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Abstract. Identification and modeling of systems are the first stage for
development and design of controllers. For this purpose, as an alternative to
conventional modeling approaches we propose using two methods of evolu-
tionary computing: Genetic Algorithms (GA) and Particle Swarm Optimization
(PSO to create an algorithm for modeling Linear Time Invariant (LTI) systems
of different types. Integral Square Error (ISE) is the objective function to
minimize, which is calculated between the outputs of the real system and the
model. Unlike other works, the algorithms make a search of the most approx-
imate model based on four of the most common ones found in industrial pro-
cesses: systems of first order, first order plus time delay, second order and
inverse response. The estimated models by our algorithms are compared with
the obtained by other analytical and heuristic methods, in order to validate the
results of our approach.

Keywords: System modeling � System identification � Genetic algorithms
Particle swarm optimization

1 Introduction

In control systems, identification of invariant models in continuous or discrete time is
one of the main steps to be carried out regarding the design of controllers and cali-
bration of parameters. In general, the models can have different structures, depending
on the intrinsic characteristics of the process; however, at the level of real applications,
complex process approximations can be made to linear and reduced order models (at
their operational points). So, there are different methods used to perform the identifi-
cation of a system, some of them are analytical one, based on principles such as laws of
physics, thermodynamics and so on; and the other ones based on experiments, which
use particular input signals applied to a system to observe the behavior of the output,
and based on it try to determine their respective parameters [1]. This is one of the most
common methodologies for the case of reduced order systems. For second order

© Springer Nature Switzerland AG 2019
M. Botto-Tobar et al. (Eds.): CITT 2018, CCIS 895, pp. 430–445, 2019.
https://doi.org/10.1007/978-3-030-05532-5_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05532-5_32&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05532-5_32&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05532-5_32&amp;domain=pdf
https://doi.org/10.1007/978-3-030-05532-5_32


systems, a similar methodology has been developed, however, these analyzes require
the measurement of different characteristic parameters of the reaction curve, which is a
tedious procedure that takes time [2].

In [3] it is proposed a computer tool that allows the modeling of systems, as
mentioned above, using input and output data from the system, in which an analysis of
different model estimation methods is done through the toolbox CONTSID
(CONtinuous-Time System IDentification). CONTSID uses linear filters, integral
methods, modulation functions, among others. However, iterative or recursive methods
are not studied, which will be considered in this work. [3–5] are works in which models
are estimated by heuristic optimization techniques, such as Genetic Algorithms (GA);
nevertheless, they do not consider finding a reduced order model, or they have not been
used to model systems with time delay or with inverse response. In works such as
[6, 7], the optimization of model parameters is done using Particle Swarm Optimization
(PSO) [8]. Both, GA and PSO algorithms, are iterative methods that do not disturb or
affect the normal performance of the real plant (since they work offline), so they are
very useful for the identification of plant’s dynamics using the input and output data of
the real system. In these previous works, it is essential to know a priori model from
which the parameters will be optimized; however, the algorithms do not have the
intelligence to find the simplest model that follows the real system, which is a great
disadvantage.

In order to discover these models, this paper proposes an intelligent approach that,
unlike works presented in [4–8], looks for the simplest reduced order model that fits a
real system, using its input and output data. Thereby, we propose an approach that
performs the parameterization of four of the most commonly found models in auto-
matic control focused on industrial processes, these are: first order, first order plus time
delay, second order, and inverse response. Our approach makes a search of the most
similar model (optimal parameters) to the real system based on the input and output
data, starting this search in the simplest model (few variables), until the inverse
response model (more variables), with the aim of decreasing the computational cost.
Our approach uses GA and PSO, and stops when the objective function, in this case the
Integral Square Error “ISE”, is lower than the threshold established by the user.

The advantage of our approach is that it reduces the estimation time of the model
and does not necessarily require a priori knowledge of the real model. Two intelligent
computing techniques have been used to discover the most approximate model, which
are compared with the analytical results. The motivation to use PSO and GA, is to
perform a comparative analysis of the results obtained in the estimation of the models
with each method, as an alternative to conventional modeling approaches.

2 Theoretical Framework

In the field of control systems, it is very important for the design of controllers, to know
the dynamic behavior of the plant and its mathematical model. In this section is
presented a brief description of the most common system models in control.
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2.1 Commonly Models in Control Systems

A classical SISO (single-input, single-output) model of continuous time LTI systems
can be represented by Eq. (1).

y sð Þ ¼ G sð Þu sð Þ ð1Þ

With:

G sð Þ ¼ b sð Þ
a sð Þ ¼

b0 þ b1sþ . . .þ bjs j

a0 þ a1sþ . . .þ aksk
e�t0s; k� j ð2Þ

Where: bi and ai are the parameters of the transfer function, and t0 is the dead time.
These parameters are unknown, and must be identified by our intelligent algorithm,
u sð Þ is the input, y sð Þ is the output of the system, and “s” is the operator d=dt.

The identification of the system is the first step to be considered in the design of a
controller, and different methods can be used. Model estimation consists of two stages:
the selection of an appropriate model (which can often be complicated), and the esti-
mation of its parameters [6]. Currently, many model structures are known that describe
the behavior of different types of systems in a very precise way; therefore, the aim is to
determine their respective parameters. The dynamic properties of systems can be
approximated by the temporal characteristics of simpler systems. Simple models are
understood as those that define their dynamics by linear differential equations of first or
second order. Reduced order models are commonly found in the field of industrial
process, robotics, etc. In this section are presented the models used in this work.

2.2 First-Order Systems (FO)

The order of a system corresponds to the degree of its characteristic polynomial. The
transfer function of a first-order system is:

G sð Þ ¼ K
Tsþ 1

ð3Þ

Where K is the static gain, and T the response time (time constant).
In a first-order system, its parameters can be determined experimentally by means

of the observation of the response produced in the system by a step input. The static
gain “K” will be the final value of the output signal, and the time constant “T”
approximates the time that output reaches about 63% of the value of the stationary gain.
Figure 1 shows the characteristic response of a first-order system by a step input.

In real cases, when the value of the input variable is modified, the effect of that
change on the dynamic response of the system is not immediately observed, it can take
some time for the system to start responding to the effect of the change made (see
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Fig. 2), which is known as the “first order plus time delay” system (FOPTD). t0 is the
time that system takes to respond. In this case, the transfer function is given by:

G sð Þ ¼ Ke�t0s

Tsþ 1
ð4Þ

2.3 Second-Order Systems (SO)

The dynamics of a LTI system can be defined by the roots of the denominator. The
nature of this expression can be real or complex. If it is real, the response to the input to
the step will be defined by the next expression.
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Fig. 1. First-order system response

Fig. 2. First-order plus time delay system response
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G sð Þ ¼ Kxn

s2 þ 2nxnsþx2
n
e�t0s ð5Þ

Where xn is the natural oscillation frequency and n is the damping coefficient.
For a second order system, there are different cases for this coefficient:

– Underdamped system 0\n\1 :

s1; s2 ¼ �nxn � jxn

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

q
ð6Þ

– Critically damped system n ¼ 1 :

s1; s2 ¼ �xn ð7Þ

– Overdamped system n[ 1 :

s1; s2 ¼ �nxn � xn

ffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � 1

q
; ð8Þ

– Undamped system n ¼ 0 :

s1; s2 ¼ �jxn ð9Þ

In Fig. 3, the output of different systems is shown in response to a step input,
considering the different damping coefficients.

Fig. 3. Second order system response
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2.4 Inverse Response Systems (IR)

In these systems, when a step input is applied, the response of the system first decreases
until it reaches a minimum, and then begins to “rise” until it reaches the new stationary
state, as is shown in Fig. 4. An inverse response system can be represented by:

G sð Þ ¼ K �T3sþ 1ð Þ
T1sþ 1ð Þ T2sþ 1ð Þ ð10Þ

These models can be understood as the interaction of slow and fast dynamics, and
can be represented as the difference of two systems of first order [9]:

G sð Þ ¼ K1

T1sþ 1
� K2

T2sþ 1
ð11Þ

With the condition:

T1
T2

[
K1

K2
[ 1 ð12Þ

2.5 System Identification Problem

The estimation of the aforementioned models can be performed analytically (mathe-
matically), which is well defined in the literature for the case of first and second order
systems [1, 9], and for inverse response systems [10], by means of a graphic estimation
and calculations that in some cases require a lot of time, and do not guarantee the best
possible approximation. Intelligent computing has been used in the field of control
systems, both for the identification of systems (estimation) [11, 12], and in the control
itself; for example, to determine the optimal parameters of a controller [3].

Inverse 
response

Fig. 4. Inverse response system
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In this work is proposed the identification of reduced order models based on two
well-known techniques of evolutionary computation, such as: GA [13] and PSO [14].
For that, it is necessary to have the input and output data as system information, and
based on this, estimate the model closest to the real one.

The algorithms proposed by other authors have the disadvantage that the user must
know a priori the type of model, and based on this, it calculates its parameters, which
does not guarantee to obtain the most suitable model. Hence, the need for an intelligent
approach that approximates the real system to the model of reduced order that most
resembles, for example of first order, first order plus time delay, second order, or
inverse response, which are the most frequently found in real processes. In our
approach is making a search, starting from the simplest model (FO), going through
FOPTD, SO, until it ends with the more complex model IR.

3 Our Evolutionary Approach for System Identification

In this paper, unlike other works [5–7, 15, 16], our approach will automatically search
for the most approximate model (FO, FOPTD, SO or RI) to the real system. Our
approach is based on the system response to an excitation at input, due to that each
system type has a characteristic output (see Fig. 5).

The scheme of our proposed approach is shown in Fig. 6. Once the input and
output data of the real system has been acquired, one of the algorithms (GA and PSO)
is executed, considering an initial structure (in this case, the simplest one, corre-
sponding to a FO model). Once the optimization has been completed, it is verified that
the ISE is lower than a given threshold (TH), a value that must be calibrated heuris-
tically, and depends on factors such as, the maximum value of the output, the noise in
the data, etc. If the condition is not met, then the model does not correspond to a FO
model. So, the algorithm is executed for a FOPDT system estimation. If the ISE at the

Systemu(t) y(t)

Fig. 5. Schematic of input-output data of a system
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end of the optimization is below the threshold, then it is determined that the model
obtained corresponds to this type of system. However, if this condition is not met, then
the same procedure is performed for a SO model and an IR model. In case where it is
not found an ISE lower than the threshold in any of the models, the algorithm will give
the parameters of the estimated model with the lowest ISE, that is, the model closest to
the real one.

In this way, the algorithm makes an automatic estimation starting from the simplest
model with fewer variables, to the most complex model with more variables. This

START

DATA ADQUISITION
INPUT/OUTPUT
REAL SYSTEM

STEP 2: INTELLIGENT
ALGORITHM TO FIND A  “FOPDT” 

MODEL (K, T, to)

ISE2<TH 1

STEP 3: INTELLIGENT
ALGORITHM TO FIND 
“SO” MODEL (K, ξ, ωn)

ISE3<TH 1

STEP 4: INTELLIGENT
ALGORITHM TO FIND A  

“IR” MODEL (K1, K2, T1, T2)

ISE4<TH 1

MODEL = min(ISE1, ISE2, ISE3, ISE4)

END

1

YES

YES

YES

NO

NO

NO

STEP 1: INTELLIGENT
ALGORITHM TO FIND A “FO” 

MODEL (K, T) 

ISE1<TH 1
YES

NO

Fig. 6. Block diagram for the proposed algorithm
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allows to decrease the search time of the best estimate, since if it finds a good esti-
mation represented by the simplest model, then it is not necessary to keep running the
algorithm to find other more complex models.

For the identification of the model, our approach minimizes an objective function
based on the Integral Square Error (ISE). In Fig. 7 is shown how is obtained this
metric, whose mathematical expression is:

ISE ¼
Z T

0
y tð Þ � ŷ tð Þð Þ2dt ¼

Z T

0
e tð Þ2dt ð13Þ

We have used GA and PSO because these two techniques have been well studied
and have an excellent performance in optimization problems [8]. In our case, it is
appropriate to find optimal parameters of the models, minimizing ISE.

4 Experiments

In this section, we present different case studies taken from different references, to
verify the accuracy of our approach for the identification of some simulated and real
systems, contrasting the results with the ones obtained by analytical and heuristic
methods, in order to compare the performance of our proposal. In the case of GA, an
initial population of 50 individuals and 300 generations has been used; in the case of
PSO, it starts with 30 agents with parameters that give the best results.

4.1 Case Study 1: FOPDT System Identification

The simulation is performed for the identification of a FOPDT model where there is a
random variation of the input (see Fig. 8). The model is easily estimated by our
approach in the first stages, determining the parameters shown in the Table 1.

Input

Model   

Unknown
System

Algorithm

+

-

Parameters

ISE

Fig. 7. Block diagram for obtaining the ISE metric
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According to Fig. 8, it is evident that the two algorithms provide values close to the
real values; however, PSO is the most accurate, with a lower relative error in all its
parameters. It is also observed that estimation is correct, even though the input signal is
very variable.

4.2 Case Study 2: Higher Order System Identification

Our approach is tested in a higher order system, taken from the example 6.4 presented
in [17]. In that work, its approximated models are based on two analytical approaches,
which we use to compare them with the results obtained by our proposed. These results
are shown in the Table 2.

The results of PSO are the best, followed by the analytical method of Skogestad. In
the case of GA, the ISE is not the best because it needs a calibration of its initial
parameters (initial population and number of generations) to avoid falling into a local
minimum in models of this type; however, its results are better than Taylor Series
analytical method, with less time and without the need of mathematical calculations.

Figure 9 shows the response of the real system and of all the estimated models.

Table 1. Results of the FOPDT system identification

G sð Þ ¼ �2:47
3:7sþ 1 e

�1:3

K ¼ �2:47; s ¼ 3:7 s½ �; t0 ¼ 1:3 s½ �
Parameters K s s½ � t0 s½ � ISE

Real −2.47 3.70 1.30
GA −2.46 3.66 1.28 2.57
Relative error GA 0.40% 1.08% 1.5%
PSO −2.46 3.73 1.29 2.34
Relative error PSO 0.40% 0.81% 0.76%
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Fig. 8. Comparison of the real FOPDT and the estimated models
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4.3 Case Study 3: Inverse Response System Identification

For the next test is used the case study presented in [10], where an isothermal con-
tinuous stirred tank reactor (CSTR) is considered, from which an analytical model is
proposed. In this system, a change of 10% in the manipulated variable (flow through
the reactor) occurs, and the response to the output or controlled variable (concentration)
is observed, as is shown in the Fig. 10. Results obtained with our approach and
analytically, are presented in the Table 3.

In general, PSO and GA propose a very good approximation with respect to the
analytical model. This last requires an analytical-graphic analysis considering at least
three points of the response curve, and then it performs several mathematical calcu-
lations, and a parameter adjustment, which involve a lot of time with respect to the
runtime of our approach.
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GA
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Analytical 1

Analytical 2

Fig. 9. Comparison of the real higher order system and the estimated models

Table 2. Results of the higher order system identification

G sð Þ ¼ 1:5 �0:1sþ 1ð Þ
5sþ 1ð Þ 3sþ 1ð Þ 0:5sþ 1ð Þ real systemð Þ

Method Best estimation ISE

GA G sð Þ ¼ 1:51
4:97sþ 1 e

�3:13s 0.106

PSO G sð Þ ¼ 1:51
6:89sþ 1 e

�2:25s 0.025

Analytical 1
(Skogestad)

G sð Þ ¼ 1:50
6:50sþ 1 e

�2:10s 0.037

Analytical 2
(Taylor Series)

G sð Þ ¼ 1:50
5:00sþ 1 e

�3:60s 0.130
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4.4 Case Study 4: Identification of a Real System

For this case study, the exercise 10-2 presented in [1] is used, which corresponds to the
reactor of the Fig. 11. Once the system is stable at the temperature of 1463 °F, a
change of 5% is made in the opening of the fuel valve (input variable with negative
step), taking the data (temperature) shown in the Table 4.

Table 3. Results of the inverse response system identification

Method Best estimation ISE

GA G sð Þ ¼ 0:78
0:64sþ 1 � 0:46

0:24sþ 1
0.0061

PSO G sð Þ ¼ 0:95
0:59sþ 1 � 0:63

0:27sþ 1
0.0032

Analytical
(Balaguer Method)

G sð Þ ¼ 0:32 �0:35sþ 1ð Þ
0:56sþ 1ð Þ 0:31sþ 1ð Þ 0.0022
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Fig. 10. Comparison of the real inverse response system and the estimated models

Fig. 11. Schematic of the real process of a heater system (Reactor)
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Table 5, shows the results obtained through the execution of our approach and an
analytical model. The system responses are shown in the Fig. 12.

The results obtained show that our proposal presents the best approximation. It can
also be observed that the values of the ISE metric are large compared to the other case
studies, because this is related to the high values presented in the output of the system,
which is in the order of 1250 °F to 1450 °F.

Table 4. Real data of the process of a heater system

Time [min] T [°F] Time [min] T [°F] Time [min] T [°F] Time [min] T [°F]

0 1463 16 1435 32 1351 48 1287
2 1463 18 1426 34 1341 50 1281
4 1463 20 1415 36 1332 52 1275
6 1463 22 1405 38 1324 54 1275
8 1461 24 1393 40 1316 56 1263
10 1457 26 1382 42 1308 58 1258
12 1452 28 1372 44 1301 94 1235
14 1444 30 1361 46 1293

Table 5. Results of the identification of a real system

Method Best estimation ISE

GA G sð Þ ¼ 2:37
26:02sþ 1 e

�13:95s 3128

PSO G sð Þ ¼ 2:38
25:97sþ 1 e

�13:95s 3127

Analytical G sð Þ ¼ 2:28
23:25sþ 1 e

�14:75s 5241

Fig. 12. Comparison of a real system with the estimated models
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4.5 Case Study 5: System with Noisy Data

The following experiment is based on the example 6.2 shown in [9]. This is a system
with realistic data set for the two stirred-tank heating. The data has noise, which may be
due to imperfect mixing, noise in the sensors, among other causes. The estimations of
our approach have been compared with the values obtained by means of two analytical
strategies presented in [1], which are shown in Table 6.

The PSO algorithm provides the most approximate model, despite the presence of
noise in the data (see Fig. 13), showing that the approach performs well, even if a filter
has not been placed at the input. One important remark is that our approach determines
automatically that the best model is a SO, using GA or PSO.

5 Discussion

Based on the results obtained, it is important to differentiate the advantages from the
quantitative and qualitative point of view of our approach.

Table 6. Results of the identification of system with noisy data

Method Best estimation ISE

GA G sð Þ ¼ 2:60
5:55sþ 1 e

�4:23s 13.95

PSO G sð Þ ¼ 2:74
7:31sþ 1 e

�3:27s 13.75

Analytical 1 G sð Þ ¼ 2:60
10:80sþ 1 e

�2:40s 82.83

Analytical 2 G sð Þ ¼ 2:60
5:90sþ 1 e

�3:70s 14.03

Fig. 13. Comparison of a real system with noisy data and the estimated models
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Regarding the quantitative point of view, it can be observed that in most experi-
ments, PSO is the technique that presents the best approximations of the test model,
with lower ISE values, even comparing them with analytical models. In the case of
inverse response systems, the approximation is quite good, but the Balaguer method
[10] has the best estimation; however, it requires mathematical calculations that involve
a lot of time.

From the qualitative point of view, it has been possible to observe several
advantages with respect to other similar works, such as:

– It is not necessary to know a priori the model to be estimated, because the algorithm
automatically finds the reduced order model closest to the real one.

– In the case of data with noise, the algorithm finds the closest model, without the
need for additional filters.

– The runtime of the algorithm is low and can be considered as a very good alter-
native to analytical methods.

– In previous works, we have used genetic programming in identification problems,
but the expressions they give are very complex, which are not useful to build later
controllers [11, 12]. Our approach based on an optimization problem allows us
reusing the classic control models to solve the identification problem.

6 Conclusions

In this paper, an evolutionary intelligent approach for the identification of reduced
order models, through GA and PSO, is proposed as an alternative to conventional
modeling approaches. The optimization of parameters of the estimated model is done
by minimizing the ISE.

From the results obtained, it can be determined that PSO is the most suitable
algorithm for the model identification, since it presents the results with lower ISE and
reduces the estimation time of the parameters, with respect to GA and the analytical
methods. The simulation and comparative analysis of these techniques has been carried
out, observing the best estimate of the model obtained, without the need for the user to
know a priori the model of the real system. The approach can be used for adaptive
control systems, avoiding performing mathematical calculations or graphic estimation
that requires considerable time, and does not guarantee the lowest ISE.

As future work, the extension of our approach to nonlinear systems will be con-
sidered to determine more exact approximations. This will allow designing more robust
controllers, with better characteristics that can handle the intrinsic properties of these
systems, which are generally found in real industrial processes. At the same time, the
extension of this proposal to discrete models will be of great help, since most systems
are measured with digital instruments. This will allow a better modeling of real plants.

444 L. Morales et al.



References

1. Smith, C., Corripio, A.: Principles and Practice of Automatic Process Control, 3rd edn.
Wiley, New York (2006)

2. Johnson, M., Moradi, M.: PID Control - New Identification and Design Methods. Springer,
London (2005). https://doi.org/10.1007/1-84628-148-2

3. Kristinsson, K., Dumont, G.A.: System identification and control using genetic algorithms.
IEEE Trans. Syst. Man. Cybern. 22(5), 1033–1046 (1992)

4. Johnson, T., Husbands, P.: System identification using genetic algorithms. In: Parallel
Problem Solving from Nature, no. 1, pp. 85–89. Springer, Heidelberg (1991)

5. Zhang, R., Tao, J.: A nonlinear fuzzy neural network modeling approach using an improved
genetic algorithm. IEEE Trans. Ind. Electron. 65(7), 5882–5892 (2018)

6. Alfi, A., Modares, H.: System identification and control using adaptive particle swarm
optimization. Appl. Math. Model. 35(3), 1210–1221 (2011)

7. Dub, M., Stefek, A.: Mechatronics 2013. Springer, Cham (2014)
8. Hassan, R., Cohanim, B., de Weck, O., Venter, G.: A comparison of particle swarm

optimization and the genetic algorithm. In: 46th AIAA/ASME/ASCE/AHS/ASC Structures,
Structural Dynamics and Materials Conference, no. April, pp. 1–13 (2005)

9. Marlin, T.: Process Control. Design Processes and Control System for Dynamic
Performance. McGraw Hill, New York (1995)

10. Balaguer, P., Alfaro, V., Arrieta, O.: Second order inverse response process identification
from transient step response. ISA Trans. 50(2), 231–238 (2011)

11. Aguilar, J., Cerrada, M.: Genetic programming-based approach for system identification.
Adv. Fuzzy Syst. Evol. Comput. Artif. Intell. 329–324 (2001)

12. Carabalí, C.A., Tituaña, L., Aguilar, J., Camacho, O., Chavez, D.: Inverse response systems
identification using genetic programming. In: Proceedings of the 14th International
Conference on Informatics in Control, Automation and Robotics, vol. 1, no. Icinco,
pp. 238–245 (2017)

13. Tang, H., Xue, S., Fan, C.: Differential evolution strategy for structural system identification.
Comput. Struct. 86(21–22), 2004–2012 (2008)

14. Venter, G., Sobieszczanski-Sobieski, J.: Particle swarm optimization. AIAA J. 41(8), 1583–
1589 (2003)

15. Aguilar, J.: The evolutionary programming in the identification of discreet events dynamic
systems. IEEE Lat. Am. Trans. 5(5), 301–310 (2007)

16. Garnier, H., Mensler, M., Richard, A.: Continuous-time model identification from sampled
data: implementation issues and performance evaluation. Int. J. Control 76(13), 1337–1357
(2003)

17. Seborg, D., Edgar, T., Mellichamp, D., Doyle, F.: Process Dynamics and Control, 3rd edn.
Wiley, New York (2011)

An Evolutionary Intelligent Approach for the LTI Systems Identification 445

http://dx.doi.org/10.1007/1-84628-148-2

	An Evolutionary Intelligent Approach for the LTI Systems Identification in Continuous Time
	Abstract
	1 Introduction
	2 Theoretical Framework
	2.1 Commonly Models in Control Systems
	2.2 First-Order Systems (FO)
	2.3 Second-Order Systems (SO)
	2.4 Inverse Response Systems (IR)
	2.5 System Identification Problem

	3 Our Evolutionary Approach for System Identification
	4 Experiments
	4.1 Case Study 1: FOPDT System Identification
	4.2 Case Study 2: Higher Order System Identification
	4.3 Case Study 3: Inverse Response System Identification
	4.4 Case Study 4: Identification of a Real System
	4.5 Case Study 5: System with Noisy Data

	5 Discussion
	6 Conclusions
	References




