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Preface

In May 2018, the 6th edition of the International Conference on Networked Systems
(NETYS) took place in Essaouira (Morocco). For this edition, we received 85 sub-
missions, which were reviewed by a Program Committee of 39 international experts in
various fields related to the design and verification of networked and distributed
computing systems. Out of these submissions, the Program Committee decided to
accept 22 regular papers and six short papers. In addition, several renowned researchers
accepted to give keynote presentations:

– Nicolas Bjorner (Microsoft Research)
– Christophe Diot (Google)
– Bryon Ford (EPFL, Lausanne)
– Maurice Herlihy (Brown University, Providence)
– Ranjit Jhala (UC San Diego)
– Anne-Marie Kermarrec (Mediego and EPFL)
– Marta Kwiatkowska (Oxford University)
– Rupak Majumdar (MPI SWS, Kaiserslautern)
– Thomas Reps (University of Wisconsin-Madison)
– Liuba Shrira (Brandeis University)
– Renata Teixeira (Google)

As program chairs of NETYS 2018 and editors of these proceedings, we want to
warmly thank again all the authors for their high-quality contributions and all the
Program Committee members and external reviewers for their invaluable hard work.
We also sincerely thank our keynote speakers for sharing their precious insights and
expertise. Last but not least, our special thanks go to the Organizing Committee and to
all the local arrangements coordinators, and the conference general chairs, Ahmed
Bouajjani (Université Paris Diderot, France), Mohammed Erradi (ENSIAS, Rabat,
Morocco), and Rachid Guerraoui (EPFL, Lausanne, Switzerland), without whom
NETYS would simply not exist.

October 2018 Andreas Podelski
François Taïani
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Keynotes



Scaling Z3 in Azure

Nikolaj Bjorner

Microsoft Research Redmond, USA
nbjorner@microsoft.com

Z3 is an efficient satisfiability modulo theories solver. It is widely used for program
analysis, verification and testing, and selectively in other areas, such as product con-
figuration and scheduling. We describe uses of Z3 and associated architectures in cloud
based services, where depending on the application, response times are expected in
milli-seconds or acceptable within hours, but not days or years. To verify network
configurations in Azure, Z3 runs in a service that checks thousands of router config-
urations every day. The checks take milliseconds and provide immediate feedback to
network changes. In the opposite end of the spectrum, for hard combinatorial con-
straints, we extended Z3 with a cube and conquer solver to run as a distributed service.



Networks at Work in the Aerospace Industry

Chritophe Diot

Safran Analytics, France

This presentation will cover the main two aspects in networks and communication in
aerospace industry. On one hand the challenge of digitizing the supply chain poses
important challenges to this industry. On the other hand, aircrafts have tens of net-
works, all physically isolated, that represent an important source of complexity and
weight, and also threads in terms of robustness, security, and availability. In both cases,
we will describe the context, challenges and technologies that are involved in the
transformation of networks in aeropsace industry.



Clubs, Coins, and Crowds:
Fairness and Decentralization in Blockchains

and Cryptocurrencies

Bryan Ford

EPFL, Switzerland
bryan.ford@epfl.ch

Building secure systems from independent, mutually distrustful parties is an old topic
in computer science. But despite its attendant hype and misinformation, today’s
“blockchain bandwagon” has successfully brought the gospel of decentralization – both
a realization of its possibility and an appreciation for its value – to mainstream society.
Currently-deployed blockchains, however, are slow, unscalable, weakly consistent,
profligate in energy use, and have effectively re-centralized due to market pressures.
We will explore ongoing challenges and progress in rethinking blockchain architecture
to improve scalability, efficiency, functionality, privacy, and decentralization. We will
explore how decentralized building blocks such as collective signatures and scalable
distributed randomness enable architecturally modular solutions to challenges such as
sharding, proof-of-stake, and blockchain-managed secrets. Finally, we explore chal-
lenges in fairness and democratization in decentralized systems, how
“proof-of-personhood” blockchains could enable information forums and anonymous
reputation systems resistant to propaganda campaigns, and how democratic cryp-
tocurrencies could offer a permissionless analog of universal basic income.



Blockchains and the Future
of Distributed Computing

Maurice Herlihy

Brown University, Providence RI, USA
mph@cs.brown.edu

There has been a recent explosion of interest in blockchain-based distributed ledger
systems such as Bitcoin, Ethereum, and many others. Much of this work originated
outside the distributed computing community, but the questions raised, such as con-
sensus, replication, fault-tolerance, privacy, and security, and so on, are all issues
familiar to our community.

This talk surveys the theory and practice of blockchain-based distributed systems
from the point of view of classical distributed computing, along with reckless specu-
lation about promising future research directions for our community.

References

1. Buterin, V.: On sharding blockchains
2. Eyal, I., Sirer, E.G.: Majority is not enough: bitcoin mining is vulnerable. In: Financial

Cryptography and Data Security - 18th International Conference, FC 2014, Christ Church,
Barbados, 3–7 March 2014, Revised Selected Papers, pp. 436–454 (2014)

3. Hearn, M.: The resolution of the bitcoin experiment
4. Herlihy, M.: Atomic cross-chain swaps. CoRR, abs/1801.09515, PODC 2018 (2018, to

appear)
5. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system, May 2009
6. Poon, J., Dryja, T.: The bitcoin lightning network: Scalable off-chain instant payments,

January 2016. As of 29 December 2017



Pretend Synchrony: Synchronous Verification
of Asynchronous Programs

Ranjit Jhala

UC San Diego, USA
rjhala@eng.ucsd.edu

We present pretend synchrony, a new approach to verifying distributed systems. Our
approach is based on the observation that while distributed programs must execute
asynchronously, we can often soundly treat them as if they were synchronous when
verifying their correctness. To do so, we compute a synchronization, a semantically
equivalent program where all sends, receives, and buffers, have been replaced by
simple assignments, yielding a program that can be verified using Floyd-Hoare style
Verification Conditions and SMT. We have implemented our approach and use four
challenging case studies — the classic two phase commit protocol, a distributed
key-value store, the Raft leader election protocol and single decree Paxos — to
demonstrate that pretend synchrony makes verification of functional correctness sim-
pler by reducing the manually specified invariants by a factor of 6, and faster by three
orders of magnitude.



Recommenders: From the Lab to the Wild

Anne-Marie Kermarrec

Mediego/Inria France, EPFL, Switzerland
anne-marie.kermarrec@mediego.com

Recommenders are ubiquitous on the Internet today: they tell you which book to read,
which movie you should watch, predict your next holiday destination, give you advices
on restaurants and hotels, they are even responsible for the posts that you see on your
favorite social media and potentially greatly influence your friendship on social
networks.

While many approaches exist, collaborative filtering is one of the most popular
approaches to build online recommenders that provide users with content that matches
their interest. Interestingly, the very notion of users can be general and span actual
humans or software applications. Recommenders come with many challenges beyond
the quality of the recommendations. One of the most prominent ones is their ability to
scale to a large number of users and a growing volume of data to provide real-time
recommendations introducing many system challenges. Another challenge is related to
privacy awareness: while recommenders rely on the very fact that users give away
information about themselves, this potentially raises some privacy concerns.

In this talk, I will focus on the challenges associated to building efficient, scalable
and privacy-aware recommenders.



Safety Verification of Deep Neural Networks

Marta Kwiatkowska

University of Oxford, UK
Marta.Kwiatkowska@cs.ox.ac.uk

Deep neural networks have achieved impressive experimental results in image clas-
sification, but can surprisingly be unstable with respect to adversarial perturbations, that
is, minimal changes to the input image that cause the network to misclassify it. With
potential applications including perception modules and end-to-end controllers for
self-driving cars, this raises concerns about their safety. This lecture will describe
progress with developing a novel automated verification framework for deep neural
networks to ensure safety of their classification decisions with respect to image
manipulations, for example scratches or changes to camera angle or lighting conditions,
that should not affect the classification. The techniques work directly with the network
code and, in contrast to existing methods, can offer guarantees that adversarial
examples are found if they exist. We implement the techniques using Z3 and evaluate
them on state-of-the-art networks, including regularised and deep learning networks.
We also compare against existing techniques to search for adversarial examples.



Effective Random Testing for Concurrent
and Distributed Programs

Rupak Majumdar

MPI-SWS Kaiserslautern, Germany
rupak@mpi-sws.org

Random testing has proven to be an effective way to catch bugs in distributed systems.
This is surprising, as the space of executions is enormous. We provide a theoretical
justification of the effectiveness of random testing under various “small depth”
hypotheses. First, we show a general construction, using the probabilistic method from
combinatorics, that shows that whenever a random test covers a fixed coverage goal
with sufficiently high probability, a small randomly-chosen set of tests achieves full
coverage with high probability. In particular, we show that our construction can give
test sets exponentially smaller than systematic enumeration. Second, based on an
empirical study of many bugs found by random testing in production distributed
systems, we introduce notions of test coverage which capture the “small depth”
hypothesis and are empirically effective in finding bugs. Finally, we show using
combinatorial arguments that for these notions of test coverage we introduce, we can
find a lower bound on the probability that a random test covers a given goal. Our
general construction then explains why random testing tools achieve good coverage—
and hence, find bugs—quickly.



Program Analyses Using Newton’s Method

Thomas Reps

University of Wisconsin, GrammaTech, Inc., USA
reps@cs.wisc.edu

Esparza et al. generalized Newton’s method – a numerical-analysis algorithm for
finding roots of real-valued functions – to a method for finding fixed-points of systems
of equations over semirings. Their method provides a new way to solve interprocedural
dataflow-analysis problems. As in its real-valued counterpart, each iteration of their
method solves a simpler “linearized” problem.

Because essentially all fast iterative numerical methods are forms of Newton’s
method, this advance is exciting because it may provide the key to creating faster
program-analysis algorithms. However, there is an important difference between the
dataflow-analysis and numerical-analysis contexts: when Newton’s method is used in
numerical problems, commutativity of multiplication is relied on to rearrange an
expression of the form “a * X * b + c * X * d” into “(a * b + c *d) * X.”

Equations with such expressions correspond to path problems described by regular
languages. In contrast, when Newton’s method is used for interprocedural dataflow
analysis, the “multiplication” operation involves function composition, and hence is
non-commutative: “a * X * b + c * X * d” cannot be rearranged into “(a * b + c * d) *
X.” Equations with the former expressions correspond to path problems described by
linear context-free languages (LCFLs).

This talk will present a surprising method for solving the LCFL sub-problems
produced during successive rounds of Newton’s method. The method applies to
predicate abstraction, on which most of today’s software model checkers rely, as well
as to other abstract domains used in program analysis. Joint work with Emma Turetsky
and Prathmesh Prabhu.



Optimistic and Pessimistic Synchronization
for Transactional Data Structures

for In-memory Stores

Liuba Shrira

Brandei University, USA
liuba@cs.brandeis.edu

Dumb code and clever data structures work better than the other way around. A con-
current system’s performance can often be improved if we understand the semantics of
its data types. Type-specific concurrency control is particularly helpful in memory
transaction systems where the penalty of false conflicts can be high. The talk focuses on
memory transaction system implementation techniques that exploit type-specific
knowledge to avoid false conflicts under both optimistic and pessimistic concurrency
control schemes, and presents new approaches that allow to combine the benefits of
both.

We start by examining the scalability limitations of software transactional memory
systems [3] due to conflict tracking at the granularity of memory words. We then
consider two existing approaches to overcome these scalability limitations, exploiting
data structure semantics in an ad-hoc way at the cost of increased complexity of the
code [1, 2, 5, 7], and exploiting highly concurrent data structures using a black box
approach [4], and explain where these approaches come short. We then describe a
recent approach that co-designs the concurrent data structure and the transactions
system [6, 8], avoiding the limitations of the prior approaches, and allowing to combine
the benefits. The software system implementing the approach is available at github.
com/nathanielherman/sto.
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Diagnosis of Internet Quality of Experience
in Home Networks

Renata Teixeira

Inria Paris, France
renata.teixeira@inria.fr

With the availability of cheap broadband connectivity, Internet access from the home
has become a ubiquity and the home network has become an important part of the
“Internet experience”, or Quality of Experience (QoE). In conventional networks,
expert administrators are responsible for managing the network and to identify the
root-cause of any problems affecting users. In contrast, most home networks have no
technically skilled network administrator. Home users often simply blame their Internet
Service Provider (ISP) when QoE degrades. Our research provides tools to assist home
users and ISPs in diagnosing QoE degradation. This talk will discuss the challenges of
conducting research in home network diagnosis. It will then present results of our
research leveraging the home router as a monitoring point within the home. For
example, our analysis of 2,652 homes across the United States shows that wireless
bottlenecks are more common than access-link bottlenecks (particularly for home
networks with downstream throughput greater than 20 Mbps). We also study the effects
of the home wireless on QoE of four popular applications: Web, YouTube, and
audio/video RTC. Our analysis of Wi-Fi metrics collected from 832 homes customers
of a large residential ISP shows that QoE is good in most cases, still we find 9% of poor
QoE samples. Worse, approximately 10% of stations have more than 25% poor QoE
samples.
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Diagnosis of Internet Quality of Experience
in Home Networks

Renata Teixeira

Inria Paris, France
renata.teixeira@inria.fr

Abstract. This paper presents the abstract of the presentation on diagnosing
Internet Quality of Experience (QoE) in home networks.

Keywords: Internet measurements � Internet Quality of Experience
Home networks

1 Introduction

With the availability of cheap broadband connectivity, Internet access from the home
has become a ubiquity. Typical home communication and entertainment services such
as telephony, television, and gaming are converging to operate over IP and users
constantly access Internet services and applications from home. Modern households
host a multitude of networked devices, ranging from personal devices such as laptops
and smartphones to Internet of Things devices (such as printers, body scales, smart
meters). These devices connect among themselves and to the Internet via a local-area
network—a home network— that has become an important part of the “Internet
experience”, or Quality of Experience (QoE). In conventional networks, expert
administrators are responsible for managing the network and to identify the root-cause
of any problems affecting users. In contrast, most home networks have no technically
skilled network administrator. Home users often simply blame their Internet Service
Provider (ISP) when QoE degrades.

Our research provides tools to assist home users and ISPs in diagnosing QoE
degradation. The development of home network diagnosis tools brings a number of
challenges. First, home networks are heterogenous. The set of devices, configurations,
and applications in home networks vary significantly from one home to another. We
must develop sophisticated techniques that can learn and adapt to any home network as
well as to the level of expertise of the user. Second, there are numerous ways in which
applications can fail or experience poor performance in home networks. Often there are
a number of explanations for a given symptom. We must devise techniques that can
identify the most likely cause(s) for a given problem from a set of possible causes.
Third, even if we can identify the cause of the problem, we must then be able to
identify a solution. It is important that the output of the diagnosis tools we build is
“actionable”. Users should understand the output and know what to do.



The talk presented results of our research leveraging the home router as a moni-
toring point within the home. The home router is the ideal vantage point to diagnose
Internet QoE from homes as it sits between the home network and the access link. We
presented results of two research projects. First, our research in collaboration with the
BISmark Project1 has developed an algorithm to detect when the access link or the
home Wi-Fi. Our results show that wireless bottlenecks are more common than
access-link bottlenecks (particularly for home networks with downstream throughput
greater than 20 Mbps). Then, we study in collaboration with Technicolor the effects
of the home wireless on QoE of four popular applications: Web, YouTube, and
audio/video RTC.

2 Home Network or Access Link? Locating Last-mile
Downstream Throughput Bottlenecks

In this work [3], we asked whether downstream throughput bottlenecks occur more
frequently in the home networks or in the access ISPs. We identified lightweight
metrics that can accurately identify whether a throughput bottleneck lies inside or
outside a user’s home network. We developed an algorithm that passively observes
home network traffic when it traverses the home router to locate these bottlenecks. We
validated this algorithm in controlled settings and reported on results from two
deployments, one of which included 2,652 homes across the United States, deployed
by the Federal Communication Commission (FCC). We found that wireless bottlenecks
are more common than access link bottlenecks–particularly for home networks with
downstream throughput greater than 20 Mbps, where access-link bottlenecks are rel-
atively rare.

This work was in collaboration with Nick Feamster (Princeton University) and
Srikanth Sundaresan (ICSI) and was published at PAM 2016.

3 Predicting the Effect of Home Wi-Fi Quality on QoE

Poor Wi-Fi quality can disrupt home users’ internet experience, or the Quality of
Experience (QoE). Detecting when Wi-Fi degrades QoE is extremely valuable for
residential Internet Service Providers (ISPs) as home users often hold the ISP
responsible whenever QoE degrades. Yet, ISPs have little visibility within the home to
assist users. Our goal is to develop a system that runs on commodity access points
(APs) to assist ISPs in detecting when Wi-Fi degrades QoE. The first contribution of
our work [1, 2] was to develop a method to detect instances of poor QoE based on the
passive observation of Wi-Fi quality metrics available in commodity APs (e.g., PHY

1 The BISmark Project (http://projectbismark.net), based at Princeton University, provides customized
home routers running a measurement-instrumented version of the OpenWRT firmware to interested
individuals at no cost.
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rate). We used support vector regression to build predictors of QoE given Wi-Fi quality
for popular internet applications. We then used K-means clustering to combine
per-application predictors to identify regions of Wi-Fi quality where QoE is poor across
applications. We call samples in these regions as poor QoE samples. Our second
contribution was to apply our predictors to Wi-Fi metrics collected over one month
from 3479 APs of customers of a large residential ISP. Our results showed that QoE is
good on the vast majority of samples of the deployment, still we found 11.6% of poor
QoE samples. Worse, approximately 21% of stations had more than 25% poor QoE
samples. In some cases, we estimated that Wi-Fi quality causes poor QoE for many
hours, though in most cases poor QoE events are short.

This work was in collaboration with Diego Da Hora (Inria/Technicolor), Karel Van
Doorselaer (Technicolor), and Koen Van Oost (Technicolor) and was published at the
ACM SIGCOMM Internet QoE workshop 2016 and IEEE INFOCOM 2018.
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Program Analyses Using Newton’s Method

Thomas Reps1

University of Wisconsin, Madison, WI, USA
GrammaTech, Inc., Ithaca, NY, USA

reps@cs.wisc.edu

Abstract. Esparza et al. generalized Newton’s method—a numerical-analysis
algorithm for finding roots of real-valued functions—to a method for finding
fixed-points of systems of equations over semirings. Their method provides a
new way to solve interprocedural dataflow-analysis problems. As in its
real-valued counterpart, each iteration of their method solves a simpler “lin-
earized” problem.
Because essentially all fast iterative numerical methods are forms of Newton’s

method, this advance is exciting because it may provide the key to creating
faster program-analysis algorithms. However, there is an important difference
between the dataflow-analysis and numerical-analysis contexts: when Newton’s
method is used in numerical problems, commutativity of multiplication is relied
on to rearrange an expression of the form “a � Y � bþ c � Y � d” into
“ða � bþ c � dÞ � Y .” Equations with such expressions correspond to path
problems described by regular languages. In contrast, when Newton’s method is
used for interprocedural dataflow analysis, the “multiplication” operation
involves function composition, and hence is non-commutative:
“a � Y � bþ c � Y � d” cannot be rearranged into “ða � bþ c � dÞ � Y .” Equa-
tions with the former expressions correspond to path problems described by
linear context-free languages (LCFLs).
The invited talk that this paper accompanies presented a method that we

developed in 2015 for solving the LCFL sub-problems produced during succes-
sive rounds of Newton’s method. It uses some algebraic slight-of-hand to turn a
class of LCFL path problems into regular-language path problems. This result is
surprising because a reasonable sanity check—formal-language theory—suggests
that it should be impossible: after all, the LCFL languages are a strict superset
of the regular languages.
The talk summarized several concepts and prior results on which that result is

based. The method described applies to predicate abstraction, on which most of
today’s software model checkers rely, as well as to other abstract domains used in
program analysis.

1 T. Reps has an ownership interest in GrammaTech, Inc., which has licensed elements of the
technology discussed in this publication.
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Abstract. Esparza et al. generalized Newton’s method—a numerical-
analysis algorithm for finding roots of real-valued functions—to a method
for finding fixed-points of systems of equations over semirings. Their
method provides a new way to solve interprocedural dataflow-analysis
problems. As in its real-valued counterpart, each iteration of their
method solves a simpler “linearized” problem.

Because essentially all fast iterative numerical methods are forms of
Newton’s method, this advance is exciting because it may provide the
key to creating faster program-analysis algorithms. However, there is
an important difference between the dataflow-analysis and numerical-
analysis contexts: when Newton’s method is used in numerical problems,
commutativity of multiplication is relied on to rearrange an expression of
the form “a∗Y ∗b+c∗Y ∗d” into “(a∗b+c∗d)∗Y .” Equations with such
expressions correspond to path problems described by regular languages.
In contrast, when Newton’s method is used for interprocedural dataflow
analysis, the “multiplication” operation involves function composition,
and hence is non-commutative: “a ∗ Y ∗ b + c ∗ Y ∗ d” cannot be rear-
ranged into “(a ∗ b + c ∗ d) ∗ Y .” Equations with the former expressions
correspond to path problems described by linear context-free languages
(LCFLs).

The invited talk that this paper accompanies presented a method that
we developed in 2015 for solving the LCFL sub-problems produced dur-
ing successive rounds of Newton’s method. It uses some algebraic slight-
of-hand to turn a class of LCFL path problems into regular-language path
problems. This result is surprising because a reasonable sanity check—
formal-language theory—suggests that it should be impossible: after all,
the LCFL languages are a strict superset of the regular languages.

The talk summarized several concepts and prior results on which that
result is based. The method described applies to predicate abstraction,
on which most of today’s software model checkers rely, as well as to other
abstract domains used in program analysis.

Portions of this work are excerpted from [12].
T. Reps has an ownership interest in GrammaTech, Inc., which has licensed elements
of the technology discussed in this publication.

c© Springer Nature Switzerland AG 2019
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1 Introduction

Static program analysis provides a way to obtain information about the possi-
ble states that a program reaches during execution, but without actually run-
ning the program on specific inputs. Instead, static-analysis techniques explore
a program’s behavior for all possible inputs and all possible states that the pro-
gram can reach. To make this approach feasible, the program is “run in the
aggregate”—i.e., on descriptors that represent collections of many states.

This paper briefly reviews the conventional approach to interprocedural
dataflow analysis, and then summarizes a line of work from the last ten years
in which Newton’s method—a numerical-analysis algorithm for finding roots of
real-valued functions—has been generalized so that it can be used as a method
for finding solutions to the systems of equations that arise in interprocedural
dataflow-analysis problems.

2 Interprocedural Dataflow Analysis

Example 1. Consider the following program scheme, where X1 represents the
main procedure, X2 represents a subroutine, and sa, sb, sc, and sd represent
four program statements:

X1() {
sa;
X2()

}

X2() {
if (�) sd

else {
sb; X2(); X2(); sc

}
}

Suppose that we have a domain of functions whose elements correspond to some
abstraction of the state-transformers of the programming language. (An example
of such a domain is the domain of relations used to formulate an analysis based
on predicate abstraction [6].) Let a, b, c, and d denote the elements that abstract
the actions of statements sa, sb, sc, and sd, respectively. The (abstract) actions
of procedures X1 and X2 can be expressed as the following set of recursive
equations:

X1 = a⊗ X2 X2 = d ⊕ b⊗ X2 ⊗ X2 ⊗ c, (1)

where ⊕ (combine) denotes the operation used to combine (or “join”) infor-
mation that flows along different paths to some variable, and ⊗ (extend) is an
abstraction of (the reversal of) function composition. Such an equation system
can also be viewed as a representation of a program’s interprocedural control-
flow graph (CFG). (See Fig. 1(a)).

Each unknown in an equation system represents an abstract transformer that
serves as a procedure summary, in the sense of Sharir and Pnueli [13] and Reps
et al. [11]. A summary for procedure Xi overapproximates the behavior of Xi,
including all procedures called transitively from Xi. Once procedure summaries
have been obtained, one can use them to analyze each procedure Xj to obtain
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Fig. 1. (a) Graphical depiction of the equation system given in Eq. (1) as an interpro-
cedural control-flow graph. The three edges labeled “X2” represent calls to procedure
X2. (b) Linearized equation system over {Y1, Y2} obtained from Eq. (1) via Eq. (6); see
Example 3.

an abstract value Vj,p for each program point p in Xj [13]. Vj,p represents a
superset of the states that can arise at p. To find potential bugs, for instance,
one needs to determine if any bad states can arise at p, which can be done by
checking whether any bad states are contained within the meaning of Vj,p—in
abstract-interpretation terminology, by checking whether (γ(Vj,p) ∩ Bad) �= ∅. ��

A key goal of an interprocedural analyzer is to obtain a procedure summary
for each procedure of the program. The reason is that with a summary function
in hand for each procedure, one can reduce the problem of solving an interproce-
dural dataflow-analysis problem to that of solving a collection of intraprocedural
dataflow-analysis problems.1

Problem Statement:
Given a set of possibly recursive procedures P = {Pi}, and an abstract
semantics, i.e.,

• a transformer f [mi, ni] on each edge (mi, ni) in the control-flow graph
of each procedure Pi,

• extend (⊗ ) and combine (⊕ ) operators,

find a procedure summary ϕ[si, xi] for each Pi ∈ P, where si and xi

denote the start node and exit node of Pi, respectively.

1 See [2, Sect. 5.1] for an interprocedural dataflow-analysis method that uses a some-
what similar approach.
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The conventional approach to computing procedure-summary functions is to
work with the set of variables

Φ
def= {ϕ[si, ni] | 1 ≤ i ≤ |P|, si the start node of Pi, and ni a node of Pi},

and set up the following equation system over Φ:

ϕ[s, s]= Id for all s ∈ StartNodes

ϕ[si, ni]=
⊕

(mj ,ni)∈Edgesi

ϕ[si, mj ] ⊗ f [mj , ni] for all

⎧
⎨

⎩

si ∈ StartNodes
∧ ni /∈ StartNodes
∧ si, mj , ni ∈ Nodesi

ϕ[si, ri]=ϕ[si, ci] ⊗ Inci,s′ ⊗ ϕ[s′, x′] ⊗Outx′,ri for all

⎧
⎪⎪⎨

⎪⎪⎩

(ci, ri) ∈ CallSites
∧ (ci, s

′) ∈ Calls
∧ (s′, x′) ∈ StartExitPairs
∧ si, ci, ri ∈ Nodesi

(2)
Equation (2) is then solved using a successive-approximation method (i.e., Kleene
evaluation or chaotic iteration). Essentially this approach was proposed indepen-
dently and contemporaneously by Cousot and Cousot [3] and Sharir and Pnueli
[13].2 Note that by solving Eq. (2), one obtains values for the set of functions
Φ = {ϕ[si, ni]}, which contains more than just the set of summary functions
{ϕ[si, xi] | (s, x) ∈ StartExitPairs} (which were referred to as the variables {Xi}
in Example 1).

It is useful to formalize these concepts by introducing the notion of a semiring.

Definition 1. A semiring S = (D, ⊕ , ⊗ , 0, 1) consists of a set of elements
D equipped with two binary operations: combine (⊕ ) and extend (⊗ ). ⊕
and ⊗ are associative, and have identity elements 0 and 1, respectively. ⊕ is
commutative, and ⊗ distributes over ⊕ . (A semiring is sometimes called a
weight domain, in which case elements are called weights.)

Definition 2. If A is a finite set, the relational weight domain on A is defined
as (P(A × A),∪, ; , ∅, id). A weight R ⊆ A × A is a binary relation on A,3 ⊕ is
union (∪), ⊗ is relational composition (;), 0 is the empty relation, and 1 is the
identity relation on A.

Example 2. Definition 2 gives us a way to formalize each predicate-abstraction
domain as a semiring. A Boolean program is a program whose only datatype is
Boolean. A Boolean program P can be used as an abstraction of a real-world
program [1] via predicate abstraction. For each predicate p, there is a variable
vp ∈ Var in the Boolean program, which holds the value of p in states of the
program being modeled. A state of the Boolean program is an assignment in
Var → Bool.

2 Extensions for handling local variables are given by Knoop and Steffen [8], Müller-
Olm and Seidl [10], and Lal et al. [9].

3 A weight can also be thought of as a Boolean matrix with dimensions |A| × |A|.



Program Analyses Using Newton’s Method (Invited Paper) 7

By instantiating A in Definition 2 to be the set of assignments Var → Bool,
we obtain a semiring whose values can encode the state-transformers of P : the
semiring value associated with an assignment statement or assume statement st
of P is the binary relation on A that represents the effect of st on the state
of P . ��

In this paper, the focus is on semirings in which ⊕ is idempotent (i.e., for all
a ∈ D, a⊕ a = a). In an idempotent semiring, the order on elements is defined
by a � b iff a⊕ b = b. (Idempotence would be expected in the context of dataflow
analysis because an idempotent semiring is a join semilattice (D, ⊕ ) in which
the join operation is ⊕ .)

A semiring is commutative if for all a, b ∈ D, a⊗ b = b⊗ a. In dataflow
analysis, we typically work with non-commutative semirings: the ⊗ operation
used in Eq. (2) is an abstraction of (the reversal of) function composition, and
hence, in general, is not commutative.

3 Newtonian Program Analysis

Newtonian Program Analysis (NPA) provides an alternative to Kleene iteration
or chaotic iteration for solving an equation system such as Eq. (2). The first step
in the story of its development was a method developed for analyzing properties
of Recursive Markov Chains (RMCs), which are a modeling formalism for prob-
abilistic programs with possibly recursive procedures. To determine termination
probabilities for vertices in a model, Etessami and Yannakakis [5] generate a set
of equations that are, in general, non-linear. Answers can be irrational numbers,
so one cannot hope to compute them exactly. Instead, their goal is to approx-
imate the probabilities, or to answer decision questions (such as whether the
probability is greater than or equal to a specific rational value). They developed
an algorithm that uses a multivariate Newton’s method for approximating prob-
abilities. Moreover, they showed that, in the limit, when their method is started
from the zero vector, it always converges to the correct answer. (In contrast, for
general nonlinear polynomial equations over the reals, Newton’s method is not
guaranteed to converge.)

Etessami and Yannakakis worked with the probability semiring (namely,
(R0∪{+∞},+,×, 0, 1)), which has numeric values and a commutative ⊗ opera-
tion. Their work inspired Esparza et al. [4] to investigate whether a generalization
of the approach could be applied to other kinds of program analyses—in par-
ticular, when control-flow graph edges are labeled with values from a semiring
other than the probability semiring. The attempt was successful, and they devel-
oped a method for finding the least fixed-point of a system of equations over a
semiring, which works for both commutative and non-commutative semirings,
and does not require that the values be totally ordered. The fact that it applies
when ⊗ is not commutative makes the work applicable to the problem of finding
procedure-summary functions.

In general, let S = (D, ⊕ , ⊗ , 0, 1) be a semiring and a1, . . . , ak+1 ∈ D be
semiring elements. Let X be a finite set of variables X1, . . . , Xk. A monomial is
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a finite expression a1X1a2 . . . akXkak+1, where k ≥ 0. Monomials of the form
X1a2, a1X1, and a1X1a2 are left-linear, right-linear, and linear, respectively. (A
monomial that consists of a single semiring constant a1 is considered to be left-
linear, right-linear, and linear.) A polynomial is a finite expression of the form
m1 ⊕ . . . ⊕ mp, where p ≥ 1 and m1, . . . ,mp are monomials. A polynomial is
linear if all of its monomials are linear. A system of polynomial equations has
the form

X1 = f1(X1, . . . , Xn)
· · ·

Xn = fn(X1, . . . , Xn),

or, equivalently,
−→
X =

−→
f (

−→
X ), where

−→
X = 〈X1, . . . , Xn〉 and

−→
f =

λ
−→
X.〈f1(−→X ), . . . , fn(

−→
X )〉. For instance, for Eq. (1),

−→
f

def= λ
−→
X.〈a⊗ X2, d⊕ b⊗ X2 ⊗X2 ⊗ c〉.

Fig. 2. The principle behind Newton’s method for finding roots of real-valued functions.

In numerical problems, the workhorse for successive-approximation algo-
rithms is Newton’s method. Figure 2 illustrates how Newton’s method can (some-
times) help identify where a root of a function lies. (Newton’s method is not
guaranteed to converge to a root.) The general principle is to create a linear
model of the function—in this case the tangent line—and solve the problem for
the linear model to obtain the next approximation to the root of the original
function.

Compared to the numerical setting, Esparza et al. had two issues that they
needed to finesse:
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1. With numerical functions, the linear model is defined using derivatives, which
are defined in terms of limits. We have no analogue of a limit in a semiring.

2. Newton’s method is for root-finding (i.e., find x such that f(x) = 0), whereas
in program analysis we are interested in finding a fixed-point (i.e., find x such
that f(x) = x). Although one can easily convert a fixed-point problem into a
root-finding problem—find x such that f(x) − x = 0—this approach creates
a new problem because there is no analogue of a subtraction operation in a
semiring.

Kleene iteration is the well-known technique for finding the least fixed-point
of

−→
X =

−→
f (

−→
X ) via the successive-approximation method

−→κ (0) =
−→⊥

−→κ (i+i) =
−→
f (−→κ (i))

(3)

The NPA method of Esparza et al. [4] provides an alternative method for finding
the least fixed-point of

−→
X =

−→
f (

−→
X ). NPA is also a successive-approximation

method, but uses the following iterative scheme:4

−→ν (0) =
−→⊥

−→ν (i+1) =
−→
f (−→ν (i)) � LinearCorrectionTerm(

−→
f ,−→ν (i))

(4)

where LinearCorrectionTerm(
−→
f ,−→ν (i)) is a correction term—a function of

−→
f and

the current approximation −→ν (i)—that nudges the next approximation −→ν (i+1) in
the right direction at each step. In essence, the insight behind the work of Esparza
et al. is that the high-level principle of Newton’s method, namely,

repeatedly, create a linear model of the function and use it to find a better
approximation of the solution

can be applied to programs, too. The sense in which the correction term in Eq. (4)
is “linear” is what makes it proper to say that Eq. (4) is a form of Newton’s
method.

More precisely, NPA solves the following sequence of problems for −→ν :

−→ν (0) =
−→
f (

−→
0 )

−→ν (i+1) =
−→
Y

(i) (5)

where
−→
Y

(i)
is the value of

−→
Y in the least solution of

−→
Y =

−→
f (−→ν (i))⊕ D−→

f |−→ν (i)(
−→
Y ) (6)

4 For reasons that are immaterial to this discussion, Esparza et al. start the iteration

via −→ν (0)
=

−→
f (

−→⊥), rather than −→ν (0)
=

−→⊥ . Our goal here is to bring out the essential
similarities between Eqs. (3) and (4).
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and D−→
f |−→ν (i)(

−→
Y ) is the multivariate differential of

−→
f at −→ν (i), defined below

(see Definition 3). Equations (5) and (6) resemble Kleene iteration, except that
on each iteration

−→
f (−→ν (i)) is “corrected” by the amount D−→

f |−→ν (i)(
−→
Y ).

There is a close analogy between NPA and the use of Newton’s method
in numerical analysis to solve a system of polynomial equations

−→
f (

−→
X ) =

−→
0 .

In both cases, one creates a linear approximation of
−→
f around the point

(−→ν (i)
,
−→
f (−→ν (i))), and then uses the solution of the linear system in the next

approximation of
−→
X . The sequence −→ν (0)

,−→ν (1)
, . . . ,−→ν (i)

, . . . is called the Newton
sequence for

−→
X =

−→
f (

−→
X ). The process of solving Eqs. (5) and (6) for −→ν (i+1),

given −→ν (i), is called a Newton step or one Newton round.
For polynomial equations over a semiring, the linear approximation of

−→
f

is created by the transformation given in Definition 3. It converts a system of
equations with polynomial right-hand sides into a new equation system in which
each equation’s right-hand side is linear.

Definition 3. [4] Let fi(
−→
X ) be a component function of

−→
f (

−→
X ). The differen-

tial of fi(
−→
X ) with respect to Xj at −→ν , denoted by DXj

fi|−→ν (
−→
Y ), is defined as

follows:

DXj
fi|−→ν (

−→
Y ) def=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if fi = s ∈ S
0 if fi = Xk and k �= j
Yj if fi = Xj

⊕

k∈K

DXj
gk|−→ν (

−→
Y ) if fi =

⊕

k∈K

gk

(
DXj

g|−→ν (
−→
Y )⊗ h(−→ν )

⊕ g(−→ν )⊗ DXj
h|−→ν (

−→
Y )

)

if fi = g ⊗ h

(7)

where K ⊆ N is some finite or infinite index set. Let
−→
f be a multivariate poly-

nomial function defined by
−→
f

def= λ
−→
X.〈f1(−→X ), . . . , fn(

−→
X )〉. The multivariate

differential of
−→
f at −→ν , denoted by D−→

f |−→ν (
−→
Y ), is defined as follows:

D−→
f |−→ν (

−→
Y ) def=

〈DX1f1|−→ν (
−→
Y )⊕ . . . ⊕DXn

f1|−→ν (
−→
Y ),

...
DX1fn|−→ν (

−→
Y )⊕ . . . ⊕DXn

fn|−→ν (
−→
Y )

〉

Dfi|−→ν (
−→
Y ) def=

n⊕

k=1

DXk
fi|−→ν (

−→
Y ) denotes the ith component of D−→

f |−→ν (
−→
Y ).

The fourth case in Eq. (7) generalizes the differential of a binary combine,
i.e.,

DXj
g1|−→ν (

−→
Y )⊕ DXj

g2|−→ν (
−→
Y ) if fi = g1 ⊕ g2,

to infinite combines. Note how the fifth case, for “g ⊗ h”, resembles the product
rule from differential calculus

d

dx
(g ∗ h) =

dg

dx
∗ h + g ∗ dg

dx
,
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and in particular the differential form of the product rule:

d(g ∗ h) = dg ∗ h + g ∗ dh.

The multivariate differential defined in Definition 3 is how Esparza et al.
addressed the issue raised in item (1) above: the multivariate differential is a
formal operator on a polynomial expression over a semiring, and does not involve
any notion of “the limit as ΔX approaches 0.” Here Esparza et al. [4] were
inspired by a formal differentiation operation defined by Hopkins and Kozen
[7] for commutative Kleene algebra. Esparza et al. generalized that notion to
one for creating a formal differential for an equation system defined over a non-
commutative semiring.

Example 3. For Eq. (1), the multivariate differential of
−→
f at the value −→ν =

〈ν1, ν2〉 is

D−→
f |(ν1,ν2)

(
−→
Y ) =

〈
DX1f1|(ν1,ν2)

(
−→
Y )⊕ DX2f1|(ν1,ν2)

(
−→
Y ),

DX1f2|(ν1,ν2)
(
−→
Y )⊕ DX2f2|(ν1,ν2)

(
−→
Y )

〉

=

〈

0 ⊕ a⊗ Y2, 0 ⊕
⎛

⎝
0

⊕ b⊗ Y2 ⊗ ν2 ⊗ c
⊕ b⊗ ν2 ⊗Y2 ⊗ c

⎞

⎠

〉

=
〈

a⊗ Y2,

(
b⊗ Y2 ⊗ ν2 ⊗ c

⊕ b⊗ ν2 ⊗ Y2 ⊗ c

)〉

(8)

From Eq. (6), we then obtain the following linearized system of equations, which
is also depicted graphically in Fig. 1(b):

〈Y1, Y2〉 =

〈(
a⊗ ν2

⊕ a⊗ Y2

)

,

⎛

⎜
⎜
⎝

d
⊕ b⊗ ν2 ⊗ ν2 ⊗ c
⊕ b⊗ Y2 ⊗ ν2 ⊗ c
⊕ b⊗ ν2 ⊗Y2 ⊗ c

⎞

⎟
⎟
⎠

〉

(9)

On the i + 1st Newton round, we need to solve Eq. (9) for 〈Y1, Y2〉 with 〈ν1, ν2〉
set to the value 〈ν(i)

1 , ν
(i)
2 〉 obtained on the ith round, and then perform the

assignment 〈ν(i+1)
1 , ν

(i+1)
2 〉 ← 〈Y1, Y2〉.

NPA can also be thought of as a kind of sampling method for the state space
of the program. For instance, in Example 1, procedure X2 has two call-sites. In
the corresponding linearized program in Fig. 1(b), each path through Y2 has at
most one call site: the NPA linearizing transformation inserted the value ν2 at
various call-sites, and left at most one variable in each summand. In essence,
during a given Newton round the analyzer samples the state space of Y2 by
taking the ⊕ of various paths through Y2. Along each such path, the abstract
values for the call-sites encountered are held fixed at ν2, except for possibly one
call-site on the path, which is explored by visiting (the linearized version of) the
called procedure. The abstract values for ν1 and ν2 are updated according to the
results of this state-space exploration, and the algorithm proceeds to the next
Newton round. ��
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4 Newtonian Program Analysis via Tensor Product
(NPA-TP)

Consider the (recursive) equation for Y2:

Y2 =

⎛

⎜
⎜
⎝

d
⊕ b⊗ ν2 ⊗ ν2 ⊗ c
⊕ b⊗ Y2 ⊗ ν2 ⊗ c
⊕ b⊗ ν2 ⊗ Y2 ⊗ c

⎞

⎟
⎟
⎠ (10)

Each monomial in Eq. (10) is linear. In contrast, the equation for X2 in the orig-
inal equation system (Eq. (1)), X2 = d ⊕ b⊗ X2 ⊗ X2 ⊗ c, involves a monomial
that is quadratic. In general, as in the example above, NPA reduces the problem
of solving an equation system that involves polynomial right-hand sides to the
problem of solving a sequence of equation systems, each of which has only linear
right-hand sides.

At first blush, one might think (as the author did at one point) that
NPA reduces the problem of solving a polynomial equation system for an
interprocedural dataflow-analysis problem to a sequence of intraprocedural
dataflow-analysis problems. That would be desirable because there exist fast
methods to solve an intraprocedural dataflow-analysis problem. For instance,
Tarjan [15] introduced the idea of using regular expressions as a kind of
“most-general dataflow-analysis method.” Specific dataflow-analysis problems
are solved by first solving the path-expression problem: a program’s CFG is
considered to be a finite-state machine in which CFG nodes are states, and
each edge is labeled by an alphabet symbol unique to that edge. Tarjan’s path-
expression method [14] creates for each node n a regular expression Rn whose
language, L(Rn), is (exactly) the set of all paths from the CFG’s start node
to n. The “client” dataflow-analysis problem is then solved by evaluating each
regular expression Rn, bottom up, using a suitable interpretation, in which the
regular-expression operators +, ·, and ∗—now treated as syntactic operators—
are interpreted as some suitable (sound) operations, ⊕ , ⊗ , and ∗, respectively,
in the analysis domain [15].

Because both the regular languages (Reg) and the linear context-free lan-
guages (LCFLs) will play a role in what follows, it is worth recalling a few facts.

• L(FSM) = L(RegExp) = Reg
• For a left-linear context-free grammar, e.g., W ::= Wc | Wd | ε, L(W ) ∈ Reg.

For instance, L(W ) = (c + d)∗ ∈ Reg.
• For the linear context-free grammar W ::= aWb | ε, L(W ) = {aibi} /∈ Reg.
• For the linear context-free grammar W ::= a1Wb1 | a2Wb2 | ε,

L(W ) = {. . . , a1 a2b2︸︷︷︸
b1

︸ ︷︷ ︸

, a2 a1b1︸︷︷︸
b2

︸ ︷︷ ︸

, a2 a1 a2b2︸︷︷︸
b1

︸ ︷︷ ︸

b2

︸ ︷︷ ︸

, . . .} /∈ Reg.

In particular, note the “mirrored symmetry” of each word in L(W ), as shown
above by the underbraces.
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Returning to Eq. (10), note that the third and fourth monomials each extend
Y2 by nontrivial quantities on both the left and the right. Thus, we are truly
working with a linear equation system—not one that is left-linear or right-linear.
In other words, there is a mismatch:

• Tarjan’s method solves a left-linear (or right-linear) system of equations.
• The NPA method of Esparza et al. repeatedly creates a linear system that

needs to be solved.
• However, in general, one cannot apply Tarjan’s method to the linear systems

created by NPA.

One can also consider Eq. (10) as defining the following linear context-free
grammar over the set of nonterminals {Y2} and the set of terminals {b, c, d, ν2}:

Y2 ::= d | b ν2 ν2 c | b Y2 ν2 c | b ν2 Y2 c (11)

Definition 4. An equation system over semiring S is an LCFL equation sys-
tem if each equation has the form

Yj = cj ⊕
⊕

i,k

(ai,j,k ⊗Yi ⊗ bi,j,k),

where ai,j,k, bi,j,k, cj ∈ S.

As mentioned earlier, NPA performs a Kleene-like iteration, during which
a linear correction is applied on each round. Definition 4 allows us to be more
precise: the correction value used on each round is the solution to an LCFL
equation system. The contribution of NPA-TP to NPA is to address the following
problem:

Given an LCFL equation system L, devise an efficient method for finding
the least solution of L.

Definition 5. An LCFL equation system over semiring S is a left-linear
equation system if each equation has the form

Zj = cj ⊕
⊕

i,k

(Zi ⊗ bi,j,k),

where bi,j,k, cj ∈ S.

In contrast to a general LCFL equation system (Definition 4), with a left-linear
equation system one can always collect coefficients for a given Zi—i.e., di,j =⊕

k bi,j,k—so that equations can always be put in a form in which Zj has a
single dependence on each Zi:

Zj = cj ⊕
⊕

i

(Zi ⊗ di,j),

where cj , di,j ∈ S.
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A left-linear equation system corresponds to a left-linear grammar, and hence
a regular language. The fact that Tarjan’s path-expression method provides a
fast method for solving left-linear equation systems led us to pose the following
question:

Is it possible to “regularize” the LCFL equation system L that arises on each
Newton round—i.e., transform L into a left-linear equation system LReg?

If the extend (⊗ ) operation of the semiring is commutative, it is trivial to turn an
LCFL equation system into a left-linear equation system. However, in dataflow-
analysis problems, we rarely have a commutative extend operation; thus, our
goal was to find a way to regularize a non-commutative LCFL equation system.

On the face of it, this line of attack seems unlikely to pan out; after all,
Eq. (11) resembles the linear grammar

−→
Y ::= a1

−→
Y b1 | a2

−→
Y b2 | ε, whose simpler

cousin
−→
Y ::= a

−→
Y b | ε, which is also a linear grammar, generates the language

L(
−→
Y ) = {aibi | i ∈ N}—the canonical example of an LCFL that is not regular!

For the linear context-free grammar
−→
Y ::= a1

−→
Y b1 | a2

−→
Y b2 | ε,

L(
−→
Y ) = {. . . , a1 a2b2︸︷︷︸

b1
︸ ︷︷ ︸

, a2 a1b1︸︷︷︸
b2

︸ ︷︷ ︸

, a2 a1 a2b2︸︷︷︸
b1

︸ ︷︷ ︸

b2

︸ ︷︷ ︸

, . . .} /∈ Reg, (12)

In particular, note the “mirrored symmetry” of each word in L(
−→
Y ), as shown

above by the underbraces. Any solution to the problem of regularizing a non-
commutative LCFL equation system has to accommodate such mirrored corre-
lation patterns.

The challenge is to devise a way to accumulate matching quantities on both
the left and right sides, whereas in a regular language, we can only accumu-
late values on one side. What we contributed in [12] is a way, under certain
conditions, to convert each LCFL equation system into a left-linear (and hence
regular-language) equation system. The result is surprising because a reasonable
sanity check—formal-language theory—suggests that it should be impossible:
the LCFLs are strictly more expressive than the regular languages.

The secret is that we are not working with words: the combine (⊕ ) and
extend (⊗ ) operators of the semiring do not denote alternation and concatena-
tion, as in formal-language theory; on the contrary, ⊕ and ⊗ are interpreted
operators. In [12], we used some algebraic slight-of-hand to turn a class of LCFL
equation systems into left-linear equation systems. To accomplish such a trans-
formation, we require the semiring to support a few additional operations (which
we call “transpose,” “tensor product,” and “detensor”—denoted by t, � , and
�, respectively) that one does not have with words. However, one does have
such operations for the so-called “predicate-abstraction problems” (an impor-
tant family of dataflow-analysis problems used in essentially all modern-day
software model checkers). In predicate-abstraction problems,

• a semiring value is a square Boolean matrix
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• the extend operation is Boolean matrix multiplication
• the combine operation is pointwise “or”
• transpose is matrix transpose, and
• tensor product is Kronecker product of square Boolean matrices

The key step is to take each equation of the form “Y = a⊗ Y ⊗ b” and turn
it into “Z = Z ⊗ T (at � b),” where ⊗ T denotes the extend operation in the
domain of tensored values. (For predicate abstraction, ⊗ T is Boolean matrix
multiplication of tensored matrices.) When this transformation is performed on
all equation right-hand sides, the resulting equation system over Z is left-linear,
and hence describes a set of paths in a regular language. Consequently, it can
be solved by means of Tarjan’s path-expression method.

What is not immediately obvious is that from the least-fixed point of the Z
system one can obtain the least-fixed point of the Y system—i.e., the Z system
can be used to solve the Y system with no loss of precision. The intuition behind
the transformation is that linear paths in the Z system mimic derivation trees
in the linear context-free grammar of the Y system; as we follow a path in the
Z system along edges labeled with, e.g., first (at

1 � b1) and then (at
2 � b2), we

obtain
(at

1 � b1)⊗ T (at
2 � b2) = (at

1 ⊗ at
2)� (b2 ⊗ b1)

= (a1 ⊗ a2)t � (b2
︸ ︷︷ ︸

⊗ b1
︸ ︷︷ ︸

)

which produces the kind of mirrored symmetry that we need to track properly
the values that arise in the Y system, which have such symmetric correlations
(cf. Eq. (12)). More precisely, the detensor operation performs

�(at � b) = a⊗ b,

so that when � is applied to the path’s value, we obtain

�((a1 ⊗ a2)t � (b2 ⊗ b1)) = a1 ⊗ a2 ⊗ b2︸ ︷︷ ︸
⊗ b1

︸ ︷︷ ︸

,

which has the mirrored symmetry found in the values of derivation trees in the
Y system. The Z system’s paths encode all and only the derivation trees of the
Y system.

To use this idea to solve an LCFL equation system precisely, there is one fur-
ther requirement: the � operation must distribute over the tensored-sum oper-
ation. This property causes the detensor of the sum-over-all-Z-paths to equal
the desired sum-over-all-Y -tree-valuations. It turns out that such a distributive
detensor operation exists for Kronecker products of Boolean matrices, and thus
all the pieces fit together for the predicate-abstraction problems. Full details can
be found in [12].
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Abstract. Despite the hype about blockchains and distributed ledgers,
no formal abstraction of these objects has been proposed (This observa-
tion was also pointed out by Maurice Herlihy in his PODC2017 keynote
talk). To face this issue, in this paper we provide a proper formulation
of a distributed ledger object. In brief, we define a ledger object as a
sequence of records, and we provide the operations and the properties
that such an object should support. Implementation of a ledger object
on top of multiple (possibly geographically dispersed) computing devices
gives rise to the distributed ledger object . In contrast to the centralized
object, distribution allows operations to be applied concurrently on the
ledger, introducing challenges on the consistency of the ledger in each
participant. We provide the definitions of three well known consistency
guarantees in terms of the operations supported by the ledger object: (1)
atomic consistency (linearizability), (2) sequential consistency, and (3)
eventual consistency. We then provide implementations of distributed
ledgers on asynchronous message passing crash-prone systems using an
Atomic Broadcast service, and show that they provide eventual, sequen-
tial or atomic consistency semantics. We conclude with a variation of
the ledger – the validated ledger – which requires that each record in the
ledger satisfies a particular validation rule.

1 Introduction

We are living a huge hype of the so-called crypto-currencies, and their technolog-
ical support, the blockchain [20]. It is claimed that using crypto-currencies and
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public distributed ledgers (i.e., public blockchains) will liberate stakeholder own-
ers from centralized trusted authorities [23]. Moreover, it is believed that there
is the opportunity of becoming rich by mining coins, speculating with them, or
even launching your own coin (i.e. with an initial coin offering, ICO).

Cryptocurrencies were first introduced in 2009 by Nakamoto [20]. In his
paper, Nakamoto introduced the first algorithm that allowed economic transac-
tions to be accomplished between peers without the need of a central authority.
An initial analysis of the security of the protocol was presented in [20], although
a more formal and thorough analysis was developed by Garay, Kiayias, and
Leonardos in [10]. In that paper the authors define and prove two fundamental
properties of the blockchain implementation behind bitcoin: (i) common-prefix,
and (ii) quality of chain.

Although the recent popularity of distributed ledger technology (DLT), or
blockchain, is primarily due to the explosive growth of numerous cryptocur-
rencies, there are many applications of this core technology that are outside
the financial industry. These applications arise from leveraging various useful
features provided by distributed ledgers such as a decentralized information
management, immutable record keeping for possible audit trail, a robust and
available system, and a system that provides security and privacy. For example,
an emerging area is the use of DLT in medical and health care applications. At
a high level, the distributed ledger can be used as a platform to store health
care data for sharing, recording, analysis, research, etc. One of the most widely
discussed approaches in adopting DLT is to implement a Health Information
Exchange (HIE) system, for sharing transactions among the participants such
as patients, caregivers and other relevant parties [16]. Another interesting open-
source initiative is Namecoin that uses DLT to improve the registration and
ownership transfer of internet components such as DNS [21].

In the light of these works indeed crypto-currencies and (public and private)
distributed ledgers1 have the potential to impact our society deeply. However
most experts, often do not clearly differentiate between the coin, the ledger that
supports it, and the service they provide. Instead, they get very technical, talking
about the cryptography involved, the mining used to maintain the ledger, or the
smart contract technology used. Moreover, when asked for details it is often the
case that there is no formal specification of the protocols, algorithms, and service
provided, with a few exceptions [26]. In many cases “the code is the spec”.

From the theoretical point of view there are many fundamental questions
with the current distributed ledger (and crypto-currency) systems that are very
often not properly answered: What is the service that must be provided by a dis-
tributed ledger? What properties a distributed ledger must satisfy? What are the
assumptions made by the protocols and algorithms on the underlying system?
Does a distributed ledger require a linked crypto-currency? In his PODC’2017
keynote address, Herlihy pointed out that, despite the hype about blockchains
and distributed ledgers, no formal abstraction of these objects has been pro-
posed [14]. He stated that there is a need for the formalization of the distributed

1 We will use distributed ledger from now on, instead of blockchain.
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systems that are at the heart of most cryptocurrency implementations, and lever-
age the decades of experience in the distributed computing community in formal
specification when designing and proving various properties of such systems. In
particular, he noted that the distributed ledger can be formally described by
its sequential specification, and be implemented using a universal construction,
based on well-known concurrent objects, like consensus objects.

Code 1. Ledger Object L
1: Init: S ← ∅
2: function L.get( )
3: return S
4: function L.append(r)
5: S ← S‖r
6: return

Code 2 . Validated Ledger Object VL
(only append)

1: function VL.append(r)
2: if Valid(S‖r) then
3: S ← S‖r
4: return ack
5: else return nack

In this paper we provide a proper formulation of a family of ledger objects,
starting from a centralized, non replicated ledger object, and moving to dis-
tributed, concurrent implementations of ledger objects, subject to validation
rules. In particular, we provide definitions and sample implementations for the
following types of ledger objects:

Ledger Object (LO): We begin with a formal definition of a ledger object
as a sequence of records, supporting two basic operations: get and append. In
brief, the ledger object is captured by Code 1 (in which ‖ is the concatenation
operator), where the get operation returns the ledger as a sequence S of records,
and the append operation inserts a new record at the end of the sequence. The
sequential specification of the object is then presented, to explicitly define the
expected behavior of the object when accessed sequentially by get and append
operations.

Distributed Ledger Object (DLO): With the ledger object implemented on
top of multiple (possibly geographically dispersed) computing devices or servers
we obtain distributed ledgers – the main focus of this paper. Distribution allows
a (potentially very large) set of distributed client processes to access the dis-
tributed ledger, by issuing get and append operations concurrently. To explain
the behavior of the operations during concurrency we define three consistency
semantics: (i) eventual consistency, (ii) sequential consistency, and (iii) atomic
consistency. The definitions provided are independent of the properties of the
underlying system and the failure model.

Implementations of DLO: In light of our semantic definitions, we provide
a number of algorithms that implement DLO satisfying the above mentioned
consistency semantics, in asynchronous crash-prone systems, using an Atomic
Broadcast service.

Validated (Distributed) Ledger Object (V[D]LO): We then provide a
variation of the ledger object – the validated ledger object – which requires that
each record in the ledger satisfies a particular validation rule, expressed as a
predicate Valid(). To this end, the basic append operation of this type of ledger
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filters each record through the Valid() predicate before is appended to the ledger
(see Code 2).

Other Related Work. A distributed ledger can be used to implement a repli-
cated state machine [17,25]. Paxos [19] is one the first proposals of a replicated
state machine implemented with repeated consensus instances. The Practical
Byzantine Fault Tolerance solution of Castro and Liskov [6] is proposed to be
used in Byzantine-tolerant blockchains. In fact, it is used by them to implement
an asynchronous replicated state machine [5]. The recent work of Abraham and
Malkhi [1] discusses in depth the relation between BFT protocols and blockchains
consensus protocols. All these suggest that at the heart of implementing a dis-
tributed ledger object there is a version of a consensus mechanism, which directly
impacts the efficiency of the implemented DLO. In a later section, we show that
an eventual consistent DLO can be used to implement consensus, and consensus
can be used to implement a DLO; this reinforces the relationship identified in
the above-mentioned works.

Among the proposals for distributed ledgers, Algorand [12] is an algorithm for
blockchain that boasts much higher throughput than Bitcoin and Ethereum. This
work is a new resilient optimal Byzantine consensus algorithm targeting consor-
tium blockchains. To this end, it first revisits the consensus validity property by
requiring that the decided value satisfies a predefined predicate, which does not
systematically exclude a value proposed only by Byzantine processes, thereby
generalizing the validity properties found in the literature. Gramoli et al. [8,13]
propose blockchains implemented using Byzantine consensus algorithms that
also relax the validity property of the commonly defined consensus problem.

One of the closest works to ours is the one by Anceaume et al. [2], which
like our work, attempts to connect the concept of distributed ledgers with dis-
tributed objects, although they concentrate in Bitcoin. In particular, they first
show that read-write registers do not capture Bitcoin’s behavior. To this end,
they introduce the Distributed Ledger Register (DLR), a register that builds on
read-write registers for mimicking the behavior of Bitcoin. In fact, they show
the conditions under which the Bitcoin blockchain algorithm satisfies the DLR
properties. Our work, although it shares the same spirit of formulating and con-
necting ledgers with concurrent objects (in the spirit of [22]), it differs in many
aspects. For example, our formulation does not focus on a specific blockchain
(such as Bitcoin), but aims to be more general, and beyond crypto-currencies.
Hence, for example, instead of using sequences of blocks (as in [2]) we talk
about sequences of records. Furthermore, following the concurrent object litera-
ture, we define the ledger object on new primitives (get and append), instead on
building on multi-writer, multi-reader R/W register primitives. We pay particu-
lar attention on formulating the consistency semantics of the distributed ledger
object and demonstrate their versatility by presenting implementations. Nev-
ertheless, both works, although taking different approaches, contribute to the
better understanding of the basic underlying principles of distributed ledgers
from the theoretical distributed computing point of view.
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2 The Ledger Object

2.1 Concurrent Objects and the Ledger Object

An object type T specifies (i) the set of values (or states) that any object O of
type T can take, and (ii) the set of operations that a process can use to modify
or access the value of O. An object O of type T is a concurrent object if it is a
shared object accessed by multiple processes [24]. Each operation on an object
O consists of an invocation event and a response event, that must occur in this
order. A history of operations on O, denoted by HO , is a sequence of invocation
and response events, starting with an invocation event. (The sequence order
of a history reflects the real time ordering of the events.) An operation π is
complete in a history HO , if HO contains both the invocation and the matching
response of π, in this order. A history HO is complete if it contains only complete
operations; otherwise it is partial [24]. An operation π1 precedes an operation
π2 (or π2 succeeds π1), denoted by π1 → π2, in HO , if the response event of π1

appears before the invocation event of π2 in HO . Two operations are concurrent
if none precedes the other.

A complete history HO is sequential if it contains no concurrent operations,
i.e., it is an alternative sequence of matching invocation and response events,
starting with an invocation and ending with a response event. A partial history
is sequential, if removing its last event (that must be an invocation) makes it a
complete sequential history. A sequential specification of an object O, describes
the behavior of O when accessed sequentially. In particular, the sequential spec-
ification of O is the set of all possible sequential histories involving solely object
O [24].

A ledger L is a concurrent object that stores a totally ordered sequence L.S
of records and supports two operations (available to any process p): (i) L.getp(),
and (ii) L.appendp(r). A record is a triple r = 〈τ, p, v〉, where τ is a unique record
identifier from a set T , p ∈ P is the identifier of the process that created record
r, and v is the data of the record drawn from an alphabet A. We will use r.p to
denote the id of the process that created record r; similarly we define r.τ and r.v.
A process p invokes a L.getp() operation2 to obtain the sequence L.S of records
stored in the ledger object L, and p invokes a L.appendp(r) operation to extend
L.S with a new record r. Initially, the sequence L.S is empty.

Definition 1. The sequential specification of a ledger L over the sequential
history HL is defined as follows. The value of the sequence L.S of the ledger is
initially the empty sequence. If at the invocation event of an operation π in HL
the value of the sequence in ledger L is L.S = V , then:

1. if π is a L.getp() operation, then the response event of π returns V , and
2. if π is a L.appendp(r) operation, then at the response event of π, the value of

the sequence in ledger L is L.S = V ‖r (where ‖ is the concatenation operator).
2 We define only one operation to access the value of the ledger for simplicity. In
practice, other operations, like those to access individual records in the sequence,
will also be available.
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2.2 Implementation of Ledgers

Processes execute operations and instructions sequentially (i.e., we make the
usual well-formedness assumption where a process invokes one operation at a
time). A process p interacts with a ledger L by invoking an operation (L.getp()
or L.appendp(r)), which causes a request to be sent from p to L, and a response
from L to p. The response marks the end of the operation and carries the result of
the operation.3 The result for a get operation is a sequence of records, while the
result for an append operation is a confirmation (ack). This interaction (from the
point of view of p) is depicted in Code 3. A possible centralized implementation
of the ledger that processes requests sequentially is presented in Code 4 (each
block receive is assumed to be executed in mutual exclusion). Figure 1 (left)
abstracts the interaction between the processes and the ledger.

Ledger

process i process j

(Append, r)

(AppendRes, ACK) (GetRes, r1,r2,…)

(Get)

process i process j

(c, Append, r)

(c, AppendRes, ACK) (c, GetRes, r1,r2,…)

(c, Get)

Distributed Ledger
server server

server

Fig. 1. The interaction between processes and the ledger, where r, r1, r2, . . . are records.
Left: General abstraction; Right: Distributed ledger implemented by servers

Code 3. External Interface (Executed by
a Process p) of a Ledger Object L
1: function L.get( )
2: send request (get) to ledger L
3: wait response (getRes, V ) from L
4: return V
5: function L.append(r)
6: send request (append, r) to ledger L
7: wait response (appendRes, res) from L
8: return res

Code 4. Ledger L (centralized)

1: Init: S ← ∅
2: receive (get) from process p
3: send response (getRes, S) to p

4: receive (append, r) from process p
5: S ← S‖r
6: send resp (appendRes, ack) to p

3 Distributed Ledger Objects

In this section we define distributed ledger objects, and some of the levels of
consistency guarantees that can be provided. These definitions are general and do
not rely on the properties of the underlying distributed system, unless otherwise
stated. In particular, they do not make any assumption on the types of failures
3 We make explicit the exchange of request and responses between the process and
the ledger to reveal the fact that the ledger is concurrent, i.e., accessed by several
processes.
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that may occur. Then, we show how to implement distributed ledger objects
that satisfy these consistency levels using an atomic broadcast [9] service on an
asynchronous system with crash failures.

3.1 Distributed Ledgers and Consistency

Distributed Ledgers. A distributed ledger object (distributed ledger for short)
is a concurrent ledger object that is implemented in a distributed manner. In
particular, the ledger object is implemented by (and possibly replicated among)
a set of (possibly distinct and geographically dispersed) computing devices, that
we refer as servers. We refer to the processes that invoke the get() and append()
operations of the distributed ledger as clients. Figure 1 (right) depicts the inter-
action between the clients and the distributed ledger, implemented by servers.

In general, servers can fail. This leads to introducing mechanisms in the
algorithm that implements the distributed ledger to achieve fault tolerance, like
replicating the ledger. Additionally, the interaction of the clients with the servers
will have to take into account the faulty nature of individual servers, as we discuss
later in the section.

Consistency of Distributed Ledgers. Distribution and replication intend
to ensure availability and survivability of the ledger, in case a subset of the
servers fails. At the same time, they raise the challenge of maintaining con-
sistency among the different views that different clients get of the distributed
ledger: what is the latest value of the ledger when multiple clients may send
operation requests at different servers concurrently? Consistency semantics need
to be in place to precisely describe the allowed values that a get() operation
may return when it is executed concurrently with other get() or append() opera-
tions. Here, as examples, we provide the properties that operations must satisfy
in order to guarantee atomic consistency (linearizability) [15], sequential con-
sistency [18] and eventual consistency [11] semantics. In a similar way, other
consistency guarantees, such as session and causal consistencies could be for-
mally defined [11].

Atomicity (aka, linearizability) [4,15] provides the illusion that the dis-
tributed ledger is accessed sequentially respecting the real time order, even when
operations are invoked concurrently. I.e., the distributed ledger seems to be a
centralized ledger like the one implemented by Code 4. Formally4,

Definition 2. A distributed ledger L is atomic if, given any complete history
HL, there exists a permutation σ of the operations in HL such that:

1. σ follows the sequential specification of L, and
2. for every pair of operations π1, π2, if π1 → π2 in HL, then π1 appears before

π2 in σ.

4 Our formal definitions of linearizability and sequential consistency are adapted
from [4].
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Sequential consistency [4,18] is weaker than atomicity in the sense that it
only requires that operations respect the local ordering at each process, not the
real time ordering. Formally,

Definition 3. A distributed ledger L is sequentially consistent if, given any
complete history HL, there exists a permutation σ of the operations in HL such
that:

1. σ follows the sequential specification of L, and
2. for every pair of operations π1, π2 invoked by a process p, if π1 → π2 in HL,

then π1 appears before π2 in σ.

Let us finally give a definition of eventually consistent distributed ledgers.
Informally speaking, a distributed ledger is eventual consistent, if for every
append(r) operation that completes, eventually all get() operations return
sequences that contain record r, and in the same position. Formally,

Definition 4. A distributed ledger L is eventually consistent if, given any com-
plete history HL, there exists a permutation σ of the operations in HL such
that:

(a) σ follows the sequential specification of L, and
(b) for every L.append(r) ∈ HL, there exists a complete history H ′

L that
extends5 HL such that, for every complete history H ′′

L that extends H ′
L,

every complete operation L.get() in H ′′
L \ H ′

L returns a sequence that con-
tains r.

Remark: Observe that in the above definitions we consider HL to be complete.
As argued in [24], the definitions can be extended to sequences that are not
complete by reducing the problem of determining whether a complete sequence
extracted by the non complete one is consistent. That is, given a partial history
HL, if HL can be modified in such a way that every invocation of a non com-
plete operation is either removed or completed with a response event, and the
resulting, complete, sequence H ′

L checks for consistency, then HL also checks
for consistency. Alternatively, following [4], a liveness assumption can be made
where every invocation event has a matching response event (and hence all his-
tories are complete).

3.2 Distributed Ledger Implementations in a System with Crash
Failures

In this section we provide implementations of distributed ledgers with different
levels of consistency in an asynchronous distributed system with crash failures,
as a mean of illustrating the generality and versatility of our ledger formula-
tion. These implementations build on a generic deterministic atomic broadcast
service [9].
5 A sequence X extends a sequence Y when Y is a prefix of X.



Formalizing and Implementing Distributed Ledger Objects 27

Distributed Setting. We consider an asynchronous message-passing dis-
tributed system. There is an unbounded number of clients accessing the dis-
tributed ledger. There is a set S of n servers, that emulate a ledger (c.f., Code 4)
in a distributed manner. Both clients and servers might fail by crashing. How-
ever, no more than f < n of servers might crash6. Processes (clients and servers)
interact by message passing communication over asynchronous reliable channels.

Code 5. External Interface of a Distributed Ledger
Object L Executed by a Process p
1: c ← 0
2: Let L ⊆ S : |L| ≥ f + 1
3: function L.get( )
4: c ← c + 1
5: send request (c, get) to the servers in L
6: wait response (c, getRes, V ) from some i ∈ L
7: return V
8: function L.append(r)
9: c ← c + 1

10: send request (c, append, r) to the servers in L
11: wait response (c, appendRes, res) from some i ∈ L
12: return res

We assume that clients are
aware of the faulty nature of
servers and know (an upper
bound on) the maximum num-
ber of faulty servers f . Hence,
we assume they use a mod-
ified version of the interface
presented in Code 3 to deal
with server unreliability. The
new interface is presented in
Code 5. As can be seen there,
every operation request is sent
to a set L of at least f + 1
servers, to guarantee that at least one correct server receives and processes the
request (if an upper bound on f is not known, then the clients contact all servers).
Moreover, at least one such correct server will send a response which guarantees
the termination of the operations. For formalization purposes, the first response
received for an operation will be considered as the response event of the opera-
tion. In order to differentiate from different responses, all operations (and their
requests and responses) are uniquely numbered with counter c, so duplicated
responses will be identified and ignored (i.e., only the first one will be processed
by the client).

In the remainder of the section we focus on providing the code run by the
servers, i.e., the distributed ledger emulation. The servers will take into account
Code 5, and in particular the fact that clients send the same request to multi-
ple servers. This is important, for instance, to make sure that the same record
r is not included in the sequence of records of the ledger multiple times. As
already mentioned, our algorithms will use as a building block an atomic broad-
cast service. Consequently, our algorithms’ correctness depends on the modeling
assumptions of the specific atomic broadcast implementation used. We now give
the guarantees that our atomic broadcast service need to provide.

Atomic Broadcast Service. The Atomic Broadcast service (aka, total order
broadcast service) [9] has two operations: ABroadcast(m) used by a server to
broadcast a message m to all servers s ∈ S, and ADeliver(m) used by the atomic
broadcast service to deliver a message m to a server. The following properties
are guaranteed (adopted from [9]):
6 The atomic broadcast service used in the algorithms may internally have more
restrictive requirements.
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– Validity : if a correct server broadcasts a message, then it will eventually
deliver it.

– Uniform Agreement : if a server delivers a message, then all correct servers
will eventually deliver that message.

– Uniform Integrity : a message is delivered by each server at most once, and
only if it was previously broadcast.

– Uniform Total Order : the messages are totally ordered; that is, if any server
delivers message m before message m′, then every server that delivers them,
must do it in that order.

Eventual Consistency and Relation with Consensus. We now use the
Atomic Broadcast service to implement distributed ledgers in our set of servers
S guaranteeing different consistency semantics. We start by showing that the
algorithm presented in Code 6 implements an eventually consistent ledger, as
specified in Definition 4.

Code 6 . Eventually Consistent Dis-
tributed Ledger L; Code for Server i ∈ S
1: Init: Si ← ∅
2: receive (c, get) from process p
3: send response (c, getRes, Si) to p

4: receive (c, append, r) from process p
5: ABroadcast(r)
6: send response (c, appendRes, ack) to p

7: upon (ADeliver(r)) do
8: if r /∈ Si then Si ← Si‖r

Code 7. Consensus Algorithm Using an
Eventually Consistent Ledger L
1: function propose (v)
2: L.append(v)
3: Vi ← L.get()
4: while Vi = ∅ do
5: Vi ← L.get()

6: decide the first value in Vi

Lemma 1. The combination of the algorithms presented in Codes 5 and 6 imple-
ments an eventually consistent distributed ledger.

Proof Sketch. The lemma follows from the properties of atomic broadcast.
Considering any complete history HL, a permutation σ that follows the sequen-
tial specification can be constructed by ordering: (i) an append(r) operation
according to the order the atomic broadcast service delivers the first copy of r,
and (ii) a get operation that returns V immediately after the append(r) opera-
tion, such that r is the last record in V . Moreover, by Code 5, when an append(r)
operation is invoked, at least one correct server receives and atomically broad-
casts r. By uniform agreement and uniform total order properties, all the correct
servers receive the first copy of r in the same order, and hence all add r in the
same position in their local sequences. Therefore, eventually all get operations
will return a sequence that will contain r. �

Let us now explore the power of any eventually consistent distributed ledger.
It is known that atomic broadcast is equivalent to consensus in a crash-prone
system like the one considered here [7]. Then, the algorithm presented in Code 6
can be implemented as soon as a consensus object is available. What we show
now is that a distributed ledger that provides the eventual consistency can be
used to solve the consensus problem, defined as follows.
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Consensus Problem: Consider a system with at least one non-faulty process and
in which each process pi proposes a value vi from the set V (calling a propose(vi)
function), and then decides a value oi ∈ V , called the decision. Any decision is
irreversible, and the following conditions are satisfied: (i) Agreement : All decision
values are identical. (ii) Validity: If all calls to the propose function that occur
contain the same value v, then v is the only possible decision value. and (iii)
Termination: In any fair execution every non-faulty process decides a value.

Lemma 2. The algorithm presented in Code 7 solves the consensus problem if
the ledger L guarantees eventual consistency.

Proof Sketch. A correct process p that invokes proposep(v) will complete its
L.appendp(v) operation. By eventual consistency, some server will eventually
deliver v and the L.getp() will return a non-empty sequence. Condition (a) of
Definition 4 guarantees that, given any two sequences returned by L.get() oper-
ations, one is a prefix of the other, hence guaranteeing agreement. Finally, from
the same condition, the sequences returned by L.get() operations can only con-
tain values appended with L.appendp(v), hence guaranteeing validity. �

Combining the above arguments and lemmas we have the following theorem.

Theorem 1. Consensus and eventually consistent distributed ledgers are equiv-
alent in a crash-prone distributed system.

Atomic Consistency. Observe that the eventual consistent implementation
does not guarantee that record r has been added to the ledger before a response
AppendRes is received by the client p issuing the append(r). This may lead to
situations in which a client may complete an append() operation, and a succeed-
ing get() may not contain the appended record. This behavior is also apparent
in Definition 4, that allows any get() operation, that is invoked and completed in
H ′

L, to return a sequence that does not include a record r which was appended
by an append(r) operation that appears in HL.

An atomic distributed ledger avoids this problem and requires that a record
r appended by an append(r) operation, is received by any succeeding get() oper-
ation, even if the two operations were invoked at different processes. Code 8,
describes the algorithm at the servers in order to implement an atomic consis-
tent distributed ledger. The algorithm of each client is depicted from Code 5.
Briefly, when a server receives a get or an append request, it adds the request in
a pending set and atomically broadcasts the request to all other servers. When
an append or get message is delivered, then the server replies to the requesting
process (if it did not reply yet).

Theorem 2. The combination of the algorithms presented in Codes 8 and 5
implements an atomic distributed ledger.
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Code 8 . Atomic Distributed Ledger; Code for
Server i
1: Init: Si ← ∅; pendingi ← ∅; g pendingi ← ∅
2: receive (c, get) from process p
3: ABroadcast(get, p, c)
4: add (p, c) to g pendingi

5: receive (c, append, r) from process p
6: ABroadcast(append, r)
7: add (c, r) to pendingi

8: upon (ADeliver(append, r)) do
9: if r /∈ Si then

10: Si ← Si‖r
11: if ∃(c, r) ∈ pendingi then
12: send response (c, appendRes, ack) to r.p
13: remove (c, r) from pendingi

14: upon (ADeliver(get, p, c)) do
15: if (p, c) ∈ g pendingi then
16: send response (c, getRes, Si) to p
17: remove (p, c) from g pendingi

Proof. To show that atomic
consistency is preserved, we
need to prove that our algo-
rithm satisfies the properties
presented in Definition 2. The
underlying atomic broadcast
defines the order of events
when operations are concur-
rent. It remains to show that
operations that are separate
in time can be ordered with
respect to their real time
ordering. The following prop-
erties capture the necessary
conditions that must be satis-
fied by non-concurrent oper-
ations that appear in a history HL:

A1 if appendp1
(r1) → appendp2

(r2) from processes p1 and p2, then r1 must
appear before r2 in any sequence returned by the ledger
A2 if appendp1

(r1) → getp2
(), then r1 appears in the sequence returned by

getp2
()

A3 if π1 and π2 are two get() operations from p1 and p2, s.t. π1 → π2, that
return sequences S1 and S2 respectively, then S1 must be a prefix of S2

A4 if getp1
() → appendp2

(r2), then p1 returns a sequence S1 that does not
contain r2.

Property, A1 is preserved from the fact that record r1 is atomically broad-
casted and delivered before r2 is broadcasted among the servers. In particu-
lar, let p1 be the process that invokes π1 = appendp1

(r1), and p2 the process
that invokes π2 = appendp2

(r2) (p1 and p2 may be the same process). Since
π1 → π2, then p1 receives a response to the π1 operation, before p2 invokes the
π2 operation. Let server s be the first to respond to p1 for π1. Server s sends
a response only if the procedure ADeliver(append, r1) occurs at s. This means
that the atomic broadcast service delivers (append, r1) to s. Since π1 → π2

then no server received the append request for π2, and thus r2 was not broad-
casted before the ADeliver(append, r1) at s. Hence, by the Uniform Total Order
of the atomic broadcast, every server delivers (append, r1) before delivering
(append, r2). Thus, the ADeliver(append, r2) occurs in any server s′ after the
appearance of ADeliver(append, r1) at s′. Therefore, if s′ is the first server to
reply to p2 for π2, it must be the case that s′ added r1 in his ledger sequence
before adding r2.

In similar manner we can show that property A2 is also satisfied. In par-
ticular let processes p1 and p2 (not necessarily different), invoke operations
π1 = appendp1

(r1) and π2 = getp2
(), s.t. π1 → π2. Since π1 completes before π2

is invoked then there exists some server s in which ADeliver(append, r1) occurs
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before responding to p1. Also, since the get request from p2 is sent, after π1 has
completed, then it follows that is sent after ADeliver(append, r1) occurred in s.
Therefore, (get, p2, c) is broadcasted after ADeliver(append, r1) as well. Hence by
Uniform Total Order atomic broadcast, every server delivers (append, r1) before
delivering (get, p2, c). So if s′ is the first server to reply to p2, it must be the case
that s′ received (append, r1) before receiving (get, p2, c) and hence replies with
an Si to p2 that contains r1.

The proof of property A3 is slightly different. Let π1 = getp1() and
π2 = getp2(), s.t. π1 → π2. Since π1 completes before π2 is invoked then the
(get, p1, c1) must be delivered to at least a server s that responds to p1, before
the invocation of π2, and thus the broadcast of (get, p2, c2). By Uniform Total
Order again, all servers deliver (get, p1, c1) before delivering (get, p2, c2). Let S1

be the sequence sent by s to p1. Notice that S1 contains all the records r such
that (append, r) delivered to s before the delivery of (get, p1, c1) to s. Thus, for
every r in S1, ADeliver(append, r) occurs in s before ADeliver(get, p1, c). Let s′

be the first server that responds for π2. By Uniform Agreement, since s′ has not
crashed before responding to p2, then every r in S1 that was delivered in s, was
also delivered in s′. Also, by Uniform Total Order, it must be the case that all
records in S1 will be delivered to s′ in the same order that have been delivered
to s. Furthermore all the records will be delivered to s′ before the delivery of
(get, p1, c1). Thus, all records are delivered at server s′ before (get, p2, c2) as well,
and hence the sequence S2 sent by s′ to p2 is a suffix of S1.

Finally, if getp1
() → appendp2

(r2) as in property A4, then trivially p1 cannot
return r2, since it has not yet been broadcasted (Uniform Integrity of the atomic
broadcast). �

Sequential Consistency. An atomic distributed ledger also satisfies sequential
consistency. As sequential consistency is weaker than atomic consistency, one
may wonder whether a sequentially consistent ledger can be implemented in a
simpler way.

We propose here an implementation, depicted in Code 9, that avoids the
atomic broadcast of the get requests. Instead, it applies some changes to the
client code to achieve sequential consistency, as presented in Code 10. This imple-
mentation provides both sequential (cf. Definition 3) and eventual consistency
(cf. Definition 4).

Theorem 3. The combination of the algorithms presented in Codes 9 and 10
implements a sequentially consistent distributed ledger.

Proof Sketch. Due to lack of space the detailed proof can be found in [3]. In
brief, a permutation σ (as required in Definition 3) can be constructed by placing
the concurrent operations in an order that satisfies the sequential specification
of the ledger. The ordering of operations at each process is captured by the
following properties:
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S1 if appendp(r1) → appendp(r2) then r1 must appear before r2 in the ledger.
S2 if getp() → appendp(r1), then getp returns a sequence Vp that does not
contain r1
S3 if appendp(r1) → getp(), then getp returns a sequence Vp that contains r1
S4 if π1 and π2 are two getp() operations, such that π1 → π2, and that return
sequences V1 and V2 respectively, then V1 must be a prefix of V2.

We can show that Codes 9 and 10 satisfy the above properties, following
claims similar to the ones we used in the case of an atomic distributed ledger.�

Code 9 . Sequentially Consistent Dis-
tributed Ledger; Code for Server i ∈ S
1: Init: Si ← ∅; pendingi ← ∅; g pendingi ← ∅
2: receive (c, get, �) from process p

3: if |Si| ≥ � then

4: send response (c, getRes, Si) to p

5: else

6: add (c, p, �) to g pendingi

7: receive (c, append, r) from process p

8: ABroadcast(c, r)

9: add (c, r) to pendingi

10: upon (ADeliver(c, r)) do

11: if r /∈ Si then Si ← Si‖r

12: if (c, r) ∈ pendingi then

13: send resp. (c, appendRes, ack, |Si|) to r.p

14: remove (c, r) from pendingi

15: if ∃(c′, p, �) ∈ g pendingi : |Si| ≥ � then

16: send response (c′, getRes, Si) to p

17: remove (c′, p, �) from g pendingi

Code 10. External Interface for Sequen-
tial Consistency Executed by a Process p
1: c ← 0; �last ← 0

2: Let L ⊆ S : |L| ≥ f + 1

3: function L.get( )

4: c ← c + 1

5: send request (c, get, �last) to the servers in L

6: wait response (c, getRes, V ) from some i ∈ L

7: �last ← |V |
8: return V

9: function L.append(r)

10: c ← c + 1

11: send request (c, append, r) to the servers in L

12: wait response (c, appendRes, res, pos) from some

i ∈ L

13: �last ← pos

14: return res

4 Validated Ledgers

Code 11. Validated Ledger VL (centralized)

1: Init: S ← ∅
2: receive (get) from process p
3: send response (getRes, S) to p

4: receive (append, r) from process p
5: if Valid(S‖r) then
6: S ← S‖r
7: send response (appendRes, ack) to p
8: else send response (appendRes, nack) to p

A validated ledger VL is
a ledger in which specific
semantics are imposed on the
contents of the records stored
in the ledger. For instance,
if the records are (bitcoin-
like) financial transactions,
the semantics should, for example, prevent double spending, or apply other trans-
action validation used as part of the Bitcoin protocol [20]. The ledger preserves
the semantics with a validity check in the form of a Boolean function Valid()
that takes as an input a sequence of records S and returns true if and only if
the semantics are preserved. In a validated ledger the result of an appendp(r)
operation may be nack if the validity check fails. Code 11 presents a centralized
implementation of a validated ledger VL.

The sequential specification of a validated ledger must take into account
the possibility that an append returns nack. To this respect, property (2) of
Definition 1 must be revised as follows:
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Definition 5. The sequential specification of a validated ledger VL over the
sequential history HVL is defined as follows. The value of the sequence VL.S is
initially the empty sequence. If at the invocation event of an operation π in HVL
the value of the sequence in ledger VL is VL.S = V , then:

1. if π is a VL.getp() operation, then the response event of π returns V ,
2(a). if π is an VL.appendp(r) operation that returns ack, then
Valid(V ‖r) = true and at the response event of π, the value of the sequence
in ledger VL is VL.S = V ‖r, and
2(b). if π is a VL.appendp(r) operation that returns nack, then
Valid(V ‖r) = false and at the response event of π, the value of the sequence
in ledger VL is VL.S = V .

Based on this revised notion of sequential specification, one can define the
eventual, sequential and atomic consistent validated distributed ledger and
design implementations in a similar manner as in Sect. 3.

It is interesting to observe that a validated ledger VL can be implemented
with a regular ledger L if we are willing to waste some resources and accuracy
(e.g., not rejecting invalid records). In particular, processes can use a ledger L
to store all the records appended, even if they make the validity to be broken.
Then, when the function get() is invoked, the records that make the validity to
be violated are removed, and only the valid records are returned. This algorithm
does not check validity in a π = append(r) operation which returns ack, because
it is not possible to know when π is processed the final position r will take in
the ledger (and hence to check its validity).

5 Conclusions

In this paper we formally define the concept of a distributed ledger object with
and without validation. We have focused on the definition of the basic oper-
ational properties that a distributed ledger must satisfy, and their consistency
semantics, independently of the underlying system characteristics and the failure
model. Finally, we have explored implementations of fault-tolerant distributed
ledger objects with different types of consistency in crash-prone systems aug-
mented with an atomic broadcast service. Comparing the distributed ledger
object and its consistency models with popular existing blockchain implemen-
tations, like Bitcoin or Ethereum, we must note that these do not satisfy even
eventual consistency. Observe that their blockchain may (temporarily) fork, and
hence two clients may see (with an operation analogous to our get) two conflict-
ing sequences, in which neither one is a prefix of the other. This violates the
sequential specification of the ledger. The main issue with these blockchains is
that they use probabilistic consensus, with a recovery mechanism when it fails.

As mentioned, this paper is only an attempt to formally address the many
questions that were posed in the introduction. In that sense we have only
scratched the surface. There is a large list of pending issues that can be explored.
For instance, we believe that the implementations we have can be adapted to
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deal with Byzantine failures if the appropriate atomic broadcast service is used.
However, dealing with Byzantine failures will require to use cryptographic tools.
Cryptography was not needed in the implementations presented in this paper
because we assumed benign crash failures. Another extension worth exploring
is how to deal with highly dynamic sets of possibly anonymous servers in order
to implement distributed ledgers, to get closer to the Bitcoin-like ecosystem. In
a more ambitious but possibly related tone, we would like to fully explore the
properties of validated ledgers and their relation with cryptocurrencies.
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Abstract. The success of Bitcoin relies on the perception of a fair
underlying peer-to-peer protocol: blockchain. Fairness here means that
the reward (in bitcoins) given to any participant that helps maintain the
consistency of the protocol by mining, is proportional to the computa-
tional power devoted by that participant to the mining task. Without
such perception of fairness, honest miners might be disincentivized to
maintain the protocol, leaving the space for dishonest miners to reach a
majority and jeopardize the consistency of the entire system.

We prove that blockchain is unfair, even in a distributed system of
only two honest miners. In a realistic setting where message delivery is
not instantaneous, the ratio between the (expected) number of blocks
committed by two miners is actually lower bounded by a term expo-
nential in the product of the message delay and the difference between
the two miners’ hashrates. To obtain our result, we model the growth
of blockchain, which may be of independent interest. We also apply our
result to explain recent empirical observations and vulnerabilities.

1 Introduction

At the heart of the celebrated Bitcoin currency and payment system [1–3] lies
a distributed protocol called blockchain, now considered of independent interest
[4]. Essentially, this protocol maintains a distributed data structure, also called
the blockchain, made of a series of transaction blocks, and updated by specific
nodes called miners. To update a blockchain, a miner M devotes computational
resources into a task called “proof-of-work” [5] in order to mine a block. Each
block mined by M includes an extra coinbase transaction to reward M’s com-
putational effort with bitcoins [6]. The computational power of any miner is
characterized by a hashrate, λ, meaning that, on average, it takes 1

λ units of
time to mine a block. Once a block is mined, the block is propagated to the
other miners. Roughly speaking, the block is said to be committed when it is
delivered to all miners.

The success of Bitcoin relies on the perception of fairness [7]: in short, the
reward of a given honest miner M is proportional to M’s hashrate [8,9]. Fairness
in this sense is crucial, for otherwise (i.e., if the reward of an honest miner
were lower than its fair proportion), honest miners could be disincentivized and
stop maintaining the blockchain, leaving the space for dishonest miners (the
proportion of which could then grow to a majority) to jeopardize the correct
functioning of the entire system [10].
c© Springer Nature Switzerland AG 2019
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We prove in this paper that Bitcoin blockchain is actually unfair. The funda-
mental reason is simple: blockchain is a distributed protocol, meaning that mes-
sage delivery is not instantaneous. We show that with non-nil message delays,
in a distributed system of two honest miners, M1 and M2 with hashrates λ1

and λ2, respectively, and message delay u between them, if λ1 > λ2, then M1

can commit many more blocks than M2 in expectation. The ratio between the
expected number of blocks committed by M1 and M2 is lower bounded by
eλ1uλ1
eλ2uλ2

, which is exponential in the product of the message delay and the differ-
ence between the hashrates of M1 and M2.

To establish our lower bound, we go beyond most previous theoretical analy-
ses of blockchain that take communication delays into account, typically assum-
ing a delay rate (the percentage of miners receiving a certain message) [11], or
dividing time into discrete steps (which may be viewed as an approximation
of continuous time) [8,12]. We rather model time in a continuous way to relate
hashrates to communication delays, and model exactly how the blockchain grows
in time (which may be of independent interest). We construct our proof of the
lower bound in two steps: we first establish (1) the unfairness per se, and then
(2) the exponential advantage. The key to our proof is the probability distribu-
tion of when the blockchain grows so that the blockchain includes k blocks for
any k ∈ Z

+. We show that the miner with a higher hashrate can grow its chain
earlier for any k with a higher probability, implying unfairness, as the first step.
In the second step, we extract the exponential term from the fact that no block
is mined during some message delay u.

Our result on unfairness of blockchain among honest miners has several appli-
cations. For instance, our result explains disproportionate rewards reported via
empirical experiments on blockchain [13,14]. It also implies a trade-off between
the speed to mine a block and the fairness of committed blocks in blockchain
as well as its variants (such as Bitcoin-NG [13], and GHOST [15]1): namely, the
legitimate temptation to increase the throughput of blockchain by reducing its
mining time can however cause even more unfairness. Our result can also help
extend previous results on the benefits of selfish miners (which are dishonest,
deviating from the mining algorithm to maximize their rewards). Indeed, Eyal
and Sirer [11] (and follow-up work [9,16]) showed that a selfish miner M’s reward
can be more than its fair share if the proportion α of M’s hashrate, among all
hashrates, passes the threshold th = 1

3 (which is a sufficient condition). Their
result assumed, however, no message delay. In a setting with message delays,
we show a lower bound L such that the threshold th > L, where L is a func-
tion of u, λ1 and λ2. (For reasonable message delays measured for the Bitcoin
blockchain implementation [17], L > 1

3 .) Another application of our result is
the unfairness of blockchain in the context of two clusters of miners with some
negligible message delay within each cluster and a larger message delay between
the two clusters. In this case, we show that even between two miners with the
same hashrate, blockchain can favor a miner M with an advantage that is expo-

1 In the case of two honest miners, GHOST is equivalent to Bitcoin blockchain [15].
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nential in the product of M’s hashrate and the message delay, if M is closer to
the cluster of miners with higher hashrates.

The rest of the paper is organized as follows. Section 2 recalls the basic
blockchain mining scheme. Section 3 presents our main result. Sections 4 and
5 present applications of our result. Section 6 discusses related work. For space
limitation, we defer proofs to our technical report [18].

2 Model

2.1 Miners

We establish our main result in a system of 2 processes, called miners, denoted
M1 and M2. (A miner is sometimes also denoted M or M∗.) Both follow the
algorithm assigned, and none crashes. The two miners interact by exchanging
messages. Communication channels do not modify, inject, duplicate or lose mes-
sages. Between two miners, the delay on message transmission is denoted u.

Algorithm 1. Mining algorithm
1: Upon an update of C: (1) fetch a block B; (2) create a special string tx that

includes an identifier of M; (3) run task SolvePuzzle(C, B, tx) (and stop previous
SolvePuzzle task if any).

2: Task SolvePuzzle(C, B, tx):
- Increment a counter N until N satisfies H(hC ||B||tx||N ) < d.
- Assign CB := hC ||B||tx||N and C := C, CB.
- Send C to every other miner.

3: Upon receiving an alternative chain C∗: if C∗ is longer than C, then assign C := C∗,
and send C to every other miner.

We consider the classical mining scheme of [6,19] in which a (block) chain
is a series of blocks starting from a genesis block G (the initial block in any
chain). Let C = CB0(= G), CB1, CB2, . . . , CBl, l ≥ 1 be any chain of length
l. As in Garay et al.’s analysis of the Bitcoin backbone algorithm [8], as well
as Eyal and Sirer’s analysis of selfish mining [11], we define the length of C
as the total number l of blocks. For each j ∈ {1, 2, . . . , l}, CBj has reference
hC,j−1 = H(CBj−1) to CBj−1, where H is a hash function agreed by all miners.
The hash hC,l of the last block is sometimes called the hash of C, and denoted
hC . Every miner stores a chain as a local variable. Two miners might have two
different chains. For each miner M, a chain different from its local one is called
an alternative chain. The mining scheme maintains and updates M’s local chain.
Algorithm 1 depicts the basic mining scheme2 Before Algorithm 1 starts, every
2 Algorithm 1 is a simplified variant of the algorithm of [6,19]. After a chain is updated,

while the original mining algorithm exchanges the data and inventories of newly
created blocks [20] for performance reasons, Algorithm 1 sends the whole new chain.
The two algorithms are equivalent for the purpose of establishing our results.
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miner assigns C to a chain of length 0 containing only G, and all miners agree
on a difficulty level d for finding a preimage of H (which we explain later). In
addition, we assume that M has access to an infinite number of blocks so that
at any point in time, M has a block to append.

If task SolvePuzzle in Algorithm 1 returns a chain C of length l at M, then
M ignores any alternative chain C∗ of length l received later. If M extends M’s
chain C to l, then we mean that C is updated such that its length becomes l. If
M updates C after the return of task SolvePuzzle, we say that M creates a
new block on Cold, the old chain of length l − 1; we also index this new block by
l and say that M creates the lth block. If M updates C, due to the reception
of an alternative chain C∗ from some miner M∗, we say that M adopts M∗’s
chain C∗. When M creates a new block CB, CB includes a string tx (denoting
coinbase transaction) that identifies M, and a reference hC to M’s chain C; thus
each block is unique. We say that CB is committed when every miner’s chain
includes CB; and M commits CB if M has created CB and CB is committed.

2.2 Mining as a Poisson Process

Task SolvePuzzle(C, ∗, ∗) is the proof-of-work used in the classic Bitcoin imple-
mentation [5]. Performing such task is called mining (on chain C). We model
mining as a Poisson process.3 For any miner Mi, for any string s, the time
to find N such that H(s||N ) < d can be modelled as a continuous random
variable Xi,s. Let Xi be the random variable for the common distribution of
Xi,s,∀s which has an exponential distribution. The probability density function
is fi(x) = λie

−λix, x ≥ 0, where parameter λi is called the hashrate of Mi. We
assume that compared with the time spent on mining and communication, other
tasks take negligible time. Rate λ depends on the difficulty level d. In the classic
Bitcoin implementation [6,19], d is selected such that 1

λ = 600 s.

3 Unfairness of Blockchain

We establish here our main result, Theorem 1. Consider any a ∈ Z
+, let Ci,a be

Mi’s chain when Mi extends Mi’s chain to length a for i ∈ {1, 2}. Denoted by
Ni,a, the random variable for the number of blocks committed by Mi in C1,a and
C2,a, i.e., the number of blocks created by Mi which both C1,a and C2,a include.

Theorem 1 (Ratio of committed blocks). If λ1 > λ2, then

E(N1,a)
E(N2,a)

≥ eλ1u

eλ2u
· λ1

λ2
>

λ1

λ2
.

3 Decker and Wattenhofer’s experiment [17] on blockchain supported such model,
which was also adopted in the analysis of selfish mining [9,11].
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Proof Outline of Theorem 1. To prove Theorem 1, by the linearity of expectation,
we examine the expectation of the event that Mi creates CB as Mi’s kth block
for k ∈ Z

+ (and later commits CB) for each i ∈ {1, 2}, the probability of which
depends on when the two miners’ chains grow to k − 1. To this end, we show
a fundamental unfairness property on the growth of the blockchain (Sect. 3.2).
We then show unfairness on the success probability in committing CB as the
kth block and hence unfairness on the expected number of committed blocks
(Sect. 3.3). To formalize the growth of the blockchain and the success probability,
we first introduce some definitions and terminologies in Sect. 3.1 below.

3.1 Definitions and Terminologies

We model here with random variables the growth (in length) of the blockchain
as well as the events of success of both miners.

Definition 1 (Growth in length of the blockchain). For each miner
Mi, i ∈ {1, 2}, let {τk,i|k = 1, 2, . . .} be the sequence of time instants such that
at τk,i, Mi extends Mi’s chain to length k. W.l.o.g., we define τ0,i = 0 (i.e., the
two miners start at the same time 0).

As defined in Definition 1, each of the two miners maintains a local chain
which grows in length by one. When a miner has a chain of length k − 1, we say
that the miner starts its kth round. For Mi, the kth round is thus [τk−1,i, τk,i].
At τk−1,i, Mi starts mining a new block. We denote by Xk−1,i the random
variable of the time which Mi spends on mining when Mi is alone (without
a second miner sending an alternative chain). Two miners can have different
chains. Given length a, it is unknown whether two miners have the same chain
or not. However, if they have the same kth block CB in their chains respectively
when a ≥ k, the kth block remains there. We define this event and its probability
pk,i,a in Definition 2. A prerequisite of pk,i,a > 0 is that Mi completes its mining
at the kth round (even with the other miner), which we denote by Wk ∈ {0, i}.
When Wk = 0, both miners complete their mining at the kth round, as defined
in Definition 3, and can commit one of the two blocks mined later, illustrated in
Fig. 1. Notations (except for Wk) are summarized in Table 1.

Table 1. Summary of notations

Mi A miner with hashrate λi

Ci,a Mi’s local chain when it grows to length a

τk,i When Mi’s local chain grows to length k

Xk,i The time spent on mining by Mi if Mi mines alone

Ni,a The number of blocks committed by Mi in the blockchain of length a

pk,i,a The probability of Mi committing the kth block in the blockchain of length a
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Definition 2 (Success of the kth block). For any k ∈ Z
+, a ≥ k, we define

pk,i,a, the probability of the event that (1) Mi creates CB at the kth round, and
(2) both C1,a and C2,a have CB.

Definition 3 (Creation of the kth block). For each miner Mi, i ∈ {1, 2},
let Wk = i if M3−i adopts the alternative chain (in M3−i’s perspective) from
Mi at the end of the kth round, and Wk = 0 when both miners create their kth
blocks respectively and fork the blockchain.

3.2 Unfairness on the Growth of the Blockchain

We first determine the probability distribution of when the kth round ends (i.e.,
the blockchain grows to length k) in Lemma 1 and then present a property of
this probability distribution in Lemma 2.

It is important to know when the blockchain grows to a certain length k
at the two miners, since the difference (in time) at the two miners can give
one of them a head start. The calculation of probability distribution is actually
straightforward. For each k = 1, 2, . . ., consider τk = (τk,1, τk,2). Suppose that
the probability distribution of τk−1 is known. As illustrated in Fig. 1, there are
three possibilities of how the blockchain grows to k: (a) that the blockchain forks;
(b) that M1 mines a block and M2 receives this block before mining one; (c)
that M2 mines a block and M1 receives this block before mining one. Since the
probability distribution of Xk−1,1,Xk−1,2 is known, the probability distribution
of δk = τk+1 − τk can be calculated as well as τk+1. The base case where k = 0
is simpler: τ0 = (0, 0) is assumed and thus τ1 = δ0. As a result, the probability
distribution of τk includes a recursive equation Dk, which can be evaluated to a
function of s, t alone if λ1, λ2, u are specified. The expression Pr(τk = (s, t)) in
Lemma 1 represents the following probability: Pr(s ≤ τk,1 ≤ s + ds, t ≤ τk,2 ≤
t + dt) where ds and dt are the infinitesimals.4 The full proofs of Lemmas 1 and
2 follow from the calculation above and are deferred to our technical report [18].

(a) Wk = 0 (b) Wk = 1 (c) Wk = 2

Fig. 1. Three possibilities of round k

4 The probability distribution of τk cannot be expressed by a cumulative distribution
function because τk − τk−1 is neither continuous nor discrete.
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Lemma 1 (The growth of the blockchain). For s > 0, t > 0, let D0(s, t) =
1 and for each k = 1, 2, . . ., let

Dk(s, t) = λ1λ2

∫
|y−z|<u,
0<y<s,
0<z<t

Dk−1(y, z)dydz + λ1

∫
y−z=−u,
0<y<s,
0<z<t

Dk−1(y, z)dy

+ λ2

∫
y−z=u,
0<y<s,
0<z<t

Dk−1(y, z)dz.

Then the probability of τk is

Pr(τk = (s, t)) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 |s − t| > u;
λ1λ2e

−λ1s−λ2tDk−1(s, t)dsdt |s − t| < u;
λ1e

−λ1s−λ2tDk−1(s, t)ds s − t = −u;
λ2e

−λ1s−λ2tDk−1(s, t)dt s − t = u.

Lemma 2. For s > 0, t > 0, |s − t| ≤ u and u > 0, if λ1 > λ2 and s > t, s > u,
then Dk(s, t) < Dk(t, s),∀k ∈ Z

+; if u > s > t, then Dk(s, t) = Dk(t, s),∀k ∈
Z
+.

Lemma 2 implies a property of τk: for any length k, the probability that
the miner with a higher hashrate has a chain of length k earlier than the other
is higher, which is the intuition behind the proof of inequality in Theorem 1.
Lemma 1 can be easily extended to any number of miners. A result similar to
Lemma 2 follows: for any number of miners, between any two miners, for any
length k, the probability that the miner with a higher computational power has
a chain of length k earlier than the other is higher.

3.3 Unfairness on the Success of the kth Block

We prove Theorem 1 by showing a lower bound on the ratio between the success
probability pk,i,a of Mi in committing Mi’s kth block, for i ∈ {1, 2}.

Since Wk is the random variable that captures whether, at the end of the
kth round, some miner adopts a chain from the other and if so, whose chain
is adopted, then the event defined for pk,i,a is equivalent to the union of the
following two events: (S1) Wk = i, and (S2) Wk = 0, . . . ,Wj−1 = 0,Wj = i. We
thus have, for each i ∈ {1, 2},

pk,i,a = Pr(Wk = i) +
a∑

j=k+1

Pr(Wk = 0, . . . ,Wj−1 = 0,Wj = i).

In Lemma 3, we determine a lower bound for each of the two possibilities (S1)
and (S2) by (1) determining Pr(Wk = i) and Pr(Wk = 0, . . . ,Wj−1 = 0,Wj = i)
based on Lemma 1 and (2) applying the inequality in Lemma 2. The intuition
behind the exponential term in Lemma 3 is that (1) at round k when a block is
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committed, there is a gap of u (the message delay) between τk,1 and τk,2 (i.e.,
when the two miners end round k respectively) and (2) by the Poisson process,
the probability of a block created during the gap is exponential in u. The full
proof of Lemma 3 is deferred to our technical report [18].

Lemma 3. For any j, k, a ∈ Z
+ and a ≥ k + 1, if λ1 > λ2, then

Pr(Wk = 1)
Pr(Wk = 2)

>
eλ1u

eλ2u
· λ1

λ2
, ∀k ≥ 2;

Pr(Wk = 1)
Pr(Wk = 2)

=
eλ1u

eλ2u
· λ1

λ2
, k = 1; (1)

Pr(Wk = 0, . . . , Wj−1 = 0,Wj = 1)
Pr(Wk = 0, . . . , Wj−1 = 0,Wj = 2)

≥ eλ1u

eλ2u
· λ1

λ2
,∀j, k + 1 ≤ j ≤ a. (2)

The proof of Theorem 1 follows Lemma 3. First, E(Ni,a) =
∑a

k=1 pk,i,a. Then
by Lemma 3, ∀k ∈ Z

+, a ≥ k, pk,1,a

pk,2,a
is lower bounded by eλ1u

eλ2u · λ1
λ2

; therefore,
E(N1,a)
E(N2,a)

is lower bounded by the same. We remark that the lower bound is sup-
ported by the inequality between Dk(s, t) and Dk(t, s) in Lemma 2, implying
that the lower bound eλ1u

eλ2u · λ1
λ2

is not yet tight.

Trade-Off Between the Mining Speed and Fairness. Theorem 1 highlights the
fragility of tentative implementations that would reduce the time spent on mining
(today set to 600 s on average) to improve the throughput of transactions [21,22].
Recall from Sect. 2 that this would reduce the difficulty level, which would in
turn increase every miner’s hashrate proportionally. As a result, fairness could
be further undermined: the proportional increase of λ1 and λ2 results in a larger
gap in the exponential factor eλ1u

eλ2u , which highlights a trade-off between the speed
to mine a block and the fairness of blockchain.

Extension to Any Number of Miners. Similar to Lemmas 1 and 2, Eq. 1 in Lemma
3 can be easily extended to any number of miners. In other words, among any
number N of miners, if we only compare the probability of a miner committing
its block immediately between two out of N miners, then the ratio between the
two probabilities is also greater than the ratio between hashrates and at least
exponential in delay u. Yet it is unclear whether Eq. 2 can be extended to any
number of miners, which can be a future direction of our work.

4 Application to Selfish Mining

We show here how our result can be used to generalize one of the main results in
selfish mining [11]. Selfish mining is an attack for a minority of miners to commit
more blocks in expectation than its fair share. In a model of two miners, one
selfish and one honest, with message delay u = 0, Eyal and Sirer [11] showed
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that, it is sufficient for α > 1
3 � th to launch selfish mining.5 We generalize

the threshold th to a realistic setting with u > 0.6 We first recall below the
selfish mining algorithm and some of its results from [11]. For the classic Bitcoin
blockchain implementation, we show that blockchain is not as vulnerable as
previously believed against selfish mining.

4.1 Selfish Mining

We recall the main idea underlying the selfish mining algorithm below, assuming
a selfish miner M2 and an honest miner M1. (More details can be found in [11].)
When both M1 and M2 mine on chain C and M2 succeeds in creating a block
CB on C, M2 continues to mine on Cmi = C, CB (instead of sending Cmi to M1

as in Algorithm 1). Then M2 maintains two chains Cmi and Cma locally. The
latter is initialized to C. Miner M2 updates Cmi when it creates a new block on
Cmi; M2 updates Cma when M1 sends an alternative chain. The goal of M2 is
to commit all blocks created by M2 on Cmi (those blocks of Cmi after prefix C).
There are two scenarios where M2 commits by sending Cmi to M1:

1. After an update of Cma, Cmi and Cma have the same length but differ at the
last block (event E1), and M2 creates a new block on Cmi;

2. After an update of Cma, Cmi has one more block than Cma (event E2).

The state machine of selfish mining is illustrated in Fig. 2, where k, k ≥ 0, k ∈
Z in each state represents that Cmi is k-block longer than Cma at M2 and 0′ is
the resulting state of commit in E2. Then N2 and N1, the expected numbers of
blocks which M2 and M1 commit respectively, can be calculated from the state
machine in terms of α. Let R0 = N2/(N1 +N2). The threshold th is the solution
α∗ to R0(α) = α.

Fig. 2. State machine of selfish mining without message delay

5 Eyal and Sirer [11] showed a lower bound L (on α) as a function of parameter γ
which represents the percentage of miners in the honest majority M1 that adopt
the selfish minority M2’s chain, and did not consider exact message delay u. The
sufficient condition (i.e., an upper bound on L) in [11] is obtained when γ = 0, which
implies u = 0.

6 If we consider γ and u as two parameters of the lower bound, then when u > 0, for
all γ, the case where γ = 0 requires the highest computational power th from the
selfish minority. As a result, we consider here parameter γ = 0 for u > 0, and α > th
is still a sufficient condition.
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4.2 Upper Bound on the Number of Committed Blocks

Let R be the proportion of the expected number of blocks committed by M2. We
show that R is upper bounded in Theorem 2 in a realistic setting where u > 0.
The key is that due to non-zero message delays, when Ej , j ∈ {1, 2} occurs, M2

only tries to commit by sending Cmi. There are several possibilities following
M2’s sending Cmi: M2 commits and then M2 has additional 2u units of time
as a head start, or M2 fails. The state machine of selfish mining thus changes.
In Fig. 3, N2u represents how many blocks M2 can find during 2u, ρ1 and ρ2
represent upper bounds on the probability of M2 committing Cmi. The full proof
of Theorem 2 is deferred to our technical report [18] for space limitation.

Fig. 3. State machine of selfish mining with message delay (k ∈ Z
+)

Theorem 2. Let M1 and M2 be two miners with hashrates λ1 and λ2 respec-
tively. Let

U =
2P1ρ1(1 − α) + 2P2ρ2(1 − α) + Pk>2ρ2(1 − α)

2P1(1 − α) + 2P2(1 − α) + P0(1 − α) + Pk>2(1 − α) + P2(1 − ρ2)(1 − α)

where ρ1 = αe−2λ1u + α(1 − e−2λ1u)r2, ρ2 = e−2λ1u + (1 − e−2λ1u)[α + (1 −
α)(1 − e−2λ2u)r2] and r2 = 1

r+1 , r = eλ1u

eλ2u · λ1
λ2

and P0′ and Pk, k ≥ 0, k ∈ Z are
the probabilities of each state in the state machine of Fig. 3.

If λ1 > λ2 and U > α, then R ≤ U .

4.3 Lower Bound on the Threshold

We are now ready to find a lower bound on the threshold assuming message
delay u > 0. Recall that the threshold should be the solution to R(α) = α.
According to Theorem 2, since the relative number of blocks committed by the
selfish miner is upper bounded by U , the solution L to U(α) = α is a lower
bound on the threshold.

Assuming λ = 1
600 , and u = 1, 10, 20, 100 (where the units of time are sec-

onds), which are taken from the classic Bitcoin implementation [6,17,19], we
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Table 2. Lower bound on the threshold

u 1 10 20 100

L 0.334 0.339 0.343 0.371

U(L) 0.33418 0.33999 0.34361 0.37087

show the numeric calculation of L in Table 2, which is greater than 1
3 . In addi-

tion, for small u > 0 such that Pr[N2u = k],∀k ∈ Z
+ is negligible, L > 1

3 is
always true in theory. In either way, we obtain that L > 1

3 = th, suggesting that
with reasonable message delay u > 0, blockchain is not as unfair as previously
believed when some dishonest miner performs selfish mining.

5 Application to Clusters of Miners

We consider in our main result (Theorem 1) two miners with message delay u.
We now consider a model of m > 2 miners that can be divided into two sets S1

and S2 such that (1) within S1 or S2, there is no message delay, and (2) between
every miner in S1 and every miner in S2, there is message delay u. Corollary
1 below shows that in a system of more than two miners, between two miners
with the same hashrate, one miner can still have an exponential advantage over
the other as long as the former one is very close (such that the message delay is
0) to some other miner with a high hashrate.

Corollary 1 (Lower bound with more than two miners). Let M1 ∈ S1

and M2 ∈ S2 be any two miners with the same hashrate λ0. Assume message
delay u between S1 and S2. Suppose that the sum of all miners’ hashrates in
S1 is m1λ0 and that of S2 is m2λ0. Recall that for i ∈ {1, 2}, Ni,a denotes the
number of blocks committed by Mi before the end of round a. Assuming M1 and
M2 start with the same chain at the same time, if m1 > m2, then

E(N1,a)
E(N2,a)

≥ em1λ0u

em2λ0u
> 1.

6 Related Work

6.1 Theoretical Analyses of Blockchain

Satoshi Nakamoto [19] was credited for the proposal of Bitcoin and its underlying
distributed protocol, blockchain. With the popularity of Bitcoin, a lot of work
has been devoted to formalizing blockchain and verifying its claimed properties
[8,12,23,24]. We discuss below some approaches, and contrast our main result
with the properties obtained from previous theoretical analyses.

Garay et al. [8] proposed the q-bounded synchronous setting to model block-
chain. Given that the mining algorithm increments a counter to find the preimage
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of some hash function, this q-bounded synchronous setting assumes that, in each
round, any miner can increment at most q times the counter [8].7 Pass et al. [12]
studied blockchain in an asynchronous network where message delays can be
arbitrary. Both Garay et al. [8], as well as Pass et al. [12] verified the chain
quality property, in their models respectively, considering dishonest miners. The
(μ, �)-chain quality property identifies an upper bound on the proportion of
dishonest miners’ committed blocks among any � consecutive blocks for some �
[8,12]. This property differs from our notion of fairness, in that ours considers
the proportion of the expected number of committed blocks. (Later Pass and Shi
[24] strengthened chain quality property as fairness and used the term, eventual
fairness, for our notion of fairness.) Pass et al. [8], as well as Garay et al. [12],
derived chain quality property with μ higher than the proportion of dishonest
miners’ hashrates, which thus does not imply the (un)fairness of blockchain (as
considered in this paper). Kosba et al. [23] proposed a cryptographic model
of blockchain, assuming ideal functionality; i.e., they assumed that blockchain
satisfies certain idealized properties, which do not fit our analysis here.

6.2 Unfairness of Blockchain

Lewenberg et al. [14], as well as Eyal et al. [13], simulated blockchain (among
honest miners), and observed indeed that some miner’s reward can be lower
than its fair share; yet neither work provided a theoretical explanation of such
unfairness. Both presented an exponentially descending curve for the proportion
of the victim’s committed blocks with increasing speed to mine a block [13,14],
which our Theorem 1 explains. To mitigate the fairness issue, Lewenberg et al.
[14] and Eyal et al. [13] proposed alternatives. However, both alternatives rely on
blockchain and thus still suffer from the unfairness we highlight in this paper.8

Lewenberg et al. [25] presented a formula on the proportion of one miner’s com-
mitted blocks between two miners and omitted the proof. To compare with, we
model the growth of blockchain, which can be extended to any number of miners
and may be of independent interest, and prove our result based on the model of
growth, independently from [25].

Eyal and Sirer [11] proposed a very interesting attack, called selfish mining,
for a minority of miners to commit more blocks in expectation than its fair share.
(Sapirshtein et al. [9], as well as Gervais et al. [16] and Nayak et al. [26], optimized
selfish mining.) Such unfairness resulting from selfish (dishonest) miners does not
imply our result. Assuming no message delay, Eyal and Sirer [11] determined a
threshold th on the proportion α of the minority’s hashrate for selfish mining,
7 This setting neglects the variable relation between mining and time, e.g., when a

message is delayed, a miner may have more time (more increments) to mine a block.
8 Lewenberg et al. [14] proposed inclusive blockchain as an alternative, which stores all

possible blockchains in a directed acyclic graph, and then still observed dispropor-
tionate rewards among honest miners. Eyal et al. [13] proposed Bitcoin-NG, where a
leader (a special miner that is entitled to include transaction blocks) is elected based
on blockchain (and its companion mining algorithm); the leader election could still
suffer from the unfairness of blockchain as shown in this paper.
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while Sapirshtein et al. [9] established a lower threshold by optimizing selfish
mining for each value of α. As an application of our main result, we extend
Eyal and Sirer’s threshold in a model with message delays. In Sect. 4, we show
that the classic Bitcoin blockchain implementation can tolerate selfish mining
more than previously believed: under reasonable message delays, a threshold for
selfish mining is greater than th. Sapirshtein et al. [9] additionally showed that,
assuming message delays, any miner can commit more blocks by being dishonest,
but did not study the effect of message delays on selfish mining. Unlike previous
work, Gervais et al. [16] modelled selfish mining with Markov Decision Processes
parameterized by the stale block rate (which intuitively captures message delays
as well as hashrates) yet did not provide a threshold. Nayak et al. [26] composed
network-level attacks (eclipse attacks) with generalized selfish mining, which
however focused on isolating miners instead of concrete message delays.

Heilman et al. [27] presented eclipse attacks on Bitcoin, which enforce some
miners to connect only to an attacker (which may control multiple miners). As
these honest miners are fed with selected transactions and blocks, a dishonest
miner’s reward can be higher than its fair proportion [27]. Eclipse attacks can
also increase message delays [17,27], and can then transform Theorem 1 into an
attack against the miner with a low hashrate.

In addition, to address unfairness resulting from dishonest miners, Pass and
Shi [24] proposed fruitchain, which mines another data structure called fruits, as
well as blocks. They proved that the proportion of dishonest miners’ committed
fruits is upper bounded by their proportional hashrate and in this sense, is fair
[24]. Since fruitchain takes a different approach from the blockchain considered
in this paper, our result and theirs are incomparable.

6.3 Message Delays in Blockchain

Our assumptions on message delays (level of seconds in Sect. 4) as well as our
model of mining (as a Poisson process throughout the paper) have already been
discussed in the literature.

Our assumptions on message delays are justified by the study of Decker and
Wattenhofer [17], as well as Croman et al. [21], on block propagation delays in
Bitcoin network. Decker and Wattenhofer [17] showed that in 2013, the median
time for a node (not necessarily a miner) to receive a block is 6.5 s, whilst the
mean is 12.6 s [17]. Croman et al. [21] repeated the measurement of block propa-
gation in 2014 and 2015, and found a median time of 8.7 s. Our model of mining
is justified by Decker and Wattenhofer [17]’s measurement on the probability of
the time to create a block in the Bitcoin network. The measured distribution
fits the exponential distribution [17], which justifies the mining Poisson process
widely used in this paper and in the literature [2,9,11].

Assuming message delays, Natoli and Gramoli [28] observed a blockchain
anomaly, which can be considered as an extreme case of our Theorem 1. The
classic Bitcoin implementation stipulates a value k = 6 such that, if an hon-
est miner M’s chain has at least k blocks after a certain block CB, then M
considers CB confirmed. Natoli and Gramoli [28] exhibited an attack that only
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delays messages (arbitrarily) in a system of two miners, against any k: as long
as the attacker’s hashrate is higher than M, for any k, a confirmed block can
be later removed from M’s chain. Theorem 1 explains such anomaly: with the
message delay approaching infinity, an attacker commits almost all blocks with
a high probability, while M commits (or confirms) nearly none. In this sense,
our unfairness result can be viewed as a generalization of the observation of [28].

7 Concluding Remarks

We show that blockchain is unfair by proving a lower bound on the expected
number of committed blocks in a distributed system of two honest miners. Pos-
sible future work includes quantifying the unfairness in a distributed system of
more than two honest miners, which as suggested by Lemmas 1 and 2, may also
be unfair.
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16. Gervais, A., Karame, G.O., Wüst, K., Glykantzis, V., Ritzdorf, H., Capkun, S.:
On the security and performance of proof of work blockchains. In: CCS 2016, pp.
3-16. ACM, New York (2016)

17. Decker, C., Wattenhofer, R.: Information propagation in the bitcoin network. In:
IEEE P2P2013, pp. 1–10 (2013)

18. Guerraoui, R., Wang, J.: On the unfairness of blockchain. Ecole Polytechnique
Federale de Lausanne, Switzerland, Technical report (2018). https://infoscience.
ep.ch/record/252950/

19. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system. (2008). https://
bitcoin.org/bitcoin.pdf

20. Bitcoin community: “Block chain download”, January 2016. https://en.bitcoin.it/
wiki/Block chain download

21. Croman, K., et al.: On scaling decentralized blockchains. In: Clark, J., Meiklejohn,
S., Ryan, P.Y.A., Wallach, D., Brenner, M., Rohloff, K. (eds.) FC 2016. LNCS,
vol. 9604, pp. 106–125. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-53357-4 8
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Abstract. The notion of weak failures, which should be viewed as frac-
tions of traditional failures, is introduced and studied. It is known that
there is no consensus algorithm using registers that can tolerate even a
single crash failure. Is there a consensus algorithm using registers that
can tolerate a “fraction” of a crash failure, i.e., a weak failure? It is
known that there is no k-set consensus algorithm for n > k processes
using registers that can tolerate k crash failures. How many weak failures
can a k-set consensus algorithm which uses registers tolerate? Answers
to these questions follow from our general possibility and impossibility
results regarding the ability to tolerate weak failures.

Keywords: Weak failures · Shared memory · Consensus
k-set consensus · Contention

1 Introduction

Fractions were studied by Egyptians mathematicians around 1600 B.C. However,
fractions, as we use them today, didn’t exist in Europe until the 17th century. It
seems natural that we consider fractions also in the context of fault tolerance.
Below we define, motivate and explore the new notion of weak failures. Weak
failures should be viewed as fractions of traditional failures.

Tolerating traditional failures is always defined with respect to all possible
executions of a given system. A system is said to tolerate t failures w.r.t. some
property φ, if in all possible executions of the system in which at most t processes
fails, φ is satisfied. When tolerating weak failures, also called fractional failures,
it is only required that in some executions, and not necessarily in all executions,
φ is satisfied. There are several ways for identifying the subset of executions in
which φ should be satisfied. Below, we provide two possible definitions of weak
failures.

1.1 Defining Weak Failures

A process is participating in an algorithm if it has executed at least one statement
of that algorithm. The point contention of an algorithm at a given time is the
maximal number of (correct and faulty) processes simultaneously participating in
the algorithm. The point contention is bounded by the total number of processes.
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1. An m-failure of type 1 is a failure of a process that (1) after it has failed the
process executes no more steps, and (2) the failure may occur only while the
point contention is at most m. That is, such weak failures are assumed not
to occur once a certain predefined threshold on the level of point contention
is reached.

2. An m-failure type 2 is a failure of a process that (1) after it has failed the
process executes no more steps, and (2) the failure may occur only while the
point contention is at least m. That is, such weak failures are assumed to
happen once a certain predefined threshold on the level of point contention
is reached.

When designing an algorithm for n processes, n-failures of type 1 and 1-failures
of type 2 are the traditional crash failures. Thus, m-failures of type 1 where
m < n, and m-failures of type 2 where m > 1, can be referred to as weak crash
failures. Other types of weak failures, weak Byzantine failures, for example, can
be defined similarly (but are not studied in this paper).

Considering weak failures of type 1, at first sight, it seems counterintuitive
to tolerate failures in low contention environments, as the probability that a
process crashes seems more likely to increase as system load increases. Below
we provide motivating examples why weak failures, regardless of their type, are
interesting.

We emphasize that nothing is preventing a process from failing. However,
in the case of algorithms that tolerate weak failures of type 1 (resp. of type 2),
when a process fails after (resp. before) the predefined threshold is reached, no
correctness guarantees are given. It would be nice to be able to give guarantees
for all the cases; unfortunately, this is not always possible.

1.2 Motivation

As already mentioned, weak failures should be viewed as fractions of traditional
failures. This will enable us to design algorithms that can tolerate several tradi-
tional failures plus several additional weak failures. More precisely, assume that
a problem can be solved in the presence of t traditional failures, but cannot be
solved in the presence of t + 1 such failures. Yet, the problem might be solvable
in the presence of t failures plus t′ > 0 weak failures (of some type).

Adding the ability to tolerate weak failures to algorithms that are already
designed to circumvent various impossibility results, such as the Paxos algorithm
[13] and indulgent algorithms in general [10,11], would make such algorithms
even more robust against possible failures. An indulgent algorithm never vio-
lates its safety property, and eventually satisfies its liveness property when the
synchrony assumptions it relies on are satisfied. An indulgent algorithm which
in addition (to being indulgent) tolerates weak failures may, in many cases, sat-
isfy its liveness property even before the synchrony assumptions it relies on are
satisfied.

When facing a failure related impossibility result, such as the impossibility
of consensus in the presence of a single faulty process [9], one is often tempted
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to use a solution which guarantees no resiliency at all. We point out that there
is a middle ground: tolerating weak failures (of some type) enables to tolerate
failures some of the time. Also, traditional t-resilient algorithms tolerate failures
only some of the time (i.e., as long as the number of failures is at most t).
Afterall, something is better than nothing.

The first type of weak failures is in particular useful in systems in which
contention is usually low. The second type of weak failures may correspond to a
situation where, when there is high contention, processes are slowed down and
as a result give up and abort.

Finally, the new failure model establishes a link between contention and fail-
ures, which enables us to better understand various known impossibility results,
like the impossibility result for consensus [9] and its generalizations [4,12,18].

1.3 Contributions

We have identified new types of weak failures, where failures are assumed to
occur only before (type 1) or after (type 2) a specific predefined threshold on
the level of contention is reached. All our technical results are for weak failures of
type 1 only. From the rest of the paper, whenever we use the term weak failures,
we mean weak failures of type 1, and whenever we use the term crash m-failures,
we mean m-failures of type 1.

To illustrate the utility of the new definitions, we derive possibility and impos-
sibility results for solving the well-known problems of consensus and k-set con-
sensus in the presence of weak failures. The k-set consensus problem is to design
an algorithm for n processes, where each process starts with an input value from
some domain and must choose some participating process’ input as its output.
All n processes together may choose no more than k distinct output values. The
1-set consensus problem is the familiar consensus problem.

It is known that, in asynchronous systems, there is no consensus algorithm
for n processes using registers that can tolerate even a single crash n-failure
[9,14]. We show that, in asynchronous systems, there is a consensus algorithm
for n processes, using registers, that can tolerate a single crash (n − 1)-failure,
for every n > 1. The above bound is tight. We show that there is no consensus
algorithm for n processes, using registers, that can tolerate two crash (n − 1)-
failures, for every n > 2.

It is known that, in asynchronous systems, there is no k-set consensus algo-
rithm for n > k processes using registers that can tolerate k crash n-failures
[4,12,18]. We show that, in asynchronous systems, for every � ≥ 1, k ≥ 1 and
n ≥ 2� + k − 2, there is a k-set consensus algorithm for n processes, using regis-
ters, that can tolerate � + k − 2 crash (n − �)-failures. We show that there is no
k-set consensus algorithm that can tolerate � + k crash (n − �)-failures.

Solving consensus with a single crash (n − 1)-failure using only registers is a
deceptive problem. Once you are told that it is solvable, at first glance, it may
seem simple to solve. The only way to understand its tricky nature is by trying
to solve it. For that reason, we suggest the readers to try to solve the problem
themselves.
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2 Computational Model

Our model of computation consists of an asynchronous collection of n determin-
istic processes that communicate via atomic read/write registers. The processes
have unique identifiers. Asynchrony means that there is no assumption on the
relative speeds of the processes.

A register can be atomic or non-atomic. With an atomic register, it is
assumed that operations on the register occur in some definite order. That is,
reading or writing an atomic register is an indivisible action. We will consider
only atomic registers. In the sequel, by registers, we mean atomic registers.

A process executes its algorithm correctly until it possibly crashes. After it
has crashed, it executes no more steps. A process that crashes is said to be faulty;
otherwise, it is correct. In an asynchronous system, there is no way to distinguish
between a faulty and a very slow process.

In a model where participation is required, every correct process must even-
tually become active and execute its code. Another situation is one in which
participation is not required, as is usually assumed when solving the mutual
exclusion or k-exclusion problems. All the known impossibility results for con-
sensus and k-set consensus hold even when participating is required (and hence,
of course, also when participating is not required). Unless explicitly stated oth-
erwise (i.e., when we use a known solution for k-exclusion) we will assume that
participation is required.

3 Possibility of Consensus with a Single Crash
(n−1)-Failure

The consensus problem is defined as follows: There are n processes where each
process i ∈ {1, ..., n} has an input value ini. The requirements of the consensus
problem are that there exists a decision value v such that: (1) [Agreement &
termination] each non-faulty process eventually decides on v, and (2) [Validity ]
v ∈ {in1, ..., inn}.

A fundamental result in distributed computing is that it is impossible to
solve consensus with a single crash failure (i.e., a single crash n-failure) [9,14].
We consider the strongest failure type which is strictly weaker than the tradi-
tional crash failure, namely (n − 1)-failure, and show that it is possible to solve
consensus with a single crash (n − 1)-failure.

Theorem 1. There is a consensus algorithm for n processes, using registers,
that can tolerate a single crash (n − 1)-failure, for every n ≥ 1.

The above bound on the number of crash (n − 1)-failures is tight. In Sect. 5, it
is shown that there does not exist a consensus algorithm for n processes, using
registers, that can tolerate two crash (n − 1)-failures, for any n > 2.

Final remark before presenting the algorithm. Assume that you know how
to solve consensus for two processes with a single crash 1-failure. A common
approach for solving consensus for many processes in the presence of a single
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fault is as follows: Choose the two processes with the smallest identifiers, have
them run the two-process solution, and write the result into a register. The
remaining processes keep reading the register until the result appears there. We
notice that such a solution for many processes guarantees to tolerate only a
single crash 1-failure, but not a single crash 2-failure.

3.1 The Algorithm

The code of the algorithm appears in Fig. 1. In the algorithm, each process can
be in one of four states, 0, 1, 2 or 3, as recorded in its state register. A process
participates in three rounds (lines 2–15). At each round round ∈ {1, 2, 3}, the
process first checks whether all the other n−1 processes have already written the
round number round into their state registers (lines 4–6). In case of a positive
answer, the process sets the decision register to the maximum input value among
the input values of the other n−1 processes, decides on that maximum value and
terminates (line 7). Otherwise, it writes the value of round into its state register
(line 8) and waits until either a decision is made or at least n − 1 processes,
including itself, have written the round number round into their single-writer
state registers, whatever comes first (lines 9–13). In the former case, it adopts
the decision value (line 14), in the latter case it completes the current round and
moves on.

After completing three rounds, the process checks if there exists a process,
say process j, that has not written the value 2 into its state register (lines 16–
19). In case of a positive answer, it concludes that process j will never be able
to reach round three, and thus, j will never set its state register to 3. This is
so because j will notice that n − 1 other processes have already set their state
registers to 3, and will decide (line 7) before incrementing its state register (line
8). Thus, the process sets the decision register to the maximum input value
among all the processes, excluding process j, decides on that maximum value
and terminates (line 20).

Otherwise, if all the n processes have written the value 2 into their state
registers, the process concludes that all the n processes are still active and are
guaranteed not to fail. It waits until either a decision is made or until all the
processes complete round three, whatever comes first (lines 21–24). In the former
case, it adopts the decision value (line 23), in the latter case it decides on max-
imum input value among the input values of all the n processes and terminates
(line 25).

3.2 Correctness Proof

We say that process i is in round r if its local variable round equals to r.

Lemma 1. For every i ∈ {1, ..., n}, when process i sets state[i] to 2 (in line 8),
either the point contention is already n or for some j �= i, state[j] will always
be 0.
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Fig. 1. A consensus algorithm which can tolerate a single crash (n − 1)-failure.

Proof. If the point contention is not n when i sets state[i] to 2 (in line 8), it
follows that (1) by definition, some process, say j, hasn’t taken any steps yet, and
(2) except for process j, all the other n − 1 processes have already incremented
their state registers. If j is a correct process, it will eventually reach line 7 at
which point its counter register will become equal to n − 1. Thus, j will decide
and terminate without ever incrementing its state register. ��
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Lemma 2. If at some point in time, for every i ∈ {1, ..., n} state[i] ≥ 2, then
all the n processes are active, no process has failed before that point, and no
process will fail after that point.

Proof. Assume that for every i ∈ {1, ..., n}, state[i] ≥ 2. It follows from this
assumption and Lemma 1 that, for every i ∈ {1, ..., n}, when process i has set
state[i] to 2 (in line 8), the point contention was already n. Thus, process i will
never fail since it is assumed that no process fails once the point contention
is n. ��
Lemma 3. For every process i ∈ {1, ..., n},
1. if process i writes into the decision register in line 7, then no other process

writes into the decision register in line 7;
2. if process i writes into the decision register in line 7, then no other process

writes into the decision register in line 25;
3. if process i writes into the decision register in line 20, then no other process

writes into the decision register in line 25.

Proof. Suppose process i writes into decision in line 7 in round r ∈ {1, 2, 3}.
This means that all the other n − 1 processes have already written r into their
state registers, and hence have not written into decision in line 7 in round r or in
previous rounds. After i writes into decision, it immediately terminates. Thus,
i will never write a value r′ ≥ r into its state register. Thus, for every other
process, after executing the for loop in lines 4–6, the value of counter will be at
most n − 2, and the test in line 7 will fail. Also, since state[i] will never equal 3,
no process will ever reach line 25.

Suppose process i writes into decision in line 20. This means that there exists
a process, say process j, that has not written the value 2 into its state register,
at the time when process i checked state[j] in line 18. Although process j may
still set state[j] to 2 at a later time, it will never be able to set state[j] to 3 at
a later time, because, in round 3, the counter of j will reach n − 1 when j will
execute the for-loop in lines 4–6, and if continues it will terminate at line 7. For
that reason when some other process executes line 22 “await (state[j] = 3 or
decision �= ⊥)”, the waiting may terminate only because decision �= ⊥. Thus,
no process will ever reach and execute line 25. ��
Lemma 4. For every two processes i and j,

1. if i writes the value v into the decision register in line 7, and j writes the
value v′ into the decision register in line 20, then v = v′.

2. if i writes the value v into the decision register in line 20, and j writes the
value v′ into the decision register also in line 20, then v = v′.

3. if i writes the value v into the decision register in line 25, and j writes the
value v′ into the decision register also in line 25, then v = v′.
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Proof.

1. Assume that i writes the value v into the decision register in line 7, and j
writes the value v′ into the decision register in line 20. When i terminates,
the value of its state register is either 0, 1 or 2. In the first two cases (0 and
1), the value of max that j computes in line 19, does not depend on the input
value of i, and hence v = v′. Consider the case that when i terminates (line
7), the value of its state register is 2. Thus, when i terminates, the values
of all the other n − 1 state registers must be 3. When j starts executing the
for-loop in line 17, the value of the state registers of n − 1 processes must be
3. Thus, i and j set their max registers (in lines 6 and 19, respectively) to the
same value since they both choose the maximum input value from the set of
n − 1 input values which does not include the input value of process i. Thus,
v = v′.

2. Assume that i writes the value v into the decision register in line 20, and j
writes the value v′ into the decision register also in line 20. When i started
executed the for-loop in line 17, the value of the state register of exactly one
process, say process k, was less than 2. Similarly, when j started executed the
for-loop in line 17, the value of the state register of exactly one process, say
process k′, was less than 2. Since the value of a state register never decreases,
it follows that k = k′. Thus, i and j set their max registers (in line 19) to the
same value, since they choose the maximum input value from the same n − 1
input values. Thus, v = v′.

3. Assume that i writes the value v into the decision register in line 25, and j
writes the value v′ into the decision register in line 25. Both i and j set their
max registers (line 24) to the same value, since they choose the maximum
input value from the set of all n input values. Thus, v = v′. ��

Theorem 2 (agreement & validity). All the participating processes decide
on the same value, and this decision value is the input of a participating process.

Proof. It follows from Lemmas 3 and 4, that whenever two processes write into
the decision register, they write the same value. Also, whenever a process writes
into the decision register, this written value is the input of a participating pro-
cess. Each correct process decides only on a value written into the decision
register. ��
Theorem 3 (termination). In the presence of at most a single crash (n − 1)-
failure, every correct process eventually terminates.

Proof. There are exactly two places in the algorithm where a process may need
to wait for some other process to take a step: (1) in the repeat-until loop in
lines 9–13, and (2) in the await statement in line 22. In both places, whenever a
process needs to wait, it continuously examines the value of the decision register,
and if it finds out that decision �= ⊥ it decides on the value written in decision
and terminates. Thus, we can conclude that: if some process terminates then
every correct process will eventually terminate.
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So, let us assume, by contradiction, that no correct process ever terminates.
There are at least n − 1 correct processes. At least n − 1 correct process will
execute the for loop in lines 1–15 with round = 1. They all will eventually
execute the assignment in line 8, setting their state registers to 1. Thus, each
correct process with round = 1, will eventually exit the repeat loop in lines
9–14, and will move to round two. By a similar argument, each correct process
will eventually complete rounds two and three (i.e., will complete the for loop
in lines 2–15).

A process reaches the for loop in lines 21–24, only if its local counter register
equals n, which implies that for every i ∈ {1, ..., n} state[i] ≥ 2. Thus, by
Lemma 2, if some process executes the for loop in lines 21–24 all the n processes
are active and will never fail. Since, by contradiction, no process terminates, all
the n processes must eventually get stuck in the await statement on line 22.
However, this is not possible since the value of the state register of each process
which reaches line 22 must be 3. Thus, all the waiting processes in line 22, will be
able to proceed beyond the await statement and terminate. A contradiction. ��

Remark: It is tempting to simplify the algorithm by deleting the shared reg-
ister decision, and removing all the read and write accesses to it. In such an
algorithm a process decides only on the maximum value it has computed. Such
a simplification would make the algorithm incorrect, as a process in round 2
may get stuck forever in the repeat-until loop in lines 9–13. This will happen if
some process decides in round 1 (and terminates) while another process fails in
round 1.

4 Possibility of k-Set Consensus with l+k–2 Crash
(n−l)-Failures

The k-set consensus problem is to design an algorithm for n processes, where
each process starts with an input value from some domain and must choose
some participating process’ input as its output. All n processes together may
choose no more than k distinct output values. The 1-set consensus problem is
the familiar consensus problem.

Another fundamental result in distributed computing is that for 1 ≤ k ≤
n − 1, it is impossible to solve k-set consensus in the presence of k crash failures
(i.e., k crash n-failures) for n processes [4,12,18]. We show that it is possible
to solve k-set consensus in the presence of � + k − 2 crash (n − �)-failures. In
particular, it is possible to solve k-set consensus in the presence of k crash (n−2)-
failures. The possibility result presented below does not imply the result stated
in Theorem 1.

Theorem 4. For every � ≥ 1, k ≥ 1 and n ≥ 2� + k − 2, there is a k-set
consensus algorithm for n processes, using registers, that can tolerate � + k − 2
crash (n − �)-failures.
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The following algorithm solves k-set consensus and tolerates � + k − 2 crash
(n − �)-failures. In Sect. 5, we show that there is no k-set consensus algorithm
that can tolerate � + k crash (n − �)-failures. The question whether it is possible
to solve k-set consensus in the presence of � + k − 1 crash (n − �)-failures, is an
interesting open problem.

4.1 The Algorithm

In the implementation below we use a shared object called atomic snapshot which
can be wait-free implemented from registers [1,3]. A snapshot object consists
of a set of m > 1 components, each capable of storing value. Processes can
perform two different types of operations: UPDATE any individual component
or instantaneously (atomically) SCAN the entire collection to obtain the values
of all the components. So, for an atomic snapshot object S, S.update(i, v) writes
v to the ith component, and S.scan returns a snapshot of all m components.

A single-writer atomic snapshot object is a restricted version in which there
are the same number of processes as components and only process i ∈ {1, ..., n}
can UPDATE the ith component. Let A[1...n] be an array of n registers and S
be a single-writer atomic snapshot object. Then, the assignment A := S.scan
atomically sets A[i] to the value of the ith component of S, for each i ∈ {1, ..., n}.
It is often easier to design fault-tolerant algorithms for asynchronous systems and
prove them correct if one can think of the shared memory as a snapshot object,
rather than as a collection of individual registers.

The algorithm also makes use of a single one-shot mutual exclusion object
and a single one-shot (k − 1)-exclusion object. The k-exclusion problem, which
is a natural generalization of the mutual exclusion problem, is to design an
algorithm which guarantees that up to k processes and no more are permitted
to be in their critical sections simultaneously. A solution is required to withstand
the slow-down or even the crash (fail by stopping) of up to k − 1 of processes.
For k = 1, the 1-exclusion problem is exactly the mutual exclusion problem. The
simpler one-shot version assumes that a process may try to access its critical
section at most once. It is well known that, for any k ≥ 1, k-exclusion can be
solved using registers only, even when it is assumed that participation is not
required [2,16]. We assume that the reader is familiar with the definition of the
k-exclusion problem. A formal definition of the k-exclusion problem is given in
the Appendix.

The code of the algorithm appears in Fig. 2. The first step of each process i
is to set the ith component Flag to 1 (line 1). Then, process i repeatedly takes
a snapshot of the Flag object (line 3) and each time it takes a snapshot, it sets
counter to the number of Flag components which are set to 1 (line 4). Processes
i continues to take snapshots until counter ≥ n − � − k + 2 (line 5). Since at
most � + k − 2 processes may fail, each correct process must eventually notice
that counter ≥ n − � − k + 2. Next, process i participates in either EX[1] or
EX[2] depending on the current value of group (line 7). If, at any point, process
i notices that decision �= ⊥ it decides on the value of decision (line 8). If it
enters its critical section, it sets decision to its input value and decides on that
value.
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Fig. 2. A k-set consensus algorithm which can tolerate �+ k − 2 crash (n− �)-failures.

4.2 Correctness Proof

We notice that the maximum value of the counter of a process is when the process
exits the repeat-loop, and at that point, this value is at least n − � − k + 2. We
use the notation counter.p to denote the local counter variable of process p. As
stated in Theorem 4, it is assumed below that: � ≥ 1, k ≥ 1 and n ≥ 2� + k − 2.

Lemma 5. For every m ∈ {n − � − k + 2, ..., n}, the maximum value of the
counter of at most m processes is at most m.

Proof. Assume to the contrary that for some m ∈ {n − � − k + 2, ..., n}, the
maximum value of the counter of more than m processes is at most m. Let P
denote the set of these processes. Let p ∈ P be the last process, among the
processes in P , to update Flag in line 1. Since |P | > m, when p takes a snapshot
it must notice that at least m + 1 components of Flag are already set to 1. A
contradiction. ��
Lemma 6. At least � processes do not participate in EX[2]. Thus, at least �
processes participate in EX[1] or fail.

Proof. A process, say p, may participate in EX[2], only if on exit of the repeat-
loop, counter.p ≤ n − �. Thus, by Lemma 5, at most n − l processes participate
in EX[2], which implies that at least � processes do not participate in EX[2].
This implies that, at least � processes participate in EX[1] or fail. ��
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Lemma 7. If a process participates in EX[1] then this process cannot fail.

Proof. For a process, say p, to participate in EX[1], it must be that on exit of
the repeat-loop, counter.p > n − �. This implies that when p exits the repeat-
loop, the point contention is at least n − � + 1. Since the only type of failures
is crash (n − �)-failures, p will not fail once it exits the repeat-loop and starts
participating in EX[1]. ��
Lemma 8. There is at least one correct process.

Proof. Since at most �+k−2 processes may fail, the number of correct processes
is at least n − (� + k − 2). It is assumed (in the statement of Theorem 4) that
n ≥ 2�+k−2. Thus, the number of correct processes is at least (2�+k−2)−(�+
k −2) = �. Since it is assumed that � ≥ 1, there is at least one correct process. ��
Theorem 5 (termination). In the presence of at most �+k −2 crash (n− �)-
failures, every correct process eventually terminates.

Proof. First we notice that no correct process will get stuck forever in the repeat-
loop (lines 2–5). Since at most � + k − 2 processes may fail, each correct process
must eventually notice that at least n − � − k + 2 of the components of Flag are
set to 1 and will exit the repeat-loop (lines 2–5).

By Lemma 7, if a process participates in EX[1] then this process cannot fail.
Thus, if some process participates in EX[1], eventually some process will write
its input value into decision letting all the other correct processes terminate.

So, let’s assume that no process participates in EX[1]. This means that each
one of the n processes either participates in EX[2] or fails. Thus, by Lemma 8,
at least one correct process participates in EX[2]. Also, by Lemma 6, at least
� processes which do not participate in EX[2] fail, and since at most � + k − 2
processes may fail, we conclude that at most k−2 of the processes that participate
in EX[2] may fail.

Since (1) EX[2] is a one-shot (k − 1)-exclusion object (that, by definition,
can tolerate k − 2 crash n-failures), (2) there exists a correct process which
participates in EX[2] (i.e., this process never fails), and (3) at most k − 2 of the
processes which participate in EX[2] fail, it follows that some correct process
which participates in EX[2], will eventually enter its critical section write its
input value into decision, letting all the other correct processes terminate. ��
Theorem 6 (k-agreement & validity). All the participating processes decide
on at most k different values, and each one of these decision values is the input
of a participating process.

Proof. There are exactly one one-shot mutual exclusion object and one one-
shot (k − 1)-exclusion object. In EX[1] at most one process enters its critical
section, and writes its input value into the decision register. In EX[2] at most
k − 1 processes enter their critical sections and write their input value into
the decision register. Thus, at most k different values are written into decision.
Also, whenever a process writes into the decision register, this written value is
its input. Each correct process decides only on a value written into the decision
register. ��
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5 Impossibility Results

A natural question to ask next is, for a given k and �, what is the maximum
number of crash (n − �)-failures that can be tolerated by a k-set consensus
algorithm? An initial failure of a given process is a failure which happens before
the process has taken any steps.

Theorem 7. For every � ≥ 0, k ≥ 1 and n > � + k, there is no k-set consensus
algorithm for n processes, using registers, that can tolerate k crash (n−�)-failures
and � initial failures.

Proof. Assume to the contrary that for some � ≥ 0, k ≥ 1 and n > �+k, there is
an algorithm that can tolerate k crash (n − �)-failures and � initial failures. Let
m = n − �. Since we can always remove � processes assuming that they always
fail initially, it implies that there is a k-set consensus algorithm for m processes,
where m > k, using registers, that can tolerate k crash m-failures. However, this
is known to be impossible [4,12,18]. ��
Since, for m ≥ 1 a crash m-failure is strictly stronger (i.e., more severe) type of
a failure than initial failure, an immediate corollary of Theorem 7 is that:

Corollary 1. For every � ≥ 0, k ≥ 1 and n > 2�+k, there is no k-set consensus
algorithm for n processes, using registers, that can tolerate � + k crash (n − �)-
failures.

In the statement of Corollary 1, it is assumed that n > 2� + k, since in the
context of � + k crash (n − �)-failures, it makes sense to assume that � + k is at
most n− �. For the special case of consensus (i.e., 1-set consensus), we get that:

Corollary 2. For every 0 ≤ � < n/2, there is no consensus algorithm for n
processes, using registers, that can tolerate � + 1 crash (n − �)-failures.

We have shown earlier (Theorem 1) that there is a consensus algorithm for n
processes, using registers, that can tolerate a single crash (n − 1)-failure. It
follows from Corollary 2 that, there is no consensus algorithm that can tolerate
two crash (n − 1)-failures.

6 Related Work

Extensions of the notion of fault tolerance, which are different from those con-
sidered in this paper, were proposed in [5]. In [5], a precise way is presented to
characterize adversaries by introducing the notion of disagreement power: the
biggest integer k for which the adversary can prevent processes from agreeing
on k values when using registers only; and it is shown how to compute the
disagreement power of an adversary.

In [20], the traditional notion of fault tolerance is generalized by allowing a
limited number of participating correct processes not to terminate in the pres-
ence of faults. Every process that does terminate is required to return a correct
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result. Thus, the new definition guarantees safety but may sacrifice liveness (ter-
mination), for a limited number of processes, in the presence of faults. Initial
failures were investigated in [21].

The consensus problem was formally defined in [15]. The impossibility result
that there is no consensus algorithm that can tolerate even a single crash failure
was first proved for the asynchronous message-passing model in [9], and later has
been extended for the shared memory model with atomic registers in [14]. The
impossibility result that, for 1 ≤ k ≤ n−1 there is no k-resilient k-set-consensus
algorithm for n processes using atomic registers is from [4,12,18].

The mutual exclusion problem was first stated and solved for n processes by
Dijkstra in [6]. Numerous solutions for the problem have been proposed since it
was first introduced in 1965. Dozens of interesting mutual exclusion algorithms
and lower bounds are described in details in [17,19]. The �-exclusion problem,
which generalizes the mutual exclusion problem, was first defined and solved
in [7,8]. Several papers have proposed �-exclusion algorithms for solving the
problem using atomic read/write registers satisfying various progress properties
(see for example, [2,16]).

7 Discussion

We have provided a new perspective on the relationship between failures and
contention. From the computability point of view, this new perspective allows
us to derive “fine-grained” analysis of the limit in computability for consensus
and set consensus. That is, to illustrate the utility of the new definitions of weak
failures, we have derived possibility and impossibility results for the well-known
basic problems of consensus and k-set consensus. The definitions together with
our technical results indicate that there is an interesting area of fault tolerance
that deserves further investigation.

Two specific interesting open problems are: (1) Is the following generalization
of Theorem 1 correct: There is a k-set consensus algorithm for n processes, using
registers, that can tolerate k crash (n − 1)-failures, for every n > k ≥ 1; (2) Is
the following generalization of Theorem 4 correct: For every � ≥ 0, k ≥ 1 and
n ≥ 2�+k−1, there is a k-set consensus algorithm for n processes, using registers,
that can tolerate � + k − 1 crash (n − �)-failures.

All our results are presented in the context of weakening the notion of crash
failures in asynchronous systems. It would be interesting to consider also other
types of weak failures such as weak omission failures or weak Byzantine failures
and to consider synchronous systems. Another interesting direction would be
to extend the results to objects other than atomic registers and to consider
problems other than consensus and set-consensus. We have assumed that the
number of processes is finite and known, it would be interesting to consider also
the case of unbounded concurrency. Considering failure detectors in the context
of the new definitions is another interesting direction.
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A A Formal Definition of the k-Exclusion Problem

The k-exclusion problem, which is a natural generalization of the mutual exclu-
sion problem is to design a protocol which guarantees that up to k processes and
no more may simultaneously access identical copies of the same non-sharable
resource when there are several competing processes. That is, k processes are
permitted to be in their critical section simultaneously. A solution is required
to withstand the slow-down or even the crash (fail by stopping) of up to k − 1
of processes. For k = 1, the 1-exclusion problem is the exactly mutual exclusion
problem.

To illustrate the k-exclusion problem, consider the case of buying a ticket
for a bus ride. Here a resource is a seat on the bus, and the parameter k is the
number of available seats. In the k-exclusion problem, a passenger needs only to
make sure that there is some free seat on the bus, but not to reserve a particular
seat.

More formally, it is assumed that each process is executing a sequence of
instructions in an infinite loop. The instructions are divided into four continuous
sections of code: the remainder, entry, critical section and exit. The k-exclusion
problem is to write the code for the entry code and the exit code in such a way
that the following basic requirements are satisfied.

– k-exclusion: No more than k processes are at their critical section at the same
time.

– k-deadlock-freedom: If strictly fewer than k processes fail (are delayed forever)
then if a process is trying to enter its critical section, then some process, not
necessarily the same one, eventually enters its critical section.

The k-deadlock-freedom requirement may still allow “starvation” of individual
processes. It is possible to consider stronger progress requirements which do not
allow starvation.
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Abstract. We consider the distributed setting of N autonomous mobile
robots that operate in Look-Compute-Move cycles following the classic
oblivious robots model. We study the fundamental problem where start-
ing from an arbitrary initial configuration, N autonomous robots repo-
sition themselves to a convex hull formation on the plane where each
robot is visible to all others (the Complete Visibility problem). We
assume obstructed visibility, where a robot cannot see another robot if a
third robot is positioned between them on the straight line connecting
them. We provide the first O(N) time algorithm for this problem in the
fully synchronous setting. Our contribution is a significant improvement
over the runtime of the only previously known algorithm for this problem
which has a lower bound of Ω(N2) in the fully synchronous setting. The
proposed algorithm is collision-free – robots do not share positions and
their paths do not cross.

1 Introduction

The well-celebrated classic oblivious model of distributed computing by a finite
team of autonomous mobile robots enjoys a long history of research [14]. In this
model, the robots are points in a plane, which is also what we assume here. In a
large spatial extent, robots can be seen as points relative to the spatial extent in
which they operate and the solutions obtained for point robots form the building
blocks for the robots that are not points (i.e., robots that occupy certain space
such as an unit disk area). Moreover, many robot motion planning algorithms
in R

2 (such as bug algorithms [4]) have been studied for the point robots. Point
robots are also interesting for exploring the computational efficiency of solving
basic robot coordination tasks.

In this classic model, the point robots are: autonomous (no external control),
anonymous (no unique identifiers), indistinguishable (no external identifiers),
oblivious (do not remember their previous actions or the previous positions of
the other robots), silent (no direct means of communication), and disoriented
(no common coordinate system or unit of measure for the distances) [14]. Each
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robot executes the same algorithm and they all perform their actions following
Look-Compute-Move (LCM) cycles, i.e., when a robot becomes active, it first
observes the positions of other robots (Look), then computes a destination point
based on that observation (Compute), and finally moves towards the destination
(Move). Many fundamental distributed coordination problems, such as pattern
formation, gathering, scattering, etc., were solved in this model [14].

However, this model makes one important assumption of unobstructed visi-
bility: Each robot is visible to all others at all times [14]. This assumption can
be easily refuted because the view of the robots that are collinear is blocked in
a real setting. Therefore, we remove this assumption which leads to the scenario
of obstructed visibility under which a robot ri can see another robot rj if and
only if there is no third robot in the line segment joining their positions. Except
the presence of robots, there is no other obstacle for any two robots to see each
other.

Di Luna et al. [1] gave the first algorithm for classic oblivious robots to
solve the fundamental Complete Visibility problem with obstructed visi-
bility: Given a team of N mobile robots in arbitrary distinct positions in the
Euclidean plane R

2, all the robots reach a convex hull configuration in which
each robot is in a distinct corner position from which it can see all other robots.
The importance of solving the Complete Visibility problem is that it makes it
possible to solve many other robot coordination problems, including gathering,
shape formation, and leader election, under obstructed visibility. This problem
is also called Mutual Visibility in some papers [13,20].

Di Luna et al. [1] proved the correctness of their algorithm but gave no
runtime analysis (except a proof of finite time termination). The goal of this
work is to develop a fast runtime algorithm for Complete Visibility by classic
oblivious robots in the same model of [1]. Similar to [1], in our solution the
robots are arranged on corners of a convex polygon. Although there might be
other ways to arrange robots to have mutual unobstructed visibility, we focus
on a convex hull solution since in addition to guaranteeing that each robot sees
all others, it often provides extra benefits for solving additional coordination
problems [13,20].

Contributions. We consider autonomous, anonymous, indistinguishable, obliv-
ious, silent, and disoriented point robots as in the classic oblivious robots model
[14]. Visibility could be obstructed by other robots in the line of sight. Following
Di Luna et al. [1], we assume that the number of robots N is known to the
robots (which is solely for the termination detection of the algorithm) and a
robot in motion cannot be stopped by an adversary, i.e., a robot stops only after
it reaches to its destination point (also called rigid moves). Moreover, as in [1],
we assume that two robots cannot head to the same destination point and also
the paths of robots cannot cross (this would constitute a collision). Furthermore,
we assume that the robot setting is fully synchronous, i.e., there is a notion of
common time and all robots perform their LCM cycles simultaneously in each
round. In this paper, we prove the following result which, to our knowledge, is
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the first algorithm for Complete Visibility that achieves linear runtime for
classic oblivious robots with obstructed visibility.

Theorem 1. For any initial configuration of N ≥ 3 classic oblivious robots
being in distinct positions in a plane, there is a collision-free algorithm that
solves Complete Visibility in O(N) time in the fully synchronous setting
under rigid movements.

The proof of Theorem1 is constructive since we provide a deterministic algo-
rithm satisfying Theorem1. This is a significant improvement since it can be
shown that the algorithm of Di Luna et al. [1] has the time lower bound of
Ω(N2) in the fully synchronous setting. The lower bound proof idea is to use
an initial configuration where all N robots are on the points of two concentric
circles, big and small, with distance between each robot and its two neighbors
the same. Moreover, the robots in the small circle are collinear with the robots
in the big circle. Since the algorithm of [1] only moves the robots in the big circle
inward, it can be shown, with appropriately chosen number of robots in the big
and small circle, that the big circle does not coincide with the small circle even
after c ·N2 rounds, for some constant c. Moreover, collinear robots stay collinear
during these rounds. The formal proof will be similar to [19, Theorem 4].

Technique. The main idea is to make robots move autonomously based on their
local views (and without communicating with other robots) to become corners
of a N -vertex convex hull. When all N robots become corners of a convex hull,
the configuration naturally solves Complete Visibility. Let H be a convex
hull of the given N robots. Initially, the robots are either in the perimeter of H
(i.e., corners and sides of H) or in its interior. The only previous algorithm [1]
asks robots in the corners of H to move inward to shrink the hull so that the
existing corners of H remain as corners and the internal robots of H become
new corners of H. The corners of H do not need to know completely H to move
inward. It is sufficient for a corner robot r of H to determine all N robots are
in a plane with angle < 180◦ formed by r with the leftmost and the rightmost
robot it sees. When a robot that was in the interior of H becomes a new corner
of H, it also starts moving inward causing other interior robots new corners of
H. Since the robots know N , they eventually recognize the situation of all robots
being in the corners of H and terminate. However, this approach has the time
lower bound of Ω(N2). In contrast, the algorithm we present runs in O(N) time.

Our technique is to move internal robots in H outward towards the perimeter
of H in addition to the moves of the corners of H inward used in [1]. This is
challenging since internal robots in H may not know which direction is outward
and which direction is inward (since they do not have direction information). We
indeed address this challenge and able to show that, in each round, at least one
internal robot in H can correctly move outward towards the perimeter of H and
becomes a new corner of H. Our technique might be of independent interest. We
also show that our technique achieves this progress avoiding collisions.

Paper Organization. We discuss related work in Sect. 2. We then present
the robot model and some preliminaries in Sect. 3. After that, we present our
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algorithm in Sect. 4 and analyze it in Sect. 5. We finally conclude in Sect. 6. Pseu-
docode of the algorithm and many proofs are omitted due to space constraints.

2 Related Work

Sharma et al. [21] presented the brief announcement of the results of this paper
in SPAA’17. Besides [21], the only previous work for this problem is Di Luna
et al. [1] which has time lower bound of Ω(N2). Recently, [13,20] provided solu-
tions to Complete Visibility minimizing the number of colors in the robots
with lights model [17], where each robot is provided with a local externally visible
light which can assume (different) colors from a fixed set (of constant size). The
lights are persistent, i.e., the color assumed by a light is not erased at the end of
a round. Trivially, the robots with lights model falls back to the classic model
when the number of colors is 1.

Vaidyanathan et al. [25] considered runtime for the very first time for Com-
plete Visibility in the robots with lights model. They provided an algorithm
that runs in O(log N) time using O(1) colors in the fully synchronous setting.
Later, Sharma et al. [23] provided an O(1) time algorithm using O(1) colors
in the semi-synchronous setting. Recently, Sharma et al. [22,24] provided an
O(1) time algorithm using O(1) colors in the asynchronous setting. However,
the techniques of [22–25] cannot be applied to the classic model as the robots
in the lights model are not completely oblivious as in the classic model due to
lights.

The obstructed visibility, in general, is considered in the problem of uni-
formly spreading robots operating in a line [6]. The work of Pagli et al. [16]
considers a problem where collisions must be avoided among robots. However,
they do not provide runtime analysis. The obstructed visibility is also consid-
ered in the so-called fat robots model [2,7,10] in which robots are not points, but
non-transparent unit discs, and hence they can obstruct visibility of collinear
robots. However, no work in the fat robots model has studied runtime. Recently,
Sharma et al. [18] provided an O(N) algorithm for Complete Visibility for
fat robots enhanced with lights which also cannot be applied to the oblivious
model due to lights.

Similarly, much work on the classic model [3,5,15,26] showed that Gather-
ing – robots come together to be in a not predefined point – is achieved in finite
time without a full runtime analysis, except [5,9,11,12]. However, these work do
not consider obstructed visibility. Finally, there is a line of work that removes
unobstructed visibility from the classic model by considering limited visibility,
where the robots have a limit on their visibility range [3,11]. However, our study
of obstructed visibility is different since, under limited visibility, the collinear
robots within the pre-specified radius of a robot are still assumed to be visible
to each other.
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3 Model and Preliminaries

Robots. We consider a distributed system of N robots (agents) from a set
Q = {r1, . . . , rN}. Each robot is a (dimensionless) point that can move in an
infinite 2-dimensional real plane R

2 following the classic oblivious robots model
[14]. Throughout the paper, we will use a point to refer to a robot as well as its
position. A robot ri can see, and be visible to, another robot rj if there is no
third robot rk in the line segment joining ri and rj . Following Di Luna et al. [1],
we assume that N is known to robots (used only for termination detection of
the algorithm).

Look-Compute-Move. Each robot ri is either active or inactive. When a robot
ri becomes active, it performs the “Look-Compute-Move” cycle described below.

– Look: For each robot rj that is visible to it, ri can observe the position of
rj on the plane. Robot ri can also observe its own position; i.e., ri is visible
to itself. Each robot observes position on its own frame of reference, i.e., two
different robots observing the position of the same point may produce different
coordinates. However, a robot observes the positions of points accurately
within its own reference frame.

– Compute: In any cycle, robot ri may perform an arbitrary computation using
only the positions observed during the “look” portion of that cycle. This
computation includes determination of a (possibly) new position for ri for
the start of next cycle.

– Move: At the end of the cycle, robot ri moves to its new position.

In the fully synchronous setting (FSYNC), every robot is active in every LCM
cycle. In the semi-synchronous setting (SSYNC), at least one robot is active, and
over an infinite number of LCM cycles, every robot is active infinitely often. In
the asynchronous setting (ASYNC), there is no common notion of time and no
assumption is made on the number and frequency of LCM cycles in which a
robot can be active. The only guarantee is that every robot is active infinitely
often. We assume that the moves of robots are rigid, i.e., during the Move phase
a robot stops only after it reaches its destination point computed during the
Compute phase.

Time. Time is measured in rounds. A round is the smallest number of LCM
cycles within which each robot is guaranteed to be active at least once [8]. Since
we assume the FSYNC setting, a round is a LCM cycle.

Convex Polygon. For M ≥ 3, a convex polygon (or convex hull) can be
represented as a sequence H = (c0, c1, · · · , cM−1) of corner points, which are
centers of robots, in a plane that enumerates the polygon vertices in clock-
wise order. Figure 1 shows a 5-corner convex polygon (c0, c1, c2, c3, c4). A point
s on the plane is a side point of H iff there exists 0 ≤ i < M such that
ci, s, c(i+1)(mod M) are collinear. Figure 1 shows six side points s1–s6. A side S =
(ci, s1, s2, · · · , sm, ci+1) is a sequence of collinear points whose beginning and
end are adjacent corner points and whose remaining points are side points. For
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a given polygon H, the plane can be divided into the interior and exterior parts.
Figure 1 shows the interior of the polygon (the rest of the plane is the exterior).

Fig. 1. An illustration of
a convex polygon (hull).

For any pair of points a, b, we denote the line seg-
ment connecting them by ab and the length of ab by
length(ab). Moreover, for any three points a, b, c, we
denote the angle formed by sides ab and bc by ∠abc
(the angle is formed at b) and the triangle formed by
lines ab, bc, and ac by Δabc. Furthermore, we denote
the perpendicular distance from a to bc by dist(a, bc).

Configuration and Local Convex Polygon. A con-
figurationCt = {rt1, . . . , r

t
N} defines the positions of the

robots in Q any time t ≥ 0. A configuration for a robot
ri ∈ Q, Ct(ri), defines the positions of the robots in Q
that are visible to ri (including ri), i.e., Ct(ri) ⊆ Ct, at
any time t ≥ 0. The convex polygon formed by Ct(ri), Ht(ri), is local to ri since
Ht(ri) depends on the points that are visible to ri at time t, i.e., Ht(ri) is formed
from the robots that ri sees at time t. We sometime write C,H,C(ri),H(ri) to
denote Ct,Ht,Ct(ri),Ht(ri), respectively.

Fig. 2. An illustration of con-
vex hull layers L0 up to L3.

Convex Hull Layers. The robots in Q can be
partitioned into layers of convex hulls: L0,L1, . . .;
L0 is H and all the robots in Q are either in the
boundary of L0 or in its interior. Denote by Q0

the robots in the boundary of L0 (the corner and
side robots of L0). Let ̂Q := Q\Q0, i.e., the robots
in Q without considering the robots in the bound-
ary of L0. Note that the robots in ̂Q are the inte-
rior robots of H. Li, i ≥ 1, is the convex polygon
H formed by the robots in Q\∑i−1

j=0 Qj , i.e., the
robots that are not in the boundaries of L0 up to Li−1. Figure 2 illustrates the
convex hull layers.

Fig. 3. An illustration of (left) the closest internal robot, where r′ is the closest internal
robot to the corner r of H, (center) the closest edge robot, where edge v1v2 is the closest
edge robot to r and r′ but not to r′′, and (right) the external and behind robots, where
r is the external robot for r′ and b is the behind robot for r′.

Closest Internal Robot. Let r be a corner robot of H and a, b be its neighbors
in the boundary of H. Let r′ be a robot in the interior of H and Lr′ be a line
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parallel to line segment ab passing through r′. Robot r′ is said to be closest
internal robot to r if there is no other robot in the interior of H divided by line
Lr′ towards r (the top of Fig. 3).

Closest Edge. Let r be a robot in the interior of H(r) and v1v2 be an edge in
H(r) between two consecutive corners v1, v2 of H(r). Let Lr be a line parallel
to v1v2 passing through r. Edge v1v2 is said to be closest to r (or vice-versa) if

(i) there is no side robot on v1v2,
(ii) there is no other robot in the interior of H(r) divided by line Lr towards

v1v2, and
(iii) there are no two robots r′, r′′ such that dist(r′, v1v2) = dist(r′′, v1v2) =

dist(r, v1v2), and one of r′, r′′ is appearing in the left and the other is
appearing in the right of r.

The middle of Fig. 3 illustrates a closest edge to r.

External and Behind Robots. Let r be a robot in the interior of H with its
local hull H(r) and let r′ be a corner of H(r). Let a, b, c be any three consecutive
corners of H(r). Robot r is said to be external robot for r′ if r is inside triangle
Δabc and robots b, r, r′ are collinear. Moreover, robot b (that is collinear with
r, r′) is called the behind robot for r′ (the bottom of Fig. 3). We can prove the
following two basic results.

Lemma 1. Let r be an internal robot in H(r) and r′ be its corner. If r is the
external robot for r′ then there exists a behind robot for r′ and, ∀r′′ behind r, r′

cannot see r′′.

Lemma 2. If r is the only internal robot in H(r), there exists at most one
corner r′ in H(r) such that r is its external robot.

Triangle and Corner Line Segments. Let a, r, b be three consecutive corners
in H(r) and let Δarb be the triangle formed by these corners. Let xy be a line
parallel to ab passing through points x = length(ra)/8 and y = length(rb)/8 from
r in lines ra and rb, respectively. We say line xy is the triangle line segment and
denote it by TLSr.

Fig. 4. An illustration of (left) triangle line segment, where xy is TLSr and (right)
corner line segment, where x′y′ is CLSr.
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Let r′ be a robot inside Δarb. Let z be the point in rr′ at distance
length(rr′)/8 from r. Let x′y′ be a line parallel to ab (or xy) passing through
point z. We say line x′y′ is the corner line segment and denote it by CLSr. If
there are many robots inside Δarb, let r′ and r′′ be the robots inside Δarb that
are closest to ra and rb, respectively. CLSr is computed based on r′ or r′′ that
is closest to r. According to the definition of CLSr and TLSr, CLSr is parallel
to TLSr and CLSr is closer to r than TLSr (Fig. 4).

4 Algorithm

In this section, we outline our O(N) time algorithm for Complete Visibil-
ity; the pseudocode is omitted due to space constraints. The algorithm consists
of interior depletion (ID) and corner depletion (CD) procedures which work
together to make robots positioned on the corners of a N -vertex convex hull
(polygon) H and terminate. A special case in our algorithm is when initially all
robots in Q are collinear. This situation can be detected when a robot ri sees
at most two other robots rj , rk, and ri, rj , rk are collinear. If ri sees two other
robots rj , rk, then ri is not an endpoint robot of that line. Robot ri moves a
small distance δ > 0 directly perpendicular to line rjrk. For N ≥ 3, this move
of ri ensures that in the resulting configuration not all robots in Q are collinear.
(We omit the case of N ≤ 2 since the problem becomes trivial when N ≤ 2.)

Overview of the Algorithm. The ID procedure makes the robots in L1 (the
interior of H) move outward toward the perimeter of H (i.e., L0), and the CD
procedure makes the corner robots of H move inward (toward L1). The robots
in Q can easily determine whether they are corners of H or in its interior. If a
robot ri sees all robots in C(ri) are within an angle of < 180◦, ri realizes that
it is a corner robot of H and executes the CD procedure to move inward. If ri
does not see all robots in C(ri) within an angle of < 180◦, it realizes that it is
an interior robot and executes the ID procedure to move outward toward the
perimeter of H. The robots which are already on the edges of H (angle exactly
= 180◦) perform no action until they become corners of H.

The CD procedure for the corner robots of H is executed in such a way that
they remain as corners of H and at least one robot that is not the corner of
H (edge or interior) becomes a new corner of H. If there is at least one edge
robot in H, it becomes a new corner of H immediately after all the corners of
H move inward once. If there is no edge robot, at least one robot in L1 becomes
a new corner of H due to the ID procedure executed by the interior robots
(simultaneously with the corners of H). This all happens in a single round κ due
to the FSYNC setting. This is crucial since it allows us to guarantee the claimed
runtime of O(N) rounds. Figure 5 shows how an internal robot r′ in L1 become
a new corner of H after r′ moves to a point z′ and the corner v1 in H moves to
point z′′. A robot ri terminates as soon as it sees N corners in H(ri), i.e., all N
robots in Q are in the corners of H(ri) (ri can do this as it knows N).
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Fig. 5. An illustration of how a corner robot v1 ∈ H moves inward and an internal
robot r′ ∈ L1 moves outward toward v1. Both v1 and r′ move to CLSv1 (shown as xy
in the figure) where the position of r′ is the point z′ at length(v1r′)/8 from v1 in line
v1r′ and the position of v1 is the point z′′ that is midpoint of z′y with y being the
point of intersection of CLSv1 and v1v2.

Formally, let v1 be a corner robot of H and a, b be its left and right neighbors
in the boundary of H, respectively. Robot v1 executes the CD procedure as
follows.

– No robot inside Δav1b: Robot v1 moves to a position in TLSv1 .
– Robots inside Δav1b: Robot v1 moves to a position in CLSv1 .

Simultaneously at the same round, an internal robot r′ in L1 executes the
ID procedure as follows.

– Robot r′ is not inside Δav1b: Robot r′ moves to a position in the triangle
line segment TLSv1 (different than the one that will be occupied by v1).

– Robot r′ is inside Δav1b: Robot r′ moves to a position in the corner line
segment CLSv1 (different than the one that will be occupied by v1).

We then prove that when both v1 and r′ move to either TLSr or CLSr, v1
remains as a corner of H and r′ becomes a new corner of H. This provides the
progress guarantee of our algorithm.

For r′ to move outward toward v1, v1a and/or v1b must be the closest edge
to r′ and r′ is closest to v1 than a and/or b. In situations where there are robots
inside the triangular area divided by TLSv1 or CLSv1 towards v1, r′ may not
become a new corner of H even after it moves to TLSv1 or CLSv1 . In this
situation, we are able to show that some robot ̂r′ inside that triangular area will
become a new corner of H. Furthermore, r′ may not be able to compute CLSv1

when r′ does not see b (or a). But, what we are able to guarantee is that CLSv1

passes through the point that r′ moves to and this is sufficient for our algorithm.
Figure 5 shows how a corner robot v1 of H moves inward and a robot r′ in L1

inside triangle Δv2v1v3 moves outward toward v1 and both get positioned in two
distinct positions of CLSv1 (shown as line segment xy in the figure). The figure
also shows the positions z′ and z′′ that r′ and v1 occupy, respectively, in CLSv1 .
The point z′ is at distance length(v1r′)/8 from v1 in line v1r′ and the point z′′

is the midpoint of z′y with y being the intersection point of CLSv1 and v1v2.
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Note also that if two internal robots r′, r′′ closest to v1a and v1b move toward
corner v1, then our technique guarantees that at least one of r′, r′′ and v1 are
positioned in CLSv1 .

Note here that, if there is a side robot on an edge v1v2 in H(r) of a robot r
that is in the interior of H(r), then v1v2 is not considered as the closest edge (even
if it is closest to r among the other edges of H(r)). I.e., r does not move towards
v1 or v2. This is to handle the situations similar to the one shown in Fig. 6 so
that robots do not move towards each other and collide. In Fig. 6, robots a, b are
interior robots in their local hulls H(a) = (1, 2, 3, b) and H(b) = (a, 4, 5, 6). Since
edge 1b and 3b are the closest edges for a, and a6 and a4 are the closest edges
for b, if these edges are considered, a, b move towards each other and collide.
Therefore, our definition of the closest edge (Sect. 3) excludes these edges while
computing the closest edges for an interior robot to move to. The intuition is
that if a, b can not move then side robots first become corners and then a, b will
get chance to move.

a
2

b

1

3
4

5

6

Fig. 6. Interior robots do
not move toward edges
having side robots.

Each robot ri ∈ Q works autonomously having
only the information about C(ri). If H(ri) is not a
line segment for each ri ∈ Q, then the ID and CD
procedures start immediately. However, if H(ri) is a
line segment, then in one round, the procedure we use
for a collinear C0 transforms C0 into a non-collinear
configuration and the ID and CD procedures start in
the second round. The ID and CD procedures then
run until all robots of Q become corners of H. The
algorithm then terminates. We provide formal details
on how the ID and CD procedures work separately
below.

The Interior Depletion (ID) Procedure. Let r′ be an interior robot in
H(r′). The main idea is to determine a corner robot in H(r′) that r′ can move
closer to without colliding with other robots. Robot r′ may not be the robot
in L1 when it executes the ID procedure. However, in the analysis we will only
consider the moves of the robots in L1 outward toward L0 and this is sufficient
to prove the runtime claim for our algorithm.

Robot r′ finds whether such a corner robot exists in H(r′) by computing the
edge set Q(r′) and the corner robot set X(r′). Q(r′) is the set of edges of H(r′)
which is computed first. X(r′) is the set of corners of H(r′) which is computed if
and only if Q(r′) is non-empty. Note that if r′ finds Q(r′) empty at some round
κ ≥ 0, it does not move at that round.

Computing the Edge Set Q(r′). Q(r′) is essentially the set of closest edges
of r′ in H(r′). Robot r′ computes Q(r′) as follows: If any edge of H(r′) satisfies
the closest edge definition for r′ (Sect. 3), r′ includes that edge in the set Q(r′).
Therefore, Q(r′) includes all the edges of H(r′) that r′ is closest to. Note that the
edges with side robots are not considered in Q(r′). Note also that if r′ satisfies
the closest edge definition for (at least) one edge in H(r′), Q(r′) is non-empty.
For example, in Fig. 8, the edges v1v2 and v2v4 are in Q(r) for the robot r.
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Computing the Corner Set X(r′). X(r′) is essentially the set of corners of
H(r′) that are collinear with r′ in line

←→
br′ when r′ is inside Δabc formed by three

consecutive corners a, b, c of H(r′). According to this computation, corners a, b, c
of H(r′) will not be the members of X(r′). Robot r′ now have the following two
cases based on X(r′).

Fig. 7. An illustration of Case I2.1.1 in which an internal robot r with only one edge
v1v2 in Q(r) moves toward the closest corner v1 at point z = length(v1r)/8 from v1 in
v1r.

Fig. 8. An illustration of Case I2.1.2 in which an internal robot r with two edges
v1v2, v2v4 in Q(r) moves toward the common corner v2 at the intersection point z of
TLSv2 and v2r when it is outside Δv1v2v4.

Case I1: X(r′) is non-empty. Robot r′ picks an arbitrary robot rx in X(r′);
according to the computation of X(r′), rx is a corner of H(r′). It then finds a
corner robot rd in H(r′) that is collinear with r′ and rx, and moves toward rd
(note that when X(r′) is non-empty, rd exists for any rx ∈ X(r′)). According
to the computation of X(r′), r′ is inside Δardb of the corner rd of H(r′), where
a, b are left and right neighbor corners of rd in H(r′). Specifically, r′ computes
as destination the point z at distance length(rdr′)/8 from rd in rdr′ and moves
to z. The bottom of Fig. 3 illustrates these ideas, where an internal robot r in
H(r) moves toward b since r′ ∈ X(r).

Case I2: X(r′) is empty. There are two sub-cases based on whether r′ sees
(at least) one other robot in the interior of H(r′). We assume that r′ is the only
closest robot to each edge in Q(r′). We consider later when two or more robots
are equally closest to any edge of Q(r′).
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– Case I2.1: r′ sees at least one other robot in the interior of H(r′).
Robot r′ has three sub-cases to consider based on the size of Q(r′). We denote
size by |Q(ri)|.

• Case I2.1.1: |Q(r′)| = 1. Let v1v2 be the only edge in Q(r′) and let r′

be closest to v1 than v2. Robot r′ draws a line v1r′ from it to corner v1
and moves to point z at distance length(v1r′)/8 from v1 in v1r′.
Figure 7 illustrates this move for an internal robot r with |Q(r)| = 1 to
point z towards v1 in edge v1r.

• Case I2.1.2: |Q(r′)| = 2. Let b be the common endpoint of the two edges
ab, bc in Q(r′); robot b exists since the edges in Q(r′) are the consecutive
edges of H when |Q(r′)| ≥ 2. Robot r′ moves toward b as follows: If r′ is
inside the triangle Δabc, it moves to a point z at distance length(br′)/8
from b in br′. If it is outside Δabc, it moves to the intersection point z
of lines TLSb and br′. Figure 8 provides an illustration of this move for
an internal robot r in H(r) (when |Q(r)| = 2 and r is outside Δv1v2v4)
towards the common endpoint v2.

• Case I2.1.3: |Q(r′)| ≥ 3. Robot r′ chooses an interior robot in H(r′)
arbitrarily. Let rj be that robot. We have that rj 	= r′. Robot r′ then
draws a line

←→
rjr

′. Let e be an edge of H(r′) that
←→
rjr

′ intersects. Let the
intersection point be z. If e ∈ Q(r′), r′ finds the endpoint of e that is
closest from z and moves closer to that endpoint similar to Case I2.1.2.

– Case I2.2: Robot r′ sees no other robot in the interior of H(r′). In
this case, Q(r′) has all the edges of H(r′). Therefore, r′ picks an arbitrary
corner of H(r′) and moves closer to that robot similar to Case I2.1.2.

There are situations in Case I2.1 where more than one robot is equally closest
to an edge v1v2 ∈ Q(r′). In this case, r′ draws a line that connects it to the
midpoint m of v1v2. It then checks in which half-plane the other equally closest
robot to v1v2 belongs to. After that, r′ chooses the endpoint of v1v2 in the
another half-plane and moves closer to that endpoint. Figure 9 illustrates the
move of the internal robot r towards v2 (although it is closer to v1) due to the
presence of the other equidistant robot r′ in the half-plane divided by line rm
towards v1.

Fig. 9. An illustration of a special situation in Case I2.1 where the internal robot
r moves towards v2 (although it is closer to v1) due to the presence of the other
equidistant robot r′ towards v1.
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The Corner Depletion (CD) Procedure. Let v1 be a corner robot in H (or
L0). The main idea is to determine a point in the interior of H such that when
v1 moves to that point in some round κ, it remains as a corner robot of L0 and
either a robot in an edge of L0 (if there exists one) or a robot in the interior of
H (that moves toward L0 due to the ID procedure) becomes a new corner of H
at the same round κ.

A corner robot v1 of L0 (or H) moves inward as follows. Let a, b be the
left and right neighbors of v1, respectively, in the perimeter of L0. Robot v1
moves inside the triangle Δav1b in the corner line segment CLSv1 or triangle
line segment TLSv1 depending on whether there is (at least) one robot inside
Δav1b or not.

To compute the exact point z′′ in CLSv1 or TLSv1 to move to, v1 finds two
robots r′, r′′ in the interior of L0, one closest to the edge v1a and the other
closest to the edge v1b. It then draws two lines L′, L′′, one perpendicular to
v1a and another perpendicular to v1b, passing through the midpoints of v1a
and v1b, respectively. Let HP ′,HP ′′ be two half-planes divided by lines L′, L′′,
respectively, such that v1 is in those half-planes. We have three different cases
for ri for the computation of the point z′′ based on whether r′ ∈ HP ′ and
r′′ ∈ HP ′′, or not.

– Case C1: Robot r′ ∈ HP ′ and r′′ ∈ HP ′′. There are three different sub-
cases for v1 based on whether r′, r′′ are inside triangle Δav1b or not.

• Case C1.1: Both r′, r′′ are inside Δav1b. Robot ri chooses the closest
robot between r′ and r′′ (the closest internal robot definition). Let r′ be
that robot. Robot v1 computes CLSv1 . Let z′ be the intersection point of
v1r′ and CLSv1 . Moreover, let y be the intersection point of CLSv1 and
v1b. Robot v1 then moves to the midpoint z′′ of line segment z′y. Figure 5
shows how the corner v1 of L0 moves to point z′′ inside Δv3v1v2 in the
corner line segment CLSv1 (shown as xy in the figure) when r′ is inside
Δv3v1v2.

• Case C1.2: Either of r′, r′′ is inside Δav1b. Let r′ be the robot inside
Δav1b. Robot v1 moves as in Case C1.1 to point z′′.

• Case C1.3: Neither of r′, r′′ is inside Δav1b. Robot v1 computes the
triangle line segment TLSv1 . It then finds point z′ as the intersection
point of the line segment v1r′′ (that connects v1 to the robot r′′ that is
closest to the edge v1b) and TLSv1 , and moves to the midpoint z′′ of z′y.

– Case C2: Robot r′ ∈ HP ′ or r′′ ∈ HP ′′. Say r′ ∈ HP ′ and r′′ /∈ HP ′′.
There are two different sub-cases for v1 based on whether r′ is inside Δav1b
or not (similar to Case C1).

• Case C2.1: Robot r′ is inside Δav1b. Robot v1 moves similarly as
in Case C1.2. Figure 5 depicts this case where r′ is inside Δv3v1v2 and
r′′ /∈ HP ′′.

• Case C2.2: r′ is not inside Δav1b. Robot v1 moves similar to Case
C1.3.

– Case C3: Robot r′ /∈ HP ′ and r′′ /∈ HP ′′. Robot v1 moves similar to Case
C1.3.
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In some situations, > 1 robots may be closest to v1a and/or v1b. In this case,
v1 chooses as r′ the internal robot that is closest to it among all the robots that
are closest to v1a. This applies analogously for r′′ that is closest to v1b. E.g., in
Fig. 5, v1 chooses r′ as the closest to it since r′ is closest to it than the other
equidistant robot r to v1v2.

5 Analysis of the Algorithm

Overview of the Analysis. The main goal is to show that in each round κ ≥ 0,
at least one robot either on any side of L0 or on corners and sides of L1 becomes
a new corner of L0. This will immediately give the claimed runtime of O(N) for
our algorithm. Since robots know N , after all robots in Q become corners of L0,
each robot can decide on its own (without communicating with other robots)
Complete Visibility is solved and terminate its computation. To prove the
above claim, we first show that at least one robot in L1 moves outward toward
L0 in each round κ ≥ 0 (Lemma 11). We then prove that in the same round κ
due to the moves of corner robots of L0 inward toward L1, a robot in any side of
L0 or in the corners or sides of L1 becomes a new corner of L0 (Theorem 2). We
also show that the corner robots of L0 remain as corners of L0 even after they
have moved toward L1 (Lemma 13). We then prove that this indeed happens
without collisions in every round κ (Theorem 3). This altogether provides the
O(N) runtime for our algorithm avoiding collisions (Theorem1).

Detailed Analysis of the Algorithm. We start with the following lemmas.
Recall that ̂Q denotes the interior robots of H.

Lemma 3. If | ̂Q| ≥ 2 in any round κ, then there are at least 2 corner robots
in L1.

Lemma 4. If |Q1| ≥ 2 in any round κ, then at least 2 corner robots in L1 must
find at least one edge in L0 the closest to them.

Let r′ be a corner in L1 that satisfies Lemma 4. We show that r′ includes in
Q(r′) the edge of L0 that it finds closest to. Note that r′ computes Q(r′) based
only on H(r′).

Lemma 5. If | ̂Q| ≥ 2 at any round κ, at least 2 corner robots of L1 have at
least one edge of L0 in their edge set Q(∗).

We have the following observation when |Q(ri)| ≥ 2.

Observation 1. For any round κ, if |Q(r′)| ≥ 2 for a robot r′ ∈ ̂Q, then all the
edges of Q(r′) are the consecutive edges in H(r′).

Definition 1. A corner robot r′ ∈ L1 is called eligible-layer-1-corner robot if at
least one edge of L0 is in Q(r′).
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We have from Definition 1 and Lemma 5 that, when | ̂Q| ≥ 2, there are at
least 2 eligible-layer-1-corner robots in L1.

We now focus on the eligible-layer-1-corner robots. We show that, in any
round κ, at least one eligible-layer-1-corner robot moves toward L0. We differ-
entiate the cases of |Q(r′)| = 1, |Q(r′)| = 2, and |Q(r′)| ≥ 3 for an eligible-layer-
1-corner robot r′.

Lemma 6. In any round κ, if |Q(r′)| = 1 for an eligible-layer-1-corner r′, then
the only edge of Q(r′) is an edge of L0.

Lemma 7. In any round κ, if |Q(r′)| ≥ 2 for an eligible-layer-1-corner r′, then
at least one edge of Q(r′) is an edge of L0.

We are now ready to prove Lemma 8. We will need this lemma to prove
Lemma 11.

Lemma 8. If | ̂Q| ≥ 3 in any round κ, then there is an eligible-layer-1-corner
robot r′ ∈ L1 that sees a robot r ∈ ̂Q as internal in H(r′), where r′ 	= r.

We now consider the case of | ̂Q| = 2. Both the robots ri, rj ∈ ̂Q are eligible-
layer-1-corner robots (Lemma 5). Moreover, both ri, rj ∈ L1. Therefore, if ri sees
rj (or rj sees ri) as internal in H(ri) (or H(rj)), then we have Lemma 8. We prove
the following lemma if ri does not see rj as internal in H(ri) (or vice-versa).

Lemma 9. If | ̂Q| = 2 in any round κ and ri ∈ ̂Q does not see rj ∈ ̂Q as internal
in H(ri) (and vice-versa), then both ri, rj are collinear with two corner robots,
say v3, v4, of L0. Moreover, ri (or rj) is inside triangle Δav3b and rj (or ri) is
inside triangle Δa′v4b′, where a, b, a′, b′ are the left and right neighbors of v3, v4,
respectively, in the boundary of L0.

The following lemma bounds the size of the corner set X(ri).

Lemma 10. In any round κ, for any eligible-layer-1-corner ri, |X(ri)| ≤ 1 and
if |X(ri)| = 1, ri is inside triangle Δav3b of a corner v3 of L0, where a, b are
the left and right neighbors of v3 in the boundary of L0.

We are now ready to prove the crucial lemma for the progress guarantee.

Lemma 11. If ̂Q 	= ∅ in any round κ, at least one eligible-layer-1-corner robot
ri moves toward L0 at that round.

We prove the following on the positions of robots in L1 after they move
toward L0.

Lemma 12. In any round κ, let all the robots in L0 be corners (i.e., there are
no side robots in L0). Let v1 be a corner in L0, and a, b be its left and right
neighbors, respectively, in the boundary of L0. Let r′, r′′ be the robots in L1

that are closest to v1a, v1b, respectively, with r′ being closer to v1 than r′′. Let
TLSv1 (or CLSv1) be a line parallel to ab depending on whether r′ is outside
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Δav1b (or inside Δav1b). Let w,w′ be the intersection points of lines TLSv1 (or
CLSv1), v1r′ and TLSv1 (or CLSv1), v1r′′, respectively, and let PL′, PL′′ be
the lines parallel to v1a, v1b passing through w,w′, respectively. The robots in L1

moving toward corner v1 do not cross lines PL′, PL′′.

Each corner robot v1 in L0 also moves inward in round κ of the algorithm
simultaneously with the robots of L1 moving outward toward L0 at that round
κ. We prove that any corner v1 in L0 always remains as a corner of L0 during
the execution.

Lemma 13. In any round κ, a corner robot v1 of L0 remains as a corner of L0.

The following theorem provides the progress guarantee for our algorithm.

Theorem 2. In each round κ, either an edge robot in L0 or a robot in L1

becomes a new corner of L0.

We now prove that the algorithm is collision-free. Note that the initial con-
figuration C0 is collision-free since each robot in Q is in distinct positions of R2.

Theorem 3. The algorithm is collision-free.

We are now ready to prove our main result, Theorem1.

Proof of Theorem 1. Starting from any non-collinear initial configuration C0,
we have from Theorem 2 that, in every round κ, at least one robot in the interior
of L0 becomes a new corner of L0 while executing the algorithm. Therefore, since
we have N robots in Q, the algorithm solves Complete Visibility in at most
N rounds. The execution is collision-free (Theorem 3).

We now show that starting from any initial collinear configuration C0, C0

converts to a non-collinear configuration in a single round. Consider N ≥ 3;
the case of N ≤ 2 is trivial. Given C0, H0 is a line for each robot ri ∈ Q,
two endpoint robots of H0 see only one other robot, and the remaining robots
of H0 see exactly two other robots (one on their left and one on their right).
All the robots except the two endpoint robots move perpendicular to H0 by
a small distance δ > 0 simultaneously in the first round. As the endpoints
of H0 do not move, when N ≥ 3, the robots now do not see a line segment
H0 anymore. Therefore, the configuration C1 after the first round does not
revert back to a collinear configuration. The first round is collision-free since
robots move perpendicularly to H0 and the line segment H0 is the same for
each robot. �

6 Concluding Remarks

We have presented the first algorithm with runtime O(N) for the Complete
Visibility problem for classic oblivious robots in the FSYNC setting. This is
a significant improvement over the runtime lower bound of Ω(N2) of the only
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previous algorithm [1]. For the future work, it will be interesting to extend our
algorithm to handle non-rigid moves and also to the SSYNC and ASYNC set-
tings. Moreover, it will be interesting to prove a generic lower bound that applies
to any Complete Visibility algorithm. Furthermore, it will be interesting to
combine both obstructed and limited visibility for classic oblivious robots, which
might lead to more difficult technical problems.
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Abstract. We propose two algorithms for the gathering problem of k
mobile agents in asynchronous Byzantine environments. For both algo-
rithms, we assume that graph topology is arbitrary, each node is equipped
with an authenticated whiteboard, agents have unique IDs, and at most
f weakly Byzantine agents exist. Under these assumptions, the first algo-
rithm achieves the gathering without termination in O(m + fn) moves
per agent (m is the number of edges and n is the number of nodes). The
second algorithm achieves the gathering with termination in O(m + fn)
moves per agent by additionally assuming that agents on the same node
are synchronized, f < � 1

3
k� holds, and agents know k. To the best of

our knowledge, this is the first work to address the gathering problem of
mobile agents for arbitrary topology networks in asynchronous Byzantine
environments.

1 Introduction

Distributed systems, which are composed of multiple computers (nodes) that can
communicate with each other, have become larger in scale recently. This makes
it complicated to design distributed systems because developers must maintain
a huge number of nodes and treat massive data communication among them. As
a way to mitigate the difficulty, (mobile) agents have attracted a lot of attention
[2]. Agents are software programs that can autonomously move from a node to a
node and execute various tasks in distributed systems. In systems with agents,
nodes do not need to communicate with other nodes because agents themselves
can collect and analyze data by moving around the network, which simplifies
design of distributed systems. In addition, agents can efficiently execute tasks
by cooperating with other agents. Hence many works study algorithms to realize
cooperation among multiple agents.

The gathering problem is a fundamental task to realize cooperation among
multiple agents. The goal of the gathering problem is to make all agents meet
at a single node. By achieving gathering, all agents can communicate with each
other at the single node.
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A. Podelski and F. Täıani (Eds.): NETYS 2018, LNCS 11028, pp. 85–99, 2019.
https://doi.org/10.1007/978-3-030-05529-5_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05529-5_6&domain=pdf
https://doi.org/10.1007/978-3-030-05529-5_6


86 M. Tsuchida et al.

However, since agents themselves move on the distributed system and might
be affected by several nodes that they visit, some of agents might be cracked
and do not follow the algorithm. We call such agents Byzantine agents. An
Byzantine agent is supposed to execute arbitrary operations without following
an algorithm. In this paper, we propose two algorithms that can make all correct
agents meet at a single node regardless of the behavior of Byzantine agents.

1.1 Related Works

The gathering problem has been widely studied in literature [13,16]. Table 1
summarizes some of the results. In this table, we show the number of moves
for an agent as the time complexity for asynchronous models. These works aim
to clarify solvability of the gathering problem in various environments, and, if
it is solvable, they aim to clarify optimal costs (e.g., time, number of moves,
and memory space) required to achieve the gathering. To clarify solvability and
optimal costs, many studies have been conducted under various environments
with different assumptions on synchronization, anonymity, randomized behavior,
topology, and presence of node memory (whiteboard).

Table 1. Gathering of agents with unique IDs in graphs (n is the number of nodes, l is
the length of the smallest ID of agents, τ is the maximum difference among activation
times of agents, m is the number of edges, λ is the length of the longest ID of agents,
fu is the upper bound of the number of Byzantine agents, D is the diameter of the
graph, f is the number of Byzantine agents).

Synchronicity Graph Byzantine Whiteboard Termination Time complexity

[8]a Synchronous Arbitrary Absence None Possible Õ(n5√
τl + n10l)

[12]a Synchronous Arbitrary Absence None Possible Õ(n15 + l3)

[18]a Synchronous Arbitrary Absence None Possible Õ(n5l)

[9] Synchronous Arbitrary Presence None Possible Õ(n9λ)

[19] Synchronous Arbitrary Presence Authenticated Possible O(fum)

[7]a Asynchronous Infinite lines Absence None Possible O((D + λ)3)

[7]a Asynchronous Rings Absence None Possible O((nλ))

[10]a Asynchronous Arbitrary Absence None Possible poly(n, l)

Trivial Asynchronous Arbitrary Absence Existence Possible O(m)

Proposed 1 Asynchronous Arbitrary Presence Authenticated Impossible O(m + fn)

Proposed 2 Asynchronousb Arbitrary Presence Authenticated Possible O(m + fn)
aThis algorithm is originally proposed for a rendezvous problem (i.e., gathering of two agents).

However, it can be easily extended to the gathering problem by a technique in [12] and its time

complexity is not changed.
bAgents on a single node are synchronized.

For synchronous networks, many deterministic algorithms to achieve the
gathering have been proposed [1,8,12,18]. If agents do not have unique IDs,
they cannot gather in symmetric graphs such as rings because they cannot break
symmetry. Therefore, some works [8,12,18] assume unique IDs to achieve the
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gathering for any graph. Dessmark et al. [8] proposed an algorithm that realizes
gathering in Õ(n5

√
τ l+n10l) unit times for any graph, where n is the number of

nodes, l is the length of the smallest ID of agents, and τ is the maximum differ-
ence between activation times of two agents. Kowalski et al. [12] and Ta-Shma
et al. [18] improved the time complexity to Õ(n15 + l3) and Õ(n5l) respectively,
which are independent of τ . On the other hand, some works [4,5,11] studied the
case that agents have no unique IDs. In this case, gathering is not solvable for
some graphs and initial positions of agents. So the works proposed algorithms
only for solvable graphs and initial positions. They proposed memory-efficient
gathering algorithms for trees [5,11] and arbitrary graphs [4].

If a whiteboard exists on each node, the time required for gathering can
be significantly reduced. Whiteboards are areas prepared on each node, and
agents can leave information to them. For example, when agents have unique
IDs, they can write their IDs into whiteboards on their initial nodes. Agents
can collect all the IDs by traversing the network [14], and they can achieve the
gathering by moving to the initial node of the agent with the smallest ID. This
trivial algorithm achieves the gathering in O(m) unit times, where m is the
number of edges. On the other hand, when agents have no unique IDs, gathering
is not trivial even if they use whiteboards and randomization. Ooshita et al.
[15] clarified the relationship between solvability of randomized gathering and
termination detection in ring networks with whiteboards.

Recently, some works have considered gathering in the presence of Byzantine
agents in synchronous networks [1,9,19]. Byzantine agents can make an arbitrary
behavior without following the algorithm due to system errors, cracking, and
so on. Dieudonné et al. [9] proposed an algorithm to achieve the gathering in
Byzantine environments in Õ(n9λ) unit times, where λ is the length of the longest
ID of agents. Bouchard et al. [1] minimized the number of correct agents required
to achieve the gathering, but the time required for gathering is exponential of
the number of nodes and labels of agents. Tsuchida et al. [19] reduced the time
complexity to O(fum) unit times by using authenticated whiteboards, where fu

is the upper bound of the number of Byzantine agents and m is the number of
edges. They used authenticated whiteboards for each node, in which each agent
is given a dedicated area to write information and it can write information with
its signature.

For asynchronous networks, many works consider the gathering problem with
additional assumptions. De Marco et al. [7] proposed an algorithm to achieve the
gathering of two agents in asynchronous networks without considering Byzantine
agents. They considered infinite lines and rings under the assumption that agents
have unique IDs and can meet inside an edge. In infinite lines, their algorithm can
achieve the gathering in O((D + λ)3) moves, where D is the distance between
two agents in the initial configuration. In rings, they proposed an algorithm
to achieve the gathering in O(nλ) moves. Dieudonné et al. [10] considered a
gathering problem for arbitrary graphs under the same assumptions as [7]. They
realized a gathering in polynomial moves of the number of nodes and the length
of the minimum ID of agents.
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Das et al. [6] assumed the ability of Byzantine agents different from works in
[1,9,19], and they realized the gathering in asynchronous ring and mesh networks
with Byzantine agents. In their model, correct agents can distinguish Byzantine
agents. In addition, correct agents and Byzantine agents can neither meet on
the same node nor pass each other on edges. Das et al. proposed an algorithm
to achieve the gathering in O(n) moves in this model.

Pelc [17] considered the gathering problem with crash faults under a weak
synchronization model. Pelc considered a model in which each agent moves at a
constant speed, but the moving speed is different. That is, although each agent
has the same rate clock, the agent cannot know the number of clocks required
for movement of other agents. In this work, some agents may become crashed,
that is, they may fail and stop at a node or an edge. Under this assumption,
Pelc proposed algorithms to achieve the gathering in polynomial time for two
cases: agents stop with or without keeping their memory contents.

In other failure models, Chalopin et al. [3] considered a gathering problem
with an asynchronous model in which not agents but edges of the networks
become faulty. Chalopin et al. considered the case that some of the edges in the
network are dangerous or faulty such that any agent travelling along one of these
edges would disappear. They proposed an algorithm to achieve the gathering in
O(m(m + k)) moves in this model and they proved that this cost is optimal,
where k is the number of agents.

1.2 Our Contributions

In this work, we propose two algorithms to achieve the gathering in asynchronous
networks with Byzantine agents. In the first algorithm, we adopt the same model
as Tsuchida et al. [19] except synchronicity. That is, Byzantine agents exist in
an asynchronous network, and an authenticated whiteboard is equipped on each
node. Since most of recent distributed systems are asynchronous, we can apply
the proposed algorithm to many systems compared to previous algorithms for
synchronous networks. To the best of our knowledge, there are no previous works
for asynchronous networks with Byzantine agents. If Byzantine agents do not
exist, we can use the trivial algorithm with whiteboards in asynchronous net-
works. That is, agent can achieve the gathering in O(m) moves by using white-
boards in asynchronous networks. However, this trivial algorithm does not work
when Byzantine agents exist. The first algorithm achieves the gathering with-
out termination in at most 2m + 4n + 10fn = O(m + fn) moves per agent by
using authenticated whiteboards even if Byzantine agents exist in asynchronous
networks. Note that this algorithm can also work in synchronous environments,
and achieve the gathering earlier than the algorithm in [19]. On the other hand,
the algorithm in [19] achieves the gathering with termination. This means the
first algorithm reduces the time complexity by sacrificing termination detection.

The second algorithm realizes gathering with termination by putting addi-
tional assumptions. By realizing termination, it is possible to notify the upper
layer application of the terminating, which simplifies design of distributed sys-
tems. In order to realize this, we assume that agents on the same node are



Gathering of Mobile Agents in Asynchronous Byzantine Environments 89

synchronized. This assumption is practical and easy to implement because, in
many mobile agent systems, each node can control activation times of agents
on the node. In addition, we assume f < � 1

3k� holds and agents know k. Under
these assumptions, this algorithm achieves the gathering with termination in
O(m + fn) moves per agent. Compared to the first algorithm, this algorithm
realizes termination detection without additional moves. When we apply the
second algorithm to synchronous networks, the algorithm achieves the gather-
ing with termination earlier than the algorithm in [19]. This means, by putting
additional assumptions (f < � 1

3k� and each agent knows k), we can improve the
time complexity for the gathering with termination in synchronous networks.

2 Preliminaries

2.1 A Distributed System

A distributed system is modeled by a connected undirected graph G = (V,E),
where V is a set of nodes and E is a set of edges. The number of nodes is denoted
by n = |V |. When (u, v) ∈ E holds, u and v are adjacent. A set of adjacent nodes
of node v is denoted by Nv = {u|(u, v) ∈ E}. The degree of node v is defined
as d(v) = |Nv|. Each edge is labeled locally by function λv : {(v, u)|u ∈ Nv} →
{1, 2, · · · , d(v)} such that λv(v, u) �= λv(v, w) holds for u �= w. We say λv(v, u)
is a port number (or port) of edge (v, u) on node v.

Each node does not have a unique ID. Each node has an (authenticated)
whiteboard where agents can leave information. Each agent is assigned a dedi-
cated writable area in the whiteboard, and the agent can write information only
to that area. On the other hand, each agent can read information from all areas
(including areas of other agents) in the whiteboard.

2.2 A Mobile Agent

Multiple agents exist in a distributed system. The number of agents is denoted
by k, and a set of agents is denoted by A = {a1, a2, · · · , ak}. Each agent has
a unique ID, and the ID of agent ai is denoted by IDi. In the first algorithm
(Sect. 3), each agent knows neither n nor k. In the second algorithm (Sect. 4),
each agent knows k but does not know n.

Each agent is modeled as a state machine (S, δ). The first element S is a set
of agent states, where each agent state is determined by values of variables in
its memory. The second element δ is the state transition function that decides
the behavior of an agent. The input of δ is the states of all agents on the current
node, the content of the whiteboard in the current node, and the incoming
port number. The output of δ is the next agent state, the next content of the
whiteboard, whether the agent stays or leaves, and the outgoing port number if
the agent leaves.
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We assume activations of agents are scheduled by an adversary. The adversary
chooses one or more agents at one time, and each selected agent executes an
atomic operation at the same time. The atomic operation of an agent selected
by the adversary is shown below.

– If agent is selected at node v, ai executes the following operations as an atomic
operation. First, ai takes a snapshot, that is, ai gets states of all agents at v
and contents of the whiteboard at v. After that, ai changes its own state and
the content of the dedicated writable area in the whiteboard at v. Moreover,
if ai decides move to an edge as a result of the local computation, it leaves v.

– If agent aj is selected at edge e, aj arrives at the destination node as an
atomic operation. That is, aj arrive at node.

In the first algorithm (Sect. 3), we assume that agents operate in an asyn-
chronous manner. To guarantee a progress, we assume that for any agent a, the
adversary chooses a infinitely many times. In the second algorithm (Sect. 4), we
assume that agents on the same node are synchronized. That is in addition to
the above assumption, we assume that, if the adversary selects an agent a at a
node v, it selects all agents at the node v at the same time.

In the initial configuration, each agent stays at an arbitrary different node.
We assume that each agent makes an operation on its starting node earlier than
other agents. That is, we assume that the adversary selects all agents at the
same time in the beginning of an execution.

2.3 Signature

Each agent ai can make a signed information that guarantees its ID IDi and its
current node v by a signature function Signi,v(). That is, any agent identifies an
ID of the signed agent and whether it is signed at the current node or not from
the signature. We assume ai can use signature function Signi,v() at only v. We
call the output of signature function a marker, and denote a marker signed by
ai at node v by markeri,v. The marker’s signature cannot be counterfeited, that
is, an agent ai can use a signature function Signi,v() at v but cannot compute
Signj,u() for either i �= j or v �= u when ai stay at v. Any agents can copy the
marker and can paste any whiteboard, but cannot modify it while keeping its
validity.

In this paper, when algorithms treats a marker, it first checks the validity of
signatures and ignores the marker if it includes wrong signatures. We omit this
behavior from descriptions, and assume all signatures of every marker are valid.

When ai creates the signed marker at node v, the marker contains IDi and
information of the node v. That is, when an agent finds a signed marker, it can
identify (1) the ID of the agent that created it and (2) whether it is created at the
current node or not. Therefore, it is guaranteed that signed marker markeri,v

is created by ai at v. When the agent aj stays at node v, aj can recognize that
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markeri,v was created at v, and when aj stays at node u(�= v), aj can recognize
that it was created at another node.

2.4 Byzantine Agents

Byzantine agents may exist in a distributed system. Each Byzantine agent
behaves arbitrarily without following the algorithm. However, each Byzantine
agent cannot change its ID. In addition, even if agent ai is Byzantine, ai cannot
compute Signj,u()(i �= j or v �= u) at node v, and therefore ai cannot create
markerj,u(i �= j or v �= u). In this paper, we assume that each agent do not
know number of Byzantine agents exist. We assume f Byzantine agents exist.
In the second algorithm, we assume f < � 1

3k� holds.

2.5 The Gathering Problem

We consider two types of gathering problems, gathering without termination
and gathering with termination. We say an algorithm solves gathering without
termination if all correct agents meet at a single node and continue to stay
at the node after a certain point of time. In the second problem, we require
agents to declare termination. Once an agent declares termination, it can neither
change its state nor move to another node after that. We say an algorithm
solves gathering with termination if all correct agents meet at a single node and
declare termination at the node. We assume that, in the initial configuration,
each agent stays at an arbitrary different node. To evaluate the performance of
the algorithm, we consider the maximum number of moves required for an agent
to achieve the gathering.

2.6 Procedure DFS

In this subsection, we introduce a procedure depth-first search (DFS) used in our
algorithm. The DFS is a well-known technique to explore a graph. In the DFS,
an agent continues to explore an unexplored port as long as it visits a new node.
If the agent visits an already visited node, it backtracks to the previous node
and explores another unexplored port. If no unexplored port exists, the agent
backtracks to the node from which it enters the current node for the first time.
By repeating this behavior, each agent can visit all nodes in 2m moves, where m
is the number of edges. Note that, since each agent can realize the DFS by using
only its dedicated area on whiteboard, Byzantine agents cannot disturb the DFS
of correct agents. In this paper, when algorithms executes DFS, each agent use
only its dedicated area on whiteboard. We omit this area on whiteboard.



92 M. Tsuchida et al.

3 Gathering Algorithm Without Declaring Termination

In this section, we propose an algorithm that solves gathering without termina-
tion. Here, we assume agents operate in an asynchronous manner. In addition,
f Byzantine agents exist and each agent does not know n, k or f .

3.1 Our Algorithm

Overview. First, we give an overview of our algorithm. This algorithm achieves
the gathering of all correct agents in asynchronous networks even if Byzantine
agents exist. The basic strategy of the algorithm is as follows.

When agent ai starts the execution on node vstart, ai creates a marker
makreri,vstart

indicating that ai starts from node vstart. We call this marker
a starting marker. This marker contains information on the ID of the agent and
the node where ai creates the marker. In this algorithm, all agents share their
starting markers and then meet at the node where the agent with the minimum
ID creates the starting marker.

To share the starting marker, ai executes DFS and leaves a copy of the marker
to all nodes. When agent ai sees other agents’ markers, ai stores the markers
to its own local variable. After agent ai finishes the DFS and returns to vstart,
ai has all markers of correct agents and may have some markers of Byzantine
agents. After that, ai selects the marker markermin,vmin

which was made by the
agent amin with the minimum ID. If Byzantine agents do not exist, agent ai can
achieve the gathering by moving to node vmin where the marker markermin,vmin

is created.
However, if Byzantine agents exist, they may interfere with the gathering in

various ways. For example, Byzantine agents might not make their own starting
markers, they might write and delete starting markers so that only some correct
agents can see the markers, or they might create multiple starting markers. By
these operations, agents may calculate different gathering nodes. To overcome
this problem, in this algorithm, each agent shares information on the starting
marker created by the agent with the minimum ID with all agents to get a
common marker. If all correct agents get a common marker of the minimum ID
agent, they can calculate the same gathering node. However, while agents share
the markers, Byzantine agents may make new markers to interfere with sharing.
If agent share all markers of Byzantine agents, they may move infinite times to
share the markers because Byzantine agents can create markers infinite times. To
prevent from such interference, each agent also shares an blacklist. The blacklist
is a list of Byzantine agents’ IDs. If the markers and the blacklists are shared,
correct agents can identify the common marker that is created by the agent with
the minimum ID among the agents not in the blacklist. We explain how agents
identify Byzantine agents. When ai calculates a gathering node and moves to
that node for the first time, ai refers the marker markermin,v created by the
agent amin with minimum ID. If other agents copy marker markermin,u(v �= u)
and paste it to the node v, ai can judge that the two markers markermin,v and
markermin,u were created by the same ID agent.
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Algorithm 1. Algorithm code of agent ai. The node v indicates the node which
ai is staying.
1: markeri,v = Signi,v(), ai.marker = markeri,v, ai.All = ∅, ai.state = explore

2: while ai is executing DFS do
3: v.wb[IDi] = {ai.marker}
4: ai.All = ai.All ∪ ⋃

id v.wb[id]
5: Store network topology
6: Move to the next node by DFS
7: end while
8: ai.tmin = null, ai.min = ∞, ai.Byz = ∅, ai.TByz = ∅
9: while True do

10: ai.All = ai.All ∪ ⋃
id v.wb[id]

11: min tmp = min{writer(t) : t ∈ ai.All ∧ writer(t) /∈ ai.Byz}
12: if ai.min > min tmp then
13: ai.state = explore

14: ai.tmin = t s.t. t ∈ ai.All ∧ writer(t) == min_tmp
15: ai.min = min tmp
16: while ai goes around the network do
17: v.wb[IDi] = v.wb[IDi] ∪ {ai.tmin}
18: Move to the next node
19: end while
20: Move to the node where ai.tmin is created
21: else
22: if ∃x : x ∈ ai.All ∧ writer(x) == ai.min ∧ node check(x) == false then
23: ai.state = explore

24: ai.TByz = {x, ai.tmin}
25: while ai goes around the network do
26: v.wb[IDi] = v.wb[IDi] ∪ ai.TByz

27: Move to the next node
28: end while
29: ai.Byz = ai.Byz ∪ ai.min
30: ai.min = ∞
31: else
32: ai.state = gather

33: Stay at the node v
34: end if
35: end if
36: end while

Since the starting marker has been signed, each agent cannot camouflage the
starting marker of other agents. In addition, correct agents create the markers
only once when they start the algorithms. Therefore, when there are two starting
markers markermin,v and markermin,u(v �= u) created by single agent amin, ai

can distinguish that amin is a Byzantine agent. When ai understands that amin

is a Byzantine agent, ai adds IDmin to the blacklist and shares IDmin with
all agents as a member of the blacklist. To share IDmin, agent ai shares two
starting markers created by the Byzantine agent amin. That is, ai copies amin’s
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two markers and paste them to all the nodes so that all other agents also judge
that amin is a Byzantine agent. After that, all correct agents ignore all markers
of amin and identify the marker created by the agent with the minimum ID
among the agents not in the blacklist. By these operations, all agents can select
the node with the marker as the common gathering node.

Since we consider an asynchronous network, agent ai does not know when
other agents write starting marker on the whiteboard. For this reason, after ai

moves to the gathering node, ai continues to monitor the whiteboard and check
the presence of new markers. When ai finds a new agent with the minimum ID
or Byzantine agents, ai repeats the above operation.

Details of the Algorithm. The pseudo-code of the algorithm is given in Algo-
rithm1. We denote by v.wb[IDi] the dedicated writable area of agent ai in the
whiteboard on node v. Agent ai manages the local variables ai.All, ai.state,
ai.min, ai.tmin and ai.Byz. Variable ai.All stores all the markers observed
by ai. Variable ai.state stores explore or gather. When ai.state = gather
holds, ai arrives at the current gathering node and waits for other agents. When
ai.state = explore holds, ai is currently computing the gathering node or mov-
ing to the node. Variable ai.tmin stores the marker created by an agent with mini-
mum ID except Byzantine agents’ ID that ai has observed so far. Variable ai.min
stores the ID of the agent that created ai.tmin. Variable ai.Byz is a blacklist, that
is, it stores Byzantine agent IDs that ai has confirmed so far. The initial values of
these variables are ai.All = ∅, ai.state = explore, ai.min = ∞, ai, tmin = null
and ai.Byz = ∅. In addition, function writer(markeri,v) returns i, that is, the
ID of the agent that creates markeri,v. Function node check(markeri,v) returns
true if markeri,v was created on the current node, and otherwise returns false.

Recall that, in an atomic operation, an agent obtains the snapshot, updates
its state and the whiteboard, and then, possibly leaves the node. In the pseudo-
code, each agent executes the operations as an atomic operation until it leaves
(lines 6, 18, 20 and 27) or it decides to stay (line 33). When an agent reads
from the whiteboard, it uses the snapshot taken at the beginning of an atomic
operation.

When ai starts the algorithm, it makes starting marker markeri,v = Signi,v()
and becomes explore (line 1). After ai creates the starting marker, in order to
inform other agents about the marker, ai executes DFS and copies the marker and
pastes it to all nodes (line 2 to 7). On every node, ai adds other agent’s marker
to ai.All (line 4). In order to obtain the network topology, ai memorizes the con-
nection relation between all nodes and all edges during the DFS. Consequently,
ai can traverse the network with at most 2n moves after it finishes DFS.

After ai finishes DFS, ai checks the markers collected in ai.All and calculates
a gathering node (lines 9 to 36). First, ai stores markers of the current node in
ai.All to check new markers. After that, ai selects the ID IDmin such that
IDmin = min{writer(t) : t ∈ ai.All ∧ writer(t) /∈ ai.Byz} holds (line 11). If
ai.min > IDmin, ai executes an update operation of a gathering node (lines 12
to 20). Otherwise, ai executes a detection operation of Byzantine agents (lines
22 to 30).
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In the update operation of a gathering node, ai calculates a new gathering
node. In this step, ai stores marker t satisfying writer(t) == min{writer(t) :
t ∈ ai.All∧writer(t) /∈ ai.Byz} to ai.tmin and stores writer(ai.tmin) to ai.min.
After that, ai copies ai.tmin and ai pastes it to all nodes in order to inform
other agents of that minimum ID agent’s marker (lines 16 to 19). Note that,
since ai knows the graph topology, it can visit all nodes in at most 2n moves. In
addition, since ai visits all nodes, ai can know at which node ai.tmin was created.
Therefore, after ai copies ai.tmin and ai pastes it to all nodes, ai can move to
the node where ai.tmin was created. If there are two or more markers created by
an agent with the minimum ID, ai refers to one of the markers and calculates
a gathering node. Then, in the detection operation of the next while-loop, ai

determines an agent with the minimum ID as a Byzantine agent.
In detection operation of Byzantine agents, ai determines whether the min-

imum ID agent is a Byzantine agent. If there is a marker x that satisfies
x ∈ ai.All ∧ writer(x) == ai.min ∧ node check(x) == false, ai determines
that writer(x) is a Byzantine agent. This is because, since correct agents create
markers only once, only Byzantine agents can create markers on two nodes. In
this case, ai informs other agents of the ID of the Byzantine agent and executes
the update operation in a next while-loop. In order to realize this, ai copies the
starting markers of the Byzantine agent and pastes them to all nodes, and then
ai initializes ai.min = ∞.

Finally, if ai executes local computation and decides the current node as a
gathering node, ai changes the ai.state to gather state. After that, if ai decides
to change the gathering node, ai changes ai.state to explore again (lines 13 and
23).

By repeating the above operation, eventually all the correct agents refer to
the starting markers created by the same minimum ID agent and gather at the
same node.

For Algorithm 1, we have the following lemma and theorem. Due to limitation
of space, the proof is given in the full version of this paper [20].

Lemma 1. Correct agents ai never adds correct agent aj’s ID IDj to ai.Byz.

Lemma 2. For any correct agent ai, after ai finishes DFS, there exists at least
one marker markerx,v that satisfies markerx,v ∈ ai.All ∧ writer(markerx,v) �∈
ai.Byz.

Lemma 3. After correct agent ai calculates a gathering node for the first time,
ai updates ai.min at most 2f times.

Lemma 4. For any correct agents ai and aj, after the last updates of ai.min
and aj .min, ai.min and aj .min are equal.

Lemma 5. All correct agents gather at one node with gather state within a
finite time.

Theorem 1. Algorithm1 solves gathering with termination. In the algorithm,
each agent moves at most 2m + 4n + 10fn times.
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4 Gathering Algorithm with Declaring Termination

In this section, we propose an algorithm that solves gathering with termination.
To realize the algorithm we add assumptions that agents on a single node are
synchronized, f < � 1

3k� holds, and agents know k. In addition, we define fu =
�k−1

3 �. Note that, since fu is the maximum integer less than � 1
3k�, fu is an upper

bound of f .

4.1 Our Algorithm

Overview. First, we give an overview of our algorithm. This algorithm achieves
the gathering with termination in asynchronous networks even if Byzantine
agents exist. Agents execute the same operations as Algorithm 1 until k − fu

agents gather at the same node and enter gather state. After at least k − fu

agents of gather state gather at one node v, all correct agents at v terminate.
Note that, since the k − fu agents execute the algorithm in synchronously at v
and at most fu Byzantine agents exist, at least k − 2fu ≥ fu + 1 correct agents
terminate at v from fu = �k−1

3 �. As we show in Lemma 8, correct agents that
have not terminated yet eventually visit v. When correct agents visit v, they can
see that at least fu + 1 agents have terminated, and then they also terminate at
v. In addition, we show in Lemma7 that there is only one node v where at least
fu + 1 agents have terminated. Thus, all correct agents gather at one node and
terminate.

Details of the Algorithm. The pseudo-code of the algorithm is given in Algo-
rithm2. It is basically the same as Algorithm 1, but differences are additional
lines 10 to 12 and 21 to 23. Recall that, in an atomic operation, an agent obtains
the snapshot, updates its state and the whiteboard, and then, possibly leaves
the node. In the pseudo-code, each agent executes the operations as an atomic
operation until it leaves (lines 6, 26, 28 and 35) or it decides to stay (line 41) or it
declare termination (lines 12 and 23). When an agent reads from the whiteboard,
it uses the snapshot taken at the beginning of an atomic operation.

In Algorithm 2, agents execute the same operations as Algorithm reffig:alg1
until at least k −fu agents of gather state gather at its current node v. After at
least k −fu agents of gather state gather at node v, correct agents terminate at
the node v (lines 10 to 12). If agent ai sees at least k−fu agents of gather state
or at least fu + 1 agents of terminate state at node v, ai terminates at v (lines
21 to 23). Agent ai executes the above operation while ai visits all nodes to paste
marker ai.tmin for updating the gathering node. Note that ai does not execute
the operation while ai visits nodes to paste ai.tBiz for updating the blacklist
of Byzantine agents (lines 30 to 38). This is because ai executes an update
operation of the gathering node after an update operation of the blacklist.

By repeating the above operation, eventually all the correct agents refer to
the starting marker created by the minimum ID agent and gather at the same
node with declaring termination.
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Algorithm 2. main() Algorithm code of agent ai. The node v indicates the
node which ai is staying.
1: markeri,v = Signi,v(), ai.marker = markeri,v, ai.All = ∅, ai.state = explore

2: while ai is executing DFS do
3: v.wb[IDi] = {ai.marker}
4: ai.All = ai.All ∪ ⋃

id v.wb[id]
5: Store network topology
6: Move to the next node by DFS
7: end while
8: ai.tmin = null, Ai.min = ∞, ai.Byz = ∅, ai.TByz = ∅
9: while true do

10: if There exist at least k − fu agents of gather state at node v then
11: ai.state = terminate

12: declare termination
13: else
14: ai.All = ai.All ∪ ⋃

id v.wb[id]
15: min tmp = min{writer(t) : t ∈ ai.All ∧ writer(t) /∈ ai.Byz}
16: if ai.min > min tmp then
17: ai.state = explore

18: ai.tmin = t s.t. t ∈ ai.All ∧ writer(t) == min_tmp
19: ai.min = min tmp
20: while ai goes around the network do
21: if There are at least k − fu agents of gather state or at least fu +

1 agents of terminate state at node v then
22: ai.state = terminate

23: declare termination
24: end if
25: v.wb[IDi] = v.wb[IDi] ∪ {ai.tmin}
26: Move to the next node
27: end while
28: Move to the node where ai.tmin is created
29: else
30: if ∃x : x ∈ ai.All ∧ writer(x) == ai.min ∧ node check(x) == false then
31: ai.state = explore

32: ai.TByz = {x, ai.tmin}
33: while ai goes around the network do
34: v.wb[IDi] = v.wb[IDi] ∪ ai.TByz

35: Move to the next node
36: end while
37: ai.Byz = ai.Byz ∪ ai.min
38: ai.min = ∞
39: else
40: ai.state = gather

41: stay at the node v
42: end if
43: end if
44: end if
45: end while
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For Algorithm 2, we have the following lemma and theorem. Due to limitation
of space, the proof is given in the full version of this paper [20].

Lemma 6. If a correct agent of terminate state exists at a node v, at least
fu + 1 correct agents of terminate state exist at v.

Lemma 7. At least one correct agent eventually terminates.

We define af as the correct agent that terminates earliest among all agents.
Let tf be the time at which af terminates and vf be the node where af termi-
nates.

Lemma 8. Each agent moves at most O(m + fn) times before time tf .

Lemma 9. No correct agent terminates at node v′ (v′ �= vf ).

Corollary 1. After time tf , fu + 1 agents of terminate state exist at vf . For
any node v′ (v′ �= vf ), the number of agents of terminate state at v′ is at most
fu.

Lemma 10. Each correct agent not in vf at time tf terminates at vf after
moving O(m) times.

Theorem 2. Algorithm2 achieves the gathering with termination within a finite
time. In the algorithm, each agent moves at most O(m + fn).

5 Conclusions

In this work, we have proposed two gathering algorithms for mobile agents in
asynchronous Byzantine environments with authenticated whiteboards. Each
algorithm achieves the gathering in O(m+fn) moves per an agent. In the Algo-
rithm1 achieves the gathering without termination. In the Algorithm2 realizes
termination by putting additional assumptions. The additional assumptions are
that agents on a single node are synchronized, each agent knows f and k where
f is number of Byzantine agents and k is number of total agents.
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Abstract. Process models analysis is a critical step in Business Process
Management life cycle. Its main goal is to detect technical and func-
tional errors made in the process models. Since the latter are widely
used for the software specification, the quality of the produced software
will depend on the soundness and correctness of these process models. In
this paper we present the “BPMN Process Analysis”: a formal Valida-
tion and Verification Eclipse Plugin for BPMN Process Models. It allows
us to perform three types of formal analyses, namely, the control flow,
the data flow and the business rules analyses. Each analysis generates a
certain amount of errors and violations. These anomalies are diagnosed
and corrected in order to get the BPMN model free of certain control
flow errors, data flow anomalies, as well as Business rules violations.

Keywords: BPMN · Business Process Modeling
Software engineering · Eclipse plugin · Information systems

1 Introduction

Business process model is considered as one of the most important components
that contributes in developing companies software. The latter constitute the core
of a business information system whose role is to help the company achieve its
goals in effective and efficient way. However, these process models may contain
different types of errors that lead to an incorrect implementation of the modeled
process in information System.

The presented Eclipse plugin in this contribution, called “BPMN Process
Analysis”, detects formally some of these errors. It allows us to perform three
types of analyses. Each analysis generates a certain amount of errors and viola-
tions. These anomalies are diagnosed and corrected in order to get the BPMN
model free of control flow errors [1], data flow anomalies, [9] as well as Business
rules violations. BPMN has been chosen as a modeling language for its status
and success in both industrial and academic world.

The remainder of this paper is structured as follows: The next section intro-
duces notations, approaches and concepts supported by “BPMN Process Analy-
sis” Eclipse Plugin. Section 3 presents the different editors and analyses proposed
c© Springer Nature Switzerland AG 2019
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by our BPMN Eclipse Plugin. Section 4 concludes the paper and presents future
work.

2 Notations, Concepts and Approaches

“BPMN Process Analysis” plugin allows modelers and users to verify formally
their models according to the three previously mentioned axes. We present here
the main notations, approaches and concepts currently supported by this Eclipse
plugin.

2.1 BPMN

BPMN stands for Business Process Modeling and Notation and is a public stan-
dard maintained by OMG and BPMI [4]. It has received a great success and
support from academia and industrial world since it provides users with a range
of diverse components, which are divided into four sets: flow objects (activities,
events and gateways), connection objects (control flow, message flow and associ-
ations), artifact objects (data stores, data objects, data input and data output)
and swim lanes (pools and lanes within pools).

2.2 BPMN-Time Petri Net Mapping

This approach covers the control flow analysis axis. It proposes a method for
the verification of BPMN models by defining formal semantics of BPMN in
terms of a mapping to Time Petri Nets (TPN) [6], which are equipped with very
efficient analytical techniques. After the translation of BPMN models to TPN,
verification is done to ensure that some functional properties are satisfied by the
model under investigation, namely liveness and reachability properties (deadlock,
dead activities. . . ). The main advantage of this approach [6] over existing ones
is that it takes into account the time components in modeling Business process
models.

2.3 Data Record

This approach covers the data flow analysis axis. It proposes the data record
concept [3] that helps us locate formally the stage where the data flow anomaly
(missing, redundant, lost and inconsistent data) has taken place as well as
the source of data flow problem. Therefore the designer can easily correct the
anomaly in order to get the BPMN model free of data flow errors. The model’s
data flow problems are detected using an algorithm specific for the BPMN stan-
dard [7].
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2.4 BPMN-Business Rule Language

This approach covers the business rules analysis axis: It introduces a method that
can analyze business rules related to the internal business process’s execution.
The proposed approach includes the most important dimensions that have to
be found in a business analysis which are: Resources, Tasks, Agents and Time.
These dimensions constitute a process schema based on, we express common
business rules using Business Rule Language (BRL) [10]. These rules could be
verified by a Depth First Search algorithm adapted for the BPMN standard [5].

3 Components of “BPMN Process Analysis” Plugin

The BPMN plugin (implemented as an Eclipse menu) is composed of a BPMN
2.0 modeler, a business rule editor and three submenus to perform the control
flow, the data flow and the business rules analyses (see Fig. 1).

3.1 BPMN 2.0 Modeler

The Eclipse BPMN 2.0 Modeler [2] (See Fig. 1- Window 1) allows us as to author
business processes, collaboration diagrams and choreographies using the BPMN
2.0 XML syntax. It supports almost all BPMN 2.0 components and attributes
(artifacts, swimlanes and flow objects except some compensation mechanisms).
The goal of the Eclipse BPMN 2.0 Modeler is to not only provide a graphi-
cal modeling tool, but also to allow plug-in developers to easily customize the
behavior and appearance of the editor for specific BPM workflow engines such
as jBoss jBPM.

3.2 Business Rules Editor

This graphical editorallows us to create, update and delete business rules respect-
ing the Business Rule Language semantics [5]. Business Rule Language is the
language in which we specify conceived business rules. A business rule expresses
a property of the traces (a sequence of BPMN events and tasks) of the process
schema. The latter is composed of tasks (BPMN tasks and events), resources
(BPMN data objects and flow objects properties), Agents (BPMN pools or/and
lanes) and states of resources (Data objects states). Generally, every common
business rule is composed of two clauses namely “IF” and “THEN” (see Fig. 1-
Window 2). Each clause can be composed of one or several expressions (equalities
or inequalities). These expressions are connected through logical operators (AND
or OR). Since the business rules created by the users are dynamic and cannot
be inserted in advance in the source code of the plugin, we used JEXL (Java
Expression Language), which is a library intended to facilitate the implementa-
tion of dynamic and scripting features in applications and frameworks written
in Java.
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Fig. 1. “BPMN Process Analysis” eclipse plugin overview

3.3 Business Rules Analysis

Once the process is modeled and the business rules are edited, we can run the
“Business Rules analysis” component [5]. The latter generates the business rules
violations as well as the business rules whose conditions (“IF” clauses) are not
verified. Detected violations can be a disorder of tasks, incompatibility between
input data state and task. . .

3.4 Control Flow Analysis

The “Control Flow analysis” component implements the approach (BPMN-TPN
mapping) cited in [6]. It allows us to detect the dead BPMN tasks and events. It
also gives us other information related to the Time Petri Net components gen-
erated after the BPMN-TPN transformation such as number of places, number
of transitions, boundness of the TPN (see Fig. 1- Window 3).

3.5 Data Flow Analysis

The “Data Flow analysis” component implemented the DataRecord approach
cited in [7]. It allows us to detect the different data-flow anti-patterns (missing,
redundant, lost and inconsistent data). It also gives us other information related
to the flow object as well as to the trace where the data anomaly has taken place
(see Fig. 1- Window 4)

4 Conclusion

In conclusion, we proposed in this paper a new “BPMN Process Analysis” plugin
that gathers all necessary types of analysis, namely, the control flow, the data
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flow and the business rules analysis these analyses prove their utility when we
take profit from the BPMN-BPEL mapping established in [4] and implemented in
some tools such as Enterprise Architect [8]. A dead activity, a dataflow anomaly
or a business rule violation can cause an incorrect generation of BPEL and/or
WSDL(Web Services Description Language) files which leads to an inoperative
implementation of the modeled process in Information System.

In future work, we envision on enriching the area of covered business rules
to cover other dimensions such as agent role and tasks type.

References

1. Dijkman, R.M., et al.: Formal semantics and analysis of BPMN process mod-
els using petri nets. Technical report 7115, Queensland University of Technology,
Brisbane (2007)

2. Eclipse: BPMN2 Modeler, January 2018. http://www.eclipse.org/bpmn2-modeler/
3. Kabbaj, M.I., et al.: Towards an active help on detecting data flow errors in business

process models. Int. J. Comput. Sci. Appl. 12, 16–25 (2015)
4. OMG: Business Process Management and Notation (BPMN 2.0), Needham,

USA(2011)
5. Rachdi, A., En-Nouaary, A., Dahchour, M.: Analysis of common business rules in

BPMN process models using business rule language. In: 2016 11th International
Conference on Intelligent Systems: Theories and Applications (SITA), pp. 1–6.
IEEE (2016)

6. Rachdi, A., En-Nouaary, A., Dahchour, M.: Liveness and reachability analysis of
BPMN process models. J. Comput. Inf. Technol. 24(2), 195–207 (2016)

7. Rachdi, A., En-Nouaary, A., Dahchour, M.: Dataflow analysis in BPMN models.
In: ICEIS 2017 - Proceedings of the 19th International Conference on Enterprise
Information Systems, Porto, Portugal, 26–29 April 2017, vol. 2, pp. 229–237 (2017)

8. Sparx Systems: Enterprise Architect “EA”, January 2018. http://www.
sparxsystems.com/products/ea/index.html

9. Stackelberg, S.V., et al.: Detecting data-flow errors in BPMN 2.0. Open J. Inform.
Syst. 1, 1–19 (2014)

10. Van Hee, K., Hidders, J., Houben, G.J., Paredaens, J., Thiran, P.: Abstracting
common business rules to petri nets. Enterp. Inf. Syst. 2010, 113 (2010)

http://www.eclipse.org/bpmn2-modeler/
http://www.sparxsystems.com/products/ea/index.html
http://www.sparxsystems.com/products/ea/index.html


Concurency



On Helping and Stacks

Vitaly Aksenov1,2(B), Petr Kuznetsov3, and Anatoly Shalyto1

1 ITMO University, Saint Petersburg, Russia
aksenov.vitaly@gmail.com
2 Inria Paris, Paris, France

3 LTCI, Télécom ParisTech, Université Paris-Saclay, Paris, France

Abstract. A concurrent algorithm exhibits helping when one process
performs work on behalf of other processes. More formally, helping is
observed when the order of some operation in a linearization is fixed
by a step of another process. In this paper, we show that no wait-free
linearizable implementation of a stack using read, write, compare&swap
and fetch&add operations can be help-free, correcting a mistake in an
earlier proof by Censor-Hillel et al.

1 Introduction

In a wait-free data structure, every process is guaranteed to make progress in
its own speed, regardless of the behavior of other processes [8]. It has been
observed, however, that achieving wait-freedom typically involves some helping
mechanism (e.g., [6,7,13,14]). Informally, helping means that a process may
perform additional work on behalf of other processes.

Censor-Hillel et al. [5] proposed a natural formalization of the concept of
helping, based on the notion of linearization: a process p helps an operation of
a process q in a given execution if a step of p determines that an operation of q
takes effect, or linearizes, before some other operation in any possible extension.
It was claimed in [5] that helping is required for any wait-free linearizable imple-
mentation of an exact order data type in a system provided with read, write,
compare&swap and fetch&add shared memory primitives. Informally, a sequen-
tial data type is exact order if for some operation sequence every change in the
relative order of two operations affects the result of some other operations. As
examples of exact order data types, Censor-Hillel et al. gave (FIFO) queue and
(LIFO) stack.

However, we observe that the stack data type is not exact order. As we show,
in any sequential execution on stack, we can reorder any two operations op and
op′ in such a way that no other operation will see the difference. Hence, the
proof of help-free impossibility for exact order types given in [5] does not apply
to stack.

In this paper, we propose a direct proof that stack does not have a wait-free
and help-free implementation. At first, we show the result for implementations
using read, write and compare&swap operations in systems with at least three
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processes, and, then, extend the proof to those additionally using fetch&add in
systems with at least four proccesses. The structure of these two proofs resembles
the structure of the proofs from the paper by Censor-Hillel et al. [5], but the
underlying reasoning is novel. Unlike their approach our proofs argue about the
order of operations given their responses only after we empty the data structure.
As a result, certain steps of the proof become more technically involved.

The paper is organized as follows. In Sect. 2 we present a computational
model and necessary definitions. In Sect. 3 we recall the definition of helping
and highlight the mistake in [5]. In Sect. 4 we give our direct proof. In Sect. 5 we
discuss the related work. And, finally, we conclude in Sect. 6.

2 Model and Definitions

We consider a system of n processes p1, . . . , pn communicating via invocations
of primitives on a shared memory. We assume that primitives are read, write
and compare&swap. In our second technical contribution, we consider one more
primitive fetch&add.

A compare&swap primitive takes a target location, an expected value and a
new value. The value stored in the location is compared to the expected value.
If they are equal, then the value in the location is replaced with the new value
and true is returned (we say that the operation is successful). Otherwise, the
operation fails (i.e., the operation is failed) and returns false.

A fetch&add primitive takes a target location and an integer value. The
primitive augments the value in the location by the provided value and returns
the original value.

A high-level concurrent object or a data type is a tuple (Φ, Γ,Q, q0, θ), where
Φ is a set of operations, Γ is a set of responses, Q is a set of states, q0 is an
initial state and a transition function θ ⊂ Q × Φ × Q × Γ , that determines, for
each state and each operation, the set of possible resulting states and produced
responses.

In this paper, we concentrate on a stack data type (further, we omit “data
type” and simply refer to it as “stack”). It exports two methods push(·) and
pop(). A push(x) adds a new element into the set. A pop() operations withdraws
and returns the most recently added element, or returns ⊥, if the stack is empty.

An implementation (or, simple object) of a high-level object O is a distributed
algorithm A consisting of local state machines A1, . . . , An. Ai specifies the prim-
itives pi needs to execute to return a response to an invoked operation on O. For
simplicity, all implementations considered in this paper are deterministic. The
provided proofs can be easily extended to randomized implementations. For the
rest of the section we fix some implementation of stack.

A program of a process specifies a sequence of operations calls on an object.
The program may include local computations and can choose which operation
to execute depending on the results of the previous operations.

A history is a finite or infinite sequence of primitive steps. Each step is cou-
pled with a specific operation that is being executed by the process performing
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this step. The first step of an operation always comes with the input parame-
ters of the operation, and the last step of an operation is associated with the
return of the operation. Given two histories h1 and h2 we denote by h1 ◦ h2 the
concatenation of h1 and h2.

A schedule is a finite or infinite sequence of process identifiers. Given a sched-
ule, an implementation and programs provided to the processes, one can unam-
biguously determine the corresponding history. And vice versa, given a history
one can always build a schedule by substituting the steps of history to the process
that performed it. Assuming a fixed program for each process (these programs
will be clear from the context), and a history h, we denote by h ◦ pi the history
derived from scheduling process pi to take the next step (if any) following its
program immediately after h.

The set of histories H induced by an implementation consists of all possible
histories induced by all possible processes’ programs with all possible schedules.
Note that, by the definition, H is prefix- and limit-closed [10].

A history defines a partial order on the operations: op1 precedes op2 in a
history h (denoted: op1 ≺h op2) if op1 is completed before op2 begins. A lin-
earization L of a history h is a sequence of operations such that: (1) L consists
of all the completed operations and, possibly, some started but incompleted in h;
(2) the operations have the same input and same output as corresponding oper-
ations in h; (3) L consistent with the data type; (4) for every two operations
op1 ≺h op2 if op2 is included in L, then op1 preceds op2 in L (op1 ≺L op2).

An implementation of a data type is linearizable if each history from the
set of histories has a linearization. A linearization function defined over a set of
linearizable histories H maps every history in H to a linearization. Note that a
linearizable implementations may have multiple linearization functions defined
on the set of its histories.

An implementation is wait-free if every process completes its operation in a
finite number of steps.

3 Helping and Exact Order Types

In this section, we recall the definitions of helping and exact order type in [5],
and show that stack is not exact order.

Definition 1 (Decided before). For a history h in a set of histories H, a
linearization function f over H, and two operations op1 and op2, we say that
op1 is decided before op2 in h with respect to f and H, if there exists no extension
s ∈ H of h such that op2 ≺f(s) op1.

Definition 2 (Helping). A set of histories H with a linearization function f
over H is help-free if for every h ∈ H, every two operations op1, op2, and a
single computation step γ such that h ◦ γ ∈ H it holds that if op1 is decided
before op2 in h ◦ γ and op1 is not decided before op2 in h then γ is a step in the
execution of op1.

An implementation is help-free, if there exists a linearization function f such
that the set of histories of this implementation with f is help-free.
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Following the formalism of [5], if S is a sequence of operations, we denote by
S(n) the first n operations in S, and by Sn the n-th operation of S. We denote
by (S + op?) the set of sequences that contains S and all sequences that are
similar to S, except that a single operation op is inserted somewhere between
(or before, or after) the operations of S.

Definition 3 (Exact Order Types). An exact order type is a data type for
which there exists an operation op, an infinite sequence of operations W , and a
(finite or infinite) sequence of operations R, such that for every integer n ≥ 0
there exists an integer m ≥ 1, such that for any sequence A from W (n + 1) ◦
(R(m)+op?) and any sequence B from W (n)◦op◦ (R(m)+Wn+1?) at least one
operation in R(m) has different results in A and B, where ◦ is a concatenation
of sequences.

It is shown in [5] that the implementations of exact order types require help-
ing if they use only read, write, and compare&swap primitives. The paper also
sketches the proof of a more general result for implementations that, addition-
ally, use fetch&add. Further, it is claimed in [5] that stack and queue are exact
order types. Indeed, at first glance, if you swap two subsequent operations, fur-
ther operations have to acknowledge this difference. However, the definition of
an exact order type is slightly more complicated, as it allows not only to swap
operations but also move them. This relaxation does not affect queue, but, unfor-
tunately, it affects stack.

Theorem 1. Stack is not an exact order type.

Proof. We prove that for any fixed op, W , R and n there does not exist m that
satisfies Definition 3. Note that the claim is stronger than what is needed to
prove the theorem: it would be sufficient to prove that for all op, W and R, the
condition does not hold for some n. In a sense, this suggests that stack is far
from being exact order.

Suppose, by contradiction, that there exists m that satisfies Definition 3 for
fixed op, W , R and n. There are four cases for op and Wn+1: pop-pop, push-
pop, pop-push or push-push. For each of these cases, we find two sequences
from W (n + 1) ◦ (R(m) + op?) and W (n) ◦ op ◦ (R(m) + Wn+1?) for which all
operations in R(m) return the same results.

– op = pop, Wn+1 = pop. Then, W (n+1) ◦ op ◦R(m) and W (n) ◦ op ◦ Wn+1 ◦
R(m) satisfy, since Wn+1 ◦ op and op ◦ Wn+1 perform two pop operations.

– op = push(a), Wn+1 = pop. For the first sequence we take A = W (n + 1) ◦
op ◦ R(m). Now, we choose the second sequence B from W (n) ◦ op ◦ (R(m)+
Wn+1?). Let Wn+1 pop in A the x-th element from the bottom of the stack.
We extend W (n) ◦ op in B with operations from R(m) until some operation
op′ tries to pop the x-th element from the bottom. Note that all operations
R(m) up to op′ (not including op′) return the same results in A and B. If such
op′ does not exist then we are done. Otherwise, we insert Wn+1 right before
op′, i.e., pop this element. Subsequent operations in R(m) are not affected,
i.e., results of operations in R(m) are the same in A and B.
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– op = pop, Wn+1 = push(b). This case is symmetric to the previous one.
– op = push(a), Wn+1 = push(b). For the first sequence, we take A = W (n+1) ◦

op ◦R(m). Now, we build the second sequence B from W (n) ◦ op ◦ (R(m)+
Wn+1?). Let Wn+1 push in A the x-th element from the bottom of the stack.
Let us perform W (n) ◦ op in B and start performing operations from R(m)
until some operation op′ pops the x-th element (again, this should eventually
happen, otherwise a contradiction is established). Note that all operations
R(m) up to op′ (including op′) return the same results in A and B. If such
op′ does not exist then we are done. Otherwise, right after op′ we perform
Wn+1, i.e., push the element b in its proper position. Subsequent operations
in R(m) are not affected and, thus, the results of all operations in R(m) are
the same in A and B.

The contradiction implies that stack is not an exact order type.

4 Wait-Free Stack Cannot Be Help-Free

In this section, we prove that there does not exist a help-free wait-free imple-
mentation of stack in a system with reads, writes, and compare&swaps. We then
extend the proof to the case when a system has one more primitive fetch&add.

4.1 Help-Free Stacks Using Reads, Writes and Compare&swap

Suppose that there exists such a help-free stack implementation Q using read,
write, and compare&swap primitives. We establish a contradiction by present-
ing a history h in which some operation takes infinitely many steps without
completing.

We start with three observations that immediately follow from the definition
of linearizability.

Observation 1 In any history h:

1. Once an operation is completed it must be decided before all operations that
have not yet started;

2. If an operation is not started it cannot be decided before any operation of a
different process.

Lemma 1 (Transitivity). For any linearization function f and finite history
h, if an operation op2 is completed in h, an operation op1 is decided before op2
in h and op2 is decided before an operation op3 in h then op1 is decided before
op3 in h.

Proof. Suppose that op1 is not decided before op3 in h then there exists a exten-
sion s of h for which op3 ≺f(s) op1. Since op2 is linearized in f(s) and op1 is
decided before op2 then op1 ≺f(s) op2. Together, op3 ≺f(s) op1 ≺f(s) op2 contra-
dicting with op2 being decided before op3 in h.
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Lemma 2. For any linearization function f and finite history h, if an operation
op1 of a process p1 is decided before an operation op2 of a process p2, then op1
must be decided before any operation op that has not started in h.

Proof. Consider h′, the extension of h, in which p2 runs solo until op2 completes.
Such an extension exists, as Q is wait-free. By Observation 1 (1), op2 is decided
before op in h′, and, consequently, by Transitivity Lemma1, op1 is decided before
op in h′.

Since in h′, only p2 takes steps starting from h, op1 must be decided before
op in h—otherwise, h′ has a prefix h′′ such that op1 is not decided before op in
h′′ and op1 is decided before op in h′′ ◦ p2—a contradiction with the assumption
that Q is help-free.

Now we build an infinite history h in which p1 executes infinitely many failed
compare&swap steps, yet it never completes its operation. We assume that p1, p2
and p3 are assigned the following programs: p1 tries to perform op1 = push(1);
p2 applies an infinite sequence of operations push(2), push(3), push(4), . . .; and
p3 is about to perform an infinite sequence of pop() operations.

The algorithm for constructing this “contradiction” history is given in
Listing 1.1. Initially, p1 invokes op1 = push(1) and, concurrently, p2 invokes
op2 = push(2). Then we interleave steps of p1 and p2 until a critical history h is
located: op1 is decided before op2 in h◦p1 and op2 is decided before op1 in h◦p2.
We let p2 and p1 take the next step and, then, run op2 after h ◦ p2 ◦ p1 until it
completes. We will show that op1 cannot complete and that we can reiterate the
construction by allowing p2 to invoke concurrent operations push(3), push(4),
etc. In the resulting infinite history, p1 takes infinitely many steps without com-
pleting op1.

1 h ← ε
2 op1 ← push(1)

3 id2 ← 2
4 while true: // outer loop

5 op2 ← push(id2)

6 while true: // inner loop

7 if op1 is not decided before op2 in h ◦ p1:

8 h ← h ◦ p1

9 continue

10 if op2 is not decided before op1 in h ◦ p2:

11 h ← h ◦ p2

12 continue

13 break

14 h ← h ◦ p2

15 h ← h ◦ p1

16 while op2 is not completed:

17 h ← h ◦ p2

18 id2 ← id2 + 1

Listing 1.1. Constructing the history for the proof of Theorem 2
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To ensure that at each iteration op1 is not completed, we show that, at the
start of each iteration of the outer loop (Line 6), the constructed history satisfies
the following two invariants:

– op1 is not decided before op2 or before any operation of p3;
– the operations of p2 prior to op2 are decided before op1.

At the first iteration, the invariants trivially hold, since neither op1 nor op2 is
started.

Observation 2. The order between op1 and op2 cannot be decided during (and
right after) the inner loop (Lines 6–13).

Lemma 3. During (and right after) the execution of the inner loop (Lines 6–13)
op1 and op2 cannot be decided before any operation of p3.

Proof. Suppose that during an execution of the inner loop op1 or op2 is decided
before some operation of p3.

Before entering the inner loop, neither op1 nor op2 is decided before any
operation of p3: op1 is not decided because of the first invariant, while op2 is
not started (Observation 1 (2)). Thus, at least one step is performed by p1 or p2
during the execution of the inner loop.

Let us execute the inner loop until the first point in time when op1 or op2
is decided before an operation of p3. Let this history be h. Note, that because
Q is help-free only one of op1 and op2 is decided before an operation of p3 in
h. Suppose, that op1 is decided before some op3 of p3, while op2 is not decided
before any operation of p3. (The case when op2 is decided before some op3 is
symmetric).

Now, p3 runs pop operations until it completes operation op3 and then, fur-
ther, until the first pop operation returns ⊥, i.e., the stack becomes empty. Let
the resulting extension of h be h′.

Recall that op2 is not decided before any operation of p3 in h and, since Q
is help-free and only p3 takes steps after h, op2 cannot be decided before any
operation of p3 in h′. Hence, none of the completed operations of p3 can return
id2, the argument of op2, due to the fact that all push operations have different
arguments. Since the operations of p3 empty the stack, op2 has to linearize after
them, making op3 to be decided before op2 in h′. By Transitivity Lemma 1, op1
is decided before op2 in h′. Finally, since Q is help-free and only p3 takes steps
after h op1 has to be decided before op2 in h, contradicting Observation 2.

Lemma 4. op1 and op2 cannot be completed after the inner loop (Lines 6–13).

Proof. Suppose the contrary. By Observation 1 (1), op1 has to be decided before
all operations of p3, contradicting Lemma 3.

Lemma 5. The execution of the inner loop (Lines 6–13) is finite.

Proof. Suppose that the execution is infinite. By Lemma 4, neither of op1 and
op2 is completed in h. Thus, in our infinite execution either op1 or op2 takes
infinite number of steps, contradicting wait-freedom of Q.
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Lemma 6. Just before Line 14 the following holds:

1. The next primitive step by p1 and p2 is to the same memory location.
2. The next primitive step by p1 and p2 is a compare&swap.
3. The expected value of the compare&swap steps of p1 and p2 is the value that

appears in the designated address.
4. The new values of the compare&swap steps of p1 and p2 are different from

the expected value.

Proof. Suppose that the next primitive steps by p1 and p2 are to different loca-
tions. Consider two histories: h′ = h ◦ p1 ◦ p2 ◦ complete op1 ◦ complete op2 and
h′′ = h ◦ p2 ◦ p1 ◦ complete op1 ◦ complete op2. Let us look at the first two pop()
operations by p3. Executed after h′ they have to return id2 then 1, since op1 is
decided before op2 in h′ and both of them are completed. While executed after
h′′ they have to return 1 then id2. But the local states of p3 and shared memory
states after h′ and h′′ are identical and, thus, two pops of p3 must return the
same values—a contradiction. The same argument will apply when both steps
by p1 and p2 are reads.

Suppose that the next operation of p1 is a write. (The case when the next
operation of p2 is write is symmetric) Consider two histories: h′ = h ◦ p2 ◦ p1 ◦
complete op1 and h′′ = h ◦ p1 ◦ complete op1. Let the process p1 perform two
pop() operations (op′

1 and op′′
1) and p2 complete its operation after h′: op′

1 and
op′′

1 have to return 1 and id2, correspondingly, since op1 and op2 are completed
and op2 is decided before op1 in h′. Again, since the local states of p1 and the
shared memory states after h′ and h′′ are identical, op′

1 and op′′
1 performed by

p1 after h′′ must return 1 and id2. Hence, op2 has to be decided before op′′
1 in

h̃ = h′′ ◦ perform op′
1 ◦ perform op′′

1 and, by Lemma 2, op2 has to be decided
before any operation of p3 in h̃. Since only p1 performs steps after h in h̃ and Q
is help-free, op2 has to be decided before any operation of p3 at h, contradicting
Lemma 3. Thus, both primitives have to be compare&swap.

By the same argument both compare&swap steps by p1 and p2 have the
expected value that is equal to the current value in the designated memory
location, and the new value is different from the expected. If it does not hold,
either the local states of p1 and the shared memory states after h◦p1 and h◦p2◦p1
are identical or the local state of p2 and the shared memory states after h ◦ p2
and h ◦ p1 ◦ p2 are identical.

Observation 3. The primitive step of p2 in Line 14 is a successful com-
pare&swap, and the primitive step of p1 in Line 15 is a failed compare&swap.

Observation 4. Immediately after Line 14 op2 is decided before op1.

Lemma 7. Immediately after Line 15 the order between op1 and any operation
of p3 is not decided.

Proof. By Lemma 3, the order between op1 and any operation of p3 is not decided
before Line 14. Since Q is help-free, the steps by p2 cannot fix the order between
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op1 and any operation of p3. Thus, the only step that can fix the order of op1
and some operation of p3 is a step by p1 at Line 15, i.e., a failed compare&swap.

Suppose that op1 is decided before some operation op′
3 of p3 after Line 15.

Let h be the history right before Line 14. Consider two histories h′ = h ◦ p2 ◦ p1
and h′′ = h ◦ p2. Let p3 solo run pop operations after h′ until it completes
operation op′

3 and then, further, until pop operation returns ⊥, i.e., the stack is
empty. Since op1 is decided before op′

3, some completed operation op′′
3 of p3 has

to return 1: if we now complete op1 it should be linearized before op′
3. Now, let

p3 to perform after h′′ the same number of operations as it did after h′. Since
the local states of p3 and the shared memory states after h′ and h′′ are identical
(p1 makes the failed compare&swap), op′′

3 after h′′ has to return 1 as after h′.
Thus, op1 is decided before op′′

3 in h′′. Since Q is help-free and p1 does not take
steps after h in h′′, op1 has to be decided before op′′

3 before Line 14, contradicting
Lemma 3.

Lemma 8. At the end of the outer loop (Line 18) the order between op1 and
next op2 = push(id2 + 1) is not yet decided.

Proof. The operation op2 is not started, thus, it cannot be decided before op1
by Observation 1 (2).

Suppose that op1 is decided before op2. By Lemma 2 op1 has to be decided
before all operations of p3, contradicting Lemma 7.

Thus after this iteration of the loop the two invariants hold (Observation 4
and Lemmas 7 and 8), and p1 took at least one primitive step.

This way we build a history in which p1 takes infinitely many steps, but op1
is never completed. This contradicts the assumption that Q is wait-free.

Theorem 2. In a system with at least three processes and primitives read, write
and compare&swap there does not exist a wait-free and help-free stack implemen-
tation.

4.2 Adding Fetch&Add

Now, suppose that the implementation is allowed to additionally use fetch&add
primitives. We prove that there is no wait-free and help-free stack implementa-
tion in a system with at least four processes.

Again, by contradiction, suppose that such an implementation Q exists. We
build an infinite history h in which either p1 or p2 executes infinitely many failed
compare&swap steps, yet it never completes its operation, contradicting wait-
freedom. In h, processes p1, p2, p3 and p4 follow the following programs: for
1 ≤ i ≤ 2, pi tries to perform opi = push(i); p3 applies an infinite sequence of
operations push(3), push(4), push(5), . . .; and p4 is about to perform an infinite
sequence of pop() operations. The algorithm for constructing this “contradiction”
history is given in Listing 1.2.
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1 h ← ε
2 for i in 1..2:

3 opi ← push(i)

4 id3 ← 3
5 while true: // outer loop

6 op3 ← push(id3)

7 while true: // inner loop

8 moved ← False

9 for i in 1..3:

10 if opi is not decided before any opj in h ◦ pi:

11 h ← h ◦ pi

12 moved ← True

13 if not moved:

14 break

15

16 h ← h ◦ p3

17 // let pk be the process whose next primitive is compare&swap

18 h ← h ◦ pk

19 while op3 is not completed:

20 h ← h ◦ p3

21 id3 ← id3 + 1

Listing 1.2. Constructing the history for the proof of Theorem 3

Similar to the proof of Theorem2, we show that the following three invariants
hold at the beginning of each iteration of the outer loop (Line 6):

– the order between any two operations among op1, op2 and op3 is not decided;
– op1 and op2 are not decided before any operation of p4;
– all the operations of p3 prior to op3 are decided before op1 and op2.

At the beginning of the first iteration, the invariants hold trivially, since none of
opi is started.

Observation 5. The order between opi and opj for 1 ≤ i 	= j ≤ 3 cannot be
decided during (and right after) the inner loop (Lines 7–14).

Proof. From the first invariant, opi cannot be decided before opj prior to the
inner loop (Lines 7–14). Since Q is help-free, during the inner loop opi can become
decided before opj only after a step by pi which is impossible due to the check
in Line 10.

Lemma 9. During (and right after) an execution of the inner loop (Lines 7–14)
op1, op2 and op3 cannot be decided before any operation of p4.

Proof. Suppose that during an execution of the inner loop op1, op2 or op3 is
decided before some operation of p4.

At the beginning of the loop, none of op1, op2 and op3 is decided before any
operation of p4: op1 and op2 are not decided because of the second invariant,
while op3 is not yet started. Suppose that during the execution of the inner loop
some opi becomes decided before some operations of p4.
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Let us look at the execution and find the first point in time when some opk
of pk is decided before some operation op4 of p4. Using the same argument as
in the proof of Lemma 3, we can show that opk has to be decided before any
other opj contradicting Observation 5: we let p4 run until the operation op4 is
completed and, further, while stack is not empty; op4 becomes decided before
opj ; by Transitivity Lemma1, opk is decided before opj .

The proofs of the following two lemmas are identical to those of Lemmas 4
and 5.

Lemma 10. For each i, 1 ≤ i ≤ 3, opi cannot be completed after the inner loop
(Lines 7–14).

Lemma 11. The execution of the inner loop (Lines 7–14) is finite.

Lemma 12. For all i, j, 1 ≤ i 	= j ≤ 3, opi is decided before opj in h ◦ pi.

Proof. Consider an operation of process i. At the end of the inner loop opi should
be decided before some opk in h ◦ pi, otherwise, pi can make at least one more
step during the inner loop. Thus, by Lemma2 opi should be decided before op4,
the first operation of p4. Let p4 run pop operations after h ◦ pi until one of them
returns ⊥, i.e., the stack is empty. Let this history be h′.

By Lemma 9, opj is not decided before any operation of p4 in h. Since Q is
help-free and only pi and p4 takes steps in h′ after h, opj cannot be decided
before any operation of p4 in h′, and, consequently, operations of p4 cannot
pop an argument of opj . Since the operations of p4 empty the stack, opj must
be linearized after them. Thus, op4 is decided before opj in h′. By Transitivity
Lemma 1, opi is decided before opj in h′. Finally, since Q is help-free and only
p4 takes steps in h′ after h ◦ pi, opi is decided before opj in h ◦ pi.

Lemma 13. Immediately before Line 16 the following holds:

1. The next primitive step by pi for 1 ≤ i ≤ 3 is to the same memory location.
2. The next primitive step by pi for 1 ≤ i ≤ 3 is fetch&add with a non-zero

argument or compare&swap for which the expected value is the value that
appears in the designated location and the new value is different from the
expected one.

Proof. Suppose that for some pair pi and pj the next steps are to different
memory locations. We consider two histories h′ = h ◦ pi ◦ pj ◦ complete opi ◦
complete opj and h′′ = h◦pj◦pi◦complete opi◦complete opj . By Lemma 12, after
h′, the two subsequent pop operations by p4 should return first the argument
of opj and then the argument of opi, while after h′′ they should return the two
values in the opposite order. This is impossible, since the local states of p4 and
the shared memory states after h′ and h′′ are identical. The same argument will
apply if the next steps of some pair of processes are read primitives.

Suppose that the next primitive step of some pi is a write. We take any
other process pj and build two histories: h′ = h ◦ pj ◦ pi ◦ complete opi and h′′ =
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h◦pi◦complete opi. As in the proof of Lemma 6, pi performs two pop() operations
(op′

i and op′′
i ) and pj completes its operation after h′: by Lemmas 1 and 12 op′

i

and op′′
i have to return the argument of opi and the argument of opj , respectively.

The local states of pi and the shared memory states after h′ and h′′ are identical,
thus, op′

i and op′′
i after h′′ should also return the arguments of opi and opj .

Hence, opj has to be decided before op′′
i in h̃ = h′′ ◦ perform op′

i ◦ perform op′′
i .

By Lemma 2, opj is decided before any operation of p4 in h̃. And, finally, since Q

is help-free and pj does not take steps in h̃ after h, opj has to be decided before
any operation of p4 in h, contradicting Lemma9.

A similar argument applies to the case when the next primitive step of some
pi is fetch&add with argument zero, or compare&swap which expected value
differs from the value in the designated location or the new value is equal to
the expected. We take any other process pj (1 ≤ j ≤ 3) and build two histories
h′ = h ◦ pi ◦ pj ◦ complete pj and h′′ = h ◦ pj ◦ complete pj . The proof for the
previous case applies except that now the roles of pi and pj are swapped.

Lemma 14. At most one out of p1 and p2 can have fetch&add as their next
primitive step.

Proof. Suppose that p1 and p2 have fetch&add as their next primitive step.
Consider two histories h′ = h ◦ p1 ◦ p2 and h′′ = h ◦ p2 ◦ p1. From Lemma 12
op1 is decided before op2 in h′, thus, by Lemma 2 op1 is decided before the first
operation op4 of p4. After h′ p4 performs k′ pop operations until one of them
returns ⊥, i.e., the stack is empty. One pop has to return 1, because if we now
complete op1 it has to be linearized before op4. The same with h′′: p4 performs
k′′ pops until one of them returns ⊥, and one of these pop’s return 2. Since the
local states of p4 and the shared memory states after h′ and h′′ are the same:
two pop operations pop1() and pop2() of k′(= k′′) operations of p4 after h′ and
h′′ return 1 and 2.

Now, we show that op1 and op2 are decided before op3 in h′. The same can
be shown for h′′. Consider a history h̃: h′ continued with k′ pop operations by
p4. By Lemma 12 op1 is decided before op3 in h′. From Lemma 9 and two facts
that Q is help-free and op3 does not make any steps after h in h̃, it follows that
op3 cannot be decided before any operation of p4 in h̃ and, consequently, the
operations of p4 cannot pop an argument of op3. Since k′ pops of op4 empty the
stack, op3 has to linearize after them, making operation pop2() to be decided
before op3. Since pop2() returns 2 it has to be decided after op2. By Transitivity
Lemma 1, op2 is decided before op3 in h̃. Q is help-free and only p4 takes steps
after h′, thus, op2 is decided before op3 in h′.

Now consider two histories h′ ◦ complete op3 and h′′ ◦ complete op3. In both
of these histories, op1 and op2 are decided before op3. After the first history let
p4 perform three pop operations and p1 and p2 complete push(1) and push(2):
the three pops return id3, 2 and 1, respectively. Analougously, after the second
history three pop return id3, 1 and 2. This is impossible, since the local states
of p4 and the memory states after these two histories are identical.
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Observation 6. From the previous lemma we know that the next primitive step
of at least one process p1 or p2 is compare&swap. Let it be process pk. By
algorithm, p3 takes a step at Line 16 changing the memory location either by
fetch&add or by a successful compare&swap, thus, the next step of pk at Line 18
should be a failed compare&swap.

Observation 7. Immediately after Line 16, op3 is decided before op1 and op2.

Lemma 15. Immediately after Line 18, op1 and op2 are not decided before any
operation of p4.

Proof. We prove the claim for op1, the case of op2 is similar.
If p2 took a step at Line 18, then by Lemma 9 and the fact that the steps

by p2 or p3 cannot fix the order between op1 and any operation of p4 due to
help-freedom, op1 is not decided before any operation of p4.

If p1 took a step at Line 18, then by Lemma 9 and the fact that the steps by p3
cannot fix the order between op1 and any operation of p4 due to help-freedom,
the only step that could fix the order is a step by p1 at Line 18, i.e., a failed
compare&swap. Suppose that op1 is decided before some op′

4 of p4 after Line 18.
We consider two histories h′ = h ◦ p3 ◦ p1 and h′′ = h ◦ p3. Let p4 run solo after
h′ until it completes op′

4, and then further until some pop returns ⊥, i.e., the
stack becomes empty. Since op1 is decided before op′

4, some completed operation
op′′

4 of p4 has to return 1: if we now complete op1 it has to be linearized before
op′

4. Now, let p4 to run the same number of pop operations after h′′. Since the
local states of p4 and the shared memory states after h′ and h′′ are identical, op′′

4

returns 1. Thus, op1 is decided before op′′
4 in h′′. As Q is help-free and p1 does

not take steps after h in h′′, op1 has to be decided before op′′
4 in h, contradicting

Lemma 9.

Lemma 16. At the end of the outer loop (Line 21), the order between any two
operations among op1, op2 and the next op3 = push(id3 + 1) is not yet decided.

Proof. The operation op3 is not yet started, thus, it cannot be decided before
opi, i = 1, 2, by Observation 1 (2).

Suppose that opi, i = 1, 2, is decided before opj , then by Lemma 2 opi has to
be decided before all operations of p4, contradicting Lemma 15.

We started with three invariants that hold before any iteration of the loop.
By Observation 7 and Lemmas 15 and 16 the invariants hold after the iteration,
and at least one of p1 and p2 made at least one primitive step.

This way we build a history in which one of op1 and op2 never completes
its operation, even though it takes infinitely many steps. This contradicts the
assumption that Q is wait-free.

Theorem 3. In a system with at least four processes and primitives read, write,
compare&swap and fetch&add, there does not exist a wait-free and help-free stack
implementation.
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5 Related Work

Helping is often observed in wait-free (e.g., [6,7,13,14]) and lock-free implemen-
tations (e.g., [3,9,11,12]): operations of a slow or crashed process may be finished
by other processes. Typically, to benefit from helping, an operation should regis-
ter a descriptor (either in a dedicated “announce” array or attached in the data
items) that can be used by concurrent processes to help completing it.

We are aware of three alternative definitions of helping: (1) linearization-
based by Censor-Hillel et al. [5] considered in this paper, (2) valency-based by
Attiya et al. [4] and (3) universal by Attiya et al. [4].

Valency-based helping [4] captures helping through the values returned by
the operations, which makes it quite restrictive. In particular, for stack, the
definition cannot capture helping relation between two push operations. They
distinguish trivial and non-trivial helping: for non-trivial helping, the operation
that is being helped should return a data-structure-specific non-trivial (e.g.,
non-empty for stacks and queues) value. It is shown in [4] that any wait-free
implementation of queue has non-trivial helping, while there exists a wait-free
implementation of stack without non-trivial helping. This is an interesting result,
given notorious attempts of showing that queue is in Common2 [2], i.e., that they
can be implemented using reads, writes and 2-consensus objects, while stack has
been shown to be in Common2 [1].

Attiya et al. [4] also introduce a very strong notion of helping—universal
helping—which essentially boils down to requiring that every invoked operation
eventually takes effect. This property is typically satisfied in universal construc-
tions parameterized with object types. But most algorithms that involve helping
in a more conventional (weaker) sense do not meet it, which makes the use of
universal helping very limited.

Linearization-based helping [5] considered in this paper is based on the order
between two operations in a possible linearization. Compared to valency-based
definitions, this notion of helping operates on the linearization order and, thus,
can be applied to all operations, not only to those that return (non-trivial) val-
ues. By relating “helping” to fixing positions in the linearization, this definition
appears to be more intuitive: one process helps another make a “progress”, i.e.,
linearize earlier. Censor-Hillel et al. [5] also introduce two classes of data types:
exact order types (queue as an example) and global view types (snapshot and
counter as examples). They showed that no wait-free implementation of data
types from these two classes can be help-free. By assuming stack to be exact
order, they deduced that this kind of helping is required for wait-free stack
implementations. In this paper, we show that stack is in fact not an exact order
type, and give a direct proof of their claim.

6 Concluding Remarks

In this paper, we give a direct proof that any wait-free implementation of stack
in a system with read, write, comare&swap and fetch&add primitives is subject
to linearization-based helping. This corrects a mistake in the indirect proof via
exact order types in [5].
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Let us come back to the original intuition of helping as a process performing
work on behalf of other processes. One may say that linearization-based helping
introduced by Censor-Hillel et al. and used in our paper does not adequately
capture this intuition. For example, by examining the wait-free stack imple-
mentation by Afek et al. [1], we find out that none of the processes explicitly
performs work for the others: to perform pop() a process goes down the stack
from the current top until it reaches some value or the bottom of the stack;
while to perform push(x) a process simply increments the top of the stack and
deposits x there. But we just showed that any wait-free stack implementation
has linearization-based helping, and indeed this algorithm has it. So we might
think that valency-based helping is superior to linearization-based one, since
the algorithm by Afek et al. does not have non-trivial valency-based helping.
Nevertheless, the aforementioned algorithm has trivial valency-based helping,
and, thus, the (quite unnatural) distinction between trivial and non-trivial help-
ing seems to be chosen specifically to allow the algorithm by Afek et al. to be
help-free.

A very interesting challenge is therefore to find a definition of linearization-
based helping that would naturally reflect help-freedom of the algorithm by Afek
et al., while queue does not have a wait-free and help-free implementation.
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4. Attiya, H., Castañeda, A., Hendler, D.: Nontrivial and universal helping for wait-
free queues and stacks. In: OPODIS, vol. 46 (2016)

5. Censor-Hillel, K., Petrank, E., Timnat, S.: Help! In: PODC, pp. 241–250 (2015)
6. Fatourou, P., Kallimanis, N.D.: A highly-efficient wait-free universal construction.

In: SPAA, pp. 325–334. ACM (2011)
7. Feldman, S., Laborde, P., Dechev, D.: A wait-free multi-word compare-and-swap

operation. IJPP 43(4), 572–596 (2015)
8. Herlihy, M.: Wait-free synchronization. ACM Trans. Program. Lang. Syst. 13(1),

123–149 (1991)
9. Howley, S.V., Jones, J.: A non-blocking internal binary search tree. In: SPAA, pp.

161–171. ACM (2012)
10. Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann, Burlington (1996)
11. Michael, M.M.: High performance dynamic lock-free hash tables and list-based

sets. In: SPAA, pp. 73–82. ACM (2002)
12. Natarajan, A., Mittal, N.: Fast concurrent lock-free binary search trees. In: ACM

SIGPLAN Notices, vol. 49, pp. 317–328. ACM (2014)
13. Peng, Y., Hao, Z.: FA-Stack: a fast array-based stack with wait-free progress guar-

antee. IEEE Trans. Parallel Distrib. Syst. (4), 843–857 (2018)
14. Timnat, S., Braginsky, A., Kogan, A., Petrank, E.: Wait-free linked-lists. In: Bal-

doni, R., Flocchini, P., Binoy, R. (eds.) OPODIS 2012. LNCS, vol. 7702, pp. 330–
344. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35476-2 23

https://doi.org/10.1007/978-3-642-35476-2_23


Anonymity in Distributed Read/Write
Systems: An Introductory Survey

Michel Raynal1,2(B) and Jiannong Cao2

1 Institut Universitaire de France and Univ Rennes, IRISA CNRS INRIA,
Rennes, France

raynal@irisa.fr
2 Department of Computing, Polytechnic University, Hung Hom, Hong Kong

csjcao@comp.polyu.edu.hk

Abstract. This paper is an algorithmic introduction to anonymity in
asynchronous systems where processes communicate by reading and writ-
ing atomic read/write registers. Two types of anonymity are investigated:
process-anonymity and memory-anonymity. Process-anonymity is when
the processes cannot be distinguished the ones from the others (among
other features, they do not have identifiers). Memory-anonymity is when
the same memory locations can have different names at different pro-
cesses (e.g., the location name A used by process pi and the location name
B used by another process pj can correspond to the very same memory
location X, and similarly for the names B at pi and A at pj which cor-
respond to the same memory location Y �= X). The paper shows how
algorithms can cope with the uncertainty created by these two types of
anonymity. To this end, taking examples from the literature, it presents
anonymity-tolerant implementations of several concurrent objects, such
as snapshot, consensus, and lock, each implementation satisfying a well-
defined progress condition (obstruction-freedom, non-blocking, or wait-
freedom). This paper must be considered as a short example-driven intro-
ductory tutorial on anonymous asynchronous read/write systems.

Keywords: Agreement problem · Anonymity
Anonymous processes · Anonymous shared memory
Consensus · Impossibility · Linearization point · Lower bound
Mutual exclusindon · Non-blocking · Obstruction-freedom
Progress condition · Snapshot · Wait-freedom

1 Introduction

1.1 Concurrent Objects and Their Progress Conditions

Concurrent Objects. An object type is defined by a finite set of operations
and a specification describing the correct behaviors of the objects of that type.
The internal representation of an object is hidden to the processes (and several
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objects of the same type can have different implementations). The only way for
a process to access an object of a given type is by invoking one of its operations.

A concurrent object is an object that can be accessed by several processes
(concurrently or not). The specification of such an object can be sequential or
not. Sequential means that all correct behaviors of the object can be described
with sequences (traces) of invocations of its operations. We consider such objects
in the following. (Let us nevertheless remark that not all concurrent objects can
be defined from sequential specifications. As an example, this is the case of a
rendezvous object.)

Progress Conditions. Given an object O and an invocation of an operation on O
by a process, the weakest non-trivial progress condition (which is always implic-
itly assumed) states that, if the process does not crash and its invocation occurs
in a concurrency-free context (no other process has a pending invocation on O),
then the invocation terminates.

Two progress conditions for object operations have been considered in failure-
free systems, namely deadlock-freedom (DF), and starvation-freedom (SF). The
first states that, if one or more processes concurrently invoke operations on
an object, at least one process terminates its operation. The second one is
starvation-freedom, which states that any invocation of an operation terminates.
(Let us notice that, if we consider an object as a service offered to clients,
starvation-freedom is client-oriented, while deadlock-freedom is service-oriented.)
A classical way to implement a concurrent object in a failure-free system is to
use locks. A lock allows the operations on an object to be executed sequentially,
thereby eliminating concurrency.

As far as failure-prone systems are concerned (where a failure is a process
crash), locks can no longer be used [29,30]. This is due to the fact that, if
a process obtains a lock and crashes before releasing it, no other process can
access the object. Hence, failure-prone systems requires the statement of progress
conditions suited to the fact that, in the presence of asynchrony, no process
can distinguish if another process crashed or is only very slow. Three progress
conditions have been proposed to cope with asynchrony and process crashes.
They are presented below in increasing order (from the weaker to the stronger).

– Obstruction-freedom (OB) was introduced in [20]. It requires that, if a pro-
cess p invokes an operation on an object O, and all other processes that have
pending operations on O pause during a long enough period, then process p
terminates its operation.
(Let us notice that, at the implementation level, nothing prevents the pro-
cesses that have pending operations to have modified parts of the internal
representation of the object O before pausing.)

– Non-blocking (NB) was introduced in [22]. It requires that, if several processes
have concurrent invocations on an object O, and one of them does not crash,
then one of these invocations terminates.

– Wait-freedom (WF) was introduced in [18]. It is the strongest progress con-
dition. It requires that, if a process invokes an operation on an object O
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and does not crash, it terminates its operation. This means that operation
termination is guaranteed if the invoking process does not crash, whatever
the behavior of the other processes. (Let us notice that, in some settings,
obstruction-free algorithms are practically wait-free [13]).

Let us notice that, none of these progress conditions prevents processes that
have pending operations from accessing and modifying parts of the internal
representation of the object O. (Other “hybrid” progress conditions have been
investigated in [24,31].)

The definition of the obstruction-freedom and non-blocking progress condi-
tions involves the concurrency pattern in which operations are invoked. This is
no longer the case for wait-freedom. Let us also observe that, while it has ini-
tially been defined in the context of failure-prone systems, obstruction-freedom
is meaningful in failure-free systems.

1.2 Anonymous Systems

Anonymous Processes. For privacy reasons, some applications must hide the
identities of the processes they involve. On another side, some applications (e.g.,
sensor networks) are made up of tiny computing entities that have no identifiers.
These applications define the process-anonymous model, which is characterized
by the fact there is no way for a process to distinguish any two other processes
p and q. In such a model, not only the processes have no identity, but they have
the same code and the same initialization of their local variables (otherwise,
some processes could be distinguished from the others).

Process-anonymous failure-free shared memory systems have been studied
in [5], where is presented a characterization of problems solvable despite process-
anonymity, but where each process knows the number of processes n. Rela-
tions between the broadcast communication abstraction and reliable process-
anonymous shared memory systems have been studied in [4].

Anonymous failure-prone shared-memory systems have been studied in [16],
where is presented an answer to the question “What can be deterministically
implemented in the process-anonymous crash-prone model?” (deterministically
means here that randomized algorithms cannot be used).

Process-anonymous systems has been studied since 1980 in the context of
message-passing systems in [3], where are established several impossibility results
in process-anonymous systems (e.g., the impossibility to deterministically elect
a leader). Characterizations of problems that can be solved in asynchronous reli-
able message-passing, despite process anonymity, can be found in [6,34]. Failure
detectors suited to crash-prone asynchronous process-anonymous systems have
been introduced and investigated in [7,8].

Notations and Assumptions. The following notations and assumptions are used
in the present article.

– The system is composed of n processes p1, ..., pn. When considering process
pi, the integer i is its index, and no two processes have the same index. If
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the processes are anonymous, the indexes are not known by the processes;
they can be used only by an external observer in order to distinguish distinct
processes.
Moreover, as we will see in the algorithms that are presented, some of them
assume n is known by the processes (i.e., appear in their code), while other
algorithms do not.

– The shared variables are seen as a single array of read/write memory locations
denoted with uppercase letters, namely SM [1..m] if there are m registers.
The variables local to a process pi are denoted with lowercase letters, the
corresponding identifiers being subscripted by the index i.

– As soon as the processes are anonymous, it is not possible to associate a subset
of read/write registers to a given process so that they can be written only by
this process. Hence, when considering process-anonymous systems, all atomic
read/write registers are multi-writer/multi-reader (MWMR) registers.

Anonymous memory systems have been implicitly used in some works in the
early eighties (e.g., [28]), but the notion of memory-anonymity has been explicitly
defined and investigated as a concept in [32]. More precisely, this paper considers
the case where “there is no a priori agreement between processes on the names
of shared memory locations”. Considering a shared memory defined as an array
SM [1..m] of memory locations, memory-anonymity means that, while the same
location identifier SM [x] always denotes the same memory location for a process
pi, it does not necessarily denote the same memory location for two different
processes pi and pj .

An example of memory-anonymous configuration is depicted in the table that
appears below. The shared memory is an is an array of three atomic read/write
registers denoted SM [1..3] from an external global observer point of view. The
first line (and similarly for the other lines) states that the location denoted SM
[1] from the global observer point of view, is known as SM [2] by process pi, and
as SM [3] by process pj . Of course, no process knows this table.

Names for the
global observer

Local names
for process pi

Local names
for process pj

SM [1] SM [2] SM [3]

SM [2] SM [3] SM [1]

SM [3] SM [1] SM [2]

1.3 Spirit, Content, and Roadmap of the Article

First lectures on sequential algorithms usually start with algorithms solving basic
problems (such as sorting, simple graph problems, text analysis) and algorithms
implementing simple data structures such stacks, queues, and trees. The aim
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is to give students basic notions and principles on what is called algorithmic
thinking (or computational thinking) [17,26,33].

The goal of this paper is similar. Assuming readers know basic synchroniza-
tion notions, concepts, and algorithms, its first aim is to give them an intuition of
the difficulties generated by process-anonymity and memory-anonymity. A sec-
ond aim is to present them a few example-based principles and techniques which
can help them better understand which progress condition must be considered
when one has to address process-anonymity or memory-anonymity.

As literature books, which presents “selected pieces” related to a novelist, a
given period, or a thematic area, to attain its goal, this paper presents a few
selected algorithms related to anonymous systems. More specifically, it presents
algorithms implementing basic objects encountered in a lot of concurrent applica-
tions, namely, a snapshot object, a consensus object, and a lock (mutex) object.
Each of these algorithms considers a type of anonymity (process-anonymity or
memory-anonymity), and some of them tolerates any number of process crash
failures.

As already said, all these algorithms presented in this article consider the
basic asynchronous distributed read/write model. Asynchronous means that each
process proceeds to its own speed, which can vary with time and remains always
unknown to the other processes. Read/write means that the processes can com-
municate only by reading and writing atomic registers. Moreover, a process exe-
cutes correctly its algorithm (until it possibly crashes). The selected algorithms
are from [9,10,16,32]. They are the following.

– Selected piece 1 (Sect. 2) is a snapshot algorithm whose adversaries are asyn-
chrony, process-anonymity, and (any number of) process failures. This algo-
rithm satisfies the non-blocking progress condition.

– Selected piece 2 (Sect. 3) is a binary consensus algorithm whose adversaries
are the same as in the previous item. This algorithm satisfies the obstruction-
freedom progress condition.

– Selected piece 3 (Sect. 4) concerns computability issues when considering the
obstruction-freedom progress condition and any object defined by a sequen-
tial specification. It discusses an associated universal construction for asyn-
chronous process-anonymous systems, in which any number of processes may
crash.

– Selected piece 4 (Sect. 5) is a mutual exclusion algorithm whose adversaries
are asynchrony and memory-anonymity. This algorithm satisfies the deadlock-
freedom progress condition.

– Selected piece 5 (Sect. 6) is a consensus algorithm whose adversaries are asyn-
chrony, memory-anonymity, and (any number of) process failures. It satisfies
the obstruction-freedom progress condition.
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2 Process-Anonymity and Any Number of Process
Crashes: Non-blocking Snapshot

The first selected piece is a non-blocking snapshot algorithm suited to asyn-
chronous process-anonymous read/write systems, in which any number of pro-
cesses may crash. This algorithm is due to Guerraoui and Ruppert [16].

2.1 Snapshot Object

The concept of a snapshot object was introduced independently in [1] and [2].
Such an object, say S , can be seen as an array of m multi-writer/multi-reader
(MWMR) atomic registers, which provides the processes with an abstraction
level higher than a simple array of m independent read/write registers. More
precisely, it is defined by two operations denoted write() and snapshot(). When a
process pi invokes write(x, v) (where 1 ≤ x ≤ m), it writes the value v at entry x
of the array. When it invokes snapshot(), it obtains the value of the whole array,
as if the read on all its entries were done simultaneously and at the very same
time. In other words, the operations write() and snapshot() are atomic, and the
execution of a snapshot object is linearizable [22] (namely, the operations appear
as if they have been executed one after the other, this total order being such
that, if an operation op1() terminated before an operation op2() started, op1()
appears before op2() in this total order).

In systems where processes have distinct names, it is possible to implement
such a snapshot object, with the wait-freedom progress condition, on top of
atomic read/write registers, despite asynchrony, and any number of process
crashes [1,2,23,29,30].

2.2 Non-blocking Snapshot Despite Process-Anonymity and Crash
Failures

The algorithm implementing a non-blocking snapshot object is presented in
Fig. 1.

Internal Representation of the Snapshot Object. At the implementation level,
the snapshot object is represented by an array SM [1..m] of m MWMR
atomic read/write registers. Each register is initialized to the pair 〈−,⊥〉
(where ⊥ is default initial value). Hence, a register SM [x] is a pair SM [x] =
〈SM [x].ts,SM [x].value〉 (such that only SM [i].value can be made visible out-
side).

Each anonymous process pi manages a local counter variable tsi, initialized
to 0, that it uses to associate a sequence number to its successive write operations
into any atomic register SM [x]. Let us notice that two processes can associate
the same sequence number to different write operations. A process pi manages
also three auxiliary variables denoted counti, sm1i[1..m], and sm2i[1..m].
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Fig. 1. Non-blocking snapshot object [16] (code for pi)

Algorithm. The algorithm implementing the operation write(), is self-
explanatory. When a process pi invokes snapshot(), it repeatedly reads the array
SM [1..m] until it obtains an array value sm[1..m] that does not change during
(m(n−1)+2) consecutive readings of SM [1..m]. When this occurs, the invoking
process returns the corresponding array value sm[1..m].

Properties. Trivially, any write operation terminates (it the invoking process
does not crash during the invocation). As far the snapshot operation is con-
cerned, it is easy to see that, if there is a time after which a process (that
does not crash) executes alone it terminates its snapshot operation, hence the
implementation is obstruction-free.

Assuming now each process invokes repeatedly S .write() (whatever x) fol-
lowed by S .snapshot() (as done in nearly all uses of a snapshot object), let us
show that the operation S .snapshot() is non-blocking. To this end, let us first
observe that an invocation of S .snapshot() can be prevented from terminating
only if processes issue permanently invocations of write(). The proof is by contra-
diction. Let us assume that no invocation of S .snapshot() terminates. This means
that there are processes that permanently issue write operations. But this con-
tradicts the assumption that each process alternates invocations of S [x].write()
(whatever x) and REG .snapshot(). This is because, between two writes issued by
a same process, this process invoked S .snapshot(), and consequently this snap-
shot invocation terminated, which proves the non-blocking progress condition.

As far the linearization of the operations write() and snapshot() invoked by the
processes is concerned we have the following [16]. Let us consider an invocation
of snapshot() that terminates. It has seen m(n − 1) + 2 times the same vector
sm[1..m] in the array SM [1..m]. Since a given pair 〈ts, v〉 can be written at most
once by a process, it can be written at most (n − 1) times during a snapshot
(once by each process, except the one invoking the snapshot). It follows that,
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among the m(n − 1) + 2 times where the same vector sm[1..m] was read from
SM [1..m], there are least two consecutive reads during which no process wrote
a register. The snapshot invocation is consequently linearized between these two
sequential reads on the array SM [1..m].

Does Process-Anonymity Limit Snapshot Implementations? A snapshot imple-
mentation, which ensures the strongest progress condition (wait-freedom) for
both the operations write() and snapshot(), despite process-anonymity and any
number of process crashes, is presented in [16]. This means that, for snapshot
objects, process-anonymity does not create a computability threshold as far as
progress conditions are concerned.

3 Process-Anonymity and Any Number of Process
Crashes: Obstruction-Free Binary Consensus

The second selected piece is an obstruction-free consensus algorithm suited to
asynchronous process-anonymous read/write systems, in which any number of
processes may crash. This algorithm is due to Guerraoui and Ruppert [16].

3.1 Consensus Object

The consensus object is one of the most important objects of fault-tolerant dis-
tributed computing. A consensus object is a one-shot concurrent object that has
a single operation, denoted propose() (one-shot means that a process invokes
propose() at most once). When a process pi invokes propose(v), we say “pi pro-
poses value v”. When its invocation terminates, pi obtains a value w, and we say
“pi decides w”. If only two values (e.g., 0 and 1) can be proposed, the consensus
is binary. Otherwise, it is multivalued. The safety property of a consensus object
is captured by the two following properties.

– Validity. If a process decides a value, this value was proposed by a process.
– Agreement. No two processes decide different values.

One of the most important results of distributed computing is the impossi-
bility to implement a consensus object satisfying the wait-freedom progress con-
dition in non-anonymous asynchronous systems, be the communication medium
message-passing [14], or read/write registers [27], and even if only one process
may crash. This impossibility extends trivially to process-anonymous systems.

3.2 Obstruction-Free Consensus Despite Process-Anonymity
and Crash Failures

Figure 2 presents a relatively simple binary consensus algorithm (from the same
authors) which guarantees the (weak) obstruction-freedom progress condition,
in the presence of process-anonymity and any number of process crashes. This
algorithm is a de-randomized version (due to Guerraoui and Ruppert [16]) of an
anonymous randomized consensus algorithm due to Chandra [10].
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Internal Representation of the Binary Consensus Object. At the implementation
level, the consensus object is represented by a two-dimensional array SM [0..1, 1..]
(whose second dimension is unbounded) of MWMR atomic read/write registers.
Each entry SM [x, y] is initialized to the default value down, and it can then
takes the value up. SM [x, y] can be seen as flag which is raised by a process (and
remains then raised forever) when some condition is satisfied.

A process pi locally manages a current estimate of the decision value (esti)
and an iteration number ki.

Fig. 2. Obstruction-free binary consensus object [16] (code for pi)

Algorithm. To understand the behavior of the algorithm, the reader is encour-
aged to execute it first when a single value is proposed, and then when both
values are proposed.

As stated in [16], the algorithm can be seen as ruling a competition between
two teams of processes, the team of the processes that champion 0, and the team
of the processes that champion 1.

A process pi first progresses to its next iteration (line 3). Iteration numbers
k can be seen as defining a sequence of rounds executed asynchronously by the
processes. Hence, the state of the flags SM [0, k] and SM [1, k] (which are up or
down) describes the state of the competition at round k. When a process pi
enters round k, there are two cases.

– If the flag associated with this round and the other value is up (SM [esti, k] =
up, i.e., the predicate of line 4 is not satisfied), pi changes its mind passing
from the group of processes that champion esti to the group of processes that
champion esti (line 7). It then proceeds to the next round.

– If the flag associated with this round and the other value is down (the pred-
icate of line 4 is then satisfied), maybe esti can be decided. To this end, pi
indicates first that esti is competing to be the decided value by raising the
round k flag SM [esti, k] (line 5). The decision involves the two last rounds,
namely (k − 1) and k, attained by pi (hence, the sub-predicate k > 1 at
line 6). If pi sees both the flags measuring the progress of esti equal to down
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at round (k − 1) and round k (predicate SM [esti, k] at line 4, and predicate
SM [esti, k] at line 6), esti is defeated, and pi consequently decides esti.
To show this is correct, let us consider the smallest round k during which a
process decides. Moreover, let pi be a process that decides during this round, v
the value it decides, and τ the time at which pi reads SM [v, k−1] before decid-
ing (line 6 of round k). As pi decides, at time τ we have SM [v, k − 1] = down.
This means that, before time τ , no process changed its mind from v to v at
line 6. The rest of the proof consists in showing that no process pj started
round k before time τ with estj = v. A full proof of this algorithm ensures
the consensus is given in [16].

3.3 Computability Despite Process-Anonymity and Any Number
of Crashes Failures

While it is impossible to implement a consensus object satisfying the wait-
freedom progress condition, it is possible to implement a consensus object sat-
isfying the non-blocking progress condition, despite process-anonymity. This
shows that the consensus object reveals computability threshold separating
the obstruction-freedom and wait-freedom progress conditions in crash-prone
read/write asynchronous systems.

4 Process-Anonymity and Any Number of Process
Crashes: Obstruction-Freedom-Compliant Universal
Construction

The third selected piece is a universal construction which builds an obstruction-
free implementation of any object defined by a sequential specification for asyn-
chronous process-anonymous read/write systems, in which any number of pro-
cesses may crash. This universal construction is due to due to Bouzid, Raynal,
and Sutra [9].

4.1 Process-Anonymous k-Set Agreement

The notion of a k-set agreement object generalizes the consensus object. In both,
each process proposes a value and decides a value. k-Set agreement is defined by
the following safety properties:

– Validity. If a process decides a value, this value was proposed by a process.
– Agreement. At most k different values are decided.

Hence, 1-set agreement is consensus, and k-set agreement is strictly stronger
than (k + 1)-set agreement.

The implementation of a k-set agreement object satisfying the obstruction-
freedom progress condition in a system made up of n asynchronous anonymous
processes communicating through atomic read/write registers has recently been
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proposed in [9]. This algorithm uses (n−k+1) atomic read/write registers only.
From a shared memory cost point of view, this is the best algorithm known so
far. When considering k = 1 (consensus), it is up to an addictive factor of 1 close
to the best known lower bound [36].

4.2 On the Power of Repeated Anonymous Consensus

Using a sequence of repeated anonymous consensus instances, a universal con-
struction for process-anonymous systems, is described [9], which provides the
constructed objects with the obstruction-freedom progress condition.

In addition to such a universal construction, the previous article presents the
following results for n-process anonymous systems.

Universality of n Atomic Read/Write Registers in Anonymous n-Process Sys-
tems. Let O be an object that can be obstruction-free implemented by n anony-
mous processes and any number of MWMR atomic read/write registers. O can be
obstruction-free implemented by n anonymous processes and n MWMR atomic
read/write registers.

Said differently, in an anonymous system, n registers are sufficient to
obstruction-free implement any object O implemented with more registers.

Anonymity and Distributed Task. A distributed task T () is made up of n pro-
cesses p1, ..., pn, such that each process has its own input (let ini denote the
input of pi) and must compute its own output (let outi denote the output of
pi) [19,21]. Let I = [in1, · · · , inn] be an input vector (let us notice that a pro-
cess knows only its local input, it does not know the whole input vector). Let
O = [out1, · · · , outn] be an output vector (similarly, even if a process is required
to cooperate with the other processes, it has to compute its local output outi,
and not the whole output vector). A task T is defined by a set I of input vectors,
a set O of output vectors, and a mapping T from I to O, such that, given any
input vector I ∈ I, the output vector O (cooperatively computed by processes)
is such that O ∈ T (I). The case n = 1 corresponds to sequential computing,
and, in this case, a task boils down to a function.

A colorless task is a task such that if the input value of a process is in, any
other process can have in as input value, and similarly, if the output value of a
process is out, any other process can have out as output value. Expressed as a
task, consensus is a colored task. The following theorems are proved in [9].

– If a task T = (Δ, I,O) is obstruction-free solvable by n anonymous processes
and any number of MWMR atomic read/write registers, then it is obstruction-
free solvable by n anonymous processes with no more than n MWMR atomic
read/write registers.

– If a colorless task T = (Δ, I,O) is obstruction-free solvable in a non-
anonymous n-process system using any number of single-writer/multi-reader
(SWMR) registers, it is also obstruction-free solvable in an anonymous n-
process system with n MWMR atomic registers.
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Wait-free solvability of colorless tasks in n-process anonymous systems has also
been investigated in [35].

5 Memory-Anonymity in a Failure-Free System: Mutex

As indicated in the introduction, the notion of memory-anonymity was recently
introduced by Taubenfeld in [32]. The fourth selected piece is a deadlock-free
mutex algorithm suited to asynchronous process-anonymous read/write crash-
free systems. This algorithm is due to Taubenfeld [32].

5.1 Deadlock-Free Mutual Exclusion

Mutual exclusion is the oldest (and most important) synchronization problem.
Formalized by Dijkstra in the late sixties [11,12], it consists in building what
is called a lock (or mutex) object, defined by two operations, denoted acquire()
and release().

The invocation of these operations by a process pi always follows the following
pattern: “acquire(); critical section; release()”, where “critical section” is any
sequence of code. The mutex object satisfying the deadlock-freedom progress
condition is defined by the following two properties.

– Mutual exclusion. No two processes are simultaneously in their critical
section.

– Deadlock-freedom progress condition. If a process pi has a pending operation
acquire(), a process pj (maybe pj �= pi) eventually executes its critical section.

5.2 Symmetric Algorithm

An algorithm is symmetric if all the processes execute the same code. If the sys-
tem in not process-anonymous (as it is the case here), the processes differs only
in their identifier, which are all different. (Here, the identifier of pi is its index i).
Moreover, to have an algorithm as general as possible, it is assumed that there is
no order on the identifiers, they can only be compared. (Symmetry notions have
been investigated since long time, in message-passing systems, e.g., [15,25].)

5.3 Deadlock-Free Mutex Object for Two Processes

Internal Representation of the Mutex Object. The process cooperates through a
memory-anonymous array of atomic read/write registers SM [1..m], where m is
an odd integer greater than 2. As SM [1..m] is memory-anonymous, SM [x] does
not necessarily refers to the same register for two different processes pi and pj .
Hence, we use the notation SM i[x] to denote the register of SM [1..m] accessed
by pi with the array index x, and SM j [x] the register SM [1..m] accessed by pj
with the same array index x, which can be different registers of SM [1..m].
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Each process pi has two local variables. An integer variable ki, whose domain
is the set {1, · · · , n} (where n = 2), and a local array smi[1..m].

Algorithm of the Operation acquire(). The algorithm is described in Fig. 3. Let
us remember that n = 2, and m is assumed to be an odd integer ≥ 3.

When a process pi invokes acquire(), it first (asynchronously) sets to its iden-
tity i all entries of SM [1..m] it sees equal to 0, which is a neutral value (line 2).
Then (line 3), pi asynchronously scans the “current state” of the mutex object,
as defined by SM [1..m]. There are then two cases.

Fig. 3. Deadlock-free 2-process mutex object [32] (code for pi, i ∈ {1, 2})

– If pi sees its identity in a majority of entries SM [1..m] (the predicate of line 4
is then false), it considers it is on the “winning path”, and starts another
iteration. These iterations stop when pi sees its identity in all the entries
of SM [1..m] (predicate of line 9). When this occurs, pi is the winner of the
competition and is allowed to enter its critical section code.
It is easy to see that, if only pi invokes acquire(), we have SM [1..m] = [i, · · · , i]
when it terminates line 2. In this case, both the predicates of line 4 and 9 are
satisfied, and the invocation of acquire() by pi terminates.

– If the predicate of line 4 is satisfied, pi and pj are competing, and pi is losing
the competition (let us recall that, as m is odd, pi does not see a majority
of entries of SM with its identity). In this case, pi withdraws momentarily
from the competition (line 5), and waits until it sees that SM [1..m] has been
reset to its initial value (lines 6–7). When this occurs, pi restarts competing
by executing a new iteration of the external loop.

Algorithm of the Operation release(). This operation is a simple (non-atomic)
reset of the array SM [1..m] to its initial value [0, · · · , 0] (line 11).
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Proof. We give here only a sketch of the mutual exclusion property. (The reader
can consult [32] for a full proof including the deadlock-freedom property.) As the
reads and the writes of the underlying registers SM [1..M ] are atomic, the time
instants defined below are well-defined.

Let us assume that process pi is inside its critical section. When its invocation
of acquire() terminated, pi was such that smi[1..m] = [i, · · · , i] (line 9); this
constitutes Observation Oi. Let τ1

i be the time of pi’s last write in the array
SM at line 2, and τ2

i > τ1
i the time of its first read of an entry of the array SM

at line 3. It follows from Observation Oi that pi read smi[1..m] = [i, · · · , i] at
line 3. It follows that during the time interval [τ1

i ..τ2
i ] SM [1..m] has not been

modified and was equal to [i, · · · , i].
After time τ2

i , it is possible that the other process pj assign j to some entry
SM [k] (because, before time τ1

i , it read 0 from this entry at line 2), and this
write overwrites the value i previously written by pi in SM [k]. Then, when pj
executes line 4, it finds that j appears in only one entry, which it resets to 0
(line 5). There are then (m − 1) entries of SM equal to i, and pj loops in the
internal loop (lines 6-7) until pi invokes release() (line 11). The mutex property
follows.

5.4 On the Computability Side: Results and Open Problems

Several impossibility results are stated and proved in [32]. We state here one of
them, and present an open problem.

– There is a memory-anonymous symmetric mutex algorithm for n = 2 pro-
cesses, satisfying the deadlock-freedom progress condition, and using m ≥ 2
atomic registers, if and only if m is odd.
When considering a classical (i.e., not memory-anonymous) system, there is
an n-process deadlock-free mutex algorithm, based on identity comparison
only, which uses n atomic read/write registers. It follows that, when consid-
ering a mutex object and the deadlock-freedom progress condition, memory-
anonymity entails a computability threshold: n atomic read/write registers are
sufficient when processes have identities (which can only be compared), while
an odd number ≥ 3 of registers is necessary when n = 2 and the ssytem is
memory-anonymous.

– For ≥ 3, the existence of a memory-anonymous symmetric mutex algorithm
(and its design if it exists) satisfying the deadlock-freedom progress condition,
is an open problem.
Let us notice that there are algorithms that reduce n-process mutex to 2-
process mutex [29,30]. Such algorithms are based on a tournament-tree, of
size log(n), in which each node is a mutex algorithm for two processes. This
technique cannot be applied here because, while no two nodes of the tree
cannot be confused in a classical memory system, this is no longer true in a
memory-anonymous system (the tree structure “collapses” in such a system
because it has a linear memory SM [1..m] where the same register name SM [k]
can be associated with different entries of SM [1..m] at distinct processes).
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5.5 Hybrid Memory-Anonymous System

A possible generalization of the pure memory-anonymous system consists in
considering an hybrid version defined as follows. The memory, now denoted
HSM [1..k], is made up of k partitions such that:

– The k memory partitions HSM [1], ..., HSM [k] are not anonymous, which
means that each HSM [x], 1 ≤ x ≤ k, refers to the same array of atomic
read/write registers for all the processes.

– Each partition HSM [x], 1 ≤ x ≤ k, is a memory-anonymous array of size sx.

It follows that, if for any x we have sx = 1, HSM [1..k] is a classical non-
anonymous array of read/write registers, and if k = 1, HSM [1][1..s1] is a
memory-anonymous shared memory composed of s1 read/write registers (i.e.,
SM [1..s1] in the previous parlance).

It is easy to see that such a hybrid memory-anonymous system allows us to
use any algorithm that reduces n-process mutex to 2-process mutex. The lock
associated with each node of the tournament tree can be implemented with the
algorithm of Fig. 3, while each lock is non-anonymous. The hybrid memory is
then LOCK[1..k][1..2], where k is the number of locks of the tournament tree.
(Unfortunately, this does not answer the question of a mutex algorithm in a pure
memory-anonymous system for n ≥ 3 processes.)

6 Memory-Anonymity and Any Number of Process
Crashes: Obstruction-Free Consensus

Consensus objects have been defined in Sect. 3.1. The fifth (and last) selected
piece is an algorithm, due to Taubenfeld [32], which implements an obstruction-
free consensus object in memory-anonymous systems made up of n non-
anonymous processes p1, ..., pn, and where any number of processes may crash.

Internal Representation of the Consensus Object. The consensus object is repre-
sented by an array SM [1..2n − 1] of atomic read/write registers. Each SM [x]
is composed of two fields: SM [x].id which contains a process identity, and
SM [x].val which contains a value proposed by a process. Each SM [x] is ini-
tialized to 〈−,⊥〉.

As in Sect. 5.3, given a process pi, SM i[x] is used to locally denote the entry
of SM [1..2n−1] accessed with the index x used by pi. Due to memory-anonymity,
for two different processes pi and pj , SM i[x] and SM j [x] can be different registers
of SM [1..2n − 1].

Each process pi manages three local variables. One is the array smi[1..2n−1]
(in which pi saves its reading of SM i[1..2n − 1]). The variable esti contains the
current estimate of the decision value, as known by pi. Finally, ki is a local index.
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Obstruction-Free Memory-Anonymous Consensus Algorithm. When a process pi
invokes propose(vi), where vi is the value it proposes, it first assigns vi to esti
(line 1). Then pi enters a loop, in which it first reads asynchronously the shared
array SM i[1..2n − 1] (line 3). If it sees a majority value v (line 4), pi adopts it
as new estimate (line 5). Then, if it sees an entry smi[x] that does not contain
the pair 〈i, esti〉, pi writes this pair in SM i[x] (lines 7–8). Finally, if all entries
of smi[1..2n − 1] contain the pair 〈i, esti〉, pi decides the value saved in esti
(predicate of line 10 and line 11) (Fig. 4).

Fig. 4. Obstruction-free multivalued memory-anonymous consensus object [16] (code
for pi)

Sketch of a Proof (from [32]). Let us first consider the agreement property.
Let pi be the first process that decides, and let v be the value it decides. It
follows from line 10 that, before deciding, pi was such that smi[1..2n − 1] =
[〈i, esti〉, · · · , 〈i, esti〉], i.e., pi has seen all entries of SM [1..2n − 1] equal to
〈i, esti〉. Each other process pj may write into one of the shared registers at
line 8, overwriting the pair 〈i, esti〉. It follows that at most (n − 1) entries of
SM [1..2n−1] can be overwritten to a value different from 〈i, esti〉. Consequently,
when, after it read the shared array SM [1..2n − 1] at line 3, any other process
pj will find that v satisfies the predicate of line 4, and consequently adopts v as
new estimate (line 4). If follows that no value different from v can be decided.
The proof that the implementation is obstruction-free is left to the reader.

A more general obstruction-free algorithm solving k-set agreement with only
(n − k + 1) MWMR atomic read/write registers is described in [9].

7 Conclusion

Using as “selected pieces” recent algorithmic results in the domain of anony-
mous systems, where processes cooperate through atomic read/write registers,
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the aim of this article was to be an example-driven introduction to anonymity
in distributed systems. Two types of “orthogonal” anonymities have been pre-
sented, namely, process-anonymity and memory-anonymity. A few algorithms
illustrating the difficulty to cope with the uncertainty created by anonymity
have been presented. This is summarized in the following table.

Object Anonymity Failure Progress condition References

Snapshot Processes Crash WF [16]

Binary consensus Processes Crash OB [10,16]

k-set agreement Processes Crash OB [9]

Consensus Memory Crash OB [32]

Mutex Memory No failure DF [32]

Be it due to privacy-based motivation or the manufacturing of identity-
less anonymous tiny computing devices, the design of anonymous algorithms
is becoming pervasive in more and more distributed applications. It follows that
a theory of what can be computed in the presence of process/memory-anonymity
seems to be a promising research domain.
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Abstract. We consider a system of n anonymous processes communi-
cating through multi-writer/multi-reader (MWMR) registers. A weak-set
object is a particularly interesting communication abstraction for anony-
mous processes; it may be seen as the equivalent of an atomic snapshot
object in an anonymous system. It can be accessed through two oper-
ations: add() and get(). Intuitively, an add(v) operation puts value v
in the set represented by the object, while a get() operation returns
the contents of the set. The paper describes a wait-free atomic imple-
mentation of a weak-set object shared by n anonymous processes using
3n MWMR registers. The description of the algorithm is incremental.
The paper first presents an implementation that is wait-free only for
the Get() operations, using 2n MWMR registers. Then it describes an
implementation that is wait-free for the Get() and the Add() opera-
tions, using 3n + 1 MWMR registers, and finally it is improved to an
implementation using 3n MWMR registers. In addition, a lower-bound
of n registers for the implementation of a wait-free atomic weak-set is
proved.

Keywords: Shared memory · Anonymous processes · Wait-free

1 Introduction

Distributed computing has long studied what can be computed by a system
composed of n failure-prone asynchronous processes communicating through
shared-memory. Most papers consider a shared memory consisting of n single-
writer/multi-reader (SWMR) atomic registers. In such a model, each process has
a unique identifier, which is used to identify the registers to which the process
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can write. All registers can be read by all processes. Indeed, most algorithms
use directly the assumption of unique identifiers, or indirectly to know which
register is owned by which process.

In this paper, we are interested in anonymous systems. Anonymous systems
are encountered in situations where processes do not have unique identifiers, like
some sensor networks, or in situations where for privacy concerns, algorithms
cannot use the process’ identifiers, like in a peer-to-peer file sharing system.
In addition to such practical motivations, studying anonymous computation is
of theoretical importance, to better understand the nature of distributed com-
putability.

Anonymous processes are programmed to run the same code (e.g. [2,4,20,
25]), and are indistinguishable from each other. Hence, when processes are anony-
mous, they cannot communicate through SWMR registers; a process has no
means to identify its own register to which to write. Instead, in an anonymous
system, processes communicate through multi-writer/multi-reader (MWMR)
registers. Each register is completely symmetric, in that it can be read or written
by any process.

Programming an anonymous system is very challenging. For example, even
if a process writes a value v to a register infinitely often, there is no way to
ensure that the value will ever be visible by other processes: each time it writes
the value, another process may immediately overwrite it. The problem does not
come from the use of MWMR registers but from the anonymity. Indeed, when
processes have identifiers, it is possible to simulate a system in which each process
is assumed to have its own SWMR register using (enough) MWMR registers [15].
A value written in such a simulated register may only be erased by the owner of
the register.

In this paper, we consider a completely symmetric shared object, that can be
implemented on top of MWMR registers, that is still very useful to program an
anonymous system: the weak-set object introduced in [12]. A weak-set object has
two operations Add(v) and Get() to access a set of values. Informally, operation
Add(v) adds the value v to that set, and operation Get() returns the current
value of the set. The object is called a “weak” set, because values can be added
to the set, but there is no operation to remove values from the set.

Notice that, in contrast to a MWMR register, when a process executes an
Add(v) operation, v will forever be in the set, and it will always be included
in the set returned by a subsequent Get() operation. However, among the set
of values returned by a Get(), a process does not know in which order they
have been added. In contrast, when using registers, the last value written to the
register is well defined. It is possible to use shared timestamps [18] for anonymous
processes, to define an order between add() operations, and then to distinguish
the last value added. In this way, weak-set objects can emulate MWMR registers.

In the non-anonymous setting, the atomic snapshot object has been proposed
to facilitate distributed programming [1], and many implementations have been
designed (see for example the survey [19]), some on top of MWMR registers
e.g. [23,24]. In a sense, a weak-set can be considered an atomic snapshot for



Anonymous Wait-Free Weak-Set 143

anonymous systems. In the classic, one-shot atomic-snapshot, each process p
writes (also called update) at most once a shared SWMR register T [p] and
performs a scan that returns Cp, a copy of the current state of array T . Notice
that (1) no value is lost and any scan performed after an update will contain
this value (because each process writes its own register T [p]); (2) either S1 ⊆ S2

or S2 ⊆ S1, where S1 and S2 are the set of values (and not which process has
written which value) returned by two consecutive scan operations. Properties
(1) and (2) are properties that do not depend on the process identities, although
atomic-snapshots are defined in the non-anonymous system (each process has
its own SWMR register). A weak-set is an object guaranteeing property (1) and
(2) in an anonymous context. In this sense, a weak-set may be considered as an
atomic snapshot in the anonymous setting.

Weak-sets have already proved to be useful in previous research. They are
used in [16] and [27] to characterize the computational power of anonymous
processes concerning colorless tasks. Recall that colorless tasks [7] are defined
only in terms of an input/output relation on sets of values, without referring
to which process gets which input and which one should produce which output.
Also, in [12], a weak-set is the primitive used to design a consensus algorithm
with failure detector Ω. Additional references and discussion about set objects
can be found in [5].

In this paper, we prove that atomic weak-set objects can be implemented in
a wait-free way using 3n MWMR registers with n anonymous processes. Our
interest is in computability rather than efficiency; further work is needed to
obtain more efficient weak-set object implementations.

The paper is organized as follows. In Sect. 2, we describe the anonymous
MWMR shared-memory system used in the paper, and discuss the weak-set
object definition and its properties. In Sect. 3, we present a weak-set object
implementation that is non-blocking. In Sect. 4, we show how to extend the
algorithm to be wait-free. Section 5 discusses the space complexity of our algo-
rithms and shows that at least n registers are needed to implement an atomic
weak-set object. The conclusions are in Sect. 6.

2 Model and Weak-Set

We first describe the anonymous MWMR shared-memory system used in the
paper, and then we discuss weak-set objects.

2.1 Model

We assume a standard anonymous asynchronous shared-memory model [20] con-
sisting of n sequential processes that have no identifiers and execute an identical
code. We sometimes refer to the processes by unique names p0, . . . , pn−1 for
notational convenience, but processes themselves have no means to access these
names. Let Π = {p0, . . . , pn−1}. Processes are asynchronous, i.e., they run at
arbitrary speeds, independent from each other. Any process can stop running
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its code at any time, and crash. We assume that at least one process does not
crash.

The processes communicate via multi-writer/multi-reader (MWMR) regis-
ters. Let R[0 . . . m − 1] denote an array of m such registers. The read operation,
denoted by read(i), returns the state of R[i]. The write operation, denoted by
write(i, v), changes the state of R[i] to v and returns ack. The registers are
assumed to be atomic [26]. We assume that the registers are initialized to some
default value.

An object is a distributed data structure that can be accessed via a set of
operations. It is defined by a sequential specification that specifies the effect of
an operation on the object’s state, and the value the operation returns, when
operations are invoked sequentially. The behavior of the object on concurrent
invocations is defined by the linearizability condition, ensuring the object is
atomic. Roughly speaking, linearizability states that it is possible to associate
to any concurrent execution a sequential execution, by identifying linearization
points to each operation. More precise definitions can be found in Herlihy and
Wing [22].

An implementation of an object is wait-free if each invocation of an operation
performed by a process that does not crash terminates. An implementation of an
object is non-blocking if when there is an infinite number of operation invocations
then an infinite number of operations terminate.

A timestamp object provides one operation GetTS() that returns an integer
value called a timestamp, such that if a GetTS() returning t1 terminates before
the beginning of a GetTS() returning t2, then t1 < t2. A timestamp object
enables to order non-concurrent events. Notice that a timestamp object is not
an atomic object; concurrent invocations of GetTS() may return integers in any
order. However, it can be specified formally using set-linearizability or interval-
linearizability [9,10].

An implementation of a timestamp object using n MWMR registers can be
found in [18].

An m-snapshot represents an array R of m MWMR registers, indexed from 0
to m−1. It can be accessed with two operations, update(r, v) (r is the index of
a register in R, and v is a value) and scan() defined by the following sequential
specification1:

– update(r, v) sets the register R[r] to value v,
– scan() returns a copy of R.

The m-snapshot object is atomic in the sense that scan() returns a view of
the array R with m values that were simultaneously present at some point in
time in R.

1 The One-shot atomic-snapshot described in the introduction corresponds to a n
atomic-snapshot such that (1) each register is a SWMR register and each process
is the writer of exactly one of these registers, and (2) each process may perform at
most one update.
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Guerrraoui and Ruppert present in [20] a wait-free implementation of an m-
snapshot object for anonymous processes using n+m MWMR registers (among
them, n registers are devoted to provide a timestamp).

Note that when using an m-snapshot object, even if a process p infinitely often
performs an update(r, v), this value v may never be “visible” if immediately
after each update(r, v) of p another process performs an update(r, v′) with
v �= v′.

2.2 Weak-Set

An atomic weak-set object [12] guarantees that a value added will ever be “vis-
ible” for all processes. This object is used for maintaining a set of values taken
from some universe of possible values V . It can be accessed using two operations
Add(v) and Get(). The sequential specification is the following:

– the state of the object is defined by a set S of values initially empty;
– an operation Add(v) adds v to the set S, i.e., S ← S ∪ {v}, and returns

ACK;
– an operation Get() returns the set S without modifying it.

Two remarks concerning the computational power of a weak-set object:

1. It is easy to simulate a MWMR atomic register using timestamp and weak-set
objects:

– The values in the weak-set are pairs (t, v) where t is a timestamp obtained
by a GetTS().

– To perform a Write(v), a process performs an Add(v,GetTS()).
– To perform a Read() a process performs a get() and returns the value

associated with the largest (t, v) in lexicographical order.
Consider a write(v) that performs an Add(t, v) and a write(v′) that per-
forms an Add(t′, v′). If (t, v) ≤ (t′, v′) then the properties of timestamps
ensure that write(v) is either concurrent with write(v′) or write(v) ter-
minates before the beginning of write(v′). From this, it is not hard to deduce
the atomicity of the simulated register.

2. From the previous remark, using timestamps, it is possible to know the last
value added. However, there is no way to know the first value added to the
set. Indeed, if it were possible, then consensus could be easily implemented,
contradicting the consensus impossibility of [21]. Namely, each process adds
its initial value, then performs a Get(), and decides the value returned by
the Get() that has been added first.

To conclude this section, notice that when the set of values V is finite, a
weak set object can be implemented with card(|V |) MWMR registers. For this,
consider an array R of card(|V |) MWMR boolean registers, each element of the
array being indexed by a value v ∈ V . Array R is initialized by false and:

– to perform an add(v) a process simply does R[v] = true, and
– a get() returns a scan() of R.
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Fig. 1. Non-blocking implementation of atomic weak set for n processes. Get is wait-
free

3 A Non-blocking Weak Set Object Implementation

In this section, we describe the atomic weak-set algorithm of Fig. 1. In what
follows, we explain the algorithm and – for lack of space in this proceedings
version – we give an informal explanation of why it is correct.

The implementation of the atomic weak-set presented in this section is non-
blocking, i.e., if there are operations concurrently executed on the object by
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non-faulty processes, then at least one of them succeeds. However, the imple-
mentation is wait-free for all Get() operation invocations. That is, a Get()
operation that is invoked by a non-faulty process always terminates regardless
of other processes’ behavior.

In an anonymous setting, it is impossible to allocate one register to each
process, and guarantee that the process owning a register is the only one that
can write to it. Hence, in an anonymous system, if a process writes a value to a
register, the value may be over-written by another process. Thus, to ensure that
a value added by a process will be visible after the end of the Add() operation,
we use techniques similar to those in [13,15] or in [8,14]. However, processes
have unique identifiers in these papers, so we need to adapt the ideas to the
anonymous case. In those papers, the processes have identifiers coming from
a large space, and SWMR registers (for each process) are constructed using a
linear number of MWMR registers. The goal of the papers is to implement a
k-set agreement object [11] with fewer registers than the number of processes,
in a way that each process is not the owner of a register.

In the algorithm of Fig. 1, the processes share n MWMR registers. Each
process maintains a variable V iew that contains all the values that the process
has seen in the registers. To execute Add(v), a process inserts v in V iew and
repeatedly reads all the registers using a snapshot operation, and updates its
variable V iew by adding all the values it has just read. The process then writes
V iew in a register. In this algorithm, the process writes circularly the registers
from 0 to n − 1. The Add(v) operation ends when the value v is in all the
registers. The value is then in n registers and in the variable V iew of the writer.
It may happen that some process writes its own V iew in some register and
its V iew does not contain v, but at most n − 1 processes may do that. After
each write, the process performs a scan of the registers. As it remains at least
one register containing value v, the process updates its V iew with v, and V iew
forever contains v.

In this way, when the Add(v) ends, v is in all the n registers. After that, v
may be in fewer registers, but it remains in at least one register. If the number
of registers that contains v decreases, the number of processes that have v in
their V iew increases. After at most O(n2) writes, v is again in all registers and
remains forever in all registers.

One may think that a Get() operation can be implemented by simply return-
ing the values of all registers. However, it could happen that a value v is written
in some register by a process and the process takes no more steps. Then, this
value v could be returned by the Get() operation but, after that, the register
could be over-written by another process with a V iew that does not contain v,
and then the value v will not be returned by any following Get(). In this case,
the weak-set is not atomic. Similar to the implementation of a register [3] in a
message passing system, the Get() operation also has to write in the memory
to obtain atomicity.

So far the implementation is non-blocking, the write of a register by a process
during the Add() or the Get() may be over-written by another process. Fur-
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thermore, the Get() may not terminate because there is an infinity of Add().
To prevent this, at the beginning of an Add(v) operation, the process executes
a Get() operation, and then it will write in the registers value v with the result
of that Get(). When a process executes a Get(), it ends either: (1) if all the
values in the registers are the same or (2) if it can adopt one of the get values
contained in the register, if this get value is “fresh” enough. To choose a fresh
value we use a timestamp as defined in [18]. The timestamp has a GetTS()
operation that returns an integer such that if two GetTS() are not concurrent
the value returned by the first one is smaller than the value returned by the
second one.

At the beginning of an Add(v) operation, the process takes a timestamp t
performing a GetTS(), executes a Get() operation and updates its V iew. The
update of its V iew is by a triple containing the value v, the timestamp t, and
the result of the Get(). Then, the process repeatedly reads all registers (by a
snapshot), updates V iew and writes V iew in all registers circularly until it finds
that triple in all the registers. At the first time the snapshot of Line 5 or Line 10
contains v in all the registers, we can consider that Add(v) has taken effect (that
defines the linearization point of Add(v)).

To perform a Get(), the process takes a timestamp, t, performing a
GetTS(). Then it repeatedly reads all the registers (by a snapshot), updates
V iew and writes V iew in registers circularly until it finds the same set in all
registers, or it finds a value associated with a timestamp greater than t. If it
finds the same set in all registers, each value of this set will remain forever in
the register. In this case, the first time the snapshot of Line 15 or Line 15 finds
the same value in all the registers, we can consider that Get() has taken effect
(that defines the linearization point of Get()). Else, if the while loop Line 17
stops because it finds a triple associated with a timestamp greater than t, then
the process may adopt the associated get part of the triple and return it. We can
consider that at the time of the Get() operation that has written the get part
of the triple, the Get() has taken effect (that defines the linearization point of
Get()).

Using the linearization points that have been defined above, one can show
that the sequential specification of the weak-set is ensured.

Theorem 1. The algorithm in Fig. 1 implements a non-blocking atomic weak-
set. Furthermore, the Get() operations are wait-free.

4 A Wait-Free Atomic Weak-Set

In the previous algorithm, it may happen that a non-faulty process never succeed
to complete an Add(v) operation. Each time the process writes in some register,
the register may be over-written by another process, and if the value written is
different, the first value written is lost. Note that the value is lost only in case
of overwriting a value v by a different value v′. Hence, with a finite number
of values, we allocate a register for each value, and in order to write value v a
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Fig. 2. Wait-free implementation of atomic weak-set for n processes.
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process writes only in the register allocated to value v; only processes writing
the same value will over-write it. But of course the number of registers depends
on the number of possible values. A possible way to avoid that overwriting is
to force processes writing different values to write in different registers. For the
weak-set, the solution we propose here is, roughly speaking, to force processes
that add different sequences of values to write in (at least) one different register.
In this way the number of register needed depends on n the number of processes
and not on the number of values.

In the algorithm of Fig. 2, among the 2n+1 registers in R, n+1 registers will
be used to ensure that processes performing different sequence of Add write in
different registers (the n other registers are used to avoid a covering of registers
by n processes).

In a similar way as in [17], to attribute a register to a process that has
performed a sequence of Add operations, we give as “name” to that process the
sequence of values it has added. Then, the techniques used in [15] ensure that
eventually the process will be alone to write this register.

More precisely, the “name” of a process that executes an Add(v) operation
is the sequence of values that it has added to the weak-set followed by v, the
value that it try to add. For example if a process has added first 2, then 4, and
7 is the value that it tries to add, its name is 2.4.7.

As in the previous algorithm, a process that executes Add(v) maintains a
variable V iew. To perform an Add(v), a process executes GetTS() that returns
a timestamp t, Get() that returns g, and inserts the triple <name, t, gt> in
V iew. It repeatedly reads all registers using a snapshot operation, and updates
its variable V iew by adding all it has just read to V iew.

If <2,−,−>,<2.4,−,−>,<2.4.7,−,−> is in V iew, it may have only one
process that has added these three values, or it may have some processes that try
to add 2, some processes that have already added 2 and try to add 4, and some
processes that have already added 2 and 4 and try to add 7, and some processes
that have already added 2,4 and 7. And there are also all the intermediate
possibilities. Only one register among the additional n + 1 registers is allocated
to these processes.

proc(V iew) gives the set of different “names” of processes that are using
the weak-set (Line 8 and Line 20) by removing all “names” that are strict
prefixes of others. For example if V iew contains < 1,−,− > < 1.2,−,− > <
1.2.3,−,−> <2,−,−> <2.4,−,−> <2.4.7,−,−> <4,−,−>, then proc(V iew)
is {1.2.3, 2.4.7, 4}. From proc(V iew) a process determines the index (variable
ind) of its “name” inside its current view of the set of actual names (vari-
able Proc). More precisely, the set of name Proc is ordered lexicographically.
If Proc = {s1, s2, . . . , sk}, the index of name is the first i such that name is a
prefix of si. In our example, the processes with name 2, 2.4 or 2.4.7 have 2 as
its index. When the process writes circularly to the registers from 0 to n − 1, it
writes also in the ind + n − 1th register. The ind-th register in R[n, . . . , 2n + 1],
namely register R[n + ind − 1], will be the register assigned to processes with
the same name.
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The process uses two of the n + 1 additional registers: one to register the
number of participants, and one, shared with the processes that have the same
index, to make visible its value.

The #Proc+nth register is used to store the processes that have been seen.
It is written only if the process has seen no value in it. In particular, the process
writes in this register only if it is the fist time that it finds as many processes.

The value of ind may change during an Add(v) operation, when a process
is added in Proc. But there is a time τ after which on each process that takes
steps and tries to add a value the set Proc keeps the same cardinality. The value
of Proc at some process is equivalent to the value of Proc on another process
(see Lemma 3 below).

Consider a process that takes steps and tries to Add some value. We show
that it succeeds; proving thus that the implementation is wait-free for the Add
operations:

If it has finished its Add() at time τ , we are done.
Else after time τ , the value of ind never changes. So after some time, during

this Add(), it is possible that several processes update the same register ind +
n − 1 in the set of an additional register. There is a time after which, if the
register ind + n − 1 is written by two processes, then the value of name of the
first process is a prefix or a continuation of the value of name of the second
process. Consider the process p with the smallest name, h. Each time a process
takes a snapshot, it sees the value of register ind+n−1 and adds it in its V iew.
So after a write of each register from 0 to n − 1 by p (or another process), h or
a continuation of h is written in each register from 0 to n − 1. This allows the
process p to terminate the while loop (Line 26). Thus, each Add() operation
executed by a process that does not crash, finishes.

The behavior of the processes concerning the registers from 0 to n − 1 is
the same as in the first algorithm. Hence the algorithm implements an atomic
weak-set, and the Get() operations remain wait-free.

Theorem 2. The algorithm in Fig. 2 is an implementation of a wait-free atomic
weak set.

Properties on ind and Proc. We prove here some properties ind and Proc that
are used in the previous explanation.

Lemma 1. There exists a time after which, on each process that takes steps and
tries to add a value, the set Proc keeps the same cardinality.

Proof. The cardinality of Proc is increasing and bounded by n (the number of
processes). So eventually the cardinality of Proc never changes.

Let τ be the time after which, on each process that takes steps and tries to
add a value the set Proc, keeps the same cardinality.

Lemma 2. After time τ , two processes that take steps and try to add a value
have the same cardinality for Proc.
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Proof. Otherwise, consider a process with the largest Proc, it writes V iew in
the #Proc + n-th register, and this register can only be written by a process
with the same cardinality for Proc. So when a process with a smaller set Proc
executes a snapshot, this value is included in its View and it updates Proc.

Furthermore, after τ , processes that take steps and try to add a value have
an equivalent value of Proc. A process may have {1.2.3.6, 2.4.7.13, 4.3.2} and
another {1.2.3.6.5, 2.4.7, 4.3.2}. To be more precise:

Definition 1. A set of processes P is equivalent to a set P ′ (P ′ ≡ P ), if P
and P ′ have the same cardinality, and in addition, for each process name in P ,
there is one process name in P ′ such that name is a prefix of name′ (including
name = name′) or name′ is a prefix of name.

Lemma 3. After τ , two processes that take steps and try to add a value have
two equivalent sets Proc.

Proof. A process updates only once the #Proc+n- th register with V iew. This
register is updated by at most n processes (all processes have the same cardinality
for their Proc). Consider the latest write by V iew such that Proc(V iew) = P .
Any process, with P ′ has a value of Proc that it tries to add, takes a snapshot and
sees this value. If there is a name in P that is not a prefix or a continuation of a
name in P ′ (or the reverse), the set Proc at this process increases, contradicting
Lemma 2. After τ , two processes that take steps and try to add a value have two
equivalent sets Proc.

5 Space Complexity

Here we analyze the complexity of our algorithm in terms of the number of
registers, and then prove a lower bound on the number of registers needed by
any implementation of a weak-set object.

Our algorithms use O(n) registers. To be more precise, the timestamp imple-
mentation uses n registers. The n-snapshot implementation is implemented with
a timestamp and an array of n registers. Therefore, the algorithm of Fig. 1 uses
2n registers: n for the timestamp implementation and n for the array.

The algorithm of Fig. 2 uses a timestamp and a (2n + 1)-snapshot object.
Therefore, the algorithm of Fig. 2 uses 3n + 1 registers. In fact, it is possible to
reduce a little this number of registers to 3n registers. For that, we may use a
2n-snapshot object instead of a (2n + 1)-snapshot object. In our algorithm, we
store in R[2n + 1] a V iew such that Proc(V iew) = n and in R[2n] the current
value of V iew. But when a process has seen n different names for the processes,
it cannot see more. So there is no need to have a specific register, the information
is already contained in R[2n]. Therefore, the algorithm of Fig. 1, where Lines 10
to 17 16 are changed by the code of Fig. 3 uses 3n registers:

We show below that at least n registers are needed to implement an atomic
weak-set object.
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Shared variable :
2n-snapshot object: R init ∅

Replace Lines 10 to 17 of algorithm Figure 2 by these:
1 if (#Proc = n) then
2 ind= index of name in Proc
3 if (next = n) then
4 R.update(ind+ n − 1, V iew)
5 else R.update(next, V iew)
6 else
7 if (Snap[#Proc+ n] = ∅) then
8 ind= index of name in Proc
9 R.update(#Proc+ n, V iew)
10 else
11 if (next = n) then
12 R.update(ind+ n − 1, V iew)
13 else R.update(next, V iew)

Fig. 3. Wait-free implementation of atomic weak-set for n processes in 3n registers.

Theorem 3. If the set of values is greater than n, at least n MWMR registers
are necessary to implement a wait-free weak-set object shared by n processes.

The proof is a standard covering argument. Given a value v, a register r is
covered by a process p for value v if p is in the middle of an Add(w) operation
for v �= w and the next step of p is a write into register r. If r is covered by
p: the current value of r is about to be overwritten by p. Given a value v, a set
P of processes covers a set R of registers, if every r ∈ R is covered for v by a
process p ∈ P .

Lemma 4. Consider a state in which a set of registers R is covered for v by
a set of processes P , and no process has already performed an Add(v), then if
some process p0 performs an Add(v), p0 has to write registers not in R.

Assume for contradiction that p0 writes only variables in R. Let s be the
state of the shared memory in the covering state. If each process q ∈ P performs
its next step, all registers in R are written, getting a new state s0 of the shared
memory. For this state, if a process performs a Get(), the set returned by this
get cannot contain value v.

Assume that p0 performs Add(v) in the covering state. As the implementa-
tion is wait-free, p0 terminates its Add(v) in some state s0. Then each process
in P performs its next step and the new state of the shared memory is s0 (in
s0 all traces of p0 on the shared memory have disappeared). If some process
performs a Get(), the set returned cannot contain value v. A contradiction to
the specification of a weak-set object.

From Lemma 4, n processes that perform Add(v) for n different values have
to write at least n registers, proving Theorem 3.
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6 Conclusion

In this paper, we have described a wait-free implementation of an atomic weak-
set object in an anonymous setting. We have proceeded in an incremental way.
First, we presented an implementation that is wait-free only for the Get() opera-
tions. Then, we presented another implementation that is wait-free for the Get()
and the Add() operations. We hope that the existence of a wait-free weak-set
implementation in an anonymous setting helps to get a better understanding of
anonymous distributed computability.

It is worth noting that the technique used for the second implementation
consists in a way of giving names to anonymous processes, dynamically. Two
processes having distinct behaviors (concerning the Add() operation) get dis-
tinct names. This is a useful technique for programming anonymous processes,
already noticed in [13,15,17].

Concerning the space complexity, our wait-free implementation uses a num-
ber of register that is linear to the number of processes (namely, 3n registers).
In addition, we prove a lower-bound of n registers for the implementation of a
wait-free atomic weak-set.

For some applications, it is sufficient to have weak-set implementations that
are non-blocking, notably, when the weak-set is used to solve a task [6]. We
have presented in [16] an implementation of a weak-set that is non-blocking,
that uses n MWMR registers. The lower bound we prove here shows that the
implementation in [16] is optimal. The non-blocking implementation presented
here uses 2n MWMR registers, but the Get() is wait-free. To make the Get()
wait-free we use a timestamp mechanism that uses n MWMR registers. It would
be interesting to find and algorithm that uses only n MWMR registers where the
Get() is wait-free, or to prove a lower bound that separates the non-blocking
case from the wait-free case.

Concerning time complexity, we have not made any efforts in making our
algorithms efficient. Our interest was in proving that it is possible to obtain
linear number of registers weak-set implementations. Further work is needed to
obtain more efficient implementations of a weak-set object.
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10. Castañeda, A., Rajsbaum, S., Raynal, M.: Long-lived tasks. In: El Abbadi, A.,
Garbinato, B. (eds.) NETYS 2017. LNCS, vol. 10299, pp. 439–454. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-59647-1 32

11. Chaudhuri, S.: More choices allow more faults: set consensus problems in totally
asynchronous systems. Inf. Comput. 105(1), 132–158 (1993)

12. Delporte-Gallet, C., Fauconnier, H.: Two consensus algorithms with atomic regis-
ters and failure detector Ω. In: Garg, V., Wattenhofer, R., Kothapalli, K. (eds.)
ICDCN 2009. LNCS, vol. 5408, pp. 251–262. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-92295-7 31

13. Delporte-Gallet, C., Fauconnier, H., Gafni, E., Lamport, L.: Adaptive register allo-
cation with a linear number of registers. In: Afek, Y. (ed.) DISC 2013. LNCS,
vol. 8205, pp. 269–283. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-41527-2 19

14. Delporte-Gallet, C., Fauconnier, H., Gafni, E., Rajsbaum, S.: Black art:
obstruction-free k-set agreement with |MWMR registers| < |proccesses|. In:
Gramoli, V., Guerraoui, R. (eds.) NETYS 2013. LNCS, vol. 7853, pp. 28–41.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40148-0 3

15. Delporte-Gallet, C., Fauconnier, H., Gafni, E., Rajsbaum, S.: Linear space boot-
strap communication schemes. Theor. Comput. Sci. 561(Part B), 122–133 (2015).
Special Issue on Distributed Computing and Networking

16. Delporte-Gallet, C., Fauconnier, H., Rajsbaum, S., Yanagisawa, N.: A characteriza-
tion of colorless anonymous t-resilient task computability. Technical report, Kyoto
University. arXiv:1712.04393v1, December 2017

17. Delporte-Gallet, C., Fauconnier, H., Tielmann, A.: Fault-tolerant consensus in
unknown and anonymous networks. In: 29th IEEE International Conference on
Distributed Computing Systems (ICDCS 2009), Montreal, Québec, Canada, 22–26
June 2009, pp. 368–375. IEEE Computer Society (2009)

18. Ellen, F., Fatourou, P., Ruppert, E.: The space complexity of unbounded times-
tamps. Distrib. Comput. 21(2), 103–115 (2008)

19. Fich, F.E.: How hard is it to take a snapshot? In: Vojtáš, P., Bieliková, M., Charron-
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1 Introduction

Software Transaction Memory Systems (STMs) are a convenient programming
interface for a programmer to access shared memory without worrying about
concurrency issues [1,2] and are natural choice for achieving composability [3].

Most of the STMs proposed in the literature are specifically based on read-
/write primitive operations (or methods) on memory buffers (or memory reg-
isters). These STMs typically export the following methods: STM begin which
begins a transaction, t read which reads from a buffer, t write which writes onto
a buffer, tryC which validates the operations of the transaction and tries to
commit. We refer to these as Read-Write STMs or RWSTMs. As a part of the
validation, the STMs typically check for conflicts among the operations. Two
operations are said to be conflicting if at least one of them is a write (or update)
operation. Normally, the order of two conflicting operations cannot be com-
mutated. On the other hand, Object STMs or OSTMs operate on higher level
objects rather than read & write operations on memory locations. They include
more semantically rich operations such as enq/deq on queue objects, push/pop
on stack objects and insert/lookup/delete on sets, trees or hash-table objects
depending upon the underlying data structure used to implement OSTM.

It was shown in databases that object-level systems provide greater concur-
rency than read/write systems [4, Chap. 6]. Along the same lines, we propose
a model to achieve composability with greater concurrency for STMs by con-
sidering higher-level objects which leverage the richer semantics of object level
methods. We motivate this with an interesting example.

Consider an OSTM operating on the hash-table object called as Hash-
table Object STM or HT-OSTM which exports the following methods -
STM beginwhich begins a transaction (same as in RWSTMs); STM insert which
inserts a value for a given key; STM delete which deletes the value associated
with the given key; STM lookup which looks up the value associated with the
given key and STM tryC which validates the operations of the transaction.

(ii) H1: Transactional tree history(i) Underlying list

Layer-1: Lookups & Deletes

Layer-0: Reads & Writes

−∞ k2 k5 k7 k8 +∞

T1

l1(k5)

r1(k2) r1(k5) r2(k2) r2(k5) r2(k7) w2(k5)

d2(k7)

T2

c2

l1(k8)

w2(k7) r1(k2) r1(k5) r1(k8)

Fig. 1. Motivational example for OSTMs

A simple way to implement the concurrent HT-OSTM is using a list (a single
bucket) where each element of the list stores the 〈key, value〉 pair. The elements
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of the list are sorted by their keys similar to the set implementations discussed in
[5, Chap. 9]. It can be seen that the underlying list is a concurrent data-structure
manipulated by multiple transactions. So, we may use the lazy-list based concur-
rent set [6] to implement the operations of the list denoted as: list insert, list del
and list lookup. Thus, when a transaction invokes STM insert(shortened as i),
STM delete(shortened as d) and STM lookup(shortened as l) methods, the STM
internally invokes the list insert , list del and list lookup methods respectively.

Consider an instance of list in which the nodes with keys 〈k2 k5 k7 k8〉
are present in the hash-table as shown in Fig. 1(i) and transactions T1

and T2 are concurrently executing STM lookup1(k5), STM delete2(k7) and
STM lookup1(k8) as shown in Fig. 1(ii). In this setting, suppose a transaction
T1 of HT-OSTM invokes methods STM lookup on the keys k5, k8. This would
internally cause the HT-OSTM to invoke list lookup method on keys 〈k2, k5〉
and 〈k2, k5, k7, k8〉 respectively.

Concurrently, suppose transaction T2 invokes the method STM delete on
key k7 between the two STM lookups of T1. This would cause, HT-OSTM to
invoke list del method of list on k7. Since, we are using lazy-list approach on
the underlying list, list del involves pointing the next field of element k5 to k8
and marking element k7 as deleted. Thus list del of k7 would execute the follow-
ing sequence of read/write level operations- r(k2)r(k5)r(k7)w(k5)w(k7) where
r(k5), w(k5) denote read & write on the element k5 with some value respec-
tively. The execution of HT-OSTM denoted as a history can be represented as a
transactional forest as shown in Fig. 1(ii). Here the execution of each transaction
is a tree.

In this execution, we denote the read/write operations (leaves) as layer-0 and
STM lookup, STM delete methods as layer-1. Consider the history (execution)
at layer-0 (while ignoring higher-level operations), denoted as H0. It can be
verified this history is not opaque [7]. This is because between the two reads of
k5 by T1, T2 writes to k5. It can be seen that if history H0 is input to a RWSTMs
one of the transactions among T1 and T2 would be aborted to ensure correctness
(in this case opacity [7]). On the other hand consider the history H1 at layer-1
consisting of STM lookup, STM delete methods while ignoring the underlying
read/write operations. We ignore the underlying read & write operations since
they do not overlap (referred to as pruning in [4, Chap. 6]). Since these methods
operate on different keys, they are not conflicting and can be re-ordered either
way. Thus, we get that H1 is opaque [7] with T1T2 (or T2T1) being an equivalent
serial history.

The important idea in the above argument is that some conflicts at lower-
level operations do not matter at higher level operations. Thus, such lower level
conflicting operations may be ignored1. Harris et al. referred to it as benign-
conflicts [9]. With object level modeling of histories, we get a higher number
of acceptable schedules than read/write model. The history, H1 in Fig. 1(ii)

1 While some conflicts of lower level do not matter at higher level, some other conflicts
do. An example illustrating this is shown in the technical report [8].
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clearly shows the advantage of considering STMs with higher level STM insert,
STM delete and STM lookup operations.

The atomic property of transactions helps to correctly compose together
several different individual operations. The above examples demonstrate that
the concurrency in such STM can be enhanced by considering the object level
semantics. To achieve this, in this paper: (a) We propose a generic framework
for composing higher level objects based on the notion of conflicts for objects in
databases [4, Chap. 6]. (b) For correctness our framework considers, opacity [7]
a popular correctness-criterion for STMs which is different from serializabil-
ity commonly used in databases. It can be proved that verifying the member-
ship of opacity similar to view-serializability is NP-Complete [10]. Hence, using
conflicts we develop a subclass of opacity which is conflict co-opacity or co-
opacity for objects. We then develop polynomial time graph characterization for
co-opacity based on conflict-graph acyclicity. The proposed correctness-criterion,
co-opacity is similar to the notion of conflict-opacity developed for RWSTMs by
Kuznetsov and Peri [11]. (c) To show the efficacy of this framework, we develop
HT-OSTM based on the idea of basic timestamp order (BTO) scheduler devel-
oped in databases [4, Chap. 4]. For showing correctness of HT-OSTM , we show
that all the methods are linearizabale while the transactions are co-opaque by
showing that the corresponding conflict graph is acyclic. Although we have con-
sidered HT-OSTM here, we believe that this notion of conflicts can be extended
to other high-level objects such as Stacks, Queues, Tries etc.

A simple modification of HT-OSTM gives us a concurrent list based STM
or list-OSTM. Finally, we compared the performance of HT-OSTM against a
hash-table application built ESTM [12] and BTO [4] based RWSTM. The list-
OSTM is compared with lock-free transactional list [13], NOrec based RSTM
list [14] and boosting list [15]. The results in Sect. 5 represent HT-OSTM and
list-OSTM reduces the number of aborts to minimal and show significant per-
formance gain in comparison to other techniques.

Related Work: Our work differs from databases model in with regard to
correctness-criterion used for safety. While databases consider CSR. We con-
sider linearizability to prove the correctness of the methods of the transactions
and opacity to show the correctness of the transactions. Earliest work of using
the semantics of concurrent data structures for object level granularity include
that of open nested transactions [16] and transaction boosting of Herlihy et
al. [15] which is based on serializability(strict or commit order serializability) of
generated schedules as correctness criteria. Herlihy’s model is pessimistic and
uses undo logs for rollback. Our model is more optimistic in that sense and the
underlying data structure is updated only after there is a guarantee that there
is no inconsistency due to concurrency. Thus, we do not need to do rollbacks
which keeps the log overhead minimal. This also solves the problem of irrevo-
cable operations being executed during a transaction which might abort later
otherwise.

Hassan et al. [17] have proposed optimistic transactional boosting (OTB)
that extends original transactional boosting methodology by optimizing and
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making it more adaptable to STMs. Although there seem similarities between
their work and our implementation, we differ w.r.t the correctness-criterion which
is co-opacity a subclass of opacity [11] in our case. They did not prove opacity
for OTB however, their work extensively talks of linearizability. Furthermore,
we also differ in the development of the conflict-based theoretical framework
which can be adapted to build other object based STMs. Spiegelman et al. [18]
try to build a transactional data structure library from existing concurrent data
structure library. Their work is much of a mechanism than a methodology.

Zhang et al. [13] recently propose a method to transform lockfree cds to
transactional lockfree linked cds and base the correctness on strict serializabil-
ity. Fraser et. al. [19] proposed OSTM based on shadow copy mechanism, which
involves a level of indirection to access the shared objects through OSTMOpen-
ForReading and OSTMOpenForWriting as exported methods. The exported
methods in Fraser et.al’s OSTM may allow OSTMOpenForReading to see the
inconsistent state of the shared objects but our OSTM model precludes this pos-
sibility by validating the access during execution of rv method (i.e. the methods
which do not modify the underlying objects and only return some value by per-
forming a search on them). Thus, we can say our motivation and implementation
is different from Fraser OSTM [19] and only the name happens to coincide.

Roadmap. We explain the system model in Sect. 2. In Sect. 3, we build the
notion of legality, conflicts to describe opacity, co-opacity and the graph charac-
terization. Based on the model we demonstrate the HT-OSTM design in Sect. 4.
In Sect. 5 we show the evaluation results. Finally, we conclude in Sect. 6.

2 Building System Model

In this paper, we assume that our system consists finite number of n threads
that run in a completely asynchronous manner and communicate using shared
objects. The threads communicate with each other by invoking higher-level
methods on the shared objects and getting corresponding responses. Conse-
quently, we make no assumption about the relative speeds of the threads. We
also assume that none of these processors and threads fail or crash abruptly.

Events and Methods: We assume that the threads execute atomic events. We
assume that these events by different threads are (1) read/write on shared/local
memory objects, (2) method invocations (or inv) event and responses (or rsp)
event on higher level shared-memory objects.

Within a transaction, a process can invoke layer-1 methods (or opera-
tions) on a hash-table transaction object. A hash-table(ht) consists of mul-
tiple key-value pairs of the form 〈k, v〉. The keys and values are respectively
from sets K and V . The methods that a transaction Ti can invoke are: (1)
STM begini(): Begins a transaction and returns an unique id to the invoking
thread (2) STM inserti(ht, k, v): Inserts a value v onto key k in hash-table ht
(3) STM deletei(ht, k, v): Deletes the key k from the hash-table ht & returns
the current value v (4) STM lookupi(ht, k, v): returns the current value v for key
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k in ht (5) tryCi() which tries to commit all the operations of Ti and (6) tryAi()
aborts Ti. We assume that each method consists of an inv and rsp event.

We denote STM insert and STM delete as update methods (or upd method)
since both of these change the underlying data-structure. We denote STM delete
and STM lookup as return-value methods (or rv method) as these operations
return values from ht. A method may return ok if successful or A (abort) if it
sees inconsistent state of ht.

Transactions: Following the notations used in database multi-level transac-
tions [4], we model a transaction as a two-level tree. The layer-0 consist of
read/write events and layer-1 of the tree consists of methods invoked by trans-
action.

Having informally explained a transaction, we formally define a transaction T
as the tuple 〈evts(T ), <T 〉. Here evts(T ) are all the read/write events at layer-0
of the transaction. <T is a total order among all the events of the transaction.

We denote the first and last events of a transaction Ti as Ti.firstEvt
and Ti.lastEvt. Given any other read/write event rw in Ti, we assume that
Ti.firstEvt <Ti

rw <Ti
Ti.lastEvt. All the methods of Ti are denoted as

methods(Ti).

Histories: A history is a sequence of events belonging to different transac-
tions. The collection of events is denoted as evts(H). Similar to a transaction,
we denote a history H as tuple 〈evts(H), <H〉 where all the events are totally
ordered by <H . The set of methods that are in H is denoted by methods(H).
A method m is incomplete if inv(m) is in evts(H) but not its corresponding
response event. Otherwise m is complete in H.

Coming to transactions in H, the set of transactions in H are denoted as
txns(H). The set of committed (resp., aborted) transactions in H is denoted
by committed(H) (resp., aborted(H)). The set of live transactions in H are
those which are neither committed nor aborted. On the other hand, the set of
terminated transactions are those which have either committed or aborted.

We denote two histories H1,H2 as equivalent if their events are the same, i.e.,
evts(H1) = evts(H2). A history H is qualified to be well-formed if: (1) all the
methods of a transaction Ti in H are totally ordered, i.e. a transaction invokes
a method only after it receives a response of the previous method invoked by it
(2) Ti does not invoke any other method after it received an A response or after
tryC(ok) method. We only consider well-formed histories for HT-OSTM .

A method mij (jth method of a transaction Ti) in a history H is said to be
isolated or atomic if for any other event epqr belonging to some other method
mpq (of transaction Tp) either epqr occurs before inv(mij) or after rsp(mij). Here,
epqr stands for rth event of mpq.

Sequential Histories: A history H is said to be sequential (term used in [11,
20]) if all the methods in it are complete and isolated. From now on wards, most
of our discussion would relate to sequential histories.

Since in sequential histories all the methods are isolated, we treat each
method as whole without referring to its inv and rsp events. For a sequential
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history H, we construct the completion of H, denoted H, by inserting tryAk(A )
immediately after the last method of every transaction Tk ∈ live(H). Since
all the methods in a sequential history are complete, this definition only has
to take care of completed transactions. Consider a sequential history H. Let
mij(ht, k, v/NULL) be the first method of Ti in H operating on the key k as
H.firstKeyMth(〈ht, k〉, Ti). For a method mix(ht, k, v) which is not the first
method on 〈ht, k〉 of Ti in H, we denote its previous method on k of Ti as
mij(ht, k, v) = H.prevKeyMth(mix, Ti).

Real-time Order and Serial Histories: Given a history H, <H orders all
the events in H. For two complete methods mij ,mpq in methods(H), we denote
mij ≺MR

H mpq if rsp(mij) <H inv(mpq). Here MR stands for method real-time
order. It must be noted that all the methods of the same transaction are ordered.
Similarly, for two transactions Ti, Tp in term(H), we denote (Ti ≺TR

H Tp) if
(Ti.lastEvt <H Tp.firstEvt). Here TR stands for transactional real-time order.

We define a history H as serial [10] or t-sequential [20] if all the trans-
actions in H have terminated and can be totally ordered w.r.t ≺TR, i.e. all
the transactions execute one after the other without any interleaving. Intu-
itively, a history H is serial if all its transactions can be isolated. Formally,
〈(H is serial) =⇒ (∀Ti ∈ txns(H) : (Ti ∈ term(H)) ∧ (∀Ti, Tp ∈ txns(H) :
(Ti ≺TR

H Tp) ∨ (Tp ≺TR
H Ti))〉. Since all the methods within a transaction are

ordered, a serial history is also sequential.

3 Correctness of HT-OSTM : Opacity and Conflict
Opacity

In this section, we define the correctness of HT-OSTM by extending opacity [7].
We then define a tractable subclass of opacity, co-opacity which is defined using
conflict like CSR [4] in databases. We start with legality and opacity.

3.1 Legal Histories and Opacity

In this subsection, we start with defining legal histories. To simplify our analysis,
we assume that there exists an initial transaction T0 that invokes STM delete
method on all the keys of all the hash-tables used by any transaction.

We define legality of rv methods (STM delete & STM lookup) on sequential
histories which we later use to define correctness criterion. Consider a sequential
history H having a rv method rvmij(ht, k, v) (with v 
= NULL) belonging to
transaction Ti. We define this rvm method to be legal if:

LR1 If the rvmij is not first method of Ti to operate on 〈ht, k〉 and
mix is the previous method of Ti on 〈ht, k〉. Formally, rvmij 
=
H.firstKeyMth(〈ht, k〉, Ti)∧(mix(ht, k, v′) = H.prevKeyMth(〈ht, k〉, Ti))
(where v′ could be NULL). Then,

(a) If mix(ht, k, v′) is a STM insert method then v = v′.
(b) If mix(ht, k, v′) is a STM lookup method then v = v′.
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(c) If mix(ht, k, v′) is a STM delete method then v = NULL.
In this case, we denote mix as the last update method of rvmij , i.e.,
mix(ht, k, v′) = H.lastUpdt(rvmij(ht, k, v)).

LR2 If rvmij is the first method of Ti to operate on 〈ht, k〉 and v is not NULL.
Formally, rvmij(ht, k, v) = H.firstKeyMth(〈ht, k〉, Ti) ∧ (v 
= NULL).
Then,

(a) There is a STM insert method STM insertpq(ht, k, v) in methods(H) such
that Tp committed before rvmij . Formally, 〈∃STM insertpq(ht, k, v) ∈
methods(H) : tryCp ≺MR

H rvmij〉.
(b) There is no other update method upxy of a transaction Tx operating on

〈ht, k〉 in methods(H) such that Tx committed after Tp but before rvmij .
Formally, 〈�upxy(ht, k, v′′) ∈ methods(H) : tryCp ≺MR

H tryCx ≺MR
H

rvmij〉.
In this case, we denote tryCp as the last update method of rvmij , i.e.,
tryCp(ht, k, v)= H.lastUpdt(rvmij(ht, k, v)).

LR3 If rvmij is the first method of Ti to operate on 〈ht, k〉 and v is NULL.
Formally, rvmij(ht, k, v) = H.firstKeyMth(〈ht, k〉, Ti) ∧ (v = NULL).
Then,

(a) There is STM delete method STM deletepq(ht, k, v′) in methods(H) such
that Tp (which could be T0 as well) committed before rvmij . Formally,
〈∃STM deletepq(ht, k, v′) ∈ methods(H) : tryCp ≺MR

H rvmij〉. Here v′

could be NULL.
(b) There is no other update method upxy of a transaction Tx operating on

〈ht, k〉 in methods(H) such that Tx committed after Tp but before rvmij .
Formally, 〈�upxy(ht, k, v′′) ∈ methods(H) : tryCp ≺MR

H tryCx ≺MR
H

rvmij〉.
In this case similar to step 3.1, we denote tryCp as the last update method
of rvmij , i.e., tryCp(ht, k, v) = H.lastUpdt(rvmij(ht, k, v)).

We assume that when a transaction Ti operates on key k of a hash-table ht, the
result of this method is stored in local logs of Ti for later methods to reuse. Thus,
only the first rv method operating on 〈ht, k〉 of Ti accesses the shared-memory.
The other rv methods of Ti operating on 〈ht, k〉 do not access the shared-memory
and they see the effect of the previous method from the local logs. This idea is
utilized in LR1. With reference to LR2 and LR3, it is possible that Tx could have
aborted before rvmij . For LR3, since we are assuming that transaction T0 has
invoked a STM delete method on all the keys used of all hash-table objects,
there exists at least one STM delete method for every rv method on k of ht.
We formally prove legality in technical report [8] and then we finally show that
HT-OSTM histories are co-opaque [11].

Coming to STM insert methods, since a STM insert method always returns
ok as they overwrite the node if already present therefore they always take
effect on the ht. Thus, we denote all STM insert methods as legal and only give
legality definition for rv method. We denote a sequential history H as legal or
linearized [21] if all its rvm methods are legal.
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Correctness-Criteria and Opacity: A correctness-criterion is a set of his-
tories. A history H satisfying a correctness-criterion has some desirable prop-
erties. A popular correctness-criterion is opacity [7]. A sequential history H is
opaque if there exists a serial history S such that: (1) S is equivalent to H, i.e.,
evts(H) = evts(S) (2) S is legal and (3) S respects the transactional real-time
order of H, i.e., ≺TR

H ⊆≺TR
S .

3.2 Conflict Notion and Conflict-Opacity

Opacity is a popular correctness-criterion for STMs. But, as observed in Sect. 1,
it can be proved that verifying the membership of opacity similar to view-
serializability (VSR) in databases is NP-Complete [10]. To circumvent this issue,
researchers in databases have identified an efficient sub-class of VSR, called
conflict-serializability or CSR, based on the notion of conflicts. The membership
of CSR can be verified in polynomial time using conflict graph characterization.
Along the same lines, we develop the notion of conflicts for HT-OSTM and
identify a sub-class of opacity, co-opacity. The proposed correctness-criterion is
extension of the notion of conflict-opacity developed for RWSTMs by Kuznetsov
and Peri [11].

We say two transactions Ti, Tj of a sequential history H for HT-OSTM are
in conflict if atleast one of the following conflicts holds:

– tryC-tryC conflict:(1) Ti & Tj are committed and (2) Ti & Tj update the
same key k of the hash-table, ht, i.e., (〈ht, k〉 ∈ updtSet(Ti)) ∧ (〈ht, k〉 ∈
updtSet(Tj)), where updtSet(Ti) is update set of Ti. (3) Ti’s tryC completed
before Tj ’s tryC, i.e., tryCi ≺MR

H tryCj .
– tryC-rv conflict:(1) Ti is committed (2) Ti updates the key k of
hash-table, ht. Tj invokes a rv method rvmjy on the key same
k of hash-table ht which is the first method on 〈ht, k〉. Thus,
(〈ht, k〉 ∈ updtSet(Ti)) ∧ (rvmjy(ht, k, v) ∈ rvSet(Tj)) ∧ (rvmjy(ht, k, v) =
H.firstKeyMth(〈ht, k〉, Tj)), where rvSet(Tj) is return value set of Tj . (3)
Ti’s tryC completed before Tj ’s rvm, i.e., tryCi ≺MR

H rvmjy.
– rv-tryC conflict:(1) Tj is committed (2) Ti invokes a rv method on the key

same k of hash-table ht which is the first method on 〈ht, k〉. Tj updates
the key k of the hash-table, ht. Thus, (rvmix(ht, k, v) ∈ rvSet(Ti)) ∧
(rvmix(ht, k, v) = H.firstKeyMth(〈ht, k〉, Ti)) ∧ (〈ht, k〉 ∈ updtSet(Tj)) (3)
Ti’s rvm completed before Tj ’s tryC, i.e., rvmix ≺MR

H tryCj .

A rv method rvmij conflicts with a tryC method only if rvmij is
the first method of Ti that operates on hash-table with a given key.
Thus the conflict notion is defined only by the methods that access the
shared memory. (tryCi, tryCj), (tryCi,STM lookupj), (STM lookupi, tryCj),
(tryCi,STM deletej) and (STM deletei, tryCj) can be the possible conflicting
methods. For example, consider the history H5 : l1(ht, k1, NULL)l2(ht, k2 ,
NULL)i2(ht, k1, v1)i1(ht, k4, v1)c1i3(ht, k3, v3)c3d2(ht, k4, v1)c2l4(ht, k4, NULL)
i4(ht, k2, v4)c4 in Fig. 2. (l1(ht, k1, NULL), i3(ht, k1, v1)) and (l2(ht, k2,
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(rv−tryC)
rt edge
(rv−tryC),

rt edge

(tryC−tryC)

(tryC−rv), rt edge

T2

T3

b) CGa) History in time line view

C4

T1
l1(ht, k1, NULL) i1(ht, k4, v1)

l2(ht, k2, NULL) d2(ht, k4, v1)

C1

C2

i3(ht, k1, v1) i3(ht, k3, v3) C3

l4(ht, k4, NULL) i4(ht, k2, v4)

T4

T2

T1 T3

T4

Fig. 2. Graph characterization of history H5

NULL), i4 (ht, k2, v4)) are a conflict of type rv-tryC. Conflict type of
(i1(ht, k4, v1), d2(ht, k4, v1)) and (i1(ht, k4, v1), l4(ht, k4, NULL)) are tryC-tryC
and tryC-rv respectively.

Conflict Opacity: Using this conflict notion, we can now define co-opacity.
A sequential history H is conflict-opaque (or co-opaque) if there exists a serial
history S such that: (1) S is equivalent to H, i.e. , evts(H) = evts(S) (2) S is
legal and (3) S respects the transactional real-time order of H, i.e., ≺TR

H ⊆≺TR
S

and (4) S preserves conflicts (i.e. ≺CO
H ⊆≺CO

S ).
Thus from the above definition, it can be seen that any history that is co-

opaque is also opaque.
Graph Characterization: We now develop a graph characterization of
co-opacity. For a sequential history H, we define conflict-graph of H, CG(H) as
the pair (V,E) where V is the set of txns(H) and E can be of following types: (a)
conflict edges: {(Ti, Tj) : (Ti, Tj) ∈ conflict(H)} where, conflict(H) is an ordered
pair of transactions such that the transactions have one of the above pair of
conflicts. (b) real-time edge(or rt edge): {(Ti, Tj): Transaction Ti precedes Tj in
real-time, i.e., Ti ≺TR

H Tj}. Now, we have the following theorem which explains
how graph characterization is useful.

Theorem 1. A legal HT-OSTM history H is co-opaque iff CG(H) is acyclic.

Using this framework, we next develop HT-OSTM using the notion of BTO.
We show the transactional level correctness of the proposed algorithm by show-
ing that all conflict graph of the histories generated by it are acyclic in the
accompanying report [8].

4 HT-OSTM

We design HT-OSTM a concurrent closed addressed hash-table using above
explained legality and conflict notion. The HT-OSTM exports STM begin(),
STM insert(), STM delete(), STM lookup() and STM tryC() and has m number
of buckets, which we refer to as size of the hash-table. The main part of interest
from concurrency perspective is each bucket of the hash-table implemented as
lazyrb-list (lazy red-blue list), the shared memory data structure.
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Lazyrb-list: It is a linked structure with immutable head and tail sentinel nodes
of the form of a tuple 〈key, value, lock, marked, max ts, rl, bl〉 representing a
node. The key represents unique id of the node so that a transaction could
differentiate between two nodes. The key values may range from −∞ (key of
head node) to +∞ (key of tail node). The value field may accommodate any
type ranging from a basic integer to a complex class type. The marked field is to
have lazy deletion as popular in lazylists [5,6] and lock to implement exclusive
access to the node.

Lazyrb-list node have two links - bl (blue links) and rl (red links). First,
the nodes which are not marked (not deleted) are reachable by bl from the
head. Second, the nodes which are marked (i.e. logically deleted) and are only
reached by rl. Thus, the name lazyrb-list. All marked nodes are reachable via
rl and all the unmarked nodes are reachable via bl & rl from the head. Thus
nodes reachable by bl are the subset of the nodes reachable by rl. Every node of
lazyrb-list is in increasing order of its key.

Furthermore, every lazyrb-list node also has a time-stamp field (max ts) to
record the ids of the transaction which most recently executed some method.
Augmenting the underlying shared data structure with time-stamps help in
identifying conflicts which can cause a cycle in the execution and hence violate
co-opacity [11]. This is captured by the graph characterization of a generated
history as discussed in Fig. 2 which implies that cyclic conflicts leads to non
co-opaque execution.

l1(ht, k2, v0)

i2(ht, k2, v1)

T1

T2

C2d2(ht, k1, v0)

l1(ht, k1, NULL)A1

Fig. 3. History H is not co-opaque

l1(ht, k2, v0)

i2(ht, k2, v1)

T1

T2

C2

l1(ht, k1, Abort) A1

d2(ht, k1, v0)

Fig. 4. Co-opaque History H1 (Color
figure online)

Now, we explain why we need to maintain deleted nodes through Figs. 3
and 4. History H shown in Fig. 3 is not co-opaque because there is no serial
execution of T1 & T2 that can be shown co-opaque. In order to make it co-
opaque l1(ht, k1, NULL) needs to be aborted. And l1(ht, k1, NULL) can only be
aborted if HT-OSTM scheduler knows that a conflicting operation d2(ht, k1, v0)
has already been scheduled and thus violating co-opacity. One way to have this
information is that if the node represented by k1 records the time-stamp of the
delete method so that the scheduler realizes the violation of the time-order [4]
and aborts l1(ht, k1, NULL) to ensure co-opacity.

Thus, to ensure correctness, we need to maintain information about the nodes
deleted from the hash-table. This can be achieved by only marking node deleted
from the list of hash-table. But do not unlink it such that the marked node is
still part of the list. This way, the information from deleted nodes can be used
for ensuring co-opacity. In this case, after aborting l1(ht, k1), we get that the
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history is co-opaque with T1 & T2 being the equivalent serial history as shown
in Fig. 4. The deleted keys (nodes with marked field set) can be reused if another
transaction comes & inserts the same key back.

k3 k6 k7 k8−∞ +∞k1

Fig. 5. Searching k8 over lazylist
(Color figure online)

k1 k3 k6

+∞−∞ k8k7

Fig. 6. Searching k8 over lazyrb-list
(Color figure online)

But, the major hindrance in maintaining the deleted nodes as part of the
ordinary lazy-list is that it would reduce search efficiency of the data struc-
ture. For example, in Fig. 5 searching k8 would unnecessary cause traversal over
marked (marked for lazy deletion) nodes represented by k1, k3 and k6. We solve
this problem in lazyrb-list by using two pointers. (1) bl (blue link): used to tra-
verse over the actual inserted nodes and (2) rl (red link) used to traverse over the
deleted nodes. Hence, in Fig. 6 to search for k8 we can directly use bl saving sig-
nificant search computations. A question may arise that how would we maintain
the time-stamp of a node which has not yet been inserted? Such a case arises
when STM lookup() or STM delete() is invoked from rv method, and node cor-
responding to the key, say k is not present in bl and rl. Then the rv method will
create a node for key k and insert it into underlying data structure as deleted
(marked field set) node.

For example, lookup wants to search key k10 in Fig. 6 which is not present
in the bl as well as rl. Therefore, lookup method will create a new node corre-
sponding to the key k10 and insert it into rl (refer the Fig. 7). So, we discuss in
detail the invariants and properties of the lazyrb-list and ensure that no dupli-
cate nodes are inserted while proving the method level correctness in technical
report [8].

k1 k3 k6

+∞

k10

−∞ k8k7

Fig. 7. Execution under lazyrb-list. k10 is added in lazyrb-list if not present. (Color
figure online)

Transaction Log. Each transaction maintains local log called txlog. It stores
transaction id and status: live, commit or abort signifying that transaction is
executing, has committed or has aborted due to some method failing the vali-
dation, respectively.
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Each entry of the txlog is called log entry (shortened as le) stores the meta
information of each method a transaction encounters as updtSet() and rvSet() as
formalized in Sect. 3.2. The le is a tuple of type 〈key, value, status, preds, currs〉.
A method may have OK and FAIL as it’s status. The preds and currs are the
array of nodes in rl and bl identified during the traversal over the lazyrb-list
by each method. It depicts the location over the lazyrb-list where the method
would take effect.

HT-OSTM Methodology:
In this section, we provide the working idea of the methods exported to trans-
actions of the HT-OSTM and detailed algorithms are provided in the accom-
panying report [8]. Execution of every transaction Ti can be categorized into
rv method execution phase and upd method execution phase.
rv method execution phase:

1. ∀ mij(k) ∈ {STM lookup(), STM delete()}
(a) If legality rule 3.1 is applicable.

i. update the txlog and return.
(b) If legality rule 3.2 & 3.3 is applicable.

i. Traverse the cds to identify pred and curr nodes for both the rl and
bl as done in lazy-lists or skip lists. Then, acquire ordered locks on
the nodes.

ii. Validate. If the Validate() returns A , the mij(k) aborts and sub-
sequently Ti is aborted. Otherwise, if Validate() returns retry then
mij(k) is retried from step 1.(b).

iii. If validation succeeds, create a new le in txlog & update the le. And,
insert a node in rl if the node is not present in lazyrb-list as explained
in Fig. 7.

iv Release locks and return.
2. If mij(k) ∈ {STM insert()}

(a) Update the txlog and return.

We validate STM lookup() immediately and do not validate again in
STM tryC() unlike the implementation of OTB by Hassan et. al [17]. This is
required to ensure that the execution is opaque.
Validate():

1. First the current operation validates for any possible interference due to con-
current transactions through method validation.

methodValidation rule: If the preds are marked and the next node of
pred is not curr, implies a conflicting concurrent operation has also made
changes. Thus, the current operation has to retry. Otherwise method val-
idation is said to succeed.

2. Time order validation is performed when method validation succeeds.
time orderValidation rule [4, Chap. 4]: If a transaction Ti with time-
stamp i want to access a node n. Also, Let Tj be a conflicting transaction
with time-stamp j which accessed n previously. Now, If i < j then Ti is
aborted. Else this method returns ok.
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3. Return abort or retry or ok.

STM delete() in rv method execution phase behaves as STM lookup() but it
is validated twice. First, in rv method execution similar to STM lookup() and
secondly in upd method execution to ensure co-opacity. We adopt lazy delete
approach for STM delete(). Thus, nodes are marked for deletion and not phys-
ically deleted for STM delete() method. In the current work we assume that a
garbage collection mechanism is present and we do not worry about it.
upd method execution phase. During this phase a transaction executes
STM tryC(). It begins by ordering the txlog in increasing order of the keys.
This way locks can be acquired in increasing order of keys to avoid deadlock. We
re-validate upd method in txlog to ensure that the pred & curr for the methods
has not changed since the point they were logged during rv method execution
phase. Please note that txlog only contains the log entry (le) for upd method.
Because we do not validate the lookup and failed delete again in STM tryC().

(a)

(b)

(c)

(d)

−∞ k3 k8 +∞ −∞ k8 +∞

−∞−∞

k4

k3

k4

k3

k4 k5

k5 k8 +∞
k5 k8 +∞ k3

k4

(i) When k5 is not present in BL and RL (ii) When k5 is present in RL

Fig. 8. Insert of k5 in STM tryC(). (i) bl & rl of k5 is set to K8 then bl of k3 linked to
K5 & rl of k4 is linked to k5. (ii) Only bl of k5 is set to K8 then bl of k3 linked to K5.
(Color figure online)

Now after successful validation, we update the shared lazyrb-list using the
log entries (le) of the txlog one by one. There may be two cases when a node
is inserted into lazyrb-list by the STM insert(). First, the node is not reachable
by both rl and bl (not present in cds). Figure 8(i) represents this case when
k5 is neither reachable by bl and nor in rl. It adds k5 to lazyrb-list at location
preds〈k3, k4〉 and currs〈k8, k8〉 (in the notation, first and second index is the key
reachable by bl & rl, respectively). Figure 8(i)(a) is lazyrb-list before addition
of k5 and Fig. 8(i)(b) is lazyrb-list state post addition. Second, if the node is
reached only by rl. Figure 8(ii) represents this case where k5 is reached only by rl.
It adds k5 to lazyrb-list at location pred〈k3, k4〉 and curr〈k5, k8〉. Figure 8(i)(c)
is lazyrb-list before addition of k5 with bl and Fig. 8(i)(d) is lazyrb-list state post
addition.

During STM delete() if a node to be removed is reachable with bl then its
marked field is set and the links are modified such that it is not reachable by bl.
Figure 9 shows a case where a node k5 needs to be deleted from the lazyrb-list
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in Fig. 9(i). So, here the node k5 sets its marked field and then is detached from
the bl (Fig. 9(ii)).

(i) (ii)−∞ −∞

k3

k1 +∞k5 +∞

k5

k1

k3

Fig. 9. Delete of k5 in STM tryC(). k5 is unlinked from bl by linking bl of k1 to ∞.
(Color figure online)

Correctness: In object based STM techniques like HT-OSTM where methods
are intervals, proving that its methods can be partially ordered or linearized is
complex. But, proving the correctness of cds requires taking into account the
semantics and implementation details as asserted by work of Hassan et al. [17].
We establish that all methods can be linearized at method level before arguing
about the co-opacity of HT-OSTM history at transaction level using graph char-
acterization. The accompanying technical report [8] provides detailed proof, here
we only state the major theorem which contributes to proving that HT-OSTM
is co-opaque.

Theorem 2. Consider a history H generated by HT-OSTM. Then there exists
a sequential & legal history H ′ equivalent to H such that the conflict-graph of
H ′ is acyclic.

5 Evaluation

We performed all the experiments on Intel(R) Xeon(R) CPU E5-2690 v4 @
2.60GHz machine with 56 CPUs and 32K L1 data cache and 32 GB memory.
Each thread spawns 10 transactions each of which randomly generate up to 5
methods of HT-OSTM . We assume that the hash-table of HT-OSTM has 5
buckets and each of the bucket (or list in case of list-OSTM ) can have maximum
size of 1K keys. We ran the experiments to calculate two parameters: (1) time
taken for a transaction to commit. Upon abort, a transaction is retried until it
commits. (2) Number of aborts incurred until all the transactions commit.

We compare HT-OSTM with the ESTM [12] based hash-table and the
transactional hash-table application built using RWSTM which is synchro-
nised by basic time stamp ordering protocol [4, Chap. 4]. Further, we evalu-
ate list-OSTM with the state of the art lock-free transactional list (LFT) [13],
NOrec STM list (NTM) [14] and boosting list (BST) [15]. All these implementa-
tions are directly taken from the TLDS framework2. The experiments were per-
formed under two kinds of workloads. Update intensive(lookup:50%, insert:25%,
delete:25%) and lookup intensive(lookup:70%, insert:10%, delete:20%). Here,

2 https://ucf-cs.github.io/tlds/.

https://ucf-cs.github.io/tlds/
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upto 70% lookups HT-OSTM performs better but with more than 70% of
lookups ESTM shows better performance when contention is higher. The evalu-
ation is done by varying threads from 2 to 64 in power of 2. Before each applica-
tion is run there is a initialization phase where the data structure is populated
randomly with nodes of half its maximum size.
HT-OSTM.3 Figure 10a shows that w.r.t. time taken HT-OSTM outperforms
ESTM [12] and RWSTM on an average by 3 times for lookup intensive workload.
Plus, for update intensive workload HT-OSTM on average is 6 times better
than ESTM & RWSTM. Similarly, in terms of aborts, HT-OSTM has 3 & 2
times lesser aborts than ESTM and RWSTM for lookup intensive workload,
respectively. Also for update intensive load HT-OSTM has 7 and 8 times lesser
aborts with ESTM and RWSTM respectively, as can be seen in Fig. 10b.

(a) HT-OSTM time in second(s) (b) HT-OSTM aborts

(c) list-OSTM time in second(s) (d) list-OSTM aborts

Fig. 10. HT-OSTM and list-OSTM evaluation. Each curve is named as technique
name(workload type). LI/UI denotes lookup intensive/ update intensive.

3 lib source code link: https://github.com/PDCRL/ht-ostm.

https://github.com/PDCRL/ht-ostm
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list-OSTM. The average aborts for list-OSTM never go beyond 30 in magni-
tude while that of other techniques (in Fig. 10d) are of 388 in the magnitude for
both types of workloads. While time taken is 76%, 89% and 33% (with lookup
intensive) and 77%, 77% and 154% (with update intensive) better than LFT,
NTM and BST respectively (as shown in Fig. 10c).

6 Conclusion and Future Work

In this paper, we build a model for building highly concurrent and composable
data structures using object based transactional memory. We use the observation
that higher concurrency can be obtained by considering OSTMs as compared
to traditional RWSTMs by leveraging richer object-level semantics. To achieve
this, we propose comprehensive theoretical model based on legality semantics and
conflict notions for hash-table based OSTM. Using these notions we extend the
definition of opacity and co-opacity for HT-OSTM s in Sect. 3. Then, based on
this model, we develop a practical implementation of hash-table based object
STM, HT-OSTM . We then perform some extensive experiments to verify the
gains achieved as demonstrated in Sect. 5. As a part of future work, we plan to
develop multi-version object STMs similar to multi-version STMs & databases.

Acknowledgment. We extend our thanks to Dr. Roy Friedman and anonymous
reviewers for careful reading of the draft and suggestions. This research is partially
supported by the grant from Board of Research in Nuclear Sciences (BRNS), India
with project number- 36(3)/14/19/2016-BRNS/36019.

References

1. Herlihy, M., Moss, J.E.B.: Transactional memory: architectural support for lock-
free data structures. SIGARCH Comput. Archit. News 21(2), 289–300 (1993)

2. Shavit, N., Touitou, D.: Software transactional memory. In: PODC, pp. 204–213
(1995)

3. Harris, T., Marlow, S., Peyton-Jones, S., Herlihy, M.: Composable memory trans-
actions. In: PPOPP, New York, NY, USA, pp. 48–60. ACM (2005)

4. Weikum, G., Vossen, G.: Transactional Information Systems: Theory, Algorithms,
and the Practice of Concurrency Control and Recovery. Morgan Kaufmann,
Burlington (2002)

5. Herlihy, M., Shavit, N.: The Art of Multiprocessor Programming. Elsevier Science,
Amsterdam (2012)

6. Heller, S., Herlihy, M., Luchangco, V., Moir, M., Scherer, W.N., Shavit, N.: A lazy
concurrent list-based set algorithm. Parallel Process. Lett. 17(4), 411–424 (2007)

7. Guerraoui, R., Kapalka, M.: On the correctness of transactional memory. In:
PPOPP, pp. 175–184. ACM (2008)

8. Peri, S., Singh, A., Somani, A.: Efficient means of achieving composability using
transactional memory. CoRR abs/1709.00681 (2017)

9. Harris, T., et al.: Abstract nested transactions (2007)
10. Papadimitriou, C.H.: The serializability of concurrent database updates. J. ACM

26(4), 631–653 (1979)



174 S. Peri et al.

11. Kuznetsov, P., Peri, S.: Non-interference and local correctness in transactional
memory. Theory Comput. Sci. 688, 103–116 (2017)

12. Felber, P., Gramoli, V., Guerraoui, R.: Elastic transactions. J. Parallel Distrib.
Comput. 100(C), 103–127 (2017)

13. Zhang, D., Dechev, D.: Lock-free transactions without rollbacks for linked data
structures. In: SPAA 2016, New York, NY, USA, pp. 325–336. ACM (2016)

14. Dalessandro, L., Spear, M.F., Scott, M.L.: NOrec: streamlining STM by abolishing
ownership records. In: Govindarajan, R., Padua, D.A., Hall, M.W., (eds.) PPOPP,
pp. 67–78. ACM (2010)

15. Herlihy, M., Koskinen, E.: Transactional boosting: a methodology for highly-
concurrent transactional objects. In: PPOPP, pp. 207–216. ACM (2008)

16. Ni, Y., et al.: Open nesting in software transactional memory. In: PPOPP. ACM
(2007)

17. Hassan, A., Palmieri, R., Ravindran, B.: Optimistic transactional boosting. In:
Moreira, J.E., Larus, J.R. (eds.) PPOPP, pp. 387–388. ACM (2014)

18. Spiegelman, A., Golan-Gueta, G., Keidar, I.: Transactional data structure libraries.
In: PLDI, pp. 682–696. ACM (2016)

19. Fraser, K., Harris, T.: Concurrent programming without locks. ACM Trans. Com-
put. Syst. 25(2), 5 (2007)

20. Kuznetsov, P., Ravi, S.: On the cost of concurrency in transactional memory. In:
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Abstract. Providing efficient emulations of atomic read/write objects
in asynchronous, crash-prone, message-passing systems is an important
problem in distributed computing. Communication latency is a factor
that typically dominates the performance of message-passing systems,
consequently the efficiency of algorithms implementing atomic objects is
measured in terms of the number of communication exchanges involved
in each read and write operation. The seminal result of Attiya, Bar-
Noy, and Dolev established that two pairs of communication exchanges,
or equivalently two round-trip communications, are sufficient. Subse-
quent research examined the possibility of implementations that involve
less than four exchanges. The work of Dutta et al. showed that for
single-writer/multiple-reader (SWMR) settings two exchanges are suf-
ficient, provided that the number of readers is severely constrained with
respect to the number of object replicas in the system and the number
of replica failures, and also showed that no two-exchange implementa-
tions of multiple-writer/multiple-reader (MWMR) objects are possible.
Later research focused on providing implementations that remove the
constraint on the number of readers, while having read and write opera-
tions that use variable number of communication exchanges, specifically
two, three, or four exchanges.

This work presents two advances in the state-of-the-art in this area.
Specifically, for SWMR and MWMR systems algorithms are given in
which read operations take two or three exchanges. This improves on
prior works where read operations took either (a) three exchanges, or (b)
two or four exchanges. The number of readers in the new algorithms is
unconstrained, and write operations take the same number of exchanges
as in prior work (two for SWMR and four for MWMR settings). The cor-
rectness of algorithms is rigorously argued. The paper presents an empir-
ical study using the NS3 simulator that compares the performance of rel-
evant algorithms, demonstrates the practicality of the new algorithms,
and identifies settings in which their performance is clearly superior.
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1 Introduction

Emulating atomic [11] (or linearizable [10]) read/write objects in asynchronous,
message-passing environments with crash-prone processors is a fundamental
problem in distributed computing. To cope with processor failures, distributed
object implementations use redundancy by replicating the object at multiple net-
work locations. Replication masks failures, however it introduces the problem of
consistency because operations may access different object replicas possibly con-
taining obsolete values. Atomicity is the most intuitive consistency semantic as it
provides the illusion of a single-copy object that serializes all accesses such that
each read operation returns the value of the latest preceding write operation.
Background and Prior Work. The seminal work of Attiya et al. [2] provided
an algorithm, colloquially referred to as ABD, that implements SWMR (Single
Writer, Multiple Reader) atomic objects in message-passing crash-prone asyn-
chronous environments. Operations are ordered using logical timestamps asso-
ciated with each value. Operations terminate provided some majority of replica
servers does not crash. Writes involve a single communication round-trip involv-
ing two communication exchanges. Each read operation takes two rounds involv-
ing in four communication exchanges. Subsequently, Lynch et al. [13] showed
how to implement MWMR (Multi-Writer, Multi-Reader) atomic memory where
both read and write operations take two communication round trips, for a total
of four exchanges.

Dutta et al. [3] introduced a fast SWMR implementation where both reads
and writes involve two exchanges (such operations are called ‘fast’). It was shown
that this is possible only when the number of readers r is constrained with respect
to the number of servers s and the number of server failures f , viz. r < s

f − 2.
Other works focused on relaxing the bound on the number of readers in the
service by proposing hybrid approaches where some operations complete in one
and others in two rounds, e.g., [4].

Georgiou et al. [6] introduced Quorum Views, client-side tools that examine
the distribution of the latest value among the replicas in order to enable fast
read operations (two exchanges). A SWMR algorithm, called Sliq, was given
that requires at least one single slow read per write operation, and where all
writes are fast. A later work [5] generalized the client-side decision tools and
presented a MWMR algorithm, called CwFr, that allows fast read operations.

Previous works considered only client-server communication round-trips.
Recently, Hadjistasi et al. [9] showed that atomic operations do not necessar-
ily require complete communication round trips, by introducing server-to-server
communication. They presented a SWMR algorithm, called OhSam, where reads
take three exchanges: two of these are between clients and servers, and one is
among servers; their MWMR algorithm, called OhMam, uses a similar approach.
These algorithms do not impose constrains on reader participation and perform
a modest amount of local computation, resulting in negligible computation over-
head.
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Table 1. Summary of communication exchanges and communication complexities.

Model Algorithm Read exch. Write exch. Read comm. Write comm.

swmr ABD [2] 4 2 4|S| 2|S|
swmr OhSam [9] 3 2 |S|2 + 2|S| 2|S|
swmr Sliq [6] 2 or 4 2 4|S| 2|S|
swmr Erato 2 or 3 2 |S|2 + 3|S| 2|S|
mwmr ABD-mw [2,13] 4 4 4|S| 4|S|
mwmr OhMam [9] 3 4 |S|2 + 2|S| 4|S|
mwmr CwFr [5] 2 or 4 4 4|S| 4|S|
mwmr Erato-mw 2 or 3 4 |S|2 + 3|S| 4|S|

Contributions. We focus on the gap between one-round and two-round algo-
rithms by presenting atomic memory algorithms where read operations can take
at most “one and a half rounds,” i.e., complete in either two or three exchanges.
Complexity results are shown in Table 1, additional details are as follows.

1. We present Erato,1 Efficient Reads for ATomic Objects, a SWMR algo-
rithm for atomic objects in the asynchronous message-passing model with pro-
cessor crashes. We improve the three-exchange read protocol of OhSam [9] to
allow reads to terminate in either two or three exchanges using client-side tools,
Quorum Views, from algorithm Sliq [6]. During the second exchange, based on
the distribution of the timestamps, the reader may be able to complete the read.
If not, it awaits for “enough” messages from the third exchange to complete. A
key idea is that when the reader is “slow” it returns the value associated with the
minimum timestamp, i.e., the value of the previous write that is guaranteed to
be complete (cf. [9] and [3]). Read operations are optimal in terms of exchanges
in light of [8]. Similarly to ABD, writes take two exchanges (Sect. 3).

2. Using the SWMR algorithm as the basis, we develop a MWMR algorithm,
Erato-mw. The algorithm supports three-exchange read protocol based on [9]
in combination with the iterative technique using quorum views as in [5]. Reads
take either two or three exchanges. Writes are similar to ABD-mw and take four
communication exchanges (cf. [13]) (Sect. 4).

3. We simulate the algorithms using the NS3 simulator and assess their per-
formance under practical considerations by varying the number of participants,
frequency of operations, and network topologies (Sect. 5).

Improvements in latency are obtained in a trade-off for communication com-
plexity. Simulation results suggest that in practical settings, such as data centers
with well-connected servers, the communication overhead is not prohibitive.

2 Models and Definitions

We now present the model, definitions, and notations used in the paper. The
system is a collection of crash-prone, asynchronous processors with unique
1 Eρατώ is a Greek Muse, and the authors thank the lovely muse for her inspiration.
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identifiers (ids). The ids are from a totally-ordered set I that is composed of
three disjoint sets, set W of writer ids, set R of reader ids, and set S of replica
server ids. Each server maintains a copy of the object.

Processors communicate by exchanging messages via asynchronous point-to-
point reliable channels; messages may be reordered. We use the term broadcast as
a shorthand denoting sending point-to-point messages to multiple destinations.

A quorum system over a set is a collection of subsets, called quorums, such
that every pair of quorums intersects. We define a quorum system Q over the
set of server ids S as Q = {Qi : Qi ⊆ S}; it follows that for any Qi, Qj ∈ Q we
have Qi ∩ Qi �= ∅. We assume that every process in the system is aware of Q.

Executions. An algorithm A is a collection of processes, where process Ap

is assigned to processor p ∈ I. The state of processor p is determined over a
set of state variables, and the state of A is a vector that contains the state of
each process. Algorithm A performs a step, when some process p (i) receives a
message, (ii) performs local computation, (iii) sends a message. Each such action
causes the state at p to change. An execution is an alternating sequence of states
and actions of A starting with the initial state and ending in a state.

Failure Model. A process may crash at any point in an execution. If it crashes,
then it stops taking steps; otherwise, the process is correct. Any subset of readers
and writers may crash. A quorum Q ∈ Q is non-faulty if ∀p ∈ Q, p is correct.
Otherwise, Q is faulty. Any server may crash as long one quorum is non-faulty.

Efficiency and Message Exchanges. Efficiency of implementations is assessed
in terms of operation latency and message complexity. Latency of an operation is
determined by computation time and the communication delays. Computation
time accounts for all local computation within an operation. Communication
delays are measured in terms of communication exchanges. The protocol imple-
menting each operation involves a collection of sends (or broadcasts) of typed
messages and the corresponding receives. As defined in [9], a communication
exchange within an execution of an operation is the set of sends and receives for
the specific message type. Traditional implementations in the style of ABD [2]
are structured in terms of rounds, each consisting of two exchanges, the first, a
broadcast, is initiated by the process executing an operation, and the second, a
convergecast, consists of responses to the initiator. The number of messages that
a process expects during a convergecast depends on the implementation. Message
complexity measures the worst-case total number of messages exchanged.

Atomicity. An implementation of a read or a write operation contains an invo-
cation action and a response action. An operation π is complete in an execution,
if it contains both the invocation and the matching response actions for π; oth-
erwise π is incomplete. An execution is well formed if any process invokes one
operation at a time. We say that an operation π precedes an operation π′ in an
execution ξ, denoted by π → π′, if the response step of π appears before the
invocation step in π′ in ξ. Two operations are concurrent if neither precedes the
other. The correctness of an atomic read/write object implementation is defined
in terms of atomicity (safety) and termination (liveness) properties. Termination
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requires that any operation invoked by a correct process eventually completes.
Atomicity is defined following [12]. For any execution ξ, if Π is the set of all
completed read and write operations in ξ, then there exists a partial order ≺ on
the operations in Π, s.t. the following properties are satisfied:

A1 For any π1, π2 ∈ Π such that π1 → π2, it cannot be that π2 ≺ π1.
A2 For any write ω ∈ Π and any operation π ∈ Π, then either ω ≺ π or π ≺ ω.
A3 Every read operation returns the value of the last write preceding it accord-

ing to ≺ (or the initial value if there is no such write).

Timestamps and Quorum Views. Atomic object implementations typically
use logical timestamps (or tags) associated with the written values to impose a
partial order on operations that satisfies the properties A1, A2, and A3.

A quorum view [6] refers to the distribution of the highest timestamp among
the servers, maxTS, that a read operation witnesses during a communication
exchange, and can be used as a tool to determine the state of a write operation
i.e., whether it is complete or incomplete. Suppose that during an exchange,
a read ρ strictly receives timestamp and value pairs 〈s.ts, v〉 from each server
s ∈ Qi. As presented in [6], ρ can distinguish three different quorum views:

– qv(1): ∀s ∈ Qi : s.ts = maxTS
– qv(2): ∀Qj ∈ Q, i �= j,∃A ⊆ Qi ∩ Qj , s.t. A �= ∅ and ∀s ∈ A : s.ts < maxTS
– qv(3): ∃s′ ∈ Qi : s′.ts < maxTS and ∃Qj ∈ Q, i �= j s.t. ∀s ∈ Qi ∩Qj : s.ts =

maxTS.

Fig. 1. (a) qv(1), (b) qv(2), (c) qv(3) incomplete write, (d) qv(3) complete write

For example, in Fig. 1 dark circles represent servers that contain the maxTS,
and light ones any older timestamp. The quorum system Q consists of three quo-
rums, {Qi, Qj , Qz}. If qv(1) is observed, Fig. 1(a), it means that only one times-
tamp is received, thus the write associated with maxTS has potentially been
completed. If qv(2) is observed, Fig. 1(b), this indicates that the write associated
with maxTS is still in progress (because older timestamps are detected in the
intersections of quorums). Lastly, if qv(3) is observed, the distribution of times-
tamps does not provide sufficient information for the state of the write. This,
because there are two possibilities as shown in Fig. 1(c) and (d). In Fig. 1(c) the
write is incomplete while in Fig. 1(d) the write completes in quorum Qz, how-
ever, in both executions every server in the intersection of Qz ∩ Qi replies with
maxTS. We use quorum views as a design element in our algorithms.



180 C. Georgiou et al.

3 SWMR Algorithm Erato

We now present and analyze the SWMR algorithm Erato.

3.1 Algorithm Description

In Erato reads take either two or three exchanges. This is achieved by combining
the three exchange read protocol of [9] with the use of Quorum Views of [6]. The
read protocol design aims to return the value associated with the timestamp of
the last complete write operation. We refer to the three exchanges of the read
protocol as e1, e2, and e3. Exchange e1 is initiated by the reader, and exchanges
e2 and e3 are conducted by the servers. When the reader receive messages during
e2, it analyses the timestamps to determine whether to terminate or wait for
the conclusion of e3. Due to asynchrony it is possible for the message from e3
to arrive at the reader before messages from e2. In this case the reader still
terminates in three exchanges. Similarly to ABD, writes take two exchanges.
The code is given in Algorithm 1. We now give the details of the protocols; in
referring to the numbered lines of code we use the prefix “L” to stand for “line”.

Reader Protocol. Each reader r maintain several temporary variables. Key
variable include minTS and maxTS hold the minimum and the maximum times-
tamps discovered during the read operation. Sets RR and RA hold the received
readRelay and readAck messages respectively. The ids of servers that sent these
messages are stored in sets RRsrv and RAsrv respectively. The set maxTSrv
keeps the ids of the servers that sent a readRelay message with the timestamp
equal to the maximum timestamp maxTS.

Reader r starts its operation by broadcasting a readRequest message to the
servers (exchange e1). It then collects readRelay messages (from exchange e2)
and readAck messages (from exchange e3). The reader uses counter read op to
distinguish fresh message from stale message from prior operations. The messages
are collected until messages of the same type are received from some quorum
Q of servers (L7–11). If readRelay messages are received from quorum Q then
the reader examines the timestamps to determine what quorum view is observed
(recall Sect. 2). If qv(1) is observed, then all timestamps are the same, meaning
that the write operation associated with the timestamp is complete, and it is safe
to return the value associated with it without exchange e3. (L24–25). If qv(2)

is observed, then the write associated with the maximum timestamp maxTS is
not complete. But because there is a sole writer, it is safe to return the value
associated with timestamp maxTS-1, i.e., the value of the preceding complete
write, again without exchange e3 (L34–37). If qv(3) is observed, then the write
associated with the maximum timestamp maxTS is in progress or complete.
Since the reader is unable to decide which case applies, it waits for the exchange
e3 readAck messages from some quorum Q. The reader here returns the value
associated with the minimum timestamp observed (L27–33). It is possible, due to
asynchrony, that messages from e3 arrive from a quorum before enough messages
from e2 are gathered. Here the reader decides as above for e3 (L12–16).
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Writer Protocol. Writer w increments its local timestamp ts and broadcasts
a writeRequest message to all servers. It completes once writeAck messages are
received from some quorum Q (L52–56).

Server Protocol. Server s stores the value of the replica v and its associated
timestamp ts. The relays array is used to store sets of processes that relayed to s
regarding a read operation. Destinations set D is initialized to set containing all
servers from every quorum that contains s. It is used for sending relay messages
during exchange e2.

Algorithm 1. Reader, Writer, and Server Protocols for SWMR algorithm Erato

1: At each reader r

2: Variables:
3: minTS ,maxTS ∈ N; read op ∈ N init 0
4: RR, RA, maxACK ⊆ S × M

5: v ∈ V ; RRsrv, RAsrv, maxTSrv ⊆ S
6: function Read

7: read op ← read op + 1

8: (RR, RA, RRsrv, RAsrv) ← (∅, ∅, ∅, ∅)
9: bcast (〈readRequest, r, read op〉) to S

10: wait until ∃Q ∈ Q : Q ⊆ RRsrv

11: ∨ Q ⊆ RAsrv

12: if (∃Q ∈ Q : Q ⊆ RAsrv) then
13: minTS ← min{(m.ts) : (s, m) ∈ RA

14: ∧ s ∈ Q}
15: return(m.v s.t. (s, m) ∈ RA

16: ∧ m.ts = minTS)
17: else if (∃Q ∈ Q : Q ⊆ RRsrv) then
18: maxTS ←max({(m.ts) :

19: (s, m) ∈ RR ∧ s ∈ Q})
20: maxACK ← {(s, m) ∈ RR :

21: s ∈ Q ∧ m.ts = maxTS}
22: maxTSrv ← {s ∈ Q :

23: (s, m) ∈ maxACK}
24: if Q ⊆ maxTSrv then//**Qview1**//
25: return(m.v s.t. (s,m) ∈ maxACK)

26: if ∃Q′ ∈ Q, Q′ = Q

27: s.t. Q′ ∩ Q ⊆ maxTSrv then
28: // ** Qview3** //
29: wait until ∃Q ∈ Q : Q ⊆ RAsrv

30: minTS ← min({(m.ts) :

31: (s, m) ∈ RA∧ s ∈ Q})
32: return(m.v s.t. (s, m) ∈ RA

33: ∧ s ∈ Q ∧ m.ts = minTS)

34: else // ** Qview2** //
35: maxACK ← {(s,m) ∈ RR :

36: s ∈ Q ∧ m.ts = maxTS − 1}
37: return(m.v s.t. (s, m) ∈ maxACK)

38: Upon receive m from s

39: if m.read op = read op then
40: if m.type = readRelay then
41: RR ← RR ∪ {(s, m)}
42: RRsrv ← RRsrv ∪ {s}
43: else // readAck //
44: RA ← RA ∪ {(s, m)}
45: RAsrv ← RAsrv ∪ {s}

46: At writer w

47: Variables:
48: ts ∈ N

+, v ∈ V , wAck ⊆ S
49: Initialization:
50: ts ← 0, v ←⊥, wAck ← ∅
51: function Write(val : input)
52: (ts, v) ← (ts + 1, val)

53: wAck ← ∅
54: bcast (〈writeRequest, ts, v, w〉) to S
55: wait until (∃Q ∈ Q : Q ⊆ wAck)

56: return()

57: Upon receive m from s

58: if m.ts = ts then
59: wAck ← wAck ∪ {s}
60: At server s

61: Variables:
62: ts ∈ N init 0 ; v ∈ V init ⊥
63: D ⊆ S init {s′ : Q ∈ Q ∧ (s, s′ ∈ Q)}
64: operations : R → N init 0|R|

65: relays : R → 2S init 0|R|

66: Upon receive(〈readRequest, r, read op〉)
67: bcast(〈readRelay, ts, v, r, read op, s〉)
68: to D ∪ r

69: Upon receive(〈writeRequest, ts′, v′, w〉)
70: if (ts < ts′) then
71: (ts, v) ← (ts′, v′)
72: send (〈writeAck, ts, s〉) to w

73: Upon receive
74: (〈readRelay, ts′, v′, r, read op, s〉)
75: if (ts < ts′) then
76: (ts, v, vp) ← (ts′, v′)
77: if (operations[r] < read op) then
78: operations[r] ← read op

79: relays[r] ← ∅.
80: if (operations[r] = read op) then
81: relays[r] ← relays[r] ∪ {s}
82: if (∃Q ∈ Q : Q ⊆ relays[ri]) then
83: send (〈readAck, ts, v, read op, s〉)
84: to r
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In exchange e1 of a read, upon receiving message 〈readRequest, r, read op〉,
the server creates a readRelay message, containing its ts, v, and s, and broadcasts
it in exchange e2 to destinations in D and reader r (L66–68).

In exchange e2, upon receiving message 〈readRelay, ts′, v′, r, read op〉 s com-
pares its local timestamp ts with ts′. If ts < ts′, then s sets its local value
and timestamp to those enclosed in the message (L75–76). Next, s checks if
the received readRelay marks a new read by r, i.e., read op > operations[r]. If
so, then s: (a) sets its local counter for r to the enclosed one, operations[r] =
read op; and (b) re-initializes the relay set for r to an empty set, relays[r] = ∅
(L77–79). It then adds the sender of the readRelay message to the set of servers
that informed it regarding the read invoked by r (L80–81). Once readRelay mes-
sages are received from a quorum Q, s creates a readAck message and sends it
to r in exchange e3 of the read (L82–84).

Within a write operation, upon receiving message 〈writeRequest, ts′, v′, w〉, s
compares its ts to the received one. If ts < ts′, then s sets its local timestamp
and value to those received, and sends acknowledgment to the writer (L69–72).

3.2 Correctness and Complexity

Here we prove correctness of algorithm Erato. Termination (liveness) is satisfied
with respect to our failure model: at least one quorum Q is non-faulty and each
operation waits for messages from a single quorum.

To prove atomicity we order the operations with respect to the timestamps
associated with the written values. For each execution of the algorithm there
must exist a partial order ≺ on the operations that satisfy conditions A1, A2, and
A3 given in Sect. 2. Let tsπ be the timestamp at the completion of π when π is a
write, and the timestamp associated with the returned value when π is a read. We
now define the partial order as follows. For two operations π1 and π2, when π1 is
any operation and π2 is a write, we let π1 ≺ π2 if tsπ1 < tsπ2 . For two operations
π1 and π2, when π1 is a write and π2 is a read we let π1 ≺ π2 if tsπ1 ≤ tsπ2 . The
rest of the order is established by transitivity, without ordering the reads with
the same timestamps. We now state the following lemmas (detailed proofs are
given in the full paper [7]).

Lemma 1. In any execution ξ of Erato, if a read ρ succeeds a write operation ω
that writes timestamp ts, i.e. ω → ρ, and returns a timestamp ts′, then ts′ ≥ ts.

Lemma 2. In any execution ξ of Erato, if ρ1 and ρ2 are two read operations
such that ρ1 precedes ρ2, i.e., ρ1 → ρ2, and ρ1 returns timestamp ts1, then ρ2
returns a timestamp ts2, s.t. ts2 ≥ ts1.

Theorem 1. Algorithm Erato implements an atomic SWMR object.

Proof. We now use the lemmas above and the partial order definition to reason
about each of the three conditions A1, A2 and A3.
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A1 For any π1, π2 ∈ Π such that π1 → π2, it cannot be that π2 ≺ π1.
When the two operations π1 and π2 are reads and π1 → π2 holds, then from
Lemma 2 it follows that the timestamp of π2 is no less than the one rof π1, tsπ2 ≥
tsπ1 . If tsπ2 > tsπ1 then by the ordering definition π1 ≺ π2 is satisfied. When
tsπ2 = tsπ1 then the ordering is not defined, thus it cannot be the case that π2 ≺
π1. If π2 is a write, the sole writer generates a new timestamp by incrementing the
largest timestamp in the system. By well-formedness (see Sect. 2), any timestamp
generated in any write operation that precedes π2 must be smaller than tsπ2 .
Since π1 → π2, then it holds that tsπ1 < tsπ2 . Hence, by the ordering definition
it cannot be the case that π2 ≺ π1. Lastly, when π2 is a read and π1 a write and
π1 → π2 holds, then from Lemma 1 it follows that tsπ2 ≥ tsπ1 . By the ordering
definition, it cannot hold that π2 ≺ π1 in this case either.

A2 For any write ω ∈ Π and any operation π ∈ Π, then either ω ≺ π or π ≺ ω.
If the timestamp returned from ω is greater than the one returned from π, i.e.
tsω > tsπ, then π ≺ ω follows directly. Similartly, if tsω < tsπ holds, then ω ≺ π
follows. If tsω = tsπ, then it must be that π is a read and π discovered tsω in a
quorum view QV1 or QV3. Thus, ω ≺ π follows.

A3 Every read operation returns the value of the last write preceding it according
to ≺ (or the initial value if there is no such write).
Let ω be the last write preceding read ρ. From our definition it follows that
tsρ ≥ tsω. If tsρ = tsω, then ρ returns the value conveyed by ω to some servers
in a quorum Q, satisfying either QV1 or QV3. If tsρ > tsω, then ρ obtains
a larger timestamp, but such a timestamp can only be created by a write that
succeeds ω, thus ω does not precede the read and this cannot be the case. Lastly,
if tsρ = 0, no preceding writes exist, and ρ returns the initial value.��

Communication and Message Complexity. By inspection of the code, write
operations take 2 exchanges and read operations take either 2 or 3 exchanges.
The message complexity of write operations is 2|S| and of read operations is
|S|2 + 2|S|, as follows from the structure of the algorithm.

4 Algorithm Erato-mw

We now aim for a MWMR algorithm that involves two or three communications
exchanges per read operation and four exchanges per write operation. The read
protocol of algorithm Erato relies on the fact of the sole writer in the system:
based on the distribution of the timestamp in a quorum Q, if the reader knows
that the write operation is not complete, then any previous write is complete (by
well-formedness). In the MWMR setting this does not hold due to the possibility
of concurrent writes. Consequently, algorithm Erato-mw, in order to allow
operations to terminate in either two or three communication exchanges, adapts
the read protocol from algorithm OhMam in combination with the iterative
technique using quorum views of CwFr. The latter approach not only predicts
the completion status of a write operation, but also detects the last potentially
complete write operation. The code is given in Algorithm 2.
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Algorithm 2. Reader, Writer and Server Protocols for MWMR algorithm Erato-mw

1: At each reader r

2: Variables:

3: v ∈ V ; read op ∈ N; minTAG,maxTAG ∈ T

4: RR,RA,maxACK ⊆ S × M init ∅
5: RRsrv,RAsrv,maxTGsrv ⊆ S init ∅
6: Initialization:

7: minTAG ← 〈0, 0〉, maxTAG ← 〈0, 0〉
8: v ←⊥, read op ← 0

9: function Read

10: read op ← read op + 1

11: (RR,RA,maxACK) ← (∅, ∅, ∅)
12: (RRsrv,RAsrv,maxTGsrv) ← (∅, ∅, ∅)
13: bcast (〈readRequest, r, read op〉) to S
14: wait until∃Q ∈ Q : Q ⊆ RRsrv ∨ Q ⊆ RAsrv

15: if (∃Q ∈ Q : Q ⊆ RAsrv) then

16: minTAG ← min({(m.ts,m.id) :

17: (s,m) ∈ RA ∧ s ∈ Q})
18: return(m.v s.t. (s,m) ∈ RA ∧ s ∈ Q

19: ∧ (m.ts,m.id) = minTAG)

20: else if (∃Q ∈ Q : Q ⊆ RRsrv) then

21: while (Q �= ∅) do

22: maxTAG ← max{(m.ts,m.id) :

23: (s,m) ∈ RA ∧ s ∈ Q}
24: maxACK ← {(s,m) ∈ RR : s ∈ Q∧
25: (m.ts,m.id) = maxTAG}
26: maxTGsrv ← {s ∈ Q :

27: (s,m) ∈ maxACK}
28: if Q ⊆ maxTGsrv then

29: //** Qview1**//

30: return(m.v s.t. (s,m) ∈ maxACK)

31: if ∃Q′ ∈ Q, Q′ �= Q : Q′ ∩ Q

32: ⊆ maxTGsr then //**Qview3**//

33: wait until

34: ∃Q′′ ∈ Q : Q′′ ⊆ RAsrv

35: minTAG ← min{(m.ts,m.id) :

36: (s,m) ∈ RA ∧ s ∈ Q′′}
37: return(m.v s.t., (s,m) ∈RA ∧ s ∈ Q′′

38: ∧ (m.ts,m.id) = minTAG)

39: else //** Qview2**//

40: Q ← Q − maxTGsrv

41: Upon receive m from s

42: if m.read op = read op then

43: if m.type = readRelay then

44: RR ← RR ∪ {(s,m)}
45: RRsrv ← RRsrv ∪ {s}
46: else // readAck //

47: RA ← RA ∪ {(s,m)}
48: RAsrv ← RAsrv ∪ {s}

49: At each writer w

50: Variables:

51: ts ∈ N, v ∈ V , write op ∈ N, maxTS ∈ N

52: Acks ⊆ S × M init ∅ ; AcksSrv ⊆ S init ∅
53: Initialization:

54: ts ← 0, v ←⊥, write op ← 0, maxTS ← 0

55: function Write(val : input)

56: write op ← write op + 1

57: (Acks,AcksSrv) ← (∅, ∅)
58: bcast (〈writeDiscover, write op, w〉) to S
59: wait until (∃Q ∈ Q : Q ⊆ AcksSrv)

60: maxTS ← max{(m.ts) :

61: (s,m) ∈ Acks ∧ s ∈ Q}
62: (ts, id, v) ← (maxTS + 1, i, val)

63: write op ← write op + 1

64: (Acks,AcksSrv) ← (∅, ∅)
65: bcast (〈writeRequest, ts, v, w, write op〉) to S
66: wait until (∃Q ∈ Q : Q ⊆ AcksSrv)

67: return()

68: Upon receive m from s

69: if m.write op = write op then

70: Acks ← Acks ∪ {(s,m)}
71: AcksSrv ← AcksSrv ∪ {s}

72: At server s

73: Variables and Initialization:

74: ts ∈ N init 0; id ∈ W init ⊥; v ∈ V init ⊥
75: operations : R → N init 0|R|

76: write ops : W → N init 0|W|

77: relays : R → 2S init ∅|R|

78: D ⊆ S init {s : (∃Q ∈ Q), (s, si ∈ Q)}
79: Upon receive(〈writeDiscover, write op, w〉)
80: send (〈discoverAck, ts, id, si〉) to w

81: Upon receive

82: (〈writeRequest, ts′, v′, id′,write op,w〉)
83: if write ops[w] < write op then

84: write ops[w] ← write op

85: if (ts < ts′) ∨ (ts = ts′ ∧ id < id′) then

86: (ts, id, v) ← (ts′, id′, v′)
87: send (〈writeAck, write op, s〉) to w

88: Upon receive(〈readRequest, r, read op〉)
89: bcast〈readRelay, ts, id, v, r, read op, s〉 to D ∪ r

90: Upon receive(〈readRelay,ts’,id’,v’,r,read op,s〉)
91: if (ts < ts′) ∨ (ts = ts′ ∧ id < id′) then

92: (ts, id, v) ← (ts′, id′, v′)
93: if (operations[r] < read op) then

94: operations[ri] ← read op ; relays[r] ← ∅.
95: if (operations[r] = read op) then

96: relays[r] ← relays[r] ∪ {s}
97: if (∃Q ∈ Q : Q ⊆ relays[r]) then

98: send (〈readAck, ts, id, v, read op, s〉) to r

4.1 Detailed Algorithm Description

To impose an ordering on the values written by the writers we associate each
value with a tag tg defined as the pair (ts, id), where ts is a timestamp and id
the identifier of a writer. Tags are ordered lexicographically (cf. [13]).
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Reader Protocol. Readers use state variables similarly to algorithm Erato.
Reader r broadcasts a readRequest message to all servers, then awaits either (a)
readRelay messages from some quorum, or (b) readAck messages from some quo-
rum (L10–14). The key departure here is in how the reader handles case (a) when
qv(2) is detected, which indicates that the write associated with the maximum
tag is not complete. Here the reader considers past history and discovers the
tag associated with the last complete write. This is accomplished in an iterative
manner, by removing the servers that respond with the maximum tag in the
responding quorum Q and repeating the analysis (L21–40). During the iterative
process, if r detects qv(1) it returns the value associated with the maximum tag
discovered during the current iteration. If no iteration yields qv(1), then even-
tually r observes qv(3). In the last case, qv(3) is detected when a single server
remains in some intersection of Q. If so, the reader waits readAck messages to
arrive from some quorum, and returns the value associated with the minimum
tag. If case (b) happens before case (a), then r proceeds identically as in the
case where qv(3) is detected (L15–19).

Writer Protocol. Similarly to the four-exchange implementation [13], a writer
broadcasts a writeDiscover message to all servers, and awaits “fresh” discoverAck
messages from some quorum Q (L56–59). Among these responses the writer
finds the maximum timestamp, maxTS, increments it, and associates it and its
own id with the new value by broadcasting the new timestamp, its id, and the
new value in a writeRequest message to all servers. The write completes when
writeAck messages are received from some quorum Q (L61–66).

Server Protocol. Servers react to messages from readers exactly as in Algo-
rithm 1. We now describe how the messages from writers are handled.

(1) Upon receiving message 〈writeDiscover, write op, w〉, server s replies with a
discoverAck message containing its local tag and value. (L79–80).

(2) Upon receiving message 〈writeRequest, ts′, id′, v′, write op, w〉, server s com-
pares lexicographically its local tag with the received one. If (ts, id) <
(ts′, id′), then s updates its local information and replies using writeAck
message (L82–87).

4.2 Correctness and Complexity

Termination of algorithm Erato-mw is satisfied with respect to our failure
model. Atomicity (safety) is reasoned about as in Sect. 3.2, except using tags
instead of timestamps. (Complete proofs are given in the the full paper [7]).

Lemma 3. In any execution ξ of Erato-mw, if a write ω writes tag tg′ and
succeeds a read operation ρ that returns a tag tg, i.e., ρ → ω, then tg′ > tg.

Lemma 4. In any execution ξ of Erato-mw, if a write ω1 writes tag tg1 and
precedes a write ω2 that writes tag tg2, i.e., ω1 → ω2, then tg2 > tg1.

Lemma 5. In any execution ξ of Erato-mw, if a read ρ succeeds a write oper-
ation ω that writes tag tg, i.e. ω → ρ, and returns a tag tg′, then tg′ ≥ tg.
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Lemma 6. In any execution ξ of Erato-mw, if ρ1 and ρ2 are two read opera-
tions s.t. ρ1 precedes ρ2, i.e., ρ1 → ρ2, and ρ1 returns tag tg1, then ρ2 returns a
tag tg2, s.t. tg2 ≥ tg1.

Theorem 2. Algorithm Erato-mw implements an atomic MWMR object.

Proof. We use the above lemmas and the operations order definition to reason
about each of the three atomicity conditions A1, A2 and A3.

A1 For any π1, π2 ∈ Π such that π1 → π2, it cannot be that π2 ≺ π1.
If both π1 and π2 are writes and π1 → π2 holds, then from Lemma 4 it

follows that tgπ2 > tgπ1 . From the definition of order ≺ we have π1 ≺ π2. When
π1 is a write, π2 a read and π1 → π2 holds, then from Lemma 5 it follows
that tgπ2 ≥ tgπ1 . By definition π1 ≺ π2 holds. If π1 is a read, π2 is a write and
π1 → π2 holds, then from Lemma 3 it follows that π2 returns a tag tgπ2 s.t.
tgπ2 > tgπ1 . By the order definition π1 ≺ π2 is satisfied. If both π1 and π2 are
reads and π1 → π2 holds, then from Lemma 6 it follows that tgπ2 ≥ tgπ1 . If
tgπ2 > tgπ1 , then by the ordering definition π1 ≺ π2 holds. When tgπ2 = tgπ1

then the ordering is not defined, thus it cannot be that π2 ≺ π1.

A2 For any write ω ∈ Π and any operation π ∈ Π, then either ω ≺ π or π ≺ ω.
If tgω > tgπ, then π ≺ ω follows directly. If tgω < tgπ holds, then it follows

that ω ≺ π. When tsω = tsπ holds, then because all writer tags are unique (each
server increments timestamps monotonically, and the server ids disambiguate
among servers) π can only be a read. Since π is a read and the distribution of
the tag written by ω satisfies either qv(1) or qv(3), it follows that ω ≺ π.

A3 Every read operation returns the value of the last write preceding it according
to ≺ (or the initial value if there is no such write).

Let ω be the last write preceding read ρ. From our definition it follows that
tgρ ≥ tgω. If tgρ = tgω, then ρ returned a value written by ω in some servers in
a quorum Q. Read ρ either was fast and during the iterative analysis it noticed
a distribution of the tags in Q that satisfied qv(1) or ρ was slow and waited for
readAck messages from a full quorum Q. In the latter, the intersection properties
of quorums ensure that ω was the last complete write. If tgρ > tgω holds, it must
be the case that there is a write ω′ that wrote tgρ and by definition it must hold
that ω ≺ ω′ ≺ ρ. Thus, ω is not the preceding write and this cannot be the case.
Lastly, if tgρ = 0, no preceding writes exist, and ρ returns the initial value. ��
Communication and Message Complexity. Writes take 4 exchanges and
reads either 2 or 3 exchanges. Message complexity of writes is 4|S| and of reads
|S|2 + 2|S|. This follows from the structure of the algorithm.

5 Empirical Evaluations

We now compare the algorithms using the NS3 discrete event simulator [1]. The
following SWMR algorithms Erato, ABD [2], OhSam [9], and Sliq [6], and the
corresponding MWMR algorithms: Erato-mw, ABD-mw [13], OhMam [9], and
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CwFr [5] were simulated. For comparison, we implemented benchmark LB that
mimics the minimum message requirements: LB does two exchanges for reads
and writes, and neither performs any computation nor ensures consistency.

We developed two topologies that use the same array of routers, but differ in
the deployment of server and client nodes. Clients are connected to routers over
5 Mbps links with 4 ms delay and the routers over 10 Mpbs links with 6 ms delay.
In Series topology, Fig. 2(a), a server is connected to each router over 10 Mbps
bandwidth with 2 ms delay, modeling a network where servers are separated
and appear to be in different networks. In Star topology, Fig. 2(b), servers are
connected to a single router over 50 Mbps links with 2 ms delay, modeling a net-
work where servers are in close proximity and well-connected, e.g., a datacenter.
Clients are located uniformly with respect to the routers.

Performance. We assess algorithms in terms of operation latency that depends
on communication delays and local computation time. For operation latency we
combine two clocks: the simulation clock to measure communication delays, and
a real time clock for computation delays. The sum of the two yields latency.

Experimentation Setup. To subject the system to high communication traffic,
no failures are assumed (ironically, crashes reduce network traffic). Communica-
tion is via point-to-point bidirectional links implemented with a DropTail queue.

Fig. 2. Simulated topologies.

Scenarios. The scenarios are
designed to test (i) the scal-
ability of the algorithms as
the number of readers, writ-
ers, and servers increases; (ii)
the contention effect on effi-
ciency, and (iii) the effects
of chosen topologies on the
efficiency. For scalability we
test with the number of
readers |R| from the set
{10, 20, 40, 80} and the num-
ber of servers |S| from the set
{9, 16, 25, 36}. Algorithms are
evaluated with matrix quo-
rums (unions of rows and
columns). For the MWMR set-
ting we range the number
of writers |W| over the set
{10, 20, 40}. We issue reads
(and writes) every rInt (and
wInt respectively) from the
set of {2, 4} seconds. To test contention we define two invocation schemes: fixed
and stochastic. In the fixed scheme all operations are scheduled periodically at
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Fig. 3. Simulation results for SWMR (a–d) and MWMR (e–g). Horizontal axis is the
number of readers. Vertical axis is latency.

a constant interval. In the stochastic scheme reads are scheduled randomly from
the intervals [1...rInt] and write operations from the intervals [1...wInt].

Results. We note that generally the new algorithms outperform the competi-
tion. A closer examination yields the following observations.
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Scalability: Increased number of readers and servers increases latency in both set-
tings. Observe Fig. 3(a), (b) for SWMR and Fig. 3(e), (f) for MWMR algorithms.
Not surprisingly, latency is better for smaller numbers of readers, writers, and
servers. However, the relative performance of the algorithms remains the same.

Contention: The efficiency of the algorithms is examined under different con-
currency schemes. We notice that in the stochastic scheme reads complete faster
than in the fixed scheme – Fig. 3(b) and (c) for the SWMR and Fig. 3(f) and (g)
for the MWMR setting. This outcome is expected as the fixed scheme causes con-
gestion. For the stochastic scheme the invocation time intervals are distributed
uniformly (randomness prevents the operations from being invoked simultane-
ously), and this reduces congestion in the network and improves latency.

Topology: Topology substantially impacts performance and the behavior of the
algorithms. This can be seen in Figs. 3(b) and (d) for the SWMR setting, and
Figs. 3(f) and (h) for the MWMR setting. The results show clearly that the
proposed algorithms outperform the competition in the Star topology, where
servers are well-connected using high bandwidth links.

6 Conclusions

We focused on the problem of emulating atomic read/write shared objects in
the asynchronous, crash-prone, message-passing settings with the goal of syn-
thesizing algorithms where read operations can always terminate in less than
two communication round-trips. We presented such algorithms for the SWMR

and MWMR models. We rigorously reasoned about the correctness of our algo-
rithms. The algorithms impose no constraints on the number of readers, and no
constraints on the number of writers (in the MWMR model). The algorithms are
shown to be optimal in terms of communication exchanges with unconstrained
participation. The empirical study demonstrates the practicality of the new algo-
rithms, and identifies settings in which their performance is clearly superior.
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Abstract. Recent research has focused on designing concurrent algo-
rithms that are resilient to process crashes. The idea is to leverage non-
volatile memory so that processes can recover from crashes with as little
disruption to the normal behavior of the system as possible. We present
the first Recoverable Mutual Exclusion algorithm whose Remote Mem-
ory Reference (RMR) complexity is optimal for both Cache-Coherent
(CC) and Distributed Shared Memory (DSM) machines. If a process
fails f times during its attempt to acquire the Critical Section, our algo-
rithm ensures that the process incurs O(1) RMRs on a DSM machine
and O(f) RMRs on a CC machine, which we prove is an optimal bound.
Our algorithm improves on a recent algorithm by Golab and Hendler
in three ways: It has a provably optimal RMR complexity, has a wait-
free Exit section, and less reliance on instructions that are not com-
monly supported on multiprocessors. In particular, Golab and Hendler’s
algorithm relies on hardware support for both Fetch-And-Store-And-
Store (FASAS) and Double-Word Compare-And-Swap (DCAS), while
our algorithm relies only on FASAS. (If X and Y are shared variables
and v is a value, FASAS(X,Y, v) writes X’s value in Y and writes v in
X, all in a single atomic action.)

Keywords: Concurrent algorithm · Synchronization
Mutual exclusion · Recovery · Fault tolerance
Non-volatile main memory · Shared memory · Multi-core algorithms

1 Introduction

Traditionally a locking algorithm, also known as a mutual exclusion algorithm
[1], is designed on the assumption that processes do not crash while acquiring,
holding, or releasing a lock. Accordingly, such an algorithm is modeled as follows.
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Each process in a system of asynchronous processes repeatedly cycles through
four sections called the Remainder section, Try section, Critical section (CS),
and Exit section. A process can stay in the Remainder section for any length
of time, including possibly forever. The algorithm specifies the code for the Try
and Exit sections so that the following properties are satisfied:

– Mutual Exclusion: At most one process is in the CS at any time.
– Wait-free Exit: A process in the Exit section completes the Exit section

in a bounded number of its own steps, regardless of the relative speeds of
other processes.

– Starvation Freedom: If no process stays in the CS forever and no process
crashes while in the Try or Exit sections, every process in the Try section
eventually enters the CS.

– First Come First Served (FCFS): There is a constant b such that if a pro-
cess p executes b steps of the Try section before a process q enters the Try
section, then q does not enter the CS before p.

Recent research has moved from this traditional model to a more challenging
model where processes can crash anytime and anywhere, including in the Try,
CS, and Exit sections [2–5], and subsequently restart. This model assumes that
the system’s memory is partitioned into volatile and nonvolatile memory. When
a process p crashes, all its registers and any variables stored in the volatile mem-
ory lose their contents, and p’s program counter is reset to the the Remainder
section. When p eventually restarts after a crash, it moves from Remainder to
a certain section of code called the Recover section, regardless of where it was
when it last crashed. It is the responsibility of the algorithm designer to write
the Recover section so that p can restore the essential part of its lost state by
reading the contents of the nonvolatile memory. It is normally assumed that all
shared variables of a program are stored in the nonvolatile memory, and hence
survive the crash. The CPU registers and the local variables of a process are
volatile, and are lost when the process crashes.

The mutual exclusion problem, reimagined for this new model where pro-
cesses may crash anywhere and subsequently restart from the Recover section,
is called a Recoverable Mutual Exclusion (RME) problem, and was first formu-
lated by Golab and Ramaraju [3]. An RME algorithm specifies the code for the
Recover section, besides specifying the code for the Try and Exit sections. The
various properties listed above are still important, but as described in the Sect. 2,
their formulations are suitably revised to make sense for the new model.

1.1 Remote Memory Reference (RMR) Complexity

For a concurrent algorithm to perform well on a multiprocessor, it is generally
agreed that processes should generate as few remote memory references as possi-
ble. An operation by a process p on a shared variable X is considered a Remote
Memory Reference (RMR) if it involves traversing the processor-memory inter-
connect. On a Cache-Coherent (CC) machine, a read of X by p counts as an RMR
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if X was not in p’s cache (in which case the read brings X into p’s cache), and a
non-read operation on X by p always counts as an RMR as it might update or
invalidate copies of X from all caches (not every non-read might incur an RMR
if the underlying cache coherence protocol uses a write-back strategy, but by
counting every non-read as an RMR, the RMR complexity bound we prove for
an algorithm will apply to all CC machines, regardless of how their underlying
cache-coherence protocols are implemented). When a process crashes during an
execution, the contents of that process’ cache are potentially lost. Therefore, if
X was in p’s cache prior to a crash, p’s read of X just after the crash would
count as an RMR. On a Distributed Shared Memory (DSM) machine, shared
memory is partitioned and each process hosts a partition. An operation by p on
X, whether a read or a non-read, is counted as an RMR if and only if X is not
in p’s partition.

The RMR complexity of a mutual exclusion algorithm is the worst case num-
ber of RMRs that a process incurs during a single attempt, which lasts from
the time the process enters the Try section from Remainder to the earliest sub-
sequent time when the process completes Exit and moves back to Remainder.
In a traditional mutual exclusion algorithm, a process executes each of Try and
Exit sections exactly once in an attempt, and the algorithm’s RMR complexity
is in general a function of n, the maximum number of processes that may exe-
cute the algorithm concurrently. In contrast, in a recoverable mutual exclusion
algorithm, because of possibly repeatedly crashing, a process may execute each
of Try, Exit, and Recover sections many times. Therefore, the RMR complexity
of a recoverable algorithm is in general a function of both n and f , the number
of times a process crashes during its attempt.

1.2 State of the Art

Ideally, we would want to design an algorithm that relies only on operations
supported by real architectures and still guarantees optimal RMR complexity on
both CC and DSM machines. For the traditional mutual exclusion problem, this
ideal is achievable: the MCS algorithm [9] has O(1) RMR complexity for both
CC and DSM and uses only the commonly supported Fetch-And-Store (FAS)
and Compare-And-Swap (CAS) operations, while its variant, due to Craig [6],
needs only FAS. Recently, Golab and Hendler investigated whether such an ideal
algorithm is also possible for recoverable mutual exclusion [2], and presented a
recoverable algorithm of small RMR complexity of O(f) for both CC and DSM
models. They do not address whether their algorithm achieves optimal RMR
complexity. Moreover, their algorithm has two drawbacks: (i) its Exit section
is not wait-free, and (ii) it relies on two instructions that are not commonly
supported on real multiprocessors, namely, Fetch-And-Store-And-Store (FASAS)
and Double-word Campare-And-Swap (DCAS). (If X and Y are shared variables
and v is a value, FASAS(X,Y, v) writes X’s value in Y and writes v in X, all in
a single atomic action.)
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1.3 Our Result

We present the first Recoverable Mutual Exclusion algorithm whose RMR com-
plexity is provably optimal for both CC and DSM machines. Our algorithm has
an RMR complexity of O(1) for the DSM model and O(f) for the CC model,
which matches a lower bound of Ω(f) that we prove for the CC model. Our
algorithm improves on Golab and Hendler’s in two more ways: it has a wait-
free Exit section and eliminates the need for DCAS (so our algorithm requires
support for only FASAS).

To design a recoverable lock, one typically enhances an existing non-
recoverable algorithm to turn it into a recoverable algorithm. Golab and Hendler
built their recoverable lock from the MCS lock [9], thereby inheriting its dual
weaknesses of non-wait-free Exit section and reliance on more than one syn-
chronization primitive (MCS lock relies on FAS and CAS, and correspondingly
Golab and Hendler’s recoverable lock relies on FASAS and DCAS). We are able
to improve on Golab and Hendler’s lock primarily because we have built our
recoverable lock from variants of the MCS lock [6,7] that are free of MCS’ short-
comings.

1.4 Organization

The rest of this paper is organized as follows. We describe our model in Sect. 2
and explain where our model differs from the original model of Golab and Rama-
raju. We state some more related work in Sect. 3. We prove the RMR lower bound
of Ω(f) for the CC model in Sect. 4, and finally present our algorithm that has
optimal RMR complexity for both CC and DSM models in Sect. 5.

2 The Model and the Problem Specification

In this section we describe our model, which shares a lot of features with the
model from the first work on recoverable mutual exclusion by Golab and Rama-
raju [3]. There are also important differences between our models, which we
discuss at the end of the section.

2.1 Model

The system consists of asynchronous processes that communicate by applying
atomic operations on shared variables. Each process has five sections of code—
Remainder, Recover, Try, CS, and Exit. A recoverable mutual exclusion algorithm
specifies the code for Recover, Try, and Exit sections of all processes, and the ini-
tial values for all local and shared variables. We make no assumptions about the
Remainder section and CS other than that none of the shared and local variables
of the mutual exclusion algorithm are modified in these sections. All processes
are initially in the Remainder section. If X and Y are any shared variables
and v is a value, the following operations are allowed: read(X), write(X, v), and
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FASAS(X,Y, v), where the semantics of the first two operations are well known
and of third are explained already in the Introduction.

A configuration of the system is specified by the values of all shared variables
and the states of all the processes, where the state of a process p is in turn
specified by the value of PCp (p’s program counter) and the values of p’s local
variables. The configuration changes when a process executes a step. There are
two types of steps that a process can execute: normal step and crash step. A
normal step by a process p from a configuration C causes p to perform the
instruction that PCp points to in C, including some bounded local computation.
A crash step by p sets PCp to the Remainder section, sets all the local variables
of p to arbitrary values, and invalidates the contents of p’s cache. (In Golab and
Ramaraju’s model [3] and in [2], when p crashes, its local variables are set to
initial values instead of being set to arbitrary values. This difference is minor
since it is straightforward to transform an algorithm designed for one model to
work in the other model.)

From the above, we see that a step is determined by which process takes
the step and whether the step is normal or crash. A schedule is any finite or
infinite sequence of steps. An execution corresponding to a schedule σ = s1, s2, . . .
is C0, s1, C1, s2, C2, . . ., where C0 is the initial configuration specified by the
algorithm, C1 is the configuration after step s1, C2 is the configuration after
steps s1 and s2, and so on.

Let E be an execution and s be a step by a process p from a configuration C
in E. We say p initiates an attempt in step s if p is in the Remainder section in
C and either s is p’s first step in E or p’s latest step in E before s is a normal
step. We say p completes an attempt in step s′ if s′ is a normal step by p that
moves p to the Remainder section. An attempt by p in E is a fragment of E
that starts with an attempt initiation step s by p and ends with p’s earliest
attempt completion step s′ that follows s. We say p is active in a configuration
C if C occurs in an attempt by p. It is important to note that p might visit the
Remainder section multiple times during an attempt because of its crash steps;
thus, p can be active even when it is in the Remainder section.

2.2 Problem Specification

The recoverable mutual exclusion problem is to design an algorithm that satisfies
the following properties:

P1. Mutual Exclusion: At most one process is in the CS at any time.
P2. Well-formedness: Let s be a normal step by p in which p completes the

Recover section, and s′ be the latest step by p before s in which p initi-
ates an attempt or p crashes outside of the Recover section in Try, CS, or
Exit. Well-formedness stipulates where the control moves to after step s,
as follows:
• If s′ is an attempt initiation step, then s moves control to Try section or

CS.
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• If s′ is a crash step while p is in Try section, then s moves control to Try
section or CS.

• If s′ is a crash step while p is in CS, then s moves control to CS.
• If s′ is a crash step while p is in Exit, then s moves control to CS, Exit

section, or Remainder section.
P3. Starvation-Freedom: An execution is fair if, for all processes p, we have: (i)

if p is in the CS and does not crash while there, then p subsequently enters
the Exit section, (ii) p has only a finite number of crash steps in any one
attempt, and (iii) if p initiates an attempt, then either p completes that
attempt or p has an infinite number of normal steps.
Starvation-Freedom stipulates that in every fair execution every process
that initiates an attempt enters the CS in that attempt and completes that
attempt.

P4. Critical Section Reentry [3]: If a process p crashes inside the CS, then no
other process enters the CS before p reenters the CS.

P5. Wait-free Exit: There is a bound b such that, if p is in the Exit section
and the subsequent steps of p are all normal steps, then p moves to the
Remainder section in at most b of its own steps, regardless of the relative
speeds and crashes of other processes.

P6. Wait-Free Recovery to CS: There is a bound b such that if a process crashes
while in the CS, then the process reenters the CS before completing b
consecutive normal steps in the future, regardless of the relative speeds
and crashes of other processes.
(As observed in [4], this property, together with Mutual Exclusion, implies
the Critical Section Reentry property.)

P7. Wait-Free Recovery to Exit: There is a bound b such that if a process
crashes while in the Exit section, then the process enters either the CS
or the Exit section before completing b consecutive normal steps in the
future, regardless of the relative speeds and crashes of other processes.

An additional desirable property, which might be considered optional, is the
FCFS property that was first formulated by Lamport [8] for the traditional
mutual exclusion problem. Its adaptation to recoverable mutual exclusion, stated
below, is taken from [4].

P8. First Come First Served (FCFS): There is a bound b such that, for all
attempts A and A′ in any execution, if A is an attempt by a process p,
A′ is an attempt by a process p′, and p performs b consecutive normal steps
in attempt A before p′ initiates attempt A′, then p′ does not enter the CS
in attempt A′ before p first enters the CS in attempt A.

2.3 Differences with Golab and Ramaraju’s Model

Our model differs from the model of Golab and Ramaraju [3] and Golab and
Hendler [2] in two important ways. First, in their model, following a crash, when
a process p restarts and executes the Recover section, the Recover section puts
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p in the Try section, regardless of where in the algorithm p was at the time of
its crash. Thus, even if p completed the CS and crashed while in the Exit, upon
restart Recover puts it in Try section, thereby forcing it to enter the CS once
more. In contrast, our well-formedness property (P2) allows the Recover section
to send p back to the Exit section, if p had crashed while in the Exit section.
We introduced this change in the model because while it is important to ensure
that a process enters the CS and leaves the CS normally at least once, we see
no reason to insist that, within the same attempt, a process should enter the CS
after every crash.

A second and a significant difference is our insistence on Wait-Free Recovery
to CS (P6) and Wait-Free Recovery to Exit (P7). If a process p crashes while
in the CS, the Critical Section Reentry (CSR) property of Golab and Ramaraju
insists that, until p restarts and enters the CS once again, no other process
enters the CS. Thus, CSR prevents other processes from entering the CS until
p enters the CS. This being the case, it is clearly undesirable if other processes
are allowed to block or delay p from entering the CS. Hence, our insistence on
the Wait-Free Recovery to CS. Similarly, if p crashes while in the Exit section,
when p subsequently restarts, to remain true to the spirit of Wait-Free Exit, it is
clearly desirable that p should be able to exit the protocol without being blocked
or delayed by other processes. Hence, our insistence on the Wait-Free Recovery
to Exit.

In our earlier paper [4], we required the Recover section to be wait-free, which
implies Wait-Free Recovery to CS and Wait-Free Recovery to Exit, but we have
dropped this requirement now because “Wait-Free Recovery to Try” is pointless
given that a process waits in the Try section anyway. (We note however that the
algorithm presented in this paper has a wait-free Recover section.)

3 Related Work

Golab and Ramaraju specified the recoverable mutual exclusion problem and
gave several algorithms, including one of O(f + log n) RMR complexity, using
only read and write operations [3]. Ramaraju gave the first FCFS recoverable
algorithm, but it uses FASAS besides CAS [5]. Jayanti and Joshi gave the first
FCFS algorithm that uses only the commonly supported CAS operation [4].
Golab and Hendler [2] gave two algorithms, the first of which is closely related
to our work here and was discussed in detail in Sect. 1. Their second algorithm
has O(f log n/ log log n) RMR complexity on CC machines and uses only FAS
and CAS.

4 RMR Lower Bound for CC Machines

In this section we prove that the RMR complexity of any algorithm is Ω(f) on a
CC machine. To make this lower bound as strong as possible, we prove that this
bound holds even if (i) the algorithm is “one shot”, where a process executes at
most one attempt in the entire run, (ii) the algorithm is executed by only two
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processes, and (iii) Mutual Exclusion, Well-Formedness, and the following weak
Solo-Termination condition are the only properties that the algorithm satisfies.

– Solo-Termination: If all processes except p are in the Remainder section and
are not active, and p is in the Try or the Recover section, and p alone keeps
taking steps and p does not crash, then p eventually completes that section.

Lemma 1. Let A be any one-shot recoverable mutual exclusion algorithm for
two processes that satisfies Mutual Exclusion and Well-Formedness. On a CC
machine, each time a process executes the Recover section following a crash
in Try, Critical, or Exit section, if the process executes the Recover section to
completion without crashing, the process incurs at least one RMR during that
execution of the Recover section.

Proof Sketch: Suppose that, for a contradiction, there is a scenario S where
some process p crashes while in Try, Critical, or Exit section, p’s crash sets its
local variables to ⊥, p subsequently restarts and executes the Recover section
to completion without failing and without incurring any RMR. Since p’s cache
lost its contents at crash, the fact that p did not incur any RMR during the
Recover section implies that p did not perform any operation on any of the
shared variables during the Recover section. We consider two other scenarios S′

and S′′, described as follows. Let p and q be the two processes for which the
algorithm is designed.

– In Scenario S′, q is not active (and is in Remainder), p is in the CS, p crashes,
and the crash sets p’s local variables to ⊥. Process p then restarts and executes
the Recover section without crashing.

– In Scenario S′′, q is in the CS, and p is in the Try section, p crashes, and the
crash sets p’s local variables to ⊥. Process p then restarts and executes the
Recover section without crashing.

In the following we derive a contradiction by observing that scenarios S and
S′ are indistinguishable to p, and that S′ and S′′ are also indistinguishable to p.

Since p’s local variables contain ⊥ at the start of the Recover section in both
S and S′, the two scenarios are indistinguishable to p at the start of the Recover
section. Further, since p completes the Recover section without performing any
operation on any of the shared variables in Scenario S, it follows that p completes
the Recover section without performing any operation on any of the shared
variables in Scenario S′ as well. It follows from the Well-Formedness property
(P2) that, upon completion of the Recover section, p enters the CS.

Since p’s local variables contain ⊥ at the start of the Recover section in both
S′ and S′′, the two scenarios are indistinguishable to p at the start of the Recover
section. Further, since p completes the Recover section without performing any
operation on any of the shared variables in Scenario S′, it follows that p completes
the Recover section without performing any operation on any of the shared
variables in Scenario S′′ as well. Thus, S′ and S′′ remain indistinguishable to p
all the way until it completes the Recover section. Since p enters the CS upon
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completing the Recover section in scenario S′, it follows that p enters the CS
upon completing the Recover section in scenario S′′ as well. Since q is already
in the CS in scenario S′′, mutual exclusion is violated in S′′. Hence, we have the
lemma. ��
Theorem 1. Let A be any one-shot recoverable mutual exclusion algorithm
for two processes that satisfies Mutual Exclusion, Well-Formedness, and
Solo-Termination. The RMR complexity of A on a CC machine is Ω(f), where
f is the maximum number of failures of a process within an attempt.

Proof. Let p and q be the two processes for which the algorithm is designed.
Suppose that q is not active (and is in Remainder), and p is in the CS. Suppose
that the following sequence of events repeats f times:

– p crashes while in the CS.
– p restarts, executes the Recover section to completion without crashing, and

returns to CS (by well-formedness).

By Lemma 1, p incurs at least one RMR during the Recover section following
each crash. So, p incurs at least Ω(f) RMRs in its attempt. Hence, we have the
theorem. ��

The above argument does not apply to DSM machines because, when execut-
ing the Recover section, without incurring any RMRs a process can read from
shared variables stored in its own memory module and use this information to
distinguish various scenarios. In fact we exploit this feature in the next section to
design an algorithm that incurs only O(1) RMRs per attempt on DSM machines.

5 An Optimal RMR Complexity Algorithm for CC and
DSM Machines

Our optimal RMR complexity recoverable mutual exclusion algorithm is pre-
sented in Fig. 1. This algorithm is designed to handle an arbitrary and unknown
number of processes, and ensures that a process incurs at most O(1) RMRs per
attempt on DSM machines and O(f) RMRs per attempt on CC machines, where
f is the number of times a process crashes during the attempt. We assume that
all the shared variables of the algorithm are stored in the non-volatile memory.

5.1 Shared Variables and Their Purpose

The role played by each shared variable is as described below.
Tail: This variable, like in the MCS lock [9], stores the address of the last

node in the queue.
Curpi

: This variable stores the address of the node that a process uses during
its attempt. In DSM machines this variable is stored in pi’s memory module.
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Fig. 1. Recoverable mutual exclusion lock using FASAS. Algorithm for process p.

Prevpi
: This variable stores the address of a node that appears before a

process’s own node inside the queue. In DSM machines this variable is stored in
pi’s memory module.

Xpi
: This variable is used for checkpointing purposes. Inside the Recover

section a process uses the value stored in this variable to identify the location it
might have crashed during its attempt. In DSM machines this variable is stored
in pi’s memory module.

Gopi
: This is a flag variable that process pi busywaits on before entering the

CS. The variable is set to point to the address of Tail at the start of an attempt,
and pi is released from its busywait when the variable is set to point to some
other location. Gopi

is allocated to pi’s memory module to achieve local-spin
property. In DSM machines this variable is stored in pi’s memory module.
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5.2 Informal Description

The symbol & is prefixed to a shared variable in the code to obtain the address
of that shared variable. When a local variable is supposed to supply the address
of a shared variable, we do not prefix it with an & (e.g., Line 14). The symbol
“.” (dot) dereferences a pointer and accesses a field from the record pointed to
by that pointer. Un-numbered lines in the code perform local computation as
part of the latest numbered line preceding that line (e.g., the if . . . then . . . else
ladder in Recover section is part of the local execution of Line 3). We assume
that a process pi is in the Remainder section when PCpi

= 1 and is in the CS
when PCpi

= 12. The code is described informally as follows.
When a process pi wants to enter the CS from the Remainder section, it

executes an attempt initiation step (i.e. executing the first instruction of Recover
and initializing local variable curpi

to the value of Curpi
). Recover doesn’t put

the process in any other section before execution of Line 3, therefore the process
initializes prevpi

to Prevpi
(Line 2). In Line 3, the process initializes xpi

and
finds that it has just initiated an attempt (because curpi

== prevpi
), hence the

process proceeds to Line 4 in the Try section. In the Try section the process first
initializes variable Xpi

(Line 4) that it uses for checkpointing, then it initializes
its own node (Line 5), and also initializes its local-spin variable Gopi

(Line 6).
It then puts itself in the queue by performing a FASAS on the Tail variable
(Line 7), which puts the previous value of Tail into Prevpi

. The process then
attempts to inform the process before itself in the queue that it is waiting to
enter the CS (Lines 8, 9). It does so with a FASAS that puts the address of its
Gopi

variable into the node of its predecessor, and atomically Xpi
gets the value

previously held by the Addr pointer in the predecessor’s node. The process then
checks the value held by the Addr pointer in the predecessor’s node (Line 10),
if the predecessor has already left a token (a NIL value), then the CS is empty
and the process is free to go to the CS. Otherwise, the process busywaits on
Line 11 until it is informed that it is free to go to the CS. In the Exit section the
process first performs a FASAS on the Addr pointer of its own node (Line 12).
This way it atomically leaves a token for a successor in its own node and also
learns the address of the Go variable of a successor into Xpi

, if there is one. At
Line 13 it checks if a successor did inform pi of its Go variable by checking if
the previous value of Curpi

.Addr has departed from the initial value of Curpi
.

If it has, then the process lets its successor into the CS by writing into their Go
variable (Line 14). Otherwise, it takes the free node left by its predecessor for a
future attempt, and leaves its own node for a successor (Line 15), thus ending
the current attempt.

After a crash occurs during an attempt, the process executes the Recover
section as described above reading the values of Curpi

, Prevpi
, and Xpi

(Lines 1, 2, and 3). It then decides where to jump on reading the shared state
as follows. If Curpi

== Prevpi
, then the process has just began the attempt,

hence it jumps to the start of the Try section. If Xpi
==&Tail, then the process

has already performed a FASAS at Line 14 and it is free to jump into the Exit
section to end the attempt. If Xpi

has taken any of the values other than the
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ones it takes in the Try section (and & Tail), then the process crashed after per-
forming the FASAS at Line 12, hence the process jumps to Line 13. Otherwise,
the process is in the queue and there are only two cases remaining where the
process could have crashed. If the Xpi

points to any of Prevpi
or NIL, then the

process performed the FASAS at Line 9 and crashed after that, hence it jumps
to Line 10. Or it is yet to perform the FASAS but has put itself in the queue,
hence it jumps to Line 9.

6 Proof of Correctness

In this section we present a proof of correctness for the algorithm presented in
Fig. 1. Our recoverable mutex algorithm is complex enough so that a rigorous
proof is required to convince about its correctness. We do this by giving an
invariant for the algorithm and then proving correctness using the invariant.
Figure 2 gives the invariant satisfied by the algorithm.

We begin with some notation used in the proof and the invariant. A process
may crash several times during its attempt, at which point all its local variables
get wiped out and the program counter is reset to 1 (i.e. first instruction of
Recover). In order to prove correctness we maintain a hidden program counter
which we call shadow program counter, whose value mirrors the Program Counter
so long as the process is in the Try, CS, or Exit section. The shadow program
counter is denoted by ̂PCp. The shadow program counter does not change when
the process is taking steps inside the Recover section. Intuitively, a shadow pro-
gram counter helps in capturing the current state of a process in the Try, CS,
or Exit section, or the state it will recover to from a crash if it is in the Recover
section.

We say that a process is in the CS if and only if ̂PCp = 12. If p is not active
and is in the Remainder section, ̂PCp = 4. We assume that initially all the local
variables take arbitrary values.

Lemma 2 (Mutual Exclusion). At most one process is in the CS in every
configuration of every execution.

Proof. Suppose there are two processes pi and pj in the queue, such that both
of them are in the CS in some configuration C. Therefore, ̂PCpi

= 12 and
̂PCpj

= 12 in C. By Condition 3 of the invariant, one of the two processes is
not p1 in the ordering of processes in Q, without loss of generality let pj be that
process. Therefore, by Condition 3(e)iii, ̂PCpj

∈ [8, 11], a contradiction. ��
Lemma 3 (First Come First Served). There exists a bound b such that, for
all executions E and for all attempts A and A′ in E, if A is an attempt by p,
A′ is an attempt by p′, and p performs b consecutive normal steps in attempt A
before p′ initiates attempt A′, then p′ does not enter the CS in attempt A′ before
p first enters the CS in attempt A.
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Fig. 2. Invariant of the recoverable mutual exclusion lock from Fig. 1.
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Proof. For the purpose of this algorithm, we require that the bound be b = 7,
hence, a process would be at Line 8 if it executed 7 consecutive normal steps
starting from the attempt initiation step (or after a crash step).
To prove FCFS we need the following claim first:
Claim: A process executes Line7 exactly once during an attempt.

Proof: We argue that a process executes Line 7 at least once as follows. Suppose
a process p executes seven consecutive normal steps after its attempt initiation
step. On the seventh step the process executes Line 7. Suppose it crashes in
between before executing the seven consecutive normal steps, then it crashes
when ̂PCp ∈ [4, 7]. Therefore by Case 2 of the proof for Well-formedness as
argued above, p goes back to Line 4. Hence it eventually executes Line 7.
We now argue that a process executes Line 7 at most once as follows. Suppose
p goes past Line 7, i.e., ̂PCp ∈ [8, 15] and p has executed Line 7 once. On a sce-
nario where no crashes occur, p continues normal execution and never executes
Line 7 again. Suppose a crash happens somewhere when ̂PCp ∈ [8, 15]. Then by
Cases 3, 4, 5, 6, 7 of the proof for Well-formedness as argued above, p will jump
back to either Line 9 or somewhere after that. Therefore p will never execute
Line 7 one more time.
Hence we have that a process executes Line 7 exactly once during an
attempt. ��

We now give an additional invariant satisfied by the algorithm that helps us
in arguing FCFS, but before that we give the following definition:

Definition: Let p and q be any two active processes during a configuration C
and Ap and Aq be their respective attempts. We say p precedes q in C, denoted
symbolically as p ≺ q, if p executes Line 7 in Ap before q executes Line 7 in Aq.

Invariant: Let p1, p2, . . . , pk be an ordering of processes in the queue Q given
by Condition 3 of the invariant in Fig. 2. We have p1 ≺ p2 ≺ · · · ≺ pk.

Proof: The correctness of the invariant is affected only when a process executes
Line 7. As argued above, any process executes Line 7 exactly once in its attempt,
therefore the proof is by induction as follows. The induction is on the number
of processes in the queue Q.
Let |Q| = 0. If process p executes Line 7 in a step, |Q| = 1 after the step.
Therefore the Invariant holds since p is the only process in the queue.
Assume there is a configuration C in which |Q| = k, for k ≥ 1, and there is an
ordering p1, p2, . . . , pk of processes in Q such that p1 ≺ p2 ≺ · · · ≺ pk by the
invariant. Suppose p is the earliest process to execute Line 7 after C and let C ′

be the configuration immediately after p executes Line 7. By our assumption
pk has executed Line 7 before p, and by transitivity, pi, for i = 1 . . . k − 1, has
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executed Line 7 before p. Hence, p1 ≺ p2 ≺ · · · ≺ pk ≺ p in C ′. Therefore the
invariant holds in C ′. ��

Now we are poised to prove the FCFS property as follows. Suppose an arbi-
trary process p is in the Critical section in a configuration C. By Condition 3,
p is the first process in the ordering of processes in Q. By the invariant above,
p precedes all other processes in Q. Hence, when p is in the Critical section,
no other process in Q precedes p and therefore no other process in Q has com-
pleted b = 7 consecutive steps before p initiated its attempt. Hence we have the
claim. ��

Due to space constraints we skip the proof for the Starvation Freedom and
Well-formedness property. From an inspection of the Recover and Exit sections
of the algorithm it is obvious that the algorithm satisfies Wait-Free Recovery
to CS, Wait-Free Recovery to Exit, and Wait-free Exit. The variables Curp,
Prevp, and Xp reside in p’s memory module in the DSM model, therefore p
does not incur an RMR when it reads these variables in the Recover section.

Putting all of the above together, we obtain the main result of the paper
summarized as follows.

Theorem 2. The algorithm in Fig. 1 solves the recoverable mutual exclusion
problem for an arbitrary and unknown number of processes, satisfying properties
P1-P8 stated in Sect. 2.2. The algorithm uses read, write and FASAS operations.
It has an optimal RMR complexity of O(f) on CC machines and O(1) on DSM
machines, where f is the maximum number of failures of a process within an
attempt.

An interesting open question is whether O(1), or even O(f), RMR complexity
is achievable using only commonly supported operations such as FAS, CAS, and
Fetch&Add, on CC and DSM machines.

Acknowledgment. We are grateful to the anonymous reviewers for their careful and
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Abstract. We show that Cubicle [9], an SMT-based infinite-state model
checker, can be applied as a verification engine for GLog, a logic-based
specification language for topology-sensitive distributed protocols with
asynchronous communication. Existential coverability queries in GLog
can be translated into verification judgements in Cubicle by encoding
relational updates rules as unbounded array transitions. We apply the
resulting framework to automatically verify a distributed version of the
Dining Philosopher mutual exclusion protocol formulated for an arbi-
trary number of nodes and communication buffers.

1 Introduction

Automated verification of distributed systems is a difficult task for standard
model checkers [7,8]. Protocols designed to operate in distributed systems are
often defined for an arbitrary number of nodes, arbitrary connection topology,
and asynchronous communication. protocol rules typically depend on the cur-
rent network configuration (e.g., presence of a communication link, state of all
connections, etc.). Several formal languages have been proposed to specify this
class of systems, e.g., communicating state machines, automata, process alge-
braic languages, (graph) rewriting, etc. In this setting safety properties can be
nicely formulated by lifting decision problems based on reachability and cover-
ability, in which the initial configuration is typically fixed a priory, to formula-
tions that are existentially quantified over an infinite set of initial configurations.
Existentially quantified coverability problems have been considered in [5,6,14–
16] in order to reason on parameterized formulation of distributed protocols
with broadcast communication. The coverability decision problem [1] is typi-
cally used to formulate reachability of bad configurations independently from
the number of components of a system. Therefore, a constructive way to solve
an existentially quantified coverability problem for a formal specification of a
distributed algorithm provides a characterization of initial configurations from
which it is possible to reach a bad configuration (e.g. an anomaly in the proto-
col). Existentially quantified coverability problems turn out to be undecidable
c© Springer Nature Switzerland AG 2019
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even for systems with a static communication topology and very basic interac-
tion primitives like atomic broadcast communication [1,7,13–15]. As mentioned
before, communicating state machine (automata), adopted e.g. in [11,14–16],
and graph rewriting, adopted in [5], are two examples of formal description
languages for this kind of systems. communicating state machines can be con-
sidered a standard design and protocol specification language adopted in sev-
eral verification tools like Uppaal and Spin. Graph rewriting systems are well-
suited for representing topology-sensitive rules as shown by the examples of the
Groove tool suite. In several case-studies, protocol rules require complex guards
that require the inspection of the state of nodes, links, paths, vicinity etc. and
tables to store information collected during the execution of protocol phases.
The combination of these features seems to require more general specification
formalisms. To this aim, in [12] we proposed to adopt a logic-based declara-
tive language, named GLog, a fragment of both DCDCs [12] and MSR [23].
GLog can be viewed as a logic-based presentation of graph update rules with
global conditions expressed using quantified first order formulas. GLog is based
on a quantified predicate logic in a finite relational signature with no function
symbols. Configurations are represented here as sets of ground atomic formu-
las (instances of unary and binary predicates). Update rules consist of a guard
and two sets of first order predicates that define resp. deletion and addition of
state components. Differently from specification languages based on extension
of Petri nets like transfer and broadcast protocols, guards are checked atom-
ically but update transitions have only local effect. In other words, we forbid
simultaneously update of the state of all nodes in a graph. Update rules can be
applied to update a global configuration node by node and to operate on the
vicinity of a node by restricting updates to given predicates. Termination of an
update subprotocol can then be checked via a global condition. Similar specifi-
cation patterns have been applied to model non-atomic consistency protocol and
mutual exclusion protocols with non-atomic global conditions. GLog has been
applied to manually analyze distributed protocols in [12]. In the present paper
we show that Cubicle [9,18], an SMT-based infinite-state model checker based
on previous work by Ghilardi et al. [3], can be applied as automated verifica-
tion engine for existentially quantified coverability queries in GLog. In Cubicle
parameterized systems can be specified as unbounded arrays in which individ-
ual components can be referred to via an array index. The Cubicle verification
engine performs a symbolic backward reachability analysis using an SMT solver
for computing intermediate steps (preimage computation, entailment and termi-
nation test) and applies overapproximates predecessors using upward closed sets
as in monotone abstractions [2]. A peculiar feature of Cubicle w.r.t. MCMT [3] is
that the tool can handle unbounded matrices. This is particularly relevant when
modeling topology-sensitive protocols as done in GLog using binary relations
defined over component identifiers. Furthermore, existentially quantified cover-
ability decision problems in GLog can directly be mapped into Cubicle. More
specifically, the encoding transforms GLog update rules into array-based update
formulas in Cubicle. Classes of initial configurations are specified by using partial



Declarative Parameterized Verification 211

specifications of initial configurations in Cubicle verification judgements. Infinite
sets of bad configurations can be expressed using unsafe configurations in Cubicle
verification judgements.

As a case-study, we consider the distributed version of the Dining Philosopher
mutual exclusion protocol (DDP) recently studied in [12,17,20]. The protocol
deals with an arbitrary, finite number of nodes and buffers that act as single-
place communication channels, and arbitrary link topology between nodes and
buffers. Ownership of buffers is specified using asynchronous rules. Global con-
ditions over linked buffers are used as enabling conditions for acquiring access
to resources shared among neighbors. The GLog formal specification of DDP is
mapped to a Cubicle verification problem in a natural way. In our preliminary
experiments, Cubicle verified the correctness of the protocols in negligible time.
Furthermore, as expected it reports potential error traces when introducing net-
work reconfiguration rules (e.g. dynamic link creation and deletion) unrelated
to the state of the corresponding involved nodes. The application of declarative
specification languages and SMT-based engine seems a very promising research
line for dealing for a larger class of distributed algorithms.

Contents. The paper is organized as follows: we first present the GLog declara-
tive language and, in that context, the existential coverabiliity problem; we then
introduce Cubicle and exhibit a general encoding of existential coverability into
Cubicle; we then discuss the experimental evaluation on the DDP case-study,
and, finally, discuss other examples and future directions.

2 GLog

GLog [12] formulas are based on a simple relational calculus that can be used
to express updates of sets of ground atoms. A set of ground atoms can be inter-
preted as the current state or configuration of the system we are modeling.
Update rules contain a formula working as a condition and deletion and addi-
tion sets that specify ground atoms to be deleted and added to the current state.
More formally, let P be a finite set of names of (unary and binary) predicate
names, N a denumerable set of node identifiers equipped with a total order
<, V be a denumerable set of variables. Predicates in P are used to model
current configurations. In addition to predicates in P , we interpret the binary
relation lt as the total order < in our model. Our logic has no function symbols
but can be instantiated with elements from N . An atomic formula is either a
formula p(x), lt(x, y) or p(x, y), where p ∈ P , x, y ∈ V ∪ N A ground atom
is a either a p(n), lt(n,m), or p(n,m), where n,m ∈ N . A literal is either
an atomic formula or the negation ¬A of an atomic formula A. A formula is
a first order formula built on literals, namely, any literal is a formula, con-
junctions, disjunctions, universally and existentially quantified formulas are still
formulas. Multiple occurrences of the same variable implicitly model equality
constraints. The set of free variables of a formula F , namely FV (F ), is the
minimal set satisfying FV (p(x, y)) = {x, y}, FV (A ∨ B) = FV (A) ∪ FV (B),
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FV (A ∧ B) = FV (A) ∩ FV (B), FV (¬A) = FV (A), FV (∀v.A) = FV (A) \ {v},
and FV (∃v.A) = FV (A) \ {v}. Given S = {F1, . . . , Fn}, we define FV (S) =
FV (F1)∪ . . .∪FV (Fn). Quantified formulas we will be used as application con-
ditions of rules.

Configurations, Interpretations and Update Rules. As mentioned before
a set of ground atoms will be used to model a configuration. Formally, a con-
figuration is a finite set Δ of ground atomic formulas with predicates in P . A
configuration implicitly defines a graph in which directed edges are represented
by atomic formulas whose predicate name acts as edge label. Configurations can
also be viewed as models in which to evaluate a conditions. An interpretation
is a mapping σ from V to N . We use here a fixed interpretation of variables.
The interpretation domain however consists of a denumerable set of node iden-
tifiers. For a formula F we use Fσ as an abbreviation for σ̂(F ), where σ̂ is the
natural extension of σ to terms. For a set S = {A1, . . . , An}, we use Sσ to
denote the set {A1σ, . . . , Anσ}. Update rules consists of conditions defined by
quantified formulas with no function symbols, a deletion and an addition set.
The deletion (resp. addition) set defines the set of ground atoms that have to
be cancelled from (resp. added to) the current configuration. A rule has the
following form 〈C,D,A〉, where C is a quantified formula, D and A are two
sets of atomic formulas with variables in V and predicates in P , and such that
FV (A) ∪ FV (D) ⊆ FV (C). A protocol P is defined as a set of rules.

Operational Semantics. To fix an operational semantics for our language we
need a support for the interpretation of relations and variables. We use Δ |= A
to define the satisfiability relation of a quantified formula A s.t. FV (A) = ∅.
Let A[n/X] denote the formula obtained by replacing each free occurrence of X
with n. The relation is defined by induction as follows. Δ |= p(n), if p(n) ∈ Δ,
Δ |= lt(n,m), if n < m, Δ |= p(n,m) for p ∈ P , if p(n,m) ∈ Δ, Δ |= A ∧ B, if
Δ |= A and Δ |= B, Δ |= ¬A, if Δ |= A, Δ |= ∀X.A, if Δ |= A[n/X] for each
n ∈ N , and Δ |= ∃X.A, if Δ |= A[n/X] for some n ∈ N . Given a configuration
Δ, we say that the quantified formula A is satisfied in Δ, if there exists an
interpretation σ s.t. Aσ is satisfiable. In order to apply a rule 〈C,D,A〉 to Δ,
there must be an interpretation σ that satisfies the quantified formula C. The
same interpretation σ is then applied to the atomic formulas in D and A. The
resulting sets of atoms, say D′ and A′ respectively, are deleted from and added
to Δ, respectively.

The operational semantics of a protocol P is given by a transition system
TP = 〈C,→〉, where C is the set of possible configurations, i.e., finite subsets of
ground atoms with predicates in P , and →⊆ C×C is a relation defined as follows.
For Δ,Δ′ ∈ C and a rule 〈C,D,A〉 ∈ P, Δ → Δ′ if there exists σ s.t. Δ |= Cσ and
Δ′ = (Δ\Dσ)∪Aσ. A computation is a sequence of configurations Δ0Δ1 . . . s.t.
Δi → Δi+1 for i ≥ 0. We use →∗ to denote the reflexive and transitive closure of
→. In a single step of the operational semantics a rule is evaluated in the current
configuration by taking a sort of closed-world assumption, i.e., ground atomic
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formulas that do not occur in a configuration are evaluated to false. Furthermore,
ground atomic formulas that are not deleted are transferred from the current to
the successor configuration. The latter property can be viewed then as a sort of
frame axiom. It is important to notice that, in general, a configuration Δ has
several possible successors. Indeed, depending of the chosen interpretation of
free variables the same rule can be applied to different subsets of ground atoms
contained in the same configuration. Furthermore, the choice of the rules to be
applied at a given step is non-deterministic.

As an example, we consider possible application of GLog to the specifica-
tion of distributed protocols. The key ingredient of the specification language
is the combination of complex conditions and update rules to reason on graphs
in which predicates can be viewed as labels of links between agents and com-
munication buffers. We have shown that we can also add labels to individual
agents and buffers, e.g., to represent their current state. Update rules can be
used to dynamically reconfigure the graph, i.e., change labels, topology and add
or delete agents. The separation between agents and buffers is convenient to
model asynchronous communication. For instance, let us consider a protocol in
which two agents need to establish a connection via a shared buffer.

– An agent n1 of type A connects to a buffer e1 in idle state (the buffer is free)
and sets the state of the buffer to ready.

– An agent n2 of type B connects to e1 in state ready and changes the state
to ack.

– Agent n1 sends message m by changing the state of e1 to msgm.
– Agent n2 receives message m and updates the state of the channel to ack for

further communications.

The protocol can be specified as follows. We use unary predicates to associate
states to edges. send messages are non-deterministically generated. An initial
configuration has the form idle(b1), . . . , idle(bk), where bi < bj for i = j, i, j :
1, . . . , k. For the sake of simplicity, we do not model the state of agents but only
their capabilities (req, rec, send).

R C D A

1 idle(B) ∧ ¬req(A,B) {idle(B)} {ready(B), req(A,B)}
2 ready(B) ∧ ¬rec(A,B) {ready(B)} {ack(B), rec(A,B)}
3 true {} {send(A,B,M)}
4 ack(B) ∧ send(A,B) {ack(B), send(A,B)} {msg(B,M)}
5 msg(B,M) ∧ rec(A,B) {msg(B,M), rec(A,B)} {idle(B)}

In rule 1 a buffer B is locked by a non-deterministically generated request
req(A,B) from sender agent A (a variable). In rule 2 a buffer B is locked by
a non-deterministically generated request rec(A,B) from receiver agent A (a
variable). Rule 3 nondeterministically generates a send action from agent A.
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Rule 4 synchronizes a send action from agent A with a buffer locked by the same
agent. The (non deterministically generated) message M is stored in the buffer.
Rule 5 synchronizes and consumes a message in the buffer with the receiver
agent, releasing the buffer.

The model provides other form of interactions. For instance, we can model
ordered buffers by forming lists of messages attached to a given edge as in the
representation of the tape of the Turing machine.

We can also model synchronous communication as in the following example

C link(A,B) ∧ s1(A) ∧ link(E,B) ∧ s2(E)

D {s1(A), link(A,B), link(E,B), s2(E)}
A {link(A,B), s′

1(A), link(E,B), s′
2(E)}

Here s(A) and s′(A) denote agent A resp. in state s and s′, s1(E) and s′
1(E)

denote agent E resp. in state s1 and s′
1, and link(A,B) and link(Y,B) denote

links to a common buffer B.

2.1 Existential Coverability

We consider here decision problems that generalize the standard notion of reach-
ability between configurations. The key point is to reason about an infinite set
of initial configurations in order to prove properties for protocol instances with
an arbitrary number of nodes. For a set S of configurations, we first define the
Post and Pre operators as follows Post(S) = {Δ′ | ∃Δ ∈ S, Δ → Δ′} and
Pre(S) = {Δ′ | ∃Δ ∈ S, Δ′ → Δ}. We use Post∗(S) (resp. Pre∗(S)) to denote
the reflexive-transitive closure of Post (resp. Pre).

We now introduce the ∃-coverability problem as follows.

Definition 1 (∃-coverability). Given a protocol P, a set of target configura-
tions T and a possibly infinite set of initial configurations I, ∃-coverability is
satisfied for P, I and T , written ∃Reach(P, I, T ), if there exists Δ ∈ T and a
configuration Δ1 s.t. Δ1 ∈ Post∗(I) and Δ ⊆ Δ1.

By expanding the definition of Post∗, ∃Reach(P, I, T ) holds if there exists a
configuration Δ0 ∈ I s.t. Δ0 →∗ Δ1 and Δ ⊆ Δ1 for some Δ ∈ T . The target
T can be interpreted as a pattern to match or avoid in computations starting
from initial configurations. If the set I consists of configurations consisting of
an arbitrary, finite number of components than ∃-coverability formally describes
a parameterized verification decision problem for specifications given in GLog.
The ∃-coverability problem turns out to be undecidable [12].
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3 From GLog to Cubicle

Cubicle is a model checker that can be applied to verify safety properties of array-
based systems, a syntactically restricted class of parametrized transition systems
with states represented as arrays indexed by an arbitrary number of processes
[9,18]. Cache coherence protocols and mutual exclusion algorithms are typical
examples of such systems. Cubicle model-checks by a symbolic backward reach-
ability analysis on infinite sets of states represented by specific simple formulas,
called cubes. Cubicle is written in OCaml. The SMT solver is a tightly integrated,
lightweight and enhanced version of Alt-Ergo [21]; and its parallel implementa-
tion relies on the Functory library [22]. Cubicle input language is a typed version
of Murphi similar to the one of Uclid. A system is described in Cubicle by: (1) a
set of type, variable, and array declarations; (2) a formula for the initial states;
and (3) a set of transitions. It is parametrized by a set of process identifiers,
denoted by the built-in type proc. Standard types int, real, and bool are also
built in. Additionally, the user can specify abstract types and enumerations with
simple declarations like type data and type msg = Empty | Req | Ack. As an
example consider the following declaration.

var Turn : proc
array Want[proc] : bool
array Crit[proc] : bool

init (z) { Want[z] = False && Crit[z] = False }

unsafe (x y) {
Crit[x] = True && Crit[y] = True }

The system state is defined by a set of global variables and arrays. The initial
states are defined by a universal conjunction of literals characterizing the values
for some variables and array entries.

init (z) { Want[z] = False && Crit[z] = False }

A state of our example consists of a process identifier Turn and two boolean
arrays Want and Crit; a state is initial iff every cell of both arrays are set to
false Transitions are given in the usual guard/action form and may be parame-
terized by (one or more) process identifiers. Guards are expressed via required
expressions. They are quantified formulas. Quantification is defined only over
variables of type proc. As an example, consider the following rule.

transition req (i)
requires { Want[i] = False }

{ Want[j] := case
| i = j : True
| _: Want[j] }
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The transition req(i) is enabled if there exists index i (a process) such that
Want[i]=false. Its effect is to set Want to true for index i and leave the array
unchanged in all other positions. A system execution is defined by an infinite loop
that at each iteration: (1) non-deterministically chooses a transition instance
whose guard is true in the current state; and (2) updates state variables according
to the action of the fired transition instance.

Infinite sets of unsafe states (bad configurations) are defined by using unsafe
constraints. For instance, the judgement

unsafe (x y) {
Crit[x] = True && Crit[y] = True }

specifies the infinite set of arrays Crit (with any size) in which there exist two
cells with value True.

The Cubicle verification engine is based on symbolic backward exploration.
Cubicle operates over sets of existentially quantified formulas called cubes. For-
mulas containing universally quantified formulas (generated during the computa-
tion of predecessors) are over-approximated by existentially quantified formulas.
The class of formulas manipulated by the backward reachability loop of Cubicle
in not closed by pre-image in presence of universally quantified guards. To handle
such formulas, Cubicle implements a safe but over-approximate pre-image com-
putation. Given a cube ∃ī.Φ and a guard G of the form ∀j̄.Ψ(j̄), the pre-image
replaces G by the conjunction

∧
σ∈Σ(j̄,̄i) Ψ(j̄)σ of instances over the permuta-

tion of Σ(j̄, ī). In other words, in order to handle universally quantified guards,
Cubicle applies monotone abstraction [2] and over-approximates predecessors
via upward-closed sets of configurations. The search procedure maintains a set
V and a priority queue Q resp. of visited and unvisited cubes. Initially, let V be
empty and let Q contain the cubes representing bad states. At each iteration, the
procedure selects the highest-priority cube Φ from Q and checks for intersection
with the formula denoting the initial configurations (satisfiability of conjunc-
tion of Φ and formulas in the initial conditions). If the test fails, it terminates
reporting a possibile error trace. If the test passes, the procedure proceeds to
the subsumption check, i.e., implication between formulas. If subsumption fails,
then add Φ to V , compute all cubes in predt (for every t), add them to Q, and
move on to the next iteration. If the subsumption check succeeds, then drop Φ
from consideration and move on. The algorithm terminates when a safety check
fails or Q becomes empty. When an unsafe cube is found, Cubicle actually pro-
duces a counterexample trace. Safety checks, being ground satisfiability queries,
are easy for SMT solvers. The challenge is in the subsumption check because of
their size and the existential implies existential logical form. Cubicle applies the
heuristics described in [9] to handle subsumption. The BRAB algorithm intro-
duce in [10] automatically computes over-approximations of backward reachable
states that are checked to be unreachable in a finite instance of the system (using
Murφ). The resulting approximations (candidate invariants) are model checked
together with the original safety properties. Completeness of the approach is
ensured by a mechanism for backtracking on spurious traces introduced by too
coarse approximations.
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Encoding GLog in Cubicle

In this section we present an encoding of GLog into an array-based specification
language. The encoding is quite natural. The interpretation domain of variables
is that of process indexes. For each unary predicate p ∈ P , we introduce a
corresponding Boolean array variable array p.

array p[proc] : bool

For each binary predicate q, we introduce a two-dimensional Boolean array q

array q[proc,proc] : bool

Encoding of guards is straightforward. Free variables occurring in GLog update
rules become parameters of transition definitions. A literal q(x, y) [resp. q(x)]
is mapped to the formula q(x, y) = true [resp. q(x) = true]. A literal ¬q(x, y)
[resp. ¬q(x)] is mapped to the formula q(x, y) = false [resp. q(x) = false].
Compound/quantified require conditions are mapped to compound/quantified
formulas over literals.

Some care has to be taken in the encoding of GLog update rules. Transitions
in Cubicle operate simultaneously on every cell of an array to provide support
for global operations like reset and transfer. This kind of operations are not
provided in GLog since the focus is on asynchronous behavior, i.e., we assume
that global operations are split into several asynchronous operations equipped
with guards that can be used to check for the current state of the protocol phase
under consideration.

To encode a deletion rule, operating on the atomic formula A(x, y), we use
auxiliary variables u, t and a case analysis on indexes: for the case x = u, y = t
we add the action A[x, y] := false, and A[x, y] := A[x, y] in all other cases. To
encode an addition rule, operating on the atomic formula A(x, y), we use again
auxiliary variables u, t and a case analysis on indexes: for x = u, y = t we add
the action A[x, y] := true, and A[x, y] := A[x, y] in all other cases.

To encode ∃-coverability, we also need to specify initial and unsafe configura-
tions. Unsafe configurations can be described as in Cubicle using an existentially
quantified formula over array cells. To select classes of initial states, we can use
init declarations in which we specify only partial conditions on array cells.

4 Case Study: Distributed Dining Philosophers

We consider here a distributed version of the dining philosopher mutual exclu-
sion problem presented in [19]. Agents are distributed on an arbitrary graph and
communicate asynchronously via point-to-point channels. Channels are viewed
as buffers with state. Distributed Dining Philosophers (DDP) is defined as fol-
lows. The goal is to ensure that agents can access a resource shared in common
with their neighbors in mutual exclusion. The protocol from the perspective a
single agent consists of the following steps:

– Initially, all agents are in idle state.
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– When an agent A wants to get a resource, A has to acquire the control of
each buffer shared with his/her neighbors.

– To acquire a channel, A marks the channel with its identifier. If the channel
is already marked, A has to wait.

– A acquires the resources when all channels shared with neighbors are marked
with his/her identifier.

– To release a resource, A first resets each buffer. When all buffers are reset, A
moves back to idle state.

In a statically defined topology, agent A gets access to a resource when all neigh-
bors are either idle or are waiting for acquiring some channel. Communication
between two neighbors is asynchronous. Indeed, they interact by reading and
writing on the shared channel. The protocol should guarantee that two agents
that share the same channel cannot acquire and use a resource simultaneously.
The protocol should be robust under dynamic reconfigurations of the network.

4.1 Formal Specification of DDP

In this section we present a formal specification of the DDP protocol. Network
configurations are expressed as GLog configurations. The dynamics in a protocol
interaction is expressed via a finite set of update rules. We use a predicate
link to represent connections from an agent to a possibly shared buffer. We
model buffers with states using unary predicates. Asynchronous communication
is modeled as in the previous example, i.e., agents interact only via a common
buffer. Communication between two agents is not atomic. Instead of modeling
identifiers and buffers with data, we introduce a special relation own that is used
to model ownership of a given buffer to which a agent is linked. Ownership is
normed in the same way as the labeling of buffers in the original protocol, i.e.,
an agent can acquire ownership only if the buffer is not owned by other agents.
Ownership can be released when in idle state. We also model non-deterministic
creation (in idle state) and deletion of links. We model this behavior using the
following predicates and rules (rules have the form (Ci,Di, Ai) for i : 1, . . . , 6):

R C D A

getE link(X,E) ∧ ∀Z.¬own(Z,E) ∅ {own(X,E)}
relE {idle(X), own(X,E)} {own(X,E)} ∅
acquire idle(X) ∧ ∀E.(link(X,E) ⊃ own(X,E)) {idle(X)} {busy(X)}
release {busy(X)} {busy(X)} {idle(X)}

An initial state configuration has the following form idle(n1), . . . , idle(nk),
where ni = nj for i = j, i, j : 1, . . . , k and k ≥ 1.
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4.2 Encoding in Cubicle

Following the encoding rules specified for GLog, we can now obtain a Cubicle
specification for DDP. To simplify a little bit the specification, we introduce an
enumeration type state over node states.

type state = Idle | Busy

This way, we can use a single array State with cell type state instead of two
Boolean arrays. We also need a link array and a own array to specify link and
ownership relations between nodes and buffers.

array State[proc] : state
array Link[proc,proc] : bool
array Own[proc,proc] : bool

The initial configuration consists of all possible topologies in which nodes are
in idle state. We also enforce the ownership relation to be false for each pair of
node and buffer.

init (n m) {
State[n] = Idle &&
Own[n,m] = False }

This way we do not put any constraints on link topology. The bad configuration
are defined by graphs of the following form.

unsafe (n m e) {
State[n] = Busy && State[m] = Busy &&
Link[n,e] = True && Link[m,e] = True

}

Two node are in mutex state while pointing to at the same buffer. The transi-
tions are obtained via the encoding of the GLog specification into Cubicle input
language shown in AppendixA. When applying Cubicle to the above described
problem, the tool proves the model correct in few seconds without need to apply
multicore optimizations via the Functory library. More specifically, Cubicle vis-
its 19 nodes with at most 3 process indexes, 529 fixpoint checks, and 176 calls
to the Alter-Ego SMT solver. Since Cubicle operates over unbounded arrays,
the above result provides a formal correctness proof of the considered model
for any number of nodes and links and any topology. The proof certificate can
be obtained by taking the set of assertions (formulas) collected during the fix-
point computation. By applying the BRAB algorithm with parameter 3, the
number of visited nodes reduces to 10 with 312 fixpoint tests, and 88 calls to
the Alter-Ego solver. Furthermore, the BRAB algorithm infers the invariant
¬(Own[#1,#3] = True ∧ Own[#2,#3] = True).
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R C D A

Link ¬link(X,E) ∅ {link(X,E)}
Unlink link(X,E) {link(X,E)} ∅

4.3 Dynamic Reconfiguration

To model dynamic reconfigurations, we can non-deterministically add and
remove link predicates between pairs of agents and buffers. We first consider
the non-deterministic rules link and unlink defined below.

When the model extended with the above rules is checked with Cubicle (see
AppendixB), the tool reports the error trace acquire(#1) → link(#1,#3) →
get(#2,#3) → acquire(#2) → unsafe[1]. This trace is a real error trace.
Indeed, process p1 can acquire ownership when there are no links to buffer b3.
Since the link rule has no condition on p1, a link can then be added from p1
to b3. However, Process p2 can now become owner of b3 and then move to state
Busy. Two processes are linked to the same buffer b3 while in state Busy.

Model dfs brab(3) V F S M D I C
DPP 19 529 176 3 0 0 Yes
”

√
19 529 176 3 0 0 Yes

”
√

10 312 88 3 0 1 Yes
DPP+Link+Unlink 38 379 528 3 10 0 No
”

√
63 2660 961 3 12 0 No

”
√

33 365 617 3 9 1 No
DPP+iLink+Unlink 28 1449 261 3 6 0 Yes
”

√
39 1996 414 3 6 0 Yes

”
√

14 735 153 3 2 1 Yes

Fig. 1. Experimental results: V= visited nodes, F= fixpoint tests, S= solver calls,
M= max process number, D= deleted node, I= number of invariants (brab),
C= property checked (Yes/No).

We can modify the model and restrict addition of new link connected to node
X only when X is in state Idle as follows.

R C D A

iLink idle(X),¬link(X,E) ∅ {link(X,E)}
Unlink link(X,E) {link(X,E)} ∅

In this model we assume that nodes have some form of control over con-
nections with buffers (i.e. a new link is detected by a node in state Idle).
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When the model extended with the link′ and unlink rules is checked with
Cubicle (see Appendix B), the tool verifies correctness by visiting 28 nodes with
at most 3 process indexes, invoking 261 times the SMT solver, performs 1449
fixpoint tests, and deletes 6 redundant nodes. The above result provides a for-
mal correctness proof of the considered model for any number of nodes and
links and any topology. Using dfs search, the tool verifies the property but
the number of visited nodes is 39 with 414 calls to the SMT solver and 1996
fixpoint checks. Using the BRAB algorithm with parameter 3, the number of
visited nodes reduces to 14 with 735 fixpoint tests, and 153 calls to the Alter-
Ego solver. As for static topologies, the BRAB algorithm infers the invariant
¬(Own[#1,#3] = True ∧ Own[#2,#3] = True). A summary of the results
with the considered models and heuristics are shown in Fig. 1.

5 Conclusions

We have studied a possible application of SMT-based infinite-state model checker
to the verification of topology-sensitive distributed protocols, i.e., protocols
defined over network graphs and in which rules have guards and effects that
depend on communication links. Starting from a logic-based presentation of
distributed protocols based on the GLog relational update language, we have
shown how to encode existential coverability queries in GLog as Cubicle verifi-
cation judgements. As a case-study, we have shown that the declarative approach
supported by GLog + Cubicle provides a very effective way to verify protocols
operating on graphs. For instance, in previous work DDP required complex veri-
fication methodologies like assume-guarantee reasoning or ad hoc algorithms for
graph rewriting systems. In the present paper DDP is verified using a very simple
declarative specification and a general purpose model checker. Cubicle verifies
correctness in negligible execution time (without need of multicore optimizations
via the Functory library).

The proposed methodology can be applied to other types of distributed pro-
tocols. More specifically, we are currently studying how to deal with routing pro-
tocols for arbitrary topologies and hierarchical protocols for reference counting
(e.g. garbage collections disciplines etc.). Another interesting direction is related
to the possible application of Cubicle for verification of protocol specifications
in parameterized multi-agent systems [4].

A DDP in Cubicle

transition get(n e)
requires {

Link[n,e] = True && forall_other m. (Own[m,e] = False)
}
{
Own[m,f] := case | m=n && f=e : True | _ : Own[m,f];
}
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transition rel(n e)
requires {
State[n] = Idle && Own[n,e] = True

}
{
Own[m,f] := case | m=n && f=e : False | _ : Own[m,f];
}

transition acquire (n)
requires {

State[n] = Idle
&&
forall_other g.

(Link[n,g] = False || Link[n,g] = True && Own[n,g] = True)
}
{
State[m] := case | m=n : Busy | _ : State[m];
}

B Dynamic Reconfiguration in Cubicle

transition unlink(n m)
requires {
Link[n,m] = True

}
{
Link[p,q] := case | p=n && q=m : False | _ : Link[p,q];
}

transition link(n m)
requires {
Link[n,m] = False

}
{
Link[p,q] := case | p=n && q=m : True | _ : Link[p,q];
}

transition iLink(n m)
requires {
State[n] = Idle && Link[n,m] = False

}
{
Link[p,q] := case | p=n && q=m : True | _ : Link[p,q];
}
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Abstract. We present a method for checking whether an event-driven
asynchronous program running under the Total Store Ordering (TSO)
memory model is robust, i.e., all its TSO computations are equivalent
to computations under the Sequential Consistency (SC) semantics. We
show that this verification problem can be reduced in polynomial time
to a reachability problem in a program with two threads, provided that
the original program satisfies a criterion called robustness against concur-
rency, introduced recently in the literature. This result allows to avoid
explicit handling of all concurrent executions in the analysis, which leads
to an important gain in complexity.

1 Introduction

Asynchronous event-driven programming allows procedures to be executed asyn-
chronously (after their invocation), e.g., as callbacks handling the occurrences of
external events. In particular, modern user interface (UI) frameworks in Android,
iOS, and Javascript, are instances of asynchronous event-driven programming.
These frameworks dedicate a distinguished main thread, called UI thread, to
handling user interface events. Since responsiveness to user events is a key con-
cern, common practice is to let the UI thread perform only short-running work
in response to each event, delegating to asynchronous tasks the more computa-
tionally demanding part of the work. These asynchronous tasks are in general
executed in parallel on different background threads, depending on the compu-
tational resources offered by the execution platform. The apparent simplicity of
UI programming models is somewhat deceptive. The difficulty of writing safe
programs given the concurrency of the underlying execution platform is still all
there.

Bouajjani et al. [6] have proposed a correctness criterion for such programs
which requires that their standard (multi-thread) semantics is a refinement of
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a single-thread semantics where user events are executed until completion in
a serial manner, one after the other, and the asynchronous tasks created by
an event handler (and recursively, by its callee) are executed asynchronously
(once the execution of the creator finishes), but serially and in the order of their
invocation. The multi-thread semantics being a refinement of the single-thread
implies that the sets of observable reachable states of the program w.r.t. both
semantics are exactly the same (see Sect. 4 for the exact definition). While the
multi-thread semantics provides greater performance and responsiveness, the
single-thread semantics is simpler to apprehend. The inherent non-determinism
due to concurrency and asynchronous task dispatching from the multi-thread
semantics is not present in the context of the single-thread one. A program that
satisfies this refinement condition is said to be robust against concurrency. The
same work has shown that violations of this criterion correspond in practice
to undesirable behaviors, and that this criterion can be checked efficiently (in
polynomial time for Boolean programs), using a linear time reduction to the
state reachability problem in sequential programs.

Robustness against concurrency assumes that the programs are executed
under Sequential Consistency [15] (SC), where the actions of different threads are
interleaved while the program order between actions of each thread is preserved.
For performance reasons, modern multiprocessors implement weaker memory
models, e.g., Total Store Ordering (TSO) [18] in x86 machines, which relax
the program order. For instance, the main feature of TSO is the write-to-read
relaxation, which allows reads to overtake writes. This relaxation reflects the fact
that writes are buffered before being flushed non-deterministically to the main
memory. In this work, we consider asynchronous event-driven programs that
are executed under TSO, and investigate the relationship between robustness
against concurrency and robustness against TSO [3,7–9], which requires that a
TSO program admits the same behaviors as if it was run under SC.

We first show that robustness against concurrency (which concerns only the
SC semantics) doesn’t imply robustness against TSO (see Sect. 2), i.e., even if
the SC semantics doesn’t allow interference between events and asynchronous
invocations (they can be seen as atomic), the TSO semantics can still introduce
new behaviors which are not possible under SC (therefore, breaking the atomic-
ity of the events and asynchronous invocations). However, we show that checking
robustness against TSO for programs satisfying robustness against concurrency
is more efficient than in the general case. Using the approach in [5], we show
that such a program is not robust against TSO iff it admits a robustness viola-
tion which can be simulated using just two threads. This implies that checking
robustness against TSO for a program with an unbounded number of threads
(that is robust against concurrency) can be reduced in polynomial time to the
problem of checking TSO robustness for a program with just two threads. The
latter has been proved to be polynomial time for Boolean programs in [5].

Our work leads in particular to an efficient approach for the verification
of functional correctness of event-driven asynchronous programs running under
TSO that consists in solving three separate problems: (1) showing that the
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program is functionally correct w.r.t the single-thread semantics, (2) showing
that the program is robust against concurrency, and (3) showing that the pro-
gram is robust against TSO. These problems can be solved efficiently by consid-
ering only particular types of computations captured by sequential or two thread
programs.

Related Work. The weakest correctness criterion that enables SC reasoning for
proving invariants of programs running under TSO is state-robustness against
TSO i.e., the reachable set of states is the same under both SC and TSO. How-
ever, this problem has high complexity (at least non-primitive recursive for pro-
grams with a finite number of threads and a finite data domain [4]). Therefore,
it is difficult to come up with an efficient and precise solution. A symbolic deci-
sion procedure is presented in [1] and over-approximate analyses are proposed
in [13,14]. Due to the high complexity of state-robustness, stronger correctness
criteria with lower complexity have been proposed. Trace-robustness (that we
call simply robustness against TSO in our paper) is one of the most studied crite-
ria in the literature. Trace-robustness is PSpace-complete for a finite number of
threads and a finite data domain [7] and EXPSpace-complete for an unbounded
number of threads. Besides trace-robustness, there are other correctness criteria
like triangular race freedom (Trf) and persistence that are stronger than state-
robustness. Persistence [2] is incomparable to trace-robustness and Trf [16] is
stronger than both trace-robustness and persistence. Our work considers the
specific case of event-driven asynchronous programs and shows that checking
trace-robustness has a much lower complexity (polynomial time), provided the
programs are robust against concurrency.

The works in [10–12,17] target exploring interesting subsets of executions
and schedules for asynchronous programs running under SC, that offer a large
coverage of the execution space. This is orthogonal to the focus of our paper
which is to analyze behaviors of these programs running under TSO.

// Event 1
void searchForNews(String key) {

new SearchTask.execute(key);
new SaveTask.execute(key); }

// Event 2
void showDetail(int id) {

// show detail of the idth news
new DownloadTask.execute(id); }

class SaveTask extends AsyncTask {
void doInBackground(String key) {

// write key to the database } }

class SearchTask extends AsyncTask {
List result = null;
void doInBackground(String key) {

result = ...
// get from the network

}
void onPostExecute () {

list = result;
// display the list of titles } }

class DownloadTask extends AsyncTask {
String content = null;
void doInBackground(int id) {

content = ... // get from the network
}
void onPostExecute () {

// display the content } }

Fig. 1. Program which is robust against concurrency.
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2 Motivation

We briefly discuss the relevance of robustness against concurrency using the pro-
gram in Fig. 1, which is extracted from an Android application (we assume it is
executed under SC). This program has two event handlers searchForNews and
showDetail which can be invoked by the user to search for news containing a key-
word and to display the details of a selected news respectively. Robustness against
concurrency can be characterized as the conjunction of event-serializability and
event determinism, which are variants of the classical notions of serializability
and determinism, adapted to our context. Intuitively, since the single-thread
semantics defines a unique execution, given a set of external events (partially
ordered w.r.t. some causality relation imposed by the environment), then (1)
the executions of the event handlers must be serializable (to an order compat-
ible with their causality relation), i.e., the execution of each event handler and
its subtasks can be seen as an atomic transaction, and (2) the execution of each
event handler is deterministic, i.e., it always leads to the same state, for any
possible scheduling of its parallel subtasks.

The procedure searchForNews creates two AsyncTask objects SearchTask and
SaveTask whose execute method will invoke asynchronously doInBackground fol-
lowed by onPostExecute, in the case of the former. Under the multi-thread
semantics, doInBackground is invoked on a new thread and onPostExecute is
invoked on the main thread. When the user input to search for news is trig-
gered, the invocation doInBackground of searchTask connects to the network,
searches for the keyword and fetches the list of resulting news titles. Then, the
invocation onPostExecute displays the list of titles to the user. SaveTask saves
the keyword to a database representing the search history in the background.
The background tasks SearchTask.doInBackground and SaveTask.doInBackground

might interfere but any interleaving produces the same result, i.e., it can be
assumed searchForNews is deterministic.

The second event, to show the details of a title, can be triggered once the list
of titles are displayed on the screen. It invokes an asynchronous task to download
the contents of the news in the background and then displays it. In this case,
the tasks are executed in a fixed order and the event is trivially deterministic.

Concerning serializability, the invocation of SaveTask in the first event and the
second event might interleave (under the concrete semantics). However, assum-
ing that the second event is triggered once the results are displayed, any such
interleaving results in the same state as a serial execution of these events.

To show that robustness against concurrency doesn’t imply robustness
against TSO consider the two programs in Fig. 2. The program on the left of
Fig. 2 consists of a single event which is deterministic, but it is not robust against
TSO. The TSO memory model admits a computation where both a and b are 0
at the end of the program which is not possible under SC. The program on the
right of Fig. 2 consists of n events ei with 1 ≤ i ≤ n, which are all deterministic
and serializable (therefore the program is robust against concurrency) but its
semantics under TSO admits a computation where all the ai variables are 0 at
the end of the program (which is again not possible under SC).
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procedure e1() {
x:=1;
a:=y;
async[any] p();

}
procedure p() {

y:=1;
b:=x;

}

// for every 1 ≤ i ≤ n
procedure ei() {

if(yi−1=1)
async[any] pi();

}
procedure pi() {

xi:=1;
ai:=x(i+1)modn;

async[any] qi();
}
procedure qi() {

yi:=1;
}

Fig. 2. Asynchronous programs which are not robust against TSO. All variables are
initially set to 0 except for y0 in the second program which is set to 1.

3 Programs

In order to give a generic definition of robustness, which doesn’t depend on any
particular asynchronous-programming platform or syntax, we frame our discus-
sion around the abstract notion of programs defined in Sect. 3.1. Two alterna-
tive multi-thread and single-thread semantics to programs under the SC memory
model are given in Sects. 3.2 and 3.4. A version of the multi-threaded semantics
under the TSO memory model is given in Sect. 3.3.

3.1 Asynchronous Event-Driven Programs

We define an event handler as a procedure which is invoked in response to a user
or a system input. For simplicity, we assume that inputs can arrive in any order.
Event handlers may have some asynchronous invocations of other procedures, to
be executed later on the same thread or on a background thread.

We fix sets G and L of global and local program states. Local states � ∈ L
represent the code and data of an asynchronous procedure or event-handler
invocation, including the code and data of all nested synchronous procedure calls.
A program is defined as a mapping between pairs of global and local states which
gives the semantics of each statement in the code of a procedure (the association
between threads, local states, and procedure invocations is defined in Sects. 3.2
and 3.4). To formalize the notions of robustness, this mapping associates with
each statement a label called program action that records the set of accessed
global variables and the asynchronous invocations in that statement. An event
set E ⊂ L is a set of local states; each e ∈ E represents the code and data for a
single event handler invocation (called event for short).

Formally, a program P : G × L → G × L × B maps global states g ∈ G and
local states � ∈ L to new states and program actions; each P (g, �) represents a
single program transition. Supposing that the global states g ∈ G are maps from
program variables x to values g(x), and that local states � ∈ L map program vari-
ables a to values �(a) and a program counter variable pc to program statements
�(pc), we give an interpretation to the standard program syntax listed in Fig. 3.
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x := a a := x a := expr call p(y) async[w] p(y) return

Fig. 3. Basic statements. The metavariables x and a range over global and local variable
names, respectively, expr is an expression over local variables, p ranges over procedure
names, and w over the symbols “main” and “any.”

Besides assignments and synchronous procedure calls, async[w] p(y) represents
an asynchronous invocation of p(y) run on a distinguished main thread when
w = main, and on an arbitrary thread when w = any. For instance, writing �+

to denote �[pc �→ �(pc)+1], then P (g, �) is

– 〈g[x�→�(a)], �+,wr(x, �(a))〉 when �(pc) is a global-variable write x := a,
– 〈g, �+[a�→g(x)], rd(x, g(x))〉 when �(pc) is a global-variable read a := x,
– 〈g, �+[a�→�(expr)], ε〉 when �(pc) is a local computation a := expr (here,

�(expr) is the standard extension of � to expressions expr over local vari-
ables),

– 〈g, �+, invoke(�′, w)〉 when �(pc) is an asynchronous invocation async[w] p(y),
where �′ maps the parameters of procedure p to the invocation arguments y
and pc to the initial statement of p, and

– 〈g, �, return〉 when �(pc) is the return statement.

The semantics of other statements, including synchronous procedure calls
call p(y), if-then-else conditionals, while loops, or goto statements, etc., is
standard, and yield the empty program action ε.

An event is called sequential when its code doesn’t contain asynchronous invo-
cations async[w] p(y). Also, a program P with event set E is called sequential
when every event e ∈ E is sequential. Otherwise, P is called concurrent.

3.2 SC Multi-thread Asynchronous Semantics

A task u = 〈�, i, j, k〉 is a local state � ∈ L along with invocation, event and thread
identifiers i, j, k ∈ N, and U denotes the set of tasks. We write invoc(u), event(u),
and thread(u) to refer to i, j, and k, respectively. A configuration c = 〈g, t, q〉
is a global state g ∈ G along with sets t, q ⊆ U of running and waiting tasks
such that: (1) invocation identifiers are unique, i.e., invoc(u1) 
= invoc(u2) for
all u1 
= u2 ∈ t ∪ q, and (2) threads run one task at a time, i.e., thread(u1) 
=
thread(u2) for all u1 
= u2 ∈ t. The set of configurations is denoted by Cm. We say
that a thread k is idle in c when k 
∈ {thread(u) : u ∈ t}, and that an identifier
i, j, k is fresh when i, j, k 
∈ {α(u) : u ∈ (t ∪ q)} for α ∈ {invoc, event, thread},
respectively. A configuration is idle when all threads are idle.

To define robustness against concurrency, we expose the following set A of
actions in execution traces:

A = {start(j), end(j) : j ∈ N} ∪ B ∪ {invoke(i),begin(i), return(i) : i ∈ N}
By convention, we denote asynchronous procedure invocation, event, and thread
identifiers, respectively, with the symbols i, j, k. The start(j) and end(j) actions
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represent the start and end of event j; the invoke(i), begin(i), and return(i)
actions represent an asynchronous procedure invocation (when it is added to
the queue of pending invocations), the start of i’s execution (when it is removed
from the queue), and return of i, respectively. The set X of memory accesses is
defined as in the program actions of Sect. 3.1.

The transition function → in Fig. 4 is determined by a program P and event
set E, and maps a configuration c1 ∈ Cm and thread identifier k ∈ N to another
configuration c2 ∈ Cm and label λ = 〈k, i, j, a〉 where i and j are invocation and
event identifiers, and a ∈ A is an action—we write thread(λ), invoc(λ), event(λ),
and act(λ) to refer to k, i, j, and a, respectively. Let ΛSC denote the set of
such transition labels λ. event transitions mark the beginnings of events. We
assume that all events are initiated on thread 0, which is also referred to as the
main thread. Also, for simplicity, we assume that events can be initiated arbi-
trarily at any time. Adding causality constraints between events, e.g., one event
can be initiated only when a certain action has been executed, is possible but
tedious. async transitions create pending asynchronous invocations, dispatch
transitions begin the execution of pending invocations, and return transitions
signal their end (the condition in the right ensures that this is not a return from
an event). end event transitions mark the end of an event and by an abuse
of notation, they map c1 and k to a configuration c2 and two labels, return(i)
denoting the end of the asynchronous invocation and end(j) denoting the end
of the event. All other transitions are local.

event
e ∈ E i, j are fresh

g, t, q
〈0, ,j,start(j)〉−−−−−−−−−−−→ g, t, q ∪ {〈e, i, j, 0〉}

async
P (g, �1) = 〈 , �

′
1, invoke(�2, w)〉 u2 = 〈�2, i2, j, k2〉

i2 is fresh k2 is 0 if w = main or fresh otherwise

g, t ∪ {〈�1, i, j, k〉}, q
〈k,i,j,invoke(i2)〉−−−−−−−−−−−−−→ g, t ∪ {〈�

′
1, i, j, k〉}, q ∪ {u2}

dispatch
u = 〈�, i, j, k〉 k is idle

g, t, q ∪ {u} 〈k,i,j,begin(i)〉−−−−−−−−−−−−→ g, t ∪ {u}, q

return
P (g, �) = 〈 , , return〉 j ∈ {event(u) : u ∈ t ∪ q}

g, t ∪ {〈�, i, j, k〉}, q
〈k,i,j,return(i)〉−−−−−−−−−−−−→ g, t, q

end event
P (g, �) = 〈 , , return〉 j {∈� event(u) : u ∈ t ∪ q}

g, t ∪ {〈�, i, j, k〉}, q
〈k,i,j,return(i)〉 k,〈i,j,end(j)〉−−−−−−−−−−−−−−−−−−−−−−−−→ g, t, q

local
P (g, �) = 〈g

′
, �

′
, a〉 a ∈ {ε, rd(x), wr(x)}

g, t ∪ {〈�, i, j, k〉}, q
〈k,i,j,a〉−−−−−−−→ g

′
, t ∪ {〈�

′
, i, j, k〉}, q

Fig. 4. The multi-thread transition function → for a program P with event set E.

An execution of a program P under the SC multi-thread semantics with
event set E to configuration cn is a configuration sequence c0c1 . . . cn such that

cm
λm+1−−−→ cm+1 for 0 ≤ m < n. We call the sequence λ1 . . . λn the trace of

c0c1 . . . cn. The set of traces of P with E under the SC multi-thread semantics is
denoted by �P,E�SCm . We may omit P when it is understood from the context.

The call tree of a trace τ is a ranked tree CallTreeτ = 〈V,E,O〉 where V are
the invocation identifiers in τ , and the set of edges E contains an edge from i1
to i2 whenever i2 is invoked by i1, i.e., τ contains a label 〈i1, , invoke(i2)〉. The
function O : E → N labels each edge (i1, i2) with an integer n whenever i2 is
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the nth invocation made by i1, i.e., 〈i1, , invoke(i2)〉 is the nth label of the form
〈i1, , invoke( )〉 occurring in τ (reading τ from left to right).

3.3 TSO Multi-thread Asynchronous Semantics

The extension of the SC multi-thread semantics of Sect. 3.2 to the TSO mem-
ory model is obtained by adding write buffers to each thread, such that each
write on a global variable is first stored in a write buffer before being flushed
non-deterministically to the global memory, and each read takes a value from
the write buffer, if a write on the corresponding global variable exists, or the
global memory, otherwise. To deal with TSO memory effects, we also extend the
program syntax of Sect. 3.1 by adding a statement fence which ensures that all
the writes in the buffer have been flushed to the global memory.

write issue
P (g, �) = 〈g

′
, �

′
, wr(x)〉

g, t ∪ {〈�, i, j, k〉}, q, b
〈k,i,j,issue(x,g′(x))〉−−−−−−−−−−−−−−−−→ g, t ∪ {〈�

′
, i, j, k〉}, q, b[k �→ b[k] · wr(x, g

′
(x))]

write commit

g, t, q, b[k �→ wr(x, v) · σ]
〈k,i,j,wr(x,v)〉−−−−−−−−−−−→ g[x �→ v], t, q, b[k �→ σ]

fence
b[k] = ε

g, t, q, b
〈k,i,j,fence〉−−−−−−−−−→ g, t, q, b

read
P (g

′
, �) = 〈g

′
, �

′
, rd(x)〉

g
′
= g[x �→ v] if the latest write on x in b[k] is wr(x, v), and g

′
= g, otherwise

g, t ∪ {〈�, i, j, k〉}, q, b
〈k,i,j,rd(x,v)〉−−−−−−−−−−−→ g, t ∪ {〈�

′
, i, j, k〉}, q, b

Fig. 5. The TSO multi-thread transition function → for a program P with event set E.

A configuration c = 〈g, t, q, b〉 extends an SC configuration 〈g, t, q〉 with a set
b of write buffers, one for each thread. The write buffer of a thread k is denoted
by b[k]. The transition function → for local actions that access global variables
is given in Fig. 5 (the transitions corresponding to the rest of the actions are
defined exactly as in the SC case). write issue adds a global variable write to a
write buffer, write commit executes the oldest write in a buffer on the global
memory, read and fence give the semantics of global variable read and fence
statements. Let ΛTSO be the set of transition labels in the TSO semantics, i.e.,
the union of ΛSC and all labels 〈k, i, j, issue(x, v)〉 and 〈k, i, j, fence〉 representing
write issue and fence transitions, respectively.

The set of traces of P with E under the TSO multi-thread semantics is
denoted by �P,E�TSO

m .

3.4 Single-Thread Asynchronous Semantics

Conversely to the multi-thread semantics of Sect. 3.2, our single-thread seman-
tics minimizes the set of possible program behaviors by executing all events and
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asynchronous invocations on the main thread, the asynchronous procedure invo-
cations being executed in a fixed order (in this context, the memory model is not
important since SC and TSO produce the same behaviors on a single thread).

We explain the order in which asynchronous invocations are executed using
the event handler searchForNews in Fig. 1. This event handler is supposed to
add the keyword to the search history only after the fetching of the news con-
taining that keyword succeeds. This expectation corresponds to executing the
asynchronous procedures according to the DFS traversal of the call tree. In gen-
eral, this traversal is relevant because it preserves causality constraints which are
imprinted in the structure of the code, like in the case of standard synchronous
procedure calls. Note however that this semantics is not equivalent to interpret-
ing asynchronous invocations as synchronous, since the caller finishes before the
callee starts. In the formalization of this semantics, the DFS traversal is modeled
using a stack of FIFO queues for storing the pending invocations.

The formalization of the single-thread semantics reuses the notions of task
and label in Sect. 3.2. Let U0 be the set of tasks u = 〈�, i, j, 0〉 executing on
thread 0. We overload the term configuration which in this context is a tuple
c = 〈g, u, q〉 where g ∈ G, u ∈ (U0∪{⊥}) is a possibly-empty task placeholder (at
most one task is running at any moment), and q ∈ (Tuples(U0))∗ is a sequence of
tuples of tasks (a tuple, resp., a sequence, denotes a FIFO queue, resp., a stack).
Cs is the set of configurations of the single-thread semantics. We call c ∈ Cs idle
if u = ⊥.

The transition function ⇒ in Fig. 6 is essentially a restriction of → where
all the procedures run on the main thread, an event begins when there are no
pending invocations, and the rules async and dispatch use a stack of FIFO
queues for storing pending invocations. The effect of pushing/popping a queue
to the stack or enqueuing/dequeueing a task to a queue is represented using
the concatenation operation ·, resp.,◦, for sequences, resp., tuples. Every task
created by async is posted to the main thread and it is enqueued in the queue
on the top of the stack q. dispatch dequeues a pending task from the queue f
on the top of q, and pushes a new empty queue to q (for storing the tasks created
during the newly started invocation) if f doesn’t become empty. Moreover, the
rules return and end event pop the queue on the top of q if it is empty.

An execution of a program P under the single-thread semantics with event set

E to configuration cn is a sequence c0c1 . . . cn s.t. cm
0,λm+1−−−−−→ cm+1 for 0 ≤ m < n.

We call the sequence λ1 . . . λn the trace of c0c1 . . . cn.
The set of traces of P with E under the single-thread semantics is denoted

by �P,E�s (P may be omitted when it is understood from the context).

4 Robustness Criteria

We introduce the notions of robustness against concurrency [6] and robustness
against TSO [3,7–9] which imply that every “final”1 state of a program P reach-
able under a weak semantics, the SC multi-thread semantics and respectively,
1 Here,“final” means that there are no pending invocations.
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event
e ∈ E i, j are fresh

g, ⊥, ε
〈0, ,j,start(j)〉
============⇒ g, ⊥, 〈e, i, j, 0〉

end event
P (g, �) = 〈 , , return〉

g, 〈�, i, j, k〉, ε
〈0,i,j,return(i)〉 k,〈i,j,end(j)〉
=========================⇒ g, ⊥, ε

async
P (g, �1) = 〈 , �

′
1, invoke(�2, w)〉 u2 = 〈�2, i2, j, 0〉 i2 is fresh

g, 〈�1, i, j, k〉, q · f 〈0,i,j,invoke(i2)〉
==============⇒ g, 〈�

′
1, i, j, k〉, q · (f ◦ i2)

dispatch
u = 〈�, i, j, k〉 f = u ◦ f

′
q

′
is 〈〉 if f

′
= 〈〉 or f

′ · 〈〉, otherwise

g, ⊥, q · f 〈0,i,j,begin(i)〉
============⇒ g, u, q · q

′

return
P (g, �) = 〈 , , return〉 j ∈ {event(u) : u ∈ q}

g, 〈�, i, j, k〉, q
〈0,i,j,return(i)〉
=============⇒ g, ⊥, q

local
P (g, �) = 〈g

′
, �

′
, a〉 a ∈ {ε, rd(x), wr(x)}

g, 〈�, i, j, k〉, q
〈0,i,j,a〉
=======⇒ g

′
, 〈�

′
, i, j, k〉, q

Fig. 6. The single-thread transition function ⇒ for a program P with events E (ε and
〈〉 are the empty sequence and tuple, resp.,). Also, f and f ′ are tuples, and q is obtained
by popping a queue from q if this queue is empty, or q = q, otherwise.

the TSO multi-thread semantics, is also reachable in P under a strong seman-
tics, the single-thread semantics and respectively, the SC multi-thread semantics.
Since reasoning about sets of reachable states is difficult in general, these robust-
ness notions are defined on traces and require that roughly, every trace of the
weak semantics is “equivalent” to a trace of the same program under the strong
semantics. A trace is equivalent to another if it is a permutation that preserves
the order between “conflicting” labels, e.g., accesses to the same global variable.

Let ≺⊆ ΛTSO × ΛTSO be a conflict relation defined by

λ1 ≺ λ2 iff act(λ1), act(λ2) ∈ {wr(x, v), rd(x, v′)} for some x, v, v′, and
act(λ1) = wr(x, v) or act(λ2) = wr(x, v)

or
thread(λ1) = thread(λ2)

that relates any two labels accessing the same variable, one of them being a
write (commit), or any two labels associated to the same thread. Given a trace
τ = τ1 · λ1 · λ2 · τ2, we say that the trace τ ′ = τ1 · λ2 · λ1 · τ2 is derived from τ by
a ≺-valid swap iff λ1 
≺ λ2. A permutation τ ′ of a trace τ is conflict-preserving
when τ ′ can be derived from τ through a sequence of ≺-valid swaps.

Robustness against concurrency states that every trace of the SC multi-
thread semantics of a program P with event set E has a conflict-preserving
permutation where events and asynchronous invocations don’t interleave (they
are executed serially, but maybe not until completion) and asynchronous invo-
cations execute according to the DFS traversal of the call tree. Such conflict-
preserving permutations can be simulated by a sequential program seq(P ) where
asynchronous invocations are rewritten to regular procedure calls which however,
are not necessarily executed until completion. Incomplete executions of the pro-
cedures are simulated by adding a boolean flag skip to each procedure, which
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is non-deterministically turned to false (it is initially true) and which guards
every statement in the original program (i.e., the statement can be executed only
if skip is true). Since asynchronous invocations are rewritten to regular proce-
dure calls, different events cannot interleave and invocations execute according
to the DFS traversal of the call tree exactly as in the single-thread semantics
(the latter requires that asynchronous invocations are not followed by accesses
to global variables; see Bouajjani et al. [6] for more details.). Therefore, the SC
multi-thread semantics of seq(P,E) coincides with its single-thread semantics.
By an abuse of terminology, we say that a trace τ belongs to the single-thread
semantics �seq(P ), E�s even if the trace τ involves multiple threads, but substi-
tuting every thread id with 0 results in a trace in �seq(P ), E�s.

Definition 1. A program P with event set E is robust against concurrency
if there is a conflict preserving permutation τ ′ ∈ �seq(P ), E�s for every trace
τ ∈ �P,E�SCm .

The following theorem shows that the problem of checking robustness against
concurrency is polynomial time for boolean programs. It is a consequence of the
fact that this problem can be reduced in linear time to a reachability problem
in sequential programs (even for infinite-state programs).

Theorem 1 ([6]). Checking robustness against concurrency for a program P
with event set E, a fixed number of variables which are all boolean, and a fixed
number of procedures, each procedure containing a fixed number of asynchronous
invocations, is polynomial time decidable.

While robustness against concurrency shows that there is no interference
between events and asynchronous invocations under an SC semantics, robustness
against TSO holds when the non-atomic writes allowed by the TSO memory
model (that can be delayed and executed later on the global memory) introduce
no behavior which is not also possible under the SC semantics. To simplify the
exposition, we say that a trace τ ∈ �P,E�TSO

m (under the TSO memory model)
belongs to the SC semantics �P,E�SCm of a program P with event set E even if
the trace τ contains write issue and fence transition labels, but every write issue
〈k, i, j, issue(x, v)〉 is immediately followed by the corresponding write commit
〈k, i, j,wr(x, v)〉 and removing all the write issue and fence transition labels
results in a trace in �P,E�SCm .

Definition 2. A program P with event set E is robust against TSO if there is
a conflict preserving permutation τ ′ ∈ �P,E�SCm for every trace τ ∈ �P,E�TSO

m .

Bouajjani et al. [5] have shown that checking robustness against TSO is
EXPSPACE-complete. The upper bound relies on a polynomial time reduction
to a reachability problem in a concurrent program running under SC.

5 Checking Robustness Against TSO

While Sect. 2 shows that robustness against concurrency doesn’t imply robust-
ness against TSO, we show however that for programs which are robust against
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concurrency, the problem of checking robustness against TSO can be solved more
efficiently than in the general case. More precisely, we show that the latter can
be reduced in polynomial time to the problem of checking robustness against
TSO for a program with only two threads, which is itself polynomial time for
boolean programs (since by the results of Bouajjani et al. [5], it can be reduced
to a reachability problem in a boolean program with 2 threads).

Let P be a program with event set E that is robust against concurrency. We
show that all its minimal TSO robustness violations, if any, can be simulated
by a program 2-threads(P ) similar to seq(P ) except that exactly one invocation
which was asynchronous in P remains asynchronous in 2-threads(P ) as well (this
asynchronous invocation is chosen non-deterministically).

Following the results in [5], if P is not robust against TSO, then there exists
a minimal TSO robustness violation which is a trace of the form

τ = τ1 · 〈k, i, j, issue(x, v)〉 · τ2 · λ · 〈k, i, j,wr(x, v)〉 where

1. the writes of only one thread k are delayed (i.e., not flushed from the write
buffer immediately after the write issue) and all the other threads behave like
in the SC semantics (i.e., for all the other threads, the write issue is followed
immediately by the corresponding write commit),

2. 〈k, i, j,wr(x, v)〉 is the first write of thread k which is delayed, i.e., τ2 doesn’t
contain any write commit action of thread k,

3. τ2 contains a transition label λ1 which conflicts with 〈k, i, j, issue(x, v)〉 (nec-
essarily, a read of thread k) such that every label following λ1 conflicts with
its predecessor and the last action of τ2 conflicts with λ, i.e., there exists a suf-
fix of τ2 of the form λ1 · . . . ·λn such that 〈k, i, j, issue(x, v)〉 ≺ λ1, λm ≺ λm+1

for every 1 ≤ m < n, and λn ≺ λ, and
4. the label λ conflicts with the last write commit in τ , i.e., λ ≺ 〈k, i, j,wr(x, v)〉

(which together with the above, implies that τ doesn’t have a conflict-
preserving permutation admitted by the SC semantics), and

5. the trace τ without the last write commit is a minimal trace satisfying the
above conditions, i.e., extending τ1 · 〈k, i, j, issue(x, v)〉 · τ2 with all the write
commits corresponding to write issues of thread k has a conflict-preserving
permutation admitted by the SC semantics.

We show that such a trace τ has a conflict-preserving permutation that is
admitted by a program with only two threads. For simplicity, assume that k is not
the main thread. By the minimality assumption (5) and since P is robust against
concurrency, the trace τ1 · 〈k, i, j, issue(x, v)〉 · τ2 · τ3, where τ3 contains a write
commit action for every write issue of thread k in τ2, has a conflict-preserving
permutation τ ′ which belongs to �seq(P ), E�s. Let τ ′′ be a trace obtained from τ ′

by removing again all the write commit actions that were present in τ3. This trace
is admitted by the TSO multi-thread semantics since the values written by the
write-commits in τ3 are not read. Since τ ′′ preserves the order between conflicting
labels in the original trace τ , the trace τ ′′ · λ · 〈k, i, j,wr(x, v)〉 still satisfies
properties (1–5). Also, since τ ′ was a trace of the sequential program seq(P ),
all the transitions which are not performed by thread k can be executed by
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the main thread (they belong to events and invocations which don’t interleave).
The transitions of thread k, the reads in particular, cannot be executed on the
main thread since they can access the values of the writes of thread k which are
only issued but not committed. These values are not visible to other threads.
Therefore, the trace obtained from τ ′′ · λ · 〈k, i, j,wr(x, v)〉 by substituting every
thread id k′ 
= k with 0 (the id of the main thread) is admitted by the TSO multi-
thread semantics of P . This trace can be simulated by a program 2-threads(P )
obtained from P by replacing every asynchronous invocation async[any] p(y)
with the following code:

if ( ∗ & fork )
async[any] p(y);
fork = false;

else
if (PID == 0)
call p(y);

else
async[main] p(y);

where fork is a global boolean flag which is initially set to true. The code
above can invoke a procedure p(y) either asynchronously, provided that flag is
still true, or synchronously, or on the main thread if it is invoked from another
thread (the test PID == 0 checks whether the executing thread is the main
thread). Note that exactly one invocation of P is asynchronous (since after the
first asynchronous invocation, fork is turned to false) and that this invoca-
tion is chosen non-deterministically (the expression * returns a randomly-chosen
Boolean value). Also, since any thread different from the main thread executes
a single invocation (in the multi-thread semantics), any invocation made during
the asynchronous invocation is on the main thread (it cannot be transformed to
a regular procedure call since it will be executed on the same thread).

The following theorem states the correctness of the construction.

Theorem 2. Let P be a program with event set E. If P is robust against con-
currency, then P is robust against TSO iff 2-threads(P ) is robust against TSO.

As a corollary of the results in [5] which state that checking TSO robustness
for a program with N threads can be reduced to a reachability problem in a
program with N threads under the SC semantics, we get that checking TSO
robustness for Boolean programs which are already robust against concurrency
is polynomial time.

Corollary 1. Checking robustness against TSO for a program P with event set
E, a fixed number of variables which are all boolean, and a fixed number of pro-
cedures, each procedure containing a fixed number of asynchronous invocations,
is polynomial time decidable, provided that P is robust against concurrency.

6 Conclusions

We have presented an approach for checking robustness against TSO for event-
driven asynchronous programs (with an unbounded number of threads), that
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avoids explicit handling of all concurrent executions. This approach reduces
TSO robustness checking to a reachability problem in a program with only
two threads, provided that the original program is robust against concurrency.
Besides yielding an important gain in asymptotic complexity, leading to a
polynomial-time TSO robustness checking procedure (for boolean programs), our
reduction enables the use of existing safety-verification tools for TSO robustness
checking.
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Abstract. A dynamic pushdown network (DPN) is a set of pushdown
systems (PDSs) where each process can dynamically create new instances
of PDSs. DPNs are a natural model of multi-threaded programs with
(possibly recursive) procedure calls and thread creation. A PL-DPN is
an extension of DPNs that allows threads to synchronize using locks
and priorities. Transitions in a PL-DPN can have different priorities and
acquire/release locks. We consider in this work model checking PL-DPNs
against single-indexed LTL properties. We show that this model check-
ing problem is decidable. We propose automata-based approaches for
computing the set of configurations of a PL-DPN that satisfy the corre-
sponding single-indexed LTL formula.

1 Introduction

Writing multi-threaded programs is notoriously difficult, as concurrency related
bugs are hard to find and reproduce. This difficulty is increased if we consider
that several software systems consist of different components that react to the
environment and use resources like CPU or memory according to a real time
need. For instance, in systems that control automobiles we can have a compo-
nent in charge of the music sub-system and another component in charge of
the braking sub-system. Obviously, the braking sub-system should have a higher
priority access to the resources needed, since a delay in the action of the brakes
can cost lives.

The programming model used in the vast majority of these software systems,
used from automobiles to spacecrafts, defines a set of threads that respond to
events. Each thread is typically assigned a priority and are scheduled by a pri-
ority round-robin preemptive scheduler: if a thread with a higher static prior-
ity becomes ready to run, the currently running thread will be preempted and
returned to the wait list for its priority level. The round-robin scheduling policy
allows each thread to run only for a fixed amount of time before it must yield
its processing slot to another thread of the same priority.

The use of threads with different priorities and other synchronization primi-
tives, like locks, can easily lead to a large number of undesirable behaviors. Con-
sider for example the control flow graph of Fig. 1. It consists of three threads:
c© Springer Nature Switzerland AG 2019
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rel l

acq l

rec()

rel l

Fig. 1. Control-flow graph of a main thread starting at m0 that creates two child
threads starting at a0 and b0. The threads child execute a loop and use a lock l.

a main thread M starting at control location m0 that creates two threads A
and B. The thread A takes and releases (uses) a lock l inside a loop, and the
thread B loops while holding the lock l (between b1 and b2). Suppose that A
and B should act like daemon threads, continuously running in the background
reacting to events. This means that the LTL formula G F a1 ∧ G F b1, saying
that a1 is executed frequently often and b1 is executed frequently often, should
be valid for all executions.

But this is not the case in the program of Fig. 1: once thread B starts execut-
ing its loop and holding lock l, thread A is going to starve since it cannot take the
lock until it is released. A similar problem occurs if threads A and B have differ-
ent priority of execution, the thread with lower priority will starve. The program
of Fig. 1 shows that there is a real need for formal methods to find automatic ver-
ification techniques for checking liveness properties in multi-threaded programs
with locks and priorities. Indeed, starvation or absence of livelocks are among
the most crucial properties that need to be checked for multi-threaded programs.

Dynamic pushdown networks (DPNs) [1] are a natural model for multi-
threaded programs with (possibly recursive) procedure calls and thread creation.
A DPN consists of a finite set of pushdown systems (PDSs), each of them mod-
els a sequential program that can dynamically create new instances of PDSs.
The model-checking problems of DPNs against Linear Temporal Logic (LTL),
Computation Tree Logic (CTL) and reachability properties are well studied in
the literature [1–5,16].

However, DPNs cannot model communication between processes. Pre-
vious works [6–9,16] extended DPNs with locks (and priorities). A DPN
with locks and priorities is called PL-DPN. This allows to model multi-
threaded programs where threads communicate via locks and where each
thread can have a different priority. Indeed, locks and priorities are
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frequently used in multithreaded programs as synchronization primitives.
However, only reachability properties are studied for PL-DPNs, with some
restricted lock and priority usages (due to undecidability) [9].

In general, the model checking problem of DPNs against unrestricted LTL
formulas (where atomic propositions can be interpreted over the control states
of two or more threads) is undecidable. In [2] it is shown that this problem
becomes decidable if we consider single-indexed LTL properties (formulas of the
form

∧
fi s.t. fi is a LTL formula interpreted over the PDS i). On the other

hand, pairwise reachability of PL-DPNs without thread creation is undecidable
in the general case [9,10]. It becomes decidable if locks are accessed in a well-
nested style [10], where each thread can only releases the latest acquired lock,
and a thread does not change its priority while holding a lock [9].

In this work, we combine these ideas and show that model-checking sin-
gle indexed LTL properties is decidable for PL-DPNs under these restrictions.
It is non-trivial to do LTL model checking for PL-DPNs, since the number of
instances of PDSs can be unbounded. Checking independently whether all the
different PDSs satisfy the corresponding subformula fi is not correct. Indeed, we
do not need to check whether an instance of a PDS j satisfies fj if this instance
is not created during a run. The approach of [2] cannot be directly applied to
perform single-indexed LTL model-checking for PL-DPNs due to locks and prior-
ities. Indeed, we have to consider communication between each instance of PDSs
running in parallel in the network. To overcome this problem, we will reduce
single-indexed LTL model-checking for PL-DPNs to the membership problem of
DPNs with Büchi acceptance condition.

In [9] we presented an approach for checking pairwise reachability of PL-
DPNs using priority-lock structures, an extension of acquisition structures intro-
duced in [7]. This structure is used to get rid of locks and priorities in PL-DPNs,
such that pairwise reachability of PL-DPNs can be reduced to constrained pair-
wise reachability on DPNs. It works by keeping track of the locks and priorities
used in a run. For pairwise reachability, we only need to consider finite runs,
as a configuration of a PL-DPN reaches another configuration only using finite
steps. However, we have to consider infinite runs of PL-DPNs when we study
LTL model checking.

In this work, we adapted the priority-lock structures to keep track also of
the infinitely used locks and priorities. Indeed, we need to assure that a finally
acquired lock, a lock that will not be released in the run, cannot be infinitely
used, and that an infinitely used priority does not block other threads.

After getting rid of locks and priorities using this extended priority-lock struc-
ture, we construct Büchi dynamic PDSs which are a synchronization of a PDS
i and the corresponding LTL formula fi. The language accepted by a Büchi
dynamic PDS corresponds to the configurations that satisfy the formula fi. This
language is computed by the automata-based approach for standard LTL model
checking for PDSs [2].

Thus, the main contribution of this paper is an algorithm for single-indexed
LTL Model Checking for PL-DPNs, developed in Sect. 5.
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2 Model Definition

Let L be the set of all locks and I be the set of all priorities. A PL-DPN can be
seen as a collection of threads running in parallel, each of them having a set of
acquired locks and a priority. They are able to:

1. Perform pushdown operations. This can be used to model calls and returns
from (possible recursive) functions.

2. Change its priority if its set of acquired locks is empty. Removing this con-
straint leads to undecidability [9].

3. Acquire a lock that does not belong to any set of acquired locks (between the
running threads).

4. Release a lock belonging to its set of acquired locks.
5. Create a new thread with any (initial) priority and an empty set of acquired

locks.

Definition 1. A Dynamic Pushdown System with Locks and Priorities (PL-
DPDS) is a tuple P = (P, Γ,Δ, ηp, ηl), where P is a finite set of control states,
Γ is a finite stack alphabet, ηp is a function from control states to priorities, ηl

is a function from control states to set of locks, Δ is a finite set of transition
rules of the following forms:

1. pγ
τ

↪−→ qω, with ηp(q) = ηp(p) and ηl(q) = ηl(p);

2. pγ
ch(x)

↪−−−→ qω, with ηp(q) = x and ηl(q) = ηl(p) = ∅;
3. pγ

acq l
↪−−−→ qω, with ηp(q) = ηp(p), ηl(q) = ηl(p) ∪ {l} and l �∈ ηl(p);

4. pγ
rel l

↪−−→ qω, with ηp(q) = ηp(p), ηl(q) = ηl(p) \ {l} and l ∈ ηl(p);
5. pγ

τ
↪−→ q1ω1 � q2ω2, with ηp(q1) = ηp(p), ηl(q1) = ηl(p) and ηl(q2) = ∅;

where p, q1, q2 ∈ P, γ ∈ Γ, w,w1, w2 ∈ Γ ∗, l ∈ L, x ∈ I. A Dynamic Pushdown
System (DPDS) can be seen as a PL-DPDS where ηp(p) = 0 and ηl(p) = ∅, for
all control state p.

A local configuration pω ∈ PΓ ∗, of a PL-DPDS P = (P, Γ,Δ, ηp, ηl), rep-
resents the state of a thread. The state of a thread consists of a priority, a set
of acquired locks and a stack. The priority of a thread and the set of acquired
locks are represented by the control state p and can be retrieved from it by using
the functions ηp and ηl, respectively. The stack of a thread is represented by the
sequence of stack letters ω ∈ Γ ∗.

The function ηp assigns a priority to each control state. Intuitively, this means
that a thread can be in configurations with different priorities. The function ηl

assigns a set of locks to each control state. This set of locks represents the locks
held (acquired but not yet released) by the thread at such configuration.

Definition 2. A Dynamic Pushdown Network with Priorities and Locks (PL-
DPN) is a tuple (Act, L, I,P1, . . . ,Pn), such that L is a set of locks, I is set of
priorities (natural numbers), Act is a finite set of actions {acq(l), rel(l) | l ∈
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L} ∪ {ch(x) | x ∈ I} ∪ {τ}, where the action acq(l) (resp. rel(l)) for every l ∈ L
denotes the acquisition (resp. release) of the lock l, the action ch(x) denotes
the change to priority x and the action τ denotes a pushdown action. For every
i ∈ {1, . . . , n}, Pi is a PL-DPDS. A Dynamic Pushdown Network (DPN) can
be seen as a PL-DPN with L = ∅ and I = {0}. A DPN can be represented as a
tuple (P1, . . . ,Pn), where each Pi is a DPDS.

A global configuration is a sequence of local configurations, each of them
corresponding to the configuration of one of the threads running in parallel on
the system. Let ConfM be the set of all global configurations of a PL-DPN M .

Following previous works, we assume that locks are used in a well-nested
fashion, i.e. a process has to release locks in the opposite order of acquisition,
an assumption that is often satisfied in practice. Note that for non-well-nested
locks even simple reachability problems are undecidable [11].

2.1 Example

The PL-DPN modeling the program of Fig. 1 can be defined as follows: M =
({acq l, rel l, ch l, τ}, {l}, {1},P1,P2,P3), where

– P1 = ({p1}, {m0,m1,mf}, {p1m0
τ

↪−→ p1m1 � p1a0, p1m1
τ

↪−→ p1mf �
p1b0}, ηp, ηl) such that ηp(p1) = 1 and ηl(p1) = ∅.

– P2 = ({p1, p1,l}, {a0, a1, a2, af}, {p1a0
acq l

↪−−−→ p1,la1, p1,la1
τ

↪−→ p1,la2, p1,la2
τ

↪−→
p1af , p1af

τ
↪−→ p1a0}, ηp, ηl) such that ηp(p1) = ηp(p1,l) = 1 and ηl(p1) =

∅, ηl(p1,l) = {l}.

– P3 = ({p1, p1,l}, {b0, b1, b2, bf}, {p1b0
acq l

↪−−−→ p1,lb1, p1,lb1
τ

↪−→ p1,lb2, p1,lb2
rel l

↪−−→
p1bf , p1,lb2

τ
↪−→ p1,lb1}, ηp, ηl) such that ηp(p1) = ηp(p1,l) = 1 and ηl(p1) =

∅, ηl(p1,l) = {l}.

Note that the initial configuration of this PL-DPN M is p1m0.

3 Semantics of the Model

The semantics of PL-DPNs is defined such that:

– Transitions of threads with highest priority should be executed first.
– Transitions that manipulate locks should follow the locking rules:

• A transition attempting to acquire a lock can only be executed if the lock
is free, i.e. does not belong to any set of acquired locks.

• A transition attempting to release a lock can only be executed if the lock
is in possession of the corresponding thread, i.e. in its set of acquired
locks.

We overload the functions ηp and ηl to global configurations as follows: for
all c = p1ω1 . . . pnωn ∈ ConfM , ηp(p1ω1 . . . pnωn) := max(ηp(p1), . . . , ηp(pn))
and ηl(p1ω1 . . . pnωn) := ηl(p1) ∪ · · · ∪ ηl(pn).
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Definition 3. The transition relation −→M is defined as the smallest relation
in ConfM × ConfM such that ∀c1, c2 ∈ ConfM :

1. c1 pγr c2 −→M c1 qωr c2,
if ηp(p) = ηp(c1 pγr c2), pγ

act
↪−−→ qω ∈ Δ, act ∈ {τ, rel l} ∪ {ch(x) | x ∈ I};

2. c1 pγr c2 −→M c1 qωr c2,

if ηp(p) = ηp(c1 pγr c2), l �∈ ηl(c1 pγr c2) and pγ
acq l

↪−−−→ qω ∈ Δ;
3. c1 pγr c2 −→M c1 q2ω2 q1ω1r c2,

if ηp(p) = ηp(c1 pγr c2) and pγ
τ

↪−→ q1ω1 � q2ω2 ∈ Δ;

where p, q, q1, q2 ∈ P, γ ∈ Γ, ω, ω1, ω2, r ∈ Γ ∗, l ∈ L.

The semantics above says that:

1. A thread in a local configuration with control state p and top of stack γ,
can move to a local configuration with control state q, replacing the top of its
stack γ by ω, if there is a τ , ch(x) or release rule pγ ↪−→ qω ∈ Δ and its priority
(ηp(p)) is equal to the highest priority among all the threads (ηp(c1 pγr c2));

2. A thread in a local configuration with control state p and top of stack γ, can
move to a local configuration with control state q, replacing the top of its

stack γ by ω, if there is an acquire rule pγ
acq l

↪−−−→ qω ∈ Δ, the lock that the
rule attempts to take is free (l �∈ ηl(c1 pγr c2)), and its priority (ηp(p)) is
equal to the highest priority among all the threads (ηp(c1 pγr c2));

3. A thread in a local configuration with control state p and top of stack γ can
move to a local configuration with control state q1, replacing the top of its
stack γ by ω1 and create another thread in control state q2 with stack ω2, if
there is a rule pγ

τ
↪−→ q1ω1 � q2ω2 ∈ Δ and its priority (ηp(p)) is equal to the

highest priority among all the threads (ηp(c1 pγr c2)).

Note that the semantics of locks corresponds to the one of spin-locks, found
in most of the libraries for threads (like Pthreads). Spin-locks are similar to
mutexes, but they might have lower overhead for very short-term blocking. When
the calling thread requests a spin-lock that is already held by another thread,
the calling thread spins in a loop to test if the lock has become available. This
means that if a thread with lower priority, holding a lock l, is interrupted by
a thread with higher priority, attempting to acquire the same lock, then the
program becomes blocked (assuming there is only one CPU). In this paper we
assume that programs are free of deadlocks since they can be detected using the
technique of our previous work [9].

We call DPN semantics to the semantics resulting from dropping the lock and
priority constraints from the PL-DPN semantics. A run of a PL-DPN (or DPN) is
the sequence of configurations resulting from the application of the corresponding
semantics rules. Given a configuration c, the set of immediate predecessors of c in
a PL-DPN M is defined as preM (c) = {c′ ∈ ConfM : c′ −→M c}. This notation
can be generalized straightforwardly to sets of configurations. Let pre∗

M denote
the reflexive-transitive closure of preM . For the rest of this paper, we assume
that we have fixed a PL-DPN M = (Act, L, I,P1, . . . ,Pn).
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4 Priority-Lock Structures

Definition 4 (From [9]). A priority-lock structure of a global run R, of a PL-
DPN under DPN semantics (dropping lock and priority constraints), is defined
as either a tuple �x, y, gr, ga, la� or the symbol ⊥.

In [9] is given an algorithm to compute a priority-lock structure from a finite
global run R such that: we get ⊥ if the run is not valid under PL-DPN semantics,
or we get the tuple �x, y, gr, ga, la� otherwise, where:

– x is the lowest transition priority, between the control states visited during
the run;

– y is the highest final priority, between the control states of the final configu-
ration;

– gr is a set of dependencies, between lock usages (acquire and release of a lock)
and final releases (release without acquisition) of a lock;

– ga is a set of dependencies, between lock usages and initial acquisitions (acqui-
sition of a lock without the corresponding release) of a lock;

– la is the set with all lock actions in the run, and their corresponding priorities.

In this work, we just need to know that given a PL-DPN M and a regular set
of configurations S, we can construct a DPN M ′ ([9]), with priority-lock struc-
tures embedded in the control states, such that the predecessor configurations
of S over M are the predecessor configurations of S over M ′ with a priority-lock
structure not equal to ⊥. Formally, from [9]:

Theorem 1. pre∗
M (S) = {pω | (p, s)ω ∈ pre∗

M ′(S × �∞, 0, ∅, ∅, ∅�) ∧ s �= ⊥}.
Using the previous theorem we can reduce LTL model checking on the PL-

DPN M to a series of pre∗ queries over a DPN M ′. In order to keep the queries
consistent with each other, taking in account the priorities and locks, we need to
inspect the priority-lock structure stored in the configurations. For this reason,
given a control state p in the DPN M ′, we define X(p), U(p) and A(p), to be
the lowest transition priority, the set of usages and the set of final acquisitions,
respectively, embedded in the control state p.

4.1 Example

The PL-DPN M of Example 2.1 can be reduced to the DPN M ′ =
({τ},P ′

1,P ′
2,P ′

3), using the algorithm from [9], where:

– P ′
1 = ({p′

0 = (p1, �1, 1, ∅, ∅, ∅�), p′
1 = (p1, �1, 1, ∅, ∅, {(l, usg, 1, 1)}�),

p′
2 = (p1, �1, 1, ∅, ∅, {(l, acq, 1, 1)}�),

p′
3 = (p1, �1, 1, ∅, ∅, {(l, acq, 1, 1), (l, usg, 1, 1)}�), p′

4 = (p1,⊥), },
{
m0,m1,

mf

}
,

{p′
1m0

τ
↪−→ p′

1m1 � p′
1a0, p

′
3m0

τ
↪−→ p′

1m1 � p′
2a0, p

′
3m0

τ
↪−→ p′

2m1 � p′
1a0,

p′
4m0

τ
↪−→ p′

2m1 � p′
2a0, p

′
2m0

τ
↪−→ p′

0mf � p′
2b0, p

′
1m0

τ
↪−→ p′

0mf � p′
1b0, })

– P ′
2 and P ′

3 are defined in a similar way.

Here we abbreviate usage with usg.
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5 Single-Indexed LTL Model Checking for PL-DPNs

5.1 Linear Temporal Logic (LTL) and Büchi Automata

From now on, we fix a finite set of atomic propositions AP .

Definition 5. The set of LTL formulas is given by (where q ∈ AP ):

ϕ ::= q | ϕ1 ∧ ϕ2 | ¬ϕ | Xϕ | F ϕ | G ϕ | ϕ1 U ϕ2

Given an ω-word α = α0α1 . . . over 2AP , let αk denote the suffix of α starting
from αk. The notation α |= ϕ indicates that α satisfies ϕ, where |= is inductively
defined as follows: α |= q if q ∈ α0; α |= ¬ϕ if α¬ |= ϕ; α |= ϕ1 ∧ ϕ2 if α |= ϕ1

and α |= ϕ2; α |= Xϕ if α1 |= ϕ; α |= ϕ1Uϕ2 if there exists k ≥ 0 such that
αk |= ϕ2 and for every j : 1 ≤ j < k, αj |= ϕ1. The temporal operators F and G
can be defined using the following equivalences: F ϕ ≡ true Uϕ, G ϕ ≡ ¬F ¬ϕ.

Definition 6. A Büchi automaton (BA) B is a tuple (G,Σ, θ, g0, F ), where G
is a finite set of states, Σ is the input alphabet, θ ⊆ G × Σ × G is a finite set
of transitions, g0 ∈ G is the initial state and F ⊆ G is a finite set of accepting
states.

A run of B over an ω-word α0α1 . . . is a sequence of states q0q1 . . . s.t. q0 = g0

and (qi, αi, qi+1) ∈ θ for every i ≥ 0. A run is accepting iff it infinitely often visits
some states in F .

Theorem 2 (From [15]). Given a LTL formula f we can construct a BA Bf

recognizing all the ω-words that satisfy f .

5.2 The Model Checking Problem

The model checking problem of PL-DPNs against double-indexed LTL formulas,
where the validity of atomic propositions depends on two or more PDSs, is
undecidable [10].

In this work, in order to obtain decidability results, we consider the model-
checking problem of PL-DPNs against single-indexed LTL properties of the form
f =

∧n
i=1 fi, where fi is interpreted over the PL-DPDS Pi.

Let λ be a labeling function λ :
⋃

i Pi → 2AP , that assigns to each control
state of the PL-DPN M a set of atomic propositions.

Definition 7. Given a labeling function λ, a local run r = p0ω0p1ω1 . . . of
a PL-DPDS P satisfies a LTL formula f , denoted by r |= f , iff the ω-word
λ(p0)λ(p1) . . . satisfies f .

Definition 8. A global run R satisfies a single-indexed LTL formula f =
∧

i fi,
denoted by R |= f , iff all local runs of each instance of each PL-DPDS Pi,
running in parallel in R, satisfy the corresponding formula fi.
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Definition 9. A PL-DPN M , with initial configuration p0γ0, satisfies the
single-indexed LTL formula f =

∧
i fi, iff all global runs starting with p0γ0

satisfy f , denoted by M |= f .

These definitions are extended to DPNs and multiple initial configurations in
a straightforwardly way. From now on, we fix a single-indexed LTL formula
f =

∧n
i=1 fi.

5.3 The Model-Checking Approach

In this section, we assume having the DPN M ′, of Sect. 4, and we extend its
DPDSs with a Büchi acceptance condition.

Definition 10. A Büchi DPDS (BDPDS) is a tuple BP = (P, Γ,Δ, F ), where
(P, Γ,Δ) is a DPDS and F ⊆ P is a finite set of accepting control states.

For i ∈ {1, . . . , n}, given Bi = (Gi, Σi, θi, g
0
i , Fi) the Büchi automata rec-

ognizing the ω-words that satisfy the LTL formula fi and the DPDSs Pi =
(Pi, Γi,Δi), we create the Büchi DPDS as follows:

Definition 11. The BDPDSs BPi are defined as ((Pi×Gi)×(2L×I), Γi,Δ
′
i, F

′
i )

where F ′
i = {((p, g), (U(p),X(p))) | (p, g) ∈ Pi × Fi}. The rules in Δ′

i are com-
puted such that for every (g1, λ(p), g2) ∈ θi, a ∈ Act, x, x1, x2 ∈ I, u, u1, u2 ∈ 2L,
g1, g2 ∈ Fi, g0j ∈ Fj and (p2, s2)ω2 ∈ Pj × Γ ∗

j we have:

1. ((p, g1), (u, x))γ
a

↪−→ ((p1, g2), (u, x))ω1 ∈ Δ′
i, if pγ

a
↪−→ p1ω1 ∈ Δi,

2. for all pγ
a

↪−→ p1ω1 � p2ω2 ∈ Δi,
((p, g1), s1 ⊕ s2)γ

a
↪−→ ((p1, g2), s1)ω1 � ((p2, g0j ), s2)ω2 ∈ Δ′

i,
where s1 ⊕ s2 = (u1 ∪ u2, x1) if s1 �= ⊥, s2 �= ⊥, A(p1) ∩ u1 = A(p2) ∩ u2 = ∅
and x1 = x2; or s1 ⊕ s2 = ⊥, otherwise. Similar for a non-spawning rule.

Intuitively, the BDPDS BPi synchronizes the DPDS Pi with the formula fi.
In this definition, we introduce a new kind of priority-lock structure, the tuple
(u, x), where u is the set of locks and x is the lowest priority used an infinite
number of times in the run. We initialize them in the definition of the set of
final states, obtaining the value from the control state, and we propagate them
towards the beginning of the run using the transition rules. This tuple is nec-
essary to detect the cases where we use an infinite number of times a lock that
was acquired but not released in another thread. This cases create livelocks, and
are detected because the priority-lock structure of the initial configurations of
these runs are marked by ⊥.

Let L(BPi) be the set of all the tuples (((p, g0i ), (u, x))γ,D), such that BPi has
an accepting run starting from the configuration ((p, g0i ), (u, x))γ, using infinitely
the lowest priority x, the set of locks u and spawning the set of configurations
D. We can compute the language of BPi using the algorithm from [2]:

Theorem 3 (From [2]). For every BDPDS BPi = (Pi, Γi,Δi, Fi), we can con-
struct a finite automaton Ai such that L(Ai) = L(BPi).
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Theorem 4. Given a DPDS Pi = (Pi, Γi,Δi) and a LTL formula fi we can
compute an BDPDS BPi such that pω |=D fi iff ((p, s)ω,D) ∈ L(BPi) and
s �= ⊥.

This theorem says that, when s �= ⊥, the runs of other threads starting from
configurations in D do not create livelocks.

5.4 Main Algorithm

Given a PL-DPN M = (Act, L, I,P1, . . . ,Pn), with starting configuration p0γ0,
and a single-indexed LTL formula f =

∧
i fi, in order to check if M |= f , we

proceed as follows:

1. Create the DPN M ′ = (P ′
1, . . . ,P ′

n).
2. Create Büchi automata B¬

i satisfying the formulas ¬fi.
3. Construct BDPDSs B¬

i P ′
i from the DPN M ′ and the Büchi automata B¬ of

(2), as in Definition 11.
4. If an initial configuration ((p′

0, g0), (u, x))γ0 is in X (the set of configurations
that satisfy the formula ¬f), with some set of locks u and priority x, then
M �|= f . Otherwise, we continue to the next step, to be sure there are no
livelocks.

5. Create Büchi automata Bi satisfying the formulas fi.
6. Construct BDPDSs BiP ′

i from them the DPN M ′ and the Büchi automata
Bi of (5), as in Definition 11.

7. If an initial configuration ((p′
0, g0),⊥)γ0 is in Y (the set of of configurations

that satisfy the formula f), then there is a livelock and M �|= f . Otherwise
M �|= f .

We can construct the set X in the following iterative way:

1. X ′ =
⋃

i L(B¬
i P ′

i).
2. X = {pγ | (pγ,D) ∈ Z ∧ D ∩ X ′ �= ∅}.
3. If X �= X ′, set X ′ = X and go to 2. Otherwise return X.

The set Z, is the language of initial configurations of all infinite paths in each
DPDS P ′

i. We can construct the set Y in the following iterative way:

1. Y ′ =
⋃

i L(BiP ′
i).

2. Y = {(pγ,D) ∈ Y ′ | ∀p′γ′ ∈ D ∃D′ ⊆ ConfM ′ s.t. (p′γ′,D′) ∈ Y ′}.
3. If Y �= Y ′, set Y ′ = Y and go to 2. Otherwise return Y .

Theorem 5. A PL-DPN M satisfies a single-indexed LTL formula f (M |= f)
iff there is not initial configuration in X with non-bottom priority-lock structure
and there is not initial configuration in Y with bottom priority-lock structure.
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5.5 Example

We want to check if the single-indexed LTL formula f = f1 ∧ f2 ∧ f3, where
f1 = true, f2 = GF a1 and f3 = GF b1, is satisfied by the PL-DPN M =
(Act,P1,P2,P2) of Example 2.1.

The first step is to create the DPN M ′ = (P ′
1,P ′

2,P ′
3) as in Example 4.1.

The second step is to create Büchi automata B¬
1 , B¬

2 and B¬
3 recognizing the

ω-words that satisfy the formulas ¬f1 = false, ¬f2 = FG ¬a1 and ¬f3 =
FG ¬b1, respectively. Then we create the BDPDSs B¬

1 P ′
1, B¬

2 P ′
2 and B¬

2 P ′
3 using

Definition 11. The next step is to construct the set of configurations X, we get:

1. X ′ = L(B¬P1) ∪ L(B¬P2) ∪ L(B¬P3) = ∅ ∪ ∅ ∪ ∅ = ∅.
2. X = {pγ | (pγ,D) ∈ Z) ∧ D ∩ ∅ �= ∅} = ∅.

We have that X = ∅, this means that the negation of f is not satisfied, but
still can be the case that we have a livelock. Thus, we continue calculating Y .
The algorithm proceeds as follows:

1. L(BP ′
1) = {(((p′

3, g0),⊥)m0, {((p′
1, g0), ({l}, 1))a0, ((p′

2, g0), (∅, 1))b0}), . . . }.
2. L(BP ′

2) = {((p′
1, g0), ({l}, 1))a0, ∅)} with A(p′

1) = ∅.
3. L(BP ′

3) = {((p′
2, g0), (∅, 1))b0, ∅)} with A(p′

2) = {l}.
4. Y ′ = L(BP ′

1) ∪ L(BP ′
2) ∪ L(BP ′

3).
5. Y = {(((p′

3, g0),⊥)m0, {((p′
1, g0), ({l}, 1))a0, ((p′

2, g0), (∅, 1))b0})}.

We can observe that Y has the initial configuration ((p′
3, g0),⊥)m0. This

configuration has a ⊥ priority-lock structure, since the child corresponding to
thread A infinitely uses lock l and the child corresponding to thread B acquire
lock l without releasing it (see the rules of Definition 11). This means that there
is a livelock and then the formula f is not always satisfied int the PL-DPN M .
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Abstract. In the last few years, multicasting is increasingly used as an efficient
communication mechanism for group-oriented applications in the Internet. This
progress has motivated Internet research community to propose many multicast
routing protocols to support efficiently multimedia applications such as IPTV,
videoconferencing, group games. However, these multicast routing protocols
doesn’t designed for mobile members and sources, and has not tested in wireless
and mobile environment since they were introduced for multicast parties whose
members and sources are topologically stationary. In addition, multicast appli-
cations require confidentiality for transmitted data. Traffic encryption key is used
to assure this confidentiality and has to be changed and distributed to all valid
members whenever a membership change (join or leave) occurs in the group and
members move from one network to another. Our goal aims to support secure
group communications in mobile environments. This paper presents OSM-GKM
a new scheme to secure a transparent multicast communication in mobile
environment based on Optimal Shared Multicast tree protocol. Its contribution is
twofold: first, we evoke transparent multicast routing in mobile IPv6. Second,
we present an architecture topology to transmit keys to multicast members. The
paper is concluded with simulation studies, which show that our architecture
achieves better performance in terms of delay, variation delay and tree cost for
rekeying process.

Keywords: Multicast IP � Mobile IP � Key management � PIM-SM

1 Introduction

The phenomenal growth of the Internet in the last few years, the increase of bandwidth
in today networks and the progress of network multimedia technology has provided
both inspiration and motivation for the development of new group-oriented applica-
tions and services, with the promise of reaching the millions of users on the Internet. To
support group-oriented communication more and more applications are relying on an
underlying IP facility to disseminate information to several receivers simultaneously
with minimum overheads. This progress has also motivated Internet research com-
munity to propose many multicast routing protocols to support efficiently many
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important new emerging distributed real-time and multimedia applications, such as
IPTV, video on demand (VoD), audio- and video-conferencing, e-learning, group
games, database replication, software distribution, collaborative environments and
distributed interactive simulation. As well as non-real-time services such as database
replication, and software updates or distribution.

In other side, mobility is considered a key technology of the next generation
Internet and has been standardised within the IETF. The extension of group commu-
nication to the mobile environment remains a great challenge, more difficult and
complex in key management protocols, fewer efforts have been spent in the specific
problems of mobile members and sources. Mobile devices typically suffer from such
primary constraints as mobiles members’ move from attachment point in one sub-
network to another one to another sub-network, which is challenging. Additionally,
Mobile devices suffer of bandwidth limitation, low computation power, and low
capacity storage [19, 33].

In a multicast environment that needs access control, it is unfeasible to deploy
mobility without reliable mechanisms of mobile source and receiver’s identification
and authorisation. OSM-GKM approach aims to support secure group communications
in mobile environments. In this paper, we describe the security issues in multicasting IP
in mobile environment and propose a decentralised secure multicast group key man-
agement architecture in mobile IP environments where the group is organised into
clusters of areas, and areas of the same clusters use a common set of keys. The
proposed architecture and schemes match the key management tree to the mobile
multicast environment for best focusing the delivery of the rekeying messages,
reducing the communication costs, and solving the handoff problem in mobile member
area. We conducted several simulations of the proposed protocol and the obtained
results show that our architecture solution is efficient and achieves better performance
trade-offs compared to other schemes while reducing the overall overhead and the
number of re-keying messages and has no security failures.

The rest of this paper is organised as follows: Sect. 2 gives an overview of mul-
ticast IP, Mobile Ipv6 and group key management in mobile IP. In Sect. 3, we over-
view proposed group key management protocols and architecture for mobile
environment in the literature. In Sect. 4, we present our architecture for group key
management in mobile environments and our re-keying strategy. In Sect. 5, we give
our simulation model and results. Finally, Sect. 6 concludes the paper.

2 Terminology

2.1 Multicast IP

The IP and IP Multicast protocols are standardised by the Internet Engineering Task
Force (IETF). In 1991 Deering [13] is the first to propose a technique called Multi-
cast IP in his thesis work to support Group based applications. IP multicast is emerging
to be the future vehicle of delivery for multimedia on the Internet, with the promise of
reaching the millions of users on the Internet. One crucial architecture component to
this future vision is the multicast routing protocol that delivers multicast data packets
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(data stream) to group members, following the basic IP multicast model proposed in
[13]. Multicast IP is a routing approach to ensure one-to-multiple and multiples-to-
multiple communication. Multicast IP duplicates IP packets at routers level and
delivers them to the intended receivers. Multicasting aims to deliver data to a set of
selected receivers in an effective way: application sender needs to send just one single
copy of each packet and address it to the group of involved computers; the network
takes care of message duplication to the receivers of the group. Consequently, IP
Multicast avoids processing overheads associated with replication at the source and
saves the network bandwidth.

2.2 Mobile IP (MIP)

The most widely employed network protocol IP (IPv6 and IPv4) is not designed to
handle natively the issues of mobility. For this purpose, NEMO working group in
Internet Engineering Task Force (IETF) develops a new protocol as an enhancement to
the existing Internet Protocol called Mobile IP (MIP) [X] of IPv4 (MIPv4) and IPv6
(MIPv6). The main objective of IP mobility support is to propose a set of network-
based mobility management protocols and mechanisms to support mobile nodes
(MNs) for IP with mobility. Mobile IP enable a mobile host to change its point of
attachment to the Internet while still maintaining connectivity with its Correspondent
Nodes (CNs) during its movement at the transport layer (i.e., TCP/UDP), which usually
assumes that a host address is permanent [30].

An operational overview of MIP as presented in RFC 3775 [22]. Mobile IP
addresses the problem by introducing two IP addresses for mobile hosts: regardless of
its location on the Internet, the host is always identified by its permanent static home
address, which it is known globally across the network, when attached to different
networks other than its home network so-called foreign network, the host obtains a
temporary transient CoA. This address acquired through either two mechanisms [35],
stateless [21] or state-full auto-configuration [28] mechanisms.

2.3 Multicast Mobile IPv6 (MMIPv6)

Multicast routing protocols doesn’t designed for mobile members, and has not tested in
wireless and mobile environment since they were introduced for multicast parties
whose members and sources are topologically stationary. In particular, seamless sup-
port for mobile multicast senders requires efforts significantly exceeding unicast
mobility management schemes.

Multicast IP is known by highly dynamic multicast group membership join and
leave. This dynamism can rapidly affect quality of both routing protocol scheme and
multicast tree used. Studying and solving multicast issues in the stationary multicast
infrastructure has been largely studied in the literature. However, fewer efforts have
been spent in the specific problems of mobile members and sources caused by the
frequent change of membership and point of attachment. The scenario of hand-over
where a mobile source moves from attachment point in one sub-network to another one
in another sub-network is challenging. Multicast source is identified by a Home
Address HoA, but the mobile IP protocol implies acquisition of a new topologically
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Care-of-Address CoA at each handoff resulting in a change of identity of the multicast
source, however, the established multicast routing states are always based on the home
address of the mobile source. Mobile IPv6 introduces two basic methods, known as bi-
directional tunnelling and remote subscription [22].

2.4 Key Management in Multicast Mobile IPv6

After this presentation of multicast IP and mobile IP, the main three functional areas are
multicast data handling, group key management, and the multicast security policies.
Multicast security and group key management issues may be considered as two main
aspects: the first being end-to-end security (i.e. protection of the multicast traffic
content). The second being multicast infrastructure security (i.e. security issues in the
multicast delivery tree, the delivery tree comprising multicast routers in charge of
transmitting and receiving multicast traffic from sources and receivers, and other nodes
connected there between). For successfully deploying many multicast service in the
mobile environment, security infrastructure must be developed that manage the keys
needed to provide access control to content.

Many measures to address the second problem are known in that it is sufficient to
secure the control messages of multicast routing protocols to ensure that the multicast
tree has been correctly built as proposed for MOSPF (Multicast Open Shortest Path
First), PIM-SM (Protocol Independent Multicast-Sparse Mode), and CBT (Core Based
Tree). However, securing multicast routing protocols is not sufficient to protect the
multicast distribution tree since it only ensures that the group membership subscription
information maintained in the edge multicast routers are populated correctly. They do
not have the ability to check whether a particular host is authorised to join a particular
group, or whether a given host is authorised to send its traffic over the tree towards
group receivers.

3 State of Art

The article illustrates a survey of existing group key management schemes that
specifically consider the host mobility issue in securing group communication in
mobile environments. A brief citation of existing static group key management
schemes are presented especially extended schemes with mobility.

There are many research works to secure multicast communications, many group
key management protocols and architectures have been conducted in the literature to
address the security issue in group communication [20]. Several survey studies are
published, to cite this group key management protocols and architectures [4, 26, 31,
32]. These survey papers categorise these existing secure multicast protocols into
multiple categories, such as flat scheme and the hierarchical scheme [14], or cen-
tralised, decentralised and distributed. These categories are deduced from the mecha-
nism, which is used for generating the traffic encryption key. Either a single or multiple
entities or the collaboration of the group members can generate the TEK.

Logical Key Hierarchy (LKH) protocol proposed at same time by Wong et al. [36]
and Wallner et al. [12] is one of the most widely used group key management schemes.
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In the LKH scheme, a hierarchy of keys is used to reduce the required number of TEK
update messages induced by re-keying after membership changes to the order of log
(n). The Iolus scheme, proposed by Mittra in [27], is designed as a framework of a
hierarchy of multicast subgroups, each subgroup is managed by a Group Security
Agent (GSA), which is responsible for key management inside the subgroup. To
manages all Group Security Agents (GSAs) of all subgroups, Iolus [27] uses a main
controller called the Group Security Controller (GSC). When a membership change
occurs in a subgroup, only conserned subgroup is involved in a rekey process. This
way, Iolus scales to large groups and mitigates 1-affects-n phenomenon. In the Balade
scheme, proposed by [9], authors uses a decentralised architecture with the common
TEK, which decomposes dynamically a group into a number of clusters. A local
manager is responsible to manage each cluster. A common key is shared between the
cluster manager and the members residing in the cluster.

While the problem of developing efficient group key management protocols is
difficult, the problem becomes more difficult and complex when we consider member
mobility [6]. Few efforts have been done to explicitly address the mobility issue of
members from one area to another one while remaining in the session with a trans-
parent key management. This section gives an overview on proposed solutions in
details.

To reduce the 1-affects-n phenomenon, Kamat et al. proposed Micro-grouped
IOLUS (M-Iolus) scheme [23], which is version of Iolus, that supports members
mobility. To reduce the 1-affects-n phenomenon, M-Iolus [23] divides subgroups into
micro-subgroups. M-Iolus [23] introduced a subgroup manager, called GSA, respon-
sible to form dynamically a number of micro groups. This design reduces the com-
munication overhead of updating keying materials on any changes. A micro key is
shared among all members belonging to the same micro group, which is used for
protecting all controlling messages transmitted.

Key management scheme to Secure Group Communication in Mobile Environ-
ments KMGM, proposed by [17], adopted a decentralised approach with the inde-
pendent TEK, ASGK [10], as the main group key management scheme. KMGM [17]
authors proposed organizing the group into a hierarchy of administrative areas, this
hierarchy of areas is partitioned into clusters of areas. Where an Area Key Distributor
(AKD) manages each are: this management include its responsibility for the key
management process inside the area under its control and is considered as a member in
its area and in its parent area. The scheme introduce null rekeying for intra move
between areas of the same cluster. Consequently, the communication overhead and 1-
affects-n overhead using KMGM [17] is lower than the other similar schemes. The
main drawback of this scheme: the backward secrecy is breached as the mobile member
may access to the security information of visited area, which is valid, prior the mobile
member joined the group.

Kiah and Martin [24, 25] proposed a decentralised key management protocol
GKMW where they address the mobility issue of members. Kiah et al. [25] employed a
decentralised approach with a common TEK and proposed a group key management
scheme that facilitates the host mobility in wireless mobile environment using a list as
part of the protocol. In this protocol the group key managers including two types of
agents: Domain key Manager DKM and Area Key Manager AKM. The Domain key
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Manager DKM is the main key manager of a domain and AKM (Area Key Manager) is
the key manager of one area inside a domain.

4 Proposed Solution

In this section, the detailed architecture of the proposed secure group key management
models for mobile services are described.

4.1 Overview

Multicast security issues may take in consideration two main parts: the first part end-to-
end security including secure end-to-end multicast traffic content; the second part
multicast infrastructure and signaling security including security issues in the Multicast
Delivery Tree. Multicast infrastructure may comprise multicast routers in charge of
transmitting and receiving multicast traffic from sources and receivers (sources DR and
receivers DR), and other nodes connected there between forming the multicast tree.
Multicast signaling may comprise all signaling messages used to maintain multicast
tress and group membership management (i.e. MLD). The Multicast Delivery Tree
incorporate all multicast routers in charge of transmitting and receiving multicast traffic
from sources and receivers, and including other nodes connected there between.

4.2 Mathematic Modeling and Notations

A computer network is modeled as a simple directed and connected graph G = (N, E),
where N is a finite set of nodes and E is the set of edges (or links) connecting the nodes.
Let |N| be the number of network nodes and |E| the number of network links. An edge e
2 E connecting two adjacent nodes u 2 N and v 2 N will be denoted by e(u, v), the fact
that the graph is directional, implies the existence of a link e(v, u) between v and u.
Each edge is associated with two positive real value: a cost function C(e) = C(e(u, v))
represents link utilization (may be either monetary cost or any measure of resource
utilization), and a delay function D(e) = D(e(u, v)) represents the delay that the packet
experiences through passing that link including switching, queuing, transmission and
propagation delays. We associate for each path P(v0, vn) = (e(v0, v1), e(v1, v2),…,
e(vn-1, vn)) in the network two metrics:

C P v0; vnð Þð Þ ¼
Xn�1

0

C e vi; viþ 1ð Þð ÞAnd D P v0; vnð Þð Þ ¼
Xn�1

0

D e vi; viþ 1ð Þð Þ

A multicast tree TM(S, C, D) is a sub-graph of G spanning the set of sources node S
� N and the set of destination nodes D � N with a selected Core router C. Let |S| be the
number of multicast destination nodes and |D| is the number of multicast destination
nodes. In Protocols using Shared multicast Tree, all sources node needs to transmit the
multicast information to selected Core C via unicast routing, then it will be forwarded
to all receptors in the shared tree, to model the existence of these two parts separated by
Core C router, we use both cost function and delay following:
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C TM S;C;Dð Þð Þ ¼
X

s2S C P s;Cð Þð Þþ
X

d2D C P C; dð Þð Þ ð3Þ

And D TM S;C;Dð Þð Þ ¼
X

s2S D P s;Cð Þð Þþ
X

d2D D P C; dð Þð Þ ð4Þ

We also introduce a Delay Variation (7) function defined as the difference between
the Maximum (5) and minimum (6) end-to-end delays along the multicast tree from the
source to all destination nodes and is calculated as follows:

MaxDelay ¼ MaxðD TM S;C;Dð Þð Þ ð5Þ

MinDelay ¼ MinðD TM S;C;Dð Þð Þ ð6Þ

DelayVariation ¼ MaxDelay �MinDelay ð7Þ

Rendezvous Point RP selection problem tries to find an optimal node RP in the
network with an optimal function Opt_F by minimizing in the first time the cost
function C(TM(S, RP, D)) and in the second a Delay and delay variation bound as
follows:

Opt F RP; TMð Þ
MinC TM S;RP;Dð Þð Þ

Delay\a
DelayVariation\b

8<
: ð8Þ

4.3 Multicast Based Key Management

Existing protocol implementations for multicast routing, like PIM-SM [15], or
enhanced route optimization for MIPv6 [1] can easily be adapted, since all processing
functions are already available

Our proposal uses a multicast routing protocol based in Shared Multicast Tree SMT
(or core based tree CBT), such as the Protocol Independent Multicast – Sparse Mode
protocol (PIM-SM) [15] or Core-Based Tree (CBT) [7] protocol, to deliver keys be-
tween Mobile Multicast Group Members and Multicast Routing Tree. Our SMT choice
is motivated by its scalability and dynamism; In general, SMT based protocols are
designed for the larger and sparser groups encountered on the Internet. Without any
dependence to unicast protocol and infrastructure topology, SMT based protocols uses
soft state mechanisms to adapt to underlying topology-gathering protocol to develop a
routing table.

4.4 Core Based Key Management

We can note, that SMT based protocol has several interesting characteristics. First, the
transition property; that is, it transmits from the shared tree to source-based tree. For
example, PIM-SM [15] is a multicast routing protocol based by default initially in
Shared Rendezvous Point Tree SRPT [2, 5] to forward multicast packets. This kind of
tree separate the concept of source from receivers, Joining and leaving a group member
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is achieves explicitly in a hop-to-hop way along the shortest path from the local router
to core router resulting in less control overhead, efficient management of multicast path
in changing group memberships, scalability and performance [8, 15]. After the receiver
receives the multicast packets from the RP through the shared tree, it gets the other
multicast packets directly from the source through the source-based tree if this tree is
shorter.

RP is the core router of PIM-SM; all the senders report their existence to one or
more RPs, and PIM-SM maintains the traditional IP multicast service model of
receiver-initiated membership, the receivers find the multicast session by querying
explicitly RPs. Furthermore, routers member of the multicast delivery tree join the
PIM-SM tree through explicit message when there are downstream receivers.

All this characteristics combining flexibility and scaling make PIM-SM more
suitable for those groups where members are dynamic and distributed sparsely across a
wide area. The solution proposed to secure key distribution makes use of the fact that
the Rendezvous Point (RP) is a good decision-point for access control and that the
group-key management event can be extended to facilitate receiver access control.

As described in literature [20] and in PIM Working Group IETF specifications [15]
as an introduction to secure PIM protocol, when security is enabled, all PIM version 2
messages will carry an IPsec authentication header (AH) [29].

4.5 Architecture

First, we show that partitioning the group into clusters of subgroups that use inde-
pendent traffic encryption keys can be formulated as tree partitioning problem. In other
words, it is possible that each subgroup members in the key tree is in the different area.
When the membership changes, the rekeying messages are generated per each sub-
group. In our work, we propose an architecture to solve the problem with respect to the
application requirements and membership behaviour, consequently, the key manage-
ment tree that matches the mobile multicast topology. Note that in this proposed
solution, the routers within the main multicast distribution tree and temporary multicast
distribution tree exchange key management signaling massages and do not maintain
any host-identification information. Hence, the solution still promotes the “anonymous-
receiver” approach underlying the IP multicast model [29], first proposed by Deering
[13] in ASM and style respected in SSM communication mode.

Our proposition is based in One-to-many multicat model independent on the net-
work topology. One-to-many multicast covers such scenarios where the multicast
group has only one sender and multiple receivers. Only one sender can transmit the
data and the transmission is unidirectional from the sender to other group members.
The sender is the producer of the data and the receivers are the passive consumers of
the data.

Some examples of this multicast application include video-on-demand, Internet TV
and other applications such as broadasting of stock quotes and news.

Our architecture is based on PIM-SM [15] multicast protocol with a simultaneously
active, independent cores Shared Tree to manager the multicast mobile receivers and
sources as defined by [6]. We choose the PIM-SM [15] multicast protocol as an
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example of multicast protocol because of his efficiency join/leave manager by using a
Rendezvous Point RP router to store multicast routing state.

Each domain contains two type of networks: network with mobile nodes and net-
work with fixed nodes. There are, also, two types of specialized controllers, that
control, manage, generate and distribute the keys. They are Domain Controller and
Area Controller. All the members (mobiles or fixes) in the service belong to the domain
controlled by a Domain controller. Based on the administrative regions and connected
sub-network, the domain is divided into areas. Each area is controlled and managed by
area controller called Mobile Area Key Distribtor MAKD.

As specified in [6], The primary multicast tree can be constructed by any multicast
routing protocol, such as, DVMRP, CBT, and PIM, our architecture is independent on
used routing protocol (Fig. 1).

In the Multicast delivery temporary tree, the whole group of a specific HoA can be
organised in a multicast hierarchy Shared Tree having as a root the selected RP where
traffic source is connected. Therefore, mobile group members in the Multicast delivery
temporary key tree could not neighbour each other. In other words, it is possible that
each mobile group member in the Multicast delivery temporary key tree be in the
different area. Multi-domain multicast routing need to use another protocol to manage
multicast source, such as PIM-SM with Multicast Source Discovery Protocol (MSDP)
[16]. Currently, no specific security measures are incorporated into MSDP [16] that
interconnects multiple inter-domains Rendezvous Points (RPs) within PIM-SM.

4.6 Cluster Presentation

The construction of clusters can be done using different heuristics and algorithms
presented in state of art section and in many previous works [10, 11, 18]. Each domain
contains two type of networks (nodes): network with mobile nodes and network with
fixed nodes.

Fig. 1. Architectural topology
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Contrary to cited solution in the state of the art section, which the rekeying message
of one subgroup or cluster is duplicated several times and delivered to each different
region, our architecture create independent clusters. The principle of our approach is
based on merging in the same cluster subgroups having homogeneous membership
dynamism based in mobility.

Each cluster is composed of a set of subgroups that share the same TEK. These
subgroups are called area. Initially all multicast group members constitute a single
cluster and use the same keys encryption (TEK). In Fig. (2) for example, subgroups
belonging to the Cluster 3 use the same traffic encryption key TEK3, which is different
from TEK2, the traffic encryption key of Cluster 2.

4.7 Area Presentation

Our approach is logically hierarchical organization into subgroups. The partitioning of
group members into subgroups aims to reduce the 1-affects-n phenomenon and to to
find a hierarchic clusters of subgroups with similar membership change frequencies
which minimizes delays in transmission.

The group key management domain is organised into multiple areas. An area
represents an autonomous system which can be a corporate network, a multicast
domain (e.g. PIM domain) with its own multicast group address. An area can also be
any wireless LAN with an access router and many access points in Mobile IPv6
environment. This separation allow managing separately wired and wireless area.

Each time a member moves to a new area, it receive the KEK key of that area.
Member’s mobility does not compromise group secrecy and does not require any
rekeying operations. While this seems to be challenging given that there is no inter-
action between the AKDs for mobility events, we will show that using a conditional
and self-generation technique of encryption keys for mobile member we achieve the
expectations with reduced costs.

Areas belonging to the same domain or corporate network are organised into
clusters where each cluster is controlled by a group controller/key server called Domain
Key Distributor (DKD) which manages MAKDs of cluster’s areas.

Fig. 2. OSM-GKM with DKD and MAKDs agents
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To each cluster Ci, we associate a cost C(Ci), Delay(Ci) and Delay Variation
(Ci) that evaluates the different overheads induced by subgroups and areas of this
cluster.

4.8 Agents

Our solution is based in Shared Multicast Tree SMT which use a special router named
Core router (RP router in PIM-SM protocol [15]) to manage multicast traffic. Shared
Multicast Tree SMT is designed with facilities to allow the Core router to be aided by
other network entities (e.g. servers) in its task of verifying join-requests and deciding
access control.

Each HoA is member in two type of subgroups: its own sub-group and all sub-
groups of his mobile members. Thus, each HoAi knows two set of TEKs, its TEK and
set of TEKs of subgroups of his mobile members ({TEKHoA,{TEKHoA,TEKHoA,
….,TEKHoA}}.

DKD is responsible for authenticating the multicast member, generating and se-
curely distributing keys to members, managing the key tree, and administrating the
multicast tree router members. Domain Key Distributor (DKD), which is a key trust
server for the domain, distributes each DR’s secret key via secure channels in the
domain separately.

We introduce a security entity called the Mobile Area Key Distributor (MDKD)
which has a number of roles in the foreign domain, one of which is to be a key-server
for the mobile members in the domain.

The mobile area key distributor MAKD is a security entity that is responsible for
managing mobile multicast groups’ members in the foreign network. The MAKD
represents the first point of contact for host-members wishing to join a multicast group,
it performs the rekey procedure locally to reduce the communication cost and can also
disseminates The group members access control information (source and receiver). The
mission of an MAKD is the key management within the area for which it is responsible
and the exchange of well-specified messages with the other HoAs of mobile mem-bers
visiting this area. Each MAKD is a member in two groups (zones), the zone it controls,
and the parent zone in the hierarchy related to HoA with group mobile members.

All MAKDs share the symmetric key SEK which is known only by AKDs. We
assume that this key is generated by the MAKD where the traffic source is connected at
session setup, and distributed securely to other MAKDs. Both the multicast designed
router DR and the mobile member MM (source or receiver) know the MAKD (e.g.
MAKD’s certificate is trusted by both the MM and the DRr). In practice the MAKD
can be implemented by several servers for reliability and availability reasons. Any such
server must be implemented with the strongest security protection available due to their
sensitivity.

5 Simulation

In this section, we present simulation results to demonstrate the effectiveness of the
designed architecture.

OSM-GKM Optimal Shared Multicast-Based Solution 265



5.1 Overview and Topology

To study the performance of our propose architecture, we perform simulations with the
Network Simulator NS3 [38]. NS3 is an open source discrete-event network simulator
for Internet systems, targeted primarily for research and educational use. NS3 is free
software, distributed under the GNU GPL v2 license, and is publicly available for
research, development, and use. NS3 is the successor of NS-2 and is intended as an
eventual replacement for the popular NS2 simulator once most popular open source
simulator among research groups. The project acronym “nsnam” derives historically
from the concatenation of ns (network simulator) and nam (network animator).

IPv4/IPv6 and TCP/UDP models are provided in NS3 Simulator. Also, a user can
define its own physical and application layer models. Because its source code is open, it
is possible to modify existing models. To simulate PIM-SM and Mobile IPv6 we
extend NS3 simulator by adding [3] extension.

Network topology is generated with BRITE [34] module, for this, we adopt
Waxman [37] as the graph model. Where n vertices are placed randomly in a rectan-
gular coordinate grid by generating uniformly distributed values for their x and y
coordinates. The edge probability is given by P u; vð Þ ¼ k e�d u;vð Þ=LD. Where d(u, v) is
the distance from node u to v, D is the maximum distance between two nodes, and K
and L are parameters in the interval [0; 1]. It is noted that increasing L increases the
number of connections between far off nodes and increasing K increases the degree of
each node. The values of K = 0:2 and L = 0:2 were used to generate networks with an
average degree between 3 and 4 in the mathematical model of Waxman. We simulate
each algorithm with the variation of network size from 10 to 160 with 25% of nodes are
mobile multicast group members. Our simulation studies were performed on a set of
100 random networks.

To demonstrate the performance of our proposal architecture, Optimal Shared
Multicast-based solution for group key management OSM-GKM is compared in the
same simulation environment to existing ones, such as M-Iolus [23], KMGM [17] and
GKMW [25] solutions.

5.2 Simulation Metrics and Results

Group key management is totally influenced by group membership information. Hence,
To estimate and evaluate our scheme, we implement simulation based in several criteria
for examining group key management solution in mobile environment such as scala-
bility, join/leave secrecy, number of keys with a controller, number of keys (with each
group members, in each area and cluster), processing time for key management. Many
other metrics related to mobile and multicast IP are studded, simulation results show
that good performance is achieved in terms of handoff latency, end-to-end delay, tree
construction delay and others metrics. In this section, we describe some numerical
results that can be used for comparing the performances of the proposed algorithm.

We consider delay as the required time to transmit multicast packets from source
node to the furthest receiver node in the multicast group after group key management
processes is established. Figure 3 shows that OSM-GKM is the best among all the
algorithms, with M-Iolus [23] and KMGM [17] following it, and GKMW [25] is the
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worst. The good performance of OSM-GKM is attributed by the fact that it searches the
optimal Shared Based Tree in the network topology with a delay and delay variation
based fitness function.

Delay Variation is the difference between the first time of the reception of a
multicast packet by a receiver of the multicast group and the last reception of the same
multicast packet by another receiver. This metric present if the architecture supports
reel time application and the group key management process chose an optimal mul-
ticast tree. In Fig. 4 the Delay Variation is plotted as a function of the number of nodes
in the network topology, it shows that OSM-GKM decrease more the delay variation to
transmit multicast packet to all multicast group, this reduction is caused by the selection
of an optimal Core router in each temporary Shared tree, followed by others algorithms.

6 Conclusion

Current Group Key Management protocol doesn’t take into consideration the mo-bile
multicast group members. Therefore, these protocols fail generally to find the optimal
rekeying process in any mobile or multicast membership change (move, join, leave).

Fig. 3. Number of network size with delay

Fig. 4. Number of network size with delay variation
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To solve these problems, OSM-GKM architecture is proposed based on Opti-mal
Shared multicast tree protocol. Simulation results indicate that this architecture has
good performance in multicast cost, delay, delay variation and other aspects. Our future
work is focused on extending this architecture to support multiple QOS criteria
imposed by multicast source across the network and a distributed execution to reduce
new entities charge used.
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Abstract. Currently, commercial CDN providers have become major
actors in the Internet content distribution chain. They serve a large por-
tion of the Internet traffic since they allow an efficient user-perceived
response time and availability of content. In this paper, we consider an
ecosystem that contains content providers CP s as customers of content
distribution network providers CDNs. The content distribution network
seeks to attract more content providers by offering them prices to save
and distribute their contents to end users with better QoS. Thus, the
quality and price of the content, which are considered in this study as
decision parameters for content providers have an indirect impact on the
revenue of the CDN . Once the content of a CP is stored in the CDN
content replication servers, the CDN is the delivery manager of this con-
tent to all end users’ requests; for this another common parameter is
added to our modeling and it determines the share of the CDN that
the CP wins requests from users on this content. After formulating non-
cooperative games, we have demonstrated the existence and uniqueness
of the Nash equilibrium and used the best response dynamic algorithm
to make a numerical analysis to the problems. We were able to learn
that when the game between the CDNs is socially optimal, the CP s win
more and vice versa in the case where the game becomes a monopoly.

Keywords: Content delivery · CDN · Content provider
Non-cooperative game · Nash equilibrium · Price of anarchy

1 Introduction

Content distribution and congestion limitation in the Internet network are the
subject of much research in the field of telecommunication networks. This prob-
lem of congestion occurs when a content stored in the original server of the
content provider is the subject of a very large number of requests. These studies
are concentrated in order to reduce the response time (Latency) and thus ensure
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the content distribution with a better QoS to the end users, which surrounds
the problem of traffic congestion in the network [13]. Among the most effec-
tive solutions is the use of content distribution networks as important actors in
the content distribution chain. These networks consist of an original server con-
nected to the other servers of content replication to hide the content requested
by the population they cover. The basic operation mechanism of a Content Dis-
tribution Network (CDN) is the fact that first request on a content is served
by the original server and immediately this content will be transferred to the
content replication server that is in the area of the request coverage to serve
future requests on the same content and it reduces the problem of congestion,
that recurs in the network “backhaul” and improves the user QoS.

According to [11], the content distribution networks’ CDN customers are the
end user, the content provider CP , the Internet service providers, the mobile
operators, . . . etc. The end user is the entity that consumes the content (e.g.
video, web page, music, . . . ) of the content provider. The content provider (for
example: YouTube, Hulu, Dailymotion, . . . ) is the entity that owns the content or
has obtained the rights to sell it. The CDN provider (for example: Akamai, Azure,
Level 3, . . . ) is the entity that has replication servers in strategic locations and
provides content delivery services to the content providers. Existing relationships
between these actors are business relationships such as the purchase of content
from a content provider CP by an end user. The costs of hosting the content
by the CDN provider are paid by the content provider. These relationships
have forced them to seek more satisfying services with moderately acceptable
prices to earn profits to survive. This requires many studies in this area and our
contribution falls within this framework.

In the papers [4,6,8,16], the authors questioned the concept of Internet neu-
trality and its implication on the different levels of the content distribution
chain taking into account the participation of several like the CDNs in this pro-
cess. They studied the system with a single CDN actor who seeks to maximize
his income that model mathematically according to parameters such as service,
transport and storage prices. This diversity of actors leads to a strong competi-
tion between them, the point which is not studied in these works. The authors
in work [14] have discussed the different parameters that could influence the use-
fulness of a CDN like the pricing policy it follows, the popularity of the content
it stores in the servers of the content replication (that is to say the demand of
the content) and the QoS it offers to these customers (CP, Users, . . . ). In the
paper [7] the authors discussed the case of an ecosystem where we have users
want to benefit from the content offered by a content provider and access to the
service is through two ISPs taking into consideration three cases for the delivery
of the content. The first case, without using CDN, means that the delivery will
be done directly via the origin server of the CP. The second case entails distri-
bution using an independent CDN. The third case is when the CDN becomes an
integrated entity in one of the Internet Service Providers (Hosting CDN). The
authors of this paper concluded that users are satisfied with the use of CDNs.
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However, when it comes to ISPs, it would be better to operate an independent
CDN so as not to lose too much by adding fees for installing a hosting CDN.

Diffusing acceleration of the diversified content on the Internet and offering
quality of performances is one the major objects in the content distribution
chain. For this purpose the authors of the work [15] have described the strength
of the implementation of CDNs and their very important place in the problem
of content distribution. So, they discussed the different architectures of CDNs
and their implications for interconnection markets. They concluded as reported
by Cisco [1] that 70% of Internet traffic will go through CDN by 2021, up from
52% in 2016.

Previous works have studied relationships between actors in the Internet
content distribution chain. But the ecosystems analyzed each time resulted in
the existence of a single content distribution network provider CDN . This is
strongly not the casebecause we currently notice the new several commercial
CDNs and what represents a competitive environment since each one of them
seeks to maximize its profit. Profit optimization is related to the strategy that
each CDN provider seeks to achieve its objective. This depends on the price it
offers content providers. The aim is to distribute their content and the QoS that
is based on the size of the caches and the number of content replication servers
exploited which meant the rate of coverage of user requests in different regions of
the world. However, our contribution is to study and analyze an ecosystem where
we have several content providers CP s who will select the most appropriate
CDN providers and those who meet their objectives in the content distribution
chain. The choice is an outpouring of their own strategies and those of the CDN
providers. A CDN provider may serve one or more content providers CP s.

The instead of this paper is structured as follows: In Sect. 2, we present the
problem formulation by modeling the interaction existing in different level of
the pseudo-ecosystem studied. Next, we present the theoretical analysis of the
non-cooperative games considered in this study in Sect. 3 and we describe in
Sect. 4 the method used for learning a Nash Equilibrium Point. Finally, we give
a numerical analysis obtained on the models proposed in this work to validate
what was obtained in the theoretical analysis in Sect. 5 and we conclude this
paper with perspectives in Sect. 6.

2 Problem Modeling

In this section, we proceed to the modelling of the problem by considering the
actors that can be contributed in the various levels of the Internet content dis-
tribution chain. Content Providers (CP s) that provide content to end users
with a certain price P c and quality of content qc. Content Distribution Network
Providers (CDNs) are entities that store the contents of CP in server caches
placed near end users. These servers allow the loading and downloading of con-
tent with a satisfactory QoS and a price P that the CP has to pay to CDN .
Service providers SPs allow end users access to content with fees that are not
taken into consideration in this study and the end users which are the purpose
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of the content distribution chain. The Fig. 1 represents the different actors used
in the content delivery chain. Our contribution focuses on a restricted model
that analyzes the interaction between CDNs providers and CPs providers. We
consider a system with N CDN providers and M CP providers. pi and qs

i rep-
resent respectively the price and QoS guaranteed by CDNi ∀i ∈ {1, . . . , N} . pc

j

and qc
j represents the content access price and the quality of content assured by

CPj ∀j ∈ {1, . . . , M}.

…
CP1 CP2 CP3 CPM

…
CDN1 CDN2 CDN3 CDNN

Set of SPs

1 2 3

1
Users

Fig. 1. Representation of relations between the actors of the Internet Content delivery
chain. The plain arrows depict monetary transactions. The dotted arrows present data
delivery from the CP via CDN to the end-users.

2.1 Demand Model

Modeling the demand of an actor in telecommunication networks is a kind of
representation on his part of the customers who are registered in their services.
For simplicity, the demand Dij of CDNi and CPj is written as a function that
depends on the decision parameters and is assumed to be linear (like the proce-
dure followed by the author of the paper [3]) with respect to the price pi, the
promised QoS qs

i , the price of content pc
j and the quality of content qc

j . This
demand function depends also on prices p−i, QoS qs

−i, price of content pc
−j and

quality of content qc
−j set by the competitors. Eventually, Dij is decreasing with

respect to pi, pc
j and increasing with respect to pn, n �= i,pc

k, k �= j. Whereas it
is increasing with respect to qs

i , qc
j and decreasing with respect to qs

n,n �= i, qc
k,

k �= j.
Then, the demand functions with respect to services of CDNi and CPj can

be written as follows:
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Dij(p,qs,pc,qc) = d0
i − αi

ipi + βi
iq

s
i − λj

jp
c
j + γj

j q
c
j +

∑

n,n�=i

(αn
i pn − βn

i qsn)

+
∑

k,k �=j

(λk
j pc

k − γk
j qck), ∀n ∈ {1, . . . , N}, ∀k ∈ {1, . . . , M} (1)

where d0i is a positive constant used to insure non-negative demands over the
feasible region. While αn

i and βn
i are positive constants representing respectively

the sensitivity of CDN provider i to price and QoS of CDN provider n. λk
j

and γk
j are positive constants representing respectively the sensitivity of content

provider j to the price of content and quality of content of content provider k.
The constraints on the coefficients presented in the demand function are as

follows:
∑N

n=1 αn
i = 1 ,

∑N
n=1 βn

i = 1 ∀i ∈ {1, . . . , N};
∑M

k=1 λk
j = 1 ,

∑M
k=1 γk

j =
1 ∀j ∈ {1, . . . ,M}
Assumption 1

αi
i ≥

∑

n,n �=i

αn
i ,∀n, i = 1, . . . , N (2)

Will be necessary to ensure the uniqueness of the Nash equilibrium. This Assump-
tion 1 means that the influence of the price decided by CDNi on its demand is
greater than the sum of the influences of prices decided by CDN−i competitors
on its demand.

2.2 CDN Demand Model

CDNi’s demand is the sum of all the CP s demand it served to end-users, and
is expressed as follows:

DCDNi
=

M∑

j=1

Dij (3)

2.3 CP Demand Model

The CPj ’s demand is the sum of their demands served by each CDNi ∀i ∈
{1, . . . , N}, it is expressed by:

DCPj
=

N∑

i=1

Dij (4)

2.4 CDN Utiliy Model

The usefulness (net profit) of a commercial CDNi is the difference between the
total revenue and the investment costs, the aim of which is to ensure satisfactory
QoS for the end users. It represents his intervention to improve bandwidth Φ of
SP s by putting content to servers close to users and not forgetting the size of
the dedicated storage space to cache the content of CP s.
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The total revenue Ri of CDNi is based on the price it offers CP s for the
delivery of their content and on its demand DCDNi

as well as its share of the
CP s revenue related to the price of the content they offer to users. It is expressed
as follows:

Ri = pi.DCDNi
+

M∑

j=1

fij .p
c
j .Dij (5)

with fij ∈ [0, 1] is a percentage that represents the share of the CDNi through
the income of the request of the CPj delivered by the CDNi.

Assumption 2

N∑

i=1

fij < 1, ∀j ∈ M (6)

This condition is often realistic because: if
N∑

i=1

fij = 1 then UCPj
< 0 which

means that CPj shared everything it earns with the CDNs and strongly this is
not the case.

The cost of a CDN is related to the size of the cache provided to store the
contents of the CP s and the number of replication servers used to keep the
content close to the end users. These opportunities that the CDN offer CP s
have a goal to improve the QoS perceived by users limiting the problems of
congestion, especially if it’s a query on a live video (video-streaming). Hence the
cost Ci is formulated in this form:

Ci = ϑi.(qs
i )

2 (7)

with ϑi is a positive constant that represents the cost per unit of the cache size
used.

So from the Eq. 5 and the Eq. 7, we can conclude that the utility of a CDNi

is the following:

UCDNi
(p,qs,pc,qc) = pi.DCDNi

+
M∑

j=1

fij .p
c
j .Dij − ϑi.(qs

i )
2 (8)

2.5 CP Utiliy Model

The total revenue of CPj is pc
j .DCPj

(p,qs,pc,qc). Its cost is that relating to
the establishment of a quality of content qc

j and the share of CDNs that it uses
for the delivery and storage of its contents. the utility of a CPj is the following:

UCPj
(p,qs,pc,qc) = pc

j .DCPj
−

N∑

i=1

fij .p
c
j .Dij − cj .(qc

j)
2 (9)

with cj is a positive constant that represents the cost per unit of the established
content quality.
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3 A Non-cooperative Game Formulation

In game theory, the formulation of a non-cooperative game in a precise manner
requires the following points:

– Determine the number of players involved in the system.
– Define all available actions for each player: this is to specify to each player

his own space of strategies.
– Model the objective function of each player it tries to optimize.

We formulate two non-cooperative games, the first one (G1) studies the
interactions between the commercial CDNs and the second (G2) it will be a
modeling of the competition between the CPs.

Let G1 = [N , {Pi, Q
s
i }, {UCDNi

(.)}] denote the non-cooperative price and
QoS game (NPQG), where N = {1, . . . , N} is the index set identifying the
CDNs provider, Pi is the price strategy set of CDNi, Qs

i is the QoS strategy set
of CDNi, and UCDNi

(.) is the utility function. Each CDNi selects a price pi ∈ Pi

and a QoS measure qs
i ∈ Qs

i . Let the price vector p = (p1, . . . , pN )T ∈ PN =
P1 × P2 × . . . × PN , QoS vector qs = (qs

1, . . . , q
s
N )T ∈ Qs

N = Qs
1 × Qs

2 × . . . × Qs
N

(where T represents the transpose operator). The utility of CDNi when it decides
the strategy price pi to allocate the QoS qs

i is given in Eq. (8). We assume that
the strategy spaces Pi and Qs

i of each CDN are compact and convex sets with
maximum and minimum constraints. For any given CDNi we consider strategy
spaces the closed intervals Pi = [pi, pi] and Qs

i = [qs
i , q

s
i ]. In order to maximize

their utilities, each CDNi decides a price Pi and QoS qs
i . Formally, the NPQG

problem can be expressed as:

max
pi∈Pi,qs

i ∈Qs
i

UCDNi
(p,qs),∀i ∈ N

Let G2 = [M , {P c
j , Qc

j}, {UCPj
(.)}] denote the non-cooperative price and

quality of content game (NPQG), where M = {1, ..,M} is the index set identi-
fying the CP s provider, P c

j is the price of content strategy set of CPj , Qc
j is the

Quality of content strategy set of CPj , and UCPj
(.) is the utility function. Each

CPj selects a price pc
j ∈ P c

j and a quality of content measure qc
j ∈ Qc

j . Let the
price vector pc = (pc

1, . . . , p
c
M )T ∈ P c

N = P c
1 × P c

2 × . . . × P c
N , quality of content

vector qc = (qc
1, . . . , q

c
M )T ∈ Qc

M = Qc
1 × Qc

2 × . . . × Qc
N (where T represents the

transpose operator). The utility of CPj when it decides the strategy price pc
j to

allocate the quality of content qc
j is given in Eq. (9). We assume that the strategy

spaces P c
j and Qc

j of each CP are compact and convex sets with maximum and
minimum constraints. For any given CPj we consider strategy spaces the closed
intervals P c

j = [pc
j , p

c
j ] and Qc

j = [qc
j , q

c
j ]. In order to maximize their utilities,

each CPj decides a price P c
j and QoS qc

j . Formally, the NPQG problem can be
expressed as:

max
pc
j∈P c

j ,qc
j∈Qc

j

UCPj
(pc,qc),∀j ∈ M
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3.1 Game with Fixed QoS of CDN

Definition 1. A price vector p∗ = (p∗
1, . . . , p

∗
N ) is the Nash equilibrium price of

the game G1 = [N , {Pi, Q
s
i }, {UCDNi

(.)}] if:

∀(i, pi) ∈ (N , Pi), UCDNi
(p∗

i ,p
∗
−i) ≥ UCDNi

(pi,p∗
−i)

Theorem 1. A Nash equilibrium price for the game G1 = [N , {Pi, Q
s
i },

{UCDNi
(.)}] exists and is unique.

Proof. To prove existence, we note that each CDN’s strategy space Pi is defined
by all prices in the closed interval bounded by the minimum and maximum
prices. Thus, the joint strategy space P is a non empty, convex, and compact
subset of the Euclidean space R

N . In addition, the utility functions are concave
with respect to prices as can be seen from the second derivative test:

∂UCDNi
(pi,p−i)

∂pi
= DCDNi

− Mpiα
i
i −

M∑

j=1

fijp
c
jα

i
i,∀i ∈ N

thus
∂2UCDNi

(pi,p−i)
∂p2i

= −2Mαi
i,∀i ∈ N

then
∂2UCDNi

(pi,p−i)
∂p2i

< 0,∀i ∈ N

which shows the existence of a Nash equilibrium price.
The most common method to show uniqueness is the following condition of

Rosen [12]. Moulin [10], (see, for example, [9]):
we have

∂2UCDNi
(pi,p−i)

∂p2i
= −2Mαi

i,∀i ∈ N

and

∂2UCDNi
(pi,p−i)

∂pi∂pn
= Mαn

i ,∀i, n ∈ N and n �= i

which means that:
∑

n,n �=i

∣
∣
∣
∣
∂2UCDNi

(pi,p−i)
∂pi∂pn

∣
∣
∣
∣ = M

∑

n,n �=i

αn
i ,∀i, n ∈ N and n �= i

Using Assumption 1, we conclude that:

∂2Πi

∂p2i
+

∑

n,n �=i

∣
∣
∣
∣

∂2Πi

∂pi∂pn

∣
∣
∣
∣ < 0.

Finally, the Nash Equilibrium price is unique and is given by:

p∗
i ∈ argmax

pi∈Pi

UCDNi
(pi,p−i),∀i ∈ N
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3.2 Game with Fixed Price of CDN

Definition 2. A price vector qs∗ = (qs
1
∗, . . . , qs

N
∗) is the Nash equilibrium QoS

of the game G1 = [N , {Pi, Q
s
i }, {UCDNi

(.)}] if:

∀(i, qs
i ) ∈ (N , Qs

i ), UCDNi
(qs

i
∗,qs

−i
∗) ≥ UCDNi

(qs
i ,q

s
−i

∗)

Theorem 2. A Nash equilibrium QoS for the game G1 = [N , {Pi, Q
s
i },

{UCDNi
(.)}] exists and is unique.

Proof. To prove existence, we note that each CDN’s strategy space Qs
i is defined

by all prices in the closed interval bounded by the minimum and maximum QoS.
Thus, the joint strategy space Qs is a non empty, convex, and compact subset
of the Euclidean space R

N . In addition, the utility functions are concave with
respect to QoS as can be seen from the second derivative test:

∂UCDNi
(qs

i ,q
s
−i)

∂qs
i

= Mpiβ
i
i +

M∑

j=1

fijp
c
jβ

i
i − 2ϑiq

s
i ,∀i ∈ N

thus
∂2UCDNi

(qs
i ,q

s
−i)

∂(qs
i )2

= −2ϑi,∀i ∈ N

then
∂2UCDNi

(qs
i ,q

s
−i)

∂(qs
i )2

< 0,∀i ∈ N

which shows the existence of a Nash equilibrium QoS.
In order to prove uniqueness Nash equilibrium QoS and according to [12], in a

concave game the Nash equilibrium exists if the joint strategy space is compact
and convex, and the objective function that a player in the system seeks to
maximize is concave in his own strategy and and continues at each point in the
product strategy space. Formally, if the weighted sum of the utility works with
non-negative weights:

Ψ =
∑

i=1

xiUi, ∀i

is diagonally strictly concave, which implies that the Nash equilibrium point is
unique. The notion of strict diagonal concavity means that an individual user
has more control over its utility function than other users, and is proven using
the pseudo-gradient of the weighted sum of utility functions.

For that we define the weighted sum of user utility functions to demonstrate
the uniqueness of Nash equilibrium QoS, as follow:

Ψ(qs,x) =
N∑

i=1

xiUCDNi
(qs

i ,q
s
−i), (10)

The pseudo-gradient of (10) is given by :

pg(qs,x) = [x1∇UCDN1(q
s
1, q

s
−1), . . . , xN∇UCDNN

(qs
N , qs

−N )]T

The Jacobian matrix Jpg of the pseudo-gradient (with respect to qs) is written
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Jpg =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

x1
∂2UCDN1 (q

s
1,qs

−1)

∂(qs
1)

2 x1
∂2UCDN1 (q

s
1,qs

−1)

∂qs
1∂qs

2
. . . x1

∂2UCDN1 (q
s
1,qs

−1)

∂qs
1∂qs

N

x2
∂2UCDN2 (q

s
2,qs

−2)

∂qs
2∂qs

1
x2

∂2UCDN2 (q
s
2,qs

−2)

∂(qs
2)

2 . . . x2
∂2UCDN2 (q

s
2,qs

−2)

∂qs
2∂qs

N

...
...

. . .
...

xN
∂2UCDNN

(qs
N ,qs

−N )

∂qs
N∂qs

1
xN

∂2UCDNN
(qs

N ,qs
−N )

∂qs
N∂qs

2
. . . xN

∂2UCDNN
(qs

N ,qs
−N )

∂(qs
N )2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

By calculating the different derivatives, we find that:

Jpg =

⎛

⎜
⎜
⎜
⎝

−2x1ϑ1 0 . . . 0
0 −2x2ϑ2 . . . 0
...

...
. . .

...
0 0 . . . −2xNϑN

⎞

⎟
⎟
⎟
⎠

From this matrix we can conclude that Jpg is a diagonal matrix with nega-
tive diagonal elements. This implies that Jpg is negative definite. Henceforth
[Jpg+JT

pg] is also negative definite, and according to Theorem (6) in, [12], the
weighted sum of the utility functions Ψ(qs, x) is diagonally strictly concave. Thus
the fixed-price Nash equilibrium point

qi
s∗ ∈ argmax

qs
i ∈Qs

i

UCDNi
(qs

i ,q
s
−i),∀i ∈ N

is unique.

3.3 Game with Fixed QoContent of CP

Definition 3. A price vector pc∗
= (pc∗

1 , . . . , pc∗
M ) is the Nash equilibrium price

of the game G2 = [M , {P c
j , Qc

j}, {UCPj
(.)}] if:

∀(j, pc
j) ∈ (M , P c

j ), UCPj
(pc∗

j ,pc∗
−j) ≥ UCPj

(pc
j ,p

c∗
−j)

Theorem 3. A Nash equilibrium price for the game G2 = [M , {P c
j , Qc

j},
{UCPj

(.)}] exists and is unique.

Proof. To prove existence, we note that each CP’s strategy space P c
j ∈ R

M

is defined by all prices in the closed interval bounded by the minimum and
maximum prices of content and we proceed in the same way with what we did
to demonstrate the existence and uniqueness of the price equilibrium for CDNs.

∂UCPj
(pc

j ,p
c
−j)

∂pc
j

= DCPj
− Nλj

jp
c
j −

N∑

i=1

(−fijλ
j
jp

c
j + fijDij), ∀j ∈ M

thus
∂2UCPj

(pc
j ,p

c
−j)

∂2pc
j

= −2Nλj
j + 2λj

j

N∑

i=1

fij , ∀j ∈ M
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then
∂2UCPj

(pc
j ,p

c
−j)

∂2pc
j

< 0, ∀j ∈ M (11)

which shows the existence of a Nash equilibrium price.
Similarly, we have

∂2UCPj
(pc

j ,p
c
−j)

∂2pc
j

= −2Nλj
j + 2λj

j

N∑

i=1

fij , ∀j ∈ M

and

∂2UCPj
(pc

j ,p
c
−j)

∂pc
j∂pc

m

= Nλm
j − λm

j

N∑

i=1

fij > 0, ∀j,m ∈ M and m �= j

which means that:

∑

m,m�=j

∣∣∣∣∣
∂2UCPj (p

c
j ,p

c
−j)

∂pc
j∂pc

m

∣∣∣∣∣ = N
∑

m,m�=j

λm
j −

∑

m,m�=j

N∑

i=1

λm
j fij , ∀j, m ∈ M and m �= j

hence

∂2UCPj
(pcj ,p

c
−j)

∂2pcj
+

∑

m,m�=j

∣∣∣∣∣
∂2UCPj

(pcj ,p
c
−j)

∂pcj∂pcm

∣∣∣∣∣ = −2Nλj
j + 2λj

j

N∑

i=1

fij + N
∑

m,m�=j

λm
j

−
∑

m,m�=j

N∑

i=1

λm
j fij , ∀j, m ∈ M and m �= j

Taking into consideration Assumption 2, we have:

N∑

i=1

fij < 1 < N, ∀j ∈ M

then

∑

m,m �=j

N∑

i=1

λm
j fij < N

∑

m,m �=j

λm
j , ∀j ∈ M

∂2UCPj
(pc

j ,p
c
−j)

∂2pc
j

+
∑

m,m �=j

∣
∣
∣
∣
∣

∂2UCPj
(pc

j ,p
c
−j)

∂pc
j∂pc

m

∣
∣
∣
∣
∣
< −2Nλj

j + 2λj
j

N∑

i=1

fij , ∀j ∈ M

From what we have already shown in the Eq. (11), we have:

∂2UCPj
(pc

j ,p
c
−j)

∂2pc
j

+
∑

n,n �=i

∣
∣
∣
∣
∣

∂2UCPj
(pc

j ,p
c
−j)

∂pc
j∂pc

m

∣
∣
∣
∣
∣
< 0.

Finally, the Nash Equilibrium price of CP is unique and is given by:

pc∗
j ∈ argmax

pc
j∈P c

j

UCPj
(pc

j ,p
c
−j), ∀j ∈ M
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3.4 Game with Fixed Content Price of CP

Definition 4. A quality of content (QoContent) vector qc∗ = (qc
1
∗, . . . , qc

M
∗) is

the Nash equilibrium QoContent of the game G2 = [M , {P c
j , Qc

j}, {UCPj
(.)}] if:

∀(j, qc
j) ∈ (M , Qc

j), UCPj
(qc

j
∗,qc

−j
∗) ≥ UCPj

(qc
j ,q

c
−j

∗)

Theorem 4. A Nash equilibrium QoContent for the game G2 = [N , {P c
j , Qc

j},
{UCPj

(.)}] exists and is unique.

Proof. To prove existence, we note that each CP’s strategy space Qc
j ∈ R

M is
defined by all quality of contents in the closed interval bounded by the minimum
and maximum QoContents and we proceed in the same way with what we did
to demonstrate the existence and uniqueness of the QoS equilibrium for CDNs
in previous section.

∂UCPj
(qc

j ,q
c
−j)

∂qc
j

= Npc
jγ

j
j −

N∑

i=1

fijp
c
jγ

j
j − 2cjq

c
j ,∀j ∈ M

thus
∂2UCPj

(qc
j ,q

c
−j)

∂2qc
j

= −2cj ,∀j ∈ M

then
∂2UCPj

(qc
j ,q

c
−j)

∂2qc
j

< 0,∀j ∈ M

which shows the existence of a Nash equilibrium QoContent of the game.
We define the weighted sum of user utility functions to demonstrate the

uniqueness of Nash equilibrium QoContent, as follow:

Ψ(qc,y) =
M∑

j=1

yjUCPj
(qc

j ,q
c
−j), (12)

The pseudo-gradient of (12) is given by :

pg(qc,y) = [y1∇UCP1(q
c
1, q

c
−1), . . . , yM∇UCPM

(qc
M , qc

−M )]T

The Jacobian matrix Jpg of the pseudo-gradient (with respect to qc) is:

Jpg =

⎛

⎜
⎜
⎜
⎝

−2y1c1 0 . . . 0
0 −2y2c2 . . . 0
...

...
. . .

...
0 0 . . . −2yMcM

⎞

⎟
⎟
⎟
⎠

The elements of the diagonal of the matrix Jpg are negative. This implies
that Jpg is negative definite. Henceforth [Jpg +JT

pg] is also negative definite, and
according to Theorem (6) in, [12], the weighted sum of the utility functions
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Ψ(qc, y) is diagonally strictly concave. Thus the fixed-price of content Nash
equilibrium point

qj
c∗ ∈ argmax

qc
j∈Qc

j

UCPj
(qc

j ,q
c
−j),∀j ∈ M

is unique.

4 Learning Nash Equilibrium

4.1 Best Response Dynamic

The best response of a player is defined as his optimal strategy which makes
him an optimal gain taking into account the strategies of adversaries. The best
response dynamic of a player, as the name suggests, is to adapt his strategy with
the recent strategies of others and without taking into account the effect of the
current strategies of all players on the future game in the game.

Algorithm 1. Best Response Algorithm Dynamics
1: Initialize vectors a = [a1, . . . , an] to be an arbitrary action profile.
2: While There exists i such that ai �∈ argmax

a∈Ai

(Ui(a, a−i)) do

Set ai = argmax
a∈Ai

(Ui(a, a−i)).

End While
3: Halt and return a.

Where a denotes the vector p, qs, pc and qc. Ai denotes the policy profile
price Pi, policy profile QoS Qs

i , policy profile price of content PC
i and policy

profile QoContent Qc
i .

4.2 Price of Anarchy

The concept of the price of anarchy is a measure intruded by Koutsoupias and
Papadimitriou [5] to quantify the ineffectiveness of the Nash equilibrium which
is caused by the selfish behavior of actors in the system. This measure is defined
as the worst-case ratio between the cost of a Nash equilibrium and the cost of an
optimal system. The latter is defined as the maximum of the sum of the utilities
of all the actors in the systems:

PoA =
minai,a−i

WNE(ai,a−i)
maxai,a−i

W (ai,a−i)
(13)

where W (ai,a−i) =
N∑

i=1

Ui(ai,a−i) is a function of welfare and WNE(ai,a−i) =

N∑

i=1

Ui(a∗
i ,a−i) is a sum of utilities of all actors in the Nash equilibrium.
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5 Numerical Investigation

In this section, we present a numerical study of games taking into account the
previous expressions of utilities. As an illustration, we consider two content
providers CP s and two CDN s providers.

Fig. 2. Convergence to the Price Nash
equilibrium for the game G1

Fig. 3. Convergence to the QoS Nash
equilibrium for the game G1

Fig. 4. Convergence to the Content Price
Nash equilibrium for the game G2

Fig. 5. Convergence to the QoContent
Nash equilibrium for the game G2

Fig. 6. Price of anarchy as a function
of fij in the game G1.

Fig. 7. Price of anarchy as a function
of fij in the game G2.
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Figures 2, 3, 4 and 5 respectively represent the convergence towards the Nash
equilibrium for the price, the QoS of the CDNs, the price and the quality of the
contents of the CP s. The convergence to a Nash equilibrium is a situation in
which all actors have a satisfaction and each one can not make such a decision
all alone without taking into consideration what happens to his opponents. This
strengthens what we found in the theoretical study presented in the previous
sections.

Using the concept of the price of anarchy which is a measure to give informa-
tion on the effectiveness of the Nash equilibrium, Fig. 6 represents the anarchy
price evolution according to fij parameter in the game G1; we notice that when
CDNs providers take smaller values for fij , the price of anarchy tends to 1
which shows that CDNs are not selfish and each seeks to gain an optimal profit
based on the situation of the system (strategies of others) to converge to a Nash
equilibrium where everyone is satisfied in terms of gain. Whereas, for the higher
choices of values of fij , the CDNs become selfish and each one tries to maxi-
mize its profit without taking into account the strategies of the adversaries. It
is confused with the reality seen when fij tends to 1, this means that the CP
will lose if it uses the CDNs for the distribution of its content. Which leads
it to look for other solutions to do so. Therefore, the game of CDNs converge
to situation of the monopoly where everyone tries to convince the CP by using
other motivating strategies. Conversely, Fig. 7 represents the curve of the price
of anarchy in the game G2, we see that when fij tends to 0, the game between
the CP s becomes monopoly and cons when fij increases the game converges to
the point that makes it socially optimal.

6 Conclusion

In this paper, we have modeled and analyzed the interactions that may exist
between the main players in the Internet content distribution chain. This study
of this ecosystem led us to design two non-cooperative games, one between the
content providers and the other between the Internet content distribution net-
work providers. After demonstrating the existence and uniqueness of Nash equi-
librium for both games, we used the dynamic best response algorithm to learn
Nash equilibrium, and thus we showed numerically the convergence towards this
point of equilibrium. We have concluded that the marginalization of a com-
mon parameter such as fij converges the game to a monopoly situation where
everyone tries to maximize their profit without taking into account the decision-
making strategies of their opponents. The bargaining tools will therefore be one
of the solutions to fight against such aggressive behavior by one of the actors
compared to others in telecommunication networks.

In future work, we also propose to study this system with a more complex
topology by introducing other actors (users, mobile operators, . . . ) in our study.
Thus, we think to integrate the notion of bounded rationality [2] to know what
is its implication for the studied system.
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Abstract. Improving the performance of the Internet, as part of the new
generations networks, requires support for caching and multicast con-
tent delivery on each network cable. This new concept is called Informa-
tion Centric Networking (ICN). In present paper, we consider a duopoly
model of rational internet Service providers competing in ICN model
where each ISP is motivated to cache content. Using a generalized Zipf
distribution to model content popularity, we devise a game theoretic
approach to determine caching and pricing strategies for each ISP. In
turn, the subscribers’ demand for the service of an ISP depends not only
on the price and QoS of that ISP but also upon those proposed by all
of its competitors. Through rigorous mathematical analysis, we prove
existence and uniqueness of the Nash equilibrium. An iterative and dis-
tributed algorithm based on best response dynamics are proposed to
achieve the equilibrium point. Finally, extensive simulations show con-
vergence of a proposed scheme to the Nash equilibrium and give some
insights on how the game parameters may vary the price and QoS at
Nash equilibrium.

Keywords: Information centric networking (ICN) · ISP · Pricing
QoS · Cache · Game theory · Nash equilibrium

1 Introduction

Internet traffic is rapidly increasing, due to the proliferation of video sites like
YouTube, Dailymotion, etc. This high increase in demand for content on the
internet and the need of new approaches that controls the large volume of infor-
mation have motivated the development of new approach called Information
Centric Network ICN. This last (ICN) is a new communication paradigm aims
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to reflect current and future needs better than the existing Internet architec-
ture. By naming information at the network layer, ICN favors the deployment of
in-network caching and multicast mechanisms, thus facilitating the efficient and
timely delivery of information to the users. The main idea in ICN: content is
located by name instead of by location and every node can cache and serve the
content, which means that users do not care where the content comes from, but
are only interested in what the content is. The advantages motivating the ICN
approach Scalable, Persistent, Security, Mobility, etc [2]. To fulfill that purpose,
several architectures have been proposed for ICN: CCN [14], DONA [17], PSIRP
[15], 4WardNetInf [1], XIA [13].

Several works have been done to address the problem of the economic implica-
tions of caching [9,11,12,16,19]. However, there has been little discussion about
ISP caching with regard to the competition between the ISPs and CPs in ICN. A
pricing model proposed in [20] to study the economic incentive for caching and
sharing content in ICN, where ICN consists of access ICN, transit ICN and CP.
Therefore, a unique Nash Equilibrium (NE) exists in a non-cooperative pricing
caching game. The result of this work shows the case where caching investment
is profitable for access ISP. In [16] the authors considered a non-cooperative
game between CP and ISP in ICN, where CP and ISP playing with their pricing
strategies and fixing the caching strategies. Depending on the caching cost, the
ISP may be incentivized to cache content in ICN. The authors in [11] analyzed
the impact of caching cost in joint caching and pricing strategies in ICN with
one CP, tow access ICN, one transit ICN. Competition between entities modeled
as a non-cooperative game and observes that caching strategy depending on the
caching cost and price at the transit ICN. In [12] the authors developed game
theoretic models to evaluate joint caching and pricing strategies among access
networks, transit networks and content providers in an ICN with the notion of
content popularity. In [19] the authors studied a non-cooperative game between
one CP and one ISP in ICN, where ISP cache content. It shows that caching
investment is beneficial for ISP and CP. The authors in [9] modeled the caching
game between CP and ISP as a cooperative game, where ISP cache a fraction of
content. Then, CP and ISP share both the cost of caching and profit of caching.
Also, a competition between CPs modeled as a non-cooperative game to capture
the negative impact on demand when the ISP cache content of other CPs.

In this paper, we investigate caching, pricing and QoS strategies of the ISPs
based on content popularity. We study Nash strategies for a non-cooperative
game among the above entities using a probabilistic model by assuming that
users’ requests generally follow the generalized Zipf distribution. We analytically
prove the existence and uniqueness of Nash equilibrium in non-cooperative game
between ISPs, which means that there exists a stable state where all ISPs do not
have an incentive to change their strategies. So, our model provides economic
incentives for caching content, and ensures the existence of an equilibrium for
keeping the economy stable and achieving economic growth. We complement
our analysis with numerical results show that both the ISPs and end-users can
receive benefit from caching investment.
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The remainder of the paper is organized as follows: In Sect. 2 we describe the
system model and we introduce a new demand and utility functions. In Sect. 3 we
formulate a non-cooperative game, and we proof the existence and uniqueness of
Nash equilibrium solution. Section 4 presents numerical results, and we conclude
in Sect. 5.

2 Problem Modeling

We consider a simplified networking market with one CP, two ISP and large
number of users is considered. All end users can access the contents of the CP
only through the network infrastructure provided by the ISP while CP provides
the content for the users. Figure 1 shows the monetary flow among different
entities with various prices. The network economy depends on three effective
factors pricing, caching and quality of service QoS. Under the assumption that
each ISP can have access to all content, it can decide to either cache the entire or
portion of the requested content. Let H, the number of items that the CP sells.
The caching strategy adopted by each ISP is denoted by kjh that take value 1 if
the ISPj decide to cache item h and take value 0 if the ISPj decide to not cache
item h. Each ISPj sets two different prices: (1) the network price per unit data
psj

for transporting the content to end users; and (2) the price per unit data p
j

for providing content from its cache. Each ISPj allocates a Bandwidth Bj and
advertises to users a quality of service QoS qsj

. To model the behavior of users,
we have considered content demand at each ISPs to be a linear function of the
strategies of all ISPs.

ISP2

CP

CP
cache

CP
cache

ISP1

Users

ps1

pc1

ps2

pc2

pt

pt

Fig. 1. ICN architecture.

2.1 Content Popularity

Let H the number of items that any of the users under consideration might want
to access it, each item has a measure of popularity reflected by the probability of
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requests for it. We consider a model where the popularity of content is the same
for all users. As in previous works (e.g., [8,10,22]), in this paper the probability
of requests follows generalized Zipf distribution function as:

φh = A−1h−η (1)

Where A =
∑H

h=1 h−η, hη the rank of item h, η is a fixed parameter deter-
mines the skewness of the popularity distribution. If η = 0 the distribution is
uniform and all item have the same popularity, while in the case of high value of
η, there are only a few popular item, while the other have very low probability
to be requested, whereas the case of η = 1 the content popularity distribution
following classic Zipf law. The item ranked in order of their popularity where
item h is the h most popular item, i.e: h = 1 is the most popular item, h = H
is the least popular item.

2.2 Caching Cost

We present an explicit formula of the caching cost cjh of item h as a function of
the content popularity that has been proposed in [12]; the authors assume that:
for a finite cache, the caching costs of item h by ISPj is defined to be inversely
proportional to the content popularity as follows:

cjh =
Cj

φh
(2)

where, Cj is a fixed initial caching cost at ISPj .

2.3 Demand Model

The demand of ISPj is linear function with respect to the network access price
psj

, price to access to the content in cache pcj and quality of service QoS qsj
, see

[5–7]. This demand depends also on the price ps−j
, price pc−j

, quality of service
QoS qs−j

. set by the competitors. Namely, the demand function of ISPj depends
on ps = [ps1 , ps2 ], pc = [pc1 , pc2 ] and qs = [qs1 , qs2 ]. The demand function of ISPj

can be write as follows:

Dj(ps,qs,pc) = max
{

0, dj − αj
jpsj + βj

j qsj − γj
jpcj + αi

jpsi − βi
jqsi + γi

jpci

}
, j �= i.

(3)

The parameter dj reflects the total potential demand of users. αm
j , βi

j and γi
j

denote the responsiveness of demand the ISPj to price psi
, QoS qsi

and price
pci (note that in economics, we also call the parameter αm

j as price elasticity
of demand or price sensitivity of demand). The meaning of Eq. 3 can be inter-
preted as this way: Dj decreasing w.r.t psj

, pcj and increasing w.r.t psi
, pci . Dj

increasing w.r.t qsj
and decreasing w.r.t qsi

.

2∑

i=1

αi
j = 1,

2∑

i=1

βi
j = 1,

2∑

i=1

γi
j = 1,

2∑

i=1

σi
j = 1, j = 1, 2.
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Assumption 1. The sensitivity mutual α satisfy:

αj
j ≥ αi

j , ∀j �= i ∈ {1, 2} (4)

The sensitivity mutual sensitivity β satisfy:

βj
j ≥ βi

j , ∀j �= i ∈ {1, 2} (5)

The sensitivity mutual sensitivity σ satisfy

σj
j ≥ σi

j , ∀j �= i ∈ {1, 2} (6)

Assumption 1 will be needed to ensure the uniqueness of the resulting equilib-
rium. The Assumption 1 means that the influence of price (resp Qos) the ISP on
its demand is greater than the influence of the prices (resp Qos) of its opponents
on its demand.

2.4 Utility Model

Each ISP can cache the content or just forward the request to CP based on
the utility that it gain. The utility function of each ISP is defined as the utility
received by providing the network or content for users. Therefore, the utility
function of each ISP is the difference between the total revenue and the fee:

Uj =

H∑
h=1

φh

{
(psj − pt)Dj(ps,qs,pc)(1 − kjh) + (psj + pcj − cj)kjhDj(ps,qs,pc)

}

− vj(H −
H∑

h=1

kjh)Bj (7)

Where psj
denote the price that ISPj charges users for access to network. pcj

the price that users pay the ISPj for access to content of their cache. qsj
the QoS

guaranteed by ISPj . pt is the price that the ISP pays the CP when requesting
content from it (transmission fee or side payment), because the polarity of the
side-payment (from the ISP to the CP) in an ICN is basically different from that
in the current Internet model (i.e. host-centric communication model). cjh the
caching costs of item h. cjhkjhφhDj the fee of ISPj by serving the requested
demand kjhφhDj of item h from its cache. (psj

+pcj −cjh)φhkjDj is the revenue
of the ISPj by serving the requested demand φhkjhDj of item h from its cache.
The revenue of the ISPj is (psj

− pt)φhDj(1 − kjh) when the ISPj fulfils an
amount of content request φhDj(1 − kj) of item h by retrieving content from
the CP. vj unit backhaul bandwidth cost. Bj Backhaul bandwidth needed to
serve the demand Dj . Bj is the backhaul bandwidth required by the ISP. It is
increasing function w.r.t Dj and QoS qsj

because a larger demand or higher QoS
usually require a larger backhaul bandwidth. The quality of service qsj

can be
defined by various metrics such as latency, jitter, or bandwidth. Latency is a
measure of the delay that the traffic experiences as it traverses a network, and
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jitter is defined as the variation in that delay. Bandwidth is measured as the
amount of data that can pass through a point in a network over time. Here, we
define the QoS as the “expected delay”. The expected delay is computed by the
Kleinrock function that corresponds to the delay of M/M/1 queue with FIFO
discipline or M/G/1 queue under processor sharing [4]. Similar to [4], instead of
using the actual delay, we consider the reciprocal of its square root.

qsj
=

1√
Delay

=
√

Bj(Dj , qsj
) − Dj(ps,qs,pc) (8)

it means that:

Bj = q2sj
+ Dj(ps,qs,pc) (9)

Then, the utility function of the ISPj given by the following formula:

Uj =
H∑

h=1

φh

{
(psj − pt)Dj(ps,qs,pc)(1 − kjh) + (psj + pcj − cj)kjhDj(ps,qs,pc)

}

− vj(H −
H∑

h=1

kjh)(q2sj + Dj(ps,qs,pc) (10)

The ISPj cache item h under the condition defined as follow:

kjh =

{
1 if φh(pcj − cj)Dj � −φhptDj − vjBj

0 otherwise
(11)

where φh(pcj − cj)Dj is the revenue of ISPj by serving requested demand φhDj

of item h from the ISPj cache. (−φhptDj −vjBj) is the cost when ISPj forwards
the requested demand of item h to the CP. kjh = 1 means that ISPj decides to
caches item h, because the revenue of ISPj by serving the requested demand of
item h from the ISP cache is larger than cost of forwards the request demand of
item h to the CP. kjh = 0 means that ISP not cache item h.

3 A Non-cooperative Game Formulation

For a precise formulation of a non-cooperative game, we have to specify (i) the
number of players, (ii) the possible actions available to each player, and any
constraints that may be imposed on them, (iii) the objective function of each
player which she attempts to optimize. Here we will consider formulation of
games where items (i)–(iii) above are relevant.

Let G = [M ,
{
Psj

, Qsj
, Pcj

}
,{Ui(.)}] denote the non-cooperative price QoS

price game (NPQPG), where M={1,2} is the index set identifying the ISPs. Psj

is the network access price strategy set of ISPj , Qsj
is the QoS strategy set of

ISPj , Pcj is the content access price strategy set of ISPj . Uj(.) is the utility
function of ISPj defined in 10. We assume that the strategy spaces Psj

, Qsj
,
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Pci of each ISPj are compact and convex sets with maximum and minimum
constraints. Thus, for each ISPj we consider as respective strategy spaces the

closed intervals: Psj
=

[
p

sj
, psj

]
, Qsj

=
[
q

sj
, qsj

]
and Pcj =

[
p

cj
, pcj

]
. Let the

price vector ps = (ps1 , ps2)
T ∈ Ps = Ps1 × Ps2 , QoS vector qs = (qs1 , qs2)

T ∈
Qs = Qs1 × Qs2 , price vector pc = (pc1 , pc2)

T ∈ Pc = Pc1 × Pc2 . (where T
represents the transpose operator).

In order to maximize their utilities, each ISPj decides a price psj
, QoS qsj

,
price pcj . Formally, the NPQCG problem can be expressed as:

max
psj

∈Psj
,qsj ∈Qsj

,pcj
∈Pcj

Uj(ps,qs,pc), ∀j ∈ M . (12)

3.1 The Nash Equilibrium

Nash Equilibrium (NE) is the most well-known solution to the non-cooperative
games. Nash equilibrium is a fixed point of a non-cooperative game where no
player can increase the value of its utility function through individual action.

According to, [21], a Nash equilibrium exists in a concave game if the joint
strategy space is compact and convex, and the utility function that any given
player seeks to maximize is concave in its own strategy and continuous at every
point in the product strategy space. Formally, if the weighted sum of the utility
functions with nonnegative weights:

ψ =
∑

j=1

xjUj , xj > 0 ∀j. (13)

is diagonally strictly concave, this implies that the Nash equilibrium point is
unique. Also, according to, [18] a Nash equilibrium is unique in a concave game,
if the game satisfies the dominance solvability condition.

Joint price Ps Game. A NPQPG in network access price is defined for fixed
qs ∈ Qs, pc ∈ PC as G(qs,pc) = [M , {Psj

}, {Uj(.,qs,pc)}].

Definition 1. A price vector p∗
s = (p∗

s1
, p∗

s2
) is a Nash equilibrium of the

NPQPG G(qs,pc) if for every j ∈ M , Uj(p∗
sj

, p∗
si

,qs,pc) ≥ Uj(psj
, p∗

si
,qs,pc)

for all psj
∈ Psj

.

Theorem 1. For each qs ∈ Qs, pc ∈ Pc, the game [M , {Psj
}, {Uj(.,qs,pc)}]

admits a unique Nash equilibrium.

Proof. To prove existence, we note that each ISPs strategy space Psj
is defined by

all prices in the closed interval bounded by the minimum and maximum prices.
Thus, the joint strategy space Ps a nonempty, convex, and compact subset of the
Euclidean space RN . In addition, the utility functions are concave with respect
to prices as can be seen from the second derivative test:
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∂Uj

∂psj

=
H∑

h=1

φh{(Dj(ps,pc,qs) − αj
j(psj

− pt))(1 − kjh) + Dj(ps,pc,qs)kjh

− αi
i(psj

+ pcj − cj)kjh} + vj(H −
H∑

h=1

kjh)αj
j

then,

∂2Uj

∂p2sj

= −2αj
j ≤ 0

which ensures existence of a Nash equilibrium.
We use the following proposition that holds for a concave game [18]: If a concave
game satisfies the dominance solvability condition:

−∂2Uj

∂p2sj

≥
M∑

i=1,i �=j

∣
∣
∣
∣

∂2Uj

∂psj
∂psi

∣
∣
∣
∣

then the game G admits a unique NE.
in duopoly model:

M∑

i=1,i �=j

∣
∣
∣
∣

∂2Uj

∂psj
∂psi

∣
∣
∣
∣ =

∣
∣
∣
∣

∂2Uj

∂psj
∂psi

∣
∣
∣
∣

The mixed partial is written as:

∂2Uj

∂psj
∂psi

= αi
j

Then,

−∂2Uj

∂p2sj

−
∣
∣
∣
∣

∂2Uj

∂psj
∂psi

∣
∣
∣
∣ =

(
2αj

j − αi
j

)
≥ 0

Thus, the Nash equilibrium point is unique. �	

Joint price Pc Game. A NPQPG in content access price is defined for fixed
ps ∈ Ps, qs ∈ Qs as G(ps,qs) = [M , {Pcj}, {Uj(ps,qs, .)}].

Definition 2. A price vector p∗
c = (p∗

c1 , p
∗
c2) is a Nash equilibrium of the

NPQPG G(ps,qs) if for every j ∈ M , Uj(ps,qs, p
∗
cj , p

∗
ci) ≥ Uj(ps,qs, pcj , p

∗
ci)

for all pcj ∈ Pcj .

Theorem 2. For each ps ∈ Ps, qs ∈ Qs, the game [M , {Pcj}, {Uj(ps,qs, .)}]
admits a unique Nash equilibrium.
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Proof. To prove existence, we note that each ISPs strategy space Pcj is defined by
all prices in the closed interval bounded by the minimum and maximum prices.
Thus, the joint strategy space Pc a nonempty, convex, and compact subset of the
Euclidean space RN . In addition, the utility functions are concave with respect
to prices as can be seen from the second derivative test:

∂Uj

∂pcj

=
H∑

h=1

φh

{
−γj

j (psj − pt)(1 − kjh) + Dj(ps,pc,qs)kjh − γj
j (psj + pcj − cj)kjh

}

+ vj(H −
H∑

h=1

kjh)γj
j

then,

∂2Uj

∂p2cj
= −2γj

j

H∑

h=1

φhkjh ≤ 0

which ensures existence of a Nash equilibrium.
We use the following proposition that holds for a concave game [18]: If a concave
game satisfies the dominance solvability condition:

−∂2Uj

∂p2cj
≥

∣
∣
∣
∣

∂2Uj

∂pcj∂pci

∣
∣
∣
∣

then the game G admits a unique NE.
The mixed partial is written as:

∂2Uj

∂pcj∂pci

= γi
j

H∑

h=1

φhkjh

Then,

−∂2Uj

∂p2cj
−

∣
∣
∣
∣

∂2Uj

∂pcj∂pci

∣
∣
∣
∣ =

(
2γj

j − γi
j

) H∑

h=1

φhkjh ≥ 0

thus, the Nash equilibrium point is unique. �	

Joint QoS Game. A NPQPG in QoS is defined for fixed ps ∈ Ps, pc ∈ Pc as
G(ps,pc) = [M , {Qsj

}, {Uj(ps, .,pc)}].

Definition 3. A QoS vector q∗
s = (q∗

s1
, q∗

s2
) is a Nash equilibrium of the NPQPG

G(ps,pc) if for every j ∈ M , Uj(ps, q
∗
sj

, q∗
si

,pc) ≥ Uj(ps, qsj
, q∗

si
,pc) for all

qsj
∈ Qsj

.

Theorem 3. For each ps ∈ Ps, pc ∈ Pc, the game [M , {Qsj
}, {Uj(ps, .,pc)}]

admits a unique Nash equilibrium.
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Proof. To prove existence, we note that each ISPs strategy space Qsj
is defined

by all QoSs in the closed interval bounded by the minimum and maximum QoSs.
Thus, the joint strategy space Qs a nonempty, convex, and compact subset of the
Euclidean space RM . In addition, the utility functions are concave with respect
to QoSs as can be seen from the second derivative test:

∂Uj

∂qsj

=
H∑

h=1

φh

{
βj

j (psj
− pt)(1 − kjh) + βi

i(psj
+ pcj − cj)kjh

}

+ vj(H −
H∑

h=1

kjh)(βj
j − 2qsj

)

then,

∂2Uj

∂q2sj

= −2vj(H −
H∑

h=1

kjh) ≤ 0

which ensures existence of a Nash equilibrium.
In order to prove uniqueness, we follow, [21], and define the weighted sum of
user utility functions.

ψ(qs,x) =
2∑

j=1

xjUj(qsj
,qs−j

) (14)

The pseudo-gradient of 14 is given by:

v(qs, x) = [x1∇U1(qs1 , qs2), x2∇U2(qs2 , qs1)]
T (15)

The Jacobian matrix J of the pseudo-gradient (w.r.t.q) is written:

J =

⎛

⎝
x1

∂2U1
∂q2

s1
x1

∂2U1
∂qs1∂qs2

x2
∂2U2

∂qs2∂qs1
x2

∂2U2
∂p2

q2

⎞

⎠

=

(
−2x1v1(H − ∑H

h=1 k1h) 0
0 −2x2v2(H − ∑H

h=1 k2h)

)

Thus, J is a diagonal matrix with negative diagonal elements. This implies that
J is negative definite. Henceforth [J+JT ] is also negative definite, and according
to Theorem (6) in, [21], the weighted sum of the utility functions ψ(qs, x) is
diagonally strictly concave. Thus, the Nash equilibrium point is unique. �	

Learning Nash Equilibrium. The section mentioned above show clearly that
the Nash equilibrium is unique. Now, we turn to develop a fully algorithms
that converge quickly to Nash equilibrium. However, we assume that each ISP
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has a perfect information on strategies of its competitors. Each ISP fixes its
desirable strategies in order to maximize its own profit. Then, each ISP can
observe the policy taken by its competitors in previous rounds and input them
in its decision process to update its policy. Therefore, the best response algorithm
will converge a to unique equilibrium. The best response algorithm is summarized
in Algorithm 1.

Algorithm 1. Best response Algorithm
1: Initialize vectors x(0) = [x1(0), ..., xM (0)] randomly;
2: Each ISPj j ∈ M at time instant t computes:

a) xj(t + 1) = argmax
xj∈Xj

(Uj(x(t))).

3: If ISPj |xj(t + 1) − xj(t)| < ε, then STOP.
4: Else, make t=t+1 and go to step (2)

Where x denotes the vector ps, vector qs, vector pc. Xj denotes the policy
profile price Psj

, policy profile QoS Qsj
, policy profile price Pcj .

4 Numerical Investigations

So far, we have complete all theoretical analyses and in this section, we propose
to numerically study the gaming market taking account of previous expression of
utility of the ISPs. For illustrative purpose, we consider two homogeneous ISPs
seeking to maximize their earnings.

The Figs. 2, 3, 4 present respectively curves of the convergence to Nash equi-
librium prices and QoS. It is clear that the best response algorithm converges
to the unique Nash equilibrium prices and QoS. We also remark that the speed
of convergence is relatively high, so in this simulation Algorithm1 is capable of
efficiently converging to Nash equilibrium prices and QoS.

Figure 5 shows price pc as function of η. pc decrease as η gets higher. The
reason is that as η increase, the caching cost of more popular content at ISP
cache getting lower. Then, each ISP is incentive to cache popular content. In
fact, when the amount of content requested from ISP cache Increase, then the
transmission fee decrease and the cost bandwidth decrease, this introduces the
increase in the ISPs’s revenues. As a result, the ISPs decreases the price pc to
further incentivize greater user demand for popular content.

In Fig. 6 we plot price ps as a function of cost C. Price ps increase with
respect to cost C. When C increase, the caching cost of ISPs is getting higher
and they do not have an incentive to cache content. Therefore, at this point, the
CP start to serve more content then before and the ISPs forwards requests to the
CP, which increase the transmission fee and cost of bandwidth. Thus, the ISPs
needs to slightly increase its price ps to compensate the increase in transmission
fee and cost of bandwidth.
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Fig. 2. Price ps game: convergence to
the ps at Nash equilibrium.
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Fig. 3. Price pc game: convergence to
the pc at Nash equilibrium.
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Fig. 4. QoS game: convergence to the
QoS qs at Nash equilibrium.
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Fig. 5. Equilibrium price pc as a func-
tion of Zipfs factor η.
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Fig. 6. Equilibrium price ps as a func-
tion of cost C.
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Fig. 7. Equilibrium price pc as a func-
tion of cost C.
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Fig. 8. Equilibrium price ps as a func-
tion of number’s cached items H.
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Fig. 9. Equilibrium price pc as a func-
tion of number’s cached items H.

Figure 7 represent the impact of the cost C on price pc. pc increase with
respect to C. When C increases, each ISPs increase its prices pc to compensate
the increase in the caching cost. Thus, the access ICN needs to cache popular
content in order to decrease caching cost.

In Fig. 8 we plot network access price ps as a function of number’s items H.
price ps decreases with respect to the number of items H. When H increases,
the number of cached item increase. Then, the fraction of content requests js
satisfied from the ISP cache increases, the transmission fee decrease and the
cost of bandwidth decreases. Thus, the revenue of ISPs increases. Therefore, the
ISP decreases its price ps in order to induce increased demand from the users
(see the relationship between price ps and demand in Eq. 3).

Figure 9 shows the price to access to the content in the cache as a function of
the number of items H. From the figure we note that pc increases with respect
to H. When H increase, the cost of caching increase. Thus, the ISP needs to
slightly increase its price pc to compensate the increase in the caching cost. But
the ISPs must control the price pc, to not exceed the content access price of CP,
in order to motivate users to request more content from the ISP cache.

5 Conclusion

In this paper, we formulate competition between the ISPs in ICNs model by
using a game-theoretical model in which the ISP can control amount of con-
tent cached, adjust their prices and its QoS. We consider that the caching cost
of the ISPs is inversely proportional to popularity, which follows a generalized
Zipf distribution. Each ISPs caches item h if the revenue of ISP by serving the
requested demand of item h from ISP cache is larger than cost of forwards the
request demand of item h to the CP. We have demonstrated the existence and
uniqueness of the Nash equilibrium, then we applied the Best response Algo-
rithm for learning Nash equilibrium. Finally, using numerical results we showed
that caching investment is beneficial for the ISPs and users.
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Possible extensions of our results include the more detailed analysis taking
into account competition among multiple ISPs and multiple CPs. Modeling cus-
tomer behavior by using the Luce probabilistic model that incorporates bounded
rational choice of customers [3].
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Abstract. Churn is processes joining or leaving the peer-to-peer over-
lay network. We study handling of various churn variants. Cooperative
churn requires leaving processes to participate in the churn algorithm
while adversarial churn allows the processes to just quit. Infinite churn
considers unbounded number of churning processes throughout a single
computation. Unlimited churn does not place a bound on the number of
concurrently churning processes. Fair churn handling requires that each
churn request is eventually satisfied. A local solution involves only a lim-
ited part of the network in handing a churn request.

We prove that it is impossible to handle adversarial unlimited churn.
We sketch a global solution to all variants of cooperative churn and focus
on local churn handling. We prove that a local fair solution to infinite
churn, whether limited or unlimited, is impossible. On the constructive
side, we present an algorithm that maintains a linear topology and han-
dles the least restrictive unfair churn: infinite and unlimited. We extend
this solution to a 1-2 skip list, describe enhancements for generalized skip
lists and skip graphs.

1 Introduction

In a peer-to-peer overlay network, each member maintains the identifiers of its
overlay neighbors in its memory while leaving message routing to the underlay.
Such a network is inherently decentralized and scales well. Peer-to-peer overlays
are well suited for distributed content storage and delivery. Their recent appli-
cations range from internet telephony [8] to digital cryptocurrencies [29]. Due to
the lack of central authority and the volunteer nature of overlay network partic-
ipation, churn, or joining and leaving of peers, is a particularly vexing problem.
Churn may be cooperative, if departing processes execute a prescribed departure
algorithm; or adversarial, if they just quit.

Infinite and Unlimited Churn. Every peer-to-peer overlay network has to
handle churn. Usually, while the topological changes in the overlay required
by the churn request occur, the primary services of the overlay, such as con-
tent retrieval, are either suspended or disregarded altogether. In other words,
the churn is considered finite and the overlay network users have to wait till
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join/leave requests stop coming. Then, the overlay network recovers and restores
services. This may be tolerable if churn is infrequent since the overlay network
is available most of the time. However, at the scales that peer-to-peer overlay
networks achieve, churn is frequent if not continuous. In this case, churn related
service degradation may become unacceptable. It is, therefore, necessary to con-
sider infinite churn under which the overlay network has to maintain services
while handling it.

One way to handle churn is to engineer sufficient redundancy in the overlay
network topology so that if peers leave or join, there are enough alternative paths
for the operation of the network to proceed uninterrupted. In this approach, the
amount of redundancy necessarily places a limit on the number of processes that
churn concurrently: the churning processes must not sever all redundant paths.
If this limit is breached due to extensive churn, the network may collapse and
partition itself. To prevent such an outcome, the redundancy has to be extensive.
However, in the absence of heavy churn, this redundancy wastes resources. In this
paper, we consider unlimited churn with no bound on the number of concurrently
joining or leaving processes.

Unfair and Local Churn. In cooperative churn, the joining or leaving peer
submits a request to the churn handling algorithm. Such an algorithm is fair if it
eventually satisfies every such request. A fair algorithm may not always be pos-
sible or efficient. An unfair churn handling algorithm may guarantee progress by
satisfying some requests but denying others indefinitely. A global churn handling
algorithm may designate a single process to handle all churn requests. Although
such a serial request handling solution may be simple, it may not be practical
as it creates a performance bottleneck and a single point of failure. In contrast,
a local solution only involves processes in the vicinity of the churning process.
In this paper, we study fairness and locality of churn solutions.

Topologies. An ad hoc peer-to-peer network forms haphazardly. A struc-
tured peer-to-peer network maintains a particular topology to optimize its
performance. Most structured networks start with peer linearization [19] and
then add skip-links for search acceleration [1,5,34,37]. A skip-list and skip-
graph [13,24,30] are examples of a structured network built in this manner.
Handling churn in a skip-list extends to other similarly built structured net-
works in a straightforward manner.

finite infinite
limited or unlimited limited or unlimited

global possible, Proposition 1

local
unfair

possible, Theorems 3 and 4
fair impossible,Theorem 2

Fig. 1. Cooperative churn solutions summary.



Churn Possibilities and Impossibilities 305

Our Contribution. We consider the problem of churn in structured peer-to-
peer overlay networks in the asynchronous message passing system model. We
first prove that there does not exist an algorithm that can handle unlimited
adversarial churn. We then focus on cooperative unlimited churn. Our results
are summarized in Fig. 1. We outline the solution to global unlimited churn and
focus on local solutions. We distinguish fair and unfair types of the problem.
We prove that there is no local solution to the Fair Infinite Churn Problem
regardless of whether it is limited or unlimited. We then present an algorithm
that solves the unfair version of the problem while maintaining a linear topology,
i.e. topological sort. This solution immediately applies to fair and finite churn.
We extend our algorithm to handle churn in a more efficient structure of a 1-2
skip list. We describe solutions for generalized skip lists and skip graphs.

To the best of our knowledge, this paper is one of the first to focus specifically
on churn and is the first systematic study of unlimited infinite churn.

Related Work. Independently of peer-to-peer overlay networks, several
papers [25,28,38] address determination of the rate of churn, which is a diffi-
cult task itself. Churn is studied for some fundamental problems in distributed
computing such as Agreement [3,4,21]. Churn can potentially be addressed by
the solution to the Group Membership Problem [11] or an implementation of a
perfect failure detector [12]. However, the studied problems are inherently global,
which makes them unsuitable for peer-to-peer network use.

Peer-to-peer overlay networks are often designed to have redundant links so
that they can withstand limited churn [5–7,20]. Many papers address repairing
the topology after determining a process unexpectedly left the overlay network [1,
4,15,22,34,35]. Others limit churn to maintain overlay services while adjusting
the network [2,27].

An alternative approach is to self-stabilize from churn. Self-stabilization
allows the peer-to-peer network to recover from an arbitrary state once the
disruptions cease [9,10,14,16,19,23,24,26,30,31,33,36]. Using oracles allows a
peer-to-peer network to recover from an initial incorrect state, even discon-
nection [16,31]. A general framework of dealing with node departures is dis-
cussed [9,26]. These approaches address finite churn.

Thus, previously, studies focused on limited or finite churn, while this paper
focuses on unlimited and infinite churn.

2 Model and Problem Statement

Peer-to-Peer Overlay Networks, Topology. A peer-to-peer overlay network
consists of a set of processes with unique identifiers. When it is clear from the
context, we refer to processes and their identifiers interchangeably. Processes
communicate by message passing. A process stores identifiers of other processes
in its memory. Process a is a neighbor of process b if b stores the identifier of
a. Note that b is not necessarily a neighbor of a. A process may send a mes-
sage to any of its neighbors. Message routing from the sender to the receiver is
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carried out by the underlying network. A process may send a message only to
the receiver with a specific id, i.e. we do not consider broadcasts or multicasts.
Communication channels are FIFO with unlimited message capacity. A struc-
tured peer-to-peer overlay network maintains a particular topology. One of the
basic topologies is linear, or a topological sort, where each process b has two
neighbors a < b and b < c such that a is the highest id in the overlay network
that is less than b and c is the lowest id greater than b.

Consider a particular topology. A cut-set is a (proper) subset of processes of
the network such that the removal of these processes and their incident edges
disconnects the network. It is known that if a network topology is not a com-
plete graph, it has a cut-set. Since a peer-to-peer overlay network maintains its
connectivity by storing identifiers in the memory of other processes, once dis-
connected it may not re-connect. Hence, a peer-to-peer overlay network must
not become disconnected either through the actions of the algorithm or through
churn actions.

Searching, Joining and Leaving the Overlay Network. The primary use
of a peer-to-peer overlay network is to determine whether a certain identifier is
present in the network. A search request message bearing the identifier of interest
may appear in the incoming channel of any process that has already joined the
overlay network. The request is routed until either the identifier is found or its
absence is determined.

A process may request to join the overlay network. We abstract bootstrapping
by assuming that a join request, bearing the joining process identifier, appears in
an incoming channel of any process that has already joined the overlay network.
A process that joined the overlay network may leave it in two ways. In adversarial
churn a leaving process just exits the overlay network without participating in
further algorithm actions. In cooperative churn a leaving process sends a request
to leave the overlay network; the leaving process exits only after it is allowed to
do so by the algorithm. A process may join the overlay network and then leave.
However, a process that left the overlay network may not join it again with the
same identifier. A join or leave request is a churn request and the corresponding
join or leave message is a churn message. When a leaving process exits the
overlay network, the messages in its incoming channels are lost. However, the
messages sent from this process before exiting remain in the incoming channel
of the receiving process.

Churn Algorithm. A churn algorithm handles churn requests in cooperative
churn. For each process, an algorithm specifies a set of variables and actions. An
action is of the form 〈label〉 : 〈guard〉 −→ 〈command〉 where label differentiates
actions, guard is a predicate over local variables, and command is a sequence
of statements that are executed atomically. The execution of an action transi-
tions the overlay network from one state to another. An algorithm computation
is an infinite fair sequence of such states. We assume two kinds of fairness of
computation: weak fairness of action execution and fair message receipt. Weak
fairness of action execution means that if an action is enabled in all but finitely
many states of the computation then this action is executed infinitely often. Fair
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message receipt means that if the computation contains a state where there is
a message in a channel, this computation also contains a later state where this
message is not present in the channel, i.e. there is no message loss and the mes-
sage is received. We place no bounds on message propagation delay or relative
process execution speeds, i.e. we consider fully asynchronous computations.

Algorithm Locality. A churn request may potentially be far, i.e. a large number
of hops, from the place where the topology maintenance operation needs to occur.
Place of join for a join request of process x, is the pair of processes y and z that
already joined the overlay network, such that y has the greatest identifier less
than x and z has the smallest identifier greater than x. In every particular state
of the overlay network, for any join request, there is a unique place of join. Note
that as the algorithm progresses and other processes join or leave the overlay
network, the place of join may change. Place of leave for a leave request of
process x is defined similarly. Place of churn is a place of join or leave.

A network topology is expansive if there exists a constant m independent of
the network size such that for every pair of processes x and y where the distance
between x and y is greater than m, a finite number of processes may be added m
hops away from x and the same number of processes may be removed from the
network such the distance between x and y is increased by at least one. This con-
stant m is the expansion vicinity of the topology. In other words, in an expansive
topology, every pair of processes far enough away may be further separated by
adding processes to the network while removing processes elsewhere. Note that
a completely connected topology is not expansive since the distance between any
pair of processes is always one. However, a lot of practical peer-to-peer overlay
network topologies are expansive. For example, a linear topology is expansive
with expansion vicinity of 1 since the distance between any pair of processes at
least two hops away may be increased by one if a process is added outside the
neighborhood of one member of the pair.

A churn algorithm is local if there exists a constant l independent of the
overlay network size, such that only processes within l hops from the place
of churn need to take steps to satisfy this churn request. The maximum such
constant l is the locality of the algorithm. Note that a local algorithm may
maintain only an expansive topology, and that the expansive vicinity of this
topology must not be greater than the locality of the algorithm.

Orthogonality of Infinite and Unlimited Churn. A churn algorithm is
designed to handle particular churn. Churn is infinite if the number of churn
requests in a computation is not bounded by a constant either known or unknown
to the algorithm. To prevent the degenerate case of an indefinitely expanding
network, we assume that the difference between the number of join and leave
requests is still bounded. Churn is unlimited if the number of concurrent churn
requests in the overlay network is not bounded by a constant either known or
unknown to the algorithm. Observe that unlimited churn allows, for example,
that all process of the network request to leave. For limited churn, we assume
that there is a number k > 1 such that in any computation, the number of
concurrent requests is no more than k.
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Note that these pairs of conditions are orthogonal. For example, churn may
be finite but unlimited: all processes may request to leave but no more join or
leave requests are forthcoming. Alternatively, in infinite limited churn, there may
be an infinite total number of join or leave requests but only, for example, five
of them in any given state.

The Problem Statements. A link is the state of channels between a pair of
neighbor processes. As a churn algorithm services requests, it may temporarily
violate the overlay network topology that is being maintained. A transitional
link violates the overlay network topology while a stable link conforms to it.
An algorithm that solves a particular churn problem conforms to the following
properties.

request progress: if there is a churn request in the overlay network, some churn
request is eventually satisfied;

fair request: if there is a churn request in the overlay network, this churn
request is eventually satisfied;

terminating transition: every transitional link eventually becomes stable;
message progress: a message in a stable link is either delivered or forwarded

closer to the destination;
message safety: a message in a transitional link is not lost.

Note that the fair request property implies the request progress property.
The converse is not necessarily true. The following combinations of properties
are of particular interest.

Definition 1. A solution to the Unfair Churn Problem satisfies the combination
of request progress, terminating transition, message progress and message safety
properties.

Definition 2. A solution to the Fair Churn Problem satisfies the combination of
fair request, terminating transition, message progress and message safety prop-
erties.

In other words, a solution to the Fair Churn Problem guarantees that every
churn request is eventually satisfied while a solution to the Unfair Churn Problem
does not. An algorithm may satisfy these properties while handling finite or
infinite, limited or unlimited churn. Note that if a solution is proven impossible
under more restrictive churn conditions, it is also impossible under less restrictive
conditions. For example, if the solution to the Fair Churn Problem cannot handle
limited churn, it cannot handle unlimited churn either. Conversely, if a solution
is proven to handle less restrictive conditions, it is guaranteed to handle more
restrictive conditions. For example, if the solution to the Unfair Churn Problem
handles infinite unlimited churn, it also handles limited and finite churn.
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3 Impossibilities and Global Solutions

Adversarial Churn

Theorem 1. There does not exist a solution for unlimited adversarial churn if
the maintained topology is not fully connected.

Formal proofs are in the full version of the paper [18]. Intuitively, the reason
for the negative result of Theorem1 is as follows. So long as the network is not
completely connected, there is a subset of nodes whose abrupt departure may
disconnect the network. For the rest of the paper, we are focusing on cooperative
churn.

Theorem 2. There does not exist a local solution to the Fair Churn Problem
that can handle infinite limited or unlimited churn for an expansive overlay net-
work topology.

The intuition for Theorem2 is that, in an expansive overlay network topology,
the requests may arrive to produce a “treadmill effect” for a particular churn
request r: the satisfaction of inopportune requests by a local algorithm extends
the topology such that r never reaches its place of churn. Hence, no fairness.

Global Churn Handling

Proposition 1. There exists a global Fair Churn Algorithm that can handle
infinite unlimited cooperative churn.

Let us sketch the global solution. The algorithm chooses the coordinator, for
example the process with the highest id, to handle churn requests. All processes
know this coordinator and forward their requests to it. The coordinator serial-
izes the requests handling. For each request, the coordinator sends the topology
updates to the churning process and its neighbors. The coordinator waits for
the process acknowledgements before starting the next request. If the coordina-
tor x itself requests to leave, it stops handling other churn requests, selects the
next coordinator y, forwards the incoming requests to y. The new coordinator y
does not start handling requests until it gets the permission from x. Meanwhile,
x informs all processes of the coordinator change, waits for their acknowledge-
ments, forwards the permission for y to start handling requests and then leaves.
This algorithm satisfies all the properties of the Fair Churn Algorithm.

Note that the outlined algorithm handles the least restrictive churn: infinite
and unlimited. Therefore, this algorithm also handles infinite limited and finite
limited and unlimited, see Fig. 1. We now focus on local algorithms.

4 Linear Topology Churn Handling

Linear Topology Under Churn. In a linear topology, each process p maintains
two identifiers: left, where it stores the largest identifier less than p and right,
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where it stores the smallest identifier greater than p. Processes are thus joined in
a chain. For ease of exposition, we consider the chain laid out horizontally with
higher-id processes to the right and lower-id processes to the left. The largest
process stores positive infinity in its right variable; the smallest process stores
negative infinity in left. A left end of a link is the smaller-id neighbor process.
A right end is the greater-id process.

As a process joins or leaves the overlay network, it may change the values
of its own or its neighbors variables thus transitioning the link from one state
to another. In a linear topology, a link is transitional if its left end is not a
neighbor of its right end or vice versa. The link is stable otherwise. The largest
and smallest processes may not leave. The links to the right of the largest process
and to the left of the smallest processes are always stable. A process may leave
the overlay network only after it has joined. We assume that in the initial state
of the overlay network, all links are stable.

constant p // process identifier
variables

left, right: ids of left and right neighbors,
⊥ if undefined

leaving: boolean, initially false, read only,
application request

busy: boolean, initially false; true when
servicing a join/leave request
or when joining

C: incoming channel

actions
joinRequest:

join ∈ C −→
receive join (reqId)
if (p < reqId < right) and not leaving
and not busy then

send sua(right) to reqId
busy := true

else
if reqId < p then

send join(reqId) to left
else

send join(reqId) to right

leaveRequest:
leave ∈ C −→

receive leave(reqId, q)
if reqId = right and not leaving
and not busy then

send sua(⊥) to q
busy := true

else
if p <= reqId then

send leave(reqId, q) to left
else

send leave(reqId, q) to right

setUpA:
sua ∈ C −→

receive sua(reqId) from q
if reqId �= ⊥ then // Join 1.1 received

right := reqId
left := q
send sua(⊥) to right

else // Join 1.2 or Leave 1 received
left := q
send sub to left

setUpB :
sub ∈ C −→

receive sub from q
if q �= right then // Join 2.2 or Leave 2 received

send tda to right
right := q

else // Join 2.1 received
send sub to left

tearDownA:
tda ∈ C −→

receive tda from q
if q �= left then // Join 3 or Leave 3.2 received

send tdb to q
else // Leave 3.1 received

send tda to right

tearDownB :
tdb ∈ C −→

receive tdb from q
if q �= right then // Join 4 or Leave 4.2 received

send ftd to q
busy := false

else // Leave 4.1 received
send tdb to left

tranDone:
ftd ∈ C −→

receive ftd from q
if leaving then // Leave 5 received, p may exit

right = ⊥
left = ⊥

else
busy := false // Join 5 received

Fig. 2. Algorithm CL for process p.
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Algorithm Description. We present a local algorithm Unfair Infinite Unlim-
ited Churn (CL) that satisfies the four properties of the Unfair Churn Problem
while handling unfair unlimited churn and maintaining a linear topology. The
basic idea of the algorithm is to have the handler process with the smaller iden-
tifier of the place of join coordinate churn requests to its immediate right. This
handler considers one such request at a time. This serializes request processing
and guarantees the accepted request’s eventual completion.

The algorithm is shown in Fig. 2. To maintain the topology, each process p
has two variables: left and right with respective domains less than p and greater
than p. Read-only variable leaving is set to true by the environment once the
joined process wishes to leave the overlay network. Variable busy is used by the
handler process to indicate whether it currently coordinates a churn request, or
is initialized to true for a joining process. The incoming channel for process p
is variable C. Processes do not accept churn requests when busy is true.

The request is sent in the form of a single join or leave message. We assume
that a join and, for symmetry, a leave message is inserted into an incoming
channel of an arbitrary joined process in the overlay network.

Message join carries the identifier of the process wishing to join the overlay
network. Message leave carries the identifier of the leaving process as well as
the identifier of the process immediately to its right. Actions joinRequest and
leaveRequest describe the processing of the two types of requests. If the receiver
realizes that it is to the immediate left of the place of join or leave, and the
receiver is not currently handling another request, i.e. busy �= true, and it does
not want to leave, it starts handling the arrived request. Otherwise, the recipient
process forwards the request to its left or right.

Request handling is illustrated in Fig. 3. It is similar for join and leave and
is divided into five stages. The first two stages are setup stages: they set up the
channels for the links of the joining process or for the processes that are the
neighbors of the leaving process. The third and forth stages are teardown stages:
they remove the channels of the links being replaced. The last stage informs
either the leaving process that it may exit, or the joining process that it may
start coordinating its own churn requests. In the case of join, links between two
pairs of neighbors need to be set up, hence the setup stages are divided into two
substages 1.1, 1.2, 2.1 and 2.2, and links between one pair of neighbors are tore
down in stages 3 and 4. Similarly, in the case of leave, link setup stages 1 and
2 establish links between a pair of neighbors, followed by the teardown stages
substages 3.1, 3.2, 4.1 and 4.2 to tear down links between two pairs of neighbors,
then stage 5. We include the stage and substage numbers in the comments of
Fig. 2. The messages transmitted during corresponding stages are 1. set up A
sua, 2. set up B sub, 3. tear down A tda, 4. tear down B tdb and 5. finish
teardown ftd.

CL Correctness Proof. The formal proof is here [18] but the idea is as follows.
We denote message tda or tdb as td*. Similarly, su* is sua or sub. We show
that in CL, a teardown td* message is the last in the channel being torn down.
Similar su* is the first message in a channel to be set up. The processes locally
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a.   join(y)

x y z

3. tda

1.1 sua(z)

4. tdb

1.2 sua

2.2 sub 2.1 sub

5. d

b.   leave(y, z)

x y z

1. sua

3.1 tda

2. sub

3.2 tda

4.2 tdb

5. d

4.1 tdb

Fig. 3. CL join and leave request handling.

handle churn request sequentially. Thus, no regular messages are lost in the
transition process. Moreover, the messages are eventually received and forwarded
correctly, which leads to some churn request eventually being handled. Hence the
below theorem.

Theorem 3. CL is a local Unfair Churn Algorithm that handles infinite unlim-
ited churn and maintains the linear topology.

Since finite churn limits the number of requests in a computation, it follows
that CL handles finite unlimited churn and maintains the linear topology.

5 Skip List Churn Handling

In this section, we describe the algorithm CSL that handles unlimited infinite
churn to maintain a deterministic 1-2 skip list. The advantage of a skip list over
linear topology is that data search and churn request processing takes O(logN)
steps compared to the linear search complexity. A skip list [32] consists of n
levels with each level sorted in ascending order. The bottom level 0 contains all
processes in the overlay network. In a 1-2 deterministic skip list, processes at
level i + 1 > 0 skip over one or two processes at level i. Algorithm CSL derives
from CL. Therefore, instead of presenting the code for the algorithm, we describe
its operation. We use the same system model defined in Sect. 2.

Variables. Similar to the CL algorithm, variable leaving indicates if a process
wishes to leave. At every level i, each process uses the busy variable to block
itself at that level. Also, at every level i, each process x stores 1-hop and 2-
hop neighbor identifiers. The first hop are conversational links that are used
to exchange messages. The variables x.i.l and x.i.r store 1-hop left and right
conversational neighbors. The second hop are informational links that do not
contain messages but are used by the algorithm to make decisions. Variables
x.i.2l and x.i.2r store 2-hop informational neighbors. Boolean variable x.i.up
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indicates whether the process x exists at level i + 1. If x.i.up = true, process x
is up at level i, it is down otherwise. The smallest and largest id processes never
leave and are present at every level of the skip list. The smallest process stores
negative infinity in its i.l and i.2l variables. The largest process stores positive
infinity in its i.r and i.2r variables.

Phases of Operation. We use two phases to construct a 1-2 skip list: permis-
sion and construction. The permission phase gathers all necessary permissions
and blocks all processes involved in a particular churn request from accepting
additional churn requests. Once all permissions are gathered and the required
processes are blocked by setting busy to true at each required level, the construc-
tion phase carries out the topology modification related to the churn request.

Permission Phase. The permission phase proceeds recursively from level 0. At
each level i, the handler considers the churn request. If it is not busy handling
another churn request or wishing to leave, it blocks itself from considering any
other requests, gathers the necessary permissions for the request at this level and,
if necessary, submits the request to level i+1 and awaits level i+1’s permission.
Once level i is secured, the permission is submitted to the lower level handler.
If permission is not secured, a rejection is sent to the lower level handler.

zyxwu v

level i+1
level i

zyxwu v zy v’vxwuyx vzw xw zyu

(a) no rise, x gets
w’s permission at level i

(b) no rise, x gets
w’s permission at level i

(c) y rises, x gets w’s
permission at level i, w 
gets level i+1 permissions

(d) z rises, x gets
w’s permission at level i,
x gets u’s permission at 
level i+1

(e) x rises, x gets
w’s permission at level i,
w gets u’s permission for
level i+1

Fig. 4. The cases of process x coordinating y’s joining.

y zxw

level i+1
level i

zyxwu v

zy v’vxwu

(a) no rise, no descend
x’s gets w’s permission at level i

(b) no rise, no descend
x gets w’s permission at level i

(d) z rises, y descends, x gets w’s
permission at level i, w 
gets level i+1 permissions for y
to leave then z to join

(f) no rise, x descends, x gets
w’s permission at level i,
x gets u’s permission at 
level i+1

yx vzw

(c) no rise, y descends, x gets
w’s permission at level i, w

gets level i+1 permissions

yx vzw v’

(e) x rises, y descends, x gets
w’s permission at level i,
w gets u’s permission at 
level i+1

zy v’vxwu

(g) x rises, y descends, x gets
w’s permission at level i,
w gets u’s permission for y
to leave then x to join level i+1

zy vxwu

(h) w rises, x descends, x gets
w’s permission at level i,
x gets t’s permission for x to
leave then w to join level i+1

yx zwut

Fig. 5. The cases of process x coordinating y’s leaving.

To determine the necessary permissions required for the join request from
process y at level i, the handler process x considers the five cases shown in



314 D. Foreback et al.

Fig. 4. Similarly, for leaving, x considers the eight cases in Fig. 5. For all cases,
handler x at level i requests permission from its left neighbor w. Once x gets
the permission from w, if necessary, x requests permission from its left neighbor
at level i + 1. Before w replies to x, it may need to get permission from its left
neighbor at level i, if further necessary, w requests permission from level i + 1
becoming the handler at level i + 1.

To determine the processes that must rise or descend, handler x requires
2-hop information, as opposed to only 1-hop information per the CL algorithm.
Let’s consider join Case e in Fig. 4 in more detail. Process x is the handler
and y is requesting to join. A hollow circle indicates a process whose status is
changing at the corresponding level. At level i, w and x are down while u and z
are up. When handler x accepts y’s join request at level i, x examines its 2-hop
neighborhood status and determines that it must rise and join level i + 1 and
that y’s status must change to be down. Process x first requests w’s permission
at level i. If w is not blocked handling another request, w blocks itself. Then, w
sends to u a request for x to join level i + 1. Process u becomes the handler of
the request at level i + 1. If the necessary permissions are obtained at this and
higher levels, w sends the permission to x and x sends it further downward. If the
request is rejected, the process unblocks itself and sends the rejection downward.

Once the permission phase for a certain churning process y ends, the appro-
priate 2-hop neighbors are not able to join or leave. Indeed, if y is leaving, y, x
and w are blocked. Process y rejects all requests from z, so z cannot leave.
Moreover, since z forwards to y for (i) its right neighbor v to leave or (ii) a new
neighbor z′ to join, where z < z′ < v, y’s 2-hop right neighborhood is precluded
from joining or leaving. The situation is similar if y is leaving.

b.   leave(y)

x y z

1. sua

5.1 tda

4. sub

5.2 tda

6.2 tdb 6.1 tdb

9. d

2. ia

3. ib

8. ib

7. ia vw

a.   join(y)

x y z

5. tda

1.1 sua

6. tdb

1.2 sua

4.2 sub 4.1 sub

9. d

2. ia

3. ib

8. ib

7. ia vw

Fig. 6. CSL join and leave request handling.

Construction Phase. The construction phase proceeds from the top level
down. At each level, the construction phase operates similar to CL algorithm.
See Fig. 6. The setup and tear down messages, sua, sub, tda and tdb, setup
and tear down 1-hop conversational links. The informational messages, ia and
ib, are added to maintain the informational 2-hop right and 2-hop left neighbor
links and status, and to unblock y’s 2-hop left neighborhood.
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Correctness Proof. The formal proof of CSL correctness is here [18]. The basic
operation of the algorithm is similar to that of CL, the major additions are the
multi-level permission and construction phases. We show that for each request,
the phases eventually end. Indeed, since the difference between the number of
join and leave requests is bounded, the number of levels in a skip list is bounded
also. The number of steps at each level is finite. Hence, eventually, the permission
phase either returns the permission or rejection. The only way it can return a
rejection is if some other request succeeds. Once all permissions are gathered, the
construction phase proceeds in a similar manner. The correctness proof result is
summarized in the below theorem.

Theorem 4. CSL is a local Unfair Churn Algorithm that handles infinite
unlimited churn and maintains a 1-2 skip list.

Since finite churn limits the number of requests in a computation, it follows
that CSL handles finite unlimited churn and maintains a 1-2 skip list.

6 Extensions and Future Work

Our solution for a 1-2 skip list can be extended to generalized skip lists and
skip graphs. Notice, the locality of a 1-2 skip list is 2 and the permission phase
blocked, whether explicitly or implicitly, the 2-hop neighborhood of the churning
process. For a 2-3 skip list, the locality is 3, and the permission phase should
block the 3-hop neighborhood. In general, the permission phase should block the
specific neighborhood of the churning process. The construction phase should be
modified to include the serialization of additional information messages, ia* and
ib*, to reach the specific neighborhood. For a 2-3 skip list, the informational
messages are sent to the 2-hop and 3-hop neighbors of the churning process.
The set up and tear down message patterns remain the same for the 1-hop
neighborhood covering the conversational links.

As further research, it is interesting to consider extensions of CL to ring
structures such as Chord [37] or Hyperring [5]. Another important area of inquiry
is addition of limited adversarial churn.
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SSS 2011. LNCS, vol. 6976, pp. 62–76. Springer, Heidelberg (2011). https://doi.
org/10.1007/978-3-642-24550-3 7

10. Caron, E., Desprez, F., Petit, F., Tedeschi, C.: Snap-stabilizing prefix tree for
peer-to-peer systems. Parallel Process. Lett. 20(1), 15–30 (2010)

11. Chandra, T.D., Hadzilacos, V., Toueg, S., Charron-Bost, B.: On the impossibility
of group membership. In: Proceedings of the Fifteenth Annual ACM Symposium
on Principles of Distributed Computing, pp. 322–330. ACM (1996)

12. Chandra, T.D., Toueg, S.: Unreliable failure detectors for reliable distributed sys-
tems. J. ACM 43(2), 225–267 (1996)

13. Clouser, T., Nesterenko, M., Scheideler, C.: Tiara: a self-stabilizing deterministic
skip list and skip graph. Theor. Comput. Sci. 428, 18–35 (2012)

14. Dolev, S., Kat, R.I.: Hypertree for self-stabilizing peer-to-peer systems. In: NCA,
pp. 25–32 (2004)

15. Drees, M., Gmyr, R., Scheideler, C.: Churn-and dos-resistant overlay networks
based on network reconfiguration. In: Proceedings of the 28th ACM Symposium
on Parallelism in Algorithms and Architectures (SPAA), California, USA, pp. 417–
427. ACM (2016)

16. Foreback, D., Koutsopoulos, A., Nesterenko, M., Scheideler, C., Strothmann, T.:
On stabilizing departures in overlay networks. In: Felber, P., Garg, V. (eds.) SSS
2014. LNCS, vol. 8756, pp. 48–62. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-11764-5 4

17. Foreback, D., Nesterenko, M., Tixeuil, S.: Infinite unlimited churn (short paper).
In: Bonakdarpour, B., Petit, F. (eds.) SSS 2016. LNCS, vol. 10083, pp. 148–153.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49259-9 12

18. Foreback, D., Nesterenko, M., Tixeuil, S.: Churn possibilities and impossibilities.
Technical report hal-01753397, HAL (2018)

19. Gall, D., Jacob, R., Richa, A., Scheideler, C., Schmid, S., Täubig, H.: Time com-
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Abstract. Vector clock algorithms are basic wait-free building blocks
that facilitate causal ordering of events. As wait-free algorithms, they are
guaranteed to complete their operations within a finite number of steps.
Stabilizing algorithms allow the system to recover after the occurrence
of transient faults, such as soft errors and arbitrary violations of the
assumptions according to which the system was designed to behave.

We present the first, to the best of our knowledge, stabilizing vector
clock algorithm for asynchronous crash-prone message-passing systems
that can recover in a wait-free manner after the occurrence of transient
faults (as well as communication and crash failures) in the absence of
execution fairness. We use bounded message and storage sizes and do
not rely on any means of synchronization.

The proposed algorithm provides bounded time recovery during fair
executions that follow the last transient fault. The novelty is for the case
of more challenging settings that consider no execution fairness. The
proposed algorithm guarantees a bound on the number of times in which
the system might violate safety (while existing algorithms might block
forever due to the presence of both transient faults and crash failures).

1 Introduction

Vector clocks allow reasoning about causality among events in distributed sys-
tems, for example, when constructing distributed snapshots. This paper presents
the design of a highly fault-tolerant decentralized algorithm for vector clocks, in
large-scale asynchronous message-passing systems that use no synchronization
and do not assume fair scheduling.

Fault Model. The message-passing system is asynchronous and prone to: (a)
crash failures (b) failing nodes may perform an undetectable restart [1], and
(c) packet failures, such as omission, duplication, and reordering. In addition to
these benign failures, we consider transient faults, i.e., any temporary violation of
assumptions according to which the system was designed to behave. We assume
that these transient faults arbitrarily change the system state in unpredictable
manners (while keeping the program code intact). Since these faults are rare,
our model assumes that they occur before the system run starts.

Design Criteria. Dijkstra [2] requires self-stabilizing systems, which may start
in an arbitrary state, to return to correct behavior within a bounded period.
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Asynchronous systems (with bounded memory and channel capacity) can indef-
initely hide stale information that transient faults introduce. At any time, this
corrupted data can cause the system to violate safety. This is true for any system,
and in particular, for Dijkstra’s self-stabilizing systems [2], which are required
to remove, within a bounded time, all stale information whenever they appear.
Here, the scheduler acts as an adversary that has a bounded number of opportu-
nities to disrupt the system. However, this adversary never reveals when it will
disrupt the system. Against such unfair adversaries, systems cannot specify the
time it would take to remove all stale information.

Pseudo-self-stabilization [3] deals with the above inability by bounding the
number of times in which the system violates safety. We consider the newer
criteria of practically-self-stabilizing systems [4–7] that can address additional
challenges. For example, any transient fault can cause a bounded counter to
reach its maximum value and yet the system might need to increment the counter
for an unbounded number of times after that overflow event. This challenge is
greater when there is no elegant way to maintain an order among the different
counter values, say, by wrapping around to zero upon counter overflow. Existing
attempts to address this challenge use non-blocking resets in the absence of
faults, as described in [8]. In case faults occur, the system recovery requires the
use of a synchronization mechanism that, at best, blocks the system until the
scheduler becomes fair. This contradicts our liveness requirements.

Without fair scheduling, a system that takes an extraordinary (or even an infi-
nite) number of steps is bound to break any ordering constraint, because unfair
schedulers can arbitrarily suspend node operations and defer message arrivals
until such violations occur. Having feasible systems in mind, we consider this
number of (sequential) steps to be no more than practically infinite [5,7], say, 264.
Practically-self-stabilizing systems [4,6,7] require a bounded number of safety
violations during any practically infinite period. (Practically-self-stabilizing sys-
tems are named by the concept of practically infinite executions [5].)

To the end of providing safety (and independently of the practically-self-
stabilizing algorithm), the application can use a synchronization mechanism
(similar to [4,6,7]). The advantage here is that the application can selectively
use synchronization only when needed (without requiring the entire system to
be synchronous or blocking after the occurrence of transient faults).

Vector Clocks. A common (non-self-stabilizing and unbounded) way for
implementing vector clocks is to maintain local copies of the vector V [], such that
each of the N system nodes has a component, e.g., V [i] is the component of node
pi. Upon the occurrence of a local event, pi increments Vi[i], and sends an update
message m = 〈V []〉. Upon m’s arrival to node pj , the latter merges the events
counted in V [] and m.V [] by assigning V [j] ← max(V [j],m.V [j]) for each compo-
nent V [j]. The partial order ≤C can show causality between two events by check-
ing if the corresponding vector clocks are comparable in ≤C , where V and W are
N -size integer vectors and (V ≤C W ) ⇐⇒ (∀x ∈ {1, . . . , N}, V [x] ≤ W [x]) [9].

Related Work. There exist bounded but non-stabilizing solutions [10,11].
Self-stabilizing resettable vector clocks [8] use a blocking global reset (after the
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occurrence of transient faults) that requires crash-free fair scheduling. Our solu-
tion never uses blocking operations. There are practically-stabilizing algorithms
for solving agreement [5,6], state-machine replication [6,7], and shared memory
emulation [12]. They all rely on synchronization mechanisms. We solve a different
problem than [5–7,12] and never use synchronization mechanisms.

Our Contributions. We present an important building block for dependable
large-scale decentralized systems that need to reason about event causality. In
particular, we provide a practically-self-stabilizing algorithm for vector clocks
that does not require synchrony assumptions or synchronization mechanisms.
Concretely, we present, to the best of our knowledge, the first solution that: (i)
Deals with a wide range of failures in asynchronous systems that are prone to
crash failures (possibly followed by undetectable restarts) and communication
failures, such as packet omission, duplication, and reordering. (ii) Uses bounded
storage and message size (of 3N integers and two labels per vector, where N is
the number of nodes and each label has O(N3) bits [7]). (iii) Deals with tran-
sient faults and unfair scheduling. We prove wait-free recovery within O(N8C)
safety violations after the occurrence of transient faults, which is the complexity
measure for practically-stabilizing systems, where C is an upper bound on the
channel capacity. Due to the page limit, some of the proof details appear in [13].

2 System Settings, Problem Definition, Solution Outline

The system includes a set of processors P = {p1, . . . , pN}, which are computing
and communicating entities that we model as finite-state machines. Processor pi

has an identifier, i, that is unique in P . Any pair of active processors can commu-
nicate directly with each other via their bidirectional communication channels
(of bounded capacity per direction, C ∈ N). That is, the network’s topology is
a fully-connected graph and each pi ∈ P has a buffer of finite capacity C that
stores incoming messages from pj , where pj ∈ P \{pi}. Note that [14,15] present
a self-stabilizing reliable FIFO message delivery protocol that tolerates packet
omissions, reordering, and duplication over the system’s non-FIFO channels. We
assume that if pi sends a packet infinitely often to pj , processor pj receives that
packet infinitely often, i.e., the communication channels are fair.

The Interleaving Model. The processor’s program is a sequence of (atomic)
steps. Each step starts with an internal computation and finishes with a single
communication operation, i.e., packet send or receive. We assume the interleav-
ing model, where steps are executed atomically; one step at a time. Input events
refer to packet receptions or a periodic timer that can, for example, trigger the
processor to broadcast a message. Note that the system is asynchronous and the
algorithm that each processor is running is oblivious to the timer rate.

The state, si, of pi ∈ P includes all of pi’s variables as well as the set of
all messages in pi’s incoming communication channels. Note that pi’s step can
change si as well as remove a message from channelj,i (upon message arrival)
or queue a message in channeli,j (when a message is sent). The term system
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state refers to a tuple of the form c = (s1, s2, · · · , sN ), where each si is pi’s
state (including messages in transit to pi). We define an execution (or run)
R = c0, a0, c1, a1, . . . as an alternating sequence of system states cx and steps
ax, such that each system state cx+1, except for the initial system state c0, is
obtained from the preceding system state cx by the execution of step ax.

Active Processors, Processor Crashes, and Undetectable Restarts. At
any point and without warning, pi is prone to a crash failure, which causes pi

to either forever stop taking steps (without the possibility of failure detection
by any other processor) or to perform an undetectable restart in a subsequent
step [1]. When pi performs an undetectable restart, it continues to take steps
by having the same state as immediately before crashing, but possibly having
lost incoming messages between crashing and restarting. Processors know the set
P , but have no knowledge about the number or the identities of the processors
that never crash. We assume that transient faults occur only before the starting
system state c0, and thus c0 is arbitrary. Since processors can crash after c0, the
executions that we consider are not fair [16]. We say that a processor is active
during an execution R′ if it takes at least one step in R′.

Execution Length, Practically Infinite, and the 
 (Significantly Less)
Relation. To define the stabilization criteria, we need to compare the number of
steps that violate safety in a finite execution R with the length of R. The length
of a finite execution R = c0, a0, c1, a1, . . . , cx−1, ax−1 is equal to x, denoted by
|R| = x. We denote with � the subexecution relation between two executions.
Let MAXINT be an integer that is considered as a practically infinite [5] quantity
for a system S (e.g., the system’s lifetime). For example, MAXINT can refer to
2b (e.g. b ≥ 64) sequential system steps. We use 
 as a formal way of referring
to the comparison of, say, N c, for a small integer c, and MAXINT , such that N c

is an insignificant number when compared to MAXINT . Let LS be a practically-
infinite quantity for a system S. We denote by x 
 LS the fact that x ∈ N is
significantly less than LS . We say that an execution R is of LS -scale, if there
exists an integer y 
 MAXINT , such that |R| = y · MAXINT holds.

The Design Criteria of Practically-Self-stabilizing Systems. We define
the system’s abstract task T by a set of variables (of the processor states) and
constraints, which we call the system requirements, in a way that defines a desired
system behavior, but does not consider necessarily all the implementation details.
We say that an execution R is a legal execution if the requirements of task T
hold for all the processors that take steps during R. We denote the set of legal
executions with LE. Let fR be the number of deviations from the abstract task
in an execution R. Definition 1 specifies our stabilization criteria.

Definition 1 (Practically-self-stabilizing System). For every infinite exe-
cution R, and for every LS-scale subexecution R′ of R, fR′ 
 |R′| holds.

Problem Definition (task requirement). We assume that each processor
pi is recording the occurrence of a new local event by incrementing the i-th
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entry of its vector clock. For the vector clock abstract task, we require that
the processors count all the events occurring in the system, despite the (possibly
concurrent) wrap around events. Hence, we require that the vector clock element
of each (active) processor records all the increments done by that processor
(Requirement 1). We assume that each processor can always query the value of
its local vector clock. We say that the task requirement holds in an execution R∗,
if Requirement 1 holds for all processors that are active in R∗ (hence R∗ ∈ LE).

Let V and V ′ be two vector clocks, and causalPrecedence(V, V ′) be a
query that is true, if and only if, V causally precedes V ′, i.e., V ′ records
all the events that appear in V [9]. Then, V and V ′ are concurrent when
¬causalPrecedence(V, V ′)∧¬causalPrecedence(V ′, V ) holds. Note that if Require-
ment 1 holds, then it is possible to compare how many events occurred in a single
processor between two states, and hence compute correctly causalPrecedence().

Requirement 1 (Counting all events). Let R be an execution, pi be an
active processor, and V k

i be pi’s vector clock in ck ∈ R. The number of pi’s
counter increments between the states ck and c� ∈ R is V �

i [i] − V k
i [i], where

k < �.

Solution Outline. To the end of designing a system in which Requirement 1
holds, we introduce the vector clock pairs in Sect. 4, which is a novel data struc-
ture that represents vector clocks. A vector clock pair consists of a bounded vec-
tor clock to which we associate static metadata consisting of two labels and two
N -size vectors. In Sect. 3 we detail the labeling scheme which we associate with
vector clock pairs. In Sect. 4 we present vector clock pairs and their invariants, as
well as the methods for incrementing, merging, and handling exhausted vector
clock counters. Then, in Sect. 5 we present Algorithm 1, which includes the pro-
cedures that each processor runs to guarantee the vector clock pair invariants,
to handle counter exhaustions and reception of vector clock pairs from other
processors. Upon violation of invariants (which transient faults can cause), a
processor running Algorithm 1 resets its local vector clock to the zero vector,
possibly violating Requirement 1. Thus, in Sect. 6 we prove that Algorithm 1 is
practically-self-stabilizing (Definition 1) with respect to Requirement 1.

3 Practically-Self-stabilizing Labeling Schemes

In this section we give an overview of labeling schemes that can be used for
designing an algorithm that guarantees Requirement 1. A solution for comparing
vector clock elements that overflow can be based on associating each vector clock
element with a timestamp (or label, or epoch). This way, even if a vector clock
element overflows, it is possible to maintain order by comparing the timestamps.

A first approach for providing these timestamps could rely on an integer
counter, cn. Any system has memory limitations, thus a single transient fault can
cause the counter to quickly reach the memory limit, say MAXINT . A counter
overflow event occurs when a processor increments the counter cn, causing cn
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to encode the maximum value MAXINT . In this case, the solution often is that
cn wraps around to zero. Thus, this approach faces the same ordering challenges
with the vector clock elements.

Existing solutions associate counters with epochs �, which mark the period
between two counter overflow events. The order among the counters is simply
the lexicographic order among the pairs 〈�, cn〉. Alon et al. [4] and Dolev et al. [7]
present practically-self-stabilizing bounded-size (epoch) labels, that tolerate con-
current overflow events, transient faults, and the absence of execution fairness.
Whenever a counter cn reaches MAXINT , the algorithms by Alon et al. [4] and
Dolev et al. [7] replace the current label � with �′, which at the moment of this
replacement is greater than any label that appears in the system state.

The Case of No Concurrent Overflow Events. Alon et al. [4] address
the challenge of always being able to introduce a globally maximum label. Their
algorithm eventually discovers the labels that appeared in the arbitrary start-
ing system state, and produces a globally maximum label. A label component
� = (sting,Antistings) is a pair, where sting ∈ D, D = {1, . . . , k2 + 1},
Antistings ⊂ D, |Antistings| = k, and k > 1 is an integer (this terminology was
introduced in [4]). The order among label components is defined by the relation
≺b, where �i ≺b �j ⇐⇒ (�i.sting ∈ �j .Antistings) ∧ (�j .sting �∈ �i.Antistings).
The function Nextb(L) takes a set L = {�1, . . . , �κ} of (up to) κ ∈ N label com-
ponents, and returns a newly created label component, �j = 〈s,A〉, such that
∀�i ∈ L : �i ≺b �j , where s ∈ D \ ∪κ

i=1Ai and A = {s1, . . . , sκ}, possibly aug-
mented by arbitrary elements of D\A when |A| < k. Alon et al. [4] use the order
≺b for which, during the period of recovery from transient faults, it can happen
that �1, �2, and �3 appear in the system and �1 ≺b �2 ≺b �3 ≺b �1 holds (label
cycle). The algorithm breaks such cycles by canceling these label components.

The Case of Concurrent Overflow Events. Alon et al. [4]’s labels allow,
once a single label (epoch) � is established, to order the system events using
the counter (�, cn). Dolev et al. [7] extend Alon et al. [4] to support concurrent
cn overflow events, by including the label creator identity. This information
facilitates symmetry breaking, and decisions about which label is the most recent
one, even upon concurrent label creations. The algorithm guarantees label cycle
breaking by logging all observed labels in bounded local histories (of size O(N3)).

Dolev et al. [7] extend Alon et al.’s label component to (creator, sting,
Antistings), where creator is the identity of the label creating processor, and
sting as well as Antistings are as in [4]. They use =lb to denote that two labels,
�i and �j , are identical and define the relation �i ≺lb �j ⇐⇒ (�i.creator <
�j .creator) ∨ (�i.creator = �j .creator ∧ ((�i.sting ∈ �j .Antistings) ∧ (�j .sting �∈
�i.Antistings))). The labels �i and �j are incomparable when �i ⊀lb �j ∧ �j ⊀lb �i

(and comparable otherwise). Dolev et al. consider label � to be obsolete when
there exists another label �′ �≺lb � of the same creator. In detail, �i cancels �j , if
and only if, �i and �j are incomparable, or if �i.creator = �j .creator ∧ �i.sting ∈
�j .Antistings ∧ �j .sting /∈ �i.Antistings, i.e., �i and �j have the same creator
but �j is greater than �i according to the ≺b order.
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Interface to Practically-Self-stabilizing Labeling Schemes. We present
a set of functions that consist an interface to a practically-self-stabilizing label-
ing scheme. Any algorithm that needs to rely on such labeling schemes can be
composed with a practically-self-stabilizing labeling algorithm via this interface.
Note that these functions are implemented in the algorithms of Dolev et al. [7].

(i) labelBookkeeping(): when called without arguments, this function lets the
labeling algorithm take a step [7, Algorithm 2, lines 21–28]. When calling
labelBookkeeping(m, j) the labeling algorithm processes the labels included in
a message m that was received from a processor pj [7, Algorithm 2, lines 19–28].
(ii) isStored(�) and isCanceled(�): these predicates are true if a label � is stored
in the local history, and respectively, if � is cancelled [7, Algorithm 2, line 6].
(iii) getLabel(): returns the local maximal label [7, Algorithm 2, lines 27–28].
(iv) legitMsg(): the predicate legitMsg(m, �) returns true if and only if the label
� is the maximal label that appears in the message m.
(v) cancel(): �.cancel(�′) marks � as canceled by �′ [7, Algorithm 3, line 10].
(vi) encapsulate(): Let labelPart = 〈maxLabel, •〉 be the outgoing message of
the labeling algorithm and malg be the outgoing message of the algorithm that is
composed with the labeling algorithm. Here, • denotes the labeling algorithm’s
metadata, but we will also use it to denote any finite sequence of values. Then,
encapsulate(malg) returns the outgoing message of the compound algorithm,
m = 〈〈maxLabel, •〉,malg〉.

4 Vector Clock Pairs: Invariants, Operations, Counting

In this section we define a (vector clock) pair, which is a construction for emu-
lating a vector clock that can tolerate counter overflows and the absence of exe-
cution fairness. We define pair invariants (for Requirement 1) and operations, as
well as how to merge two pairs and compute the predicate causalPrecedence().

The (Vector Clock) Pair. We say that I = 〈�,m, o〉 is a (vector clock) item,
where � is a label from a practically-self-stabilizing labeling scheme (such as the
one by Dolev et al. [7] – Sect. 3), m (main) is an N -size vector of integers that
holds the processor increments, and o (offset) is an N -size vector of integers
that the algorithm uses as a reference to m’s value upon �’s creation. We use
(I.m − I.o)(mod MAXINT ) for retrieving I’s vector clock value. We define a
(vector clock) pair as the tuple Z = 〈curr, prev〉, where both curr and prev are
vector clock items, such that Z.curr.o = Z.prev.m, i.e., two variable names that
refer to the same storage (memory cell).

We use V C(Z) := (Z.curr.m − Z.curr.o)(mod MAXINT ) for retrieving the
vector clock of a pair Z. We assume that each processor pi stores a vector
clock pair locali and we explain below how pi uses locali for counting local
events as well as events that it receives from other processors, even when
counter overflows occur. We require that labelsOrdered(Z) holds for each pair,
where labelsOrdered(Z) ⇐⇒ ((Z.prev.� ≺lb Z.curr.� ∧ isCanceled(Z.prev.�)) ∨
(Z.prev.� = Z.curr.� ∧ ¬isCanceled(Z.curr.�)).
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Starting a (Vector Clock) Pair. The first value of a pair Z is
〈〈�, zrs, zrs〉, 〈�, zrs, zrs〉〉, where � := getLabel() is the local maximal label and
zrs := (0, . . . , 0) is the zero vector. Hence, V C(Z) = zrs holds.

Pair Exhaustion. We say that a pair Z is exhausted when exhausted(Z) holds,
where exhausted(Z) ⇐⇒ ΣN

k=1(Z.curr.m[k]−Z.curr.o[k]) ≥ MAXINT −1. We
define exhaustion when the sum of the elements of the vector clock’s value V C(Z)
is at least MAXINT−1. Defining exhaustion according to the sum of vector clock
values reduces the exhaustion events, in comparison to defining exhaustion per
vector clock element, hence we can use two labels per pair (instead of N). This
linear improvement is significant, since the label size in existing practically-self-
stabilizing labeling schemes is in Θ(N2) [4] and Θ(N3) [7].

Reviving a (Vector Clock) Pair. When the (vector clock) pair Z is
exhausted, pi revives Z by (i) canceling the labels of Z, i.e., Z.curr.� and
Z.prev.�, and (ii) replacing Z with Z ′ = 〈〈getLabel(), Z.curr.m,Z.curr.
m〉, Z.curr〉. Hence, the value of the new vector clock, Z ′, is an N -sized vec-
tor of zeros, i.e., V C(Z ′) = Z.curr.m − Z.curr.m = (0, . . . , 0). The fact that
Z ′.prev equals Z.curr will allow us to tolerate concurrent exhaustions when
merging two pairs.

Incrementing Vector Clock Values. Processor pi ∈ P increments its (vector
clock) pair, Z, by incrementing the ith entry of Z’s current item, i.e., it incre-
ments Z.curr.m[i] by 1( mod MAXINT ). In case that increment leads to exhaus-
tion, pi has to revive the pair Z. We assume that a processor calls increment()
only before it starts the computations of a step that ends with a send operation,
to ensure that increments are immediately propagated.

Merging Two Pairs. We present the invariants and the procedure of merging
two pairs, which is based on finding a common reference item between the pairs.

We define the relations =�,o and <�,o to be able to compare vector clock
items. Let 〈�,m, o〉 =�,o 〈�′,m′, o′〉 ⇐⇒ � = �′ ∧ o = o′. We say that two (vector
clock) items z and z′ match (in label and offset), if and only if, z =�,o z′. We use
the order 〈�1,m1, o1〉 <�,o 〈�2,m2, o2〉 ⇐⇒ �1 ≺lb �2 ∨ (�1 = �2 ∧ o1 <lex o2),
where m1, o1,m2, o2 are N -size vectors with elements in N, ≺lb is the label order
of the labeling scheme, and <lex is the lexicographic order.

Condition 1 tests the feasibility of merging the pairs Z and Z ′, and is true
when: (a) Z and Z ′ match (in label and offset) in their curr and prev, i.e.,
Z.itm =�,o Z ′.itm, for itm ∈ {curr, prev} (Fig. 1a), or (b) the label and offset
in the prev of one equals the label and offset in the curr of the other one, i.e.,
Z.curr =�,o Z ′.prev ∨ Z.prev =�,o Z ′.curr (Fig. 1b), or (c) Z and Z ′ match in
their prev, i.e., Z.prev =�,o Z ′.prev (Fig. 1c). We refer to the common item (in
label and offset) between Z and Z ′ as the pivot item.

existsPivot(Z,Z′)⇔ Z.prev=�,oZ
′.prev∨Z.curr=�,o Z′.prev∨Z.prev=�,o Z′.curr

(1)
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(a) Condition 1 holds be-
cause the two pairs dif-
fer only by their curr.main
fields (no wrap-around).

(b) Condition 1 holds be-
cause Z.prev and Z′.curr
differ only by their main
filed (Z wrapped-around).

(c) Condition 1 holds be-
cause the two pairs match in
their prev item (concurrent
wrap-around).

Fig. 1. Conditions for merging two given pairs; Z (left) and Z′ (right).

Two vector clocks Z and Z ′ can be merged when there exists a pivot item,
i.e., existsPivot(Z,Z ′) holds (Fig. 1). The <�,o-maximum pivot item, pivot, in Z
and Z ′, provides a reference point when merging Z and Z ′, because it refers to
a point in time from which both Z and Z ′ had started counting their events.
We merge Z and Z ′ to the pair output in two steps; one for initialization and
another for aggregation. We initialize output to the pair with the <�,o-maximum
item between Z and Z ′ (Fig. 1), and choose Z (the first input argument) when
symmetry exists (Figs. 1a and 1c). In order to distinguish when we treat numbers
and operations in N or in ZMAXINT , we denote by x+Ny the result of adding two
numbers x, y ∈ ZMAXINT in N (x +N y can be possibly larger than MAXINT )
and x|N denotes that x ∈ ZMAXINT is treated as a number in N.

For every i ∈ {1, . . . , N}, let newEvents(X, pivot)[i] be the number of new
events that the pair X ∈ {Z,Z ′} counts since the pivot item. In Eq. 2 we compute
newEvents(X, pivot)[i] depending on whether pivot matches X.curr or X.prev.
In the former case, we count the number of events in X.curr.m[i] since the offset
X.curr.o[i]. In the latter case, we also add the number of events in X.prev.m[i]
since the offset X.prev.o[i], because X.prev.o is the common offset of Z and Z ′.
The aggregation step sets output.curr.m[i] = max{newEvents(X, pivot)[i] |X ∈
{Z,Z ′}} + pivot[i](mod MAXINT ), for every i ∈ {1, . . . , N}.

newEvents(X, pivot)[i] =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(X.curr.m[i] − X.curr.o[i](mod MAXINT ))|N,
if pivot =�,o X.curr,

(X.curr.m[i] − X.curr.o[i](mod MAXINT ))|N +N

(X.prev.m[i] − X.prev.o[i](mod MAXINT ))|N,
if pivot =�,o X.prev

(2)

Event Counting and Causal Precedence. Let V k
i [i] be the ith entry

of pi’s vector clock Vi in state ck, k ∈ {x, y}. Requirement 1 implies that
in a legal execution, the query V y

i [i] − V x
i [i] returns the number of events
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that occurred in pi between the states cx and cy, where cx precedes cy. Let
localki be the value of locali in state ck. As we show in Sect. 6, if there
are two or more steps in which pi revives locali between cx and cx, then
there is no pivot between localxi and localyi . Thus, the response to the query
V y

i [i] − V x
i [i] is: (i) V C(localyi )[i] − V C(localxi )[i], if localxi and localyi differ

only on the field curr.m (cf. Fig. 1a), (ii) newEvents(localyi , localyi .prev)[i],
if localxi .curr =�,o localyi .prev (cf. Fig. 1b), and (iii) ⊥, otherwise. Sim-
ilarly, we compute the query causalPrecedence(Z,Z ′) (Sect. 2) as fol-
lows: causalPrecedence(Z,Z ′) ⇔ existsPivot(Z,Z ′) ∧ (∀i∈{1,...,N} newEvents
(Z, pivot)[i] ≤ newEvents(Z ′, pivot)[i] ∧ ∃j∈{1,...,N} newEvents(Z, pivot)[j] <
newEvents(Z ′, pivot)[j]).

5 Practically-Self-stabilizing Vector Clock Algorithm

We propose Algorithm 1 as a practically-self-stabilizing vector clock algorithm
that fulfills Requirement 1 (Sect. 2). It includes procedures for (i) vector clock
increments, (ii) checking the invariants of the local pair, the pair exhaustion
condition, and sending the local pair of a processor to its neighbors (do-forever
loop procedure), and (iii) merging an incoming pair with the local one.

Local Variables (Line 2). Processor pi ∈ P maintains a local pair, locali,
such that for any state, pi’s vector clock value is V C(locali) (cf. Section 4).
Whenever the invariants for locali do not hold in the do-forever loop or in the
message arrival procedures of Algorithm 1, pi sets locali to its initial value via
restartLocal() (line 9 and Sect. 4). Processor pi can call the function increment()
(lines 15–17) to increment its vector clock pair (cf. Section 4).

The Function revive() (Lines 13–14). When the pair Z is exhausted, a
call to revive(Z) lets Z to wrap around and return its new version (Sect. 4).
That is, pi cancels Z’s labels, Z.curr.� and Z.prev.�, by calling the label-
ing algorithm (function cancelPairLabels(), lines 11–12), and then sets Z to
〈〈getLabel(), Z.curr.m,Z.curr.m〉, Z.curr〉.
Token Passing Mechanism. Algorithm 1 uses a token passing mechanism for
sending and receiving local, which is independent of the computations on local.
This mechanism ensures that for every two processors pi, pj ∈ P , pj processes a
message from pi only if pi has received the latest value of localj , and hence we
avoid having unbounded number of steps in which the latter does not hold. To
that end, each processor pi maintains an N -size vector of pairs, pairsi[], where
pairsi[j], for j �= i, is the last value of localj that pi received (from pj), and
pairsi[i] stores pi’s pair, i.e., locali is an alias for pairsi[i]. Processor pi sends
〈locali, pairsi[j]〉 to a processor pj by calling encapsulate(〈locali, pairsi[j]〉) in
line 29. Hence, a message sent by pj and received by pi has the form mj =
〈•, 〈arrivingj , rcvdLocalj〉〉 (line 30). Processor pi stores arrivingj in pairsi[j]
(line 32), in order to ensure that pi has received the latest value of localj , and
processes the message mj if the pairs locali and rcvdLocalj differ only on their
curr.m, since the merging conditions (Sect. 4) do not depend on curr.m.
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Algorithm 1. Practically-self-stabilizing vector-clock algorithm, code for pi

1 Constants: zrs := (0, . . . , 0): the N-size vector of zeros, idV (i): N-size vector, where
idV (i)[i] = 1 and idV (i)[j] = 0, for j �= i;

2 Variables: pairs[]: N-size vector of pairs: pairs[i] is the local vector clock pair, i.e., local is
an alias to pairs[i], and pairs[j], j �= i, is the latest value of pj ’s local that pi received.

3 Interface: isStored(), getLabel(), legitMsg(), encapsulate(), labelBookkeeping(),
cancel() (Section 3).

4 Macros: labelsOrdered(), exhausted(), existsPivot(), newEvents() (Section 4), as well as:
5 mirroredLocalLabels() := isStored(local.prev.�) ∧ local.curr.� = getLabel();
6 pairInv(X) := ¬exhausted(X) ∧ (X.prev.� �lb X.curr.�);

7 comparableLabels(X ) := ∀�, �′ ∈ {X.curr.�, X.prev.� | X ∈ X}, � �lb �′ ∨ �′ �lb �;
8 legitPairs(X, Y ) := comparableLabels({X, Y }) ∧ existsPivot(X, Y ) (Condition 1);
9 restartLocal() := {local ← 〈y, y〉}, where y = 〈getLabel(), zrs, zrs〉;

10 eqlStatic(X, Y ) := (X.curr.� = Y.curr.� ∧ X.curr.o = Y.curr.o ∧ X.prev = Y.prev);
11 procedure cancelPairLabels(Z) begin
12 foreach � ∈ {Z.curr.�, Z.prev.�} do �.cancel(�); labelBookkeeping();

13 function revive(Z) begin
14 cancelPairLabels(Z); return 〈〈getLabel(), Z.curr.m, Z.curr.m〉, Z.curr〉;
15 procedure increment() begin
16 let local =

〈〈local.curr.�, (local.curr.m + idV (i))(mod MAXINT), local.curr.o〉, local.prev〉;
17 if exhausted(local) then local ← revive(local);

18 function merge(loc, arr) begin
19 if ∃x∈{curr, prev}loc.curr =�,o arr.x then let pivot := loc.curr.o else let

pivot := loc.prev.o;
20 if arr.curr ≤�,o loc.curr then let output := loc else let output := arr;
21 foreach k ∈ {1, . . . , N} do
22 let maxNewEvents = max{newEvents(Z, pivot)[k] | Z ∈ {loc, arr}};
23 output.curr.m[k] ← (pivot[k] + maxNewEvents)(mod MAXINT) ;

24 return output;

25 do forever begin
26 labelBookkeeping();
27 if ¬(mirroredLocalLabels() ∧ labelsOrdered(local)) then restartLocal();
28 if exhausted(local) then local ← revive(local);
29 foreach pk ∈ P \ {pi} do send encapsulate(〈local, pairs[k]〉) to pk;

30 upon message m = 〈•, 〈arriving, rcvdLocal〉〉 arrival from pj begin
31 labelBookkeeping(m, j);
32 pairs[j] ← arriving;
33 if eqlStatic(local, rcvdLocal) ∧ legitMsg(m, arriving.curr.�) ∧ pairInv(arriving) then
34 if ¬legitPairs(local, arriving) then restartLocal();
35 else
36 local ← merge(local, arriving);
37 if exhausted(local) then local ← revive(local);

The Do-Forever Loop Procedure (Lines 25–29). The do-forever loop
starts by letting the labeling algorithm take a step in line 26. Algorithm1
calls restartLocal() in line 27, in case one of the following does not hold: (i)
local.curr.� is not the local maximal label or local.prev.� is not stored in the
labeling algorithm’s storage, i.e., if mirroredLocalLabels() is false (line 5), or (ii)
labelsOrdered(local) is false (cf. Section 4). In line 28, the algorithm checks if
local is exhausted and in the positive case, pi calls revive(local) (cf. line 9). In
line 29 the processor sends local to every other processor in the system.

The Message Arrival Procedure (Lines 30–37). Upon arrival of a message
m = 〈•, 〈arriving, rcvdLocal〉〉 from processor pj the labeling algorithm processes
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its own part of m by the call to labelBookkeeping(m, j) in line 31. In line 32
the algorithm stores arriving to pairs[j]. Algorithm 1 processes arriving only
if eqlStatic(local, rcvdLocal) ∧ legitMsg(m, arriving.curr.�) ∧ pairInv(arriving)
holds (line 33), where rcvdLocal is the pair that pj had received from pi imme-
diately before sending m to pi. In case legitPairs(local, arriving) is false, the
algorithm calls restartLocal(local) (line 34), since merging must be possible in
a legal execution. Otherwise, the algorithm lets local to have the output value of
merge(local, arriving) (line 36) and checks that output for exhaustion (line 37).

6 Correctness Proof

We show that Algorithm 1 is practically-self-stabilizing. For the vector clock
abstract task, fR denotes the number of system states in an execution R, in
which Requirement 1 does not hold, with respect to the active processors in R.
Theorem 1 shows that for any LS -scale execution R, fR 
 |R| holds (cf. Sect. 2).
Due to the page limit, some of the proof details appear in [13].

Theorem 1 (Algorithm 1 is practically-self-stabilizing). For every infi-
nite execution R of Algorithm1, and for every LS-scale subexecution R′ � R,
fR′ 
 |R′| holds.

Notation. We refer to the values of variable X at processor pi as Xi. Similarly,
fi() refers to the returned value of function f() that processor pi executes. Let
M = CN(N − 1) be the maximum number of messages, and hence pairs, that
can exist in the communication channels in any system state, i.e., N(N − 1)/2
links, where each link is a bidirectional communication channel of capacity C in
each direction. When referring to a value Zx that a variable takes, e.g., locali,
we treat Zx as an (immutable) value that does not change. For a pair Z =
〈〈�,m, o〉, 〈�′,m′, o′〉〉, we say that 〈〈�,⊥, o〉, 〈�′,m′, o′〉〉 is Z’s static part, i.e., all
the elements of the pair except for curr.m.

Proof Outline. We study the invariants that determine if an execution
is legal. We define the predicate localInvariants(i) (Definition 2), which gives
the local invariants for locali of a processor pi. That is, if localInvariants(i) is
false in line 27, then processor pi calls restartLocali(). Lemma 1 shows that
localInvariants(i) holds for the outputs of all the functions of Algorithm1.
Lemma 2 shows that if, during an execution R, there are no steps that include
a call to restartLocal() and every active processor calls revive() at most once,
then Requirement 1 holds during R. Lemma 3 shows that for every execution
R′, where |R′| ≤ MAXINT , the number of steps that include a call to either
restartLocal() or revive() is significantly less than |R′|. Corollary 1 combines
the above to prove Theorem 1.

Definition 2 (localInvariants()). Let R be an execution, c ∈ R be a system
state, and pi ∈ P . We say that the local invariants hold for pi in c, if and only
if localInvariants(i) :=mirroredLocalLabelsi()∧labelsOrderedi(locali) holds.
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Lemma 1. Let R be an execution, pi, pj ∈ P , and ck ∈ R be a sys-
tem state, followed by a step ak in which pi calls revivei(locali), or
incrementi(), or mergei(locali, arrivingj). If localInvariants(i) holds in ck,
then localInvariants(i) holds also in ck+1. Also, if pi calls restartLocali() in
ak, then localInvariants(i) holds in ck+1.

Proof (sketch). Observe that immediately after pi calls labelBookkeepingi() in
lines 26 or 31, the function getLabeli() returns the local maximal label. The
lemma follows due to the predicates in the if-statements in lines 27 and 34
(restartLocali()), 27 and 28 (revivei() calls in lines 17 and 28), 33 and 34
(mergei() and revivei() calls in message reception procedure), as well as due
to the definitions of restartLocal(), revive(), merge(), and increment(). ��

Lemma 2. Let R be an LS-scale execution. For every subexecution R∗ of R,
such that (i) there is no step in R∗ in which a processor calls restartLocal(),
and (ii) for every processor pi there exists at most one step ax ∈ R∗ in which pi

calls revive() in ax, it holds that R∗ ∈ LE, i.e., R∗ is a legal execution.

Proof (sketch). We show that if either (i) or (ii) does not hold, then R∗ /∈ LE
holds. The lemma follows by observing that if both (i) and (ii) hold during R∗,
then since restartLocal() is never called, all pairs of active processors can be
merged (there is always a pivot between them) and none of them is deleted.

A Call to restartLocal() Breaks Requirement 1. It is possible that Require-
ment 1 does not hold immediately after the execution of restartLocal() (lines 27
and 34). Since after executing restartLocal() all values in the main and offset
of locali.curr and locali.prev are set to zero, it is possible to miscount events
when comparing two pairs in the states of active processors, except for the case
when locali remains the same before and after the call to restartLocali().

Two Calls to revive() by the Same Processor Break Requirement 1.
Let pi be a processor, and cx, cy be two states, such that there exist at least two
steps between cx and cy in which pi called revivei. It is not possible to compute
correctly the events that occurred between cx and cy by comparing localxi and
localyi , where localki is the value of locali in state ck. To demonstrate the latter
let localai = 〈item1, item2〉 be the value of locali immediately before the first
call to revivei() and localbi = 〈item3, item4〉 be the value of locali immediately
after the first call to revivei(). Assume that the static part of localbi stays intact
until the second call to revivei(), and localci = 〈item5, item6〉 is locali’s value
immediately after the second call to revivei() (cf. Sect. 4). These assumptions
imply that itemu =�,o itemu+1 holds for u ∈ {2, 4} and that itemv =�,o itemv+1

does not hold for v ∈ {3, 5}. Hence, there is no pivot item between localai and
localci in order to compute query V c

i [i] − V a
i [i] (cf. Sect. 4), i.e., we cannot count

the local events in pi by comparing localai and localci . ��

Lemma 3. Let R be an execution of Algorithm1 and R′ be a subexecution of
R, such that |R′| ≤ MAXINT. Then, the number of steps in which a processor
calls either revive() or restartLocal() in R′ is significantly less than MAXINT.
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Proof (sketch). We first bound the number of calls to revive(), and then use this
bound for the case of restartLocal().

Bounding the Number of Calls to revive() in R′. Since |R| ≤ MAXINT ,
there can be at most MAXINT steps that include a call to increment() and
thus each processor can exhaust its vector clock pair at most once. Each pair
localk in a processor pk that is close to exhaustion can be merged to every
neighboring processor pj , and then cause the exhaustion of localj . There are at
most N choices for pk and pj , so there can be at most N2 steps that include
a call to revive(), due to processors that exhaust their pairs. In addition, to
the bound of N2, pairs that appeared in the starting system state can be very
close to exhaustion. There are at most N +M pairs in the starting system state,
and each of them can cause the exhaustion of all processors’ pairs, hence at
most N(N + M) in total. Combining the two bounds, there can be at most
V := N2 + N(N + M) = 2N2 + NM ∈ O(CN3) calls to revive() in R′.

Bounding the Number of Calls to restartLocal() in R′. A processor can
call restartLocal() either in line 27 or 34. The condition in line 27 can be false
due to stale information that resided in the processor’s state in the starting
system state, c0. By Lemma 1, for any function that changes local, it holds that
the condition in line 27 is false for the returned value of local. Hence, there can
be at most one call per processor to restartLocal() during any execution due to
line 27 and at most N such calls during R′. Calls to restartLocal() in line 34
can occur due to the recovery of the link-layer algorithm and the token-passing
mechanism (Sect. 5), as well as due to incomparability of an incoming pair with
the local one (Condition 1 is false). The maximum number of steps that include
a call to restartLocal() in line 34 during R′ is flink + ftoken + fincomp.

Since the link-layer algorithm recovers within 2C + 1 message receptions [15]
and there are at most N2 links, there can be at most flink := (2C + 1)N2 calls
to restartLocal() due to the link-layer algorithm. Also, there can be at most
ftoken := M messages in the starting system state that were not sent by any
processor and yet can cause the condition in line 33 to be true, and a subsequent
call to restartLocal(). We note that at most L := V +(4N2+4NM−4N−2M) ∈
O(CN3) labels can appear in R′. That is, there can be at most V new labels
due to the at most V number of calls to revive() and the remaining part of the
bound corresponds to the number of labels that the labeling scheme requires to
stabilize [7] (the two labels per pair imply an extra factor of 2 in the bound).

Let Y be the maximum number of pair static parts that appear in R′ and
X be the maximum number of times that each processor can generate a static
part. Then, fincomp ≤ X · Y holds. There can be at most N + M pair static
parts in the starting system state, at most L pair static parts of the form
〈〈�, •, zrs〉, 〈�, zrs, zrs〉〉 due to calls to restartLocal(), and at most 2V pair
static parts due to calls to revive() (the factor of 2 is because each of these V
pair static parts can be an input to restartLocal()). Hence, Y = N +M +L+2V .

Finally, each pair static part can be recycled at most X = 2N2L times,
since (i) for every two processors pi and pj , a pair static part in pi can cause at
most two calls to restartLocalj() at pj before pj stores a localj with a different
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static part, due to the token passing mechanism (there are N choices for pi

and N for pj , hence the 2N2 factor), and (ii) each pair of the form Z(�) :=
〈〈�, •, zrs〉, 〈�, zrs, zrs〉〉 can be recycled by a processor pk at most L times. The
latter holds since pk might use a label �′ that is larger than � in localk = Z(�′)
without canceling �, cancel �′ in a subsequent step, and then create a localk such
that its static part equals to the one of Z(�) (recycling).

By the arguments above, we have that there can be at most N + flink +
ftoken + 2N2L · (N + M + L + 2V ) ∈ O(N8C) calls to restartLocal() in R′. ��

Corollary 1. Let R be an LS-scale execution of Algorithm1. By the defini-
tion of LS-scale (Sect. 2), there exists an integer x 
 MAXINT, such that
|R| = x · MAXINT holds. By Lemma3 the number of steps in which a pro-
cessor calls restartLocal() or revive() in every MAXINT-segment R′ of R is
significantly less than |R′| = MAXINT. Hence, since x 
 MAXINT, the num-
ber of steps in which a processor calls restartLocal() or revive() in R is also
significantly less than |R|. Therefore, by Lemma2 the number of states in R in
which Requirement 1 does not hold is significantly less than |R|, and thus (by
Definition 1) Algorithm1 is practically-self-stabilizing.

7 Conclusion

Self-stabilization often requires, within a bounded recovery period, the complete
absence of stale information. This paper studies stabilization criteria that are
less restrictive than self-stabilization. The design criteria that we consider allow
recovery after the occurrence of transient faults (without considering fair execu-
tion) and still tolerate crash failures, which we do not model as transient faults.
We present an elegant technique for dealing with concurrent overflow events. We
believe that the proposed algorithm and its proof techniques (e.g., the counting
arguments) can be the basis of other practically-self-stabilizing algorithms.
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Abstract. We consider the problem of constructing a matching in an
n-nodes graph in a distributed and self-stabilizing manner. We prove
that there exists a lower bound in space of Ω(n log n) bits for universal
maximal matching algorithms, and a lower bound in time of Ω(e) moves
for universal and cautious 1-maximal matching algorithms. A side con-
tribution of our result is the optimality in both time and space of the
self-stabilizing 1-maximal matching algorithm of Inoue et al. [8].

1 Introduction

Self-Stabilization [4] is a versatile technique to withstand any kind of transient
failure that may occur in computer networks, e.g., caused by memory corruption,
erroneous initialization, or topology change.

A matching is a set of pairs of adjacent nodes in a network such that any node
belongs to at most one pair. A matching is maximal if no proper superset of it is
a matching as well, and it is maximum if its cardinality is the largest among all
matchings. A matching M is 1-maximal if, for any e ∈ M , no matching can be
produced by removing e from M and adding two edges to M −{e}. A 1-maximal
matching is a 2

3 -approximation of the maximum matching, while a maximal
matching is a 1

2 -approximation (but not a 2
3 -approximation) of the maximum

matching. Table 1 summarizes the results that are related to 1-maximal matching
in the context of self-stabilization, where n and e denote the numbers of nodes
and edges, respectively.

We prove that there exists a lower bound in space of Ω(n log n) bits for
universal maximal matching algorithms, and a lower bound in time of Ω(e)
moves for universal and cautious 1-maximal matching algorithms. Algorithms
are universal if they may output any valid solution and algorithms are cautious
if they can improve the current configuration locally. To our knowledge, this is
the first time this notion of universality is used to establish lower bounds in a
self-stabilizing context, and we believe this concept can be useful to establish
other lower bounds for a variety of other problems. An important byproduct of
our results is the observation that the best known algorithm for the 1-maximal
c© Springer Nature Switzerland AG 2019
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Table 1. Self-stabilizing 1-maximal matching algorithms. n denotes the number of
nodes, e denotes the number of edges, δ denotes the maximum degree, and k is a
positive integer.

Reference Topology Structural info Daemon Complexity

[9] Arbitrary* Global ID Distributed O(2nδn) moves

[3] Arbitrary* Global ID Distributed O(n3) moves

[5] Tree, cycle (no 3k) Local ID Central O(n4) moves

[1] No 3k cycle Local ID Central O(e) moves

[6] No 3k cycle Local ID Distributed O(e) moves

[8] Arbitrary Local ID Distributed O(e) moves

* An underlying existing maximal matching is supposed.

matching problem [8] provides matching upper bounds. As this algorithm is
universal and cautious, our developed lower bounds are tight for the considered
problem.

2 Preliminaries

A distributed system consists of multiple asynchronous processes. Its topology
is represented by an undirected connected graph G = (V,E) where a node in V
represents a process, and an edge in E represents the possibility of communica-
tion between processes. A node may have an identifier, where each identifier may
be unique in a whole graph or just locally unique (that is, unique within some
distance k). We consider state-reading model and an unfair distributed daemon.
A distributed unfair daemon chooses any non empty set of nodes among privi-
leged nodes at one time, and the selected nodes move simultaneously. For more
detailed definitions, readers can refer related works including [8].

A static problem P is specified by its correct output configurations. An out-
put configuration is obtained from a configuration with a mapping function, that
maps the state of any node u and its neighbors into an output state for u. To
represent a matching, a node state includes information on whether a node is
matched (incident to some matching edge) or free (otherwise) and one neighbor-
ing node with which the node is matched in case of matched. An edge (u, v) is
in a matching if both nodes u and v are matched with each other.

A self-stabilizing algorithm is silent if the system reaches a terminal configu-
ration where no node can move. A silent self-stabilizing algorithm A is universal
if for every solution p to its problem specification P, there exists a terminal
configuration of A that maps to p.

For an odd integer q, a q-augmenting path is a path of q + 1 consecu-
tive nodes v1, v2, · · · , vq+1, such that v1 and vq+1 are free and v2i and v2i+1

(1 ≤ i ≤ (q−1)/2) are matched with each other. If an output configuration does
not have 1-augmenting path or 3-augmenting path, it is a 1-maximal match-
ing. For configuration C, let UC denote a set of nodes that belong to some
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1-augmenting path or 3-augmenting path. A silent self-stabilizing 1-maximal
matching algorithm A is cautious if from any configuration C, there exists an
execution that reaches a terminal configuration that maps to a 1-maximal match-
ing such that moves of nodes in UC are solely determined by states of nodes in
UC , and only nodes in UC change their matches.

3 Lower Bound for Space

If the algorithm is universal, then lower bounding the number of possible solu-
tions yields a memory lower bound for the entire distributed algorithm, regard-
less of how bits of memory are distributed across the network.

Theorem 1. Every self-stabilizing universal maximal matching algorithm
requires n log n bits in a n-sized network.

Proof. For a 2k-sized clique, for some integer k > 1, it is known [2] that the
number of perfect matchings (that is, matchings of size exactly k) is equal to
(2k − 1)!!, and therefore, log2((2k − 1)!!) bits are required, where x!! denotes the
double factorial of x. By Stirling formula of n! ≈ √

2πn × (
n
e

)n, we can derive

log2((2k − 1)!!) >
1
3

× (2k − 1) log2(2k − 1) = Ω(k log2 k)

4 Lower Bound for Time

A time lower bound is shown by considering several families of graphs.
For any integer k > 0, we define Ak as a graph with 6k nodes where Ak has 6

groups of nodes Vj = {p1,j , p2,j , · · · , pk,j} for j = 1, · · · 6 and edges between pi,1
and pi,2, pi,3 and pi,4, pi,5 and pi,6, pi,2 and nodes in V3, and pi,4 and nodes in
V5, for i = 1, · · · , k. From universality, there is a terminal configuration for Ak

where nodes pi,1 and pi,2, nodes pi,3 and pi,4, and nodes pi,5 and pi,6 are matched
with each other, for i = 1, · · · , k. Let CAk

0 denote a such terminal configuration
(Fig. 1(a)), where thick edges denote edges that belong to the matching, and
grey nodes denote matched nodes.

For any integers k > 0 and l > 0, we define Bk,l as a graph obtained from
Ak by deleting nodes p1,1, p2,1, · · · , pl,1, and nodes p1,6, p2,6, · · · , pl,6. Let C

Bk,1
0

and C
Bk,k

0 be configurations of graphs Bk,1 and Bk,k where each node has the
same state as its corresponding node in CAk

0 in graph Ak (Fig. 1(b) and (c)).
We show that there exists an execution starting from C

Bk,1
0 , such that only

nodes p1,2 and p1,5 move until becoming unprivileged (CBk,1
1 (Fig. 2(a))), at least

one node in each (pi,3, pi,4) (i = 1, 2, · · · , k) moves, and then one match between
pi,3 and pi,4 for some i in C

Bk,1
0 is replaced with two new matches between p1,2

and pi,3, and between pi,4 and p1,5 (CBk,1
2 (Fig. 2(c))). In the execution, one node

in each (pi,3, pi,4) (i = 1, 2, · · · , k) moves in C
Bk,1
1 since, for example, p1,3 and

p1,4 could not distinguish C
Bk,1
1 and C

Dk,1
1 as shown in Fig. 2(b) where p1,3 or

p1,4 can move under the cautiousness. That derives the following lemma.
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Fig. 1. Graphs Ak, Bk,1, and Bk,k (k = 4)

Fig. 2. Configurations in graphs B4,1, B4,4, D4,1

Lemma 1. For every integer k > 0, there exists an execution from C
Bk,1
0 to

C
Bk,1
2 that includes at least k moves.

The similar execution from configuration C
Bk,k

0 to configuration C
Bk,k

2 via
configuration C

Bk,k

1 is possible under the unfair distributed daemon (Figs. 1(c),
2(d) and (e)).

Lemma 2. For every integer k > 0, there exists an execution from C
Bk,k

0 to
C

Bk,k

2 that includes at least k moves.

In C
Bk,k

2 in graph Bk,k, nodes pi,j (for i ∈ {2, 3, · · · , k} and j ∈ {2, 3, 4, 5})
belong to 3-augmenting paths. Therefore, these nodes can reach a terminal con-
figuration even though other nodes (that is, p1,2, p1,3, p1,4, p1,5) do not move.
Now, nodes pi,j (for i ∈ {2, 3, · · · , k} and j ∈ {2, 3, 4, 5}) induce a graph
Bk−1,k−1 with 4(k − 1) nodes. Therefore, the following lemma holds.

Lemma 3. For every integer k > 0, there exists an execution including at least
k − 1 moves from C

Bk,k

2 to some configuration where one match (pi,3, pi,4) is
replaced with two matches (p2,2, pi,3), and (pi,4, p2,5), for some i ∈ {2, 3, · · · , k}
in graph Bk,k.
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By applying Lemma 3 repeatedly, we obtain the following theorem.

Theorem 2. Any silent universal self-stabilizing cautious 1-maximal matching
algorithm requires Ω(n2) moves under the unfair distributed daemon for some
class of graphs with Ω(n2) edges.

5 Conclusion

The presented lower bounds are valid for the class of universal and cautious algo-
rithms. While the best known self-stabilizing 1-maximal matching by Inoue et
al. [7] is universal, some other solutions are not universal (such as the algorithm
of Manne et al. [9]). The question of obtaining tight bounds in the context of non-
universal algorithms is an intriguing open question. Similarly, the self-stabilizing
1-maximal matching by Inoue et al. [7] is cautious, and the cautiousness prop-
erty seems important to obtain time-efficient algorithms. Determining tight time
bounds for algorithms that are not cautious is also open.

Also, our time complexity bounds heavily rely on the existence of 3-
augmenting paths in particular classes of graphs. However, the best known upper
bound in time in the case of maximal matching is also O(e), where e denotes the
number of edges in the network. While this bound is trivially tight in the case
of rings and trees, the case of networks with e = Ω(n2) remains open in the case
of maximal matchings.

References

1. Asada, Y., Ooshita, F., Inoue, M.: An efficient silent self-stabilizing 1-maximal
matching algorithm in anonymous networks. J. Graph Algorithms Appl. 20(1), 59–
78 (2016). https://doi.org/10.7155/jgaa.00384

2. Callan, D.: A combinatorial survey of identities for the double factorial. arXiv
preprint arXiv:0906.1317 (2009)
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Abstract. Security policies (or more briefly: policies) are used to filter
accesses to computing resources. A policy is usually specified by a table
of rules, where each rule specifies conditions to accept or reject an access
request. Since the acceptance of malicious requests or the rejection of
legitimate requests may lead to serious consequences, the correct design
of policies is very important. The present paper is inspired by two works:
the first one uses an automata-based method to design policies, while the
second one suggests a bottom-up design method of policies specified as
policy expressions. A policy expression looks like a boolean expression,
where policies are composed using three operators: ¬, ∧, ∨. In this paper,
we generalize the automata-based method for the bottom-up design of
policies specified as policy expressions. In our context, designing a policy
specified as a policy expression PE amounts to constructing an automa-
ton ΓPE that models the access control specified in PE . To respect the
essence of bottom-up design, the automaton ΓPE is constructed incre-
mentally, by first constructing the automata that model the basic policies
that compose PE , and then constructing incrementally the automata
that model the subexpressions that compose PE , until we obtain ΓPE .
Then we show how to use ΓPE to determine whether PE verifies sev-
eral properties, namely adequacy, implication, and equivalence. Also, we
study the problem of conflicting rules, i.e. policy rules that do not agree
on whether some request must be accepted or rejected. We show that
our bottom-up design supports any strategy of conflict resolution.

1 Introduction

Security policies (or more briefly: policies) are used to filter accesses to computing
resources; firewalls are the most known example of policies. A policy is usually
specified by a table of rules, where each rule specifies conditions to accept or
reject an access request (or more briefly: a request). A badly designed policy
may lead to the acceptance of malicious requests or the rejection of legitimate
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requests. Therefore, the correct design and analysis of policies is very important
and has been addressed by many researchers, e.g. [1–6,8–10,12–16,18–29].

The two works that most inspired this paper are [26] and [14] (less complete
versions of [14] can be found in [15,16]). The authors of [14] suggest an automata-
based method to design and analyze policies. The authors of [26] suggest a
bottom-up design method of policies specified as policy expressions. A policy
expression looks like a boolean expression, where policies are composed using
three operators: ¬, ∧, ∨. In the present paper, we generalize the automata-
based method of [14] for the bottom-up design of policies specified as policy
expressions.

The rest of the paper is organized as follows: Preliminaries on policies are
given in Sect. 2. Section 3 presents the automata-based method of [14] to design
and analyze policies. In Sect. 4, we present policy expressions of [26]. In Sect. 5,
we present an incremental construction of an automaton that describes a given
policy expression: given an automaton describing a policy expression PE , we
show how to obtain an automaton that describes ¬(PE ); and given two automata
describing respectively two policy expressions PE 1 and PE 2, we show how to
obtain automata that describe PE 1 ∧ PE 2 and PE 1 ∨ PE 2. In Sect. 6, we
show how the automaton describing a policy expression PE is used to determine
whether PE verifies several properties. In Sect. 7, we present related work and
recapitulate our contributions. Finally, a conclusion is given in Sect. 8.

2 Preliminaries About Policies

A policy is a set of rules specifying whether access requests to a resource must
be accepted or rejected. A rule R is defined by a pair (Condition, Action) which
means: if Condition is satisfied by a request rq , then Action (which may be
Accept or Reject) must be applied to rq . More precisely:

– Condition is specified by several (say m) filtering fields F 1, · · · , Fm, where
each F j is a set of values. Every request rq has several headers H1, · · · ,Hm,
where each Hj is a value. Condition is satisfied for rq (which is termed as: rq
matches R, or R matches rq), if for each j = 1, · · · m: Hj belongs to F j .

– Action may be Accept or Reject.

Accept-rule (resp. Reject-rule) denotes a rule whose action is Accept (resp.
Reject).

For illustration purpose, let us consider Table 1 that represents a toy example
of a firewall policy. The requests correspond to packets arriving at the firewall.
The condition of each rule is defined by the four fields IPsrc, IPdst, Port and
Protocol. The symbol ∗ in the column of F j means any value of the domain of
F j . The expression a.b.c.0/x represents the set of 32-bit addresses obtained by
giving all the possible values to the 32−x last bits in the 32-bit value a.b.c.0. The
expression not(80.15.15.0/24) denotes the set of 32-bit addresses that are not in
80.15.15.0/24. A request rq matches a rule Ri if it comes from and is destined to
addresses belonging to IPsrc and IPdst respectively, and is transmitted through
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a port belonging to Port by a protocol belonging to Protocol. For example, a
packet with the headers (190.170.15.10), (82.15.15.11), (25), (UDP), is a packet
that comes from 190.170.15.10, is destined to 82.15.15.11, and is transmitted
through the port 25 by the protocol UDP. This packet is rejected by the firewall,
because the only rule that matches it is the Reject-rule R3.

Table 1. Example of policy F1

Rule IPsrc IPdst Port Protocol Action

R1 ∗ 80.15.15.0/24 ∗ ∗ Accept

R2 190.170.15.0/24 80.15.15.0/24 25, 81 TCP Reject

R3 ∗ not(80.15.15.0/24) ∗ ∗ Reject

3 Automata-Based Design and Analysis of Policies

This section introduces the method of [14] that receives as input a policy F
described by a table of several (say n) rules R1, · · · ,Rn, and generates automata
Γ ∗

F and ΓF that model F . The basic principle of the method is as follows:
(1) every rule Ri of F is modeled by an automaton ΓRi

, (2) an automaton Γ ∗
F

is generated by composing all automata (ΓRi
)i=1,··· ,n, and (3) Γ ∗

F is analyzed
and transformed into an anomaly-free automaton ΓF if anomalies are detected
in Γ ∗

F . The relevance of this automata-based method is that:

1. Γ ∗
F can be used to determine efficiently the rules of F that match a request

rq (see Sect. 3.1).
2. Γ ∗

F can be used to detect and resolve efficiently several types of anomalies of
F (see Sect. 3.2).

3. ΓF can be used to determine efficiently if a request is accepted or rejected by
F (see Sect. 3.2).

4. ΓF can be used to determine if F verifies several properties, such as adequacy,
implication, and equivalence. This point is studied in Sect. 6.

The automaton construction is explained in detail in [14]. This section
explains the intuition and utility of Γ ∗

F and ΓF . For example, for the policy
F1 of Table 1, we obtain the automaton Γ ∗

F1
of Fig. 1. Γ ∗

F1
has 5 state levels (0

to 4) and 4 transition levels (1 to 4), where transitions of level j relate states of
levels j−1 and j. The number of transition levels is the number m of fields, which
is 4 in the example: transitions of levels 1 to 4 correspond to the 4 fields IPsrc,
IPdst, Port and Protocol of F1, respectively. Each transition of level j is labelled
by a set of values of field F j . The states of the last level (i.e. state level 4) are
called final states. Each state is defined by its level and a 3-tuple (n-tuple in
the general case) whose 3 components correspond respectively to the 3 rules of
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F1. Each of the 3 components is “a”, “r”, or “∗”. The label “All ports” denotes
the set of all port numbers, and not(25, 81) denotes the set of all port numbers
except 25 and 81. If X is a set of IP addresses, not(X) denotes the set of all IP
addresses, except the IP addresses of X. For the sake of clarity, henceforth we
use the index i for rules and the index j for fields.

(a, r, r)

(a, *, r)

(a, r, *)

(*, *, r)

(a, *, *)

(a, r, *)

(a, *, *)

(*, *, r)

TCP

TCP
80.15.15.0/24

not(80.15.15.0/24)

not(80.15.15.0/24)

not(190.170.15.0/24)

not(25, 81)

25, 81

UDP

UDP

TCP

UDP
80.15.15.0/24

190.170.15.0/24

All ports
All ports

(a, r, *)

(a, *, *)

level 0 level 1 level 2 level 3 level 4

level 1 level 2 level 3 level 4

State State State State State

Transition Transition Transition Transition

(*, *, r)

Fig. 1. Automaton Γ ∗
F1 obtained from the policy F1 of Table 1.

3.1 Determining the Rules that Match a Request

Let us explain how the automaton Γ ∗
F can be used for the above point 1, i.e. to

determine the rules of F that match a request rq , i.e. to determine the rules that
accept and the rules that reject rq . We illustrate our explanation by the policy
F1 of Table 1, and its corresponding automaton Γ ∗

F1
of Fig. 1.

Consider a request rq whose 4 headers are values H1 to H4 corresponding
to the 4 fields IPsrc, IPdst, Port, and Protocol, respectively. We start in the
initial state of Γ ∗

F1
and execute the sequence of 4 transitions labeled respectively

�1, �2, �3, �4, such that each Hj (which is a value of field F j) belongs to �j (which
is a set of values of F j). Hence, the executed 4-transition path (from the initial
state to a final state) depends on the considered request rq . Let us consider the
reached final state and explain how its 3-tuple is interpreted. For each position
i (i = 1, 2, 3) in the 3-tuple: if the ith component is “a” (resp. “r”), this means
that rule Ri accepts (resp. rejects) rq ; if the ith component is “∗”, this means
that rule Ri does not match rq .

Let us consider the intermediate states (of levels 1, 2, 3) that have been
crossed before reaching the final state. When a state of level j (j = 1, 2, 3) is
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reached: if its ith component is “a” (resp. “r”), this means that the Accept-rule
(resp. Reject-rule) Ri is still matching the request rq after considering the first j
fields; if its ith component is “∗”, this means that Ri does not match rq anymore
after considering the first j fields.

Consider for example a request rq whose headers H1 to H4 are
(190.170.15.12), (80.15.15.20), (23) and (TCP), respectively. Hence, we first exe-
cute the transition labeled 190.170.15.0/24 (containing H1) and reach 〈a, r, r〉 of
level 1. Then, we execute the transition labeled 80.15.15.0/24 (containing H2)
and reach 〈a, r, ∗〉 of level 2. Then, we execute the transition labeled not(25, 81)
(containing H3) and reach 〈a, ∗, ∗〉 of level 3. Finally, we execute the transition
labeled (TCP) (containing H4) and reach the second final state 〈a, ∗, ∗〉. There-
fore, the Accept-rule R1 matches rq , and rules R2 and R3 do not match rq .
The final decision is to accept rq , because it is accepted by the unique rule that
matches it.

3.2 Anomaly Detection and Resolution

Let us discuss how the automaton Γ ∗
F of a policy F can be used for the above

point 2, i.e. to detect and resolve anomalies in F . A first type of anomaly is
incompleteness: F is said to be incomplete if there exists at least one request
that matches no rule of F . On the contrary, F is said to be complete if every
request matches at least one rule of F . The authors of [14] show that F is
incomplete if and only if Γ ∗

F contains the final state whose all components are
∗, which is called NoAction-state. The requests that match no rule of F lead
to such a NoAction-state. For example, the policy F1 of Table 1 is complete,
because Γ ∗

F1
of Fig. 1 does not contain the NoAction-state.

Another type of anomaly is conflict : rules Ri1 and Ri2 are conflicting if they
have different actions and there exists at least one request rq that matches both
rules. That is, Ri1 and Ri2 do not agree on whether a request should be accepted
of rejected. The authors of [14] show that a policy F has conflicting rules if
and only if Γ ∗

F contains final states with at least one component “a” and one
component “r”. Components “∗” in a final state q are not taken into account,
because they correspond to rules that do not match the requests leading to q.
Consider for example Γ ∗

F1
of Fig. 1 that has three final states:

– The final state 〈a, r, ∗〉 represents a conflict. Intuitively, every request rq that
leads to this state is accepted by R1 and rejected by R2.

– The final state 〈a, ∗, ∗〉 does not represent any conflict, because there is no
component “r”. Intuitively, every request rq that leads to this state is accepted
by R1 and is not rejected by any rule.

– The final state 〈∗, ∗, r〉 does not represent any conflict, because there is no
component “a”. Intuitively, every request rq that leads to this state is rejected
by R3 and is not accepted by any rule.

Consider a conflicting state, i.e. a final state that has both components “a”
and “r”. Resolving such conflict consists in using some strategy that deter-
mines which action Accept or Reject to select. Several strategies have been
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proposed in the literature to resolve detected conflicts. Conflict resolution is
not the main topic of the present work, however it is worth noting that our
automata-based modeling supports any resolution strategy, which is used as an
interchangeable module that receives a conflicting state as input and generates
an action Accept or Reject as output. For illustration purpose, here are three
simple strategies to resolve a conflict between two or more rules Ri1 ,Ri2 , · · ·
(i1 < i2 < · · · ) that have different actions and match a request rq :

– Decreasing priority order (DPO) strategy: the action of Ri1 is selected.
– Permissive strategy: priority is given to Accept over Reject, i.e. the action

Accept is selected.
– Anti-permissive strategy: priority is given to Reject over Accept.

Conflict resolution in Γ ∗
F has therefore the effect of replacing each n-tuple in

a final state by a unique action. Let ΓF denotes the automaton obtained from
Γ ∗

F after conflict resolution. Note that the intermediate (i.e. non-final) states of
Γ ∗

F and ΓF can be renamed by any identifier, because their tuples were useful
only during the procedure of construction of Γ ∗

F . Once Γ ∗
F is constructed, these

tuples are no longer useful.
For the automaton Γ ∗

F1
of Fig. 1, ΓF1 is obtained by replacing each 3-tuple

in a final state by Accept or Reject. If for example, we apply the anti-permissive
conflict resolution, we obtain the automaton ΓF1 of Fig. 2.

TCP

TCP
80.15.15.0/24

not(80.15.15.0/24)

not(190.170.15.0/24)

not(25, 81)

25, 81

UDP

UDP

TCP

UDP
80.15.15.0/24

190.170.15.0/24

All portsAll ports

Accept

Reject

Reject
not(80.15.15.0/24)

Fig. 2. Automaton ΓF1 obtained from Γ ∗
F1 of Fig. 1 using the anti-permissive conflict

resolution.

4 Policy Expressions

In this section, we present the policy expressions of [26].
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4.1 Syntax of Policy Expressions

A policy expression consists of several policies that are combined using operators
∧, ∨, and ¬. The syntax of policy expressions is similar to boolean expressions.
Formally, it is defined inductively as one of the following four options, where F
denotes a policy, and PE , PE 1 and PE 2 denote policy expressions:

F
¬(PE )
PE 1 ∧ PE 2

PE 1 ∨ PE 2

4.2 Action Expressions

Before specifying the semantics of policy expressions, we need to define action
expressions. Syntactically, action expressions have the same form as policy
expressions, but their operands are actions Accept and Reject (instead of poli-
cies). The evaluation (or semantics) of an action expression is defined inductively
using the following rules, where “A = B” means “A evaluates to B” (hence A
can be replaced by B):

¬(Accept) = Reject
¬(Reject) = Accept
Accept ∧ Accept = Accept
Reject ∧ Reject = Reject
Accept ∧ Reject = Reject
Reject ∧ Accept = Reject
Accept ∨ Accept = Accept
Reject ∨ Reject = Reject
Accept ∨ Reject = Accept
Reject ∨ Accept = Accept

4.3 Semantics of Policy Expressions

The semantics of a policy expression PE determines the action (Accept or
Reject) of PE for every request. The action of PE for a given request rq can be
determined as follows:

– Determine the action of every policy of PE on rq .
– Construct the action expression AE obtained from PE by replacing every

policy by its action.
– Evaluate AE .

5 Incremental Construction of an Automaton Describing
a Policy Expression

The authors of [26] proposed policy expressions as a framework for bottom-up
design of policies. Consider for example the policy expression F1 ∧ (¬(F2) ∨ F3)
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constructed from policies F1,F2,F3. The principle of bottom-up design is to
proceed in the following order: (1) design policies F1, F2 and F3; (2) design
a policy equivalent to PE 1 = ¬(F2); (3) design a policy equivalent to PE 2 =
PE 1 ∨ F3; and (4) design a policy equivalent to PE = F1 ∧ PE 2.

A more formal way to specify the above order is to represent the policy
expression PE as an abstract syntax tree (AST) ASTPE where each leaf cor-
responds to a policy in PE , and each node corresponds to an operator ¬, ∧ or
∨. A node “¬” has one child, and a node “∧” or “∨” has two children. Each
subtree of the AST represents a subexpression of PE . For example, the AST of
F1 ∧ (¬(F2) ∨ F3) is represented in Fig. 3.

The order of bottom-up design is then specified as follows:

– Before designing a policy represented by a subtree of ASTPE whose root X
is a node “¬”, we must design the policy represented by the subtree whose
root is the child of X.

– Before designing a policy represented by a subtree of ASTPE whose root Y
is a node “∧” or “∨”, we must design the two policies represented by the
subtrees whose roots are the two children of Y .

F2

F3

F1

Fig. 3. AST of F1 ∧ (¬(F2) ∨ F3).

In Sect. 3, we showed how from a policy F given as a table of rules, one can
construct an automaton ΓF that models F . To use a bottom-up design with that
automata-based approach, we must develop a method to construct incrementally
an automaton describing a policy expression PE from the automata that model
the policies that compose PE . For example, to design a policy described by the
policy expression F1 ∧ (¬(F2) ∨ F3), we should proceed in the following order,
where ΓPE denotes an automata modeling a policy expression PE :

– From the tables of F1, F2 and F3, construct and analyze ΓF1 , ΓF2 and ΓF3

(as shown in Sect. 3).
– From ΓF2 , construct and analyze ΓPE1 , where PE 1 denotes ¬(F2).
– From ΓPE1 and ΓF3 , construct and analyze ΓPE2 , where PE 2 denotes PE 1 ∨

F3.
– From ΓF1 and ΓPE2 , construct and analyze ΓPE3 , where PE 3 denotes F1 ∧

PE 2.
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For that purpose, we must develop procedures that make the following con-
structions, where PE ,PE 1,PE 2 are policy expressions:

1. Construct Γ¬(PE) from ΓPE

2. Construct ΓPE1∧PE2 and ΓPE1∨PE2 from ΓPE1 and ΓPE2

Point 1 is straightforward: Γ¬(PE) is obtained by interchanging actions
Accept and Reject in every final state of ΓPE . Let us see how to proceed for
point 2. As mentioned in Sect. 3, the basic principle to construct the automaton
ΓF of a policy F is to: first model each rule Ri of F by an automaton ΓRi

,
and then compose automata (ΓRi

)i=1,··· ,n into a single automaton Γ ∗
F that is

then analyzed and transformed into ΓF . For the above point 2, we adopt a quite
similar method by composing ΓPE1 and ΓPE2 into a single automaton noted
Γ(PE1,PE2). Since each final state of ΓPE1 and ΓPE2 is defined by an action, then
every final state of Γ(PE1,PE2) is defined by a pair of actions. Then, ΓPE1∧PE2

(resp. ΓPE1∨PE2) is constructed from Γ(PE1,PE2) by treating every final state q
as follows, where a1 and a2 denote the two actions of q:

– a1 ∧ a2 (resp. a1 ∨ a2) is evaluated as shown in Sect. 4.3, and the resulting
action is associated to q.

Consider for example the policies F1 and F2 of Tables 1 and 2 and show how
to construct the automaton Γ(F1∧¬(F2)). For F1, we have already constructed
ΓF1 of Fig. 2. For F2, we obtain ΓF2 of Fig. 4, if we apply the anti-permissive
conflict resolution. Then, we obtain Γ¬(F2) by just interchanging the decisions
Accept and Reject of ΓF2 in Fig. 4. If we compose ΓF1 and Γ¬(F2), we obtain the
automaton Γ(F1,¬F2) of Fig. 5. Then, we obtain Γ(F1∧¬(F2)) of Fig. 6 by applying
the operator ∧ to every pair of decisions in the Γ(F1,¬F2) of Fig. 5.

Table 2. Policy F2

Rule IPsrc IPdst Port Protocol Action

R1 190.170.15.0/24 80.15.15.0/24 25, 83 ∗ Reject

R2 ∗ ∗ ∗ ∗ Accept

80.15.15.0/24

not(80.15.15.0/24)

not(190.170.15.0/24)

not(25, 83)

25, 83
TCP

UDP

TCP

UDPAll ports
All addresses

Accept

Reject

190.170.15.0/24

Fig. 4. Automaton ΓF2 obtained from F2 of Table 2 using the anti-permissive conflict
resolution.
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TCP

TCP

80.15.15.0/24

not(80.15.15.0/24)

not(80.15.15.0/24)

not(190.170.15.0/24)

not(25, 81, 83)

25

83

81

UDP

TCP

UDP

UDP

TCP

UDP

TCP

UDP80.15.15.0/24

190.170.15.0/24

All ports

All ports

Reject

Reject

Accept

Reject

Reject

Accept

Accept

Accept

Reject

Reject

Fig. 5. Automaton Γ(F1,¬F2) obtained from ΓF1 and ΓF2 of Figs. 2 and 4.

TCP

TCP

80.15.15.0/24

not(80.15.15.0/24)

not(80.15.15.0/24)

not(190.170.15.0/24)

not(25, 81, 83)

25
83

81

UDP
TCP

UDP

UDP

TCP

UDP

TCP

UDP80.15.15.0/24

190.170.15.0/24

All ports

All ports

Reject

Reject

Accept

Reject

Reject

Fig. 6. Automaton Γ(F1∧¬(F2)) obtained from Γ(F1,¬F2) of Fig. 5.

6 Analysis of a Policy Expression from Its Automaton

In this section, we show how the automaton ΓPE describing a policy expres-
sion PE is used to determine whether PE verifies three properties: adequacy,
implication, and equivalence.

6.1 Verification of Adequacy

A policy expression PE is said to be adequate if PE accepts at least one
request [26]. We have already explained that when a request rq leads to a final
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state q of ΓPE , then the action associated to q in ΓPE indicates the action
specified by PE for rq . Therefore:

Proposition 1. A policy expression PE is adequate if and only if the automaton
ΓPE has at least one final state whose action is Accept.

For example, with the policies F1 and F2 of Tables 1 and 2, the policy expres-
sion (F1 ∧ ¬(F2)) is adequate because Γ(F1∧¬(F2)) of Fig. 6 has one final state
whose action is Accept.

6.2 Verification of Implication

A policy expression PE 1 is said to imply a policy expression PE 2, if PE 2 accepts
every request accepted by PE 1.

Proposition 2. A policy expression PE 1 implies a policy expression PE2 if and
only if the policy expression (PE 1 ∧ ¬(PE 2)) is not adequate.

Proposition 2 can be intuitively explained by the fact that if PE 2 accepts
all the requests accepted by PE 1, then the complementary of PE 2 (which is
¬(PE 2)) does not accept any requests that are accepted by PE 1. Determining
whether PE 1 implies PE 2 can therefore be done by determining whether the
policy expression (PE 1 ∧ ¬(PE 2)) is not adequate.

Consider for example the policies F1 and F2 of Tables 1 and 2. F1 does not
imply F2, because we have seen in Sect. 6.1 that the policy expression (F1 ∧
¬(F2)) is adequate.

Note that our definition of implication is different from, but equivalent to,
the definition of [26] where Proposition 2 is used as a definition of implication.

6.3 Verification of Equivalence

Two policy expressions PE 1 and PE 2 are said to be equivalent, if PE 1 implies
PE 2 and PE 2 implies PE 1 [26].

Proposition 3. Two policy expressions PE1 and PE 2 are equivalent if and only
if none of (PE 1 ∧ ¬(PE 2)) and (¬(PE 1) ∧ PE 2) is adequate.

Determining whether PE 1 and PE 2 are equivalent can therefore be done by
determining whether PE 1 implies PE 2 and whether PE 1 implies PE 2.

Consider for example the policies F1 and F2 of Tables 1 and 2. We have seen
in Sect. 6.2 that F1 does not imply F2, and hence F1 and F2 are not equivalent.

7 Related Work and Contributions

There exist several methods that provide practical algorithms of logical analysis
of policies, for example for testing [10], configuration error analysis [28] and
vulnerability detection [12]. Other more fundamental methods provide analysis
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algorithms with estimations of time complexities, such as [2,3,5,18,19]. The
authors of [7] show that the analyses of several problems of policies are NP-
hard.

There exist several approaches to design and analyze policies, such as those
used in [1,18,26,27], which are respectively referred to as “divide-and-conquer”,
“diverse policy design”, “bottom-up design” and “step-wise refinement” in [26].

The authors of [25] propose CONFIDDENT, a model-driven design, devel-
opment and maintenance framework for firewalls.

The authors of [22] propose a framework to generate test sequences to check
the conformance of a policy to a specification. The system behavior is described
by an extended automaton [17] and the policy that we wish to apply to this
system is described by organization-based access control (OrBAC) [11].

Several methods have been developed to detect anomalies in policies or dis-
crepancies between policies, such as in [4,6,8,9,13,14,18,21]. The authors of [21]
define an anomaly in a policy by the existence of at least one request that
matches several rules of the policy. The authors of [4,13] present techniques to
detect anomalies in a policy, where a policy is specified by a Policy tree in [4] and
a Decision tree in [13]. The authors of [6,9] propose methods to study stateful
anomalies. The authors of [8] propose mechanisms to detect anomalies in con-
figuration rules of policies. The authors of [18] show how to detect discrepancies
between several designs of the same policy, where the policy is modeled by a
Firewall Decision Diagram (FDD) defined in [20]. [14] is summarized Sect. 3.

Several tools have been developed to analyze and design policies, such as the
engines Fireman [29] and Fang [24]. In [23], a tool is proposed to visualize and
analyze firewall configurations.

The two works that most inspired this paper are [14] and [26]. As seen in
Sect. 3, the authors of [14] propose a method where a policy F is modeled by an
automaton ΓF which is then used to verify several properties of F . The authors
of [26] propose a generalization of policies called policy expressions. A policy
expression is specified by one or more policies and three policy operators: ¬, ∧,
∨. They show how to represent each policy expression by a set of special types
of policies, called slices. Then they show how to use the slice representation
of a policy expression to verify whether that policy expression verifies three
properties: adequacy, implication, equivalence.

Our main contribution is that this work generalizes the automata-based
design approach of [14] using policy expressions of [26]. Moreover:

– We present automata in a more intuitive way than in [14], which may promote
the use of our approach. Indeed, in an automaton that models a policy F ,
the identifier of each state q indicates the action (Accept or Reject) of every
rule of F that matches any request leading to q. In [14], state identifiers are
more abstract and less easy to interpret.

– As we have explained in Sect. 3.2, with our method, any conflict resolution
strategy can be used as an interchangeable module. We can even apply dif-
ferent resolution strategies for the different policies that constitute a policy
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expression. On the contrary, the method of [26] assumes that the rules are
ordered in decreasing priority.

As in [26], we humbly suggest our design method to be an element of a library
of policy design methods. It is up to the designer to select which design method
in this library to use.

8 Conclusion

In [14], an automata-based approach is developed to model, design and analyze
policies. In [26], a bottom-up design method of policies specified as policy expres-
sions is suggested. A policy expression looks like a boolean expression, where
policies are composed using three operators: ¬, ∧, ∨. In the present paper, we
have generalized the automata-based framework of [14] for policy expressions.
Our contributions are indicated in detail in Sect. 7.

For future work, we plan:

– To generalize our method to support incomplete policies.
– To evaluate the space and time complexities of our method.
– To investigate the relevance of using policy expressions in concrete examples.
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Abstract. The latest generation of Intel processors supports Software
Guard Extensions (SGX), a set of instructions that implements a Trusted
Execution Environment (TEE) right inside the CPU, by means of so-
called enclaves. This paper presents Stress-SGX, an easy-to-use stress-
test tool to evaluate the performance of SGX-enabled nodes. We build
on top of the popular Stress-ng tool, while only keeping the workload
injectors (stressors) that are meaningful in the SGX context. We report
on several insights and lessons learned about porting legacy code to run
inside an SGX enclave, as well as the limitations introduced by this
process. Finally, we use Stress-SGX to conduct a study comparing the
performance of different SGX-enabled machines.

Keywords: Intel SGX · Load · Stress · Benchmark

1 Introduction

The latest generation of Intel processors (starting from the Skylake microar-
chitecture) features a new set of instructions: Software Guard Extensions
(SGX). This instruction set allows programs to execute securely inside hardware
enclaves, hence creating a Trusted Execution Environment (TEE). Specifically,
SGX enclaves protect the code from external threats, including privileged sys-
tem software. Given the novelty of the technology (the first compatible CPU
was released in August 2015) and the lack of in-depth literature, it is still chal-
lenging to validate the performance of code running inside enclaves. It becomes
even harder to study the problem under varying conditions, such as different
hardware revisions or workloads. Moreover, as we show in this paper, microcode
updates issued by CPU vendors can introduce performance degradations that
are difficult to promptly detect.

The main contribution of this paper is Stress-SGX, a stress tool capable
of artificially putting SGX enclaves under high load. It supports workloads of
different nature, as explained in Sect. 2. As far as we know, Stress-SGX is the
first tool that can be leveraged to induce hybrid workloads (with and without
SGX). We believe that many researchers can benefit from using our tool, sim-
plifying design plans for their evaluation settings. Stress-SGX is GPL-licensed
free software1.
1 https://github.com/sebyx31/stress-sgx.
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Motivating Scenarios. We introduce three use-cases for Stress-SGX and how
researchers could leverage this tool. First, there exist several real-world cluster
traces readily available for research, such as the ones released by Google Borg [7]
or Microsoft Azure [2]. However, these traces do not have the same properties as
typical SGX workloads. Due to anonymization, hardware characteristics of the
original machines remain undisclosed. Finally, the nature of jobs deployed on
these clusters is also confidential. Stress-SGX allows to directly map behaviors
described in such traces onto similar, SGX-specific ones.

A second motivating scenario stems from the availability of a range of SGX-
enabled CPUs on the market, each with their own characteristics and associ-
ated performance. Apart from the expected differences due to hardware revision,
cache size, available instruction sets or frequency, one still needs to hand-craft
micro-benchmarks in order to evaluate SGX-specific performance. Stress-SGX
facilitates this process by providing the same interface as Stress-ng [4] to inject
load on a CPU under controlled conditions.

A third motivating scenario directly derives from the necessity to measure
the electric energy consumption of code executing inside enclaves, by means of
software [1] or hardware power meters. Stress-SGX offers a common code-
base for both SGX and native contexts, making it easier to isolate the energy
requirements of SGX-specific workloads.

Roadmap. The remainder of the paper is organized as follows: Sect. 2 describes
some implementation details and lessons learned. Section 3 presents our prelim-
inary evaluation. Finally, Sect. 4 discusses future work and concludes.

2 Implementation

Stress-SGX is implemented as a fork of Stress-ng (version 0.09.10). It
directly reuses the same compilation and runtime foundations. From a user per-
spective, SGX-enabled stressors (specific pieces of executable code that exercise
a given CPU functionality or low-level operation) are selected by specifying
command-line options starting with --sgx. We concentrate on porting CPU
stressing methods to run in an enclave in a way that makes both native and
SGX versions comparable from a performance standpoint. All features offered
by the CPU stressors shipped with Stress-ng are supported by Stress-SGX,
with the exception of partial load. Specifying a fixed load percentage is not pos-
sible (i.e., it is locked to 100%), because this feature is based on precise timing,
which is currently not available inside the enclave. Our Stress-SGX prototype
supports 54 enclave-enabled stress methods out of the 68 currently shipped with
Stress-ng. The exhaustive list is presented in Table 1. We note that support
for each stressor depends on the availability of its required functionalities within
the enclave, as well as their support by the Software Development Kit (SDK).

Porting CPU Stressors to Run Inside an Enclave. The Intel SGX SDK
is designed in a way that allows existing code to be ported to run in an enclave
with reasonable engineering efforts [3]. We take advantage of this fact to port
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Table 1. List of stressors supported by Stress-SGX. “✗” indicates a stressor available
in Stress-ng that is not SGX-compatible. f= float, d= double, ld= longdouble.

the CPU stressors of Stress-ng in our own Stress-SGX fork. We detail here
the particular complications that we encountered throughout this porting effort,
and the specific adjustments applied to solve each of them.

After creating an enclave using the template given by the SDK, we copy
the relevant source code for the CPU stressors in the aforementioned template.
Stress-ng defines several macros in its global header file. It is not possible to
include the code verbatim as it depends on numerous system-specific features.
Our solution is to define the needed symbols on a case-by-case basis.

The next obstacle is the need to split the code in trusted and untrusted parts.
We decompose the code in a way that limits the number of enclave transitions
(i.e., entering and exiting the enclave) required to run a stressor. Transitions
are costly [6], so it is crucial that none happen while stressing is in progress, to
ensure a consistent behavior.

The user can gracefully abort the execution of Stress-SGX using standard
Linux signals such as SIGINT. Stress-ng includes a mechanism to catch the
majority of signals and react accordingly for its built-in stressors. We leverage
the fact that SGX enclaves can access the untrusted memory of their enclosing
process to pass a pointer to the g keep stressing flag variable to the enclave.
This variable is later used to indicate when to stop the execution of stressors.
Code running inside the enclave periodically polls the flag, and stops the execu-
tion if asked by the user. The same flag is also used to make a stressor run for a
given duration. Timekeeping is done outside the enclave, with the indication to
stop the execution notified by changing the value of the variable.

Ensuring Byte-per-Byte Equivalence of Native and SGX Code. Dur-
ing the initial testing phase of Stress-SGX, we observed vast differences in
performance for the same stressor executed in native and enclave modes. As a
matter of fact, while the source code was identical in both instances, the result-
ing compiled binaries slightly differ. We believe that these slight differences are
inevitable, as different linking rules are needed by each execution mode.

Conveniently, an enclave compiled using the official SGX SDK will produce
a statically-compiled shared library. We leverage this aspect to guarantee that
both native and SGX versions of a stressor execute a perfectly identical binary by
dynamically linking this shared object. Choosing this optional approach limits
Stress-SGX to stressors that are available in enclave mode.
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Table 2. Hardware characteristics of our test
machines. All processors are made by Intel.

CategoryModel Processor CoresFreq. [GHz]

BaseMax.

Server Supermicro 5019S-M2Xeon E3-1275 v64 3.8 4.2

Desktop Dell Optiplex 7040 Core i7-6700 4 3.4 4.0

NUC Intel NUC7i7BNHX1 Core i7-7567U 2 3.5 4.0

Stick Intel STK2m3W64CCCore m3-6Y30 2 0.9 2.2
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Fig. 1. Time needed to perform
100 000 000 enclave transitions.

3 Evaluation

This section presents our preliminary evaluation of Stress-SGX. Table 2 lists
the SGX machines used for our experiments. We chose these machines due to
their different form factors, hardware features, and widespread market availabil-
ity. We expect them to represent a meaningful sample of SGX machines that
are in use nowadays. These machines are configured to run Ubuntu Linux 17.10,
along with v2.0 of the Intel SGX SDK, Platform Software (PSW) and driver.

Cost of Enclave Transitions. When programming for SGX, it is important to
keep in mind that the cost required to enter and exit an enclave is significant [6].
Figure 1 presents the time needed to perform 100 million enclave transitions on
a single core at a time (left) and on all available cores (right). As expected,
the server-class machine is consistently faster than the other ones, while the
Intel Compute Stick performs the worst. We also observe marginal differences in
single-core performance, in which case the processor can run at its maximal turbo
frequency. Given the notable price difference between the various machines, the
Intel NUC offers the best price-performance ratio.

Cost of Latest Microcode Update. The second suite of microbenchmarks
highlights a rather surprising effect of a recent microcode update, recently issued
by Intel (on 2018-01-08) to mitigate the Spectre attack [5]. To observe the per-
formance impact of this microcode update, we execute all 54 supported stressors
before and after the microcode update. Using the previous microcode, all stres-
sors display the same performance in SGX and native modes. Under the updated
microcode, on the other hand, we observe a significant difference in SGX ver-
sus native performance. Figure 2 presents the results for the 27 tests for which
SGX performance is affected. We measure slowdowns up to 3.8× (ackermann
running on a single core). Given the undisclosed nature of microcode updates,
it is difficult to identify the root cause of this performance degradation.
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Fig. 2. SGX performance compared to native on different types of computers, using
January 2018 microcode (previous microcode had performance similar to native).

4 Conclusion and Future Work

The expanding availability of SGX-enabled machines calls for new tools to eval-
uate the performance of secure clusters. The current lack of ready-to-deploy
SGX applications usually forces researchers to implement single-use workloads.
This paper presented Stress-SGX, an easy-to-use tool capable of stressing SGX
enclaves and report on diverse metrics. We plan to extend our prototype along
the following directions: first, we intend to evaluate the performance of read-
ing and writing encrypted memory using the memory stressors of Stress-ng,
ported in Stress-SGX (not presented in this paper due to lack of space). Sec-
ond, we will integrate these stressors within a large-scale monitoring and perfor-
mance framework for containerized microservices, to easily monitor performance
regressions.
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Abstract. The data hiding techniques have attracted a lot of atten-
tion in recent years and mainly with the intensive growth of multimedia
and its possibility for covert communication. Steganography is one of
the information hiding methods to confirm the ability of a multimedia
carrier to exchange secret information between two end-points so that
it is imperceptible, thus avoiding the detection of hidden information.
The secret information can be embedded in several multimedia carri-
ers, such as image or audio or video files. It works by embedding the
message in a source cover which may make the observer feel it is the
source cover itself. The type of multimedia carrier here is an image. How-
ever, this technique suffers from the problem of the carrier distortion. In
this paper, we investigate the impact of some distortion types on the
carrier images and discuss the possibility of using distraction images in
steganography to protect the stego-image. Furthermore, we highlight the
current challenges of image steganography. The experimentations show
very interesting results.

Keywords: Image · Steganography · Speckle · Poisson · PSNR
Distortion

1 Introduction

In the field of information security, the search engines have returned, for cryp-
tography, steganography and watermarking, about 29.6, 1.92 and 101 million
results, respectively. This provides evidence for the growing importance of infor-
mation hiding [1]. Due to the rapid and massive need of multimedia and the
widespread of their applications on internet devices, it is important to anal-
yse their potential in dealing with secret information and transformation from
different perspectives. An example of that potential is image steganography.
Steganography includes a large array of secret communications methods that
conceal the message’s very existence [2]. Steganography embeds a confidential
message into another, more extensive message which serves as a carrier. The
goal is to modify the carrier in an imperceptible way, so that it reveals neither
the embedding of a message nor the embedded message itself [3]. Images are the
c© Springer Nature Switzerland AG 2019
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most common carrier in steganography techniques and their distortion is a crit-
ical problem. In this study, we will focus on the distortion attacks against stego
images. Various types of noise such as Gaussian noise [4], Poisson noise, Speckle
noise [5], Salt&Pepper noise [6], and much more are fundamental noise types in
case of digital images. Hence, we present a complete and practical analysis of
noise models available on digital images. Furthermore, we study their impact on
stego images and their potential to serve the user purposes in various ways as
mentioned in Sects. 2 and 3.1, by adding a desired level of noise. Also to acknowl-
edge if they harm the extraction process. Many research on steganography have
ignored these possibilities. Their impacts were evaluated by using Peak Signal to
Noise Ratio (PSNR) which determine imperceptibility and Mean Square Error
(MSE). These metrics are well known in image steganography applications [1].

2 Experiment and Results

Several studies have been conducted on the noise models from theory point of
view [7,8]. Others explained their effects briefly as part of attacks on steganog-
raphy [9], and they were reviewed in [4]. However, currently, not much attention
has been paid to the possibility of distortion attacks analysis on images either
with or without an embedded secret text. Hence, our experiments start with
a process of embedding 1000 characters as hidden text on some benchmarks of
digital image (Lena) in colour and grayscale versions comparatively. Our stegano-
graphic method of embedding and extraction is based on wavelet transform. A
result of that is two versions of stego images (a) and (b) shown in Fig. 1. The
values of PSNR and MSE for (a) are 74.410, 0.002. Where the same values
of (b) are 69.70, 0.007 respectively. The types of simulated noises used in our
experiments are: Salt&Pepper, Speckle, Poisson, Gaussian. All the types of noise
attacks are applied in 3 levels including their default values to help us estimating
the remaining levels with the possibility of increasing or decreasing the level of
the attacks. They are computed to measure which attack has the highest effect
by measuring the image quality after these noises. Therefore, first, we applied
these attacks to their default values (see Fig. 1(a) and (b)). A visualised example
of their impact is shown in Fig. 1(c).

(a) Stego-Colour (b) Stego-Grayscale (c) Stego images after default distortion attacks

Fig. 1. Stego-Lena in two versions.

To illustrate the results of stego-Colour (a) and stego-Grayscale (b) after
attacks, we calculated their PSNR and MSE as shown in Fig. 2. According to



366 A. Alharbi and T. M. Kechadi

the results, Poisson has the most least impact on imperceptibility value (PSNR),
where salt&pepper has the maximum impact, consequently, a reverse visualisa-
tion for MSE is shown in Fig. 2(b).

Fig. 2. Values of PSNR (a) and MSE (b) in default noisy-stego images.

In a further experiment, major levels of distortion attacks are studied. The
distortion level represents the attack level. We aimed to estimate an upper bound
on the noise level from a stego-Lena image and how each noise level can change
the imperceptibility value (PSNR) between the stego image and its noisy version.
Moreover, their cumulative error difference is based on MSE value. In this con-
text, Poisson can be considered as a constant type of Gaussian attack, while other
simulated attacks are not constant such as Speckle, Gaussian, and Salt&pepper.
Therefore, they obtain a different consequence on the image feature. We imple-
mented them with levels 0.03, 0.04, and 0.05. Their impacts on PSNR and MSE
are shown in Fig. 3(a) and (b) respectively.

Fig. 3. PSNR and MSE values after several level of attacks
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3 Summarised Results

Gaussian and Salt&pepper show more variance in their impact on stego image
than Speckle and Poisson. In our experiment, the introduction of noise does not
affect the secret text extraction process as wavelet transform hides the data in
a more robust area.

In default level of attacks, the impact of distortion on PSNR from Low to
high order is Poisson, Gaussian, Speckle, and Salt&pepper. Thus, the inverse
order is generated for the value of MSE.

Any increasing on the level of distortion attack will be reflected on the image
and the corresponding values of PSNR and MSE. It will decrease PSNR and
increase MSE simultaneously.

The amount of increasing or decreasing of the image quality after these
attacks depend on the type and level of attack and type of image either in
grayscale or colour.

Only Gaussian noise shows a less impact on colour image compared to all
other attacks, which show a less impact on the grayscale image.

3.1 Discussion

This section completes the previous sections on whether it is practically possible
to use the distortion for user purpose such as distraction. An example of that
possibility is presented in Fig. 4. In stego image, Poisson noise is used because it
has the least distortion impact. From the common scenario of Alice, Bob, and
the warden Willie. Alice can add a suitable level of noise which does not affect
the extraction process so that Bob recognises it as a sign of stego image and
the warden Willie will consider it as a normal image with a bad snapshot. We
highlight them here as part of the current challenge of image steganography.

Fig. 4. Possibility of using noise for distraction

The other side of noisy challenges is shown in Fig. 5. Alice or Bob may add an
intensive level of noise which affects the extraction to prevent the warden Willie
from an active detection of the secret message. Applying an intensive noise can
successfully harm the process of extracting secret message and lead to decoding
errors especially with fragile spatial steganographic methods, as they are highly
sensitive to noise [10]. A sample of intensive noise is shown in Fig. 5.
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Fig. 5. Possibility of using noise in destruction

4 Conclusion

Typically, there is a possibility that image contains some amount of noise by
its nature or by added simulated noise, but denoising the image is not an easy
task, mostly because we have no information about which kind of noisy attacks
has been used. More importantly, these attacks help to test any image stegano-
graphic algorithm efficiency. A suggested future work is to see if the findings are
preliminary in constant order under all conditions of stego image. Also, a further
study is required about noisy image applications to the end users. In this study,
it should take into account the robustness of data hiding algorithm and the type
and level of distortion.
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Abstract. Determining and quantifying the topological structure of
networks is an exciting research topic in theoretical network science. For
this purpose, a large amount of topological indices have been studied.
They function as effective measures for improving the performance of
existing networks and designing new robust networks. In this paper, we
focus on a distance-based graph invariant named the Terminal Wiener
index. We use this measure to analyze the structure of two well-known
hierarchical networks: the Dendrimer tree Td,h and the Dendrimer graph
Dd,h. We also investigate two methods of calculation in order to show
that the proposed method reduces the computational complexity of the
Terminal Wiener index.

Keywords: Networks · Topological indices · Terminal Wiener index
Dendrimer tree · Dendrimer graph · Computational complexity

1 Introduction

Many complex systems can be modeled as networks and studied using techniques
derived from graph theory. Examples include the power grids, communication
networks, biological networks, molecular networks, social networks, etc. One of
the most fundamental questions arising from the study of networks is to quantify
the topological properties of a structure. For this reason, the study of quanti-
tative measures also called topological indices has become a subject of great
interest [1]. The concept of topological indices began in 1947, when the physi-
cal chemist H. Wiener used the Wiener index for predicting the boiling points
of paraffin [2]. Many years after its introduction, the same quantity has been
extended to the field of complex systems [3,4]. Due to the success of this graph
invariant, a large number of topological indices have been put forward in the
literature [1,5].
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In this paper, we focus on some distance-based graph invariants: the Wiener
index [2] and the Terminal Wiener index [6]. These two indices can be used as
effective measures to evaluate the efficiency of a network and to quantify the
communication between people in a social network [7,8]. For a general network
G, one way for computing the Wiener index or the Terminal Wiener index is
to use the definition and compute all the distances between pairs of vertices or
pendent vertices, respectively. The complexity of this method is dominated by
computing all pairs of shortest paths [9]. Hence, the fundamental task would
be to design a fast and an efficient method for calculating any distance-based
topological index avoiding computation of all shortest paths. In [10], a powerful
method was introduced for computing the Wiener index of networks and showed
a linear time complexity especially for hexagonal systems. The main idea of this
method is to reduce the original network G into smaller weighted graphs called
quotient graphs and then the Wiener index of the original network G is obtained
from the quotient graphs. In this work, our aim is to extend this method in the
case of the Terminal Wiener index. Then, in order to demonstrate the significance
of this technique, we compute the Terminal Wiener index of two hierarchical
networks: the Dendrimer tree also called Cayley tree and the Dendrimer graph
[11]. For the first network, we apply a re-formula of the Terminal Wiener index,
and for the second network, we apply the proposed method.

We proceed as follows: In Sect. 2, we introduce the basic concepts and we
prove that the computation of the Terminal Wiener index can be reduced to the
computation of the Wiener index of the appropriately weighted quotient graphs.
In Sects. 3 and 4, we quantify the topological structure of the Dendrimer tree
and the Dendrimer graph by using the two proposed methods. We summarize
our findings in the section of concluding remarks.

2 Basic Concepts and Methods

Throughout this paper, we use the terms graph and network interchangeably.
Let G = (VG, EG) be a graph with VG is the set of vertices and EG the set

of edges. Let dp(k) denote the number of all pairs of pendent vertices (vertices
of degree 1) of the graph G whose distances d(u, v) is equal to k. A weighted
graph (G,ω) is a graph G with a weight function ω : V (G) → R that assigns
positive real numbers to the vertices of G. The graph G is called a partial cube
if its vertices u can be labeled with binary strings l(u) of a fixed length, such
that d(u, v) = H(l(u), l(v)). The edges e = xy and f = uv are in the relation
Djoković-Winkler θ if d(x, u) + d(y, v) �= d(x, v) + d(y, u). The relation θ is
always reflexive and symmetric, and is transitive on partial cubes. Therefore,
θ partitions the edge set of a partial cube into equivalent classes F1, F2, ..., Fk,
called cuts. The techniques used in this work are presented as follows:

2.1 Method Based on a Re-formula of the Terminal Wiener Index

At first, we present the definition of the two topological indices: the Wiener
index and the Terminal Wiener index.
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Definition 1. Let G be a graph. Then the Wiener index of G is equal to the
sum of distances between all pairs of vertices of G.

W (G) =
∑

{u,v}⊆V (G)

d(u, v) (1)

The Terminal Wiener index is one of the most recent extensions of the Wiener
index, that was introduced by Gutman et al. [6].

Definition 2. Let Vp(G) ⊆ V (G) be the set of pendent vertices of the graph G.
Then the Terminal Wiener index is defined as the sum of distances between all
pairs of pendent vertices of G.

TW (G) =
∑

{u,v}⊆Vp(G)

d(u, v) (2)

From the above definition, we can rewrite the Terminal Wiener index as follows:

Lemma 1. Let G be a graph with n vertices and p ≥ 2 pendent vertices. Let
D(G) be the diameter of G. Then:

TW (G) =

⎧
⎨

⎩

p(p − 1) + dp(3) + 2dp(4) + ... + (D − 2)dp(D) if D(G) > 2,

p(p − 1) if D(G) = 2.
(3)

Proof. The proof of this lemma is obvious, see [12] for illustration. ��
We can observe that Lemma 1 focuses on the calculation of all shortest path
between pendent vertices that made the computational complexity of this tech-
nique dominated by computing all distances.

2.2 Method Based on Edge-Partitions

In this method, we extend the algorithm proposed by Klavz̃ar [10] to the case
of the Terminal Wiener index. For this purpose, we need some auxiliary results.

We start with the definition of the weighted Wiener index of a weighted graph
(G,ω):

Definition 3 [13]. Let (G,ω) be a weighted graph. Then the weighted Wiener
index W (G,ω) of (G,ω) is defined as:

W (G,ω) =
∑

{u,v}⊆V (G)

ω(u)ω(v)dG(u, v) (4)

Let θ∗ be the transitive closure of the relation Djoković-Winkler θ. Then, θ∗

partitions the edge set of a graph G into θ∗- equivalent classes. As an example,
consider the graph G from Fig. 1. It has two θ∗-classes F1 and F2.

For describing the proposed method, we need to use the concept of the canon-
ical metric representation of a graph [14].

Let α be the canonical metric representation of a connected graph G:
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G G − F1 G − F2

Fig. 1. θ∗-equivalent classes of G

– Let G be a connected graph and F1, ..., Fk its θ∗-classes.
– Let G/Fi be the quotient graphs, i = 1, ..., k. Its vertices are the connected

components of G − Fi. Two vertices u and v being adjacent if there exist
vertices x ∈ u and y ∈ v such that xy ∈ Fi.

– Define α : G →
∏

1≤i≤k G/Fi with α : u → (α1(u), ..., αk(u)), where αi(u) is
the connected component of G − Fi that contains the pendent vertex u.

– Let (G/Fi, ω) be a weighted graph, such that, the weight of a vertex of G/Fi

is the number of pendent vertices in the corresponding connected components
of G − Fi. We consider only the pendent vertices that already exist in the
original graph G.

The computational complexity of the Terminal Wiener index of a graph G can
be reduced as follows:

Theorem 1. For any connected graph with p ≥ 2 pendent vertices, we have:

TW (G) =
∑

1≤i≤k

W (G/Fi, ω) (5)

Proof. Let C
(i)
1 , ..., C

(i)
ri be the connected components of G − Fi with 1 ≤ i ≤ k.

We denote by |Vp(C
(i)
j )| the number of pendent vertices in the component C

(i)
j ,

and we note that, we should considerate only the number of pendent vertices
that already exist in the original graph G.

From the above notations of the canonical metric representation α, we can
see that:

TW (G) =
∑

{u,v}∈Vp(G)

dG(u, v)

=
∑

{u,v}∈Vp(G)

dG(α(u), α(v))

=
∑

{u,v}∈Vp(G)

k∑

i=1

dG/Fi
(αi(u), αi(v))
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=
k∑

i=1

∑

{u,v}∈Vp(G)

dG/Fi
(αi(u), αi(v))

=
k∑

i=1

∑

1≤j≤j′≤ri

dG/Fi

(
C

(i)
j , C

(i)
j′

)
|Vp(C

(i)
j )||Vp(C

(i)
j′ )|

=
k∑

i=1

W (G/Fi, ω)

��

From Theorem 1 we can see that the Terminal Wiener index can be reduced
to the computation of the Wiener index of the appropriately weighted quotient
graphs. In other words, this method focuses only on counting the number of
pendent vertices in the corresponding connected components. From this fact,
the main result of this subsection can be useful to design a faster algorithm for
computing the Terminal Wiener index avoiding the computation of the distances
[9], and it can be implemented to run in linear time if the corresponding quotient
graphs of a network G are trees. For more information about linear algorithms
for the computation of topological indices of a specific class of graphs we refer
to see [15,16]. We note that this technique is also an efficient tool for a hand
manipulation, see Sect. 4.

3 Quantifying the Topological Structure
of the Dendrimer Tree

In this section, we introduce the construction method and some structural prop-
erties of the Dendrimer tree Td,h. Then, we give the analytical expression of the
Terminal Wiener index for this structure by using the first technique, which is
based on a re-formula of this index.

3.1 Construction Method and Structural Properties

Let Td,h (d ≥ 3, h ≥ 0) be a Dendrimer tree with two additional parameters:
fixed maximum degree d and the number of iterations or depth h. The Dendrimer
tree can be built in the following iterative way. Initially, Td,0 consists of only a
central vertex that is the core of the Dendrimer tree. Td,1 is obtained by attaching
d vertices to the central vertex. For any h > 1, we obtain Td,h from Td,h−1 by
attaching d− 1 new vertices to the pendent vertices of Td,h−1. Figure 2 illustrates
an example for a Dendrimer tree with d = 3 and h = {0, 1, 2, 3}. Every internal
vertex of the Dendrimer tree has degree d, and the iteration h denote the distance
between all pendent vertices (blue vertices) and the core vertex.

From the construction method of the Dendrimer tree Td,h, we can extract
the following structural properties:
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– The number of pendent vertices of Td,h is:

ph = d(d − 1)h−1 with h ≥ 1 (6)

– The number of vertices of Td,h is:

Nh = 1 + d
(d − 1)h − 1

d − 2
(7)

– The diameter Dh of Td,h is equal to:

Dh = 2h (8)

T3,0 T3,1 T3,2 T3,3

Fig. 2. Dendrimer trees Td,h with d = 3 and h = {0, 1, 2, 3} (Color figure online)

3.2 Computation of the Terminal Wiener Index
for the Network Td,h

In this part, we use the rewrite of the Terminal Wiener index in order to get
analytical expression of this index for the structure Td,h.

We start with the following lemma, that is defined as follows:

Lemma 2. For any Dendrimer tree Td,h. The dp(k) for k = {4, 6, 8, ...,Dh} is
given by:

dp(k) =

⎧
⎨

⎩

d(d−2)
2 (d − 1)

2h+k−4
2 if k ≤ 2(h − 1),

d
2 (d − 1)k−1 if k = 2h.

(9)

Proof. We have the distance between pendent vertices of the Dendrimer tree Td,h

is always even. In the first iteration, d vertices are attached to the central vertex,
and in the next iterations, each pendent vertex vi is attached to (d− 1) vertices.
Obviously, with some calculations and due to the symmetry of this structure,
we can get the result. ��

Theorem 2. Let Td,h be a Dendrimer tree with h ≥ 1 and d ≥ 3. Then:

TW (Td,h) = d(d − 1)h−1

[
(d − 1)h−1

(
hd − d − 1

d − 2

)
− 1 +

d − 1
d − 2

]
(10)
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Proof. By using Lemmas 1, 2 and the structural properties of Td,h, we get:

TW (Td,h) = ph(ph − 1) + 2dp(4) + 4dp(6) + ... + (Dh − 2)dp(Dh)

= d(d − 1)h−1[d(d − 1)h−1 − 1] +
d(d − 2)

2

h−2∑

i=1

2i(d − 1)h−1+i

+ d(h − 1)(d − 1)2h−1

which yields the Eq.(10). ��

Table 1. The numerical result of the Terminal Wiener index of the dendrimer tree
Td,h

TW (Td,h)

d = 3 d = 4 d = 5 d = 6

h=1 6 12 20 30

h=2 54 240 700 1620

h=3 348 3420 17520 62850

h=4 1944 42336 382400 2133000

h=5 10032 485676 7755520 67383750

The Numerical Result: In Table 1, we present some values of the Terminal
Wiener index of the Dendrimer tree Td,h. We can see that the behavior of this
measure shows a dominant change with the increasing values of the number of
iterations h and the maximum degree d.

4 Quantifying the Topological Structure
of the Dendrimer Graph

In this section, we represent the construction method of the dendrimer graph
Dd,h, analyze its structural properties and we express the Terminal Wiener index
of this structure using the second method.

4.1 Construction Method and Structural Properties

Let Dd,h be a Dendrimer graph, where h denote the levels and d the number of
vertices added to every vertex in each iteration. The Dd,h can be built in the
following iterative way. Initially, the dendrimer graph is composed of a core D0

that contain a cycle of order n′ and d − 1 vertices attached to each vertex of
the cycle, which gives p0 pendent vertices. Dd,1 is obtained from D0 by adding d
vertices to each pendent vertex of D0. Similarly, we obtain Dd,h from Dd,h−1 by
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attaching d vertices to every pendent vertex of Dd,h−1. Figure 3, illustrates some
iterations of the Dendrimer graph Dd,h. The internal vertices of the network
Dd,h have degree equal to d + 1, and the level h denote the distance between all
pendent vertices and terminal vertices of the core.

Fig. 3. (Left) The core D0 of the Dendrimer graph, with n′ = 6 and p0 = 6. (Middle
and Right) Dendrimer graphs Dd,h, with d = 2 and h = {1, 2}.

From the construction method of the Dendrimer graph Dd,h, we can derive
some structural properties:

– The number of pendent vertices of the graph Dd,h is equal to:

ph = dh(d − 1)n′ (11)

– The number of vertices of Dd,h is equal to:

Nh = n′ + n′(dh+1 − 1) (12)

– The diameter of this structure Dd,h is equal to:

Dh = 
n′

2
� + 2(h + 1) (13)

4.2 Calculation of the Terminal Wiener Index for the Network Dd,h

In this section, we apply the technique based on edge partitions in order to
obtain the Terminal Wiener index of the structure Dd,h.

The following lemma is crucial for the proof of the next theorem.

Lemma 3. Let (Cn, ω) be a weighted cycle of order n, such that, all the vertices
have the same weight ω. Then:

W (Cn, ω) =

⎧
⎨

⎩

1
8n3ω2 if n is even,

1
8 (n3 − n)ω2 if n is odd.

(14)
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Proof. Obviously, by using the Definition 3 with identical weights ω(u) = ω(v).
��

Theorem 3. Let Dd,h be a Dendrimer graph, with d ≥ 2 and h ≥ 0. Then:

– If n′ is even:

TW (Dd,h) = n′d2h
[
(d − 1)2

(
1
8
n′2 + n′(h + 1)

)
− d

]
+ n′dh (15)

– If n′ is odd:

TW (Dd,h) = n′d2h
[
(d − 1)2

(
1
8
(n′2 − 1) + n′(h + 1)

)
− d

]
+ n′dh (16)

Proof. The core D0 of the Dendrimer graph contains a cycle of order n′. In the
case of an even n′, it is easy to observe that an edge e of the cycle C of Dd,h is
in relation θ with its antipodal edge on C and if the order of the cycle is odd,
then all the edges will be in the same θ∗-class.

Now, we determine the corresponding weighted graphs of the dendrimer
graph Dd,h: In category A, we represent the weighted graphs obtained by remov-
ing an edge that doesn’t belong to the cycle of the core D0, and category B
contains the weighted graphs obtained by removing an edge or all the edges of
the cycle of the core D0.

ph
n′(d−1)

ph − ph
n′(d−1)

ph
n′(d−1)d

ph − ph
n′(d−1)d

ph
n′(d−1)dh

ph − ph
n′(d−1)dh

Category A

ph
2

ph
2

Category B

ph
n′

ph
n′

ph
n′

ph
n′

ph
n′
ph
n′

ph
n′

Each weighted graph from the category A is repeated di(d − 1)n′ times with
0 ≤ i ≤ h, and if we are in the case of an even cycle, the weighted graph from
the category B, that is in the top, is repeated n′

2 times.
Then, we apply the Theorem 1 with the above representations, the Lemma3

and the structural properties of Dd,h:

– if n′ is even

TW (Dd,h) =
n′

2

[
ph
2

ph
2

]
+

h∑

i=0

di(d − 1)n′
[

ph
n′(d − 1)di

∗
(

ph − ph
n′(d − 1)di

)]



380 M. Zeryouh et al.

– if n′ is odd

TW (Dd,h) =
(
ph

n′

)2(
1
8
n′3 − 1

8
n′

)
+

h∑
i=0

di(d− 1)n′
[

ph

n′(d− 1)di

(
ph − ph

n′(d− 1)di

)]

Which yield the Eqs. 15, 16, respectively. ��

Table 2. The numerical result of the Terminal Wiener index of the dendrimer graph
Dd,h

TW (Dd,h) for n′ = 3 TW (Dd,h) for n′ = 4

d = 2 d = 3 d = 4 d = 5 d = 2 d = 3 d = 4 d = 5

h=1 66 684 2844 8040 136 1344 5520 15520

h=2 396 9018 66096 290700 784 17208 124992 547600

h=3 2136 107244 1388736 9516000 4128 201312 2588928 17688000

h=4 10800 1200906 27525888 294142500 20544 2231064 50856960 542190000

h=5 52320 12932460 525339648 8759775000 98432 23856768 964694016 16005875000

The Numerical Result: In Table 2, we present some values of the Terminal
Wiener index of the Dendrimer graph Dd,h. Such that, we take into consideration
the parity of n′. In general, this measure shows an increasing change by modifying
the values of parameters.

5 Concluding Remarks

The computation of topological indices is an important task in the study of
structural properties of networks. In this paper, we have calculated the Ter-
minal Wiener index of two hierarchical networks: the Dendrimer tree and the
Dendrimer graph. In order to show the computational complexity of this index,
we have investigated two methods of computation. The first method is based on
a re-formula of the Terminal Wiener index and its complexity is dominated by
computing all shortest paths at a given distance. The second method is based
on the edge-partitions and its efficiency is in the fact that it reduces the origi-
nal network into smaller components and avoids the computation of all shortest
paths.

References

1. Emmert-Streib, F., Dehmer, M.: Networks for systems biology: conceptual connec-
tion of data and function. IET Syst. Biol. 5(3), 185–207 (2011)

2. Wiener, H.: Structural determination of paraffin boiling points. J. Am. Chem. Soc.
69, 17–20 (1947)

3. Wuchty, S., Stadler, P.F.: Centers of complex networks. J. Theor. Biol. 223(1),
45–53 (2003)



A Measure for Quantifying the Topological Structure of Some Networks 381

4. Estrada, E., Vargas-Estrada, E.: Distance-sum heterogeneity in graphs and com-
plex networks. Appl. Math. Comput. 218(21), 10393–10405 (2012)

5. Kraus, V., Dehmer, M., Emmert-Streib, F.: Probabilistic inequalities for evaluating
structural network measures. Inf. Sci. 288, 220–245 (2014)

6. Gutman, I., Furtula, B., Petrovic, M.: Terminal Wiener index. J. Math. Chem. 46,
522–531 (2009)
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Abstract. In this paper, we present an on-line fully dynamic algorithm
for maintaining strongly connected component of a directed graph in a
shared memory architecture. The edges and vertices are added or deleted
concurrently by fixed number of threads. To the best of our knowledge,
this is the first work to propose using linearizable concurrent directed
graph and is build using both ordered and unordered list-based set. We
provide an empirical comparison against sequential and coarse-grained.
The results show our algorithm’s throughput is increased between 3 to
6x depending on different workload distributions and applications. We
believe that there are huge applications in the on-line graph. Finally,
we show how the algorithm can be extended to community detection in
on-line graph.
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Strong connected components
Connectivity on directed graphs · Dynamic graph algorithms

1 Introduction

Generally the real-world practical graph always dynamically change over time.
Dynamic graphs are the one’s which are subjected to a sequence of changes like
insertion, deletion of vertices and/or edges [1]. Dynamic graph algorithms are
used extensively and it has been studied for several decades. Many important
results have been achieved for fundamental dynamic graph problems and some of
these problems are very challenging i.e, finding cycles, graph coloring, minimum
spanning tree, shortest path between a pair of vertices, connectivity, 2-edge &
2-vertex connectivity, transitive closure, strongly connected components, flow
network, etc (see, e.g., the survey in [1]).

We have been specifically motivated by largely used problem of fully dynamic
evolution Strongly Connected Components (SCC). Detection of SCC in dynami-
cally changing graph affects a large community both in the theoretical computer
science and the network community. SCC detection on static networks fails to
capture the natural phenomena and important dynamics. Discovering SCCs on
dynamic graph helps uncover the laws in processes of graph evolution, which
c© Springer Nature Switzerland AG 2019
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have been proven necessary to capture essential structural information in on-
line social networking platforms (facebook, linkedin, google+, twitter, quora,
etc.). SCC often merges or splits because of the changing friendship over time.
A common application of SCC on these social graph is to check weather two
members belong to the same SCC (or community).

In this paper, we present a new shared-memory algorithm called as SMSCC
for maintaining SCC in fully dynamic directed graphs. We have not found any
comparable concurrent data-structure for solving this strongly connected com-
ponents problem in shared-memory architecture. Hence we crosscheck against
sequential and coarse-grained implementations.

There have been many parallel computing algorithms proposed for computing
SCC both in directed and undirected graphs. Hopcroft and Tarjan [4] presented
the first algorithm to compute the connected components of a graph using the
depth first searches (DFS) approaches. Hirschburg et al. [3] presented a novel
parallel algorithm for finding the connected components in an undirected graph.
In 1981, Shiloach and Even [7] presented a first decremental algorithm that finds
all connected components in dynamic graphs, only edges are deleted. Henzinger
and King [2] also proposed a new algorithm that maintains spanning tree for each
connected components, which helps them to update the data-structure quickly
only when deletion of edge occurs.

None of above proposed algorithms clarify how the internal share-memory
access is achieved by the multi-threads/processors and how the memory is syn-
chronized, whether the data-structure is linearizable or not, etc. In this paper
we able to address these problems.

2 Construction of SCC-Graph

In this section we present the node structures of vertex, edge and scc to con-
struct the SCC-graph. It is implemented as a collection (list) of SCCs, wherein
each SCC holds the list of vertex set belongs to it, and each vertex holds the
edge list (both incoming and outgoing edges). We represent all incoming edges
with negative sign followed by val and outgoing edges with the val, as shown
in the Fig. 1b.

The Gnode structure (similar as [5]) is a normal node and has five fields. The
val field is the actual value of the node, if it is a vertex node, stores the vertex
id, if it is an outgoing edge, stores the val of the destination vertex and if it
is an incoming edge, stores the -val of source vertex. The main idea of storing
both incoming and outgoing edges for each vertex helps to explore the graph
backward and forward manner respectively. And also it helps to trim the SCC-
Graph after deleting a vertex, i.e, once a thread successfully deleted a vertex,
all its incoming and outgoing edges to be removed quickly instate of iterating
over whole SCC-Graph. The vertex and edge nodes are sorted in the val order
(lower to higher), it provides an efficient way to search when an item is absent.
The boolean marked field is used to set the node and helps traversal to the
target node without lock, we maintain an invariant that every unmarked node
is reachable from the sentinel node Head. If a node is marked, then that is not
logically present in the list. Each node has a lock field, that helps to achieve
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the fine-grained concurrency. Each node can be locked by invoking lock() and
unlock() methods and helps multiple threads can traverse the list concurrently.
The vnext & enext fields are the atomic references to the next vertex node in
the vertex list and the next edge node in the edge list of a vertex respectively.

Fig. 1. (a) An example of a directed graph having
three SCCs. (b) The SCC-Graph representation of
(a), Each SCCs have their own ccno and vertex list,
each vertex have their own adjacency vertex (both
incoming (−ve) and outgoing) represent in edge list,
e.g. vertex 10 present in SCC 3 and it has an incoming
edge (-9) and an outgoing edge (8). (c) Structure of
a new SCC, whenever a new vertex is added, a new
SCC is created with new vertex and then inserted at
the beginning of the CCHead in the SCC-Graph.

unsigned long ccid;

unsigned long ccCount

typedef struct Gnode{

long val;

bool marked;

Lock lock;

struct Gnode *vnext;

struct Gnode *enext;

}slist_t;

typedef struct CCnode{

long ccno;

bool marked;

Lock lock;

struct Gnode* vnext;

struct CCnode *next;

}cclist_t

class SCC{

CCnode CCHead, CCTail;

bool AddVertex(u);

bool RemoveVertex(u)

bool AddEdge(u, v);

bool RemoveEdge(u, v);

bool checkSCC(u,v);

int blongsTo(v);

};

The CCnode structure is used for holding all vertices belonging to a SCC. Like
Gnode, it has five fields. The ccno field is the actual scc key value and unique
for each SCC. Once a key assigned to a SCC, same key will never generate
again. We assume our system provides sufficient number of unique key and had
no upper bound. The boolean marked and lock have same meaning as in the
Gnode. The vnext and next fileds are the atomic references to vertex head
(VH) and next CCnode. Finally, the SCC class is the actual abstract class, which
coordinates all operation activities. This class uses two type of nodes, Gnode
and CCnode. The vertex & edge nodes are represent by Gnode and the SCC
nodes are represented by CCnode, it also has two sentinel nodes CCHead and
CCTail. The SCC class supports four basic graph operations AddVertex, AddEdge
and RemoveVertex, RemoveEdge, and also some application specific methods,
checkSCC, blongsToCommunity, etc. The detail working and pseudo code is
given in the full paper [6]. Apart from above structures and class, we have two
atomic variables ccid and ccCount used to hold the unique id for each CCnode
and total number of SCCs respectively.
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3 An Overview of the Algorithm

The SCC class supports some basic operations: AddVertex, RemoveVertex,
AddEdge, RemoveEdge, checkSCC, blongsTo, etc. and all of these methods are
dead-lock free. The high-level overview of the AddEdge and RemoveEdge meth-
ods are given bellow and the technical details of all the methods are in the full
paper [6].

AddEdge (u, v):
1. Checks the presence of vertices u, v and edge(u, v) in the SCC-Graph. If both

vertices are present & the edge is not present, adds v in the u’s edge list and
adds -u in the v’s edge list, else returns false.

2. After adding the edge successful, checks the ccid of both the vertices.
3. If u.ccid is same as v.ccid, returns true, as no changes to the current SCC,

else goto step 4.
4. Checks the reachability path from vertex v to u, if it is true, goto step 5, else

returns true, as no changes to the current SCC.
5. Runs the limited version of Tarjan’s algorithm, process the affected SCCs

along with its vertices and edges, merge them all to create a new SCC.
– At first it creates a new scc with any one old vertex, later adds rest of

vertices to that newly created SCC and then disconnects from old SCC.

RemoveEdge (u, v):
1. Checks the presence of vertex u, v and edge(u, v) in the SCC-Graph. If both

are present & edge is present, removes v from the u’s edge list and removes
-u from the v’s edge list, else returns false.

2. After successful deleting the edge, checks the ccid of both the vertices.
3. if u.ccid is not same as v.ccid, returns true, as no changes to the current SCC.

Else goto step 4.
4. Runs the forward and backward DFS algorithm (the limited version of

Kosaraju’s algorithm), process all the affected vertices belongs to that SCC
and creates new SCCs.

– For each new iteration of affected vertices.
• Creates a new scc with any one of the old vertex belongs to it, later

adds rest of vertices to that newly created SCC and then disconnects
it from the old SCC.

4 Performance Analysis

In this section, we evaluate the performance of our SMSCC algorithm. We ran
each experiment for 20 s, and measured the overall number of operations executed
by all the threads (starting from 1, 10, 20 to 60). The graphs shown in the Figs. 2
and 3 are the total number of operations executed by all threads. In all the tests,
we ran each evaluation 8 times and took the average. The algorithms we compare
are, (1) Sequential, (2) Coarse-grained, (3) SMSCC and (4) SMSCC with delete
incoming edges. The detail regarding performance analysis, correctness and its
proof are given in the full paper [6].
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Fig. 2. SMSCC execution with different workload distributions

(a) SMISCC
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(b) SMDSCC
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(c) Community Detec-
tion
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Fig. 3. (a) Incremental SCC (100% Add (V+E)), (b) Decremental SCC (100% Rem
(V+E) and (c) Community detection (checking 80% + update 20%)

5 Conclusion and Future Direction

In this paper, we proposed a fully dynamic algorithm (SMSCC) for maintaining
strongly connected component of a directed graph in a shared memory archi-
tecture. The edges/vertices are added or deleted concurrently by fixed num-
ber of threads. To the best of our knowledge, this is the first work to propose
using linearizable concurrent data-structure. We provide an empirical compari-
son against sequential and coarse-grained, with different workload distributions.
Also we compare the result with delete & without delete incoming edges. The
throughput is increased between 3 to 6x against coarse-grain. Currently the pro-
posed update algorithms are blocking and deadlock-free. In the future, we plan
to explore non-blocking (lock-free & wait-free) variant of all the methods of
SCC-Graph.
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Abstract. OLAP databases remain the first choice of enterprises to
store and analyze huge amount of data. Thereby, to further enhance
query performances and minimize the maintenance cost, many tech-
niques exist, among which data partitioning is considered as an efficient
technique to achieve this purpose. Although most of business intelligence
tools support this feature, defining an appropriate partitioning strategy
remains a big challenge. Hence, many approaches have been proposed
in the literature. Nevertheless, most of them have been evaluated only
in relational model. Therefore, we propose in this paper, a comparative
study between our partitioning approach based on the association rules
algorithm and a genetic based one. The study aims to compare the results
of the aforementioned approaches in case of OLAP partitioning.

Keywords: Partitioning · OLAP · Data warehouse
Association rules algorithm · Genetic algorithm · Performance

1 Introduction

In OLAP databases, partitioning is the operation of breaking up data into small,
manageable physical units [1]. Indeed, partitioning divides the OLAP cube into
smaller partitions that can be stored in separate physical servers, allowing thus
store management. Moreover, partitioning enhances the cube performance by
means of improving query response time due to the decreased number of rows
that the system has to scan for each user query. Besides, partitioning also
enhances the cube refresh time because of reducing the amount of aggrega-
tions that the OLAP system recalculates on each data cube update. In addition,
partitioning allows integrating parallelism in querying and processing OLAP
databases [2]. Hence, given the apparent importance of partitioning in deci-
sional support systems, most of OLAP frameworks support partitioning feature
[3]. However, these frameworks do not define the appropriate partitioning strat-
egy which remains the challenged task for BI administrators. Therefore, many
approaches have been proposed in the literature aiming to provide partitioning
c© Springer Nature Switzerland AG 2019
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strategies and algorithms. However, most of these approaches have been evalu-
ated in relational Data warehouses (DW) only. To deal with this, we propose in
this paper a comparative study between two partitioning approaches applied to
OLAP cubes. The first one is our approach based on the association rules algo-
rithm (AR). The approach starts by identifying the frequent predicates itemsets
from the user queries. Then, the partitioning process is performed using the
resulting predicates itemsets. The partitioning algorithm aims to create new
partitions that fit with the user requirements until attaining a minimum sup-
port parameter. The second approach [4] is based on the genetic algorithm (GA)
widely used in optimization problems. It consists on modeling the partitioning
problem as a genetic concept with chromosomes and genes and then performing
genetic operations (reproduction, mutation etc.) to find the best solution. This
approach uses the frequent user queries to select the predicates that will be used
in the partitioning process. To carry out the evaluation of our approach in com-
parison with the genetic one, we implemented the two algorithms and conducted
a set of experiments whose results are discussed in this paper.

The reminder of the paper is organized as follows: Sect. 2 presents previous
works related to DW partitioning. Section 3 gives a background overview and
addresses our partitioning solution as well as the genetic one. Next, the Sect. 4
describes the implementation of the two studied algorithms and the Sect. 5 dis-
cusses and analyzes the experiments results of both approaches. Finally, Sect. 6
presents the conclusion and perspectives.

2 Related Work

In [4] the authors Bellatreche et al. proposed a genetic based approach for hori-
zontal partitioning of relational data warehouses. The proposal provides a cost
model (fitness function) based on the IO cost to identify the best solution. The
proposed partitioning algorithm is based on the frequent user queries though
it ignores the correlation between predicates. The authors proposed latter two
other partitioning approaches based on their GA approach [5], the first one is
a hill climbing (HC) approach and the second is a simulated annealing (SA)
one. In [6], the authors compared the new algorithms to the GA one, the results
show that the GA remains a middle solution between HC and SA in term of
query execution time and IO cost. More recently, Amirat et al. proposed in [7]
a combined approach of horizontal partitioning and bitmap join index for data
warehouse optimization. The proposal aims to classify the query workload on
two categories defining the appropriate optimization method to be used. The
partitioning is performed using the GA algorithm. Another genetic based app-
roach was proposed by the authors Bouchakri et al. [8] which aims to deal with
the query workload evolvement. In fact, the proposal consists on performing new
partitioning by merging and splitting partitions when new queries are executed.
The approach seems heavy to use in case of OLAP cubes because of time required
to reprocess the partitions each time. Another partitioning approach has been
proposed by Toumi et al. [9] based on binary particle swarm optimization. The
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approach consists on calculating the attraction between predicates using the
Jaccard index and then clustering the predicates from which the best solution
of partitioning is identified by using the particle swarm optimization. In [10]
the authors Sun et al. proposed a partitioning framework that consists firstly
on analyzing the query workload. Afterwards, constructing predicates vectors
which constitute the input of the partitioning algorithm. The proposal includes
also storing the partitioning schema in the system catalog to minimize the num-
ber of partitions scanned by the users queries. More recently, a data partitioning
approach for Hadoop-based data warehouses was proposed by Arres et al. [11].
The proposal consists on partitioning the data warehouse tables vertically and
horizontally and then placing dimension tables of frequent predicates in the same
cluster or closest according to the user frequent queries. Finally, a vertical data
partitioning is given by the authors Kim et al. [12]. Indeed, the authors intended
to identify columns that appear together in user queries and then selecting the
best partitioning schema according to the storage constraint.

In summary, most of partitioning approaches concern the relational DW.
Some of them ignore the correlation between predicates and thereby gener-
ate unnecessary partitions. Moreover, some approaches ignore the preprocess-
ing phase of predicates especially the date ones. Furthermore, all of the listed
approaches do not integrate any control on the resulting partitions size while
the store management is one of the partitioning advantages. Hence, our AR
partitioning approach aims firstly to deal with all these problems and also to
provide better results in term of cube performance. We notice also that in the
several partitioning approaches that have been proposed in the literature, the
genetic algorithm is the most used one or is to which, the most other approaches,
have been compared. Therefore, we have chosen this algorithm to evaluate and
confirm the efficiency of our association rules based approach.

3 Partitioning Algorithms

3.1 Background Overview

Data warehouse partitioning: refers to the breakup of data into separate physical
units that can be handled independently [1]. In OLAP model, a partition is a
subset of a cube used for performance or storage reasons. A horizontal partition
contains all of the measures and dimensions of its cube. While a vertical parti-
tion contains a subset of the measures and dimensions of its cube [13]. Hence,
considering a cube C defined by a set of dimensions D and a set of measures M,
we can define a partition P by : P(Dp,Mp, Yp) where Dp is the set of dimensions
of P like Dp ⊆ D,Mp is the set of measures used by P like Mp ⊆ M and Yp the
set of dimension members (predicates) used to drive P. we can also note simply
P(Yp), if P has the same measures and dimensions as its parent cube.

3.2 Preparation of the Partitioning Algorithms Inputs

Both studied partitioning algorithms are based on the user queries predi-
cates. Hence, before performing the partitioning process, we first gather the
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user queries. Afterwards, a preprocessing step is required that consists on,
firstly, replacing date predicates by general formula. Indeed, date predicates are
dynamic depending on the query execution date. Thereby, by comparing the date
predicate with the query execution date, we can deduce the dynamic formula of
the predicate. For instance, considering a date predicate “Sale date”, by compar-
ing its query values {d1, d2, .., dn} with the query execution time {t1, t2, .., tn},
we can figure out that all the predicate values correspond to the current day
di = ti, we replace then d1, d2, .., dn by the MDX (MultiDimensional eXpres-
sions) expression “Now()”. The second preprocessing operation is the separation
of MDX sets onto multiple tuples which corresponds to an “OR” operator. Given
the preprocessing is done, we identify thereafter the most frequent queries from
which we extract the list of used predicates for each attribute. We call the list
of used predicates of an attribute Ai the selection domain [4] that we note by
SDi = {a1, a2, .., an}. The resulting selection domains will constitute the input
of the genetic algorithm. On the other hand, from all user queries, we extracted
the most frequent predicates itemsets by using the apriori algorithm [14]. We
note each resulting predicates itemset Ii by Ii = {i1, i2, .., im}. The resulting
itemsets, which we sorted by frequency, will be used as input of the AR algo-
rithm.

3.3 Our Association Rules Based Approach

Our approach based on the association rules algorithm [15] consists on using
the frequent predicates itemsets I={I1, I2, .., Im} sorted by frequency as input
and trying to create cube partitions that fit exactly with these itemsets and
that satisfies a predefined threshold min sup. This latter aims to avoid creating
too small partitions sizes or huge amount of partitions which will increase the
maintenance cost. The algorithm (see Algorithm 1) rolls up the cube partitions
(the cube only in the first iteration) and calculates the support of each pred-
icates itemset Ij in each partition Pi(yp) which formula is Support(yp, Ij) =
Count(yp

⋃
Ij)

|C| where |C| is the number of records in the cube. Furthermore,
by using Ij to partition Pi two new partitions Pi1 and Pi1 will be created
like Pi = Pi1

⋃
Pi1 and Pi1

⋂
Pi1 = ∅ (see [Fig. 1]). Hence, to avoid creat-

ing small partitions, the support of Pi1 which verifies the condition Ij (the
opposite of Ij), also must fulfill the threshold min sup. For instance, consid-
ering an itemset Ij = {Jewelry, 201803} to be used to divide a partition
containing data of Morocco like Pi({Morocco}). The two resulting partitions
are Pi1({Jewelry, 201803,Morocco}) and Pi1({Jewelry, 201803,Morocco}).
The supports of these two partitions whose formula are respectively
count({Jewelry,201803,Morocco})

Count(All) and Count({Jewelry,201803,Morocco})
Count(All) must verify the

min sup threshold. Moreover, in case that the support is less than the min sup,
the algorithm, instead of ignoring the itemset, tries to enlarge the scope by going
up in the predicates hierarchies. The algorithm thus starts from the last predi-
cate which means from the predicate having the smaller support, then replaces
it by its first ancestor and so on, until the fulfillment of the support threshold
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Fig. 1. Illustration of our partitioning algorithm

or until attaining the predicate root in which case the predicate will be ignored,
and the algorithm skips then to the next predicates etc. as shown in the example
of the [Fig. 2].

Finally, in addition to the support, the algorithm calculates the confidence
of each itemset Ij whose formula is [14]: Confidence(yp, Ij) = Count(yp

⋃
Ij)

Count(yp)

If this latter is equal to 100% hence yp ⊆ Ij , which means that Ij (or its
descendants) is already used to obtain Pi. Ij is thus ignored. In the exam-
ple listed above, considering an item Ik = {Africa} to be used to par-
tition Pi1({Jewelry, 201803,Morocco}). The confidence of the new resulting
partition is Count(Jewelry,201803,Morocco,Africa)

Count(Jewelry,201803,Morocco) which is equal to 100% because
{Jewelry, 201803,Morocco} ⊆ {Jewelry, 201803,Morocco,Africa}.

Fig. 2. Illustration of the scope enlargement mechanism
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Algorithm 1. The AR partitioning Algorithm
Require: C cube to partition,

min sup the minimum support threshold
Predicates Itemsets list of frequent predicate itemsets

Ensure: P list of resulting partitions
P = {C} // P contains initially the cube
P ′ = P
for all Ii = {i1, i2, ., in} ∈ Predicates Itemsets do

j = n // n is the number of predicates in Ii
P = P ′

for all pk

⎧
⎨

⎩

Dk

Mk

Yk

∈ P = {p1, p2, ., pm} do

while j ≥ 1 do
sup(Yk, Ii) = Count(Yk

⋃
Ii)

|C| // calculates the frequency of Ii in the Cube
C
conf(Yk, Ii) = Count(Yk

⋃
Ii)

Count(Yk)
// calculates the frequency of Ii in the partition

pk

sup(Yk, Ii) = Count(Yk
⋃

Ii)
|C| // calculates the frequency of Ii in the Cube

conf(Yk, Ii) = Count(Yk
⋃

Ii)
Count(Yk)

// calculates the frequency of Ii in the partition
pk
if sup(Yk, Ii) = 0 or sup(Yk, Ii) = 0 then

j = 0 // Go to next partition
Else
if sup(Yk, Ii) ≥ min sup and sup(Yk, Ii) ≥ min sup then

if conf(Yk, Ii) = 1 or conf(Yk, Ii) = 1 then
j=0 // Go to next partition
Else
//Partition pk using Ii and add the new partitions to P ′

P ′.add(pk.Partition with(Ii))
P ′.delete(pk) // delete pk from P ′

j = 0 // Go to next partition
end if
Else // loop on predicates ancestors
while A is null and j ≥ 1 do

A = Ancestor(ij , 1)
if A is not null then

Ii.Replace(ij , A) // replace ij by its ancestor
Else
j = j − 1 // Go to next predicate

end if
end while

end if
end if

end while
end for

end for
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3.4 Genetic Algorithm

The genetic algorithm (GA) proposed by Holland in 1960s [16], is an evolution-
ary based algorithm that uses operators inspired by natural genetic variation
and natural selection to solve engineering optimization problems. The genetic
algorithm consists on starting with an initial population of chromosomes (indi-
viduals) randomly generated and then performing genetic operations, namely
selection, mutation and crossover, to get new population (offspring) that might
represent the current problem’s solution. The selection operation consists on
selecting the fittest individuals for reproduction according to a defined fitness
function. The crossover exchanges subparts of two chromosomes and the muta-
tion randomly changes the allele values of some locations in the chromosome [16].

Hence, to use the genetic algorithm (GA) for OLAP partitioning, the first
step is to model the partitioning problem with genetic concepts. In the solu-
tion proposed by Bellatreche et al. [4], each fragmentation schema is represented
by a chromosome whose genes are the partitioning attributes, for example, the
genes can be the product category, month or customer state etc. Each gene
is represented by an array of integers with the same length as the associated
selection domain deduced from the queries analysis phase and each allele corre-
sponds to a value from this attribute selection domain, for example, the avail-
able values of the gene product category are {Books, Sports, Jewelry, Other
categories} as shown in the example in [Fig. 3]. The partitioning solution is thus
the Cartesian product of the chromosome genes. The gene alleles having the
same value are grouped together. In the example shown in [Fig. 3], the chro-
mosome will result on 3x2x2 fragments corresponding to the Cartesian prod-
uct of the following items: [{Books, Jewelry},Sports,Other Categories]x [Jan-
uary,Other Months]x[IL,{CO,MN,Other States}]. The second step is to define
the selection function that returns the fitness value of each chromosome and
allows identifying the best solution. For that, we use a cost function (1) that
returns approximately the number of I/O needed to execute a query Q:

Fig. 3. Example of chromosome representation
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Cost(Q) =
n∑

i=1

Mi∏

j=1

Selj×|F |×L
PS where n is the number of partitions needed to

respond to a query Q, Mi is the number of predicates defining a partition Pi,
Selj is the selectivity factor of a partition predicate yj , which corresponds to
the frequency of the predicate in the fact table, |F | is the size of the fact table
F, L corresponds to record size and PS is the system page size.

4 Experimental Study

4.1 Experimental Setup Parameters

To conduct our experiments to compare our AR based algorithm and the GA
based one, we implemented the two algorithms in C# language using the GAF
framework for the GA algorithm and the ADOMD for the AR algorithm. We
used the TPC-DS [17] database to create the DW and the associated OLAP
cube in SQL Server Analysis Services. The cube contains one fact table named
Store Sales with 24M records and four regular dimensions (see [Fig. 4]): Date
(73K) which contains the hierarchy date-month-quarter-year, customer (100K)
includes the hierarchy customer-city-state-country, item dimension (18K) con-
tains the hierarchy item-brand-class-category, promotion dimension (300) and
store dimension (12) which contains the hierarchy store-city-state-country. We
also used the TPC-DS query generator to generate a set of 100 queries. Finally,
we performed our experiments on an i3 processor machine.

Fig. 4. The multidimensional model of our case study

4.2 The Association Rules Based Algorithm

As already discussed, the AR algorithm uses the frequent predicates itemsets as
input. In our case study, the user queries analysis phase resulted on 24 frequent
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itemsets sorted by frequency. Giving the fact that the smaller the min sup is,
the more the partitioning algorithm goes up in the predicates hierarchy trying to
enlarge the frequent itemsets scope instead of ignoring them, we fixed thus the
min sup threshold to 5% to test this ability. We then performed the partitioning
algorithm. In the first iteration, the frequent itemset corresponds to the current
month. Nevertheless, the support of this latter is less than the min sup threshold.
The algorithm tries thus to enlarge the scope by replacing the month by its
ancestor in the date hierarchy, the quarter. This latter, whose support fulfills
the min sup, is thereby used to partition the cube. The algorithm continues, in
this way, rolling up the rest of itemsets and partitioning the cube. At last, we
obtained 9 partitions.

4.3 The Genetic Based Algorithm

After identifying the frequent queries, we determined the selection domain of
each predicate and calculated their selectivity factor. We then performed the
genetic algorithm as already described (see Algorithm 2). Therefore, an initial
population of 40 chromosomes is generated (as proposed in [4]) by randomly
constructing chromosome genes represented by integer arrays, having the same
length as the associated SD. The crossover is performed using the parameter 0.7
and double point (as proposed in [4]) and the mutation fixed to 0.1 (in [4] the
authors varied the parameter from 0.06 to 0.3). In our case study, the maximum
number of resulting partitions is 768 which represent a huge number of partitions
to create and manage. We hence add a maximum number of partitions threshold
B that we fixed to 15 partitions and we modified the cost function by integrating
a penalty function to eliminate solutions with huge amount of partitions, we
used then the following function: Cost’(Q)=Cost(Q)×N

B where N is the number
of resulted partitions. The algorithm results thus on 8 partitions for our case
study.

5 Comparative Analysis

After executing the two studied algorithms as described above, we created the
resulted partitions from each approach. Afterwards, we conducted a set of exper-
iments to compare the two approaches. We stared thus by comparing the queries
execution time enhancement as shown in the [Fig. 5]. We noted that the AR app-
roach provides better results than the GA one with an average of 26%. Next, we
compared the I/O cost for the two approaches which corresponds concretely to
the number of memory pages needed to store partitions required to respond to a

query Q. we used thus the reel partitions size like: Cost(Q) =
n∑

i=1

|Pi|
PS where n is

the number of partitions needed to respond to Q and |Pi| is the size of a parti-
tion Pi and PS is the system page size. The comparison shows that the I/O cost
with AR approach is about 51% better than the GA approach (see [Fig. 6]). This
can be explained by the fact that, because of the use of the frequent predicates
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Algorithm 2. The GA partitioning Algorithm
Require: SD : List of attributes selection domains,

Q : List of frequent queries
B : Max number of partitions

Ensure: chromosome
//Generate random initial population
for (i = 0; i < 40; i + +) do

chromosome=Create chromosome()
end for
for all (s in SD) do

a=CreateRandomArray(s.lenght)
chromosome.genes.add(a)

end for
population.add(chromosome)
//Perfom GA operations
SelectFitest(population, FitnessFunction)
while (nb generation <= 1000) do

Crossover(population,0.7,DoublePoint)
Mutation(population,0.1)
SelectFittest(population, FitnessFunction)

end while
chromosome=FitestChromosome(population)
//Fitness Function
FitnessFunction(Chromosome c){
Fragments=ChromosomeToFragments(c);
for all (query in Q) do

for all (F in Fragments) do
Cost+ = CalculateQueryCost(q, F )

end for
Return Cost* B/Fragments.count

end for
}

itemsets, the AR approach enhances almost of queries, while the GA approach
satisfies the frequent queries only. Besides, due to the Cartesian product of pred-
icates, the GA approach generates unfeasible solution for none frequently asked
data, while the AR approach isolates all this data in a separate partition that
can be managed alone. The Table 1 provides the detail of the IO cost calculation.

Afterwards, we compared the resulted partitions size from each approach. We
noted that the AR approach generates regular partitions (between 8 to 27 MB),
as shown in the [Fig. 7], since the min sup parameter in AR-based algorithm
allows controlling the store constraint. Conversely, the GA approach, which con-
trols only the number of partitions, generates irregular partitions size (between
0.08 and 83 MB), as shown in [Fig. 8]. In summary, our AR approach provides
better performances in all aspects namely queries response time, IO cost and
partitions size regularity as shown in Table 2.
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Fig. 5. AR and GA query execution
time

Fig. 6. AR and GA I/O cost

Table 1. IO cost results

Template Frequency AR partitions GA partitions AR I/O cost GA I/O cost

Q1 10 P1 P1+P2+P5+P6 3120 150073

Q2 10 P2+P3+P5 P5+P6 10419 134643

Q3 10 P5 P5+P6 3708 134643

Q4 10 P2 P1+P2+P5+P6 3120 150073

Q5 10 P2 P1+P2 3120 15429

Q6 6 P2 P5+P6 3120 80786

Q7 8 P2 P5+P6 3120 107714

Q8 10 P2 P1+P2+P5+P6 3120 150073

Q10 4 P3+P5 P1+P2+P5+P6 7299 60029

Q11 7 P3+P5 P1+P2+P5+P6 7299 105051

Q12 5 P4 P5+P6 6660 67321

Q13 7 P4 P5+P6 6660 94250

Q14 4 P8 P5+P6 5139 53857

Total 101 9 8 65908 1303947

Fig. 7. AR resulting partitions size Fig. 8. GA resulting partitions size
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Table 2. Approaches evaluation summary

Evaluation criteria AR approach GA approach

Average query time enhancement 31% 8%

I/O cost vs. no partitioning 11% 30%

Partitions size regularity(min size/max size) 29% 0.1%

6 Conclusion

In this paper, we presented a comparative study between our partitioning app-
roach based on the association rules algorithm and a genetic approach, one of
the well-known optimization approaches, in case of OLAP cube partitioning.
The results showed that the AR approach provides better results compared to
the GA approach, in term of query execution time as well as IO cost. The results
showed also that the AR approach generates partitions with regular size which
can help in store management, contrary to the GA approach. For our future
works, we intend to adapt and evaluate our AR partitioning approach in big
data and unstructured databases.
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Abstract. The contribution of this paper deals with IoT coordination. After a
thorough review of the literature, we conclude that the challenge of coordination
has not yet been met despite all the contributions already suggested. To address
this challenge, we have proposed in a previous work an IoT contextual archi-
tecture, while the purpose of this article focuses on the behavior of the proposed
multilayer IoT architecture by describing a flood case study. Three aspects are
considered: functional aspect, informational aspect and behavioral aspect. When
modeling the behavioral aspect, we focus mainly on the control flow throughout
the workflow and we put our interest on relative ordering of sub-workflows.

Keywords: IoT � IoT architecture � IoT coordination architecture
IoT coordination behavioral � IoT meta-workflow

1 Introduction

Internet of Things (IoT) is defined by Gartner research as a network of dedicated
physical objects (things) that contain embedded technology to communicate and sense
or interact with their internal states or the external environment. Providing better and
more resilient IoT services and applications faces unfortunately many challenges such
as ease of connectivity, interoperability, scalability, security, coordination, and more. In
this paper we focus on IoT coordination that consists of organizing things, objects,
information, tasks, functionalities, services, etc. in a network in order to enable them to
work together efficiently to attain a required and desired objective. However this
organization makes the coordination challenge closely linked to other challenges like
heterogeneity, context-awareness, decision-making, discovery and accessibility.
Despite the efforts presented in the literature, this challenge remains open.

In [1] we already suggested a flexible multilayered IoT architecture dealing with
coordination. This proposed architecture uses a combination of orchestration and
choreography as a model of coordination guided by coordination and context policies.
The aim of this current contribution deals with behavioral aspect of the proposed
multilayered context-driven architecture. To model and formalize IoT coordination
behavioral aspect, we use the modeling language proposed by Van Bochmann in [2]
that supported a design derivation algorithm having the advantage to support most of
the concepts found in UML Activity Diagrams.

The remaining of the paper will be organized as follow: Sect. 2 outlines a related
work on coordination models. Section 3 describes the IoT multilayered architecture
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and details its behavior. Section 4 presents a flood case study whereas the Sect. 5
concludes the paper and highlights some future works.

2 Related Work

A coordination model offers a framework that considers entities’ interactions such as
communication, dissemination of actions, time and spatial distribution … [3]. It can be
classified as data-driven model, process-oriented model, control-driven model, or by
combining or integrating some elements from each other.

In [4] authors presented a computational model based on events for the automation
of team coordination, task and resource allocation. This contribution is dedicated to
disaster fields for which the events are generated at run-time. The system supports
decision-making, monitoring, inter- and intra-coordination. In [5] authors presented an
IoT-based model for smart water management. They defined the requirements and
challenges for water management, after they presented an architecture that could handle
both ongoing and future requirement about water management. In [6] authors proposed
a system architecture for Smart City applications. This system is based on a three-layer
architecture that consists of a data layer; a process layer; and a communication layer.
Over those layers, there is a coordinator that is responsible for orchestrating the
components and monitoring the whole system.

The majority of coordination models suggested is strongly depending on specific
application case study, and therefore couldn’t be used as a generic architecture to build
flexible IoT applications. In addition, we have a particular interest in the work of [4]
which introduced the concept of meta-workflow that unfortunately depends on the
policies, and the country where the system is used in case of disaster. In our vision a
meta-workflow must be a high-level process that defines the overall execution of the
system. The tasks to be performed in a normal environment and the overall objective to
be achieved by the system are identified as in a natural way. When a problem arises, the
system must adapt to changes and finds a solution among those suggested at design-
time. Once the alternative is detected, the system continues its execution.

3 IoT Context-Driven Multilayered Architecture Behavior

To model efficiently an IoT coordination architecture, we have to address the functional
aspect [5, 7], the behavioral aspect, and the informational aspect that aims to provide
relevant data on time. So we suggested an IoT context driven coordination architecture
as depicted in Fig. 1 where each layer is dedicated to a specific handling [1].

3.1 Meta-Workflow Management Layer

A meta-workflow is defined in [4] as a special higher process that involves five control
instructions: start; terminate; suspend; resume; wait and suspend. To meet our objective
we choose to work with the approach presented by Von Bochmann in [2] thanks to its
similarity with the behavior of our architecture. The advantage of this referenced work
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is its formalization aspect, and the transformation algorithm proposed that has the
capability to derive, from a given global behavior, the local behaviors for each of the
system components including the exchange of coordination messages for the global
synchronization of the activities. In addition our proposed meta-model includes both
orchestration and choreography as coordination approaches. Each process is orches-
trated and considered as an autonomous system. The choreography is based on the
exchange of messages regulated by the policies which supports the global behavior.
The application of this meta-model on flood case study is shown in the Fig. 2.

3.2 Process Management Layer

This layer holds specific workflows for concrete scenarios, and is responsible for their
management. It has to provide the description of the processes and the logic ordering of
their execution. In the literature, we have identified some interesting works [4, 10] that
aim to derive a global system behavior to components’ behaviors, and assure that the
global system behavior is accomplished by coordinating the actions through the
exchange of asynchronous messages between these components. However these
approaches have a major limitation from our point of view, which is the dynamic
coordination adaptation. Thanks to the opted Bochmann work cited in [2] this
requirement is taken in consideration. The transformation algorithm of [2] that derives
from a global behavior, the local behaviors of each activity of the system, uses some
operations such as primitive activity (<action>), invocation of sub-collaboration
(<subcol>), strong sequence (;s), weak sequence (;w), choice ([]), strong while loop
(*s), concurrency (||), interruption (|>), etc.

Fig. 1. IoT Context-driven multilayered architecture
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3.3 Coordination Layer

Generally, to fulfill coordination, two approaches are used: orchestration or choreog-
raphy. In a previous work, we have presented some related work on orchestration and
choreography and classified them according to some criterion [1]. As we presented it
before, we use both orchestration and choreography models in accordance with the
environment. For our system, in this layer, the decision on which coordination model
(orchestration or choreography) to choose is made based on the policies defined. In
addition, roles are allocated to components, adequate workflows to be executed are
triggered, and their interconnections are established. We apply the translation function
TC that determines the behavior of the system component c, for a given global
behavior expression C. The component behavior expression is constructed using the
same sequencing operators applied for describing the global behavior. Still, since the
behavior is performed locally, there is no point in discerning weak and strong
sequencing. As presented in [3], we adopt coordination messages between components
according to the sequencing operators: Strong sequencing: flow messages (fm(x) or fim
(x;i).), choice indication message (cim(y)), and interrupt and interrupt enable messages
(im(z) and iem(z)).

4 Floods Case Study

In this case study the risk of floods is proportional to the intensity of thunderstorms.
The behavior of our whole system is depicted in Fig. 2.

Let’s take C1 (<Detect_Thunderstorm>). The ordering of its sub-collaborations is
defined as follow: the sub-collaborations <Sense_humidity>, <Sense_temperature>,
<Wind-speed> and <Hot_air_speed> are executed concurrently followed sequentially
by <Send_notification> which in turn is followed sequentially by the execution of

Fig. 2. Meta-workflow
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<Wait>. C1 = (<Sense_humidity> || <Sense_temperature> || <Wind-speed> || <Hot_
air_speed>); (<Send_notification>; <Wait>). Then, we define the roles involved in the
collaboration. We noted two roles R1 and R2. R2 handles the notification sending
while R1 handles all other sub-collaborations. R1 is the starting role; participating
roles: R1 and R2. As C1 doesn’t have a terminating point, R1 nor R2 aren’t terminating
roles. Moving to the translation function, it is defined as follow:

TR1 \Detect thunderstorm[ð Þ ¼ TR1 \Rate humidity[ð Þ;
TR1 \Sense Temperature[ð Þ ;

TR1 \Sense Wind Speed[ð Þ ; TR1 \Sense Hot air Speed[ð Þ
TR2 \Detect Thunderstorm[ð Þ ¼ TR2 \Send notification[ð Þ:

5 Conclusion and Perspectives

In this paper, we focus mainly on the behavioral aspect of the proposed IoT multi-
layered architecture. The meta-workflow management layer includes the meta-model
that represents the overall behavior of the system. The process management layer is
responsible for the representation of the processes as well as the management of the
various collaborations and sub-collaborations by governing their execution orders and
components roles. The coordination layer handles the coordination messages involved
in the collaborations’ operation based on the decision-making of the overall system.

Our next step is to improve the meta-model in order to make our architecture more
generic. We plan also to finalize our system’s implementation using Node Red.
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