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Abstract. This paper focuses on modelling and simulating diffusion
of extreme opinions among agents. In this work, opinions are modelled
as formulas of the propositional logic. Moreover, agents influence each
other and any agent changes its current opinion by merging the opinions
of its influencers, taking into account the strength of their influence. We
propose several definitions of extreme opinions and extremism. Formal
studies of these definitions are made as well as some simulations.

1 Introduction

Understanding the dynamics of opinion diffusion and especially of extremism is
a tremendous question in Multi-Agent System and Artificial Intelligence com-
munities. See for instance [1–8] for the study of opinion diffusion and [9–11] for
the study of extremism diffusion.

Opinions are usually represented by a single real value between 0 (or −1) and
1 corresponding to the position of an agent regarding a given question. The closer
to 1 an agent’s opinion is, the more this agent positively answers the question.
For instance, if the question is “Do you think that the cafeteria serves GMO food
?”, an agent whose opinion is 0.9 strongly believes that GMO food is served; an
agent whose opinion is 0.2 rather thinks that GMO food is not served. If the
question is now “Do you agree with serving GMO food at the cafeteria ?”, an
agent whose opinion is 0.9 strongly agrees in serving GMO food while an agent
whose opinion is 0.2 is rather against serving GMO food. As for extremism, it
is obviously defined there by having an opinion which is close to 0 (or −1) or to
1. Moreover, in such models, agents can easily be classified from most to least
extremist. Recently, some works in Artificial Intelligence community [4,8] have
adopted a different way of modelling opinions and represent an opinion by a
single binary vector whose values correspond to answers to several questions.
For instance, if the two questions are “Do you think that the cafeteria must be
open until 4pm?” and “Do you think that vegan food should be served at the
cafeteria ?” then the vector (0, 1) represents the opinion of an agent which thinks
that the cafeteria must not to open until 4pm but has to serve vegan food.

Following [12], we have recently adopted an even more general approach
[3,13] and we consider that an opinion is modelled by a set of binary vectors, or
equivalently, by a propositional formula. For instance, in such a model, the set of
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binary vectors {(1, 1), (0, 1), (0, 0)}, which is equivalent to the formula F → V ,
represents the opinion of an agent who thinks that, if the cafeteria is open until
4 then it has to serve vegan food. The set of binary vectors {(1, 1), (0, 1)}, which
is equivalent to the formula V represents the opinion of an agent who thinks
that, whatever the open hours are, the cafeteria has to serve vegan food. As for
the diffusion process, we consider a model in which any agent is influenced by
some other agents called its influencers. There, an agent regularly updates its
opinion by merging the opinions of its influencers according to the strenght of
their influence. For this, we introduced the notion of Importance-Based Merging
Opinion Structures (IODS).

In [14], we have started studying extremism diffusion in IODS. We proposed
a definition of extreme opinions which could be called “precise opinions” and we
studied their diffusion in IODS.

The present paper extends this work by proposing several definitions and
studying their diffusion in IODS. We recall precise opinions definition but we
also define extreme opinions based on selected topics and extreme opinions based
on selected agents. Moreover we study and compare their diffusion in IODS.

This paper is organized as follows. Section 2 recalls the notion of Importance-
Based Opinion Diffusion Structures (IODS). The different definitions of extreme
opinions are given in Sect. 3 and their diffusion in IODS is studied in Sect. 4.
Sections 5 and 6 focus on experiments. Section 5 shows how to generate graphs
corresponding to real social networks. Section 6 presents experiments for the
diffusion od some extreme opinions. Section 7 concludes this paper. The proofs
of the different propositions given in the paper are gathered in Sect. 8.

2 Importance-Based Opinion Diffusion Structures

This section presents Importance-Based Opinion Diffusion Structures.
We consider a finite propositional langage L. The set of interpretations of

L is Mod(L) with | Mod(L) |= 2|L|. An element w of Mod(L) is denoted
{p1, ..., pn,¬q1, ...,¬qm} where p1...pn are the propositional letters satisfied in
w and q1...qm are the propositional letters which are not satisfied in w. If ϕ
is a propositional formula of language L, Mod(ϕ) is the set of its models (i.e.,
the set of the interpretation which satisfy it). A multi-set of formulas is a set
with possible repeted occurrences of formulas. An ordered multi-set of formu-
las is a multi-set of formulas in which formulas are ranked with a total rank-
ing. It is denoted ϕ1 ≺ .. ≺ ϕn. The distance between an interpretation w
and a formula ϕ is defined by: D(w,ϕ) = minw′∈Mod(ϕ)d(w,w′), where d is a
pseudo-distance between interpretations (i.e., ∀w∀w′ d(w,w′) = d(w′, w) and
d(w,w′) = 0 =⇒ w = w′). Some simple pseudo-distances d are dD, the dras-
tic pseudo-distance, (dD(w,w′) = 0 iff w = w′, 1 otherwise); dH , the Hamming
pseudo-distance (dH(w,w′) = m iff w and w′ differ on m propositional letters).

Definition 1. An Importance-Based Merging Operator is a function Δ which
associates a formula μ and a non-empty ordered multi-set of consistent formulas
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ϕ1 ≺ ... ≺ ϕn with a formula denoted Δμ(ϕ1 ≺ ... ≺ ϕn) so that: Mod(Δμ(ϕ1 ≺
... ≺ ϕn)) = Mind

≤ϕ1≺...≺ϕn
Mod(μ) with:

– w ≤d
ϕ1≺...≺ϕn

w′ iff [D(w,ϕ1), ...,D(w,ϕn)] ≤lex [D(w′, ϕ1), ...,D(w′, ϕn)]
– [D(w,ϕ1), ...,D(w,ϕn)] is a vector which kth element is D(w,ϕk)
– ≤lex is a lexicographic comparison of vectors of reals defined by:

[v1, ..., vn] ≤lex [v′
1, ..., v

′
n] iff (i) ∀k vk = v′

k or (ii) ∃k vk < v′
k and ∀j <

k vj = v′
j

Definition 2. An Importance-Based Opinion Diffusion Structure (IODS) is a
quadruplet DS = (A,μ,B, Inf) where: A = {1, ..., n} is a finite set of agents.
μ is a consistent formula of L. B is a function which associates any agent i of
A with a consistent formula of L denoted for short Bi such that Bi |= μ. Inf
is a function which associates any agent i of A with a non-empty set of agents
{i1, ..., ini

} equipped with a total order ≺i s.t. ik ≺i ik+1 for k = 1...(ni −1). The
agents of Inf(i) will be called influencers of i. The influencer i1 will be called
the main influencer of i. For short, we denote Inf(i) = {i1 ≺i ... ≺i ini

}.
In an IODS any agent updates its opinion by applying an Importance-based

Merging Operator on the opinions of its influencers as shown below.

Definition 3 (Opinion Sequence). Let DS = (A,μ,B, Inf) be an IODS and
i ∈ A with Inf(i) = {i1 ≺i ... ≺i ini

}. The Opinion Sequence of i in DS is
denoted (Bs

i )s∈N and is defined by (Bs
i )s∈N, is defined by: B0

i = Bi and ∀s > 0,
Bs

i = Δμ(Bs−1
i1

≺ ... ≺ Bs−1
ini

)

Example 1. Consider a language with propositional letters a and b. Let S =
(A,μ,B, Inf) be an IODS with: A = {1, 2, 3}, μ is a tautology, B1 = ¬a,
B2 = a∨ b, B3 = ¬b, Inf1 = {1}, Inf2 = {2 ≺2 1}, Inf3 = {3 ≺3 2}. The graph
of influence is represented in Fig. 1. Moreover, Table 1 shows the evolution of the
agents opinions.

1

2

3

Fig. 1. Graph of influence of Example 1.

Let us finally introduce some interesting definitions.
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Table 1. Opinion evolution in Example 1 (extracted from [14]).

s = 0 s = 1 s ≥ 2

i = 1 ¬a ¬a ¬a

i = 2 a ∨ b ¬a ∧ b ¬a ∧ b

i = 3 ¬b a ∧ ¬b a ∧ ¬b

Definition 4 (dogmatic and self-confident agents). Let DS = (A,μ,B,
Inf) be an IODS, and i ∈ A.

i dogmatic iff Inf(i) = {i}.
i is self-confident iff Inf(i) = {i ≺i i2 ≺i ... ≺i ini

} with ni ≥ 1.

Definition 5 (Sphere of Influence of an Agent). Let DS = (A,μ,B, Inf)
be an IODS and i ∈ A. The sphere of influence of i is defined by: Sphere(i) =⋃

k≥1 Spherek(i) with
Sphere1(i) = {j1 : Inf(j1) = {i ≺ ...}}
Spherek(i) = {jk : Inf(jk) = {jk−1 ≺ ...} and jk−1 ∈ Spherek−1(i)}
An agent is dogmatic when it is not influenced by other agents. As a conse-

quence, a dogmatic agent i will never change its opinion i.e., ∀s ≥ 0 Bs
i = B0

i . An
agent is self-confident when it is its main influencer. Notice that dogmatic agents
in IODS are self-confident. Moreover if i is self-confident then i ∈ Sphere(i).

3 Definitions of Extreme Opinions

This section presents several definitions of extreme opinions. Notice that precise
opinions have been introduced in [14].

3.1 Extreme Opinions as Precise Opinions

Here we consider that extreme opinions are precise opinions i.e. formulas which
have “few” models.

Definition 6 (Precise Opinions). Let R be a given integer closer to 1 than
to 2|L|. An opinion o is extreme iff 1 ≤| Mod(o) |≤ R.

The choice of the threshold R will depend on the application. But R has to
be much smaller than the number of interpretations in the language. Moreover,
inconsistent opinions are not considered as extreme. For instance, consider that
the two letters of the language are a, b. If R = 1 then a ∧ b, a ∧ ¬b, ¬a ∧ b,
¬a ∧ ¬b are the extreme opinions. The following proposition gives a description
of extreme opinions from a syntactical point of view. More precisely, it shows
that an extreme opinion is equivalent to a disjunction of less than R conjunctions
of all the literals.
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Proposition 1. Assume that the propositional letters are a1, ..., an. Opinion o
is extreme iff o ≡ ∨N

k=1 l1,k ∧ ... ∧ ln,k with ∀k ∈ [1, N ], ∀i ∈ [1, n], lki = ai or
lki ¬ai and N ≤ R.

Proof. Proofs are given in Sect. 8.

3.2 Extreme Opinions Based on Selected Topics

Definition 7 (Selected Topics). A selected topic is a propositional letter of
L. The set of selected topics is denoted S with S ⊆ L.

The choice of “selected topics” depends on the application we consider. For
instance, in the context of food served at the cafeteria, GMO food is a contro-
versial subject according to which we may want to measure polarization. On
the other side, expressing a position towards serving potatoes or serving fresh
fruits is usually not. Thus here we will consider L = {GMO, potatoes, fruits}
with GMO meaning “I am ok with GMO food”, potatoes meaning “I am ok
with serving potatoes”, fruits meaning “I am ok with serving fresh fruits”
and S = {GMO}. But in winter, serving fresh fruits may become a contro-
versial subject because of ecological reasons and expressing a positive position
towards serving fresh fruits may become sensitive. In this context we will con-
sider S = {GMO, fruits}.

In the following, we propose two definitions of extreme opinions. Each of
them is based on a set of selected topics S and also on an integer α ∈ [1, 2|L|],
used to quantify the level of extremism. We will call these opinions S1α-extreme
and S2α-extreme respectively.

Definition 8

– An opinion o is S1α-extreme iff there is a subset of S, Sα, whose size is α
and so that Mod(o) ⊆ Mod(

∧
Sα).

– An opinion o is S2α-extreme iff Mod(o) ⊆ {w ∈ Mod(L) : S(w) ≥ α}, S(w)
being the number of letters in S which are true in w.

Thus an opinion is S1α-extreme iff there are α selected topics each model of o
agrees on. An opinion is S2α-extreme iff its models agree on α selected topics at
least. Moreover, we define S1-not-extreme opinions and S2-not-extreme opinions
as follows.

Definition 9. An opinion o is S1-not-extreme (resp S2-not-extreme) iff ∀α ∈
[1, 2|L|], o is not S1α-extreme (resp S2α-extreme).

The next proposition proves some results.

Proposition 2

– If o is S1α-extreme (resp S2α-extreme) then for any β st 1 ≤ β ≤ α, o is
S1β-extreme (resp, S2α-extreme).
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– S1α-extreme ⊆ S2α-extreme but in general S2α-extreme �⊆ S1α-extreme
– S2-not-extreme ⊆ S1-not-extreme
– S1 | S |-extreme = S2 | S |-extreme

Proposition 3. Assume S = {s1, ..., sn}.
– o is S1-not-extreme iff for any Sα = {si1 , ...siα

} ⊆ S, ∃sij
∈ Sα so that

o ∧ ¬sij
is consistent.

– o is S2-not-extreme iff o ∧ ¬s1... ∧ ¬sn is consistent.
– There is an α so that o is S2α-extreme iff o |= s1 ∨ ... ∨ sn.
– α is the highest value st o is S2α-extreme iff there are S1 ⊆ S ... Sk ⊆ S with

| S1 |= ... =| Sk |= α st o equivalent to
∨

i=1...k

(
∧

s∈Si

s
∧

s∈S\Si

¬s
∧

s �∈S

ls), ls being

s or ¬s.

Let us give an example to illustrate these definitions.

Example 2. Suppose that L = {GMO, potatoes, fruits} and S =
{
GMO,

fruits
}
. Consider the following opinions: GMO ∧ fruits, GMO, GMO ∨ fruits,

GMO ∧ potatoes, GMO ∨ potatoes, potatoes. Table 2 shows if they are extreme
or not.

Table 2. Illustration of example 2.

S1α-extreme S2α-extreme

GMO ∧ fruits S12-extreme with
S2 = {GMO, fruits}
S11-extreme with
S1 = {GMO} or
S1 = {fruits}

S22-extreme
S21-extreme

GMO S11-extreme with
S1 = {GMO}

S21-extreme

GMO ∨ fruits S1-not-extreme S21-extreme

GMO ∧ potatoes S11-extreme with
S1 = {GMO}

S21-extreme

GMO ∨ potatoes S1-not-extreme S21-extreme

potatoes S1-not-extreme S2-not-extreme

3.3 Extreme Opinions Based on Selected Agents

The two definitions presented in the previous section are dependent on S which is
a subset of the language L. Here we propose a fourth definition which, assuming
a set of agents A, depends on a subset SA of A. Elements of SA are called
selected agents and are supposed to have extreme opinions. An opinion will then
be considered extreme iff it is close to the current opinion of one of these selected
agents.

In the following we consider δ, a function which measures how close two
opinions are. We also consider a threshold ε ≥ 0.
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Definition 10. Let A be a set of agents. A selected agent is a particular agent
in A. The set of selected agents is denoted SA with SA ⊆ A.

Definition 11. Let A be a set of agents and SA ⊆ A a set of selected agents.
An opinion o is SAε-extreme at step t iff ∃i ∈ SA st δ(o,Bt

i ) ≤ ε where Bt
i

denotes the opinion of i at step t

According to the definition of SAε-extreme opinions1, an opinion is extreme
iff it is close to the opinion of a selected agent. As written before, the choice of
selected agents depends on the context. For instance, in the cafeteria context,
we could select the secretaries of the different student unions, thus considering
them as a reference for extremism. As for the threshold, it also depends on the
application. The smaller it is, the less we get extreme opinions.

As for the measure δ, there are many options. We could for instance consider
some pseudo-distances [15].

– Sum of minimum distances:
δsummin(o1, o2) = 1

2 (
∑

w∈Mod(o1)
D(w, o2) +

∑
w∈Mod(o2)

D(w, o1))
– Hausdorff distance:

δHau(o1, o2) = max(maxw∈Mod(o1)D(w, o2),maxw∈Mod(o2)D(w, o1))
– Minimum of distances

δmin(o1, o2) = minw1∈Mod(o1),w2∈Mod(o2)d(w1, w2)
– Sum of distances

δsum(o1, o2) =
∑

w1∈Mod(o1),w2∈Mod(o2)
d(w1, w2)

We could also consider the following measure:

– Agreement-disagreement distance: Assume that the propositional letters are
p1, ..., pn. δAD(o1, o2) = asc(δ1AD, ..., δn

AD) such that:
• ∀i = 1..n, δi

AD = 0 iff o1 and o2 agree on pi (i.e., o1 |= pi iff o2 |= pi

and o1 |= ¬pi iff o2 |= ¬pi); δi
AD = 1 iff o1 and o2 disagree on pi (i.e.,

o1 |= pi iff o2 |= ¬pi and o1 |= ¬pi iff o2 |= pi); δi
AD = 0.5 in the other

case.
• cresc is the function with orders a sequence of integers in the ascending

order.

We could even define measure δ from an inconsistency measure as follows:

– δInc(o1, o2) = Inc({o1, o2}) where Inc is a measure of inconsistency [16–18].

Or we could consider sweaker functions than pseudo-distances like:

– δmax(o1, o2) = maxw1∈Mod(o1),w2∈Mod(o2)d(w1, w2)

Finally, since the relation of influence is not symmetric, we could also drop the
property of symmetry and consider:
1 Notice that we should index this definition with δ but we omit it for readability

reasons.
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– δmaxmin(o1, o2) = maxw1∈Mod(o1) minw2∈Mod(o2)d(w1, w2)

Since there are many options, we propose to consider a set of requirements
on which the different measures can be compared. They are given below. Notice
that these requirements are not minimal since (R5) is subsumed by (R1).

– (R1) δ is a pseudo-distance, i.e. δ(ϕ,ψ) is minimal iff |= ϕ ↔ ψ and δ(ϕ,ψ) =
δ(ψ,ϕ).

– (R2) The more propositional letters ϕ and ψ agree on, the smaller δ(ϕ,ψ) is.
– (R3) The more propositional letters ϕ and ψ disagree on, the higher δ(ϕ,ψ)

is.
– (R4) If ϕ1 ∧ ψ1 is inconsistent and if ϕ2 ∧ ψ2 is consistent then δ(ϕ2, ψ2) <

δ(ϕ1, ψ1).
– (R5) If |= ϕ ↔ ψ then δ(ϕ,ψ) is minimal.
– (R6) If |= ϕ ↔ ϕ′ and |= ψ ↔ ψ′ then δ(ϕ,ψ) = δ(ϕ′, ψ′)
– (R7) If ϕ1 |= ϕ2 then δ(ϕ1, ϕ) ≤ δ(ϕ2, ϕ)

Proposition 4. Table 3 shows which requirements the previous measures sat-
isfy.

Let us illustrate these definitions with an example.

Table 3. Measures versus requirements.

δsummin δHau δAD δInc δmax δmin δsum δmaxmin

(R1) Yes Yes No No No Yes Yes Yes

(R2) No No Yes No No No No No

(R3) No Yes Yes No No Yes No No

(R4) No/yes No No Yes No Yes No No

(R5) Yes Yes No Yes No Yes Yes Yes

(R6) Yes Yes Yes No Yes Yes Yes Yes

(R7) Yes Yes No No Yes Yes Yes Yes

Example 3. Take again L = {GMO, potatoes, fruits}. Consider one selected
agent John whose current opinion is GMO ∧ ¬potatoes. Consider the following
opinions: GMO, GMO ∧ fruits, potatoes, fruits, GMO ∨ ¬potatoes. Table 4
shows their distance to John’s opinion with δsummin, δHau and δAD when the
distance between interpretations is dH .

Consider δsummin and assume that ε = 3. Then, the extreme opinions are
GMO, GMO ∧ fruits and GMO ∨ ¬potatoes.

Consider δHau and assume that ε = 3. Then, the extreme opinions are GMO
and GMO ∧ fruits.

Consider δAD and assume that ε = [0, 0.5, 0.5]. Then, the extreme opinions
are GMO and GMO ∧ fruits.

This example shows that depending on the distances used, the set of extreme
opinions may vary.
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Table 4. Illustration of example 3.

δsummin δHau δAD

GMO 1 1 [0, 0.5, 0.5]

GMO ∧ fruits 1 1 [0, 0.5, 0.5]

potatoes 4 6 [0, 0.5, 1]

fruits 4 6 [0.5, 0.5, 0.5]

GMO ∨ ¬potatoes 2.5 5 [0.5, 0.5, 0.5]

4 Diffusion of Extreme Opinions in IODS

4.1 Diffusion of Precise Opinions

We first define extremist agents as agents whose opinions are extreme. Moreover,
agent are moderate when they are not extremist.

Definition 12 (Extremist, Moderate). An agent i is extremist at step s iff
Bs

i is an extreme opinion. Otherwise it is moderate.

Example 4. Consider two propositional letters a, b and assume that at a given
step s agents opinions are: Bs

i = a ∨ b, Bs
j = a, Bs

k = a ∧ b. If R = 1 then only k
is extremist. If R = 2 then j and k are extremist.

By definition of extreme opinions, it is true that extremist agents are more
certain of their opinions than moderate ones. Indeed, let DS = (A,μ,B, Inf) be
an Opinion Diffusion Structure, then ∀i ∈ A, ∀j ∈ A, ∀s ∈ N, if i is extremist at
s and j is moderate at s then | Mod(Bs

i ) |<| Mod(Bs
j ) |. Moreover, due to the

definition of dogmatic agents, it is true that in an Opinion Diffusion Structure,
a dogmatic agent who initially is extremist will remain extremist.

In the following, we list some properties of diffusion of extreme opinions in
IODS.

First we can show that an agent whose main influencer is extremist at some
step will be extremist at the next step.

Proposition 5. In an IODS S = (A,μ,B, Inf), for i ∈ A with Inf(i) = {j ≺i

...}, for t ∈ N, if j is extremist at step s, then i is extremist at step s + 1.

As a consequence, an agent whose all influencers are extremist will become
extremist. Another consequence is that a self-confident agent which is extremist
at some step will remain extremist ever after:

We can also show that even if all its influencers are moderate, an agent
may become extremist. For instance, take R = 1 and consider an agent who is
influenced by two agents whose opinions are respectively a and b. The agent’s
opinion, got after merging these two opinions, is a ∧ b. That is, the agent’s
opinion is extreme, while the opinions of all of its influencers are not.
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The following proposition states that an agent which k-th influencer has an
opinion consistent with the merging of the ones of the previous influencers at
step s and which k-th influencer is extremist at step s will be extremist at step
s + 1.

Proposition 6. In an IODS S = (A,μ,B, Inf), for i ∈ A with Inf(i) = {j1 ≺i

... ≺i jk ≺i ... ≺i jn}, for s ∈ N, if Δμ(Bs
j1

≺i ... ≺i Bs
jk−1

) ∧ Bs
jk

is consistent
and jk is extremist at step s, then i is extremist at step s + 1.

More generally, an agent will be extremist at step s + 1 iff for some k, the
merging of the k first influencers’ opinions at step s has less than R models.

Proposition 7. In an IODS S = (A,μ,B, Inf), for i ∈ A with Inf(i) = {j1 ≺i

... ≺i jk ≺i ...}. Let s ∈ N. If ∃k ∈ N, such that | Mod(Δμ(Bs
j1

≺ ... ≺ Bs
jk

)) |≤
R then, i is extremist at s + 1. Otherwise, it is moderate at step s + 1.

The following proposition states that a self-confident extremist agent spreads
extremism in its sphere of influence.

Proposition 8. Let S = (A,μ,B, Inf) an IODS and i ∈ A extremist at step
s with Inf(i) = {i ≺i ...}. ∃s′ ≥ s, ∀s ≥ s′, ∀j ∈ Sphere(i) j is extremist at
step s.

4.2 Diffusion of S1α-extreme and S2α-extreme Opinions

Definition 13. We consider an IODS DS = (A,μ,B, Inf), a set of selected
topics S and a value α. Let i ∈ A and t > 0. i is S1α-extremist (resp S2α-
extremist) at step t iff Bt

i is a S1α-extreme (resp S2α-extreme) opinion. i is
S1-not-extremist (resp S2-not-extremist) at step t iff Bt

i is a S1-not-extreme
opinion (resp, S2-not-extreme opinion).

We first show how important is the main influncer in the spreading of extrem-
ism.

Proposition 9. Consider an IODS DS = (A,μ,B, Inf), a set of selected topics
S and a value α. Let i ∈ A with Inf(i) = {i1 ≺i ... ≺i in} and let t ≥ 0. If i1
is S1α-extremist (resp, S2α-extremist) at step t then i is S1α-extremist (resp,
S2α-extremist) at step t + 1.

As a consequence, given a definition of extremism, a self-confident agent
which is extremist at a given step remains extremist. Moreover, a self-confident
agent which is extremist spreads extremism in its sphere of influence as shown
in the proposition below.

Proposition 10. Consider an IODS DS = (A,μ,B, Inf), a set of selected top-
ics S, a value α and let t ≥ 0. Let i ∈ A a self-confident agent which is S1α-
extremist (resp, S2α-extremist) at t. Then ∀j ∈ Sphere(i) ∃s ≥ t ∀s′ ≥ s st j is
S1α-extremist (resp, S2α-extremist) at s′.



Modelling and Simulating Extreme Opinion Diffusion 89

So the two types of extremism defined previously, spread with influence.
However, the corresponding non-extremism generally do not: an agent may
become S1α-extremist (resp, S2α-extremist) even if its main influencer is S1-
not-extremist (resp, S2-not-extremist) or worst, even if its influencers are S1α-
not-extremist (resp, S2α-not-extremist) as shown in the following example.

Example 5. Consider a language with letters a, b, c and S = {a}. Take α = 1.
Assume SD = (A,μ,B, Inf) with A = {1, 2, 3}, μ being a tautology, Inf(1) =
{1}, Inf(2) = {2}, Inf(3) = {1 ≺ 2 ≺ 3} and B0

1 = b,B0
2 = a ∨ ¬b,B0

3 = a ∨ a.
We can show that B1

3 = a ∧ b. This proves that, even 1 and 2 are S1-not-
extremist nor S2-not-extremist, 3 becomes S11-extremist and S21-extremist.

In the following, we study a case when non-extremism spreads under influ-
ence. But before we introduce the notion of opposition, as a particular case of
non-extremism.

Definition 14. Consider an IODS DS = (A,μ,B, Inf), i ∈ A and S a set of
n selected topics. i is S-opponent at t iff Bt

i is S
1
n-extreme (or equivalently,

S
2
n-extreme).

Thus i is S-opponent at t iff Bt
i |= ∧

S, iff Bt
i |= ∧

si∈S ¬si. Obviously,
S-opposition is a particular case of non-extremism. i.e., if i is S-opponent at t
then i is S1-not-extreme and S2-not-extreme at t.

The following proposition shows that S-opposition spreads under influence.

Proposition 11. Consider an IODS DS = (A,μ,B, Inf), a set of selected top-
ics S. Let i ∈ A with Inf(i) = {i1 ≺i ... ≺i in} and t ≥ 0. If i1 is S-opponent
at t then i is S-opponent at t + 1.

Again this shows the importance of the main influencer.

Example 6. In Example 5, agent 1 is not S-opponent since Mod(B0
1) =

{{a, b}, {¬a, b}}. Moreover in this case, the merging operator selectes the model
{a, b} which ensures that 3 becomes extremist. Consider now a modified version
of Example 5 and supose now that 1 is S-opponent by assuming B0

1 = ¬a ∧ b.
Then B1

3 = ¬a ∧ b i.e. 3 is S-opponent.

4.3 Diffusion of SAε-extreme Opinions

In this section, we study the diffusion of extremism when extreme opinions are
defined as SAε extreme opinions. Thus we consider the following definition.

Definition 15. Let A be a set of agents and SA ⊆ A a set of selected agents.
An agent i ∈ A is SAε-extremist at step t iff Bt

i is an SAε-extreme opinion.

Moreover, we assume that the selected agents are dogmatic i.e., they are
not influenced by others and thus they don’t change their opinions. Under this
assumption, we can prove the following propositions.
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Proposition 12. Consider an IODS DS = (A,μ,B, Inf), a set of selected
agents SA, a value ε. Let i ∈ A so that Inf(i) = {i1 ≺ ....}. Suppose that
the distance used to characterize the SAε extremism satisfies (R6) and (R7).
Then: If i1 is SAε-extremist at step t then i is SAε-extremist at step t + 1

The following is a corollary.

Proposition 13. Consider an IODS DS = (A,μ,B, Inf), a set of selected
agents SA, a value ε. Suppose that the distance used to characterize the SAε
extremism satisfies (R6) and (R7). Let i ∈ A be a self-confident who becomes
SAε-extremist at time t. Then:

(1) ∀t′ ≥ t i is SAε-extremist at time t′.
(2) ∀j ∈ Sphere(i) ∀t′ ≥ t j is SAε-extremist at time t′.

5 Generating Graphs for Experiments

In this section and the following, we focus on simulating with NetLogo the dif-
fusion of some extreme opinions. More precisely, in this section, we address the
question of generating graphs corresponding to real social networks. For that, we
review some propositions made in graph theory during the last decades. Then,
we adapt them to our context.

5.1 Graph Theory Bases

One of the most used models of graph is the one of Erdös-Rényi. It is a model
of random graph (see [19]).

Definition 16 (Erdös-Rényi Graph). Given a number of nodes n and an
integer m. An Erdös-Rényi Graph is any graph obtained by selecting randomly
m edges among the 2n possible ones.

Another model of graph that is widely used is the model of Watts-Strogatz.
This model has been made to describe the phenomenon of Small-World or “six
degrees of separation” highlighted by Milgram [20]. This psychologist established
through an experiment the theory that a message can be transmitted from one
person to one another by passing by an average of six friends. The Small-World
theory is commonly formalized [19,21,22] as follows:

Definition 17 (Small-World). A graph G is said Small-World if it satisfies:

1. G is connected.
2. G is sparse: the average degree of the nodes k is low compared to the number

of nodes n, k � n.
3. G is decentralized: the maximal degree of the nodes kmax is low compared to

the number of nodes n, kmax � n.
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4. The characteristic path L (the average number of nodes traversed by a short
path between two nodes) is close to the one of a random graph with the same
number of nodes n and the same average degree k, L ≈ Lrandom ∼

ln(n)
ln(k) .

5. The clustering coefficient C (the probability that two nodes i and j are con-
nected given that they share a common neighbor) is high compared to the one
of a random graph with the same number of nodes n and the same average
degree k, C � Crandom ∼

k
n .

One can notice that Erdös-Rényi graphs as random graphs have low charac-
teristic paths by definition.

The following model, from [19] and adapted from a model generally attributed
to Watts and Strogatz, define Small-World graphs:

Definition 18 (Rank-Based Friendship Graph). Given a number of nodes
n, a threshold r, an exponent q and a dimension d, the nodes are randomly
distributed in a space of dimension d. Rank-Based Friendship Graph is obtained
by going as follows:

For each node i, we rank the other nodes according to their distances to i and
we break ties with a chosen method. There will be an edge from a node j to the
node i with probability 1

Z.ranki(j)q , ranki(j) being the rank of j in i’s neighbors
and Z a coefficient of normalization, Z =

∑n
i=1

1
ranki(j)q =

∑n
i=1

1
iq .

5.2 Models

Here we adapt the previous models of graphs to IODS and explain how we con-
struct them for the simulations. In the following we take an integrity constraint
being a tautology.

The first model we adapt is the one of the random graph defined by Erdös
and Rényi. The following definition shows how we construct Erdös and Rényi
IODS. Notice that we add a parameter, the number of self-confident agents,
which is an interesting variable to study.

Definition 19 (Erdös-Rényi-Based IODS). Given the parameters num-
letters, num-nodes, num-links and num-self-confident, the IODS is constructed
as follows:

We begin by creating num-nodes agents, each of them has a random opinion in
a language of num-letters letters. Then, we create num-links relations of influ-
ence by choosing randomly an influencer and an influenced agent (potentially
the same). The influencers are ordered according to the order of creation of the
relation of influence, the sooner a relation of influence would have been created
the more influencing it is. Finally, each agent with no influencers will become
dogmatic and, if necessary, we add relations of self-influence until we have num-
self-confident self-confident agents (dogmatic agents included). We pick randomly
an agent and if it does not already influence himself we make it self-confident
by putting it as its main influencer (the order of the other influencers remains
unchanged).
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This second model adapts the model of Rank-Based Friendship by consider-
ing a distance between opinions instead of a physical distance as for the graph
model.

Definition 20 (Rank-Based Influenceship IODS). Given the parameters
num-letters, num-nodes, opinions-distance, q and num-self-confident, the IODS
is constructed as follows:

We begin by creating num-nodes agents, each of them has a random opin-
ion in a language of num-letters letters. Then, we fill a matrix with the dis-
tances between every couple of agents according to the distance between their
opinions and computed with the distance opinions-distance. For each agent i
we have a list li of all the agents (i included) sorted according to their dis-
tances to i. If two agents j1 and j2 are at the same distance of i, then the tie
will be randomly solved. Each agent j will be an influencer of i with probability

1
Z.ranki(j)q , ranki(j) being the rank of j in li and Z being a coefficient of nor-

malization, Z =
∑num−nodes

i=1
1

ranki(j)q =
∑num−nodes

i=1
1
iq . The influencers of i

are ordered as in li. Finally, if necessary, we add relations of self-influence such
as we have num-self-confident self-confident agents (dogmatic agents included).
We pick randomly an agent and if it is not already self-confident we make it so
by putting it as its main influencer (the order of the other influencers remains
unchanged).

The third model is a variant of the previous one, here an agent will be
influenced by the m agents that have the closest opinions from its own one for
a given integer m.

Definition 21 (Deterministic Rank-Based Influenceship IODS). Given
the parameters num-letters, num-nodes, opinions-distance, m and num-self-
confident, the IODS is constructed as follows:

We begin by creating num-nodes agents, each of them has a random opinion
in a language of num-letters letters. Then, we fill a matrix with the distances
between every couple of agents according to the distance between their opinions
and computed with the distance opinions-distance. For each agent i, we conserve
the m closest agents to i to be its influencers. If two agents j1 and j2 are at
the same distance of i, then the tie will be randomly solved. The influencers
of i are ordered according to their distances to i. Finally, we add relations of
self-influence such as we have num-self-confident self-confident agents (dogmatic
agents included). We pick randomly an agent and if it is not already self-confident
we make it so by putting it as its main influencer (the order of the other influ-
encers remains unchanged).

The fourth model is a generalization of the Rank-Based Influenceship in
which we have in addition to the distance between opinions a physical distance
along a circle. The influencers of an agent i are ordered according to the distance
between their opinions and the one of i.
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Definition 22 (Opinions and Physical Rank-Based Influenceship
IODS). Given the parameters num-letters, num-nodes, opinions-distance, r, q
and num-self-confident, the IODS is constructed as follows:

We begin by creating num-nodes agents, each of them has a random opin-
ion in a language of num-letters letters. We fill a matrix with the distances
between every couple of agents according to the distance between their opin-
ions and computed with the distance opinions-distance. For each agent i we
have a list li of all the agents (i included) sorted according to their distances
to i. If two agents j1 and j2 are at the same distance of i, then the tie will
be randomly solved. Each agent j will be an influencer of i with probability

1
Z.ranki(j)q , ranki(j) being the rank of j in li and Z a coefficient of normaliza-

tion Z =
∑num−nodes

i=1
1

ranki(j)q =
∑num−nodes

i=1
1
iq . At the previous influencers

we add influencers that are physically close. Indeed, all the agents will be placed
on a circle. The agents that are separated on the circle from an agent i by less
than r agents will influence i. The influencers of i are ordered as in li (accord-
ing to the distance between opinions). Finally, if necessary, we add relations of
self-influence such as we have num-self-confident self-confident agents (dogmatic
agents included). We pick randomly an agent and if it is not already self-confident
we make it so by putting it as its main influencer (the order of the other influ-
encers remains unchanged).

6 Some Experiments

In this section, we present simulations of precise opinion diffusion in the different
graphs previously presented. Moreover, as for the distances between opinions,
we focus on δsummin, δHau, δmax, δmin, δmaxmin, δsum with the drastic pseudo-
distance between interpretations dD.

To study and compare the results between the different models and distances,
we carried out several simulations with the same settings. Furthermore, in order
to do comparable and reproducible experiments we chose some values of seeds
for the random operations in Netlogo. Seeds allow to have the same results in the
same order for random operations when we repeat the simulations. The values
we study are the number of extremist agents for R = 1, the average number of
models per agents and the number of dogmatic agents.

In the simulations we present here, we have taken the following values: seed
{0, 100, 200}, num-letters {3, 4, 5, 6}, num-nodes {10, 60, 110, 160, 210}, num-self-
confident {0, 50, 100, 150, 200, 210}. For the three models using ranks we tested
δsummin, δHau, δmax, δmin, δmaxmin, δsum with the drastic pseudo-distance
between interpretations. For the Erdös-Rényi-Based model we took num-links
varying from 10 to 2000 with an increment of 50. For the Rank-Based Influence-
ship and the Opinions and Physical Rank-Based Influenceship models we took
the values {1, 2, 3, 4, 5} for q, for the Deterministic Rank-Based Influenceship
model we took m in {1, 2, 3, 4} and for the Opinions and Physical Rank-Based
Influenceship model we took r in {1, 2, 3, 4, 5}. The pseudo-distance between
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interpretations used to compute the Importance-based Merging operator is the
drastic one.

First of all, with the drastic pseudo-distance dH , we can notice that
the different distances we used have particular behaviors. δsummin(o1, o2) ∈
[0, 2num−letters] and δsummin(o1, o2) = 0 iff o1 ≡ o2. δsummin favors relations
of influence between agents which opinions have models very close according to
D, in average. δHau(o1, o2) is 0 or 1 and δHau(o1, o2) = 0 iff o1 ≡ o2. δHau favors
relations of influence between agents which opinions have no models very far
from one another. So, in the case of the drastic pseudo-distance, it favors rela-
tions between agents that have the same opinion. So, for the number of letters
and agents we will consider, as such a case is unlikely the relations of influ-
ence will be mostly random. δmax(o1, o2) is 0 or 1 and δmax(o1, o2) = 0 iff ∃w,
Mod(o1) = Mod(o2) = {w}. So, as having two agents with only one model and
the same model is very unlikely for the number of letters and agents we consider,
δmax favors random relations of influence and it will be interesting to compare
the results obtained with this distance and the ones obtained with the other dis-
tances. δmin(o1, o2) is 0 or 1 and δmin(o1, o2) = 0 iff ∃w ∈ Mod(o1) ∩ Mod(o2).
Then, for a given agent i, δmin favors relations of influence that are from
agents that share a model with i’s opinion but that are otherwise random.
δmaxmin(o1, o2) is 0 or 1 and δmaxmin(o1, o2) = 0 iff o1 |= o2. So, δmaxmin

favors relations of influence from an agent i to an agent j such that all the mod-
els of Bj are models of Bi. δsum(o1, o2) ∈ [0, 2num−letters] and δsum(o1, o2) = 0
iff Mod(o1) = Mod(o2) = {w}. δsum favors relations of influence from agents
which opinions have the less models.

For the Erdös-Rényi-Based model (see Fig. 2), we have several peaks of the
average number of models and of the number of dogmatic agents, corresponding
to having low num-links. Indeed, in these cases, there are potentially more agents
that are not influenced by other agents and that keep their initial opinions.
Furthermore, we can see that the dogmatic agents are almost the only agents
that are not extremist and thus contribute the more to the average number of
models. So, the diffusion of extremism depends a lot on the ratio between num-
links and num-nodes, the more there are relations of influence the more the agents
will become extremist. We can only notice that the peaks of average number
of models are higher and higher according to the increasing of the number of
letters. Another experiment in which we took 200 agents and much more relations
of influence (up to 7000) showed that for more than 2000 there are very few
simulations with non-extremist agents.

For the Rank-Based Influenceship model (see Fig. 3), we have several plateaus
higher and higher according to the increasing of the number of letters. Further-
more, there are cases with very low numbers of extremist agents and without
very much dogmatic agents. Then, we can notice that there are big differences
according to the distance we use. Indeed, a thorougher analysis highlights that
the biggest peaks are with δsummin and then with δHaus and δmaxmin. δmax

and δmin cause some lesser peaks when q gets bigger (more than 3) and δsum

causes very small peaks for q = 5. For q = 1 almost all the agents are extremist
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Average Number of Models per Agents Proportion of extremist agents (blue) and
dogmatic agents (red)

Fig. 2. Example: Erdös-Rényi-Based model seed= 0, num-nodes= 210, num-self-
confident= 0 (extracted from [14]).

whatever the distance we use. It can be explained by the fact that the lesser
q is the more likely relations of influence are to be created, furthermore for q
high enough the distance used matter less then even δsum that in the other cases
spread extremism may be used to create an IODS where they may remain some
moderate agents. But, according to [19] in the case of graphs, the Rank-Based
Friendship generates graphs the closest of reality for q = 1. Furthermore, when
the number of agents increases, the average number of models decreases because
more relations of influence may be created. One can notice that with this model
δsummin and δHaus particularly favor moderation. So, having influencers with
opinions for which each model is close of one of us model or for which each
model is not far of any of our model favor moderation. But, we can notice that
with δHaus agents are much less dogmatic than with δsummin.

Average Number of Models per Agents Proportion of extremist agents (blue) and
dogmatic agents (red)

Fig. 3. Example: Rank-Based Influenceship model seed=0, num-letters= 5, num-
nodes= 210, num-self-confident= 0 (extracted from [14]).

For the Deterministic Rank-Based Influenceship model (see Fig. 4), extrem-
ism spreads more and more when m gets bigger. Moreover, this time there is
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much more differences according to the distance we used because the ranking is
more important in the choice of the influencers than before. Then, only δsummin

keeps many non-extremist agents when m is at its highest. Indeed, this distance
characterizes the best the similarity between opinions, the first agents in the
ranking of an agent i actually have opinions that share many models with the
one of i and it often is i itself. Thus, when m = 1, we have almost only dogmatic
agents with δsummin. When m gets higher than 3 only models with δsummin keep
moderate agents.

Average Number of Models per Agents Proportion of extremist agents (blue) and
dogmatic agents (red)

Fig. 4. Example: Deterministic Rank-Based Influenceship model seed=0, num-
nodes= 210, num-self-confident= 0 (extracted from [14]).

Average Number of Models per Agents Proportion of extremist agents

Fig. 5. Example: Opinions and Physical Rank-Based Influenceship model seed= 0,
num-letters= 5, num-nodes= 210, num-self-confident= 0 (extracted from [14]).

For the Opinions and Physical Rank-Based Influenceship model (see Fig. 5),
we have very few non-extremist agents even with δsummin and even less when r
increases. It is due to the fact that here there cannot be any dogmatic agent (con-
trary to the case of the Rank-Based Influenceship) and that an agent may have
influencers with very different opinions (contrary to the case of the Deterministic
Rank-Based Influenceship).
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In all the simulations, the number of letters does not affect the proportion
of extremist agents. The number of nodes affects the proportion of extremist
agents for the Erdös-Rényi-Based model because of our definition of the model,
in fact it is the ratio between the number of agents and the number of relations
of influence that truly matters. It also has an influence for Rank-Based Influ-
enceship model and the Opinions and Physical Rank-Based Influenceship model
because it increases the average number of influencers.

For summarizing, among the different models of IODS, the ones which spread
extremism the less are the Rank-Based Influenceship when q is very high and
the Erdös-Rényi-Based when num-links is much lower than num-nodes. But,
those models have many dogmatic agents, on the other hand, the Deterministic
Rank-Based Influenceship spreads extremism very little with δsummin and a
small m and without many dogmatic agents. For the distances, it is δsummin

that spreads extremism the less because it favors relations of influence from
agents with opinions sharing many models and it spreads extremism less than
δmax (the random one). At the opposite, δsum spreads extremism very well by
creating hubs, agents with very few models that influence a lot of agents. δmin

spreads extremism a little less because it is less random, there is a constraint
on one model. So, with the Importance-Based Merging Operator, the extremism
spreads very well when the most extremist agents are very influential and much
less when agents are influenced by agents with opinions similar to its own in
the sense of they share many models. So, what makes that an agent remains
moderate is the fact that he is influenced by agents which opinions share many
models between them and that he does not have too many influencers. Having
many self-confident agents favor extremism spreading with the Erdös-Rényi-
Based model as it increases the average number of influencers but in the other
models it favors moderation. Indeed, in this case the agents keep opinions close
to their initial ones and so agents’ influencers keep close opinions.

We can notice that, in every simulation, we reached the convergence very
quickly in general in less than 5 updates.

It would have been interesting to test the models for much larger numbers
of agents to increase the probabilities we have deemed negligible in our study of
the distances for instance. Indeed, the Small-World phenomenon is considered
interesting for very large number of nodes i.e. billions of nodes (see [23]) but the
computation time that would be needed only for models of thousands of agents
is very important.

Furthermore, other simulations with Hamming pseudo distance both for the
computation of the distances between opinions and the update of the opinions
gave similar results. Notwithstanding, extremism spreads slightly much, in aver-
age 0.8 less models per agents and 9% less extremist agents. This can mainly
be explain by the fact that Min≤δH ,ϕ1≺ϕ2

Mod(μ) contains generally less models
than Min≤δD,ϕ1≺ϕ2

Mod(μ) as the second one keeps all the models of ϕ1 if ϕ1 and
ϕ2 are inconsistent. The only type of IODS that spreads less extremism in this
case is the Rank-Based Influenceship model, in average there are 2 more models
per agents and 10% less extremist agents. But, it can be explained by the fact
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that there are twice more (15% more) dogmatic agents, the hamming pseudo-
distance allows a more accurate ranking of the agents and thus, it is less likely
that agents with very different opinions influence an agent. It appears that this
accuracy is all the more significant that the number of letters is important. How-
ever, the first agents in the rankings do not change a lot, so the Deterministic
Rank-Based Influenceship model spreads more extremism. Another noticeable
difference are for δHau and δsummin which spread extremism much less in the
three Rank-Based Influenceship models.

What we can notice is that the more relations of influence there are, the more
extremism spreads. And, the more influencers of agents have close opinions, the
less extremism spreads. This result can be interpreted as follows: When someone
makes its own mind by taking into account the opinions of many people it
considers as reliable or experts on the matter and with different opinions then, it
will be very sure of its new opinion as it is a compromised between the opinions
of many experts. And so, this person will become extremist according to our
definition.

7 Conclusion

This paper focused on extremism diffusion in IODS. Its main contributions are:
a proposal of different definitions of extreme opinions and extremist agents; a
formal study of diffusion of these different kinds of extreme opinions in IODS; a
simulation in NetLogo of the diffusion of the first kind of extreme opinions.

This work could be continued according to several directions. Let us mention
three of them. First, experiments for the other kinds of extreme opinions are
to be made in a near future. Besides, we want to extend this study in the case
when the procedure for updating opinions is not Importance-Based Merging but
Majority-Based Merging Operator [24]. Finally, we plan to add a dynamic aspect
by changing the relations of influence through time as it is often done in the usual
models [1,2,9,10]. It will be especially interesting with the rank-based models
where the ranking of the influencers is based on the distances between opinions.
Since opinions change through time these distances also change and computing
new rankings could be done.

8 Proofs

Proof of Proposition 1
Suppose that o is extreme. Let {m1, ...mN} (with N ≤ R) be its models. By

definition, each model mk of o is of the form {lk1 , ...lkn} where lki is ai or ¬ai. As
a consequence, o is equivalent to

∨N
k=1 lk1 ∧ ... ∧ lkn with lki being ai or ¬ai.

Proof of Proposition 2

– If o is S1α-extreme then there is Sα st Mod(o) ⊆ Mod(
∧

Sα). Consider
1 ≤ β ≤ α and take Sβ ⊆ Sα of size β. Sβ ⊆ Sα implies Mod(

∧
Sα) ⊆
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Mod(
∧

Sβ). As a consequence, o is S1β-extreme
Suppose now that o is S2α-extreme. Then Mod(o) ⊆ {w : S(w) ≥ α} ⊆ {w :
S(w) ≥ β} thus o is S2β-extreme.

– If o is S1α-extreme then ∃Sα ⊆ S stMod(o) ⊆ Mod(
∧

Sα). Thus any model of
o satisfies exactly α selected topics. Thus Mod(o) ⊆ {w ∈ Mod(L) : S(w) ≥
α} (i.e. o is S2α-extreme).
Moreover, the fifth line of Table 2 proves that S2α-extreme �⊆ S1α-extreme

– This is a corollary of the previous point.
– We notice that {w ∈ Mod(L) : S(w) ≥| S |} = {w : S(w) =| S |} =

Mod(S). Now suppose that o is S1 | S |-extreme. This means that Mod(o) ⊆
Mod(

∧
S), i.e. Mod(o) ⊆ {w ∈ Mod(L) : S(w) ≥| S |} i.e., o is S2 | S |-

extreme

Proof of Proposition 3

– o is S1-not-extreme iff for all α o is not S1α-extreme i.e., for all α, for any
Sα = {si1 , ..., siα

} ⊆ S, Mod(o) �⊆ Mod(Sα) i.e., ∃w ∈ Mod(o) such that
w |= ¬si1 ∨ ... ∨ ¬siα

i.e. ∃w ∈ Mod(o) and ∃j such that w |= ¬sij
i.e.

o ∧ ¬sij
is consistent.

– o is S2-not-extreme iff ∃w ∈ Mod(o) st S(w) = 0 i.e., ∃w ∈ Mod(o) st
w |= ¬s1 and... and w |= ¬sn, i.e., o ∧ ¬s1... ∧ ¬sn is consistent.

– There is an α so that o is S2α-extreme iff o is not not-extreme. I.e., o∧¬s1...∧
¬sn is inconsistent, i.e., o |= s1 ∨ ... ∨ sn.

– α is the highest value st o is S2α-extreme iff each model of o satisfies exactly
α letters of S. Suppose that Mod(o) = {w1, ...wk}. Then for any wi, there
exists Si ⊆ S with | Si |= α st wi |= ∧

s∈Si

s
∧

s∈S\Si

¬s
∧

s �∈Si

ls, ls being s ou ¬s.

Thus o is equivalent to
∨

i=1...k

(
∧

s∈Si

s
∧

s∈S\Si

¬s
∧

s �∈S

ls).

Proof of Proposition 4

– δsummin satisfies (R1). δsummin does not satisfy (R2). Indeed if the dis-
tance between interpretations being dH Then δsummin(c, a ∧ b) = 5/2 and
δsummin(a ∧ c, a ∧ b) = 1; if it is dD, then δsummin(c, a ∧ b) = 0 and
δsummin(a ∧ c, a ∧ b) = 0. δsummin does not satisfy (R3). Indeed, if the
distance between interpretations being dH then δsummin(a, b ∧ c) = 2 and
δsummin(a ∧ b ∧ c,¬ ∧ b ∧ c) = 1; if it is dD then δsummin(a,¬a) = 1 and
δsummin(a∧ b,¬a∧¬b) = 1. δsummin does not satisfy (R4) when the distance
between interpretations is dH . Indeed δsummin(a ∧ b ∧ c,¬ ∧ b ∧ c) = 1 is not
strictly less than δsummin(a ∧ c, a ∧ b) = 1. But it does when the distance
between interpretations is dD. Indeed, in this case, the distance between two
consistent formulas is 0 while the distance between two inconsistent formu-
las is 1. δsummin satisfies (R5) since it satisfies (R1). δsummin satisfies (R6)
since it is model-based. δsummin satisfies (R7) because if ϕ1 |= ϕ2 then
Mod(ϕ1) ⊆ Mod(ϕ2) thus

∑
w∈Mod(ϕ1)

D(w,ϕ) ≤ ∑
w∈Mod(ϕ2)

D(w,ϕ).
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– δHau does not satisfy (R2). Indeed take dH . δHau(a ∧ b, a) = 1 while
δHau(a ∧ b, a ∧ (a → b)) = 0. Now take dD. δHau(a,¬a) = 0 and
δHau(a ∧ b,¬a ∧ b) = 0 also. δHau satisfies (R3). Indeed, if the number of
letters o1 and o2 disagree on is less than the number of letters o′

1 and o2 dis-
agree on, then maxw |= o1D(w, o2) ≤ maxw |= o′

1
D(w, o2) thus δHau(o1, o2) ≤

δHau(o′
1, o2). δHau does not satisfy (R4). Take dH , then δHau(a ∧ b, c) = 2

and δHau(a ∧ b ∧ c,¬a ∧ b ∧ c) = 1. Take dD, δHau(a ∧ b, c) = 1 and
δHau(a ∧ b,¬a ∧ b) = 1. Since δHau satisfies (R1) it also satisfies (R5) δHau

satisfies (R6) since it is model-based. δHau satisfies (R7). Indeed, if ø1 |= ø′
1

then Mod(ø1) ⊆ Mod(ø′
1) thus maxw |=ø1D(w, o2) ≤ maxw |=ø′

1
D(w, o2) and

maxw |=ø2D(w, o1) ≤ maxw |=ø2D(w, o′
1). Thus δHau(o1, o2) ≤ δHau(o′

1, o2).
– δAD does not satisfy (R1). Indeed, δAD is a less than a pseudo-distance. First,

notice that δAD(ϕ,ϕ′) = (0, ..., 0) �⇐⇒ ϕ ↔ ϕ′. We only have δAD(ϕ,ϕ′) =
(0, ..., 0) iff they totally agree; However we have δAD(ϕ,ϕ′) = δAD(ϕ′, ϕ). δAD

satisfy (R2) and (R3). Indeed, if ϕ and ψ1 agree on more letters than ϕ and
psi2 then δAD(ϕ,ψ1) ≤v δAD(ϕ,ψ2). If ϕ and ψ1 disagree on more letters than
ϕ and ψ2 then δAD(ϕ,ψ2) ≤v δAD(ϕ,ψ1). δAD does not satisfy (R4). Take a
and b on one side and a ∧ b and a ∧ ¬b on the other. The first two formulas
are consistent while the second two are inconsistent. However δAD(a, b) =
(0.5, 0.5) and δAD(a ∧ b,¬a ∧ ¬b) = (0, 1). δAD does not satisfy (R5). Indeed,
suppose that the language is L = {a, b, c}. Then δAD(a ∧ (b ∨ c), a ∧ (a →
(b ∨ c))) = (0, 0.5, 0.5). This proves that two equivalent formulas may not
have the minimal δAD-distance. δAD satisfy (R6). Indeed, if |= ϕ ↔ ϕ′ and
|= ψ ↔ ψ′ then ϕ and ψ agree (resp disagree) on p iff ϕ′ and ψ′ agree (resp
disagree) on p. Thus δ(ϕ,ψ) = δ(ϕ′, ψ′). δAD does not satisfy (R7). Take for
instance a ∧ ¬b ∧ ¬c |= a ∧ ¬b but δAD(a ∧ ¬b ∧ ¬c, a ∧ b ∧ c) = (0, 1, 1) and
δAD(a ∧ ¬b, a ∧ b ∧ c) = (0, 0.5, 1).

– δInc does not satisfy (R1). Take a and b. δInc(a, b) = 0 even if �|= a ↔ b.
δInc does not satisfy (R2). Indeed, we will have δInc(ϕ,ψ) = 0 as soon as
ϕ ∧ ψ is consistent. Take a and b on one side and a and a ∧ b on the other.
Whatever the measure Inc is, δInc(a, b) = δInc(a, a ∧ b) = 0, even if a and
a ∧ b agree on more letter than a and b. δInc generally does not satisfy (R3).
For instance δInc where Inc is the drastic inconsistency measure (defined by
Inc(S) = 1 iff S is inconsistent and Inc(S) = 0 iff S is consistent) does not
satisfy (R3). Indeed, even if a ∧ b and ¬a ∧ ¬b disagree on more letters than
a∧ b and ¬a, δInc(a∧ b,¬a) = δInc(a∧ b,¬a∧¬b). δInc satisfies (R4). Indeed,
an inconsistency measure associates a set of formulas with a non negative real
so that this real is 0 if and only if the set is consistent. As a consequence, if
ϕ1 ∧ ψ1 is inconsistent, then Inc({ϕ1, ψ1}) > 0 and if ϕ2 ∧ ψ2 is consistent,
then Inc({ϕ2, ψ2}) = 0. Thus δInc(ϕ2, ψ2) < δInc(ϕ1, ψ1). δInc satisfies (R5).
Indeed, we only consider consistent formulas. Then, if |= ϕ ↔ ψ, ϕ ∧ ψ is
consistent thus δInc(ϕ,ψ) = 0. If δInc is defined from a syntactical measure
(such as the one which counts the minimal inconsistent subsets) then (R6) is
not satisfied. δInc does not satisfy (R7). For instance, indeed if a ∧ ¬a |= b,
we have δInc(a ∧ ¬a, a) > δInc(b, a). More generally, according to [16] any
inconsistency measure Inc satisfies the property of dominance i.e., ϕ1 |= ϕ2
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implies Inc(S ∪{ϕ1}) ≥ Inc(S ∪{ϕ2}). Thus ϕ1 |= ϕ2 implies δInc(ϕ1, ϕ) ≥
δInc(ϕ2, ϕ) i.e., δInc never satisfies (R7).

– δmax does not satisfy (R1). For instance if the letters are a and b, δmax(a, a) =
1 (with dH and with dD) which is not the minila value. δmax does not satisfy
(R2). Indeed, with dH we have: δmax(a, a ∧ b) = 1 and δmax(a ∧ b, a ∧ b ∧
c) = 1. With dD we have: δmax(a, b) = 1 and δmax(a ∧ b, a ∧ b) = 0. δmax

does not satisfy (R3). Indeed, with dH we have: δmax(a, b ∧ c) = 3 while
δmax(a ∧ b ∧ c,¬a ∧ b ∧ c) = 1. With dD we have: δmax(a, b ∧ c) = 1 while
δmax(a ∧ b ∧ c,¬a ∧ b ∧ c) = 1. δmax does not satisfy (R4).Indeed, with dH or
dD we have: δmax(a∧b∧c,¬a∧b∧c) = δmax(a∧b∧c, a∧b) = 1. δmax does not
satisfy (R5). For instance,if the letters are a and b then with dH δmax(a, a) = 2
is not minimal; with dD δmax(a, a) = 1 is not minimal. δmax satisfies (R6).
δmax satisfies (R7) since ϕ1 |= ϕ2 implies Mod(ϕ1) ⊆ Mod(ϕ2).

– δmin satisfies (R1). δmin does not satisfy (R2). Indeed, δmin(a, b) = 0 (with
dH or dD) and δmin(a ∧ b,¬a ∧ b) = 1
δmin satisfies (R3). Indeed δmin(ϕ,ψ) is the number of letters on which ϕ
and ψ disagree on. δmin satisfies (R4). Indeed, if ϕ2 ∧ ψ2 is consistent then
δmin(ϕ2, ψ2) = 0 and if ϕ1 ∧ψ1 is inconsistent then δmin(ϕ2, ψ2) > 0 with dH

and dD. δmin satisfies (R5), (R6) and (R7).
– δsum satisfies (R1). δsum does not satisfies (R2). Indeed, with dH (resp, dD)

δsum(a∧b∧c, a∨b) = 7 (resp, 5) and δsum((a∨b)∧c, c) = 16 (resp, 12). δsum

does not satisfies (R3). Indeed, with dH (resp, dD) δsum((a ∨ b) ∧ c, c) = 16
(resp, 12) while δsum(a ∧ b ∧ c,¬a ∧ b ∧ ¬c) = 3 (resp 1). This example also
shows that δsum does not satisfies (R4). δsum satisfies (R5), (R6) and (R7).

– δmaxmin satisfies (R1). δsum does not satisfies (R2). Indeed, with dH (resp,
dD) δmaxmin(a, b) = 1 (resp, 1) and δmaxmin(a∧b∧c, a∧¬b∧¬c) = 2 (resp, 1).
δsum does not satisfies (R3). Indeed, with dH and dD, δmaxmin(a ∨ b, a) = 1
and δmaxmin(a ∧ b, a ∧ ¬b) = 1. This example also shows that δmaxmin does
not satisfies (R4). δmaxmin satisfies (R5), (R6) and (R7).

Proof of Proposition 5
By definition of Importance-Based Merging Operator, we have Mod(Bs+1

i ) ⊆
Mod(Bs

j ). Thus if j is extremist at step s, then | Mod(Bs
j ) |≤ R, is leading to

| Mod(Bs+1
i ) |≤ R i.e., i is extremist at s + 1.

Proof of Proposition 6
As Δμ(Bs

j1
≺i ... ≺i Bs

jk−1
) ∧ Bs

jk
is consistent, ∃w ∈ Mod(Δμ(Bs

j1
≺i

... ≺i Bs
jk−1

)) ∩ Mod(Bs
jk

). So, by definition of the Importance-Based Merg-
ing Operator, w is such that [D(w,Bs

j1
), ...,D(w,Bs

jk−1
)] is minimal according

to ≤lex. Furthermore, D(w,Bs
jk

) = 0. So, [D(w,Bs
j1

), ...,D(w,Bs
jk

)] is mini-
mal according to ≤lex and every w /∈ Mod(Bs

jk
) would not have such a prop-

erty. By definition of ≤lex, ∀w′ ∈ Mod(Δμ(Bs
j1

≺i ... ≺i Bs
jn

)), in particular,
[D(w′, Bs

j1
), ...,D(w′, Bs

jk
)] is minimal according to ≤lex, thus w′ ∈ Mod(Bs

jk
).

Then, as jk is extremist at step s, then | Mod(Bs
jk

) |≤ R, is leading to
| Mod(Bs+1

i ) |≤ R i.e., i is extremist at s + 1.
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Proof of Proposition 7
The proof is similar to the previous one. By definition of the

Importance-Based Merging Operator, ∀w ∈ Mod(Bs+1
i ), w is such that

[D(w,Bs
j1

), ...,D(w,Bs
jn

)] is minimal according to ≤lex. And, in particular by
definition of ≤lex, [D(w,Bs

j1
), ...,D(w,Bs

jk
)] is minimal according to ≤lex, thus

w ∈ Mod(Δμ(Bs
j1

≺ ... ≺ Bs
jk

)). Then, | Mod(Δμ(Bs
j1

≺ ... ≺ Bs
jk

)) |≤ R, is
leading to | Mod(Bs+1

i ) |≤ R i.e., i is extremist at s + 1.

Proof of Proposition 8
Let jk ∈ Sphere(i), then ∃j0...jk−1 ∀m = 1...(k−1) Inf(jm) = {jm−1 ≺j ...}.

We prove the proposition by induction on k. For k = 1, with s′ = s+1, it comes
from the Proposition 5. If we suppose the property for k ∈ N, ∃s′ ≥ t, ∀s ≥ s′,
jk−1 is extremist at step s. So, by Proposition 5, the property is satisfied at s′+1.

Proof of Proposition 9
First, we notice that Mod(Bt+1

i ) ⊆ Mod(Bt
i ).

Suppose that i1 is S1α-extremist at step t. Then there a subset Sα of S
st Mod(Bt

i1
) ⊆ Mod(

∧
Sα). Thus Mod(Bt+1

i ) ⊆ Mod(
∧

Sα). Finally i is S1α-
extremist at step t + 1

Suppose now that i1 is S2α-extremist at step t. Then any w in Mod(Bt
i1

)
satisfies S(w) ≥ α. Thus any w in Mod(Bt+1

i ) satisfies S(w) ≥ α. I.e., i is
S2α-extremist at step t + 1.

Proof of Proposition 10
First we notice that if j ∈ Sphere(i) then ∃s ≥ t ∀s′ ≥ s Mod(Bs′

j ) ⊆
Mod(Bt

i ).
Suppose that i is a self-confident agent which is S1α-extremist (resp, S2α-

extremist) at step t. Thus there is Sα st Mod(Bt
i ) ⊆ Mod(

∧
Sα) (resp, any

w ∈ Mod(Bt
i ) satisfies S(w) ≥ α). Thus there is Sα st Mod(Bs′

j ) ⊆ Mod(
∧

Sα)
(resp, ny w in Mod(Bs′

j ) satisfies S(w) ≥ α). This proves that j is S1α-extremist
(resp, S2α-extremist) at step s′.

Proof of Proposition 11
This is a corollary of Proposition 9.

Proof of Proposition 12
First, if i1 is SAε-extremist at step t, then there exists a selected agent

a ∈ SA st δ(Bt
i1

, Bt
a) ≤ ε. Secondly, if i1 is the most influential influencer of i

then Bt+1
i |= Bt

i1
. Thirdly, if δ satisfies (R7) then δ(Bt+1

i , Bt
a) ≤ δ(Bt

i1
, Bt

a) thus
δ(Bt+1

i , Bt
a) ≤ ε. Moreover a being dogmatic, we have |= Bt

a ↔ Bt+1
a . Finally,

δ satisfying (R6), we conclude δ(Bt+1
i , Bt+1

a ) ≤ ε i.e., i is SAε-extremist at step
t + 1.
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