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Chapter 15
Impacts of Metal and Metal Oxide 
Nanoparticles on Plant Growth 
and Productivity

Mukesh Kumar Kanwar, Shuchang Sun, Xianyao Chu, and Jie Zhou

15.1  Introduction

The art of manipulating matter on an atomic, molecular, or supramolecular level is 
known as nanotechnology (Banerjee and Kole 2016). Usually, materials lesser than 
100 nm in one dimension, are treated as nanomaterial. Therefore, they can be one 
dimensional (rod-shaped), two dimensional (films), three dimensional (any shape), 
or zero dimensional (all dimensions are at nanoscales), based on the modification of 
matter (Bernhardt et al. 2010; Tiwari et al. 2014; Banerjee and Kole 2016). Because 
of this, they possess some characteristic features, including the physical and chemi-
cal properties that have drawn a general attention to their pivotal application in plant 
sciences with reference to plant growth and development.

In general, nanoparticles (NPs) can be distinguished into three main groups, viz., 
natural, incidental, and engineered or manufactured NPs (Nowack and Bucheli 2007; 
Monica and Cremonini 2009). NPs of the first type are present since the beginning of 
the earth and are released through natural processes like volcanic eruptions, forest 
fires, dust storms, and photochemical reactions. The second form of NPs is anthropo-
genic in nature, which emanates usually from petrol/diesel exhaust, burning of coal, 
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and industrial exhausts (Buzea et al. 2007). The engineered NPs (ENPs) can be cat-
egorized as carbon-based NPs (CB-NPs), metal-based NPs (MB-NPs), magnetic 
NPs, dendrimers, and composite NPs. The metal and metal oxide-based NPs are 
purposely produced by humans from different metals like gold (Au), silver (Ag), zinc 
(Zn), nickel (Ni), ferrum (Fe), and copper (Cu) and from metal oxides like titanium 
dioxide (TiO2), ferroferric oxide (Fe3O4), silicon dioxide (SiO2), cerium oxide 
(CeO2), aluminum oxide (Al2O3), etc. (Fedlheim and Foss 2001).

During the last two decades, a significant amount of research has been conducted 
on metal NPs (MNPs) and metal oxide NPS (MONPs) particularly from agricultural 
perspective, because these NPs can easily slip into the plant system (Tripathi et al. 
2011; Husen and Siddiqi 2014a, b; Raliya et al. 2015). Because of their unique prop-
erties, NPs are reported to boost plant metabolism (Nair et al. 2011). Excessive use 
of NPs in the industrial sector, in food and agricultural products, and in remediation 
technologies has conjured the issue of contamination of ecosystems (Gardea- 
Torresdey et al. 2014; Nair 2016). This has dragged the attention of many research 
groups to explore the potential effects of NPs on plants (Monica and Cremonini 
2009; Nair et al. 2011; Li et al. 2014; Rico et al. 2015). Being sessile in nature, plants 
are frequently exposed to NPs. Plants exposed to MNPs and MONPs subsequently 
accumulate them in their underground and aerial parts. When present into the rhizo-
sphere, NPs can easily enter the epidermis and cortex via the apoplastic route (Rizwan 
et al. 2016). Translocation to aerial parts is much dependent on exposure time, plant 
species, and the shape and size of NPs (Li et al. 2014; Rico et al. 2015). On finding 
their entry into crop plants, NPs also generate a threat to human population through 
contamination of the food chain. Potential toxicity of NPs toward living organisms is 
well established. Given this, it becomes imperative to study the interactions among 
plants and NPs, which determine the mode of the NP uptake and accumulation, and 
subsequently their fate in the environment (Nair 2016). This chapter provides the 
latest information related to the interaction of plants with NPs and elucidates the 
consequent effects on plant growth and development.

15.2  Metal and Metal Oxide Nanoparticles

Being a new field, nanotechnology has a potential to provide a platform for research-
ers to design and incorporate new tools for studying the key functioning of NPs into 
the plant system (Cossins 2014). Metallic NPs are simple to synthesize because of 
their tunable features like size, shape, composition, structure, and encapsulation, 
out of different reported NPs (Subbenaik 2016). Of the synthesized NPs, Au and Ag 
NPs are most frequently used because of their simplicity in preparation, bio- 
conjugation, and appealing results under various tested systems. Limited size and 
high density of corner gave exclusive properties to metal oxide NPs also (Picó and 
Blasco 2012; Raliya and Tarafdar 2013; Subbenaik 2016). Different metals (Au, 
Ag, Zn, Ni, Fe, and Cu) and metal oxides (TiO2, Fe2O4, SiO2, CeO2, Al2O3, etc.) 
have been used to design NPs (Fedlheim and Foss 2001) that suit different 
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plant- related processes including protection and fertilization (Gogos et al. 2012). 
For example, the use of SiO2 and Al2O3 nanoparticles reportedly increases the ger-
mination percentage and growth of roots in plants (Lin and Xing 2007; Siddiqui and 
Al-Whaibi 2014).

However, the rapidly increasing use of MNPs and MONPs in various operations 
and their presence in the environment has raised the issues of environmental health. 
Regulation of their optimum levels within the soil as nutrients/facilitators/pollutants 
for sustainable agriculture and crop production is a tedious task. As plant develop-
ment is regulated by diverse environmental factors like nutrient availability, tem-
perature, soil morphology, and light intensity, it is important to explore whether 
MNPs/MONPs also have a potential to influence the plant growth and development 
and/or create toxicity in the plant system.

15.3  Effects of NPs on Plant Growth and Development

Plant growth and development is a holistic term that starts from the initial stages of 
seed germination and extends up to the senescence. The effects of MNPs/MONPs 
on the overall growth process are found to be both positive and negative, possibly 
depending upon the size, composition, concentration, physical and chemical prop-
erties of NPs, and also the nature of plant species (Khodakovskaya et  al. 2012; 
Husen and Siddiqi 2014b; Nair 2016; Siddiqi and Husen 2016, 2017a, b; Husen 
2017; Fig. 15.1). This chapter is planned to discuss the plausible role of NPs on 
overall plant growth and productivity.

15.3.1  Seed Germination

Effects of NPs on seed germination are both positive and negative (Hong et  al. 
2015). Nanoparticles synthesized from lead, palladium, gold, and copper have con-
siderably swayed the growth of lettuce (Lactuca sativa) seeds (Shah and Belozerova 
2009). The activity of nitrate reductase was increased by the exogenous treatment of 
nano-SiO2 and nano-TiO2 which results in the better germination of soybean seeds 
(Lu et al. 2002). Improved seed germination was also noticed in lettuce and cucum-
ber (Cucumis sativus) (Barrena et  al. 2009), Indian mustard (Brassica juncea) 
(Arora et al. 2012), Boswellia ovalifoliolata (Savithramma et al. 2012), and Gloriosa 
superba (Gopinath et al. 2014) plants when given Au NP treatment. Similarly, appli-
cation of nano-SiO2 improves seed germination and nutrient’s availability to maize 
plants (Suriyaprabha et al. 2012). Better germination of seeds was noticed in peanut 
(Arachis hypogaea) (Prasad et  al. 2012), soybean (Glycine max) (Sedghi et  al. 
2013), wheat (Triticum aestivum) (Ramesh et al. 2014), and onion (Allium cepa) 
(Raskar and Laware 2014) by the application of Zn nanoparticle.
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Negative impacts of NPs on seed germination have also been recorded. Rice, 
barley, faba bean, and turnip have shown a dose-dependent decrease when treated 
with Ag NPs (El-Temsah and Joner 2012; Thuesombat et al. 2014; Thiruvengadam 
et al. 2014). Similarly, NPs of copper oxide (CuO), nickel oxide (NiO), TiO2, iron 
oxide (Fe2O3), and cobaltosic oxide (Co3O4) also reduced the seed germination of 
lettuce, radish, and cucumber plants (Wu et al. 2014). Plants growing in soils under 
natural environment somehow behave differently from those in the lab or green-
house. Seed germination varied with different soils and was less affected in rye 
grass, barley, and flax plants when supplied with differential doses of Fe or Ag NPs 
in soil as compared to water. For instance, it was less obvious in clay soil than in 
sandy ones (El-Temsah and Joner 2012). In another supporting study, germination 
of lettuce and radish was less pretentious in soil than in water when treated with Ag 
NPs (Gruyer et al. 2013).

It is also known that a lower dose of NPs may serve as a seed-priming agent, 
whereas a higher dose causes phytotoxicity in crops. Moreover, plant response var-
ies significantly with the NPs tested and can be correlated to their dose and size (De 
Rosa et al. 2013). Although the positive or negative interaction between NPs and 
seed germination is voraciously studied in plants, the mechanism operative behind 
the scene is still obscure and needs a comprehensive evaluation.

Fig. 15.1 Schematic summary depicting the potential impacts of metal and metal oxide nanopar-
ticles on plant growth and productivity. These impacts are affected by size, composition, concen-
tration, physical and chemical properties of NPs, mode of their application, and also on the nature 
of plant species
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15.3.2  Mineral Uptake

Nutrients play a significant role in the process of plant growth, and their deficiency 
or nonavailability may lead to devastating effects such as stunting, deformity, dis-
coloration, distress, and even death of the plant. The toxic metal ions considerably 
hamper the uptake of minerals in plants (Zaheer et al. 2015; Rizwan et al. 2016). 
Foliar spray of Ag NPs at a differential dose range reduced the mineral uptake in 
tomato seedlings, which led to nutrient deficiency (Shams et al. 2013). Treatment of 
CeO2 and SiO2 NPs altered the nutrient supply in shoots and roots of transgenic 
cotton(Gossypium)plant (Le et  al. 2014; Li et  al. 2014). Similarly, lettuce plants 
were challenged for the nutrients on application of CuO NPs (Trujillo-Reyes et al. 
2014). Zhao et  al. (2014) found an increase in the uptake of micronutrients in 
cucumber plants when treated with ZnO NPs. However, 5, 10, and 20 mg L−1 doses 
of CuO NPs increased the content of various nutrients, like Cu, P, and S in alfalfa 
(Medicago sativa) shoots, and lowered the uptake of P and Fe in lettuce shoots 
(Hong et al. 2015). Such a decrease in mineral uptake by plants on the application 
of NPs might be because of the release of toxic metal ions from NPs (Dimkpa et al. 
2012; Mahmoodzadeh et al. 2013). However, more research is required to know the 
details of the mechanism involved.

15.3.3  Photosynthetic Machinery

Photosynthesis is a vital process by which plants convert light energy into chemi-
cal energy that can later be used for their growth and development. Of the total 
solar radiation energy falling on the surface of earth, approximately 2–4% is con-
verted by plants for their growth and development (Kirschbaum 2011). It is impor-
tant to increase the efficiency of this profit-yielding process for the better growth 
of plants. One essential modification for increasing the efficiency of photosynthe-
sis in plants is modifying the rubisco activity, an enzyme that catalyzes the conver-
sion of carbon dioxide (CO2) into the biomolecules. Recently, genes of 
cyanobacterium Synechococcus elongatus were incorporated in tobacco (Nicotiana 
tabacum) plants by replacing the Rubisco gene for carbon fixation in tobacco plant 
(Lin et al. 2014). These new engineered plants showed more photosynthetic effi-
ciency than the native ones. It has been reported that the application of SiO2 NPs to 
plants improves the photosynthetic rate by improving the activity of carbonic 
anhydrase enzyme (that supplies CO2 to the Rubisco) and synthesis of photosyn-
thetic pigments (Xie et  al., 2012, Siddiqui and Al-Whaibi 2014; Siddiqui et  al. 
2014). Similarly, the use of nano-anatase TiO2 enhances photosynthesis by stimu-
lating the Rubisco activity that could eventually increase the growth rate of plants 
(Gao et al. 2006; Chand and Siddiqui, 2012). It is also noteworthy that the bulk use 
of MNPs/MONPs generates the oxidative burst in plants by releasing their metal 
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ions (Rizwan et  al. 2016). This oxidative stress may result in the production of 
ROS that might interfere with many biochemical reactions and reduce the photo-
synthesis and gas exchange capacity of plants (Adrees et al. 2015; Das et al. 2015). 
The toxic effect of NPs on photosynthesis and gas exchange in food crops has been 
widely studied (Mirzajani et  al. 2013; Abouzeid and Moustafa 2014; Rao and 
Shekhawat 2014; Shaw et al. 2014).

The use of Ag NPs as seed-priming agent in wheat, soybean, and barley signifi-
cantly hampered the content of photosynthetic pigments and also quenched the 
chlorophyll fluorescence (Zhao et al. 2013; Abouzeid and Moustafa 2014; Gorczyca 
et al. 2015). The excessive application of MNPs/MONPs caused a significant reduc-
tion in the total chlorophyll content of some crop plants including Indian mustard, 
pea, and soybean (Pradhan et al. 2013; Mukherjee et al. 2014; Rao and Shekhawat 
2014). Therefore, it is quite now known that the toxic effects of MNPs/MONPs on 
the photosynthetic machinery depend on the duration, type, and dose of the NPs. 
Plants have the in-built mechanism to withstand against NP toxicity for certain 
period of time, and the extended exposure to NPs could hamper the photosynthetic 
system.

15.3.4  Plant Morphology

Plants flourishing in suited environment are characterized with better morphology 
based on the shoot and root lengths, the shoot and root biomass, and the leaf area. 
Stressful environment has adverse effects on these characters. Asli and Neumann 
(2009) reported that application of nTiO2 NPs repressed leaf growth and leaf func-
tions in maize seedlings via affecting the water uptake. Implications of the ZnO, 
Fe2O3, Al2O3, and CuO NPs in modifying the morphological parameters have been 
assessed in various crop systems (Dimkpa et al. 2012; Mahmoodzadeh et al. 2013; 
Nair and Chung 2014). It is suggested that the possible reason for the negative effect 
on plant growth parameters is the plausible release of toxic metal ions from these 
manufactured NPs. NPs synthesized from Ag significantly inhibited the root growth 
and biomass of different tested crops such as wheat, rice, sorghum, and tomato 
(Mazumdar and Ahmed 2011; Dimkpa et al. 2012; Song et al. 2013; Vannini et al. 
2014). Exposure of Ag NPs, at a dose of 0.2, 0.5, and 1 mg L−1 for 1 week, remark-
ably reduced the shoot and root biomass as well as the root elongation in rice seed-
lings (Nair et al. 2014). The length of wheat seedlings as well as the root growth in 
soybean and chickpea was noticeably hampered on application of CuO NPs 
(Adhikari et al. 2012; Dimkpa et al. 2012). Similarly, a dose-dependent decrease in 
plant height and in the shoot and root biomass of cotton seedlings was caused by the 
CeO2 and SiO2 NPs added to the growth media (Le et al. 2014). Additionally, occur-
rence of silver nanoparticles was detected in plasmodesmata and cell wall (Geisler- 
Lee et  al. 2013), which would certainly result in wall seepage and snarl-up of 
intercellular communication (Geisler-Lee et  al. 2014), sequentially distorting the 
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performance of nutrient transporter proteins and intercellular transport and thereby 
affecting the overall growth of the plants. The anatomical and ultrastructural 
responses of Capsicum annuum toward Fe NPs have been studied recently by Yuan 
et al. (2018) who found the responses to be dose-dependent. For instance, improve-
ment in leaf growth, chloroplast number, grana stacking, and development of vascu-
lar bundles was observed by light and electron microscopes at low concentrations of 
Fe NPs. In contrast, at elevated doses, Fe NPs appeared to be aggregated in cell 
walls and entered into the roots via the apoplastic pathway, thereby blocking the 
movement of iron.

In addition, many studies have shown the stimulating effects of different NPs 
toward plant morphology (Wang et al. 2012; Wang et al. 2013a; Antisari et al. 2015). 
Exposure of tomato seedlings to CeO2 NPs (0.1-10 mg L−1) caused a little increase 
in plant height and biomass (Wang et al. 2012). Application of nTiO2 to spinach 
(Spinacia oleracea) significantly improved its growth (Hong et al. 2015); treatment 
with ZnO at different doses (125, 250, and 500 mg−1 kg−1 soil) enhanced the root 
length of green peas (Pisum sativum), which was almost doubled in comparison to 
the control (Mukherjee et al. 2014). Treatment of TiO2 NPs improves the growth 
and yield of wheat plants in water-deficit condition (Jaberzadeh et  al. 2013). 
Similarly, SiO2 NP application (at a dose of 5–20 kg ha−1) in sandy loam soil appre-
ciably increased the shoot and root length and leaf area of 20-day-old maize seed-
lings (Suriyaprabha et al. 2012). Tobacco plants exposed to different concentrations 
(0.1%, 0.5%, and 1%) of Al2O3 NPs exhibited increase in root length and biomass 
but a drastic decrease in leaf count (Burklew et  al. 2012; Verma et  al. 2018). 
Likewise, physiological changes in watermelon were evaluated in vitro after expo-
sure to γ-Fe2O3 NPs (Wang et  al. 2016). An optimum dose of NPs was able to 
recover chlorosis and iron deficiency and promote plant growth.

Interaction between NPs and rhizosphere is immensely important because of the 
probable impact of NPs on the root-bacteria symbiosis. ZnO NPs proved perilous to 
rhizobium-legume symbiosis, as they disrupted early communication between rhi-
zobia and the plant along with the nodule development, and subsequently delayed 
the onset of nitrogen fixation, an important factor in relation to plant growth and 
productivity (Huang et al. 2014). Additionally, the presence of NPs also brought 
other molecular changes in terms of hormonal imbalance in plants. For instance, 
CuO NP application on cotton and Bt-cotton caused momentous alterations in the 
intrinsic levels of indole-3-acetic acid (IAA) and abscisic acid (ABA) (Nhan Le 
et  al. 2016). Although the MNPs/MONPs may have synergistic and antagonistic 
effects on the morphology of plants, their impact depends primarily on size and 
dose of NPs, duration of exposure, and experimental setup (Pokhrel and Dubey 
2013; Thuesombat et al. 2014). It is germane to mention that most of the studies 
performed on NPs with respect to plant morphology have been of short duration and 
were conducted in controlled conditions. Therefore, for a better understanding of 
NP-plant interaction, long-term studies have to be carried out under natural environ-
mental conditions.
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15.3.5  Grain Yield and Quality

Higher yield and excellent quality of seeds signify the best growth of plants. 
Researchers have applied diverse nanotechnology inputs to get these desired out-
comes in plants. It is now well established that plant exposure to NPs alters the 
uptake of nutrients and ensues biological activities, causing variation in growth and 
yield in different plant species. For instance, plants raised in the soil with unmodi-
fied or modified nano-TiO2 (hydrophobic or hydrophilic coating) for 65 days showed 
that plant growth, inorganic nutrient uptake (Ca, Mg, P, Cu, Fe, Mn, and Se), enzyme 
activity, chlorophyll, and carbohydrate production were augmented with coated 
NPs (Tan et al. 2017). Application of Ag, Fe2O3, and CeO2 NPs increased fruit yield 
and biomass in cucumber, soybean, and tomato plants (Sheykhbaglou et al. 2010; 
Wang et al. 2012; Shams et al. 2013). An increased vigor index was observed in 
fennel seeds exposed to TiO2 NPs, as compared to the control and bulk TiO2-treated 
plants (Feizi et al. 2013; Verma et al. 2018). Likewise, increased pod biomass and 
kernel, together with shelling percentage, was observed in peanut, when treated 
with ZnO NPs (Prasad et  al. 2012). Additionally, NPs also affect the nutritional 
components and dietary value of fruits, and the impact may be trans-generational as 
observed in tomato plants treated with cerium oxide NPs (Wang et  al. 2013b). 
However, some researchers have encountered contrary effects in other crops like 
barley (Hordeum vulgare), where exposure of CeO2 NPs prevented seed setting 
(Rico et  al. 2015). Application of the same NP (CeO2) noticeably decreased Fe, 
sulfur (S), starch, and amino acid content in rice seedlings (Rico et  al. 2013). 
Significant decrease in potassium (K) and phosphorus (P) was observed with the 
application of TiO2 in cucumber fruits (Servin et  al. 2012). The ZnO and 
CeO2treatments significantly reduce overall yield of maize plants, remarkably alter-
ing the quality of corn by disrupting the mineral elements in cobs and kernels (Zhao 
et al. 2015). In the nutshell, application of different MNPs/MONPs affects the yield 
and quality of fruits and seeds, which entirely depend on the type and size of NPs 
and on the mode of treatment. Further illustrative studies need to be conducted to 
find the optimum dose of NPs. In-depth analysis in terms of long-term exposure, 
dose-dependent experiments, and molecular studies like proteomics and metabolics 
can be a handy tool in deciding the exact role of NPs on grain yield and quality.

15.4  Conclusion and Future Directions

Nanotechnology has evinced immense potential for the growth of agriculture sector 
and hence used excessively. However, bulk production and inadvertent discharge of 
NPs into the environment have dragged attention toward the contamination of eco-
systems and food supply (Medina-Velo et al. 2016). Being nano in dimension, NPs 
can easily be inserted into the plant system and translocated to different organs of 
the plant. Therefore, it becomes imperative to evaluate their interaction on the plant 
system, irrespective of benefits or hazards. Furthermore, the kinetic studies have 
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revealed the rapid and highly reactive nature of NPs and showed them to be inher-
ently interactive with impurities (Subbenaik 2016). Recently, phytotoxicity and 
beneficial aspects of these xenobiotic compounds in the plant system have been 
discussed by several research groups (Sheikh Mohamed and Sakthi Kumar 2016). 
But the exact picture of their roles and interaction with plants is still blurred. 
Comprehensive evidence of the toxicity/benefits of different MNPs/MONPs has 
been presented and discussed in this chapter (Fig. 15.1). It is clear that, from their 
entry to accumulation, NPs depend upon the plant species, growth stage, NP size, 
and the mode of treatment (Kole et al. 2013; Raliya et al. 2015).

It is germane to mention that the presence of NPs in plants also poses a threat of 
human exposure to NPs through the food chain. Therefore, the effects of NPs in 
plants need to be evaluated from a wider perspective and over several generations of 
plants to get the better insights on their fate in the ecosystem. A comprehensive 
research should also be conducted at the molecular level to assess the precise roles 
of NPs in plants, which could be used as a platform for designing the future research 
in the field of nano-agriculture.
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