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Preface

Although hundreds of biomarker candidates for psychiatric and neurodegenerative 
illnesses have been proposed over the last 20 years, only a handful of these have 
been approved by the regulatory authorities and put into practice in the clinic. This 
shortfall is most likely due to inconsistencies across laboratories during the early 
discovery phases and may be a result of factors, such as technical deviations within 
and across platforms, insufficient validation of candidates, and a widespread lack of 
awareness across the scientific and medical communities on the essential criteria 
and regulatory requirements for incorporating biomarkers into the research and 
drug development pipelines. Success in this area has also been complicated by the 
reality that psychiatric and neurodegenerative diseases are not homogeneous in 
nature and can consist of multiple etiologies and subtypes, rendering their complete 
characterization extremely difficult.

It is now recognized throughout the scientific and medical communities that 
robust tests incorporating biomarker readouts are urgently needed to improve diag-
nosis of patients suffering from conditions such as schizophrenia, depression, bipo-
lar disorder, autism spectrum disorders, and Alzheimer’s disease. The availability of 
such tests have many anticipated benefits stemming from the fact that an accurate 
and early diagnosis will lead to improved outcomes by helping to place patients on 
the correct treatment at the earliest possible time. This is critical as pathological 
effects appear to be increasingly ingrained over time. Biomarker tests can also serve 
as surrogate markers of response to treatment as well as for the risk of developing 
unwanted side effects. In a similar manner, biomarker-based tests could also be used 
as surrogate response agents in the development of new and better drugs for treat-
ment of these complex disorders. This would be a significant breakthrough as only 
a limited number of drug entities have been developed in this arena over the last 20 
years, and most of these come at the price of having significant side effects.

This book includes a series of reviews on general aspects of biomarker use in the 
study of psychiatric and neurodegenerative diseases and the development of novel 
medications in these areas. The chapters come from international experts in these 
fields and arise from five continents, including the countries of Brazil, China, 
Denmark, France, Germany, Italy, Japan, Poland, Spain, the United Kingdom, and 
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the United States. Each chapter describes the pros and cons of the various approaches 
and covers the successes and failures in this research field. It is only by a thorough 
understanding of the shortcomings that progress can be made. The overall goal is to 
facilitate a better understanding for improved treatment of these disorders by pro-
viding a viable mechanism of catching up with other areas of modern medicine, 
such as diabetes and heart disease. Finally, it is anticipated that the development 
and application of valid biomarker tests will help the treatment of individuals suf-
fering with these disorders of the mind move into the area of personalized medicine 
where the right patients can receive the right medication at the right time for the 
best possible outcome.

Campinas, SP, Brazil Paul C. Guest 

Preface
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Chapter 1
The Potential of ‘Omics to Link Lipid 
Metabolism and Genetic and Comorbidity 
Risk Factors of Alzheimer’s Disease 
in African Americans

Kaitlyn E. Stepler and Renã A. S. Robinson

Abstract Alzheimer’s disease (AD) disproportionately affects African Americans 
(AAs) and Hispanics, who are more likely to have AD than non-Hispanic Whites 
(NHWs) and Asian Americans. Racial disparities in AD are multifactorial, with 
potential contributing factors including genetics, comorbidities, diet and lifestyle, 
education, healthcare access, and socioeconomic status. Interestingly, comorbidities 
such as hypertension, type 2 diabetes mellitus, and cardiovascular disease also 
impact AAs. It is plausible that a common underlying molecular basis to these 
higher incidences of AD and comorbidities exists especially among AAs. A likely 
common molecular pathway that is centrally linked to AD and these noted comor-
bidities is alterations in lipid metabolism. Several genes associated with AD risk—
most notably, the ε4 allele of the apolipoprotein E (APOE) gene and several 
mutations in the ATP-binding cassette transporter A7 (ABCA7) gene—are linked to 
altered lipid metabolism, especially in AAs. This review explores the role of lipid 
metabolism in AD broadly, as well as in other comorbidities that are prevalent in 
AAs. Because there are gaps in our understanding of the molecular basis of higher 
incidences of AD in AAs, ‘omics approaches such as proteomics and lipidomics are 
presented as potential methods to improve our knowledge in these areas.

Keywords Lipid metabolism · Alzheimer’s disease · Proteomics · African 
Americans · Comorbidities · Lipidomics
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1.1  Introduction

Alzheimer’s disease (AD) is a neurodegenerative disorder marked by accumulation 
of extracellular amyloid beta (Aβ) plaques and intracellular hyperphosphorylated 
tau tangles [also referred to as senile plaques and neurofibrillary tangles, (NFTs)] in 
the brain, which lead to neuronal dysfunction and death. Other primary hallmarks 
of the disease include mitochondrial dysfunction, decreased synaptic plasticity, 
compromised blood-brain barrier, and oxidative stress. According to the Alzheimer’s 
Association, approximately 5.7 million Americans have AD [1], although this num-
ber is not equally spread among different subgroups of the population. AD dispro-
portionately affects certain racial subgroups, which is alarming considering that 
underrepresented minorities will comprise a larger proportion of both the entire 
older population and the population of AD sufferers by 2050 [2–4]. AD and related 
dementia prevalence are both higher in African Americans (AAs) and Hispanics 
than in non-Hispanic Whites (NHWs) and Asian Americans [3, 5–7]. In terms of 
incidence, AAs are 2–3 and Hispanics are about 1.5 times as likely to develop AD 
and related dementias compared to NHWs [8, 9], and AAs have a 65% higher risk 
than Asian Americans [10]. AAs and Hispanics also have a higher prevalence of 
cognitive impairment in adults aged 55 and older compared to NHWs [3].

Although it is well-established that racial disparities exist in AD, there are many 
contributing factors such as socioeconomic aspects, genetics, and comorbidities, 
and whether or not there are molecular underpinnings related to these remains 
unknown. Socioeconomic factors include education level, healthcare access, and 
willingness to seek care and treatment which are noted in AD as having differences 
between racial subgroups [7, 9]. AAs are less likely than NHWs to seek care for 
symptoms of mild cognitive impairment (MCI), a preliminary stage of AD [11], and 
are less likely than NHWs to receive AD pharmacotherapy treatment (e.g., cholin-
esterase inhibitors or memantine) upon disease diagnosis [2, 12]. Prevalence of 
genetic risk factors such as the ε4 allele of the apolipoprotein E (APOE) gene and 
various single-nucleotide polymorphisms (SNPs) in the ATP-binding cassette trans-
porter A7 (ABCA7) gene and comorbidities, such as cardiovascular disease and 
type 2 diabetes mellitus (T2DM) that increase risk of AD, also contribute to racial 
disparities in AD. Prevalence of comorbidities is suggested to be a larger contribut-
ing factor than genetics [8].

One common molecular pathway that affects both genetic and comorbidity fac-
tors in AD is alterations in lipid metabolism. Significant evidence links dysregula-
tion of lipid metabolism to AD [13–15]. Lipids play an integral role in AD 
pathogenesis through their interaction with Aβ, particularly in cell membranes and 
lipid rafts that can promote Aβ aggregation and disrupt membrane integrity (Fig. 1.1) 
[16]. Lipid rafts can affect amyloid precursor protein (APP) processing leading to 
an increase in Aβ production [16, 17]. Impaired cholesterol metabolism has been 
implicated in tau hyperphosphorylation processes and leads to increased oxidative 
stress, inflammation, phospholipase activation, and vascular dysfunction (Fig. 1.1) 
[16, 18]. Lipids contribute to neuronal dysfunction and dystrophy, disruption of the 
autophagy/lysosomal system, increased apoptosis, and compromised membrane 
function [19, 20].

K. E. Stepler and R. A. S. Robinson
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It is clear that lipid metabolism is important in AD pathogenesis and, as we will 
describe in this review, especially important in comorbidities affecting AAs. 
Mechanisms of lipid metabolism in AD are not fully understood, and their role in 
racial disparities of AD is unexplored. Fortunately, ‘omics approaches are powerful 
methods with which to study molecules in lipid metabolism pathways in this con-
text. ‘Omics approaches, which include genomics, proteomics, metabolomics, and 
lipidomics, allow thousands of molecules to be investigated simultaneously and can 
give a systematic insight to changes in lipid metabolism in tissues. Such insight is 
important to help with tailored AD prevention, early diagnosis, and personalized 
treatment strategies for racial groups with high incidences of AD.

1.2  Potential Roles of Lipid Metabolism in AD Racial 
Disparities

The differences in AD prevalence and incidence among AAs and NHWs noted 
above are significant and can be partially evaluated by disease presentation and 
cognitive performance. AAs and Hispanics are more likely to present with more 
severe symptoms than NHWs [2, 9], and AAs are more likely to present at an earlier 
age of onset than NHWs [2]. Several studies demonstrate that AAs tend to score 
lower on cognitive tests than NHWs [2, 5, 21], although the rates of cognitive 

Fig. 1.1 Relationship of glucose-cellular metabolism and lipid metabolism in AD pathogenesis 
(source: see Ref. [20])

1 ‘Omics in African Americans with AD
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decline are similar between the racial groups [5]. However, it should be highlighted 
that diagnostic tests may not be accurate or generalizable to racial groups outside of 
NHWs. For example, the Mini-Mental State Examination was found to have a much 
higher rate of false-positive diagnosis of cognitive impairment in AAs than NHWs 
[9]. Interestingly, despite these differences, AAs live longer with AD and related 
dementias than NHWs [2, 7].

AD is well-known for two primary neuropathological hallmarks: Aβ plaques and 
tau tangles. However, there are no significant differences in Aβ plaques and tau 
tangles in the brains of AAs and NHWs [9, 22–24]. AAs are more likely to present 
with mixed AD and other dementia pathologies, particularly Lewy body dementia, 
infarcts, and cerebrovascular disease [22, 25]. These findings suggest that other fac-
tors such as socioeconomic differences, genetic risk factors, and comorbidities have 
substantial contributions to higher incidence of AD in AAs. The following sections 
examine the roles of genetics and comorbidities in the racial disparities of AD with 
a specific focus on the involvement of lipid metabolism. An examination of socio-
economic factors is beyond the scope of this review, and we refer readers to other 
reviews [3, 26, 27].

1.2.1  Comorbidities

Comorbidities describe health conditions that can increase an individual’s risk for 
diseases, such as AD. Traumatic brain injury, stroke, dyslipidemia/hypercholester-
olemia, cardiovascular disease, T2DM, obesity, and hypertension (HTN) all increase 
risk of AD (Fig.  1.2) [2, 6, 28–32]. These comorbidities also disproportionately 
affect AAs compared to NHWs. Findings from the Atherosclerosis Risk in 
Communities (ARIC) study suggest racial disparities in brain aging may be due to 
differences in risk factor presence, severity, and control [5]. Notably, alterations in 
lipid metabolism are common in AD and these comorbidities in AAs, which sug-
gests that lipid metabolism may be an important underlying cause of racial dispari-
ties of AD.

1.2.1.1  Dyslipidemia

Dyslipidemia is a group of lipid disorders that present due to genetic predisposition 
or underlying events, such as insulin resistance, excess weight, and hypothyroidism. 
These events result in abnormal levels of high-density lipoprotein (HDL), low- 
density lipoprotein (LDL), very-low-density lipoprotein (VLDL), and triglycerides 
[32]. Clinically, dyslipidemia is noted by total cholesterol ≥240  mg/dL, LDL 
≥160 mg/dL, HDL ≤40 mg/dL, or the use of lipid-lowering medications [33] and 
includes high cholesterol levels (hereafter referred to as hypercholesterolemia).

The connection between AD and cholesterol has been firmly established 
(Fig. 1.3) and discussed in the literature on multiple occasions [13–15, 34]. In the 

K. E. Stepler and R. A. S. Robinson
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Fig. 1.2 The connections among AD risk factors (genes in red and comorbidities in black) with 
altered lipid metabolism and AD pathological hallmarks

brain, cholesterol is produced in astrocytes and is transported to neurons by apoE, a 
process necessary for neurons to form functional synapses [17]. Both increased and 
decreased levels of cholesterol in the brain have been suggested to contribute to Aβ 
production [16], and cholesterol accumulates in both Aβ plaques and tau tangles 
[17]. Brain cholesterol is synthesized de novo, is present in several forms including 
cholesterol esters, and greatly impacts Aβ monomer formation and aggregation. 
Peripheral cholesterol levels which come from new synthesis or dietary uptake are 
also implicated in AD. AD patients have peripheral lipoprotein profiles (i.e., high 
total plasma cholesterol and LDL and low HDL level) similar to dyslipidemia [32, 
35]. This is likely due to a compromised blood-brain barrier (BBB) in AD which 
would allow HDL to leak from the periphery into the brain, whereas VLDL/LDL is 
not transported across this barrier (Fig. 1.3).

Dyslipidemia was associated with increased Aβ plaque burden in a Japanese 
population, even when adjusting for APOE ε4 genotype [31]. In a cohort of AAs 
without ε4 alleles, higher mean serum total cholesterol levels were observed in indi-
viduals with AD compared to those that were cognitively normal [36]. Consistent 
with these observations, hypercholesterolemia has been associated with AD [17, 30] 
and in midlife is associated with increased MCI risk later in life [11]. Transgenic 
mouse studies suggest that the mechanism by which hypercholesterolemia increases 
AD risk is acceleration of Aβ deposition in the brain [32]. On the other hand, in a 
meta-analysis of modifiable risk factors for AD, there was no association between 
high cholesterol levels and incidence of AD [37]. This could be due to the necessity 
for APOE ε4 dependence.

1 ‘Omics in African Americans with AD
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Contradictory findings regarding cholesterol levels in AAs and NHWs exist. In 
an ARIC study, AAs and NHWs did not have different cholesterol levels in midlife 
(50–60 years old) [38], consistent with a report that lipid profiles between AAs and 
NHWs are not significantly different on a national level [33]. However, over the age 
of 45, there is higher incidence of dyslipidemia in AAs compared to NHWs [39]. 
This incidence is more noticeable in older age groups (i.e., 65–74 years old). Others 
have found that AAs have higher levels of hypercholesterolemia than NHWs [11]. 
Together, the discrepancy in these reports requires more evaluation of cholesterol 
and dyslipidemia levels in AAs but, more importantly, highlights that the role of 
dyslipidemia in AAs with AD warrants further investigation.

1.2.1.2  HTN

Dyslipidemia is also a risk factor for HTN. Serum cholesterol levels correlate with 
both systolic and diastolic blood pressure in individuals with HTN [40]. HTN is 
independently associated with increased cognitive decline, MCI, and AD [5, 11, 
17], and high systolic blood pressure is associated with an increased risk of AD 
[37]. Midlife HTN is associated with increased AD and dementia risk later in adult 
life [41]. Higher systolic blood pressure increases the odds of brain infarcts and is 
associated with an increased number of NFTs in postmortem brain tissue [42]. 
HTN among AAs is likely to increase risk for certain neurovascular pathologies, 
such as cerebral amyloid angiopathy, white matter lesions, and vascular endothelial 

Fig. 1.3 Role of cholesterol in Aβ pathology in AD. ApoE is also included in this figure as it is a 
cholesterol transporter. Proteins highlighted in green decrease Aβ pathology; proteins highlighted 
in red increase Aβ pathology. Abbreviations: ACAT acyl-CoA:cholesterol acyltransferase 1 (also 
known as sterol O-acyltransferase), LRP LDL receptor-related protein, HMG-CoA 3-hydroxy- 3-
methylglutaryl-CoA. Source: See Ref. [34]
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damage [6]. The Systolic Blood Pressure Intervention Trial Memory and Cognition 
in Decreased Hypertension study recently discovered that reducing systolic blood 
pressure to less than 120 mmHg decreased MCI risk by 19% in a study cohort that 
was 30% AA and 10% Hispanic. Importantly, this study implicates treatment of 
HTN as an effective measure to prevent dementia and AD in multiple racial groups 
[43, 44].

It is well-known that HTN is more prevalent in AAs than in NHWs [5, 6, 9, 11, 
45, 46]. The prevalence of HTN, including diagnosed and undiagnosed cases, in AA 
men is 42.4% and in AA women is 45% in the United States, and these are 10–12% 
higher than those for NHWs and Mexican Americans [33]. HTN occurs at an earlier 
age of onset in AAs [46, 47]. Interestingly, AAs are less likely to have their blood 
pressure under control when compared to NHWs and Hispanics, despite the fact 
that AAs are more aware of their HTN and take medications [33, 45, 48]. Increases 
in systolic blood pressure increase risk of stroke, congestive heart failure, and end- 
stage renal disease in AAs [46]. Furthermore, in individuals with AD, there is a 
higher prevalence of HTN in AAs compared to NHWs [6, 21, 25].

The American Heart Association states that HTN is the “most potent risk to car-
diovascular health of African Americans” [33]. There is an apparent intersection of 
HTN and dyslipidemia as risk factors for cardiovascular disease and AD such that 
progress made with mechanistic understanding of both of these risk factors can have 
a positive impact on human health, especially among AAs.

1.2.1.3  Obesity

Obesity can lead to inflammation in the brain, compromised BBB integrity, and 
changes in neuronal structure, synaptic plasticity, and memory [32]. Both low and 
high body mass indices have been associated with cognitive impairment and demen-
tia [2]. A higher body mass index (BMI, ≥30 kg/m2) in midlife is associated with 
increased dementia and AD risk, presumably due to increased amyloid deposition 
[23]. On the other hand, a higher BMI in late life reduces risk of cognitive decline 
and dementia [41]. A high BMI and obesity are more prevalent in AAs [2], and AAs 
have higher obesity rates than NHWs at various ages [33, 38]. BMI has stronger 
effects on other conditions, especially diabetes, metabolic syndrome, and HTN in 
AAs [2]. Highlighting these aspects of obesity is necessary as high BMI and obe-
sity, HTN, and T2DM are comorbidities of AD.

1.2.1.4  T2DM

Comprehensive discussions of the connections between T2DM, lipid metabolism, 
and AD can be found in several reviews [49–52]. Briefly, early in the pathogenesis 
of T2DM, insulin resistance causes lipid accumulation in skeletal muscle and the 
liver [51]. On the other hand, chronic elevation of free fatty acid levels in plasma 
can cause insulin resistance and development of T2DM [50]. Circulating triglycer-
ides affect insulin transport across the BBB [49]. T2DM has been associated with 
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AD [30, 32, 52] and confers significantly increased AD risk [32, 41]. T2DM results 
in lower insulin and insulin receptor levels, which impairs synaptic function and 
decreases memory formation [32]. Prediabetes and T2DM are associated with 
increased cognitive decline [53], vascular dementia, and compromised BBB integ-
rity [49]. A dysfunctional BBB could result in increased brain insulin levels and 
thus prevent Aβ clearance and degradation.

The associations between T2DM and AD are unaffected by the presence of the 
APOE ε4 allele [54]. However, the APOE ε4 allele has been linked to decreased 
expression of insulin-degrading enzyme, which could increase brain insulin levels 
and contribute to AD pathology as aforementioned. T2DM also increases risk of 
progression from MCI to dementia [18, 32] and is associated with cognitive impair-
ment. Cognitive impairment is more severe with longer duration of diabetes, poorer 
control, presence of complications, and comorbid HTN or depression [49]. T2DM 
is associated with lower cognitive scores at baseline and at a 6-year follow-up in a 
multiethnic cohort [55], and in another cohort coexisting T2DM was found to accel-
erate AD pathogenesis [30].

There have been conflicting findings regarding the association of T2DM with 
AD pathology in the brain [18, 49]. Although systemic insulin resistance has been 
associated with brain Aβ via PET imaging [56], most studies found no relationships 
between AD neuropathology and T2DM [57, 58]. In a cross-sectional study of older 
Brazilian adults, although there was no overall association between AD neuropa-
thology and T2DM, a higher NFT burden was detected when both T2DM and the 
APOE ε4 allele were present [57]. However, T2DM has been linked to cerebral 
infarcts, cerebrovascular pathology [59–61], and stroke [54].

T2DM is more prevalent in AAs [2, 5, 33, 62, 63] and Hispanics [6, 9] than 
NHWs. Prevalence estimates for T2DM in AAs range from 1.4 to 2.3 times higher 
than in NHWs [11, 63]. According to the National Health and Nutrition Examination 
Survey, the prevalence of combined diagnosed and undiagnosed T2DM is 21.8% in 
AAs and 11.3% in NHWs, and over one-third of the cases in AAs were undiagnosed 
[33]. T2DM was associated with greater cognitive decline in AAs [64], while a 
study of the Minority Aging Research Study and Memory and Aging Project cohorts 
found similar effects of diabetes on cognition in AAs and NHWs [65]. Glucose 
levels in AAs with T2DM were significantly higher than those in AAs who did not 
develop dementia. These levels then declined prior to dementia diagnosis, while 
glucose levels remained stable in NHWs with T2DM [66, 67]. Although most evi-
dence supports the existence of racial disparities in T2DM, one study did not find an 
association between T2DM and race [57].

1.2.1.5  Vascular Diseases

Vascular diseases, which encompass cardiovascular disease, heart disease, athero-
sclerosis, vascular dementia, and cerebrovascular disease, also involve dysregulated 
lipid metabolism and thus should be briefly addressed. Vascular pathology increases 
dementia risk [68]. In a study of MCI and cognitively unimpaired individuals, 
increased vascular risk factors—measured by Framingham Stroke Risk Profile 
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score taking into account age, systolic blood pressure, anti-HTN medications, 
T2DM, smoking, cardiovascular disease history, and atrial fibrillation—were asso-
ciated with increased cognitive decline [69]. Vascular risk factors increased risk of 
conversion from MCI to AD, and treatment of these risk factors reduced risk of 
conversion [70]. History of coronary artery disease and myocardial infarction are 
also associated with higher dementia rates and more Aβ plaques in the brain [6]. 
Cerebrovascular disease is more commonly comorbid with AD than other neurode-
generative diseases and when combined can manifest in earlier clinical symptoms 
of dementia [71]. Surprisingly, in a meta-analysis, stroke was found to have no 
effect or a negative effect on AD risk [37], which is in contrast to a study reporting 
that stroke increases AD risk especially in the presence of HTN and T2DM [29].

AAs and Hispanics have a 2.4 and 2 times higher incidence of stroke compared 
to NHWs [6], and stroke mortality rates for AAs are also 4.5 times higher than in 
NHWs [33]. These racial differences are exacerbated in younger age groups such as 
45–59-year-olds in AAs [72, 73]. There are conflicting reports on whether or not 
stroke increases the likelihood of developing AD and related dementias in AAs [3, 
6, 74]. Atherosclerosis is associated with increased risk of AD [37] and is com-
monly detected in the brain [75]. A larger proportion of dementia cases are attrib-
uted to vascular dementia in AAs and Asian Americans/Pacific Islanders than NHWs 
and Hispanics [3, 6].

Overall, the prior sections grossly demonstrate that comorbidities greatly influ-
ence risk of AD, incidence of AD especially among AAs, and disease pathogenesis. 
Several of the comorbidities discussed clearly implicate lipid metabolism as a pri-
mary feature of the comorbid disease and of AD.

1.2.2  Genetics

Genetic factors are well-known to play a role in AD risk (Table 1.1) and most likely 
also contribute to racial disparities in AD. Although there is no evidence for a sepa-
rate genomic region with a different contribution to age-related cognitive decline 
between NHWs and AAs [76], risk genes such as APOE, ABCA7, and others have 
been discovered. Frequency of risk alleles and single-nucleotide polymorphisms 
(SNPs) for these genes, as well as strength of their association with AD, varies 
among racial groups, and in some cases, there are SNPs and genes that are only 
associated with AD for a given racial group. Many of these genetic risk factors for 
AD are related to lipid metabolism (Fig. 1.4), which will be discussed in detail in 
the remainder of this section.

1.2.2.1  APOE ε4

The APOE gene codes for the protein apolipoprotein E (apoE), which is one of the 
most abundant lipoproteins in the central nervous system. The primary function of 
apoE is to maintain lipid and cholesterol homeostasis in the brain, which it 
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accomplishes via phospholipid and cholesterol transport. ApoE is responsible for 
delivery of phospholipids and cholesterol to neurons and various receptors for uti-
lization or clearance [15–17]. The transport of cholesterol to neurons is particu-
larly important for synapse formation and neuronal functioning [17]. In addition to 
carrying lipids, apoE also has the ability to bind Aβ and aid in its clearance from 
the brain (Fig. 1.3) [15].

While the APOE ε2 allele has a protective effect against AD [15–17, 90, 102], 
the APOE ε4 allele is one of the strongest genetic risk factors for AD [2, 15–17, 90, 
102]. The ε4 allele exerts a dose-dependent effect on AD risk. One ε4 allele confers 

Table 1.1 Genes known to increase risk of AD

Gene Disease-associated SNP/allele References

ABCA1a SNPs rs2230806, rs4149313, 
rs2230805, rs2230808

Wavrant-De Vrièze et al. [77]; 
Koldamova et al. [78]; Fehér et al. [79]

ABCA7a SNPs rs11550680, rs142076058, 
rs3764647, rs3752239, rs3764650, 
rs3752246, rs78117248, rs4147929

Aikawa et al. [80]; Almeida et al. [81]; 
Hollingworth et al. [82]; Naj et al. [83]; 
Cuyvers et al. [84]; Lambert et al. [85]

APOC1a Insertion/deletion polymorphism 
rs11568822, H2 allele

Zhou et al. [86]; Petit-Turcotte et al. 
[87]; Ki et al. [88]

APODa Intron 1 polymorphism Desai et al. [89]
APOEa ε4 allele Barnes and Bennett [2]; El Gaamouch 

et al. [16]; Martins et al. [15]; Zhao et al. 
[90]

BIN1a SNPs rs55636820, rs7561528, 
rs744373

Reitz et al. [91]; Reitz and Mayeux [92]; 
Hollingworth et al. [82]; Naj et al. [83]; 
Seshadri et al. [93]

CD2AP SNP rs9349407 Naj et al. [83]
CD33 SNPs rs3826656, rs3865444 Bertram et al. [94]; Hollingworth et al. 

[82]; Naj et al. [83]
CLUa SNPs rs11136000, rs1532278 Lambert et al. [95]; Naj et al. [83]; 

Harold et al. [96]; Seshadri et al. [93]
CR1 SNPs rs3818361, rs6656401, 

rs6701713
Hollingworth et al. [82]; Lambert et al. 
[95]; Naj et al. [83]

EPHA1 SNPs rs11771145, rs11767557 Hollingworth et al. [82]; Naj et al. [83]; 
Seshadri et al. [93]

MS4A gene 
cluster

SNP rs610932 in MS4A6A
SNP rs670139 in MS4A4E
SNP rs4938933 in MS4A4A

Hollingworth et al. [82]; Naj et al. [83]

PICALMa SNPs rs561655, rs3851179 Reitz and Mayeux [92]; Harold et al. 
[96]; Seshadri et al. [93]

SORL1a SNPs rs2298813, rs2070045, 
rs668387, rs689021, rs641120, 
rs1784933, rs3824966, rs12285364

Rogaeva et al. [97]; Lee et al. [98]; Chou 
et al. [99]

SIGMAR1a Long runs of homozygosity in 
Chr4q313, 15q24.1, 3p21.31 regions

Ghani et al. [100]

SREBF2a SNP rs2269657 Picard et al. [101]
aRelated to lipid metabolism
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2 to 3 times greater risk of developing AD, while two ε4 alleles leads to a 12 times 
greater risk for AD [103]. The ε4 allele has been associated with increased Aβ accu-
mulation and deposition in the brain and cerebral vessels [90, 102, 104], as well as 
increased tau tangles [2, 18]. Interestingly, individuals with T2DM and the APOE 
ε4 allele had more of both types of neuropathology than individuals with neither or 
only one of these factors [105]. APOE ε4 has also been associated with an earlier 
age of onset of AD [16, 102], more rapid rate of cognitive decline [16], decreased 
cognitive performance, and increased memory decline [106]. The ε2, ε3, and ε4 
alleles lead to three corresponding protein isoforms of apoE, which have different 
abilities to carry lipids and bind Aβ. ApoE4 is less effective at binding and clearing 
Aβ from the brain than apoE2 and apoE3 [15, 16, 32, 107]. Additionally, the apoE4 
isoform increases both Aβ production and fibril formation compared to the other 
two isoforms [90, 104]. The apoE4 isoform also suppresses synaptic protein expres-
sion, which impairs synapse transmission and plasticity and could contribute to 
synapse dysfunction and loss that occurs early in AD pathology [90, 102]. ApoE4 is 
less protective against oxidative stress than the other isoforms and leads to increased 
dysfunction of cholinergic neurons in AD [15, 16]. APOE ε4 has also recently been 
associated with vascular pathologies, such as cerebral microbleeds, white matter 
lesions, and coronary artery calcification, which provides a link between genetic 
and comorbid risk factors for AD [108].

Disparities in APOE allele frequency and association with AD have been noted 
among racial groups. Multiple studies have determined that there is an increased 
frequency of the ε4 allele in AA populations compared to NHWs [2, 25], and the ε4/ε4 

Fig. 1.4 Representation of cholesterol metabolism in the brain, including several AD risk genes 
and their gene products (source: see Ref. [101])
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genotype has also been reported as more common in AAs than NHWs [25]. On the 
other hand, another study notes that the frequency of the ε4 allele varies in AAs 
from about 17 to 21% [9], while in a Florida study of Ashkenazi Jewish, Hispanic, 
NHW, and AA individuals, no racial differences in the frequency of the APOE ε4 
and ε2 alleles were found [6]. APOE ε4 has been associated with increased risk of 
AD in AAs, although some studies have concluded that it is inconsistently related to 
AD and cognition in AAs [2, 3]. In addition to being inconsistent, the strength of the 
association between the APOE ε4 allele and AD is weaker in AAs than NHWs [3, 
6]. In support of this, the Washington Heights-Inwood Community Aging Project 
study found that AAs and Hispanics with at least one ε4 allele were about as likely 
as NHWs to develop AD, but AAs and Hispanics without an ε4 allele were two to 
four times more likely to develop AD than their NHW counterparts [6]. Overall, the 
APOE ε4 allele has a significant contribution to AAs with AD despite contradictory 
findings and represents a major protein in lipid-related pathways critical for AD 
pathogenesis.

1.2.2.2  ABCA7

The ABCA7 protein, coded for by the ABCA7 gene, is a transmembrane protein 
that is an important transporter of lipids through the cell membrane energetically 
driven by ATP binding [80]. ABCA7 is particularly important for cholesterol and 
phospholipid efflux mediated by apolipoproteins and through these interactions 
functions in the biosynthesis of HDL and is involved in the lipidation of apoE [16, 
91]. Additionally, there are direct links between ABCA7 and AD, as ABCA7 can 
affect APP transport through the cell membrane and is involved in the Aβ clearance 
pathway [80, 91]. For example, overexpression of ABCA7 leads to decreased Aβ 
levels. On the other hand, deletion of ABCA7 accelerates Aβ production (likely by 
allowing APP endocytosis), impairs Aβ clearance, and increases Aβ plaque burden 
[16, 80]. The changes in ABCA7 function due to AD risk mutations are not entirely 
known. The ABCA7 deletion rs142076058 may result in a frameshift mutation that 
either causes synthesis of an aberrant protein or nonsense-mediated decay of the 
truncated RNA transcript [109]. Either of these consequences would likely result in 
reduced ABCA7 levels and have similar effects to those of the ABCA7 deletion 
described above. An additional study hypothesizes that the rs3764650 SNP 
decreases ABCA7 expression before AD onset which increases AD risk, and after 
AD onset ABCA7 expression increases [110].

Many SNPs within the ABCA7 gene have been associated with AD (Table 1.2), 
although premature termination codon mutations and loss-of-function mutations 
have also been noted [80]. AD risk conferred by ABCA7 has been confirmed spe-
cifically in AAs, and the association is stronger and more widespread in AAs than 
NHWs [2, 91, 111]. A genome-wide association study (GWAS) supports this in that 
SNP rs115550680 is significantly associated with AD in AAs with an effect size 
(70–80%) comparable to that of APOE ε4 [91, 92]. Notably, many of the ABCA7 
SNPs are present and confer risk in one specific racial group. For example, a dele-
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tion in ABCA7 (rs142076058) is significantly associated with AD, which was com-
monly identified in AA cases and controls (15.2 and 9.74%, respectively) but only 
in 0.12% of NHWs [109]. There are more SNPs (rs3764647, rs142076058, 
rs3752239) that have only been associated with AD in AAs, while rs3764650 is 
associated with AD in both NHWs [80, 81] and in individuals with more African 
ancestry [111]. These findings provide clear evidence that ABCA7 is likely a 
 contributing factor to the racial disparities in AD, as ABCA7 is a stronger genetic 
risk factor for AD in AAs than NHWs.

1.2.2.3  Other Genes

In addition to APOE and ABCA7, other AD risk genes include bridging integrator 1 
(BIN1), clusterin (CLU), phosphatidylinositol binding clathrin assembly protein 
(PICALM), sortilin-related receptor 1, ABCA1, L(DLR) class A-type repeats con-
taining (SORL1), apolipoprotein D (APOD), apolipoprotein C1 (APOC1), sigma 
non-opioid intracellular receptor 1 (SIGMAR1), and sterol regulatory element bind-
ing transcription factor 2 (SREBF2) [79, 86, 89, 92, 98, 100, 101]. For the purpose 
of this review, only those genes related to lipid metabolism will be discussed. Lipid- 
related AD risk genes involve pathways such as regulation of Aβ formation (ABCA7, 
APOE, ABCA1, CLU, PICALM, SORL1), regulation of NFT assembly (APOE, 
CLU, SORL1), and protein-lipid complex assembly (ABCA7, ABCA1, APOC1, 
APOE, BIN1) [113]. BIN1, CLU, and PICALM are less common risk genes. 
Clusterin, also known as apolipoprotein J, has functions that parallel those of apoE, 
while both BIN1 and PICALM are involved in receptor-mediated endocytosis, 
which is important for lipid internalization and transport including transport medi-
ated by apoE and clusterin [114]. In a GWAS study of AAs, AD-associated SNPs in 
BIN1, CLU, and PICALM had a 10–20% increase in AD risk and significantly 
lower effect sizes than in NHWs [92]. This result is confounded by another GWAS 
study that shows CLU and PICALM are not associated with AD in AAs but that 
BIN1 is associated with SNPs in AAs that differ from those in NHWs [91]. ABCA1 
has functions similar to ABCA7 in apolipoprotein transport and Aβ clearance. In an 
AD mouse model, deficiency of ABCA1 increases Aβ deposition in the brain and 
decreases apoE levels, while ABCA1 overexpression decreases Aβ deposition [115, 
116]. Interestingly, the effect of ABCA1 on Aβ was APOE genotype-dependent as 

Table 1.2 ABCA7 SNPs associated with AD in AAs

SNP Populations associated with AD Sources

rs3752239 AAs Aikawa et al. [80]
rs3752246 Multiple racial groups Naj et al. [83]
rs3764647 AAs Aikawa et al. [80]
rs3764650 NHWs, AAs Almeida et al. [81]; Hohman et al. [111]
rs115550680 AAs Reitz et al. [91]; Reitz and Mayeux [112]
rs142076058 AAs, rare in NHWs Cukier et al. [109]; Aikawa et al. [80]
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ABCA1 deficiency reduced Aβ clearance in APOE4 mice but not in APOE3 mice 
[115]. Several SNPs in ABCA1 have been associated with AD in various popula-
tions including NHWs, Swedish, and Chinese [77–79], although no data were avail-
able for AA groups. SORL1 is involved in the regulation of lipoprotein lipase 
trafficking, APP processing and trafficking, and tau cellular processes, and its 
expression is reduced in AD brains [97, 99, 117]. Various SNPs and haplotypes in 
SORL1 have been associated with AD in NHWs, Hispanics, AAs, and Asians, 
although these genetic variations are not the same across racial groups [97–99].

Other potential genetic risk factors for AD in AAs exist. ApoD, similar in func-
tion to apoE, has four polymorphisms in the APOD gene unique to individuals of 
African ancestry and is associated with increased risk of AD [89]. ApoC1 is known 
to interfere with apoE receptor interactions and thus decreases clearance of lipopro-
teins containing apoE [87]. ApoC1 also can inhibit the cholesteryl ester transfer 
protein and activate lecithin-cholesterol acyltransferase and thus cholesterol esteri-
fication. Although the APOC1 gene is located adjacent to the APOE gene, the H2 
allele of APOC1 was found to be a risk factor for AD independent of APOE ε4. 
These two alleles occur frequently together in AD populations and combined pro-
duce higher AD risk than either allele individually [87, 88]. Decreased levels of 
apoC1 mRNA with the H2 allele and increased apoC1 protein levels have been 
reported in AD [87]. Additionally, an insertion/deletion polymorphism in the 
APOC1 gene was found to increase AD risk in NHWs, Asians, and Caribbean 
Hispanics, but not in AAs [86].

Long runs of homozygosity in genes in AAs are associated with AD. The most 
notable of these genes is SIGMAR1 which encodes a protein that functions in lipid 
transport from the ER and helps to regulate various cellular functions via regulation 
of biosynthesis of lipid microdomains in the membrane [100]. Lastly, SREBF2 is a 
protein involved in lipid homeostasis and cholesterol biosynthesis with activity 
affected by brain cholesterol levels. SNP rs2269657 of SREBF2 was associated 
with AD pathological biomarkers and gene expression levels in the Alzheimer’s 
Disease Neuroimaging Initiative cohort, which includes individuals of multiple eth-
nic backgrounds [101]. In summary, there are several genes critical to lipid metabo-
lism, which have reported risk for AD, especially in AAs, and these warrant further 
investigation.

1.3  ‘Omics Approaches to Study Lipid Metabolism in AD

Review of the current literature involving lipid metabolism and AD reveals gaps that 
remain in our molecular understanding of AD, particularly across different racial 
groups. Some studies have focused on one or a few genes, proteins, and lipids in 
lipid metabolism pathways in AD. For example, a study on plasma levels of total 
cholesterol, HDL, LDL, and triglycerides revealed that higher midlife total choles-
terol and triglycerides levels were associated with increased 20-year cognitive 
decline in NHWs but not in AAs [118]. In another study, apolipoproteins J, E, A-I, 
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and C-III and their subspecies were measured with ELISA in plasma samples from 
the Ginkgo Evaluation of Memory Study cohort [119]. Higher apoE and apoA-I 
levels were associated with lower Aβ deposition and lower hippocampal volume, 
respectively. Lower plasma apoE levels were associated with higher Aβ deposition 
[120]. Heart-type fatty acid-binding protein was increased in cerebrospinal fluid 
(CSF) of AD patients [121]. Western blots have been used to study phospholipase 
D1 in AD brain tissue as well, which found elevated levels [122]. Neurodegenerative 
markers in AD brain tissue were recently measured in AAs although these markers 
are not related to lipid metabolism [123].

The limited focus of one or a few targeted species prevents a comprehensive 
picture of the changes occurring in the lipid metabolism pathway in AD from being 
gained. ‘Omics approaches including genomics, proteomics, metabolomics, lipido-
mics, and transcriptomics enable comprehensive analyses of their respective mole-
cule classes and can fill these gaps in our understanding of lipid metabolism. It is 
especially important to note that a majority of ‘omics studies in AD are focused on 
NHWs or other majority populations and grossly exclude AAs. This presents an 
opportunity for the field to ensure that ‘omics studies are more racially inclusive.

Discovery-based ‘omics approaches are used for broad studies that can help with 
disease understanding and biomarker discovery [124, 125]. Several studies have 
utilized discovery-based proteomics to study AD for various purposes, such as to 
examine changes in the overall proteome in aging and MCI or AD [126–140] and to 
study proteins associated with oxidative stress [141–145]. Discovery-based pro-
teomics of AD and Parkinson’s disease brain tissue samples identified a combined 
total of 11,840 proteins [146]. The power of such studies is deep proteome cover-
age, which leads to insights on many biological pathways in health and disease. We 
refer the reader to several recent reviews on proteomics studies in AD [147–149].

On the other hand, ‘omics approaches can also be targeted, enabling the focused 
study of a few to a few hundred species. Targeted proteomics has been used to ana-
lyze CSF samples in AD for potential biomarkers in several instances [148, 150–
152]. Targeted proteomics in the brain identified several proteins with expression 
levels that correlated with Aβ and tau pathology [149, 153–156]. Targeted pro-
teomics has also been used to specifically study proteins involved in lipid metabo-
lism, mainly apolipoproteins in blood and blood-based bio-specimens [151–159]. 
One targeted proteomics assay was developed to analyze 12 apolipoproteins in 
serum or plasma samples, which identified significant effects of gender and use of 
lipid-lowering medications on apolipoprotein levels [157]. Few examples of tar-
geted proteomics applied to study lipid metabolism in AD exist. A two-dimensional 
gel electrophoresis analysis quantified three fatty acid-binding proteins in AD and 
observed decreased levels in AD brain [160]. Serum protein analysis showed that 
there was no significant difference in apoE levels in MCI patients and controls 
[161]. Targeted lipidomics has been used to study changes in ceramide levels in 
human neurons in response to a neurotoxic signaling glycerophospholipid [162]. 
Targeted metabolomics has been used to measure 188 lipid and metabolite species 
in plasma samples from a subset of mostly AA participants in the ARIC study [163]. 
The metabolomics results from this study are particularly interesting because ten of 
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the species that had been previously found to be predictive of MCI or dementia in 
NHWs were not predictive of either condition in this mostly AA cohort.

Multi-omics, or the integration of multiple types of ‘omics data, can provide a 
more complete picture of the biological system being studied and allow determina-
tion of changes potentially associated with disease pathogenesis, biomarker discov-
ery, and therapeutic targets [164–167]. Several studies have applied such methods 
in investigations of AD by using proteomics in combination with genome and tran-
scriptome data to identify potential pathways or networks that may contribute to AD 
pathogenesis [168–170].

Our laboratory has demonstrated the use of multi-omics, specifically proteomics 
and lipidomics, to study lipid metabolism in AD across racial groups (manuscripts 
in preparation). In a pilot AD study, we have analyzed postmortem hippocampal 
tissues using a quantitative proteomics workflow (Fig. 1.5a). The workflow applies 
tandem mass tagging (TMT) of tryptic peptides to liquid chromatography-mass 
spectrometry (LC-MS), tandem MS, and MS3 on an Orbitrap Fusion Lumos mass 
spectrometer. This comprehensive workflow enables peptide identification from the 
MS/MS spectra and accurate relative quantification from the MS3 spectra (Fig. 1.5b). 
From this study we identified over 3300 proteins, which included 252 lipid-related 
proteins (Fig. 1.5c). These lipid-related proteins encompass many pathways includ-

Fig. 1.5 Summary of our hippocampal proteomics experimental workflow (a), example MS, MS/
MS, and MS3 spectra from a lipid metabolism protein (clusterin) (b), and an overview of our pro-
tein identifications from these analyses (c) whereby two independent batches of TMT-tagged sam-
ples were analyzed. Abbreviations: TMT tandem mass tags, LC liquid chromatography, MS mass 
spectrometry. Unique proteins were identified in either or both batches of samples
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ing lipid transport, cholesterol metabolism, sphingolipid signaling, and others 
(Fig. 1.5c), and it should be noted that we detected many apolipoprotein species 
such as apoJ (Fig. 1.5b). We are currently evaluating protein expression differences 
between cognitively normal and AD groups and racial subgroups such as NHWs 
and AAs. Investigations of other brain regions using this proteomics workflow are 
ongoing. Plasma proteomics analysis of AA AD patients compared to NHWs will 
also be beneficial to identify peripheral changes in lipid metabolism in AD, and 
such studies are underway.

We are also developing robust platforms to study lipid pathways in AD plasma 
samples including both discovery and targeted approaches using LC-MS/MS on a 
QExactive HF mass spectrometer. In a pilot discovery-based lipidomics study of 
NHW cognitively normal individuals and AD patients, we tentatively identified 
over 2000 lipid compounds in positive ionization mode and over 1350 lipid com-
pounds in negative ionization mode. The majority of these identified lipids are glyc-
erosphingolipids, glycerolipids, and sphingolipids. Several lipid compounds 
identified in our study have been previously established as differentially expressed 
in AD, and our results change in a consistent manner (Fig. 1.6) [171–174].

These ‘omics experiments have enabled many proteins and lipids to be measured 
simultaneously in AD and will provide a comprehensive study of various lipid path-
ways in AD.  Additionally, these studies are among the first to apply ‘omics 
approaches to study AD in AAs and may give insights into the molecular differences 
between NHWs and AAs in AD.

1.4  Conclusions

This review has demonstrated that many genetic and comorbidity risk factors for 
AD are interconnected and especially important in increasing our understanding of 
racial disparities in AD. As discussed, HTN, obesity, and other comorbidities such 
as T2DM and vascular diseases are especially prevalent in AAs. AD risk factors that 
involve lipid metabolism point to alterations in lipid transport, cholesterol synthesis, 
lipid homeostasis, and others as key pathways that could contribute to higher inci-
dence of AD in AAs. However, it is also evident that the molecular mechanisms 
underlying these differences are still not fully known. Filling these gaps will advance 
understanding of the molecular basis for racial disparities in AD and potentially 
lead to improved AD prevention, diagnosis, and treatment strategies tailored to 
these high-risk populations. ‘Omics techniques can help us gain a complete under-
standing of changes in lipid metabolism occurring in AD and should be explored in 
AAs, Hispanics, and other racial groups.
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Fig. 1.6 Principal component analysis plot showing the clustering of cognitively normal and AD 
groups, including triplicate measurements (a) and box plots showing average intensities in control 
(cognitively normal) and AD groups for five lipids that have been previously found to be differen-
tially expressed in AD (see Refs. [171–174]): ceramide d34:1 (b), phosphatidylcholine 32:2 (c), 
phosphatidylcholine 36:5 (d), phosphatidylethanolamine P-38:4 (e), and phosphatidylethanol-
amine P-34:4 (f). For all box plots, N = 5 per group; black is control group; red is AD. * indicates 
p < 0.05
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Chapter 2
The Role of Biomarkers in Alzheimer’s 
Disease Drug Development

Jeffrey Cummings

Abstract Biomarkers have a key role in Alzheimer’s disease (AD) drug develop-
ment. Biomarkers can assist in diagnosis, demonstrate target engagement, support 
disease modification, and monitor for safety. The amyloid (A), tau (T), neurodegen-
eration (N) Research Framework emphasizes brain imaging and CSF measures rel-
evant to disease diagnosis and staging and can be applied to drug development and 
clinical trials. Demonstration of target engagement in Phase 2 is critical before 
advancing a treatment candidate to Phase 3. Trials with biomarker outcomes are 
shorter and smaller than those required to show clinical benefit and are important to 
understanding the biological impact of an agent and inform go/no-go decisions. 
Companion diagnostics are required for safe and effective use of treatments and 
may emerge in AD drug development programs. Complementary biomarkers inform 
the use of therapies but are not mandatory for use. Biomarkers promise to de-risk 
AD drug development, attract sponsors to AD research, and accelerate getting new 
drugs to those with or at risk for AD.

Keywords Alzheimer’s disease · Drug development · Clinical trials · Biomarker · 
Positron-emission tomography · Amyloid · Tau · Neurodegeneration

2.1  The Role of Biomarkers in Alzheimer’s Disease Drug 
Development

Alzheimer’s disease (AD) is a neurodegenerative disorder that progressively com-
promises cognition, function, and behavior [1, 2]. AD becomes more common in the 
elderly and is reaching epidemic proportions with the graying of the global popula-
tion. The frequency of AD doubles in frequency every 5 years after the age of 60 [3]. 
An estimated current 35 million victims worldwide will grow to over 130 million by 
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2050 [4]. The cost of AD to the global economy will increase from its estimated 818 
billion US dollars (USD) in 2015 to 2 trillion USD by 2030 [5]. To address this 
growing public health crisis, it is critical that treatments that defer the onset, slow 
the progression, or improve the symptoms of AD be identified.

There is high failure rate of AD drug development; there have been no new drug 
approvals for AD since 2003, and the failure rate in development programs exceeds 
99% [6]. To advance new therapies for AD, it is imperative that the vulnerabilities 
of the drug development process be identified and addressed. The improvement 
must span target identification, drug screening and optimization, use and interpreta-
tion of animal models of AD, and the clinical trial process [7]. The risk of AD drug 
development is high, and biomarkers represent a promising means of reducing the 
risk and increasing the likelihood of technical success. Understanding of AD is 
improving rapidly, and key biological events are being identified. In some cases 
these events are accompanied by biomarkers measurable by brain imaging or in the 
cerebrospinal fluid (CSF) or blood. The use of these biomarkers to improve the drug 
development process can de-risk AD drug development. This contribution describes 
the increasing role of biomarkers in AD drug development.

Several new advances relevant to biomarkers are included in this review. The 
amyloid (A), tau (T), neurodegeneration (N) Research Framework uses biomarkers 
to diagnose AD [8]. These same biomarkers can also serve important roles in drug 
development including demonstrating target engagement or providing support for 
disease modification [9]. The US Food and Drug Administration (FDA) developed 
an AD staging system that facilitates trials in patients with preclinical and prodro-
mal AD and emphasizes the potential role for biomarkers in drug development in 
early AD [10]. This staging system and the use of biomarkers is described  and 
accelerated approval of new treatments are discussed. The use of biomarkers in both 
disease-modifying and symptomatic drug development is presented.

2.2  Overview of Biomarkers in AD Drug Development

A biomarker is a characteristic that is objectively measured and evaluated as an 
indicator of normal biological processes, pathologic processes, or biological 
responses to a therapeutic intervention [11]. Biomarkers help characterize the base-
line state, a disease process, or a response to treatment. Biomarkers include mea-
sures of genes, “omics” technologies (genomics, transcriptomics, proteomics, 
metabolomics, lipidomics), imaging, blood, electrocardiograms, or evaluations of 
organ function (e.g., liver functions, etc.) [12, 13]. The National Institutes of Health 
(NIH) developed an extensive glossary of biomarker-related terms—Biomarkers, 
EndpointS, and other Tools (BEST) resource—to provide a shared vocabulary for 
biomarker discussions [14].

Table 2.1 presents an overview of the roles played by biomarkers in AD drug 
development. The principal uses of biomarkers include demonstrating the presence 
of AD-type pathological changes with CSF measures or amyloid positron-emission 
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tomography (PET) for inclusion in AD trials, demonstrating target engagement by 
the candidate therapy, generating supportive evidence of disease modification, 
informing analytic stratification, and monitoring of adverse effects of treatment. 
Means of scoring biomarkers to increase confidence in their role in drug develop-
ment have been proposed but not yet widely adopted [15].

2.3  A,T,N Framework for Alzheimer’s Disease Diagnosis 
and Characterization

The A,T,N Research Framework uses biomarkers to diagnose and characterize AD 
[8]. Amyloid measures include amyloid PET (Fig. 2.1) and CSF amyloid beta (Aβ) 
protein; tau measures include tau PET (Fig.  2.2) and CSF phosphorylated tau 
(p-tau); neurodegeneration is reflected in atrophy on magnetic resonance imaging 
(MRI) (Fig. 2.3), CSF levels of total tau (t-tau), or fluorodeoxyglucose (FDG) PET 
(Fig.  2.4). In this approach, reduced N in the treatment groups compared to the 
placebo group is the object of disease-modifying therapy (DMT) [16, 17]. 

Table 2.1 Roles of biomarkers in AD drug development with examples

Role in trial Biology identified Fluid biomarker Brain imaging

Diagnosis and 
participant 
identification

Presence of AD-type 
pathological changes

Low CSF Aβ42 or 
CSF Aβ42/t-tau 
ratio or Aβ42/p- 
tau ratio

Positive amyloid imaging

Target 
engagement

Reduction of amyloid 
production

Reduced Aβ42 
production as 
shown by SILK

Removal of aggregated 
Aβ

Reduced Aβ aggregation as 
shown by amyloid imaging

Support for 
disease 
modification

Reduction of measures of 
neurodegeneration 
compared to placebo

Reduced CSF 
t-tau

Drug-placebo difference in 
favor of active treatment for 
FDG PET hypometabolism 
or MRI atrophy

Analytic 
stratification

Identification of ApoE-4 
carrier status

ApoE genotype

Adverse effect 
monitoring

Effects on the liver or 
blood

Blood liver 
function tests, 
complete blood 
count

Production of ARIA by 
monoclonal antibodies

MRI monitoring for ARIA

Aβ42 amyloid beta protein 42 amino acid length fragment, AD Alzheimer’s disease, ApoE apoli-
poprotein E, ARIA amyloid-related imaging abnormalities, CSF cerebrospinal fluid, FDG fluoro-
deoxyglucose, MRI magnetic resonance imaging, PET positron-emission tomography, SILK stable 
isotope labeling kinetics
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Fig. 2.1 Normal (left) and abnormal (right) amyloid PET

Fig. 2.2 Low tau (above) and high tau (below) PET aligned with MRI (images courtesy of Dawn 
Matthews)

Reductions in aggregated Aβ on amyloid PET or changes in CSF Aβ42 demonstrate 
impact on A, and drug-placebo differences in aggregated tau on tau PET or CSF 
p-tau establish effects on T.  Amyloid PET measures the aggregated, deposited 
fibrillar, insoluble form of Aβ, and CSF amyloid is a measure of the soluble 
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Fig. 2.3 Early AD (left) and late AD (right) MRI. The scan on the right shows whole brain atrophy 
and ventricular enlargement (images courtesy of Karthik Sreenivasan)

Fig. 2.4 Normal (left) and abnormal (right) fluorodeoxyglucose PET scans

monomeric form of the peptide. Similarly, tau PET measures the fibrillar deposited 
form of the tau protein, and CSF p-tau is the soluble form of the tau protein. 
Oligomeric Aβ and oligomeric tau may represent the neurotoxic form of these pep-
tides and do not have currently accepted measures that have been shown to be useful 
in trials. Drug-placebo differences in A and T would represent important effects on 
AD biology. They are markers of intermediate steps of the biological changes lead-
ing to cell death and do not themselves represent evidence of disease modification. 
Evidence linking these biomarkers to neuronal loss might allow them to function as 
surrogate markers of N; this evidence is lacking. A and T are currently best regarded 
as target engagement biomarkers.
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2.4  Biomarkers for Participant Selections

Participation in AD treatment trials requires that the patient have AD. The clinical 
diagnosis of AD dementia is approached using the 1984 criteria of the National 
Institute of Neurological and Communicative Disorders and Stroke and the 
Alzheimer’s Disease and Related Disorders Association (NINCDS-ADRDA) [18] 
or the 2011 criteria of the National Institute on Aging-Alzheimer’s Association 
(NIA-AA) [19]. Recent studies with amyloid imaging show that a substantial por-
tion of individuals diagnosed with these criteria lack biomarker evidence of 
AD. Using the cohort of the Alzheimer’s Disease Neuroimaging Initiative (ADNI), 
Landau and colleagues found that 15% of patients diagnosed clinically with AD 
dementia had amyloid PET and CSF findings incompatible with the diagnosis [20]. 
Similarly, among patients diagnosed clinically with mild AD dementia, Sevigny and 
coworkers found that 25% failed to show abnormal amyloid levels on amyloid PET 
[21]. These findings demonstrate that the clinical diagnosis of AD is insufficient to 
establish a secure diagnosis or be certain of the associated pathology. Measures of 
A are critical to supporting the diagnosis of AD and providing the rationale for anti-
 AD therapy. Patients that are amyloid negative have slower progression than those 
with AD dementia even if they have evidence of neurodegeneration on MRI; these 
individuals have been labeled as suspected non-Alzheimer pathology (SNAP) [22]. 
SNAP patients, if included in trial populations, will decrease the rate of change in 
the placebo group and compromise the ability to demonstrate a drug-placebo differ-
ence in the trial. Thus, amyloid biomarkers are needed to show the presence of the 
AD pathology substrate and to optimize the rate of decline in the placebo group. 
These considerations apply to trials of both DMTs and symptomatic cognition 
enhancers.

A recent drug development program for idalopirdine—a 5-HT6 antagonist target-
ing cognitive enhancement—recruited patients with mild-to-moderate AD dementia 
based on clinical diagnostic criteria without a confirmatory biomarker. A subgroup 
of the patients had known amyloid status, and this group declined significantly faster 
on the Alzheimer’s Disease Assessment Scale-Cognitive Subscale (ADAS-Cog) than 
patients with negative or unknown amyloid status [23]. The greater decline in the 
biomarker-enriched group would have allowed demonstration of a drug-placebo dif-
ference with smaller sample sizes if the agent had been efficacious. This is an exam-
ple of how diagnostic confirmation of an AD diagnosis can be important in 
development programs for symptomatic as well as disease-modifying agents.

Mild cognitive impairment (MCI) is an etiologically nonspecific syndrome com-
prised of several entities associated with cognitive impairment including AD, pre-
cursor phases of other dementias such as dementia with Lewy bodies (DLB) and 
frontotemporal dementia (FTD), depression, and other unrecognized states. This 
heterogeneity is manifest in the longitudinal outcomes of MCI that include progres-
sion to AD, progression to other types of dementias, recovery to normal cognition, 
and continuation in the MCI state [24]. Bangen found that 37% of amnestic MCI 
patients did not have brain amyloid by PET assessment indicating that they did not 
have AD as the key associated pathology [25]. Similarly, Wisse and colleagues [22] 
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reported that 36% of the MCI population they assessed lacked positive findings on 
amyloid imaging. Of MCI patients who progressed to dementia, 29% were found to 
have non-AD diagnoses as the primary cause of dementia at autopsy [26]. These 
studies suggest that at least one-third of patients with MCI do not meet biomarker 
criteria for prodromal AD using the criteria of the International Work Group [27]. 
As discussed above, the absence of the pathological changes of AD indicates that 
the substrate of many AD therapies is absent, and the decline in the placebo group 
on which power calculations and sample sizes are based becomes less predictable. 
Biomarker confirmation of the presence of AD pathological changes should be pur-
sued in both DMT and symptomatic therapy drug development programs for pro-
dromal AD or MCI due to AD [27, 28].

Preclinical AD participants do not evidence cognitive abnormalities (although 
they may have decline from past cognitive performance levels) and can be identified 
only through the use of biomarkers. Primary and secondary prevention trials can 
target this population. Cognitively normal individuals with normal amyloid PET or 
normal CSF levels of Aβ are subjects for primary prevention trials; those with nor-
mal cognition and evidence of abnormal brain amyloid can be participants in sec-
ondary prevention trials. Of 353 ADNI subjects over age 65 with normal cognition, 
45% (160) had normal CSF Aβ42 levels and negative amyloid PET, 47% had abnor-
mal CSF Aβ42 and abnormal amyloid PET, and 7% (26) had abnormal CSF Aβ42 
and normal amyloid PET [29].

A meta-analysis of studies of amyloid PET in those with normal cognition shows 
that the rate of amyloid positivity increases from 10.4% in those 50–55 years old to 
43.8% among those 90+ years old [30]. Figure 2.5 shows the prevalence of positive 
amyloid imaging by age and establishes the expected screen fail and screen positive 
rate for cognitively normal individuals if no other screening criteria are employed. 
The rate of amyloid positivity is increased twofold in apolipoprotein E (ApoE) 4 
gene carriers [31].

Fig. 2.5 Prevalence of amyloid PET positivity by age (data from Jansen et al. [30])
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Together these observations indicate that biomarkers are required for diagnostic 
confidence in preclinical, prodromal, and dementia trials. Amyloid biomarkers con-
firm the diagnosis and provide confidence in the predicted decline of the placebo 
group and the ability to predict effect sizes and sample size requirements. Amyloid 
biomarkers establish the presence of the target pathology for anti-amyloid trials. 
Amyloid biomarkers show that the patient has AD and not some other unknown 
pathology that could create a neuronal environment with an unknown therapeutic 
response to anti-amyloid treatments. Establishing a firm diagnosis of AD by demon-
strating abnormal brain amyloid metabolism or aggregation is important for non- 
amyloid therapies directed at tau, neuroprotection, inflammation, or other AD-related 
pathologies. In these trials, amyloid PET or CSF Aβ function as inclusion criteria 
and not as outcomes. Despite the advantages of confirming the diagnosis of AD with 
biomarkers, a recent review of current AD trials and the AD pipeline showed that 11 
of 25 DMT trials in Phase 3 and 21 of 38 DMT trials in Phase 2 did not require 
evidence of amyloidosis at baseline [32]. Failure to show a drug-placebo difference 
in these trials will leave unresolved the question of whether there was lack of effi-
cacy of the test agent or an insufficient number of trial participants with AD.

2.5  Biomarkers of Target Engagement

In drug development programs, Phase 2a is typically used to establish proof of con-
cept (POC) and Phase 2b to determine the doses to be advanced to Phase 3. POC can 
be based on a clinical response or on a biomarker response or some combination of 
clinical and biomarker outcomes. Symptomatic agents with detectable clinical 
responses such as the cholinesterase inhibitors can achieve POC in Phase 2 with 
clinical measures [33–35]. Symptomatic agents improve cognition above baseline 
and can show cognitive and global benefit without substantial decline in the placebo 
group. DMTs target slowing of progression in comparison to the decline observed 
in the participants in the placebo arm of the study. This typically takes a large trial 
and long observation period (12 months to 5 years depending on the stage of the 
participants and the outcomes chosen). Such large long studies are characteristic of 
Phase 3, not Phase 2. This created the “Phase 2 conundrum” in AD drug develop-
ment and was resolved by some sponsors by advancing agents from Phase 1 to 
Phase 3 with little effort to show a drug-placebo efficacy difference or understand 
the safety issues of the agent in Phase 2 [36]. The Phase 2 conundrum can be 
addressed by using biomarkers as the principal readout with attention to the direc-
tional responses of clinical measures but not requiring demonstration of clinical 
benefit. Agents with biomarkers showing responses in early phase drug develop-
ment are more likely to be advanced to later phase of development and to be 
approved [37, 38]. Drug-placebo differences in biomarker measures can be shown 
in smaller shorter trials. No biomarker has achieved surrogate status in AD drug 
development with definite evidence that a change in the biomarker predicts a clini-
cal benefit. Nevertheless, a Phase 3 program can be de-risked by acquiring a 
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repertoire of biomarkers and clinical measures that provide a “weight of evidence” 
argument supporting drug efficacy and inform the go-no, go decision process at end 
of Phase 2.

Phase 2 clinical trials should show target engagement and establish the dose(s) to 
be advanced to Phase 3. Unless target engagement is established, it is impossible to 
distinguish between a drug that failed to engage the target and a failed trial (usually 
poorly conducted) as the interpretation of a trial showing no drug-placebo differ-
ence [39]. Target engagement can be shown by receptor occupancy or proof of phar-
macology. Receptor occupancy is more often used in development programs for 
symptomatic agents; proof of pharmacology is applicable to both symptomatic and 
disease-modifying drug development. Symptomatic agents can be advanced on the 
basis of clinical response, but demonstrating target engagement provides informa-
tion relevant to brain penetration, dose optimization, and efficacy. DMTs should not 
be advanced to Phase 3 without evidence of target engagement in Phase 2. There are 
relatively few well-developed target engagement biomarkers. Sponsors should 
require development of biomarkers to show target engagement (fluid or imaging) to 
advance a drug development program.

2.6  Fluid Biomarkers of Target Engagement

Proof of pharmacology for enzyme inhibitors can be shown by stable isotope label-
ing kinetic (SILK) studies [40]. When used to measure amyloid protein synthesis, 
this technique involves labeling an amino acid in peripheral blood and then using 
mass spectrometry to determine when it appears (synthesis rate) in the amyloid 
protein and disappears (amyloid clearance rate) from the CSF. SILK has been used 
to show that amyloid clearance is decreased in late-onset AD and that this may be 
an important contributor to amyloid aggregation in this form of the disease [41]. In 
the autosomal dominant form of AD (ADAD), production of Aβ40 and Aβ42 was 
24% higher in mutation carriers than noncarriers, and the fractional turnover rate of 
Aβ42 was 65% faster in mutation carriers [42]. These observations show that late- 
onset AD (LOAD) reflects reduced amyloid clearance; ADAD reflects amyloid 
over-production.

In drug development programs for inhibitors of enzymes involved in Aβ synthe-
sis, SILK can be used to assess the short-term impact of inhibition of amyloid pro-
duction. When testing a gamma-secretase inhibitor (semagacestat; LY 450139), 
patients received an oral dose of the inhibitor at the start of a 9-h infusion of labeled 
leucine; CSF sampling occurred continuously over the next 36 h. Hours 0–12 were 
used to calculate Aβ synthesis and hours 24–36 to calculate Aβ clearance. There was 
a dose-dependent decrease in Aβ production ranging from 47% to 84% with no 
effect on Aβ clearance [43]. SILK showed proof of pharmacology for inhibition of 
Aβ production over 36 h. A 16-week study of the agent showed no decrease in CSF 
Aβ at the end of the exposure period suggesting that short-term inhibition of gamma- 
secretase may not predict long-term inhibition [44].
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Verubecestat, a β-site amyloid precursor protein cleaving enzyme 1 (BACE 1) 
inhibitor, decreased CSF levels of Aβ over a 7-day continuous sampling period [45], 
and the levels remained 70–80% lower than placebo-treated patients after an 
18-month treatment period [46]. In this case, short-term observations were consis-
tent with long-term data. There was no associated cognitive or functional benefit 
from prolonged Aβ reductions in these patients with mild-to-moderate AD.

Gamma-secretase inhibitors decrease the production of Aβ42 and increase the 
production of shorter amyloid fragments. A rise in Aβ15–16 is a target engagement 
biomarker for gamma-secretase inhibitors showing that the enzyme activity has 
been decreased and pharmacologic consequences are measurable. This can be 
shown acutely using short-term measures [47].

Labeled leucine has also been used to interrogate tau protein kinetics [48]. No 
treatment-related effects of tau agents have been reported using this approach. This 
technique will provide insight into tau therapeutics and impact of drugs on tau 
dynamics.

CSF p-tau and Aβ1–42 can serve as pharmacodynamic measures of target engage-
ment. P-tau is increased in AD and is hypothesized to reflect either cell death with 
release of the neurofibrillary tangle-associated p-tau protein into the CSF or leakage 
of p-tau from the extracellular space into the CSF during the prion-like transfer of 
p-tau from cell-to-cell [49]. T-tau measures are considered measures of neurodegen-
eration. Table 2.2 shows the results of trials where p-tau was measured. Patients on 
active treatment observed with bapineuzumab, gantenerumab, and semagacestat had 
modest reductions in p-tau in some studies. Most trials showed no effect on p-tau 
levels.

Table 2.2 Effects on p-tau and t-tau of recent major clinical trials

Agent

N in the CSF 
portion of the 
study

Percent change p-tau 
compared to placebo

Percent change T-tau 
compared to placebo MOA

AN1792 [107] 21 Not reported Reduced in the active 
treatment group 
compared to the pbo 
group (p < 0.001)

Anti- 
amyloid 
vaccine

Antioxidant*  
trial [108]

66 No drug-placebo 
difference

No drug-placebo 
difference

Antioxidant

Semagacestat 
[97]

47 P-tau increased 16% in 
the pbo group and 
declined by 8% and 4%, 
respectively, in the low- 
and high-dose groups 
(p = <0.001)

No drug-pbo 
difference

GSI

Bapineuzumab; 
ApoE carrier 
study [109]

212 5.8 pg/ml decrease in 
treatment group; 0.95 pg/
ml increase in the pbo 
group (p = 0.0.005)

Not reported mAb

(continued)
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Table 2.2 (continued)

Agent

N in the CSF 
portion of the 
study

Percent change p-tau 
compared to placebo

Percent change T-tau 
compared to placebo MOA

Bapineuzumab; 
ApoE 
noncarrier 
study [109]

188 No drug-pbo difference 
in the 5 mg/kg treatment 
group; for the 10 mg/kg 
group, there was a 
8.18 pg/ml decrease in 
the treatment group and a 
1.98 pg/ml in the placebo 
group (p = 0.009)

Not reported

Solanezumab; 
Expedition [51]

45 No drug-pbo difference No drug-pbo 
difference

mAb

Solanezumab; 
Expedition II 
[51]

76 No drug-pbo difference No drug-pbo 
difference

mAb

Gantenerumab 
[69]

209 −5.61% change from 
baseline for 105 mg dose 
(p = <0.001 compared to 
pbo); −7.15% change 
from baseline for 225 mg 
dose (p = <0.001 
compared to pbo)

−1.08% change from 
baseline for 105 mg 
dose (p = 0.05 
compared to pbo); 
−2.91% change from 
baseline for 225 mg 
dose (p = 0.02 
compared to pbo)

mAb

IVIG [110] No drug-placebo 
difference

No drug-placebo 
difference

Solanezumab; 
Expedition III 
[52]

258 No drug-pbo difference No drug-pbo 
difference

mAb

Crenezumab 
[53]

No drug-pbo difference No drug-pbo 
difference

mAb

Verubecestat 
[46]

111 Decrease of 0.42% in the 
pbo group and 5.86% in 
the 40 mg group (not 
significant)

Increase of 7.52% in 
the pbo group and 
3.35% in the 40 mg 
group (not 
significant)

BACE 1 
inhibitor

Azeliragon 
(TTP488)

No drug-placebo 
difference

No drug-placebo 
difference

RAGE 
inhibitor

BACE β-site amyloid precursor protein cleaving enzyme 1, GSI gamma-secretase inhibitor, IVIG 
intravenous immunoglobulin, mAb monoclonal antibody, MOA mechanism of action, pbo placebo, 
RAGE receptor for advance glycation end products
*Antioxidant, 3 arm trial comparing placebo to 800  IU/day of vitamin E (α-tocopherol) plus 
500 mg/day of vitamin C plus 900 mg/day of α-lipoic acid (E/C/ALA) or 400 mg of coenzyme Q 
3 times/day

2 Biomarkers in Alzheimer’s Disease Drug Discovery



40

CSF Aβ1–42 is monitored as a pharmacodynamic outcome in trials of anti- 
amyloid agents (Table 2.3). Reduction in Aβ1–42 or a decrease in the Aβ42/40 ratio 
is a diagnostic hallmark of AD and correlates with increased amyloid plaque burden 
on amyloid PET [50]. Further reduction in CSF levels of Aβ1–42 has been achieved 
with BACE inhibitors. Verubecestat, for example, produced 80% reduction in Aβ1–
42 levels after 18 months of treatment [46]. Solanezumab produced increased levels 
of CSF Aβ1–42  in Expedition/Expedition II [51] and in Expedition III [52]. 
Crenezumab was associated with decreased CSF Aβ compared to placebo [53]. The 
effect of other amyloid-related treatment mechanisms on CSF Aβ1–42 levels is less 
predictable. For example, it might be anticipated that agents that reduce amyloid 
aggregation would increase the monomeric form of Aβ1–42 measured in the CSF 
and decrease the oligomeric form [54]. Resolution of these issues awaits further 
empirical evidence.

Inflammation is increasingly recognized as a critical process of AD neurobiol-
ogy [55]. Several biomarkers for inflammation have been proposed and may even-
tually be included as biomarkers in AD clinical trials, especially those where the 
test agent targets or affects inflammation. In CSF, C-reactive protein (CRP) 
(decreased) and TREM-2 (increased) differ between normal elderly controls and 
those with AD dementia [56]. CRP is also reduced in plasma of those with AD 
dementia compared to those with MCI or normal cognition [57]. Correlations 
between levels of CRP and cognition or disease progression are weak. Elevated 
CSF levels of the pro- inflammatory cytokine TNF-alpha and decreased levels of the 
anti-inflammatory cytokine TGF-β are associated with an increased risk of progres-
sion from MCI to AD dementia suggesting that inflammation is playing a role in 
this early phase of symptomatic disease progression [55]. Chemokines are also 
altered in AD including elevated levels of monocyte chemoattractant protein-1 [58]. 
Microglial activation is part of the inflammatory process and stimulates astrocytic 
expression of YKL-40. Increased levels of YKL-40 are evident in CSF and blood in 
AD dementia [59]. Microglial activation can be assessed with PET imaging using 
ligands binding to microglial proteins; elevated microglial activity has been shown 
in medial temporal, occipital, and parietal lobes in those with AD dementia [60]. 
Reduction of inflammatory markers may be a means of tracking anti-inflammatory 
effects of AD therapies.

Isoprostanes are prostaglandin isomers produced from polyunsaturated fatty 
acids in lipid membranes by free radicals and comprise an index of oxidative injury 
measurable in the CSF and plasma [61, 62]. Isoprostanes increase in the course of 
normal aging as well as in AD. F2-isoprostanes have the best measurement perfor-
mance characteristics of assays of oxidative damage [61] and may be used to reflect 
decreased membrane injury associated with AD-related treatments that provide 
neuroprotection [63].

Cyclic guanosine monophosphate (cGMP)-specific phosphodiesterase (PDE) 
inhibitors are candidates for cognitive enhancement in AD by increasing brain 
cGMP levels. PDE inhibitors have shown proof of pharmacology by raising CSF 
levels of cGMP after oral dosing. With BI 409306, a PDE9 inhibitor, maximum CSF 
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cGMP concentrations were achieved within 2–5 h, declining to baseline 10–14 h 
after dosing in a Phase 1 study with healthy volunteers. This is an example of using 
a proof-of-pharmacology biomarker in a development program for a symptomatic 
cognitive enhancing agent. The agent did not produce clinical benefit; other PDE 
inhibitors are in clinical development [32].

2.7  Imaging Biomarkers of Target Engagement

Receptor occupancy studies are valuable when there is a defined receptor for the test 
agent; this is most likely in development programs for symptomatic agents—cogni-
tive enhancers or drugs to treat neuropsychiatric syndromes in neurodegenerative 
disorders. An example of investigation of receptor occupancy in a drug development 
program for neurodegenerative disease is the PET study of pimavanserin, a 5-HT2A 
inverse agonist. Ascending doses of pimavanserin were given to healthy volunteers, 
followed by radio-labeled [11C]N-methylspiperone ([11C]NMSP), a 5-HT2A 
ligand. Reduced NMSP binding was evident following 1 mg of pimavanserin and 
reached near maximal displacement with the 10–20 mg doses [64]. The radioligand 
PET study showed blood-brain barrier penetration, dose-related receptor occu-
pancy, dose of maximal occupancy, and safety. Receptor occupancy studies are a 
means of showing target engagement in a drug development program. Pimavanserin 
is approved for hallucinations and delusions in Parkinson’s disease psychosis [65], 
reduced symptoms of AD-related psychosis [66], and is being studied for dementia- 
related psychosis [67].

Amyloid and tau PET are biomarkers of target engagement but are not direct 
measures of cell loss and neurodegeneration. An example of reduction of fibrillar 
amyloid in a clinical trial emerged from the trial of the monoclonal antibody adu-
canumab [68]. There was a dose-dependent decrease in Aβ plaque evident at 6 
and 12 months of exposure. There was a corresponding amelioration in progres-
sion at the highest doses as measured by the Clinical Dementia Rating Sum of 
Boxes (CDR-sb) and the Mini-Mental State Examination (MMSE) but not on the 
Neuropsychological Test Battery (NTB) or the Free and Cued Selective Reminding 
Test (FCSRT). Dose- and genotype-dependent amyloid-related imaging abnor-
malities (ARIA) were evident. This agent is now in Phase 3 clinical trials. 
Reduced plaque amyloid has been observed with the monoclonal antibodies gan-
tenerumab and BAN-2401 [69] and with the small molecules verubecestat [46] 
and bexarotene [70].

Trials of a few other agents have shown reductions in brain plaque burden on 
amyloid PET but with no corresponding benefit for cognition or function (Table 2.4). 
These studies show that demonstration of target engagement in Phase 2 may not 
predict cognitive benefit in Phase 3. Figure 2.6 shows the relationship of A and T 
imaging to impact on N; ATN biomarkers are pharmacodynamic measures.

An underutilized opportunity to show target engagement and garner information 
supportive of proof of pharmacology is the use of functional MRI (fMRI) to explore 
circuit-level effects of Phase 2 interventions [71]. A,T,N are cellular- and tissue- 
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Fig. 2.6 Pharmacodynamic biomarkers. Tau (T) and amyloid (A) biomarkers function as target 
engagement biomarkers showing that an agent affects the brain protein; N biomarkers support 
disease modification if a drug-placebo difference is demonstrated

Fig. 2.7 Relationship of ATN (amyloid, tau, neurodegeneration) pathology to circuits that under-
lie human cognition and emotion is comprised in AD

level measures that reflect the core pathologic involvement of the brain in 
AD. Cognition and behavior are supported by complex brain circuits that are com-
prised of integrated nodes and connections [72] (Fig. 2.7). Aspects of these circuits 
are active at rest and differ from circuits that are dynamically engaged with specific 
cognitive activities. The activity pattern of resting state fMRI includes a posterior 
default mode network (DMN) and an anterior salience network (SN). The posterior 
DMN is comprised of a temporal-parietal network associated with memory and 
visuospatial function; the anterior SN includes frontal structures relevant to social- 
emotional function. In AD, the posterior DMN connectivity to posterior hippocam-
pus and medial cingulo-parieto-occipital regions is diminished in contrast to 
intensified activity in the anterior SN [73, 74] (Fig. 2.8). Circuit function deterio-
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rates in the preclinical phases of AD and continues to decline in prodromal and 
dementia phases [75]. Activated fMRI wherein patients perform cognitive tasks 
while in the MRI scanner show task-related regional activation and can also be used 
to investigate characteristic changes in AD [76]. Treatments that affect core A,T,N 
biology but do not impact circuit function are unlikely to produce a cognitive benefit 
compared to placebo. fMRI has had only limited application in multisite trials, but 
preliminary reliability studies support its implementation in Phase 2 trials [77, 78]. 
Treatment benefits demonstrated with fMRI would support circuit-level effects and 
increase confidence that the treatment will have cognitive benefit [71]. FDG PET 
circuit analyses and EEG may provide similar insights into circuit-level function but 
have not been explored in this context in multicenter studies [79].

2.8  Biomarkers Evidence of Disease Modification

A major role for biomarkers in current drug development programs is to provide 
evidence in support of disease modification for clinical trials of DMTs. Disease 
modification is defined as ameliorating the basic processes leading to cell death 
with a corresponding clinical benefit [16, 17]. To show that disease modification has 
occurred requires an impact on N (neurodegeneration) of the A,T,N Research 

Fig. 2.8 Area of difference in default mode network (DMN) activation on functional MRI (fMRI) 
between cognitively normal amyloid-negative older adults and amyloid-positive individuals with 
mild cognitive impairment (MCI) from the AD Neuroimaging Initiative (ADNI) (figure courtesy 
of Zhengshi Yang)

2 Biomarkers in Alzheimer’s Disease Drug Discovery
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Fig. 2.9 The amyloid (A), tau (T), and neurodegeneration (N) framework of AD with consensus 
and emerging biomarkers (figure courtesy of Mike de la Flor)

Framework [8]. Recognized assessments of N include atrophy on MRI, hypome-
tabolism on FDG PET, or increases in total tau in the CSF. Measures that are prom-
ising candidate biomarkers of N include neurofilament light (NfL), neurogranin, 
and visinin-like protein-1 (VILIP-1) (Fig. 2.9). NfL is an axonal protein appearing 
in CSF and plasma with neurodegeneration [80]. VILIP-1 is a neuronal calcium sen-
sor protein previously used as a marker of acute ischemic stroke and found to be 
elevated in CSF of AD patients [81]. Neurogranin is a synaptic protein that is shed 
into CSF under circumstances of synaptic degeneration in AD [82]. NfL, total tau, 
and neurogranin have all been shown to correlate with regional cerebral atrophy, 
although the strength of correlations may vary [83].

MRI shows progressive atrophy in the course of AD with decline of whole brain 
and hippocampal volume and increasing ventricular size [84] (Fig. 2.3). Atrophy is 
correlated with cell loss [85] suggesting that interfering with neurodegeneration and 
cell loss should slow the rate of atrophy and create a drug-placebo difference at end 
of trials in favor of active treatment. Review of studies reporting MRI results and 
listed in Table 2.5 shows that this anticipated result has rarely been achieved. In 
most trials reporting MRI findings, there has been no drug-placebo difference at 
trial termination; in a few, the active treatment group has shown greater atrophy. It 
is uncertain whether the apparently greater shrinkage or “pseudo-atrophy” in the 
treatment group reflects amyloid removal or reduction of inflammation or if, at least 
with some treatment mechanisms, neurotoxicity and true increase in atrophy has 
occurred.

CSF total tau is included in the A,T,N Framework as a marker of N [8]. Tau 
protein is a microtubule-associated protein that has a critical role in intracellular 
transportation. It may become hyper-phosphorylated to p-tau in the process of 
forming neurofibrillary tangles where it becomes a marker of T, or it may appear 
directly in the CSF presumably as a product of cell death and reflecting N. CSF 

J. Cummings



Table 2.5 Volumetric MRI results in major recent clinical trials

Agent Drug-placebo difference at the end of study
Duration 
of study

AN1792 [116] Greater atrophy in the active treatment group (significant 
for whole brain and ventricular volume; not the 
hippocampal volume)

12 monthsa

Vitamin E or 
donepezil [117]

No drug-placebo difference in whole brain, ventricular, 
entorhinal cortex, or hippocampal volume with either 
treatment

36 months

Tramiprosate [118] Dose-dependent preservation of hippocampal volume (post 
hoc analysis)

70 weeks

DHA [119] No drug-placebo difference in whole brain volume, 
ventricular volume, or hippocampal volume

18 months

Valproate [111] Greater atrophy in the treatment group compared to the 
placebo group (whole brain, ventricular, hippocampal)

24 months

Avagacestat [113] No drug-pbo difference in whole brain, ventricular, or 
hippocampal volume

24 weeks

Semagacestat [97] No drug-pbo difference in entorhinal cortex or 
hippocampal volume

76 weeksa

Bapineuzumab; ApoE 
carrier study [109]

No drug-pbo difference in whole brain volume 71 weeks

Bapineuzumab; ApoE 
noncarrier study [109]

No drug-pbo difference in whole brain volume 71 weeks

Solanezumab; 
Expedition [51]

No drug-pbo difference in whole brain or hippocampal 
volume

80 weeks

Solanezumab 
Expedition II [51]

No drug-pbo difference in whole brain or hippocampal 
volume

80 weeks

Azeliragon (TTP488) 
[120]

No drug-placebo difference in whole brain volume or 
hippocampal volume

18 months

Resveratrol [121] Whole brain volume decreased and ventricular volume 
increased significantly in the treatment group compared to 
the placebo group

52 weeks

Avagacestat [114] Greater atrophy rates were observed in the active treatment 
group for ventricular and whole brain volumes; differences 
were significant at weeks 24 and 56 but not at 104 (possibly 
due to small the number of patients remaining the study)

104 weeks

Avagacestat [114] No drug-placebo difference in whole brain, ventricular, or 
hippocampal volume at study end; greater atrophy I the 
treatment group at weeks 24 and 56

104 weeks

Gantenerumab [69] No drug-pbo difference in either dose group for whole 
brain, ventricular, or left-right hippocampal volume

100 weeks

IVIG [110] No drug-placebo difference in whole brain volume, 
ventricular volume, or hippocampal volume

18 months

Solanezumab; 
Expedition III [52]

No drug-pbo difference in whole brain or ventricular 
volume

76 weeks

Crenezumab [52] No drug-pbo difference in ventricular volume or whole 
brain volume

73 weeks

Verubecestat [46] No significant drug-placebo difference in hippocampal 
volumes; numerically greater in the active treatment groups

78 weeks

BACE β-site amyloid precursor protein cleaving enzyme 1, DHA docosahexaenoic acid, GSI 
gamma-secretase inhibitor, GSK glycogen synthase kinase
IVIG intravenous immunoglobulin, mAb monoclonal antibody, MOA mechanism of action, pbo 
placebo
aAN1792 and semagacestat trials were stopped before planned completion
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measures of p-tau and total tau have been collected in several major trials (Table 2.2). 
In a few trials, relatively small magnitude changes in either tau species have been 
observed. The interpretation of these changes is uncertain. Until recently, measure-
ment of tau across or within laboratories produced inconsistent results, and the 
evolution of new techniques in tau measures will assist in using tau as an outcome 
in drug development [86].

Fluorodeoxyglucose PET is among the N measures of the A,T,N Framework 
(Figs.  2.4 and 2.9). The metabolic activity measured with FDG PET is largely 
reflective of synaptic activity and neuronal activating [8, 87], and hypometabolism 
is regarded as a reflection of synaptic compromise in the course of cell death. 
Relatively few AD clinical trials have included FDG PET as an outcome. 
Methodologies have evolved to suggest that it can be performed reliably as part of a 
multisite trial and have the ability to detect treatment effects with relatively small 
sample sizes [88, 89]. Brain metabolism can be increased with symptomatic treat-
ments, and this potential confound must be considered in FDG studies [90]. Novel 
imaging biomarkers such as the synaptic vesicle glycoprotein 2A (SV2A) PET 
ligand, indicative of synaptic density, may present novel opportunities to document 
neurodegeneration [91, 92].

2.9  Biomarkers for Safety in AD Drug Development

Liver functions, blood counts, muscle enzymes, and electrocardiograms are key 
biomarkers for drug toxicity [93], and toxicity accounts for the termination of 
approximately 30% of drug development programs [94]. These measures are 
included in AD drug development programs. Liver toxicity has been observed with 
some BACE inhibitors and some 5-HT6 antagonists such as the Phase 2 studies of 
idalopirdine [95], and QTc prolongation was observed in a trial of citalopram for 
agitation in AD [96].

Off-target adverse events occurred in the course of gamma-secretase drug devel-
opment with hypopigmentation, skin cancers, and cognitive and functional impair-
ment relative to placebo [97]. The dermatologic changes are attributed to inhibition 
of NOTCH proteases; the cognitive and functional toxicity is of uncertain origin. 
Amyloid-related imaging abnormalities (ARIA) occur with some monoclonal anti-
bodies, and monitoring these with MRI in the course of trials is critical to insuring 
the safety of these treatments [98].

2.10  FDA Classification of Biomarkers and Integration 
into Stages of Alzheimer’s Disease

The FDA has proposed a staging system for AD beginning with biomarker-positive 
asymptomatic individuals (Stage 1); those with cognitive impairment measurable 
only with sensitive neuropsychological instruments and no functional impairment 
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(Stage 2); those with mild cognitive impairment and functional compromise measur-
able with sensitive instruments but not sufficient to meet criteria for dementia (Stage 
3); and those with mild, moderate, and severe AD dementia (Stages 4, 5, 6) (Table 2.6) 
[10]. Biomarkers play an important role in this staging system particularly in the 
Stage 1 where there are no cognitive or functional changes, but biomarker changes 
indicative of AD pathological changes are present. Biomarkers that are abnormal in 
this early preclinical phase of the disease include positive amyloid imaging and low 
CSF Aβ42. The FDA Guidance provides for accelerated approval for a treatment at 
this stage based on a biomarker thought to be reasonably likely to predict clinical 
benefit and coupled with a post-approval plan to gather evidence on clinical out-
comes. The FDA Guidance noted that no current AD biomarker can be regarded as a 
surrogate that reliably predicts clinical measure. Full approval would require demon-
strating a drug-placebo difference on a clinical outcome. The FDA Guidance [10] 
indicates that in Stage 2, approval could be based on persuasive effects on neuropsy-
chological measures supported by effects on the characteristic pathophysiological 
(biomarker) changes of AD. These approval discussions are independent of discus-
sions of acceptable labeling of a new treatment where the designation of being a 
DMT will likely require robust effects on N-type biomarkers or effects on biomark-
ers known to predict N or to predict sustained cognitive and functional benefit.

The FDA divides biomarkers into categories of diagnostic, prognostic, predic-
tive, response, and safety [99] (Table 2.7). Diagnostic biomarkers insure accurate 
diagnosis and allow categorization of a condition by the presence or absence of a 
specific pathophysiological state. Prognostic biomarkers indicate disease course 
and can be used to enrich populations to optimize establishing a drug-placebo 
 difference. Predictive biomarkers assist in forecasting the response to treatment. 
Pharmacodynamic or activity biomarkers show that a biological response has 
occurred in an individual who received the therapeutic intervention. 
Pharmacodynamic biomarkers are used in Phase 2 studies to improve understanding 
of how to use a drug and to guide dose or regimen decisions for Phase 3. Evidence 
of disease modification also depends on pharmacodynamic biomarkers. Safety bio-
markers are used to capture adverse events.

In AD drug development, evidence of amyloidosis is considered diagnostic of 
the AD pathological process; tau PET or MRI atrophy might serve a prognostic 
biomarkers of participants who will decline more rapidly; inflammatory markers 
might serve as a predictive biomarker for patients most likely to respond to anti- 
inflammatory therapies; both target engagement biomarkers and biomarkers of dis-
ease modification are pharmacodynamic biomarkers (Fig. 2.6); and use of MRI to 
monitor of ARIA is an example of a safety biomarker (Table 2.7).

2.11  Biomarker Qualification and Context of Use

Qualification refers to the FDA-defined process of reviewing drug development 
tools (DDTs) intended for use in multiple development programs [99]. DDTs 
include biomarkers, clinical outcome assessments, and animal models of drug 

2 Biomarkers in Alzheimer’s Disease Drug Discovery
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development. Once qualified, drug developers can use the biomarker within the 
specific context of use (COU) for the qualified purpose as long as no new informa-
tion that conflicts with the original basis for qualification has evolved. The qualifica-
tion process is intended to expedite drug development by making publically 
available DDTs that can be widely employed. A qualified DDT can be relied on to 
have a specific interpretation in drug development and regulatory review. 
Qualification is a complex process that begins with an initiation request and DDT 
letter of intent. This stage (Stage 1) is followed by consultation and advice with an 
FDA Qualification Review Team (QRT) regarding the submitter’s goals and the 
COU of the DDT, current understanding of the available data, identification of 
information gaps, discussion of additional information that may be needed, and 
construction of a plan for the qualification process (Stage 2). Stage 3 is comprised 
of review of the full qualification package [99]. The DDT COU proposal is reviewed 
by individual disciplines, and a final combined executive summary and recommen-
dation are issued by the QRT.  The qualification process is typically pursued by 
organizations such as the Coalition Against Major Disease (CAMD) of the Critical 
Path Institute [100]. No AD-related biomarkers have been advanced to qualification 
by the FDA. The European Medicines Agency (EMA) approved low CSF Aβ1–42 
and high t-tau as qualified for identification of prodromal AD; CSF Aβ1–42, t-tau, 

Table 2.7 FDA terminology for biomarkers and identification of biomarkers in each category for 
AD drug development (adapted from Amur et al. [103])

FDA biomarker 
type

Examples for drug 
development Examples from AD drug development

Diagnostic 
biomarkers

Patient selection Positive amyloid imaging
Low CSF Aβ42 or change in Aβ/tau or Aβ/p-tau 
ratio

Prognostic 
biomarkers

Stratify patients or enrich 
trials with patients likely 
to have disease

Tau PET to identify AD patients likely to have 
more rapid cognitive progression
ApoE-4 carriers as a prognostic marker for ARIA 
in immunotherapy programs

Predictive 
biomarkers

Stratification
Enrichment/inclusion 
criteria
Enrichment/companion 
diagnostic

Use of tau PET to identify AD patients more 
likely to respond to anti-tau therapies

Response 
biomarkers

Pharmacodynamic 
biomarker as an indicator 
of intended drug activity
Efficacy response 
biomarker as a surrogate 
for a clinical endpoint

Target engagement biomarkers (e.g., reduction in 
amyloid plaque in anti-amyloid programs)
Markers of disease modification (e.g., drug-
placebo differences in CSF total tau, FDG PET 
hypometabolism, or MRI atrophy)

Safety 
biomarkers

Biomarkers to detect 
adverse and off-target 
drug responses

MRI to monitor for ARIA in immunotherapy 
programs

ApoE apolipoprotein E, ARIA amyloid-related imaging abnormalities, CSF cerebrospinal fluid, 
FDG fluorodeoxyglucose, MRI magnetic resonance imaging, PET positron-emission tomography
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and amyloid PET to enrich for subjects in trials of mild-to-moderate AD; and hip-
pocampal volume for enrichment of trials in predementia stages of AD [101, 102].

DDT qualification is not necessary for use of a DDT within an individual drug 
development program, and use of a DDT in a program does not automatically qual-
ify the DDT for the general COU. When qualified biomarkers are not available, the 
pharmaceutical developer engages with FDA to reach agreement on the use of a 
particular biomarker in the drug development program [103]. In the case of fluid 
biomarkers, the sponsor must present information on specified reagents, analytical 
validation, rigorous process standardization, procedures for sample collection and 
handling, measurement stability, environmental change tolerance, lot-to-lot vari-
ability, computational procedures, and validated, reliable, and accurate interpreta-
tion [13, 104]. The specific use of the biomarker in the development program must 
be specified with a program-specific COU. These discussions are confidential and 
do not become available to other sponsors.

2.12  Companion and Complementary Diagnostics

The reliance on biomarkers in the drug development process lends itself to the 
development of companion or complementary diagnostics. A companion diagnostic 
is an in vitro diagnostic device (IVD) required for the safe and effective use of a 
corresponding therapeutic. The companion test may identify those most likely to 
respond or to have side effects, monitor therapy, or identify those in whom the thera-
peutic product has been adequately studied and found to be safe and effective [99, 
105]. When approved as a companion diagnostic, use of the IVD is mandatory 
before prescribing the drug or biologic. Extensive analytical and clinical validation 
is required for IVDs used as companion diagnostics [13]. A critical part of the com-
panion diagnostic development is determining the cutoff level which determines 
that the test is abnormal and dichotomizes the population into those with normal or 
abnormal status [105]. If an anti-amyloid therapy is approved based on a clinical 
trial in which participants were defined by abnormal amyloid imaging, then amy-
loid PET may be identified as a companion diagnostic required for the safe and 
effective use of the therapeutic. Determining the standard uptake value ratio (SUVR) 
defining the participant as having brain amyloidosis will be required if the SUVR 
was used in the pivotal trial. Visual reads of amyloid PET would be required if that 
is the approach used in the trial.

Complementary diagnostic tests are not required for prescribing a therapeutic 
agent but can identify a biomarker-defined subset of patients that responds particu-
larly well or aids in the risk/benefit assessments for individual patients [105, 106]. 
For example, an anti-amyloid monoclonal antibody might benefit both ApoE-4 car-
riers and noncarriers, but a higher rate of ARIA in carriers would play a role in the 
risk/benefit discussion with the potential treatment recipient. In this case, the ApoE 
genotype test would function as a complementary biomarker.

2 Biomarkers in Alzheimer’s Disease Drug Discovery
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2.13  Summary

Biomarkers play a central role in AD drug development and are likely to become 
increasingly important as the biology of AD is more understood and the repertoire 
of biomarkers is expanded. Biomarkers can be used to assist in diagnosis, demon-
strate target engagement, provide support for disease modification, and monitor for 
safety (Table 2.8). Diagnostic, predictive, prognostic, pharmacodynamic, and safety 
biomarkers have been identified. The A,T,N Research Framework integrates bio-
markers into the process of AD diagnosis and can be applied to drug development 
and clinical trials. The FDA staging of AD facilitates drug development for prede-
mentia stages of AD and integrates biomarkers into the staging system. Companion 
and complementary biomarkers may be developed in concert with new therapeutics 
in drug development programs. Informed use of biomarkers promises to accelerate 
AD drug development and assist in bringing new therapies to those with or at risk 
for AD.

Table 2.8 Examples of biomarkers for each phase of AD drug development

Type of 
biomarker Phase 1 Phase 2 Phase 3

Diagnostic 
biomarker (e.g., 
amyloid PET or 
CSF Aβ or Aβ/tau 
ratio)

If AD-spectrum patients 
are included in the 
Phase 1 program

All patients All patients

Target 
engagement 
biomarker

Critical outcome of 
Phase 2 to allow 
progression to Phase 3

Marker of disease 
modification

Critical outcome to 
allow labeling of the 
intervention as a DMT

Prognostic 
biomarker (e.g., 
ApoE-4 carrier 
status)

Important for analysis 
of outcomes and 
prediction of ARIA in 
immunotherapy 
programs

Important for analysis 
of outcomes and 
prediction of ARIA in 
immunotherapy 
programs

Safety biomarkers Liver function and other 
laboratory tests, ECG, 
MRI to monitor for 
ARIA in 
immunotherapy 
programs

Liver function and other 
laboratory tests, ECG, 
MRI to monitor for 
ARIA in 
immunotherapy 
programs

Liver function and other 
laboratory tests, ECG, 
MRI to monitor for 
ARIA in 
immunotherapy 
programs

ApoE apolipoprotein, ARIA amyloid-related imaging abnormalities, ECG electrocardiography, 
CSF cerebrospinal fluid, MRI magnetic resonance imaging, PET positron-emission tomography
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Chapter 3
Mitochondrial Involvement in Mental 
Disorders: Energy Metabolism 
and Genetic and Environmental Factors

Keiko Iwata

Abstract Mental disorders, such as major depressive disorder (MDD), bipolar dis-
order (BD), and schizophrenia (SZ), are generally characterized by a combination 
of abnormal thoughts, perceptions, emotions, behavior, and relationships with oth-
ers. Multiple risk factors incorporating genetic and environmental susceptibility are 
associated with development of these disorders. Mitochondria have a central role in 
the energy metabolism, and the literature suggests energy metabolism abnormalities 
are widespread in the brains of subjects with MDD, BPD, and SZ. Numerous stud-
ies have shown altered expressions of mitochondria-related genes in these mental 
disorders. In addition, environmental factors for these disorders, such as stresses, 
have been suggested to induce mitochondrial abnormalities. Moreover, animal stud-
ies have suggested that interactions of altered expression of mitochondria-related 
genes and environmental factors might be involved in mental disorders. Further 
investigations into interactions of mitochondrial abnormalities with environmental 
factors are required to elucidate of the pathogenesis of these mental disorders.

Keywords Mental disorders · Mitochondria · Energy metabolism · Genetic factors 
· Environmental factors

3.1  Introduction

Mental disorders such as major depressive disorder (MDD), bipolar disorder (BD), 
and schizophrenia (SZ) are generally characterized by a combination of abnormal 
thoughts, perceptions, emotions, behavior, and relationships with others. MDD is 
characterized by sadness, loss of interest or pleasure, feelings of guilt or low self- 
worth, disturbed sleep or appetite, tiredness, and poor concentration. BD typically 
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consists of both manic and depressive episodes separated by periods of normal 
mood. Manic episodes involve elevated or irritable moods, overactivity, pressure of 
speech, inflated self-esteem, and a decreased need for sleep. Psychoses, including 
SZ, are characterized by distortions in thinking, perception, emotions, language, 
sense of self, and behavior. Common psychotic experiences include hallucinations 
(hearing, seeing, or feeling things that are not there) and delusions (fixed false 
beliefs or suspicions that are firmly held even when there is evidence to the con-
trary). Multiple risk factors incorporating genetic and environmental susceptibility 
are associated with the development of these disorders. Based on twin studies, the 
heritability of MDD, BD, and SZ has been estimated about 40%, 75%, and 80%, 
respectively [1]. The way heritability has been estimated in twin studies means that 
gene-environment interactions involving environmental factors that are shared 
within a family are attributed to the genetic component and contribute to heritability 
estimates. Based on genetic data analyses, it becomes apparent that genetic variants 
account for a much smaller proportion of variance than the twin-based heritability 
estimates and genetic involvement is suggested to be 20–25% in these disorders [1].

3.2  Mitochondria

Mitochondria have a central role in the energy metabolism. This organelle plays a 
crucial role in adenosine 5′-triphosphate triphosphate (ATP) production through 
oxidative phosphorylation, a process that relies on the electron transport chain 
(ETC), composed of respiratory chain complexes I–IV and two intermediary 
substrates (coenzyme Q and cytochrome c) [2] (Fig.  3.1). These complexes are 
composed of numerous subunits encoded by both nuclear genes and mitochondrial 
DNA with the exception of complex II (encoded by nuclear genes only) (Fig. 3.1). 
The NADH and FADH2 formed through the processes of glycolysis, fatty acid oxi-
dation, and the citric acid cycle are energy-rich molecules that donate electrons to 
the ETC. Complexes I, III, and IV function as proton pumps that are driven by the 
free energy of coupled oxidation reactions. During the electron transfer, protons are 
pumped from the mitochondrial matrix into the intermembrane space. The proton 
gradient drives the ADP phosphorylation via the ATP synthase (complex V). In 
addition to energy metabolism, mitochondria are also involved in amino acid, lipid, 
and steroid metabolism and serve as Ca2+ buffers, sources of free radicals, and regu-
lators of apoptosis.

3.3  Mitochondrial Abnormalities in Mental Disorders

Postmortem brain studies have shown mitochondrial abnormalities in SZ [3, 4]. A sig-
nificant decrease in the volume density and count of mitochondria in oligodendroglial 
cells in the caudate nucleus and prefrontal area has been observed in the postmortem 
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brains of subjects with SZ compared to those of controls [3]. It has been also demon-
strated that the caudate and the putamen of subjects with SZ contain significantly fewer 
mitochondrial profiles than those of controls [4]. Brain imaging studies have identified 
brain mitochondrial abnormalities in psychiatric disorders. Regional high-energy phos-
phorus compounds can be measured by phosphorus-31 magnetic resonance spectros-
copy (31P-MRS) neuroimaging. A decreased ratio of phosphomonoesters to 
phosphodiesters in subjects with BD was consistent with differences in membrane turn-
over, suggesting alterations in phospholipid metabolism and mitochondrial function in 
the brains of subjects with BD [5]. In SZ, many studies have shown alterations in mem-
brane phospholipids, including decreased levels of free phosphomonoesters [6]. In addi-
tion, alterations in high-energy phosphate metabolism and regulation of oxidative 
phosphorylation have been found in the brains of subjects with MDD [7–12]. 
N-Acetylaspartate (NAA) synthesis correlates with mitochondrial metabolism in neu-
rons, and the NAA concentration is used as an indicator of neuronal density and mito-
chondrial function [13]. In addition, studies using proton (1H)-MRS have identified 
NAA deficits in the brains of subjects with MDD, BD, and SZ [14–16].

Glucose metabolism in the brain of mental disorders has been measured by posi-
tron emission tomography (PET) using 18F-fluoro-deoxy-glucose (FDG). Using this 
approach, it has been shown that negative schizophrenia symptoms are associated 
with frontal, prefrontal, and anterior cingulate cortical hypoactivity and hypome-
tabolism [17]. Similarly, positive schizophrenia symptoms have been linked to 
hypermetabolism in the temporolimbic system, including the amygdala, basal gan-
glia, and temporal cortical regions [17]. In BD, studies found a pattern of cortico-
limbic metabolism that was dysregulated accompanied by hypometabolism in 
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frontal cortical regions [17]. In other studies, a reduced metabolic rate was observed 
in the prefrontal cortex, anterior cingulate cortex, and caudate nucleus in MDD 
patients compared to healthy controls [18]. In addition, glucose metabolism in bilat-
eral insula, left lentiform nucleus putamen, and extranuclear, right caudate, and cin-
gulate gyrus was found to be significantly decreased in MDD patients [19].

Taken together, the findings of these studies are consistent with the idea that 
energy metabolism abnormalities are widespread in the brains of subjects with 
MDD, BPD, and SZ.

3.4  Mitochondria-Related Genes in Mental Disorders

In postmortem brains of SZ subjects, reduced expression in a majority of 
mitochondria- related genes encoded by mitochondrial DNA, such as MT-ATP6, 
MT-ATP8, MT-CO3, MT-CYB, MT-ND1, MT-ND2, MT-ND3, MT-ND4, MT-ND5, 
and MT-ND6, has been observed [20]. In addition, the expression levels of nuclear 
genes encoding subunits of complex I (11 genes), complex III (4 genes), and com-
plex IV (11 genes) have been found to be reduced in postmortem prefrontal or 
frontal cortical areas of subjects with SZ [21, 22]. Likewise, significantly lower 
mRNA and corresponding protein levels of complex I subunits have been demon-
strated in the striatum in SZ patients [23]. In addition, studies using microarray 
analysis have revealed that NDUFS7 (complex I), NDUFS8 (complex I), UQCRC2 
(complex III), COX5A (complex IV), COX6C (complex IV), ATP5C1 (complex V), 
ATP5J (complex V), and ATP5G3 (complex V) are present at decreased levels in the 
postmortem prefrontal cortex of subjects with BD [24]. Similarly, the mRNA of two 
isoforms of creatine kinase, which are involved in synthesis and metabolism of 
phosphocreatine, has been shown to be downregulated in the dorsolateral prefrontal 
cortex in subjects with BD [25]. Although these results have been inconsistent [26], 
numerous studies have suggested the involvement of mitochondria-related genes in 
the etiology and pathophysiology of these mental disorders, at least in part.

3.5  Environmental Factors for Mental Disorders

Environmental stressors triggering activation of the hypothalamic-pituitary-adrenal 
(HPA) axis cause the brain to be exposed to corticosteroids, affecting neurobehav-
ioral functions with a strong downregulation of hippocampal neurogenesis, and are 
major risk factors for MDD [27, 28]. In the case of BD, three types of environmental 
risk factors based on timing and postulated mechanism of action have been identi-
fied: neurodevelopment (maternal infection during pregnancy), substances (canna-
bis, cocaine, opioids, tranquilizers, stimulants, and sedatives), and physical/
psychological stress (parental loss, adversities, abuses, and brain injury) [29]. For 
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SZ, hypoxia, maternal infection, maternal stress, maternal malnutrition, and atypi-
cal mother-child interactions have been suggested as perinatal and early childhood 
risk factors [30, 31]. In addition, drug abuse (especially exposure to cannabis) has 
been suggested as a later life environmental risk factor for SZ [30, 31]. In addition, 
evidence suggests that maternal stress can influence central nervous system (CNS) 
development and consequently exert long-lasting behavioral and cognitive changes 
in the offspring [32]. Among these environmental factors, stress is a common major 
risk factor for mental disorders such as MDD, BD, and SZ [33, 34].

3.6  Interactions of Environmental Factors 
and Mitochondria-Related Genes

Gene-environment interactions have been suggested to play a significant role in 
the pathogenesis of mental disorders. To study the impact of altered expression 
levels of mitochondria-related genes on the stress response in vivo, Picard et al. 
genetically manipulated two mtDNA-encoded respiratory chain subunits, mt-Nd6 
(complex I) and mt-Co1 (complex IV), which resulted in selective impairment of 
mitochondrial respiratory chain function [35]. These mice have shown hyperacti-
vation of the HPA axis and an increased cytokine IL-6 inflammatory response to 
stress [35]. Intriguingly, the same mice have shown changes in hippocampal gene 
expression responses to stress [35], consistent with reports that alterations in hip-
pocampal functions have often been reported to occur in individuals with mental 
disorders [36].

In preclinical studies, Glombik et al. have shown that maternal stress leads to 
depression-like behaviors in the offspring of rats [37]. Of note, these offspring have 
shown brain mitochondrial abnormalities, including significant downregulation of 
Ndufv2 (complex I) [37]. As a possible mechanism of action, Lambertini et al. have 
shown that maternal stress modifies the mitochondrial gene expression profile in the 
human placenta and the expression levels of mitochondrial-encoded genes, 
MT-ND2, MT-ND6, and MT-CO2, have correlated to both maternal stress and 
infant temperament indices in placental samples from the stress in pregnancy birth 
cohort study [38]. The placenta plays a role in supporting the fetal allograft through-
out gestation, protecting against immune rejection, serving to supply oxygen and 
nutrients, and removing carbon dioxide and waste products from the developing 
fetus [39]. From such findings, it has been suggested that dysfunctions at the level 
of the placenta, the maternal-fetal interface, can contribute to the pathogenesis of 
mental disorders [40]. These reports suggest that mitochondria respond to maternal 
psychosocial stress in pregnancy and play an important role in infant brain 
development.

Taken together, these findings indicate that stress may lead to and augment mito-
chondrial abnormalities found in individuals with psychiatric conditions.
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3.7  Conclusion

Thus far, a single gene responsible for mental disorders has not been identified, and 
it seems unlikely that any single gene could fully explain the pathogenesis of these 
complex disorders. Instead, multiple lines of evidence have led to the suggestion 
that mitochondrial abnormalities, especially those leading to dysfunctions in energy 
metabolism, often occur in these mental disorders. As a possible pathological mech-
anism, stressors have been observed to be common environmental risk factors for 
these disorders, which could lead to altered expression levels of mitochondria- 
related genes [38]. Of note, the results of animal studies have suggested that mito-
chondrial abnormalities are augmented by stress [35]. Furthermore, other 
environmental factors, such as viral infection during pregnancy and hypoxia during 
labor and delivery, have been also suggested as risk factors for mental disorders [41, 
42]. Further investigations into interaction of mitochondrial abnormalities with 
environmental factors are required to elucidate the pathogenesis of these mental 
disorders. Such studies could help to identify possible novel drug targets for 
improved treatment of individuals suffering from these debilitating disorders.
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Chapter 4
Lymphocytes, Platelets, Erythrocytes, 
and Exosomes as Possible Biomarkers 
for Alzheimer’s Disease Clinical Diagnosis

Ryszard Pluta and Marzena Ułamek-Kozioł

Abstract In the aging world population, Alzheimer’s disease accounts for more 
than 70% of all cases of dementia and is the sixth leading cause of death. The neu-
rodegenerative processes of this disorder can begin 10–20 years before the clinical 
symptoms develop. Postmortem brain autopsy of Alzheimer’s disease cases reveals 
characteristic hallmarks like extracellular amyloid plaques and intraneuronal neuro-
fibrillary tangles and synaptic and neuronal disintegration with severe brain atrophy. 
Some studies have reported that platelets contain the amyloid protein precursor and 
the secretase enzymes required for the amyloidogenic processing of this protein. 
Thus, platelets can be a good blood cell-based marker to investigate the onset of 
Alzheimer’s disease. Other studies have indicated cellular and molecular alterations 
in erythrocytes and lymphocytes from Alzheimer’s disease subjects, which empha-
size the systemic nature of the disorder. In addition, small extracellular vesicles 
called exosomes appear to be an important factor during the progression of the dis-
ease. These vesicles contain disease-associated molecules such as the amyloid pro-
tein precursor and tau protein. In this chapter, we will summarize the recent 
knowledge on the involvement of lymphocytes, erythrocytes, platelets, and exo-
somes in the development of Alzheimer’s disease. The data will be reviewed with a 
view to applying the above elements as Alzheimer’s disease early preclinical and 
late-stage biomarkers with potential use for clinical diagnosis, prognosis, and moni-
toring disease progression and treatment responses.
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4.1  Introduction

Alzheimer’s disease is a progressive and irreversible disorder with diminished cog-
nition, memory, personality, and symptoms that are connected with some psychiat-
ric diseases such as depression [1–5]. The vast majority of patients (>95%) have a 
sporadic form of the dementia due to Alzheimer’s disease. Alzheimer’s disease is 
the leading cause of dementia in the world’s aging population (60–80% of cases) 
and is the sixth leading cause of death [6]. Mortality from Alzheimer’s disease has 
continued to rise, with the number of Alzheimer’s disease-related deaths increasing 
by 123% between 2000 and 2015 [7]. The progressive neuronal death, mainly in 
vulnerable brain structures such as the hippocampus, and dementia in patients with 
Alzheimer’s disease are related to the presence of extracellular amyloid plaques, 
intraneuronal neurofibrillary tangles, and brain atrophy. Recent studies have indi-
cated that the number of individuals suffering from Alzheimer’s disease accounts 
for 15–20 million worldwide and 5 million of these occur in the USA [8]. By 2025, 
the number of people aged 65 and older with dementia due to Alzheimer’s disease 
is estimated to reach 7 million in the USA, and this will increase further to 13.8 mil-
lion by 2050 [7, 9, 10]. Approximately 3.4 million of Americans over the age of 65 
with Alzheimer’s disease are women [7]. At the individual level, the risk of develop-
ing this disease doubles every 5 years after the age of 65 and approaches 50% by the 
age of 85.

In 2014, the direct cost of Alzheimer’s disease in the USA alone was estimated 
to be $214 billion [11]. According to the Alzheimer’s Association report, it is the 
most expensive disorder in the USA, costing an estimated $277 billion in 2018, 
which includes an increase of nearly $20 billion since 2017 [7]. In Great Britain, 
Alzheimer’s disease costs the economy more than cancer and heart disease together 
[12]. It is forecast that by 2050, the total cost of Alzheimer’s disease will have 
increased to more than $1.1 trillion [7].

The neuropathological alterations associated with Alzheimer’s disease begin 
10–20 years before the clinical symptoms’ development [2, 3]. The etiology of spo-
radic Alzheimer’s disease is unclear, and the mechanisms that lead to neuronal dam-
age and losses especially in the hippocampus during progression of the disease are 
not completely understood. As a result of the above, antemortem diagnosis or causal 
therapy for this devastating disorder is not currently possible [13–15]. The search 
for Alzheimer’s disease etiology, early antemortem diagnosis/biomarkers, and 
causal therapy has been one fraught with a wide range of complications and numer-
ous revisions with a lack of a final solution. Alzheimer’s disease is becoming a more 
common cause of death, and it is the only top ten cause of death that cannot be 
prevented, slowed, or even cured.

At present Alzheimer’s disease is one of the greatest national healthcare sys-
tem challenges. In December 2013, the G8 stated that dementia, including demen-
tia due to Alzheimer’s disease, should be made a global priority. It is their ambition 
to find a cure or a disease-modifying treatment by the year 2025 [16]. Alzheimer’s 
disease etiology and final antemortem clinical diagnosis have been unresolved 
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issues to date, as can be seen in Alzheimer’s Disease Research contest announced 
by the US Department of Defense at the end of 2017. Recently, President Donald 
Trump signed a bill to provide a $414 million increase for Alzheimer’s disease 
research and education [7]. With this increase, dementia and dementia due to 
Alzheimer’s disease research funding at the federal US government is $1.8 bil-
lion. This bill came in response to the demands from the Alzheimer’s Association 
and others, which recognized that there is much work to be done to alleviate suf-
fering and eliminate this devastating neurodegenerative disorder. The study of the 
causes of Alzheimer’s disease to date has focused on the “amyloid theory” with-
out final conclusion. Hence, other etiological approaches may be necessary [13, 
14, 17–25].

The first established molecular biomarkers for Alzheimer’s disease which have 
been accepted and used in Alzheimer’s disease clinical diagnosis are β-amyloid 
peptide 1–42, total tau protein, and hyperphosphorylated tau protein levels in cere-
brospinal fluid [26]. Aside from these three cerebrospinal fluid biomarkers, a num-
ber of potential candidates have been identified in cerebrospinal fluid and other 
body fluids such as blood. In order to identify biomarkers for clinical diagnosis, 
prognosis, early prevention, and response to treatment, multiplex biomarker tests 
will be required from various platforms and tissue or body fluid sources. This 
includes proteomic analyses of platelets, lymphocytes, erythrocytes, and exosomes. 
This chapter highlights the research of platelets, lymphocytes, erythrocytes, and 
exosomes from Alzheimer’s disease patients and their applications and potential use 
for clinical diagnosis, prognosis, and evaluation of treatment effects and for moni-
toring disease progression. The discovery of biomarkers for Alzheimer’s disease at 
the early clinical level will mean that fewer deaths will occur from this devastating 
and debilitating disorder. New antemortem biomarkers are needed for Alzheimer’s 
disease, and this will only be achieved by making it a world healthcare priority and 
increasing funding for research. It is anticipated that this may lead to earlier clinical 
diagnosis, causal therapies, and, ultimately, a cure.

4.2  Current Biomarkers in Alzheimer’s Disease Clinical 
Diagnosis

At present clinical diagnosis of Alzheimer’s disease is based on cognitive tests, 
brain imaging, and information collected from the families and medical histo-
ries of the patients [26, 27]. Measurements of β-amyloid peptide 1–42 and total 
and phosphorylated tau protein levels are currently used as biomarkers in the 
cerebrospinal fluid to establish the diagnosis during the development of 
Alzheimer’s disease. The total tau protein levels reflect the intensification of 
neuronal cell degeneration, phosphorylated tau protein levels correlate propor-
tionally with tangle generation, and the β-amyloid peptide 1–42 correlate 
inversely with plaque generation [28]. Currently, clinical diagnosis relies on the 
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decline of cognitive symptoms that are characteristic of the advanced stages of 
Alzheimer’s disease. However, this does not offer a definitive antemortem diag-
nosis. Actually, the final diagnosis of Alzheimer’s disease requires postmortem 
autopsy of the brain with presentation of amyloid plaques and neurofibrillary 
tangles. The generally accepted cerebrospinal fluid markers do not translate 
well to the blood since these show no significant differences between Alzheimer’s 
disease cases and healthy people in plasma or serum samples. Furthermore, 
considerable variability in the measurement of these proteins is observed across 
different studies and laboratories [29, 30]. Additionally, one of the main prob-
lems in clinical diagnosis of Alzheimer’s disease comes from the observation 
that the neuropathological changes can begin in the brain tissue 20 years before 
clinical symptoms’ development [2, 3]. Moreover, there are no clinical biomark-
ers associated with the neuropathological progression, especially in preclinical 
stages of Alzheimer’s disease. Given the ease of access compared with cerebro-
spinal fluid, it would be ideal if such markers could be observed in blood and 
other peripheral tissues.

4.3  Candidates for New Biomarkers

The search for final, reliable, non-expensive, and noninvasive clinical diagnostic 
tests based on neuronal pathology in the brain is an important driving force for 
biomarker-based research. Ideally, a blood-based biomarker would be representa-
tive of biochemical and pathological changes in the brain that are diagnostic of a 
disease and its stage and progression. Because blood circulates through different 
organs including the brain, it contains a number of molecules that can give insight 
into pathophysiological changes in the disease [31]. Ideally, biomarkers should 
identify the molecular mechanisms associated with both the neuropathological 
alterations and dementia development. In Alzheimer’s disease, a number of periph-
eral cells such as platelets, erythrocytes, and lymphocytes show physiological 
changes. Platelets are also an important source of the amyloid protein precursor in 
the blood, and the study of this protein in platelets has been suggested as a possible 
biomarker in the clinical diagnosis of Alzheimer’s disease [12]. Other investiga-
tions have noted both molecular and cellular abnormalities in lymphocytes and 
erythrocytes from Alzheimer’s disease patients [32–34]. Furthermore, we discuss 
new data on the role of exosomes in Alzheimer’s disease progression and spread-
ing. We also underline the possible utility of exosome as new clinical diagnostic 
biomarkers for this disorder [35]. Increasing evidence suggests that during the 
development of Alzheimer’s disease, changes occur in these small brain extracel-
lular vesicles, which comprise disease-associated proteins such as the amyloid pro-
tein precursor and tau protein [36]. Exosomes are a likely route that facilitates the 
spread of β-amyloid peptide and tau protein from their original cells into brain 
parenchyma.

R. Pluta and M. Ułamek-Kozioł



75

4.3.1  Platelets as Alzheimer’s Disease Biomarkers

Dysfunctional platelets from Alzheimer’s disease cases show a reduced amyloid 
protein precursor ratio, a switch from non-amyloidogenic to amyloidogenic metab-
olism of the amyloid protein precursor and, as a consequence, an increased genera-
tion of β-amyloid peptide [12]. In addition, alterations in the activity of 
cyclooxygenase 2, cytochrome c oxidase, and monoamine oxidase B enzymes have 
been documented in platelets isolated from the blood of Alzheimer’s disease sub-
jects [37]. The amyloid protein precursor is present in platelet membranes and as a 
soluble form of different lengths in the platelet α-granules. One study showed that 
the decreased amyloid protein precursor levels in platelets positively correlated with 
the development of the disease [12]. This relationship was also noted in the preclini-
cal period of Alzheimer’s disease suggesting that this can be used as an early ante-
mortem marker for Alzheimer’s disease clinical diagnosis. Other observations 
showed an increase in the number of platelet-leukocyte complexes and platelet 
aggregates in the circulation of patients with Alzheimer’s disease [12]. This sug-
gests that peripheral platelets from Alzheimer’s disease patients present increased 
activation compared to those from non-Alzheimer’s disease patients. In observa-
tions made over 1 year, activated platelets showed a significant correlation with the 
staging of cognitive deficits in Alzheimer’s disease patients [38]. Another important 
finding from this study was an increased number of coated platelets in Alzheimer’s 
disease cases. These coated platelets retained a high level of the amyloid protein 
precursor on their surface [39] and the platelet levels correlated with Alzheimer’s 
disease stage of development [40]. These observations indicated a possible role of 
coated platelets as preclinical markers of Alzheimer’s disease. Furthermore, the 
identification of tau protein in peripheral platelets from patients with Alzheimer’s 
disease suggested this as a potential new biomarker for Alzheimer’s disease clinical 
diagnosis [41]. It was noted that platelet tau protein has a significantly higher cor-
relation with Alzheimer’s disease progression than the platelet amyloid protein pre-
cursor [42] and the platelet tau protein was also found to correlate well with brain 
atrophy in Alzheimer’s disease patients in a separate study [43].

4.3.2  Lymphocytes as Alzheimer’s Disease Biomarkers

Changes in Ca2+ levels and oxidative stress have been noted to occur in lymphocytes 
in the early stages of Alzheimer’s disease [44, 45]. A greater amount of reactive 
oxygen species impairment in the function of mitochondria and DNA integrity, 
along with changed activity of antioxidant enzymes and apoptosis, have been docu-
mented in lymphocytes from patients with Alzheimer’s disease [45, 46]. The above 
data suggested the universal nature of oxidative stress in Alzheimer’s disease 
dementia development and supports the premise that oxidative stress is an early 
hallmark of Alzheimer’s disease formation. Cell cycle dysfunction is another early 
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Alzheimer’s disease neuropathological hallmark manifested in peripheral lympho-
cytes [46, 47]. A number of investigations have now documented the role of T cells 
in the development of Alzheimer’s disease-type dementia in relation with immune 
system alterations, as shown by a decreased reaction of T cells to some pathogens 
and increased telomerase activity in lymphocytes that leads to reduction of lympho-
cyte proliferation and dysfunction of the immune system in Alzheimer’s disease 
patients [48–53]. These findings support the possible input of a dysfunctional 
peripheral immune system in the development of Alzheimer’s disease.

4.3.3  Erythrocytes as Alzheimer’s Disease Biomarkers

The existing results indicate that red blood cell β-amyloid peptides may constitute 
markers for Alzheimer’s disease clinical diagnosis [54]. The red blood cell levels of 
the β-amyloid peptides 1–40 and 1–42 have been found to be 8 and 14 times higher 
than in serum, respectively [54]. Red blood cell amyloid complexes induce altera-
tions in morphology and adhesion of the cells to the endothelium and thereby influ-
ence blood vessel function [33, 55]. Recent data indicate that 98% of erythrocytes 
from patients with Alzheimer’s disease are amyloid binding-positive, but only 38% 
of erythrocyte binding is found in healthy persons [34]. Moreover, the data indicate 
that the presence of red blood cell β-amyloid peptides 1–40 and 1–42 may lead to 
generation of other erythrocyte-based markers for Alzheimer’s disease clinical 
diagnosis. β-Amyloid peptide binding causes reactive oxygen species and oxidative 
stress generation in red blood cells and induces deposition of phospholipid hydro-
peroxides, a typical cause of red blood cell damage [56]. Similarly, erythrocytes 
from patients with Alzheimer’s disease presented higher activity of the glycolytic 
enzymes hexokinase, bisphosphoglycerate mutase, phosphofructokinase, and 
bisphosphoglycerate phosphatase [34]. Furthermore, red blood cell membrane pro-
teins such as the calpain-1, glucose transporter, band 3 protein, IgG, and Hsp 90 
were changed in Alzheimer’s disease patients [33].

4.3.4  Exosomes as Alzheimer’s Disease Biomarkers

Exosomes can be found in many extracellular human fluids like cerebrospinal fluid, 
blood, saliva, milk, and urine [57–60]. These vesicles contain a rich source of 
molecular cargo, including nucleic acids and proteins, and have therefore been pro-
posed to provide a systemic noninvasive source of biomarkers for brain diseases 
[59]. Exosomes from cerebrospinal fluid contain proteins originating from the brain 
such as microglial- and neuron-specific markers, apolipoprotein E, and notch homo-
log protein 3 [61]. A significant increase of both total tau protein and phosphory-
lated tau protein levels was found in cerebrospinal fluid exosomes in Alzheimer’s 
disease patients compared to healthy control subjects [62]. The amyloid protein 
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precursor has also been found in exosomes from cerebrospinal fluid [63]. In serum, 
exosomal miRNAs associated with Alzheimer’s disease have been identified which 
show a correlation with neuropsychological and neuroimaging examination results 
[64]. This suggests the possibility that peripheral exosomal miRNAs and other bio-
markers can be used for the identification of early, preclinical Alzheimer’s disease 
cases. However, the diagnostic utility of peripheral exosomes is still not clear. 
Further molecular investigations are needed to confirm whether the β-amyloid pep-
tides and tau protein are also present in exosomes from experimental models of the 
disease.

4.4  Exosomes as a Spread Factor in Alzheimer’s Disease

The β-amyloid peptide 1–42 aggregates and develops oligomer assemblies, includ-
ing amyloid plaques in different brain regions. It has been suggested that the spread 
of these abnormalities is mediated by exosomes [29, 35, 65]. A study showed that 
the β-amyloid peptide spreads from the hippocampus to septal nuclei over 1 year 
following the intracerebral injection of this molecule [66]. The confirmation of this 
spreading neurodegenerative pathology via neuron-to-neuron transfer of β-amyloid 
peptide has been documented experimentally [67, 68]. These findings indicate that 
β-amyloid peptide can be relocated from cell to cell and thereby disperses the neu-
ropathology throughout the whole brain in Alzheimer’s disease cases. The spread of 
tau protein by different brain structures has also been shown to occur in tau protein 
transgenic mice [69, 70]. The occurrence of the cell-to-cell transmission of 
Alzheimer’s disease-associated proteins suggests a potential molecular pathway 
that could be targeted by novel treatments with the aim of disrupting and/or delay-
ing the spread and progression of the disorder.

4.5  Conclusions

For patients with Alzheimer’s disease, growing evidence indicates that patho-
logical changes take place not only in the brain parenchyma but also in blood 
platelets, lymphocytes, erythrocytes, and exosomes. Platelets, due to shared 
properties with neuronal cells, can be used for the study of neuronal pathologies 
[37]. Evidently, all of these blood components are easily available as biomark-
ers for preclinical and definitive clinical diagnosis and probably for drug screen-
ing and treatment monitoring. Evidence suggests that neuroinflammation is an 
important mechanism in Alzheimer’s disease progression in both the early and 
late disease stages [71]. Among the factors which play a role in Alzheimer’s 
disease inflammatory mechanisms are lymphocytes which migrate through the 
blood-brain barrier to the brain [32]. For this reason, the inflammatory factors 
present in the blood, as well as molecular alterations in lymphocytes from 
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patients with Alzheimer’s disease, represent a promising source of blood-based 
markers for clinical diagnosis of both the early and late stages of the disorder. 
Further blood-based clinical marker progress requires discovery of characteris-
tic immune factors for the preclinical, moderate, and late diagnosis of 
Alzheimer’s disease. This concept may transform diagnostics, shifting the focus 
away from clinical symptoms and more toward molecular mechanisms. This 
chapter also describes a number of potentially useful erythrocyte markers for 
the diagnosis of patients with Alzheimer’s disease. These include erythrocyte 
morphology; their membrane proteins such as the β-amyloid peptide, glucose 
transporter, IgG, Hsp 90, calpain-1, and band 3 protein; and oxidative stress 
molecules. Some data suggest that serum β-amyloid peptide binds to red blood 
cells, implying a pathogenic role of erythrocyte amyloid complexes. In addition, 
erythrocytes have been found to contain the β-amyloid peptide, as well as altera-
tions in Hsp 90, calpain-1, and band 3 protein. Potentially the most prominent 
aspect of erythrocytes is their changed morphology in Alzheimer’s disease cases 
[33]. Such a feature can be easily detected and used as a diagnostic marker, even 
in the early pathogenic stages of the disease. A major advantage of using exo-
somes as a biomarker source is the fact that these vesicles deliver cargo over 
distances without degradation or dilution, because the biomolecules are securely 
transported within their capsules [72–74]. Further studies aimed at increasing 
our understanding of the physiological functions of exosomes and the factors 
influencing their switch to a pathological state are important for increasing our 
knowledge on the spreading and etiology of Alzheimer’s disease and therefore 
identifying a new biomarker source associated with all stages of the disorder. 
Still, much remains to be explored because we have just scratched the surface of 
understanding these blood- based vesicles as a source of clinically useful bio-
markers. However, prior to drawing any serious conclusions, these data need to 
be verified at first by various experimental and further clinical studies.

To identify new biomarker candidates that arise from blood, these need to be 
validated using thousands of samples that are well-matched and come from differ-
ent geographical locations with regard to Alzheimer’s disease research centers. In 
addition, all validated biomarkers should be translated into inexpensive and clini-
cal useful tests to facilitate early detection of individuals at high risk of develop-
ing Alzheimer’s disease. This will allow earlier treatment than can be currently 
achieved using existing methods. This could be more effective than the existing 
scenario of treatment at a later stage when irreversible changes to neuronal physi-
ology have already occurred. The development of such clinical useful tests will 
also afford the possibility of monitoring treatment responses for achieving the 
best possible outcomes for individuals suffering with this devastating neurode-
generative disorder.
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Chapter 5
Genetic Risk Factors for Alzheimer 
Disease: Emerging Roles of Microglia 
in Disease Pathomechanisms

Sho Takatori, Wenbo Wang, Akihiro Iguchi, and Taisuke Tomita

Abstract The accumulation of aggregated amyloid β (Aβ) peptides in the brain is 
deeply involved in Alzheimer disease (AD) pathogenesis. Mutations in APP and 
presenilins play major roles in Aβ pathology in rare autosomal-dominant forms of 
AD, whereas pathomechanisms of sporadic AD, accounting for the majority of 
cases, remain unknown. In this chapter, we review current knowledge on genetic 
risk factors of AD, clarified by recent advances in genome analysis technology. 
Interestingly, TREM2 and many genes associated with disease risk are predomi-
nantly expressed in microglia, suggesting that these risk factors are involved in 
pathogenicity through common mechanisms involving microglia. Therefore, we 
focus on factors closely associated with microglia and discuss their possible roles in 
pathomechanisms of AD. Furthermore, we review current views on the pathological 
roles of microglia and emphasize the importance of microglial changes in response 
to Aβ deposition and mechanisms underlying the phenotypic changes. Importantly, 
functional outcomes of microglial activation can be both protective and deleterious 
to neurons. We further describe the involvement of microglia in tau pathology and 
the activation of other glial cells. Through these topics, we shed light on microglia 
as a promising target for drug development for AD and other neurological 
disorders.
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5.1  Introduction

Alzheimer disease (AD) is the most common neurodegenerative disease, which 
causes progressive neuronal loss in multiple regions of the brain, including the cere-
bral cortex [1]. Its core clinical symptoms include memory impairment, cognitive 
dysfunction, and various psychological symptoms, all of which severely limit the 
social activities of patients and their family members. The greatest risk factor for 
AD is aging, and the number of patients is increasing due to the increasing elderly 
population around the world. Therefore, AD has become one of the greatest social 
problems in recent years.

AD is pathologically characterized by senile plaques and neurofibrillary tangles 
observed in broad brain regions [2]. Senile plaques are composed of amyloid β (Aβ) 
peptides that aggregate and are extracellularly deposited, whereas neurofibrillary 
tangles are composed of tau, a cytoskeleton-associated protein, which aggregates 
and accumulates inside neurons. Aggregated tau is also known to be hyperphos-
phorylated at multiple residues.

In recent years, positron-emission tomography (PET) probes for aggregated Aβ 
and tau have been developed, and their deposition in the brain can be visualized in 
real time [3]. Changes in the levels of cerebrospinal fluid (CSF) Aβ and tau were 
also found to correlate well with the results of diagnostic imaging [4] (https://www.
alzforum.org/alzbiomarker). These novel methodologies are now replacing diag-
nostic methods based on clinical manifestations and are being established as a new 
“definition” of AD [5–8].

The majority of AD patients have the so-called sporadic form that does not show 
a family history, although there is also another type of the disease showing an 
autosomal- dominant form of inheritance. Our current knowledge about the 
pathomechanisms of AD owes much to the identification and subsequent analyses 
of the causative genes for autosomal-dominant AD. Through these studies, Aβ pep-
tides constituting senile plaques were found to play an active role in the pathogen-
esis of AD.

Aβ is a partial peptide produced by the stepwise cleavage of a type I transmem-
brane protein called Aβ precursor protein (APP). APP first undergoes cleavage by 
β-secretase in the extracellular region in the vicinity of the membrane. As a result, a 
C-terminal portion of 99 amino acids remains on the membrane, called C-terminal 
fragment or C99. C99 is further subjected to a second cleavage by γ-secretase in the 
transmembrane domain, releasing the Aβ peptide. γ-Secretase is a complex-type 
protease composed of four transmembrane proteins named presenilin, nicastrin, 
anterior pharynx defective 1, and presenilin enhancer-2 [9]. As several variations of 
the γ-secretase cleavage site are known, Aβ species differing in length from 37 to 43 
amino acids are produced. Of these, Aβ40 is the most abundant. On the other hand, 
Aβ42 is present at approximately one-tenth of the levels of Aβ40, but it is known to 
have a higher tendency to aggregate.

Interestingly, all of the causative mutations of autosomal-dominant AD were 
identified in the genes for APP, PSEN1, or PSEN2, the latter two of which encode 
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presenilin isoforms. Genetic and biochemical studies have shown that presenilin 
mutants alter the activity of γ-secretase and increase the production ratio of Aβ42. 
On the other hand, APP mutations promoted Aβ accumulation via one of the follow-
ing mechanisms: (1) increasing Aβ production, (2) increasing the production ratio 
of Aβ42, or (3) enhancing Aβ aggregation. Taken together, the “amyloid hypothe-
sis,” in which abnormalities of Aβ production or aggregation are thought to be the 
key to AD pathogenesis, has been widely accepted [10]. However, it remains unclear 
whether this pathomechanism is also true for sporadic AD cases. Therefore, in this 
chapter we review the recent advances in our understanding of the genetic risk fac-
tors for AD and highlight the emerging roles of non-neuronal cells called microglia 
in the pathomechanisms of AD.

5.2  Sporadic Alzheimer Disease and Its Genetic Risk Factors

The aberrant accumulation of aggregated Aβ is a general hallmark of AD and is not 
restricted to autosomal-dominant cases. This suggests the importance of the amy-
loid hypothesis as a universal pathogenic mechanism, but the pathomechanisms of 
AD in patients without mutations in APP or PSEN1/PSEN2 remain unknown.

Many clinical trials have so far been unsuccessful based on strategies that inter-
fere with Aβ production (e.g., γ-secretase inhibitors), and some researchers regard 
it as important evidence disproving the amyloid hypothesis. However, it has been 
demonstrated that Aβ accumulation in the brain begins 10–20 years before disease 
onset and that there is already a substantial amount of Aβ accumulation by the time 
clinical symptoms appear [11]. Therefore, it is likely that intervention at earlier 
stages, called preclinical or mild cognitive impairment, might be necessary for ther-
apeutic strategies targeting Aβ to be effective [12]. The finding that a rare coding 
variant of APP (p.A673T) reduces AD risk is in good accordance with this idea. 
This APP mutant was less susceptible to β-cleavage and therefore produced less Aβ 
[13], suggesting that Aβ plays a central role in the pathomechanisms of 
AD.  Furthermore, the treatment of an antibody against aggregated forms of Aβ 
reduced Aβ burden in the brains of AD patients as well as delayed their disease 
progression [14]. These data corroborated the idea that strategies based on the amy-
loid hypothesis are still promising as AD therapeutics.

As the proportion of AD patients with mutations in either APP or PSEN1/PSEN2 
is small, if Aβ accumulation is crucial to the development of AD, it is important to 
know why it occurs in patients. To explain this, several hypotheses have been pro-
posed: (1) Aβ production is enhanced; (2) the rate of degradation or metabolism of 
Aβ is decreased in patients; or (3) responsiveness and sensitivity of neurons and 
glial cells to Aβ are enhanced, irrespective of the degree of Aβ accumulation. 
Associated with this topic, AD patients reportedly showed a decreased clearance 
rate of Aβ from the CSF [15], suggesting that abnormalities in the extracerebral 
efflux of Aβ underlie the pathogenesis of AD. This may somehow be associated 
with the fact that AD patients show lower levels of Aβ42 in their CSF, as well as 
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plasma [16, 17]. It is likely that there are genetic factors that underlie such defects 
in Aβ metabolism. Importantly, such genetic factors are likely to be different from 
mutations in APP and PSEN1/PSEN2 in familial AD but are factors causing imper-
fect penetrance, and that increases or decreases the risk of developing AD. In this 
section, we will describe such genetic “risk factors” in detail.

Genetic polymorphisms within the APOE locus have long been known as strong 
risk factors of AD. APOE encodes an apolipoprotein that constitutes plasma lipo-
protein particles. Whereas ApoE functions in peripheral tissues, it is also known to 
be produced from astrocytes in the brain and plays an important role in supplying 
cholesterol to neurons. Three common variants of the APOE gene, namely, ε2, ε3, 
and ε4, are known, and these isoforms encode the same polypeptide of 299 amino 
acids except for differences in amino acids number 112 and 158. Whereas the ε3 
isoform has a cysteine and an arginine at positions 112 and 158, respectively, both 
residues are substituted to cysteines in ε2 and to arginines in ε4. To date, it has been 
shown that the ε4 allele raises the risk of developing AD, whereas the ε2 allele has 
the opposite effect [18, 19]. It has also been shown that AD patients with an ε4 allele 
develop AD about 8 years earlier on the average per allele [20]. These facts have 
suggested that ApoE plays a crucial role in the pathogenesis of AD. In fact, ApoE is 
known to accumulate in senile plaques together with Aβ, and the ε4 isoform has 
been shown to increase Aβ aggregation in animal models, as well as in some in vitro 
experiments [21]. Furthermore, there are multiple lines of evidence that ApoE is 
also involved in Aβ clearance. Collectively, ApoE is thought to contribute to AD 
pathogenesis by modifying the aggregation or clearance of Aβ. However, because 
the proportion of late-onset AD cases associated with the ε4 allele is estimated as 
only 27.3% [22], it has been assumed that there are yet unidentified genetic risk fac-
tors other than APOE.

Several large-scale genome-wide association studies (GWAS) have been per-
formed for late-onset AD, and more than 20 loci have been identified to date [22–
27]. The functions of many of these genes remain unknown and are expected to 
provide new clues to elucidate the pathomechanisms of AD. On the other hand, 
most susceptibility loci identified in the GWASs showed small effect sizes, which 
were in contrast to the moderate effect sizes of the risk/protective alleles of 
APOE. From this point of view, some people view the GWAS for AD as unsuccess-
ful. However, these multiple weak risk factors may work additively, and the aggre-
gation of such factors can reduce the age of onset by up to 10 years [28].

Geneticists are still searching for other genetic risk factors of AD. Owing to their 
predicted small effect sizes, some researchers are attempting to increase the sample 
size by recruiting not only AD patients but also healthy individuals with a family 
history of AD (called “AD-by-proxy”). Such an attempt, called GWAS by proxy, or 
GWAX, is being performed at present for several common diseases [29] and has 
successfully identified the association between AD and the ADAM10 gene [30], 
which is involved in APP metabolism and was previously identified as a possible 
causative gene for late-onset AD [31].
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In principle, GWAS is a method to analyze disease associations among common 
variants or single nucleotide polymorphisms (SNPs), which exist comparatively 
abundantly in the population. As for AD, the fact that almost every factor showed 
only a weak association suggests that rare variants that were not included in GWAS 
analyses have stronger effects on disease risk. Of course, there have been attempts 
to identify such factors so far. However, since most previous studies have targeted a 
small number of candidate genes, even if these studies identified a factor that is 
“significantly” associated with cases in case-control comparisons, the association is 
not always true in the genome-wide context. In recent years, however, the rapid 
progress of genome analysis technology has enabled the identification of risk fac-
tors with genome-wide or exome-wide significance.

To identify such rare genetic factors efficiently, many researchers are taking 
advantage of the following two methods: (1) whole-exome sequencing (WES) or 
whole-genome sequencing (WGS) and (2) chip-array technologies similar to the 
SNP array used in GWAS analyses. For example, in the identification of the protec-
tive allele of the APP gene described above, data obtained from WGS conducted on 
nearly 2000 Icelanders were utilized. Identified coding variants in APP were inte-
grated with the chip-genotyped data using an “imputation” technique and analyzed 
for their association with AD [13]. In addition, rare variants found in the WGS were 
further investigated for their association with AD on a genome-wide scale, which 
led to the discovery of the novel AD risk factor TREM2 [32]. The disease associa-
tion of this coding variant of TREM2 (p.R47H) has also been identified in an inde-
pendent study [33] and has been repeatedly replicated. A meta-analysis of these 
studies estimated that the TREM2 mutation increased the risk of developing AD by 
about threefold, which is almost the same effect as that of APOE-ε4 [34]. More 
importantly, TREM2 was found to be expressed in microglia but not in neurons in 
the central nervous system (CNS). This unequivocally indicates that non-neuronal 
cells also play an important role in AD pathogenesis, in contrast to a conventional 
view that neuronal cells have only been regarded as important in the context of the 
amyloid hypothesis.

In addition, an extremely large-scale association analysis of about 85,000 people 
was recently reported, utilizing a novel genotyping chip equipped with a large num-
ber of probes for rare variants with a minor allele frequency of less than 0.5% [35]. 
This study also replicated the association between TREM2 mutations and AD and 
furthermore demonstrated novel disease associations of PLCG2 and ABI3, which 
are also specifically expressed in microglia. These facts again emphasize the impor-
tance of microglia in AD pathology.

Several reports have utilized WGS and WES technologies to identify the disease- 
susceptible genes in AD families with no mutations in APP or PSEN1/PSEN2 and 
successfully identified interesting genes, such as SORL1, PLD3, AKAP9, and 
UNC5C [36–39]. Unlike mutations of APP and PSEN1/PSEN2, these alleles are not 
always penetrant, and hence it may be more accurate to express these as risk factors 
rather than pathogenic genes. Nevertheless, the SORL1 locus was found to have 
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multiple loss-of-function mutations in AD families, which showed high penetrance, 
and these mutations were rare in healthy subjects in population-based studies, sug-
gesting that SORL1 mutations have a strong effect similar to that of APP or PSEN1/
PSEN2. In addition, a recent WES analysis conducted on more than 20,000 people 
identified multiple, ultrarare, loss-of-function variants of SORL1  in some AD 
patients and found that SORL1 was the only gene in which variants were signifi-
cantly associated with AD in the genome-wide context [40]. Similarly, the associa-
tion between AD and rare variants in the ABCA7 gene, one of the GWAS hits (see 
below), has increasingly been identified. These suggest that additional polymor-
phisms with a larger effect size may be discovered in the genes that were previously 
identified by GWAS.

Besides these examples, various searches for genetic factors using novel 
approaches are being performed. The most unique one is a search for genetic factors 
in people who have reached old age without developing various age-associated dis-
orders, such as AD [41]. Similar to this, another group searched for a “resilience 
factor” from elderly non-AD people with at least one copy of the APOE ε4allele 
[42]. These approaches may offer additional therapeutic strategies against AD.

To summarize, the identification of genetic risk factors for AD has been acceler-
ated by recent advances in genome analysis technology. We summarized the major 
genetic risk factors in (Table 5.1). Almost all of these factors were found to have low 
to moderate effect sizes, indicating that none of these factors alone can accurately 
predict disease, unlike autosomal-dominant AD cases. Instead, multiple factors may 
cumulatively affect disease susceptibility. In this regard, it is noteworthy that molec-
ular functions of these genes roughly cluster within several pathways, including 
membrane traffic (SORL1, BIN1, PICALM, and CD2AP), lipid metabolism 
(APOE, CLU, and ABCA7), and inflammatory process (TREM2, CD33, CR1, 
PLCG2, and INPP5D), and therefore it is possible that risk factors contribute to 
pathogenicity possibly through a few such common pathways.

5.3  Genetic Risk Factors Associated with Microglia

The finding that rare variants of TREM2 showed an effect size comparable to that 
of APOE prompted us to reconsider the pathological roles of microglia, which had 
not been considered as a central player in the amyloid hypothesis. In addition, many 
of the genes associated with AD risk were reportedly expressed specifically or 
highly in microglia [43], suggesting that their common functions are relevant to the 
pathomechanisms of AD. To elucidate such mechanisms, it is important to under-
stand these gene functions and the effects of the risk/protective variants on AD 
pathology. Therefore, in this section, we review our current knowledge of individual 
risk factors, particularly by focusing on factors that are linked with microglial func-
tion in previous reports. We particularly emphasize (1) how their disease associa-
tions were identified, (2) what their molecular/cellular functions are, and (3) their 
possible roles in AD pathology.
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Table 5.1 Summary of genetic risk factors for AD

Genes Cellular functions
Possible roles in AD 
pathology Cell typesa References

ABCA7 Lipid metabolism [98], 
phagocytosis [99]

Aβ clearance [104], 
APP processing 
[105]

Neuron, microglia [26, 27]

ABI3 Actin cytoskeletal 
organization [111, 112]

Unknown Microglia [35]

APOE Lipid metabolism [165] Aβ clearance [166, 
167], Aβ aggregation 
[168], tau pathology, 
and neurotoxicity 
[155]

Astrocyte, 
microglia

[18, 19]

BIN1 Endocytosis [169] APP processing 
[169, 170], tau 
pathology [171]

Microglia, 
oligodendrocyte, 
neuron

[25]

CASS4 Cell adhesion and 
migration [172]

Tau pathology [173] Microglia [22]

CD2AP Cell adhesion [174], 
endocytosis [175]

APP processing 
[169], tau pathology 
[176]

Microglia [26, 27]

CD33 Phagocytosis [69] Aβ clearance [69] Microglia [26, 27]
CELF1 Posttranscriptional 

regulation [177]
Tau pathology [176] Astrocyte, neuron, 

microglia
[22]

CLU Lipid metabolism [178], 
chaperone-like activity 
[179, 180]

Aβ clearance [181] Astrocyte [23, 24]

CR1 Complement system 
[72, 73]

Aβ clearance [74] Microglia [24]

DSG2 Cell adhesion [182] Unknown Endothelium, 
neuron, microglia

[22]

EPHA1 Cell adhesion and 
migration [183], 
immune response [184]

Tau pathology [173] Oligodendrocyte, 
microglia

[26, 27]

FERMT2 Cell adhesion [185] APP processing 
[186], tau pathology 
[176]

Astrocyte [22]

GRN Phagocytosis [86], 
complement system 
[87]

Aβ clearance [86], 
tau pathology [85]

Microglia [81]

Human 
leukocyte 
antigen gene 
cluster

Antigen presentation 
[187]

Unknown Microglia [22]

IL1RAP Immune response [188] Aβ clearance [88] Microglia, 
oligodendrocyte

[88]

INPP5D Immune response [189], 
PI3K signaling [120]

Unknown Microglia [22]

(continued)
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5.3.1  TREM2

Triggering receptor expressed on myeloid cells 2 (TREM2) was originally identi-
fied as a causative gene for polycystic lipomembranous osteodysplasia with scleros-
ing leukoencephalopathy (PLOSL, also known as Nasu-Hakola disease), which is 

Table 5.1 (continued)

Genes Cellular functions
Possible roles in AD 
pathology Cell typesa References

MEF2C Transcription factor 
[190], immune response 
[127]

Unknown Neuron, microglia [22]

MS4A gene 
cluster

Immune response [123], 
lipid sensing [122]

Unknown Microglia [26, 27, 
121]

NME8 Primary cilia function 
[191]

Unknown Oligodendrocyte, 
microglia

[22]

PICALM Endocytosis [192] APP processing 
[193, 194], Aβ 
clearance [195], tau 
pathology [196]

Microglia, 
oligodendrocyte, 
neuron

[23]

PLCG2 Immune response [107], 
Ca2+ signaling [197]

Unknown Microglia [35]

PLD3 Lysosomal function 
[198]

APP processing [37], 
but not replicated in 
[198]

Microglia, 
astrocyte

[37]

PTK2B Cell adhesion [199], 
mitogen-activated 
protein kinase signaling 
[200]

Tau pathology [173] Microglia, neuron [22]

SLC24A4- 
RIN3

RIN3: endocytosis [201]
SLC24A4: ion transport 
[202]

Unknown RIN3: microglia
SLC24A4: neuron

[22]

SORL1 Endocytic receptor 
[203], intracellular 
trafficking [204]

APP processing 
[205], Aβ clearance 
[206]

Astrocyte, 
microglia

[22, 36]

SPI1 Transcription factor 
[118], phagocytosis 
[117]

Aβ clearance [117] Microglia [22, 117]

TREM2 Phagocytosis [207], cell 
differentiation and 
proliferation [50, 51]

Aβ clearance [48], 
tau pathology [154], 
neurotoxicity [61, 
153]

Microglia [32, 33]

ZCWPW1 Epigenetic regulation 
[208]

Unknown Oligodendrocyte, 
microglia

[22]

aBrain cell types in which the gene is highly expressed in mouse and human are shown based on 
the brain RNA-seq database (http://www.brainrnaseq.org/) [209, 210]. When results are inconsis-
tent between mouse and human or when expression levels are similar in different cell types, all the 
cell types are described together
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characterized by multiple bone cysts and early-onset dementia. Homozygous muta-
tions, including nonsense and missense mutations (Y38C, T66M, etc.), cause 
PLOSL, but the same mutations also cause frontotemporal dementia without bone 
symptoms [44]. Several TREM2 variants are associated with AD risk as mentioned 
above. Interestingly, these variants are almost distinct from those found in PLOSL 
and contribute to disease risk in heterozygotes [32, 33].

TREM2 is a single-pass transmembrane receptor expressed almost exclusively in 
immune cells, including dendritic cells and macrophages, as well as microglia in the 
CNS [45]. Whereas TREM2 has only a short cytoplasmic tail without any func-
tional domain, it forms a complex with DNAX-activation protein 12 (DAP12), 
which is a transmembrane protein with an immunoreceptor tyrosine-based activa-
tion motif (ITAM) in the cytoplasm, and therefore it can transmit signals through 
DAP12 upon recognition of extracellular ligands. TYROBP, the gene encoding 
DAP12, was also identified as a causative gene for PLOSL, and its rare variants 
were identified in early-onset AD patients [46].

Many examples of TREM2 ligands have been identified so far. These include 
various negatively charged lipids [47]. TREM2 also binds to Aβ [48], as well as to 
apolipoproteins ApoE and clusterin (encoded by the CLU gene), both of which are 
associated with AD risk [49]. Upon ligand binding, multivalent interactions of 
TREM2 with its ligands lead to the clustering of DAP12  in the membrane. This 
results in the phosphorylation of DAP12 at tyrosine residues in the ITAM in a SRC 
family kinase-dependent manner and, thereby, the membrane recruitment of spleen 
tyrosine kinase SYK. SYK activates several branches of the signal network, includ-
ing phosphatidylinositol-3 kinase (PI3K) and mitogen-activated protein kinase 
pathways, through which TREM2 can stimulate the nuclear translocation of tran-
scription factors, such as nuclear factor of activated T-cells (NFAT) and β-catenin 
[50, 51]. The functional outcomes of these signals include cellular proliferation, 
regulation of phagocytosis, and anti-inflammatory responses [52].

Of note, although phosphorylation of ITAM typically causes the activation of 
downstream signaling, partial phosphorylation of ITAM tyrosines can mediate 
inhibitory signals by recruiting a different set of effectors, including Src homology 
domain 2 (SH2)-containing protein-tyrosine phosphatase (SHP)-1/2, as well as 
phosphoinositide phosphatase inositol polyphosphate-5-phosphatase D (INPP5D), 
which is also a GWAS hit for AD [22, 53]. Accordingly, TREM2/DAP12 can trans-
duce both anti-inflammatory and inflammatory signals, and which pathway is cho-
sen depends on the type of ligand or the strength of the interaction [52, 54].

Some of PLOSL-associated mutations of TREM2 were found to affect its antero-
grade trafficking and thereby impair the cell surface function of TREM2 [55, 56]. 
On the other hand, AD-associated variants, such as R47H and R62H, only showed 
a weak effect on surface expression, suggesting that the mutations affect another 
functional aspect of TREM2. Indeed, the crystal structure of TREM2 R47H showed 
that the amino-acid substitution caused a structural change in the region required for 
binding to a negatively charged lipid phosphatidylserine [57]. These suggest that the 
loss of ligand-binding activity of TREM2 is relevant to AD pathogenesis.
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To investigate the in vivo role of TREM2, Trem2-deficient mice were crossed 
with AD model mice showing Aβ deposition. These mice showed a marked reduc-
tion in the number of microglia around Aβ plaques, making a clear contrast to con-
trol mice that showed plaques that were often completely surrounded by multiple 
microglia [47, 58–60]. In addition, Trem2-knockout mice were characteristic in 
their plaque morphology [61]. These plaques were less compact, had spikelike 
fibrils extending radially, and lacked a dense core, which was often observed in the 
plaques of control mice. Similar phenotypes were also observed in Tyrobp-deficient 
mice, as well as in AD patients with the R47H mutation. Importantly, dystrophic 
neurites, which are swollen or distorted neurites that are found in close vicinity of 
Aβ plaques, were exacerbated around these “filamentous” plaques, suggesting the 
hypothesis that microglia can mitigate neurotoxicity by sequestering Aβ fibrils [61, 
62]. We will discuss this and other functional aspects of plaque-associated microg-
lia in Sect. 5.4.

Besides functioning as a receptor, TREM2 undergoes extracellular proteolysis 
and releases a soluble fragment called sTREM2. sTREM2 functions in stimulating 
microglial survival and the production of inflammatory cytokines [54]. Interestingly, 
sTREM2 can be detected in human CSF [55, 63], and changes in CSF levels of 
sTREM2 were documented in several neurological disorders, including AD [63, 
64]. Since the change likely reflects an alteration in the activation status of microg-
lia, CSF sTREM2 levels may be useful as a potential biomarker of neuroinflamma-
tion [65].

5.3.2  CD33

Polymorphisms in the CD33 locus (rs3865444, rs3826656, and rs114282264) were 
associated with late-onset AD risk [26, 27, 66, 67]. CD33 encodes a type I trans-
membrane receptor expressed in immune cells in peripheral tissues, as well as in 
microglia in the brain. CD33, also known as sialic acid-binding immunoglobulin- 
like lectin (SIGLEC)-3, is a member of the SIGLEC family of lectins and recog-
nizes sialic acid in its extracellular immunoglobulin-like fold. It also has multiple 
immunoreceptor tyrosine-based inhibition motifs in its cytoplasmic tail and thereby 
can inhibit cell signaling through recruiting the inhibitory phosphatases SHP-1/2 
[68].

Previous studies showed that CD33 expression was upregulated in AD patients’ 
brains and that the number of CD33-positive microglia was positively correlated 
with the amount of Aβ42 accumulation [69]. On the other hand, the protective 
rs3865444 allele was associated with decreases in both the expression level of CD33 
and the amount of insoluble Aβ42  in the brains of AD patients, suggesting that 
reduced expression of CD33 has a beneficial role in suppressing Aβ pathology. In 
line with this notion, Cd33 deficiency reduced Aβ burden in AD model mice [69]. 
Of note is that Aβ uptake activity was increased in microglia derived from knockout 
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mice, suggesting that CD33 inhibits the Aβ clearing mechanism by microglia. We 
will discuss the microglial involvement in Aβ metabolism in Sect. 5.4.

Furthermore, the risk allele of CD33 was reportedly associated with an increased 
cell surface expression level of TREM2 [70]. Suppression of CD33 signaling with 
an antibody to CD33 also reduced the surface level of TREM2. Therefore, CD33 
may play pleiotropic roles in AD pathology by modulating the function of TREM2.

5.3.3  CR1

Polymorphisms of CR1 were originally found to be associated with AD in a GWAS 
[24], and this disease association has been replicated in subsequent studies [71].

CR1 encodes a receptor for the complement factors C1q, C3b, and C4b [72, 73]. 
A copy number variation of CR1 increasing the number of C3b-/C4b-binding sites 
was found to increase the risk of AD [74], suggesting that complement-associated 
functions of CR1 are involved in AD pathomechanisms.

In peripheral tissues, the best-characterized function of complement factors is 
opsonization, by which complement factors stimulate the phagocytic clearance of 
marked pathogens by macrophages. CR1 is a complement receptor expressed on 
macrophages, as well as on microglia in the brain. In the CNS, it has been demon-
strated that microglial phagocytosis plays an important role in the removal of unnec-
essary synapses, where complement factors function in opsonizing the synapses 
[75, 76]. This activity, called synaptic pruning, is suggested to be dysregulated in 
several diseases, including AD. Indeed, decreases in synaptic density were observed 
in the brains of AD patients as well as AD model mice [77]. Moreover, complement 
factor deficiency, such as of C1q and C3, ameliorated both synaptic loss and cogni-
tive decline in AD model mice [43]. In contrast to these beneficial effects, Aβ accu-
mulation was exacerbated in C3-deficient mice. In addition, AD risk polymorphisms 
of CR1 (rs646817G and rs12034383G) were associated with increased levels of 
CSF Aβ [74], which likely reflect reduced Aβ accumulation in the brain paren-
chyma. These results imply that the complement system plays an additional role in 
the efflux or clearance of Aβ from the brain. Collectively, these data suggest that the 
aberrant activation of synaptic pruning has a greater effect on the cognitive deficits 
of AD model mice than the accumulation of Aβ itself.

5.3.4  GRN

Progranulin is a growth factor that is expressed in neurons and microglia [78]. 
Haploinsufficiency of GRN, the gene encoding the precursor of progranulin, causes 
frontotemporal lobar dementia with accumulation of TAR DNA/RNA binding pro-
tein 43, or FTLD-TDP43 [79, 80]. Recently, GRN polymorphisms, including 
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rs4792939, rs850713, and rs5848, were implicated as susceptibility loci for AD 
[81]. Among them, the rs5848T variant reportedly reduced the expression level of 
GRN and increased the risk of AD [82–84], suggesting a protective role of GRN 
against AD. Interestingly, the rs5848T allele showed no significant effects on either 
PET imaging of Aβ or the level of CSF Aβ, but instead it was associated with an 
increased level of CSF tau [85], suggesting the association between GRN and tau.

In line with their human evidence, Takahashi and colleagues found that Grn defi-
ciency had no exacerbating effect on Aβ pathology in APP/PS1 mice [85]. On the 
contrary, Grn-deficient mice showed reduced growth of Aβ plaques, as well as ame-
lioration of axonal dystrophy and memory deficit, although these data are inconsis-
tent with a previous observation that microglia-specific deletion of Grn increased 
Aβ burden in a different AD model (J20) [86]. Although the reason for this discrep-
ancy remains unknown, Takahashi and colleagues also reported that Grn deficiency 
in a tau overexpression model increased the amount of phosphorylated tau [85], 
further supporting their notion that GRN contributes to tau pathology.

Grn-deficient mice demonstrated other characteristic abnormalities, including 
repetitive self-grooming. This is reminiscent of human obsessive-compulsive disor-
der, which is a clinical feature of frontotemporal dementia. Mechanistically, the 
phenotype observed in mice was caused by hyperactivity of the thalamocortical 
circuit [87]. In detail, Grn deficiency caused lysosomal dysfunction and increased 
the production of complement factors, such as C1q and C3  in an age-dependent 
manner, resulting in enhanced phagocytic elimination of inhibitory synapses in the 
thalamus. This aberrant microglial activation may underlie the synaptic loss that is 
also observed in AD pathology.

5.3.5  IL1RAP

A polymorphism of the IL1RAP gene (rs12053868G) was associated with acceler-
ated cognitive decline as well as a higher rate of Aβ accumulation, based on longi-
tudinal studies in AD patients [88]. The carriers of this polymorphism also showed 
lower signals of a marker for microglial activation, suggesting that microglial dys-
function led to the increased Aβ burden, possibly through affecting the Aβ clearance 
mechanism of microglia.

IL1RAP encodes accessory protein of type I interleukin (IL)-1 receptor or IL1RI, 
and IL1RI and IL1RAP constitute a functional receptor for proinflammatory cyto-
kines IL-1α and IL-1β. Of these, IL-1β was reportedly upregulated in AD brains 
[89], although its functional significance remains controversial. For example, the 
overexpression of IL-1β in AD model mice increased the number of microglia 
around plaques and reduced Aβ burden [90, 91], suggesting the role of IL-1β in Aβ 
clearance. However, reduced levels of Aβ accumulation were also observed in 
Nlrp3-deficient mice, which lack functional IL-1β [92]. Therefore, further studies 
are required to clarify this discrepancy as well as the precise roles of IL1RAP in AD 
pathogenesis.
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5.3.6  ABCA7

GWASs of late-onset AD and their meta-analyses identified several variants in the 
ABCA7 gene that were associated with disease risk, including rs3764650, 
rs3752246, and rs115550680 [26, 27, 67]. Among them, the risk allele rs3764650G 
was found to reduce the expression level of ABCA7 [93]. In addition, several loss- 
of- function variants of ABCA7, including nonsense mutations, were associated 
with an increased risk of AD [94], suggesting that the normal function of ABCA7 
plays a preventive role against AD. Furthermore, many coding variants of ABCA7 
with an unknown functional outcome have been identified in AD patients [26]. 
Among them, it is noteworthy that one mutant (p.G215S) was associated with a 
reduced risk of AD [95]. These studies strongly suggest that functional alterations 
of ABCA7 have a large effect on disease susceptibility.

ABCA7 encodes a 12-pass transmembrane protein belonging to the ATP-binding 
cassette transporter family. ABCA1, the closest homolog to ABCA7 of the family 
members, is well characterized to encode a lipid transporter that is essential for the 
formation of high-density lipoprotein complexes [96]. Specifically, ABCA1 mobi-
lizes lipids from the cytoplasmic leaflet of the membrane to the outer leaflet and 
then onto apolipoproteins. This lipid transport activity is conserved in ABCA7. 
However, the lipoprotein complex formed by ABCA7 had lower cholesterol content 
and higher lysophosphatidylcholine-to-phosphatidylcholine ratio, suggesting a dif-
ference in their biochemical properties [97, 98]. Of note, ABCA7 has been shown 
to have lipid-transporting activity for ApoE, implying the possible involvement of 
this activity in the pathomechanisms of AD.

Besides lipid transport, ABCA1 and ABCA7 are involved in the regulation of 
phagocytosis. ABCA7 deficiency affected the uptake of apoptotic cells and microbes 
by macrophages [99, 100]. Similarly, ABCA1 was found to be involved in the 
phagocytic clearance of neuronal debris by astrocytes [101]. These functions have 
been evolutionarily conserved, as CED-7, a nematode homolog of ABCA1 and 
ABCA7, has long been known as an essential gene for the clearance of apoptotic 
cells [102, 103]. However, it remains unknown as to how and whether lipid trans-
port activity is involved in these processes.

Several reports have addressed the in vivo roles of ABCA7 in AD model mice. 
These consistently demonstrated that Abca7 deficiency exacerbated Aβ accumula-
tion [104–106]. A reduction of phagocytic activity against Aβ was observed in 
microglia and macrophages derived from the knockout mice [104], suggesting that 
the reduced clearance underlies the accumulation of Aβ. On the other hand, 
Kanekiyo and colleagues provided evidence that Abca7 deficiency did not alter the 
clearance rate of Aβ based on in vivo microdialysis and instead proposed that the 
loss of Abca7 is responsible for the increased generation of Aβ from neurons [105]. 
Future analyses on the cell-specific roles of ABCA7 will be important for under-
standing their involvement in the pathomechanisms of AD.
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5.3.7  Other Factors

PLCG2. A rare coding variant of PLCG2 was found as a protective allele for AD 
(rs72824905; p.P522R) [35]. PLCG2 encodes the γ2 isoform of phospholipase C, 
which converts the membrane lipid phosphatidylinositol 4,5-bisphosphate into dia-
cylglycerol and inositol 1,4,5-trisphosphate (IP3). PLCγ2 is specifically expressed 
in immune cells, including B cells and osteoclasts, as well as microglia in the 
CNS.  PLCγ2 activity is regulated by phosphorylation, which is triggered by 
upstream receptors, such as the B-cell receptor. Activated PLCγ2 mobilizes calcium 
ions from the endoplasmic reticulum into the cytoplasm by opening IP3 receptors, 
causing the Ca2+-sensitive nuclear translocation of NFAT.  Of note, PLCγ2 was 
reportedly activated downstream of DAP12 in osteoclasts [107]. PLCγ2 is a protein 
with multiple domains, including a pleckstrin homology (PH) domain, two EF-hand 
motifs, two SH2 domains, a Src homology 3 (SH3) domain, and a C2 domain [108]. 
Additionally, PLCγ1/2 has a “split” PH domain with a PH-like fold, which is formed 
by the assembly of its N-terminal and C-terminal halves that are encoded by two 
spatially separated sequences in the protein. The split PH domain in PLCγ2 is 
responsible for its interaction with the small GTPase RAC2 [109, 110]. Proline 522, 
which was linked with AD risk, is positioned within the inserted sequence of the 
split PH domain, and therefore the function of this domain may be relevant to the 
pathomechanism of AD.

ABI3. A rare coding variant of ABI3 was associated with an increased risk of AD 
(rs616338; p.S209F) [35]. The ABI3 protein is a member of the ABL-interactor 
(ABI) family, together with ABI1 and ABI2. Whereas the expression and function 
of ABI3 were observed in neurons [111, 112], an immunohistochemical analysis on 
human brains demonstrated the specific expression of ABI3 in microglia [113]. The 
ABI3 protein is a multidomain scaffold protein with a Wiskott-Aldrich syndrome 
protein family verprolin-homologous protein (WAVE)-binding domain at the 
N-terminus, several proline-rich regions, and an SH3 domain at the C-terminus 
[114]. ABI1 is best characterized as a component of the WAVE regulatory complex, 
which is a regulator of actin polymerization. ABI3 reportedly constitutes a similar 
complex, but the function of the complex was suggested to be distinct from the 
ABI1-containing complex [115]. Furthermore, ABI3 function was reported to be 
regulated by the PI3K pathway [116].

SPI1. Cis-expression quantitative trait locus analysis showed that the CELF1 
gene variant rs1057233G, previously identified as a protective allele for AD, was 
associated with the reduced expression of the SPI1 gene [22, 117]. Moreover, carri-
ers of this protective allele showed an increased level of CSF Aβ42, which likely 
reflects decreased Aβ accumulation in the brain [117]. SPI1 encodes a transcription 
factor called PU.1, which is highly expressed in myeloid and B-lymphoid cells, as 
well as in microglia in the CNS [118]. Interestingly, chromatin- immunoprecipitation 
sequencing demonstrated that PU.1 binds to cis-regulatory elements of many 
AD-associated genes, including ABCA7, CD33, MS4A4A, MS4A6A, TREM2, 
TREML2, and TYROBP, and alteration of PU.1 levels affected the expression of 
these genes [117]. Therefore, it is likely that PU.1 is involved in multiple aspects of 
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microglial pathology in AD through regulating the expression of these genes. As 
one such involvement, effects on phagocytosis have been suggested. The knock-
down of PU.1 reduced the phagocytic activity of microglia, whereas the overexpres-
sion of PU.1 increased phagocytic activity [117]. Similarly, PU.1 knockdown in 
primary human microglia was found to reduce the phagocytic activity of Aβ [119]. 
These observations suggest that the protective allele of SPI1 likely reduces the 
phagocytic activity of microglia, although it is inconsistent with the hypothesis that 
microglia mitigate Aβ pathology through the phagocytic clearance of Aβ. Therefore, 
further studies on the functional outcomes of the reduced expression of SPI1 are 
required to understand its pathological significance.

INPP5D. A common variant of the INPP5D gene was identified in a meta- 
analysis of GWASs for late-onset AD [22]. INPP5D, also known as SH2-containing 
phosphatidylinositol 3,4,5-trisphosphate 5′-phosphatase or SHIP1, encodes a phos-
phatase that converts the lipid second messenger phosphatidylinositol 
3,4,5- trisphosphate, or PI(3,4,5)P3, into phosphatidylinositol 3,4-bisphosphate and 
thereby inhibits PI3K signaling, which is activated downstream of many receptors 
[120]. Of note, INPP5D has an inhibitory role in TREM2/DAP12 signaling of 
osteoclasts through a mechanism that depends on PI(3,4,5)P3 dephosphorylation 
activities as well as via competition with the DAP12-SYK interaction [50].

Membrane-spanning 4-domain family, subfamily A (MS4A) gene cluster. 
Several polymorphisms in the MS4A gene cluster were identified in GWASs of 
AD. These are located near the MS4A4A, MS4A4E, MS4A6A, and MS4A6E genes 
[26, 27, 121]. MS4A family proteins constitute a newly identified class of odor 
receptors, expressed in necklace sensory neurons [122]. Each MS4A gene encodes 
a four-pass transmembrane protein that recognizes a distinct set of pheromones or 
fatty acids and triggers calcium mobilization through unknown mechanisms. MS4A 
genes are also expressed in macrophages and microglia, and the expression of 
MS4A4A was found to be differentially regulated in different polarization states of 
macrophages [123]. Given that TREM2 also senses various lipid molecules, microg-
lia may recognize a pathophysiological environmental change using MS4As as che-
mosensors in combination with TREM2.

MEF2C. An SNP in the MEF2C gene was identified in a meta-analysis of GWAS 
for AD [22]. Haploinsufficiency of MEF2C is thought to contribute to a neurodevel-
opmental disorder with intellectual disability and epilepsy, in which patients have 
point mutations and microdeletions of this gene [124]. The MEF2C protein belongs 
to the MCM1, Agamous, Deficiens, and SRF-box family of transcription factors. 
MEF2C is essential for cardiovascular development and also participates in the 
development of various tissues, such as the bones, neurons, and hematopoietic cells 
[125]. In the brain, the expression of MEF2C was found in neurons and microglia. 
Of note, MEF2-binding motifs were found to be enriched in the enhancer regions of 
microglia-specific genes [126], suggesting an important role of MEF2C in microglia- 
specific functions. Indeed, Mef2c-deficient microglia showed a reduced expression 
of CX3C chemokine receptor 1, a microglia-specific chemokine receptor, and 
responded to immune stimuli, such as tumor necrosis factor and  lipopolysaccharides, 
more strongly than control microglia [127]. In addition, the level of Mef2c in 
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microglia was downregulated in aged mice through a type I interferon-dependent 
mechanism [127], suggesting that age-dependent alterations of microglial pheno-
types can be partially explained by the reduced expression levels of MEF2C.

5.4  Pathological Roles of Microglia in Alzheimer Disease

In this section, we will describe the possible involvements of microglia in several 
aspects of AD pathology (Fig. 5.1). It has long been known that microglia congre-
gate around Aβ plaques and that the plaque-associated microglia demonstrate 

Fig. 5.1 Schematic illustrations of proposed functions of microglia in AD pathology. (a) Microglia 
are activated in response to Aβ accumulations and change their shapes from ramified to ameboid 
forms. The activated microglia cluster around plaques and alter their gene expression patterns in 
Trem2-dependent manners. (b) Microglia internalize Aβ and tau. (i) Aβ uptake facilitates its deg-
radation. (ii) A proportion of internalized tau was shown to be secreted together with exosomes and 
to participate in propagation of tau pathology. (c) Activated microglia exert both protective and 
detrimental effects on neurons. Although microglia can mitigate Aβ toxicity by (i) phagocytosing 
and (ii) sequestering Aβ aggregates, they also participate in (iii) inflammatory responses, (iv) aber-
rant phagocytosis of neuronal cell bodies and synapses, (v) promotion of Aβ aggregation through 
secreting ASC specks, and (vi) conversion of astrocytes into a neurotoxic A1 phenotype
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different properties from steady-state cells, but it is only recently that the molecular 
mechanisms behind such a phenotypic change have been addressed. Thus, we will 
summarize our current knowledge of such molecular mechanisms and then discuss 
the idea that plaque-associated microglia have both protective and toxic roles against 
neuronal cells. Furthermore, we will also discuss the roles of microglia in tau 
pathology, as well as in the activation of other glial cells.

5.4.1  Microglial Changes Around Aβ Plaques

In AD brains, the density of microglia in the vicinity of senile plaques is increased 
[128]. These microglia show several characteristic features. For example, they are 
altered from a ramified form having long branched protrusions to an ameboid form 
in which protrusions are retracted, which is considered to be an activated state. As 
tau pathology is evident in the brain, dystrophic microglia with fragmented protru-
sions also appear [129]. Electron microscopic analysis demonstrated that the 
microglia around plaques look darker, that is, more electron-dense than usual, and 
they were hence named “dark microglia” [130]. Alterations in electrophysiological 
properties were also reported in the plaque-associated microglia [131]. PET studies 
also indicated the alteration of microglial activity in the brains of AD patients [132].

Gene expression changes that are the cause of such phenotypic changes are 
beginning to be uncovered. Genes that characterize steady-state or homeostatic 
microglia were demonstrated by cell-type-specific transcriptomic analyses [133, 
134]. Among these, transforming growth factor-β (TGF-β) receptor was crucial for 
maintaining the homeostatic state of microglia, whereas the expression of such 
homeostatic genes was attenuated in mice lacking TGF-β receptor. Interestingly, the 
absence of the receptor induced the upregulation of a characteristic set of genes, 
including ApoE [133].

Single-cell RNA-seq analysis of microglia from AD model mice demonstrated a 
novel subtype of microglia, called disease-associated microglia (DAM), which spe-
cifically appeared in AD model mice [135]. This report suggested that microglia 
first undergo a change from a homeostatic state to intermediate DAM (stage 1) and 
then to complete DAM (stage 2). Importantly, Trem2 was necessary for the change 
to stage 2, and Trem2 deficiency caused an arrest at stage 1. Considering that the 
loss-of-function of TREM2 increases the risk of AD, it is likely that stage 2 cells 
have an indispensable role in neuroprotection and/or that stage 1 cells have deleteri-
ous effects on neuronal survivability.

The clustering of microglia around senile plaques is thought to result from the 
proliferation and chemotactic attraction of microglia around plaques. Of these, the 
proliferation of microglia is commonly observed in various pathological conditions, 
which is in clear contrast with the fact that steady-state microglia are long-lived and 
proliferate slowly [136]. The decreased association of both Trem2-deficient and 
Tyrobp-deficient microglia with senile plaques is associated with their reduced pro-
liferation and survival. Mechanistically, TREM2 was found to be important for the 
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responsiveness of microglia to macrophage colony-stimulating factor, which is 
essential for the survival of microglia, and apoptosis was enhanced in Trem2- 
deficient mice [47]. Furthermore, metabolic abnormalities were found in Trem2- 
deficient microglia, which were associated with a compensatory increase in the 
autophagic activity of the microglia [137]. In addition, TREM2 is involved in che-
motactic activity [138], which may also contribute to the clustering of microglia 
around the plaques.

Although it is not clear what induces the phenotypic changes of microglia in 
response to Aβ plaques, it is suggested that microglia recognize and phagocytose 
dead or dying cells around the plaques, which in turn triggers the phenotypic 
changes [139]. Interestingly, both TREM2 and ApoE are suggested to function in 
this pathway, although the exact role of ApoE in microglia remains unknown.

Taken together, it is becoming clear that the microglia around plaques have dif-
ferent characteristics to those of steady-state microglia and even non-plaque- 
associated microglia. However, the pathological roles of such microglial clustering 
remain unclear.

5.4.2  Protective Roles of Microglia

Considering their phagocytic nature, it has been assumed that microglia play a role 
in Aβ clearance. Indeed, in vitro studies have demonstrated that microglia phagocy-
tose Aβ. However, it is controversial whether or not microglia contribute to Aβ 
clearance in vivo. Several reports have stated that the number and size of amyloid 
plaques in AD model mice did not change even after microglia were pharmacologi-
cally depleted from their brains [140–143]. However, these results do not necessar-
ily exclude the involvement of microglia in Aβ clearance. Rather, there are many 
instances in which Aβ burden in the brain was decreased or increased upon pharma-
cological/genetic interventions that affect microglial function, suggesting that clear-
ance activity can be modulated by various conditions. These examples are listed in 
(Table  5.2). It should be noted that such pharmacological depletion experiments 
only analyze the effects on Aβ burden in a short time range, from weeks to months. 
Considering that humans usually develop AD in their later stages of life, it is pos-
sible that a slight decline in Aβ clearance has a major effect if it continues for 
decades.

Besides phagocytosis, microglia may play another role in neuroprotection. By 
sequestering Aβ plaques, microglia serve as a barrier to protect neurons from Aβ 
toxicity [62]. In addition, microglia mask the surface of plaques and suppress their 
growth by preventing Aβ monomers from being incorporated into the plaques. It has 
also been suggested that microglia affect the morphology of Aβ fibrils; Aβ plaques 
surrounded by microglia appeared more compact than plaques not surrounded by 
microglia. Such a barrier function of microglia was impaired in Trem2-knockout 
mice, as well as in AD patients with the TREM2 R47H mutation [61], suggesting 
the crucial role of TREM2 in this process.
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Table 5.2 Genetic and pharmacological manipulations of microglia that affected Aβ accumulation 
in vivo

Manipulations Aβ accumulation References

Il10 knockout Decreased [211]
Cxcr3 knockout Decreased [212]
Cd33 knockout Decreased [69]
Nlrp3, Casp1 knockout Decreased [92]
Cyclooxygenase-1 inhibitor (SC-560) Decreased [213]
IL-12/IL-23 knockouts and neutralizing antibody Decreased [214]
Peroxisome proliferator-activated receptor γ and 
retinoid X receptor agonist (DSP-8658)

Decreased [215]

Tumor necrosis factor α adeno-associated virus 
(AAV)-mediated overexpression

Decreased [216]

Interferon-γ AAV-mediated overexpression Decreased [217]
IL-6 AAV-mediated overexpression Decreased [218]
IL-4 AAV-mediated overexpression Increased/decreased [219, 220]
Cx3cr1 knockout Decreased [148, 221, 

222]
Systemic administration of macrophage 
colony-stimulating factor

Decreased [223]

Dominant-negative TGF-β receptor expressed 
from CD11c promoter

Decreased [224]

IL-1β transgenic Decreased [90]
TGF-β1 transgenic Decreased in parenchyma but 

increased in vasculature
[225, 226]

TREM1 lentivirus-mediated overexpression Decreased [227]
IL-10 AAV-mediated overexpression Increased [228]
Grn knockout Increased/decreased [85, 86]
Msr1 knockout Unchanged/increased [229, 230]
Becn1 knockout Increased [231]
Ccr2 knockout Increased [232]
C3 knockout Increased [233, 234]
Overexpression of loss-of-function mutant of 
TLR4

Increased [235]

Ptprc knockout Increased [236]

5.4.3  Neurotoxic Roles of Microglia

Pharmacological depletion of microglia was shown to restore the learning deficits 
of AD model mice, despite its small effect on Aβ clearance, as mentioned before 
[141–144]. This means that microglial activation around the plaques can have del-
eterious effects on neuronal cell function, which are likely to be through multiple 
mechanisms, such as inflammatory responses [145, 146]. In addition, phagocytic 
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activity may also contribute to the neurotoxicity. Pioneering work by Brown and 
Neher demonstrated that microglia can promote neuronal death by phagocytosing 
live cells [147]. There are also several lines of evidence that microglia are involved 
in the elimination of nerve cells in vivo [148, 149]. In addition to engulfing whole 
cell bodies, microglia also perform selective phagocytosis of synapses in both phys-
iological and pathological conditions. In AD model mice, complement factors were 
found to accumulate at synapses and trigger the phagocytosis by microglia [77].

Furthermore, it has also been hypothesized that microglia are involved in Aβ 
aggregation. In activated microglia, inflammation-dependent formation of the 
NOD-like receptor family, pyrin domain-containing-3 protein complex induces the 
conversion of apoptosis-associated speck-like protein containing A caspase recruit-
ment domain (ASC) into its fibrillar form, called ASC specks [150]. ASC specks 
were found to leak out of activated microglia and demonstrate prion-like seeding 
activity, which in turn promotes Aβ aggregation [151].

5.4.4  Roles of Microglia in Tau Pathology

Microglia are also associated with tau pathology. Mice overexpressing the highly 
aggregation-prone mutant tau (P301S) showed hyperactivation of microglia, as well 
as substantial neuronal loss, which was suppressed by the administration of an 
immunosuppressant [152]. Interestingly, Trem2 deficiency in this model also sup-
pressed neuronal death [153], suggesting that TREM2 can exert neurotoxic func-
tions, which is in clear contrast to its protective role suggested in Aβ pathology. 
However, it should be noted that there is also a conflicting report demonstrating that 
the lack of Trem2 increases the phosphorylation and aggregation of tau in another 
mouse model of AD [154].

It is also noteworthy that neuronal cell death by tau overexpression was exacer-
bated in APOE-ε4 knock-in mice [155]. Considering that microglia are highly acti-
vated in this model and that ApoE expression is induced in activated microglia 
[139], it is likely that ApoE plays some active roles in microglia and the ε4 isoform 
is deleterious for their function.

Finally, microglia have some roles in the “propagation” of tau pathology in the 
brain. Although the details will not be mentioned here, multiple lines of evidence 
suggest that tau aggregation in neurons spreads along a neural circuit through a 
mechanism in which aggregation-prone “seeds” are physically transferred from one 
cell to intact neighboring cells [156]. Interestingly, Ikezu and colleagues found that 
tau propagation along a circuit was suppressed upon pharmacological depletion of 
microglia [157], suggesting that microglia participated in the progression of tau 
pathology. Mechanistically, it was assumed that microglia phagocytosed tau mole-
cules and released them together with exosomes, thereby contributing to the spread 
of tau molecules with aggregation-prone properties.
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5.4.5  Association with Astrocytes

Microglia are not the sole type of glial cells to be activated in AD pathogenesis. 
Astrocytes are also known to be activated in the vicinity of Aβ plaques, where they 
express several characteristic activation markers, such as glial fibrillary acidic pro-
tein [158].

Interestingly, microglia play an active role in the phenotypic changes of astro-
cytes. Systemic inflammation by means of the peripheral administration of lipo-
polysaccharides induced a characteristic gene expression profile in astrocytes, and 
the change to this state, termed A1, was dependent on microglia [159]. 
Mechanistically, activated microglia secrete three factors (IL-1α, tumor necrosis 
factor α, and C1q) that are necessary and sufficient for the induction of A1. A1 
astrocytes lacked several functions that are mediated by normal astrocytes and that 
are important for neuronal functions. Importantly, A1 astrocytes were found in 
human brains of patients with several neurological disorders, such as AD and 
Parkinson disease. It was also induced in tau-transgenic mice expressing human 
APOE-ε4 [155], as well as in normal aged mice [160]. Furthermore, A1 astrocytes 
were found to be crucially involved in the neuronal death occurring in Parkinson 
disease model mice [161]. Therefore, it is possible that microglia contribute to neu-
rotoxicity in the pathogenesis of AD not only directly but also indirectly via 
astrocytes.

5.5  Concluding Remarks

In this article, we described that many genetic risk factors for AD have been identi-
fied as a result of the recent advances in genome analysis technologies and that 
microglia-associated genes are enriched in the AD risk genes. Because previous 
studies had focused on the association between neurons and Aβ or tau, glial pathol-
ogy had often been regarded as a secondary effect that was just a response to the 
pathological changes. However, with the accumulation of many lines of genetic 
evidence, it is almost certain that microglia are not just a bystander but are an active 
player in the pathogenesis of AD. In this regard, recent studies have clarified that 
glial cells other than microglia, such as astrocytes and vascular endothelial cells, 
also play important roles in the pathogenesis of AD [162]. Therefore, understanding 
the association between neurons and these non-neuronal cells will be increasingly 
important in the future.

The fact that the pharmacological depletion of microglia restored memory defi-
cits in AD model mice suggests that the complete suppression of microglia may be 
effective as a treatment for AD. However, it is likely that such a treatment has severe 
adverse effects by also suppressing the physiological functions of microglia. 
Furthermore, as mentioned in Sect. 5.4, microglial involvement in AD pathology is 
highly complicated. Some functions are deleterious to neurons, whereas others are 
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neuroprotective. Therefore, it is important for future therapeutics to precisely target 
a specific function of microglia. Many pharmaceutical companies are currently 
working on such projects, and indeed several candidate drugs are or will soon be in 
clinical trials [163]. To achieve this goal, we need to understand the roles of microg-
lia more precisely. In particular, it is important to clarify how much each of these 
functions contribute to disease progression and how they change with aging. It is 
also promising that detailed analyses of genetic risk factors will provide us with 
hitherto unknown roles of microglia in AD pathology.

Given that the activation of microglia may precede or occur simultaneously with 
disease onset, a biomolecule with levels correlating with microglial activity might 
be useful as a potential biomarker for diagnosing AD. From this point of view, it 
may be promising to focus on sTREM2, because its levels are reportedly altered 
with the progression of AD [65].

Finally, microglia are thought to play important roles in other neurological disor-
ders, including Parkinson disease, amyotrophic lateral sclerosis, and schizophrenia 
[164]. Although the detailed roles of microglia in these diseases remain largely 
unknown, a revolutionary drug that can be applied to multiple diseases may be pos-
sible by targeting microglia. Therefore, it will also be important to understand the 
roles of microglia in the pathogenesis of these other diseases.
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Chapter 6
Neuroimaging Studies of Cognitive 
Function in Schizophrenia

Rafael Penadés, Nicolas Franck, Laura González-Vallespí, and Marie Dekerle

Abstract Persons suffering from schizophrenia present cognitive impairments that 
have a major functional impact on their lives. Particularly, executive functions and 
episodic memory are consistently found to be impaired. Neuroimaging allows the 
investigation of affected areas of the brain associated with these impairments and, 
moreover, the detection of brain functioning improvements after cognitive remedia-
tion interventions. For instance, executive function impairments have been associated 
with prefrontal cortex volume and thickness; cognitive control impairments are cor-
related with an increased activation in the anterior cingulate cortex, and episodic mem-
ory impairments are linked to hippocampal reduction. Some findings suggest the 
presence of brain compensatory mechanisms in schizophrenia, e.g. recruiting broader 
cortical areas to perform identical tasks. Similarly, neuroimaging studies of cognitive 
remediation in schizophrenia focus differentially on structural, functional and connec-
tivity changes. Cognitive remediation improvements have been reported in two main 
areas: the prefrontal and thalamic regions. It has been suggested that those changes 
imply a functional reorganisation of neural networks, and cognitive remediation inter-
ventions might have a neuroprotective effect. Future studies should use multimodal 
neuroimaging procedures and more complex theoretical models to identify, confirm 
and clarify these and newer outcomes. This chapter highlights neuroimaging findings 
in anatomical and functional brain correlates of schizophrenia, as well as its applica-
tion and potential use for identifying brain changes after cognitive remediation.
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6.1  Introduction

It has been widely emphasised that people suffering from schizophrenia show cog-
nitive impairments in multiple areas [1–3] although those impairments might, 
according to some authors, be overestimated [4]. More precisely, executive func-
tions, episodic memory and social cognition are consistently found to be impaired 
and are the favoured target for cognitive remediation [5, 6].

Interestingly, these impairments are found in all disease stages, including the 
schizophrenia prodromal phase [7] and first episodes [8]. They are even found in 
children or adolescents who later will develop schizophrenia [9]. These impair-
ments also are present to a certain extent in patient’s relatives, and some of them are 
thought to constitute an endophenotype of the disorder [10, 11]. However, they usu-
ally do not increase with disease duration [7, 12].

Cognitive impairments have an important functional impact on the daily life of 
patients, and antipsychotics drugs show little effect on them [13]. Consequently, a 
substantial body of literature has been developed on the neural correlates of these 
impairments, both from an anatomical and a functional point of view.

Furthermore, schizophrenia is characterised by multiple brain anomalies at many 
levels, structural and functional, and in terms of both activity and connectivity [14–
16]. The majority of studies are based on differences in activation patterns although 
an increasing number of studies presenting data of cerebral connectivity are being 
published (see Canu et al. [17] for a review on connectivity).

The first part of this chapter is organised around cognitive functions frequently 
found to be impaired in patients suffering from schizophrenia, i.e. executive func-
tions (working memory and cognitive control) and episodic memory. The latest 
neuroimaging studies about the anatomical and functional correlates of these 
impairments are presented. The second part of the chapter reviews the neuroimag-
ing evidence of structural, functional and connectivity changes found in patients 
with schizophrenia after cognitive remediation psychotherapies.

6.2  Executive Functions

Executive functions are an umbrella expression that designate a group of abilities 
aiming at organising and controlling cognitive functions, behaviours and emotions. 
The cognitive part of executive functions refers to an ensemble of top-down pro-
cessing recruited to perform efficiently a demanding and/or new task. Executive 
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functions are mostly developed in human beings and enable us to efficiently face 
new situations [18]. They are composed of a large number of cognitive functions, 
such as working memory, planning, inhibition, flexibility and reasoning [19, 20]. 
These functions are difficult to disentangle as high-level executive functions involve 
many other lower-level executive functions, e.g. planning involves working mem-
ory, inhibition and flexibility.

Despite this clinical description, working memory is often studied apart from 
other executive functions, as it is also strongly linked to episodic memory [21].

6.2.1  Anatomical Data

Executive functions are known to be dependent on the prefrontal area [18, 22], and 
prefrontal volume and thickness are associated to executive performances in healthy 
participants [22].

In schizophrenia, performances at executive functioning tasks were found to be 
related to the volume of some part of the prefrontal cortex. Indeed, Bonilha et al. 
[23] found a significant correlation between flexibility measured by tests and vol-
ume of left dorsolateral prefrontal cortex (DLPFC). The relationship between vol-
ume and cognitive control abilities seems to be limited, although a study conducted 
by Frascarelli et al. [24] evidenced a decrease of volume with duration of illness in 
medial frontal gyrus but failed to link it to performance of flexibility tasks. Another 
frontal area, the left orbital inferior cortex, has been found to be linked to perfor-
mances on the Stroop task [25]. Links between cognitive control and prefrontal 
cortex volume are limited to several regions. Working memory performances have 
also been linked to smaller hippocampal grey matter volume [25].

6.2.2  Functional Data

6.2.2.1  Working Memory

Working memory is one of the core cognitive impairments in schizophrenia. It fre-
quently is found to be associated with inefficient engagement of the DLPFC [26]. 
This hypoactivation is correlated with performance, with a greater hypoactivation 
leading to poorer performances. However, some studies did not replicate these 
results and found no differences of activation or even hyperactivation of DLPFC 
[27]. This apparent lack of consistency could be explained by the variation of task 
difficulty. Indeed, it has been hypothesised that the activation follows an inverted 
U-shape function. Therefore, a small activation is needed for an easy task, but it 
increases with a high task demand. Nonetheless, when the task is too difficult, acti-
vation decreases. It is argued that patients suffering from schizophrenia show a shift 
of this function to the left. Therefore, when the task is relatively easy, they show a 
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greater activation than healthy controls, whereas when the task is difficult, they 
show a hypoactivation as they have already reached their limit [21, 27, 28]. Kraguljac 
et al. [21], in a review of the literature, suggested that these findings could reflect a 
frontal-based, top-down, cognitive control impairment. This impairment would lead 
to compensatory strategies, and patients suffering from schizophrenia would show 
a wider pattern of activation, particularly in regions accounting for attention.

6.2.2.2  Cognitive Control

As cognitive control comprises several cognitive functions, it can be studied using 
different tasks. We first will focus on studies using the Wisconsin Card Sorting Test 
(WCST), one of the most used tasks to evaluate cognitive control. Patients must 
classify cards according to a criterion that they have to find by themselves. After a 
certain amount of correct trials, the criterion changes, and patients must find the 
new one. Using event-related, functional magnetic resonance imaging (fMRI), 
authors can compare cortical response after a positive feedback and a negative feed-
back, therefore aiming to study the effort of changing strategy (i.e. set-shifting). In 
healthy participants, the paradigm reveals a cortical-subcortical loop comprising the 
prefrontal and parietal cortices and basal ganglia [29]. When comparing healthy 
participants to patients with schizophrenia, Wilmsmeier et  al. [30] found a more 
extensive activation network in patients compared to controls, although in their 
study, both groups performed equally. More specifically, they evidenced an increased 
response in both dorsal and rostral anterior cingulate cortex (ACC) in patients. 
According to the authors, the increased activation in dorsal ACC reflects a stronger 
cognitive effort to shift, whereas rostral ACC overactivation reflects a stronger emo-
tional response to negative feedback. Other studies, however, evidenced that rostral 
overactivation in patients with schizophrenia in these conditions was associated 
with better performances and learning abilities, suggesting that rostral ACC might 
be involved in cognitive control [31].

Wilmsmeier et al. [30] found an overactivation in the insula, known to be related 
to unsuccessful inhibition of negative state. In addition, the inferior frontal gyrus 
(IFG), associated with set-shifting, and the bilateral caudate nucleus, which has 
been shown to play an important role in executive processing [29], were both over-
activated in patients. Therefore, a negative feedback would generate a stronger and 
more distributed activation network in patients, reflecting enhanced cognitive effort 
to change strategy and obtain the same performances as healthy participants. In 
addition, it can also be speculated that disappointment might be more difficult to 
handle for patients.

Interestingly, no overactivation was found in healthy controls when compared to 
patients. These results suggest that patients show more activation both in terms of 
intensity and number of activated areas. That could suggest compensatory mecha-
nisms at work, recruiting a broader cortical area to perform the same task.

As explained earlier, executive functioning is recruited by many tasks, and, 
although they all refer to the same concept, they might rely on slightly different pro-
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cessing and therefore different secondary neuronal correlates [32, 33]. To avoid this 
pitfall, Minzenberg et al. [34] performed a meta-analysis, comprising 41 studies, to 
investigate neural correlates of executive functions in schizophrenia using different 
paradigms (including go/no-go, mental arithmetic, n-back, Stroop test, WCST). 
Within-group results showed that healthy controls and patients with schizophrenia 
activated a similarly distributed cortical subcortical network. That network comprises 
DLPFC, ACC, ventrolateral prefrontal cortex (VLPFC), premotor cortex, lateral tem-
poral cortical areas, parietal areas, cerebellum and thalamus. Significant co-occur-
rence of activation across studies was found among the DLPFC, ACC and mediodorsal 
thalamus. When comparing both groups, hypoactivation in patients was found in the 
DLPFC, VLPFC, dorsal ACC, occipital and parietal cortices and thalamus.

These results are interpreted in the context of models of cognitive control [18], 
suggesting that lateral PFC provides top-down control on other brain areas. ACC is 
known to monitor performance [32] and would modulate the engagement of 
DLPFC.  Therefore, dysfunction of DLPFC in schizophrenia would lead to poor 
engagement of other brain regions related to a given task and explain poor executive 
performances. The results are in line with the Wilmsmeier et al. [30] study specify-
ing that overactivation of the ACC could reflect a compensatory mechanism to 
increase the engagement of the DLPFC. That mechanism of compensation would 
help to control functioning in other brain regions and eventually to obtain similar 
performances as healthy controls.

6.3  Episodic Memory

Memory relies on three basic processes: encoding, storage and retrieval. Verbal 
memory evaluations therefore usually comprise an immediate recall accounting for 
encoding and a delayed recall accounting for storage and retrieval abilities. Verbal 
memory is frequently found to be impaired in schizophrenia, and the encoding 
phase is particularly difficult for patients. As this verbal declarative memory impair-
ment is consistently found in patients and their relatives, it is sometimes considered 
as an endophenotype of schizophrenia [11].

6.3.1  Anatomical Data

In healthy populations, episodic memory is known to be highly dependent on hip-
pocampus integrity [35]. Studies consistently find a reduction of hippocampus vol-
ume in patients suffering from schizophrenia [36, 37] and in their unaffected healthy 
relatives [25], compared to healthy controls. This reduction does not worsen during 
illness [36], and a large sample study investigating subcortical brain volumes in 15 
centres across the world found that hippocampal atrophy was more important in a 
sample scaled with a proportion of unmedicated patients [37].
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Links between cortical thickness and memory impairment were evaluated by 
Guimond et al. [38]. They investigated cortical thickness in regions known to be 
involved in episodic memory like the parahippocampal gyrus, frontal cortex and 
hippocampus in a group of patients showing low to mild memory impairment and 
in a group of patients showing moderate to severe memory impairment. The results 
showed a greater cortical thickness in the latter group of patients. Particularly, they 
were found to show a thinning in the left inferior frontal gyrus, left middle frontal 
gyrus and orbitofrontal cortex (OFC). The left parahippocampal gyrus was also 
thinner than in healthy control participants. They failed, however, to find any hip-
pocampal atrophy.

A recent meta-analysis by Antoniades et al. [39] investigated the links between 
hippocampal volume reduction and functionality. Interestingly, verbal memory per-
formances were found to be correlated with hippocampal volume. The authors 
showed that verbal learning and performances at delayed recall were associated 
with both right and left hippocampal volume in patients suffering from schizophre-
nia, whereas this correlation was not found in healthy controls. The volume of other 
subcortical structures, such as the amygdala and putamen, also was found to be 
linked to verbal memory performances although they were less systematically 
investigated.

6.3.2  Functional Data

Episodic memory functioning is considered to rely mainly on the medial temporal 
lobe (MTL) with contribution of the prefrontal cortex. In the prefrontal cortex, three 
regions are principally recruited: ACC, which is thought to support adjustment in 
cognitive controls; DLPFC, which is considered to process links between items; and 
VLPFC, supposed to be responsible for semantic processing of the item [40].

6.3.2.1  Prefrontal Implications

In patients suffering from schizophrenia, episodic memory impairment is usually 
accompanied by a lesser activation of the prefrontal cortex. Indeed, in a meta- 
analysis, Ragland et al. [40] evidenced that during encoding, patients suffering from 
schizophrenia showed a hypoactivation of the left frontopolar cortex, VLPFC and 
DLPFC.  This suggests that the observed differences in performance between 
patients and healthy controls rely more on information monitoring than on pure 
memory processes. Indeed, these regions are involved in working memory pro-
cesses, particularly for linking information with its context and with each other [41].

A second analysis was performed including only studies in which patients were 
given explicit strategies to improve encoding. The authors found a similar pattern of 
results, except for VLPFC hypoactivation which was not found. This suggests that 
when strategies are given to patients, the activation of the ventrolateral prefrontal 
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cortex reaches the level of healthy controls, suggesting that patients are able, when 
initiated, to semantically process and link stimulus with context.

Ragland et al. [40] also performed an analysis accounting for performance 
differences in the retrieval phase. As for encoding, the differences in the pattern 
of activation in patients compared to control participants reflected more diffi-
culty in task managing than in memory per se. It revealed hypoactivation in the 
DLPFC, right ACC, thalamus and cerebellum. The authors hypothesised—given 
that hypoactivation was found in structures involved in error monitoring, work-
ing memory, attention and mental flexibility—that people suffering from schizo-
phrenia show difficulties in monitoring their responses, detecting their errors 
and adjusting their behaviour. Other evidences in favour of this hypothesis were 
found recently, suggesting that the VLPFC can be recruited by participants suf-
fering from schizophrenia when explicit encoding strategies are recommended 
to them [42].

Surprisingly, Ragland et al. [40] found many differences in the prefrontal cortex 
and not in the MTL, as one could have hypothesised. That has one exception: the 
hyperactivation found in the right parahippocampal gyrus that might reflect a com-
pensation mechanism. Differences in MTL activation are not systematic in the lit-
erature, and it seems that they can be determined by the method of data analysis 
used in each study. Indeed, studies using region of interest (ROI) analysis seem to 
find more often significant differences in activation between patients and control 
groups in the MTL [40, 43].

6.3.2.2  Medial Temporal Implications

Using this type of analysis, several studies found different significant patterns of 
activation of the hippocampal and parahippocampal areas in patients with schizo-
phrenia during declarative memory tasks as compared to healthy controls [43, 44]. 
Indeed, when comparing successful encoding with fixation condition, it seems that 
the successful encoding of an item is characterised by a hyperactivation of the ante-
rior hippocampus in patients as compared to healthy controls and unaffected rela-
tives [44]. This overactivation might reflect an improved effort for patients to 
successfully encode a stimulus. This hypothesis was supported by the finding that 
the parietal superior areas also were overactivated. These regions are known to be 
linked to the hippocampus and involved in integrated perception processing and 
conscious organisation during encoding. Therefore, this activation pattern suggests 
that successful encoding of information is more effortful in patients and/or that 
information processing is longer.

As declarative memory impairment in schizophrenia might be an endophenotype 
of the disorder, the pattern of activation in the memory task in unaffected relatives 
was also investigated. Interestingly some anterior left hippocampal hypoactivation 
was found in both patients and relatives, when comparing successful encoding to 
unsuccessful encoding, suggesting that some part of irregular cerebral activity 
might be linked to genetic liability factors [44].
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To conclude this section, it seems that verbal episodic memory impairment in 
schizophrenia relies on abnormal hippocampal volume and prefrontal hypoactiva-
tion. Prefrontal hypoactivation suggests that impairment of patients in monitoring 
information generates difficulties in encoding and retrieval. These difficulties might 
also be enhanced by a more effortful processing of stimuli.

6.4  Cognitive Remediation Therapies

Cognitive remediation is an evidence-based psychotherapy for schizophrenia aim-
ing to remediate cognitive impairments. There are different programmes and for-
mats, but all of them have in common some principles and methods. The Cognitive 
Remediation Expert Working group has proposed a definition of cognitive remedia-
tion, considering those principles common to all cognitive remediation approaches: 
a behavioural training intervention targeting cognitive impairment, including atten-
tion, memory, executive functions or metacognition, using scientific principles of 
learning with the ultimate goal of improving functional outcomes. Several studies 
have tested the outcomes of cognitive remediation in schizophrenia, and two meta- 
analyses have established its efficacy [45, 46]. Cognitive remediation is helpful for 
improving cognition as well as daily functioning, but the underlying neural mecha-
nisms of this treatment are not fully understood.

To demonstrate the existence of brain functional changes, researchers have followed 
the simple strategy of scanning participants before and after the cognitive intervention. 
In both moments, the participants should be performing a cognitive task that facilitates 
the activation of the targeted brain areas. Initially, different studies followed a single-
case or case-series methodology [47–49]. Those studies helped to demonstrate the pos-
sibility of detecting changes in brain functioning after cognitive remediation. The design 
of the studies was theoretically driven and based on the selection of a few regions of 
interest, mainly prefrontal areas. All of the studies showed positive effects after cognitive 
remediation in terms of frontal activation improvement, but some studies showed that 
some patients could not present any improvement [50]. Despite the obvious limitations 
of the single-case methodology, these sorts of studies could still be helpful in under-
standing intersubject variability. There are an important number of studies focusing on 
the effects of cognitive remediation with neuroimaging procedures (Table 6.1), and the 
majority of these are randomised and controlled trials.

6.4.1  Findings in Frontal Lobe

Mostly, the main preference of researchers has been testing the activation of the 
prefrontal areas. Consequently, these have relied on cognitive paradigms that are 
dependent on the activation of those areas such as the n-back, verbal fluency or 
relational learning tasks [51–59].
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Thus, with the n-back task, some interesting results have been described. Wykes 
et al. [53] were the first authors to demonstrate the potentiality of cognitive remedia-
tion to improve brain functioning in a randomised and controlled trial. The improve-
ments found in different areas of cognition were significantly related with an 
increase of activation of the inferior frontal gyrus. A number of researchers then 
conducted similar studies to replicate those findings. Haut et al. [54] found increases 
in the activation of the left DLPFC and the ACC. Edwards et al. [55] implicated 
more areas of improved activation, including the frontal, parietal, inferior frontal 
junction and visual cortex. Similar results were found by Bor et al. [56] involving 
the frontal gyrus, cingulate gyrus and inferior parietal cortex. Recently, Ramsay 
et al. [57] also found increases in left lateral prefrontal activation during an n-back 
task. Subramanian et al. [58] used a different cognitive paradigm for scanning. They 
used a word generation and recognition task. After cognitive remediation, patients 
showed a significant improvement of the medial prefrontal activation pattern. It is 
interesting to highlight a tendency toward the normalisation of the prefrontal activa-
tion pattern although patients still showed poorer activation than healthy controls. 
Finally, Vianin et al. [59] reported increased activation after treatment in different 
areas including the parietal lobule, precentral gyrus, occipital cortex, middle cingu-
late cortex and superior parietal lobule, using a verbal fluency paradigm. Strikingly, 
the authors reported increased activation in Broca’s area, claiming that verbalisation 
might be the main factor underlying these brain changes.

In general, it seems to be proven that patients showed some increases in the activ-
ity of some parts of the frontal lobe after the cognitive remediation. These areas 
were mainly the left DLPFC, left DLPFC, anterior cingulate and right and left pre-
frontal cortex.

6.4.2  Findings in Connectivity and Brain Functioning

It has been suggested, however, that high levels of activation should not necessarily 
be considered an indicator of better brain functioning. A decrease in activation in 
some brain areas could be correlated with better cognitive performance in healthy 
people [27]. Penadés et al. [60] used the nback task and showed that two different 
networks, the central executive network and the default mode network, were overac-
tive when compared to the healthy participants despite the finding that their task 
performances are similar. Interestingly, decreased activation was found in both net-
works after treatment. In healthy people, the default-mode network has been proven 
to be anti-correlated with the other networks, but in schizophrenia, this always 
remains overactive. Particularly interesting is the decreased activity in the default 
mode network after treatment. This could mean a better synchronisation in the acti-
vation of one network, the central executive network, and deactivation of the other, 
the default mode network. On the whole, the activation patterns after treatment were 
more similar to the patterns observed in healthy controls. Those findings could be 
interpreted as an improvement in the efficiency of both networks.

6 Neuroimaging of Cognition in Schizophrenia
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Recently, a number of researchers have begun focusing on new targets that come 
from new theoretical frameworks like brain networks theory. The use of the whole- 
brain approach has allowed focusing on the totality of brain regions and not only on 
the frontal lobes. Connectivity between different regions of the brain also is becom-
ing the focus of new research [60–62]. Additionally, new methods of analysis of 
neuroimaging data enable us to test changes not only on taskrelated performance 
but also on restrelated brain functioning. Those innovative aspects are potentially 
constructing a more accurate picture of the effects that cognitive remediation may 
produce on brain functioning.

In this context, Penadés et al. [60] conducted a trial using a wholebrain approach 
that combined fMRI and diffusion tensor imaging (DTI). They investigated the 
effect of cognitive remediation on brain functioning, trying to test the potential 
changes on white matter fibres. The analysis of white matter on DTI showed an 
increase in the fractional anisotropy index after treatment for participants who 
received cognitive remediation. That increment was found in the anterior part of the 
genu of the corpus callosum, and it was correlated with cognitive gains. Although 
these findings need to be replicated, the authors speculated about the possibility that 
cognitive remediation could be improving connectivity between the two prefrontal 
hemispheres. The prefrontal cortex in both hemispheres is connected via the ante-
rior part of the corpus callosum, and the whole system is an important element of 
the working memory system.

Eack et al. [62] conducted a pioneering research, testing the potential effects of 
cognitive remediation over brain connectivity. A longitudinal, randomised and con-
trolled trial was carried out with 45 participants. These individuals were treated for 
2 years with cognitive enhancement therapy (CET), which combines cognitive com-
puter exercises on an individual basis and social cognitive exercises in group for-
mat. Functional MRI data was collected annually, and a resting-state functional 
analysis was performed. To test potential effects of cognitive remediation on fronto-
temporal connectivity, they used a seed-to-voxel general linear model. Statistical 
analyses showed that only participants who underwent CET showed two sorts of 
changes in connectivity. Firstly, connectivity loss between the resting network and 
the DLPFC was inferior for patients who followed the cognitive intervention. 
Secondly, connectivity with the insular cortex extending to the superior temporal 
gyrus significantly increased. Both networks seem to be related with problem- 
solving and emotional processing. The authors concluded that CET may improve 
brain connectivity, particularly between frontal and temporal regions.

To sum up, the findings of these studies suggest that cognitive remediation could 
be acting in different areas of the brain and not only in the areas of the frontal lobe. 
In any case, more brain activation is not always a suggestion of better brain func-
tioning. Networks theory suggests that some brain areas, like the default mode net-
work, are impaired in schizophrenia because they are overactive. For these reasons, 
not only activation of networks but also connectivity and synchronisation between 
them may become the focus of future studies.

R. Penadés et al.



129

6.4.3  Structural Findings

Eack et al. [63] published the first study trying to identify the effects of cognitive 
remediation in brain morphology. Using a voxel-based, morphometry methodology, 
they performed volumetric analysis in different regions of interest involving frontal 
and temporal regions. Participants were treated with the CET for 2 years, and the 
control group followed a supportive therapy for the same period. Noticeably, the 
analyses revealed some remarkable changes. Patients following cognitive interven-
tion showed significant preservation of the grey matter in relation with the control 
group. The group with cognitive intervention showed less grey matter loss in fusi-
form gyrus and in the left parahippocampal region. Moreover, significant increases 
of grey matter were found in the left amygdala. All of these findings were statisti-
cally related with cognitive improvement after the cognitive intervention. The 
authors defended the possibility that cognitive remediation might have a protective 
effect on the brain in persons affected by schizophrenia.

Morimoto et al. [64] recently performed a randomised controlled study using a 
computer-assisted, cognitive remediation programme. They used a whole-brain, 
voxel-based, morphometric analysis to detect significant volume changes in cortical 
grey matter. Interestingly, patients who received the cognitive intervention showed 
statistically significant increases in right hippocampal volume. Changes in hippo-
campal volumes were positively correlated with verbal fluency improvements. The 
results suggest that cognitive remediation might be able to facilitate, hippocampal 
plasticity to some degree.

Finally, despite the incipient evidence for structural changes in the context of 
cognitive remediation, little is known about whether neuroimaging data can be used 
as a predictor of treatment response. This question was tested by Penadés et al. [65], 
who used baseline cortical thickness as a potential predictor of outcomes. The 
results suggested that baseline measures of cortical thickness in the frontal and tem-
poral lobes are associated with responsiveness to cognitive remediation. In particu-
lar, improvement in non-verbal and verbal memory was associated with greater 
thickness in some areas of the frontal and temporal lobes at baseline. Significant 
differences were found in the left superior frontal, left caudal middle frontal, left 
precuneus and paracentral, superior frontal, right caudal middle frontal gyrus and 
pars opercularis. The results of this study need to be replicated, but they suggest that 
responsiveness to cognitive remediation may be dependent on the integrity of some 
brain structures located mainly in frontal and temporal lobes.

On the whole, structural studies suggest some detectable changes in the context 
of cognitive remediation. Some putative protective effects in the grey matter of the 
frontal and temporal lobes have been suggested. In addition, some sort of plasticity 
has been detected in the form of an increase of volume in the hippocampal region 
and in augmentation of white matter fibres at the corpus callosum. Finally, respon-
siveness to cognitive remediation may be related to the integrity of some brain areas 
in frontal and temporal lobes (Fig. 6.1).
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6.5  Conclusion

Neuroimaging studies in recent years have shed some light on the topic of the neu-
robiological basis of cognitive function in schizophrenia. Thus, prefrontal cortex 
engagement appears to be a core characteristic in schizophrenia, although the results 
of studies investigating the neural correlates of cognition are far from consensus. 
Some authors suggest that some neurocognitive dysfunction could be seen as a 

Fig. 6.1 Areas of the brain associated with cognitive remediation improvements in schizophrenia. 
For more detailed regions, direction of change and related studies, see Table 6.1. (a) Functional 
findings: areas that have shown activation changes. Bilateral and sagittal views of the brain. (b) 
Connectivity findings. Sagittal and superior coronal view of the brain. Arrows symbolise connec-
tivity. (c) Structural findings: areas that have shown changes in terms of volume (grey and white 
matter). Inferior transverse views of the brain. All the figures are qualitative representations. ACC 
anterior cingulate cortex, DLPFC dorsolateral prefrontal cortex, B bilateral, L left, R right
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consequence of prefrontal cortex dysfunction [40, 42]. Interestingly, cues for com-
pensatory mechanisms are found in all the cognitive domains reviewed, suggesting 
that schizophrenic brains adapt their functioning to improve performance, although 
it is not fully efficient.

Also, neuroimaging studies of cognitive remediation in patients with schizophre-
nia have led to a better understanding of cognitive processes in schizophrenia. 
Cognitive remediation therapies have proven their proficiency to induce significant 
improvements on brain functioning. In particular, changes involving the prefrontal 
and thalamic regions are the most commonly reported results. These changes are 
being interpreted in terms of functional reorganisation of the neural networks. 
Moreover, structural changes in grey and white matter have also been described. 
These could be understood as the effects of neuroplasticity induced by the cognitive 
intervention. At the same time, these findings suggest a neuroprotective effect in 
response to cognitive remediation as they could be preventing, to some degree, grey 
matter loss. Obviously, more studies are required to confirm and clarify these 
results. As already suggested [5, 6], future studies should incorporate multimodal 
neuroimaging procedures, whole-brain analyses, brain networks theories, studies of 
connectivity, tractography and more complex theoretical models like graph theory.
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Chapter 7
The Role of Biomarkers in Psychiatry
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Abstract Psychiatric illnesses are cognitive and behavioral disorders of the brain. 
At present, psychiatric diagnosis is based on DSM-5 criteria. Even if endopheno-
type specificity for psychiatric disorders is discussed, it is difficult to study and 
identify psychiatric biomarkers to support diagnosis, prognosis, or clinical response 
to treatment. This chapter investigates the innovative biomarkers of psychiatric dis-
eases for diagnosis and personalized treatment, in particular post-genomic data and 
proteomic analyses.

Madia Lozupone and Maddalena La Montagna have contributed equally to this chapter.

M. Lozupone 
Neurodegenerative Disease Unit, Department of Basic Medical Sciences, Neuroscience and 
Sense Organs, University of Bari Aldo Moro, Bari, Italy 

M. La Montagna · F. D’Urso · A. Bellomo 
Psychiatric Unit, Department of Clinical and Experimental Medicine, University of Foggia, 
Foggia, Italy 

A. Daniele 
Institute of Neurology, Catholic University of Sacred Heart, Rome, Italy 

Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy 

A. Greco · D. Seripa 
Geriatric Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, Foggia, Italy 

G. Logroscino 
Neurodegenerative Disease Unit, Department of Basic Medical Sciences, Neuroscience and 
Sense Organs, University of Bari Aldo Moro, Bari, Italy 

Department of Clinical Research in Neurology, University of Bari Aldo Moro, Lecce, Italy 

F. Panza (*) 
Neurodegenerative Disease Unit, Department of Basic Medical Sciences, Neuroscience and 
Sense Organs, University of Bari Aldo Moro, Bari, Italy 

Geriatric Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, Foggia, Italy 

Department of Clinical Research in Neurology, University of Bari Aldo Moro, Lecce, Italy
e-mail: geriat.dot@geriatria.uniba.it

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05542-4_7&domain=pdf
mailto:geriat.dot@geriatria.uniba.it


136

Keywords Proteomics · Biomarker · Post-genomic diagnostics · Psychiatric 
disease · Epigenetics · Microbiota · Lifestyle · Depressive disorder · Schizophrenia 
· Bipolar disorder

7.1  Introduction

7.1.1  The Significance of “Biomarker”

One of the most important goals of psychiatry research is to find appropriate bio-
markers for mental illnesses [1]. According to the National Institute of Health 
Biomarkers Definitions Working Group, a “biomarker” is defined as “a characteris-
tic that is objectively measured and evaluated as an indicator of normal biological 
processes, pathogenic processes or pharmacological responses to a therapeutic 
intervention” [2]. Another definition of biomarker made by the International 
Program on Chemical Safety is “any substance, structure, or process that can be 
measured in the body (or its products) and their influence or prediction about the 
incidence of outcome or disease” [3]. Based on these ideas, a biomarker can be used 
to identify the presence or progression of a disease or the effectiveness of a given 
treatment from a clinical viewpoint [4].

The use of biomarkers in medicine is a common and valuable approach in several 
clinical fields [5], and biomarker analyses are growing in number and providing 
potential targets for several medical conditions, such as diabetes and cancer. 
However, clinical applications of biomarkers for neuropsychiatric illnesses and pos-
sible use for clinical diagnosis and prognosis have not consistently led to better 
quantifiable outcomes [6]. In the present chapter, we discuss the innovative bio-
markers of psychiatric diseases for diagnosis and personalized treatment, with a 
focus on post-genomic data and proteomics analyses.

7.1.2  Biomarker Potential Role in Psychiatric Setting

Certainly, finding consistent biomarkers for early discovery of psychiatric illnesses 
has been an attractive topic for researchers, in particular with the study of the brain 
(postmortem, neuroimaging, and neurophysiological studies), of cerebrospinal fluid 
(CSF), and of serum and plasma biomarkers (cytokines, neurotrophins, neurotrans-
mitters, and genes).

The goals of biomarker applications in psychiatry are diagnosis, prognosis (risk), 
prediction and assessment of responses to treatment (therapeutic failures), preven-
tion of adverse drug reactions, classification within diagnostic categories, and pre-
diction of intervention effects [7, 8]. Biomarkers could also define the staging of 
psychiatric illnesses, risk vulnerability across stages, syndrome progression, and 
epiphenomena [9]. Network neuroscience pursues new ways to model, analyze, 
map, and record the elements and interactions of neurobiological systems, 
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 considering the multi-scale nature of brain networks [10]. In this regard, a primary 
focus is the neuropsychological construct and the analysis of cognitive functions 
(attention, working memory, processing speed, learning and memory, executive 
functions, and global intellectual functions, including social cognition) as endophe-
notypes for psychiatric illnesses [11, 12]. From recent evidences, social dysfunction 
and its most evident clinical expression (i.e., social withdrawal) may represent an 
innovative transdiagnostic domain, with the potential of being an independent entity 
in terms of biological roots, with the prospect of targeted interventions not only in 
psychiatric but also in neurodegenerative disorders [13, 14].

Actually, the need to categorize and validate biomarkers has grown to enable 
clinicians to match specific individual patient treatments to increase the probability 
of an optimal, personalized outcome. Thanks to genotyping, it could be possible to 
assess factors that predict antidepressant or antipsychotic drug response [15, 16]. 
There is a need for characterizing patient variability, for example, to guide pharma-
cological dosing according to specific phenotypes [17, 18]. The goal of personal-
ized medicine is important in the case of psychiatric diseases to reduce side effects 
of inappropriate medication or to enable detection of an efficacy signal quickly 
without potential toxicity [19].

The success of disease-specific biomarkers or endophenotypes is still fragmen-
tary, based on neuroimaging, neuropsychological, biological, biochemical, and 
genetic aspects. The interest for the psychiatric setting is to go beyond this, to 
ensure a consistent value of their actual contribution in disease, also through 
application of post-genomics techniques [20]. One of the most important advances 
in psychiatry has been the sequencing of human genome in the 1990s [21], but 
genomic methods cannot differentiate splice variants or proteins with posttransla-
tional modifications (PTMs). Moreover, gene expression is regulated at the post-
transcriptional level by microRNAs (miRNAs), small noncoding RNAs. The most 
important targets of epigenetic regulation in psychiatric processes are synapse 
development, plasticity, neurogenesis, dendritic extension, and dendritic spine 
formation [22]. Furthermore, brain imaging, neurotrophic and electrophysiologi-
cal factors, neurotransmitters, epigenetics, epigenomics, pharmacogenomics, and 
proteomics are complementary to yield a more complete understanding of the 
biological basis and appropriate treatments of psychiatric disorders (Figs.  7.1, 
7.2, 7.3 and 7.4) [23–27].

7.2  Brain Imaging Biomarkers

Neuroimaging techniques have the power to capture the structure and function of 
the brain in health and disease. This has revolutionized the study of the organization 
of the human brain and how its structure and function are changed in psychiatric 
illnesses. Advances in neuroimaging techniques have made it possible to more 
clearly elucidate the neural basis of psychiatric disorders. In the past few decades, 
neuroimaging analyses have served as the main tools for exploring the 
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neurobiological etiology of psychiatric disorders [28]. The most important brain 
imaging techniques are magnetic resonance imaging (MRI), computed tomography 
(CT), diffusion tensor imaging (DTI), functional magnetic resonance imaging 
(fMRI), positron-emission tomography (PET), and single photon emission com-
puted tomography (SPECT) [29–33].

Fig. 7.1 Innovative biomarkers in schizophrenia

Fig. 7.2 Innovative biomarkers in major depressive disorders
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7.2.1  Schizophrenia

Patients with schizophrenia (SCZ) have differences in brain structure, brain vol-
ume, glucose metabolism, and blood flow at rest and during the performance of 
cognitive tasks [34] (Fig. 7.1). In SCZ, there are reduced activation in the dorso-
lateral prefrontal cortex (DLPFC) and the right temporal and ventral prefrontal 
cortices during the performance of working memory tasks [35] and abnormalities 

Fig. 7.3 Innovative biomarkers in bipolar disorders
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in the DLPFC, medial temporal lobe, hippocampus, parahippocampal gyrus, ante-
rior cingulate, medial frontal and posterior parietal cortex, striatum, thalamus, and 
cerebellum [36].

The findings indicate a greater randomization of large-scale brain networks 
in SCZ relative to healthy controls as well as alterations in the modularity of 
both static and time-varying networks. Notably, approaches aiming to charac-
terize patients with SCZ relative to healthy controls based on network organiza-
tion indices (clustering coefficient) show promising levels of classification 
accuracy [37, 38], suggesting that network neuroscience indices may have 
future clinical utility as SCZ biomarkers [10]. Recent studies show that small-
world brain networks are significantly reduced in SCZ compared to healthy con-
trols across rest and task states [39], and the extent of this reduction may be 
associated with the length of illness [40]. Hence, SCZ is characterized by differ-
ences in the small-world architecture of functional brain organization, marked 
by a subtle randomization of network topology [41], even in the absence of 
significant findings for structural networks. Moreover, SCZ patients have sig-
nificant reductions in connectivity [37, 41]. Large- scale organization features 
(small-world organization) seem to be less impacted in major depressive disor-
der (MDD) compared to SCZ. Instead MDD is characterized by disconnectivity 
across both static and dynamic measures of connectivity, and this is a potential 
future clinical utility factor [42].

Several brain abnormalities have been reported in SCZ by neuroimaging studies 
concerning the corpus callosum, thalamus, medial temporal lobe (hippocampal for-
mation, subiculum, and parahippocampal gyrus), superior temporal gyrus (particu-
larly on the left side), frontal lobe (particularly prefrontal and orbitofrontal regions), 
amygdala-hippocampal complex, cortical size, and size of the whole brain [43–47]. 
Conversely, there are a higher ventricle-to-brain ratio, greater absolute ventricular 
volume, and increased size of the cavum septi pellucidi [46].

SCZ patients usually have greater absolute volumes of all ventricular subdivi-
sions, total ventricular volume, and relative volumes of basal ganglia structures (the 
left and right caudate, putamen, and globus pallidus) as well as reduced cerebral 
volume, relative volumes of the thalamus, and medial temporal lobe structures 
including the amygdala, the hippocampus/amygdala ratio, the hippocampus and 
parahippocampus, and the relative volume of the left anterior superior temporal 
gyrus [47].

Duration of untreated psychosis (DUP) has been associated with poor out-
come in SCZ [48]. Recently, a naturalistic longitudinal study with matched 
healthy controls highlighted the function of hippocampal volume loss as a bio-
marker of DUP [49]. This leads to the idea that early hippocampal volume loss 
may play a role in mediating the association between DUP and poor outcomes 
in SCZ. Therefore, accelerated hippocampal volume loss could be associated to 
DUP and poor response in SCZ. Finally, in SCZ, there is also white matter dis-
organization in prefrontal and temporal white matter, corpus callosum, and 
uncinate fasciculus [50].
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7.2.2  Major Depressive Disorders

Structural imaging works show anatomical and neuropathological abnormalities 
concerning the disruptions to cortico-striatal-limbic circuits in patients with MDD 
[51]. MDD patients have reduced metabolism or hypoactivity with “hypofrontality” 
of the DLPFC, in the left central executive network, along with increased activity in 
the subcallosal cingulate cortex and limbic regions, such as the amygdala and the 
insula. The increased inter-functional connectivity between the salience network 
and right executive network, and the decreased inter-functional connectivity 
between the anterior default mode network and right central executive network, 
could be considered as biomarkers of MDD (Fig. 7.2) [52, 53]. Yang et al. suggested 
a paradigm using a multiple classifier evaluation with external validation by diffu-
sion MRI, to evaluate orientation and diffusion characteristics of white matter and, 
by inference, white matter microstructure. Although four features (mean fractional 
anisotropy in the right cuneus and left insula, asymmetry in the volume of the pars 
triangularis and cerebellum) were implicated across all analyses, low classification 
and prediction accuracy using these features indicated that they cannot represent the 
entire pathophysiology of MDD. However, they may be relevant for future investi-
gations of MDD neurobiology in conjunction with other methods [54]. MDD 
patients show volumetric reductions in the hippocampus, basal ganglia, subcallosal 
cingulate cortex, and orbitofrontal cortex in patients with more severe or chronic 
forms of disease [55]. A neuroimaging meta-analysis highlighted reduced volumes 
of the right hippocampus and reduced gray matter volumes in the left DLPFC as 
structural imaging predictors of nonresponse to treatment [56].

7.2.3  Bipolar Disorders

The International Society for Bipolar Disorders Biomarkers Network Task Force 
has described the results of neuroimaging biomarker studies in bipolar disorder 
(BD) patients as loss of gray matter in cortical-cognitive brain network, as well as 
increased activation in ventral limbic regions in response to emotional stimuli [24]. 
Specifically as shown by morphometric measures, BD patients have amplification 
of the lateral and third ventricles after several manic episodes (Fig. 7.3) [57]; pro-
gressive decline in hippocampal, fusiform, and cerebellar gray matter density after 
frequent episodes; subregion-specific gray matter volume reductions in the prefron-
tal cortex; and increased rates of deep white matter hyperintensities [58]. BD 
patients have gray matter reductions in the left rostral anterior cingulate cortex and 
right fronto-insular cortex thickness, above all in anterior limbic regions (executive 
control and emotional processing abnormalities) [59], volumetric reductions in hip-
pocampus and thalamus, and enlarged lateral ventricles [60]. Although gray/white 
matter changes appear early in BD development, the brain volume may be altered 
by environmental factors such as drugs [61].
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Studies of fMRI point out excessive activation in numerous corticolimbic path-
ways, including overactivation of the amygdala, striatum, and thalamus [24, 62, 
63]. Decreased activity in prefrontal cortical areas shown by imaging data under-
scores an insufficient modulation of limbic/subcortical regions, related to 
depressed mood and poor cognitive coping in BD [62, 63]. Recently, Li et al. [64] 
studied cortical thickness and subcortical volume alterations in euthymic BD type 
I patients treated with lithium and valproate. In particular, patients treated with 
lithium had increased cortical thickness of the left rostral middle frontal cortex 
and right superior frontal cortex compared with valproate, while cortical thick-
ness was not different between BD patients on lithium treatment compared to 
healthy controls in the bilateral rostral middle frontal cortex. Moreover, there 
were no differences observed in subcortical volume. These data indicate that lith-
ium and valproate have different effects on cortical thinning of the prefrontal cor-
tex in BD but an analogous effect on subcortical volumes [64]. However, 
neuroimaging could be used as a potential biomarker for lithium response predic-
tion in BD [65, 66]. In MRI studies, patients exposed to lithium treatment showed 
a bigger volume of gray matter mainly in the hippocampus as a direct conse-
quence of the drug (neurotrophic and neuroprotective influence) or secondary to 
better symptomatic outcome [67, 68].

7.3  Inflammatory Biomarkers

There is increasing evidence on the involvement of inflammatory pathways in the 
pathophysiology of major psychiatric disorders including MDD, SCZ, and 
BD. Elevated levels of cytokines and C-reactive protein and alterations in serum 
molecules involved in pro-inflammatory and oxidative stress response and immune 
molecules, including hyperactivation of the hypothalamic-pituitary-adrenal (HPA) 
axis, have been demonstrated in these major psychiatric illnesses (Figs. 7.1, 7.2 and 
7.3) [69, 70]. According to the recent scientific literature, anomalies in the immune 
system (blood or CSF levels of certain cytokines) are involved in the pathogenesis 
of SCZ, MDD, and BD and may be useful as biomarkers for diagnosis and treat-
ment monitoring. Studies have also shown increased levels of peripheral pro- 
inflammatory markers related to the genes involved in regulation of the immune 
system in both SCZ and MDD [71–75].

In particular, increased levels of C-reactive protein (CRP) [23, 76] and increased 
levels of IL-1β, IL-6, IL-8, IL-10, IL-12, IL-15, IL18, endogenous IL-1 receptor 
antagonist (IL-1RA), and soluble IL-2 receptor (sIL-2R) in the blood, CSF, and 
serum have been found in SCZ patients [69, 77, 78] (Fig. 7.1). It should be noted 
that the potential of IL-2 has been a matter of controversy as it was found to be 
elevated in some studies and diminished in others [79, 80]. Other cytokines [tumor 
necrosis factor-α (TNF-α), transforming growth factor-β (TGF-β), and interferon γ] 
have been shown to be altered in SCZ, while epidermal growth factor (EGF) has 
been associated with an increased risk of developing SCZ [81].
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More generally, according to recent meta-analysis, all patients with severe men-
tal disorders have increased CSF levels of interleukin 1β (IL-1β), IL-6, and IL-8 
[82]. Moreover, autoimmune dysregulation has been found to occur in BD II and 
MDD as underlined by proteomic analysis based on two-dimensional electrophore-
sis coupled with matrix-assisted laser desorption/ionization time-of-flight/time-of- 
flight tandem mass spectrometry analysis of plasma samples [83]. An area of 
particular attention in mental disorders is immunology linked to infections and 
autoimmune diseases with a larger risk identified for SCZ and affective disorders 
[84, 85].

The CSF/serum albumin ratio was known to be increased in SCZ, and affective 
disorders and total CSF protein levels were elevated, indicating increased blood- 
brain barrier (BBB) permeability [86]. Furthermore, the IgG ratio, IL-6 levels, and 
IL-8 levels are increased in the CSF of SCZ but not in the case of affective disorders 
[87–90]. A correlation of the levels of inflammation markers and symptoms has 
been found and also between albumin and IgG levels and the Scale for the 
Assessment of Negative Symptoms [91] and between IL-8 levels and the 
Montgomery-Asberg Depression Rating Scale [92]. Furthermore, altered chemo-
kine levels were found in the CSF and plasma of suicide attempters [93].

A number of studies have found that HPA axis activation in MDD may be linked 
to the severity of illness. Moreover, MDD patients are at specific risk for cardiovas-
cular syndromes, because of higher levels of inflammatory biomarkers such as the 
high sensitivity C-reactive protein and pro-inflammatory acute phase cytokines 
interleukin-1β and interleukin-6. For this reason, cytokines could be considered as 
biomarkers of depression severity [94]. The heat shock proteins CPN10, CPN60, 
and CPN70 might have potential as biomarkers for BD, and CPN60 blood level 
might distinguish patients with abnormal and normal HPA axis activities [95]. 
Among other biomarkers in BD, increased pro-inflammatory cytokines could be 
considered markers of mitochondrial dysfunction and oxidative stress (Fig.  7.3) 
[96].

7.4  Neurotrophic Biomarkers

The etiology of major psychiatric disorders has often been linked to altered intracel-
lular signaling, synaptogenesis, and neuroplasticity. Over the last years, the role of 
brain-derived neurotrophic factor (BDNF) in cognitive impairments in psychiatric 
patients has become a focus of interest. BDNF is the most common neurotrophin in 
the human brain and is involved in the synthesis, differentiation, maintenance, and 
survival of neurons, both in the central and in the peripheral nervous systems [97]. 
According to some genomic studies, there is a correlation between the BDNF gene 
polymorphism (Val66Met) and SCZ as found by whole-blood polymerase chain 
reaction (PCR) studies [98], and this association was correlated with cognition [99, 
100]. Additionally, BDNF Met alleles are associated with age of onset and with 
phenotype of aggressive behavior in SCZ [25, 101] (Fig. 7.1).
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Postmortem studies have shown that the mRNA levels of BDNF and TrkB and 
BDNF protein levels are decreased in the hippocampus and prefrontal cortex of 
SCZ and major psychiatric disorders [102, 103]. Also, the levels of other neuro-
trophins such as nerve growth factor (NGF) and NGF receptor, vascular endothelial 
growth factor (VEGF), and neurotrophin-3 (NT-3) have been found to be reduced 
[25, 104–110]. Moreover, serum levels of BDNF can be influenced by pharmaco-
therapy. Generally, BDNF levels were found to be decreased in treated SCZ 
[111–115].

Recently, the differential levels of neuregulin-1 (NRG1), its receptor ErbB4, 
BDNF, DNA methyltransferases 1 (DNMT1), and ten-eleven translocation 1 (TET1) 
proteins in peripheral blood have exhibited promising efficiency for diagnosis of 
first episode psychosis [116].

7.5  Neurotransmitters Biomarkers

Considering the classical monoamine hypothesis of MDD, several studies con-
ducted on CSF biomarkers for affective disorders have focused on the levels of 
5-hydroxytryptamine (serotonin), dopamine, and noradrenaline and on the respec-
tive enzymes monoamine oxidases and catechol-O-methyltransferase involved in 
their degradation to 5-hydroxyindoleacetic acid (5-HIAA), homovanillic acid 
(HVA), and 3-methoxy-4-hydroxyphenylglycol (MHPG) [117–122]. In addition, 
peripheral metabolic disturbances have been found in MDD, suggesting that char-
acteristic metabolic alterations associated with the pathogenesis of MDD may gen-
erate a detectable molecular phenotype in the blood using metabonomic methods 
[123]. Previous studies have also shown that perturbations in central and peripheral 
neurotransmitters are a hallmark of MDD. In particular, MDD patients showed dis-
turbances in several neurotransmitters in the periphery and brain, including dopa-
mine, glutamate, γ-aminobutyric acid (GABA), and serotonin which were thought 
to be involved in the pathogenesis of the disorder [124]. In this regard, plasma 
metabolite biomarkers (GABA, dopamine, tyramine, kynurenine) could be used to 
distinguish MDD subjects from healthy controls and BD patients with high accu-
racy [123, 124].

7.5.1  Dopaminergic System

The levels of dopamine uptake have been investigated as a potential biomarker in 
SCZ [125]. In addition, tyrosine hydroxylase (TH), dopamine transporter (DAT) 
mRNA [126, 127], HVA (a major metabolite of dopamine), and the dopamine D3 
receptor (DRD3) mRNAs were found to be increased and DRD4 mRNA levels 
decreased in SCZ [25, 128]. Also brain functional imaging conducted with SPECT 
in SCZ patients showed elevated synaptic dopamine levels [129], increased 
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numbers of postsynaptic dopamine receptors and signal transduction, and striatal 
amphetamine-induced dopamine release [130]. Regarding dopaminergic metabo-
lites in MDD, a recent meta-analysis concluded that only CSF levels of HVA, and 
not those of 5-HIAA or MHPG, are reduced in MDD. Therefore, the potential util-
ity of CSF HVA concentrations as a potential biomarker in MDD should be investi-
gated further (Fig. 7.2) [131].

Another area of specific interest for neurotransmitter biomarkers is the associa-
tion between neuroreceptor density and self-reported personality dimensions, to 
examine the neurobiology of the underlying behavioral phenotypes. As shown from 
recent molecular imaging studies, there are significant correlations between dopa-
minergic markers and specific behavioral traits. In particular, correlations were 
found between striatal D2R density and detachment, a measure of social avoidance 
and withdrawal [132–134]. Conversely, psychosis-related traits do not appear to be 
linked to D2R, but striatal amphetamine-induced dopamine release was found to be 
related to schizotypal personality traits [135]. Similarly an increase in dopamine 
release was reported in SCZ patients using the presynaptic marker [18F]DOPA 
[136].

7.5.2  Serotonergic System

Alterations in the cortical serotonergic system have been reported in SCZ patients 
[137], such as the findings of decreased levels of the 5-HTT receptors in the frontal 
cortex [138–140]. Altered levels of 5-HT1A and 5-HT1B and reduced 5HT2A 
receptors have been reported in prefrontal cortex and hippocampus of BD and MDD 
patients [141]. In addition, plasma serotonin levels have been found to be decreased, 
while platelet serotonin levels were found to be higher in SCZ [142].

The study of the biological underpinnings of personality traits with the use of 
molecular imaging techniques has several advantages for the early stages, evolution, 
and treatment of psychiatric diseases. In particular, these methods can be used to 
examine the relationship between serotonin receptor availability, social trust, and 
status as potential novel biomarkers in psychiatry. Molecular imaging studies of 
associations between serotonin receptors and transporters with personality traits, 
such as neuroticism, have not been clear. Although the association between the 
5-HT1A receptor and neuroticism was found to have a strong negative correlation, 
there were no associations with the serotonin transporter [143].

7.5.3  Glutamate and Other Amino Acid Systems

SCZ patients show decreased levels of glutamate, glycine, and d-serine in the CSF 
and plasma, but increased homocysteine [144–146]. An important focus in SCZ is 
glutamatergic dysfunction, in particular N-methyl-d-aspartate (NMDA) receptor 
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hypofunction, as this can be informative about several SCZ symptoms linked to 
excitatory-to-inhibitory imbalance. In this way, administration of the NMDA recep-
tor antagonist ketamine leads to SCZ-like positive, negative, and cognitive symp-
toms [147].

7.5.4  GABAergic System and Neurosteroids

SCZ patients have been found to display decreased plasma levels of GABA, with 
downregulation of the GABA-A receptor alpha 5 subunit in prefrontal regions and 
polymorphisms and haplotypes in the GABA-A receptor β2 subunit gene [148–
150]. According to the specific role in modulating the GABA receptor, the defi-
ciency of the biosynthesis of allopregnanolone, a positive allosteric modulator of 
GABA action at GABA-A receptors, was found in several neuropsychiatric disor-
ders such as MDD, post-traumatic stress disorder (PTSD), epilepsy, postpartum 
depression, and anorexia nervosa, as well as in premenstrual syndrome and obesity 
[151–156]. The special focus on neurosteroids, inhibitors of NMDA-mediated tonic 
neurotransmission [157], was confirmed in women with post-traumatic stress disor-
der (PTSD) through an association with a block in conversion of progesterone to the 
GABAergic neurosteroids allopregnanolone and pregnanolone [158]. This is impor-
tant for potential therapeutics in PTSD considering the role of the endocannabinoid 
system and associated neurosteroids in this condition [159].

7.5.5  Cholinergic System

A number of studies have demonstrated involvement of the cholinergic system in 
psychiatric disorders. For example, studies have shown that the nicotinic and mus-
carinic receptors are reduced in thalamus and frontal regions of SCZ [160–162]. 
Thus, studies of these systems may also lead to identification of novel biomarkers 
and drug targets in these diseases.

7.6  Epigenetics

Epigenetics or epigenomics is a modification of the genome expression without 
changes in the DNA sequence and can result in alterations of gene expression, 
allowing for differential expression of common genetic information [163]. New 
techniques such as genomics, epigenomics, transcriptomics, and proteomics guar-
antee a more global examination of stress-related dysregulation, allowing the dis-
covery of novel biomarkers and targets for new therapies, compared to standard 
biochemical analyses. Many psychiatric patients have alterations in stress response 
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and stress reactivity levels, influenced by biological moderating factors such as the 
HPA axis and early life trauma [164]. Stress hormones (glucocorticoids) and 
immune mediators (cytokines) provide a connection between the peripheral and 
central pathways and have exemplified functional biomarkers of stress response, as 
found in PTSD [165]. The link is further demonstrated by the finding that affective 
and psychotic patients have elevated cortisol secretion and an enlarged pituitary 
gland volume, with hyperactivity of the HPA axis [166–168].

Recently, molecular examinations have discovered aberrant microRNA expres-
sion in different biological samples from psychiatric patients, including brain tissue, 
plasma, serum, and peripheral blood mononuclear cells. Such microRNA altera-
tions may be useful biomarkers in studies of MDD, SCZ, or BD [169–171] as cer-
tain gene expression patterns are present in subgroups of patients [172–183]. A 
recent meta-analysis found that the utilization of blood-derived microRNAs, espe-
cially those from peripheral blood mononuclear cells isolated from patients, may 
lead to a useful set of biomarkers for SCZ diagnosis [184]. Also, the candidate gene 
targets of these microRNAs have been linked to increased risk for developing BD, 
including pathways such as circadian rhythm, neuronal development, and calcium 
metabolism [25].

MicroRNAs are ~22-nucleotide-long, noncoding RNA molecules, which are 
important regulators of posttranscriptional gene expression. They may lead to 
increased or decreased regulation of the translational stage of mRNA processing or 
render it stable or unstable [185].

MicroRNA-16 is a posttranscriptional repressor of the serotonin transporter 
(SERT) and acts as a central regulator of SERT expression. It provides a mechanism 
for adaptive changes in SERT expression in monoaminergic neurons, which can 
differentiate into either serotonergic (1C115-HT) or noradrenergic (1C11NE neuro-
ectodermal cell line) neuronal cells [186]. MicroRNA-134 represses the translation 
of the Limk1 mRNA, a protein kinase that influences dendritic spine development. 
The miRNA-mediated repression of translation occurs via exogenous stimuli like 
BDNF, which has emerged as a key mediator for synaptic efficacy, neuronal con-
nectivity, and neuroplasticity [187]. Interestingly, one study showed that 
microRNA-134 levels in BD were inversely correlated with severity of manic symp-
toms [187].

Chromosome 8p, which contains at least seven transcribed microRNAs, has been 
linked to neurodevelopmental disorders such as autism and SCZ.  Patients with 
DiGeorge syndrome and 22q11.2 deletion have a deficiency in DGCR8 micropro-
cessor complex subunit expression, resulting in decreased microRNA biosynthesis 
and leading to a 30-fold increased risk of SCZ [187, 188]. The functional targets of 
these microRNAs include a number of genes that have been implicated in SCZ, such 
as BDNF, the dopamine D1 receptor, the synaptic protein neuregulin-1 (NRG1), 
and the early growth response gene 3 (EGR3) [188]. Furthermore microRNA-219 
has been found to negatively regulate the function of NMDA receptors, serving as 
an integral component of the NMDA receptor signaling cascade. MicroRNA-219 
may directly modulate NMDA receptor signaling by regulating the expression of 
components in this cascade [188].
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7.7  Pharmacogenomic Biomarkers

An important type of pharmacogenomic biomarker individuation in psychotropic 
drug classification relates to the cytochrome P450 enzyme family [12, 13, 189]. 
These enzymes play a critical role in drug metabolism and therefore may be 
important in efficacy- and toxicity-related issues. Interestingly, a majority of the 
commercially available pharmacogenomic testing resources assay for CYP2D6 
and CYP2C19, considering that these enzymes are involved in metabolism of 
many commercial drugs and variants, exist which could affect their activities with 
respect to specific drugs. Pharmacogenomics could be useful in determining dos-
age and administration, warnings, precautions, or other areas listed on the pack-
age insert of commercially available drugs. This will be helpful in providing 
information at the personalized level to minimize adverse events, to provide gen-
otype-specific dosing, and to identify polymorphic drug targets and genes [15, 27, 
190] (Fig. 7.2).

7.8  Electrophysiological Biomarkers

The autonomous nervous system (ANS) and its imbalance is important in physi-
ological and pathological disorders [191, 192], including stress. Accordingly, 
resting heart rate (RHR), heart rate variability (HRV), respiration rate (RR), 
skin temperature (ST), and skin conductance (SC) are common clinical methods 
to measure ANS activity, and HRV is the most established parameter to evaluate 
the sympatho-vagal balance [193–197]. Recent studies show that useful stress 
indexes may also be obtained from electroencephalogram (EEG)-based features 
[198].

Psychiatric patients have an ANS imbalance, especially in psychosis [199–201] 
and depression [202–204]. There are also sympatho-vagal alterations in patients 
affected by anxiety and phobic anxiety, social anxiety and somatoform disorders 
[205–207], alcohol dependence [208, 209], and cognitive impairment [210]. 
Considering intraindividual variability, electrophysiological parameters could be 
possible biomarkers in psychiatry, even if some parameters (RR, RHR, LF, and HF 
parameters of HRV) are more robust and stable over time than others (SC, ST, time 
domain parameters of HRV), and RHR and RR are easy to obtain in everyday clini-
cal practice and can be used as measures of ANS dysregulation [211]. Certainly, two 
or more different parameters should be evaluated to moderate intraindividual vari-
ability [211].

Electrophysiological changes, including the components of sensory gating, mis-
match negativity (MMN), and P300 of the evoked potentials are consistently 
reported to be abnormal in SCZ [212].
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7.9  Gut Microbiota

The microbiota is composed of over 100 trillion of commensal bacteria in symbiosis 
with human body, in the distal gut and fecal metabolites, and can be examined with 
metabolomic analysis [nuclear magnetic resonance (NMR) spectroscopy] of fecal 
water [213].

The gut and the brain are strictly connected through bidirectional signaling path-
ways [214]. Bacteria can produce GABA, tryptophan, 5-HT, and several neurotrans-
mitters and monoamines. Therefore, the gut microbiota could regulate many 
activities within the brain including hippocampal neurogenesis, myelin-related gene 
expression in the PFC (an important brain region involved in anxiety and social 
behavior), CNS serotonergic neurotransmission, and stress and antidepressant treat-
ment response [215–217]. The gut microbiota could also control brain functional 
pathways through inflammasome signaling and could therefore be useful as both 
biomarkers and potential drug targets in psychiatry [218]. Moreover, in epigenetic 
studies of SCZ, the impact of microbiota should also be taken into consideration 
[219, 220] (Fig. 7.1).

MDD patients have an increase in gut microbiota alpha diversity, in the genera 
Eggerthella, Holdemania, Gelria, Turicibacter, Paraprevotella, and Anaerofilm, 
with overrepresentation of Bacteroidales, Oscillibacter, and Alistipes, reductions in 
Prevotella and Dialister, and lower numbers of Bifidobacterium, Lachnospiraceae, 
and Lactobacillus [221–223], with high levels of serum IgM and IgA against lipo-
polysaccharide of gram-negative gut commensals. This is coherent with the patho-
physiology of psychiatric illnesses linked to bacterial translocation, through 
increased gut permeability [224]. Interestingly, diet and depression are strongly 
linked through the gut microbiota. Dietary fiber can modify the composition of the 
intestinal flora and affect brain and behavior [225]. Indeed, higher intake of dietary 
fiber (fruits and vegetables) leads to a lower prevalence of MDD [226]. Specifically, 
the Mediterranean diet could be protective, while the Western diet could increase 
risk of MDD through effects on the microbiota [227]. A probiotic combination of 
Lactobacillus helveticus R0052 and Bifidobacterium longum R0175 has been shown 
to have beneficial effects in human resilience to stress [228]. A recent systematic 
review on the fecal microbiota concluded that Archaeon Methanobrevibacter smithii 
is increased in anorexia nervosa patients [229]. Methanobrevibacter smithii may be 
a benchmark biomarker for future studies.

7.10  Conclusions

Psychiatry is in need of an objective, valid diagnostic classification that transcends 
the Diagnostic and Statistical Manual (DSM) model of symptom clusters. The US 
National Institute of Mental Health (NIMH) Research Domain Criteria (RDoC) 
[230] has called for the inclusion of biological markers for either diagnosis or 
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treatment outcomes. However, there have been many criticisms, and, at present, 
there are no accepted specific biomarkers in psychiatry [230, 231].

A focal point of medicine is the search of biomarkers to aid correct diagnosis, 
risk prognosis, and prediction of response to treatment. In the case of psychiatric 
disorders, it is important to have clear criteria for distinguishing pathological behav-
iors and appropriate methods to categorize these diseases and facilitate earlier inter-
vention for better outcomes. And one of the most important aims in psychiatric 
medicine is that of personalized treatment for prediction of response and therapeutic 
or adverse effects at the level of the individual [232]. In summary, we should view 
with optimism our capabilities to develop biomarkers that will ultimately lead to 
new interventions and personalized medicines and transform our ability to prevent 
illness onset and treat complex psychiatric disorders more effectively [232].

Considering the complex interactions among genotype, lifestyle, diet, pharmaco-
logical therapy, environmental exposure, and gut microflora, the most ambitious goals 
could be the discovery of novel pharmacological targets and to rationalize the utiliza-
tion of known drugs. Finally, this chapter underlines important advices for future stud-
ies, to create a link between several types of biomarkers considering that psychiatric 
disorders are complex diseases. Thus, the use of a single biomarker is not advised, but 
rather a combination of diverse biomarker types. This could lead to improved treat-
ment of psychiatric patients on a personalized level for the best possible outcomes.
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Chapter 8
Interactome Studies of Psychiatric 
Disorders

Dong Ik Park and Christoph W. Turck

Abstract High comorbidity and complexity have precluded reliable diagnostic 
assessment and treatment of psychiatric disorders. Impaired molecular interactions 
may be relevant for underlying mechanisms of psychiatric disorders but by and 
large remain unknown. With the help of a number of publicly available databases 
and various technological tools, recent research has filled the paucity of information 
by generating a novel dataset of psychiatric interactomes. Different technological 
platforms including yeast two-hybrid screen, co-immunoprecipitation-coupled with 
mass spectrometry-based proteomics, and transcriptomics have been widely used in 
combination with cellular and molecular techniques to interrogate the psychiatric 
interactome. Novel molecular interactions have been identified in association with 
different psychiatric disorders including autism spectrum disorders, schizophrenia, 
bipolar disorder, and major depressive disorder. However, more extensive and 
sophisticated interactome research needs to be conducted to overcome the current 
limitations such as incomplete interactome databases and a lack of functional infor-
mation among components. Ultimately, integrated psychiatric interactome data-
bases will contribute to the implementation of biomarkers and therapeutic 
intervention.
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8.1  Introduction

Increased knowledge of the interactome, a collection of biological interactions, is 
important for a better understanding of complex disease mechanisms. The basic 
units of the interactome are protein-protein interactions (PPIs), which represent 
physical contact of two or more proteins that can stimulate biochemical reactions. 
PPIs mediate many essential molecular processes including signal transduction and 
transcriptional regulation. PPIs have been implicated in various diseases including 
neurodegenerative disorders, leukemia, cervical cancer, and bacterial infection [1]. 
While it is estimated that more than 650,000 PPIs exist in the human interactome 
[2], our current knowledge on disease-relevant interactomes is incomplete.

The study of psychiatric disorders has been challenging due to highly complex 
and heterogeneous disease mechanisms. This complexity has hampered the devel-
opment of reliable clinical diagnostics and therapeutics. The difficulties in bio-
marker and therapeutic development may also be the result of lacking knowledge of 
the psychiatric disease interactome. With the help of -omics methods and computa-
tional analyses that take into account protein interaction information, we can now 
acquire novel and useful information on the interactome of several psychiatric dis-
orders. Here, we present and discuss the progress made in interactome studies and 
state-of-the-art approaches that will advance our knowledge in psychiatry.

8.2  Complexity and Comorbidity in Psychiatric Disorders

Genome-wide association studies (GWAS) of psychiatric disorders have found 
many heritable genetic variants which increase the risk of schizophrenia (SCZ), 
autism spectrum disorders (ASD), major depressive disorder (MDD), and bipolar 
disorder (BD) [3]. These studies have revealed that psychiatric disorders are poly-
genic, i.e., influenced by many genetic variants with small effect sizes. GWAS iden-
tified 108 and 44 genetic risk loci associated with SCZ and MDD, respectively [4, 
5]. While an individual genetic variant has a small effect, the combined effects of 
multiple common risk variants may profoundly contribute to the aetiology of psy-
chiatric disorders. Therefore, polygenic risk score, a weighted sum of trait- associated 
risk variants, has been applied to predict cumulative influence on phenotypic traits 
in psychiatric disorders [6, 7].

Interestingly, a substantial number of genetic risk loci are shared among different 
psychiatric disorders. In addition, patients with different psychiatric diagnoses often 
display common symptoms and phenotypes. For instance, phenotypes in anxiety, 
MDD, panic disorder, and posttraumatic stress disorder (PTSD) are common in 
SCZ patients [8]. Furthermore, ASD was found to have high comorbidity with 
MDD and anxiety [9–11].

Complexity and comorbidity for psychiatric disorders may result from global 
molecular pathway dysfunction in the central nervous system. Consistent with the 
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polygenic nature of the illness, ASD, SCZ, and MDD patients show alterations in 
various biological pathways including synaptic transmission, calcium homeostasis, 
energy metabolism, oxidative stress, cytoskeleton, and immune system [12–14]. 
Interactome analysis can address the high complexity and comorbidity among psy-
chiatric disorders by identifying disease-specific molecular interaction networks. 
Distinct molecular interaction signatures may provide novel insights which will 
allow more precise diagnosis and treatment of comorbid psychiatric disorders.

8.3  Psychiatric Interactome Studies

8.3.1  Protein-Protein Interaction Database

Large-scale experiments and advances in computational bioinformatics have gener-
ated large amounts of molecular interaction data. As a consequence, several PPI 
databases have been established based on manual curation of the scientific literature 
with experimentally verified data, computational prediction, and automated text 
mining. These include the Biomolecular Interaction Network Database (BIND), the 
Biological General Repository for Interaction Datasets (BioGRID, https://thebi-
ogrid.org), the Database of Interacting Proteins (DIP, http://dip.doe-mbi.ucla.edu/
dip/), the Human Protein Reference Database (HPRD, http://www.hprd.org), the 
Molecular INTeraction database (MINT, https://mint.bio.uniroma2.it), the IntAct 
molecular interaction database (IntAct, https://www.ebi.ac.uk/intact/), the Human 
Protein Interaction Database (HPID, http://wilab.inha.ac.kr/hpid/), and the Search 
Tool for the Retrieval of Interacting Genes/Proteins (STRING, https://string-db.
org). PPI databases can be used to map gene and protein interaction networks and 
the relevant pathways and are an important resource to investigate altered molecular 
interactions in psychiatric disorders.

8.3.2  Yeast Two-Hybrid Screen

The yeast two-hybrid (Y2H) system has been used extensively to identify in vivo 
binary PPIs.

Camargo et al. have investigated protein complexes of Disrupted in Schizophrenia 
1 (DISC1) [15] and reported on multiple interactions with proteins involved in cyto-
skeletal stability and organization, intracellular transport, and cell cycle/division. 
They also found interactions with several synaptic proteins, which may help to 
explain the synaptic pathology and cognitive deficits seen in SCZ.  DISC1 gene 
single-nucleotide polymorphisms are associated with multiple psychiatric disorders 
including BD, SCZ, MDD, ASD, and Asperger syndrome [16–18].
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Zhou et  al. identified novel interacting proteins of another SCZ risk gene, 
ZNF804A, using a Y2H screen [19]. Proteins involved in translation and mitochon-
drial regulation were found to interact with the mouse homolog of ZNF804A. Among 
the ZNF804A-associated proteins was neurogranin, and the gene encoding this pro-
tein has been associated with SCZ. Based on their results, the authors concluded 
that ZFP804A regulates neuronal migration, progenitor cell proliferation, and pro-
tein translation efficiency.

Sakai et al. performed Y2H screen to identify interaction partners of ASD pro-
teins or ASD-associated proteins [20]. The authors identified hundreds of PPIs with 
ASD (-associated) proteins and validated the interaction candidates using 
glutathione- sepharose affinity co-purification and co-immunoprecipitation (Co-IP). 
While the ASD interactome data confirmed previously identified interactions, the 
authors also found new partners including tuberous sclerosis 1 (TSC1) and tuberous 
sclerosis 2 (TSC2) proteins. TSC1 and TSC2 genes are involved in tuberous sclero-
sis complex (TSC), a rare disease associated with ASD [21]. Furthermore, interac-
tions of SH3 and multiple ankyrin repeat domains (Shank) proteins and TSC1 were 
identified. The authors used previously obtained microarray data and incorporated 
literature-curated interaction data to analyze the ASD interactome. De novo lesions 
of three network genes, deletions of pyruvate kinase M2 (PKM2) and N-terminal 
EF-hand calcium-binding protein 2 (NECAB2), and duplication of filamin A 
(FLNA) were identified in patients with idiopathic ASD.

8.3.3  Interactome Studies by Co-IP-Coupled Mass 
Spectrometry-Based Proteomics

Co-IP-coupled with mass spectrometry-based proteomics is a powerful method 
used to identify constituents of protein complexes. Martins-de-Souza et al. interro-
gated the collapsin response mediator protein-2 (CRMP2) interactome by combin-
ing Co-IP and shotgun proteomics [22]. CRMP2, also known as 
dihydropyrimidinase-like 2 (DPYSL2), is a protein enriched in the central nervous 
system. It plays diverse roles in cytoskeleton dynamics, vesicle trafficking, synaptic 
transmission, neurite outgrowth, neurotransmitter release, and Ca2+ homeostasis. 
The findings of many studies have indicated that CRMP2 abundance or function 
may be altered in SCZ. CRMP2 functional variants were found to increase SCZ risk 
[23]. CRMP2 protein activity was altered in SCZ and other psychiatric disorders. 
Specific CRMP2 polymorphisms are associated with reduced susceptibility to 
paranoid- type SCZ [24]. In addition, significant CRMP2 protein-level differences 
were found in postmortem brains from SCZ patients [25, 26]. The authors identified 
78 novel partner proteins involved in 7 biological pathways and 32 molecular func-
tions in mouse frontal brain cortices. In silico pathway analysis further identified the 
most overrepresented functions of these proteins including semaphoring interac-
tion, axon guidance, and WNT5A signaling, suggesting a critical role of the CRMP2 
interactome in the regulation of neuronal and synaptic functions.
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Alfieri et al. performed Co-IP-coupled mass spectrometry-based proteomics to 
investigate the synaptic interactome associated with the p140Cap protein [27]. 
p140Cap has been shown to be critical for synaptogenesis, synaptic transmission, 
and plasticity. The p140cap knockout mouse displayed defects in memory consoli-
dation and cognitive functions along with impaired synaptic maturation and plastic-
ity [28]. The authors analyzed p140Cap protein-associated synaptosomal 
interactome in the mouse telencephalon. They identified 351 interacting partners 
that are involved in key synaptic processes. Interestingly, the p140Cap protein inter-
actome network showed gene enrichment associated with SCZ, ASD, and BD, indi-
cating that the p140Cap interactome is relevant for multiple psychiatric disorders.

K+-Cl− cotransporter 2 (KCC2) is a chloride potassium symporter present exclu-
sively in neurons of the central nervous system, and KCC2 dysfunction has been 
associated with psychiatric disorders. One study showed that the postmortem hip-
pocampus of SCZ patients had significantly decreased full-length KCC2 protein 
expression levels [29]. EXON6B transcript, one of the splice variants of KCC2, was 
found to be differentially expressed in dorsolateral prefrontal cortex of SCZ and 
MDD patients [30]. Mahadevan et al. analyzed KCC2 interactome in whole-brain 
membrane fractions using Co-IP followed by mass spectrometry-based proteomics 
[31]. The authors identified 150 KCC2 interacting proteins. They revealed that a 
novel interacting protein, protein kinase C and casein kinase substrate in neurons 
protein 1 (PACSIN1), plays a negative role in KCC2 expression and function in 
neurons. PACSIN1 has been shown to regulate endocytosis and recycling of presyn-
aptic vesicles [32, 33] and postsynaptic α-amino-3-hydroxy-5-methyl-4- 
isoxazolepropionic acid (AMPA), N-methyl-d-aspartate (NMDA), and glycine 
receptors [34–36].

The MET receptor tyrosine kinase interactome was examined for ASD. MET 
receptor tyrosine kinase regulates various synaptic structures including dendritic 
complexity, spine morphogenesis, and glutamatergic synapse maturation in the hip-
pocampus, thus controlling neuronal growth and functional maturation [37]. Human 
genetic studies have indicated MET as an ASD risk gene [38, 39]. Xie et al. per-
formed Co-IP followed by mass spectrometry-based proteomics using developing 
mouse neocortical synaptosomes. The authors found that the neurodevelopmental 
disorder-associated candidates including Shank3, synaptic Ras GTPase-activating 
protein 1 (SynGAP1), and glutamate ionotropic receptor NMDA type subunit 2B 
(GRIN2B) are highly enriched in MET interactome networks, supporting a role for 
MET in ASD pathobiology.

8.3.4  Interactome Studies with Transcriptomics

Lee et al. interrogated the Shank3-mammalian target of rapamycin (mTOR) interac-
tome associated with BD and SCZ [40]. The authors previously reported that 
Shank3-overexpressing transgenic mice showed behavioral abnormalities such as 
locomotor hyperactivity, amphetamine hypersensitivity, acoustic startle increase, 
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reduced prepulse inhibition, and abnormal circadian rhythms, which can be observed 
in BD, ASD, and SCZ [41]. Shank3 gene duplications, deletions, and various point 
mutations have been detected in patients suffering from mania-like hyperkinetic 
disorders, ASD, mental retardation, and SCZ [41–44]. As a scaffolding protein 
found in neuronal excitatory synapses, Shank3 has been shown to organize the post-
synaptic density by forming complexes with postsynaptic receptors, signaling mol-
ecules, and cytoskeletal proteins [45, 46]. mTOR has also been connected with 
various psychiatric conditions including ASD, drug addiction, intellectual disabil-
ity, MDD, and SCZ [47, 48]. In addition, ketamine’s rapid-acting antidepressant- 
like effect was found to be associated with mTOR-dependent synapse formation 
[49]. The authors performed transcriptomic analysis in Shank3-overexpressed stria-
tum. They built interaction networks using interactome data of Shank3, TSC1/
TSC2, and Ras homolog enriched in striatum (Rhes) which were obtained from 
previous studies. The data reanalyses revealed a strong connection between Shank3 
and mTORC1 upstream regulators including TSC1/TSC2 and Rhes. The authors 
found 94 proteins in Shank3-mTORC1 interactome associated with BD and 
SCZ. They demonstrated that Shank3-mTORC1 interactome may contribute to the 
abnormal mTORC1 activity and manic-like behaviors of Shank3-overexpressing 
transgenic mice.

Fryland et al. investigated Bromodomain containing 1 (BRD1) protein interac-
tome [50]. BRD1 genetic variants have been associated with SCZ and BD [51, 52]. 
BRD1 protein has been shown to be responsible for histone H3K14 acetylation dur-
ing embryonic development in mice [53]. To identify BRD1 interaction network, 
the authors used HEK293T human cells that stably expressed epitope tagged BRD1 
long and short splice variants. The BRD1 splice variants have been shown to be dif-
ferentially expressed in the hippocampus after chronic restrained stress in rats [54]. 
The study reported on 20 and 13 newly identified PPIs for the BRD1 short and long 
isoforms, respectively. Several PPIs were shared between isoforms. Newly identi-
fied PPIs, including 14-3-3 tyrosine monooxygenase proteins YWHAE, YWHAH, 
YWHAZ, and PBRM1, have been associated with SCZ and BD [55–58].

8.4  Conclusions and Future Directions in the Interactome 
Study of Psychiatric Disorders

While advanced analytical and computational tools are accelerating interaction data 
generation, we presently have only a partial and limited map of the psychiatric inter-
actome. A more complete map will ultimately assist efforts aimed at more precise 
diagnosis and treatment.

Future studies need to consider diverse factors including age, family history, 
lifestyle, diet, and ethnicity. General and disease-specific effects of environmental 
and lifestyle factors on interactome components may further help molecular net-
work characterizations relevant for psychiatric disorders.
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A peripheral interactome study is also required to fill the gap of knowledge in the 
systemic interactions between the periphery and the brain. Close relationships 
between psychiatric and peripheral conditions have been repeatedly reported. PTSD 
patients have accelerated physiological aging indicated by altered N-glycosylation 
in blood plasma [59]. A meta-analysis showed that individuals with severe mental 
illnesses including SCZ, BD, and MDD had a significantly increased risk of cardio-
vascular disease and related mortality [60]. Diabetes has also been associated with 
psychiatric disorders. BD patients were shown to have an up to three times higher 
risk of type 2 diabetes mellitus (T2DM) compared to the general population [61, 
62]. Furthermore, BD patients with T2DM were found to have greater chronicity 
and disability [63] and less favorable treatment response [64]. T2DM was highly 
prevalent in SCZ [65]. MDD patients have a 60% increased risk for developing 
T2DM [66]. A prospective interactome study in the periphery is required to investi-
gate underlying molecular mechanisms to bridge the knowledge gap between psy-
chiatric and physiological illnesses.

Identifying protein-small molecule interactions in cells is also important to fur-
ther expand our knowledge of psychiatric disorders. Small molecules such as 
metabolites interact with proteins including enzymes and allosteric regulators in 
many biological processes. Integrated protein-protein and protein-small molecule 
interactomes will generate novel information about systemically interconnected 
molecular interaction networks.

Several technology platforms including mass spectrometry-coupled limited pro-
teolysis (LiP) and thermal proteome profiling (TPP) allow systemic and high- 
throughput analyses of protein-small molecule interactomes. The LiP method 
employs proteases such as proteinase K [67]. Metabolite binding to a protein sig-
nificantly alters its structure and protease accessibility resulting in different peptide 
profiles during limited proteolysis. The method generates information on protein- 
metabolite interactions and metabolite binding sites. The TPP method is based on 
protein thermal stability changes upon binding of small molecules [68]. The pro-
teome thermal stability profile changes induced by binding of a small molecule 
provide unbiased metabolite-protein interaction networks. These methods will fur-
ther benefit the interactome studies of psychiatric disorders by providing informa-
tion on interactions and functions of proteins and small molecules.

The current interactome studies have focused to dissect complex mechanisms of 
psychiatric diseases. However, pharmacological effects of antipsychotics/antide-
pressants have not yet been investigated. In this regard it has been shown that anti-
psychotic and antidepressant drugs result in changes of molecular pathways such as 
purine/pyrimidine metabolism, glutamate, ubiquitin-proteasome, and energy 
metabolism [69–73]. Interactome characterization of drug-treated cells or animals 
may provide important insights on mechanisms involved in treatment response and 
resistance.

Extensive functional studies are vital to explore relationships between interac-
tome components to obtain mechanistic insights. Ultimately, there is a great need 
to integrate acquired interactome data and establish the “psychiatric interactome 
platform”. The integrated psychiatric interactome database will advance clinical 
diagnosis and treatment of psychiatric disorders.

8 Psychiatric Interactome Studies



170

References

 1. Ryan DP, Matthews JM (2005) Protein-protein interactions in human disease. Curr Opin Struct 
Biol 15(4):441–446

 2. Stumpf MP, Thorne T, de Silva E, Stewart R, An HJ, Lappe M et al (2008) Estimating the size 
of the human interactome. Proc Natl Acad Sci U S A 105(19):6959–6964

 3. Geschwind DH, Flint J  (2015) Genetics and genomics of psychiatric disease. Science 
349(6255):1489–1494

 4. Schizophrenia Working Group of the Psychiatric Genomics Consortium (2014) Biological 
insights from 108 schizophrenia-associated genetic loci. Nature 511(7510):421–427

 5. Wray NR, Ripke S, Mattheisen M, Trzaskowski M, Byrne EM, Abdellaoui A et  al (2018) 
Genome-wide association analyses identify 44 risk variants and refine the genetic architecture 
of major depression. Nat Genet 50(5):668–681

 6. Mullins N, Ingason A, Porter H, Euesden J, Gillett A, Ólafsson S et al (2017) Reproductive fit-
ness and genetic risk of psychiatric disorders in the general population. Nat Commun 8:15833. 
https://doi.org/10.1038/ncomms15833

 7. Wang T, Zhang X, Li A, Zhu M, Liu S, Qin W et al (2017) Polygenic risk for five psychiat-
ric disorders and cross-disorder and disorder-specific neural connectivity in two independent 
populations. Neuroimage Clin 14:441–449

 8. Buckley PF, Miller BJ, Lehrer DS, Castle DJ (2009) Psychiatric comorbidities and schizophre-
nia. Schizophr Bull 35(2):383–402

 9. Maddox BB, White SW (2015) Comorbid social anxiety disorder in adults with autism spec-
trum disorder. J Autism Dev Disord 45(12):3949–3960

 10. Magnuson KM, Constantino JN (2011) Characterization of depression in children with autism 
spectrum disorders. J Dev Behav Pediatr 32(4):332–340

 11. Zaboski BA, Storch EA (2018) Comorbid autism spectrum disorder and anxiety disorders: a 
brief review. Future Neurol 13(1):31–37

 12. Careaga M, Van de Water J, Ashwood P (2010) Immune dysfunction in autism: a pathway to 
treatment. Neurotherapeutics 7(3):283–292

 13. Malki K, Pain O, Tosto MG, Du Rietz E, Carboni L, Schalkwyk LC (2015) Identification of 
genes and gene pathways associated with major depressive disorder by integrative brain analy-
sis of rat and human prefrontal cortex transcriptomes. Transl Psychiatry 5:e519. https://doi.
org/10.1038/tp.2015.15

 14. Nascimento JM, Martins-de-Souza D (2015) The proteome of schizophrenia. NPJ Schizophr 
1:14003. https://doi.org/10.1038/npjschz.2014.3

 15. Camargo LM, Collura V, Rain JC, Mizuguchi K, Hermjakob H, Kerrien S et  al (2007) 
Disrupted in Schizophrenia 1 Interactome: evidence for the close connectivity of risk genes 
and a potential synaptic basis for schizophrenia. Mol Psychiatry 12(1):74–86

 16. Hashimoto R, Numakawa T, Ohnishi T, Kumamaru E, Yagasaki Y, Ishimoto T et al (2006) 
Impact of the DISC1 Ser704Cys polymorphism on risk for major depression, brain morphol-
ogy and ERK signaling. Hum Mol Genet 15(20):3024–3033

 17. Kilpinen H, Ylisaukko-Oja T, Hennah W, Palo OM, Varilo T, Vanhala R et al (2008) Association 
of DISC1 with autism and Asperger syndrome. Mol Psychiatry 13(2):187–196

 18. Thomson PA, Wray NR, Millar JK, Evans KL, Hellard SL, Condie A et al (2005) Association 
between the TRAX/DISC locus and both bipolar disorder and schizophrenia in the Scottish 
population. Mol Psychiatry 10(7):657–668, 616

 19. Zhou Y, Dong F, Lanz TA, Reinhart V, Li M, Liu L et al (2018) Interactome analysis reveals 
ZNF804A, a schizophrenia risk gene, as a novel component of protein translational machinery 
critical for embryonic neurodevelopment. Mol Psychiatry 23(4):952–962

 20. Sakai Y, Shaw CA, Dawson BC, Dugas DV, Al-Mohtaseb Z, Hill DE et  al (2011) Protein 
interactome reveals converging molecular pathways among autism disorders. Sci Transl Med 
3(86):86ra49. https://doi.org/10.1126/scitranslmed.3002166

D. I. Park and C. W. Turck

https://doi.org/10.1038/ncomms15833
https://doi.org/10.1038/tp.2015.15
https://doi.org/10.1038/tp.2015.15
https://doi.org/10.1038/npjschz.2014.3
https://doi.org/10.1126/scitranslmed.3002166


171

 21. Vignoli A, La Briola F, Peron A, Turner K, Vannicola C, Saccani M et al (2015) Autism spec-
trum disorder in tuberous sclerosis complex: searching for risk markers. Orphanet J Rare Dis 
10:154. https://doi.org/10.1186/s13023-015-0371-1

 22. Martins-de-Souza D, Cassoli JS, Nascimento JM, Hensley K, Guest PC, Pinzon-Velasco 
AM et al (2015) The protein interactome of collapsin response mediator protein-2 (CRMP2/
DPYSL2) reveals novel partner proteins in brain tissue. Proteomics Clin Appl 9(9–10):817–831

 23. Liu Y, Pham X, Zhang L, Chen PL, Burzynski G, McGaughey DM et al (2014) Functional 
variants in DPYSL2 sequence increase risk of schizophrenia and suggest a link to mTOR 
signaling. G3 (Bethesda) 5(1):61–72

 24. Nakata K, Ujike H, Sakai A, Takaki M, Imamura T, Tanaka Y et  al (2003) The human 
dihydropyrimidinase- related protein 2 gene on chromosome 8p21 is associated with paranoid- 
type schizophrenia. Biol Psychiatry 53(7):571–576

 25. Martins-de-Souza D, Gattaz WF, Schmitt A, Maccarrone G, Hunyadi-Gulyás E, Eberlin MN 
et al (2009) Proteomic analysis of dorsolateral prefrontal cortex indicates the involvement of 
cytoskeleton, oligodendrocyte, energy metabolism and new potential markers in schizophre-
nia. J Psychiatr Res 43(11):978–986

 26. Martins-de-Souza D, Gattaz WF, Schmitt A, Novello JC, Marangoni S, Turck CW et al (2009) 
Proteome analysis of schizophrenia patients Wernicke’s area reveals an energy metabolism 
dysregulation. BMC Psychiatry 9:17. https://doi.org/10.1186/1471-244X-9-17

 27. Alfieri A, Sorokina O, Adrait A, Angelini C, Russo I, Morellato A et al (2017) Synaptic inter-
actome mining reveals p140Cap as a new hub for PSD proteins involved in psychiatric and 
neurological disorders. Front Mol Neurosci 10:212. https://doi.org/10.3389/fnmol.2017.00212

 28. Repetto D, Camera P, Melani R, Morello N, Russo I, Calcagno E et al (2014) p140Cap regu-
lates memory and synaptic plasticity through Src-mediated and citron-N-mediated actin reor-
ganization. J Neurosci 34(4):1542–1553

 29. Hyde TM, Lipska BK, Ali T, Mathew SV, Law AJ, Metitiri OE et al (2011) Expression of 
GABA signaling molecules KCC2, NKCC1, and GAD1 in cortical development and schizo-
phrenia. J Neurosci 31(30):11088–11095

 30. Tao R, Li C, Newburn EN, Ye T, Lipska BK, Herman MM et al (2012) Transcript-specific asso-
ciations of SLC12A5 (KCC2) in human prefrontal cortex with development, schizophrenia, 
and affective disorders. J Neurosci 32(15):5216–5222

 31. Mahadevan V, Khademullah CS, Dargaei Z, Chevrier J, Uvarov P, Kwan J et al (2017) Native 
KCC2 interactome reveals PACSIN1 as a critical regulator of synaptic inhibition. Elife 
6:e28270. https://doi.org/10.7554/eLife.28270

 32. Andersson F, Jakobsson J, Löw P, Shupliakov O, Brodin L (2008) Perturbation of syn-
dapin/PACSIN impairs synaptic vesicle recycling evoked by intense stimulation. J Neurosci 
28(15):3925–3933

 33. Anggono V, Smillie KJ, Graham ME, Valova VA, Cousin MA, Robinson PJ (2006) Syndapin 
I is the phosphorylation-regulated dynamin I partner in synaptic vesicle endocytosis. Nat 
Neurosci 9(6):752–760

 34. Anggono V, Koç-Schmitz Y, Widagdo J, Kormann J, Quan A, Chen CM et al (2013) PICK1 
interacts with PACSIN to regulate AMPA receptor internalization and cerebellar long-term 
depression. Proc Natl Acad Sci U S A 110(34):13976–13981

 35. Del Pino I, Koch D, Schemm R, Qualmann B, Betz H, Paarmann I (2014) Proteomic analysis 
of glycine receptor beta subunit (GlyRbeta)-interacting proteins: evidence for syndapin I regu-
lating synaptic glycine receptors. J Biol Chem 289(16):11396–11409

 36. Perez-Otano I, Luján R, Tavalin SJ, Plomann M, Modregger J, Liu XB et al (2006) Endocytosis 
and synaptic removal of NR3A-containing NMDA receptors by PACSIN1/syndapin1. Nat 
Neurosci 9(5):611–621

 37. Qiu S, Lu Z, Levitt P (2014) MET receptor tyrosine kinase controls dendritic complexity, 
spine morphogenesis, and glutamatergic synapse maturation in the hippocampus. J Neurosci 
34(49):16166–16179

8 Psychiatric Interactome Studies

https://doi.org/10.1186/s13023-015-0371-1
https://doi.org/10.1186/1471-244X-9-17
https://doi.org/10.3389/fnmol.2017.00212
https://doi.org/10.7554/eLife.28270


172

 38. Campbell DB, Li C, Sutcliffe JS, Persico AM, Levitt P (2008) Genetic evidence implicating 
multiple genes in the MET receptor tyrosine kinase pathway in autism spectrum disorder. 
Autism Res 1(3):159–168

 39. Campbell DB, Sutcliffe JS, Ebert PJ, Militerni R, Bravaccio C, Trillo S et al (2006) A genetic 
variant that disrupts MET transcription is associated with autism. Proc Natl Acad Sci U S A 
103(45):16834–16839

 40. Lee Y, Kim SG, Lee B, Zhang Y, Kim Y, Kim S et al (2017) Striatal transcriptome and inter-
actome analysis of Shank3-overexpressing mice reveals the connectivity between Shank3 and 
mTORC1 signaling. Front Mol Neurosci 10:201. https://doi.org/10.3389/fnmol.2017.00201

 41. Han K, Holder JL Jr, Schaaf CP, Lu H, Chen H, Kang H et al (2013) SHANK3 overexpression 
causes manic-like behaviour with unique pharmacogenetic properties. Nature 503(7474):72–77

 42. Bonaglia MC, Giorda R, Borgatti R, Felisari G, Gagliardi C, Selicorni A et al (2001) Disruption 
of the ProSAP2 gene in a t(12;22)(q24.1;q13.3) is associated with the 22q13.3 deletion syn-
drome. Am J Hum Genet 69(2):261–268

 43. Durand CM, Betancur C, Boeckers TM, Bockmann J, Chaste P, Fauchereau F et al (2007) 
Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are associated with 
autism spectrum disorders. Nat Genet 39(1):25–27

 44. Failla P, Romano C, Alberti A, Vasta A, Buono S, Castiglia L et al (2007) Schizophrenia in a 
patient with subtelomeric duplication of chromosome 22q. Clin Genet 71(6):599–601

 45. Boeckers TM, Bockmann J, Kreutz MR, Gundelfinger ED (2002) ProSAP/Shank proteins - a 
family of higher order organizing molecules of the postsynaptic density with an emerging role 
in human neurological disease. J Neurochem 81(5):903–910

 46. Naisbitt S, Kim E, Tu JC, Xiao B, Sala C, Valtschanoff J et al (1999) Shank, a novel family of 
postsynaptic density proteins that binds to the NMDA receptor/PSD-95/GKAP complex and 
cortactin. Neuron 23(3):569–582

 47. Costa-Mattioli M, Monteggia LM (2013) mTOR complexes in neurodevelopmental and neu-
ropsychiatric disorders. Nat Neurosci 16(11):1537–1543

 48. Jernigan CS, Goswami DB, Austin MC, Iyo AH, Chandran A, Stockmeier CA et al (2011) 
The mTOR signaling pathway in the prefrontal cortex is compromised in major depressive 
disorder. Prog Neuropsychopharmacol Biol Psychiatry 35(7):1774–1779

 49. Li N, Lee B, Liu RJ, Banasr M, Dwyer JM, Iwata M et  al (2010) mTOR-dependent syn-
apse formation underlies the rapid antidepressant effects of NMDA antagonists. Science 
329(5994):959–964

 50. Fryland T, Christensen JH, Pallesen J, Mattheisen M, Palmfeldt J, Bak M et  al (2016) 
Identification of the BRD1 interaction network and its impact on mental disorder risk. Genome 
Med 8(1):53. https://doi.org/10.1186/s13073-016-0308-x

 51. Nyegaard M, Severinsen JE, Als TD, Hedemand A, Straarup S, Nordentoft M et  al (2010) 
Support of association between BRD1 and both schizophrenia and bipolar affective disorder. 
Am J Med Genet B Neuropsychiatr Genet 153b(2):582–591

 52. Severinsen JE, Bjarkam CR, Kiaer-Larsen S, Olsen IM, Nielsen MM, Blechingberg J et al 
(2006) Evidence implicating BRD1 with brain development and susceptibility to both schizo-
phrenia and bipolar affective disorder. Mol Psychiatry 11(12):1126–1138

 53. Mishima Y, Miyagi S, Saraya A, Negishi M, Endoh M, Endo TA et al (2011) The Hbo1-Brd1/
Brpf2 complex is responsible for global acetylation of H3K14 and required for fetal liver 
erythropoiesis. Blood 118(9):2443–2453

 54. Christensen JH, Elfving B, Müller HK, Fryland T, Nyegaard M, Corydon TJ et al (2012) The 
Schizophrenia and Bipolar Disorder associated BRD1 gene is regulated upon chronic restraint 
stress. Eur Neuropsychopharmacol 22(9):651–656

 55. Grover D, Verma R, Goes FS, Mahon PL, Gershon ES, McMahon FJ et al (2009) Family-based 
association of YWHAH in psychotic bipolar disorder. Am J  Med Genet B Neuropsychiatr 
Genet 150b(7):977–983

 56. Williams HJ, Craddock N, Russo G, Hamshere ML, Moskvina V, Dwyer S et al (2011) Most 
genome-wide significant susceptibility loci for schizophrenia and bipolar disorder reported to 
date cross-traditional diagnostic boundaries. Hum Mol Genet 20(2):387–291

D. I. Park and C. W. Turck

https://doi.org/10.3389/fnmol.2017.00201
https://doi.org/10.1186/s13073-016-0308-x


173

 57. Wong AH, Likhodi O, Trakalo J, Yusuf M, Sinha A, Pato CN et al (2005) Genetic and post- 
mortem mRNA analysis of the 14-3-3 genes that encode phosphoserine/threonine-binding 
regulatory proteins in schizophrenia and bipolar disorder. Schizophr Res 78(2–3):137–146

 58. Wong AH, Macciardi F, Klempan T, Kawczynski W, Barr CL, Lakatoo S et  al (2003) 
Identification of candidate genes for psychosis in rat models, and possible association between 
schizophrenia and the 14-3-3eta gene. Mol Psychiatry 8(2):156–166

 59. Moreno-Villanueva M, Morath J, Vanhooren V, Elbert T, Kolassa S, Libert C et  al (2013) 
N-glycosylation profiling of plasma provides evidence for accelerated physiological aging in 
post-traumatic stress disorder. Transl Psychiatry 3:e320. https://doi.org/10.1038/tp.2013.93

 60. Correll CU, Solmi M, Veronese N, Bortolato B, Rosson S, Santonastaso P et  al (2017) 
Prevalence, incidence and mortality from cardiovascular disease in patients with pooled 
and specific severe mental illness: a large-scale meta-analysis of 3,211,768 patients and 
113,383,368 controls. World Psychiatry 16(2):163–180

 61. Cassidy F, Ahearn E, Carroll BJ (1999) Elevated frequency of diabetes mellitus in hospitalized 
manic-depressive patients. Am J Psychiatry 156(9):1417–1420

 62. McIntyre RS, Konarski JZ, Misener VL, Kennedy SH (2005) Bipolar disorder and diabetes 
mellitus: epidemiology, etiology, and treatment implications. Ann Clin Psychiatry 17(2):83–93

 63. Hajek T, Slaney C, Garnham J, Ruzickova M, Passmore M, Alda M (2005) Clinical corre-
lates of current level of functioning in primary care-treated bipolar patients. Bipolar Disord 
7(3):286–291

 64. McIntyre RS, Danilewitz M, Liauw SS, Kemp DE, Nguyen HT, Kahn LS et al (2010) Bipolar 
disorder and metabolic syndrome: an international perspective. J Affect Disord 126(3):366–387

 65. Annamalai A, Kosir U, Tek C (2017) Prevalence of obesity and diabetes in patients with 
schizophrenia. World J Diabetes 8(8):390–396

 66. Mezuk B, Eaton WW, Albrecht S, Golden SH (2008) Depression and type 2 diabetes over the 
lifespan: a meta-analysis. Diabetes Care 31(12):2383–2390

 67. Piazza I, Kochanowski K, Cappelletti V, Fuhrer T, Noor E, Sauer U et al (2018) A map of 
protein-metabolite interactions reveals principles of chemical communication. Cell 172(1–
2):358–372.e23

 68. Huber KV, Olek KM, Müller AC, Tan CS, Bennett KL, Colinge J  et  al (2015) Proteome- 
wide drug and metabolite interaction mapping by thermal-stability profiling. Nat Methods 
12(11):1055–1057

 69. Cassoli JS, Iwata K, Steiner J, Guest PC, Turck CW, Nascimento JM et al (2016) Effect of 
MK-801 and clozapine on the proteome of cultured human oligodendrocytes. Front Cell 
Neurosci 10:52. https://doi.org/10.3389/fncel.2016.00052

 70. Park DI, Dournes C, Sillaber I, Ising M, Asara JM, Webhofer C et al (2017) Delineation of 
molecular pathway activities of the chronic antidepressant treatment response suggests impor-
tant roles for glutamatergic and ubiquitin-proteasome systems. Transl Psychiatry 7(4):e1078. 
https://doi.org/10.1038/tp.2017.39

 71. Park DI, Dournes C, Sillaber I, Uhr M, Asara JM, Gassen NC et al (2016) Purine and pyrimi-
dine metabolism: convergent evidence on chronic antidepressant treatment response in mice 
and humans. Sci Rep 6:35317. https://doi.org/10.1038/srep35317

 72. Steiner J, Martins-de-Souza D, Schiltz K, Sarnyai Z, Westphal S, Isermann B et  al (2014) 
Clozapine promotes glycolysis and myelin lipid synthesis in cultured oligodendrocytes. Front 
Cell Neurosci 8:384. https://doi.org/10.3389/fncel.2014.00384

 73. Weckmann K, Deery MJ, Howard JA, Feret R, Asara JM, Dethloff F (2017) Ketamine’s anti-
depressant effect is mediated by energy metabolism and antioxidant defense system. Sci Rep 
7(1):15788. https://doi.org/10.1038/s41598-017-16183-x

8 Psychiatric Interactome Studies

https://doi.org/10.1038/tp.2013.93
https://doi.org/10.3389/fncel.2016.00052
https://doi.org/10.1038/tp.2017.39
https://doi.org/10.1038/srep35317
https://doi.org/10.3389/fncel.2014.00384
https://doi.org/10.1038/s41598-017-16183-x


175© Springer Nature Switzerland AG 2019 
P. C. Guest (ed.), Reviews on Biomarker Studies in Psychiatric and Neurodegenerative 
Disorders, Advances in Experimental Medicine and Biology 1118, 
https://doi.org/10.1007/978-3-030-05542-4_9

Chapter 9
MicroRNAs in Major Depressive Disorder

Gabriel R. Fries, Wei Zhang, Deborah Benevenuto, and Joao Quevedo

Abstract Major depressive disorder (MDD) is a severe and chronic psychiatric 
disorder with a high prevalence in the population. Although our understanding of its 
pathophysiological mechanisms has significantly increased over the years, available 
treatments still present several limitations and are not effective to all MDD patients. 
Epigenetic mechanisms have recently been suggested to play key roles in MDD 
pathogenesis and treatment, including the effects of small noncoding RNAs known 
as microRNAs (miRNAs). miRNAs can modulate gene expression posttranscrip-
tionally by interfering with the stability and translation of messenger RNA mole-
cules and are also known to cross-talk with other epigenetic mechanisms. In this 
review, we will summarize and discuss recent findings of alterations in miRNAs in 
tissues of patients with MDD and evidence of treatment-induced effects in these 
molecules.
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9.1  Introduction

Major depressive disorder (MDD) is a chronic, debilitating, and life-threatening 
psychiatric illness. It is characterized by the presence of at least 2 weeks of depressed 
mood associated with changes in appetite and/or weight, sleep pattern, interest, con-
centration, and energy, besides psychomotor agitation or retardation, feelings of 
guilt, and suicidal behavior [1]. According to the World Health Organization, the 
global prevalence of MDD was 4.4% in 2015, with a rise of 18.4% in the number of 
cases since 2005. MDD is a major health concern as it affects more than 300 million 
people worldwide, with females having almost double the prevalence of males [2]. 
It is also known that MDD is associated with an increased probability of developing 
other medical conditions, such as diabetes mellitus, cardiovascular diseases, cancer, 
and cognitive impairment [3]. In addition, MDD is a major contributor to suicidal 
ideation and attempts, and the risk of suicide in this population has been reported to 
be approximately 20-fold higher than in the general population [4].

Recent evidence has shown significant advances in the understanding of the 
pathophysiological mechanisms of MDD. The etiology of MDD is multifactorial, 
involving a complex combination of biological, psychological, and socio-cultural 
determinants. Evidence suggests that MDD has a polygenic heritage with an esti-
mated hereditability of approximately 35% [5], with its genetic background thought 
to interact with many environmental triggers throughout life to increase the risk for 
MDD. These include events involving financial issues and unemployment, bereave-
ment, exposure to violence, lack of social support, childhood trauma, and major 
illnesses [6].

Among pathophysiological mechanisms, alterations in the hypothalamic- 
pituitary- adrenal (HPA) axis, which is known as the main neurobiological system 
related to stress response, have been closely related to MDD, with depressed patients 
showing increased levels of cortisol compared to controls [7]. Dysregulation of the 
immune system and microglial cells may also play an important role, which is sug-
gested by evidence of increased levels of cytokines in patients with MDD and the 
reported higher risk of depression after infections and autoimmune diseases [8]. 
Additionally, downregulation of brain-derived neurotrophic factor (BDNF) and 
abnormalities in neurogenesis, synaptic plasticity, and dendritic morphology have 
also been associated with MDD [9, 10]. As a consequence, neuroimaging studies of 
patients with MDD have shown reduced volumes of different areas in the central 
nervous system (CNS), including amygdala, prefrontal cortex, and raphe nuclei, 
with the most consistent change being a reduced hippocampal volume compared to 
that in healthy controls [9].

Over the past decades, the monoamine hypothesis dominated the understanding 
of the MDD etiology and contributed to the development of most antidepressants 
currently in use by patients, such as monoamine oxidase (MAO) inhibitors, tricyclic 
antidepressants (TCA), and selective serotonin reuptake inhibitors (SSRI) [11]. 
However, besides all of the advances in knowledge related to the MDD pathophysi-
ology, its current pharmacological treatment still relies vastly on the aforementioned 
monoaminergic antidepressants, presenting limited efficacy, delayed clinical effects, 
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and considerable side effects. Therefore, there is an urging need for new therapeutic 
modalities that will effectively approach the complex pathophysiological underpin-
nings of MDD [12].

Based on this and the potential role of gene vs. environment interactions in 
MDD, epigenetic mechanisms have been proposed as novel targets to be explored 
in its treatment [13]. Small noncoding molecules of RNA known as microRNAs 
(miRNA) have gained special attention in recent studies. miRNAs play an important 
role in regulating neuronal physiology by disrupting messenger RNA (mRNA) 
expression, and miRNA dysregulation has been implicated as an important con-
tributor to disorders of the CNS, including MDD [14]. In this chapter, we aim to 
review studies of miRNAs in MDD and provide an overview of the future perspec-
tives and limitations in the field.

9.2  Biology of miRNAs

miRNAs comprise a large family of small noncoding RNAs that are typically ~22 
nucleotides in length and act as key posttranscriptional regulators of gene expres-
sion [15]. In mammals, miRNAs are predicted to control the transcription of 
approximately 50% of all protein-coding genes, thus being involved in nearly all 
developmental and pathological processes.

9.2.1  MicroRNA Biogenesis

miRNAs are processed from primary miRNA (pri-miRNA) transcripts, most of 
which are transcribed by RNA polymerase II from independent miRNA genes, 
while others are located in the introns of protein-coding genes [16]. The pri- miRNAs 
are initially 5′-capped, spliced, and polyadenylated, after which they fold into one 
or more hairpin structures with a stem and a terminal loop. miRNAs in the genome 
may encode a single miRNA hairpin precursor or clusters of multiple precursors.

In the canonical pathway, the microprocessor complex processes the pri-miRNA 
into a hairpin-shaped molecule (pre-miRNA) of approximately 70 nucleotides in 
the nucleus, which is exported to the cytoplasm by exportin-5 via a ran-GTP- 
dependent mechanism [16]. The core components of the microprocessor complex 
are the Drosha, an RNase III enzyme, and the DGCR8/Pasha, a double-stranded 
RNA- binding domain protein. There are a variety of cofactors acting as compo-
nents of the microprocessor, such as heterogeneous nuclear ribonucleoproteins 
(hnRNPs), the DEAD box RNA helicases p68 (DDX5) and p72 (DDX17). Some 
pre-miRNAs are produced from very short introns (mirtrons) as a result of splicing 
and debranching, in which case they can bypass the Drosha-DGCR8 processing 
step [16]. As a next step, cleavage by an enzyme called DICER leads to formation 
of a  miRNA/miRNA* duplex in the cytoplasm. After the two strands of the miRNA/
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miRNA* duplex are separated, one strand (the “guide” strand) associates with an 
argonaute (AGO) protein within the RNA-induced silencing complex (RISC or 
miRISC) and acts as a guide to repress target messages. The other strand (passenger 
or miRNA*) is released and degraded. AGO proteins are core components of the 
miRISC, as they directly associate with the miRNA molecule.

9.2.2  MicroRNA Functions

The guide strand is able to bind to the target mRNA by base pairing, after which the 
miRNA-RISC can inhibit the targeted coding gene by three different mechanisms: 
(A) site-specific cleavage, (B) enhanced mRNA degradation, or (C) translational 
inhibition. The decision-making step of this process depends on the degree of base- 
pairing complementarity between the mRNA molecule and the “seed” region at the 
5′ end of the miRNA. Of note, the microRNA-mRNA binding site is short (6–8 base 
pairs), which indicates that one single miRNA may have the potential to bind and 
target multiple mRNAs. miRNAs mainly recognize and bind to the complementary 
sequences in the 3′-untranslated regions (UTRs) of their target mRNAs, but recent 
reports have suggested that they can bind to the 5′-UTR or the open reading frame 
(ORF), as well.

9.3  miRNAs as Biomarkers of Major Depression

Several studies have investigated alterations in miRNA systems in patients diag-
nosed with MDD or during major depressive episodes. As summarized in Table 9.1, 
the majority of these studies have focused on peripheral blood alterations, with only 
a few investigating other peripheral tissues, such as cerebrospinal fluid (CSF) and 
dermal fibroblasts, or postmortem brain tissues. Overall, possibly due to the hetero-
geneity of samples, the findings thus far have rarely been replicated between stud-
ies. Only a few miRNAs have been reported to be altered in more than one study, 
among which miR-132 [17–19], miR-451a [20–22], and miR-34a-5p [21–23] seem 
to be the most consistent. In addition, replication of significant findings (although 
not necessarily in the same direction between different studies) has also been 
observed for let7b [24, 25], miR-182 [18, 26], miR-124 [27, 28], miR-345 [25, 29], 
miR-146b-5p [29, 30], miR-146a [30, 31], miR-494 [25, 31], miR-376a [25, 31], 
miR-107 [19, 25], miR-33a [19, 25], and miR-221-3p [21, 22].

Among all studied miRNAs, miR-132 is one of the most consistently shown to 
be altered in patients with MDD. Specifically, MDD patients have been reported to 
show increased levels of this miRNA in whole blood [17], serum [18], and fibro-
blasts [19] compared to healthy controls. Moreover, miR-132 expression levels have 
been negatively correlated with visual memory parameters in patients [17] and with 
serum brain-derived neurotrophic factor (BDNF) levels in patients and controls 
[18], suggesting a key role for this miRNA alteration in cognitive processes. In this 
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same manner, preclinical studies have demonstrated that brain overexpression of 
miR-132 induces impairment of memory mechanisms in animal models [32, 33] 
and reduces the expression of BDNF in cell culture [18], supporting the association 
between miR-132 expression and cognition in MDD patients [17]. Of note, previous 
studies have identified associations between miR-132 levels and other neuropsychi-
atric and neurodegenerative disorders, such as Alzheimer’s disease [34], Huntington’s 
disease [35], substance abuse disorders [36, 37], bipolar disorder [23, 38], and 
schizophrenia [39]. These findings suggest that alterations in this specific miRNA 
might not be specific to MDD.

Another alteration that has been replicated in different MDD studies is related to 
levels of miR-451a, although not always showing a consistent direction. miR-451a 
levels have been shown to be both upregulated in plasma [20] and downregulated in 
serum [21] and CSF [22] of MDD patients compared to healthy controls. Moreover, 
significant correlations have been reported between miR-451a levels and the dura-
tion of the depressive episode [20], the severity of depressive symptoms [21], and 
history of suicide attempts [21]. In addition, miR-451a serum levels were shown to 
be significantly increased after 8 weeks of treatment with paroxetine [21] and even 
demonstrated high sensitivity (84.85%) and specificity (90.48%) for the diagnosis 
of MDD [22]. Similar to miR-132, alterations in miR-451 have also been reported 
in other neuropsychiatric and neurodegenerative disorders, such as Alzheimer’s dis-
ease [40] and autism spectrum disorders [41].

Finally, the third miRNA to have shown consistent and somewhat replicable 
alterations in MDD is the miR-34a-5p. Its levels have been shown to be upregulated 
in peripheral tissues of MDD patients in two studies [21, 22], while one study found 
a downregulation (of nominal significance) in the postmortem anterior cingulate 
cortex of patients [23]. The clinical significance of this miRNA is also suggested by 
evidence of a positive correlation between miR-34a-5p levels and the severity of 
depressive symptoms [21], showing significant associations with the disease course 
and history of suicide attempts. Similar to miR-451a, miR-34a-5p levels have been 
shown to present relatively high specificity (95.24%) and sensitivity (96.88%) val-
ues for MDD diagnosis [22], which is particularly exciting in terms of using this 
miRNA as a potential biomarker in the future. Of note, miR-34a-5p has also been 
linked previously to schizophrenia [42], bipolar disorder [23], Alzheimer’s disease 
[43], and Huntington’s disease [44].

9.4  miRNAs in the Pathogenesis of Major Depressive 
Disorder

There are many published studies using cell lines and animal models to investigate 
the potential role of miRNAs in MDD. Among different approaches to the modeling 
of MDD in the laboratory setting, the chronic unpredictable mild stress (CUMS) 
model is widely used to mimic major depression in rodents [45]. The CUMS is an 
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artificial stress model consisting of food and water deprivation, light and space limi-
tation, temperature manipulation, and predator sounds, among other stimuli.

Overall, CUMS-induced depressed-like symptoms and the associated treatment 
have been linked to several alterations in miRNA and related molecules. The find-
ings include an upregulation of miR-132  in the hippocampus of CUMS-exposed 
rats along with downregulation of MeCP2 and BDNF, which suggests that miR-132 
may play a role in neuroplasticity and neuronal survival in depression [46]. 
Moreover, not only has this model been associated with decreased levels of miR- 
101 in the ventrolateral orbital cortex of mice, but restoring miR-101 levels in the 
same brain region has been shown to reverse the depressive-like behavior caused by 
CUMS [47]. Similarly, a study found that CUMS induces a downregulation of miR- 
124 in the hippocampus of mice, which was reversed by antidepressant treatment 
[48]. The same study found that histone deacetylase (HDAC) 4, HDAC5, and gly-
cogen synthase kinase 3β (GSK3β) are direct targets of miR-124 and that the com-
bination of a selective HDAC4/5 inhibitor or GSK3 inhibitor can relieve the 
depressive-like behaviors in mice [48]. Evidence also suggests a CUMS-induced 
reduction in miR-326 levels in the Edinger-Westphal nucleus of rats [49] and a key 
role for miR-132 in the protective effects of oleanolic acid in the model [50]. Finally, 
elevated serum and mesocortical levels of miR-16 after 7 weeks of CUMS have 
been associated with resilience to the effects of the model, suggesting an interesting 
role for this particular miRNA in stress coping mechanisms [51].

9.5  miRNAs in the Treatment of Major Depression

One of the most studied facets of the field is the involvement of miRNAs in the 
mechanisms of action of antidepressants and their potential role in the response to 
treatment in MDD patients. This has been repeatedly reviewed by other groups [12, 
52–54], offering a valuable insight into the development of novel therapeutics.

A summary of studies investigating treatment-induced alterations in the levels of 
miRNAs in clinical populations can be found in Table 9.2. Although several alterations 
have been reported, only a few of them have been replicated by independent studies. 
Among these, miR-1202 changes after treatment seems to be the most consistent find-
ing [55–57], but significant results have also been replicated for let-7b [24, 58], let-7c 
[24, 58], let-7d [59, 60], miR-132 [58, 60], miR-151-3p [58, 59], miR-221 [21, 59, 61], 
miR-26a [59, 60], miR-335 [26, 60], miR-361-5p [30, 60], and miR-433 [25, 59].

9.6  Perspectives and Future Directions

Based on the concepts previously discussed in this review, there are several findings 
supporting a key role for miRNAs in MDD and its treatment. The field has been 
evolving during the years and generating more consistent and reliable results as 
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miRNA-detecting technologies develop and our understanding of the biology of 
these small molecules increases. While most studies have focused on candidate 
miRNAs detected by quantitative PCR (qPCR) or performed genome-wide investi-
gations using microarray technology, the development of small RNA next- generation 
sequencing offers a more valuable and unbiased method that should be considered 
in future studies. Moreover, the field is likely to benefit significantly from exploring 
more sophisticated and innovative approaches to the study of miRNAs, such as the 
investigation of such molecules in tissue-specific extracellular vesicles [62], the 
study of miRNA-mediated transgenerational transmission of complex behaviors 
[63, 64], and also the pharmacological targeting of specific miRNAs [65, 66].

Of the several limitations of the currently available studies, the main ones rely on 
the use of different methods for the analysis of miRNAs (which significantly limits 
the comparison of results between studies) and the heterogeneity of patient popula-
tions and tissues investigated between studies. In addition, more in-depth analyses 
of the correlation between peripheral and central tissues focused on miRNAs should 
also be performed so that peripheral findings can be further interpreted as proxy of 
brain tissue.

Finally, given the complexity of epigenetic mechanisms and the known cross talk 
between miRNA-mediated mechanisms of gene regulation with others, future 
 studies should focus on analyzing miRNA alterations in combination with geno-
type, DNA methylation, and expression levels to provide a more complete and 
informative screenshot of the epigenetics and gene versus environment interaction 
mechanisms in MDD.

9.7  Conclusions

The field of psychiatric epigenetics is rapidly evolving, and the role of miRNAs in 
regulating gene expression in neuropsychiatric disorders has been consistently sug-
gested by a growing body of evidence over the last few years. Although existing 
findings show convincing alterations in MDD and its treatment (especially with 
miR-132, miR-451a, miR-34a-5p, and miR-1202), most of these have not been suf-
ficiently replicated in different populations, and some seem to be detected in other 
neuropsychiatric disorders. In this sense, the field is likely to significantly benefit 
from the investigation of more homogenous patient populations, the use of unbiased 
genome-wide sequencing methods, and a consistent investigation of the correlation 
between central and peripheral tissues. Nonetheless, targeting miRNAs seems to 
represent a valuable and innovative approach that may overcome the limitations of 
currently available antidepressants and provide new and powerful insights into the 
neurobiology of MDD and its transmission across generations.
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Chapter 10
Proteomic Markers for Depression

Licia C. Silva-Costa, Pamela T. Carlson, Paul C. Guest, Valéria de Almeida, 
and Daniel Martins-de-Souza

Abstract Major depressive disorder is a multifactorial disease, with molecular 
mechanisms not fully understood. A breakthrough could be reached with a panel of 
diagnostic biomarkers, which could be helpful to stratify patients and guide physi-
cians to a better therapeutic choice, reducing the time between diagnostic and 
remission. This review brings the most recent works in proteomic biomarkers and 
highlights several potential proteins that could compose a panel of biomarkers to 
diagnostic and response to medication. These proteins are related to immune, 
inflammatory, and coagulatory systems and may also be linked to energy metabo-
lism, oxidative stress, cell communication, and oligodendrogenesis.

Keywords Major depressive disorder · Mass spectrometry · Antidepressants · 
Drug response

10.1  General Overview

With 322 million people (4.4% of the population) affected worldwide according to the 
World Health Organization, major depressive disorder (MDD) is a long-lasting and 
recurrent disorder and one of the leading causes of disability in the Western world, 
with a lifetime prevalence at almost 15% of the diagnosed patients [1, 2]. Difficulties 
in social and occupational function, suicidal thoughts, and decline in physical health 
may occur in 10–30% of MDD patients who do not respond to treatment, possibly due 
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to the syndrome’s heterogeneity, which can make it difficult to diagnose [3–5]. The 
boundaries of depressive disorders, whether they can be considered only symptoms or 
true syndromes, are unclear as their symptoms are sometimes varying and even oppos-
ing, such as weight loss or weight gain and insomnia or hypersomnia, and seem to 
have no established mechanism [6–8]. Aside from this, the delayed response observed 
with antidepressants can hinder early observation of good or bad outcomes [9–11].

MDD is a multifactorial disorder [12–14] with several neurobiological hypoth-
eses. The monoaminergic hypothesis, coined in the mid-1960s, postulates that dis-
turbances in the levels of monoamines (serotonin, noradrenaline, and dopamine) are 
responsible for depression [15, 16]. However, the monoaminergic hypothesis was 
not sufficient to explain all changes observed in depression. In this regard, symp-
toms can be managed with electroconvulsive therapy or pharmacological manipula-
tions of glutamatergic system [17, 18]. Despite neurotransmitters, studies have 
shown the involvement of the immune system in the pathophysiology of depression 
[19, 20]. The activation of the neuroimmune system leads to reduction of neuro-
trophic factors such as the brain-derived neurotrophic factor (BDNF), hampering 
the neurogenesis, changes that are compatible with the observation of impairment 
in the cognitive processes related to the disease [21–23].

Successful treatment of depression is also challenged by its various subtypes, 
with different neurobiological, biochemical, genetic, and anatomical characteris-
tics. The molecular mechanisms of these subtypes are still poorly understood [24–
26]. Still, gene polymorphisms are only considered a risk factor for depression, not 
a way to diagnose the disease, and few possible candidate single-nucleotide poly-
morphisms (SNPs) for MDD were considered replicable [27, 28]. The concept of 
endophenotypes in psychiatry reaffirms that the heterogeneity of symptoms of psy-
chiatric illnesses such as MDD is the result of a complex network of interactions 
between genes, proteins, and circuits of cells and also between individuals and their 
experiences [29]. In order to establish a relationship between genes and clinical 
phenotypes, endophytic characterization has allowed some insights related to the 
mechanisms of MDD, through proteomic, transcriptomic, neuroanatomical, neuro-
logical, behavioral, and cognitive measurements, which must be inheritable and 
correlated with the disease, as well as measurable between affected and unaffected 
individuals, among other criteria [30–32]. The construction of endophenotypes can 
be favored through the establishment of proteomic biomarkers when influenced by 
genetic factors, although not every biomarker is considered an endophenotype [33].

A PubMed search on depression biomarkers reveals to what degree different 
biomarker approaches are highlighted in this field. In the last 5 years, the use of 
proteomic approaches in the study of psychiatric disorders has grown considerably, 
which has led to the identification of a wide array of differentially expressed pro-
teins of which some could be potential biomarkers. Proteomics methods can be 
performed in various ways, such as with a high-throughput discovery setup or tar-
geted quantitation, as the study of proteins can be performed both individually and 
in combination with others. Frequently, techniques are based on size  characterization 
or antibody/aptamer binding [34]. In this review we analyze different approaches, in 
terms of scientific merit, for the discovery of biomarkers for MDD.
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10.2  Biomarker Characterization

Biomarkers are measurable and evaluable characteristics capable of indicating a 
disease, a normal biological process, or the treatment response [35]. Diagnostic 
biomarkers can help stratify patients with depression, predictive biomarkers can 
assess response or remission, and moderators can determine the likelihood of 
response or remission to a particular treatment [34, 36]. Furthermore, biomarkers 
can be useful to identify new molecular targets, aiming to improve the development 
of new drugs [37]. However, a large data of proteomic biomarkers has been pro-
posed for MDD without being implemented in the clinic because of lack of sensitiv-
ity or specificity or because standardization norms do not exist or are not widely 
accepted [36, 38]. Thus, it is necessary to compose a panel with several biomarkers, 
so that one set of proteins can display the changes in different biological mecha-
nisms (Fig. 10.1).

Considering that both diagnostic biomarkers and response biomarkers should serve 
the ultimate purpose of reducing the overall time between diagnosis and  successful 
treatment, the type of sample to be used for proteomic analysis should be easily 
obtained and must reflect the health status of the organism [39]. Therefore, although 
it is possible to obtain proteomic biomarkers of disease and response in materials such 
as tissues and cells or through image analysis, for a patient being treated in a clinical 

Fig. 10.1 Establishment of biomarkers to MDD can promote a breakthrough in therapeutic 
strategies
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setting, samples such as saliva, urine, and blood are more suitable for this end [40]. 
Cerebrospinal fluid or fibroblasts could be obtained under more restrictive criteria, as 
the collection of this body fluid occurs in a relatively invasive manner [41].

Plasma is one of the most complex human samples with a dynamic range of 
proteins exceeding 1010 orders of magnitude [42] and containing proteomic sets of 
other tissues. It is also an abundant and easily obtained material. Its disadvantages 
for proteomic analysis include the presence of a large amount of albumin and het-
erogeneous glycoproteins, which make it difficult to observe other proteins [43, 44]. 
Plasma is composed of proteins secreted by tissues that act through the bloodstream 
or are the result of cellular damage; immunoglobulins; local or long-distance recep-
tor ligands, such as hormones and cytokines; temporary passengers, such as lyso-
somal proteins; and aberrant secretions and proteins foreign to the organism 
originated from infections [42, 45]. Serum is a proteomic solution resulted from 
blood clotting, and because of the process of proteolysis, which may alter some 
proteins, one may prefer plasma to serum [46].

With the intention of delineating the molecular mechanisms of depression, other 
models have been employed, such as animal models, which can help to establish a 
trustworthy panel of biomarkers, and samples, such as postmortem tissue, which 
can be of limited use due to a patient’s treatment and lifestyle [47, 48].

10.3  Proteomics Findings

With the purpose of elucidating the most interesting discoveries involving pro-
teomic biomarkers related to depression, this text initially addresses the studies car-
ried out in the last 5 years with the purpose of unveiling mechanisms and forming a 
panel of diagnostic biomarkers. Afterward, some possible insights into the bio-
chemical mechanisms of MDD made possible by the use of an animal model will be 
discussed, and discoveries made through trials involving the response to treatments 
will be presented. The articles chosen for discussion were experimental works in 
patient or animal models that have MDD as theme and have been published in 
English in the last 5 years. The keywords used were “depression,” “biomarkers,” 
and “proteomics.” PubMed and Scopus were the databases investigated. The main 
results of this research are summarized in Table 10.1.

10.3.1  Proteomics Findings Related to Diagnostic Biomarkers 
in Drug-Naive Patients

A relationship among the inflammatory, immune, and lipid systems and MDD has 
been found in some studies in drug-naive patients. These studies contribute to 
understand the proteome profile without the influence of drug effects. However, the 
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Table 10.1 Overview of recent potential biomarkers for MDD

Gene name Characteristics of sample Biological process

CP, EN-RAGE, FTH1, HPR, IL-1, 
IL-16, MIF, F3, TNC [49]

Blood from drug-naive 
patients

Inflammatory system

APOB, APOD, CP, GC, HRNR, 
PFN1 [50]

Blood from drug-naive 
patients

Immune and inflammatory 
systems/lipid metabolism

APOB, CP, GC [51] Blood from drug-naive 
patients

Immune and inflammatory 
systems

CRP, ITIH4, SAA1, ANGPTL3 
[52]

Blood from drug-naive 
patients

Immune and inflammatory 
systems

ASS1 [54] Urine from drug-naive 
patients

Inflammatory system/urea 
cycle

CPE [57] Postmortem pituitary tissues 
from BD and MDD patients

Carboxypeptidase activity

RBP-4, TTR [59] Blood from BD and MDD 
patients

Retinoid metabolic process

END, B2RAN2 [60] Blood from BD and MDD 
patients

Artery morphogenesis/
inflammatory system

CRP, SAA1, FX, PCI, TF, FVII, 
FV, TFPI, APC, F1+2 [61]

Blood from MDD suicide 
attempters

Inflammatory/coagulatory 
systems

PPP, MIF, EN-RAGE, IL-1RA, 
TNC, GROa, vWF, Prost, LH, 
AAT, UPA, CathD, HPN, MMP10, 
FABPA [66]

Blood from MDD remitted 
patients

Cell communication/
immune system/protein 
metabolism

CP, CC1QC, ITIH4 [67] Blood from MDD remitted 
patients

Inflammatory system

FGA [68] Blood from MDD remitted 
patients

Inflammatory system

CCL11, IFN-γ [69] Blood from MDD remitted/
nonremitted patients

Immune system

APOA4, CPB2, C7, CHEK1, 
ACTN1, CRP, THBS1, FGA, 
CFHR5, PYY2, F5, ARFIP1, 
CFHR2, MYH2 [70]

Blood from MDD remitted/
nonremitted patients

Immune system

vWF, SERPINA1, APOC3, A2M 
[73]

Blood from responders to 
CHM

Inflammatory system

VEGFC, Tie2, BDNF [74] Blood from TRD patients Inflammatory system
SAMP, C4BP [75] Blood from TRD patients Complement system
IGF-1, INS, CCL4, BDNF [76] Blood from patients treated 

with antidepressants and 
ECT

Several biological processes

GRIA1, GRIA2, PRKCγ, PRKCβ, 
GRIN2B, SLC17A7, GNAQ, 
CAMK2α, PPP1R1A [77]

Hippocampus from VD 
animal model

Several processes involving 
regulation of the nervous 
system

NSF, ATP5A1, ACO2, STXBP1, 
DRP-2, SNAP-25 [78]

Hippocampus and frontal 
lobe from early-life stressed 
animals

Several biological processes

(continued)
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number of studies performed with such groups of patients is small as samples from 
drug-naive patients are not easily available. Serum analysis performed by 
Stelzhammer et al. showed the involvement of the pro-inflammatory proteins ceru-
loplasmin (CP), Extracellular newly identified RAGE-binding protein (EN-RAGE), 
ferritin (FTH1), haptoglobin-related protein (HPR), interleukin-1 receptor antago-
nist (IL-1ra), interleukin-16 (IL-16), macrophage migration inhibitory factor (MIF), 
serotransferrin (F3), and tenascin-C (TNC), besides two other proteins linked to the 
oxidative stress process, in first onset patient samples [49]. Another study with 
drug-naive women identified six differentially expressed proteins - apolipoprotein B 
(APOB), apolipoprotein D (APOD), CP, vitamin D-binding protein (GC), hornerin 
(HRNR), and profilin 1 (PFN1) - that differentiated MDD patients from controls 
with up to 68% accuracy and which are related to the immune system, inflammatory 
system, and lipid metabolism [50]. Similar results were found using the combina-
tion of heart rate (HR) and plasma proteins in a study conducted by Kim et  al. 
involving proteomics and a machine-learning approach [51]. Using these tech-
niques, three proteins (in combination with HR) were identified as possible bio-
markers for MDD, APOB, CP, and GC, which modulate the immune and 
inflammatory systems [51]. In another study, using a iTRAQ-based proteomics 
approach, serum samples from drug-free patients presented significant increases in 
immune- and lipid-related proteins such as C-reactive protein (CRP), inter-alpha- 
trypsin inhibitor heavy chain H4 (ITIH4), serum amyloid A-1 protein (SAA1), and 
angiopoietin-related protein 3 (ANGPTL3) [52]. Another study was conducted by 
Wu et al. using urine samples, in which the enzyme involved in the urea cycle and 
participating in the nitric oxide metabolic pathway, argininosuccinate synthase 1 
(ASS1) [53], showed potential as an MDD biomarker [54].

Efforts have been made to find biomarkers that help psychiatrists differentiate between 
bipolar disorder (BD) and MDD that share changes in the hypothalamic- pituitary- adrenal 
(HPA) axis [55] and symptoms, such as oscillation of energy levels and mood distur-
bances, making it difficult to accurately diagnose each disease for proper treatment [56]. 
Stelzhammer et al. performed the first analysis using LC-MSE to find differences in protein 

Table 10.1 (continued)

Gene name Characteristics of sample Biological process

FGF-9, IL-4, TNF-α/mTOR, 
ERK1, PKCα, NSF, SYN1, 
PACN1, PSD95, NCDN, AATM, 
COMT, PPP3CC, PKCβ [79]

Serum/hippocampus and 
frontal cortex from animals 
treated with ketamine

Several biological processes

AK1, NDK B, HINT1, APT-2, 
GSTA4/GSTA6, GSTA4, RAN, 
Atp5h, Tagln3, Eif5a, SUMO2 [80]

Hippocampus from CMS 
animals/CMS animals 
treated with oleamide

Energy metabolism, 
oxidative stress, and cell 
communication

GFAP, VGLUT1, HOMER1, 
ATP1A2, UQCRFS1, UQCRC1, 
PRDX1, PRDX2 [81]

Synaptosomes from 
prefrontal cortex of CMS 
animals

Cell communication/energy 
metabolism

MMP9, IL-1, CRP, TNF-α/
MYPR, MBP, CN37 [82]

Serum and frontal cortex of 
stress-susceptible mice

Inflammatory system/
oligodendrogenesis

Notes: Bold gene names are recurrent potential biomarkers among the surveyed papers
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expression between postmortem pituitaries of BD and MDD patients and controls. In this 
study, proteins related to intracellular transport and remodeling of cytoskeletal pathways 
were found to be altered in MDD patients [57]. Furthermore, reduced levels of carboxy-
peptidase E (CPE) in MDD patient pituitaries suggest that prohormone conversion may be 
altered, although most hormones did not exhibit altered levels in MDD [57]. Retinol-
binding protein 4 (RBP-4) and transthyretin (TTR) form a complex that is responsible for 
vitamin A transport and may be involved in mood disorders [58]. Their differential expres-
sion have been found from blood samples and may become distinct between BD I (a 
subtype of BD) and MDD [59]. Two other proteins, highly similar to vanin-1 protein 
(B2RAN2) and endoglin (END), were differentially expressed in plasma MDD drug-
naive patients when compared to BD patients [60].

Suicide attempts are a relevant concern and may affect some MDD patients. One 
study investigated the plasma of drug-naive depressed attempters (MDD-SA), 
depressed suicide non-attempters (MDD-NA), and healthy controls using 
2-DE-MALDI-TOF/TOF-MS and iTRAQ-LC-MS/M platforms and found altera-
tions in the CRP, SAA1, coagulation factor X (FX), and protein C inhibitor (PCI) in 
drug-naive MDD-SA group compared with the other groups [61]. In a validation 
phase using enzyme-linked immunoadsorbent assay (ELISA), six proteins were 
found differentially expressed relative to both MDD-NA and health control sub-
jects: tissue factor (TF), coagulation factor II (FVII), coagulation factor V (FV), 
tissue factor pathway inhibitor (TFPI), activated protein C (APC), and prothrombin 
fragment 1 + 2 (F1+2) [61]. Therefore, these results revealed differentially expressed 
inflammatory and coagulatory proteins. This indicates that further investigations are 
needed to understand potential mechanisms that may predispose to suicide [61].

10.3.2  Late-Life Depression

The term “late-life depression” often refers to depressive episodes occurring at 
around 60 years of age or later: the first episode may occur in early years (early- 
onset depression) or during aging (late-onset depression). It can be described as a 
heterogeneous and complex neuropsychiatric syndrome, triggered by another seri-
ous disease, by comorbidities, or may be the result of drug use [62].

The investigation of the differential expression of peripheral proteins through immu-
noassays in the blood plasma of elderly patients led to the association between geriatric 
depression and inflammatory processes and reduction of neurotrophic  support, as well 
as proteostasis markers and nutrient detection [63]. Some of these same markers suggest 
that homeostatic dysregulation present in patients with geriatric depression can acceler-
ate the aging process, which can increase the risk of Alzheimer’s and dementia [64]. 
Another important investigation correlated higher SASP index (a set of proteins secreted 
by different senescent fibroblasts, responsible for inducing the aging of nearby cells) in 
patients with depression and may give clues about the molecular mechanisms that lead 
to LLD [65]. However, there are still few studies which have attempted to investigate the 
molecular mechanisms and obtain a consistent biological signature of LLD.
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10.3.3  Markers Related to Response

Biomarkers for antidepressant response represent a strategy to personalize therapy 
through the characterization of a panel of proteins to guide physicians in the best 
antidepressant choice for each patient. Serum proteins from patients with current 
MDD (MDDc) and remitted MDD (MDDr) were compared in one large cohort 
study from Bot et al. Proteins related to cell communication, signal transduction 
processes, immune response, and protein metabolism were found to be differen-
tially expressed in serum from MDDc patients compared to that from controls [66]. 
Those proteins were pancreatic polypeptide (PPP), MIF, EN-RAGE, IL-1 receptor 
antagonist (IL-1RA) and TNC, growth-regulated alpha protein (GROa), and von 
Willebrand factor (vWF), a marker involved in homeostasis. When MDDc and 
MDDr groups were compared, ten analytes were found to be altered: prostasin 
(Prost), luteinizing hormone (LH), alpha-1 antitrypsin (AAT), urokinase-type plas-
minogen activator (UPA) receptor, cathepsin D (CathD), hepsin (HPN), matrix 
metalloproteinase-10 (MMP10), IL-1RA, vWF, and fatty acid-binding protein adi-
pocyte (FABPA) [66].

Regulation of inflammatory processes seems to be associated with a good 
response to antidepressant treatment. Comparative proteomic analysis of a small 
cohort of MDD subjects before and after treatment found a decrease of three pro-
teins in serum after remission: CP, complement component 1q (CC1QC; a compo-
nent of the classic activation), and ITIH4 [67]. Plasma fibrinogen alpha (FGA) 
levels were the object of investigation between drug responders and nonresponders 
in another work, without taking into account the type of antidepressant used. High 
levels of fibrinogen at baseline were associated with a poor response to antidepres-
sants due possibly to an elevated inflammatory status [68].

Investigations of the association between antidepressant treatment response and 
the immune system have been carried out before and after treatment. In the study of 
Gadad et  al., two proteins demonstrated significant association with treatment 
response. After 12 weeks of treatment, responders presented higher levels of 
eotaxin-1 (CCL11), and interferon-gamma (IFN-γ) levels were reduced in nonre-
sponders. Eotaxin may be linked to increased levels of mammalian target of rapamy-
cin (mTOR) protein, related to synaptogenesis. Higher levels of IFN-γ at baseline in 
nonresponders may be implicated in a higher activation of the kynurenine pathway, 
which has been associated with MDD, and thus implicating a worse response to 
medication [69]. Similarly, Turck et al. conducted a proteome profiling of plasma 
from MDD patients at baseline and after 6 weeks of treatment. Differences at base-
line between responders and nonresponders showed significant differences between 
29 proteins that could compose a panel of response prediction. Apolipoprotein A-IV 
(APOA4), carboxypeptidase B2 (CPB2), complement component C7 (C7), and ser-
ine/threonine-protein kinase Chk1 (CHEK1) were over twofold lower in respond-
ers, and alpha-actinin-1 (ACTN1), CRP, thrombospondin-1 (THBS1), FGA, 
complement factor H-related protein 5 (CFHR5), FV, arfaptin-1 (ARFIP1), and 
complement factor H-related protein 2 (CFHR2) were over twofold higher in 
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responders [70]. After 6 weeks of treatment, 18 proteins were observed to have dif-
ferences of more than twofold in responders when compared with the baseline lev-
els. Among these proteins, putative peptide YY-2 (PYY2) and CHEK1 were 
increased, and mysosin-2 (MYH2) was decreased [70].

Integrin and RAS signaling pathways are involved in processes of synaptic sig-
naling and remodeling in the central nervous system and can be potential biomarker 
candidates for response to antidepressants. Martins-de-Souza et al. compared blood 
mononuclear cell proteomes at baseline and after 6 weeks of antidepressant treat-
ment, and proteins of integrin signaling pathways were found differentially 
expressed between responders and nonresponders [71]. Integrin, RAS, and fibrino-
gens are related to platelet activation with consequent inflammatory response, and 
N-glycan profiles may distinguish responders from nonresponders, since 
N-glycosylation has a relevant role in platelet activation [72]. Alterations of coagu-
lation and complement cascades, lipid metabolism, platelet degranulation, and acti-
vation pathways were associated with a depressive status, and their changes were 
associated with response to Chinese herbal medicine (CHM). Proteins such as vWF, 
epididymis secretory sperm-binding protein (SERPINA1), apolipoprotein C-III 
(APOC3), and alpha-2-macroglobulin (A2M) were found at different levels in 
responding patients treated with CHM [73].

Although many antidepressant drugs are available, there is still a significant pro-
portion of patients who do not respond well to them. Treatment-resistant depression 
(TRD) is the focus of few proteomic studies. Study from Pisoni et al. have demon-
strated the role of altered vascular endothelial growth factor-C (VEGFC), angiopoi-
etin- 1 receptor (Tie2), and BDNF levels in impaired neurogenesis and neuroplasticity 
[74]. In another study, differentially expressed proteins identified in TRD patients 
showed altered complement activation, coagulation, and lipid transport processes, 
with more severely affected patients presenting altered serum amyloid P (SAMP) 
component and the C4b-binding protein (C4BP) [75]. Electroconvulsive therapy 
(ECT) is used to treat TRD patients with higher remission rates than antidepressant 
drugs, with molecular changes occurring after ECT treatment combined with anti-
depressants. Although there was an increase of insulin-like growth factor I (IGF-1) 
and C-peptide (INS) and decrease of MIP-1 beta (CCL4) and BDNF, only levels of 
C-peptide seem related to symptom improvements [76]. Additional studies are 
needed to unravel how these molecules are related to the therapeutic role of ECT.

10.3.4  Animal Models

Animal models have been used to investigate the biological mechanisms that lead to 
depression or even to investigate different responses to drugs. Like other psychiatric 
disorders, animal models to study depression present limitations in terms of mim-
icking clinical findings observed in humans. However, animal models have been 
widely used due to the possibility of investigating biochemical changes in tissues 
that are not accessible in humans, such as the brain.
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The blockade of the bilateral carotid artery has been used to mimic vascular 
depression (VD). These animals present hippocampal damage and changes in ani-
mal weight and behavior similar to depressive symptoms [77]. Hippocampal pro-
teomic analysis showed multiple changes in pathways related to neural plasticity 
(calcium signaling pathways and neurotransmission), energy, and amino acid 
metabolism, similar to patients with vascular depression [77]. Nine proteins related 
to these changes, glutamate receptor 1 (GRIA1), glutamate receptor 2 (GRIA2), 
protein kinase Cγ (PRKCγ), protein kinase Cβ (PRKCβ), glutamate receptor iono-
tropic NMDA 2B (GRIN2B), vesicular glutamate transporter 1 (SLC17A7), gua-
nine nucleotide-binding protein G(q) subunit alpha (GNAQ), calcium-/
calmodulin-dependent protein kinase type II subunit alpha (CAMK2α), and protein 
phosphatase 1 regulatory subunit 1A (PPP1R1A), were validated by Western blot-
ting and showed reduced expression in the model compared to the sham group [77].

In a classical model of depression and maternal deprivation, changes were found 
through synaptosome analysis of hippocampal and whole frontal lobe. This study 
showed alterations in proteins related to energy metabolism and structural protein 
disturbances, which suggest that early-life stress may affect cytoskeletal dynamics 
of synapses. Specifically, vesicle-fusing ATPase (NSF), ATP synthase alpha 
(ATP5A1), aconitate hydratase (ACO2), syntaxin-binding protein 1 (STXBP1), 
dystrophin-related protein 2 (DRP-2), and synaptosomal-associated protein 25 
(SNAP-25) were found to be differentially expressed [78].

Studies in rats investigated the proteomic and biochemical alterations of poten-
tial antidepressants. Wesseling et  al. showed that administration of ketamine, an 
antagonist of the NMDA receptor, promoted changes in the frontal cortex, hippo-
campus, and serum of rodents. Only three serum proteins were affected, fibroblast 
growth factor 9 (FGF-9), interleukin-4 (IL-4), and tumor necrosis factor alpha 
(TNF-α), which suggested only minor changes in the peripheral system [79]. 
Proteins such as the mTOR, extracellular signal-regulated kinase 1 (ERK1), protein 
kinase Cα (PKCα), vesicle-fusing ATPase (NSF), synapsin (SYN1), syndapin-1 
(PACN1), postsynaptic density protein 95 (PSD95), and neurochondrin (NCDN) 
were found to be differentially expressed in the hippocampus [79]. Increased levels 
of mitochondrial aspartate aminotransferase (AATM) occurred in the frontal cortex 
and hippocampus, and lower levels of catechol-O-methyltransferase (COMT) were 
detected in the hippocampus [79]. In addition, altered levels of calcineurin (PPP3CC) 
and protein kinase Cβ (PKCβ) were found in the frontal cortex and in the hippocam-
pus after treatment with ketamine [79]. Similarly, rats submitted to chronic mild 
stress (CMS), a MDD animal model, were treated with oleamide. CMS affected the 
adenylate kinase isoenzyme protein 1 (AK1), nucleoside diphosphate kinase B 
(NDK B), histidine triad nucleotide-binding protein 1 (HINT1), acyl-protein thioes-
terase 2 (APT-2), and glutathione S-transferase A 4 (GSTA4) [80]. Rats subjected to 
CMS and treated with oleamide presented changes in the levels of glutathione 
S-transferase A6 (GSTA6), glutathione S-transferase A4 (GSTA4), GTP-binding 
protein Ran (RAN), ATP synthase subunit d, mitochondrial (Atp5h), transgelin-3 
(Tagln3), eukaryotic translation initiation factor 5A-1 (Eif5a), and small ubiquitin- 
related modifier 2 (SUMO2) [80]. Oleamide was associated with increased sucrose 
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intake, showing an antidepressant-like effect, affecting proteins involved in pro-
cesses such as energy metabolism, oxidative stress, and cell communication [80].

Using the CMS model, a study showed that stress-resilient and stress-susceptible 
rats presented changes in proteins associated with cell interactions and glutamater-
gic signaling. Glial fibrillary acidic protein (GFAP) and vesicular glutamate trans-
porter 1 (VGLUT1) proteins were found to be decreased in the stress-susceptible 
group, and proteins linked to ion regulation such as homer protein homolog 1 
(HOMER1) and sodium-/potassium-transporting ATPase subunit alpha-2 (ATP1A2) 
were found upregulated in resilient rats [81]. Resilient rats have also shown higher 
levels of antioxidant proteins such as the mitochondrial proteins cytochrome b-c1 
complex subunit Rieske (UQCRFS1) and cytochrome b-c1 complex subunit 1 
(UQCRC1), related to cytochrome b-c1 complex subunits, and they had lower lev-
els of peroxiredoxins, PRDX1 and PRDX2s [81]. Another animal model study 
investigated the serum and frontal cortex of stress-susceptible (SS) and stress- 
resilient (SR) mice. This study found that 20 proteins were differentially regulated 
in the serum and frontal cortex of these groups [82]. Changes in proteins related to 
inflammatory system such as matrix metalloproteinase-9 (MMP9), IL-1, CRP, and 
TNF-α were found in serum samples [82]. Resilient animals presented higher levels 
of myelin-associated proteins in the prefrontal cortex, including myelin proteolipid 
protein (MYPR), myelin basic protein (MBP), and 2,3-cyclic nucleotide 3 phospho-
diesterase (CN37), suggesting an effect on the oligodendrogenesis process [82].

10.4  Conclusions

Despite many hypotheses that try to explain MDD etiology, there is a lack of defined 
molecular mechanisms that attempt to relate all main characteristics of this disorder. 
Although diagnostic systems such as DSM-V can systemize depressive symptoms, 
there are overlaps with other psychiatric disorders with respect to both symptoms 
and biomolecular pathways [83, 84]. Proteomics is a powerful set of techniques that 
enable the investigation of these biochemical characteristics aiming to propose a 
panel of diagnosis and response biomarkers.

Proteins such as CP, EN-RAGE, MIF, TNC, IL-1, GC, CRP, and SAA1 emerge 
several times in different studies with the purpose of identifying a molecular profile 
of MDD.  FGA and vWF proteins are recurrent in studies of markers related to 
 treatment response. Changes in the levels of BDNF seem to be related to resistance 
to treatments. Identification of a trustable and specific panel of markers to MDD can 
lead to changes for patients, since biomarkers can improve diagnostic capacity and 
reveal new drug targets, which can be used to develop newer and better drugs. 
However, there is a missing link between those findings and their validation in clini-
cal practice.

The wide variety of differential expressed proteins may be due the complexity of 
interactions related to MDD, and there is a need for exploration of possible connec-
tions between these pathways. The development of a mathematical model exploring 
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these connections and related symptoms could be useful in this sense. Although the 
focus of this chapter is proteomics, a field in which much further research is needed, 
there is also a need for translational and multi-omics research. Given the complexity 
of MDD, there is a call for proteomics assays that also interact with genomics, tran-
scriptomics, metabolomics, epigenomics, lipidomics, and even metagenomics, giv-
ing rise to omics-based biomarkers.
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Chapter 11
Advances in Biomarker Studies in Autism 
Spectrum Disorders
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Abstract Autism spectrum disorder (ASD) is a neurological and developmental 
condition that begins early in childhood and lasts throughout life. The epidemiology 
of ASD is continuously increasing all over the world with huge social and economi-
cal burdens. As the etiology of autism is not completely understood, there is still no 
medication available for the treatment of this disorder. However, some behavioral 
interventions are available to improve the core and associated symptoms of autism, 
particularly when initiated at an early stage. Thus, there is an increasing demand for 
finding biomarkers for ASD.  Although diagnostic biomarkers have not yet been 
established, research efforts have been carried out in neuroimaging and biological 
analyses including genomics and gene testing, proteomics, metabolomics, tran-
scriptomics, and studies of the immune system, inflammation, and microRNAs. 
Here, we will review the current progress in these fields and focus on new methods, 
developments, research strategies, and studies of blood-based biomarkers.
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11.1  Introduction

Autism spectrum disorder (ASD) is a group of neurodevelopmental disorders char-
acterized by impaired social communication and interaction with restricted and 
repetitive behavior, interests, or activities [1]. The data of past two decades shows 
that the prevalence of ASD has continued to rise [2]. The Centers for Disease 
Control and Prevention (CDC) has reported that the prevalence of ASD has increased 
in recent years and approximately 15 per 1000 children have been diagnosed with 
ASD in the United States [3]. Similar prevalence ratios have been reported in the 
latest worldwide surveys [4–8]. About 45% of individuals with autism have an intel-
lectual disability [9], and 29–47% have regression using retrospective or categorical 
measures [10, 11]. Given these effects, ASD is a serious social problem and an 
increasing global burden with severe implications for public health services.

The etiology of ASD is complex and the exact causes are still unknown. Previous 
studies suggest that autism can be considered as a multifactorial disease in which 
both genetic and environmental factors are involved. Immune dysregulation, inflam-
mation, oxidative stress, mitochondrial dysfunction, and environmental toxicant 
exposures have been reported in a large number of studies on associated physiologi-
cal abnormalities in ASD [12–14]. Several possible risk factors for ASD have been 
investigated, which include advanced parental age, birth complications, prematu-
rity, low birth weight, and assisted conception [15].

To date, there are no practical therapeutic approaches for ASD, and the drugs 
being used have limited efficacies. However, studies suggest that substantial 
improvements can be achieved by intensive behavioral intervention initiated prior to 
24 months of age as neural plasticity is increased and challenging behaviors are less 
prominent [15]. Prior to the onset of behavioral abnormalities, behavioral interven-
tions could conceivably minimize their severity or even result in prevention of a 
full-blown autism [16]. Thus, early diagnosis and prediction is essential for ASD. 
However, ASD diagnosis is limited as it is currently based on behavioral signs, 
symptoms, clinical observations, and behavioral evaluations. Without any biologi-
cal determination, early diagnostics are difficult and subjective. The mean age of 
clinical diagnosis has found stable at 4–5 years with no evidence of decline [17].

As a result, the availability of reliable biomarkers for use in the prognosis and 
diagnosis of these patients remains an unmet clinical need [18]. Multiple approaches 
including neuroimaging, gene testing, transcriptomics, proteomics, and metabolo-
mics are being used to discover new biomarker panels for ASD, and progress has 
been made in these fields. Other methods, such as electroencephalography (EEG) 
[19], eye tracking for visual orienting [20, 21], or pupillary light reflex [22], may 
have potential. There is now growing interest in the identification of molecular bio-
markers that could be implemented easily in clinical practice through conventional 
laboratory medicine, following the routine collection of bodily fluids such as blood, 
urine, or saliva [18]. In this chapter, we have summarized the current progress in 
ASD biomarker studies and highlighted recent findings and emerging methodolo-
gies that could improve the timeliness of diagnosis in years to come.
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11.2  Neuroimaging

Advances in neuroimaging methods, including functional magnetic resonance imaging 
(fMRI) [23, 24] and functional near-infrared spectroscopy (fNIRS) [25], have become 
important tools in investigating ASD. Cognitive processes can be characterized easily as 
biomarkers, including semantic memory processing, language processes in middle tem-
poral gyrus, and visual perception in the inferior temporal gyrus, as well as integrate 
information from different senses and link these with different brain regions [26]. 
A recent study showed that a functional connectivity MRI-based machine learning algo-
rithm applied at 6 months of age had 81% sensitivity and 100% specificity for diagnosis 
of ASD [27]. In addition, a deep- learning algorithm that primarily uses surface area 
information from MRI analyses of the brains of 6–12-month-old individuals predicted 
the diagnosis of autism in high-risk children at 24 months of age, with a positive predic-
tive value of 81% and a sensitivity of 88% [28]. These findings suggest that early brain 
changes occur during the period in which autism-like behavior is first emerging and may 
be used to identify infants who would later meet the criteria for ASD.

11.3  Genetic Susceptibility and Genetic Testing

The etiology of ASD is complex. Early twin studies have suggested that autism has 
high heritability (more than 80%) [29], but when considered as a model with addi-
tive genetic makeup, heritability was estimated to be about 54% [30, 31]. Taking 
into account the high rate of inheritance of ASD, a significant amount of research 
has been aimed at identifying the genetic basis of the pathology development and 
identifying genetic markers that evaluate the risk of disease [32, 33]. By utilizing 
chromosomal microarray (CMA), whole-exome sequencing (WES), whole-genome 
sequencing (WGS), targeted gene sequencing, and copy number variation (CNV) 
research, hundreds of genes associated with autism risk have been identified [34]. 
The SFARI Gene web portal (https://gene.sfari.org/) seamlessly integrates different 
kinds of genetic data that are being generated by research studies, linking informa-
tion on autism candidate genes within its original “Human Gene” module with cor-
responding data from a diverse array of supplementary data modules. ASD risk 
genes are then scored using a set of annotation rules developed in consultation with 
an external advisory board and classified into specific categories based on the evi-
dence supporting their link to autism [35]. Many new susceptibility genes associ-
ated with ASD have now been discovered. These include CHD8, DYRK1A, SCN2A, 
ARID1B, ANK2, GRIN2B, SYNGAP1, ADNP, TBR1, POGZ, KATNAL2, 
SHANK2, and SHANK3. These findings implicate a large functional network of 
genes involved in transcriptional control, chromatin remodeling in the nucleus, pro-
tein synthesis, and the formation and function of synapses [36–42].

Recent research highlights the ASD-related variants in noncoding region [43–
45], which show that precise coordination of gene activity is crucial for brain devel-
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opment and function. Moreover, 0.77% rare inherited cis-regulatory structural 
variants contribute to ASD [46]. The burden analysis has identified noncoding 
indels as a potential contributor [43], while polygenic risk further implicates conser-
vation across vertebrate species. Of note, by disrupting regulatory elements to a 
degree greater than SNVs while occurring far more often than SVs, indels might 
represent a strong effect for coding regions. In the light of evolution, human- 
accelerated regions (HARs) represent conserved genomic loci with elevated diver-
gence in humans, and rare de novo CNVs involving HARs can contribute to simplex 
ASD, and rare bi-allelic mutations in neurally active HARs can confer risk to ASD 
in as many as 5% of individuals from a consanguineous population [45]. Epigenomic 
profiling and in vitro analyses showed functional effects of candidate mutations in 
several HARs that interact with promoters of dosage-sensitive neurodevelopmental 
genes, including CUX1, PTBP2, GPC4, and MEF2C [45]. This suggests that distur-
bance in the regulation of gene expression but not mutation itself is important [47].

High genetic heterogeneity is one of the most prominent features of ASD, which 
leads to challenges in obtaining and interpreting genetic testing in clinical settings. 
Nevertheless, advances in techniques and methodologies in genetics and genomics 
provide opportunities for genetic research and discovery of biomarkers. Genetic 
testing of children with ASD is now standard in clinical settings through guidelines 
from the American College of Medical Genetics and Genomics (ACMGG) [48, 49]. 
ACMGG guidelines recommend for all children with ASD without a recognizable 
genetic diagnosis, along with fragile X testing for boys, single gene sequencing 
including MECP2 (methyl-CpG-binding protein 2 gene) for girls and PTEN for 
those with macrocephaly. Consideration of metabolic screening, brain MRI, and 
X-linked disability gene panel is also recommended in cases where medical history, 
physical exam, and/or family history supports it [48]. At present, utilization of high- 
throughput sequencing, including targeted gene panels and whole-exome sequenc-
ing, is becoming increasingly common in the clinical evaluation of children with 
ASD [49]. A recent review proposed an approach designed for a child who has been 
diagnosed with ASD by DSM-5 criteria, which highlights the incorporation of new 
testing methodologies for determining a molecular defect, including ASD-associated 
CNV on a microarray and ASD-associated changes identified through WES [50].

In terms of genetic testing, there are different strategies and techniques, and the 
estimated diagnostic yield is different for these. The current estimated diagnostic 
yield is relatively low as it has been estimated that a specific genetic etiology can be 
determined in about 15–20% of individuals with an ASD [49, 51]. However, this 
diagnostic yield may be increased with the development of new techniques and 
technologies. For example, development of targeted gene panels using next- 
generation sequencing (NGS) is an attractive strategy for the clinical evaluation of 
children with ASD, and some of these panels contain as many as 2000 genes 
(GeneDx, Gaithersburg autism/ID panel) [49]. Meanwhile, if the list of genes asso-
ciated with ASD risk grows, the gene panel can be updated. Informed by better natu-
ral history data, it may become appropriate to screen for highly penetrant ASD 
variants in newborns in order to allow the introduction of behavioral interventions 
in the first year of life when the brain has its highest level of neuronal plasticity [50].
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11.4  Blood Protein-Based Biomarkers

Despite the large number of genetic and environmental factors underlying autism, 
these factors can be predicted to converge upon a relatively limited number of intra-
cellular biochemical pathways and neurodevelopmental mechanisms [18]. As men-
tioned above, many of the products encoded by ASD-related genes have similar 
functions or cause disease through some common signal transduction pathways, 
including neuronal development and axonal guidance, synaptic function, and chro-
matin remodeling [52]. Some mechanisms may be used to explain this phenome-
non. For example, a master transcriptional repressor CHD8 (chromodomain helicase 
DNA-binding 8) has been found to play a critical role in ASD. It acts by remodeling 
chromatin structure and recruiting histone 1 to target genes and other ASD-risk 
genes. Thus, it functions at the center of a complex network of ASD genes and may 
prove to be an important underlying common mechanism for ASD, at least for a 
subset of affected individuals [53, 54]. Moreover, according to the Central Rule of 
Genetics, genetic levels indicate the probability of disease occurrence, and proteins 
are the undertakers of biological activities. Therefore, changes in the proteins can 
more directly reflect the occurrence and development of the disease. Furthermore, 
most of the disease biomarkers and drug targets are proteins. Taken together, ASD 
can be investigated from a protein perspective to understand the pathogenesis and 
obtain diagnostic biomarkers or therapeutic targets.

Blood collection has qualities of low invasiveness, ease of use, and cost- 
effectiveness. Therefore, blood-based biomarkers would be more amenable to large- 
scale screening and diagnosis in clinical applications. Blood proteins are the main 
components of blood and are often used for clinical diagnosis or screening. However, 
because of the existence of the blood-brain barrier (BBB), it is difficult to find the 
ASD protein markers from peripheral blood, especially disease-specific protein 
markers, which have actually originated from the brain. A recent study found that 
75% of patients with ASD had reduced expression of barrier-forming “tight junc-
tion” (TJ) components (claudin-1, occluding, tricellulin) in the intestine and 66% 
had increased pore-forming claudins (claudin-2, claudin-10, claudin-15). This sug-
gests increasing intestinal and BBB permeability in at least some subgroups of indi-
viduals with ASD [55]. Interestingly, alterations of the intestinal barrier in patients 
with ASD have been reported in a previous study [56]. Zonulin regulates tight junc-
tions between enterocytes and is a physiological modulator controlling intestinal 
permeability. This protein was found to be increased in patients with ASD com-
pared with healthy controls [57]. In addition, levels of zonulin and the Childhood 
Autism Rating Scale score have a positive correlation [57]. Therefore, changes in 
proteins or genes associated with intestinal and BBB permeability, as well as patho-
logical and metabolic changes, and proteins and metabolites from blood may 
 represent ASD biomarkers. Meanwhile, finding the commonalities and/or differ-
ences between peripheral samples and the CNS (central nervous system) includes 
peripheral signaling that is parallel with that seen in the CNS and could also uncover 
new or provide more possibilities to clarify the pathophysiology of disease as well 
as future candidates for biomarkers [58].
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11.4.1  Proteomics

Proteomics is a large-scale study of protein expression in cells and tissues. It is a 
powerful tool for studying the biology of clinical conditions and may better reflect 
dynamic physiological processes compared to other methods [59]. Proteomics can 
also represent distinct primary structures of proteins (or “proteoforms”) resulting 
from alternatively spliced RNA transcripts, genetic variations like coding SNP or 
mutations, and posttranslational modifications [60–62].

Several groups have conducted proteome analyses of ASD samples, including 
postmortem brain tissues [63, 64], serum [65–69], plasma [70–72], lymphocytes 
[73], neonatal blood [74, 75], urine [76, 77], and saliva [78, 79]. The results of these 
studies are summarized in Table 11.1. For brain tissues, Junaid et al. analyzed post-
mortem brain tissues from patients with autism using two-dimensional gel electro-
phoresis (2-DE) [63]. By selected reaction monitoring mass spectrometry 
(SRM-MS) analysis, Broek et al. analyzed postmortem brain tissues from the pre-
frontal cortex and cerebellum of ASD individuals and healthy subjects [64]. They 
found that proteins associated with myelination, synaptic vesicle regulation, and 
energy metabolism were dysregulated in ASD brain tissues. In addition, Wei et al. 
carried out a quantitative proteomic profiling study of cortical brain tissue from 
BTBR T + Itpr3tf (BTBR) mice, a model that displays an autism-like phenotype 
[80]. Since ASD is a neurodevelopmental disorder, the results of the brain tissue 
study provided information on the discovery of biomarkers for autism in peripheral 
tissues or blood, especially CNS-specific proteins. Furthermore, the same proteomic 
methods can be used to simultaneously analyze brain tissue and blood as a strategy 
for ultimately identifying blood diagnostic biomarkers.

Blood proteomics studies holistic changes in blood protein composition and 
quantity as well as posttranslational modification status, and these are helping to 
identify disease-associated markers and therapeutic targets and connect these to 
genetic risk [81–83]. Studies on biomarkers for the diagnosis of ASD blood pro-
teins have also been reported and were mostly based on traditional proteomics 
methods (Table 11.1). In the last 5–10 years, liquid chromatography coupled to 
tandem mass spectrometry (LC-MS/MS) has become the technology of choice for 
high- throughput characterization of proteins [84]. For biomarker discovery, a 
suitable strategy for large-scale quantitative proteomics is to employ isobaric 
labeling such as with tandem mass tags (TMT) [85] or isobaric tags for relative 
and absolute quantitation (iTRAQ) [86]. Recently, we carried out iTRAQ-based 
plasma analysis to compare protein profiles from children with autism, compared 
to healthy control children, and 24 differentially expressed proteins were identi-
fied [72]. These proteins were found to be involved in different pathways that have 
previously been linked to the pathophysiology of ASDs. This supports the hypoth-
esis that focal adhesions, acting cytoskeleton, cell adhesion, motility and migra-
tion, synaptogenesis, and the complement system are involved in the pathogenesis 
of autism. Moreover, it highlighted the important role of platelet function. Using 
enzyme- linked immunoadsorbent assay (ELISA) and ROC (receiver operating 
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characteristic) analysis, combinations of five proteins (C3, C5, GC, ITGA2B, and 
TLN1) were used to distinguish children with autism from healthy controls with 
a high AUC (area under the ROC curve) value [72]. Interestingly, these three path-
ways (focal adhesion, cell adhesion molecules, and leukocyte transendothelial 
migration) were related to a Han Chinese cohort in a recent study [87]. Together 
with other blood proteomics studies (Table 11.1), the results support the view that 
ASD-related proteins are mainly concentrated in some pathways. Indeed, these 
proteins may be related to the cause of ASD or are a consequence or merely an 
epiphenomenon.

Labeling samples with isobaric tags is an optimal workflow for comparative 
analysis of medium-sized projects. However, to support progress in the field of psy-
chiatric issues including proteomic analyses of autism samples, further advances in 
proteomic profiling techniques are required. For example, if hundreds of samples 
need to be analyzed simultaneously, the issues of data incompleteness and batch 
effects can become apparent across sets of multiplexed samples. Currently, two 
alternative mass spectrometric strategies are used in the large number of samples. 
These include the classical label-free data-dependent acquisition (DDA) proteomics 
workflow [88] and sequential window acquisition of all theoretical mass spectra 
(SWATH-MS) [89].

Additionally, validation of biomarker candidates can be addressed by transfer-
ring the candidates found in the explorative studies to targeted assays based on 
SRM-MS and parallel reaction monitoring (PRM) [90]. The so-called targeted pro-
teomics is a bridge between discovery and validation. Such assays typically require 
smaller sample volumes, less sample preparation, and significantly shorter analysis 
times and often provide absolute quantification with high precision [91]. An advan-
tage of targeted proteomics is the possibility for multiplexing, allowing for analysis 
of a number of compounds in one analysis. Therefore, they enable evaluation of 
large panels of biomarker candidates in large clinical studies and can be further 
employed in clinical routine work [90, 91]. As mentioned above, SRM-MS has been 
used for targeted analysis of proteins associated with different pathways in accor-
dance with literature evidence in brain tissues from ASD subjects and healthy con-
trols [64].

11.4.2  Ultrasensitive Techniques in Blood

Apart from the above discussion, it is also worth mentioning that CNS-specific 
proteins may be present at very low concentrations in the blood and thus may be 
difficult to quantify reliably using standard immunochemical technologies such 
as ELISA. Recent technical breakthroughs in the field of ultrasensitive assays 
have started to change this scenario [92]. These technologies include single-
molecule array (Simoa) technology, immunomagnetic reduction (IMR) [92], 
and immunoprecipitation (IP) coupled with mass spectrometry [93]. Furthermore, 
these methods have high sensitivity and accuracy and have been used in the 
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study of neurological diseases such as Alzheimer’s disease (AD) [92, 93]. For 
example, the average sensitivity improvement of the Simoa immunoassays ver-
sus conventional ELISA was >1200-fold, with coefficients of variation of <10% 
[94]. Thus, these ultrasensitive technologies may be useful for measuring 
peripheral CNS-specific proteins or protein biomarkers at low concentrations in 
the bloodstream in studies of ASD and other neurological and neurodevelop-
mental conditions.

11.5  Transcriptomics

Transcriptomic studies are essential as a link between measuring protein levels 
and analyzing genetic information. Several studies using transcriptome profiling 
analysis of peripheral blood lymphocytes (PBL) [95] and the lymphoblast cell 
line (LCL) [96–99] from patients with ASD and unaffected controls have revealed 
a number of transcripts that are differentially expressed in the individuals with 
autism compared to controls. This highlights the point that transcriptomic signa-
tures from peripheral blood that could be used as a surrogate for understanding the 
genetics of ASD and as potentials of biomarkers. Recently, Ansel et al. reviewed 
gene expression changes in ASD detected in multiple independent studies in vari-
ous tissues [100]. It is worth noting that some differentially expressed genes were 
found in common between the brain and peripheral blood or LCL cells (Table 11.2). 
The biological processes associated with these genes included response to cyto-
kines, defense response, blood vessel development, cellular response to cytokine 
stimulus, angiogenesis, cytokine- mediated signaling pathway, positive regulation 
of cell communication, and regulation of response to stimulus. The affected bio-
logical pathways included cytokine-cytokine receptor interaction, chemokine sig-
naling pathway, leukocyte transendothelial migration, taurine and hypotaurine 
metabolism, and the Wnt signaling pathway. Interestingly, in ASD subjects, the 
genes associated with cytokines were upregulated, whereas those associated with 
synaptic signaling (i.e., GAD1 and GRIA3) were downregulated. Likewise, other 
dysregulated genes were found in common between intestinal biopsy samples and 
peripheral blood or LCL cells (Table 11.2). These genes were mainly involved in 
several biological processes and pathways including cell differentiation, response 
to cytokines, immune system development, and cytokine-cytokine receptor 
interaction.

Clearly, detection of the gene changes presented in the two or more types of 
samples can enhance detection specificity. Given the key role of brain and intes-
tinal tissues in the pathogenesis of ASD, simultaneous detection of these genes 
in the brain and blood/LCL cells, or in the intestinal biopsy samples and periph-
eral blood or LCL cells, might lead to a new biomarker approach for ASD 
diagnosis.

L. Shen et al.
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Table 11.2 The commonly dysregulated genes in brain and peripheral blood or LCL cells

Gene symbols Blood/LCL studies Brain studies

SLC9A9 Talebizadeh et al. (2014) ↑[96] Garbett et al. (2008) ↑[137]
NDUFB5 Talebizadeh et al. (2014) ↑[96] Anitha et al. (2012) ↓[139]
CMKOR1 Nishimura et al. (2007) ↑[97] Garbett et al. (2008) ↑[137]

Voineagu and Eapen (2013) ↑[138]
HIST1H3H Nishimura et al. (2007) ↓[97] Chow et al. (2012) ↑[140]
MeCP2 Kuwano et al. (2011) ↑[95] James et al. (2014) ↓[141]

Zhubi et al. (2014 )↓[142]
ABHD3 Kong et al. (2013) ↑[143] Garbett et al. (2008) ↑[137]
CTNNB1 Kong et al. (2013) ↑[143] Chow et al. (2012) ↓[140]
SYCE1 Kong et al. (2013) ↓[143] Chow et al. (2012) ↓[140]
FOSL1 Ivanov et al. (2015) ↓[144] Chow et al. (2012) ↑[140]
KIF1B Talebizadeh et al. (2014) ↑[96] Garbett et al. (2008) ↑[137]
PITPNC1 Nishimura et al. (2007) ↑[97] Garbett et al. (2008) ↑[137]
CX3CR1 Gregg et al. (2008) ↑[145]

Enstrom et al. (2009) ↑[146]
Ziats and Rennert (2013) ↑[147]

STOM Glatt et al. (2012) ↓[118] Garbett et al. (2008) ↑[137]
TAP1 Glatt et al. (2012) ↓[118] Garbett et al. (2008) ↑[137]
PARP9 Glatt et al. (2012) ↓[118] Garbett et al. (2008) ↑[137]
GAD1 Chien et al. (2013) ↓[99] Zhubi et al. (2014) ↓[142]
ANXA1 Chien et al. (2013) ↓[99] Garbett et al. (2008) ↑[137]
CHI3L1 Chien et al. (2013) ↓[99] Garbett et al. (2008) ↑[137]
WWTR1 Chien et al. (2013) ↓[99] Garbett et al. (2008) ↑[137]
CXCL10 Chien et al. (2013) ↑[99] Chow et al. (2012) ↑[140]
CXCR4 Chien et al. (2013) ↑[99] Chow et al. (2012) ↑[140]
DNASE1L3 Chien et al. (2013) ↓[99] Chow et al. (2012) ↓[140]
GRIA3 Chien et al. (2013) ↓[99] Chow et al. (2012) ↓[140]
SERPINA1 Chien et al. (2013) ↓[99] Chow et al. (2012) ↑[140]
TNFRSF19 Chien et al. (2013) ↓[99] Chow et al. (2012) ↓[140]

Expression changes in ASD, compared with the control: ↑: upregulated; ↓: downregulated

11.6  Metabolomics

Another “-omics” technology being used for biomarker discovery is metabonomics. 
It is considered as one of the fastest developing workflows in biomarker research 
[101]. Profiles of small-molecular-weight substances present in different sample 
types (cells, tissue, and body fluids) are known as metabolites. Nuclear magnetic 
resonance (NMR) is a particularly powerful tool for metabolite analysis, and MS is 
also a sensitive platform to identify and quantify these in complex biological sys-
tems [101]. Metabolomic analysis of human biofluids provides another sensitive 
approach to identify metabolite profiles potentially usable as biomarkers for 
ASD. Researchers have discovered many potential biomarkers from blood and urine 
[102–106] (Table 11.3). Among these, metabolites associated with the tricarboxylic 
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acid cycle, saturated fatty acid metabolism, and oxidative stress suggest that mito-
chondrial dysfunction may be a risk factor for autism. In addition, Diémé et  al. 
analyzed the samples of children with ASD and healthy controls using NMR and a 
liquid chromatography (LC)-MS-based approach [106]. The results showed that the 
metabolites with the most significant differences between autism and control chil-
dren were indoxyl sulfate, N-ɑ-acetyl-L-arginine, methyl guanidine, and phenyl-
acetylglutamine. Interestingly, indoxyl and indoxyl sulfate, which are produced by 
tryptophan metabolism in gut bacteria, were reproducibly found in urine investiga-
tions, which suggest these as potential biomarkers [107].

11.7  Immune System and Cytokines

Currently, many studies have suggested that the immune system plays an important 
role in the pathophysiology of ASD [108], even though this system has a less pro-
nounced genetic component. Therefore, the effects on the immune system are most 
likely caused by environmental factors. Maternal immune activation (MIA), result-
ing from either genetic or environmental causes, has been highlighted as a factor 
that can increase the risk of ASD [109–112]. It may act at early periods of fetal brain 
development and potentially alter gene expression regulation leading to effects on 
shared pathways for ASD-related phenotypes. A study showed that many genes 
which are dysregulated in early fetal brain development by MIA overlap with known 
ASD-associated genes [113].

Multiple studies have confirmed cytokine, chemokine, and growth factor abnor-
malities in ASD, but the results have been inconsistent. A recent meta-analysis 
found elevations in the plasma or serum concentrations of cytokines IL-1b, IL-6, 
and IL-8, interferon (IFN)-c, eotaxin, and monocyte chemotactic protein-1 (MCP- 
1) in individuals with ASD, as well as a reduction in the concentration of transform-
ing growth factor (TGF)-β1. Among these, IL-1 and IL-6 were of high interest due 
to repeatability of the results concerning associated behavioral abnormalities [114]. 
Interestingly, activation of microglia and astrocytes in multiple brain regions, as 
well as elevated levels of IFN-c, IL-1b, IL-6, MCP-1, TGF-β1, and tumor necrosis 
factor (TNF)-α, has also been observed in postmortem brain tissues of ASD patients 
[115–117]. These findings suggest that some cytokines may serve as potential bio-
markers for ASD and that immunomodulatory therapies may be used as a treatment 
strategy. In addition to the immune cells of the brain (i.e., microglia), peripheral 
blood immune cells have also been extensively studied. These may be used to inves-
tigate systemic neurochemical changes in neurodevelopmental diseases. For exam-
ple, it has been proposed that infection-induced changes in the mother’s circulation, 
including expression of pro-inflammatory cytokines and activation of Th17 cells, 
could affect the immune status of the fetus [109]. These changes, in combination 
with genetic susceptibilities of the fetus and subsequent immune challenges, could 
increase the risk for ASD [109]. Moreover, it is interesting that three genes (STOM, 
LMNB1, and VWF) were found to be dysregulated at the transcriptional level in 
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PBMCs from ASD subjects [118], and these were also reported as differentially 
expressed proteins in the plasma of children with autism in our previous proteomic 
studies [72]. Thus, it can be proposed that simultaneous detection of these genes in 
the plasma and PBMCs could increase the specificity of detection.

11.8  MicroRNAs and Exosomes

MicroRNAs (miRNAs) are small endogenous noncoding regulatory RNAs (typi-
cally 21–23 nucleotides long) that function as posttranscriptional regulators of gene 
expression [119] and thereby play an important role in CNS development and func-
tion [120]. Recently, Hicks et  al. reviewed the expression patterns of miRNAs 
altered in ASD include the brain, blood, saliva, and olfactory precursor cells [121]. 
This study encapsulated 219 target miRNAs from 12 human studies of ASD and 
identified 27 miRNAs that were dysregulated in two or more investigations. These 
miRNAs target brain-expressed genes related to neurodevelopment and which have 
been implicated in ASD. Among these, three miRNAs (miR-23a-3p, miR-146a-5p, 
and miR-106b-5p) showed consistent dysregulation across three or more studies 
[121]. The dysregulated miRNAs in the blood [122–124] and saliva [125] may serve 
as potential biomarkers for ASD given the ease of accessibility of these biofluids.

Exosomes are approximately 100 nm extracellular vesicles secreted from most 
cell types including neurons, which contain proteins, mRNAs, noncoding RNAs, 
and DNA [126]. Exosomes obtained from peripheral blood have attracted attention 
in various disease research areas, including AD [127, 128] and depression [129]. 
Since exosomes can cross the BBB from both directions, circulating exosomes in 
blood are expected to reveal the pathophysiology of brain diseases [130]. With this 
in mind, several methods to extract neuron-derived exosomes (NDE) from periph-
eral blood have been developed [131].

11.9  Conclusions

As the etiology and pathogenesis have not yet been elucidated, ASD lacks effective 
prevention and treatment drugs. Research shows that early interventions can 
improve the prognosis of children with ASD. Therefore, early diagnosis is essential 
for ASD. The identification of biomarkers for ASD has made some progress in 
imaging and molecular analyses. However, due to the heterogeneity of the disease, 
the utility of these biomarkers still faces difficulties and challenges. Nevertheless, 
with the development of genomic, proteomic, metabolomic, transcriptomic, and 
microRNA profiling methods, as well as the emergence of some new technologies 
and applications, more research should be focused on identifying reliable, noninva-
sive, and inexpensive biomarkers in accessible tissues and body fluids such as the 
blood and blood cells. In this way, the genes, proteins, mRNA, miRNA, and 
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exosomes could be useful sources of biomarkers. More attention should be given to 
the consistent changes between the CNS and peripheral blood or blood cells, focus-
ing on those changes in CNS-specific or CNS-derived proteins and genes. It is also 
important to use biomarker panels, high-throughput multiplexed targeted technolo-
gies, and integrated applications of multiple methods for both discovery and valida-
tion of findings. Eventually, the study of ASD biomarkers may lead to a better 
understanding of the underlying mechanisms of ASD and identify new biomarkers 
of disease and therapeutic targets.
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Chapter 12
Proteomic Investigations of Autism 
Spectrum Disorder: Past Findings, 
Current Challenges, and Future Prospects

Joseph Abraham, Nicholas Szoko, and Marvin R. Natowicz

Abstract Proteomics is a powerful tool to study biological systems and is poten-
tially useful in identifying biomarkers for clinical screening and diagnosis, for moni-
toring treatment, and for exploring pathogenetic mechanisms in autism. Unlike 
numerous other experimental approaches employed in autism research, there have 
been few proteomic-based analyses. Herein, we discuss the findings of studies 
regarding autism that utilized a proteomic approach and review key considerations 
in sample acquisition, processing, and analysis. Most proteomic studies on autism 
used blood or other peripheral tissues. Few studies used brain tissue, the main site of 
biological difference between persons with autism and others. The findings have 
varied and are not yet replicated. Some showed abnormalities of synaptic proteins or 
proteins of mitochondrial bioenergetics. Various abnormalities of proteins relating to 
immune processes and lipid metabolism have also been noted. Whether any of the 
proteomic differences between autism and control cases are primary or secondary 
phenomena is currently unclear. Consequently, no definitive biomarkers for autism 
have been identified, and the pathophysiological insights provided by proteomic 
studies to date are uncertain in the absence of replication. Based on this body of work 
and the challenges in using proteomics to study autism, we suggest considerations 
for future study design. These include attention to subject and specimen inclusion/
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exclusion criteria, attention to the state of specimens prior to proteomic analysis, 
and use of a replicate set of specimens. We end by discussing especially promising 
applications of proteomics in the study of autism pathobiology.

Keywords Autism · ASD · Proteomic · Proteomics · Mass spectrometry · 
Neuroproteomics

12.1  Introduction

Autism spectrum disorder (ASD) is a heterogeneous group of neurodevelopmental 
conditions characterized by impairments in socialization and communication with 
repetitive or stereotyped behaviors or interests [1, 2]. In addition, persons with ASD 
frequently have medical, neurological, and/or psychiatric comorbidities [3, 4]. ASD 
is also common as recent data on children in the United States indicate a prevalence 
of ASD at about 1 in 59 to 1 in 42 children and a global prevalence in children of 
nearly 1% [5–7]. Consequently, ASD is associated with varied and considerable 
personal, family, and societal costs. For these reasons, determination of the underly-
ing pathobiology of ASD and efforts directed toward ASD prevention, early diagno-
sis, and effective treatment are public health priorities.

The understanding of ASD pathogenesis has progressed substantially in recent 
years [8]. Many experimental approaches, ranging from histopathological analyses 
of postmortem brain tissue, biochemical analyses of brain and other tissues, genomic 
analyses of ASD cases, transcriptomic studies of various tissues, neuropsychologi-
cal studies, structural and functional neuroimaging studies, and diverse studies of 
animal models of autism, have contributed to our current understanding of the 
pathogenesis of ASD. Atypical functional brain connectivity is a central finding of 
studies of the pathobiology, and the concept of autism as a collection of develop-
mental disconnection syndromes is widely held [9]. Some of the best supported and 
non-mutually exclusive theories of autism pathogenesis at a molecular level include 
abnormalities of synapse formation and function and abnormalities of genes that 
regulate chromatin remodeling and transcription, although there is support for many 
other molecular processes [10–13]. Whether there is a single unifying pathophysi-
ological model for the diverse causes of autism remains to be determined. Some 
important unifying models that incorporate genetic, biochemical, and electrophysi-
ological findings in autism research have been proposed [14, 15].

Unlike other “omics” approaches such as genomics and transcriptomics, which 
have been highly productive approaches in advancing our knowledge of autism, there 
have been few proteomics-based analyses which have investigated the pathobiology 
of autism. In this review, we describe the challenges in using proteomic methodolo-
gies in autism research, summarize and critically assess proteomics- based studies of 
ASD, and discuss some potentially useful applications of proteomics in advancing 
the understanding of autism biology.
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12.2  Potential Applications of Proteomics in Autism 
Research

There are multiple potential applications of proteomics in clinical and basic research 
related to autism. Proteomic analyses hold forth the potential for the use in screening 
persons who are at risk to develop autism or in defining targets for screening and, 
similarly, for potential use in the diagnosis of autism. Screening and early diagnosis of 
autism are important since early identification permits early intervention, often with 
therapeutic benefits [2, 16]. In addition, the development of effective screening and 
diagnostic biomarkers might result in substantial cost savings compared to the gener-
ally inefficient and slow process of screening and diagnosis that commonly occurs 
[17]. It might also enable a more accurate categorization of persons with autism since 
an understanding of the biology of autism and the development of more effective 
therapies might be facilitated by the delineation of reproducible and biomedically 
meaningful biomarker-defined subtypes of persons with ASD [2, 18]. In addition, 
proteomic analyses could also conceivably have use in monitoring impacts of treat-
ment. Although such uses of proteomics in ASD are presently speculative, proteomic 
methods have recently gained acceptance in several clinical laboratory applications, 
and many other applications are being investigated, and the adoption of additional 
clinical laboratory uses of proteomics is anticipated [19–21].

Related to the clinical imperative of better delineation of clinical subtypes of 
autism, the other major potential application of proteomics in autism is in the 
study of the pathogenesis of autism. There are numerous known causes of autism, 
and there is evidence of derangement of many cellular process and metabolic 
pathways [11, 15]. It is presently unclear if there is a final common pathway or 
unifying pathophysiological mechanism for autism that encompasses its diverse 
etiologies. Proteomic investigation of specimens from persons with autism and 
of diverse models of autism is, therefore, the other major area of application of 
proteomics to autism.

12.3  Challenges in Using Proteomic Approaches in Autism 
Research

Apart from the complexities of the analytic dimensions of proteomics in studying 
autism, several autism-specific pre-analytic concerns need to be considered in any 
experimental study. These include:

 1. How do the authors define autism?
 2. How, if at all, is the etiological heterogeneity of autism considered?
 3. Do the authors account for comorbidities?
 4. What is the biological state of the subject(s) from which the samples were derived?
 5. What tissue or cell type is used in the experimental analysis?
 6. What was the tissue procurement process for the samples?

12 Proteomic Analyses of Autism
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The concept of autism has undergone substantial change since its earliest formu-
lation, with different neurobehavioral phenotypes described [22, 23]. Even today, 
the categorical diagnosis of ASD includes diverse clinical phenotypes and does not 
define a neurobiologically or etiologically well-defined, homogenous condition. 
Consequently, its use remains problematic and, sometimes, contested [24, 25]. 
Moreover, not all studies include information regarding the specific criteria used in 
establishing the diagnosis. There are multiple diagnostic criteria and tools used to 
establish the diagnosis. This information should be described for any study of ASD, 
not just those involving proteomics, as the criteria that are implemented will have 
impacts regarding which persons or samples will be used in a study [26].

In addition, ASD is etiologically heterogeneous. There are more than 100 known 
causes of ASD, most of which are uncommon or rare [8, 10, 27, 28]. Combining 
data from ASD cases having different etiologies can result in confounding of the 
results. Studies should specify both the etiologies of the ASD cases from which 
samples are derived and the basis for the designation of those etiologies. In those 
instances where a diagnosis is not known, pertinent negative diagnostic evaluations 
should be noted, if possible.

Medical, neurological, and psychiatric comorbidities are common in persons 
with ASD [3, 4, 29]. Comorbidities should be assessed when considering candidacy 
for a study since the comorbidities and the medications and other treatments of the 
comorbidities can impact the proteome. Consequently, inclusion and exclusion cri-
teria should be well-defined prior to sample collection, and pertinent clinical infor-
mation from evaluations of the individuals from whom samples are derived should 
be available as appropriate.

Inclusion and exclusion criteria should also consider the prandial state of the 
subjects from which the samples originated and, if postmortem samples are obtained, 
the cause of death. The prandial state should, if possible, be controlled for in studies 
using serum, plasma, or saliva to reduce another potential source of confounding 
factors. Not unexpectedly, the cause of death can also have significant impacts on 
tissue proteomes [30, 31].

What cell type or tissue to analyze is another significant issue in proteomic stud-
ies of autism. Autism is first and foremost a disorder of the brain, despite the signifi-
cant number of comorbidities in non-CNS systems. Proteomic analyses of brain 
tissue are, therefore, likely to be more informative than analysis of other tissues in 
terms of understanding the pathogenesis of brain dysfunction in autism. However, 
relatively few postmortem autism brains are available for research purposes. Of 
those that are available, the number of samples accessible for research may be fur-
ther reduced because of limitations imposed by the study with respect to age, cause 
of death, or other eligibility criteria. Moreover, even when adequate numbers of 
brain samples are available, proteomic analyses of brain tissue are inherently 
 complicated by the dynamic changes in brain during neurodevelopment and the 
cellular heterogeneity of brain tissue [32–34].

Processing of samples for proteomic analysis is essential to consider, particularly 
in relation to the postmortem interval time. The duration between death and banking 
of samples can be especially relevant in proteomics because of time-dependent 
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proteolysis and other modifications that can occur to some proteins [35–37]. Thus, 
matching cases and controls for the postmortem interval in human tissue studies is 
an important consideration. Issues related to storage of tissue and histological pro-
cessing of specimens, if done, are also relevant for proteomic studies and are 
reviewed elsewhere [38, 39].

Study design and bioinformatic analysis decisions when evaluating mass spec-
trometry (MS) data can have profound impacts on the overall results [40–44]. 
Investigations using postmortem ASD brain tissue or samples from rare genetic 
subtypes of ASD are frequently limited by small sample size. Moreover, compara-
tive MS-based methodologies typically require adjusting significance for multiple 
comparisons to ensure that differences that are observed are not due to chance from 
performing several statistical tests [45]. Advanced statistical methods, such as lin-
ear mixed models, can be used to address the particular difficulties faced when 
comparing a small number of cases and replicates in the context of vast amounts of 
proteomic data [46, 47].

In addition to technical replicates, MS-based proteomic findings should be vali-
dated with a second method. For example, interesting findings from a label-free 
unbiased MS analysis should be validated using an independent method such as 
selected reaction monitoring assays. Replication of the findings using a second set of 
biological samples further strengthens a study. Finally, biological relevance should 
be assessed for those interesting findings that were statistically significant. This can 
be challenging, typically requiring support from additional investigative approaches.

12.4  Proteomic Studies of Autism

To date, there have been few proteomic studies of autism [48]. Unbiased or global 
proteomic studies of ASD in humans using nonneural tissues include 12 studies of 
plasma or serum, an analysis of peripheral B lymphocytes, 3 studies of saliva, and 1 
study of urine [49–65]. The characteristics and key findings of these studies are 
shown in Table 12.1.

Several interesting observations were observed in these analyses. Of studies 
using nonneural tissues, many noted altered levels of one or more proteins involved 
in inflammation or immune system regulation, including some acute phase reactants 
and interleukins [49, 52, 53, 55–64]. Abnormalities of the complement system were 
noted in several analyses [62, 63]. This is interesting in view of recent work demon-
strating that the complement pathway can affect synaptic remodeling and has roles 
in neurodevelopment and some neurodegenerative processes [66, 67]. Varied 
 abnormalities of immunologic markers or of immunologic function including, in 
some instances, immune abnormalities involving cerebrospinal fluid or brain tissue 
has been a recurring theme in ASD research [68, 69].

Several proteomic studies identified proteins involved in lipid metabolism as 
differentially expressed in ASD [49, 52, 57, 58, 60, 64]. These findings align with 
some prior metabolic investigations of ASD using other experimental methods [70, 71]. 
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Nonetheless, it is unclear if the abnormalities of lipid metabolism noted in ASD 
tissues are primary or secondary occurrences in ASD pathophysiology.

Because the brain is central to the pathobiology of ASD, studies examining 
neural tissue will likely offer the most understanding into the mechanistic underpin-
nings of ASD. There has been one global proteomic analysis of human ASD brain 
and one targeted proteomic analysis of ASD brain [72, 73]. In an early proteomic 
study using 2D gel electrophoresis followed by MS analysis of a single polypeptide, 
a polymorphic form of glyoxalase 1 in ASD brain was observed. That isoform was 
found to have reduced enzyme activity, and its underlying DNA sequence variant 
was found to be more prevalent in ASD versus control cases [72]. A targeted pro-
teomic analysis of postmortem prefrontal cortex and cerebellum from persons with 
ASD used LC-MS/MS, and this revealed several differentially expressed proteins. 
Most of these proteins were implicated in processes of energy metabolism, synaptic 
function, and myelination [73]. As noted above, abnormalities of synapse biology 
have been consistently noted in diverse studies of ASD pathobiology, but, as most 
synaptic proteins are specific to neural tissue, this finding has not been noted in 
proteomic studies of nonneural tissue, affirming a limitation in the use of nonneural 
tissues in proteomic studies of ASD pathogenesis.

Most proteomic studies of ASD to date have been limited by one or more of the 
challenges described above (Table 12.1). Characterizations of ASD cases and con-
trols were often incomplete. The studies were variably powered to determine signifi-
cant differences between cases and controls. In addition, the studies employed 
different protein extraction and separation methods and MS methodologies and, 
therefore, varied considerably in the comprehensiveness of detection of the proteome 
of their samples. Moreover, the use of a follow-up quantification technique to vali-
date key proteomic results has become increasingly standard in contemporary pro-
teomics, with follow-up targeted LC-MS/MS becoming a preferred approach [74]. 
However, the published ASD proteomic studies have varied in the use of a validation 
of the MS methodology. Finally, there has been a consistent absence of a biological 
replication set in the aforementioned studies.

12.5  Promising Approaches for Future Research

The future of ASD proteomics will require attention to important nontechnical 
ASD-specific issues and other nontechnical matters, in addition to technical issues 
of sample analysis. Important nontechnical issues, noted above, include subject 
inclusion/exclusion criteria, tissue selection, sample size and the powering of the 
study, the state and processing of tissues prior to analysis, the use of technical rep-
licates, validation of the methodology, and replication of the findings using an inde-
pendent set of biological samples. In addition, there are multiple methodologies 
available for mass spectrometric proteomic analysis, each with different strengths 
and applications, and each will likely be impacted by technological advancements 
over the next few years [42]. Methods for proteomic analyses in addition to MS also 
show significant promise [75].
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Certain types of proteomics-based research in ASD hold, in our view, great 
promise. Application of proteomic methods to postmortem ASD brain is likely to 
be informative. Complexities relating to the cellular and tissue heterogeneity of 
brain can also be addressed to some extent. Technologies such as laser capture 
microdissection and fluorescence-activated cell sorting enable investigation of 
highly specific tissue or cell types, while various affinity-based biochemical 
approaches also allow cell type-specific proteomic analysis [32]. Matrix-assisted 
laser desorption/ionization mass spectrometry imaging permits region- and even 
cell-specific measurement of hundreds of proteins in an intact sample of interest in 
an anatomical context, such as in tissue slices, and has already provided insights in 
several neuroproteomic contexts [76, 77]. Proteomic analyses of subsets of proteins 
having specific biochemical modifications, such as the phosphoproteome, are another 
type of proteomic analysis that have potential in furthering our understanding of ASD 
biology, as has been the case for other types of clinical conditions and biological 
processes [78].

The use of differentiated pluripotent stem cells from ASD subjects is an impor-
tant new approach to study the biology of autism. Another promising new tool 
involves the use of brain organoids, miniature in vitro “brain structures” that can 
be developed from cells derived from persons with autism and others, to learn 
about brain biology in autism. Both of these approaches have already generated 
interesting findings related to ASD [12, 79].Analysis of induced pluripotent stem 
cells from ASD cases found increased proliferation of neural progenitor cells and 
neuron numbers mediated by dysregulation of the beta-catenin/BRN2 transcrip-
tional cascade, while RNA-seq analysis on cerebral organoids deficient in the 
ASD risk gene, CHD8, and comparison to other ASD organoid models affirmed 
the importance of DLX genes in ASD pathobiology [12, 80]. However, to our 
knowledge, proteomic analyses have not yet been used in these and related ASD 
model systems.

Proteomic and other studies of animal models of ASD have been informative, 
especially as these experimental systems allow for experimental manipulation that 
is not possible with human tissue [81–84]. Animal models of autism have included 
syndromic forms of autism attributable to single gene mutations or cytogenomic 
lesions. For example, using murine fmr1 knockout neuronal cultures, synaptic 
abnormalities of Fragile X syndrome were connected to differential cortical expres-
sion of proteins involved in the regulation of synaptic structure, neurotransmission, 
and dendritic mRNA transport [85]. Another study using a MeCP2-deficient murine 
model recapitulating Rett syndrome (RTT) found proteomic changes reflecting per-
turbations in RNA metabolism, proteostasis, monoamine metabolism, and choles-
terol synthesis, which have been noted in RTT [86]. Caution is required when 
considering the generalizability of such models to human experience and to ASD 
specifically. Nonetheless, proteomic analyses of animal models of ASD will likely 
continue to provide insights into ASD pathogenesis.

Lastly, integration of multiple experimental methods, for example, a transcrip-
tomic and proteomic combined analysis, has provided knowledge regarding 
dynamic networks of molecular interaction [42, 87]. To date, there have been no 
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human studies of ASD that included such an integrated analysis that incorporates a 
proteomic approach. Coupling other omics methods with proteomics to studying 
human ASD tissues and various models of ASD will be powerful means for advancing 
our understanding of the complexities of ASD pathobiology.

12.6  Conclusions

There have been relatively few proteomics-based studies of autism thus far. In 
addition to technical considerations that are pertinent to any proteomic analysis, 
there are important ASD-related considerations that relate to the diagnosis of ASD, 
its etiological heterogeneity and varied comorbidities, and the brain as the central 
affected organ. Published findings from proteomics-based analyses of ASD have 
varied and require replication, including differential expression of proteins of lipid 
metabolism, inflammation and immune function, synaptic biology, and mitochon-
drial bioenergetics. Moving forward, multi-omics approaches that incorporate pro-
teomic analysis of human brain samples, stem cells, brain organoids, and animal 
models of ASD are likely to be informative. Beyond elucidating ASD pathobiol-
ogy, proteomic approaches could lead to the identification of novel biomarkers 
for improved diagnosis and therapeutic monitoring. In turn, this could result in 
discovery of new drug targets or therapeutic approaches to help improve the lives 
of individuals affected by ASD.
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Chapter 13
Role of the Gut Microbiome in Autism 
Spectrum Disorders

Joby Pulikkan, Agnisrota Mazumder, and Tony Grace

Abstract Autism spectrum disorder (ASD) is a severe neurodevelopmental or neu-
ropsychiatric disorder with elusive etiology and obscure pathophysiology. Cognitive 
inabilities, impaired communication, repetitive behavior pattern, and restricted social 
interaction and communication lead to a debilitating situation in autism. The pattern 
of co-occurrence of medical comorbidities is most intriguing in autism, compared to 
any other neurodevelopmental disorders. They have an elevated comorbidity burden 
among which most frequently are seizures, psychiatric illness, and gastrointestinal 
disorders. The gut microbiota is believed to play a pivotal role in human health and 
disease through involvement in physiological homoeostasis, immunological devel-
opment, glutathione metabolism, amino acid metabolism, etc., which in a reasonable 
way explain the role of gut-brain axis in autism. Branded as a neurodevelopmental 
disorder with psychiatric impairment and often misclassified as a mental disorder, 
many experts in the field think that a therapeutic solution to autism is unlikely to 
emerge. As the pathophysiology is still elusive, taking into account of the various 
symptoms that are concurrent in autism is important. Gastrointestinal problems that 
are seen associated with most of the autism cases suggest that it is not just a psychi-
atric disorder as many claim but have a physiological base, and alleviating the gas-
trointestinal problems could help alleviating the symptoms by bringing out the much 
needed overall improvement in the affected victims. A gut disorder akin to Crohn’s 
disease is, sometimes, reported in autistic children, an extremely painful gastrointes-
tinal disease which is named as autistic enterocolitis. This disturbed situation hypoth-
esized to be initiated by dysbiosis or microbial imbalance could in turn perturb the 
coordination of microbiota-gut-brain axis which is important in human mental health 
as goes the popular dictum: “fix your gut, fix your brain.”
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Keywords Autism spectrum disorder (ASD) · Gastrointestinal problems · 
Microbial dysbiosis · Gut-brain axis

13.1  Introduction

Life will not be possible as we know it today without microbes. Hitherto unknown 
and unpredicted, the role of gut microbiome in human health and disease is being 
explored eloquently with the help of next-generation techniques and allied improve-
ments. Coined by Joshua Lederberg, the term microbiome signifies the natural com-
munity of microorganisms that factually share our body space and can be categorized 
as commensal, symbiotic, or pathogenic and have been all but ignored as determi-
nants of health and disease [1]. Gone are the times when the role of microbes in 
human health was just focused on identifying and treating pathogens in patients, 
usually with antibiotics. Having colonized by trillions of microorganisms [2], these 
microbial communities outnumber the total number of human cells by a factor of 10 
and contain 150 times as many genes as those encoded by the human genome [3], 
suggesting us to consider human gut microbiota as an organ or superorganism that 
coevolved with the human host to achieve a beneficial symbiotic relationship [4]. 
The term “superorganism” would refer to a collection of individuals which behave 
as a single unit with enhanced function [4]. The human host is immensely benefitted 
by the gut microbiota, attested by the fact that there is a plethora of interactions hap-
pening between them throughout the development [4] and its disruption could lead 
to manifold negative consequences [5]. The major role of these microbiota can be 
defined in terms of a metabolic one. A marvelous metabolic capacity equivalent to 
that of the liver is envisioned by the combined metabolic capacity of the microbiota, 
justifying their portrayal as an additional human organ [6] and revealing the exem-
plary host-microbiota mutualism in the gut. Their supreme role in the maintenance 
of host health includes facilitating digestion of otherwise indigestible dietary fibers 
into readily absorbable short-chain fatty acids (SCFAs), synthesis of vitamins and 
other beneficial metabolites, immune system regulation, detoxification of harmful 
substances, and enhanced resistance against colonization by pathogenic microor-
ganisms [5]. The defense against pathogen colonization is achieved by nutrient 
competition and production of antimicrobial activities [7]. Their role in fortification 
of intestinal epithelial barrier and their ability to induce secretory IgA to limit pen-
etration of bacteria into tissues are not to be overlooked. Researches on germ-free 
mice reveal that absence of microbes causes significant immune defects at structure 
levels like decreased Peyer’s patches, lamina propria, and isolated lymphoid folli-
cles. At cellular levels, defects like decreased intestinal CD8+ T cells and CD4+ T 
helper 17 cells and reduced B-cell production of secretory IgA have been reported 
[8] (Fig. 13.1).

The microbiome at a specific niche is believed to cause local as well as systemic 
effects on host biology [7]. Chronic low-grade intestinal inflammation seen in irri-
table bowel syndrome (IBS) [9] and intense intestinal autoimmunity observed in the 
inflammatory bowel disease (IBD) [8] are examples of local effects of the 
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 microbiome on host biology. The systemic effect of microbiome on host biology is 
evident from the fact that the gut microbiome contributes to the etiology of experi-
mental disease models affecting remote organ systems. Immune cells stimulated at 
the intestinal site, like microbe-sensing antigen processing cells (APCs) and adap-
tive immune cells, are trafficked to distal tissue sites by systemic diffusion [7].

Fig. 13.1 The human gut microbiota as a superorganism. The largest microbiome is accredited as 
that seen in our gastrointestinal tract. It is influenced by several external factors, such as diet, 
inflammation stage, environment, and xeno-metabolome. Each microbiome refers an individual 
phenotype, able to describe symbiosis-, dysbiosis-, and disease-related gut conditions (Adapted 
from Putignani et al. (2014) Pediatr Res 76:2–10)
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The bidirectional interaction between the gut-intestine tract and brain via the 
microbiome is crucial for maintaining equilibrium between health and disease. The 
normal microbiome promotes increased metabolic capacity, immune system matu-
ration, and SCFA production, while dysbiosis of microbiome leads to increased 
inflammation and overabundance of Enterobacteriaceae. This leads to decreased 
intestinal mucus, immune cell differentiation, gut-associated lymphoid tissue and 
metabolic capacity, and SCFA production, causing an overall ill health in the host 
[4]. Recent studies indicate that microorganisms within and among the body habi-
tats exhibit intricate relationships. They play a critical role in driving physical fac-
tors such as oxygen, moisture, and pH.  They, also, play a role in the host 
immunological regulation microbial interactions. All these point out the fact that the 
microbiome plays more crucial role in health and disease than expected so far [10].

The crucial intervention by intestinal communities implicated in diseases like aller-
gies [11], late-onset autism [12], inflammatory bowel disease [13], cancer [14], obesity, 
and type 2 diabetes [15] reinstates that our understanding of microbial ecology will have 
a direct bearing on our ability to manage and maintain human health in the future. The 
major move toward studying changes in composition of the intestinal microbiota in rela-
tion to diseases relies primarily on the phylogenetic characterization of the microbiota 
of diseased individuals in comparison with healthy candidates. Given the substantial 
interindividual and intraindividual variations in addition to age-related changes in the 
composition of the intestinal microbiota, it is a difficult task to establish the presence and 
relative abundance of specific microbial communities in relation with human health 
status. However, options are realistic to use specific changes in compositional and func-
tional diversity of microbiota as biomarkers for health or specific diseases.

The gut microbiota is a chief contributor in maintaining normal physiology and 
energy production throughout life. Energy-dependent processes like body tempera-
ture regulation, reproduction, and tissue growth are partly influenced by gut micro-
bial energy production [16] further giving evidences for the importance of gut 
microbiota. The gut microbiome dysbiosis is believed to have a negative impact on 
gastrointestinal tract-related disorders such as Crohn’s disease and ulcerative coli-
tis, systemic diseases like metabolomic disorders, and central nervous system 
(CNS)-related disorders [17]. This review highlights the importance of the gut 
microbiome in autism which is a non-immune-mediated CNS disorder in which the 
role of gut microbiome has been implicated in its exacerbation.

13.2  Plausible Mechanisms Involved in Gut-Brain Axis 
Through Gut Microbiome Intervention: Bidirectional 
Communication

Gut-brain axis (GBA) can be defined as a physiological framework in which the gut 
microbiota communicates with the CNS and vice versa through neural, endocrine, 
and immune pathways. The communication being bidirectional, the role of the brain 
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on the microbial content of the gut and how the intestinal microbiota influences the 
brain and behavior solicit equal attention. Homeostases of several systems like gas-
trointestinal tract (GI) function, appetite, and weight control are a few major factors 
that are significantly affected by the GBA. The microbial habitat is determined by 
GI motility as well as epithelial functions. Since these factors can be regulated by 
the CNS, any changes induced by the CNS can result in alteration and perturbation 
of intestinal microbiota leading to several pathological situations [9].

The enteric microbiota can assert their influence on gut homeostasis by means of 
regulation of bowel motility, modulation of intestine pain, immune responses, and 
nutrient processing [18]. Mounting evidences indicate that gut microbiome does 
affect the development and regulation of hypothalamic-pituitary-adrenal axis (HPA) 
and behavior [19]. Characterization of the bidirectional interactions between the 
CNS, the enteric nervous system (ENS), and the GI tract has brought about results 
which convincingly suggest the role of the gut microbiota in these gut-brain interac-
tions. This type of bidirectional communication which mediates the symbiotic and 
pathogenic relationships between the bacteria and the mammalian host is called 
“microbial endocrinology” [20] or “interkingdom signaling” [21]. The gut micro-
biota appears to influence the development of emotional behavior, stress and pain 
modulation systems, and brain neurotransmitter systems. Some of the recent 
researches explain the multiple mechanisms involved. Endocrine and neurocrine 
pathways facilitate gut microbiota-to-brain signaling, and the brain, in turn, alters 
microbial composition and behavior through the autonomic nervous system with 
the active involvement of immune and humoral system [22].

The enteric microbiota does assert a vital impact on “gut-brain axis” (GBA), 
interacting locally with intestinal cells and the ENS and directly with the CNS 
through neuroendocrine and metabolic pathways (Fig. 13.2). To enumerate the main 
assistances rendered by bacterial colonization in terms of their absence or presence 
would include development and maturation of both the ENS and CNS [23], altered 
expression and turnover of neurotransmitters in both nervous systems [24], altera-
tions of gut sensory-motor functions leading to delayed gastric emptying and intes-
tinal transit [25], and enlarged cecal size [26]. The neuromuscular abnormalities 
caused via the intervention of microbiota results in downregulation of gene expres-
sion of enzymes related to the synthesis and transport of neurotransmitters and mus-
cular contractile proteins [27]. These aberrations have been seen to be normalized 
once the experimental animals are colonized with specific bacterial species.

It has been observed that germ-free (GF) mice generally show decreased anxi-
ety and an increased stress response. The organism with enhanced levels of ACTH 
and cortisol demonstrates that microbiota influences stress reactivity and anxiety-
like behavior. The microbiota also regulates the set point for HPA activity and 
modulates the serotoninergic system. GF animals are also known to suffer from 
memory dysfunction with an altered expression of brain-derived neurotrophic 
factor (BDNF) [28].

The main principal mechanisms by which the bidirectional brain-gut-microbiota 
axis works have been deduced. The gut microbiota asserts its role over the brain 
through its influence on production, expression, and turnover of neurotransmitters 
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like serotonin and gamma-aminobutyric acid (GABA) and neurotrophic factor 
(BDNF), protection of the intestinal barrier and tight junction integrity, modulation 
of enteric sensory afferents, production of various bacterial metabolites, and muco-
sal immune regulation, while the brain claims its influence over microbiota through 
their capacity to bring about alterations in mucous and biofilm production, altera-
tion in motility, alteration of intestinal permeability, and alteration in immune func-
tion [28]. The decisive role of the gut microbiota in the production of biologically 
active, free catecholamines in the gut lumen of mice is established. Catecholamines 
are crucial in regulation of various types of body functions such as cognitive abili-
ties, mood, and gut motility. The principal catecholamines like norepinephrine (NE) 
and dopamine (DA) are utilized in the CNS and peripheral nervous systems [29]. A 
comparative study between specific pathogen-free mice (SPF-M) and germ-free 
mice (GF-M) showed that substantial levels of free dopamine and norepinephrine 
were available in the gut lumen of SPF-M. Also the available catecholamine levels 
were found to be in a biologically inactive, conjugative form in GF-M. When GF-M 
was introduced with Clostridium species or SPF fecal flora, which are known to 
have abundant β-glucuronidase activity, drastic elevation of free catecholamines 
was visible indicating the role of gut microbiota and in particular the need of 
β-glucuronidase activity in these organisms [30]. The role of gut microbiota in regu-
lation of sympathetic nervous system (SNS), a component in bidirectional signal-
ing, has also been reported to take place with the help of short-chain fatty acids and 
ketones produced by microbiota and their promotion of sympathetic outflow via G 

Fig. 13.2 Microbiota-gut-brain (MGB) axis. Pathways either directly or indirectly influence the 
bidirectional interactions between the gut microbiota and the central nervous system (CNS), 
involving endocrine, immune, and neural pathways (Courtesy: Augusto et al. (2013) Front Integr 
Neurosci 7:70)
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protein-coupled receptor 41 (GPR41) [31]. The effect of short-chain fatty acids on 
enterochromaffin cells promotes colonic serotonin production [32] and influences 
memory and learning process [33]. Another plausible mechanism of microbiota- 
GBA interaction could be through the release of biologically active peptides from 
enteroendocrine cells which in turn is regulated by the nutrient availability of the 
microbiota [34].

When microbiota influences the brain in ways mentioned above, the GBA being 
a bidirectional signaling pathway, it should be an unavoidable occurrence that the 
brain dictates or influences microbiota composition and function through various 
other mechanisms. One major mechanism by which the brains assert its impact on 
the microbial population is exposure to stressors. A pyrosequencing study carried 
out to assess the effects of a single 2-hour exposure to a social stressor made a sub-
stantial alteration on colonic mucosa-associated microbial profiles of C57BL/6 
mice, significantly reducing the relative proportions of the two genera and one fam-
ily of highly abundant intestinal bacteria, including the genus Lactobacillus [35]. 
This can happen either directly via host-enteric microbiota signaling or indirectly 
via changes in the intestinal milieu. A more direct and evident influence on micro-
biota is facilitated by secretion of signaling molecules by neurons, immune cells, 
and enterochromaffin cells, under the regulation of the brain. As there are neu-
rotransmitter receptors on bacteria, binding of neurotransmitters is capable of influ-
encing the function of components of the microbiota that have influence on 
inflammatory and infection stimuli [21]. An example in this regard can be found in 
Pseudomonas fluorescens which is able to produce GABA and express GABA- 
binding proteins, and they also increase their necrotic-like activity on eukaryotic 
glial cells. This particular study also proved that GABA can regulate the lipopoly-
saccharide (LPS) structure and cytotoxicity in specific strains of P. fluorescens [36]. 
Another interesting dimension is the microbial biofilms in which individual groups 
of bacteria are found to occupy different microhabitats and metabolic niches in the 
human gastrointestinal tract. The prominent role of the brain in modulation of gut 
functions, such as motility; secretion of acids, bicarbonates, and mucus; intestinal 
fluid handling; and mucosal response, is important for the maintenance of the mucus 
layer. The individual groups of bacteria exist in different microhabitats, and meta-
bolic niches as biofilms in these areas are also modulated by this brain function [37]. 
The brain affects the microbiota through various stresses induced mainly by bring-
ing about variation in size and quality of mucus secretion [38], by delaying the 
recovery of the migrating motor complex pattern and inducing a transient slowing 
of gastric emptying [39], by increasing the frequency of cecocolonic spike-burst 
activity through the central release of corticotrophin-releasing factor [40]. This 
causes regional and global changes in gastrointestinal transit which has a profound 
effect on the way nutrients are delivered to the enteric microbiota. The composition 
and biomass of the enteric microbiota get modulated by different types of psycho-
logical stressors both in adult [41] and newborn animals [42]. When postnatal stress 
was induced in animal models by separating the mothers, reduction in lactobacilli 
was observed, disrupting the integrity of the intestinal microbiota with the appear-
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ance of stress-indicative behaviors [42]. The animals in study were also more sus-
ceptible to opportunistic infection compared to unstressed control animals.

A microbial connection has been linked to anxiety and stress, the common forms 
of mood disorders. Germ-free mice exhibit increased motor activity and reduced 
anxiety, suggesting that gut-associated pathogens can exacerbate anxiety. Decreased 
neurotransmitter receptors and increased tryptophan metabolism observed in the 
GF condition tend to suggest that the gut microbiome regulates the set point for the 
HPA axis [24]. When rodents were infected with the food-borne pathogen 
Campylobacter jejuni, rodents showed perceptible anxiety-like behavior. Increased 
c-Fos expression as a result of infection with Campylobacter jejuni underpins the 
notion that gut-associated pathogens can intensify anxiety [43]. While Citrobacter 
rodentium followed a mechanism similar to Campylobacter jejuni [44], Trichuris 
muris elevated anxiety via immunological and metabolic mechanisms [45]. The 
anxiolytic properties exhibited by the specific species of the Lactobacillus and 
Bifidobacterium genera are almost in contrast to the pathogenic bacteria [46].

13.3  Autism and Gut Microbiome

Autism is a non-immune-mediated CNS disorder in which the role of gut microbi-
ome has been implicated in its exacerbation. Among many non-immune-mediated 
CNS disorders, autism stands out due to its prevalence and bewildering increase in 
epidemic levels throughout the world. As per Centers for Disease Control and 
Prevention  data, 1  in 500 to 1  in 166 children has an autism spectrum disorder. 
Various physiological parameters observed in autism include autoimmune reac-
tions, food reactions, diagnostic connection of upper GI disease, abnormal stools, 
autistic enterocolitis, leaky gut syndrome, excessive inflammation, aberrant gluta-
thione levels, irregular metal, mineral levels, etc. [47], all supporting the importance 
of the gut microbiome. The aforementioned parameters are either influenced by 
microbiota or vice versa, revealing the tantalizing link between autism and gut 
microbiome.

Seemingly pervasive, autism spectrum disorders (ASD) are characterized by 
impaired communication, difficulty in social interactions, and stereotyped behav-
ioral patterns [48]. People with autism most frequently tend to display unusual ways 
of learning, paying attention, and reacting to different sensations. Their imaginative 
skills are also known to suffer [49]. Coupling genetic predisposition with environ-
mental factors seems to raise the risk involved in autistic children.

Considered as a psychiatric disorder, many physical symptoms common in 
patients with autism have largely gone unnoticed or even ignored by the medical 
establishment, and coinciding GI symptoms are a major example. Anecdotal reports 
as well as various studies indicate that gastrointestinal problems are frequently asso-
ciated with autism [50] and presumed to have a correlation with autism severity 
[48]. Various independent studies have verified that the GI dysfunction in these 
children includes diarrhea, unformed stools, constipation, bloating, flatulence, etc. 
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[51, 52]. It was Wakefield and colleagues at the Royal Free Hospital in London who 
described a new variant of inflammatory bowel disease, named as autistic enteroco-
litis which is characterized by chronic patchy inflammation and lymphonodular 
hyperplasia in the terminal ileum or in the colon [53]. Intestinal permeability is 
another grave issue faced by children with autism, suggesting a leaky gut which can 
lead to neurological disability as these children are forced to absorb neurotoxic 
molecules across a gut membrane damaged by inflammation [54]. An abnormal 
level of intestinal permeability has also been documented in independently carried 
out studies [55, 56]. A leaky gut allows molecules to enter the bloodstream, other-
wise kept at bay. Immune activation, tissue damage, and effects on the brain, includ-
ing damage to brain tissue, are a few corollary problems that could emerge over 
time. The opioid peptides that are produced from certain diets can disrupt the nor-
mal neurotransmitter function in the brain, causing certain typical behavioral pat-
terns observed in children with autism such as decreased socialization, decreased 
response to pain, abnormal language, and self-abusive or repetitive behaviors. 
Direct effects on the neuronal structure of the brain tissue and on the immune sys-
tem by these opiate-like molecules cannot be ruled out. We need to investigate if 
neurotoxic and cytotoxic molecules produced by microorganisms can contribute to 
intensify the abovementioned situations in autistic enterocolitis and leaky gut and 
their possibility to assert greater damage by working independently or in tandem 
with each other.

Studies undertaken at different research labs indicate a link between the gut 
microbiome and ASD, although a direct causality or indirect consequence of atypi-
cal patterns of feeding and nutrition has yet to be proved. Children with ASD tend 
to show food selectivity with strong preferences for starches, snack, and processed 
food, while most tend to reject fruits, vegetables, and/or proteins [57, 58]. A chronic 
imbalance of gut microbiota known as intestinal dysbiosis is suspected in children 
with autism, and many investigators have found evidence of this imbalance in autis-
tic patients [12]. However, most of the gut microorganisms are beneficial to host, 
and dozens of species of pathogenic organisms, if allowed to thrive due to the com-
promised immune system, can cause disease. Apart from causing local effects on 
gut tissue, abnormal bacteria can have an effect on the brain. The toxins that are 
produced by the harmful bacteria are not properly metabolized. They can build up 
in the brain by way of the bloodstream, resulting in confusion, delirium, and even 
coma. The GI inflammation and abnormal immune functions observed in children 
with autism may increase the abnormal levels of harmful bowel organisms, and 
metabolites produced by the harmful bacteria can create havoc intensifying GI 
inflammation, gut permeability, and abnormal immune functions. Yeasts also seem 
to play a negative role in vulnerable children, as yeasts are known producers of 
chemicals that have neurological effects and children with autism indicate elevated 
levels of chemicals that are found in yeasts [59].

A succession of microbial consortia studies in infants has proven that the micro-
biome gets enriched as associated with life events and as per the diet being intro-
duced. A healthy microbiome is observed to be capable of assisting in the breakdown 
of complex plant polysaccharides, promoting digestion and overall host health [60]. 
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Therefore, it could be predicted that deviations in the establishment and mainte-
nance of the gut microbiome could lead to pain and discomfort. This hypothesis has 
been corroborated by William et al. whose study revealed that children with ASD 
tend to have less of Bacteroidetes which play a prominent role in the digestion of 
polysaccharides. This study could also underpin the suggestion that children with 
autism have anomalous carbohydrate digestion capacity and mucosal dysbiosis in 
the intestines. Metagenomic analysis revealed that they have a decrease in 
Bacteroidetes, an increase in the ratio of Firmicutes to Bacteroidetes, and an increase 
in Betaproteobacteria [49]. A pyrosequencing study of fecal microflora of children 
with autism showed significant differences in the Actinobacteria and Proteobacterium 
phyla in comparison with healthy controls. The same study also showed higher 
prevalence of Desulfovibrio species and Bacteroides vulgatus in stools of severely 
autistic children [12]. Basic anaerobic culturing techniques to count and isolate 
microorganisms, followed by polymerase chain reaction (PCR) targeting the 16S 
rDNA in the isolates cultivated in children with late-onset autism against neurotypi-
cal children, showed that the number and type of Clostridium and Ruminococcus 
species significantly differed from normal children [12]. A follow-up study by Song 
et al. using quantitative real-time PCR found that Clostridium cluster groups I and 
XI and Clostridium bolteae were significantly higher in children with autism [61]. 
Another culture-independent study by Parracho et  al. using fluorescence in situ 
hybridization (FISH) reported elevated levels of Clostridium hystolyticum in the 
ASD children compared to typical children [49]. Disruption of gut microbiota might 
contribute for the over-colonization of neurotoxin-producing bacteria, exacerbating 
autistic symptoms. Clostridium tetani is looked upon as an organism that could 
induce autism [62]. Clostridia are known propionate producers [63], and the prop-
erty of propionate to bring upon neurological effects in rats [64] has led to the 
hypothesis that incidence of autism is related to extensive exposure to Clostridium 
spores. A study into investigation of prevalence of four types of beneficial bacteria 
including Bifidobacteria, Lactobacillus spp., E.coli, and Enterococcus revealed that 
the children with autism had much lower levels of Bifidobacterium, slightly lower 
levels of Enterococcus, and much higher levels of Lactobacillus [65]. Given that all 
Lactobacillus strains are beneficial, their higher levels seem to be paradoxical and 
need to be understood. With regard to commensal bacteria which are neither benefi-
cial nor harmful, the same study found that the autism group was more likely to 
have Bacillus spp. and less likely to have Klebsiella oxytoca. However, a significant 
piece of information procured by the same study was the finding of significantly 
lower levels of short-chain fatty acids observed in autistic children. This was thought 
to occur due to lower saccharolytic fermentation by beneficial bacteria further sub-
stantiating the suspected link between autism and gut microbiome [50].

The finding of distinctive gut microbes associated with ASD was brought about 
in a small pilot study using a high-throughput sequencing of the 16S rDNA gene by 
Kang et al. An overall less diverse gut microbiome with a lower abundance of the 
bacterial genera Prevotella, Coprococcus, and unclassified Veillonellaceae was 
reported in this study. The said organisms are versatile carbohydrate-degrading and/
or fermenting bacteria, and the changes in the spectrum of metabolites produced 
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from a given diet could be greatly influenced by them [66]. The possibility cannot 
be ruled out that the differences in microbiota composition in ASD may have nega-
tively influenced the microbial interactions so as to result in a decreased overall 
diversity and reduced function. Another intriguing observation is that Prevotella is 
a genus highly enriched in populations of agrarian societies, and its depletion in 
ASD shall be probed if certain environmental factors like industrialization contrib-
ute to the prevalence of autism. Individuals with untreated HIV infection are 
reported to have uniformly high Prevotella [67], and a reverse pattern is observed in 
ASD. The rationale behind this observation can be explained as HIV patients with a 
suppressed adaptive immune system tend to have a higher number of Prevotella, 
whereas those with ASD have a hyperactive adaptive immune system with less 
Prevotella occurrence.

The metabolites produced by various microorganisms could be performing the 
same or different functions affecting the system in manifold ways, depending upon 
their differential abundance. It has been proven that differential abundance of 
bacteria- produced metabolites has the potential to directly affect neural processes. 
Increased urinary excretion of an abnormal phenylalanine metabolite of Clostridia 
species, namely, 3-(3-hydroxyphenyl)-3-hydroxypropionic acid (HPHPA), has been 
confirmed in urine samples from patients with autism. This tyrosine analogue is 
thought to be responsible for depletion of catecholamines, and, thus, it is believed to 
be a chief contributor in the exacerbation of typical autistic symptoms like stereo-
typical behavior, hyperactivity, and hyper-reactivity in experimental animals [59]. 
P-Cresol is another microbial metabolite which can initiate damage in cases of 
autism as they compete with neurotransmitters for enzymes and cofactors needed 
for sulfonation reactions in the liver [68]. A recent study using a maternal immune 
activation (MIA) model of ASD in mice showed a significant increase in 
4- ethylphenylsulfate (4EPS), a metabolite produced by gut bacteria [69]. Bacterial 
tag-encoded FLX-titanium amplicon pyrosequencing carried out by De Angelis 
et al. showed that the highest microbial diversity presented with autism. The same 
study also identified higher abundance of Caloramator, Sarcina and Clostridium 
genera in autistic children. Alistipes and Akkermansia species were higher in autism 
along with almost all of the identified Sutterellaceae and Enterobacteriaceae. 
Concomitantly, the levels of free amino acids and volatile organic compounds of 
fecal samples were markedly different in autism [70]. Notably, lower levels of 
Prevotella, Coprococcus, and unclassified Veillonellaceae were observed by Kang 
et al. in autistic children in a study carried out using 16 s rRNA gene pyrosequenc-
ing analysis from fecal DNA samples [66].

13.3.1  Mineral Elements and Gut Microbiome

Higher average levels of several toxic metals are evident in autism severity. 
Lead, mercury (Hg), arsenic (As) [71], thallium, tin, and tungsten [72] are 
among a few of the metals which correlate with autism severity. The role of 
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environmental pollutants such as these heavy metals in the alteration of physi-
ological functions causing detrimental effects on health has been established. 
Recognized as neurotoxicants with known effects on neurodevelopment, their 
role in microbial dysbiosis is inferred adding to the exacerbation of autism 
symptoms. Although, the exact mechanism has not been deduced, the essential 
role of the intestinal microbiome in limiting the heavy metal body burden has 
been established using GF mouse studies [73]. An interesting conclusion of this 
particular study was that genes relevant for divalent metal transporters and oxi-
dative pathways were expressed with significant differences depending on the 
microbial status of the animal along with the dose and type of metals present, 
suggesting the complex host-microbe interplay induced by the environmental 
pollutants inside the gut. The ability of metals such as Hg and As to exert toxic 
effects on human health has been well characterized. The volatile derivatives of 
these metals interact directly with host cells causing irreversible damage and 
aggravate the diseased state by disturbing the physiological microflora [74]. The 
critical role of gut microbiota in intestinal homeostasis is characterized by the 
fact that different types of dysbiosis cause diseases outside and inside the intes-
tine. A study by Breton et al. proved that oral exposure to heavy metals does 
lead to specific changes in bacterial commensal communities. Their study 
showed that, relative to the control animals, test animals had notably lower 
numbers of Lachnospiraceae and higher numbers of Lactobacillaceae and 
Erysipelotrichaceae [73].

Chronic dietary depletion of elements like iron (Fe) [75] and zinc (Zn) [76] is 
found to induce significant taxonomic alterations in the gut microbial profile. 
Understanding the effects of Zn deficiency on the host may help to elucidate the 
influence of gastrointestinal microbiota on physiology from a novel perspective. 
The need of Zn, almost in double the amount, in conventionally raised mice 
against their germ-free counterparts as indicated in studies points out the role of 
the host microbiota in Zn homeostasis [77]. It has also been seen that optimal 
levels of Zn administration on various animal models had the benefits of increased 
concentration of short-chain fatty acids (SCFAs) [78], increased overall bacterial 
species richness and diversity [79], and favorable change in metabolic activity 
[80]. Studies have also revealed that gut microbial diversity of Zn-deficient organ-
isms bear a resemblance to that of GI microbiota in pathological states. The men-
tioned study also suggested that chronic Zn deficiency may reshape the gut 
microbiome. The metagenome predictive analysis showed that cecal microbiome 
metabolism was perturbed in Zn-deficient organisms since aberrant pathways 
involving lipid metabolism, carbohydrate digestion, and mineral absorption were 
prominent [76].

With practical concern for human health, Fe is also an important trace element 
to study. Low Fe conditions are seen to cause a decrease in Roseburia spp. and an 
increase in Lactobacillus spp., along with a parallel decrease in butyrate and pro-
pionate [75]. Thus low Fe conditions may contribute to weaken the barrier effect 
of microbiota by strong dysbiosis and decreased production of beneficial 
metabolites.
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13.3.2  Glutathione Metabolism and Gut Microbiota

One of the most important molecules, glutathione, is popularly called the mother of 
all antioxidants. This prototype antioxidant is capable of protecting cells from the 
harmful effects of oxidative stress and can act as a defensive agent against toxic 
xenobiotics [81]. Although the role of gut microbiota and dysbiosis is inferred as a 
cause for many pathological situations, the mechanistic insight into how the specific 
microbial populations lead to the progression of such disorders has not been studied 
extensively. It has been assumed that microbiota in the small intestine consumes 
glycine as well as other amino acids to support its growth and survival, curtailing 
the availability to the host and thus causing decreased levels of the amino acids and 
glutathione metabolism [82]. This could underlie the mechanism of how the gut 
microbiome plays a pivotal role in the exacerbation of certain metabolism-related 
disorders.

13.4  Conclusions

The realization is that the microbes that live inside and on us outnumber our somatic 
and germ cells by an estimated tenfold. This has given them the status of a supraor-
ganism with their capacity of providing traits in human beings and has significantly 
increased the importance of gut microbiome in health and disease. This concept is 
expected to lead to a paradigm shift in the strategies involved in diagnosis, progno-
sis, and treatment of a few disorders involving the gut-brain axis in which autism 
claims a position. Without a cure so far and with limited knowledge on the etiology 
of the disorder, autism is a topic that needs immediate attention from the research-
ers. As some of the studies indicate that the gut microbiome modulates the glutathi-
one and certain minerals like zinc, copper, and iron in the experimental organism, 
studies on the gut microbiome in autism can give some serendipitous insights into 
the etiology, diagnosis, and treatment of this condition.
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Chapter 14
Metabolomic Biomarkers in Mental 
Disorders: Bipolar Disorder 
and Schizophrenia

Melissa Quintero, Danijela Stanisic, Guilherme Cruz, João G. M. Pontes, 
Tássia Brena Barroso Carneiro Costa, and Ljubica Tasic

Abstract Psychiatric disorders are some of the most impairing human diseases. 
Among them, bipolar disorder and schizophrenia are the most common. Both have 
complicated diagnostics due to their phenotypic, biological, and genetic heteroge-
neity, unknown etiology, and the underlying biological pathways, and molecular 
mechanisms are still not completely understood. Given the multifactorial complex-
ity of these disorders, identification and implementation of metabolic biomarkers 
would assist in their early detection and diagnosis and facilitate disease monitoring 
and treatment responses. To date, numerous studies have utilized metabolomics to 
better understand psychiatric disorders, and findings from these studies have begun 
to converge. In this chapter, we briefly describe some of the metabolomic biomark-
ers found in these two disorders.

Keywords Psychiatric illness · Mental disorders · Schizophrenia · Bipolar 
disorder · Biomarkers · Metabolomics

14.1  Introduction

Millions of people experience mental or neuropsychiatric disorders including bipo-
lar affective disorder and schizophrenia, among others. These mental illnesses, usu-
ally observed in childhood, adolescence, and early adulthood, are characterized by 
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a combination of abnormal thoughts, emotions, behaviors, and disturbed perception 
of reality, affecting not only the person with illness but also society. While not being 
completely understood in terms of their causes, the symptoms of mental illnesses 
are scientifically valid and well known. Treatments are readily available and include 
psychotherapy and medication and are effective for most people, but there are no 
specific tests that can be used as an add-on for diagnosis. As such, there are high 
levels of curiosity to understand if molecular biomarkers can assist in making 
clearer diagnostic decisions.

Biomarker research has been an extensive success in various medical fields so 
far, but using biomarkers to diagnose and predict treatment response for mental 
disorders is still a challenge [1]. Based on observations that a specific compound 
may be present or altered just in patients with a given mental disorder and not in 
healthy individuals, a valid biomarker can be found if successfully detected. 
However, the fundamental definition of a psychiatric disorder is based on subjective 
and/or behavioral criteria which are determined clinically, making it difficult to 
determine whether or not a person has a particular disorder [2].

The search for biomarkers for psychiatric disorders has a long history, with ear-
lier studies investigating molecular markers, like platelet imipramine binding or 
cerebrospinal 5-hydroxyindoleacetic acid (5-HIAA) in people with depression [3], 
or behavioral markers such as smooth pursuit eye movements in people with schizo-
phrenia [4]. Currently, global profiling approaches, such as metabolomics, are 
expected to be able to pinpoint discriminating molecules as clinical biomarkers, 
providing an overview of the metabolic status and global biochemical events associ-
ated with a particular cellular or biological system [5]. Metabolomics has the poten-
tial to scrutinize candidate markers that will improve the diagnosis of the diseases 
facilitating better patient prognoses and, thus, the development of novel therapeutic 
strategies [6]. Metabolic markers in diagnosis are thought to be one of the most 
interesting categories of biomarkers, given their role in physiological processes. 
Since a biomarker should be detected and measured in a sample obtained using 
noninvasive procedures, body fluids including plasma/serum, urine, saliva, and, to 
some extent, cerebrospinal fluid (CSF) are thought to be useful sources for bio-
marker monitoring [5]. Furthermore, the scientific synergy between biomarkers and 
metabolomics is important as metabolomics has been used in many instances to 
identify novel biomarkers which can lead to new and improved therapeutic strate-
gies for many serious and life-threatening diseases. Preliminary metabolomic signa-
tures and some biomarkers have already been described for schizophrenia and 
bipolar disorder [7–11], but the endophenotype specificities are still under discus-
sion, and identification of illness-specific biomarkers capable of adding not only to 
the diagnosis process but for use in monitoring prognosis or clinical response to 
treatment is still lacking. We need to improve the understanding of the biological 
abnormalities in psychiatric illnesses across conventional diagnostic boundaries. 
This review focuses on metabolomic biomarkers for bipolar disorder and 
schizophrenia.
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14.1.1  Metabolomic Biomarkers

The use of metabolomics in the examination for novel biomarkers in different clini-
cal areas is based on the hypothesis that diseases cause disruption of biochemical 
pathways leading to a metabolic fingerprint characteristic of the site and nature of 
the disease [12]. The term “biomarker” or “biological marker” was first used in 
1989 as a medical subject heading to mean “measurable and quantifiable biological 
parameters which serve as indexes for health- and physiology-related assessments 
such as disease risk, psychiatric disorders, environmental exposure and its effects, 
disease diagnosis, metabolic processes, substance abuse, epidemiologic studies 
etc.” In 2001 that definition was standardized and further defined. One of the earliest 
biomarker approaches in psychiatry [13] employed chromatography to detect a uri-
nary metabolite, 3,4-dimethoxyphenylethylamine (later identified as p-tyramine 
[14]), which formed a controversial “pink spot” on paper chromatograms among 
those with schizophrenia but not in healthy individuals. Since then, genomic and 
transcriptomic approaches have dominated biomarker discovery efforts in psychiat-
ric disorders. However, the global study of metabolites (i.e., metabolomics) emerged 
later as a promising approach for identification of potential diagnostic and treatment 
response biomarkers for psychiatric disorders [15].

Currently, there are several types of metabolomic biomarkers, which enable 
response prediction or dynamical description of both disease progression and treat-
ment effectiveness. The integration between clinical metabolomics and pharmacol-
ogy may allow the discovery of more meaningful biomarkers which could enable 
the development of individualized treatment methods. The success of this integra-
tion depends on the explicit consideration of study designs and data analysis tech-
niques that can effectively quantify sources of biological variability [16].

To date, the most explored bioanalytical platforms in metabolomics research are 
nuclear magnetic resonance (NMR) and mass spectrometry (MS) [17]. The recent 
rapid development of a range of analytical platforms including gas chromatography, 
liquid chromatography techniques like high-performance liquid chromatography 
(HPLC) or ultra-performance liquid chromatography (UPLC), and capillary elec-
trophoresis, and the use of these as hyphenated analytical methods coupled to MS 
or NMR, created new possibilities for biomarker research. Other techniques popular 
in metabolomic research include magnetic resonance imaging (MRI) and high- 
resolution magic angle spinning spectroscopy (HR-MAS). Bioanalytical platforms 
enable separation, detection, characterization, and quantification of metabolites, 
and then we can relate this information to altered metabolic pathways. Due to the 
complexity of the metabolome and the diverse properties of metabolites, no single 
analytical platform can detect all of the metabolites in a biological sample. The 
combined use of modern instrumental analytical approaches has helped to increase 
the coverage of detected metabolites that cannot be achieved by single-analysis 
techniques [18–20]. Integrated platforms have been frequently used to provide sen-
sitive and reliable detection of thousands of metabolites in a biofluid sample 
(Fig. 14.1).
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Fig. 14.1 Workflow in untargeted metabolomic studies. After clinical evaluation and sample col-
lection from at least two groups (e.g., disease and healthy), an appropriate analytical method or 
combination of more than one should be used for sample assessment and the resulting large 
amounts of data analyzed for differences that might point to mental disorder biomarkers
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Bioanalytical platforms in metabolomics start from a comparative analysis 
among at least two groups of samples and rely on big data processing by chemomet-
rics. The most used of the data processing techniques are multivariate statistical 
analyses such as principal component analysis (PCA) to explore the data and detect 
outliers [21, 22], partial least squares discriminant analysis (PLS-DA) and orthogo-
nal partial least squares discriminant analysis (OPLS-DA) to classify the samples 
and identify the main metabolites responsible for the discrimination [23, 24], and 
logistic regression to evaluate the metabolites as biomarkers [25]. The list of tools 
available for spectral processing and data analysis are available in Alonso et al. [19].

14.2  Biomarkers in Psychiatric Disorders

14.2.1  Metabolomic Biomarkers in Bipolar Disorder

Bipolar disorder is chronic and recurrent disorder that affects around 1% of the 
global population [26–28], leading to disabilities in young people (mostly between 
18 and 44 years of age), such as cognitive and functional impairment, and increased 
mortality particularly from suicide and cardiovascular disease [29, 30]. Bipolar dis-
order is characterized as biphasic moods that include depression and mania (in 
some cases hypomania) and which occur as recurrent episodes of changes in behav-
ior of individuals. There are several subclassifications of this disorder including 
bipolar I, bipolar II, cyclothymia, and other atypical forms, depending on severity 
and duration of depressive and manic episodes [29]. The diagnostic error still leads 
to erroneous treatment, increasing patient suffering, and, therefore, greater suicide 
risk [31].

Bipolar disorder is a major cause of comorbidity because it directly affects the 
productivity of people making the disease a socioeconomic problem, besides being 
a major cause of death, and 25% of those affected by the disease attempt suicide 
with 11% success [30, 32–34]. Bipolar disorder is a historically known disease with 
well-documented epidemiology [30]. In the early nineteenth century, it was believed 
that the cause of most diseases was a problem of uric acid metabolism. By exerting 
influence on common diseases such as gout, high blood pressure, and renal calculus, 
it was also attributed to dementia, schizophrenia, mania, depression, and bipolar 
disorder [31]. Lithium was discovered as a chemical element in the same century. In 
the tests performed with its salts, mainly lithium carbonate, it was found that it is 
capable of dissolving crystals of uric acid. Based on this information, psychiatrists 
started prescribing lithium carbonate (Li2CO3) for mental disorders. This study 
could be considered as one of the first metabolomic research instances. Other stud-
ies showed that Li+ was effective against bipolar disorder [31, 35, 36].

Bipolar disorder biomarkers have been studied in blood, serum, urine, and 
plasma by 1H NMR [10, 37–39], by gas chromatography (GC)-MS [38, 40, 41], and 
through in  vivo brain imaging experiments [42–44]. Table  14.1 lists some of 
 metabolites that are altered for this type of mental disorder including 
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Table 14.1 Specific biomarkers related to bipolar disorders

Biomarkers Sample type
Analytical 
platforms

Acetate-choline [39] Human blood serum NMR
Acetone [10, 45] Female urine NMR
N-Acetyl-aspartate [46] Brain MRS
N-Acetyl-aspartate (NAA)/PCr-Cr [47] White matter MRI
N-Acetyl-aspartyl-glutamate [46] Brain MRS
N-Acetyl-aspartyl-glutamic acid [37] Human blood serum NMR
N-Acetyl-glutamic acid [48] Serum CE-TOFMS
N-Acetyl-phenylalanine [37] Human blood serum NMR
Adipic acid [10] Urine GC-MS
β-Alanine [10, 38, 48] Urine 1H-NMR, 

GC-MS,
CE-TOFMS

γ-Aminobutyric acid (GABA) [42, 49] Brain, temporal lobes MRS, MRI
β-Amino-isobutyric acid [10] Urine GC-MS
Amygdalin [37] Human blood serum NMR
Arabitol [10] Urine GC-MS
Arginine [48] Serum CE-TOFMS
Azelaic acid [10, 38] Urine NMR, GC-MS
Choline [9, 37, 45] Human blood serum, urine, male 

urine
NMR

Citrulline [50] Plasma of drug-free patients CE-TOFMS
Creatine [42–44, 46] Brain, white and gray matter, 

cerebrospinal fluid
MRS, MRI

Formate [10, 45] Male urine NMR
Glutamate [39, 42–44] Brain, human blood serum, white 

and gray matter, cerebrospinal fluid
MRS, MRI, 
NMR

Glutamine [37, 42–44] Human blood serum, brain, white 
and gray matter, cerebrospinal fluid

NMR, MRS, 
MRI

Glycine [10] Urine GC-MS
Glycerol-phosphocholine + 
phosphocholine (GPC + PC) [47]

White matter MRI

Glycolate [10] Urine NMR
5-HIAA [51] White matter HPLC, DTI
5-HT serotonin neurotransmitter [51] White matter HPLC, DTI
4-Hydroxybenzoic acid [10] Urine GC-MS
α-Hydroxybutyrate [9, 10, 38, 45] Urine NMR, GC-MS
5-Hydroxy-hexanoic acid [10] Urine GC-MS
D-Hydroxy-pyrimidine [10, 38, 41] Urine NMR, GC-MS
Isobutyrate [9] Urine NMR
Isocitric acid (isocitrate) [52] CFS (rats) CE-TOFMS
α-Ketoglutaric acid [37] Human blood serum NMR

(continued)
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α-hydroxybutyrate, choline, isobutyrate, and N-methylnicotinamide which differen-
tiate patients with bipolar disorders from healthy individuals, while propionate, for-
mate, 2,3- dihydroxybutanoic acid, phenylalanine, 2,4-dihydroxypyrimidine, and 
β-alanine were differentiated in patients with bipolar disorder and mild cognitive 
disorders [9, 41, 55].

In some studies, such as 1H-NMR analysis of anterior cingulate cortex of brain tis-
sue, a higher concentration of myo-inositol in patients with bipolar disorder was found 
and when patients underwent treatment with lithium-based drugs, the concentration of 
myo-inositol was decreased considerably [53]. These data were reinforced by the 
metabolomic analysis of blood serum [37]. Myo-inositol is synthesized from special 
plasma membrane lipids by inositol monophosphatase type II (IMPase II), which is a 
candidate enzyme for Li+ since it is inhibited by Li + in tests using pharmacologically 
relevant concentrations in vitro [56]. Myo-inositol acts as a secondary messenger 

Table 14.1 (continued)

Biomarkers Sample type
Analytical 
platforms

Kynurenine, kynurenic acid and 
3-hydroxy-kynurenine [51]

White matter HPLC, DTI

Lactate[10] Urine NMR
Lipids and lipoamide [37, 39] Human blood serum NMR
Mannitol [10] Urine GC-MS
Methylmalonic acid [10] Urine GC-MS
N-Methyl-nicotinamide [45] Urine NMR
Myo-inositol [37, 39, 53] Human blood serum NMR
Oxalacetate [45] Female urine NMR
Phenylalanine [10] Urine GC-MS
Phosphatidic acid (44:4) [54] Human blood serum UHPLC-MS
Phosphatidic acid (48:8 (OH)) [54] Human blood serum UHPLC-MS
Phosphatidylethanolamine (42:5) [54] Human blood serum UHPLC-MS
Phosphatidylglycerol (32:4 (OH)) [54] Human blood serum UHPLC-MS
Phosphatidylinositol (40:3) [54] Human blood serum UHPLC-MS
Phosphocreatine-creatine (PCr-Cr) [44, 
47]

White matter and gray matter, 
cerebrospinal fluid

MRI

Propionate [10] Urine NMR
Pseudouridine [38] Urine NMR, GC-MS
Pyruvate Serum CE-TOFMS
Pyroglutamic acid [10] Urine GC-MS
Serine [48] Serum CE-TOFMS
Triacylglycerol (42:3) [54] Human blood serum UHPLC-MS
Tryptophan [51] White matter HPLC, DTI
5-Hydroxyindole-3-acetic acid 
(5-HIAA) [51]

White matter HPLC, DTI

5-Hydroxytryptamine (5-HT) serotonin 
neurotransmitter [51]

White matter HPLC, DTI
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and is responsible for immobilizing calcium (Ca2+) stored inside the cell, which acts 
as a prosthetic agent of other enzymes such as hexokinase. In general, myo-inositol 
is able to initiate several metabolic paths vital to cellular functions [57]. The action 
of Li+ may be linked to the competitive inhibition of inositol monophosphatase II, 
which would lead to a decrease in myo-inositol concentrations in neurons, which 
depend on this enzyme to synthesize it since myo-inositol does not cross the blood-
brain barrier [58].

On the other hand, glutamate, glutamine, creatine, and the ratios among these 
metabolites are the most cited in the literature, and NMR, MRI, LC-MS, and HPLC 
techniques have been used for their detection [37, 39, 42–44]. Glutamate is one of 
the most abundant neurotransmitters in the brain, as a precursor of glutamine, 
γ-aminobutyric acid (GABA), and glutathione. It is one of the structural compo-
nents of proteins and an intermediate metabolite [59–61]. The differences between 
metabolites indicated by Sethi et al. [37] lead to conclusion that some possible bio-
markers for bipolar disorder are α-ketoisovaleric acid, α-ketoglutaric acid, N-acetyl- 
aspartyl glutamic acid, N-acetyl-phenylalanine, and glutamine, which were detected 
or altered only in bipolar disorder patients, while N-acetyl-alanine was detected 
only in controls [37]. N-acetyl-aspartate, N-acetyl-aspartyl-glutamate, creatine, and 
phosphocreatine are some of the metabolites suggested by Haarman et al. [46] as 
the levels of these were decreased in the left hippocampus after MRS quantification 
using LC Model. The authors hypothesized that these results are a consequence of 
diminished neuronal integrity in this region. N-acetyl-aspartate is the second most 
abundant substance in the central nervous system, formed in mitochondria from 
acetyl-CoA and aspartate. Phosphocreatine and creatine are important buffers in the 
brain and muscle tissues, providing energy and a constant ATP concentration, and a 
decrease in their concentrations might be due to cell death [46].

A lipidomic study in blood serum employing ultra-HPLC (UHPLC) coupled 
with high-resolution MS (HRMS) identified lipid profiles of bipolar disorder 
patients and healthy individuals. Sphingolipids and glycerolipids were increased, 
while glycerophospholipids were decreased in patient serum samples. Of the lipids 
with greater differential proportions in the groups, the authors concluded that phos-
pholipid biosynthesis is the most altered pathway in bipolar disorder patients [54].

Recently, Soeiro-de-Souza et al. [43] investigated and compared healthy indi-
viduals with bipolar disorder I and II patients, who were treated with Li+, anticon-
vulsants, and antipsychotics. The authors carried out brain imaging using magnetic 
resonance spectroscopy and quantified glutamate, glutamine, and creatine and their 
ratios after treatment. One of their conclusions was that bipolar disorder patients 
and controls had the same volume of white matter but lower volumes of anterior 
cingulate cortex and a higher volume of CSF. Also, the change in the concentration 
of glutamate was observed in treated patients. Moreover, they found a lower ratio of 
glutamate/creatine during medication and a constant glutamine/creatine ratio. By 
comparing bipolar subjects with healthy individuals, the higher glutamate/creatine 
and glutamine/creatine ratios were observed after omitting medications, which 
might be indicative that their increments were not caused by medication use [43]. 
The concentration of glutamine was high, and the glutamate/glutamine ratio and 
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glutamate concentrations were lower in the patient group when compared to the 
healthy controls. Pairing the groups by age and gender, lower glutamate concentra-
tions and glutamate/glutamine ratios were observed in the bipolar patients [42].

Zheng et  al. [9] examined urinary samples using a NMR-based metabonomic 
method and found that choline, isobutyrate, α-hydroxybutyrate, and 
N-methylnicotinamide could be good urinary metabolite biomarkers for bipolar dis-
order (AUC of 0.89 for training samples and 0.86 in the sample test). They found 
that the increase of α-hydroxybutyrate was derived from elevated levels of 
α-ketobutyrate, which is consequence of a higher conversion rate of cystathionine to 
cysteine. The altered levels of choline in bipolar patients’ urine could be due to the 
abnormalities in the acetylcholine neurotransmission precursor mechanism and 
abnormal phospholipid metabolism [9, 62]. The higher concentration of isobutyrate 
in urine is a result of a lower blood concentration of valine, which can influence an 
increase in concentration of catecholamines and serotonin. The N-methylnicotina 
mide concentration was decreased in bipolar subjects being an end product of nico-
tinamide processing in the tryptophan-NAD+ pathway. Tryptophan is a precursor of 
kynurenine and serotonin metabolism, and the decrease in metabolites of nicotinic 
acid leads to an increase in kynurenine metabolism [9]. Five metabolites were speci-
fied as potential biomarkers (pseudouridine, β-alanine, α-hydroxybutyrate, 
2,4- dihydroxypyrimidine, and azelaic acid) in bipolar disorder by a combined 1H- 
NMR/GC-MS approach [38]. Previous studies from the same group suggested that 
2,4-dihydroxypyrimidine, N-methylnicotinamide, choline, isobutyrate, and 
α-hydroxybutyrate are as possible metabolites for diagnosis of bipolar disorder 
using urine samples examined by GC-MS analysis [9, 38, 41].

Another study that connects kynurenic acid and metabolites from kynurenine 
metabolism to bipolar disorder is from Poletti et al. [51]. Kynurenine and kynurenic 
acid were determined from bipolar disorder patient plasma using HPLC and diffu-
sion tensor imaging (DTI) in an evaluation of white matter microstructure. There is 
a hypothesis that serotonergic turnover in bipolar disorder could influence the white 
matter of brain microstructure as that changes in myelination and integrity of myelin 
can influence signal speed and communication with different brain areas [63–65]. 
Through application of DTI, it was possible to confirm the hypothesis in a homoge-
neous sample of patients with bipolar disorder and to link kynurenine acid and 
5-hydroxyacetic acid with changes in white matter microstructure. The result dem-
onstrated an inefficient turnover of serotonin, but this did not affect tryptophan, 
despite the lower concentration of the latter in blood samples [51].

14.2.2  Metabolomic Biomarkers in Schizophrenia

Schizophrenia is a chronic psychiatric disorder with a heterogeneous genetic and 
neurobiological background that influences early brain development and is 
expressed as a combination of psychotic symptoms such as hallucinations and delu-
sions, along with organizational, motivational, and cognitive dysfunctions [66, 67]. 
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It starts in late adolescence or early adulthood and affects approximately 0.5–1% of 
the world population with high heritability [68].

Abnormalities in neurotransmission have provided the basis for theories on the 
pathophysiology of schizophrenia. Most of these theories center on either an excess 
or a deficiency of neurotransmitters such as dopamine, serotonin, and glutamate. 
Other theories implicate aspartate, glycine, and γ-aminobutyric acid (GABA) as 
part of the neurochemical imbalance in schizophrenia [69]. Another theory for the 
symptoms of schizophrenia involves the activity of glutamate, the major excitatory 
neurotransmitter in the brain. This theory has arisen in response to the finding that 
phencyclidine and ketamine, both noncompetitive NMDA/glutamate antagonists, 
could induce schizophrenia-like symptoms [70]. However, there is not a consensus 
on whether there is an increase [71, 72] or a decrease [73, 74] of these metabolite 
concentrations. Metabolites, like tele-methylhistamine (t-MH), were detected by 
GC-MS in CSF samples of schizophrenia patients. Other studies showed that t-MH 
is associated with an increase of histaminergic activity and desensitization of neural 
tissues due to decreases of histamine H1 and H2 receptors and an increase of hista-
mine concentrations [75].

Several metabolomic studies have also pointed to some metabolic abnormalities 
(Table 14.2). He et al. [8] demonstrated differences in amino acid and lipid metabo-
lism in medicated and non-medicated schizophrenia patients when compared to the 
control group. Subsequent analyses of these potentially relevant metabolites as well 
as analysis of known schizophrenia risk genes identified the glutamine and arginine 
signaling pathways as possible risk factors. Another study [71] raised the possibility 
that there are at least two different schizophrenia-related risk pathways, and these 
are involved in glucoregulation and proline metabolism. In addition to glutamine 
and arginine metabolism, amino acids altered in plasma or CSF of schizophrenia 
patients have been linked to nitrogen compound biosynthetic processes. The finding 
of changes in certain lipids, fatty acids, and amino acids has implicated phospho-
lipid synthesis [85]. The use of metabolic profiles in CSF from drug-naïve patients 
compared with matched controls found elevated glucose concentrations in patients, 
whereas the serum glucose concentration showed no differences [7]. Lipid analysis 
in plasma from patients with schizophrenia compared with that of healthy individu-
als revealed significantly lower concentrations of lipids [87]. Potential metabolite 
markers consisted of several fatty acids and ketone bodies, and the presumed upreg-
ulated fatty acid catabolism may result from an insufficiency of glucose supply in 
the brains of patients with schizophrenia [72]. Also, glycine and serine are amino 
acids that have frequently been reported as markers of schizophrenia due to their 
significant changes in the metabolic profile among patients and healthy individuals 
[84, 88, 89].

Noninvasive analyses of schizophrenia patient expired breaths indicated a higher 
level of alkanes when compared to healthy individuals. The level of ethane and 
pentane, which cross the pulmonary alveolar membrane, is result of dead cells due 
to peroxidation of cell membrane lipids. Other alkanes such as butane were not 
detected. Furthermore, pentane is not a specific biomarker for schizophrenia since it 
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Table 14.2 Specific biomarkers related to schizophrenia

Biomarkers Sample type Analytical platforms

Acetoacetate [72] Urine GC-TOFMS and 
1H-NMR

Acetone [72] Urine GC-TOFMS and 
1H-NMR

N-Acetyl-aspartate [76] Serum GC-MS
Cis-aconitic acid [72] Urine GC-TOFMS
Allantoin [77] Serum GC-MS
2-Aminoadipic acid [72] Urine GC-TOFMS
α-Aminobutyrate (AABA) [72] Serum

Urine
GC-TOFMS

γ-Aminobutyric acid (GABA) [77] Blood LC-ESI/MS/MS
Arachidonic acid [78] Serum HPLC-MS

HPLC fluorescence
Arginine [8] Plasma MS
Aspartic acid [40, 72, 76] Serum

Peripheral blood mononuclear 
cells (PBMC)

GC-MS
GC-TOFMS

Benzoic acid [40] PBMC GC-MS
Betaine [77] Blood and plasma CE-TOFMS
1,3-Bisphosphoglycerate [76] Serum GC-MS
Carbon disulfide [79] Breath GC-MS
Catechol [72] Urine GC-TOFMS
Cholesterol [76, 80] Serum GC-MS
Citrate [7, 72, 76] Serum

CSF
GC-MS
GC-TOFMS and 
1H-NMR

Citric acid [55] PBMC GC-MS
Creatine [77] Blood and plasma CE-TOFMS
Creatinine [40] PBMC GC-MS
Cystine [72] Serum GC-TOFMS
6-Deoxy-mannofuranose [80] Serum GC-MS
Dihydroxyacetone phosphate [55] PBMC GC-MS
2,3-Dihydroxybutanoic acid [72] Urine GC-TOFMS
3,4-Dihydroxyphenylacetic acid 
(DOPAC) [77]

Blood LC-ESI/MS/MS

3,4-Dimethoxyphenethylamine (3,4- 
DMPEA) [81]

Urine MS

Dopamine (DA) [40, 77] PBMC
Blood

GC-MS
LC-ESI/MS/MS

Eicosanoic acid [80] Serum GC-MS
Eicosenoic acid [72] Serum GC-TOFMS
Erythrose [76] Serum GC-MS
Ethane [82] Breath GC-MS
2-Ethyl-3-hydroxypropionic acid [72] Urine GC-TOFMS

(continued)
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Table 14.2 (continued)

Biomarkers Sample type Analytical platforms

Fructose [55] PBMC GC-MS
Fructose 6-phosphate [55] PBMC GC-MS
Fumaric acid [40] PBMC GC-MS
Galactose oxime [80] Serum GC-MS
Glucose [7, 55, 72, 76] PBMC

Urine
CSF
Serum

GC-MS,
GC-TOFMS and 
1H-NMR

Glucose 6-phosphate [55] PBMC GC-MS
Gluconic acid [77] Blood and plasma CE-TOFMS
Glucuronic acid [76] Serum GC-MS
Glutamate [72, 77, 78, 83] Blood, plasma, urine CE-TOFMS;

LC-ESI/MS/MS
GC-TOFMS
HPLC-MS

Glutamine [8] Plasma
CSF

MS

γ-Glutamylcysteine [78] Serum HPLC-MS
HPLC fluorescence

Glutathione [78] Serum HPLC-MS
HPLC fluorescence

Glyceraldehyde-3-phosphate [55] PBMC GC-MS
Glycerate [72] Serum GC-TOFMS
Glycerate 3-phosphate [55] PBMC GC-MS
Glycerol [40, 76] PBMC

Serum
GC-MS

Glycerol 3-phosphate [55] PBMC GC-MS
Glycine [76, 84] Plasma

Serum
GC-MS

Glycocyamine [72] Urine GC-TOFMS
Heptadecanoic acid [80] Serum GC-MS
Hexadecanoic acid
(palmitic acid) [72, 76]

Serum GC-MS
GC-TOFMS

Histidine [8] Plasma MS
Homoserine [40] PBMC GC-MS
Homovanillic acid (HVA) [77] Blood LC-ESI/MS/MS
Hydroxyacetic acid [72] Urine GC-TOFMS
3-Hydroxyadipic acid [72] Urine GC-TOFMS
2-Hydroxybutyrate [72] Serum

Urine
GC-TOFMS

3-Hydroxybutyrate [72, 78] Serum
Urine

GC-TOFMS and 
1H-NMR;
HPLC-MS

2-Hydroxyethyl palmitate [40] PBMC GC-MS

(continued)
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Table 14.2 (continued)

Biomarkers Sample type Analytical platforms

5-Hydroxyindole-3-acetic acid (5-HIAA) 
[77]

Blood LC-ESI/MS/MS

Hydroxylamine [40] PBMC GC-MS
3-Hydroxysebacic acid [72] Urine GC-TOFMS
5-Hydroxytryptamine (5-HT) [77, 78] Blood

Serum
LC-ESI/MS/MS
HPLC-MS
HPLC fluorescence

Inositol [40] PBMC GC-MS
Isoleucine [72] Urine GC-TOFMS
α-Ketoglutarate [76] Serum GC-MS
L-Kynurenine [78] Serum HPLC-MS

HPLC fluorescence
Lactate [7, 55, 72, 76, 78] PBMC

Serum
CSF

GC-MS;
GC-TOFMS; 
1H-NMR;
HPLC-MS

Lactobionic acid [76] Serum GC-MS
Linoleic acid [72, 76, 78] Serum HPLC-MS

HPLC fluorescence
GC-MS
GC-TOFMS

Malate [72] Serum GC-TOFMS
Maltose [40] PBMC GC-MS
3-Methoxy-4-hydroxyphenylglycol 
(MHPG) [77]

Blood LC-ESI/MS/MS

Tele-methylhistamine [85, 86] CSF GC-MS
Methyl phosphate [40] PBMC GC-MS
Myo-inositol [72, 76] Serum GC-MS

GC-TOFMS
Norepinephrine (NE) [77] Blood LC-ESI/MS/MS
Octadecanoic acid
(stearic acid) [72, 76]

Serum GC-MS
GC-TOFMS

(9Z)-Octadec-9-enoic acid
(oleic acid) [72, 80]

Serum GC-MS
GC-TOFMS

Octanoic acid [40] PBMC GC-MS
Ornithine [8] Plasma MS
2-Oxoglutarate [72] Serum GC-TOFMS
1-Oxoproline [80] Serum GC-MS
PC ae C38:6 [8] Plasma MS
Pentadecanoic acid [80] Serum GC-MS
Pentane [79, 82] Breath GC-MS
4-Pentenoic acid [72] Urine GC-TOFMS
Phenylalanine [72] Serum GC-TOFMS
Pipecolinic acid [72] Urine GC-TOFMS

(continued)

14 Biomarkers in Psychiatric Disorders



284

has been reported to occur in other diseases such as heart attack, rheumatoid arthri-
tis, and nutritional deficiency [79, 82].

Another biomarker that has been studied is trimethylglycine (also known as beta-
ine) since it participates in homocysteine metabolism. More specifically, it partici-
pates in the conversion of homocysteine to methionine which is mediated by 
betaine-homocysteine methyltransferase in human tissues. Koike et al. [83] observed 
a decrease of betaine levels in schizophrenia patients and consequently an increase 
of the homocysteine concentration in the brain, which can lead to a high oxidative 
stress and a neural damage. In addition to betaine, hydroxylamine, pyroglutamic 
acid, γ-tocopherol, and α-tocopherol have been listed as markers of the increase in 
oxidative stress in schizophrenia patients [83]. The higher concentrations of hydrox-
ylamine in patients compared to healthy individuals suggest a higher accumulation 
of reactive oxygen species (ROS) in patients with schizophrenia, while lower 
tocopherol concentrations indicate a decrease in antioxidative defense [40].

Table 14.2 (continued)

Biomarkers Sample type Analytical platforms

2-Piperidinecarboxylic acid [80] Serum GC-MS
Pyroglutamic acid (5-oxoproline) [40, 72] PBMC

Urine
Serum

GC-MS
GC-TOFMS

Pyruvate [55, 72] PBMC
Serum

GC-MS
GC-TOFMS

Ribose 5-phosphate [55] PBMC GC-MS
Serine [72, 78, 84] Plasma, serum GC-MS,

GC-TOFMS,
HPLC-MS

Sorbitol [40] PBMC GC-MS
Suberic acid [72] Urine GC-TOFMS
Succinic acid [55] PBMC GC-MS
Tetradecanoic acid [72] Serum GC-TOFMS
Threonic acid [72] Urine GC-TOFMS
Threonine [78] Serum HPLC-MS

HPLC fluorescence
α-Tocopherol [40] PBMC GC-MS
γ-Tocopherol [40, 76] Serum

PBMC
GC-MS

-Tryptophan [76, 78] Serum HPLC-MS
HPLC fluorescence
GC-MS

L-Tyrosine [78] Serum HPLC-MS
HPLC fluorescence

Uric acid [76] Serum GC-MS
Valine [40, 72] PBMC

Urine
GC-MS
GC-TOFMS

Vanillylmandelic acid (VMA) [77] Blood LC-ESI/MS/MS
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As already stated, biomarker candidates found for BD and schizophrenia are 
numerous, but these have still not been tested in geographically different environ-
ments and using greater number of samples as means of validation. In order to apply 
these in clinical research, there must be coordinated efforts around the globe to 
verify which of the cited biomarkers are applicable and universal. It is also expected 
that this will help to expand research in modern and multidisciplinary psychiatry 
and design biomarker-based user friendly tests that can be performed as simple 
clinical trials with easy to read and interpretable data.

14.3  Samples, Methodology, and Techniques: Concerns

To guarantee the quality of the data and the biological interpretations, it is important 
to properly select the sample type, the method of sample preparation, and the pre-
processing procedures. Another critical issue is the selection of an appropriate con-
trol group [90, 91]. When immediate analysis is not feasible, to prevent changes in 
the composition of the samples, it is necessary to store them at −80 °C, but cycles 
of freezing and thawing should be avoided [90, 92–94].

The cellular components of the blood (erythrocytes, leukocytes, and platelets) 
can be excluded using centrifugation, obtaining the plasma or serum. The superna-
tant portions of these are derived with or without the addition of anticoagulants, 
respectively. Plasma is composed of a variety of substances such as proteins, pep-
tides, and electrolytes. The precipitation of proteins can be carried out with trichlo-
roacetic acid (TCA) and cold methanol to reduce their potential interference in the 
analysis [90].

Plasma, serum, and CSF are naturally buffered. However, the pH in urine sam-
ples can vary and should be controlled by addition of a sodium phosphate buffer 
(Na2HPO4/NaH2PO4) [90–93].

The sodium salt of 3-trimethylsilylpropionic acid (TSP) should not be used as a 
NMR standard reference in samples containing high concentrations of proteins. An 
alternative is the use of formate or internal standards, such as the lactate signal (3H, 
d, 1.33 ppm,3J = 7 Hz) in plasma or serum samples [94, 95].

Analysis of urine samples presents several advantages compared to blood or 
CSF, since urine collection is easy and noninvasive and enables more extensive 
sampling frequency. Furthermore, the sample preparation is less complex due to the 
absence, or low level, of proteins and peptides [90, 92, 96]. However, it is important 
to define the time of urine collection since the concentration of metabolites can vary 
during the day due to dietary, lifestyle, and pharmaceutical interference [90, 92].

The collection of CSF is invasive, and, therefore, routine sampling and longitu-
dinal studies are not desirable. One of the main concerns of using CSF is the poten-
tial of blood contamination during the sampling process. There are some known 
protocols to decrease blood contamination in CSF [90, 93].

Numerous methods of sample preparation prior to MS-based analysis have been 
reported. These are diverse extraction protocols that will lead to the observation of dif-
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ferent fractions in the metabolite profile [90, 94]. However, the signals are usually fil-
tered using specific pulse sequences in NMR-based analysis instead of applying sample 
preparation techniques, such as protein precipitation or ultrafiltration [94–97].

For further information, there are many described procedures for collection and 
preparation of serum [91, 94, 95, 97], plasma [91, 94], urine [91, 92, 94], and CSF 
[98] samples. Barbosa et al. described the detailed procedures involved in serum 
lipidomics [97].

14.3.1  Softwares and Databases

NMR spectral processing can be performed using Topspin or MestreNova software. 
The Chenomx commercial package provides a tool that can be used from the point 
of spectral processing to metabolite identification. For data statistical analysis, there 
are free online platforms including PRIMe [99] and MetaboAnalyst [100] and free 
or commercial software, such as R, MVAPACK [101], MATLAB, Statistica, and the 
Unscrambler. The open-access databases Human Metabolome Database (HMDB) 
[102], Biological Magnetic Resonance Data Bank (BMRB) [103], and Madison- 
Qingdao Metabolomics Consortium Database (MMCD) [104] can be used to assist 
in the spectral assignments of metabolites. A list and discussion about the database 
and software for NMR metabolomics are available in the literature [105].

Current software available for processing mass spectra includes MassHunter 
(AgilentR), Thermo™ Xcalibur™ (LC-MS), MestreNova (NMR and MS), and others. 
Some specific software for both GC-MS and LC-MS preprocessing includes MetAlign™ 
[106], MZmine 2 (LC-MS) [107], XCMS [108], and SpectConnect (GC-MS) [109].

The statistical analysis of mass spectra data can be performed using the Agilent 
MassHunter Profinder (data extraction) and Mass Profiler Professional (MPP- 
AgilentR). Data mining can also be performed, and chemometric analysis can be 
used for analysis of volatile organic compounds in GC-MS analysis. Finally, 
ANOVA analysis and unsupervised statistical methods can also be applied such as 
PCA and HCA [110].

Some software is also available that can be used for image data processing gener-
ated from imaging mass spectrometry (IMS) such as BioMap (Novartis) or flexIm-
aging (Bruker Daltonics), and the FlexAnalysis system (Bruker Daltonics) can be 
used for quantification.

14.3.2  NMR × MS

Standard NMR pulse sequences frequently used in metabolomic studies are the water 
suppression pulse sequence Watergate [111, 112], T2-edited CPMG pulse sequence 
for filtering out signals of larger molecules [113, 114], and diffusion- ordered spectros-
copy (DOSY)-edited pulse sequence to detect assemblies of lipids [94, 95, 97].
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The development of high-resolution 1H magic angle spinning (MAS) NMR 
spectroscopy has extended the capability of metabolomic studies since this 
makes it possible to analyze intact tissues without a pre-treatment step. The 
experiments are the same ones as those used in liquid state NMR metabolomics 
[12, 94, 96, 115].

Since each technique has its strengths and limitations, the combination of NMR 
and MS techniques for metabolic fingerprinting and profiling is growing and show-
ing the capacity to improve results by covering a more comprehensive range of 
metabolites [94, 116, 117]. This can be done using hyphenated techniques such as 
HPLC-NMR-MS, in which parallel NMR and MS analyses are performed using a 
splitting of the eluting HPLC fraction. Another alternative is to aliquot the sample 
for analysis by NMR and MS separately. Some authors have already applied this 
approach in bipolar disorder and schizophrenia metabolomic studies.

Generally, when it is necessary to perform analyses in which the samples need to 
be analyzed over a period of time, NMR spectroscopy is chosen because of the 
greater reproducibility of the resulting spectra, while GC-MS or LC-MS are com-
monly used when it is necessary to achieve a higher sensitivity. However, this 
requires high purity of samples and sometimes laborious preparation of the meta-
bolic components, such as derivatization of the samples [118]. Furthermore, the 
testing of the range of molecules analyzed according to their functional groups will 
be conditioned to the extraction solvent that is used in preparation of the samples.

In addition to the possibility of analyzing biofluids and the preparation care 
already mentioned previously, tissue analysis by IMS has been explored as in the 
work of Matsumoto et al. [119]. IMS is a technique that has allowed the analysis of 
complex surfaces of samples (in 2D or 3D) and can result in the display of hundreds 
to thousands of compounds per sample surface [120, 121].

14.4  Conclusion

Bipolar disorder and schizophrenia are chronic mental disorders that affect the pop-
ulation and can notably interfere with the normal life of a person. Modern medicine 
still struggles with the accurate diagnosis and treatment of these diseases. Recent 
and promising metabolomic discoveries in mental disorders will help in the selec-
tion of appropriate drug treatments, improve human health significantly, and ame-
liorate the quotidian effects on individuals. Acetone, N-acetyl-aspartate, GABA, 
creatine, glutamine, glutamate, glycine, 5-hydroxyindole-3-acetic acid (5-HIAA), 
myoinositol, α-ketoglutarate, L-kynurenine, lactate, phenylalanine, pyruvate, and 
tryptophan are the most frequently occurring biomarkers cited in the literature as 
being altered in bipolar disorder and schizophrenia patients [10, 37, 39, 40, 42, 43, 
45–47, 49, 51, 53, 55, 72, 76–78]. Both disorders have some similar symptoms and 
share some common metabolites, but the question is whether these metabolites 
originate from the same source and metabolic pathway. It is anticipated that further 
studies will help to determine this.
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Chapter 15
Early Detection and Treatment of Patients 
with Alzheimer’s Disease: Future 
Perspectives

Francesca L. Guest

Abstract Alzheimer’s disease affects approximately 6% of people over the age of 
65 years. It is characterized as chronic degeneration of cortical neurons, with loss of 
memory, cognition and executive functions. As the disease progresses, it is accom-
panied by accumulation of amyloid plaques and neurofibrillary tangles in key areas 
of the brain, leading to a loss of neurogenesis and synaptic plasticity in the hippo-
campus, along with changes in the levels of essential neurotransmitters such as ace-
tylcholine and glutamate. Individuals with concomitant diseases such as depression, 
diabetes and cardiovascular disorders have a higher risk of developing Alzheimer’s 
disease, and those who have a healthier diet and partake in regular exercise and 
intellectual stimulation have a lower risk of developing the disorder. This chapter 
describes the advances made in early diagnosis of Alzheimer’s disease as this could 
help to improve outcomes for the patients by facilitating earlier treatment.

Keywords Alzheimer’s disease · Biomarkers · Imaging · Proteomics · 
Metabolomics · Lab-on-a-chip · Smartphone monitoring

15.1  Introduction

Alzheimer’s disease is the most prevalent form of dementia in the aged population. 
It affects approximately 0.6% of the world population and occurs in 6% of people 
over the age of 65 years [1]. As the average life expectancy continues to increase, 
this percentage is expected to increase to 1.2% of the world’s population by the year 
2050 [2, 3]. Alzheimer’s disease is characterized as a chronic degeneration of corti-
cal neurons, resulting in decline of memory and cognition, along with loss of execu-
tive function and the manifestation of behavioural abnormalities [4]. As the disease 
progresses, amyloid and neurofibrillary proteins accumulate in  localized areas of 
the brain, forming plaques and tangles which can disrupt neuronal signalling and 
ultimately lead to the loss of neurons and brain tissue [5]. This results in loss of 
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neurogenesis and synaptic plasticity in the hippocampus, the main region of the 
brain involved in regulation of cognition and memory [6, 7]. These effects are asso-
ciated with alterations in the levels of neurotransmitters such as acetylcholine and 
glutamate, which are essential in both brain and bodily function [8, 9]. Ultimately, 
these combined deficits are fatal, with median survival times of 4.2 and 5.7 years 
after diagnosis for males and females, respectively [10].

Long-term memories do not appear to be affected in the early stages of 
Alzheimer’s disease although the associated memory loss can impair daily life at an 
increasing level as the illness advances. Alzheimer’s disease is categorized into 
three clinical stages associated with specific symptoms (Table 15.1) [11]. Similar to 
many diseases, the development of Alzheimer’s disease has been linked to advanc-
ing age and shows a gender preference, with twice as many females over the age of 
65 developing the disease compared with males [12]. The higher prevalence seen in 
females may be due to changes incurred after menopause and driven by deficits of 
the hormone oestrogen. In addition, specific genes have been identified as risk fac-
tors although relevant studies have not been conclusive [13–15]. However, 

Table 15.1 Clinical stages of Alzheimer’s disease

Stage 1
Early-stage symptoms
(lasts 2–5 years)

Difficulties in recalling the right word or name
Repetition in conversations
Difficulties in performing tasks
Not remembering details of newly learned information
Losing or misplacing objects
Problems with planning, organizational skills and problem-solving
Getting lost in a familiar place
Forgetting important dates
Feelings of moodiness, depression or withdrawal

Stage 2
Middle-stage symptoms
(lasts 2–10 years)

Forgetting events regarding the past
Feeling withdrawn, moody or angry in some situations
Unable to recall addresses or telephone numbers
Confused about locations, times or dates
Difficulties controlling bladder/bowels
Changes in sleep patterns
Sometimes wandering and becoming lost
Changes in behaviour
Becoming increasingly dependent

Stage 3
Late-stage symptoms
(lasts 1–3 years)

Requiring full-time care
Loss of awareness of recent experiences and environment
Increasingly disorientated
Loss of physical skills like walking and swallowing
Increasing difficulties of communication
Increasingly vulnerable to infection
Experiencing delusions/hallucinations
Increasingly aggressive/violent
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 individuals with concomitant diseases such as depression, anxiety, diabetes, obesity 
and cardiovascular disorders are known to have a higher risk of developing 
Alzheimer’s disease [16]. In contrast, people who have led a healthier life with 
regard to a nourishing diet, regular exercise, intellectual stimulation and low alcohol 
intake show a lower risk of developing the disorder [17].

15.2  Physical Signs of Alzheimer’s Disease

At the molecular level, the symptoms of Alzheimer’s disease are associated with neu-
ritic plaques and neurofibrillary tangles, related to accumulation of amyloid- beta pep-
tide (Aβ) and to hyperphosphorylation of the microtubule-associated tau protein in 
neurons (Fig. 15.1) [18]. The Aβ peptide is generated by proteolytic processing of the 
larger amyloid precursor protein. Abnormal processing of this precursor largely 
results in two different versions of the peptide, consisting of either 40 amino acids 
(Aβ1–40) or a carboxy-terminally extended form (Aβ1–42) containing two additional 
amino acids. The Aβ1–42 peptide is “sticky” in nature and forms toxic insoluble plaques 
in the brain [19]. In turn, this leads to perturbed cytoskeletal changes, neuronal dys-
function and cell death. Associated with the clinical stages outlined above, stage 1 
continues until the accumulation of Aβ in the brain leads to a triggering of the amyloid 
cascade. In stage 2, the early pathological features may be present, showing physical 
changes to the brain. In the final stage, the clinical dementia is associated with accu-
mulation of plaques and neurofibrillary tangles in key brain areas [4].

15.3  The Benefits of Early Detection

As is the case with most disorders, early diagnosis of Alzheimer’s disease could 
help improve outcomes for the patients. For example, early detection could lead to 
earlier access to treatment, advice and support, which could slow the progression of 
the disease [20]. Diagnosis is carried out through an interview of the individual by 
a doctor or specialist. The interview normally considers parameters such as mem-
ory, higher thinking and other abilities and is administered largely verbally with 
written components and instructions to motor responses or simple tasks, such as the 
Mini Mental State Examination (MMSE), Montreal Cognitive Assessment (MoCA), 
The Addenbrooke’s Cognitive Examination-Revised (ACE-R), Cambridge 
Cognitive Examination (CAMCOG) and the Repeatable Battery for the Assessment 
of Neuropsychological Status (RBANS). There are also a number of tests designed 
to measure subtle cognitive changes which have been applied to aid in patient 
assessment. For example, the Face Name Associative Memory Exam (FNAME) 
assesses memory retrieval [21]. In this test, the patients are shown pictures of unfa-
miliar faces with associated names, and then they are asked to recall as many of 
these as they can by assigning names to faces. The Short-Term Memory Binding 
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test examines a patient’s ability to recognize differences between two arrays of 
coloured geometric shapes [22]. In the spatial pattern separation task, an individual 
is shown an image containing a localized shape (such as a small circle) and then 
asked to pinpoint the location of this circle on another image containing multiple 
similar shapes [23].

Ab

β-secretase

γ-secretase

Plaque 
formation

oligomerization

Amyloid precursor protein

Phosphorylation
of tau

Destabilization of 
microtubules

Formation of 
neurofibrillary

tangles

Synaptic 
dysfunction

Neurodegeneration

Fig. 15.1 Alzheimer’s disease is characterized by extracellular deposits of amyloid plaques and 
intraneuronal neurofibrillary tangles, leading to neurodegeneration and dementia
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In some cases, patients may be given a magnetic resonance imaging (MRI) or 
computerized tomography (CT) scan of the brain, to determine whether or not atro-
phy of the hippocampus or other brain areas has occurred [20]. The use of radio-
graphic brain imaging may also rule out other possible causes of Alzheimer’s 
disease-like symptoms such as a stroke or development of a brain tumour. Focused 
testing based on brain imaging or detection of biomarkers in the cerebrospinal fluid 
or the blood may help to identify those individuals at risk of developing the disease 
even at the earliest pre-symptomatic stages [24–27]. As previously stated, earlier 
detection leads to intervention earlier in the pathogenic process, which is thought to 
produce a greater clinical benefit [28, 29].

15.4  Treatment Approaches

Several treatment approaches currently approved aim to improve the lives of people 
suffering with Alzheimer’s disease. These methods include receiving support, medi-
cations, nutritional alterations and activities. The main Food and Drug Administration 
(FDA)-approved medications in use for Alzheimer’s disease consist of three main 
strategic classes: (1) inhibition of cholinesterase, (2) stimulating acetylcholine syn-
thesis and (3) antagonism of N-methyl-D-aspartate (NMDA) receptors (Table 15.2) 
[30–35]. Although it was the first drug to be marketed for treatment of Alzheimer’s 
disease, tacrine has been withdrawn from clinical use due to side effects [36]. 
However, similar drugs may re-enter the market with the synthesis of tacrine-like 
derivatives which show a reduced side effect profile [36, 37]. Donepezil, galan-
tamine or rivastigmine is commonly prescribed to treat patients in the early of mid-
dle stages of Alzheimer’s disease and may help to decrease memory problems and 
improve concentration and focus. Memantine may be prescribed for those patients 
in the middle to late stages of the disease to improve mental abilities and daily living 
by helping to counteract neuronal damage due to pathological activation of NMDA 
receptors via excess glutamatergic neurotransmission [35, 38]. In addition, antide-
pressants such as fluoxetine, citalopram or sertraline fluoxetine may be prescribed 
for Alzheimer’s disease patients suffering from depression- or anxiety- related 

Table 15.2 FDA-approved drugs for treatment of Alzheimer’s disease

Drug Class Mechanism of action

Donepezil Cholinesterase inhibitor Prevents acetylcholine breakdown in the brain
Galantamine Cholinesterase inhibitor/

acetylcholine agonist
Prevents acetylcholine breakdown and 
stimulates acetylcholine production

Tacrine Cholinesterase inhibitor/
acetylcholine agonist

Prevents acetylcholine breakdown and 
stimulates acetylcholine production

Rivastigmine Cholinesterase inhibitor Prevents acetylcholine and butyrylcholine 
breakdown in the brain

Memantine NMDA receptor antagonist Blocks toxic effects of excessive glutamate and 
regulates glutamate synthesis
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symptoms [39]. Likewise, the monoamine oxidase inhibitor mirtazapine dosed at 
night can aid sleep, which is often disturbed in Alzheimer’s disease patients; medi-
cations such as trazodone can be prescribed for agitation, and lorazepam can be 
used in late-stage patients with aggression.

There are also behavioural methods that patients can adopt to manage memory 
difficulties such as setting up daily routines and reminders and using smartphone 
apps linked with an online calendar [40, 41]. It is also important that Alzheimer’s 
disease patients maintain their daily activities as much as possible, considering the 
preponderance of evidence showing that both mental and physical exercise can lead 
to improvement in some deficits [42, 43].

15.5  New Treatments for Alzheimer’s Disease

Although all of the FDA-approved drugs for treatment of Alzheimer’s disease directly 
target neurotransmitter pathways, a number of alternate therapeutic avenues are cur-
rently being tested in clinical trials. Several compounds have been tested that inhibit 
the β-secretase and γ-secretase enzymes, which are involved in proteolytic generation 
of Aβ1–42 [44]. However, the development of compounds targeting the γ-secretase has 
been discontinued due to off-target effects [45, 46]. Some of the inhibitors of 
β-secretase are already FDA-approved for diabetes, including the peroxisome prolif-
erator-activated receptor-gamma agonist pioglitazone [47, 48]. Administration of this 
drug to patients with mild to moderate Alzheimer’s disease was shown to reduce Aβ 
levels along with increased cerebral blood flow and better cognitive test results [49–
51]. In addition, vaccines aimed at reducing the Aβ load are undergoing clinical test-
ing, although it appears that these may only be effective in the early stages of the 
disease [9, 52]. Along the same lines, a vaccine called AADvac1, which inhibits build-
up of tau bundles in neurons, is currently undergoing testing in early clinical investiga-
tions. Thus far, the drug has successfully passed through safety testing in a randomized, 
double-blind, placebo-controlled, phase 1 trial [53–55]. Further studies are needed to 
determine if this vaccine has clinical efficacy.

15.5.1  Statins

Several investigations have demonstrated that high cholesterol levels are linked to 
amyloid deposition [56]. Because of this, a number of clinical studies have tested 
the effects of cholesterol-lowering drugs (such as statins) on various endpoint mea-
sures in Alzheimer’s disease patients [57–59]. These compounds may be helpful 
through their ability to decrease inflammation and increase blood flow. There is 
some evidence that cholesterol-lowering drugs may aid cognition, lower Aβ-induced 
neurotoxicity and prevent dementia; however studies in this area have, as yet, been 
inconclusive. As with all new treatment approaches, further clinical trials are 
required to determine if these compounds are efficacious.
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15.5.2  Anti-inflammatory Agents

There is compelling evidence that inflammation and oxidative reduction processes 
are disturbed in individuals with Alzheimer’s disease. The hallmarks of Alzheimer’s 
disease are the neurofibrillary tangles and Aβ plaques, although carbonyl and oxida-
tive stress are also present [60]. Furthermore, pro-inflammatory activation of astro-
glia and microglia has also been found in Alzheimer’s disease patients [61]. 
Therefore, a number of anti-inflammatory drugs have been tested in attempts to 
improve symptoms [62]. When tested, compounds such as cyclooxygenase inhibi-
tors and glucocorticoids demonstrated little efficacy with some adverse effects [63]. 
Another anti-inflammatory agent called etanercept, which targets tumour necrosis 
factor, showed some efficacy with improvement of cognitive symptoms in a case 
study [64] and is now undergoing testing in clinical trials [65]. In a similar manner, 
the anti-inflammatory/antioxidant compound “curcumin” has shown neuroprotec-
tive functions such as preventing tau aggregation, inhibiting the formation of new 
Aβ aggregates and disaggregating existing ones [66, 67]. Therefore, clinical trials 
investigating the effects of this compound in Alzheimer’s disease patients should be 
performed.

15.5.3  Caffeine

Several studies have been conducted which indicate that higher coffee consumption 
is associated with a lower risk of developing Alzheimer disease [68]. A more recent 
study showed that there was “J-shaped” association between coffee intake and cog-
nitive disorders, with the lowest risk occurring at a consumption level of 1–2 cups 
of coffee per day [69]. The mechanism of action of caffeine occurs through antago-
nism of various subclasses of adenosine receptors, although xanthine metabolites, 
such as theobromine and theophylline, may also contribute to the beneficial effects 
on brain function [70]. However, further randomized trials and cohort studies are 
warranted to confirm these findings, and additional research should be conducted to 
identify the caffeine metabolites responsible for any protective effects on the brain.

15.5.4  Diet and Physical Exercise

Increasing evidence indicates that healthy eating and increased physical exercise may 
be helpful in the prevention of Alzheimer’s disease [71–73]. A clinical study found 
that an administration of a medicinal food called CerefolinNAC® over 18 months 
significantly reduced cortical and hippocampal atrophy rates in patients with 
Alzheimer’s disease as well as those with cognitive impairment due to vascular 
dementia [74]. Another study showed that low-dose administration of a triglyceride- 
based medicinal food called Axona® might be effective in those with mild Alzheimer’s 
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disease [75]. In addition, the traditional Mediterranean diet has shown promise for 
reducing the risk of developing senile dementia and for decreasing symptoms after 
diagnosis. A recent 3-year brain imaging study found lower amyloid deposition and 
neurodegeneration in middle-aged adults with higher Mediterranean diet adherence 
(n  =  34) compared to those who followed this diet less strictly (n  =  36) [76]. 
Nevertheless, further clinical studies are needed including higher numbers of indi-
viduals as well as Alzheimer’s patients at different disease stages. Other potential 
non-pharmaceutical treatments include physical exercise, which is already known to 
have beneficial effects in variety of diseases [72, 73]. It is already known that physical 
activity can reduce effects commonly seen as hallmark characteristics of Alzheimer’s 
disease. For example, studies have reported that exercise can reduce oxidative stress 
and inflammation [77] and improve insulin signalling in many tissues of the body 
[78]. Exercise has also been found to increase neurogenesis in the hippocampus [79]. 
A number of trials are now underway to test the effects of aerobic exercise on cogni-
tion, cerebrospinal fluid biomarker levels and MRI endpoints in elderly patients with 
mild cognitive impairment [80, 81]. It should be noted that some studies have already 
reported negative outcomes on endpoint measurements such as the levels of cerebro-
spinal fluid biomarkers [82] and clinically important cognitive outcomes [83]. 
Therefore, further studies are needed before solid conclusions can be made.

15.6  Imaging Biomarkers for Diagnosis and Monitoring 
of Alzheimer’s Disease

In Alzheimer’s disease, some pathophysiological abnormalities precede overt clinical 
symptoms by several years, and many of these changes can be detected by biomarkers 
[84]. Currently, six biomarkers have been incorporated as clinical diagnostic criteria and 
have also been incorporated into some clinical studies. These are based on either Aβ 
plaque deposition or tau hyperphosphorylation. Cerebrospinal fluid levels of Aβ1–42, 
total tau and phosphorylated tau (Thr181/Thr231) have already been used for diagnosis and 
risk assessment in prodromal phases for mild cognitive impairment and dementia [85]. 
Magnetic resonance imaging (MRI) allows the visualization of structural and functional 
abnormalities through different stages of disease pathophysiology [86]. Volumetric MRI 
has been the most widely used approach for visualization of hippocampal atrophy, and 
newer techniques such as diffusion-tensor imaging (DTI) and functional MRI can pro-
vide additional information on structural and functional neuronal connectivity [87–89].

15.6.1  Aβ Deposition

The use of positron emission tomography (PET) in combination with various 
molecular imaging agents can detect several aspects of Alzheimer’s disease patho-
physiology, such as Aβ plaque deposition and accumulation of tau tangles, along 
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with perturbations of neurotransmitter receptors, metabolism and neuroinflamma-
tion [90]. The most frequently used PET tracer for detecting Aβ plaque deposition 
in vivo is 11C-Pittsburgh compound-B (PiB) [91]. Due to the short half-life of 11C 
(20 min), other compounds containing an isotope with a longer half-life, such as 
18F (110  min), have also been developed [92]. In mild cognitive impairment 
patients, a positive amyloid PET scan is a useful biomarker indicating that these 
individuals have a high risk of developing Alzheimer’s disease [93]. Along these 
same lines, two of the 18F compounds, florbetapir and flutemetamol, have been 
used for detection of both preclinical and overt Alzheimer’s disease [94–96]. 
Another PET study used a combination of 18F-fluoro-D-glucose (FDG) and 
18F-florbetaben (FBB) and found that Aβ deposition was correlated with cortical 
dysfunction [97]. Together, these findings indicate that PET amyloid imaging is a 
useful biomarker for identifying pre-symptomatic individuals at high risk of con-
version to Alzheimer’s disease.

15.6.2  Inflammation

Inflammation in the brain may be an early marker of Alzheimer’s disease due to 
microglial activation following the formation of amyloid plaques [98, 99]. PET 
imaging using 11C-L-deuterium-deprenyl (DED), which detects astrocytic mono-
amine oxidase B, found increased binding in patients with mild cognitive impair-
ment, indicating that astrocytosis may occur early in Alzheimer’s disease 
pathophysiology [100, 101]. Taken together, these findings indicate that microglia 
may serve as a novel drug target for Alzheimer’s disease.

15.6.3  Neurofibrillary Tangles

The misfolding and aggregation of hyperphosphorylated tau into neurofibrillary 
tangles is known to be a key component of Alzheimer’s disease pathophysiology 
[102]. A number of radiotracers tau PET imaging have been developed, including 
11C-PBB3 (2-((1E,3E)-4-(6-(11C-methylamino)pyridin-3-yl)buta-1,3-dienyl) 
benzo[d]thiazol-6-ol), 18F-THK-5105 (6-[(3-18F-fluoro-2-hydroxy)propoxy]-2-(4- 
dimethylaminophenyl)quinoline), 18F-THK-5117 (2-(4-methylaminophenyl)-6-[(3- 
18F]-fluoro-2-hydroxy)propoxy]quinoline) and 18F-T808 (2-(4-(2-18F]-fluoroethyl)
piperidin-1-yl)benzo[4,5]imidazo[1,2-α]pyrimidine) [103]. A study using 11C- 
PBB3 found that high levels of tau tangles were associated with ageing, low-level 
education, cognitive performance and high Aβ plaque burden [104]. This was con-
sistent with another study using 18F-THK-5117 as the PET tracer [105]. This latter 
study found that the progression of neurofibrillary pathology was associated with 
cognitive deterioration in Alzheimer’s disease patients.
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15.6.4  Metabolism

The glucose analogue 2-deoxy-2-18F-fluoro-D-glucose (18F-FDG) has been used to 
assess cerebral glucose metabolism as correlate of neuronal function in specific 
brain regions [106]. In Alzheimer’s disease patients, the metabolic signature nor-
mally shows hypometabolism in the parietotemporal association, medial temporal, 
posterior cingulate and frontal cortices [107–110]. Another study showed progres-
sive reductions in PET glucose metabolism occurred years before the appearance of 
clinical symptoms in those who later developed Alzheimer’s disease [111]. In addi-
tion, the losses in the hippocampus occurred before those in cortical regions.

15.7  Biomarkers in Body Fluids

15.7.1  Cerebrospinal Fluid

Since, the cerebrospinal fluid is in contact with the central nervous system, molecu-
lar biomarkers in this body fluid can be used to monitor brain function. For example, 
cerebrospinal fluid measurements of the levels of Aβ1–42, Aβ1–40, tau and hyperphos-
phorylated tau can serve as specific biomarkers for risk of developing Alzheimer’s 
disease, as well as for diagnosis and monitoring of disease progression [84, 85]. In 
general, higher Aβ1–42 levels tend to be associated with greater impairments in cog-
nition, and studies have found that just measuring this peptide alone can discrimi-
nate Alzheimer’s disease patients from controls and from individuals with mild 
cognitive impairment, with a sensitivity of approximately 90% [112]. The ratio of 
Aβ1–42/Aβ1–40 appears to have even stronger diagnostic accuracy for Alzheimer’s dis-
ease and concordance with Aβ PET analyses, compared to measuring levels of Aβ1–42 
alone [113–116].

It is known that mild cognitive impairment patients progress to dementia at a 
higher rate compared to healthy age-matched controls [117], and this is associated 
with cerebrospinal fluid levels of Aβ1–42, total tau, and phosphorylated tau181 [112, 
118]. However, these biomarkers lack sufficient discriminatory power to distinguish 
patients who will progress to Alzheimer’s disease compared to those who develop 
other neurodegenerative conditions such as Lewy body dementia, frontotemporal 
dementia, vascular dementia and Creutzfeldt-Jakob disease [119–121]. As a poten-
tial biomarker of synaptic degeneration, a number of studies have analysed cerebro-
spinal fluid levels of neurogranin. These showed that high levels of this protein were 
predictive of prodromal Alzheimer’s disease in mild cognitive impairment patients 
and were also predictive of hippocampal losses measured by MRI and FDG PET 
[122]. Other synaptic proteins such as synaptosomal-associated protein 25 and syn-
aptotagmin- 1 have also been analysed in cerebrospinal fluid and found to be altered 
in prodromal dementia and Alzheimer’s disease subjects [123, 124]. These findings 
will require validation using larger cohorts which include patients with various neu-
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rodegenerative conditions. However, it should be stressed that cerebrospinal fluid 
biomarkers have limited clinical applications, given their invasive nature. Thus, 
more recent efforts have focussed on developing biomarker tests for Alzheimer’s 
disease in blood plasma and serum, which are less invasively obtained [125].

15.7.2  Blood, Serum and Plasma

Due to the mixed pathology in dementia patients, it is critical that any identified 
biomarkers can distinguish Alzheimer’s disease from other related disorders, includ-
ing frontotemporal dementia, Parkinson’s disease, amyotrophic lateral sclerosis and 
psychiatric disorders. Furthermore, there is an urgent need to standardize biomarker 
discovery approaches across different laboratories to increase the potential of trans-
lating the most successful biomarker-based tests into clinical use [122]. Plasma lev-
els of Aβ1–42 and Aβ1–40 may be correlated with Alzheimer’s disease although some 
conflicting information has been reported on this [126, 127]. In addition, plasma 
levels of these peptides show poor correlation with the corresponding cerebrospinal 
fluid levels [128]. Another study found that although the Aβ1–42/Aβ1–40 ratio did show 
a weak correlation between plasma and cerebrospinal fluid, the ratio was signifi-
cantly lower in patients with dementia due to Alzheimer’s disease compared to 
those with dementia due to other causes [129]. In contrast the plasma levels of 
phosphorylated tau181 show a stronger correlation with brain Aβ deposition and neu-
rofibrillary tangles as determined by PET [130]. In addition, a recent prospective 
study of 5309 elderly females found that high serum levels of two tau fragments 
(tau-A and tau-C) were associated with a lower risk of dementia and Alzheimer’s 
disease [131].

One multiplex immunoassay study of serum identified a panel comprised of 30 
biomarkers which distinguished Alzheimer’s disease patients from cognitively nor-
mal controls with a sensitivity of 88% and a specificity of 82% [132]. Another 
multiplex immunoassay profiling study of plasma from cognitively healthy, mild 
cognitive impairment and Alzheimer’s disease individuals reported the identifica-
tion of ten analytes that were correlated with disease severity and progression [133]. 
In these two studies, only one protein, apolipoprotein CIII, was found in common. 
This highlights a potential problem in reproducibility of such studies across differ-
ent laboratories.

A number of other factors with known roles in brain functions have also been 
identified in serum or plasma in association with either brain pathologies or risk of 
developing Alzheimer’s disease, including thyroid hormone [134], neurofilament 
light chain [135], acylated ghrelin [136], sphingolipids [26], vitamin D [137] and 
microRNAs [138–140]. MicroRNAs are short noncoding RNAs that are involved in 
regulation of posttranscriptional gene expression throughout the body, including the 
brain [141]. It is therefore logical to conclude that they are involved in regulation of 
brain functions such as cognition and learning. A number of other studies have 
shown that circulating cytokines may also be implicated in Alzheimer’s disease 
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progression [142, 143]. Multiplex assays for cytokines have been crucial in screen-
ing for peripheral inflammatory processes that may be involved in Alzheimer’s dis-
ease through investigations of factors such as interleukin (IL)-1, IL-6, IL-7, IL-8, 
serum amyloid A, clusterin, CCL15, CXCL9 and tumour necrosis factor receptor 1 
[144–148]. As mentioned above, it is important that standardization across labora-
tories occurs to maximize cross comparison of findings. It is also imperative that all 
biomarker candidates are carefully scrutinized and validated prior to translation into 
clinical studies.

15.8  Future Perspectives

15.8.1  Advances in Imaging

New ways of detecting Alzheimer’s disease risk years before full manifestation of 
the disease are constantly emerging. These include advances in PET and MRI for 
visualizing plaque deposition and neurofibrillary tangles, which are known to pre-
cede the first cognitive deficits. Recently, evidence has documented pathological 
processes in the retinas of patients suffering from mild cognitive impairment, 
Alzheimer’s disease and other neurodegenerative disorders [149]. For example, 
optic nerve and retinal ganglion cell degeneration, along with abnormal electroreti-
nography responses, has been identified in patients with mild cognitive impairment 
and Alzheimer’s disease [150]. Such changes can be detected by optical coherence 
tomography, which provides high-resolution two-dimensional cross-sectional imag-
ing and three-dimensional volumetric measurements of the retina in vivo (Fig. 15.2). 
A meta-analysis published in 2015 found that optical coherence tomography can be 
used to detect losses in the peripapillary retinal nerve fibre layer in mild cognitive 
impairment and Alzheimer’s disease patients [151]. Furthermore, a proof-of- 
principle study demonstrated that Aβ plaques can also be detected by optical coher-
ence tomography retinal imaging [152]. Taken together, this may offer a non-invasive, 
high-resolution imaging means of detecting the disease years before symptoms are 
apparent and neurodegeneration occurs, theoretically allowing for more effective 
intervention.

15.8.2  Lab-on-a-Chip

Given the high prevalence and burden of neurodegenerative disorders such as 
Alzheimer’s disease, there is considerable space in the market for novel and more 
effective diagnostic and treatment approaches. To meet these needs, antibody-based 
biomarker tests have now been developed on handheld devices which are approxi-
mately the size of a credit card [153, 154]. Such devices have been termed lab-on- a-
chip platforms and offer the possibility of inexpensive, on-site, user-friendly 
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analyses. Furthermore, results can be delivered in less than 20 min. The lab-on-a- 
chip system is modular which allows development of various assay formats. 
Immunoassay-based microcards have so far been developed for detection of protein 
markers such as C-reactive protein [155] and small molecules like vitamin D [156], 
using either electrochemical or optical read-outs. These tests have several advan-
tages over existing methods, including their user friendliness, no required expertise, 
rapid throughput and relatively low cost. Testing involves addition of a blood sam-
ple to the card, and this card is inserted into a small reader to yield a biomarker score 
in the time span of a visit to the doctor’s office (Fig.  15.2). Combined with 

Short-term memory binding

Test 42A76

STMB   > 0.65
OCT      > 0.89
LOC      > 0.90

Score > 0.94

Optical coherence tomography

Lab-on-a-chip

Combined score

Smartphone

Fig. 15.2 New technologies which could allow early detection of Alzheimer’s disease years 
before overt symptoms occur. Signals from multiple technologies could be amalgamated as a sin-
gle biomarker score. The example shows a combination of cognition testing (STMB), visualization 
of amyloid deposits on the retina (OCT) and monitoring the presence of predictive biomarkers in 
the blood (LOC). Identification of high-risk individuals at an early disease stage would enable 
earlier treatment for better patient outcomes. The same approach could also be used to monitor 
treatment efficacy
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additional information from other tests, this will help healthcare professionals to 
make informed decisions regarding therapeutic intervention at an earlier point in the 
disease course than can be achieved using current methods. In addition, the lab-on-
a- chip system contains a port, enabling transmission of the data to a computer, 
smartphone or wearable device.

15.8.3  Smartphone Applications

While various biomarker-monitoring devices are already available on the market, 
the benefits of these will increase from their use in combination with smartphone 
apps [157]. This facilitates timely results without the need for expensive equipment 
and promotes awareness and responsibility in patients. Such devices are already in 
use for monitoring levels of glucose in the blood and urine and protein in urine [158, 
159] and coagulation factors [160] and hormones [161] in the blood. Smartphone 
apps can also be useful in setting reminders for Alzheimer’s disease patients and 
show benefits as a behavioural modification tool [162, 163]. The nearly ubiquitous 
nature of smartphones makes them a useful delivery system for interventions by 
monitoring and encouraging positive behavioural changes that could help to miti-
gate disease effects [164]. Furthermore, the readouts of biomarker tests have been 
linked to smartphone-based readouts, using camera optics for collection and trans-
mission of the data [165–167], and these can be transmitted to a database for analy-
sis with the results sent back to the user in real time.

15.9  Conclusions

A number of therapeutic strategies have been tested for treatment of Alzheimer’s 
disease, although most of these have shown little or no effect on disease progression 
in advanced patients. However, it is anticipated that treatment of patients earlier in 
the disease course may slow disease progression. This will require validated bio-
marker tests for early detection and accurate diagnosis during the preclinical stages 
of the disease. As Alzheimer’s disease arises from heterogeneous aetiologies, more 
accurate and sensitive tests should be developed that include a combination of imag-
ing, blood tests and clinical cognitive assessment. For example, biomarkers from 
various sources, such as optical coherence tomography, lab-on-a-chip testing and 
clinical assessment, can be combined from each patient using a complex algorithm 
with smartphone readouts to achieve the highest predictive values [2]. In 2011, 
O’Bryant and co-workers developed an algorithm composed of a blood profile of 30 
proteins and demographic data that could distinguish patients from controls with 
greater accuracy than could be achieved using the protein signature alone [132]. 
Further similar studies are warranted, as earlier detection can lead to earlier and 
therefore more effective treatment options to help improve the lives of individuals 
affected by this debilitating disease.
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