, 2014), and DCMs that involve a simultaneous treatment of skills and
misconceptions (Kuo, Chen, & de la Torre, 2018; Templin & Bradshaw, 2014). The
SLCA model can also be used for analyzing explanatory diagnostic models (Park &
Lee, Chap. 10, this volume).

Beyond the core family of DCMs, the HYBRID model (Yamamoto, 1995), the
saltus model (Mislevy & Wilson, 1996), ordered latent class models (Croon, 1990;
but see also nonparametric approaches, van der Ark, Rossi, & Sijtsma, Chap. 2,
this volume), and confirmatory latent class models (Hojtink & Molenaar, 1997;
Nussbeck & Eid, 2015; Vermunt, 2001) are also important cases that can be
implemented with the CDM::slca() function. A useful concept for integrating
continuous traits and ordinal skill levels has been proposed in the structured
constructs model for analyzing learning progressions (Wilson, 2009). However,
some models have item response functions that are nonlinear in item parameters
and can therefore not be handled within the SLCA framework (Shin, Wilson, &
Choi, 2017).

Although the SLCA model and the GDM may look different in their formulation
of the item response probabilities, we believe that the two frameworks are practically
equivalent if appropriate conversions of design matrices and design functions are
made in the two models.

26.1.4 Regularized Latent Class Analysis (RLCA)

Regularized latent class analysis (RLCA; Chen et al., 2017) models are special
cases of penalized latent class models in which the variability in class-specific
item probabilities is regularized. DCMs are restricted latent class models in which
equality constraints are specified a priori if the Q-matrix is known and a particular
DCM specification (e.g., a DINA or the LCDM model) is selected. While these
DCMs are similar to the method of confirmatory factor analysis, the RLCA method
resembles the method of exploratory factor analysis, which aims to identify a
loading structure. Neither the Q-matrix nor the true DCM specification is known,
but the unknown restricted latent class model (i.e., the DCM) needs to be estimated.
Chen et al. (2017) proposed an estimation method based on regularization. The
RLCA model is a latent class model that estimates class-specific item probabilities
pic and class sizes πc for classes c = 1, . . . ,L. The regularization aims to minimize
the number of different probabilities pic for each item i in order to recover the
structure of the DCM. The idea is to order the probabilities such that pi(1)≤ . . .≤pi(L)

http://dx.doi.org/10.1007/978-3-030-05584-4_10
http://dx.doi.org/10.1007/978-3-030-05584-4_2
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and to apply a penalty on the differences of ascending values. The regularization
method statistically identifies ascending probabilities that are set equal to each other.

The CDM package implements the RLCA model in the CDM::reglca()
function. An EM algorithm for MML estimation can be employed in which the
coordinate descent method is used in the M-step. The CDM::reglca() function
can be applied for multiple group models, sampling weights and MAR missing data.
The SCAD penalty (see Chen et al., 2017) or the MCP penalty can be chosen by the
user to regularize the variability in the class-specific item probabilities. The use of
different starting values is recommended as local maxima often occur in latent class
models.

In practice, the estimation of the RLCA model necessitates the specification
of the number of latent classes L and a regularization parameter λ that controls
the amount of regularization of the penalty (as in all regularization methods). The
RLCA model is estimated over a grid of values for L and λ and the best fitting
model is chosen based on an information criterion (e.g., BIC). Note that the number
of parameters can be easily determined by counting the number of different item
parameters (and class sizes) in the RLCA model.

Although the proposed RLCA approach is quite recent, we feel that it has great
potential for research questions in which the latent structure is unknown or is
only partially known. The RLCA method could not only be interesting in research
involving DCMs, but could also be of relevance to latent class-based research areas.

26.2 Package Structure and Features of the CDM Package

The R package CDM provides the main functions CDM::gdina(), CDM::
mcdina(), CDM::gdm(), CDM::slca(), CDM::reglca(), and CDM:
:din() for estimating G-DINA, MC-DINA, GDM, SLCA, RLCA, and
DINA (DINO) models, respectively. The generic R S3 methods summary(),
print(), coef() and loglik() can be applied (see George et al., 2016).
Furthermore, additional S3 methods have been implemented which can be used
for different model classes. The methods CDM::IRT.likelihood() and
CDM::IRT.posterior() extract individual likelihood and individual posterior
vectors (i.e., person-wise values evaluated for all skill classes). The methods
CDM::IRT.irfprob() and CDM::IRT.expectedCounts() return the
fitted item response functions and expected counts that are evaluated for all skill
classes. These extractor functions are helpful in the calculation of fit statistics.
The simulation functions CDM::sim.gdina() and CDM::sim.dina() are
provided for simulating data. In Table 26.1, core estimation functions and S3
methods in the CDM package are presented.

The CDM package provides information criteria (AIC, BIC, CAIC; see also
the logLik() S3 method) as measures of relative model fit (Sen & Bradshaw,
2017). The fit of several DCMs can be conveniently compared using the S3 methods
anova() or CDM::IRT.compareModels(). The CDM package contains a
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Table 26.1 Core estimation
functions and S3 methods of
the CDM package

Function Description

Estimation functions

din DINA/DINO model
gdina G-DINA model
gdm General diagnostic model
slca Structured latent class model
mcdina Multiple choice DINA model
reglca Regularized latent class model
S3 methods

IRT.compareModels Model comparison
IRT.likelihood Individual likelihood
IRT.posterior Individual posterior
IRT.irfprob Item response functions
IRT.expectedCounts Expected counts
IRT.modelfit Model fit
IRT.RMSD RMSD and MD item fit statistics

variety of measures of absolute model fit that are based on the fit of the bivariate
frequencies of all item pairs in the test. The differences between the observed and
expected covariances or correlations can be assessed by the SRMSR (Maydeu-
Olivares & Joe, 2014), the MADCOV (McDonald & Mok, 1995) statistics, or the
average of the absolute difference between the observed and expected correlations
(MADcor; Chen, de la Torre, & Zhang, 2013; DiBello, Roussos, & Stout, 2007).
These statistics can be requested using the CDM::IRT.modelfit() method (for
overviews see Hu, Miller, Huggins-Manley, & Chen, 2016; Li, Hunter, & Lei, 2016;
Han & Johnson, Chap. 13, this volume). Furthermore, the CDM package includes
the item fit statistics RMSD (previously denoted as RMSEA) and MD (Yamamoto,
Khorramdel, & von Davier, 2013), which are in operational use in the large-scale
assessment studies PIAAC and PISA. These statistics are available in the S3 method
CDM::IRT.RMSD() (for applications see Kunina-Habenicht, Rupp, & Wilhelm,
2009; Liu, Huggins-Manley, & Bulut, 2018). The S–X2 item fit statistic (Orlando &
Thissen, 2000) can be found in the CDM::itemfit.sx2() function. Moreover,
Wald tests can be employed for item-specific choices of different submodels of the
G-DINA model with the CDM::gdina.wald() function (de la Torre & Lee,
2013; Ma, Iaconangelo, & de la Torre, 2016; Sorrel, Abad, Olea, de la Torre, &
Barrada, 2017).

Differential item functioning (DIF) in the G-DINA model (Hou, de la Torre, &
Nandakumar, 2014; Li & Wang, 2015; Qiu, Li, & Wang, Chap. 18, this volume)
can be assessed with the CDM::gdina.dif() function by applying a Wald test
(see George & Robitzsch, 2014). This function also contains a DIF effect size that is
similar to an unsigned area measure (George & Robitzsch, 2014). As an exploratory
measure, DIF can also be assessed by fitting a multiple group DCM with invariant
items and applying the CDM::IRT.RMSD() function, which results in RMSD
and MD statistics being sensitive to DIF. DIF can also be investigated by using

http://dx.doi.org/10.1007/978-3-030-05584-4_13
http://dx.doi.org/10.1007/978-3-030-05584-4_18
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the SLCA framework to define pseudoitems created by combining an original item
and the group as data input. For example, if the group is gender, two pseudoitems
of an original item are created which contain item responses of the original item of
female and male students, respectively. Joint item parameters and DIF effects can
then be specified in the SLCA model. The use of regularization methods in DCMs
in the SLCA framework could be potentially interesting as it automatically implies
a selection procedure for DIF items and DIF-free items. In a similar vein, Tutz and
Schauberger (2015) applied the regularization approach with the lasso penalty to
study DIF in the Rasch model.

The adequacy of the classification of individual skill profiles can be
assessed by computing classification accuracy and classification consistency
(Cui, Gierl, & Chang, 2012; see also Sinharay & Johnson, Chap. 17, this
volume). The function CDM::cdm.est.class.accuracy() is either based
on a simulation or a computation that is based on analytical considerations
(see also Wang, Song, Chen, Meng, & Ding, 2015). The prediction error
quantified by entropy (see Asparouhov & Muthen, 2014) is implemented as the
CDM::entropy.lca() function. Item-specific reliability measures, based on
the concept of Kullback-Leibler information (Henson, Roussos, Douglas, & He,
2008), are implemented in the CDM::cdi.kli() function. In addition, the
user can skill hierarchies (CDM::skillspace.hierarchy(); cf. Leighton
et al., 2004; Templin & Bradshaw, 2014), use deterministic classification
(CDM::din.deterministic(); see Chiu & Kohn, Chap. 5, this volume),
investigate person fit (CDM::personfit.appropriateness(); Liu,
Douglas, & Henson, 2009) or can analyze the ambiguity of skill classes due to
nonidentifiability (CDM::din.equivalent.class(); Groß & George, 2014;
see also Liu & Kang, Chap. 12, this volume, and Xu, Chap. 16, this volume), to
name a few of the several smaller subfunctions in the CDM package.

26.3 Data Application

To illustrate the functionality of the CDM package, we used a dataset from the
Examination for the Certificate of Proficiency in English (ECPE) developed by
the English Language Institute of the University of Michigan. We chose the
grammar section, containing 28 multiple-choice items in which syntactically correct
sentences are presented with one word omitted. The data, comprising 2992 students,
has already been analyzed by Templin and Hoffman (2013), Templin and Bradshaw
(2014), von Davier (2014), and George and Robitzsch (2015). Educational experts
identified three underlying skills: comprehension of “morphosyntactic rules” (Skill
1), comprehension of “cohesive rules” (Skill 2), and comprehension of “lexical
rules” (Skill 3). The experts decided which item requires which skill in order to be
solved correctly and thus specified the Q-matrix (see Templin & Hoffman, 2013, for
the Q-matrix). The three skills were measured with 13, 6, and 18 items, respectively.
The dataset and the Q-matrix are contained in the CDM package as data.ecpe.

http://dx.doi.org/10.1007/978-3-030-05584-4_17
http://dx.doi.org/10.1007/978-3-030-05584-4_5
http://dx.doi.org/10.1007/978-3-030-05584-4_12
http://dx.doi.org/10.1007/978-3-030-05584-4_16
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Item percent correct values ranged between .43 and .90 (M = .71) and item-total
discriminations ranged between .26 and .51 (M = .38). To investigate the degree
of multidimensionality in the data, we computed a tetrachoric correlation matrix of
all dichotomous items. Applying a singular value decomposition of the tetrachoric
correlation matrix revealed that 23.8% of the total variance was explained by the
first factor and unidimensionality appears to hold given a large ratio of the first and
second eigenvalue of 5.04. Furthermore, we applied a parallel analysis in order to
determine the number of dimensions represented in the data. Three dimensions were
statistically significant. Finally, we applied a factor analysis with three factors and a
promax rotation and determined our exploratory Q-matrix by attributing an item to a
dimension if a factor loading exceeded .2. The Q-matrix we obtained had moderate
agreement with the original ECPE Q-matrix of Templin and Hoffman (2013),
which was indicated by a congruence coefficient of .67. This finding provides some
empirical evidence for the validity of the Q-matrix.

Next, we applied a series of G-DINA models using the CDM::gdina()
function. We used the original Q-matrix and the full dataset. We fitted a model with
two latent classes (indicating nonmastery and mastery of a global skill), the DINA
model, the compensatory RUM model (CRUM; the G-DINA model with only main
effects and the logistic link function), and the full G-DINA model (involving item
parameters for interaction effects) with and without monotonicity constraints. Note
that the estimation of the G-DINA model without monotonicity constraints resulted
in large standard errors for some item parameters indicating that model parameters
are weakly identified (von Davier, 2014). We also estimated the G-DINA model
with regularization on all item slope parameters with the SCAD penalty function
and a range of 0, .01, . . . , .20 for the regularization parameter λ.

Table 26.2 contains the measures of the relative model fit (AIC and BIC) and
the absolute fit (MADcor, see DiBello et al., 2007; SRSMR, Maydeu-Olivares &
Joe, 2014). The DINA model with three skills fitted the data better than a two-class
model assuming only one skill. By comparing only models without regularization,
the CRUM model showed the best fit in terms of the AIC and BIC. Moreover, posing
monotonicity constraints on the G-DINA model (see Templin & Hoffman, 2013) led
only to a slight deterioration of model fit. For the fitted G-DINA models with the
differing regularization parameter λ, the model with the value of λ = .14 had the

Table 26.2 Model comparison for the ECPE dataset for different G-DINA models

Model Deviance #Npar AIC BIC MADcor SRMSR

2 classes 85,945.49 57 86,059 86,400 .028 .035
DINA 85,683.27 63 85,809 86,186 .027 .033
CRUM 85,489.64 72 85,634 86,064 .025 .032
G-DINA 85,477.13 81 85,639 86,124 .025 .032
G-DINA, monotonicity constraints 85,479.45 81 85,641 86,126 .025 .032
G-DINA, regularized λ = .14 85,500.73 69 85,639 86,051 .026 .032

Note: #Npar number of estimated parameters. The entries with the lowest AIC and BIC are in bold
print
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lowest BIC value and was chosen for model comparisons. This model was superior
to all other models in terms of the BIC.

Table 26.3 shows the item parameters for the G-DINA model with monotonicity
constraints and the regularized solution with the optimal λ = .14. In the latter
model, twelve item parameters (nine main effects, three interaction effects) were
regularized. Due to the dependence of the parameters of an item, regularizing an
effect implies a change in the other item parameters. For example, for Item 1, the
main effects were regularized and set to zero (implying that Item 1 follows the DINA
rule), which reduced the number the item parameters from four to two and which
led to an increased parameter of the interaction effect. Conversely, for Item 7, the
interaction effect was set to zero, resulting in changes in the parameters of both
main effects. In the regularized model, the skills have marginal class proportions of
39.9% (Skill 1), 54.9% (Skill 2), and 66.4% (Skill 3). The tetrachoric correlations
between the three skills were high (Skills 1 and 2: .88; Skills 1 and 3: .80; Skills
2 and 3: .92), although the skills can be statistically separated from each other.
Most of the students either possess all skills (skill pattern “111” with a relative
frequency of 36.2%) or no skills (pattern “000” with frequency of 30.7%). From
the remaining six latent classes, only two skill patterns (“001” and “011”) have
probabilities substantially different from zero (“100”: 0.8%; “010”: 1.0%; “001”:
11.9%; “110”: 1.1%; “101”: 1.7%; “011”: 16.6%). This implies that the skills were
(almost perfectly) ordered in the ECPE dataset and therefore we may deduce a
linear hierarchy (Templin & Bradshaw, 2014).1 However, the computationally more
demanding bootstrap method must be applied to obtain valid standard errors from
regularized models.

The G-DINA models are restricted latent class models in which the loading
structure of the item was known (specified in the Q-matrix). In a next step, we
compared this confirmatory approach with an exploratory approach in which we
fitted unrestricted latent class models and regularized latent class models. For the
regularized latent class models, we again used the SCAD penalty and varied the
regularization parameter λ = 0, .01, . . . , .05.2 The models were fitted using the
CDM::reglca() function.

Table 26.4 provides information about the information criteria of the fitted
models. Among the unregularized latent class models, the three-class solution
had the best fit in terms of the BIC. Notably, the fit improved compared to the
confirmatory G-DINA models. Among the regularized latent class models, for every
fixed number of latent classes, the regularization parameter of λ = .02 had the

1Researchers von Davier and Haberman (2014) showed that a linear hierarchy among skills implies
a reduced number of identifiable item parameters.
2Note that in the G-DINA model, larger regularization parameters were chosen because item
parameters were estimated in the logit metric. In the regularized latent class model, item parameters
are estimated in the metric of probabilities and, hence, smaller values have to be chosen. For smaller
sample sizes, a wider range of λ values should be chosen.
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Table 26.4 Model comparison for the ECPE dataset for different unrestricted and regularized
latent class models (for the optimal regularization parameter λ = .02)

Model Deviance #Npar #Nreg AIC BIC

2 Classes 85,945.48 57 – 86,059 86,400
3 Classes 85,095.66 86 – 85,268 85,782
4 Classes 84,906.48 115 – 85,136 85,824
5 Classes 84,806.88 144 – 85,095 85,956
6 Classes 84,721.14 173 – 85,067 86,102
7 Classes 84,654.97 202 – 85,059 86,267
8 Classes 84,572.01 231 – 85,034 86,415
5 Classes, regularized 84,969.03 99 45 85,167 85,759
6 Classes, regularized 84,820.13 114 59 85,048 85,730
7 Classes, regularized 84,809.65 108 94 85,026 85,671
8 Classes, regularized 84,813.27 106 125 85,025 85,659
9 Classes, regularized 84,860.74 99 161 85,059 85,651

Note: #Npar number of estimated parameters, #Nreg number of regularized parameters. The entries
with the lowest AIC and BIC are in bold print

Fig. 26.1 Item parameters for the unregularized and the regularized solution for six classes. Upper
panel: unregularized solution. Lower panel: regularized solution

lowest value in terms of the BIC. The number of latent classes would have to be
substantially increased if the model choice was based on the minimal BIC.

Notably, the regularized models were superior to the unregularized models with
respect to model fit.

The effect of regularization is displayed in Fig. 26.1. In the upper panel of
Fig. 26.1, the class-specific item probabilities for the unregularized solution are
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Fig. 26.2 Partial order of the
latent classes based on
regularized latent class
analysis. Left: model with six
latent classes. Right: model
with nine latent classes

displayed. It is evident that, for every item, there are some latent classes with similar
probabilities. As is shown in the lower panel of Fig. 26.1, several probabilities within
an item were set equal to each other, which resulted in a more parsimonious model.
In total, 59 (out of 168) item parameters were regularized in the six-class model. As
a result, the latent classes in the regularized solution imply a partial order (Chen et
al., 2017). These partial orders can help to infer the unknown DCM.

In the left-hand panel of Fig. 26.2, the derived partial order for six latent classes
is displayed. Skill 1 (relative frequency of 15.0%) is a precursor of all other five
skills and Skill 6 (12.1%) is a successor of all other five skills. Skills 2, 3, 4, and 5
are intermediate skills of which Skill 2 (17.6%) and Skill 3 (11.8%) are precursors
of Skill 5 (30.4%). The right-hand panel of Fig. 26.2 shows the partial order for the
regularized nine-class solution. Although this solution is superior to the six-class
solution in terms of model fit, the interpretability of the partial order is somewhat
more intricate.

Finally, we fitted the unidimensional latent trait models using the GDM. For
the item response functions, we assumed 1PL and 2PL functions. We employed
different distributional assumptions for the unidimensional trait. First, a normal
distribution was assumed, which can be specified by including the first and second
moments in the skill space representation of the GDM. Second, a skewed trait
distribution was assumed by fitting the first three moments of the skill space. Third,
the trait distribution was fitted by assuming a located latent class model (Bartolucci,
2007). For a model with C latent classes, C locations (values at the θ scale) and
C − 1 class probabilities are freely estimated. The models were fitted using the
CDM::gdm() function. Item 24 was used as a reference item and its item difficulty
was fixed to zero in the 1PL and the 2PL model and its item slope was fixed to one
in the 2PL model.

Table 26.5 shows the measures of relative and absolute model fit for the 1PL
and the 2PL model and the different distributional assumptions for the trait. For the
1PL model, the model with a skewed trait (M = 0.21, SD = 1.03, skewness = 1.43,
EAP reliability = .75) fitted the data significantly better than those with a normally
distributed trait (M = 0.17, SD = 0.90, skewness = 0, EAP reliability = .77). The
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Table 26.5 Model comparison for the ECPE dataset for different unidimensional 1PL and 2PL
models estimated with the GDM

Model Deviance #Npar AIC BIC MADcor SRMSR

1PL, normal distribution 85,459.68 28 85,516 85,683 .031 .039
1PL, skewed distribution 85,403.11 30 85,463 85,643 .031 .039
1PL, 2 classes 86,235.04 30 86,295 86,474 .036 .046
1PL, 3 classes 85,535.73 32 85,600 85,791 .031 .039
1PL, 4 classes 85,403.00 34 85,471 85,674 .031 .039
1PL, 5 classes 85,395.83 36 85,468 85,683 .031 .039
1PL, 6 classes 85,395.19 38 85,471 85,698 .031 .039
2PL, normal distribution 85,094.40 56 85,206 85,541 .018 .022
2PL, skewed distribution 85,041.51 57 85,156 85,496 .018 .022
2PL, 2 classes 85,945.52 57 86,060 86,400 .028 .035
2PL, 3 classes 85,192.85 59 85,311 85,664 .018 .023
2PL, 4 classes 85,046.84 61 85,169 85,534 .018 .023
2PL, 5 classes 85,034.95 63 85,161 85,538 .018 .022
2PL, 6 classes 85,031.40 65 85,161 85,550 .018 .022

Note: #Npar = number of estimated parameters. The entries with the lowest AIC and BIC are in
bold print

located latent class models showed slightly worse performance than the models that
assumed a skewed distribution. However, a located latent class model with four
classes (M = 0.19, SD = 0.93, skewness = 0.49, EAP reliability = .78) fitted the
data better than a model based on the normal distribution. Estimated class locations
were − 1.36 (with a frequency of 10.5%), −0.36 (40.7%), 0.64 (37.7%), and 2.14
(11.1%), respectively. The model comparisons for the 2PL models are similar to the
1PL models. The model with a skewed trait distribution (M = 0.20, SD = 0.93,
skewness = 2.60, EAP reliability = .78)3 fitted the data better than the model
with the normal trait distribution (M = 0.16, SD = 0.71, skewness = 0, EAP
reliability = .78) and all located latent class models. If the research question is
focused on (diagnostic) classification, then latent class models seem to have some
merits. If we compare the information criteria from Table 26.5 with the criteria
resulting from the models with discrete latent variables (Tables 26.2, 26.3, and 26.4),
we can conclude that simple unidimensional models are competitive with restricted
and unrestricted latent class models (see also von Davier, 2014).

3The standard deviation of the 2PL model cannot be directly compared with the 1PL model as the
value depends on the choice of the reference item.
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26.4 Discussion

This chapter introduced the CDM package. We argue that the SLCA model provides
a comprehensive framework that includes many important DCMs as special cases.
Moreover, some recent developments in exploratory DCMs have been included in
recent version of the package. Regularization methods for Q-matrix estimation as
well as regularized latent class analysis can be useful statistical tools in diagnostic
modeling if the linking of items to skills is (partially) unknown.

In addition to the CDM package, the GDINA package is a comprehensive R
package that enables the estimation of the G-DINA model (Ma, Chap. 29, this
volume). Overviews of alternative software packages are provided by Li et al. (2016)
or Rupp and Templin (2008) and in other chapters of the section “Software, Data,
and Tools” in this handbook.

Until now, MML estimation has been the estimation method employed in the
CDM package. For a large number of skills, the computation of posterior proba-
bilities and expected counts for all 2D skill classes is computationally challenging.
Bayesian Markov chain Monte Carlo (MCMC) estimation (Culpepper & Hudson,
2018; Zhan, 2017; Liu & Johnson, Chap. 31, this volume) can circumvent this
problem when the D dichotomous skills are computationally represented by D
underlying continuous multivariate normally distributed skills (Stout et al., Chap.
3, this volume). Statistical inference for model parameters is obtained as a by-
product of MCMC estimation and posterior distributions for derived parameters can
be easily computed.

Model misfit can occur if some required skills for an item are omitted and, in that
case, the loading structure is not correctly specified. Regularization methods can be
used to infer unknown entries in the Q-matrix or in the full Q-matrix. However,
model misfit can also be due to nonmodeled residual correlations between items
that indicate local stochastic dependence. In the same manner as for the loading
structure, local dependence can be modeled by applying regularization methods
to residual correlations. In this case, MML estimation becomes computationally
infeasible and pseudo-likelihood estimation methods have been proposed (Kang,
Liu, & Ying, 2017, for DCMs; Chen, Li, Liu, & Ying, 2016, for multidimensional
IRT models; Hastie et al., 2015, for general approaches in graphical modeling).
Regularization methods can be interpreted in a similar way to prior distributions in
Bayesian modeling and can ensure that the regularized set of model parameters
remain identified. From a substantive point of view, it could be more useful to
represent sources of model misfit in the structure of residual correlations because
the interpretation of skills should not be changed by altering Q-matrix entries solely
for reasons of statistical criteria.

DCMs assume that latent variables are multidimensional and dichotomous (or
polytomous). In principle, polytomous ordered variables with many levels and
continuous variables can hardly be distinguished from each other (e.g., von Davier,
Naemi, & Roberts, 2012). In empirical applications, multidimensional IRT models
with continuous latent traits can often describe data better than models with discrete

http://dx.doi.org/10.1007/978-3-030-05584-4_29
http://dx.doi.org/10.1007/978-3-030-05584-4_31
http://dx.doi.org/10.1007/978-3-030-05584-4_3
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latent variables, although this will not always be the case as it depends on the
particular application. Multidimensional noncompensatory IRT models can also be
applied to model the noncompensatory interplay of skills (Embretson, Chap. 9, this
volume), which weakens the borders between DCMs and IRT models.
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Chapter 27
Diagnostic Classification Modeling
with flexMIRT

Li Cai and Carrie R. Houts

Abstract In this chapter, we will focus on the use of flexMIRT
®

(Cai L, flexMIRT
®

version 3.5: Flexible multilevel multidimensional item analysis and test scoring
[Computer software]. Vector Psychometric Group, LLC, Chapel Hill, 2017) for
estimating certain core diagnostic models that have seen practical application, as
well as to illustrate the specialized capabilities the software offers. flexMIRT is a
commercially available, stand-alone, general purpose item response theory (IRT)
software program that is compatible with machines running Windows 7.0 or later.
The basic DCM model in flexMIRT is described in Cai, Choi, Hansen, and Harrell
(Annu Rev Stat Appl 3:297–321, 2016) as well as in Hansen, Cai, Monroe, and
Li (Br J Math Stat Psychol 69:225–252, 2016) in slightly more restricted form. It
is an extension of the log-linear cognitive diagnostic model (LCDM) described by
Henson, Templin, and Willse (Psychometrika 74:191–210, 2009) with extra random
effects to handle cases of possible local dependence.

27.1 Introduction

There are many software options available for estimating diagnostic classification
models (DCMs), each with unique features and capabilities (e.g., Chaps. 26, 27, 28,
29, 30 and 31 organized as Part IV in this volume). In this chapter, we will focus on
the use of flexMIRT® (Cai, 2017) for estimating certain core diagnostic models that
have seen practical application, as well as to illustrate the specialized capabilities
the software offers.
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27.2 General Software Description

flexMIRT is a commercially available, stand-alone, general purpose item response
theory (IRT) software program that is compatible with machines running Windows
7.0 or later. The C++ engine is portable and is compatible with most platforms
for which modern C++ compilers exist. It is almost exclusively a syntax-driven
program, although some features are available to be specified via a Windows
graphical user interface. flexMIRT was first released in 2012, with the module
adapting flexMIRT to allow for the estimation of DCMs using model-specific syntax
(such as attributes, main effects, and interactions) included as part of the version 2.0
update, released in 2013.

In submitting data to flexMIRT, no specialized data format is used and require-
ments for the structure of the data file are minimal. Variables need only be tab,
comma, or space delimited and missing values must be represented with a numeric
value (default is−9). flexMIRT uses full-information maximum marginal likelihood
(MML) estimation with the EM algorithm (see e.g., Bock & Aitkin, 1981) to
estimate DCMs (or modal Bayes if priors are supplied).

The basic DCM model in flexMIRT is described in Cai, Choi, Hansen, and
Harrell (2016) as well as in Hansen, Cai, Monroe, and Li (2016) in slightly more
restricted form. It is an extension of the log-linear cognitive diagnostic model
(LCDM) described by Henson, Templin, and Willse (2009) with extra random
effects to handle cases of possible local dependence. With parameter restrictions
implemented in flexMIRT, the LCDM framework can generate a number of
“named” DCMs, e.g., the deterministic-input noisy “and” gate (DINA; Junker &
Sijtsma, 2001) model.

In developing DCMs and estimation algorithms, conditional independence of
item responses given the attributes (e.g., Templin & Henson, 2006) are frequently
assumed. In other words, the conditional probability of item response patterns is
assumed to factor into a product over items:

πθ (xn|a) = Pθ

(
K⋂

k=1

Xk = xnk|a
)
=

K∏

k=1

Pθ (Xk = xnk|a) , (27.1)

where xn = (xn1, . . . , xnK)
′

is a K × 1 vector that contains the observed item
responses for case n, and a = (a1, . . . , aD)

′
is a D × 1 vector containing the latent

attribute values. The subscript θ is used to emphasize the dependence of the various
probability distributions on a vector of freely estimated structural parameters θ , e.g.,
item intercepts or slopes.

When there is potential residual dependence among subsets of items, a useful
strategy is to include additional random effects or latent variables (Cai, Yang, &
Hansen, 2011; Gibbons & Hedeker, 1992). Let there be S mutually exclusive groups
of items, indexed s = 1, . . . , S, each dependent on at most one group/specific
latent dimension ηs. With these additional random effects, conditional independence
implies
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πθ (xn|a, η1, . . . , ηS) = Pθ

(
K⋂

k=1

Xk = xnk|a, η1, . . . , ηS

)

=
S∏

s=1

∏

k∈Is

Pθ (Xk = xnk|a, ηs) ,
(27.2)

where Is is a notational shorthand to stand in for the index to the group of items
that load on group/specific dimension s.

Furthermore, assume that the group/specific dimensions are conditionally inde-
pendent given the attributes, i.e., gθ (η1, . . . , ηS| a) = gθ (η1| a)gθ (η2| a) . . . gθ

(ηS| a). This allows us to employ a dimension reduction technique to integrate the
η’s out without a full S-dimensional integral (see Cai et al., 2011; Rijmen, 2009):

πθ (xn|a) =
∫ S∏

s=1

∏

k∈Is

Pθ (Xk = xnk|a, ηs) gθ (η1, . . . , ηS |a) dη1 · · · dηS

=
S∏

s=1

∫ ∏

k∈Is

Pθ (Xk = xnk|a, ηs) gθ (ηs |a) dηs.

(27.3)

This leads to vastly reduced computing time for parameter estimation.
Following the LCDM framework, the specification of the item response

probabilities is straightforward. If item k is scored dichotomously, a possible
specification is

Pθ (Xk = 1|a, ηs) = 1

1+ exp
[− (αk + β ′khk (qk, a)+ γkηs

)] , (27.4)

where hk(qk, a) is a vector-valued function that can generate the necessary main
effects and interactions for this item, using the Q-matrix specification in qk, and
α, β, and γ are item parameters. For example, an item that assumes a DINA-like
conjunctive response process but also depends on an additional random effect may
be written as

Pθ (Xk = 1|a, ηs) = 1

1+ exp [− (αk + 0a1 + 0a2 + βka1a2 + γkηs)] , (27.5)

where the two main effects are fixed to 0 and the second-order interaction term
is freely estimated. flexMIRT provides specific commands that implement DCM-
specific restrictions.

As in de la Torre and Douglas’s (2004) analysis, we can model the associa-
tion among the latent attributes with higher order latent variables. For example,
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for dichotomous attributes, we may use a multidimensional extension of the 2-
parameter logistic model (Reckase, 2009):

Pθ (Ad = 1|ξ) = 1

1+ exp [− (λd0 + λd1ξ1 + · · · + λdmξm)] . (27.6)

Again, under the conditional independence assumption, the distribution of the
attributes is

πθ (a|ξ) =
D∏

d=1

[Pθ (Ad = 1|ξ)]ad [1− Pθ (Ad = 1|ξ)]1−ad . (27.7)

Combining πθ (xn| a) from Eq. (27.3) with πθ (a| ξ ) from Eq. (27.7), the contri-
bution to marginal likelihood from observed response pattern xn is:

πθ (xn) =
∫ [∫

πθ (xn|a) πθ (a|ξ) da
]
gθ (ξ) dξ , (27.8)

where the inner integral in the brackets is a 2D-term summation over the attribute
profile probabilities. The marginal log-likelihood based on all observed response
patterns is.

l (θ) =
N∑

n=1

logπθ (xn) . (27.9)

In addition to fitting a wide variety of DCMs, flexMIRT also has rich statistical
features, implemented as part of more general purpose IRT routines that can enhance
DCM modeling. For instance, flexMIRT is natively multiple-group ready and has
features that permit likelihood-based hypothesis testing, e.g., with likelihood ratio
tests or Wald tests. Arbitrary user-supplied constraints may be applied to item
parameters. Prior distributions may be provided as well. Further, there are numerous
standard error estimation methods for users to choose from with DCM-specific
recommendations provided in the flexMIRT documentation.

Due to its origins as a more general purpose IRT/item factor analysis program,
flexMIRT also includes many item fit and overall model fit indices. Overall model
fit values (−2 log likelihood, AIC, BIC, and when appropriate, the likelihood
ratio (G2) and Pearson X2 full-information fit statistics) are reported by default
and users may optionally request additional model fit values, such as the M2
family of limited information measures (e.g., Maydeu-Olivares & Joe, 2005; Cai
& Hansen, 2013) and the associated RMSEA (e.g., Steiger & Lind, 1980), and
Tucker-Lewis Index (Tucker & Lewis, 1973) values. Item fit statistics are available
as well, including sum-score based chi-square values (e.g., Orlando & Thissen,
2000; Cai, 2015) and marginal and bivariate chi-square values (Chen & Thissen,
1997).
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Finally, flexMIRT can be used to simulate data from any model that it supports.
While flexMIRT is a stand-alone program, it can be incorporated into other
statistical environments via shell or system calls; analyses can be initiated from
outside programs (e.g., R, SAS) making flexMIRT particularly convenient for
investigating statistical properties of DCMs via simulation studies where many
repeated analyses need to be completed.

As noted previously, flexMIRT is general purpose item response modeling
software, but DCM-specific syntax has been incorporated to allow for a more
intuitive translation from model to software syntax. We will highlight this aspect
of the program with an example.

27.3 Example

Our demonstration of flexMIRT replicates the de la Torre and Douglas (2004)
presentation of analyses using the well-known Tatsuoka (2002) fraction subtraction
data set. In this example, a DINA model with a higher-order latent variable will
be estimated using responses from 536 students (a publicly available subset of the
full N = 2144 dataset) to 20 items. For the interested reader, the data set used, and
complete flexMIRT syntax and all output files are available on the flexMIRT support
page (https://www.vpgcentral.com/software/irt-software/support/).

The Q-matrix (available in de la Torre and Douglas [2004, p. 347]) was such that
eight attributes were specified, with items assigned to as many as five attributes.
Below we present an excerpt of the flexMIRT syntax for defining this analysis,
focusing on aspects specific to the DCM:

<Groups>
%G%
Attributes = 8;
Generate = (4,6,7),(4,7),(2,3,5,7),(2,4,7,8),(1,2,7),

(2,5,7,8),(2,5,7),(7,8),(2,4,5,7),
(2,7),(1,7),(2,5,6,7),(1,2,3,5,7),(2,3,5,7);

%D%
DM = G;
Varnames = a1-a8;

<Constraints>
Fix G,(v1-v20),Slope;
Free G,(v1),Interaction(4,6,7); // 3rd-order int of attr

4,6,7
Free G,(v2),Interaction(4,7); // 2nd-order int of attr 4,7
Free G,(v3),Interaction(4,7); // 2nd-order int of attr 4,7
Free G,(v4),Interaction(2,3,5,7); // 4th-order int of attr

2,3,5,7
Free G,(v5),Interaction(2,4,7,8); // 4th-order int of attr

2,4,7,8
Free G,(v6),MainEffect(7); // main effect of attr 7

Equal D,(a1-a8),Slope; // constraint for “restricted” higher
order model

https://www.vpgcentral.com/software/irt-software/support/
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In the <Groups> section of the syntax, group %G% will hold the observed
data/item responses and group %D% will be used to model the higher-order space,
using the attributes constructed within group %G% as the data for analysis. As
noted, the number of attributes/main effects for the model was eight, justifying the
Attributes= 8; statement of the presented flexMIRT syntax. The Generate statement
is then used to construct only those higher-order interactions that will be used in the
analysis, as determined by the Q-matrix specifications. The DM = G; statement is
used to indicate that the DCM attribute profile probabilities defined in group %G%
are modeled in the higher-order portion of the model. In other words, in specifying
the higher-order portion of the model, the attributes will be treated as “items” to be
fit with the specified model, hence the Varname = a1-a8; statement in group %D%.

In the <Constraints> section, the first line of syntax is to “reset” the loading
pattern of items onto attributes (so items begin by loading on no attributes) and we
then provide statements for the first 6 items to demonstrate how items are assigned
to attributes. Given the desired DINA model, the highest-order interaction for each
item is the key term, with all lower-order interactions and main effect parameter
being fixed at 0 (and therefore set appropriately by the initial Fix statement). Finally,
we specify that the slopes/loadings of the attributes onto the higher-order continuous
latent variable are constrained to be equal, mirroring the restricted higher-order
model of de la Torre and Douglas (2004). There is additional coding in the full
syntax file to assign the remaining items to attributes, but we feel the above give
readers a general sense of the intuitive manner, using relatively simple syntax, by
which DCMs are specified in flexMIRT, even those with complex structured latent
variable portions.

Even using only the available subset of data, the flexMIRT estimates of the
slipping and guessing parameters for the items were extremely similar to those
originally reported by de la Torre and Douglas (2004). The flexMIRT analysis
completed in approximately 45 s on a personal computer (dual-core processing
at 2.8 GHz with 4GB of RAM); this processing time included the item parameter
estimation, estimation of the model-implied proportions of attribute profile member-
ships, estimates of latent class memberships for each observation, the default “item”
and test information function values, as well as an estimate of the marginal reliability
for the higher-order portion of the model and, lastly, default and additionally
requested overall model fit values and optionally requested individual item fit/local
dependence indices. This highlights the efficiency that can be achieved when esti-
mating DCMs through MML estimation in a comprehensive item analysis package.

27.4 Discussion

flexMIRT® is a commercial general purpose multilevel and multidimensional item
factor analysis software program that also implements specific features to accom-
modate DCM analysis. Its major advantage is the integration of DCM analysis
with its rich statistical features available for general IRT modeling. For academic
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researchers who teach, flexMIRT is currently offered freely for students, with
full functionality. For researchers and users at operational assessment programs,
flexMIRT’s ability to handle operational-grade analysis while offering flexibility as
a research tool may be an attractive feature.
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Chapter 28
Using Mplus to Estimate the Log-Linear
Cognitive Diagnosis Model

Meghan Fager, Jesse Pace, and Jonathan L. Templin

Abstract In this chapter, we present the software package Mplus (Muthén LK,
Muthén BO, Mplus User’s Guide. 8th edn. Los Angeles, Muthén & Muthén.
https://www.statmodel.com/, 2017) with the Log-linear Cognitive Diagnosis Model
(LCDM), a general model for diagnostic assessment (Henson RA, Templin JL,
Willse JT, Psychometrika, 74(2):191–210, 2009; see also Chap. 8 in this volume).
We devote most of this chapter to presenting relevant features of the LCDM as
implemented in Mplus with a conceptual example using fraction subtraction data
(Tatsuoka KK, Analysis of errors in fraction addition and subtraction problems,
Report NIE-G-81-0002. University of Illinois, Computer-based Education Research
Library, Urbana, 1984, Tatsuoka C, J R Stat Soc Series C (Appl Stat), 51:337 350.
https://doi.org/10.1111/1467-9876.00272, 2002) to illustrate syntax composition,
output evaluation, and assessment refinement.

28.1 Introduction

In this chapter, we present the software package Mplus (Muthén & Muthén, 2017)
with the Log-linear Cognitive Diagnosis Model (LCDM), a general model for
diagnostic assessment (Henson, Templin, & Willse, 2009; see also Chap. 8 in
this volume). We devote most of this chapter to presenting relevant features of
the LCDM as implemented in Mplus with a conceptual example using fraction
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subtraction data (Tatsuoka, 1984, 2002) to illustrate syntax composition, output
evaluation, and assessment refinement.

As you have learned from earlier chapters in this volume, diagnostic models are
confirmatory latent class models of discrete latent traits (e.g., mastery/non-mastery).
These models require specific constraints to align with model interpretations: (1)
a pre-specified number of attributes or skills measured by the assessment, (2) a
Q-matrix (i.e., item-by-skill association mapping; Tatsuoka, 1985), and (3) model
constraints, such as equality restrictions and monotonically increasing item response
functions (i.e., masters of skills have a higher probability of correct item responses
than non-masters). Imposing further constraints on LCDM item parameters allows
users to estimate other models subsumed by the LCDM, such as the DINA,
DINO, NIDO, and C-RUM. For Mplus, we specify syntax and model estimation
procedures following latent class model conventions with these implied constraints.
The information presented in this chapter is meant to describe the sections of Mplus
syntax and translate the traditional terminology of latent class models into the
necessary components in estimating the LCDM.

28.2 Software Overview

Mplus is software for estimating models with observed and latent variables with
multiple types of distributions available. Though presented here in the context of
diagnostic models, Mplus is used for a variety of research situations that often
arise in the social and behavioral sciences. In addition to more basic analyses,
Mplus offers advanced capabilities such as multiple imputation for missing data,
Monte Carlo simulation, and bootstrapped standard errors for estimated model
parameters. Moreover, Mplus offers several measures of model fit that aid in
evaluating models and deciding between competing models. Mplus estimation
methods also accommodate both Frequentists’ and Bayesians’ perspectives by
offering both maximum likelihood and Bayesian estimators with Markov chain
Monte-Carlo methods.

Users can use Mplus on Windows, Mac, and Linux operating systems. Single user
licenses start at $695 (at the time of writing) for base versions and are discounted
to $195 for students. University licenses are also available and start at $595. For
added features, Mplus offers package add-ons for an additional cost, such as the
mixture add on (needed for the LCDM), a multi-level add-on for complex data
structures, and a combination add-on. Software can be purchased on DVD or as
a digital download. For ordering information and the Mplus user guide, we refer
readers to the Mplus website (Muthén & Muthén, 2017).

28.3 Example Data

The fraction subtraction test has frequently appeared in diagnostic assessment
publications (e.g., DeCarlo, 2011; de la Torre, 2008, 2009; de la Torre & Douglas,
2008; Chiu & Douglas, 2013; Mislevy, 1996; Tatsuoka, 1984, 2002; Templin &
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Henson, 2006), and is publicly available. To download the data and Q-matrix, users
must use R software (R Core Team, 2017) with the CDM package (Robitzsch,
Kiefer, George, & Ünlü, 2018). This dataset is composed of 536 middle school
students’ responses to 20 test items. The test items measure skills such as “simplify
before subtracting” and “convert a whole number to a fraction” and are Bernoulli
distributed (i.e., scored correct or incorrect). Although the fraction subtraction data
has eight skills, we restrict our analysis to two skills: borrow from a whole number
part (alpha 5) and subtract numerators (alpha 7). This results in 22 = 4 possible
skill profiles depending on the mastery status of our skills (e.g., masters and non-
masters). We also limit our analysis to seven items instead of the complete set for
ease of exposition.

28.4 Mplus Syntax

Next, we describe core Mplus syntax for estimating the LCDM item, structural
(saturated log-linear structural model), and respondent parameter estimates in the
context of our example data. We will start with a brief introduction to basic concepts
involved in using Mplus followed by a brief description of composing syntax files
and the different options available for estimating the LCDM.

28.4.1 Basic Concepts

Mplus uses standard ASCII-text data files for input; common formats accepted
include ‘.csv’ and ‘.dat’ data types. Input syntax files, like data files, are ASCII-
text files. These input files can be created in a text editor. When using Mplus as
the input file editor, the program interface allows the user to view syntax with a
coloring scheme for Mplus key terms such as commented lines, key commands, and
user input (e.g., variable names). Commented lines can be included anywhere in the
input syntax and are designated by an exclamation point at the line start. Though
general text files can continue lines indefinitely, Mplus requires that no line exceed
90 characters in width, and that variable names be no longer than eight characters.
Furthermore, Mplus requires that syntax statements end with a semicolon to separate
command options, with the exception of the title.

28.5 Command Syntax

The core sections of Mplus syntax, termed commands, have a specific purpose and
associated set of options. There are a total of ten syntax commands, but Mplus
choses specific defaults for several of these commands to minimize user input for
common types of analyses. In our case, we rely on six preliminary commands to
set up our analysis: (1) TITLE, (2) DATA, (3) VARIABLE, (4) ANALYSIS, (5)
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OUTPUT, and (6) SAVEDATA, and a primary MODEL command specifically for
the LCDM. For a more detailed description of other commands and options not
listed here, we refer the reader to the Mplus User’s guide (Muthén & Muthén, 2017).

28.5.1 TITLE Command

At the beginning of the syntax file, we can name our analysis with the TITLE
command. A useful convention to adopt is titling each analysis according to (1)
the dataset used, (2) the number of skills and items, and (3) the model applied. If
we chose to exclude higher-order interaction terms, we would note this here. This
convention helps in keeping an organized record of models run since Mplus requires
individual input files per model estimated. For our example dataset, we use the title:
“LCDM for inputdata.dat with 2 skills and 7 items: Saturated structural model with
2 levels of interactions.” After we run our input syntax file, our title will appear at
the beginning of our output file.

28.5.2 DATA Command

Mplus model syntax uses the DATA command to specify the data file and its
structure. If the input file is contained in the same directory as the data file, Mplus
defaults to the same folder and the option FILE = only needs the data file name.
Otherwise, the file location can be specified with the path to the directory on the hard
disk (e.g., FILE= “C:\LCDM\input.dat”). The structure of the data file requires that
any column names or headers be removed. The default importing format of data is
free-format rows which can be changed with the FORMAT option to describe other
types of formatting schemes, such as a fixed format (i.e., equal spaced columns).

28.5.3 VARIABLE Command

The next section of the syntax file is the VARIABLE command. This command is
required to provide Mplus with observed variable names, observed variable types
(e.g., categorical, nominal), and observed variables involved in the analysis. In
our example dataset, our complete data has twenty items. Under the VARIABLE
command, the syntax NAMES = ID X1-X20 specifies a unique identifier of
respondents and all variables in the data file. However, since we are only using
a subset of the items in our example, we limit our USEVARIABLES statement
to list only the items we wish to use. Because our data are scored dichotomously
(0/1), we have categorical item responses which Mplus labels as CATEGORY 1 for
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values of 0 and CATEGORY 2 for values of 1. This option would be specified as
TYPE = CATEGORICAL in a subsequent line after we define our variables.

The final option we include in our VARIABLE command section is the number
of latent classes. Recall that as constrained latent class models, the LCDM specifies
the number of classes according to the number of skills and the number of levels they
assume. For our data with two skills, this results in 22 = 4 latent classes because we
have two mastery statuses. The syntax CLASSES = c(4) specifies the class label as
“c” and the number of classes as (4). If we had missing data codes, we would also
specify a missing value code (e.g., −999).

28.5.4 ANALYSIS Command

Our next command in our Mplus input file is the ANALYSIS command. Here, we
can indicate estimation options and the type of model to run. Since constrained latent
class models such as the LCDM fall under the framework of finite mixture models
(e.g., McLachlan & Peel, 2000), the option noted here is TYPE = MIXTURE.
Otherwise, we will use the default options for our analysis: robust (marginal)
maximum likelihood (ML) estimation and automatically generated starting values
for all parameters.

28.5.5 OUTPUT and SAVEDATA Commands

The final two commands to set up our analysis are the OUTPUT and SAVEDATA
commands to obtain additional needed output for our model. For OUTPUT, we
request the TECH10 option for added model fit information. We also request that
each respondent’s estimated class membership probabilities be stored in a separate
file by specifying the FILE = option under the SAVEDATA command.

28.5.6 The MODEL Command: Syntax for the LCDM

The next and final command necessary to estimate the LCDM with Mplus is the
MODEL command. Mplus uses this command to define LCDM latent classes, item
parameters, and order constraints. Syntax first defines each latent class by the items’
class-specific response probabilities, however Mplus does not directly specify item
response probabilities as defined in the LCDM. Instead, as a method to analyze
categorical data, Mplus uses thresholds to model each item’s different functioning
between classes. Thresholds provide an intercept in the model for the probability of
each observed item category, starting with the lowest and ending with one less than
the total number of categories.
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Thresholds are modeled on the logit metric. Since our items are scored with
two categories, there is only one threshold per item to represent the difference
between an incorrect and correct response. The item parameter thresholds are
constrained to be equal between different latent classes to coincide with the LCDM
model interpretation. That is, the LCDM keeps item response probabilities equal for
respondents in different latent classes.

The Mplus syntax for the MODEL command, %c#1%, indicates that all follow-
ing commands correspond to latent class 1 (i.e., c1 = [0, 0]). Each item has a line of
syntax per each class that specifies the threshold and its corresponding label: [x1$1]
(T1_1). The first term contained in the bracket refers to the threshold, $1, for an
item, x1. The second term within parentheses (T1_1), is arbitrarily assigned to label
the threshold. This label is then used to allow the thresholds to be predicted by the
corresponding item parameters involved.

To map thresholds to the LCDM, we begin by predicting the threshold from
the LCDM item parameters present, as a function of each latent class. To translate
thresholds to LCDM item response probabilities, the sum of the item parameters
predicting the threshold is multiplied by negative one to model the probability of a
one (i.e., a correct response) rather than the probability of a zero, the Mplus default.
To illustrate the MODEL CONSTRAINT syntax, we will use item 10 as an example.
Since item 10, X10, measures both skills contained in skill profile ac, there are four
different combinations of possible response probabilities that depend on the attribute
profile:

P (α1) = exp
(
λ10,0 + λ10,1,(5)(0)+ λ10,1,(7)(0)+ λ10,2,(5∗7)(0)(0)

)

1+ exp
(
λ10,0 + λ10,1,(5)(0)+ λ10,1,(7)(0)+ λ10,2,(5∗7)(0)(0)

) (28.1)

P (α2) = exp
(
λ10,0 + λ10,1,(5)(0)+ λ10,1,(7)(1)+ λ10,2,(5∗7)(0)(1)

)

1+ exp
(
λ10,0 + λ10,1,(5)(0)+ λ10,1,(7)(1)+ λ10,2,(5∗7)(0)(1)

) (28.2)

P (α3) = exp
(
λ10,0 + λ10,1,(5)(1)+ λ10,1,(7)(0)+ λ10,2,(5∗7)(1)(0)

)

1+ exp
(
λ10,0 + λ10,1,(5)(1)+ λ10,1,(7)(0)+ λ10,2,(5∗7)(1)(0)

) (28.3)

P (α4) = exp
(
λ10,0 + λ10,1,(5)(1)+ λ10,1,(7)(1)+ λ10,2,(5∗7)(1)(1)

)

1+ exp
(
λ10,0 + λ10,1,(5)(1)+ λ10,1,(7)(1)+ λ10,2,(5∗7)(1)(1)

) (28.4)

where α1, α2, α3 and α4 are the latent classes (vectors indicating attribute mastery)
[0,0], [0,1], [1,0], and [1,1], respectively.

Here, we have four different thresholds for item X10 because we have four dif-
ferent probabilities of correctly responding to the item, P(X10 = 1|αc). These item
response probabilities are functions of the parameters contained within the equation:
the intercept, λ0,10, two main effects for each skill, λ10,1,(5) and λ10,1,(7), and the
interaction term, λ10,2,(5∗7), included when both skills are mastered. Thresholds, like
item response probabilities, are generated according to the different skill statuses:
t10_1 for class 1, t10_2 for class 2, and so on. For a factorially simple item, such as
Item 1, only two thresholds would be generated as there are only two possible item
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response probabilities involving two possible LCDM parameters: an intercept, λi, 0
and a main effect, λi, 1(α), for the skill measured by the item.

28.6 Mplus Output and Results

Upon completing the syntax file, the analysis can be completed in Mplus in the
following ways: using the RUN button found atop the graphical interface menu bar
or in batch mode via a Windows command prompt or a Linux/MacOS terminal. As
it runs, messages will appear describing the calculation of the model, either in a
secondary window or in the terminal/command prompt, until successful completion
of the estimation. The output is returned in a new file with a “.out” file type that
contains the model results.

At the top of the output file, the title and full syntax of the input file precedes the
results of the analysis. If there were any errors, they will be noted after the syntax
and should be diagnosed before proceeding. We next describe how to interpret
results and present key findings of our example analysis.

28.6.1 Model Fit Information

After Mplus terminates, it gives verbose output about the data characteristics and
the estimated model. But before proceeding, it is necessary to ensure that our data
adequately fits our proposed model. For our example, we have estimated 27 param-
eters from 536 respondents. Our loglikelihood, labeled H0 Value, is −1579.995
and scaled by robust maximum likelihood with a correction factor of 1.011 to
augment likelihood calculations. Our relative fit statistics for model comparisons
are AIC = 3213.99, BIC = 3329.66, and sample-size adjusted BIC = 3242.96.
These can be used for non-nested model comparisons, or the loglikelihood can be
used to make nested model comparisons with a likelihood ratio test. This is done
by performing Chi-square tests of the difference in −2 loglikelihoods, with the
difference in the model degrees of freedom between the models under comparison as
the test degrees of freedom. When robust ML is used for estimation, a scaled version
of the likelihood ratio test can be found via methods described on Mplus’s website.

The next piece of model fit information is the Chi-square test of model fit for the
binary and ordered categorical (ordinal) outcomes. Here, the Pearson Chi-square
and likelihood ratio Chi-square tests are tests of global model fit that compare the
current model to the saturated model where each response pattern has an estimated
probability. The degrees of freedom are the same for both tests and equal 100 in
our example. This number is found by taking the total response patterns possible
(i.e., 27 = 128 for 7 items) minus the number of estimated parameters (i.e., 27). The
null hypothesis for both tests is that the model fits the data as well as the saturated
model. We found that both tests were nonsignificant, therefore we retained the null
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and concluded that our model fits our data according to absolute and relative fit
statistics.

Another important piece of model fit information comes from the univariate
and bivariate tests requested from the TECH10 option of the OUTPUT command.
The bivariate section is of primary interest for the LCDM to evaluate local model
fit for each pair of items. Compared to global tests of model fit which rely on all
possible response options, bivariate fit can help diagnose specifically which items
are causing misfit.

Bivariate information is evaluated using two-way contingency tables for the
response options of a pair of items. These are used to compare the observed
frequencies with those expected from the model. The hypothesis test for each pair of
items is a one degree of freedom Chi-square test with the null hypothesis being that
the model predicted values from the item parameters are equal to those observed
in the data. In our example, the bivariate Pearson Chi-square and Log-Likelihood
Chi-square tests for all pairs of items were nonsignifincant, indicating that we have
another piece of evidence supporting the fit of our model. The overall test aggregates
the bivariate test statistics from each pair of items to a total Pearson chi-square of
3.670 and a log-likelihood chi-square of 3.694. Since these values are far below the
number of pairs of items we have in the test, (i.e., 21 pairs), we can conclude that
our model fits the data well.

28.6.2 Final Class Counts and Estimated Proportions

The next section of the Mplus output offers the number of estimated respondents
in each latent class and a converted proportion. Here, we can tell that most of our
sample is expected to have either mastered all or none of the skills because most
respondents fall in either class 1 (α1 = [0, 0]; 38%) or class 4 (α4 = [1, 1]; 41%).
The remaining 21% of our sample are predicted to have mastered one of the skills,
but not the other.

28.6.3 New/Additional Parameters

The next section of interest is the new/additional parameters section. This section
outputs our estimated item parameters (defined in the MODEL CONSTRAINT
section) that follow our LCDM parameterization. These parameters can be used
to further refine the design of our assessment and continue model calibration. The
output includes five columns, including the parameter labels we defined previously,
the estimated parameter values, the standard error of the estimates, a test statistic
for each parameter (EST./S.E.), and a two-tailed p-value determining whether the
parameter is significantly different than zero (not-needed) or nonzero (needed). If
the item parameter is nonsignificant (disregarding the intercept), this may indicate
that the item does not measure the skill (i.e., item main effects), or there is not an
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Table 28.1 Fraction Subtraction Subsetted Data Q-Matrix and LCDM Item Parameter Estimates

Skill 5 Skill 7 λi,0 λi,1,(5) λi,1,(7) λi,2,(5, 7)

Item 1 0 1 −2.933* 5.201*
Item 2 0 1 −2.667* 6.316*
Item 10 1 1 −5.085* 5.116* 3.212* −1.760
Item 11 1 1 −2.641* 4.247* 0.522 0.785
Item 17 1 1 −3.411* 4.635* 0.980 −0.024
Item 18 1 1 −3.108* 4.593* 2.620* −2.338*
Item 20 1 1 −4.936* 6.178* 0.000 0.480

*p < 0.01

additional bump in the probability of a correct response for having mastered both
skills measured by the item (i.e., item interactions).

Results of our example analysis are presented alongside the Q-matrix in Table
28.1. As indicated by the p-values, most parameters are significant, however four
interactions are nonsignificant. This indicates that the interaction term does not
contribute to our model because the probability of correctly responding to the item
is not enhanced when the interacting skills measured are both mastered. We can
remove these terms and keep the main effects as they are sufficient for describing
our data.

For example, in light of the nonsignificant interaction term for item 10, we may
have specified the item 10 thresholds as follows, with a strikethrough indicating
what would be deleted to remove the nonsignificant interaction term:

! ITEM 10:
NEW (l10_0 l 10_12 l10_11 l10_212);
t10_1=-(l10_0); !intercept
t10_3=-(l10_0+l10_11); !intercept + main effect for

first attribute (skill 5)
t10_2=-(l10_0+l10_12); !intercept + main effect for

second attribute (skill 7)
t10_4=-(l10_0+l10_11+l10_12+l10_212); !intercept + two

main effects + interaction

Removing the interaction term in the definition of new parameters and the
summation that defines the thresholds is all that is necessary. In the case of some
items, we could also remove nonsignificant main effects, such as for skill 7 for items
11, 17, and 20, because having mastery of skill 7 does not contribute significantly
to mastering the item. If both a main effect and an interaction were to be removed,
such as in item 11, then all that would remain is the single main effect. The entire
t11_2 and t11_4 would be deleted. Any calls to label t11_2 would be deleted as it
is not estimated to measure attribute 7, and any calls to t11_4 (i.e., in profile [1,1])
would instead be labeled with t11_3, as that is all that remains of that effect.
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Table 28.2 Estimated Respondent Parameters for Five Respondents

Response Pattern αr1 αr2 αr3 αr4 max(αr)

[0,0,1,1,0,1,1] 0.00001 0.00000 0.98217 0.01782 3
[0,1,1,1,1,1,1] 0.00000 0.00000 0.03691 0.96308 4
[0,1,0,0,0,0,0] 0.76235 0.23752 0.00010 0.00003 1
[1,1,1,1,0,1,1] 0.00000 0.00024 0.00055 0.99921 4
[0,0,0,0,0,0,0] 0.99930 0.00056 0.00013 0.00000 1

28.6.4 Saved Estimated Respondent Latent Class Memberships

The previous sections focused on model output relevant to diagnosing the fit of
the model and its estimated parameters. Once this is achieved, we can examine the
posterior probabilities of skill mastery for respondents. Table 28.2 lists entries from
the exported file for five respondents. The seven elements of the vectors contained
in the response pattern column correspond to the respondents scores on the seven
items. Following this, estimated probabilities (i.e., EAPs) for each respondent are
given for each latent class. The final column, max(αr), indicates which class is the
most likely according to the highest probability of each class (i.e., MAP) for each
respondent. These estimates are useful for giving individual, fine-grained feedback
for respondents to assess their levels of mastery of multiple skills.

28.7 Discussion

DCMs are a family of latent class models which contain discrete latent variables;
these variables are used to classify respondents. The purpose of this chapter has been
to explicate the use of Mplus software in the estimation of DCMs. Other software
exists for this purpose, such as flexMIRT (Houts, & Cai, 2016; Chap. 27 in the
volume) and the CDM package in R (George, Robitzsch, Kiefer, Gross, & Ünlü,
2016; Chap. 26 in the volume).

As we have demonstrated in this chapter, Mplus can be used to model one of
the most general of DCMs, the LCDM, with relatively simple input from the user.
We highlighted the core syntax involved in estimating the LCDM as well as the
primary output of interest for our model and purpose. We note once more that it is
a relatively simple matter to impose constraints in Mplus on the LCDM to generate
more restrictive DCMs such as DINA or DINO. Due to both the relatively easy input
as well as its flexibility in modeling both general and constrained DCMs, the Mplus
software as presented here is a valuable resource for any researcher interested in
using DCMs in their work.

http://dx.doi.org/10.1007/978-3-030-05584-4_27
http://dx.doi.org/10.1007/978-3-030-05584-4_26
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Chapter 29
Cognitive Diagnosis Modeling Using
the GDINA R Package

Wenchao Ma

Abstract The GDINA R package (Ma and de la Torre, GDINA: The generalized
DINA model framework. R package version 2.3.2. Retrieved from https://CRAN.
R-project.org/package=GDINA: 2019) provides psychometric tools for estimating
a range of cognitive diagnosis models (CDMs) and conducting various CDM
analyses. The package is developed in the R programming environment (R Core
Team, R: A language and environment for statistical computing. R Foundation
for Statistical Computing, Vienna. https://www.R-project.org/: 2018). This chapter
describes the main features of the package and presents an exemplary analysis of
data to illustrate the use of the package.

29.1 Introduction

The GDINA R package, (Ma & de la Torre, 2019) provides psychometric tools for
estimating a range of cognitive diagnosis models (CDMs) and conducting various
CDM analyses. The package is developed in the R programming environment (R
Core Team, 2018) building on earlier work of de la Torre, who initially wrote many
pieces of source code for CDM estimation and analyses in Ox (Doornik, 2009).
These pieces of source code are integrated into the GDINA R package and have
been further extended in various ways. The GDINA package is publicly available
under the version 3 of the GNU General Public License and can be used free of
charge on multiple platforms including Unix/Linux, Windows and Mac OS. By
using a few additional R packages, data and Q-matrix prepared using ASCII, Excel,
SPSS, SAS, STATA, or other popular statistical software programs, can be easily
imported into R, and analyzed using the GDINA package. The goal of this chapter
is twofold: (1) to provide an overview of the GDINA package, and (2) to present an
exemplary analysis of data to illustrate the use of the package.
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29.2 Psychometric Models

The G-DINA model (de la Torre, 2011; Chap. 7 in this volume) and its extensions
are the bases of the GDINA package, hence its name. The GDINA package can
calibrate the G-DINA model and many reduced models it subsumes, including the
DINA model (Haertel, 1989), DINO model (Templin & Henson, 2006), reduced
reparametrized unified model (RRUM; Hartz, 2002), additive-CDM (A-CDM; de la
Torre, 2011), and linear logistic model (LLM; Maris, 1999). By defining design
matrices and specifying link functions, new models within the G-DINA model
framework can be estimated as well.

The GDINA package can also accommodate polytomous attributes and
responses. Chen and de la Torre’s (2013) polytomous G-DINA model can be
used to handle expert-defined polytomous attributes, and Ma and de la Torre’s
(2016) sequential G-DINA model is available for calibration of ordinal and nominal
responses. In either case, the G-DINA model can be further constrained to the
reduced CDMs mentioned above. It is also straightforward to specify different
CDMs for different items using the package.

Additionally, the GDINA package can accommodate independent, saturated,
higher-order, loglinear smoothed and hierarchical attribute structures. For the satu-
rated structure, the population proportions of latent classes are treated as parameters
and estimated directly. For the higher-order structure (de la Torre & Douglas, 2004),
the Rasch model, one-parameter logistic model with a common slope parameter,
or two-parameter logistic model (see de Ayala, 2013) can be employed. For the
loglinear approach, a loglinear model (Xu & von Davier, 2008) can be specified.
For hierarchically structured attributes, linear, convergent, divergent, or unstructured
attributes (Leighton, Gierl, & Hunka, 2004) can be specified.

Last, the GDINA package can fit multiple-group models (Ma, Terzi, Lee, & de
la Torre, 2017), where different groups can have distinct attribute structures. The
Bugs-DINA and DINO models (Kuo, Chen, Yang, & Mok, 2016) for diagnosing
the presence of misconceptions, the multiple-strategy DINA model (de la Torre
& Douglas, 2008) and the diagnostic tree model (Ma, 2019) for accommodating
multiple strategies for dichotomous and polytomous responses, respectively, can
also be calibrated. Note that the loglinear CDM (LCDM; Henson, Templin, &
Willse, 2009; Chap. 8 in this volume) is equivalent to the G-DINA model in the
logit link, and thus its item parameters can be obtained using the GDINA package as
well. Von Davier (2014) shows that LCDM is a special case of the general diagnostic
model (GDM; von Davier, 2008; Chap. 6 in this volume) and can also be estimated
using mdltm (Chap. 30 in this volume).

http://dx.doi.org/10.1007/978-3-030-05584-4_7
http://dx.doi.org/10.1007/978-3-030-05584-4_8
http://dx.doi.org/10.1007/978-3-030-05584-4_6
http://dx.doi.org/10.1007/978-3-030-05584-4_30
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29.3 Parameter Estimation

Item parameters of the CDMs discussed above are estimated via an expectation-
maximization (EM) implementation of the marginal maximum likelihood estima-
tion algorithm (Bock & Aitkin, 1981) in the GDINA package, which, for reduced
CDMs, differs from the two-step procedure via the least square method introduced
in de la Torre (2011). Users can specify monotonic constraints for item parameter
estimation (i.e., mastering an additional attribute will not result in lower success
probability). The E step of the EM algorithm, as well as other computationally
intensive functions, was written in C++ through the Rcpp (Eddelbuettel & Fran-
cois, 2011) and RcppArmadillo (Eddelbuettel & Sanderson, 2014) packages to
speed up program execution. In the M step, various optimization techniques can be
used depending on the fitted models and parameter constraints. Multiple starting
values or user specified starting values can be used to minimize the likelihood of
obtaining solutions based on local maxima. The GDINA package also allows users
to estimate the parameters for some items while fixing the parameters for others.
This is a common practice when some items need to be added to a calibrated
item bank. Standard errors of item parameters can be estimated using the outer
product of gradient approximations (Philipp, Strobl, de la Torre, & Zeileis, 2018),
or bootstrap approaches. Person attribute profiles are estimated using maximum
likelihood estimation (MLE), expected a posteriori (EAP), or maximum a posteriori
(MAP) estimations (Huebner & Wang, 2011) after the item parameters are estimated
or provided by users.

29.4 Other Statistical Procedures

Apart from model calibration, additional procedures are available in the GDINA
package. First, the Q-matrix can be validated using de la Torre and Chiu’s (2016)
ς2 method or Ma and de la Torre’s (2019) stepwise method. Both methods can be
used along with the G-DINA model and the sequential G-DINA model. The mesa
plot (de la Torre & Ma, 2016) based on the proportion of variance accounted for
(PVAF) by each candidate q-vector (de la Torre & Chiu, 2016) provides a way to
visually pinpoint the best q-vector candidates for each item. Second, the Wald test,
likelihood ratio (LR) test, or score test can be used to evaluate whether, for each
item, the G-DINA model can be replaced by a reduced model without a significant
loss of model-data fit (de la Torre & Lee, 2013; Ma, Iaconangelo & de la Torre,
2016; Sorrel, Abad, Olea, de la Torre, & Barrada, 2017a; Sorrel, de la Torre, Abad,
& Olea, 2017b). In addition, absolute model-data fit can be evaluated using the
M2 statistic, RMSEA2 and SRMSR (Maydeu-Olivares, 2013; Liu, Tian, & Xin,
2016). The log odds ratio and Fisher-transformed correlations (Chen, de la Torre,
& Zhang, 2013) provide more detailed absolute fit information for item pairs, which
may be used to identify the sources of misfit. The deviance, AIC, and BIC are
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available for evaluating relative model-data fit. To compare nested models at the
test level, the LR test can be employed. However, the LR test may not be valid if the
least restrictive model is misspecified (Maydeu-Olivares & Cai, 2006). Furthermore,
the Wald test (Hou, de la Torre, & Nandakumar, 2014) and LR test (Ma, Terzi,
Lee, & de la Torre, 2019) are available for detecting differential item functioning.
Last, to be more accessible, the package offers a graphical user interface via R
package shiny (Chang, Cheng, Allaire, Xie, & McPherson, 2017), and a wrapper
function for conducting the Q-matrix validation, item-level model selection, and
model calibration sequentially in a single run. Table 29.1 summarizes the major
features of the package.

Table 29.1 Summary of the features of the GDINA R package (version 2.3.2)

Model Structures Measurement model
G-DINA model, polytomous and sequential G-DINA models
DINA, DINO, A-CDM, LLM, and RRUM
Bugs-DINA and DINO models
Models defined using design matrix and link function
Multiple-strategy DINA model and generalized-multiple
strategy CDMs
Diagnostic tree model

Structural model
Independent model
Saturated model
Higher-order model
Loglinear model
Hierarchical model

Model Estimation MMLE/EM (Item parameters)
MLE, MAP, EAP (Person parameters)

Fit Indices M2, RMSEA2, SRMSR
Log odds ratio and Fisher-transformed correlation for item pairs
Deviance, AIC, BIC

Model Comparison LR test, AIC, BIC (Test level)
Wald test, LR test, score test (Item level)

Q-matrix Validation ς2 method, stepwise method
Mesa plot

Complex Sampling Missing by design and at random
Designs Multiple-group estimation
Other Features DIF detection

Classification accuracy evaluation
Data simulation
Graphical user interface
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29.5 Real Data Illustration

Responses of 2922 students to 28 items measuring three attributes in the Exami-
nation for the Certificate of Proficiency in English Grammar section from 2003 to
2004 were analyzed using the GDINA package. This data set has been analyzed by
many researchers (e.g., Liu, Douglas, & Henson, 2009; Templin & Bradshaw, 2014;
von Davier, 2014; Chap. 26 in this volume).

For illustration, the Q-matrix was first empirically validated based on de la
Torre and Chiu’s (2016) ς2 approach, which requires fitting the G-DINA model
to the data using the current Q-matrix. Monotonic constraints were imposed for the
model calibration because of the identifiability concerns (von Davier, 2014), and as
expected, the results from the G-DINA model estimation using the GDINA function
were virtually identical to these from the LCDM (Templin & Hoffman, 2013) and
the GDM (von Davier, 2014) after parameter transformations because these models
are equivalent. Based on the G-DINA estimates, the Q-matrix was validated using
the Qval function. Results showed that the original q-vectors for Items 9 and 13
had PVAFs less than 0.95, indicating that they may need further examination. Figure
29.1 gives the mesa plots for these two items. The mesa plot is a line chart, where
the x-axis is the q-vectors with the highest PVAF for different numbers of required
attributes, whereas the y-axis gives the corresponding PVAFs. Note that 0 = (0,0,0)
is not a valid q-vector, but is still shown on the x-axis for reference. The mesa plot
is similar to the scree plot in factor analysis, and the q-vector on the edge of the
“mesa” is believed the correct q-vector for the item (de la Torre & Ma, 2016). This
makes specifying a cutoff for PVAF as in de la Torre and Chiu (2016) unnecessary.
The mesa plots showed that the original q-vectors, which were indicated using solid
red dots, were on the mesa edges for both items with PVAFs of about 0.9. Thus, we
can reasonably believe that they are appropriate for these two items.

After validating the Q-matrix, several CDMs were refitted to the data. In addition
to the DINA model and RRUM employed by Liu, Douglas, and Henson (2009),

Fig. 29.1 Mesa plots for Items 9 and 13

http://dx.doi.org/10.1007/978-3-030-05584-4_26
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the G-DINA model, DINO model, A-CDM, and LLM were considered as well.
Furthermore, the Wald test was also used to examine whether the G-DINA model
can be replaced by reduced models, and the corresponding p values for items
requiring two or more attributes are given in Table 29.2. When multiple reduced
models are retained for an item, the rule in Ma, Iaconangelo and de la Torre (2016)
was adopted to determine the most appropriate model. Specifically, if the DINA or
DINO model is retained, the one with larger p value is selected; if both DINA and
DINO models are rejected, but any of the A-CDM, LLM and RRUM is retained,
the one with the largest p value is selected; if all reduced models are rejected, the
G-DINA model is used. As shown in Table 29.2, the DINO model, A-CDM, LLM
and RRUM were selected as the most appropriate models.

According to AIC and BIC statistics, as shown in Table 29.3, the CDMs chosen
by the Wald test are preferred. However, by assessing the absolute model-data fit
using the modelfit function, the CDMs chosen by the Wald test produced a M2
statistic of 528.30 (df = 335) with p < 0.001, indicating an inadequate model-data
fit.

To further explore if any misfit can be identified at the level of item pairs, the
itemfit function was used to calculate the log odds ratio and Fisher-transformed
correlation based on observed and predicted item responses. Figure 29.2 displays

Table 29.2 The p values of the Wald test for item-level model comparison

p values
Item DINA DINO A-CDM LLM RRUM Selected model

1 .01 <.01 .39 .12 .48 RRUM
3 .02 <.01 .50 .38 .75 RRUM
7 <.01 <.01 .08 .66 <.01 LLM
11 <.01 <.01 .92 .27 .72 A-CDM
12 <.01 <.01 .01 .18 .49 RRUM
16 <.01 <.01 .13 .57 .02 LLM
17 .08 .13 .81 .96 .77 DINO
20 <.01 <.01 .02 .07 .39 RRUM
21 <.01 <.01 .43 .95 .23 LLM

Table 29.3 Test level model comparisons

CDMs No. of Parameters Likelihood AIC BIC

G-DINA 81 −42739.71 85641.42 86125.81
DINA 63 −42841.49 85808.98 86185.72
DINO 63 −42920.37 85966.75 86343.49
A-CDM 72 −42745.49 85634.98 86065.54
LLM 72 −42744.76 85633.51 86064.08
RRUM 72 −42745.64 85635.29 86065.85
CDMs selected By the Wald test 71 −42744.06 85630.11 86054.69
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Fig. 29.2 Heatmap plots of adjusted p-values

a heatmap plot showing the p-values adjusted using the Bonferroni method. In the
heatmap plot, x-axis and y-axis represent items, and the first item is dropped on
x-axis and the last is dropped on y-axis. The adjusted p values for all item pairs
are displayed in the lower right shading area, where gray squares represent p values
greater than .05 (i.e., statistically adequate fit) and red squares represent p values
less than .05 (i.e., statistically inadequate fit). Significant misfit can be observed for
some pairs of items (e.g., items 9 and 27, and items 19 and 28), and thus may need
further examination by domain experts.

29.6 Discussion

Given the growing interest in CDMs in recent years, the GDINA package aims to
offer many ready-to-use functions to facilitate both research and operational work
with CDMs. However, as any software, the package in its current form has some
limitations. First, only the G-DINA model and its extensions, as well as CDMs they
subsume, are available in this package. Researchers who intend to use other models
may consider other software packages discussed in this handbook, such as the CDM
package (Chap. 26 in this volume) or mdltm (Chap. 30 in this volume). Second, the
model calibration using the GDINA package may fail when the number of attributes
is very large. For example, on a workstation with 128 GB RAM, the package seems
to be able to handle at most 22 attributes. Last, like most R packages, the GDINA
package is still under development. Many functions, such as considering sample
weights in a complex sample design, will be incorporated in the future.

http://dx.doi.org/10.1007/978-3-030-05584-4_26
http://dx.doi.org/10.1007/978-3-030-05584-4_30
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Chapter 30
GDM Software mdltm Including Parallel
EM Algorithm

Lale Khorramdel, Hyo Jeong Shin, and Matthias von Davier

Abstract This chapter illustrates the use of the software mdltm (von Davier, A
general diagnostic model applied to language testing data. ETS Research Report
No. RR-05-16, Educational Testing Service, Princeton, 2005), for multidimen-
sional discrete latent trait models. The software mdltm was designed to handle
large data sets as well as complex test and sampling designs, providing high
flexibility for operational analyses. It allows the estimation of many different
latent variable models, includes different constraints for parameter estimation, and
provides different model and item fit statistics as well as multiple methods for
proficiency estimation. The software utilizes an computationally efficient parallel
EM algorithm (von Davier, New results on an improved parallel EM algorithm
for estimating generalized latent variable models. In van der Ark L, Wiberg M,
Culpepper S, Douglas J, Wang WC (eds) Quantitative psychology. IMPS 2016.
Springer Proceedings in Mathematics & Statistics, vol 196. Springer, New York,
2017) that allows estimation of high-dimensional diagnostic models for very large
datasets. The software is illustrated by applying diagnostic models to data from the
programme for international student assessment (PISA).

30.1 Introduction

Many diagnostic classification models (DCMs) turn out to be special cases of the
General Diagnostic Model (GDM; von Davier, 2005, 2013, 2014; von Davier &
Rost, 2016). These models aim to provide additional information beyond overall
test scores, as typically obtained by classical test theory (CTT) or unidimensional
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item response theory (IRT). While a test score describe levels of test-takers overall
proficiency with respect to the latent construct, DCMs may help to better understand
what specific strengths and weaknesses are at play. For example, the latent construct
might consist of different subscales aimed at obtaining competency profiles based
on subscale scores. DCMs may be helpful to either confirm a subscale model or to
find meaningful subscales in exploratory analyses should they exist. Moreover, they
can be used to find latent classes of test-takers who differ systematically with regard
to these subscales. Such approaches can be helpful to better understand quantitative
and qualitative performance differences among test-takers, not only for individual-
level score reporting but also for group-level score reporting.

This chapter illustrates the use of the software mdltm (von Davier, 2005), for
multidimensional discrete latent trait models, in applying diagnostic models to
data from an international large-scale group score assessment (e.g., Mazzeo & von
Davier, 2008, 2013). We apply different DCMs using data from the Programme
for the International Student Assessment (PISA; OECD, 2017) collected in 2015.
In the PISA 2015 cycle, the major domain was “Scientific Literacy” (Science, for
short), in which a new framework and new items were administered in addition to
trend items from previous cycles (OECD, 2016). Items were deliberately allocated
and designed according to a new science framework. The example provided here
demonstrates a confirmatory approach that is typical of DCMs. A unidimensional
IRT model (as a basis for comparison) is compared to multidimensional and mixture
multidimensional IRT models specified in the GDM framework.

The software mdltm was designed to handle large data sets as well as complex
test and sampling designs, providing high flexibility for operational analyses. It
allows the estimation of many different latent variable models, includes different
constraints for parameter estimation, and provides different model and item fit
statistics as well as methods for proficiency estimation. In addition, it can handle
missing data by design and non-response, as well as multiple populations and
weights to account for complex sampling (e.g., Rutkowski, von Davier, Joncas, &
Gonzales, 2010). Furthermore, IRT linking can be easily accomplished in mdltm,
which allows for a wide range of customary linking approaches (von Davier &
von Davier, 2007; von Davier, González, & von Davier, 2013; Xu & von Davier,
2008a). Moreover, the author of the software developed a parallel EM (expectation-
maximization) algorithm (von Davier, 2016) that allows for much faster parameter
estimation. This is especially helpful in the analysis of large data sets or high
dimensional models.

The next sections provide more information about the software mdltm and the
parallel EM algorithm. We illustrate how certain DCMs can be estimated with mdltm
and how they can be interpreted using empirical examples based on PISA data.

30.2 mdltm

The software is based on the mixture general diagnostic modeling framework
(MGDM; von Davier, 2008, 2010; von Davier & Rost, 2016). The software can
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be requested for research purposes by contacting the author of the program. The
software can be used for estimating the parameters and examining the goodness of
fit for a wide range of latent variable models:

– Unidimensional and multidimensional IRT (MIRT) models based on the Rasch
Model and two-parameter logistic model (2PLM) for dichotomous responses

– IRT and MIRT models based on the partial credit model (PCM) and the
generalized partial credit model (GPCM) for polytomous responses

– Latent class models and multiple-classification latent class models
– Unidimensional and multidimensional located latent class models
– Diagnostic classification models with dichotomous or ordinal skill variables
– Mixture distribution IRT and mixture diagnostic classification models (DCMs)
– Growth mixture models, hierarchical latent class models
– Hierarchical diagnostic models
– Multiple-group IRT models

The family of models included in the MGDM framework is covered in detail in
Chap. 6 of this volume. Readers interested in model equations and statistical details,
including parameter estimation and fit assessment, please refer to Chap. 6 and the
references therein.

The software provides marginal maximum likelihood (MML) estimates obtained
using customary expectation-maximization (EM) methods. Due to the use of
optimized code, the software often provides estimates within seconds for small and
moderately sized datasets and typically converges within minutes even for large data
sets (with samples of 200,000 or more respondents) based on multiple test forms
with a combined coverage of hundreds of items. In addition to maximum likelihood
estimates of model parameters, the software provides logic and parsing routines for
model specification and data processing. Moreover, mdltm can be used on all major
operating systems, for example on Microsoft Windows, Linux, and Apple OS X
platforms.

Recently, parallel processing was enabled in the program, the parallel-E parallel-
M (PEPM) algorithm, which further improved the performance of the software
(von Davier, 2016). The PEPM algorithm is based on a direct implementation of
distributed parallelism that allows the utilization of all processor cores. This allows
for more efficient computation, with a reduction in time by a factor of 6 or even 20
for some examples (von Davier, 2016).

In addition to efficient computation, mdltm is flexible in handling missing
observations as well as multiple populations. In the software, missing responses
are handled directly, without needing to collapse categories or recode data. The esti-
mation of skill distributions for multiple populations is conducted simultaneously,
thus enabling the comparison of parameters across multiple populations. Various
constraints can be imposed on item parameter estimates, such as equality constraints
typically needed for linking purposes across items or populations, as well as fixed
parameter linking constraints using values from previous calibrations.

Hence, the software is suitable and has been used for operational analysis of
data from large-scale assessment programs, such as the Programme for International
Student Assessment (PISA; OECD, 2017) and the Programme for the International

http://dx.doi.org/10.1007/978-3-030-05584-4_6
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Assessment of Adult Competencies (PIAAC; OECD, 2013). It has also been used
for research based on data from the National Assessment of Educational Progress
(NAEP), Trends in International Mathematics and Science Study (TIMSS), as well
as data from large-scale testing programs including the Test of English as a Foreign
Language (TOEFL) and the Graduate Record Examination (GRE).

The software output provides tabulations of observed quantities (item category
frequencies, item-total correlations, etc.), parameter estimates, standard errors, and
expected counts. In addition, a variety of goodness-of-fit indices are generated
for each estimated model. Information criteria (Akaike, 1974; Schwarz, 1978) and
related quantities, such as the log-penalty (Gilula & Haberman, 1994), are available,
as well as other fit diagnostics, such as item fit based on pseudo-counts and person
fit indices based on observed and expected counts. The following table gives an
overview of the features provided in mdltm (Table 30.1).

The software allocates memory dynamically, so there is no inherent limitation of
the number of items. Diagnostic models with 12–14 attributes (212 ∼ 214 attribute
patterns) have been successfully estimated with mdltm.

30.3 Parallel EM Algorithm in mdltm

To improve the performance of mdltm for large data sets and complex model
estimations, von Davier (2016) developed the PEPM algorithm which parallelizes
both the E step and the M step. The parallel estimation algorithm was further
improved and tested for additional gains by von Davier (2017). The PEPM algorithm
is based on a direct implementation of parallelism using a paradigm that allows
the distribution of work among all available processor cores of a PC. It leads to a
substantial reduction in time in the most calculation-intense parts of the program. A
server with 32 physical cores executes the parallel-E step algorithm up to 20 times
faster than a single-core computer or the equivalent nonparallel algorithm (note, that
modern desktop computers as well as many laptops use processors that contain four
cores and potentially twice the number of virtual cores).

Parallel computing for psychometric modeling with general latent variable mod-
els can provide analyses based on the full data set without shortcuts such as relying
on subsamples and/or approximations and simplifications based on the model
structure (e.g., Cai, 2010a, 2010b; Rijmen, Jeon, Rabe-Hesketh, & von Davier,
2014) or computational approximations (e.g., Jeon & Rijmen, 2014; Jeon, Rijmen,
& Rabe-Hesketh, 2013; Rijmen & Jeon, 2013). Therefore, the advantages of the
PEPM algorithm for psychometric modeling and parameter estimation are profound.

A move to special-purpose hardware for further speedup of the algorithm pre-
sented by von Davier (2016, 2017) appears to be straightforward. Parallel algorithms
can utilize special-purpose graphical processing units (GPUs) that provide a much
larger number of specialized cores or, alternatively, can make use of multicore
coprocessors (such as the Xeon-Phi series) for further speedup. It should be noted
that the so-called hyper-threading technology does not provide further speedup, as
it does not double the number of physical cores but rather arranges them into virtual
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Table 30.1 Features of the mdltm software

Class of
features Feature Implementation

Basic charac-
teristics

Type of Software Stand-alone software for Windows, Apple
OSX, Unix, Linux, Solaris, BSDs

Required primary software None
Fee for software None
Programming language used C
GUI for input Yes
If not GUI, specify input format ASCII script
GUI for output No
If not GUI, specify output format ASCII files
Estimation approach MML/EM
Ability to modify estimation
parameters

Various convergence criteria, acceleration,
starting values, model constraints, linking
constraints, parameter fixation, ability
distribution constraints, etc.

Input Char-
acteristics

Number of Response Variables 1000+ (models with 1000 or more items
or response variables were estimated
successfully)

Scale Types Nominal, dichotomous, polytomous
File formats Raw data

Model
structures

Compensatory DCMs Yes

Non-compensatory DCMs Yes
Different DCMs for different items Yes
Number of Latent Variables 16
Scale Types Nominal, dichotomous, polytomous,

continuous
Maximum Number of Scale Points Unlimited
Structural modeling of attribute
space

Yes

Models for attribute space Saturated, log-linear models,
independence models, multiple group
log-linear models

Estimates Item parameters Yes
SEs for item parameters Yes
Person parameters Yes
SEs for person parameters Yes
Classification reliability Yes
Information indices Yes
Traditional CTT statistics for
subscales

Yes

Fit indices Item fit Yes
Person fit Yes
Absolute model fit Yes
Relative model fit Yes
Q-matrix misspecification Yes
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cores only. However, even on a customary four-core laptop computer, a significant
increase in estimation speed can be gained by applying the PEPM algorithm.

The PEPM algorithm was used for operational analyses for the PISA 2015 and
PISA 2018, and involved unidimensional and multidimensional models. The gains
achieved with this algorithm allowed the full scaling analysis to be run within
1 day whenever new data files became available. The data used for the PISA
operational scaling consisted of up to two-million students combined from four
PISA cycles (i.e., 2006, 2009, 2012, 2015) and three core scales (Mathematics,
Reading, and Science), with additional scales for some countries (e.g., Financial
Literacy, Collaborative Problem Solving).

30.4 Input File Preparation and Output

30.4.1 Data and Instrument

To illustrate the estimation of DCMs with mdltm, we use the data from the
United States collected in the PISA1 2015 cycle (N = 5677), applying different
psychometric models to the Science domain. In the PISA 2015 cycle, the major
domain was Science, in which a new assessment framework was developed for
extension of the construct through new interactive items (OECD, 2016). Trend and
new items were deliberately allocated and designed according to the new Science
framework based on the following subscales:

– Science Knowledge: content, procedural, and epistemic
– Science Competency: explain phenomena scientifically, evaluate and design

scientific enquiry, and interpret data and evidence scientifically
– Science System: physical, living, and earth and space

These subscales allow for investigations of different aspects within the Science
domain and, thus, for exploring further the variability of skills within and across
countries participating in PISA. Table 30.2 gives an overview of the distributions of
85 trend and 99 new items (184 in total) to the three main subscales, Knowledge,
Competency, and System, as well as the eight underlying subscales. It should be
noted that the three Science subscale types are based on a three-way classification
of the same 184 items (distributed into the 2 + 3 + 3 = 8 subscales).

1PISA is a major international academic student survey that assesses the proficiencies of 15-year-
old school populations (students in grade 7 or higher) in the domains of mathematics, reading, and
science (sometimes accompanied by additional cognitive domains of interest such as collaborative
problem solving and financial literacy). PISA is administered every 3 years since 2000 with the aim
of monitoring students’ ability to use their knowledge and skills for meeting real-life challenges
and to provide trend measures over time. In each cycle, one of the three domains is featured as
major domain and consists of trend and new items, while the others serve as minor domains and
consist of trend items only.
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Table 30.2 Distribution of 85 trend and 99 new items to the Science subscales

Knowledge Competency System
Subscales Trend New Subscales Trend New Subscales Trend New

Content 51 47 Explain
Phenomena
Scientifically

42 47 Physical 28 33

Procedural
and
Epistemic

34
(24+ 10)

52
(36+ 16)

Evaluate and
Design
Scientific
Enquiry

16 23 Living 39 35

– – – Interpret Data
and Evidence
Scientifically

27 29 Earth
and
Space

18 31

Total no.
of
trend/new
items

85 99 85 99 85 99

Total no.
of items

184 184 184

While PISA 2015 test scores (plausible values2) were generated only for the three
main subscales (Knowledge, Competency, System), we make use of different item
classifications to demonstrate the utilization of DCMs.

30.4.2 IRT and Diagnostic Classification Models

In this chapter, we fit different IRT and MIRT models, implemented as discrete latent
trait models, which are equivalent to DCMs with polytomous ordered skill variables.
These models are fit to the PISA 2015 Science data from the United States. All
models are based on the two-parameter logistic model (2PLM; Birnbaum, 1968) for
dichotomous data and the generalized partial credit model (GPCM; Muraki, 1992)
for polytomous data, and are compared to a unidimensional (1D) 2PLM/GPCM as
the baseline. The models account for different Science subscales and hypotheses.
More precisely, we estimate the following models:

2Plausible values are multiple imputations drawn from a posterior distribution obtained from a
latent regression model (also referred to as population modeling or conditioning model) using
IRT item parameters from the cognitive PISA assessment and principal components from the
PISA Background Questionnaire. In PISA, each respondent receives 10 plausible values for
each cognitive domain that can be used as test scores to produce group level statistics (never as
individual test scores). For more information on plausible values and population modeling in large-
scale assessments, see Mislevy and Sheehan (1987), von Davier, Gonzalez and Mislevy (2009), von
Davier, Sinharay, Oranje, and Beaton (2006) or Yamamoto, Khorramdel, and von Davier (2013,
updated 2016).
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IRT Models:

(a) 1D model (baseline model): All Science items (y) are assigned to one overall
dimension (θ ).

(b) 3D model: The Science items are assigned to the three Competency subscales
(explain θ1, evaluate and design θ2, interpret θ3), which aim to assess different
cognitive processes. Because each item measures only one dimension, this
model accounts for between-item multidimensionality (Adams, Wilson, &
Wang, 1997).

(c) 3D mixture distribution models: As in the 3D model, the Science items
are assigned to the three Competency subscales. But instead of assuming
homogeneity among respondents (one class), we test for multiple latent classes
(heterogeneity among respondents who show different response patterns) and
compare these additional models to the model with one class. For more
information on mixture distribution models, see von Davier and Carstensen
(2006), for example.

Diagnostic Classification Model (DCM):

(d) 3D/Bifactor model: As in the 3D model, the Science items are assigned to
the three Competency subscales. In addition to these specific dimensions, all
items are also assigned to a general dimension or skill (θg). This means that
each item is assigned to two dimensions, one of the specific Competency
subscales and a general dimension. Thus, this model accounts for within-
item multidimensionality. For more information about the bifactor model, see
Gibbons and Hedeker, (1992), for example.

Each multidimensional model can be represented as a DCM with binary latent
variables, when only assuming mastery/non-mastery of the skills is deemed suffi-
cient. Alternatively, the GDM can be specified with multiple levels of proficiency
per latent variable, thus generalizing the DCM approach to latent variables with
polytomous, ordinal skills. The 1D, 3D and 3D/Bifactor models are illustrated in
Figs. 30.1 and 30.2; the 3D mixture distribution models are an extension of 3D

Items y

1D Model 

Science Evaluate and Design 

2

Items  y

Explain 

1

Interpret 

3

3D Model 

Fig. 30.1 1-dimensional (1D) and 3-dimensional (3D) models for the domain of Science and its
Competency subscales
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Fig. 30.2 3D/Bifactor model
accounting for the Science
Competency subscales as
specific factors and a general
factor
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g

y1 y2 
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3

y3 

3D / Bifactor Model 

model to multiple latent classes. Given past experiences with multidimensional
IRT (MIRT) models and DCMs used in PISA, TIMSS and PIAAC, we expect
that the Science subscales are highly correlated skills, and that the models are
not significantly distinguishable from the 1D baseline model in terms of model fit.
Hence, the MIRT models and DCMs are expected to provide at best an alternative,
more complex description of the data.

30.5 Estimating DCMs and Other Psychometric Models
in mdltm

There are different types of mdltm files: the data file (*.dat), the syntax or input
file (*.inp), the main output file (*.lst), and specific output files (*.items, *.pparm,
*.status). Data and input files must be prepared in advance for analyses while output
files will be generated during and after the analyses by the software, if requested in
the input file. In the following sections, we illustrate what a simple input file looks
like for IRT models and DCMs, how simple and complex Q-matrixes can be defined,
and we give an example for the output generated by the mdltm software.

30.5.1 Preparing the Input (Syntax) File

This section illustrates the basic commands used in mdltm input or syntax files
for estimating IRT models and DCMs. A more comprehensive list of commands
and details can be found in the mdltm user manual, available upon request from
the authors of this chapter. Most commands are not case-sensitive, but some are
(for example group IDs; the input file has to use the same IDs as they appear in
the data file to avoid mis-assignment). Some commands are sensitive to the order
in which they are listed; for example, the number of items in the model has to
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be specified before individual item IDs and locations are defined, and multiple
groups or populations (if used) as well as items must be defined before constraints
or releases of constraints on items or groups can be applied, in order to avoid
unidentified assigments.

First, we must specificy the data file using the command:

data = PISA2015_data_Science.DFILE

From this data file, we select the variables we want to use for our analysis and
specify some information about the variables we are selecting. We start by defining
the maximum number of response categories the items can have and the maximum
number items we want to use:

maxnrcat=4
nitems=184

If the items we select have fewer categories or if we use fewer items than
we defined, we do not have to change the information above since we defined a
maximum allowance for these numbers. However, we cannot use more items or
items with a higher number of categories unless we adjust these maximum values.

In the next step, the software allows users to select and define known groups
through group IDs (e.g., different countries or variables defined in the data to
identify reporting groups such as gender, or ethnicity). In this chapter, we use a
data file that only contains the cases for one single population, or group (the United
States), and we do not have to select or define any group IDs. In addition to specify
known groups, the software also allows for the estimation of parameters for latent
classes. The following command can be used to specify the number of latent classes:
ncl. If we want to allow for multiple latent classes, we can set the number to 2 or
more (e.g., ncl=2). If we do not want to allow for latent classes, we tell the software
to assign all cases to the same class:

ncl=1
This command is also used to specify the number of known groups in addition to

the use of group IDs (the procedure for this can be found in the software manual).
Next, we define the number of dimensions or skills we want to estimate in our
model. If we want to estimate a unidimensional model, we specify:

nskills=1
Larger numbers would be used for DCMs or MIRT models. We also must define

the maximum number of skill levels for any skill we are estimating using the
following command:

maxlevel=11
The number of skill levels reflects the number of intervals used in the numerical

integration over the latent distribution. For scales that contain many items, in
particular if respondents answer all items without any omissions or missing by
design, more skill levels can be chosen. The skill levels used here can be viewed
analogous to the quadrature points used in major MML based IRT estimation
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software packages. However, in mdltm, skill levels can be fixed and user defined,
as done in MML numerical integration over fixed quadrature points, or estimated
and adjusted while iterations take place. Fewer quadrature points lead to shorter run
times, and often do not harm model-data fit (Haberman, von Davier, & Lee, 2008).
For diagnostic models, we can use as few as two levels, which is the typical number
for DINA, LCDM, and G-DINA, while the GDM also allows models with more
than 2 skill levels. In case of a unidimensional model and a large number of items,
a larger number, such as 41 or more skill levels/quadrature points can be used.

Next, we define each skill, assign a name, indicate the actual number of levels
(again, we can use fewer than the maximum number of levels defined above – in
our case 9 – but never a larger number), and set the range of the ability distribution
on the logit scale – in our case from −3 to 3. For a unidimensional model, this can
look like:

skill=1,“Science”,9,-3:3
For a multidimensional model with three dimensions or skills, we may define:

skill=1,“Explain-Phenomena”,5,-3:3
skill=2,“Evaluate-Design”,5,-3:3
skill=3,“Interpret-Data-Evidence ”,5,-3:3

If the skills have a different item proportions, we can also use a different number
of levels or quadrature points for each skill. For example, 5 for the first skill with
most items, 3 for the second skill with fewer items, and 2 for the third skill with the
smallest number of items:

skill=1,“Explain-Phenomena”,5,-3:3
skill=2,“Evaluate-Design”,3,-3:3
skill=3,“Interpret-Data-Evidence ”,2,-3:3

The number of maximally supported skill levels is described in research on semi-
non-parametric IRT models, references are provided for example by Haberman et
al. (2008).

Further, we define whether we want to estimate a model based on the Rasch
Model (Rasch, 1960) or PCM (Masters, 1982), or based on the 2PLM (Birnbaum,
1968) or GPCM (Muraki, 1992). The following commands are used to specify the
2PLM:

doslopes=yes
centerslope=items
centerscale=items

To remove the indeterminancy of IRT scales, we could also use centers-
lope = cases and centerscale = cases (to set the latent ability distribution to
have a mean of 0 and a standard deviation of 1) instead of items (where the
mean of item difficulties is set to 0 and the mean of item slopes is set to 1). For
multidimensional models or for the models with multiple groups or latent classes,
a reference dimension or a reference group can be specified (the procedure and a
detailed description of the commands used for this can be found in the software
manual).
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For loglinear constrained (i.e., smoothed) latent distributions (Xu & von Davier,
2008b, 2008c), which is recommended to be used in most cases, we set:

traitdistribution=loglin
We could use traitdistribution = saturated for unconstrained latent distribution

or traitdistribution = independence for uncorrelated factors, and traitdistribu-
tion = bifactor for estimating a Bifactor model. To approximate normal distri-
butions, we specify the maximum of fitted marginal moments of the loglinear
distribution by using:

maxmoment=2
To allow more flexible shapes in the distribution, we can use higher order

moments >2.
We can also define in which columns the respondent ID can be found in the data

file (e.g., from column 15 to 33), and we can specify the use of sampling weights
(e.g., found in columns 51 to 60 in the data file):

subjectid=15.33
weight=51.60

A very important part of the input file is the definition of items along with a Q-
matrix. The following item definitions tell the program the columns in the data file
in which the items are located, which items we want to select for the analysis, and
to which dimension or skill each item should be assigned (Q-matrix). An example
of item definition that includes the Q-matrix is:

item=301.301,2PL,“DS269Q01C”,1
item=302.302,2PL,“DS269Q03C”,1
item=303.303,2PL,“CS269Q04S”,1
item=304.304,2PL,“CS408Q01S”,1
item=305.305,2PL,“DS408Q03C”,1
item=306.306,2PL,“CS408Q04S”,1
item=307.307,2PL,“CS408Q05S”,1
item=308.308,2PL,“CS521Q02S”,1
item=309.309,2PL,“CS521Q06S”,1
item=310.310,2PL,“DS519Q01C”,1
item=311.311,2PL,“CS519Q02S”,1
item=312.312,2PL,“DS519Q03C”,1
item=313.313,2PL,“CS527Q01S”,1
item=314.314,2PL,“CS527Q03S”,1
item=315.315,2PL,“CS527Q04S”,1
. . ...

First, we define in which column an item can be found; in this example, the
first item can be found in column 301 in the data file (items that span multiple
columns are possible, but are not encountered frequently, so that the format
“starting_column.ending_column” for each item will typically contain the same
entry twice). We then define the IRT model as “2PL” (or “Rasch” for the Rasch
Model), assign an ID to the item as it should be printed in the output files, and
determine to which dimension/skill each item should be assigned (0 for not assigned
and 1 for assigned). The Q-matrix above is defined for a unidimensional model
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where all items are assigned to the same dimension/skill. Below, we give examples
of Q-matrices for multidimensional models with multiple dimensions/skills.

We can also define missing and omitted responses in mdltm. Missing values can
be a result of planned missingness in complex rotated booklet designs where not all
items are administered to all examinees by design, or due to respondent behavior
when examinees do not reach the items at the end of a test when running out of time
(i.e. the item is not presented to the examinees). Omitted responses occur when
an item is presented but the respondent chooses not to provide an answer. Every
missing response followed by a valid response to the next item is typically defined
as an omitted response. Missing values by design and not reached items may be
coded with 9 in the data file and omitted responses could be coded with 8, but other
values are possible, as long as these are distinct from observed response codes. In
the mdltm input file we include the following commands to indicate which responses
are to be considered missing and omitted, respectively:

missing=9
omit=8

Omitted responses can be further be recoded to incorrect responses and assigned
a value of 0 if we have the hypothesis that omitted responses may be the result of
low proficiency (like it is done in PISA):

recode = ALL:8>0

This way, omitted responses are included in the likelihood function. However, if
omitted responses are missing at random, are not related to proficiency given other
observed variables, and, hence, should not be included in the likelihood function,
we can recode them to missing values:

recode = ALL:8>9

The recode command can also be used to recode other values in the data file for
all items (in this case, use ALL) or for selected items (in this case, use the item ID).

In a last step, we can set the number of iterations and the convergence criteria,
for example:

iterations=999, 0.01

In this example, the iterations will stop either when the number of iterations
reaches 999 or when the change in likelihoods between two consecutive iterations
is smaller than 0.01.

With the following command, we define a maximum stepwidth that governs the
adjustment of parameters in the maximization step. Any number between 0 and 1
can be used, for example:

maxstepwidth=0.9
With the following command, we specify that a *.pparm file will be generated

that includes person parameter estimates, most likely class memberships, response
residuals (optional) and person fit statistics:

personparameter=yes
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We can also define which type of proficiency estimates (WLE for weighted
likelihood estimates, MAP, MLE for maximum a posteriori or maximum likelihood
estimates, and EAP for expected a posteriori estimates) we want to generate and
print:

printskillprob=WLE
The software mdltm allows for user specified changes to defaults by way of many

more possible commands and constraints. For example, item parameters can be fixed
to values obtained from a prior estimation (fixed item parameter linking) or set to be
equal across different groups in multiple group models for concurrent calibrations.
Starting values can be set for the item parameter estimation, and single items can be
excluded for either all groups in multiple group models, by deleting the item from
the input file, or for selected groups, by setting the slope and difficulty parameter to
zero for these groups. Please see the user manual for more information.

30.5.2 Q-matrix for Multidimensional Models

In the following, we illustrate specification of a Q-matrix for the different multidi-
mensional models that were estimated. Table 30.3 shows the Q-matrix for a simple

Table 30.3 Q-matrix for the simple structure 3D model and the Bifactor model

3D Model 3D/Bifactor Model
Skills/Dimensions (Science Competency Subscales)

Items 1 2 3 G 1 2 3
DS269Q01C 1 0 0 1 1 0 0
DS269Q03C 1 0 0 1 1 0 0
CS269Q04S 1 0 0 1 1 0 0
CS408Q01S 1 0 0 1 1 0 0
DS408Q03C 1 0 0 1 1 0 0
CS408Q04S 1 0 0 1 1 0 0
CS408Q05S 0 1 0 1 0 1 0
CS521Q02S 1 0 0 1 1 0 0
CS521Q06S 1 0 0 1 1 0 0
DS519Q01C 0 0 1 1 0 0 1
CS519Q02S 1 0 0 1 1 0 0
DS519Q03C 0 1 0 1 0 1 0
CS527Q01S 0 0 1 1 0 0 1
CS527Q03S 1 0 0 1 1 0 0
CS527Q04S 0 0 1 1 0 0 1

…..

Note: The first three skills are subscales of the Science Competency scale and the fourth
skill is the general factor in the Bifactor model; skill 1 = Explain Phenomena Scientifically, skill
2 = Evaluate and Design Scientific Enquiry, skill 3 = Interpret Data and Evidence Scientifically,
skill 4 = General Dimension (Science)
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structure 3D model where each item is assigned to one of three dimensions, and the
3D/Bifactor model where each item is assigned to two dimensions out of four (a
specific dimension and the general dimension). The matrices are illustrated for the
first 15 Science items (out of 184 items).

In the mdltm syntax file, the matrix for the 3D model would look like this:

item=301.301,2PL,“DS269Q01C”,1,0,0
item=302.302,2PL,“DS269Q03C”,1,0,0
item=303.303,2PL,“CS269Q04S”,1,0,0
item=304.304,2PL,“CS408Q01S”,1,0,0
item=305.305,2PL,“DS408Q03C”,1,0,0
item=306.306,2PL,“CS408Q04S”,1,0,0
item=307.307,2PL,“CS408Q05S”,0,1,0
item=308.308,2PL,“CS521Q02S”,1,0,0
item=309.309,2PL,“CS521Q06S”,1,0,0
item=310.310,2PL,“DS519Q01C”,0,0,1
item=311.311,2PL,“CS519Q02S”,1,0,0
item=312.312,2PL,“DS519Q03C”,0,1,0
item=313.313,2PL,“CS527Q01S”,0,0,1
item=314.314,2PL,“CS527Q03S”,1,0,0
item=315.315,2PL,“CS527Q04S”,0,0,1
. . ...

The Q-matrix for the Bifactor model would look like this within the item
specification:

item=301.301,2PL,“DS269Q01C”,1,1,0,0
item=302.302,2PL,“DS269Q03C”,1,1,0,0
item=303.303,2PL,“CS269Q04S”,1,1,0,0
item=304.304,2PL,“CS408Q01S”,1,1,0,0
item=305.305,2PL,“DS408Q03C”,1,1,0,0
item=306.306,2PL,“CS408Q04S”,1,1,0,0
item=307.307,2PL,“CS408Q05S”,1,0,1,0
item=308.308,2PL,“CS521Q02S”,1,1,0,0
item=309.309,2PL,“CS521Q06S”,1,1,0,0
item=310.310,2PL,“DS519Q01C”,1,0,0,1
item=311.311,2PL,“CS519Q02S”,1,1,0,0
item=312.312,2PL,“DS519Q03C”,1,0,1,0
item=313.313,2PL,“CS527Q01S”,1,0,0,1
item=314.314,2PL,“CS527Q03S”,1,1,0,0
item=315.315,2PL,“CS527Q04S”,1,0,0,1
. . ...

30.5.3 Output Files

The software mdltm provides a main output file (*.lst), and different specific output
files (*.items, *.pparm, *.status).

– The *.items file provides an overview of all item parameter estimates (slope and
intercept or location parameter estimates) as well as the Fisher information for
each parameter.
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– The *.pparm file provides the group or class membership for each examinee, the
probability of belonging to a certain class (in latent class models), the percent
of correct responses, the person parameter or latent ability estimate for each
examinee and for each dimension or skill, and the standard error (SE) associated
with the person ability estimate. Response residuals can be printed upon request
in this file as well with the command printresponses = yes.

– The *.status file provides information about the convergence status of the model
and shows the log for the iterations. This file is helpful to determine whether the
model has fully converged or is close to converging.

– The *.lst file contains an overview of the main results, such as information about
the data, descriptive statistics, and almost all results for the model of interest. It
is not possible to list the whole *.lst file in this chapter (see the manual for more
examples); in the following, we illustrate some of the most important results of
the 1D 2PLM.

The main output, the *.lst file, starts with an overview of descriptive statistics,
such as the number of responses3 per response category for each item, the
correlation between the item score and the test score r(itm,skill), and the logit
transformed probability of receiving a correct response (logits; log(p(1-p)), and
adjacent category logit for the polytomous items4):

item tried 0 1 2 r(itm,skill)| logits
1 DS269Q01C ncat: 2 535.21 331.04 204.17 | 0.50890 | -0.48139
2 DS269Q03C ncat: 2 535.21 332.28 202.93 | 0.54530 | -0.49121
3 CS269Q04S ncat: 2 535.21 381.81 153.40 | 0.32015 | -0.90797
4 CS408Q01S ncat: 2 535.21 246.16 289.05 | 0.46850 | 0.16001
5 DS408Q03C ncat: 2 532.72 323.16 209.56 | 0.36984 | -0.43149
6 CS408Q04S ncat: 2 533.50 228.36 305.14 | 0.24222 | 0.28873
7 CS408Q05S ncat: 2 532.72 386.48 146.24 | 0.34811 | -0.96757
8 CS521Q02S ncat: 2 532.72 262.02 270.70 | 0.22903 | 0.03244
9 CS521Q06S ncat: 2 531.56 72.17 459.39 | 0.42833 | 1.83936

10 DS519Q01C ncat: 3 525.11 272.98 96.72 155.40 | 0.41146 | -1.03092 0.47030
11 CS519Q02S ncat: 2 527.80 243.79 284.00 | 0.27116 | 0.15209
12 DS519Q03C ncat: 2 524.27 422.35 101.92 | 0.32622 | -1.41428
13 CS527Q01S ncat: 2 520.06 433.11 86.95 | 0.35832 | -1.59654
14 CS527Q03S ncat: 2 518.80 193.96 324.85 | 0.35298 | 0.51366
15 CS527Q04S ncat: 2 515.87 230.07 285.80 | 0.45539 | 0.21608

. . ...

After the summary of iterations, the output file provides the number of estimated
model parameters, the log-likelihood, deviance, different global model fit indices
(e.g., AIC, BIC, CAIC), and information about the estimated skill distribution
(mean, SD) per group/class:

Number of estimated item thresholds 197
Number of estimated item slopes 184
Minus determinacy constraints on items (negative) - 2

3Note that decimals in the category frequency counts are due to the use of sample weights in the
analyses.
4For the details about adjacent category logit, including various types of parameterization for the
polytomous responses, please refer to Agresti (2002).
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Number of estimated skill distribution parameters 2 ( 2)
Minus skills determinacy constraints (negative) 0
Number of class-size and cluster parameters 0 (percent classified: 0)
Total number of parameters: 381

Trait Distribution: log-linear model min. moment 1 max. moment 2

Likelihood: -85018.9138 Deviance: 170037.82755

AIC penalty term: 762.00 AIC Index: 170799.82755
AICc penalty term: 825.49 AICc Index: 170863.32150
BIC penalty term: 3242.48 BIC Index: 173280.31200

BIC_sp* penalty: 2555.78 BIC_sp Index: 172593.60759
BIC_nP penalty: 1300.26 BIC_nP Index: 171338.08950
BIC_NP penalty: 3856.04 BIC_NP Index: 173893.86954
CAIC penalty term: 3623.48 CAIC Index: 173661.31200

Penalty Factor BIC: 8.51, BIC_sp*: 6.71, BIC_nP: 3.41

Model based log penalty per item: 0.5640627 .. Akaike: 0.5665905
Independence log penalty per item: 0.6421668
Average Model based odds P(X|M)/P(X|I) 1.0812352

Model based log-lik per respondent: -17.1186952
Independence log-lik per respondent: 19.4890706

Unweighted N: 5677 Average # of items per respondent: 30.35

Iterations 230

Estimated skill distribution(s):
Class: POP001 size: 1.0000000
Scale: 1
Estimated Skill Mean: -0.0464442 .. Stdev: 0.7086600

-3.0000 : 0.0000714
-2.2500 : 0.0033576
-1.5000 : 0.0515205 ****
-0.7500 : 0.2579311 ***********************
0.0000 : 0.4213047 *************************************
0.7500 : 0.2245212 ********************
1.5000 : 0.0390379 ***
2.2500 : 0.0022145

3.0000 : 0.0000410

The AIC (Akaike, 1974) and the BIC (Schwarz, 1978) use the maximum
likelihood value (L) of a model, the number of estimated model parameters (k),
and the sample size. The AIC is computed as follows:

AIC = −2 logL+ 2k (30.1)
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While the number of model parameters in the AIC is weighted with 2, the BIC
uses the logarithm of the sample size (N) as weight:

BIC = −2 logL+ (logN) k (30.2)

Thus, the BIC penalizes overparameterization more than the AIC as soon as
log(N) > 2.

This information is followed by the final item parameter estimates (a is the slope,
b is the difficulty, d is the intercept related to the difficulty), standard errors, and the
expected category frequencies5 per item:

Final Item Parameter Estimates
item itemlabel a-param | intercept| | b-param | d-step | d-step |
1 DS269Q01C 1.30806 | -0.65396 | | 0.29409 |
2 DS269Q03C 1.44684 | -0.70355 | | 0.28604 |
3 CS269Q04S 0.72904 | -1.02784 | | 0.82932 |
4 CS408Q01S 1.01714 | 0.25332 | | -0.14650 |
5 DS408Q03C 0.80686 | -0.48730 | | 0.35527 |
6 CS408Q04S 0.49957 | 0.33635 | | -0.39605 |
7 CS408Q05S 0.85017 | -1.14310 | | 0.79091 |
8 CS521Q02S 0.42838 | 0.05369 | | -0.07373 |
9 CS521Q06S 1.69735 | 3.05137 | | -1.05748 |
10 DS519Q01C 0.55789 | -0.91470 | 0.23076 | 0.36057 | -0.60388 | 0.60388 |
11 CS519Q02S 0.53866 | 0.18829 | | -0.20561 |
12 DS519Q03C 0.87731 | -1.68657 | | 1.13084 |
13 CS527Q01S 1.06038 | -2.02111 | | 1.12119 |
14 CS527Q03S 0.78029 | 0.65389 | | -0.49294 |
15 CS527Q04S 1.04855 | 0.34135 | | -0.19149 |
. . ...
Final Item Parameter Standard Errors
item itemlabel a-param | intercept | |
1 DS269Q01C 0.11696 | 0.10727 |
2 DS269Q03C 0.12469 | 0.11037 |
3 CS269Q04S 0.09205 | 0.10227 |
4 CS408Q01S 0.10134 | 0.09920 |
5 DS408Q03C 0.09259 | 0.09710 |
6 CS408Q04S 0.08009 | 0.09110 |
7 CS408Q05S 0.09627 | 0.10583 |
8 CS521Q02S 0.07783 | 0.08938 |
9 CS521Q06S 0.11300 | 0.15189 |
10 DS519Q01C 0.05501 | 0.09704 | 0.10592 |
11 CS519Q02S 0.08139 | 0.09151 |
12 DS519Q03C 0.10158 | 0.11908 |
13 CS527Q01S 0.10760 | 0.12941 |
14 CS527Q03S 0.09092 | 0.09885 |
15 CS527Q04S 0.10427 | 0.10198 |
. . ...

5The expected category frequencies (for multiple groups) and conditional proportions correct
P(+|group) are statistics given separately for each group (e.g. a state, country or language). For
latent class models, mixture IRT models and diagnostic models, the expected category frequencies
are expected proportions correct per latent class, which are estimates of these proportions, given
the classifications of respondents (proportionally assigned using posterior distribution of class
membership given observed responses) into these classes.
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Expected category frequencies by class and scale:
seq itemlabel ncat nresponses 0 1 2 expected
1 DS269Q01C 2 535.21 0.6185 0.3815 0.3815
2 DS269Q03C 2 535.21 0.6208 0.3792 0.3792
3 CS269Q04S 2 535.21 0.7134 0.2866 0.2866
4 CS408Q01S 2 535.21 0.4599 0.5401 0.5401
5 DS408Q03C 2 532.72 0.6066 0.3934 0.3934
6 CS408Q04S 2 533.50 0.4280 0.5720 0.5720
7 CS408Q05S 2 532.72 0.7255 0.2745 0.2745
8 CS521Q02S 2 532.72 0.4919 0.5081 0.5081
9 CS521Q06S 2 531.56 0.1358 0.8642 0.8642
10 DS519Q01C 3 525.11 0.5199 0.1842 0.2959 0.7761
11 CS519Q02S 2 527.80 0.4619 0.5381 0.5381
12 DS519Q03C 2 524.27 0.8056 0.1944 0.1944
13 CS527Q01S 2 520.06 0.8328 0.1672 0.1672
14 CS527Q03S 2 518.80 0.3739 0.6261 0.6261
15 CS527Q04S 2 515.87 0.4460 0.5540 0.5540

. . ...

Towards the end of the main output file, we find the test characteristic curve
(TCC), and the item fit statistics for each item by group based on the chi-square
item fit value per item, root mean square deviation (RMSD), and mean deviation
(MD):

Model based expected total (TCC) and skill score (STCCs) given skill pattern

in class: POP001

Skill 1| E(Tot) |--------|---------|----- ----|---------|---------|
-3.000 | 4.75 |* | | | | |
-2.250 | 9.81 | * | | | | |
-1.500 | 22.47 | * | | | | |
-0.750 | 51.71 | | * | | | |
0.000 | 97.83 | | | * | | |
0.750 | 143.48 | | | | * | |
1.500 | 171.76 | | | | | * |
2.250 | 185.01 | | | | | * |
3.000 | 190.87 | | | | | *|

0--------|---------|--- 98---|---------|--------197
item chi-square:
item label POP001
1 DS269Q01C 0.70
2 DS269Q03C 0.07
3 CS269Q04S 1.61
4 CS408Q01S 0.70
5 DS408Q03C 1.00
6 CS408Q04S 0.69
7 CS408Q05S 0.88
8 CS521Q02S 2.64
9 CS521Q06S 0.37
10 DS519Q01C 14.25
11 CS519Q02S 4.32
12 DS519Q03C 2.51
13 CS527Q01S 0.58
14 CS527Q03S 0.52
15 CS527Q04S 0.31
. . ...
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item rmsea:
item label POP001
1 DS269Q01C 0.0113
2 DS269Q03C 0.0093
3 CS269Q04S 0.0244
4 CS408Q01S 0.0233
5 DS408Q03C 0.0268
6 CS408Q04S 0.0244
7 CS408Q05S 0.0191
8 CS521Q02S 0.0453
9 CS521Q06S 0.0134
10 DS519Q01C 0.0550
11 CS519Q02S 0.0630
12 DS519Q03C 0.0468
13 CS527Q01S 0.0117
14 CS527Q03S 0.0147
15 CS527Q04S 0.0182
. . ...

item mean deviation:
item label POP001
1 DS269Q01C - 0.0001
2 DS269Q03C - 0.0001
3 CS269Q04S - 0.0001
4 CS408Q01S - 0.0001
5 DS408Q03C - 0.0001
6 CS408Q04S - 0.0001
7 CS408Q05S - 0.0001
8 CS521Q02S - 0.0002
9 CS521Q06S 0.0011
10 DS519Q01C - 0.0002
11 CS519Q02S - 0.0001
12 DS519Q03C - 0.0000
13 CS527Q01S - 0.0001
14 CS527Q03S - 0.0001
15 CS527Q04S - 0.0001
. . ...

The basic idea of item fit statistics is to compare the observed item characteristic
curve (ICC) using pseudo counts from the E-step with the model-based ICC, and
monitor whether there is any item that exhibits a considerably large gap between
those two curves. Both fit statistics, the MD and RMSD, quantify the magnitude
and direction of deviations in the observed data from the estimated ICC for each
item. While the MD is most sensitive to the deviations of observed item difficulty
parameters from the estimated ICC, the RMSD is sensitive to the deviations of both
the item difficulty parameters and item slope parameters.

The MD is the weighted sum of differences between the observed item response
curve Po(θ ) and the expected item response function Pe(θ ) over the range of the
latent distribution

∫
Pe(θ ). It linearly relates to the proportion of correct responses

and is calculated as:
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MD =
∫
(Po (θ)− Pe (θ)) f (θ) dθ (30.3)

The RMSD indicates the absolute difference between two ICCs by squaring
the differences, multiplying the proficiency distribution as weights, and taking the
square root of the total sum. It is calculated as:

RMSD =
√∫

(Po (θ)− Pe (θ))2f (θ) dθ (30.4)

The *.lst file provides more information about the estimated model than the
examples above capture, for example, the estimated skill distribution correlations
in multidimensional models with multiple skills, and the class membership prob-
abilities in mixture distribution models; please refer to the mdltm user manual for
more details and output results.

30.6 Model Comparison Results

30.6.1 Overall Model Fit and Subscale Profiles

This section summarizes results and model fit statistics for the models described
above estimated for the PISA USA Science data. To compare the overall model
fit of the different models, we use the AIC and the BIC as well as the model-
based log penalty. We also calculate the relative model fit improvements based on
the log penalty measure between the different models. The log penalty (Gilula &
Haberman, 1994) provides the negative expected log likelihood per observation.
The percent of improvement compares the log-penalties of the models relative to
the difference between the most restrictive and the most general model. Table 30.4
gives an overview of the results.

Results in Table 30.4 indicate that, based on the AIC and log penalty, the
relatively best fitting model among the first group is the Bifactor model, which
accounts for the three Science Competency subscales measuring different cognitive
processes as specific factors and one general factor. According to the BIC, the
3D simple structure model shows the best fit. The AIC is known to choose more
complex models, particularly with large samples. The BIC tends to reduce this effect
by integrating the log of the sample size into the penalty term.

The differences in model fit improvements, based on the Gilula and Haberman
(1994) log penalty measure, appear to be small. The 1D model reaches 96.94% of
the model fit improvement obtained by the 3D/Bifactor model, and the 3D model
without an additional general factor reaches 97.67%. Hence, the 1D model describes
the data sufficiently well, and it is defendable to provide one overall Science test
score for examinees and countries, as done for reporting in PISA 2015.
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Fig. 30.3 Skill means for the three Science Competency subscales (S1, S2, S3) obtained from the
mixture 3D model with four classes

Results for the 3D mixture distribution IRT models based on the AIC and log
penalty indicate that a model assuming four latent classes fits the data relatively best,
while the BIC shows the best fit for the 3D Model with one class only. Figure 30.3
displays the means for the three Science Competency subscales for each of the
four classes obtained from the 3D mixture distribution models. These classes can
be compared based on their Science subscale profiles. Depending on researcher’s
interest, further investigations across the classes using external variables (e.g.,
school type or gender) can be pursued.

30.7 Summary

The software mdltm (von Davier, 2005) was designed to enable estimation of a wide
range of latent variable models using small and large data sets, such as data from
international large-scale assessments, and can be used on all major operating sys-
tems, in particular, on Microsoft Windows, Linux, and Apple OS X platforms. The
software allows estimation of unidimensional and multidimensional IRT (MIRT)
models based on the Rasch Model and two-parameter logistic model (2PLM) or
based on the generalized partial credit model (GPCM). Moreover, it can be used
to estimate latent class models and multiple-classification latent class models,
unidimensional and multidimensional located latent class models, diagnostic classi-
fication models with dichotomous or ordinal skill variables, mixture distribution IRT
and diagnostic classification models (DCMs), growth mixture models, hierarchical
latent class models, hierarchical diagnostic models, and multiple-group IRT models.
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Furthermore, it offers a wide variety of different model constraints that allow
for the application of different statistical and linking methods, such as fixed item
parameter linking, concurrent calibration in IRT modeling, and the use of already-
established item parameters as starting values for the estimation of item parameters
in a new model. It also allows users to select a subset of samples/cases or items from
the data set and to recode responses without needing to change the data file. The
software provides useful information in different output files, including descriptive
statistics based on the classical test theory, different proficiency estimates (EAP,
MAP, WLE), model fit statistics (e.g., AIC, BIC, CAIC, log penalty) and item
fit statistics (e.g., RMSD/RMSEA and MD), test characteristic curves (TCC),
IRT based marginal reliabilities for each estimated scale/skill, latent correlations
between different scales/skills in multidimensional models, and more.

The software provides marginal maximum likelihood (MML) estimates obtained
using customary expectation-maximization (EM) methods, with optional acceler-
ation, and it operates within seconds for small and moderately sized datasets and
within minutes for large data sets. With the use of a recently developed PEPM
algorithm (von Davier, 2016), parallel processing was enabled in the software,
which further improved the performance of the software by achieving much more
efficient computation with a reduction in time by a factor of 6 or even 20 for some
examples.

In this chapter, we illustrated the use of mdltm for comparing simple structure
with multidimensional and complex latent variable models. We estimated a uni-
dimensional 2PLM, a 3-dimensional model, a Bifactor model and 3-dimensional
mixture 2PLMs to describe the PISA Science scale using data from PISA 2015. It
was illustrated how to prepare the mdltm syntax or input file to estimate the different
models, and we showed examples of the main output file. We also showed how
DCMs can be used to provide information that supplements the overall test score
obtained from a unidimensional model.

Despite the advantages and flexibilities offered by mdltm in estimating DCMs,
the usefulness of such models depends on the data set being analyzed. Therefore,
users should carefully examine whether a DCM provides additional value over
a simpler model. In a number of cases, such models might provide at best an
alternative, more complex description of the data.
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Chapter 31
Estimating CDMs Using MCMC

Xiang Liu and Matthew S. Johnson

Abstract In this chapter, we provide a brief survey of Markov chain Monte Carlo
(MCMC) methods used in estimating Cognitive Diagnostic Models (CDMs).
MCMC techniques have been widely used for the Bayesian estimation of
psychometric models. MCMC algorithms and general purpose MCMC software
has been facilitating the development of modern psychometric models that are
otherwise difficult to fit (Levy R, J Probab Stat 1–18, 2009. Retrieved from
http://www.hindawi.com/journals/jps/2009/537139/, https://doi.org/10.1155/2009/
537139). We introduce a Gibbs sampler for fitting the saturated Log-linear CDM
model (LCDM, Henson RA, Templin JL, Willse JT, Psychometrika, 74(2):191–210,
2009. Retrieved from https://doi.org/10.1007/s11336-008-9089-5). The utility of
Bayesian inference is demonstrated by analyzing the Examination for the Certificate
of Proficiency in English (ECPE) dataset.

31.1 Introduction

In the past two decades, Markov chain Monte Carlo (MCMC) techniques have
been widely used for the Bayesian estimation of psychometric models. Not only
an alternative to other estimation methods, MCMC algorithms and general purpose
MCMC software has been facilitating the development of modern psychometric
models that are otherwise difficult to fit (Levy, 2009). In this chapter, we provide
a brief survey of MCMC methods used in estimating Cognitive Diagnostic Models
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(CDM). In addition, a Gibbs sampler for fitting the saturated Log-linear CDM model
(LCDM; Henson et al., 2009) is introduced. The utility of Bayesian inference is
demonstrated by analyzing the Examination for the Certificate of Proficiency in
English (ECPE) dataset.

To help understand the motivation of developing MCMC methods, consider the
following general statistical inference problem. Given a set of observed data X = x,
we would like to model the data with a probabilistic model p(x|θ) where θ is the
model parameter vector. Under the Bayesian framework, a prior is assigned to the
parameters, i.e., p(θ). Then we are interested in the posterior distribution of the
model parameters given the observed data, i.e.

p(θ |x) = p(x|θ)p(θ)∫
p(x|θ)p(θ)dθ . (31.1)

In some cases the closed form of the posterior distribution p(θ |x) can be analytically
derived. However, under other circumstances, the posterior distribution must be
approximated numerically. Difficulty arises from the numerical evaluation of the
integral in the denominator of (31.1). If θ is unidimensional, the integral can
be approximated by using k quadrature points fairly efficiently. But in general,
evaluating the multiple integral

∫ ∫ · · · ∫ p(x|θ)p(θ)dθ1dθ2· · · dθd requires a high-
dimensional grid of kd points in R

d . As the number of dimensions d grows,
integration by quadrature quickly becomes infeasible. This problem is also referred
to as the “curse of dimensionality”. Instead of deterministically evaluating the high-
dimensional integral, MCMC algorithms stochastically sample from the posterior
distribution by constructing a Markov chain whose stationary distribution is the
target posterior distribution. For a detailed review of MCMC, refer to Gelman et al.
(2013), Neal (1998), and Brooks, Gelman, Jones, and Meng (2011).

Despite its importance to Bayesian inference, it should be noted that MCMC
methods are not limited to Bayesian applications. High-dimensional integrals also
arise from computing marginal maximum likelihood estimates in some models. As
a result, MCMC as a class of efficient stochastic numerical integration algorithms
is also used in frequentist applications. In fact, such applications have been
developed in psychometrics. For example, Cai (2010) adapted the Metropolis-
Hastings Robbins-Monro algorithm to estimate the high-dimensional item factor
analysis model by marginal maximum likelihood. Given much improved computing
power and the availability of general purpose Bayesian inference software, the CDM
literature, flourishing in recent years, also saw a wide range of applications of
MCMC methods.

31.2 MCMC Background

In this section, we provide a brief background and intuition of MCMC for readers
who might not be familiar with the concept. A Markov chain is a series of random
variables, �(0),�(1), . . . ,�(t),�(t+1), . . . , where the state at time t + 1 depends
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only on the immediate previous state at t . In other words, the distribution of θ (t+1)

is independent of everything else given �(t) = θ (t), i.e.,

P(θ (t+1)|θ (0), θ (1), . . . , θ (t)) = P(θ (t+1)|θ (t)). (31.2)

This is often referred to as the Markov property. Additionally, the state space, that is
the range of θ , is common across all time points. In practice, it implies the parameter
space of the model cannot be changed. However, there exist MCMC methods that
can handle models with variable parameter space – for example, the reversible jump
MCMC. This topic is significantly more advanced and out of the scope of this
chapter. Interested readers may refer to Green (1995). Observing the aforementioned
Markov property, it is clear that, in order to define a Markov chain, we need to
specify the probability of an initial state θ – p0(θ) = P(θ (0) = θ) and the transition
probabilities between consecutive states – Tt (θ, θ ′) = P(θ (t+1) = θ ′|θ (t) = θ) for
t = 0, 1, 2, . . . . Then the distribution of θ at time t + 1 can be determined by

pt+1(θ) =
∑

θ̃

pt (θ̃)Tt (θ̃ , θ). (31.3)

For homogeneous Markov chains, the transition probabilities stay the same across
all time points, i.e., Tt (θ , θ ′) = T (θ, θ ′),∀t . A Markov chain is said to have reached
its stationary or invariant distribution – π(θ) if the distribution of θ does not change
according to time points t any more. Specifically, there exists some t̃ such that
pt̃ (θ) = π(θ) and

π(θ) =
∑

θ̃

π(θ)Tt (θ̃ , θ),∀t ≥ t̃ . (31.4)

The purpose of using MCMC in Bayesian inference is to help us sample from
an otherwise difficult to evaluate posterior distribution. To achieve this goal, we
are interested in constructing a Markov chain where the target posterior distribution
is invariant. Often, we choose reversible homogeneous Markov chains in which the
probability of a transition from the state θ to the state θ ′ is the same as the probability
of a transition from θ ′ to θ under the distribution of states π . Equivalently,

π(θ)T (θ , θ ′) = π(θ ′)T (θ ′, θ). (31.5)

The above condition is usually called detailed balance. It is straightforward to show
that detailed balance implies invariance, i.e.,

∑

θ ′
π(θ ′)T (θ ′, θ) = π(θ)

∑

θ ′
T (θ , θ ′) = π(θ). (31.6)
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It should be noted that detailed balance is a sufficient but not necessary condition
for a distribution to be invariant (Neal, 1998).

Detailed balance ensures that once a Markov chain reaches its invariant dis-
tribution, subsequent states are samples from this invariant distribution. However,
we generally do not know this invariant distribution which is the target posterior
distribution. Instead, we hope the distribution of states at time t converges in
distribution to its invariant distribution π as t → ∞ regardless of its initial
probability distribution of states p0(θ). The Markov chain is ergodic if it holds this
property. For a homogeneous Markov chain with an invariant distribution π , it is
ergodic if the chain can traverse the entire support of π , i.e.,

v = min
θ

min
θ ′:π(θ ′)>0

T (θ , θ ′)/π(θ ′) > 0. (31.7)

For a proof of this theorem, readers can refer to Neal (1998).
The simplest MCMC algorithm is perhaps the Gibbs sampler (Geman & Geman,

1984; Gelfand & Smith, 1990). Suppose we are interested in sampling from a joint
distribution given by p(θ1, θ2, . . . , θK) which is our target posterior distribution.
Gibbs sampler works by repeatedly sampling each θk from their full conditional
distributions. At the t th iteration, we

• sample θ(t)1 according to the distribution given by p(θ(t)1 |θ(t−1)
2 , θ

(t−1)
3 , . . . ,

θ
(t−1)
K );

• sample θ(t)2 according to the distribution given by p(θ(t)2 |θ(t)1 , θ
(t−1)
3 , . . . , θ

(t−1)
K );

...

• sample θ(t)K according to the distribution given by p(θ(t)K |θ(t)1 , θ
(t)
2 , . . . , θ

(t)
K−1).

The above steps together form a transition of state from θ t−1 to θ t with probabilities
T (θ , θ ′) that leaves the target distribution invariant. Starting from an initial state
θ (0), after simulating the Markov chain long enough, subsequent draws of θ (t) are
treated as samples from the target posterior distribution.

31.3 Applications of MCMC in CDM

Similar to other types of psychometric modeling, instances of applications of
MCMC in CDM are numerous. By no means the brief survey in this section
is exhaustive, but rather to give readers flavors of the existing literature. The
applications of MCMC in CDM can be traced back to earlier papers on the topic.
In Junker and Sijtsma (2001), one of the earlier papers on CDM, the authors fit
the deterministic inputs, noisy “and” gate (DINA) model and the noisy inputs,
deterministic “and” gate (NIDA) model using the BUGS (Bayesian inference Using
Gibbs Sampling) software (Thomas, Spiegelhalter, & Gilks, 1992).



31 Estimating CDMs Using MCMC 633

While de la Torre (2008) provides a description of for estimating the DINA
model by marginal maximum likelihood using the expectation-maximization (EM;
Dempster, Laird, & Rubin, 1977) algorithm; the development of the EM algorithm
for the higher-order DINA (HO-DINA) model is not trivial. As a result, in de la
Torre and Douglas (2004), the HO-DINA model is estimated by a blocked Gibbs
sampler (Geman & Geman, 1984; Gelfand & Smith, 1990; Gelman et al., 2013).
The full-conditional distributions for HO-DINA do not have closed forms and are
not easy to sample from directly. Therefore, the authors adopted the Metropolis
algorithm (Metropolis, Rosenbluth, Rosenbluth, Teller, & Teller, 1953; Hastings,
1970). Instead of directly sampling from the full-conditional distributions, at each
iteration, the Metropolis algorithm draws a proposed sample value or vector from
a proposal distribution (usually a Gaussian distribution), and accepts or rejects it
with an appropriately defined acceptance probability. To calculate the acceptance
probability, only the unnormalized full conditional density function is required. This
circumvents the difficulty of obtaining the normalizing constant when it cannot be
derived analytically. The combination of Gibbs sampler and Metropolis algorithm
is usually referred to as the Metropolis-within-Gibbs which is implemented in
many general purpose Bayesian inference softwares (e.g., OpenBUGS; Lunn,
Spiegelhalter, Thomas, & Best, 2009, JAGS; Plummer, 2005).

One difficulty of using the Metropolis algorithm is the tuning of the sampler.
If the variance of the proposal distribution is large, the proposed sample is more
likely to be further away from the current sample, which leads to low acceptance
probabilities. Consequently, a large number of proposed samples are rejected before
an acceptance, and the sampler rarely moves. On the other hand, small variance of
the proposal distribution leads to high acceptance probabilities. But the proposed
samples tend to be close to the current ones. As a result, the sampler moves
slowly and does not explore the posterior distribution very efficiently. Therefore
tuning is required so that the Markov chain is mixing at an optimal rate (Roberts,
Gelman, & Gilks, 1997). Tuning a sampler could be a tedious task. Culpepper
(2015) derived the closed forms of full-conditional distributions for DINA model so
that the parameters can be directly sampled without using the Metropolis algorithm.
In the same paper, the author also shows that the monotonicity assumption of the
DINA model can be enforced by sampling the item parameters from a truncated
bi-variate Beta distribution.

In the applications discussed so far, the Q-matrix (Tatsuoka, 1983) needs to
be specified before the model can be estimated. In reality, the specification of
the Q-matrix is not always straightforward and elements of the Q-matrix can be
uncertain. Recognizing this limitation, DeCarlo (2012) proposes a Bayesian model
to handle the uncertainty. Instead of treating all elements of the Q-matrix as fixed,
the author specifies some of them as Bernoulli distributed random parameters, and
assigns a Beta prior to the Bernoulli probabilities. The uncertain elements of the Q-
matrix are recovered from examining the posterior distributions. OpenBugs software
(Spiegelhalter, Thomas, Best, & Lunn, 2014) is used to estimate the model under
the reparameterized DINA (RDINA; DeCarlo, 2012) model. DeCarlo and Kinghorn
(2016) extend the approach to the case where none of the Q-matrix elements is fixed.
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Furthermore, there has also been some other effort developing exploratory
Bayesian methods for estimating CDM models without any prior knowledge of the
Q-matrix except for the dimensions. Chung (2014) derives a Gibbs sampler for the
DINA model and a Metropolis-within-Gibbs algorithm for the rRUM (reduced repa-
rameterized unified model; Hartz, 2002) that include all elements of the Q-matrix as
model parameters. The distribution of attribute patterns for examinees is modeled by
a saturated categorical distribution, and the probabilities of the categories are given
a Dirichlet prior. Thanks to the categorical-Dirichlet conjugacy, the probabilities of
attribute patterns can be directly sampled from Dirichlet posterior distributions. By
using a saturated categorical distribution, the author did not assume a particular
factorization of the joint distribution of the attributes. Correlated attributes with
different structures can be modeled in addition to independent attributes. However,
the trade-off is the large number of parameters needs to be estimated. For a Q-matrix
with K attributes, there are 2K − 1 probabilities for the attribute patterns. The Q-
matrix is estimated similarly by using a categorical distribution. Item parameters
for the DINA model can be sampled from truncated Beta distributions respecting
the monotonicity assumption. Unfortunately, the full-conditional distributions of the
item parameters for the rRUM model do not have closed forms. Thus, the Metropolis
algorithm is used. Another example of the exploratory Bayesian approach can be
found in Chen, Culpepper, Chen, & Douglas (2018). The paper deals with the same
problem of estimating the DINA model without knowing the elements of the Q-
matrix. Building on the development in understanding the identifiablity of the DINA
model (Chen, Liu, Xu, & Ying, 2015; Liu, Xu, & Ying, 2012, 2013; Xu & Zhang,
2016), Chen et al. (2018) constrain the Q-matrix to be identified in their estimation
procedure.

MCMC also aids the development and applications of more complex CDM
models. For example, Li, Cohen, Bottge, and Templin (2016) introduce a longitu-
dinal model that incorporates learning into CDM models. The attribute patterns for
each student can change over time. It is modeled by a latent transition model. The
transition matrix indicates the probability of transition from one attribute pattern to
another. In this paper, several models with different transition matrices are fitted and
compared using deviance information criterion (DIC; Spiegelhalter, Best, Carlin, &
van der Linde, 2002).

Not only useful in estimating CDM models, MCMC also provides some of
the most intuitive ways in checking model fit. Using the posterior samples, the
posterior predictive model check (PPMC) method (Rubin, 1984; Gelman et al.,
2013) calculates posterior distributions of various fit measures. It has been used in
assessing the fit of IRT models (Sinharay, 2005). In CDM, Park, Johnson, and Lee
(2015) examines the performance of PPMC using observed total-scores distribution,
association of item pairs, and correlation of attribute pairs in assessing model fit.

As mentioned earlier, the review in this section is far from exhaustive. As more
and more elaborate CDM models are developed in literature, we will certainly see
more applications of MCMC.



31 Estimating CDMs Using MCMC 635

31.4 A Gibbs Sampler for the Saturated Log-Linear
CDM Model

In this section, we propose a new Gibbs sampler for the LCDM model. We analyze
the ECPE data set as an illustration.

31.4.1 The Log-Linear CDM Model

The LCDM is similar to the Generalized DINA (GDINA; de la Torre, 2011) model
in the sense that they all provide a flexible and general framework that encompasses
many specific CDM models and can be viewed as a special case of the general
diagnostic model (GDM; von Davier, 2008, 2014).

Under the LCDM, the probability of nth person answering the kth item correctly
is

logitPk(an) = λk0 +
K∑

d=1

λkdandqkd +
K∑

d=1

∑

d ′>d
λkdd ′andand ′qkdqkd ′ + . . . . (31.8)

and ∈ {0, 1} with and = 1 being the nth person has the dth attribute, and and = 0
otherwise. Similarly, qkd is 1 if the kth item measures the dth attribute, and 0
otherwise. λk0 is the intercept, so a person who does not possess any of the skills
measured in the test would have the probability of logit−1(λk0) getting the kth item
correct. λkd is the main effect for the dth attribute. And λkdd ′ is the interaction
effect for the dth and d ′th attributes. Depending on the Q-matrix, some of the terms
in (31.8) may be dropped. If an item only measures one attribute, there is only the
intercept and one main effect. It should be noticed that some specific CDM models
are nested within (31.8). For example, if only the highest order interaction and the
intercept are retained, the LCDM reduces to the DINA. A saturated model includes
the intercept, all main effects of the measured attributes, and all interaction terms
associated with those attributes.

31.4.2 A Bayesian Formulation of the Reparameterized
Saturated LCDM

For a general CDM with three attributes, there can be 23 = 8 latent classes defined
by the attribute patterns a; therefore, under the unrestricted latent class model,
there would be 8 item response probabilities that would need to be estimated for
each item. The Q-matrix restricts the probabilities by enforcing certain equality
constraints on the item response probabilities. For example, under the saturated
LCDM, the probability of giving a correct response to an item by different people
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who possess different subsets of the required attributes may be different. Suppose
an item requires the first two attributes but not the third, so the kth row of the
Q-matrix is qk = (1, 1, 0). Then three people with attribute patterns a = (1, 1, 0),
(1, 0, 0), and (0, 1, 0) may potentially receive different probabilities of giving a
correct answer to this item. However, a person with the attribute pattern (1, 1, 1)
would have the same probability of giving a correct response as someone whose
attribute pattern is (1, 1, 0) due to the fact that the third attribute is not required
by the item. As a result, there are 22 = 4 probabilities associated with this item.
Except for this restriction, the saturated model LCDM does not make any further
constraints.

In the following Bayesian specification of the item-saturated LCDM, we use
the natural probabilities as the model parameters rather than using the linear
coefficients. To aid in the description of the model, we define the condensed attribute
pattern ωnk for each individual n and item k, as the subvector of an corresponding to
only the dimensions or attributes required by item k, i.e., ωnk = (ed1, . . . , edm)

�an,
where ed is the standard unit vector for dimension d with a 1 for element d and a
zero everywhere else, and the d is an ordered index set d = {m : qkm = 1}. In our
three attribute example, with only the first two attributes required for an item, we
have

ωnk =
(

1 0 0
0 1 0

)
an.

Then the item response probability can be denoted by pk(ωnk) = P(Xnk = 1|
A = a).

Formally, suppose we observe an N by K response matrix from N subjects
answering K items and a K by D Q-matrix, then our Bayesian hierarchical
formulation of the LCDM assumes

xnk|ωnk,pk ∼ Bernoulli(pk(ωnk)), (31.9)

pk(ωnk) ∼ Beta(αk, βk), (31.10)

αn|π ∼ Categorical(π), (31.11)

π ∼ Dirichlet(v). (31.12)

Conditional on the latent attributes required by a particular item ωnk , a person gives
a correct response with the probability pk(ωnk). We assume a Beta prior distribution
for the vector of item response probabilities pk . A non-informative prior can be
specified by giving the uniform Beta(1, 1); while, a Beta(0.5, 0.5) may be used if a
researcher believes the item might have a higher discrimination among those with
and without the required skills.

We do not assume a particular factorization of the joint distribution of the
attributes. Instead, each of the possible 2D attribute patterns is treated as a
category. Then each person’s attribute pattern follows a categorical distribution
with probabilities of each possible attribute pattern governed by parameters π =
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(π1, π2, . . . , π2D)
�. A Dirichlet hyper-prior with concentration parameters v is

given to the categorical distribution parameters.

31.4.3 Monotonicity Constraint

The monotonicity assumption specifies a set of constraints that ensures the inter-
pretability of CDM models in addition to the specification of the Q-matrix. Under
the monotonicity assumption, mastering additional attributes would not lower the
probability of giving a correct response, i.e.

P(Xnk = 1|an1) ≥ P(Xnk = 1|an2), (31.13)

whenever ωn1kd ≥ ωn2kd for all d = 1, . . . , Dk , where Dk is the number of
skills required by item k. Thus the item parameters in our Bayesian hierarchical
formulation must satisfy

pk(ωn1k)
≥ pk(ωn2k)

, if ωn1kd = 1∀ds.t.ωn2kd = 1. (31.14)

For the log-linear model, it is equivalent to constraining all main effects to be
nonnegative and the coefficient of any interaction term to be no less than −1 times
the largest main effect involved in the interaction (LCDM; Henson et al., 2009;
Templin & Bradshaw, 2014).

31.4.4 A Gibbs Sampler

Conditional on the observed data for the kth item and class assignment for all
people on this item, the item parameter is independent of everything else. So its
full conditional distribution is

P(pk(w)|x(k),ω(k), αk, βk) ∝
∏

Skw={n: ωnk=w}
p
xnk
k(w)(1−pk(w))1−xnkP (pk(w)|αk, βk),

(31.15)

where x(k) denotes the vector of all item responses to item k and ω(k) denotes the
set of item-specific attribute patterns for item k.

Due to the standard Bernoulli-Beta conjugacy, (31.15) has a closed form, i.e.

pk(w)|x(k),ω(k), αk, βk ∼ Beta

⎛

⎝αk +
∑

n∈Skw
xn, βk + |Skw| −

∑

n∈Skw
xn

⎞

⎠ .

(31.16)

The monotonicity constraint in (31.14) implies that pj(ωij ) is bounded above by
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Upk(w) = inf
w′
{pk(w′) : w′d ≥ wd ∀ d ∈ {1, 2, . . . , Dk}}, (31.17)

and bounded below by

Lpk(w) = sup
w′
{pk(w′) : w′d ≤ wd ∀ d ∈ {1, 2, . . . , Dk}}. (31.18)

It follows that the full conditional distribution in (31.16) should be truncated, i.e.,

pk(w)|x(k),ω(k), αk, βk ∼ Beta

⎛

⎝αk +
∑

n∈Skw
xnk, βk + |Skw| −

∑

n∈Skw
xn

⎞

⎠

I(Lpk(w) ,Upk(w) )
(pkw), (31.19)

where I(u,�)(p) indicates the distribution is truncated to the interval (u, �).
The full conditional distribution for an is

P(an|xn,p,π) ∝
K∏

k=1

P(xnk|pk(ωnk))P (an|π). (31.20)

Since the distribution is discrete, (31.20) can be easily normalized:

P(an|xn,p,π) =
∏K
k=1 P(xnk|pk(ωnk))P (an|π)∑

an

∏K
k=1 P(xnk|pk(ωnk))P (an|π)

. (31.21)

And the closed form full-conditional distribution is

an|xn,p,π ∼ Categorical(u1, u2, . . . , u2D), (31.22)

where the probabilities u1, u2, . . . , u2D are given in (31.21).
Finally, the full conditional distribution for hyper-parameters π is

P(π |a, v) ∝
N∏

n=1

P(an|π)P (π |v). (31.23)

The standard categorical-Dirichlet conjugacy leads to the closed form:

π |a, v ∼ Dirichlet(v + (c1, c2, . . . , c2d )), (31.24)

where the elements of the vector (c1, c2, . . . , c2D) are the counts of observations in
each class.
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Update steps for each iteration of the Gibbs sampler are:

1. Draw the item parameters pkw for each item and item-specific attribute pattern
w from the full conditional distributions in (31.19);

2. Draw the latent class assignment an for each person from the full conditional
distributions in (31.22);

3. Draw the hyper-parameter π from the full conditional distribution in (31.24).

31.4.5 Linear Transformation of Model Parameters

The model parameters from the reparameterized saturated model can be easily
transformed back to the log-linear model parameters by solving a linear system of
equations. For simplicity, consider the case where there are d = 2 attributes. Under
the saturated log-linear model, 22 = 4 linear coefficients are needed. The logit link
links the probabilities to the linear combinations of the attributes, i.e.

T λk = logit pk, (31.25)

where

T =

⎡

⎢⎢⎣

1 0 0 0
1 1 0 0
1 0 1 0
1 1 1 1

⎤

⎥⎥⎦ ,λj =

⎡

⎢⎢⎣

λk0

λk1

λk2

λk12

⎤

⎥⎥⎦ , logit pk =

⎡

⎢⎢⎣

logitpk(00)

logitpk(10)

logitpk(01)

logitpk(11)

⎤

⎥⎥⎦ .

In the above notations, tm. denotes the mth row of the T matrix. Multiplying the
inverse of the attribute pattern matrix to both sides of (31.25) gives the log-linear
model parameters, i.e.,

λk = T −1 logit pk. (31.26)

To get the posterior distribution of the log-linear model parameters, simply apply
the linear transformation in (31.26) to the posterior samples of the reparameterized
saturated model parameters.

31.5 A Bayesian Analysis of the ECPE Dataset

In this section, we analyze the ECPE dataset as a demonstration. The ECPE dataset
is available in the R CDM package (George, Robitzsch, Kiefer, Groß, & Ünlü,
2016). It has been analyzed in previous research (e.g., Templin & Bradshaw, 2014;
Templin & Hoffman, 2013; von Davier, 2014). The dataset consists of the binary
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responses from 2922 examinees to 28 items. Three attributes are specified in the
Q-matrix: morphosyntactic rules, cohesive rules, and lexical rules. However, none
of the items measures all three attributes. Among the 28 items, 9 measure two
attributes, and the rest measure one. We fit the reparameterized saturated model
and finally transformed parameters back to the log-linear model parameterization.
Non-informative priors are used: uniform Beta(1, 1) for item parameters, and
Dirichlet(1, 1, . . . , 1) for the hyper-prior of class allocations. Furthermore, the
monotonicity is enforced by imposing constraints to item parameters as in (31.17)
and (31.18).

Diagnosing the convergence of the Markov chains is important in applications
of MCMC. The MCMC theory guarantees that the Gibbs sampler will eventually
converge to the target posterior distribution as the number of draws goes to infinity.
But, in reality, the number of draws we can afford is always finite and often limited.
Therefore, we need to assess whether we can treat MCMC draws approximately
as samples from the posterior distribution after a certain number of initial draws.
Over the years, many MCMC convergence diagnostics have been proposed. Some
of the popular examples include the potential scale reduction factor (PSRF; Gelman
& Rubin, 1992), the multivariate PSRF (MPSRF; Brooks & Gelman, 1998), and
the Geweke convergence diagnostic (Geweke, 1992). Here we use two common
graphical methods to assess the convergence of our Gibbs sampler. Four parallel
chains with different starting values are simulated. We run each chain for 5000
iterations. To demonstrate the evidence of convergence, Fig. 31.1 shows the trace
of the first 500 iterations of each chain for two parameters. The plots suggest
that the chains quickly converged to their target stationary distributions regardless
of different starting values. We can also monitor the convergence by examining
the k-lag autocorrelation functions. The k-lag autocorrelation is the correlation
between every draw and its kth lag. Intuitively, a Markov chain that generates highly
correlated samples would take a long time to explore the entire target distribution.

chain 1
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Fig. 31.1 k-lag autocorrelation of two parameters. (a) λ0 – Item 1. (b) λ13 – Item 11
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Fig. 31.2 Traceplot of two parameters. (a) λ0 – Item 1. (b) λ13 – Item 11

We would hope that the autocorrelation between samples quickly shrink to around
zero as the lag k increases. From Fig. 31.2, we can see that the autocorrelation
decreases very quickly as the lag increases in both cases. It is consistent with
the quick convergence and good mixing shown in the trace plots. Based on the
convergence diagnostics, our Gibbs sampler seems to perform very well. We decide
to treat the first 1000 from each chain as burn-ins and use the rest for the purpose of
posterior inference.

Table 31.1 shows the Expected a Priori (EAP) estimates and posterior standard
deviations of item parameters under the LCDM. Comparing the EAP estimates
to the maximum likelihood estimates (MLE) reported in previous literature (see
Table 1 in Templin & Bradshaw, 2014), it seems that the EAP estimates are almost
identical to the MLE for the items measuring single attributes. However, differences
exist between the EAP estimates and the MLE for items measuring two attributes
except for the second item where the Bayesian approach yields similar estimates to
maximum likelihood.

As pointed out by Templin and Bradshaw (2014), a closer examination of the
MLE for two attribute items reveals that many of the ML estimates appeared on the
boundary. For example, the main effect of the morphosyntactic rules for the first item
is estimated to be zero in Templin and Bradshaw (2014). The standard asymptotic
theory does not give any useful approximation to the limiting distribution of the
MLE when the ML estimate lies on the boundary. This is reflected by the zero
standard error reported in Templin and Bradshaw (2014). The MLE for some of
the interaction effects also suffer this problem. They are estimated to be very close
to the boundary imposed by the monotonicity constraint. Large standard errors are
also observed for many of the estimated effects. These are symptoms of under-
identification. Von Davier (2014) also discussed this problem. While an infinitely
large sample size would allow the parameters to be estimated precisely and away
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Table 31.1 ECPE Bayesian estimates of LCDM item parameters

Item λ0 λ1 λ2 λ3 λ12 λ13 λ23

1 0.81(0.08) 0.51(0.4) 0.65(0.23) 0.61(0.53)

2 1.03(0.08) 1.25(0.15)

3 −0.34(0.08) 0.76(0.42) 0.35(0.13) 0.52(0.44)

4 −0.14(0.08) 1.69(0.1)

5 1.07(0.08) 2.02(0.16)

6 0.87(0.08) 1.68(0.14)

7 −0.09(0.08) 1.59(0.67) 0.93(0.13) 0.32(0.7)

8 1.47(0.09) 1.92(0.24)

9 0.12(0.07) 1.19(0.1)

10 0.05(0.06) 2.05(0.15)

11 −0.05(0.08) 1.19(0.6) 0.96(0.14) 0.39(0.64)

12 −1.79(0.12) 0.62(0.46) 1.31(0.17) 0.88(0.49)

13 0.66(0.06) 1.61(0.15)

14 0.17(0.05) 1.36(0.12)

15 0.99(0.08) 2.12(0.16)

16 −0.09(0.08) 1.34(0.57) 0.87(0.13) 0.13(0.59)

17 1.34(0.09) 0.65(0.41) 0.61(0.27) 0.2(0.52)

18 0.92(0.08) 1.4(0.13)

19 −0.2(0.08) 1.85(0.11)

20 −1.43(0.1) 0.97(0.58) 0.94(0.15) 0.67(0.61)

21 0.16(0.08) 0.98(0.54) 1.13(0.14) 0.12(0.58)

22 −0.87(0.09) 2.24(0.11)

23 0.66(0.08) 2.06(0.19)

24 −0.69(0.09) 1.54(0.12)

25 0.09(0.05) 1.14(0.11)

26 0.16(0.08) 1.12(0.1)

27 −0.89(0.06) 1.7(0.1)

28 0.56(0.08) 1.75(0.12)

Note: Attribute 1 – Morphosyntactic rules; Attribute 2 – Cohesive rules; Attribute 3 – Lexical rules.

from boundaries (when the true parameters are away from the boundary), we work
with a limited sample size in reality.

One solution is to impose an attribute hierarchy which effectively reduces
the number of parameters to be estimated (Templin & Bradshaw, 2014). The
introduced Bayesian method explores another approach. The use of priors provides
regularization and enables more parameters to be reasonably estimated (Gelman
et al., 2013). The EAP estimates for single attribute items are well-regularized with
small posterior standard deviations. While the posterior standard deviations for the
two attribute items are larger, they are still reasonable. The largest posterior standard
deviation is 0.67 compared to the largest standard error of 1.62 reported in previous
research.
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Fig. 31.3 Joint posterior
density of λ1 and λ13 for
Item 20
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The posterior samples can also provide useful information in assessing various
aspects of model fit. For example, one source of the misfit is the misspecification
of the Q-matrix. Considering the EAP estimates and the associated posterior
standard deviations of λ1 and λ13 for item 20 in Table 31.1, one might suspect
that morphosyntactic rules are not measured by the item. Both marginal posterior
distributions of λ1 and λ13 might have considerable densities around zero. However,
if the item doesn’t measure this attribute, it would imply that λ1 = λ13 = 0. In
other words, we need to inspect the joint posterior distribution of these two effects.
Samples from the posterior simulation can achieve this with little effort. Figure 31.3
clearly shows that the origin is away from the region where the joint posterior
density is concentrated.

Posterior samples can also be used to check the plausibility of particular CDM
models. For example, if the DINA is plausible, it would suggest that the main
effects and lower order interactions are all zeros. Since each item measures at most
two attributes in the ECPE dataset, we only need to examine the joint posterior
distribution of the main effects. Figure 31.4 suggests that DINA is more plausible
for Item 1 than Item 11.

31.6 Discussion

MCMC algorithms and Bayesian methods in general will certainly continue to play
an important role in the development of various CDM models. In this chapter,
we briefly reviewed some of the applications of the MCMC in CDM literature.
We also introduced a Gibbs sampler for estimating the saturated LCDM model.
With the reparameterization, the sampler is able to take advantage of the standard
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Fig. 31.4 Joint posterior density of the main effects for Items 1 and 11

conjugacy results thus the sampler does not require any tuning. Even though we
introduced the sampler for the saturated LCDM, the approach can be modified to fit
a wide spectrum of specific CDM models by imposing additional constraints to the
saturated LCDM model.
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