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Chapter 7
The Role of Biomarkers in Psychiatry
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Abstract  Psychiatric illnesses are cognitive and behavioral disorders of the brain. 
At present, psychiatric diagnosis is based on DSM-5 criteria. Even if endopheno-
type specificity for psychiatric disorders is discussed, it is difficult to study and 
identify psychiatric biomarkers to support diagnosis, prognosis, or clinical response 
to treatment. This chapter investigates the innovative biomarkers of psychiatric dis-
eases for diagnosis and personalized treatment, in particular post-genomic data and 
proteomic analyses.
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7.1  �Introduction

7.1.1  �The Significance of “Biomarker”

One of the most important goals of psychiatry research is to find appropriate bio-
markers for mental illnesses [1]. According to the National Institute of Health 
Biomarkers Definitions Working Group, a “biomarker” is defined as “a characteris-
tic that is objectively measured and evaluated as an indicator of normal biological 
processes, pathogenic processes or pharmacological responses to a therapeutic 
intervention” [2]. Another definition of biomarker made by the International 
Program on Chemical Safety is “any substance, structure, or process that can be 
measured in the body (or its products) and their influence or prediction about the 
incidence of outcome or disease” [3]. Based on these ideas, a biomarker can be used 
to identify the presence or progression of a disease or the effectiveness of a given 
treatment from a clinical viewpoint [4].

The use of biomarkers in medicine is a common and valuable approach in several 
clinical fields [5], and biomarker analyses are growing in number and providing 
potential targets for several medical conditions, such as diabetes and cancer. 
However, clinical applications of biomarkers for neuropsychiatric illnesses and pos-
sible use for clinical diagnosis and prognosis have not consistently led to better 
quantifiable outcomes [6]. In the present chapter, we discuss the innovative bio-
markers of psychiatric diseases for diagnosis and personalized treatment, with a 
focus on post-genomic data and proteomics analyses.

7.1.2  �Biomarker Potential Role in Psychiatric Setting

Certainly, finding consistent biomarkers for early discovery of psychiatric illnesses 
has been an attractive topic for researchers, in particular with the study of the brain 
(postmortem, neuroimaging, and neurophysiological studies), of cerebrospinal fluid 
(CSF), and of serum and plasma biomarkers (cytokines, neurotrophins, neurotrans-
mitters, and genes).

The goals of biomarker applications in psychiatry are diagnosis, prognosis (risk), 
prediction and assessment of responses to treatment (therapeutic failures), preven-
tion of adverse drug reactions, classification within diagnostic categories, and pre-
diction of intervention effects [7, 8]. Biomarkers could also define the staging of 
psychiatric illnesses, risk vulnerability across stages, syndrome progression, and 
epiphenomena [9]. Network neuroscience pursues new ways to model, analyze, 
map, and record the elements and interactions of neurobiological systems, 
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considering the multi-scale nature of brain networks [10]. In this regard, a primary 
focus is the neuropsychological construct and the analysis of cognitive functions 
(attention, working memory, processing speed, learning and memory, executive 
functions, and global intellectual functions, including social cognition) as endophe-
notypes for psychiatric illnesses [11, 12]. From recent evidences, social dysfunction 
and its most evident clinical expression (i.e., social withdrawal) may represent an 
innovative transdiagnostic domain, with the potential of being an independent entity 
in terms of biological roots, with the prospect of targeted interventions not only in 
psychiatric but also in neurodegenerative disorders [13, 14].

Actually, the need to categorize and validate biomarkers has grown to enable 
clinicians to match specific individual patient treatments to increase the probability 
of an optimal, personalized outcome. Thanks to genotyping, it could be possible to 
assess factors that predict antidepressant or antipsychotic drug response [15, 16]. 
There is a need for characterizing patient variability, for example, to guide pharma-
cological dosing according to specific phenotypes [17, 18]. The goal of personal-
ized medicine is important in the case of psychiatric diseases to reduce side effects 
of inappropriate medication or to enable detection of an efficacy signal quickly 
without potential toxicity [19].

The success of disease-specific biomarkers or endophenotypes is still fragmen-
tary, based on neuroimaging, neuropsychological, biological, biochemical, and 
genetic aspects. The interest for the psychiatric setting is to go beyond this, to 
ensure a consistent value of their actual contribution in disease, also through 
application of post-genomics techniques [20]. One of the most important advances 
in psychiatry has been the sequencing of human genome in the 1990s [21], but 
genomic methods cannot differentiate splice variants or proteins with posttransla-
tional modifications (PTMs). Moreover, gene expression is regulated at the post-
transcriptional level by microRNAs (miRNAs), small noncoding RNAs. The most 
important targets of epigenetic regulation in psychiatric processes are synapse 
development, plasticity, neurogenesis, dendritic extension, and dendritic spine 
formation [22]. Furthermore, brain imaging, neurotrophic and electrophysiologi-
cal factors, neurotransmitters, epigenetics, epigenomics, pharmacogenomics, and 
proteomics are complementary to yield a more complete understanding of the 
biological basis and appropriate treatments of psychiatric disorders (Figs.  7.1, 
7.2, 7.3 and 7.4) [23–27].

7.2  �Brain Imaging Biomarkers

Neuroimaging techniques have the power to capture the structure and function of 
the brain in health and disease. This has revolutionized the study of the organization 
of the human brain and how its structure and function are changed in psychiatric 
illnesses. Advances in neuroimaging techniques have made it possible to more 
clearly elucidate the neural basis of psychiatric disorders. In the past few decades, 
neuroimaging analyses have served as the main tools for exploring the 
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neurobiological etiology of psychiatric disorders [28]. The most important brain 
imaging techniques are magnetic resonance imaging (MRI), computed tomography 
(CT), diffusion tensor imaging (DTI), functional magnetic resonance imaging 
(fMRI), positron-emission tomography (PET), and single photon emission com-
puted tomography (SPECT) [29–33].

Fig. 7.1  Innovative biomarkers in schizophrenia

Fig. 7.2  Innovative biomarkers in major depressive disorders
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7.2.1  �Schizophrenia

Patients with schizophrenia (SCZ) have differences in brain structure, brain vol-
ume, glucose metabolism, and blood flow at rest and during the performance of 
cognitive tasks [34] (Fig. 7.1). In SCZ, there are reduced activation in the dorso-
lateral prefrontal cortex (DLPFC) and the right temporal and ventral prefrontal 
cortices during the performance of working memory tasks [35] and abnormalities 

Fig. 7.3  Innovative biomarkers in bipolar disorders
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in the DLPFC, medial temporal lobe, hippocampus, parahippocampal gyrus, ante-
rior cingulate, medial frontal and posterior parietal cortex, striatum, thalamus, and 
cerebellum [36].

The findings indicate a greater randomization of large-scale brain networks 
in SCZ relative to healthy controls as well as alterations in the modularity of 
both static and time-varying networks. Notably, approaches aiming to charac-
terize patients with SCZ relative to healthy controls based on network organiza-
tion indices (clustering coefficient) show promising levels of classification 
accuracy [37, 38], suggesting that network neuroscience indices may have 
future clinical utility as SCZ biomarkers [10]. Recent studies show that small-
world brain networks are significantly reduced in SCZ compared to healthy con-
trols across rest and task states [39], and the extent of this reduction may be 
associated with the length of illness [40]. Hence, SCZ is characterized by differ-
ences in the small-world architecture of functional brain organization, marked 
by a subtle randomization of network topology [41], even in the absence of 
significant findings for structural networks. Moreover, SCZ patients have sig-
nificant reductions in connectivity [37, 41]. Large-scale organization features 
(small-world organization) seem to be less impacted in major depressive disor-
der (MDD) compared to SCZ. Instead MDD is characterized by disconnectivity 
across both static and dynamic measures of connectivity, and this is a potential 
future clinical utility factor [42].

Several brain abnormalities have been reported in SCZ by neuroimaging studies 
concerning the corpus callosum, thalamus, medial temporal lobe (hippocampal for-
mation, subiculum, and parahippocampal gyrus), superior temporal gyrus (particu-
larly on the left side), frontal lobe (particularly prefrontal and orbitofrontal regions), 
amygdala-hippocampal complex, cortical size, and size of the whole brain [43–47]. 
Conversely, there are a higher ventricle-to-brain ratio, greater absolute ventricular 
volume, and increased size of the cavum septi pellucidi [46].

SCZ patients usually have greater absolute volumes of all ventricular subdivi-
sions, total ventricular volume, and relative volumes of basal ganglia structures (the 
left and right caudate, putamen, and globus pallidus) as well as reduced cerebral 
volume, relative volumes of the thalamus, and medial temporal lobe structures 
including the amygdala, the hippocampus/amygdala ratio, the hippocampus and 
parahippocampus, and the relative volume of the left anterior superior temporal 
gyrus [47].

Duration of untreated psychosis (DUP) has been associated with poor out-
come in SCZ [48]. Recently, a naturalistic longitudinal study with matched 
healthy controls highlighted the function of hippocampal volume loss as a bio-
marker of DUP [49]. This leads to the idea that early hippocampal volume loss 
may play a role in mediating the association between DUP and poor outcomes 
in SCZ. Therefore, accelerated hippocampal volume loss could be associated to 
DUP and poor response in SCZ. Finally, in SCZ, there is also white matter dis-
organization in prefrontal and temporal white matter, corpus callosum, and 
uncinate fasciculus [50].
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7.2.2  �Major Depressive Disorders

Structural imaging works show anatomical and neuropathological abnormalities 
concerning the disruptions to cortico-striatal-limbic circuits in patients with MDD 
[51]. MDD patients have reduced metabolism or hypoactivity with “hypofrontality” 
of the DLPFC, in the left central executive network, along with increased activity in 
the subcallosal cingulate cortex and limbic regions, such as the amygdala and the 
insula. The increased inter-functional connectivity between the salience network 
and right executive network, and the decreased inter-functional connectivity 
between the anterior default mode network and right central executive network, 
could be considered as biomarkers of MDD (Fig. 7.2) [52, 53]. Yang et al. suggested 
a paradigm using a multiple classifier evaluation with external validation by diffu-
sion MRI, to evaluate orientation and diffusion characteristics of white matter and, 
by inference, white matter microstructure. Although four features (mean fractional 
anisotropy in the right cuneus and left insula, asymmetry in the volume of the pars 
triangularis and cerebellum) were implicated across all analyses, low classification 
and prediction accuracy using these features indicated that they cannot represent the 
entire pathophysiology of MDD. However, they may be relevant for future investi-
gations of MDD neurobiology in conjunction with other methods [54]. MDD 
patients show volumetric reductions in the hippocampus, basal ganglia, subcallosal 
cingulate cortex, and orbitofrontal cortex in patients with more severe or chronic 
forms of disease [55]. A neuroimaging meta-analysis highlighted reduced volumes 
of the right hippocampus and reduced gray matter volumes in the left DLPFC as 
structural imaging predictors of nonresponse to treatment [56].

7.2.3  �Bipolar Disorders

The International Society for Bipolar Disorders Biomarkers Network Task Force 
has described the results of neuroimaging biomarker studies in bipolar disorder 
(BD) patients as loss of gray matter in cortical-cognitive brain network, as well as 
increased activation in ventral limbic regions in response to emotional stimuli [24]. 
Specifically as shown by morphometric measures, BD patients have amplification 
of the lateral and third ventricles after several manic episodes (Fig. 7.3) [57]; pro-
gressive decline in hippocampal, fusiform, and cerebellar gray matter density after 
frequent episodes; subregion-specific gray matter volume reductions in the prefron-
tal cortex; and increased rates of deep white matter hyperintensities [58]. BD 
patients have gray matter reductions in the left rostral anterior cingulate cortex and 
right fronto-insular cortex thickness, above all in anterior limbic regions (executive 
control and emotional processing abnormalities) [59], volumetric reductions in hip-
pocampus and thalamus, and enlarged lateral ventricles [60]. Although gray/white 
matter changes appear early in BD development, the brain volume may be altered 
by environmental factors such as drugs [61].
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Studies of fMRI point out excessive activation in numerous corticolimbic path-
ways, including overactivation of the amygdala, striatum, and thalamus [24, 62, 
63]. Decreased activity in prefrontal cortical areas shown by imaging data under-
scores an insufficient modulation of limbic/subcortical regions, related to 
depressed mood and poor cognitive coping in BD [62, 63]. Recently, Li et al. [64] 
studied cortical thickness and subcortical volume alterations in euthymic BD type 
I patients treated with lithium and valproate. In particular, patients treated with 
lithium had increased cortical thickness of the left rostral middle frontal cortex 
and right superior frontal cortex compared with valproate, while cortical thick-
ness was not different between BD patients on lithium treatment compared to 
healthy controls in the bilateral rostral middle frontal cortex. Moreover, there 
were no differences observed in subcortical volume. These data indicate that lith-
ium and valproate have different effects on cortical thinning of the prefrontal cor-
tex in BD but an analogous effect on subcortical volumes [64]. However, 
neuroimaging could be used as a potential biomarker for lithium response predic-
tion in BD [65, 66]. In MRI studies, patients exposed to lithium treatment showed 
a bigger volume of gray matter mainly in the hippocampus as a direct conse-
quence of the drug (neurotrophic and neuroprotective influence) or secondary to 
better symptomatic outcome [67, 68].

7.3  �Inflammatory Biomarkers

There is increasing evidence on the involvement of inflammatory pathways in the 
pathophysiology of major psychiatric disorders including MDD, SCZ, and 
BD. Elevated levels of cytokines and C-reactive protein and alterations in serum 
molecules involved in pro-inflammatory and oxidative stress response and immune 
molecules, including hyperactivation of the hypothalamic-pituitary-adrenal (HPA) 
axis, have been demonstrated in these major psychiatric illnesses (Figs. 7.1, 7.2 and 
7.3) [69, 70]. According to the recent scientific literature, anomalies in the immune 
system (blood or CSF levels of certain cytokines) are involved in the pathogenesis 
of SCZ, MDD, and BD and may be useful as biomarkers for diagnosis and treat-
ment monitoring. Studies have also shown increased levels of peripheral pro-
inflammatory markers related to the genes involved in regulation of the immune 
system in both SCZ and MDD [71–75].

In particular, increased levels of C-reactive protein (CRP) [23, 76] and increased 
levels of IL-1β, IL-6, IL-8, IL-10, IL-12, IL-15, IL18, endogenous IL-1 receptor 
antagonist (IL-1RA), and soluble IL-2 receptor (sIL-2R) in the blood, CSF, and 
serum have been found in SCZ patients [69, 77, 78] (Fig. 7.1). It should be noted 
that the potential of IL-2 has been a matter of controversy as it was found to be 
elevated in some studies and diminished in others [79, 80]. Other cytokines [tumor 
necrosis factor-α (TNF-α), transforming growth factor-β (TGF-β), and interferon γ] 
have been shown to be altered in SCZ, while epidermal growth factor (EGF) has 
been associated with an increased risk of developing SCZ [81].
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More generally, according to recent meta-analysis, all patients with severe men-
tal disorders have increased CSF levels of interleukin 1β (IL-1β), IL-6, and IL-8 
[82]. Moreover, autoimmune dysregulation has been found to occur in BD II and 
MDD as underlined by proteomic analysis based on two-dimensional electrophore-
sis coupled with matrix-assisted laser desorption/ionization time-of-flight/time-of-
flight tandem mass spectrometry analysis of plasma samples [83]. An area of 
particular attention in mental disorders is immunology linked to infections and 
autoimmune diseases with a larger risk identified for SCZ and affective disorders 
[84, 85].

The CSF/serum albumin ratio was known to be increased in SCZ, and affective 
disorders and total CSF protein levels were elevated, indicating increased blood-
brain barrier (BBB) permeability [86]. Furthermore, the IgG ratio, IL-6 levels, and 
IL-8 levels are increased in the CSF of SCZ but not in the case of affective disorders 
[87–90]. A correlation of the levels of inflammation markers and symptoms has 
been found and also between albumin and IgG levels and the Scale for the 
Assessment of Negative Symptoms [91] and between IL-8 levels and the 
Montgomery-Asberg Depression Rating Scale [92]. Furthermore, altered chemo-
kine levels were found in the CSF and plasma of suicide attempters [93].

A number of studies have found that HPA axis activation in MDD may be linked 
to the severity of illness. Moreover, MDD patients are at specific risk for cardiovas-
cular syndromes, because of higher levels of inflammatory biomarkers such as the 
high sensitivity C-reactive protein and pro-inflammatory acute phase cytokines 
interleukin-1β and interleukin-6. For this reason, cytokines could be considered as 
biomarkers of depression severity [94]. The heat shock proteins CPN10, CPN60, 
and CPN70 might have potential as biomarkers for BD, and CPN60 blood level 
might distinguish patients with abnormal and normal HPA axis activities [95]. 
Among other biomarkers in BD, increased pro-inflammatory cytokines could be 
considered markers of mitochondrial dysfunction and oxidative stress (Fig.  7.3) 
[96].

7.4  �Neurotrophic Biomarkers

The etiology of major psychiatric disorders has often been linked to altered intracel-
lular signaling, synaptogenesis, and neuroplasticity. Over the last years, the role of 
brain-derived neurotrophic factor (BDNF) in cognitive impairments in psychiatric 
patients has become a focus of interest. BDNF is the most common neurotrophin in 
the human brain and is involved in the synthesis, differentiation, maintenance, and 
survival of neurons, both in the central and in the peripheral nervous systems [97]. 
According to some genomic studies, there is a correlation between the BDNF gene 
polymorphism (Val66Met) and SCZ as found by whole-blood polymerase chain 
reaction (PCR) studies [98], and this association was correlated with cognition [99, 
100]. Additionally, BDNF Met alleles are associated with age of onset and with 
phenotype of aggressive behavior in SCZ [25, 101] (Fig. 7.1).
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Postmortem studies have shown that the mRNA levels of BDNF and TrkB and 
BDNF protein levels are decreased in the hippocampus and prefrontal cortex of 
SCZ and major psychiatric disorders [102, 103]. Also, the levels of other neuro-
trophins such as nerve growth factor (NGF) and NGF receptor, vascular endothelial 
growth factor (VEGF), and neurotrophin-3 (NT-3) have been found to be reduced 
[25, 104–110]. Moreover, serum levels of BDNF can be influenced by pharmaco-
therapy. Generally, BDNF levels were found to be decreased in treated SCZ 
[111–115].

Recently, the differential levels of neuregulin-1 (NRG1), its receptor ErbB4, 
BDNF, DNA methyltransferases 1 (DNMT1), and ten-eleven translocation 1 (TET1) 
proteins in peripheral blood have exhibited promising efficiency for diagnosis of 
first episode psychosis [116].

7.5  �Neurotransmitters Biomarkers

Considering the classical monoamine hypothesis of MDD, several studies con-
ducted on CSF biomarkers for affective disorders have focused on the levels of 
5-hydroxytryptamine (serotonin), dopamine, and noradrenaline and on the respec-
tive enzymes monoamine oxidases and catechol-O-methyltransferase involved in 
their degradation to 5-hydroxyindoleacetic acid (5-HIAA), homovanillic acid 
(HVA), and 3-methoxy-4-hydroxyphenylglycol (MHPG) [117–122]. In addition, 
peripheral metabolic disturbances have been found in MDD, suggesting that char-
acteristic metabolic alterations associated with the pathogenesis of MDD may gen-
erate a detectable molecular phenotype in the blood using metabonomic methods 
[123]. Previous studies have also shown that perturbations in central and peripheral 
neurotransmitters are a hallmark of MDD. In particular, MDD patients showed dis-
turbances in several neurotransmitters in the periphery and brain, including dopa-
mine, glutamate, γ-aminobutyric acid (GABA), and serotonin which were thought 
to be involved in the pathogenesis of the disorder [124]. In this regard, plasma 
metabolite biomarkers (GABA, dopamine, tyramine, kynurenine) could be used to 
distinguish MDD subjects from healthy controls and BD patients with high accu-
racy [123, 124].

7.5.1  �Dopaminergic System

The levels of dopamine uptake have been investigated as a potential biomarker in 
SCZ [125]. In addition, tyrosine hydroxylase (TH), dopamine transporter (DAT) 
mRNA [126, 127], HVA (a major metabolite of dopamine), and the dopamine D3 
receptor (DRD3) mRNAs were found to be increased and DRD4 mRNA levels 
decreased in SCZ [25, 128]. Also brain functional imaging conducted with SPECT 
in SCZ patients showed elevated synaptic dopamine levels [129], increased 
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numbers of postsynaptic dopamine receptors and signal transduction, and striatal 
amphetamine-induced dopamine release [130]. Regarding dopaminergic metabo-
lites in MDD, a recent meta-analysis concluded that only CSF levels of HVA, and 
not those of 5-HIAA or MHPG, are reduced in MDD. Therefore, the potential util-
ity of CSF HVA concentrations as a potential biomarker in MDD should be investi-
gated further (Fig. 7.2) [131].

Another area of specific interest for neurotransmitter biomarkers is the associa-
tion between neuroreceptor density and self-reported personality dimensions, to 
examine the neurobiology of the underlying behavioral phenotypes. As shown from 
recent molecular imaging studies, there are significant correlations between dopa-
minergic markers and specific behavioral traits. In particular, correlations were 
found between striatal D2R density and detachment, a measure of social avoidance 
and withdrawal [132–134]. Conversely, psychosis-related traits do not appear to be 
linked to D2R, but striatal amphetamine-induced dopamine release was found to be 
related to schizotypal personality traits [135]. Similarly an increase in dopamine 
release was reported in SCZ patients using the presynaptic marker [18F]DOPA 
[136].

7.5.2  �Serotonergic System

Alterations in the cortical serotonergic system have been reported in SCZ patients 
[137], such as the findings of decreased levels of the 5-HTT receptors in the frontal 
cortex [138–140]. Altered levels of 5-HT1A and 5-HT1B and reduced 5HT2A 
receptors have been reported in prefrontal cortex and hippocampus of BD and MDD 
patients [141]. In addition, plasma serotonin levels have been found to be decreased, 
while platelet serotonin levels were found to be higher in SCZ [142].

The study of the biological underpinnings of personality traits with the use of 
molecular imaging techniques has several advantages for the early stages, evolution, 
and treatment of psychiatric diseases. In particular, these methods can be used to 
examine the relationship between serotonin receptor availability, social trust, and 
status as potential novel biomarkers in psychiatry. Molecular imaging studies of 
associations between serotonin receptors and transporters with personality traits, 
such as neuroticism, have not been clear. Although the association between the 
5-HT1A receptor and neuroticism was found to have a strong negative correlation, 
there were no associations with the serotonin transporter [143].

7.5.3  �Glutamate and Other Amino Acid Systems

SCZ patients show decreased levels of glutamate, glycine, and d-serine in the CSF 
and plasma, but increased homocysteine [144–146]. An important focus in SCZ is 
glutamatergic dysfunction, in particular N-methyl-d-aspartate (NMDA) receptor 
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hypofunction, as this can be informative about several SCZ symptoms linked to 
excitatory-to-inhibitory imbalance. In this way, administration of the NMDA recep-
tor antagonist ketamine leads to SCZ-like positive, negative, and cognitive symp-
toms [147].

7.5.4  �GABAergic System and Neurosteroids

SCZ patients have been found to display decreased plasma levels of GABA, with 
downregulation of the GABA-A receptor alpha 5 subunit in prefrontal regions and 
polymorphisms and haplotypes in the GABA-A receptor β2 subunit gene [148–
150]. According to the specific role in modulating the GABA receptor, the defi-
ciency of the biosynthesis of allopregnanolone, a positive allosteric modulator of 
GABA action at GABA-A receptors, was found in several neuropsychiatric disor-
ders such as MDD, post-traumatic stress disorder (PTSD), epilepsy, postpartum 
depression, and anorexia nervosa, as well as in premenstrual syndrome and obesity 
[151–156]. The special focus on neurosteroids, inhibitors of NMDA-mediated tonic 
neurotransmission [157], was confirmed in women with post-traumatic stress disor-
der (PTSD) through an association with a block in conversion of progesterone to the 
GABAergic neurosteroids allopregnanolone and pregnanolone [158]. This is impor-
tant for potential therapeutics in PTSD considering the role of the endocannabinoid 
system and associated neurosteroids in this condition [159].

7.5.5  �Cholinergic System

A number of studies have demonstrated involvement of the cholinergic system in 
psychiatric disorders. For example, studies have shown that the nicotinic and mus-
carinic receptors are reduced in thalamus and frontal regions of SCZ [160–162]. 
Thus, studies of these systems may also lead to identification of novel biomarkers 
and drug targets in these diseases.

7.6  �Epigenetics

Epigenetics or epigenomics is a modification of the genome expression without 
changes in the DNA sequence and can result in alterations of gene expression, 
allowing for differential expression of common genetic information [163]. New 
techniques such as genomics, epigenomics, transcriptomics, and proteomics guar-
antee a more global examination of stress-related dysregulation, allowing the dis-
covery of novel biomarkers and targets for new therapies, compared to standard 
biochemical analyses. Many psychiatric patients have alterations in stress response 
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and stress reactivity levels, influenced by biological moderating factors such as the 
HPA axis and early life trauma [164]. Stress hormones (glucocorticoids) and 
immune mediators (cytokines) provide a connection between the peripheral and 
central pathways and have exemplified functional biomarkers of stress response, as 
found in PTSD [165]. The link is further demonstrated by the finding that affective 
and psychotic patients have elevated cortisol secretion and an enlarged pituitary 
gland volume, with hyperactivity of the HPA axis [166–168].

Recently, molecular examinations have discovered aberrant microRNA expres-
sion in different biological samples from psychiatric patients, including brain tissue, 
plasma, serum, and peripheral blood mononuclear cells. Such microRNA altera-
tions may be useful biomarkers in studies of MDD, SCZ, or BD [169–171] as cer-
tain gene expression patterns are present in subgroups of patients [172–183]. A 
recent meta-analysis found that the utilization of blood-derived microRNAs, espe-
cially those from peripheral blood mononuclear cells isolated from patients, may 
lead to a useful set of biomarkers for SCZ diagnosis [184]. Also, the candidate gene 
targets of these microRNAs have been linked to increased risk for developing BD, 
including pathways such as circadian rhythm, neuronal development, and calcium 
metabolism [25].

MicroRNAs are ~22-nucleotide-long, noncoding RNA molecules, which are 
important regulators of posttranscriptional gene expression. They may lead to 
increased or decreased regulation of the translational stage of mRNA processing or 
render it stable or unstable [185].

MicroRNA-16 is a posttranscriptional repressor of the serotonin transporter 
(SERT) and acts as a central regulator of SERT expression. It provides a mechanism 
for adaptive changes in SERT expression in monoaminergic neurons, which can 
differentiate into either serotonergic (1C115-HT) or noradrenergic (1C11NE neuro-
ectodermal cell line) neuronal cells [186]. MicroRNA-134 represses the translation 
of the Limk1 mRNA, a protein kinase that influences dendritic spine development. 
The miRNA-mediated repression of translation occurs via exogenous stimuli like 
BDNF, which has emerged as a key mediator for synaptic efficacy, neuronal con-
nectivity, and neuroplasticity [187]. Interestingly, one study showed that 
microRNA-134 levels in BD were inversely correlated with severity of manic symp-
toms [187].

Chromosome 8p, which contains at least seven transcribed microRNAs, has been 
linked to neurodevelopmental disorders such as autism and SCZ.  Patients with 
DiGeorge syndrome and 22q11.2 deletion have a deficiency in DGCR8 micropro-
cessor complex subunit expression, resulting in decreased microRNA biosynthesis 
and leading to a 30-fold increased risk of SCZ [187, 188]. The functional targets of 
these microRNAs include a number of genes that have been implicated in SCZ, such 
as BDNF, the dopamine D1 receptor, the synaptic protein neuregulin-1 (NRG1), 
and the early growth response gene 3 (EGR3) [188]. Furthermore microRNA-219 
has been found to negatively regulate the function of NMDA receptors, serving as 
an integral component of the NMDA receptor signaling cascade. MicroRNA-219 
may directly modulate NMDA receptor signaling by regulating the expression of 
components in this cascade [188].
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7.7  �Pharmacogenomic Biomarkers

An important type of pharmacogenomic biomarker individuation in psychotropic 
drug classification relates to the cytochrome P450 enzyme family [12, 13, 189]. 
These enzymes play a critical role in drug metabolism and therefore may be 
important in efficacy- and toxicity-related issues. Interestingly, a majority of the 
commercially available pharmacogenomic testing resources assay for CYP2D6 
and CYP2C19, considering that these enzymes are involved in metabolism of 
many commercial drugs and variants, exist which could affect their activities with 
respect to specific drugs. Pharmacogenomics could be useful in determining dos-
age and administration, warnings, precautions, or other areas listed on the pack-
age insert of commercially available drugs. This will be helpful in providing 
information at the personalized level to minimize adverse events, to provide gen-
otype-specific dosing, and to identify polymorphic drug targets and genes [15, 27, 
190] (Fig. 7.2).

7.8  �Electrophysiological Biomarkers

The autonomous nervous system (ANS) and its imbalance is important in physi-
ological and pathological disorders [191, 192], including stress. Accordingly, 
resting heart rate (RHR), heart rate variability (HRV), respiration rate (RR), 
skin temperature (ST), and skin conductance (SC) are common clinical methods 
to measure ANS activity, and HRV is the most established parameter to evaluate 
the sympatho-vagal balance [193–197]. Recent studies show that useful stress 
indexes may also be obtained from electroencephalogram (EEG)-based features 
[198].

Psychiatric patients have an ANS imbalance, especially in psychosis [199–201] 
and depression [202–204]. There are also sympatho-vagal alterations in patients 
affected by anxiety and phobic anxiety, social anxiety and somatoform disorders 
[205–207], alcohol dependence [208, 209], and cognitive impairment [210]. 
Considering intraindividual variability, electrophysiological parameters could be 
possible biomarkers in psychiatry, even if some parameters (RR, RHR, LF, and HF 
parameters of HRV) are more robust and stable over time than others (SC, ST, time 
domain parameters of HRV), and RHR and RR are easy to obtain in everyday clini-
cal practice and can be used as measures of ANS dysregulation [211]. Certainly, two 
or more different parameters should be evaluated to moderate intraindividual vari-
ability [211].

Electrophysiological changes, including the components of sensory gating, mis-
match negativity (MMN), and P300 of the evoked potentials are consistently 
reported to be abnormal in SCZ [212].
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7.9  �Gut Microbiota

The microbiota is composed of over 100 trillion of commensal bacteria in symbiosis 
with human body, in the distal gut and fecal metabolites, and can be examined with 
metabolomic analysis [nuclear magnetic resonance (NMR) spectroscopy] of fecal 
water [213].

The gut and the brain are strictly connected through bidirectional signaling path-
ways [214]. Bacteria can produce GABA, tryptophan, 5-HT, and several neurotrans-
mitters and monoamines. Therefore, the gut microbiota could regulate many 
activities within the brain including hippocampal neurogenesis, myelin-related gene 
expression in the PFC (an important brain region involved in anxiety and social 
behavior), CNS serotonergic neurotransmission, and stress and antidepressant treat-
ment response [215–217]. The gut microbiota could also control brain functional 
pathways through inflammasome signaling and could therefore be useful as both 
biomarkers and potential drug targets in psychiatry [218]. Moreover, in epigenetic 
studies of SCZ, the impact of microbiota should also be taken into consideration 
[219, 220] (Fig. 7.1).

MDD patients have an increase in gut microbiota alpha diversity, in the genera 
Eggerthella, Holdemania, Gelria, Turicibacter, Paraprevotella, and Anaerofilm, 
with overrepresentation of Bacteroidales, Oscillibacter, and Alistipes, reductions in 
Prevotella and Dialister, and lower numbers of Bifidobacterium, Lachnospiraceae, 
and Lactobacillus [221–223], with high levels of serum IgM and IgA against lipo-
polysaccharide of gram-negative gut commensals. This is coherent with the patho-
physiology of psychiatric illnesses linked to bacterial translocation, through 
increased gut permeability [224]. Interestingly, diet and depression are strongly 
linked through the gut microbiota. Dietary fiber can modify the composition of the 
intestinal flora and affect brain and behavior [225]. Indeed, higher intake of dietary 
fiber (fruits and vegetables) leads to a lower prevalence of MDD [226]. Specifically, 
the Mediterranean diet could be protective, while the Western diet could increase 
risk of MDD through effects on the microbiota [227]. A probiotic combination of 
Lactobacillus helveticus R0052 and Bifidobacterium longum R0175 has been shown 
to have beneficial effects in human resilience to stress [228]. A recent systematic 
review on the fecal microbiota concluded that Archaeon Methanobrevibacter smithii 
is increased in anorexia nervosa patients [229]. Methanobrevibacter smithii may be 
a benchmark biomarker for future studies.

7.10  �Conclusions

Psychiatry is in need of an objective, valid diagnostic classification that transcends 
the Diagnostic and Statistical Manual (DSM) model of symptom clusters. The US 
National Institute of Mental Health (NIMH) Research Domain Criteria (RDoC) 
[230] has called for the inclusion of biological markers for either diagnosis or 
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treatment outcomes. However, there have been many criticisms, and, at present, 
there are no accepted specific biomarkers in psychiatry [230, 231].

A focal point of medicine is the search of biomarkers to aid correct diagnosis, 
risk prognosis, and prediction of response to treatment. In the case of psychiatric 
disorders, it is important to have clear criteria for distinguishing pathological behav-
iors and appropriate methods to categorize these diseases and facilitate earlier inter-
vention for better outcomes. And one of the most important aims in psychiatric 
medicine is that of personalized treatment for prediction of response and therapeutic 
or adverse effects at the level of the individual [232]. In summary, we should view 
with optimism our capabilities to develop biomarkers that will ultimately lead to 
new interventions and personalized medicines and transform our ability to prevent 
illness onset and treat complex psychiatric disorders more effectively [232].

Considering the complex interactions among genotype, lifestyle, diet, pharmaco-
logical therapy, environmental exposure, and gut microflora, the most ambitious goals 
could be the discovery of novel pharmacological targets and to rationalize the utiliza-
tion of known drugs. Finally, this chapter underlines important advices for future stud-
ies, to create a link between several types of biomarkers considering that psychiatric 
disorders are complex diseases. Thus, the use of a single biomarker is not advised, but 
rather a combination of diverse biomarker types. This could lead to improved treat-
ment of psychiatric patients on a personalized level for the best possible outcomes.
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