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Abstract. We show that Cubicle [9], an SMT-based infinite-state model
checker, can be applied as a verification engine for GLog, a logic-based
specification language for topology-sensitive distributed protocols with
asynchronous communication. Existential coverability queries in GLog
can be translated into verification judgements in Cubicle by encoding
relational updates rules as unbounded array transitions. We apply the
resulting framework to automatically verify a distributed version of the
Dining Philosopher mutual exclusion protocol formulated for an arbi-
trary number of nodes and communication buffers.

1 Introduction

Automated verification of distributed systems is a difficult task for standard
model checkers [7,8]. Protocols designed to operate in distributed systems are
often defined for an arbitrary number of nodes, arbitrary connection topology,
and asynchronous communication. protocol rules typically depend on the cur-
rent network configuration (e.g., presence of a communication link, state of all
connections, etc.). Several formal languages have been proposed to specify this
class of systems, e.g., communicating state machines, automata, process alge-
braic languages, (graph) rewriting, etc. In this setting safety properties can be
nicely formulated by lifting decision problems based on reachability and cover-
ability, in which the initial configuration is typically fixed a priory, to formula-
tions that are existentially quantified over an infinite set of initial configurations.
Existentially quantified coverability problems have been considered in [5,6,14–
16] in order to reason on parameterized formulation of distributed protocols
with broadcast communication. The coverability decision problem [1] is typi-
cally used to formulate reachability of bad configurations independently from
the number of components of a system. Therefore, a constructive way to solve
an existentially quantified coverability problem for a formal specification of a
distributed algorithm provides a characterization of initial configurations from
which it is possible to reach a bad configuration (e.g. an anomaly in the proto-
col). Existentially quantified coverability problems turn out to be undecidable
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even for systems with a static communication topology and very basic interac-
tion primitives like atomic broadcast communication [1,7,13–15]. As mentioned
before, communicating state machine (automata), adopted e.g. in [11,14–16],
and graph rewriting, adopted in [5], are two examples of formal description
languages for this kind of systems. communicating state machines can be con-
sidered a standard design and protocol specification language adopted in sev-
eral verification tools like Uppaal and Spin. Graph rewriting systems are well-
suited for representing topology-sensitive rules as shown by the examples of the
Groove tool suite. In several case-studies, protocol rules require complex guards
that require the inspection of the state of nodes, links, paths, vicinity etc. and
tables to store information collected during the execution of protocol phases.
The combination of these features seems to require more general specification
formalisms. To this aim, in [12] we proposed to adopt a logic-based declara-
tive language, named GLog, a fragment of both DCDCs [12] and MSR [23].
GLog can be viewed as a logic-based presentation of graph update rules with
global conditions expressed using quantified first order formulas. GLog is based
on a quantified predicate logic in a finite relational signature with no function
symbols. Configurations are represented here as sets of ground atomic formu-
las (instances of unary and binary predicates). Update rules consist of a guard
and two sets of first order predicates that define resp. deletion and addition of
state components. Differently from specification languages based on extension
of Petri nets like transfer and broadcast protocols, guards are checked atom-
ically but update transitions have only local effect. In other words, we forbid
simultaneously update of the state of all nodes in a graph. Update rules can be
applied to update a global configuration node by node and to operate on the
vicinity of a node by restricting updates to given predicates. Termination of an
update subprotocol can then be checked via a global condition. Similar specifi-
cation patterns have been applied to model non-atomic consistency protocol and
mutual exclusion protocols with non-atomic global conditions. GLog has been
applied to manually analyze distributed protocols in [12]. In the present paper
we show that Cubicle [9,18], an SMT-based infinite-state model checker based
on previous work by Ghilardi et al. [3], can be applied as automated verifica-
tion engine for existentially quantified coverability queries in GLog. In Cubicle
parameterized systems can be specified as unbounded arrays in which individ-
ual components can be referred to via an array index. The Cubicle verification
engine performs a symbolic backward reachability analysis using an SMT solver
for computing intermediate steps (preimage computation, entailment and termi-
nation test) and applies overapproximates predecessors using upward closed sets
as in monotone abstractions [2]. A peculiar feature of Cubicle w.r.t. MCMT [3] is
that the tool can handle unbounded matrices. This is particularly relevant when
modeling topology-sensitive protocols as done in GLog using binary relations
defined over component identifiers. Furthermore, existentially quantified cover-
ability decision problems in GLog can directly be mapped into Cubicle. More
specifically, the encoding transforms GLog update rules into array-based update
formulas in Cubicle. Classes of initial configurations are specified by using partial
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specifications of initial configurations in Cubicle verification judgements. Infinite
sets of bad configurations can be expressed using unsafe configurations in Cubicle
verification judgements.

As a case-study, we consider the distributed version of the Dining Philosopher
mutual exclusion protocol (DDP) recently studied in [12,17,20]. The protocol
deals with an arbitrary, finite number of nodes and buffers that act as single-
place communication channels, and arbitrary link topology between nodes and
buffers. Ownership of buffers is specified using asynchronous rules. Global con-
ditions over linked buffers are used as enabling conditions for acquiring access
to resources shared among neighbors. The GLog formal specification of DDP is
mapped to a Cubicle verification problem in a natural way. In our preliminary
experiments, Cubicle verified the correctness of the protocols in negligible time.
Furthermore, as expected it reports potential error traces when introducing net-
work reconfiguration rules (e.g. dynamic link creation and deletion) unrelated
to the state of the corresponding involved nodes. The application of declarative
specification languages and SMT-based engine seems a very promising research
line for dealing for a larger class of distributed algorithms.

Contents. The paper is organized as follows: we first present the GLog declara-
tive language and, in that context, the existential coverabiliity problem; we then
introduce Cubicle and exhibit a general encoding of existential coverability into
Cubicle; we then discuss the experimental evaluation on the DDP case-study,
and, finally, discuss other examples and future directions.

2 GLog

GLog [12] formulas are based on a simple relational calculus that can be used
to express updates of sets of ground atoms. A set of ground atoms can be inter-
preted as the current state or configuration of the system we are modeling.
Update rules contain a formula working as a condition and deletion and addi-
tion sets that specify ground atoms to be deleted and added to the current state.
More formally, let P be a finite set of names of (unary and binary) predicate
names, N a denumerable set of node identifiers equipped with a total order
<, V be a denumerable set of variables. Predicates in P are used to model
current configurations. In addition to predicates in P , we interpret the binary
relation lt as the total order < in our model. Our logic has no function symbols
but can be instantiated with elements from N . An atomic formula is either a
formula p(x), lt(x, y) or p(x, y), where p ∈ P , x, y ∈ V ∪ N A ground atom
is a either a p(n), lt(n,m), or p(n,m), where n,m ∈ N . A literal is either
an atomic formula or the negation ¬A of an atomic formula A. A formula is
a first order formula built on literals, namely, any literal is a formula, con-
junctions, disjunctions, universally and existentially quantified formulas are still
formulas. Multiple occurrences of the same variable implicitly model equality
constraints. The set of free variables of a formula F , namely FV (F ), is the
minimal set satisfying FV (p(x, y)) = {x, y}, FV (A ∨ B) = FV (A) ∪ FV (B),
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FV (A ∧ B) = FV (A) ∩ FV (B), FV (¬A) = FV (A), FV (∀v.A) = FV (A) \ {v},
and FV (∃v.A) = FV (A) \ {v}. Given S = {F1, . . . , Fn}, we define FV (S) =
FV (F1)∪ . . .∪FV (Fn). Quantified formulas we will be used as application con-
ditions of rules.

Configurations, Interpretations and Update Rules. As mentioned before
a set of ground atoms will be used to model a configuration. Formally, a con-
figuration is a finite set Δ of ground atomic formulas with predicates in P . A
configuration implicitly defines a graph in which directed edges are represented
by atomic formulas whose predicate name acts as edge label. Configurations can
also be viewed as models in which to evaluate a conditions. An interpretation
is a mapping σ from V to N . We use here a fixed interpretation of variables.
The interpretation domain however consists of a denumerable set of node iden-
tifiers. For a formula F we use Fσ as an abbreviation for σ̂(F ), where σ̂ is the
natural extension of σ to terms. For a set S = {A1, . . . , An}, we use Sσ to
denote the set {A1σ, . . . , Anσ}. Update rules consists of conditions defined by
quantified formulas with no function symbols, a deletion and an addition set.
The deletion (resp. addition) set defines the set of ground atoms that have to
be cancelled from (resp. added to) the current configuration. A rule has the
following form 〈C,D,A〉, where C is a quantified formula, D and A are two
sets of atomic formulas with variables in V and predicates in P , and such that
FV (A) ∪ FV (D) ⊆ FV (C). A protocol P is defined as a set of rules.

Operational Semantics. To fix an operational semantics for our language we
need a support for the interpretation of relations and variables. We use Δ |= A
to define the satisfiability relation of a quantified formula A s.t. FV (A) = ∅.
Let A[n/X] denote the formula obtained by replacing each free occurrence of X
with n. The relation is defined by induction as follows. Δ |= p(n), if p(n) ∈ Δ,
Δ |= lt(n,m), if n < m, Δ |= p(n,m) for p ∈ P , if p(n,m) ∈ Δ, Δ |= A ∧ B, if
Δ |= A and Δ |= B, Δ |= ¬A, if Δ |= A, Δ |= ∀X.A, if Δ |= A[n/X] for each
n ∈ N , and Δ |= ∃X.A, if Δ |= A[n/X] for some n ∈ N . Given a configuration
Δ, we say that the quantified formula A is satisfied in Δ, if there exists an
interpretation σ s.t. Aσ is satisfiable. In order to apply a rule 〈C,D,A〉 to Δ,
there must be an interpretation σ that satisfies the quantified formula C. The
same interpretation σ is then applied to the atomic formulas in D and A. The
resulting sets of atoms, say D′ and A′ respectively, are deleted from and added
to Δ, respectively.

The operational semantics of a protocol P is given by a transition system
TP = 〈C,→〉, where C is the set of possible configurations, i.e., finite subsets of
ground atoms with predicates in P , and →⊆ C×C is a relation defined as follows.
For Δ,Δ′ ∈ C and a rule 〈C,D,A〉 ∈ P, Δ → Δ′ if there exists σ s.t. Δ |= Cσ and
Δ′ = (Δ\Dσ)∪Aσ. A computation is a sequence of configurations Δ0Δ1 . . . s.t.
Δi → Δi+1 for i ≥ 0. We use →∗ to denote the reflexive and transitive closure of
→. In a single step of the operational semantics a rule is evaluated in the current
configuration by taking a sort of closed-world assumption, i.e., ground atomic
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formulas that do not occur in a configuration are evaluated to false. Furthermore,
ground atomic formulas that are not deleted are transferred from the current to
the successor configuration. The latter property can be viewed then as a sort of
frame axiom. It is important to notice that, in general, a configuration Δ has
several possible successors. Indeed, depending of the chosen interpretation of
free variables the same rule can be applied to different subsets of ground atoms
contained in the same configuration. Furthermore, the choice of the rules to be
applied at a given step is non-deterministic.

As an example, we consider possible application of GLog to the specifica-
tion of distributed protocols. The key ingredient of the specification language
is the combination of complex conditions and update rules to reason on graphs
in which predicates can be viewed as labels of links between agents and com-
munication buffers. We have shown that we can also add labels to individual
agents and buffers, e.g., to represent their current state. Update rules can be
used to dynamically reconfigure the graph, i.e., change labels, topology and add
or delete agents. The separation between agents and buffers is convenient to
model asynchronous communication. For instance, let us consider a protocol in
which two agents need to establish a connection via a shared buffer.

– An agent n1 of type A connects to a buffer e1 in idle state (the buffer is free)
and sets the state of the buffer to ready.

– An agent n2 of type B connects to e1 in state ready and changes the state
to ack.

– Agent n1 sends message m by changing the state of e1 to msgm.
– Agent n2 receives message m and updates the state of the channel to ack for

further communications.

The protocol can be specified as follows. We use unary predicates to associate
states to edges. send messages are non-deterministically generated. An initial
configuration has the form idle(b1), . . . , idle(bk), where bi < bj for i = j, i, j :
1, . . . , k. For the sake of simplicity, we do not model the state of agents but only
their capabilities (req, rec, send).

R C D A

1 idle(B) ∧ ¬req(A,B) {idle(B)} {ready(B), req(A,B)}
2 ready(B) ∧ ¬rec(A,B) {ready(B)} {ack(B), rec(A,B)}
3 true {} {send(A,B,M)}
4 ack(B) ∧ send(A,B) {ack(B), send(A,B)} {msg(B,M)}
5 msg(B,M) ∧ rec(A,B) {msg(B,M), rec(A,B)} {idle(B)}

In rule 1 a buffer B is locked by a non-deterministically generated request
req(A,B) from sender agent A (a variable). In rule 2 a buffer B is locked by
a non-deterministically generated request rec(A,B) from receiver agent A (a
variable). Rule 3 nondeterministically generates a send action from agent A.
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Rule 4 synchronizes a send action from agent A with a buffer locked by the same
agent. The (non deterministically generated) message M is stored in the buffer.
Rule 5 synchronizes and consumes a message in the buffer with the receiver
agent, releasing the buffer.

The model provides other form of interactions. For instance, we can model
ordered buffers by forming lists of messages attached to a given edge as in the
representation of the tape of the Turing machine.

We can also model synchronous communication as in the following example

C link(A,B) ∧ s1(A) ∧ link(E,B) ∧ s2(E)

D {s1(A), link(A,B), link(E,B), s2(E)}
A {link(A,B), s′

1(A), link(E,B), s′
2(E)}

Here s(A) and s′(A) denote agent A resp. in state s and s′, s1(E) and s′
1(E)

denote agent E resp. in state s1 and s′
1, and link(A,B) and link(Y,B) denote

links to a common buffer B.

2.1 Existential Coverability

We consider here decision problems that generalize the standard notion of reach-
ability between configurations. The key point is to reason about an infinite set
of initial configurations in order to prove properties for protocol instances with
an arbitrary number of nodes. For a set S of configurations, we first define the
Post and Pre operators as follows Post(S) = {Δ′ | ∃Δ ∈ S, Δ → Δ′} and
Pre(S) = {Δ′ | ∃Δ ∈ S, Δ′ → Δ}. We use Post∗(S) (resp. Pre∗(S)) to denote
the reflexive-transitive closure of Post (resp. Pre).

We now introduce the ∃-coverability problem as follows.

Definition 1 (∃-coverability). Given a protocol P, a set of target configura-
tions T and a possibly infinite set of initial configurations I, ∃-coverability is
satisfied for P, I and T , written ∃Reach(P, I, T ), if there exists Δ ∈ T and a
configuration Δ1 s.t. Δ1 ∈ Post∗(I) and Δ ⊆ Δ1.

By expanding the definition of Post∗, ∃Reach(P, I, T ) holds if there exists a
configuration Δ0 ∈ I s.t. Δ0 →∗ Δ1 and Δ ⊆ Δ1 for some Δ ∈ T . The target
T can be interpreted as a pattern to match or avoid in computations starting
from initial configurations. If the set I consists of configurations consisting of
an arbitrary, finite number of components than ∃-coverability formally describes
a parameterized verification decision problem for specifications given in GLog.
The ∃-coverability problem turns out to be undecidable [12].
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3 From GLog to Cubicle

Cubicle is a model checker that can be applied to verify safety properties of array-
based systems, a syntactically restricted class of parametrized transition systems
with states represented as arrays indexed by an arbitrary number of processes
[9,18]. Cache coherence protocols and mutual exclusion algorithms are typical
examples of such systems. Cubicle model-checks by a symbolic backward reach-
ability analysis on infinite sets of states represented by specific simple formulas,
called cubes. Cubicle is written in OCaml. The SMT solver is a tightly integrated,
lightweight and enhanced version of Alt-Ergo [21]; and its parallel implementa-
tion relies on the Functory library [22]. Cubicle input language is a typed version
of Murphi similar to the one of Uclid. A system is described in Cubicle by: (1) a
set of type, variable, and array declarations; (2) a formula for the initial states;
and (3) a set of transitions. It is parametrized by a set of process identifiers,
denoted by the built-in type proc. Standard types int, real, and bool are also
built in. Additionally, the user can specify abstract types and enumerations with
simple declarations like type data and type msg = Empty | Req | Ack. As an
example consider the following declaration.

var Turn : proc
array Want[proc] : bool
array Crit[proc] : bool

init (z) { Want[z] = False && Crit[z] = False }

unsafe (x y) {
Crit[x] = True && Crit[y] = True }

The system state is defined by a set of global variables and arrays. The initial
states are defined by a universal conjunction of literals characterizing the values
for some variables and array entries.

init (z) { Want[z] = False && Crit[z] = False }

A state of our example consists of a process identifier Turn and two boolean
arrays Want and Crit; a state is initial iff every cell of both arrays are set to
false Transitions are given in the usual guard/action form and may be parame-
terized by (one or more) process identifiers. Guards are expressed via required
expressions. They are quantified formulas. Quantification is defined only over
variables of type proc. As an example, consider the following rule.

transition req (i)
requires { Want[i] = False }

{ Want[j] := case
| i = j : True
| _: Want[j] }
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The transition req(i) is enabled if there exists index i (a process) such that
Want[i]=false. Its effect is to set Want to true for index i and leave the array
unchanged in all other positions. A system execution is defined by an infinite loop
that at each iteration: (1) non-deterministically chooses a transition instance
whose guard is true in the current state; and (2) updates state variables according
to the action of the fired transition instance.

Infinite sets of unsafe states (bad configurations) are defined by using unsafe
constraints. For instance, the judgement

unsafe (x y) {
Crit[x] = True && Crit[y] = True }

specifies the infinite set of arrays Crit (with any size) in which there exist two
cells with value True.

The Cubicle verification engine is based on symbolic backward exploration.
Cubicle operates over sets of existentially quantified formulas called cubes. For-
mulas containing universally quantified formulas (generated during the computa-
tion of predecessors) are over-approximated by existentially quantified formulas.
The class of formulas manipulated by the backward reachability loop of Cubicle
in not closed by pre-image in presence of universally quantified guards. To handle
such formulas, Cubicle implements a safe but over-approximate pre-image com-
putation. Given a cube ∃ī.Φ and a guard G of the form ∀j̄.Ψ(j̄), the pre-image
replaces G by the conjunction

∧
σ∈Σ(j̄,̄i) Ψ(j̄)σ of instances over the permuta-

tion of Σ(j̄, ī). In other words, in order to handle universally quantified guards,
Cubicle applies monotone abstraction [2] and over-approximates predecessors
via upward-closed sets of configurations. The search procedure maintains a set
V and a priority queue Q resp. of visited and unvisited cubes. Initially, let V be
empty and let Q contain the cubes representing bad states. At each iteration, the
procedure selects the highest-priority cube Φ from Q and checks for intersection
with the formula denoting the initial configurations (satisfiability of conjunc-
tion of Φ and formulas in the initial conditions). If the test fails, it terminates
reporting a possibile error trace. If the test passes, the procedure proceeds to
the subsumption check, i.e., implication between formulas. If subsumption fails,
then add Φ to V , compute all cubes in predt (for every t), add them to Q, and
move on to the next iteration. If the subsumption check succeeds, then drop Φ
from consideration and move on. The algorithm terminates when a safety check
fails or Q becomes empty. When an unsafe cube is found, Cubicle actually pro-
duces a counterexample trace. Safety checks, being ground satisfiability queries,
are easy for SMT solvers. The challenge is in the subsumption check because of
their size and the existential implies existential logical form. Cubicle applies the
heuristics described in [9] to handle subsumption. The BRAB algorithm intro-
duce in [10] automatically computes over-approximations of backward reachable
states that are checked to be unreachable in a finite instance of the system (using
Murφ). The resulting approximations (candidate invariants) are model checked
together with the original safety properties. Completeness of the approach is
ensured by a mechanism for backtracking on spurious traces introduced by too
coarse approximations.
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Encoding GLog in Cubicle

In this section we present an encoding of GLog into an array-based specification
language. The encoding is quite natural. The interpretation domain of variables
is that of process indexes. For each unary predicate p ∈ P , we introduce a
corresponding Boolean array variable array p.

array p[proc] : bool

For each binary predicate q, we introduce a two-dimensional Boolean array q

array q[proc,proc] : bool

Encoding of guards is straightforward. Free variables occurring in GLog update
rules become parameters of transition definitions. A literal q(x, y) [resp. q(x)]
is mapped to the formula q(x, y) = true [resp. q(x) = true]. A literal ¬q(x, y)
[resp. ¬q(x)] is mapped to the formula q(x, y) = false [resp. q(x) = false].
Compound/quantified require conditions are mapped to compound/quantified
formulas over literals.

Some care has to be taken in the encoding of GLog update rules. Transitions
in Cubicle operate simultaneously on every cell of an array to provide support
for global operations like reset and transfer. This kind of operations are not
provided in GLog since the focus is on asynchronous behavior, i.e., we assume
that global operations are split into several asynchronous operations equipped
with guards that can be used to check for the current state of the protocol phase
under consideration.

To encode a deletion rule, operating on the atomic formula A(x, y), we use
auxiliary variables u, t and a case analysis on indexes: for the case x = u, y = t
we add the action A[x, y] := false, and A[x, y] := A[x, y] in all other cases. To
encode an addition rule, operating on the atomic formula A(x, y), we use again
auxiliary variables u, t and a case analysis on indexes: for x = u, y = t we add
the action A[x, y] := true, and A[x, y] := A[x, y] in all other cases.

To encode ∃-coverability, we also need to specify initial and unsafe configura-
tions. Unsafe configurations can be described as in Cubicle using an existentially
quantified formula over array cells. To select classes of initial states, we can use
init declarations in which we specify only partial conditions on array cells.

4 Case Study: Distributed Dining Philosophers

We consider here a distributed version of the dining philosopher mutual exclu-
sion problem presented in [19]. Agents are distributed on an arbitrary graph and
communicate asynchronously via point-to-point channels. Channels are viewed
as buffers with state. Distributed Dining Philosophers (DDP) is defined as fol-
lows. The goal is to ensure that agents can access a resource shared in common
with their neighbors in mutual exclusion. The protocol from the perspective a
single agent consists of the following steps:

– Initially, all agents are in idle state.
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– When an agent A wants to get a resource, A has to acquire the control of
each buffer shared with his/her neighbors.

– To acquire a channel, A marks the channel with its identifier. If the channel
is already marked, A has to wait.

– A acquires the resources when all channels shared with neighbors are marked
with his/her identifier.

– To release a resource, A first resets each buffer. When all buffers are reset, A
moves back to idle state.

In a statically defined topology, agent A gets access to a resource when all neigh-
bors are either idle or are waiting for acquiring some channel. Communication
between two neighbors is asynchronous. Indeed, they interact by reading and
writing on the shared channel. The protocol should guarantee that two agents
that share the same channel cannot acquire and use a resource simultaneously.
The protocol should be robust under dynamic reconfigurations of the network.

4.1 Formal Specification of DDP

In this section we present a formal specification of the DDP protocol. Network
configurations are expressed as GLog configurations. The dynamics in a protocol
interaction is expressed via a finite set of update rules. We use a predicate
link to represent connections from an agent to a possibly shared buffer. We
model buffers with states using unary predicates. Asynchronous communication
is modeled as in the previous example, i.e., agents interact only via a common
buffer. Communication between two agents is not atomic. Instead of modeling
identifiers and buffers with data, we introduce a special relation own that is used
to model ownership of a given buffer to which a agent is linked. Ownership is
normed in the same way as the labeling of buffers in the original protocol, i.e.,
an agent can acquire ownership only if the buffer is not owned by other agents.
Ownership can be released when in idle state. We also model non-deterministic
creation (in idle state) and deletion of links. We model this behavior using the
following predicates and rules (rules have the form (Ci,Di, Ai) for i : 1, . . . , 6):

R C D A

getE link(X,E) ∧ ∀Z.¬own(Z,E) ∅ {own(X,E)}
relE {idle(X), own(X,E)} {own(X,E)} ∅
acquire idle(X) ∧ ∀E.(link(X,E) ⊃ own(X,E)) {idle(X)} {busy(X)}
release {busy(X)} {busy(X)} {idle(X)}

An initial state configuration has the following form idle(n1), . . . , idle(nk),
where ni = nj for i = j, i, j : 1, . . . , k and k ≥ 1.
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4.2 Encoding in Cubicle

Following the encoding rules specified for GLog, we can now obtain a Cubicle
specification for DDP. To simplify a little bit the specification, we introduce an
enumeration type state over node states.

type state = Idle | Busy

This way, we can use a single array State with cell type state instead of two
Boolean arrays. We also need a link array and a own array to specify link and
ownership relations between nodes and buffers.

array State[proc] : state
array Link[proc,proc] : bool
array Own[proc,proc] : bool

The initial configuration consists of all possible topologies in which nodes are
in idle state. We also enforce the ownership relation to be false for each pair of
node and buffer.

init (n m) {
State[n] = Idle &&
Own[n,m] = False }

This way we do not put any constraints on link topology. The bad configuration
are defined by graphs of the following form.

unsafe (n m e) {
State[n] = Busy && State[m] = Busy &&
Link[n,e] = True && Link[m,e] = True

}

Two node are in mutex state while pointing to at the same buffer. The transi-
tions are obtained via the encoding of the GLog specification into Cubicle input
language shown in AppendixA. When applying Cubicle to the above described
problem, the tool proves the model correct in few seconds without need to apply
multicore optimizations via the Functory library. More specifically, Cubicle vis-
its 19 nodes with at most 3 process indexes, 529 fixpoint checks, and 176 calls
to the Alter-Ego SMT solver. Since Cubicle operates over unbounded arrays,
the above result provides a formal correctness proof of the considered model
for any number of nodes and links and any topology. The proof certificate can
be obtained by taking the set of assertions (formulas) collected during the fix-
point computation. By applying the BRAB algorithm with parameter 3, the
number of visited nodes reduces to 10 with 312 fixpoint tests, and 88 calls to
the Alter-Ego solver. Furthermore, the BRAB algorithm infers the invariant
¬(Own[#1,#3] = True ∧ Own[#2,#3] = True).
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R C D A

Link ¬link(X,E) ∅ {link(X,E)}
Unlink link(X,E) {link(X,E)} ∅

4.3 Dynamic Reconfiguration

To model dynamic reconfigurations, we can non-deterministically add and
remove link predicates between pairs of agents and buffers. We first consider
the non-deterministic rules link and unlink defined below.

When the model extended with the above rules is checked with Cubicle (see
AppendixB), the tool reports the error trace acquire(#1) → link(#1,#3) →
get(#2,#3) → acquire(#2) → unsafe[1]. This trace is a real error trace.
Indeed, process p1 can acquire ownership when there are no links to buffer b3.
Since the link rule has no condition on p1, a link can then be added from p1
to b3. However, Process p2 can now become owner of b3 and then move to state
Busy. Two processes are linked to the same buffer b3 while in state Busy.

Model dfs brab(3) V F S M D I C
DPP 19 529 176 3 0 0 Yes
”

√
19 529 176 3 0 0 Yes

”
√

10 312 88 3 0 1 Yes
DPP+Link+Unlink 38 379 528 3 10 0 No
”

√
63 2660 961 3 12 0 No

”
√

33 365 617 3 9 1 No
DPP+iLink+Unlink 28 1449 261 3 6 0 Yes
”

√
39 1996 414 3 6 0 Yes

”
√

14 735 153 3 2 1 Yes

Fig. 1. Experimental results: V= visited nodes, F= fixpoint tests, S= solver calls,
M= max process number, D= deleted node, I= number of invariants (brab),
C= property checked (Yes/No).

We can modify the model and restrict addition of new link connected to node
X only when X is in state Idle as follows.

R C D A

iLink idle(X),¬link(X,E) ∅ {link(X,E)}
Unlink link(X,E) {link(X,E)} ∅

In this model we assume that nodes have some form of control over con-
nections with buffers (i.e. a new link is detected by a node in state Idle).
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When the model extended with the link′ and unlink rules is checked with
Cubicle (see Appendix B), the tool verifies correctness by visiting 28 nodes with
at most 3 process indexes, invoking 261 times the SMT solver, performs 1449
fixpoint tests, and deletes 6 redundant nodes. The above result provides a for-
mal correctness proof of the considered model for any number of nodes and
links and any topology. Using dfs search, the tool verifies the property but
the number of visited nodes is 39 with 414 calls to the SMT solver and 1996
fixpoint checks. Using the BRAB algorithm with parameter 3, the number of
visited nodes reduces to 14 with 735 fixpoint tests, and 153 calls to the Alter-
Ego solver. As for static topologies, the BRAB algorithm infers the invariant
¬(Own[#1,#3] = True ∧ Own[#2,#3] = True). A summary of the results
with the considered models and heuristics are shown in Fig. 1.

5 Conclusions

We have studied a possible application of SMT-based infinite-state model checker
to the verification of topology-sensitive distributed protocols, i.e., protocols
defined over network graphs and in which rules have guards and effects that
depend on communication links. Starting from a logic-based presentation of
distributed protocols based on the GLog relational update language, we have
shown how to encode existential coverability queries in GLog as Cubicle verifi-
cation judgements. As a case-study, we have shown that the declarative approach
supported by GLog + Cubicle provides a very effective way to verify protocols
operating on graphs. For instance, in previous work DDP required complex veri-
fication methodologies like assume-guarantee reasoning or ad hoc algorithms for
graph rewriting systems. In the present paper DDP is verified using a very simple
declarative specification and a general purpose model checker. Cubicle verifies
correctness in negligible execution time (without need of multicore optimizations
via the Functory library).

The proposed methodology can be applied to other types of distributed pro-
tocols. More specifically, we are currently studying how to deal with routing pro-
tocols for arbitrary topologies and hierarchical protocols for reference counting
(e.g. garbage collections disciplines etc.). Another interesting direction is related
to the possible application of Cubicle for verification of protocol specifications
in parameterized multi-agent systems [4].

A DDP in Cubicle

transition get(n e)
requires {

Link[n,e] = True && forall_other m. (Own[m,e] = False)
}
{
Own[m,f] := case | m=n && f=e : True | _ : Own[m,f];
}
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transition rel(n e)
requires {
State[n] = Idle && Own[n,e] = True

}
{
Own[m,f] := case | m=n && f=e : False | _ : Own[m,f];
}

transition acquire (n)
requires {

State[n] = Idle
&&
forall_other g.

(Link[n,g] = False || Link[n,g] = True && Own[n,g] = True)
}
{
State[m] := case | m=n : Busy | _ : State[m];
}

B Dynamic Reconfiguration in Cubicle

transition unlink(n m)
requires {
Link[n,m] = True

}
{
Link[p,q] := case | p=n && q=m : False | _ : Link[p,q];
}

transition link(n m)
requires {
Link[n,m] = False

}
{
Link[p,q] := case | p=n && q=m : True | _ : Link[p,q];
}

transition iLink(n m)
requires {
State[n] = Idle && Link[n,m] = False

}
{
Link[p,q] := case | p=n && q=m : True | _ : Link[p,q];
}
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instances and beyond. In: Formal Methods in Computer-Aided Design, FMCAD
2013, Portland, OR, USA, 20–23 October 2013, pp. 61–68 (2013)

11. Delzanno, G.: Constraint-based verification of parameterized cache coherence pro-
tocols. Form. Methods Syst. Des. 23(3), 257–301 (2003)

12. Delzanno, G.: A logic-based approach to verify distributed protocols. In: Proceed-
ings of the 31st Italian Conference on Computational Logic, Milano, Italy, 20–22
June 2016, pp. 86–101 (2016)

13. Delzanno, G.: A unified view of parameterized verification of abstract models of
broadcast communication. STTT 18(5), 475–493 (2016)

14. Delzanno, G., Sangnier, A., Zavattaro, G.: Parameterized verification of Ad Hoc
networks. In: Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol.
6269, pp. 313–327. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-15375-4 22

15. Delzanno, G., Sangnier, A., Zavattaro, G.: On the power of cliques in the param-
eterized verification of Ad Hoc networks. In: Hofmann, M. (ed.) FoSSaCS 2011.
LNCS, vol. 6604, pp. 441–455. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-19805-2 30

16. Delzanno, G., Sangnier, A., Zavattaro, G.: Verification of Ad Hoc networks with
node and communication failures. In: Giese, H., Rosu, G. (eds.) FMOODS/FORTE
-2012. LNCS, vol. 7273, pp. 235–250. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-30793-5 15

https://doi.org/10.1007/978-3-642-31424-7_55
https://doi.org/10.1007/978-3-642-15375-4_22
https://doi.org/10.1007/978-3-642-15375-4_22
https://doi.org/10.1007/978-3-642-19805-2_30
https://doi.org/10.1007/978-3-642-19805-2_30
https://doi.org/10.1007/978-3-642-30793-5_15
https://doi.org/10.1007/978-3-642-30793-5_15


224 S. Conchon et al.

17. Delzanno, G., Stückrath, J.: Parameterized verification of graph transformation
systems with whole neighbourhood operations. In: Ouaknine, J., Potapov, I., Wor-
rell, J. (eds.) RP 2014. LNCS, vol. 8762, pp. 72–84. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-11439-2 6
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