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Abstract Psychiatric disorders are some of the most impairing human diseases. 
Among them, bipolar disorder and schizophrenia are the most common. Both have 
complicated diagnostics due to their phenotypic, biological, and genetic heteroge-
neity, unknown etiology, and the underlying biological pathways, and molecular 
mechanisms are still not completely understood. Given the multifactorial complex-
ity of these disorders, identification and implementation of metabolic biomarkers 
would assist in their early detection and diagnosis and facilitate disease monitoring 
and treatment responses. To date, numerous studies have utilized metabolomics to 
better understand psychiatric disorders, and findings from these studies have begun 
to converge. In this chapter, we briefly describe some of the metabolomic biomark-
ers found in these two disorders.

Keywords Psychiatric illness · Mental disorders · Schizophrenia · Bipolar 
disorder · Biomarkers · Metabolomics

14.1  Introduction

Millions of people experience mental or neuropsychiatric disorders including bipo-
lar affective disorder and schizophrenia, among others. These mental illnesses, usu-
ally observed in childhood, adolescence, and early adulthood, are characterized by 
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a combination of abnormal thoughts, emotions, behaviors, and disturbed perception 
of reality, affecting not only the person with illness but also society. While not being 
completely understood in terms of their causes, the symptoms of mental illnesses 
are scientifically valid and well known. Treatments are readily available and include 
psychotherapy and medication and are effective for most people, but there are no 
specific tests that can be used as an add-on for diagnosis. As such, there are high 
levels of curiosity to understand if molecular biomarkers can assist in making 
clearer diagnostic decisions.

Biomarker research has been an extensive success in various medical fields so 
far, but using biomarkers to diagnose and predict treatment response for mental 
disorders is still a challenge [1]. Based on observations that a specific compound 
may be present or altered just in patients with a given mental disorder and not in 
healthy individuals, a valid biomarker can be found if successfully detected. 
However, the fundamental definition of a psychiatric disorder is based on subjective 
and/or behavioral criteria which are determined clinically, making it difficult to 
determine whether or not a person has a particular disorder [2].

The search for biomarkers for psychiatric disorders has a long history, with ear-
lier studies investigating molecular markers, like platelet imipramine binding or 
cerebrospinal 5-hydroxyindoleacetic acid (5-HIAA) in people with depression [3], 
or behavioral markers such as smooth pursuit eye movements in people with schizo-
phrenia [4]. Currently, global profiling approaches, such as metabolomics, are 
expected to be able to pinpoint discriminating molecules as clinical biomarkers, 
providing an overview of the metabolic status and global biochemical events associ-
ated with a particular cellular or biological system [5]. Metabolomics has the poten-
tial to scrutinize candidate markers that will improve the diagnosis of the diseases 
facilitating better patient prognoses and, thus, the development of novel therapeutic 
strategies [6]. Metabolic markers in diagnosis are thought to be one of the most 
interesting categories of biomarkers, given their role in physiological processes. 
Since a biomarker should be detected and measured in a sample obtained using 
noninvasive procedures, body fluids including plasma/serum, urine, saliva, and, to 
some extent, cerebrospinal fluid (CSF) are thought to be useful sources for bio-
marker monitoring [5]. Furthermore, the scientific synergy between biomarkers and 
metabolomics is important as metabolomics has been used in many instances to 
identify novel biomarkers which can lead to new and improved therapeutic strate-
gies for many serious and life-threatening diseases. Preliminary metabolomic signa-
tures and some biomarkers have already been described for schizophrenia and 
bipolar disorder [7–11], but the endophenotype specificities are still under discus-
sion, and identification of illness-specific biomarkers capable of adding not only to 
the diagnosis process but for use in monitoring prognosis or clinical response to 
treatment is still lacking. We need to improve the understanding of the biological 
abnormalities in psychiatric illnesses across conventional diagnostic boundaries. 
This review focuses on metabolomic biomarkers for bipolar disorder and 
schizophrenia.
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14.1.1  Metabolomic Biomarkers

The use of metabolomics in the examination for novel biomarkers in different clini-
cal areas is based on the hypothesis that diseases cause disruption of biochemical 
pathways leading to a metabolic fingerprint characteristic of the site and nature of 
the disease [12]. The term “biomarker” or “biological marker” was first used in 
1989 as a medical subject heading to mean “measurable and quantifiable biological 
parameters which serve as indexes for health- and physiology-related assessments 
such as disease risk, psychiatric disorders, environmental exposure and its effects, 
disease diagnosis, metabolic processes, substance abuse, epidemiologic studies 
etc.” In 2001 that definition was standardized and further defined. One of the earliest 
biomarker approaches in psychiatry [13] employed chromatography to detect a uri-
nary metabolite, 3,4-dimethoxyphenylethylamine (later identified as p-tyramine 
[14]), which formed a controversial “pink spot” on paper chromatograms among 
those with schizophrenia but not in healthy individuals. Since then, genomic and 
transcriptomic approaches have dominated biomarker discovery efforts in psychiat-
ric disorders. However, the global study of metabolites (i.e., metabolomics) emerged 
later as a promising approach for identification of potential diagnostic and treatment 
response biomarkers for psychiatric disorders [15].

Currently, there are several types of metabolomic biomarkers, which enable 
response prediction or dynamical description of both disease progression and treat-
ment effectiveness. The integration between clinical metabolomics and pharmacol-
ogy may allow the discovery of more meaningful biomarkers which could enable 
the development of individualized treatment methods. The success of this integra-
tion depends on the explicit consideration of study designs and data analysis tech-
niques that can effectively quantify sources of biological variability [16].

To date, the most explored bioanalytical platforms in metabolomics research are 
nuclear magnetic resonance (NMR) and mass spectrometry (MS) [17]. The recent 
rapid development of a range of analytical platforms including gas chromatography, 
liquid chromatography techniques like high-performance liquid chromatography 
(HPLC) or ultra-performance liquid chromatography (UPLC), and capillary elec-
trophoresis, and the use of these as hyphenated analytical methods coupled to MS 
or NMR, created new possibilities for biomarker research. Other techniques popular 
in metabolomic research include magnetic resonance imaging (MRI) and high- 
resolution magic angle spinning spectroscopy (HR-MAS). Bioanalytical platforms 
enable separation, detection, characterization, and quantification of metabolites, 
and then we can relate this information to altered metabolic pathways. Due to the 
complexity of the metabolome and the diverse properties of metabolites, no single 
analytical platform can detect all of the metabolites in a biological sample. The 
combined use of modern instrumental analytical approaches has helped to increase 
the coverage of detected metabolites that cannot be achieved by single-analysis 
techniques [18–20]. Integrated platforms have been frequently used to provide sen-
sitive and reliable detection of thousands of metabolites in a biofluid sample 
(Fig. 14.1).
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Fig. 14.1 Workflow in untargeted metabolomic studies. After clinical evaluation and sample col-
lection from at least two groups (e.g., disease and healthy), an appropriate analytical method or 
combination of more than one should be used for sample assessment and the resulting large 
amounts of data analyzed for differences that might point to mental disorder biomarkers
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Bioanalytical platforms in metabolomics start from a comparative analysis 
among at least two groups of samples and rely on big data processing by chemomet-
rics. The most used of the data processing techniques are multivariate statistical 
analyses such as principal component analysis (PCA) to explore the data and detect 
outliers [21, 22], partial least squares discriminant analysis (PLS-DA) and orthogo-
nal partial least squares discriminant analysis (OPLS-DA) to classify the samples 
and identify the main metabolites responsible for the discrimination [23, 24], and 
logistic regression to evaluate the metabolites as biomarkers [25]. The list of tools 
available for spectral processing and data analysis are available in Alonso et al. [19].

14.2  Biomarkers in Psychiatric Disorders

14.2.1  Metabolomic Biomarkers in Bipolar Disorder

Bipolar disorder is chronic and recurrent disorder that affects around 1% of the 
global population [26–28], leading to disabilities in young people (mostly between 
18 and 44 years of age), such as cognitive and functional impairment, and increased 
mortality particularly from suicide and cardiovascular disease [29, 30]. Bipolar dis-
order is characterized as biphasic moods that include depression and mania (in 
some cases hypomania) and which occur as recurrent episodes of changes in behav-
ior of individuals. There are several subclassifications of this disorder including 
bipolar I, bipolar II, cyclothymia, and other atypical forms, depending on severity 
and duration of depressive and manic episodes [29]. The diagnostic error still leads 
to erroneous treatment, increasing patient suffering, and, therefore, greater suicide 
risk [31].

Bipolar disorder is a major cause of comorbidity because it directly affects the 
productivity of people making the disease a socioeconomic problem, besides being 
a major cause of death, and 25% of those affected by the disease attempt suicide 
with 11% success [30, 32–34]. Bipolar disorder is a historically known disease with 
well-documented epidemiology [30]. In the early nineteenth century, it was believed 
that the cause of most diseases was a problem of uric acid metabolism. By exerting 
influence on common diseases such as gout, high blood pressure, and renal calculus, 
it was also attributed to dementia, schizophrenia, mania, depression, and bipolar 
disorder [31]. Lithium was discovered as a chemical element in the same century. In 
the tests performed with its salts, mainly lithium carbonate, it was found that it is 
capable of dissolving crystals of uric acid. Based on this information, psychiatrists 
started prescribing lithium carbonate (Li2CO3) for mental disorders. This study 
could be considered as one of the first metabolomic research instances. Other stud-
ies showed that Li+ was effective against bipolar disorder [31, 35, 36].

Bipolar disorder biomarkers have been studied in blood, serum, urine, and 
plasma by 1H NMR [10, 37–39], by gas chromatography (GC)-MS [38, 40, 41], and 
through in  vivo brain imaging experiments [42–44]. Table  14.1 lists some of 
 metabolites that are altered for this type of mental disorder including 
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Table 14.1 Specific biomarkers related to bipolar disorders

Biomarkers Sample type
Analytical 
platforms

Acetate-choline [39] Human blood serum NMR
Acetone [10, 45] Female urine NMR
N-Acetyl-aspartate [46] Brain MRS
N-Acetyl-aspartate (NAA)/PCr-Cr [47] White matter MRI
N-Acetyl-aspartyl-glutamate [46] Brain MRS
N-Acetyl-aspartyl-glutamic acid [37] Human blood serum NMR
N-Acetyl-glutamic acid [48] Serum CE-TOFMS
N-Acetyl-phenylalanine [37] Human blood serum NMR
Adipic acid [10] Urine GC-MS
β-Alanine [10, 38, 48] Urine 1H-NMR, 

GC-MS,
CE-TOFMS

γ-Aminobutyric acid (GABA) [42, 49] Brain, temporal lobes MRS, MRI
β-Amino-isobutyric acid [10] Urine GC-MS
Amygdalin [37] Human blood serum NMR
Arabitol [10] Urine GC-MS
Arginine [48] Serum CE-TOFMS
Azelaic acid [10, 38] Urine NMR, GC-MS
Choline [9, 37, 45] Human blood serum, urine, male 

urine
NMR

Citrulline [50] Plasma of drug-free patients CE-TOFMS
Creatine [42–44, 46] Brain, white and gray matter, 

cerebrospinal fluid
MRS, MRI

Formate [10, 45] Male urine NMR
Glutamate [39, 42–44] Brain, human blood serum, white 

and gray matter, cerebrospinal fluid
MRS, MRI, 
NMR

Glutamine [37, 42–44] Human blood serum, brain, white 
and gray matter, cerebrospinal fluid

NMR, MRS, 
MRI

Glycine [10] Urine GC-MS
Glycerol-phosphocholine + 
phosphocholine (GPC + PC) [47]

White matter MRI

Glycolate [10] Urine NMR
5-HIAA [51] White matter HPLC, DTI
5-HT serotonin neurotransmitter [51] White matter HPLC, DTI
4-Hydroxybenzoic acid [10] Urine GC-MS
α-Hydroxybutyrate [9, 10, 38, 45] Urine NMR, GC-MS
5-Hydroxy-hexanoic acid [10] Urine GC-MS
D-Hydroxy-pyrimidine [10, 38, 41] Urine NMR, GC-MS
Isobutyrate [9] Urine NMR
Isocitric acid (isocitrate) [52] CFS (rats) CE-TOFMS
α-Ketoglutaric acid [37] Human blood serum NMR

(continued)
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α-hydroxybutyrate, choline, isobutyrate, and N-methylnicotinamide which differen-
tiate patients with bipolar disorders from healthy individuals, while propionate, for-
mate, 2,3- dihydroxybutanoic acid, phenylalanine, 2,4-dihydroxypyrimidine, and 
β-alanine were differentiated in patients with bipolar disorder and mild cognitive 
disorders [9, 41, 55].

In some studies, such as 1H-NMR analysis of anterior cingulate cortex of brain tis-
sue, a higher concentration of myo-inositol in patients with bipolar disorder was found 
and when patients underwent treatment with lithium-based drugs, the concentration of 
myo-inositol was decreased considerably [53]. These data were reinforced by the 
metabolomic analysis of blood serum [37]. Myo-inositol is synthesized from special 
plasma membrane lipids by inositol monophosphatase type II (IMPase II), which is a 
candidate enzyme for Li+ since it is inhibited by Li + in tests using pharmacologically 
relevant concentrations in vitro [56]. Myo-inositol acts as a secondary messenger 

Table 14.1 (continued)

Biomarkers Sample type
Analytical 
platforms

Kynurenine, kynurenic acid and 
3-hydroxy-kynurenine [51]

White matter HPLC, DTI

Lactate[10] Urine NMR
Lipids and lipoamide [37, 39] Human blood serum NMR
Mannitol [10] Urine GC-MS
Methylmalonic acid [10] Urine GC-MS
N-Methyl-nicotinamide [45] Urine NMR
Myo-inositol [37, 39, 53] Human blood serum NMR
Oxalacetate [45] Female urine NMR
Phenylalanine [10] Urine GC-MS
Phosphatidic acid (44:4) [54] Human blood serum UHPLC-MS
Phosphatidic acid (48:8 (OH)) [54] Human blood serum UHPLC-MS
Phosphatidylethanolamine (42:5) [54] Human blood serum UHPLC-MS
Phosphatidylglycerol (32:4 (OH)) [54] Human blood serum UHPLC-MS
Phosphatidylinositol (40:3) [54] Human blood serum UHPLC-MS
Phosphocreatine-creatine (PCr-Cr) [44, 
47]

White matter and gray matter, 
cerebrospinal fluid

MRI

Propionate [10] Urine NMR
Pseudouridine [38] Urine NMR, GC-MS
Pyruvate Serum CE-TOFMS
Pyroglutamic acid [10] Urine GC-MS
Serine [48] Serum CE-TOFMS
Triacylglycerol (42:3) [54] Human blood serum UHPLC-MS
Tryptophan [51] White matter HPLC, DTI
5-Hydroxyindole-3-acetic acid 
(5-HIAA) [51]

White matter HPLC, DTI

5-Hydroxytryptamine (5-HT) serotonin 
neurotransmitter [51]

White matter HPLC, DTI
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and is responsible for immobilizing calcium (Ca2+) stored inside the cell, which acts 
as a prosthetic agent of other enzymes such as hexokinase. In general, myo-inositol 
is able to initiate several metabolic paths vital to cellular functions [57]. The action 
of Li+ may be linked to the competitive inhibition of inositol monophosphatase II, 
which would lead to a decrease in myo-inositol concentrations in neurons, which 
depend on this enzyme to synthesize it since myo-inositol does not cross the blood-
brain barrier [58].

On the other hand, glutamate, glutamine, creatine, and the ratios among these 
metabolites are the most cited in the literature, and NMR, MRI, LC-MS, and HPLC 
techniques have been used for their detection [37, 39, 42–44]. Glutamate is one of 
the most abundant neurotransmitters in the brain, as a precursor of glutamine, 
γ-aminobutyric acid (GABA), and glutathione. It is one of the structural compo-
nents of proteins and an intermediate metabolite [59–61]. The differences between 
metabolites indicated by Sethi et al. [37] lead to conclusion that some possible bio-
markers for bipolar disorder are α-ketoisovaleric acid, α-ketoglutaric acid, N-acetyl- 
aspartyl glutamic acid, N-acetyl-phenylalanine, and glutamine, which were detected 
or altered only in bipolar disorder patients, while N-acetyl-alanine was detected 
only in controls [37]. N-acetyl-aspartate, N-acetyl-aspartyl-glutamate, creatine, and 
phosphocreatine are some of the metabolites suggested by Haarman et al. [46] as 
the levels of these were decreased in the left hippocampus after MRS quantification 
using LC Model. The authors hypothesized that these results are a consequence of 
diminished neuronal integrity in this region. N-acetyl-aspartate is the second most 
abundant substance in the central nervous system, formed in mitochondria from 
acetyl-CoA and aspartate. Phosphocreatine and creatine are important buffers in the 
brain and muscle tissues, providing energy and a constant ATP concentration, and a 
decrease in their concentrations might be due to cell death [46].

A lipidomic study in blood serum employing ultra-HPLC (UHPLC) coupled 
with high-resolution MS (HRMS) identified lipid profiles of bipolar disorder 
patients and healthy individuals. Sphingolipids and glycerolipids were increased, 
while glycerophospholipids were decreased in patient serum samples. Of the lipids 
with greater differential proportions in the groups, the authors concluded that phos-
pholipid biosynthesis is the most altered pathway in bipolar disorder patients [54].

Recently, Soeiro-de-Souza et al. [43] investigated and compared healthy indi-
viduals with bipolar disorder I and II patients, who were treated with Li+, anticon-
vulsants, and antipsychotics. The authors carried out brain imaging using magnetic 
resonance spectroscopy and quantified glutamate, glutamine, and creatine and their 
ratios after treatment. One of their conclusions was that bipolar disorder patients 
and controls had the same volume of white matter but lower volumes of anterior 
cingulate cortex and a higher volume of CSF. Also, the change in the concentration 
of glutamate was observed in treated patients. Moreover, they found a lower ratio of 
glutamate/creatine during medication and a constant glutamine/creatine ratio. By 
comparing bipolar subjects with healthy individuals, the higher glutamate/creatine 
and glutamine/creatine ratios were observed after omitting medications, which 
might be indicative that their increments were not caused by medication use [43]. 
The concentration of glutamine was high, and the glutamate/glutamine ratio and 
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glutamate concentrations were lower in the patient group when compared to the 
healthy controls. Pairing the groups by age and gender, lower glutamate concentra-
tions and glutamate/glutamine ratios were observed in the bipolar patients [42].

Zheng et  al. [9] examined urinary samples using a NMR-based metabonomic 
method and found that choline, isobutyrate, α-hydroxybutyrate, and 
N-methylnicotinamide could be good urinary metabolite biomarkers for bipolar dis-
order (AUC of 0.89 for training samples and 0.86 in the sample test). They found 
that the increase of α-hydroxybutyrate was derived from elevated levels of 
α-ketobutyrate, which is consequence of a higher conversion rate of cystathionine to 
cysteine. The altered levels of choline in bipolar patients’ urine could be due to the 
abnormalities in the acetylcholine neurotransmission precursor mechanism and 
abnormal phospholipid metabolism [9, 62]. The higher concentration of isobutyrate 
in urine is a result of a lower blood concentration of valine, which can influence an 
increase in concentration of catecholamines and serotonin. The N-methylnicotina 
mide concentration was decreased in bipolar subjects being an end product of nico-
tinamide processing in the tryptophan-NAD+ pathway. Tryptophan is a precursor of 
kynurenine and serotonin metabolism, and the decrease in metabolites of nicotinic 
acid leads to an increase in kynurenine metabolism [9]. Five metabolites were speci-
fied as potential biomarkers (pseudouridine, β-alanine, α-hydroxybutyrate, 
2,4- dihydroxypyrimidine, and azelaic acid) in bipolar disorder by a combined 1H- 
NMR/GC-MS approach [38]. Previous studies from the same group suggested that 
2,4-dihydroxypyrimidine, N-methylnicotinamide, choline, isobutyrate, and 
α-hydroxybutyrate are as possible metabolites for diagnosis of bipolar disorder 
using urine samples examined by GC-MS analysis [9, 38, 41].

Another study that connects kynurenic acid and metabolites from kynurenine 
metabolism to bipolar disorder is from Poletti et al. [51]. Kynurenine and kynurenic 
acid were determined from bipolar disorder patient plasma using HPLC and diffu-
sion tensor imaging (DTI) in an evaluation of white matter microstructure. There is 
a hypothesis that serotonergic turnover in bipolar disorder could influence the white 
matter of brain microstructure as that changes in myelination and integrity of myelin 
can influence signal speed and communication with different brain areas [63–65]. 
Through application of DTI, it was possible to confirm the hypothesis in a homoge-
neous sample of patients with bipolar disorder and to link kynurenine acid and 
5-hydroxyacetic acid with changes in white matter microstructure. The result dem-
onstrated an inefficient turnover of serotonin, but this did not affect tryptophan, 
despite the lower concentration of the latter in blood samples [51].

14.2.2  Metabolomic Biomarkers in Schizophrenia

Schizophrenia is a chronic psychiatric disorder with a heterogeneous genetic and 
neurobiological background that influences early brain development and is 
expressed as a combination of psychotic symptoms such as hallucinations and delu-
sions, along with organizational, motivational, and cognitive dysfunctions [66, 67]. 
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It starts in late adolescence or early adulthood and affects approximately 0.5–1% of 
the world population with high heritability [68].

Abnormalities in neurotransmission have provided the basis for theories on the 
pathophysiology of schizophrenia. Most of these theories center on either an excess 
or a deficiency of neurotransmitters such as dopamine, serotonin, and glutamate. 
Other theories implicate aspartate, glycine, and γ-aminobutyric acid (GABA) as 
part of the neurochemical imbalance in schizophrenia [69]. Another theory for the 
symptoms of schizophrenia involves the activity of glutamate, the major excitatory 
neurotransmitter in the brain. This theory has arisen in response to the finding that 
phencyclidine and ketamine, both noncompetitive NMDA/glutamate antagonists, 
could induce schizophrenia-like symptoms [70]. However, there is not a consensus 
on whether there is an increase [71, 72] or a decrease [73, 74] of these metabolite 
concentrations. Metabolites, like tele-methylhistamine (t-MH), were detected by 
GC-MS in CSF samples of schizophrenia patients. Other studies showed that t-MH 
is associated with an increase of histaminergic activity and desensitization of neural 
tissues due to decreases of histamine H1 and H2 receptors and an increase of hista-
mine concentrations [75].

Several metabolomic studies have also pointed to some metabolic abnormalities 
(Table 14.2). He et al. [8] demonstrated differences in amino acid and lipid metabo-
lism in medicated and non-medicated schizophrenia patients when compared to the 
control group. Subsequent analyses of these potentially relevant metabolites as well 
as analysis of known schizophrenia risk genes identified the glutamine and arginine 
signaling pathways as possible risk factors. Another study [71] raised the possibility 
that there are at least two different schizophrenia-related risk pathways, and these 
are involved in glucoregulation and proline metabolism. In addition to glutamine 
and arginine metabolism, amino acids altered in plasma or CSF of schizophrenia 
patients have been linked to nitrogen compound biosynthetic processes. The finding 
of changes in certain lipids, fatty acids, and amino acids has implicated phospho-
lipid synthesis [85]. The use of metabolic profiles in CSF from drug-naïve patients 
compared with matched controls found elevated glucose concentrations in patients, 
whereas the serum glucose concentration showed no differences [7]. Lipid analysis 
in plasma from patients with schizophrenia compared with that of healthy individu-
als revealed significantly lower concentrations of lipids [87]. Potential metabolite 
markers consisted of several fatty acids and ketone bodies, and the presumed upreg-
ulated fatty acid catabolism may result from an insufficiency of glucose supply in 
the brains of patients with schizophrenia [72]. Also, glycine and serine are amino 
acids that have frequently been reported as markers of schizophrenia due to their 
significant changes in the metabolic profile among patients and healthy individuals 
[84, 88, 89].

Noninvasive analyses of schizophrenia patient expired breaths indicated a higher 
level of alkanes when compared to healthy individuals. The level of ethane and 
pentane, which cross the pulmonary alveolar membrane, is result of dead cells due 
to peroxidation of cell membrane lipids. Other alkanes such as butane were not 
detected. Furthermore, pentane is not a specific biomarker for schizophrenia since it 
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Table 14.2 Specific biomarkers related to schizophrenia

Biomarkers Sample type Analytical platforms

Acetoacetate [72] Urine GC-TOFMS and 
1H-NMR

Acetone [72] Urine GC-TOFMS and 
1H-NMR

N-Acetyl-aspartate [76] Serum GC-MS
Cis-aconitic acid [72] Urine GC-TOFMS
Allantoin [77] Serum GC-MS
2-Aminoadipic acid [72] Urine GC-TOFMS
α-Aminobutyrate (AABA) [72] Serum

Urine
GC-TOFMS

γ-Aminobutyric acid (GABA) [77] Blood LC-ESI/MS/MS
Arachidonic acid [78] Serum HPLC-MS

HPLC fluorescence
Arginine [8] Plasma MS
Aspartic acid [40, 72, 76] Serum

Peripheral blood mononuclear 
cells (PBMC)

GC-MS
GC-TOFMS

Benzoic acid [40] PBMC GC-MS
Betaine [77] Blood and plasma CE-TOFMS
1,3-Bisphosphoglycerate [76] Serum GC-MS
Carbon disulfide [79] Breath GC-MS
Catechol [72] Urine GC-TOFMS
Cholesterol [76, 80] Serum GC-MS
Citrate [7, 72, 76] Serum

CSF
GC-MS
GC-TOFMS and 
1H-NMR

Citric acid [55] PBMC GC-MS
Creatine [77] Blood and plasma CE-TOFMS
Creatinine [40] PBMC GC-MS
Cystine [72] Serum GC-TOFMS
6-Deoxy-mannofuranose [80] Serum GC-MS
Dihydroxyacetone phosphate [55] PBMC GC-MS
2,3-Dihydroxybutanoic acid [72] Urine GC-TOFMS
3,4-Dihydroxyphenylacetic acid 
(DOPAC) [77]

Blood LC-ESI/MS/MS

3,4-Dimethoxyphenethylamine (3,4- 
DMPEA) [81]

Urine MS

Dopamine (DA) [40, 77] PBMC
Blood

GC-MS
LC-ESI/MS/MS

Eicosanoic acid [80] Serum GC-MS
Eicosenoic acid [72] Serum GC-TOFMS
Erythrose [76] Serum GC-MS
Ethane [82] Breath GC-MS
2-Ethyl-3-hydroxypropionic acid [72] Urine GC-TOFMS

(continued)
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Table 14.2 (continued)

Biomarkers Sample type Analytical platforms

Fructose [55] PBMC GC-MS
Fructose 6-phosphate [55] PBMC GC-MS
Fumaric acid [40] PBMC GC-MS
Galactose oxime [80] Serum GC-MS
Glucose [7, 55, 72, 76] PBMC

Urine
CSF
Serum

GC-MS,
GC-TOFMS and 
1H-NMR

Glucose 6-phosphate [55] PBMC GC-MS
Gluconic acid [77] Blood and plasma CE-TOFMS
Glucuronic acid [76] Serum GC-MS
Glutamate [72, 77, 78, 83] Blood, plasma, urine CE-TOFMS;

LC-ESI/MS/MS
GC-TOFMS
HPLC-MS

Glutamine [8] Plasma
CSF

MS

γ-Glutamylcysteine [78] Serum HPLC-MS
HPLC fluorescence

Glutathione [78] Serum HPLC-MS
HPLC fluorescence

Glyceraldehyde-3-phosphate [55] PBMC GC-MS
Glycerate [72] Serum GC-TOFMS
Glycerate 3-phosphate [55] PBMC GC-MS
Glycerol [40, 76] PBMC

Serum
GC-MS

Glycerol 3-phosphate [55] PBMC GC-MS
Glycine [76, 84] Plasma

Serum
GC-MS

Glycocyamine [72] Urine GC-TOFMS
Heptadecanoic acid [80] Serum GC-MS
Hexadecanoic acid
(palmitic acid) [72, 76]

Serum GC-MS
GC-TOFMS

Histidine [8] Plasma MS
Homoserine [40] PBMC GC-MS
Homovanillic acid (HVA) [77] Blood LC-ESI/MS/MS
Hydroxyacetic acid [72] Urine GC-TOFMS
3-Hydroxyadipic acid [72] Urine GC-TOFMS
2-Hydroxybutyrate [72] Serum

Urine
GC-TOFMS

3-Hydroxybutyrate [72, 78] Serum
Urine

GC-TOFMS and 
1H-NMR;
HPLC-MS

2-Hydroxyethyl palmitate [40] PBMC GC-MS

(continued)
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Table 14.2 (continued)

Biomarkers Sample type Analytical platforms

5-Hydroxyindole-3-acetic acid (5-HIAA) 
[77]

Blood LC-ESI/MS/MS

Hydroxylamine [40] PBMC GC-MS
3-Hydroxysebacic acid [72] Urine GC-TOFMS
5-Hydroxytryptamine (5-HT) [77, 78] Blood

Serum
LC-ESI/MS/MS
HPLC-MS
HPLC fluorescence

Inositol [40] PBMC GC-MS
Isoleucine [72] Urine GC-TOFMS
α-Ketoglutarate [76] Serum GC-MS
L-Kynurenine [78] Serum HPLC-MS

HPLC fluorescence
Lactate [7, 55, 72, 76, 78] PBMC

Serum
CSF

GC-MS;
GC-TOFMS; 
1H-NMR;
HPLC-MS

Lactobionic acid [76] Serum GC-MS
Linoleic acid [72, 76, 78] Serum HPLC-MS

HPLC fluorescence
GC-MS
GC-TOFMS

Malate [72] Serum GC-TOFMS
Maltose [40] PBMC GC-MS
3-Methoxy-4-hydroxyphenylglycol 
(MHPG) [77]

Blood LC-ESI/MS/MS

Tele-methylhistamine [85, 86] CSF GC-MS
Methyl phosphate [40] PBMC GC-MS
Myo-inositol [72, 76] Serum GC-MS

GC-TOFMS
Norepinephrine (NE) [77] Blood LC-ESI/MS/MS
Octadecanoic acid
(stearic acid) [72, 76]

Serum GC-MS
GC-TOFMS

(9Z)-Octadec-9-enoic acid
(oleic acid) [72, 80]

Serum GC-MS
GC-TOFMS

Octanoic acid [40] PBMC GC-MS
Ornithine [8] Plasma MS
2-Oxoglutarate [72] Serum GC-TOFMS
1-Oxoproline [80] Serum GC-MS
PC ae C38:6 [8] Plasma MS
Pentadecanoic acid [80] Serum GC-MS
Pentane [79, 82] Breath GC-MS
4-Pentenoic acid [72] Urine GC-TOFMS
Phenylalanine [72] Serum GC-TOFMS
Pipecolinic acid [72] Urine GC-TOFMS

(continued)
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has been reported to occur in other diseases such as heart attack, rheumatoid arthri-
tis, and nutritional deficiency [79, 82].

Another biomarker that has been studied is trimethylglycine (also known as beta-
ine) since it participates in homocysteine metabolism. More specifically, it partici-
pates in the conversion of homocysteine to methionine which is mediated by 
betaine-homocysteine methyltransferase in human tissues. Koike et al. [83] observed 
a decrease of betaine levels in schizophrenia patients and consequently an increase 
of the homocysteine concentration in the brain, which can lead to a high oxidative 
stress and a neural damage. In addition to betaine, hydroxylamine, pyroglutamic 
acid, γ-tocopherol, and α-tocopherol have been listed as markers of the increase in 
oxidative stress in schizophrenia patients [83]. The higher concentrations of hydrox-
ylamine in patients compared to healthy individuals suggest a higher accumulation 
of reactive oxygen species (ROS) in patients with schizophrenia, while lower 
tocopherol concentrations indicate a decrease in antioxidative defense [40].

Table 14.2 (continued)

Biomarkers Sample type Analytical platforms

2-Piperidinecarboxylic acid [80] Serum GC-MS
Pyroglutamic acid (5-oxoproline) [40, 72] PBMC

Urine
Serum

GC-MS
GC-TOFMS

Pyruvate [55, 72] PBMC
Serum

GC-MS
GC-TOFMS

Ribose 5-phosphate [55] PBMC GC-MS
Serine [72, 78, 84] Plasma, serum GC-MS,

GC-TOFMS,
HPLC-MS

Sorbitol [40] PBMC GC-MS
Suberic acid [72] Urine GC-TOFMS
Succinic acid [55] PBMC GC-MS
Tetradecanoic acid [72] Serum GC-TOFMS
Threonic acid [72] Urine GC-TOFMS
Threonine [78] Serum HPLC-MS

HPLC fluorescence
α-Tocopherol [40] PBMC GC-MS
γ-Tocopherol [40, 76] Serum

PBMC
GC-MS

-Tryptophan [76, 78] Serum HPLC-MS
HPLC fluorescence
GC-MS

L-Tyrosine [78] Serum HPLC-MS
HPLC fluorescence

Uric acid [76] Serum GC-MS
Valine [40, 72] PBMC

Urine
GC-MS
GC-TOFMS

Vanillylmandelic acid (VMA) [77] Blood LC-ESI/MS/MS
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As already stated, biomarker candidates found for BD and schizophrenia are 
numerous, but these have still not been tested in geographically different environ-
ments and using greater number of samples as means of validation. In order to apply 
these in clinical research, there must be coordinated efforts around the globe to 
verify which of the cited biomarkers are applicable and universal. It is also expected 
that this will help to expand research in modern and multidisciplinary psychiatry 
and design biomarker-based user friendly tests that can be performed as simple 
clinical trials with easy to read and interpretable data.

14.3  Samples, Methodology, and Techniques: Concerns

To guarantee the quality of the data and the biological interpretations, it is important 
to properly select the sample type, the method of sample preparation, and the pre-
processing procedures. Another critical issue is the selection of an appropriate con-
trol group [90, 91]. When immediate analysis is not feasible, to prevent changes in 
the composition of the samples, it is necessary to store them at −80 °C, but cycles 
of freezing and thawing should be avoided [90, 92–94].

The cellular components of the blood (erythrocytes, leukocytes, and platelets) 
can be excluded using centrifugation, obtaining the plasma or serum. The superna-
tant portions of these are derived with or without the addition of anticoagulants, 
respectively. Plasma is composed of a variety of substances such as proteins, pep-
tides, and electrolytes. The precipitation of proteins can be carried out with trichlo-
roacetic acid (TCA) and cold methanol to reduce their potential interference in the 
analysis [90].

Plasma, serum, and CSF are naturally buffered. However, the pH in urine sam-
ples can vary and should be controlled by addition of a sodium phosphate buffer 
(Na2HPO4/NaH2PO4) [90–93].

The sodium salt of 3-trimethylsilylpropionic acid (TSP) should not be used as a 
NMR standard reference in samples containing high concentrations of proteins. An 
alternative is the use of formate or internal standards, such as the lactate signal (3H, 
d, 1.33 ppm,3J = 7 Hz) in plasma or serum samples [94, 95].

Analysis of urine samples presents several advantages compared to blood or 
CSF, since urine collection is easy and noninvasive and enables more extensive 
sampling frequency. Furthermore, the sample preparation is less complex due to the 
absence, or low level, of proteins and peptides [90, 92, 96]. However, it is important 
to define the time of urine collection since the concentration of metabolites can vary 
during the day due to dietary, lifestyle, and pharmaceutical interference [90, 92].

The collection of CSF is invasive, and, therefore, routine sampling and longitu-
dinal studies are not desirable. One of the main concerns of using CSF is the poten-
tial of blood contamination during the sampling process. There are some known 
protocols to decrease blood contamination in CSF [90, 93].

Numerous methods of sample preparation prior to MS-based analysis have been 
reported. These are diverse extraction protocols that will lead to the observation of dif-
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ferent fractions in the metabolite profile [90, 94]. However, the signals are usually fil-
tered using specific pulse sequences in NMR-based analysis instead of applying sample 
preparation techniques, such as protein precipitation or ultrafiltration [94–97].

For further information, there are many described procedures for collection and 
preparation of serum [91, 94, 95, 97], plasma [91, 94], urine [91, 92, 94], and CSF 
[98] samples. Barbosa et al. described the detailed procedures involved in serum 
lipidomics [97].

14.3.1  Softwares and Databases

NMR spectral processing can be performed using Topspin or MestreNova software. 
The Chenomx commercial package provides a tool that can be used from the point 
of spectral processing to metabolite identification. For data statistical analysis, there 
are free online platforms including PRIMe [99] and MetaboAnalyst [100] and free 
or commercial software, such as R, MVAPACK [101], MATLAB, Statistica, and the 
Unscrambler. The open-access databases Human Metabolome Database (HMDB) 
[102], Biological Magnetic Resonance Data Bank (BMRB) [103], and Madison- 
Qingdao Metabolomics Consortium Database (MMCD) [104] can be used to assist 
in the spectral assignments of metabolites. A list and discussion about the database 
and software for NMR metabolomics are available in the literature [105].

Current software available for processing mass spectra includes MassHunter 
(AgilentR), Thermo™ Xcalibur™ (LC-MS), MestreNova (NMR and MS), and others. 
Some specific software for both GC-MS and LC-MS preprocessing includes MetAlign™ 
[106], MZmine 2 (LC-MS) [107], XCMS [108], and SpectConnect (GC-MS) [109].

The statistical analysis of mass spectra data can be performed using the Agilent 
MassHunter Profinder (data extraction) and Mass Profiler Professional (MPP- 
AgilentR). Data mining can also be performed, and chemometric analysis can be 
used for analysis of volatile organic compounds in GC-MS analysis. Finally, 
ANOVA analysis and unsupervised statistical methods can also be applied such as 
PCA and HCA [110].

Some software is also available that can be used for image data processing gener-
ated from imaging mass spectrometry (IMS) such as BioMap (Novartis) or flexIm-
aging (Bruker Daltonics), and the FlexAnalysis system (Bruker Daltonics) can be 
used for quantification.

14.3.2  NMR × MS

Standard NMR pulse sequences frequently used in metabolomic studies are the water 
suppression pulse sequence Watergate [111, 112], T2-edited CPMG pulse sequence 
for filtering out signals of larger molecules [113, 114], and diffusion- ordered spectros-
copy (DOSY)-edited pulse sequence to detect assemblies of lipids [94, 95, 97].
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The development of high-resolution 1H magic angle spinning (MAS) NMR 
spectroscopy has extended the capability of metabolomic studies since this 
makes it possible to analyze intact tissues without a pre-treatment step. The 
experiments are the same ones as those used in liquid state NMR metabolomics 
[12, 94, 96, 115].

Since each technique has its strengths and limitations, the combination of NMR 
and MS techniques for metabolic fingerprinting and profiling is growing and show-
ing the capacity to improve results by covering a more comprehensive range of 
metabolites [94, 116, 117]. This can be done using hyphenated techniques such as 
HPLC-NMR-MS, in which parallel NMR and MS analyses are performed using a 
splitting of the eluting HPLC fraction. Another alternative is to aliquot the sample 
for analysis by NMR and MS separately. Some authors have already applied this 
approach in bipolar disorder and schizophrenia metabolomic studies.

Generally, when it is necessary to perform analyses in which the samples need to 
be analyzed over a period of time, NMR spectroscopy is chosen because of the 
greater reproducibility of the resulting spectra, while GC-MS or LC-MS are com-
monly used when it is necessary to achieve a higher sensitivity. However, this 
requires high purity of samples and sometimes laborious preparation of the meta-
bolic components, such as derivatization of the samples [118]. Furthermore, the 
testing of the range of molecules analyzed according to their functional groups will 
be conditioned to the extraction solvent that is used in preparation of the samples.

In addition to the possibility of analyzing biofluids and the preparation care 
already mentioned previously, tissue analysis by IMS has been explored as in the 
work of Matsumoto et al. [119]. IMS is a technique that has allowed the analysis of 
complex surfaces of samples (in 2D or 3D) and can result in the display of hundreds 
to thousands of compounds per sample surface [120, 121].

14.4  Conclusion

Bipolar disorder and schizophrenia are chronic mental disorders that affect the pop-
ulation and can notably interfere with the normal life of a person. Modern medicine 
still struggles with the accurate diagnosis and treatment of these diseases. Recent 
and promising metabolomic discoveries in mental disorders will help in the selec-
tion of appropriate drug treatments, improve human health significantly, and ame-
liorate the quotidian effects on individuals. Acetone, N-acetyl-aspartate, GABA, 
creatine, glutamine, glutamate, glycine, 5-hydroxyindole-3-acetic acid (5-HIAA), 
myoinositol, α-ketoglutarate, L-kynurenine, lactate, phenylalanine, pyruvate, and 
tryptophan are the most frequently occurring biomarkers cited in the literature as 
being altered in bipolar disorder and schizophrenia patients [10, 37, 39, 40, 42, 43, 
45–47, 49, 51, 53, 55, 72, 76–78]. Both disorders have some similar symptoms and 
share some common metabolites, but the question is whether these metabolites 
originate from the same source and metabolic pathway. It is anticipated that further 
studies will help to determine this.
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