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Abstract. In this work, we compare different explanation generation
and validation methods for semantic search pattern-based retrieval
results returned by a case-based framework for support of early con-
ceptual design phases in architecture. Compared methods include two
case- and rule-based explanation engines, the third one is the discrim-
inant analysis-based method for explanation and validation prediction
and estimation. All of the explanation methods use the same data set
for retrieval and subsequent explainability operations for results. We
describe the main structure of each method and evaluate their quan-
titative validation performance against each other. The goal of this work
is to examine which method performs better under which circumstances,
at which point in time, and how good the potential explanation ant its
validation can be predicted in general. To evaluate these issues, we com-
pare not only the general performance, i.e., the average rate of valid
explanations but also how the validation rate changes over time using a
number of time steps for this comparison. We also show for which search
pattern type which methods perform better.
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1 Introduction

Explainability of artificial intelligence systems (also known as Explainable AI
or XAI) is currently a much discussed topic in the area of AI research. Many
approaches were started and new trends of this research topic are discussed,
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for example, at the XAI Workshop. For distributed AI systems, that rely on
case-based reasoning (CBR) as its main underlying reasoning means, a number
of approaches, but even more general theoretical foundations, were presented.
However, in the combined research area of computer-aided architectural design
(CAAD), multi-agent systems (MAS), and CBR no such approach has been pre-
sented to date (except our approach [1]) and no comparative evaluation between
the approaches was conducted. In this paper, we present such a comparative
evaluation between three explanation approaches implemented in MetisCBR, a
distributed case-based framework for support of early phases in architectural
conceptual design. The framework prototype was developed during the activi-
ties of Metis1, a joint basic research project for the research domains of CBR,
MAS, and CAAD.

The initial core functionality of MetisCBR was the retrieval of possibly help-
ful building design recommendations that could provide inspiration for the user
(architect) during his or her conceptualization process. However, the growing
interest of the AI community in XAI, user experience requirements for modern
recommendation engines, and the absence of a versatile working explanation gen-
eration approach for retrieval results among the CAAD support software, lead
to the idea of conceptualization and implementation of an explanation module
for MetisCBR, whose first version [1] was based on explanation patterns and
a ruleset for their detection. The explanation engine of MetisCBR is aimed at
answering the questions of how the framework was able to find the results pre-
sented, what is the purpose of presenting exactly this set of results (i.e., why
they are recommended), and which semantic and relational differences and sim-
ilarities between the query and each of the single results are crucial and lead to
inclusion of this result in the final result set.

After the first version of the explanation module, also called the Explainer,
two other versions were conceptualized and implemented: an advanced version of
the Explainer (Explainer-2) and an explanation estimation approach based on
discriminant analysis (DA-Explainer, currently still in the early stage of develop-
ment). In this paper, we compare all three approaches with each other in terms
of their functionality for estimation of an explanation to be correctly produced,
i.e., to contain a valid explanation expression.

This paper is structured as follows: related work for XAI in CBR and MAS
will be presented in Sect. 2. In the next section, we give a short description of
the MetisCBR framework: its main functionalities, including semantic search
patterns, will be briefly described. In Sect. 4, we in detail present the explana-
tion approaches implemented in MetisCBR. The comparative evaluation of these
approaches will be described in detail in Sect. 5. The last section concludes this
work and provides an outlook of our future research.

1 http://ksd.ai.ar.tum.de/?page id=240&lang=en.

http://ksd.ai.ar.tum.de/?page_id=240&lang=en
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2 Related Work

In this section we present work related to the purposes of this paper, i.e., work
released in the research domains of (explainable) CBR and MAS, and the CBR-
based approaches for support of architectural design phases.

2.1 Explainable CBR and MAS

CBR has a long and rich history in conceptualization and implementation of
explainability features in the corresponding case-based systems. Early work on
explanations for CBR approaches [2] was one of the precursors for the devel-
opment of theoretical foundations for this area. Later, Roth-Berghofer [3] pre-
sented general questions of CBR-based explainability and examined a number
of future research directions. The theoretical foundations of explanation prob-
lem frames for intelligent systems (see Sect. 4.2) were discussed by Cassens and
Kofod-Petersen [4]. On the practical side, an explanation-aware system module
for the CBR software myCBR was presented [3].

For the MAS research area, the most notable explainability approach is an
explainable BDI (belief, desire, intention) agent [5,6]. These research contribu-
tions describe an explanation module inside a BDI architecture-based agent that
contains a so-called behavior log that is parsed by an explanation algorithm for
finding beliefs and goals for the current explanation of actions.

2.2 CBR-Based Architectural Design Support

CBR was one of the first AI areas to support the conceptual design phases by
means of applying case-based decision support approaches, such as FABEL [7],
PRECEDENTS [8], SEED [9], DIM [10], VAT (Visual Architectural Topology,
a semantic representation method) [11], or CaseBook [12]. The latter approach
CaseBook is the only one known to contain an explicit explainability feature, the
similarity explanation report, but information available in [12] does not provide
a sufficient amount of insight into this feature.

A comprehensive review of these and other CBR-based architectural design
support approaches is available in [13]. Another seminal work [14] contains a
detailed review of CBR’s current state, influence, and history in CAAD. Current
issues of CBR in CAAD are published in a short review [15].

3 MetisCBR

The MetisCBR framework prototype for support of early design phases of the
architectural conceptualization process is based on a distributed structure where
the agents of the system perform a case-based search for similar architectural
designs in a database (case base) of previous designs. After the search the system
automatically applies an explanation process for each single result in the result
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set and enriches the result, if possible, with explanations. The available expla-
nation methods, that are the evaluated in this paper, are described in Sect. 4.

The actual search for similar architectural designs is performed by means of
applying a number of semantic search patterns (semantic fingerprints) – (graph-
based) abstractions of established architectural room configuration concepts,
such as adjacency of rooms, or availability of natural light for the rooms. The
list of fingerpints (FPs) currently implemented in MetisCBR is shown in Fig. 1.

Fingerprints can be divided into graph-based (FP3, FP5, FP6, FP7) and
metadata-based, i.e., use an abstract summarizing attribute, such as count of
available rooms, for comparison (FP1, FP2, FP4). Multiple fingerpints can be
applied for each query/request to the system, result sets of each particular fin-
gerprint search are then combined/amalgamated and presented to the user. For
graph-based FPs, a pre-selection step is applied during retrieval, that governs
the exclusion of the non-similar atomic parts of a floor plan (such as rooms and
room connections) from the search process.

MetisCBR has been object of different comparative evaluations of retrieval
methods for search of architectural designs. Examples of such evaluations are
the perfomance comparison and qualitative evaluation with graph-based meth-
ods of the Metis project [16], and the comparison with the rule-based retrieval
coordination software KSD Coordinator [17].

4 Explanation Generation Methods

In this section, we present the explanation generation and validation methods
of MetisCBR that were used in the comparative evaluation presented in Sect. 5.
Each of the methods will be presented including the description of its general
structure and functionality, how the explanation patterns are applied, and how
the validation of generated explanations is performed. Before the actual descrip-
tion of the methods, we give a short review of general requirements for explana-
tion methods to be used for MetisCBR.

4.1 General Explainability Requirements for MetisCBR

Generally, MetisCBR can use every compatible explanation method that can
interpret the agent messages constructed with the FIPA-SL language. The main
requirement for explanation methods to be used in MetisCBR, however, is that
it should be able not only to produce/generate explanations but also validate
them. The validation step is an essential one as it ensures the general quality of
explanations and can exclude explanations that make no sense to the user. Which
validation method is used is a decision of the method’s developers, however, it
is advisable to make the validation process transparent to be able to compare it
to other methods.

For explanations themselves, explanation patterns (see Sect. 4.2) should be
used. Alternatively the explanations should be able to answer the why-, how-,
purpose-questions as described by Roth-Berghofer [3]. This ensures the common
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explanation structure for all explainable recommendations and provides the user
with a familiar structure of expressions.

Fig. 1. Semantic search patterns (FPs) currently implemented in MetisCBR. Figure
from [1].

4.2 Explanation Problem Frames and Patterns

A framework for explanation patterns for intelligent information systems and
applications was conceptualized by Cassens and Kofod-Petersen [4] to provide
such systems with a possibility to make the behaviour of such systems more
transparent and traceable for their users. Initially conceptualized for case-based
reasoning applications, the patterns can be used for almost every type of an intel-
ligent AI system that follows their structure, i.e., uses the patterns with their
initially conceptualized structure and purpose. Explanation patterns themselves
are based on Problem Frames conceptualized by Jackson [18]. Thus, the patterns
enhance the problem frames for use for explainability problems. A number of dif-
ferent patterns was conceptualized that provide different explanation functions.
The most important of them, and implemented in all our examined explana-
tion methods are Justification, Transparency, and Relevance. The adaptation of
explanation patterns for MetisCBR is shown in Fig. 3.

Relevance Pattern. The Relevance pattern is aimed at explaining why the
question that the systems asks the user is relevant in the current context. For
the purposes of our design support framework, this means that the system may
ask the user (an architect) for more relevant data for proper comparison of case
and query if the structural and relational connections provided in the query
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Fig. 2. Overview over the retrieval component of MetisCBR. Figure from [16].

Fig. 3. Explanation patterns in MetisCBR. Highlighted in blue rectangles are the orig-
inal patterns [4]. C denotes the goal of explanation, X is the system knowledge. Figure
adapted from [1]. (Colour figure online)
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did not contain sufficient amount of information. Usually, this is the case when
some of the requirements, that should be met for proper similarity assessment,
were not fulfilled. For example, a room in the room configuration of the design
should be connected to at least one other room, otherwise the structure of the
floor plan is not considered well-formed. The requirement for rom connections is
similar, they should not have an undefined start point or destination, i.e., each
edge should be connected to a room on both ends (Fig. 2).

Justification Pattern. The Justification pattern was conceptualized to justify
the current results, i.e., to answer the user’s question ‘Why do I see this result?’.
The main aim of this pattern is to build trust between the user and the system,
i.e., to provide the user with more confidence in the system behavior. Generally,
this means that the system should ‘speak’ the user’s language, i.e., technical
terms and expressions that the user is familiar with. This is also important from
the human-computer interaction (HCI) point of view as explainability of intel-
ligent (AI) systems is a question of HCI too. The proper justification improves
the usability of the system, it also helps both sides to learn from each other in
a better and more trustful way. Thus, the justifications should follow the sys-
tem’s language conventions with a proper wording for technical terms of the
explanation expression.

Transparency Pattern. The Transparency pattern’s goal is to provide the
user with information of how the result was reached by the system. That is, it
should be made transparent, for example, how exactly the final similarity value
of the presented result has been calculated, i.e., which attributes were considered
for comparison, how the preselection of cases was executed, or how the ranking
works in case of identical similarity values. For our system, mostly the first case is
important, as the semantic search patterns we use (semantic fingerpints) rely on
attribute-value-structure. To achieve a good grade of transparency, two general
possibilities exist:

– Sequential transparency – each similarity assessment step, i.e., outcome of
each attribute comparison can be included in the explanation expression. This
way is more suitable for users who had much experience with the system and
quickly can differentiate between the concepts and attributes of the result.

– Cumulative transparency – a summarized statistical expression about the
assessment data. For example, the average similarity value for an attribute or
concept, or a trend overview, e.g., how the similarity changes over time with
addition and/or deletion of attributes considered.

Beside this, two general possibilities of assigning the transparency pattern
expression to the retrieval results are available:

– Global transparency that is assigned to the complete result set and can be
placed over all of the single results to provide a general transparency expres-
sion about the results. The above mentioned cumulative transparency is usu-
ally used for this global expression.
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– Local transparency that is provided for a single result to enrich it with insights
for its own similarity assessment only. Cumulative as well as sequential trans-
parency can be used for this type of transparency assignment.

4.3 CBR-Explainer-1

The first version of the explanation module for MetisCBR, the Explainer, was
created to initially implement the explanation patterns for retrieval of architec-
tural designs. This version implemented pattern detection based on a common
ruleset for all patterns, however, it did not use the particular attributes of rooms
and edges and relied on floor plan metadata only. Following exemplary rules can
be applied (rules form our paper on the first version of the Explainer [1]):

– FP 1, 2, 4, 8: The pattern ‘Transparency’ is detected if 2/3 properties
from {Room Count, Edge Count, Room Types} could be detected in the
meta data of the query floor plan.

– FP 1, 2, 4, 8: The pattern ‘Justification’ is detected if the similarity grade
of the result floor plan is better than unsimilar.

– FP 6: The pattern ‘Transparency’ is detected if all properties from {Room
Count, Edge Count, Edge Types} could be detected in the meta data of
the query floor plan.

– FP 7: The pattern ‘Justification’ is detected if the similarity grade of the
result floor plan is better than unsimilar and all properties from {Room
Count, Edge Count, Room Types, Edge Types} could be detected in the
meta data of the query floor plan.

The first version of the Explainer (CBR-Explainer-1) employed two agents
responsible for creation and validation of explanation expressions: the Explana-
tion Deliverer agent, who is responsible for receiving of the query and result to
be explained and sending the results enriched with explanations back for dis-
playing in the user interface; and the Explanation Creator agent responsible for
generation and validation of actual explanation expressions. In Fig. 4, the general
structure of the CBR-Explainer-1 is shown.

The validation process in the CBR-Explainer-1 is implemented as a case-
based validation process. That is, each produced explanation is handled as a
case and gets validated against the case base of ground-truth explanations pro-
vided by an expert in the architectural domain/CAAD. The maximum simi-
larity value from the comparison with each of the ground-truth explanations
becomes then the validation similarity vmax. If vmax exceeds a specified thresh-
old, then the produced explanation is considered valid. The similarity measure
for validation determination is a dynamically adapted weighted sum, i.e., the
weights get adapted with increasing/decreasing of the number of detected pat-
terns. Attributes used for the dynamically weighted sum are shown in Table 1.

After the validation process, the Explanation Creator adds the explanation,
if valid, to the result object and sends it to the Explanation Deliverer, which in
turn sends it to the Result Collector agent that is responsible for collection of
results for all FPs of the current query.



54 C. Espinoza-Stapelfeld et al.

Fig. 4. General structure of the first version of the MetisCBR explanation module
(Figure adapted from [1]).

Table 1. Attributes for validation in the CBR-Explainer-1 (Table from [1]).

Attribute Type Description Similarity Func.

id string Internal Explanation ID not in use

Case string Reference to the case (result) not in use

Query string Reference to the query not in use

Text string Text of the explanation Levenshtein dist. sim

PatternJustification boolean Justification pattern available? boolean comparison

PatternRelevance boolean Relevance pattern available? boolean comparison

PatternTransparency boolean Transparency pattern available? boolean comparison

4.4 CBR-Explainer-2

The second version of the Explainer, the CBR-Explainer-2, is an advanced ver-
sion of the CBR-Explainer-1 and is intended to provide a more detailed, and
thus restricted, explanation approach which also takes the particular attribute
values of the room and room connection concepts into account. Structurally, the
tasks of the agents of the Explainer remained the same, however, for each expla-
nation pattern a special pattern agent was created that works with its assigned
pattern only and communicates with the Creator. In Fig. 5, the general structure
of CBR-Explainer-2 is shown.

The detection of patterns is different for almost all patterns. For the Rele-
vance pattern, the CBR-Explainer-2 analyzes all rooms and room connections
of the query and the currently compared case for availability of specific require-
ments. If the required features are not available, e.g., a room does not have
connections or its label is unknown to the system, or an edge does not have a
source or target, then it is not considered for comparison. If a certain percent
(determined by a special Relevance score) of rooms and edges does not provide
a proper feature set, then the complete query is not considered for comparison
and gets the Relevanvce label of true, otherwise this label is false.

If the Relevance label is true, the Justification and Transparency detection
does not take place. Otherwise the pattern recognition continues with Justifica-
tion, where the justification expression, like in the CBR-Explainer-1 depends on
the similarity grade of the result. After Justification, Transparency is detected
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by means of applying a two-step reasoning process, where in the first step all
available similarity data is collected for each room and room conection of the
result. This data contains all historical comparison information in the context of
the current query, including how often the room or edge has been used for each
FP. The collected data is then cumulated (see also Sect. 4.4) and added as local
transparency to each of the single results, for the complete result set this data
is also cumulated and added as global transparency expression.

Fig. 5. General structure of the second version of the MetisCBR explanation module,
the CBR-Explainer-2.

The validation process in the CBR-Explainer-2 is similar to that of the first
version, however, the expression text similarity with Levenshtein distance has
been replaced in the second version with the name of the semantic fingerprint
and the overall similarity value of the result to provide a more exact comparison.
The dynamic adaptation has also been replaced by a static weight distribution,
as in the CBR-Explainer-2 the unrecognized explanation patterns are patrt of
the similarity assessment as well. The mode of operation for determination of
the validation similarity vmax remained identical in the CBR-Explainer-2.

The special feature of the CBR-Explainer-2, which is however not part of the
comparative evaluation, is the contextual classification of the results with valid
explanations. That is, each result of each FP is parsed by a feature extraction
engine and is decomposed in its main features such as room count, edge count,
or room types set. All of these features are then analyzed for their potential to
include the result in a specific context class. A context class is a category of
results with special properties, such as RoomTypeDominace for floor plans with
a room type that dominates over all other room types, i.e., takes more than 50%
of the entire room type set. The main purpose of the contextual classification is
automatic tagging of the result floor plans.
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4.5 DA-Explainer

The third possibility of creation of explanations for floor plan retrieval results
is based on discriminant analysis (DA), a well-known versatile classification
method of machine learning. The adaptation of discriminant analysis for the
purposes of the Explainer module of MetisCBR has been explored by Espinoza-
Stapelfeld [19] where a detailed description of DA for each semantic fingerprint
and explanation patterns is available. In this paper, like for the previous two
explainers, we give only a description of the relevant features.

Generally, the explanation generation and validation are based on prediction
of their corresponding explanation and validation classes. We also differenti-
ate between graph-based and non-graph-based (metadata-based) FPs. For the
graph-based FPs, following discriminant function is used for the prediction of
the explanation class:

ck(x) = −1
2

log |Σk| − 1
2
〈x − μk, Σ

−1
k (x − μk)〉 + log πk (1)

where k represents the similarity grade (whose calculation is identical to the cat-
egorization process for non-graph-based FPs, see below). Other values that are
being used for preparation of the discriminant parameters are: n that represents
the total number of the attributes for the given FP, and mk that represents the
total number of elements with the given similarity grade. Based on these values
(k, n, and mk), x represents single attribute values for each result with the given
k; μk represents the sums of values of the particular attributes of results with
the given k divided by mk; Σk represents the products of (x−μk) and (x−μk)T

with factor mk, and πk = mk/n.
For non-graph-based fingerprints, a decision tree is used that categorizes the

result into one of the explanation classes: A if result’s overall similarity Sim ≥
0.75, B if 0.75 > Sim ≥ 0.5, C if 0.5 > Sim ≥ 0.25, and D if Sim < 0.25. After the
predicted class is determined, the assignment of the explanation patterns, that
are in turn assigned to the classes, takes place. Following explanation classes are
available for the patterns:

1. A – High Justification, High Transparency, i.e., a sufficient amount of informa-
tion is available in query and result to perform a similarity-based comparison
between them.

2. B – Middle Justification, Middle Transparency.
3. C – Low Justification, Low Transparency, i.e., information in query and result

is sufficient, but local similarity values are very low and do not allow for
recommendation of this floor plan.

4. D – Relevance only, i.e., more information is required for a proper comparison
between query and result.

After the assignment of explanation patterns, a validation estimation process
takes place. The DA-Explainer does not use a case base for validation, instead,
its validation process is intended to sort candidates for validation in the both
above described explainers. Like in the assignment of explanation classes, we
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differentiate between graph-based and non-graph-based FPs. However, for the
non-graph-based FPs, no explicit validation process is conducted, instead, the
class determined in the explanation classification process is mapped to its cor-
responding validation estimation class v (A to V1, B to V2, C to V3, D to V4).
For graph-based FPs, following formula is used first to estimate the validation
candidacy for the complete result set:

vk(x) = −1
2

log |Σk| − log |(x − μk)| + log πk (2)

The validation estimation class can then be one of the following:

1. V1 – Highest category, the results with this class are most likely will produce
a valid explanation.

2. V2 – Middle category, the results with this class have a good probability to
produce a valid explanation.

3. V3 – Weak candidate, validation of its explanation can produce an insufficient
value (below threshold).

4. V4 – Not recommended for validation of explanation.

After that vk(x) is multiplied with the overall similarity value of each of
the floor plans, so that an individual validation estimation value for each single
result can be calculated.

5 Comparative Evaluation

To quantitatively compare the performance of all three above described expla-
nation generation and validation methods we decided to conduct an experiment
with all methods on the same data set and to answer three general questions
(Q[n]):

1. Which method has a better validation performance for a common query set?
2. Which method performs validation better over time?
3. Which method has the best performance for which type of FPs?

For all questions, specific aspects of each method should be considered:

– CBR-Explainer-2 is a more advanced, however, also more restricted version
of CBR-Explainer-1 in terms of the validation process, i.e., it uses more
attributes for validation and does not adapt weights in favor of the num-
ber of detected explanation patterns. From a reversed point of view, the
CBR-Explainer-1 is a light and more permissible method.

– DA-Explainer is a non-CBR method, that is, it is not fully adapted to the
main distributed case-based paradigm of MetisCBR. However, it provides a
different point of view at the validation problem as it is able to apply fuzzy
validation estimation with different classes (see Sect. 4.5).
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5.1 Setting

The evaluation was performed on a common set of 120 retrievable and explain-
able architectural designs constructed with a special web-based user interface
[20]. The designs of the data set were available in different abstraction and
complexity levels, see Fig. 6. For validation, the CBR-Explainer-1 and the CBR-
Explainer-2 used their own validation base, however, cases in all of these bases
referred to the same ground-truth cases provided in the very first validation base
(of the CBR-Explainer-1).

Fig. 6. Examples for different abstraction levels of the floor plans contained in the
tested case base. From left to right: abstract, semi-abstract, non-abstract (complex).

5.2 Results for Q1

In Q1, we were interested in a general performance of each explanation method
for a given, common for all three, amount of queries. To accomplish this, we sent
24 different queries for retrieval and subsequent explanation process for each of
the methods. Each query included 2 FPs, i.e., consisted of 2 sub-queries, all FPs
were the same for each method.

In Fig. 7, the total number of produced explanations is shown. In Fig. 14,
the percent of valid explanations for each of the methods is shown. Following
validity criteria were applied for the methods:

– CBR-Explainer-1, CBR-Explainer-2: the explanation is valid if its validation
similarity value vmax exceeds the threshold value of 0.5.

– DA-Explainer: the explanation is estimated valid if the result set’s validation
class is not V4 and the validation estimation value of the single result is above
the threshold of 1.5.

The results of Q1 showed that the DA-Explainer was generally able to pre-
dict the amount of possibly valid explanations for both CBR-Explainers, despite
its very low total number of explanations produced (which however was devel-
oped/implemented on purpose using the discriminant analysis). The both CBR-
Explainers also showed a good general rate of valid explanations (Fig. 8).
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Fig. 8. The percent number of valid explanations.

5.3 Results for Q2

In Q2, we measured how each of the methods was performing over time, i.e.,
we also recorded the validation stepwise, after every 4th query (8th sub-query).
The reason to perform this measurement was the question of how good or bad
the validation percentage will be if the system will run for a longer time. A total
number of 6 steps or sub-measurements of validation rate was produced, the
results are shown in Figs. 9, 10, and 11.

As the results of Q2 show, the CBR-Explainer-1 shows the most constant
performance in this measurement, only once its rate falls below the 82% rate,
remaining between 82 − 83% for the other sub-measurements. CBR-Explainer-2
is constant as well, however, its start rate is lower. The most inconstant is the
DA-Explainer, its final rate (and even the second) is much lower as its start rate.

5.4 Results for Q3

In Q3 we aimed at exploring the performance of the methods for different types
of semantic fingerpints. The reason for this measurement is our intention to
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Fig. 9. The stepwise measurement of valid explanations for CBR-Explainer-1.
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Fig. 10. The stepwise measurement of valid explanations for CBR-Explainer-2.
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Fig. 11. The stepwise measurement of valid explanations for the DA-Explainer.

implement an automatic selection method for choosing the proper explanation
method for the corresponding FP type. The results of Q3 for each method are
shown below (Fig. 12).
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Fig. 12. The FP-type-wise measurement of valid explanations for the CBR-
Explainer-1.
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Fig. 13. The FP-type-wise measurement of valid explanations for the CBR-
Explainer-2.
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Fig. 14. The FP-type-wise measurement of valid explanations for the DA-Explainer.

The results of Q3 showed that for this measurement DA-Explainer performed
better on graph-based FPs, that is, its prediction feature can be more trusted for
this type of FPs and should be improved for non-graph-FPs. In contrast to the
DA-Explainer, the CBR-Explainer-2 performed better on non-graph-based FPs,
however the more strict behavior of this explainer is the most probable cause
for its results. The CBR-Explainer-1 showed constant values in this measure-
ment, however, for particular types, other explainers performed (slightly) better
(Fig. 13).
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6 Conclusion and Future Work

In this paper, we presented three methods for explanation generation and val-
idation for results of retrieval within MetisCBR, a case-based and multi-agent
based framework for support of the early conceptual phases in architecture. All
three methods were described and evaluated in a comparative evaluation that
aimed at examination of the current state of their development.

Our future work in this area will be concentrated on improvement of the
methods presented in this work. For example, the next study we are planning
is aimed at detailed examination of the prediction feature of the DA-Explainer
to determine if the results and their explanations predicted valid are considered
valid by case-based explainers. Also, an explainable BDI-Agent (see Sect. 2) will
be conceptualized and implemented as another alternative.
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