
Application of Genetic Algorithms
in Software Engineering: A Systematic

Literature Review

Pablo F. Ordoñez-Ordoñez1,2(B) , Milton Quizhpe1,
Oscar M. Cumbicus-Pineda1,3 , Valeria Herrera Salazar1 ,

and Roberth Figueroa-Diaz1

1 Facultad de Enerǵıa, CIS, Universidad Nacional de Loja,
Ave. Ṕıo Jaramillo Alvarado, La Argelia, Loja, Ecuador

pfordonez@unl.edu.ec
2 ETSI Sistemas Informáticos, Universidad Politécnica de Madrid,

Calle Alan Turing s/n, 28031 Madrid, Spain
3 Departamento de Ciencias de la Computación e Inteligencia Artificial,

Universidad del Páıs Vasco, Leioa, Spain

Abstract. Software engineering was born from the need to establish an
adequate and efficient methodology for the development of the software,
not using appropriate methods in the software produces a large number
of errors, today on Software has evolved drastically and is considered
as a discipline that has its own principles and requirements to obtain
more structured solutions with planning, development and culmination.
The genetic algorithms present an alternative to solve problems of opti-
mization in the software engineering, therefore in this work a systematic
literature review (SLR) of the application and technologies was carried
out of the genetic algorithms in it. The results are presented based on
127 initial documents which, after passing through a review protocol,
were reduced to 20 chords to the research topic, where it was indicated
that the greatest application is in the tests of software.

Keywords: Optimization · Software engineering
Genetic algorithms · Genetic programming · Evolutionary algorithms

1 Introduction

Software Engineering is an application of the systematic and disciplined app-
roach to the design, development, operation and maintenance of software [31],
the detection of software vulnerabilities is a critical step to ensure the quality
and security of the software [28] however, software testing is a time-consuming
and costly task, consuming almost 50% of the resources for the development
of the system software [27,29]. Automated software testing is better than man-
ual testing, however, very few test data generation tools are currently available
commercially [6].
c© Springer Nature Switzerland AG 2019
M. Botto-Tobar et al. (Eds.): CITT 2018, CCIS 895, pp. 659–670, 2019.
https://doi.org/10.1007/978-3-030-05532-5_50

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05532-5_50&domain=pdf
http://orcid.org/0000-0001-8079-7694
http://orcid.org/0000-0001-5483-0913
http://orcid.org/0000-0002-7215-5461
http://orcid.org/0000-0002-7270-5099
https://doi.org/10.1007/978-3-030-05532-5_50

660 P. F. Ordoñez-Ordoñez et al.

Genetic algorithms (GA) are formed from the evolutionary algorithms con-
ceived by John Holland in the United States well known during the late sixties [7],
these have been widely used in software engineering as a method of optimiza-
tion [13]. Consequently, this research focuses on the technology and application
of genetic algorithms in the problems of software engineering.

This systematic review is based on the protocol proposed by [16,17,22]:
According to the information that exists on the application of genetic algorithms
in software engineering, it was targeted: “Specify the most recent research about
the applications of genetic algorithms in software engineering” as a guide for
this review. Taking into account that in the phases of software development a
greater optimization and resources are needed, the following research questions
(RQ) have been determined:

– RQ1: What problem does the genetic algorithm solve in software engineering?
– RQ2: What application and technology do genetic algorithms have in Soft-

ware Engineering?

In Sect. 2, the SLR is executed, the result of which is described in Table 2.
On the basis of these results, Sect. 3 presents the most notable details and the
synthesis argued and discussed in the 20 primary studies and Sect. 4 concludes as
research questions the consequences of the review, and specific lines of research
for the future.

2 Review Protocol Development

2.1 Research Identification

The criterion for the choice of search sources was based on web accessibility and
the inclusion of search engines that allow to carry out advanced queries, in this
way the following were used: ACM [2], IEEE library [1], SCOPUS Library [11]
and RRAAE [23].

For the choice of keywords it was considered: research questions and keywords
of previously reviewed articles: optimization, software engineering, genetic algo-
rithms, genetic programming, evolutionary algorithms, requirements and testing.

Searches were performed using logical operators: (AND) and (OR) and the
following inclusion criteria were considered for the search:

– Take as relevant current publications since 2012.
– Search results in the area of science and computation.
– Documents in Spanish and English language.
– Search the Abstract of the article for keywords.

The Table 1 correspond to the search chains in the different bibliographic
sources.

GA in Software Engineering: SLR 661

Table 1. Bibliographic sources and search strings.

Digital library ACM:

(+genetic +algorithms +software +engineering +software +requirements)
(+genetic +algorithms +software +requirements)
(+genetic +algorithms +software +testing)
(+optimization +computer +systems +genetic +algorithms)

Digital library IEEE:

((“Abstract” :software engineering) AND “Abstract” :genetic algorithms))
((“Abstract” :evolutionary algorithms,) AND “Abstract” :software requirements)
((“Abstract” :genetic algorithms) AND “Abstract” :software requirements)

Digital library scopus:

(TITLE-ABS-KEY (optimization software engineering) AND TITLE-ABS-KEY (genetic
algorithms)) AND PUBYEAR > 2012 AND (LIMIT-TO (SUBJAREA, “COMP”))
(TITLE-ABS-KEY (genetic algorithms) AND TITLE-ABS-KEY (software requirements)
AND TITLE-ABS-KEY (software design)) AND PUBYEAR > 2012 AND PUBYEAR <
2017 AND (LIMIT-TO (SUBJAREA, “COMP”)
(TITLE-ABS-KEY (genetic algorithms) AND TITLE-ABS-KEY (web software) OR
TITLE-ABS-KEY (software patron)) AND PUBYEAR > 2012 AND (LIMIT-TO (SUB-
JAREA, “COMP”)
(TITLE-ABS-KEY (genetic algorithms) AND TITLE-ABS-KEY (engineering phase of
the software development)) AND PUBYEAR > 2012

Digital library RRAE:

(Todos los Campos:ingenieria de software y Todos los Campos:algoritmos geneticos)
(Todos los Campos:algoritmos geneticos y Todos los Campos:pruebas de software))
((Todos los Campos:diseño de software y Todos los Campos:algoritmos geneticos))

2.2 Selection of Primary Studies

Once the results were obtained with the searched questions, the criterion that
will be followed in the execution of the review for the selection and evaluation
of primary studies was described. The results of the search that have not been
relevant to the stated objective have been discarded taking into account the
following exclusion criteria:

– Studies that do not contain information that helps answer RQ1 and/or RQ2
research questions.

– In the summary and content there is no information about the application of
the algorithms in software engineering.

– Work that is poorly structured and unclear.
– The conclusion must have relevant information for the investigation.

2.3 Data Extraction

The Table 2 presents the relevant information for each of the selected articles
(S01...S20) according to the search by pointing out elements such as: (RQ1)
Problem that genetic algorithms solve in software engineering and (RQ2) Appli-
cation and technology of genetic algorithms in software engineering.

662 P. F. Ordoñez-Ordoñez et al.

Table 2. Data extraction from the primary studies.

ID-Ref. Article Problem-solution Application-technology

S01-[32] Minimizing test suites in

software product lines

using weight-based genetic

algorithms

The redundant test cases

in the software production

lines

Application of genetic

algorithms (gas) based on

weight to minimize the set

of tests

S02-[8] Cost-priority cognizant

regression testing

The redundant cases in

the regression tests

Genetic algorithms have

been used to optimize the

prioritization of test

S03-[25] UML modeling of load

optimization for

distributed computer

systems based on genetic

algorithm

The allocation of resources

in distributed systems

Implementation of the

genetic algorithms to

optimize the waiting time

in the allocation of

resources you are in

distributed systems

S04-[5] Improved heuristics for

solving OCL constraints

using search algorithms

Limitations in UML

models

Improve the existing

heuristic to solve OCL

restrictions. Using search

algorithms

S05-[15] Critical components

testing using hybrid

genetic algorithm

The critical test

components

Optimization based on

hybrid genetic algorithms

S06-[20] Development of a

framework for test case

prioritization using genetic

algorithm

The prioritization of test

cases in the maintenance

phase

Framework for

prioritization of test cases

using genetic algorithms

S07-[26] Random or genetic

algorithm search for

object-oriented test suite

generation

Unit test in

object-oriented classes

Genetic algorithm in unit

tests

S08-[3] Minimizing feature model

inconsistencies in software

product lines

Selection of features for

the configuration of a

product

Optimization of the

process of selection of the

characteristics by genetic

algorithms

S09-[31] A dynamic approach for

retrieval of software

components using genetic

algorithm

Software reuse Recovery through the use

of genetic algorithms

S10-[19] Component-based software

system test case

prioritization with genetic

algorithm decoding

technique using Java

platform

Regression tests Software test prioritization

framework based on

component

S11-[4] Optimization of soft cost

estimation using genetic

algorithm for NASA

software projects

Cost estimation with

COCOMO model

Adjustment of the

parameters of the

COCOMO coefficients

using genetic algorithms

(continued)

GA in Software Engineering: SLR 663

Table 2. (continued)

ID-Ref. Article Problem-solution Application-technology

S12-[30] Software quality assurance

for object-oriented systems

using meta-heuristic

search techniques

Quality of software for

object-oriented systems

Use of search techniques

for software optimization

of fault prediction

S13-[14] A novel approach for test

case generation from UML

activity diagram

Tests based on models Application of genetic

algorithms for the

generation of test cases

S14-[10] A novel strategy for

automatic test data

generation using soft

computing technique

Generation of automatic

test data

AG-based heuristics for

automatic generation of

test sets

S15-[33] Prioritization of test

scenarios using hybrid

genetic algorithm based on

UML activity diagram

The scenarios of test cases Prioritization of test

scenarios using hybrid

genetic algorithm

S16-[21] Efficient parallel

evolutionary algorithms

for deadline-constrained

scheduling in project

management

Estimation of times in the

planning of software

development projects

Parallel evolutionary

algorithms to solve the

problem term of

programming with

limitations in the

management of projects

S17-[12] Automatic generation of

basis test paths using

variable length genetic

algorithm

Destination route tests Genetic algorithm for the

generation of test

trajectories

S18-[24] Retrieving sequence

diagrams using genetic

algorithm

Software reuse Genetic algorithm for the

determination of the

similarity of the graphic

representations of the

sequence diagrams

S19-[9] Methods for cost

estimation in software

project management

Bad estimation of costs in

the management of

software projects

Estimation of costs in the

management of software

projects using genetic

algorithms

S20-[18] Predicting project effort

intelligently in early stages

by applying genetic

algorithms with neural

networks

Estimation of effort in the

management of software

projects

Estimation models for

software projects using

neural networks and

genetic algorithms

2.4 Data Synthesis

Once the primary studies have been determined, it can be observed that in the
present review, 127 have been taken into account for the analysis, of which the

664 P. F. Ordoñez-Ordoñez et al.

primary ones were considered, 20 of which the following synthesis is illustrated
(Table 3):

Table 3. Summary of reviewed studies.

Sources Studies Relevants Selected

ACM 616 27 8

IEEE 245 40 5

SCOPUS 450 60 7

RRAAE 0 0 0

Totals 1311 127 20

In Fig. 1, the incidence of the studies that have been analyzed is shown, in this
table it is shown that only one of them S01 [32] has maintained a very significant
influence and takes as a direct reference for another 13 studies. S15 and S16 show
that the impact that has been obtained has been medium since they have been
taken into account more than 4 times and in the rest of the studies the impact
they have shown has been low since they have only been considered in less than
4 studies and in three cases S08, S09 and S13 the incidence has been null since
they have not been considered for other references.

Fig. 1. Synthesis by impact

Figure 2 shows the direct participation of the authors in the different studies
that were analyzed, they are the most prominent, as you can see the authors
have not collaborated in another study different from the one mentioned in each

GA in Software Engineering: SLR 665

Fig. 2. Synthesis by author.

Fig. 3. Synthesis of the AG applications.

one of the sections. Taking into account the results shown, it can be concluded
that the topics are related and the results obtained are as desired, so it has not
been considered feasible to carry out a second study to corroborate the data
obtained in it.

Figure 3 shows clearly that the main application is in the testing phase of
a project, and these can be regressive, initial or terminal. It is also shown that
these algorithms can be applied in the management of projects, which helps
to optimize the overall level of the project as indicated by 4 of the studies,
regarding the Production, Distributed Systems and Software Engineering based
on components, only the application of these algorithms has been tested in a

666 P. F. Ordoñez-Ordoñez et al.

single project for each one of them, therefore they are not considered as relevant
study points for the application of genetic algorithms.

Figure 4 shows the technology applied by the genetic algorithms, it is denoted
that Java is used mostly for development, not only because it is a free program-
ming language, it is also multiplatform and of greater boom. in the development.
Another of the technologies is C++, the studies that were analyzed showed that
several of them used this language for the programming of these applications. A
large percentage of these studies have not implemented any development tech-
nology, since they were only applied at some design or initial stage. The Matlab,
OLC and Web technologies have been applied only in two of the studies analyzed
each, so it can be defined that these are not very relevant or have little boom in
the development of applications, the Most development technologies that were
used are object oriented and free guidelines.

Fig. 4. Synthesis of technology.

3 Discussion

S01 and S08 agree that the test in the Software Product Lines can be minimized
appropriately using genetic algorithms since the total number of test cases is
reduced, improving its efficiency.

S02, S14 and S17 propose to the Genealogical Algorithms as a solution for
the automatic generation of tests, since the software development process invests
at least 50% of the total cost in the testing process. software.

S03, S04, S13, S15 and S18 agree that the benefits of software reuse multiply
if carried out in the early stages of software development. Sequence diagrams
are commonly used to model the functionality of software systems in the early
stages of the software development life cycle.

In S05, S06 and S10 they emphasize that the cases of prioritization tests
is an essential task that reduces the test effort in the maintenance phase to a

GA in Software Engineering: SLR 667

considerable degree. These articles propose a framework for the prioritization
of test cases using a tool based on a genetic algorithm, developed in the Java
language.

S07 and S12 agree that the identification of faults in the very early phase of
life cycle software development is very necessary. This helps software developers
focus more on quality assurance, use the workforce in the right perspective, and
reduce the cost of debugging software development in particular.

S11, S16, S19 and S20 agree that the deadline, limited programming in
project management, is a problem of optimization with greater relevance in
software engineering and other real-life situations. they are responsible for the
planning of the activities that must be completed before the specified dates to
resolve the programming period with limitations in the management of projects.
The genetic algorithms have been designed to calculate precise solutions in the
times of reduced execution.

4 Conclusion and Future Work

Regarding the technology used, it is noted that the highest percentage of studies
carried out are based on Java, a programming language for free and object-
oriented guidelines, which is used at all levels of programming. n. On the other
hand a large number of the works: S04, S13, S115, S18, S19, were still in stages
of study and many of these have been made in their development process in
UML or in its initial phases.

There are primary studies S02, S03, S06, S07, S10, S12 that are specific and
offer a clear answer on the problems that the application of General Algorithms
has solved. Likewise, the application of these algorithms allowed the optimiza-
tion of several of the stages in the development of the Software Engineering,
in addition to the technologies in which a software can be executed. Genetic
algorithm are not limited or do not show restrictions on those that currently
exist. Based on the primary studies S02, S04, S09, S11, S15 analyzed there are
several scopes in the application of genetic algorithms in the Software develop-
ment, most of these are shown in the design and testing stages, which mainly
streamlines the control of programming errors and optimizes the time and costs
that are generally the stages in the which concentrates most of the effort and
budget of a project.

Finally, the applications of genetic algorithms are of greater height according
to their timeline, denoting a great use in initial stages or tests, since the results
that have been obtained in each of these have clearly shown that in all they have
achieved the optimization of processes, which demonstrates the improvement of
the cost-time-effort ratio. However, the need for applications in the software life
cycle is present, when this process is caused by frameworks and agile method-
ologies that involve great interaction with the user.

668 P. F. Ordoñez-Ordoñez et al.

References

1. IEEE Xplore Digital Library. https://ieeexplore.ieee.org/Xplore/home.jsp
2. ACM: The ACM Digital Library. https://www.acm.org/
3. Afzal, U., Mahmood, T., Rauf, I., Shaikh, Z.A.: Minimizing feature model incon-

sistencies in software product lines. In: Proceedings of the 17th IEEE International
Multi-Topic Conference Collaborative and Sustainable Development of Technolo-
gies, IEEE INMIC 2014, pp. 137–142 (2015). https://doi.org/10.1109/INMIC.2014.
7097326

4. Algabri, M., Saeed, F., Mathkour, H., Tagoug, N.: Optimization of soft cost
estimation using genetic algorithm for NASA software projects. In: 2015 5th
National Symposium on Information Technology: Towards New Smart World, pp.
1–4 (2015). https://doi.org/10.1109/NSITNSW.2015.7176416, http://ieeexplore.
ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7176416

5. Ali, S., Iqbal, M.Z., Arcuri, A.: Improved heuristics for solving OCL constraints
using search algorithms. In: 16th Genetic and Evolutionary Computation Con-
ference, GECCO 2014, pp. 1231–1238 (2014). https://doi.org/10.1145/2576768.
2598308

6. Alzabidi, M., Kumar, A.: Automatic software structural testing by using evolu-
tionary algorithms for test data generations. J. Comput. Sci. 9(4), 390–395 (2009).
http://paper.ijcsns.org/07 book/200904/20090453.pdf

7. Baccichetti, F., Bordin, F., Carlassare, F.: λ-Prophage induction byfurocoumarin
photosensitization. Experientia 35(2), 183–184 (1979). https://doi.org/10.1007/
BF01920603. http://www.gbv.de/dms/ilmenau/toc/01600020X.PDF

8. Bhasin, H.: Cost-priority cognizant regression testing. ACM SIGSOFT Softw. Eng.
Notes 39(3), 1–7 (2014). https://doi.org/10.1145/2597716.2597722

9. Briciu, C.V., Filip, I., Indries, I.I.: Methods for cost estimation in software project
management. In: IOP Conference Series: Materials Science and Engineering, vol.
106, no. 1 (2016). https://doi.org/10.1088/1757-899X/106/1/012008, http://www.
scopus.com/inward/record.url?eid=2-s2.0-84960154391&partnerID=tZOtx3y1

10. Chawla, P., Chana, I., Rana, A.: A novel strategy for automatic test data
generation using soft computing technique. Front. Comput. Sci. 9(3), 346–
363 (2015). https://doi.org/10.1007/s11704-014-3496-9. http://www.scopus.com/
inward/record.url?eid=2-s2.0-84938208965&partnerID=40&md5=6b7065f7903d0a
046c17613f79b6ecd1

11. Elsevier B.V.: Scopus. https://www.scopus.com/home.uri
12. Ghiduk, A.S.: Automatic generation of basis test paths using variable length

genetic algorithm. Inf. Process. Lett. 114(6), 304–316 (2014). https://doi.org/10.
1016/j.ipl.2014.01.009

13. Hsinyi, J.: Can the genetic algorithm be a good tool for software engineering
searching problems? In: Proceedings of the International Conference on Computer
Software and Applications, vol. 2, pp. 362–364 (2006). https://doi.org/10.1109/
COMPSAC.2006.123

14. Jena, A.K., Swain, S.K., Mohapatra, D.P.: A novel approach for test case gen-
eration from UML activity diagram. In: 2014 International Conference on Issues
Challenges in Intelligent Computing Techniques, pp. 621–629 (2014). https://doi.
org/10.1109/ICICICT.2014.6781352, http://www.scopus.com/inward/record.url?
eid=2-s2.0-84899098078&partnerID=tZOtx3y1

https://ieeexplore.ieee.org/Xplore/home.jsp
https://www.acm.org/
https://doi.org/10.1109/INMIC.2014.7097326
https://doi.org/10.1109/INMIC.2014.7097326
https://doi.org/10.1109/NSITNSW.2015.7176416
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7176416
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7176416
https://doi.org/10.1145/2576768.2598308
https://doi.org/10.1145/2576768.2598308
http://paper.ijcsns.org/07_book/200904/20090453.pdf
https://doi.org/10.1007/BF01920603
https://doi.org/10.1007/BF01920603
http://www.gbv.de/dms/ilmenau/toc/01600020X.PDF
https://doi.org/10.1145/2597716.2597722
https://doi.org/10.1088/1757-899X/106/1/012008
http://www.scopus.com/inward/record.url?eid=2-s2.0-84960154391&partnerID=tZOtx3y1
http://www.scopus.com/inward/record.url?eid=2-s2.0-84960154391&partnerID=tZOtx3y1
https://doi.org/10.1007/s11704-014-3496-9
http://www.scopus.com/inward/record.url?eid=2-s2.0-84938208965&partnerID=40&md5=6b7065f7903d0a046c17613f79b6ecd1
http://www.scopus.com/inward/record.url?eid=2-s2.0-84938208965&partnerID=40&md5=6b7065f7903d0a046c17613f79b6ecd1
http://www.scopus.com/inward/record.url?eid=2-s2.0-84938208965&partnerID=40&md5=6b7065f7903d0a046c17613f79b6ecd1
https://www.scopus.com/home.uri
https://doi.org/10.1016/j.ipl.2014.01.009
https://doi.org/10.1016/j.ipl.2014.01.009
https://doi.org/10.1109/COMPSAC.2006.123
https://doi.org/10.1109/COMPSAC.2006.123
https://doi.org/10.1109/ICICICT.2014.6781352
https://doi.org/10.1109/ICICICT.2014.6781352
http://www.scopus.com/inward/record.url?eid=2-s2.0-84899098078&partnerID=tZOtx3y1
http://www.scopus.com/inward/record.url?eid=2-s2.0-84899098078&partnerID=tZOtx3y1

GA in Software Engineering: SLR 669

15. Jeya Mala, D., Sabari Nathan, K., Balamurugan, S.: Critical compo-
nents testing using hybrid genetic algorithm. ACM SIGSOFT Softw.
Eng. Notes 38(5), 1 (2013). https://doi.org/10.1145/2507288.2507309.
http://dl.acm.org/citation.cfm?doid=2507288.2507309

16. Kitchenham, B.: Procedures for performing systematic reviews. Keele University,
Keele, UK 33(TR/SE-0401), 28 (2004). https://doi.org/10.1109/METRIC.2004.
1357885

17. Kitchenham, B., et al.: Systematic literature reviews in software engineering: a
tertiary study. Inf. Softw. Technol. 52(8), 792–805 (2010). https://doi.org/10.1016/
j.infsof.2010.03.006

18. Li, Z.Y.: Predicting project effort intelligently in early stages by applying genetic
algorithms with neural networks. Appl. Mech. Mater. 513–517, 2035–2040 (2014).
https://doi.org/10.4028/www.scientific.net/AMM.513-517.2035

19. Mahajan, S., Joshi, S.D., Khanaa, V.: Component-based software system test
case prioritization with genetic algorithm decoding technique using Java plat-
form. In: 2015 International Conference on Computing Communication Control
and Automation, pp. 847–851 (2015). https://doi.org/10.1109/ICCUBEA.2015.
169, http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7155967

20. Malhotra, R., Tiwari, D.: Development of a framework for test
case prioritization using genetic algorithm. ACM SIGSOFT Softw.
Eng. Notes 38(3), 1 (2013). https://doi.org/10.1145/2464526.2464536.
http://dl.acm.org/citation.cfm?doid=2464526.2464536

21. Nesmachnow, S.: Efficient parallel evolutionary algorithms for deadline-constrained
scheduling in project management. Int. J. Innov. Comput. Appl. 7(1), 34–49
(2016). https://doi.org/10.1504/IJICA.2016.075468

22. Pino, F., Garćıa, F., Piattini, M.: Revisión sistemática de mejora de
procesos software en micro, pequeñas y medianas empresas. Rev. Espa
nola Innovación Calid. e Ing. del Softw. REICIS 2(1), 6–23 (2006).
http://redalyc.uaemex.mx/pdf/922/92220103.pdf

23. RRAAE: Red de Repositorio de Acceso Abierto del Ecuador. http://www.rraae.
org.ec/

24. Salami, H.O., Ahmed, M.: Retrieving sequence diagrams using genetic algorithm,
pp. 324–330. IEEE Computer Society (2014). https://doi.org/10.1109/JCSSE.
2014.6841889

25. Saxena, V., Arora, D., Mishra, N.: UML modeling of load optimization for dis-
tributed computer systems based on genetic algorithm. SIGSOFT Softw. Eng.
Notes 38(1), 1–7 (2013). https://doi.org/10.1145/2413038.2413043

26. Shamshiri, S., Rojas, J.M., Fraser, G., Mcminn, P., Court, R.: Random or genetic
algorithm search for object-oriented test suite generation? In: Proceedings of
the 2015 Annual Conference on Genetic and Evolutionary Computation, pp.
1367–1374 (2015). https://doi.org/10.1145/2739480.2754696, http://dl.acm.org/
citation.cfm?id=2754696

27. Sharma, C., Sabharwal, S., Sibal, R.: A survey on software testing techniques
using genetic algorithm. Int. J. Comput. Sci. Issues 10(1), 381–393 (2013).
https://arxiv.org/ftp/arxiv/papers/1411/1411.1154.pdf

28. Shuai, B., Li, M., Li, H., Zhang, Q., Tang, C.: Software vulnerability detection
using genetic algorithm and dynamic taint analysis. In: 2013 Proceedings of the
3rd International Conference on Consumer Electronics, Communications and Net-
works, CECNet 2013, pp. 589–593 (2013). https://doi.org/10.1109/CECNet.2013.
6703400, http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6703400

https://doi.org/10.1145/2507288.2507309
http://dl.acm.org/citation.cfm?doid=2507288.2507309
https://doi.org/10.1109/METRIC.2004.1357885
https://doi.org/10.1109/METRIC.2004.1357885
https://doi.org/10.1016/j.infsof.2010.03.006
https://doi.org/10.1016/j.infsof.2010.03.006
https://doi.org/10.4028/www.scientific.net/AMM.513-517.2035
https://doi.org/10.1109/ICCUBEA.2015.169
https://doi.org/10.1109/ICCUBEA.2015.169
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7155967
https://doi.org/10.1145/2464526.2464536
http://dl.acm.org/citation.cfm?doid=2464526.2464536
https://doi.org/10.1504/IJICA.2016.075468
http://redalyc.uaemex.mx/pdf/922/92220103.pdf
http://www.rraae.org.ec/
http://www.rraae.org.ec/
https://doi.org/10.1109/JCSSE.2014.6841889
https://doi.org/10.1109/JCSSE.2014.6841889
https://doi.org/10.1145/2413038.2413043
https://doi.org/10.1145/2739480.2754696
http://dl.acm.org/citation.cfm?id=2754696
http://dl.acm.org/citation.cfm?id=2754696
https://arxiv.org/ftp/arxiv/papers/1411/1411.1154.pdf
https://doi.org/10.1109/CECNet.2013.6703400
https://doi.org/10.1109/CECNet.2013.6703400
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6703400

670 P. F. Ordoñez-Ordoñez et al.

29. Sommerville, I.: Software engineering (2010). https://doi.org/10.1111/j.1365-2362.
2005.01463.x

30. Suresh, Y.: Software quality assurance for object-oriented systems using meta-
heuristic search techniques, pp. 441–448 (2015)

31. Vodithala, S.: A dynamic approach for retrieval of software compo-
nents using genetic algorithm. http://ieeexplore.ieee.org/xpl/articleDetails.jsp?
arnumber=7339085

32. Wang, S., Ali, S., Gotlieb, A.: Minimizing test suites in software product lines using
weight-based genetic algorithms. In: Proceeding of the Fifteenth Annual Confer-
ence on Genetic and Evolutionary Computation, pp. 1493–1500 (2013). https://
doi.org/10.1145/2463372.2463545

33. Wang, X., Jiang, X., Shi, H.: Prioritization of test scenarios using hybrid genetic
algorithm based on UML activity diagram, pp. 854–857. IEEE Computer Society,
November 2015. https://doi.org/10.1109/ICSESS.2015.7339189

https://doi.org/10.1111/j.1365-2362.2005.01463.x
https://doi.org/10.1111/j.1365-2362.2005.01463.x
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7339085
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7339085
https://doi.org/10.1145/2463372.2463545
https://doi.org/10.1145/2463372.2463545
https://doi.org/10.1109/ICSESS.2015.7339189

	Application of Genetic Algorithms in Software Engineering: A Systematic Literature Review
	1 Introduction
	2 Review Protocol Development
	2.1 Research Identification
	2.2 Selection of Primary Studies
	2.3 Data Extraction
	2.4 Data Synthesis

	3 Discussion
	4 Conclusion and Future Work
	References

