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I. Introduction

Cell division is a fundamental cellular process
that is essential for proliferation of unicellular
as well as multicellular organisms. It reflects the
final stage of the cell cycle, during which a cell is
physically divided into two daughter cells that
contain a full set of chromosomes and other
cellular organelles. Cytokinesis can be divided
into several general steps that apply to most
eukaryotic cells (Barr and Gruneberg 2007;
Eggert et al. 2006): (1) the selection of the future
cell division plane based on spatial as well as
temporal cues, (2) the assembly of a cortical
actomyosin ring (CAR) at this site, and (3) its
constriction coupled with membrane invagi-
nation. In general, the formation of the CAR
and its subsequent constriction is tightly cou-
pled to the cell cycle to ensure that cell separ-
ation does not occur prior to chromosome
segregation. (4) The formation of an extra-
cellular cell wall, the septum, composed of glu-
cans, chitin, and other polysaccharides in fungi
further requires coordination of CAR constric-
tion with secretion of cell wall biosynthetic and
remodeling enzymes to build the extracellular
septum. (5) This primary septum is covered by
additional layers of cell wall material that form
the secondary septum and is finally degraded
by secreted hydrolytic enzymes in the uni-
cellular yeasts and during sexual development of
filament-forming molds to allow detachment of
the two cells.

Several overviews have recently summar-
ized the mechanistic principles underlying cell
polarization and division in budding yeast and
fission yeast, two unicellular fungi that consis-
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tently serve as conceptual framework for the
analysis of fungal as well as higher eukaryotic
cell biology (Pollard and Wu 2010; Bi and Park
2012; Weiss 2012; Martin and Arkowitz 2014).
However, the vast majority of fungi forms
mycelial colonies that consist of networks of
branched hyphe. These cells grow by tip growth
and are compartmentalized by septum that par-
tition cellular environments within the hypha.
In contrast to the unicellular yeasts, not every
nuclear division triggers the formation of a new
septum in mycelial fungi, and thus hyphal com-
partments are generally multinucleate. More-
over, a small septal pore is retained in higher
fungi to enable intercellular communication
and transport of cytoplasm and organelles
between adjacent hyphal compartments. This
controlled segmentation of hyphal units
through septal cross walls in a multicellular
mycelium is the basis for the morphological
complexity achieved by the fungi during vege-
tative growth, differentiation, and infection
processes and is thus a prerequisite for the
evolutionary success of the fungal kingdom
(Gull 1978; Pringle and Taylor 2002; Blackwell
2011).

The phylum Ascomycota comprises three
major subphyla: Taphrinomycotina, Saccharo-
mycotina, and Pezizomycotina (McLaughlin
et al. 2009; Stajich et al. 2009). The subphylum
of the Pezizomycotina contains over 90% of the
Ascomycota species. Almost all species of this
clade generate multinuclear hyphae that are
compartmentalized by septa and include the
model molds Aspergillus nidulans and Neuro-
spora crassa. The Saccharomycotina contain the
industrial yeasts and parasitic Canidida spec.
species, dimorphic fungi that can switch
between yeast and mycelial states (Sudbery
2011). Most members of the Saccharomycotina
are unicellular, but this group also includes fila-
mentous forms, such as Ashbya gossypii. This
species is very closely related to Saccharomyces
cerevisiae, and more than 90% of the genes are
highly conserved in the two fungi (Dietrich et al.
2004; Wendland andWalther 2005), but the two
species have developed dramatically different
growth forms: constitutive multinucleate tip
growth in A. gossypii versus unicellular growth
in S. cerevisiae. The third subphylum includes

the Schizosaccharomycetes and other early
diverging lineages and is primarily represented
by Schizosacchomyces pombe. The monophy-
letic origin of this subphylum is still under
debate, but most recent data support the mono-
phyly of the taxon (James et al. 2006). Both
filaments and yeasts are found in this subphy-
lum, suggesting that both morphologies are
ancestral in Ascomycota.

Despite the importance of septum for
hyphae, proliferation, and differentiation in fil-
amentous fungi, our understanding of septum
formation and its regulation is highly fragmen-
tary (Harris 2001; Seiler and Justa-Schuch 2010;
Mourino-Perez and Riquelme 2013). In this
review, we will focus on recent progress that
confirms the use of conserved molecular mod-
ules during cell division in the unicellular
yeasts and during septum formation in the fila-
mentous fungi. However, it is also becoming
apparent that proper placement and regulated
formation and function of septa in the different
phylogenetic groups of Ascomycota requires
significant rewiring and species-specific adap-
tation of these conserved modules (Gu et al.
2015).

II. Spatial Cues: Mechanisms
Specifying the Position of the
Division Plane

A. Positioning the Cell Division Plane in
Unicellular Yeasts

The regulatory pathways that control the spatial
aspects to place the future cell division plane
are poorly conserved among different eukary-
otic organisms despite the high importance of a
tight coordination of cytokinesis with chromo-
some and organelle segregation. For example,
the two model yeasts S. cerevisiae and S. pombe
have developed fundamentally distinct
mechanisms to control the spatial aspects for
placing the future cell division plane (Fig. 1a,
b). The bud-site selection system of budding
yeast relies on cortical cues of the previous
cell division cycle in order to redirect the divid-
ing nucleus to the bud neck, while the position
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Fig. 1 Diverse types of spatial signals regulate septum
placement and cell division plane. (a) The site of cell
division in fission yeast is chosen based on a positive
signal provided by the position of the pre-mitotic
nucleus and negative signals from the two cell ends.
(b) A transient cortical landmark at the bud scar
functions as a spatial memory from one cell cycle to
the next in budding yeast. a or a cells divide axially,
such that dividing cells form their buds immediately
adjacent to the site of the previous cell separation. a/a
cells exhibit a bipolar budding pattern and place the
new bud either proximal or distal to the site of the
previous cell division. (c) Cortical cues deposited at
the hyphal tip may trigger septum position in the
filament-forming Saccharomycotina species A. gossy-

pii and C. albicans. The cue for landmark deposition
at the tip has been proposed to be reduced tip elonga-
tion as a consequence of septum formation in the
subapical region of the hypha. (d) A tip-high inhibi-
tory gradient has been proposed in A. nidulans to
restrict septum formation in growing germlings until
a certain cell size is reached. (e) A similar tip-high
inhibitory signal has been proposed for mature N.
crassa hyphae, where the new septum is placed when
the apical cell reaches a critical size of approximately
250 mm. (f) Unlike S. pombe, where the position of the
pre-mitotic nucleus serves as positive signal, the
majority of septa in A. nidulans are formed at a posi-
tion corresponding to a location in between two pairs
of previously mitotic nuclei
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of the fission yeast nucleus itself specifies the
future plane of cell division (Chang and Peter
2003). Both mechanisms are dissected at the
molecular level, and the reader is referred to
recent reviews for details (Laporte et al. 2010;
Pollard and Wu 2010; Bi and Park 2012; Weiss
2012).

Briefly, budding yeast cells divide in two
precise spatial patterns (Chant and Herskowitz
1991). a or a cells divide axially, such that
dividing cells form their buds immediately
adjacent to the site of the previous cell separa-
tion. a/a cells exhibit a bipolar budding pattern
and place the new bud either proximal or distal
to the site of the previous cell division. The
axial budding pattern depends on a transient
cortical landmark consisting of the Bud3p-
Bud4p complex that binds to the transmem-
brane glycoprotein Axl2p (Gao et al. 2007;
Kang et al. 2012; Wu et al. 2015). The localiza-
tion of these proteins acts as a spatial memory
from one cell cycle to the next. An Axl2p con-
taining spot localizes to the cell cortex at the
time of bud emergence and serves together with
the encircling septin ring as a landmark to
recruit Bud3p and Bud4p. This Bud3p-Bud4p-
Axl2 complex matures at the mother-bud neck
into a double ring, and one ring is passed to
each daughter cell, marking the previous site of
attachment. This localization of the landmark
complex at the mother-bud neck depends on
the integrity of the septin collar; thus the
Bud3p-Bud4p complex rings are likely assem-
bling through the direct interaction with the
septins (Wloka et al. 2011; Eluere et al. 2012;
Kang et al. 2013). In the next round of budding,
these cortical marker proteins recruit a Ras-
related GTPase module (consisting of the
GTPase Rsr1p/Bud1p, its GTPase-activating
protein (GAP) Bud2p, and guanine nucleotide
exchange factor (GEF) Bud5p) to the future bud
site, which organizes the morphogenetic
machinery toward the site of growth. At this
site a new septin ring and Axl2p spot is formed
generating a cyclic pattern of interdependence
between the septins and the axial landmark
proteins throughout the cell cycle.

The fission yeast S. pombe grows by elonga-
tion at its two ends and divides by medial fission,
generating two roughly equally sized daughter

cells. In contrast to budding yeast, in which the
division site is solely determined by cortical cues,
the division site in fission yeast is chosen based
on a positive signal provided by the position of
the pre-mitotic nucleus and negative signals
from the two cell ends. Microtubules control
the positioning of the nucleus at the cell center
through opposing pushing forces generated by
the dynamic instability of the microtubule sys-
tem (Daga and Chang 2005; Tran et al. 2001).
Furthermore, the bipolar longitudinal orienta-
tion of the microtubule system marks the cell
ends by transporting the Tea1-Tea4 polarity
complex to the tips, where it is tethered to the
cortex through the prenylated protein Mod5
(Snaith et al. 2005; Snaith and Sawin 2003). This
complex recruits the Dyrk family kinase Pom1
and other, yet undefined factors, to the cell ends
(Bähler et al. 1998; Tatebe et al. 2005). A key
factor that integrates both types of spatial signals
is the anillin-related but S. pombe-specific pro-
tein Mid1. Mid1 reads the nuclear localization by
shuttling between the nucleus and the adjacent
cell cortex, where it forms a series of ca. 50
cortical dots that later in the cell cycle assemble
and recruit CAR components (Almonacid et al.
2009; Celton-Morizur et al. 2006; Padte et al.
2006). The restriction of these interphase nodes
to the cell center depends on Pom1-dependent
and other inhibitory signals that are generated
from both cell poles (Celton-Morizur et al. 2006;
Huang et al. 2007; Padte et al. 2006; Rincon et al.
2014). In addition, Pom1 also phosphorylates the
F-BAR protein Cdc15, a central component of
the CAR, to inhibit CAR assembly at cell ends
(Ullal et al. 2015).

B. Septum Placement in Filamentous
Ascomycete Fungi

In contrast to the in-depth understanding of
spatial signals present in the two unicellular
yeast models, we have only very limited data
about the presence and nature of positional
cues that regulate septum placement in fila-
mentous ascomycete fungi. It has been pro-
posed that cortical cues deposited at the
hyphal tip may trigger septum position in the
filament-forming Saccharomycotina species
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Ashbya gossypii (Kaufmann and Philippsen
2009; Fig. 1c). Although attractive, this hypoth-
esis is primarily based on the observation that
cortical marker proteins homologous to the S.
cerevisiae Bud3p-Bud4p-septin landmark com-
plex and associated proteins, such as the F-BAR
scaffold protein Hof1, a central organizer of the
CAR in both yeast models, are deposited at the
hyphal tip in A. gossypii and Candida albicans
at the time when tip growth slows as a conse-
quence of septum formation in the subapical
region of the hypha (Sudbery 2001; Wightman
et al. 2004; Knechtle et al. 2003; DeMay et al.
2009; Helfer and Gladfelter 2006; Gonzalez-
Novo et al. 2008; Kaufmann and Philippsen
2009). Moreover, effective progression through
the cell cycle seems to require repositioning of
migrating nuclei to these preselected sites for
efficient initiation of septation (Alberti-Segui
et al. 2001; Finley and Berman 2005; Helfer
and Gladfelter 2006; Finley et al. 2008). Nuclear
position relative to the imprinted septation
sites may thus be a consequence of morphoge-
netic markers placed at the incipient bud site in
unicellular or the tip growth in filamentous
species of the Saccharomycotina clade. Clearly,
this hypothesis needs further experimental sup-
port, especially because the mechanism(s) by
which the bud-septin complex is deposited at
the tip to mark future septation sites has not
been addressed at the molecular level.

No changes in the rate of tip extension are
observed during mitosis, septum formation, and
branch initiation in A. nidulans and N. crassa
hyphae (Horio and Oakley 2005; Jackson 2001;
Riquelme and Bartnicki-Garcia 2004; Riquelme
et al. 2003; Sampson et al. 2003). Thus, no
growth rate-dependent septum to tip signal can
exist in these species of the Pezizomycotina clade
to mark future septation sites analogous to that
proposed for the filamentous Saccharomycotina
species. An alternative explanation may be an
inhibitory gradient originating from the tip that
overrides positive yet still undefined signals gen-
erated from the nuclei. Such a tip-high inhibi-
tory gradient has been proposed in A. nidulans
to restrict septum formation in growing germ-
lings until a certain cell size is reached (Kamins-
kyj 2000; Wolkow et al. 1996; Harris 2001)
(Fig. 1d). Although the nature of this proposed

gradient is currently unknown, homologs of the
S. pombe Tea1-Tea4 system may represent an
attractive possibility (Fischer et al. 2008; Higa-
shitsuji et al. 2009; Konzack et al. 2005; Take-
shita et al. 2008, 2014; Takeshita and Fischer
2011). A. nidulans TeaA and TeaR, functional
homologs of the S. pombe cell-end marker Tea1
and its membrane anchor Mod5, localize in an
interdependent manner to the hyphal tip and
colocalize there with the formin SepA (Takeshita
et al. 2008). Deletion of either TeaA or TeaR
results in wavy and meandering growth, indicat-
ing that the apical localization of these cell-end
markers is required for stabilizing the axis of
growth polarity. Interestingly, TeaC, the homo-
log of S. pombe Tea4, localizes to septa in addi-
tion to its presence at the hyphal tip
(Higashitsuji et al. 2009). Overexpression of
TeaC does not affect apical tip extension rates
but represses septation and generates almost
aseptate strains, while deletion of teaC results
in increased septation, consistent with the
hypothesis of positioning factors that inhibit
septum formation in the tip region to regulate
compartment size in growing hyphae. This view
is consistent with recent data obtained for N.
crassa that also support some kind of size-
sensing mechanism for septum placement
(Delgado-Alvarez et al. 2014; Fig. 1e). When
mature N. crassa tip cells reach a critical size of
ca. 250 mm, a new septum is initiated approxi-
mately 165 mm distal of the tip. However, unlike
S. pombe, where the position of the pre-mitotic
nucleus serves as additional positive signal, the
majority of septa in A. nidulans are formed at a
position corresponding to a location in between
two pairs of previously mitotic nuclei (Fig. 1f;
Shen et al. 2014), and the precise involvement of
nuclear behavior in septum placement remains
unclear (also see Sect. III-C).

C. Signal Integration by Anillin-Type
Landmark Proteins

Despite the poor conservation of spatial cues,
anillin-type landmark proteins coordinate
these spatial signals and are thus critical for
organizing the future site of cell division in all
fungi that have been analyzed to date. Also,
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vertebrate anillin is among the first proteins that
are recruited to the cleavage site of dividing cells
(Cabernard et al. 2010; Piekny and Glotzer
2008), suggesting conserved functions of this
class of poorly defined proteins in orchestrating
cell division plate. In animals, anillin functions
as scaffold for the Rho GTPase RhoA and its
regulators ECT2/Pbl and RacGAP50C at the
cleavage furrow (D’Avino et al. 2008; Gregory
et al. 2008; Hickson and O’Farrell 2008). Also
Bud4p and the fission yeast homolog, the Mid1-
related protein Mid2, interact with specific Rho
GTPase modules and are recruited to the inci-
pient separation site in a septin-dependent
manner. In budding yeast, the axial landmark
Bud3p, Bud4p, and Axl2p assemble into a pro-
tein complex at mitosis. Septin filaments first
recruit Bud4p and Bud3p, which interact
through their C-termini, to the bud neck (Gao
et al. 2007; Kang et al. 2012, 2013; Wu et al.
2015). Bud3p has weak GEF activity toward the
Rho GTPase Cdc42p and can activate Cdc42p
in vivo (Kang et al. 2014), which may be one
important aspect for organizing the morphoge-
netic machinery. In fission yeast septin rings are
involved primarily in cell-cell separation after
the septum has formed. The fission yeast anillin
Mid2 localizes as a ring in the middle of the cell
after anaphase in a septin- and actin-dependent
manner and influences septin ring organization
(Tasto et al. 2003; Berlin et al. 2003). The GEF
Gef3 interacts with Rho3GTP in vitro and func-
tions as activator of Rho4 in vivo. Gef3 co-
localizes and physically interacts with septins
and Mid2 and requires septins and Mid2 for its
localization (Munoz et al. 2014; Wang et al.
2015). Together these data support that Gef3
interacts with the septin complex and activates
one or several Rho GTPases as a Rho GEF for
septation in fission yeast. Similar modules, con-
sisting of the Rho GTPase Rho4/RHO-4, its GEF
Bud3/BUD-3, and the anillin Bud4/BUD-4, are
required for septum formation in the filamen-
tous ascomycetes A. nidulans and N. crassa
(Justa-Schuch et al. 2010; Si et al. 2010, 2012;
Rasmussen and Glass 2005). Thus, a general
function of anillins may be the organization of
a Rho GTPase-GAP-GEF module at the future
cytokinetic site (D’Avino 2009; Zhang andMad-
dox 2010; Seiler and Justa-Schuch 2010).

The septins in budding yeast bud4D cells fail
to form a double ring during cytokinesis, while
overexpression of Bud4p causes extra septin
structures (Wloka et al. 2011; Eluere et al. 2012;
Kang et al. 2013), suggesting a positive feedback
in the organization of septin collar and axial
landmark complex. A positive feedback for the
cortical recruitment of the anillin-RHO-4
GTPase module was also described for N. crassa
(Justa-Schuch et al. 2010), where localization of
BUD-3 depends on BUD-4, whose localizations
in turn lead to the recruitment and activation of
RHO-4. However, the stable cortex association
of BUD-3 and BUD-4 also requires RHO-4. This
feedback also allows the stable accumulation of
the BUD-3-BUD-4-RHO-4 complex at presump-
tive septation sites prior to the initiation of sep-
tum formation.

Recent structural data of animal anillin and S.
pombeMid1 defined several functional regions of
these two proteins despite their poor conserva-
tion at the sequence level (Fig. 2). The N-terminal
regions of both proteins bind to multiple compo-
nents of the CAR machinery, and Mid1 and ani-
mal anillin have functional exchangeable N-
terminal domains (D’Avino 2009; Piekny and
Maddox 2010; Watanabe et al. 2010; El Amine
et al. 2013; Sun et al. 2015). This region can bind
active myosin and can bundle actin filaments
(Field and Alberts 1995; Straight et al. 2003).
The central region of anillin carries an anillin-
homology domain, which contains a coiled-coil
region that—in animal anillin—harbors a well-
defined RhoA-binding domain, followed by a
membrane-binding C2 domain that forms b-
sandwich structure. Moreover, the Mid1 C2
domain allows dimerization. The C-terminus of
anillin possesses a PH domain that binds septins
and phospholipids (Liu and Young 2012; Oegema
et al. 2000; Sun et al. 2015). Although both animal
anillin and Mid1 attach to the plasma membrane
via the same core elements of the C2 domain and
the conserved PH domains, the PH domain of
Mid1 is not essential for membrane anchorage
(Sun et al. 2015; Lee and Wu 2012; Paoletti and
Chang 2000; Liu and Young 2012).

Most fungal anillin-like proteins cluster phy-
logenetically with S. pombe Mid2, which pro-
motes cell separation as a late-acting septin-
dependent scaffold, but does not influence cell
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division plate positioning. Mid1 and Mid2
arouse by gene duplication followed by func-
tional divergence (a duplication that is specific
for the genus Schizosaccharomyces), suggesting
that the ancestral and conserved function of
fungal anillin-related proteins is to scaffold
CAR complexes in a septin-dependent manner
(Gu and Oliferenko 2015; Gu et al. 2015; Moseley
2015). This is also supported by the recent
finding that Mid1 of the close relative Schizo-
saccharomyces japonicus serves as an interphase
cortical anchor for type II myosin, and the
medial assembly of the CAR inmitotic S. japonicus
cells relies on the cortical anchor protein Cdc15
instead of Mid1, which is regulated by a tip-
localized Pom1 gradient (Gu and Oliferenko
2015; Gu et al. 2015; Moseley 2015).

III. Temporal Cue(s): Coordination of
Cell Cycle Progression and
Septation Initiation

A. Coordination of Mitotic Exit and Initiation
of Septation in Unicellular Yeasts

The localization of the anillin-related landmark
proteins Mid1 and Bud4p provides the spatial

cue for septum placement in the two model
yeasts. In addition, a GTPase-coupled kinase
cascade—known as mitotic exit network
(MEN) and septation initiation network (SIN)
in budding and fission yeast, respectively—
mediates the strict temporal coordination of
cell cycle progression and cell division in the
two unicellular fungi (Fig. 3a, b; Meitinger et al.
2012, Johnson et al. 2012). At the end of mitosis,
the spindle pole body (SPB)-associated ras
superfamily GTPase Spg1 is activated by the
polo kinase Plo1 in fission yeast. This is
achieved by phosphorylation, and thereby inhi-
bition of its bipartite GTPase-activating protein
(GAP) Cdc16-Byr4 results in recruitment of the
STE kinase Cdc7 to activated Spg1 at the SPBs.
Two additional SPB-associated kinases Sid1
and Sid2, with their respective regulatory sub-
units Cdc14 and Mob1, are part of the SIN.
Localization studies suggest a hierarchical
order of Cdc7-Sid1-Sid2, although biochemical
evidence for a linear cascade is lacking (John-
son et al. 2012). Phosphorylation of the Cdc14
phosphatase Clp1 by the nuclear Dbf2p-related
(NDR) effector kinase Sid2 promotes mitotic
exit by counteracting the function of the cyclin
kinase Cdc2 (Chen et al. 2008a). However, the
SIN is not required for controlling mitotic exit,
and SIN inactivation generates multinucleated

Fig. 2 Schematic representation of functional regions
of fungal and animal anillins. AHD anillin-homology
domain, RBD RhoA-binding domain, C2 membrane-

binding module, CON connector domain, PH Pleckstrin
homology domain. For detailed explanation, refer to
the text
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cells, while overexpression of positive-acting
SIN components causes the formation of multi-
ple septum (Fankhauser and Simanis 1994;
Ohkura et al. 1995; Schmidt et al. 1997). In
both scenarios cell division is uncoupled from
nuclear division. The assembly and subsequent
constriction of the CAR that triggers septum
formation requires the relocation of the active
Sid2-Mob1 kinase complex, yet not the other
SIN components, from the SPBs to the cell
cortex (Roberts-Galbraith and Gould 2008;
Hachet and Simanis 2008). The mechanisms
that target the Sid2-Mob1 complex to the cell
cortex are yet elusive.

The related mitotic exit network (MEN) of
budding yeast has a similar composition and
functions in an analogous manner (Meitinger
et al. 2012). However, several significant differ-
ences exist (Fig. 3a, b). First, the MEN lacks a
homolog of the fission yeast kinase Sid1, and
the effector kinase Dbf2p is directly phosphory-
lated by the Cdc7 homolog Cdc15p (Mah et al.
2001). The Dbf2p phosphosites identified in

this study correspond to sites highly conserved
in other fungal NDR kinases (Hou et al. 2004;
Jansen et al. 2006; Maerz et al. 2012), suggesting
that Dbf2p activation involves activation seg-
ment autophosphorylation and phosphoryla-
tion of its C-terminal hydrophobic motif
through Cdc15p. Second, recruitment of the
Dbf2p-Mob1p complex to SPBs (and thus
MEN activation) requires phosphorylation of
the MEN scaffold protein Nud1p by upstream
kinase Cdc15p (Mah et al. 2001; Rock et al.
2013). This differs from the positive feedback
mechanism of the fission yeast SIN assembly at
the SPB, in which the scaffold Cdc11 is phos-
phorylated by the effector kinase Sid2 to pro-
mote enhanced interaction with the upstream
kinase Cdc7 (Feoktistova et al. 2012). Third,
budding yeast MEN strictly controls mitotic
exit, and consequently MEN mutants arrest at
a late mitotic state with a CAR that has formed,
but is unable to constrict (Yoshida et al. 2006),
while S. pombe SIN mutants produce multi-
nucleate cells.

Fig. 3 Composition and regulation of the septation
initiation network. (a) A GTPase-coupled, tripartite
kinase cascade regulates initiation of septation in S.
pombe. SPB-association of the effector kinase Sid2
depends on the two upstream kinases Sid1 and Cdc7,
yet biochemical proof of a stepwise phosphorylation
and activation of the three kinases is lacking. Positive
feedback is provided by Sid2-dependent phosphoryla-
tion of the scaffold Cdc11, which is counteracted by the
septation-inhibitory phosphatase complex SIP. (b) The
related mitotic exit network (MEN) of budding yeast
lacks a homolog of the fission yeast kinase Sid1, and the
effector kinase Dbf2p is directly phosphorylated by the
Cdc7 homolog Cdc15p. Recruitment of Dbf2p to SPBs
and MEN activation also requires phosphorylation of
the MEN scaffold Nud1p by Cdc15p. (c) A tripartite

kinase cascade homologous to the fission yeast SIN also
regulates septum formation in A. nidulans. However,
SPB association of the SIN kinases through the scaffold
SepK is not critical for septum formation, and SidB
activation likely occurs in the cytosol. (d) The N. crassa
SIN acts as cascade of three kinases, in which CDC-7
promotes the activity of SID-1, which in turn activates
DBF-2 through hydrophobic motif phosphorylation.
An additional kinase, MST-1, acts in parallel to SID-1
and is negatively regulated by interaction with CDC-7.
This may allow fine-tuning of the SIN by generating an
incoherent type 4 feedforward loop through the two,
parallel functioning, but oppositely regulated CDC-7/
SID-1 and CDC-7/MST-1 complexes that together con-
trol DBF-2 activity. SPB-association of these SIN com-
ponents is not required for septum formation
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B. The Septation Initiation Network in the
Pezizomycotina Fungi

The MEN also controls mitotic spindle orienta-
tion and nuclear segregation in yeast cells of C.
albicans. Depletion of the MEN effector kinase
Dbf2 results in growth arrest after the assembly
of the actomyosin ring, indicating that MEN
activity is also essential for CAR contraction,
but not for CAR assembly (Gonzalez-Novo et al.
2009). Consequently septum formation is also
inhibited in C. albicans filaments. As in yeast
cells, Calcofluor White-stainable material still
accumulates at presumptive septation sites, sug-
gesting that CAR assembly is still possible and
constriction is blocked, but this has not been
addressed experimentally. However, not all C.
albicans MEN mutant share identical defects,
arguing against a simple and linear signal cas-
cade and supporting distinct functions of indi-
vidual MEN components. For example, unlike
Tem1p-depleted S. cerevisiae cells, which arrest
as large-budded cells as any other MEN mutant
in budding yeast, GTPase-depleted C. albicans
forms filaments that originate from large-
budded yeast cells, suggesting that the GTPase
Tem1 has an important, MEN-independent
function for filament induction (Milne et al.
2014). The hyphae generated in a Tem1-depleted
strain are binucleated and arrested in telophase
with an elongated spindle, indicating that the
MEN operates normally in these filaments and
that MEN deficiency blocks mitotic exit after
one round of nuclear division.

In contrast, the A. gossypii MEN has been
suggested to function as linear GTPase-coupled
bipartite kinase cascade, an assumption that was
based on common mutant defects of deleting
any MEN component (Finlayson et al. 2011).
However, in contrast to S. cerevisiae or C. albi-
cans, where the MEN controls mitotic exit at the
anaphase stage, A. gossypii MEN mutants are
enriched for metaphase nuclei, and thus the
MEN seems to function earlier in the cell cycle
of this organism. Also, cell cycle control is not
absolute, and the multinuclear status of the
hyphal compartments is maintained. As in C.
albicans, the A. gossypii MEN is also essential
for septum formation, and MEN mutants form
aseptate hyphae (Finlayson et al. 2011).

In summary, a common denominator for
the MEN in the three Saccharomycotina species
seems to be a central role in CAR constriction
but not CAR assembly. The regulation of the
MEN and a mechanistic basis for its importance
during septum formation in the filamentous
context has not been addressed.

The SIN in the Pezizomycotina models A.
nidulans and N. crassa functions as three-
leveled kinase cascade that is activated by an
upstream GTPase module as described for fis-
sion yeast. Deletion of any positive-acting SIN
component in either fungus results in aseptate
strains with no CAR formed, while no involve-
ment in cell cycle control has been described
(Bruno et al. 2001; Kim et al. 2006, 2009; Heilig
et al. 2013; Maerz et al. 2009). All SIN compo-
nents localize to the SPBs and—with the excep-
tion of the scaffold proteins and the upstream
kinase—to constricting septa (Heilig et al. 2013;
Kim et al. 2009). The N. crassa SIN components
accumulate at the cell cortex several minutes
prior to initiation of septum constriction, argu-
ing for their involvement in CAR assembly,
while CDC-7 is recruited to the forming septum
only after septum constriction had started (Hei-
lig et al. 2013, 2014). Similarly, the SidB-MobA
module of A. nidulans associates with con-
stricting septa (Kim et al. 2006, 2009), while
SepH does neither associate with forming nor
mature septum (De Souza et al. 2014).

Although the function of the SIN as linear
acting GTPase-coupled kinase device has origi-
nally been assumed for both fungi (e.g., Harris
2001; Seiler and Justa-Schuch 2010), recent data
suggest a more complicated network of kinases
(Fig. 3c, d). The N. crassa SIN acts as cascade of
three kinases, in which CDC-7 promotes the
activity of SID-1, which in turn activates DBF-
2 through hydrophobic motif phosphorylation
(Heilig et al. 2013). However, an additional
kinase, MST-1, acts in parallel to SID-1 and is
negatively regulated by interaction with CDC-7
(Heilig et al. 2014). A possible function of MST-
1 in fine-tuning the SIN may be achieved in the
generation of an incoherent type 4 feedforward
loop through the two, parallel functioning, but
oppositely regulated CDC-7/SID-1 and CDC-7/
MST-1 complexes that together control DBF-
2 activity. This rarely found regulatory motif
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may allow for adaptive and thus robust SIN
activity (Rodrigo and Elena 2011). This hypoth-
esis is supported by the phenotypic character-
istics of N. crassa SIN mutants, which revealed
less severe septation defects of sid-1 and mst-1
mutants compared to strains deficient for cdc-7
or dbf-2 (Maerz et al. 2009; Heilig et al. 2013,
2014). The biochemical data obtained in this
study also imply that the CDC-7/MST-1 com-
plex may function independently of the GTPase
SPG-1 (Heilig et al. 2014), a speculation that
requires further exploration.

Interestingly, MST-1 is also essential for sex-
ual development (Heilig et al. 2014), and
mutants in the Sordaria macrospora homolog
SmSTK24 was recently found to interact with
the STRIPAK (striatin-associated phosphatase
and kinase) complex (Bloemendal et al. 2012;
Frey et al. 2015). Although the N. crassa STRI-
PAK complex does not localize to septa and has
primarily been associated with nuclear-
cytoplasmic distribution of the cell wall integrity
MAP kinase MAK-1 (Dettmann et al. 2013), sev-
eral S. macrospora STRIPAKmutants form asep-
tate ascogonia (although vegetative septation is
normal (Bloemendal et al. 2010). It is tempting
to predict the involvement of the STRIPAK com-
plex at an early stage of sexual development in
the Pezizomycotina fungi. Intriguingly, the S.
pombe STRIPAK complex has also been asso-
ciated with regulating the SIN. This SIN-
inhibitory phosphatase (SIP) complex counter-
acts the positive feedback generated by Sid2-
dependent phosphorylation of Cdc11 by depho-
sphorylating the scaffold (Singh et al. 2011).

C. Coordination of Nuclear Behavior and
Septum Formation in Pezizomycotina Fungi

CAR assembly and septum formation are clearly
controlled through nuclear position and cell
cycle progression in A. nidulans (Harris et al.
1994; Wolkow et al. 1996). This may potentially
also apply to N. crassa, although the connection
between nuclear cycle and septum positioning is
blurred by its nuclear asynchrony (Plamann
et al. 1994; Minke et al. 1999; Seiler and Justa-
Schuch 2010). The recent finding that circadian
rhythms can synchronize mitosis via the N.

crassa homolog of the WEE-1 kinase (Hong
et al. 2014) might provide a platform for a
more detailed analysis. Septum placement was
originally proposed to depend on the position of
mitotic nuclei in A. nidulans (Momany and
Hamer 1997; Bruno et al. 2001; Harris 2001),
but detailed life imaging recently revealed that
the majority of septa formed at a position
corresponding to a location in between two
pairs of previously mitotic nuclei (Shen et al.
2014; Fig. 1c). Moreover, septum formation still
occurs when the microtubule cytoskeleton was
destroyed, indicating that initiation and comple-
tion of septation does not require microtubules.

Although we have currently no mechanistic
understanding concerning the coordination of
nuclear behavior and septation, a number of
candidate proteins/pathways have been ana-
lyzed, the most obvious being the SIN.
Although all components of the SIN localize to
SPBs in A. nidulans and N. crassa, no involve-
ment in controlling cell cycle progression has
been observed in either species during vegeta-
tive growth (Bruno et al. 2001; Kim et al. 2009;
Heilig et al. 2013, 2014). Moreover, in contrast
to the yeasts, where SPB association of the SIN/
MEN components is essential for activation of
the NDR effector kinase and the subsequent
recruitment of the NDR kinase-Mob1 complex
to the cell cortex for cytokinesis (Morrell et al.
2004; Rosenberg et al. 2006), SIN activation and
septum formation in A. nidulans and N. crassa
does not require SPB association (Kim et al.
2009; Heilig and Seiler, unpublished). This is
consistent with the observation that the A.
nidulans Polo kinase PlkA is not a central reg-
ulator of septum formation and has only a
minor function in cell cycle control (Bachewich
et al. 2005; Mogilevsky et al. 2012). Conse-
quently, activation of the SIN may not be
mediated through PlkA as established for the
MEN/SIN through the budding and fission
yeast Polo kinases Cdc5p and Plo1, respectively
(Ohkura et al. 1995; Song et al. 2000). Finally,
the two scaffold proteins SnaD and SepK (struc-
tural homologs of Sid4 and Cdc11 in S. pombe,
respectively) that are necessary to anchor SIN
components to the spindle pole body in A.
nidulans are not critical for septum formation,
and mutations in either scaffold only result in
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delayed septation (Kim et al. 2009). Thus, SPB
association of the SIN might modulate tempo-
ral aspects of septum formation, but details of a
mechanistic involvement of the SIN in coordi-
nating nuclear behavior with septation during
vegetative hyphal growth remain obscure.

Interestingly, it was recently shown that
SepH concentrates in the basal region of the
apical cells as cytosolic foci in addition to its
association with mitotic SPB in A. nidulans (De
Souza et al. 2014). Cytosolic SepH foci were
particularly prominent in periods preceding
septation and resulted in a preferential associ-
ation of SepH with the SPB of mitotic nuclei,
which were located distal from the tip. More-
over, SepH associated with SPB in a biphasic
manner first during mitosis and again during
the period of septum formation, suggesting
that the predominant-basal activation of the
SIN [if SPB-association can serve as marker for
SIN activity as described for fission yeast; (John-
son et al. 2012)] might help restricting SIN activ-
ity to the basal region of the tip cell to promote
asymmetric septation in A. nidulans. These
cytosolic foci were also observed for the N.
crassa homolog CDC-7 (Heilig et al. 2013, 2014)
but not for any of the other SIN kinases or
respective regulatory subunits in N. crassa
(Heilig et al. 2013, 2014; Dettmann et al. 2012)
or the SidB-MobA module in A. nidulans (Kim
et al. 2006, 2009). CDC-7 kinase activity is not
required for cytosolic clustering of the protein
and its association with SPBs in N. crassa, and
CDC-7 foci were more abundant when a kinase
dead version of CDC-7 was localized (Heilig
et al. 2014). No asymmetric localization of
CDC-7 was noticed in N. crassa, but only
mature hyphae were analyzed, in which fast
cytosolic flow rates likely had mixed any poten-
tial gradient of CDC-7 clusters. A potential
function of these cytosolic CDC-7 speckles
might be suggested by the co-purification of
the microtubule-organizing center (MTOC)
component NCU12004 (homolog of A. nidulans
ApsB and S. pombe Mto1) with CDC-7 yet with
none of the other SIN components in N. crassa
(Heilig et al. 2014). MT nucleation occurs pri-
marily at centrosomes/SPBs, but more diverse
types of cytosolic MTOC also exist. The
mechanisms for the generation of this MTOC
diversity are poorly understood, but it is essen-

tial for functional MT organization in fungi and
higher eukaryotes. Mto1/ApsB is central for
cytosolic MTOC assembly and function (Same-
jima et al. 2010; Lynch et al. 2014), and ApsB is
recruited to the septal pore through a
peroxisome-dependent pathway to form
septum-associated MTOCs (Veith et al. 2005;
Zekert et al. 2010). Intriguingly, CDC-7 locali-
zation around the mature septal pore in N.
crassa (Heilig et al. 2014) displays striking simi-
larities with the sepal pore localization of ApsB
and g-tubulin in A. nidulans (Zekert et al.
2010). Future analysis should therefore con-
sider the speculation that these cytosolic clus-
ters might represent non-SPB-associated
MTOCs.

Other candidate proteins that are involved
in coordinating nuclear behavior with septum
biology in A. nidulans are the cyclin kinase
NimXCdk1 and the NEK-family kinase NimA.
Septum formation depends on a threshold
level of activity of the NimXCdk1 (Harris 2001;
Harris and Kraus 1998; Kraus and Harris 2001).
How NimXCdk1 coordinates nuclear division
with septum in A. nidulans remains unresolved.
NimA functions as central regulator of multiple
stage-specific aspects of mitosis. Key functions
of NimA are chromatin condensation through
histone H3 phosphorylation and the partial
opening of the nuclear envelope though dis-
assembly of nuclear pore complex (De Souza
et al. 2000, 2004). NimA also has interphase-
specific functions such as regulating micro-
tubule dynamics and thus tip growth and was
shown to localize at the tip growth and micro-
tubule plus ends in a EB1-dependent manner
(Govindaraghavan et al. 2014). Important in the
context of septum formation is the recruitment
of NimA to the cell cortex prior to the initiation
of septum constriction (Shen et al. 2014).
Intriguingly, the fission yeast NimA homolog
Fin1 is activated for mitotic commitment by
phosphorylation through the NDR kinase Sid2
(Grallert et al. 2012; not to be confused with
Plo1-dependent activation of the SIN at mitotic
exit). In G2 phase, the Sid2-Mob1 complex acts
independently of other SIN components such
as the scaffold Cdc11 to control the timing of
mitotic entry, suggesting that Sid2 activation
does not occur at the SPBs. Although highly
speculative, activation and/or recruitment of
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NimA by SidB to cortical sites (primed by
unknown cues) might be involved in triggering
initiation of septum constriction. Moreover, in
contrast to other protein machinery required
for septum formation in A. nidulans such as
type II myosin MyoB (Hill et al. 2015), NimA is
maintained at the septal pore after septum con-
striction has terminated (Shen et al. 2014). It is
thus possible that NimA at this position con-
trols the regulated closure of septal pores in a
cell cycle-dependent manner in order to restrict
leakage of nuclear proteins into subapical com-
partments during the parasynchronous mitoses
of the nuclei present in the apical cell.

IV. Assembly and Regulation of the
Contractile Actomyosin Ring
(CAR)

A. CAR Assembly in Budding and Fission
Yeast

Significant advances have allowed establishing
the approximate spatiotemporal sequence of

events during assembly and constriction of the
CAR that drives cytokinesis in the two yeasts (Bi
and Park 2012; Pollard and Wu 2010). In fission
yeast, two independent but synergistic pathways
driven by the anillin-related landmark protein
Mid1 and the SIN control assembly of the CAR
(Pollard and Wu 2010, Bathe and Chang 2010,
Johnson et al. 2012; Fig. 4a). Interestingly, both
pathways are controlled by the Polo kinase Plo1.
This central cell cycle kinase is therefore exert-
ing spatial control through regulating Mid1
localization and is also providing the temporal
cue through regulation of SIN activity. Cortical,
Mid1-containing dots recruit class II myosin, the
formin Cdc12, and other components to form
medial nodes that allow F-actin nucleation early
in mitosis. Search-capture-pull-release interac-
tions between myosin and f-actin from distinct
nodes form a highly organized ring (Wu et al.
2006; Vavylonis et al. 2008; Laporte et al. 2011;
Lee and Wu 2012; Saha and Pollard 2012). Also,
actin filaments assembled by the formin
Cdc12 at nonmedial sites are transported to the
division site in a myosin-dependent manner and
are integrated into the maturing ring (Huang

Fig. 4 Spatiotemporal sequence of events that control
assembly and constriction of the CAR. (a) Two indepen-
dent, but synergistic pathways driven by anillin-related
landmark proteins and the SIN/MEN control assembly
and/or constriction of the CAR in budding and fission
yeast. SIN activity also inhibits the MOR network, which

is required for timely cell separation. (b) Unknown cues
initiate the formation of the septal actomyosin tangle
SAT in the Pezizomycotina fungi. SAT initiation, CAR
formation, and CAR constriction are regulated at various
levels by the anillin-Rho GTPase complex and the inter-
play of the SIN and MOR kinase networks
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et al. 2012). However, Mid1 nodes are not essen-
tial for CAR assembly, and mid1 mutants pro-
duce misplaced septa in the anaphase. This
indicates the presence of a second, SIN-
dependent pathway that is responsible for CAR
assembly in late mitosis (Huang et al. 2008;
Hachet and Simanis 2008; Roberts-Galbraith
and Gould 2008). Because sin mutants form
only a transient CAR that is instable, these data
suggest that the primary task of Mid1 is
providing positional information, while the SIN
is required for CAR maturation. Moreover, CAR
constriction also requires SIN activity.

The maturation of the CAR from cortical
nodes requires phosphorylation of several
independent targets by the terminal SIN kinase
Sid2. First, the recruitment of the F-BAR scaf-
fold protein Cdc15 to the medial region of the
cell is indirectly controlled by the SIN (Clifford
et al. 2008; Hachet and Simanis 2008; Roberts-
Galbraith et al. 2010). Interphase Cdc15 is phos-
phorylated at multiple sites that induces a
closed conformation of the protein and inhibits
its assembly at the division site. Activation of
the Cdc14 phosphatase Clp1 by the SIN effector
kinase Sid2 allows association of Clp1 with
Mid1 and dephosphorylation of Cdc15. This
induces an open conformation and oligomeri-
zation of Cdc15 that activates its scaffold func-
tion. Second, the SIN directly activates the
formin Cdc12 through Sid-2-dependent phos-
phorylation of a novel Cdc12 domain that con-
trols F-actin bundling and therefore a central
function of the formin during CAR maturation
(Bohnert et al. 2013). Importantly, this novel
Cdc12 function should not be confused with
the central function of formins in F-actin nucle-
ation, which is controlled through dimerization
of the FH2 domains (Xu et al. 2004). Although
is it clear that the SIN is also important during
septum constriction, the mechanism that trig-
gers initiation of CAR constriction and the spe-
cific functions of the SIN during constriction
are yet unknown (Johnson et al. 2012).

The molecular composition of the budding
yeast CAR is very similar to that of fission yeast
although the CAR components accumulate over
longer time periods (Luo et al. 2004; Shannon
and Li 2000; Wloka and Bi 2012; Balasubrama-
nian et al. 2004; Bi et al. 1998; Lippincott and Li

1998). One important difference between the
two yeasts is that the CAR assembles at the
bud neck only after the septin collar has formed
in response to the Bud3p-Bud4p-Axl2p land-
mark described earlier (Gladfelter et al. 2001;
McMurray and Thorner 2009). As discussed
before, the future septation site in the
filament-forming Saccharomycotina species A.
gossypii and C. albicans may be marked at the
hyphal tip as response of the reduced growth
rate triggered by subapical septum formation.
This apical landmark consists of Ashbya gossy-
pii Bud3 or the C. albicans Bud4 homolog Int1
and various septins in both fungi (Wendland
2003; DeMay et al. 2009; Gale et al. 2001). This
allows recruitment of proteins required for
CAR assembly, such as the F-BAR protein
Hof1 (homolog of S. pombe Cdc15), type II
myosin, and the IQGAP protein Cyk1 to form
cortical filaments or “bars” within 5–10 mm of
the hyphal tip, which are subsequently trans-
formed into a subapical cortical ring as tip
growth proceeds (DeMay et al. 2009; Helfer
and Gladfelter 2006; Kaufmann and Philippsen
2009).

B. CAR Assembly in the Pezizomycotina

The CAR is also a key constituent of the cytoki-
netic machinery required for septum formation
in the Pezizomycotina fungi (Seiler and Justa-
Schuch 2010; Berepiki et al. 2011). The dynam-
ics of the actin cytoskeleton during septum
formation has recently been addressed using
Lifeact (a marker for labeling f-actin in living
cells; Riedl et al. 2008) in N. crassa (Delgado-
Alvarez et al. 2010, 2014; Berepiki et al. 2010). A
prominent tangle of actin filaments, the septal
actomyosin tangle (SAT), occurs 3–4 min prior
to the formin BNI-1 and the anillin BUD-4 at
sites of future septum formation. Thus, formin-
and anillin-dependent f-actin nucleation and
organization seems to be of minor importance
for SAT formation, while the appearance of
BUD-4 and BNI-1 coincides with maturation
of the CAR from the SAT (Fig. 4b). Another
striking observation is that the SAT may pri-
marily be generated by transferring existing
filaments from established subapical septa to
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the future site of septation. It is currently
unclear if this transfer is based on treadmilling
of filaments or on myosin-dependent transport
of f-actin.

Moreover, a cortical double ring of patches
consisting of components of the Arp2/3 com-
plex, fimbrin and coronin, appear after the coa-
lescence of Lifeact-GFP-labeled cables into a
sharp ring, a few seconds before the membrane
contraction begins and disappear after CAR
contraction has terminated (Delgado-Alvarez
et al. 2010, 2014; Echauri-Espinosa et al. 2012;
Upadhyay and Shaw 2008). These patches are
likely part of the endocytosis machinery that
may contribute to membrane remodeling and
recycling of supernumerary cell wall enzymes.

Several models are currently discussed that describe the
transition from cortical Mid1-containing nodes into the
mature CAR in fission yeast (Bathe and Chang 2010;
Pollard and Wu 2010; Laporte et al. 2011), a process
that seems to correspond to the SAT-CAR transition
described for N. crassa. These models are non-exclusive
and primarily differ in the number and distribution of
f-actin nucleating formin assemblies and how the de
novo generated filaments coalesce into a stable ring. A
recent study also reported that pre-existing f-actin fila-
ments can be recruited in a myosin-dependent manner
to cortical actin nodes (Huang et al. 2012). This is
consistent with the results obtained in N. crassa and
analogous findings in animal cells (Chen et al. 2008b;
Zhou and Wang 2008), supporting the hypothesis that
de novo formin-dependent f-actin assembly at the divi-
sion site and transport of pre-assembled filaments can
contribute to CAR assembly in all eukaryotes. However,
the relative contribution of the two actin populations
may vary in the different systems.

C. Crosstalk Between the SIN and the MOR
Pathways for CAR Regulation

Another fundamental mechanism by which the
fission yeast SIN promotes CAR maturation is
the inhibition of a competing polarity pathway
called the MORphogenesis network, which is
required for actin organization at cell ends dur-
ing polarized growth (Gupta and McCollum
2011; Ray et al. 2010). The MOR (called RAM
in budding yeast) represents a second Dbf2-
related kinase network with an organization
similar to that of the SIN (Nelson et al. 2003;
Kanai et al. 2005; Das et al. 2009). To promote

tip growth, actin is confined to the cell ends
where it is required for cell wall deposition. As
cells enter mitosis, actin relocates to site of cell
division to form the CAR. Since, both processes
involve restructuring of the actin cytoskeleton,
coordination is presumably important to keep
competing actin polarity programs from inter-
fering with each other. Thus, mutual antagonis-
tic function of the SIN and MORphogenesis
network is required to coordinate cell growth
and division. Inhibition of the MOR is achieved
by the SIN effector Sid2, which phosphorylates
the MOR kinase Nak1 and the Nak1-associated
protein Sog2 in order to block interaction of
Nak1-Sog2 with the scaffold protein Mor2
(Gupta et al. 2013). Moreover, the upstream
SIN components Cdc7 und Sid1 control and
enhance MOR activity in the subsequent inter-
phase after cell division by an unknown mech-
anism (Kanai et al. 2005).

Tip growth and septum formation occurs
simultaneously in filamentous fungi, which
requires differential regulation between both
NDR kinase pathways (Fig. 4). The localization
of N. crassa SIN components at the time of SAT
to CAR transition suggests the involvement of
the SIN in the maturation of a functional CAR
(Heilig et al. 2014). A key function of the MOR
network in molds seems to inhibit septation
initiation (Maerz and Seiler 2010). N. crassa
MOR mutants produce hyperseptated hyphae,
while hyperactivation of the MOR resulted in a
reduced septation index (Yarden et al. 1992; Ziv
et al. 2009; Seiler and Plamann 2003; Seiler et al.
2006; Maerz et al. 2009). Because the N. crassa
MOR components do not associate with SPBs
(Maerz et al. 2012; Dettmann et al. 2012; Heilig
et al. 2014), inhibition of septation initiation by
the MOR likely occurs in the cytosol. A second,
presumably late function of the MOR during
septation might be indicated by the recruitment
of all MOR components to the forming septum
after initiation of CAR constricting has started
(i.e., 2–3 min later than cortex recruitment of
the SIN kinase DBF-2; Heilig et al. 2014, Maerz
et al. 2012). Such a late function of the MOR is
also supported by the analysis of conditional
mutants in the MOR effector kinase COT-1,
which produce thickened septa and altered sep-
tum when grown at restrictive conditions
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(Gorovits et al. 2000). These data suggest mul-
tiple functions of the MOR in regulating septa-
tion initiation and biogenesis of the septum
wall in molds.

In line with the opposite functions of the
SIN and the MOR during septation, multilevel
cross talk between both networks has recently
been determined in N. crassa (Heilig et al.
2014). The SIN kinase MST-1 regulates the
MOR and the SIN both in an enzyme-
dependent and -independent manner. MST-1
phosphorylates and activates both the MOR
and SIN effector kinases, COT-1 and DBF-2,
respectively, by hydrophobic motif phosphory-
lation. In addition, heterodimerization of the
two germinal center kinase MST-1 and the
MOR kinase POD-6 inactivates both kinases.
An analogous mutually inhibitory interaction
occurs between the two NDR kinases DBF-
2 and COT-1, which can also form heterodi-
mers. A putative mechanism for kinase inacti-
vation is based on the observation that NDR
kinase heterodimerization requires the same
protein regions that are required for interaction
with their activating MOB protein subunits.
Moreover, the kinase-kinase and kinase-MOB
interactions were found to be mutually exclu-
sive, and kinase heterodimerization therefore
resulted in the displacement of the regulatory
subunit and consequently kinase inactivation
(Heilig and Seiler; unpublished data).

V. Cell Wall Biogenesis and Cell
Division

A. Cell Wall Biogenesis

CAR constriction is coupled with membrane
invagination and secretion of membrane-
bound cell wall biosynthetic enzymes that
build the extracellular septum. Simultaneously,
endocytic recycling of supernumerous compo-
nents (enzymes, membrane, etc.) accompanies
septum development. The major enzymes
involved in cell wall formation are chitin and
glucan synthases (Lesage and Bussey 2006; Free
2013). Chitin (linear chains of b-1,4-linked N-
acetylglucosamine molecules) is synthesized by
a multifamily group of enzymes that can be

grouped into seven classes of chitin synthases
(ChS; Riquelme and Bartnicki-Garcı́a 2008).
Most Pezizomycotina fungi have single genes
for each of the seven reported classes of ChS,
while yeasts have a more restricted set of ChS
genes. Class II ChS functions as the major
enzyme for synthesizing the primary septum
in budding yeast (Chs2p; Schmidt et al. 2002)
and in C. albicans (Chs1; Munro et al. 2001;
Walker et al. 2013), while the other ChS in the
Saccharomycotina are involved in the biosyn-
thesis of the general cell wall and in repair
functions (Lesage and Bussey 2006). Although
the three-layered septum structure is also
described for fission yeast, its primary septum
is mainly composed of b-1,3-glucan (Humbel
et al. 2001; Sugawara et al. 2003). The secondary
septum in both yeast models and in C. albicans
is built by several layers of b-1,3-glucans and
mannoproteins (Lesage and Bussey 2006; Hum-
bel et al. 2001; Sugawara et al. 2003).

Despite considerable effort in the cell wall
analysis in the Pezizomycotina fungi (Free 2013;
Latge and Beauvais 2014), the composition and
biosynthesis of their septal walls is still poorly
understood. Chitin has been shown to be the
major component of the N. crassa septum
(Hunsley and Gooday 1974). The specific local-
ization of CHS-2 (class II) at the constricting
rim of the developing septum (in addition to its
localization at the tip growth) in N. crassa is
consistent with a general function of class II
ChS in primary septum formation (Fajardo-
Somera et al. 2015). The remaining six N. crassa
ChS localize along the entire septal plate, sug-
gesting a function of these enzymes in remodel-
ing the primary septum and/or synthesizing
additional layers that form the secondary sep-
tum (Fajardo-Somera et al. 2015).

Regulation of primary septum formation is
best understood in budding yeast. The MEN
promotes cytokinesis by influencing multiple
pathways involved in CAR constriction and
septum formation. For instance, the MEN is
involved in targeting the chitin synthase
Chs2p to the bud neck (Meitinger et al. 2010)
and also directly regulates the late cytokinetic
components Hof1p and Inn1p, two PCH pro-
teins which are homologs of the S. pombe Cdc15
(Sanchez-Diaz et al. 2008; Nishihama et al.
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2009; Meitinger et al. 2010, 2011). Chs2p is held
in an inactive state in the endoplasmatic reticu-
lum by phosphorylation through Cdc28p/CDK1
that blocks its interaction with the COPII com-
ponent Sec24p and sorting into COPII vesicles
(Chuang and Schekman 1996; Zhang et al. 2006;
Meitinger et al. 2010; Teh et al. 2009; Jakobsen
et al. 2013), while MEN-controlled dephosphor-
ylation by Cdc14p allows Chs2p to enter the
secretory pathway (Chin et al. 2012).
Subsequent inactivation of Chs2p is achieved
through phosphorylation by the MEN effector
kinase Dbf2p (Oh et al. 2012).

The second major component of the fungal
cell wall is b-1,3-glucan. Its synthesis is cata-
lyzed by membrane-bound b-1,3-glucan
synthase complexes, which consist of the cata-
lytic FKS and regulatory Rho1 GTPase subunit
(Mazur and Baginsky 1996; Beauvais et al.
2001). Both yeasts have multiple, partially
redundant FKS genes, and glucan synthesis is
essential for viability. This is also the case for
the dimorphic Saccharomycotina species C.
albicans (Munro 2013). Most Pezizomycotina
fungi have only a single FKS gene. Although
all components of the b-1,3-glucan synthase
complex as well as putative regulators localize
to sites of polar growth at hyphal tips, emerging
branches and along septa in N. crassa and other
molds (Vogt and Seiler 2008; Verdin et al. 2009;
Richthammer et al. 2012; Sanchez-Leon and
Riquelme 2015), b-1,3-glucan synthesis is not
essential in A. fumigatus (Dichtl et al. 2015),
suggesting compensatory functions by other
cell wall components in the Pezizomycotina
fungi.

B. Septum Formation and Cell Division During
Fungal Development

Premature activation of the fission yeast MOR
(e.g., by misregulation of the SIN) results in
inappropriate septum degradation and conse-
quently cell lysis (Gupta et al. 2014). Degrada-
tion of the primary septum to trigger cell
separation is initiated by RAM-dependent acti-
vation of the transcription factor Ace2p that
controls the expression of Cts1p and Eng1p,
the major cell wall-degrading chitinase and glu-

canase, respectively (Dohrmann et al. 1992;
Colman-Lerner et al. 2001; Weiss et al. 2002).
C. albicans Ace2 mutants also display cell sepa-
ration defects (Kelly et al. 2004), and, conse-
quently, transcription factor function is
inhibited by the filament-inducing transcrip-
tion factor Efg1 in order to inhibit cell separa-
tion after septum formation in hyphae (Wang
et al. 2009; Saputo et al. 2014). Budding yeast
Ace2p has a paralog, Swi5p, a transcription
factor that is primarily involved in cell cycle
regulation. Therefore it is currently unclear, if
the Pezizomycotina fungi have a functional
homolog of budding yeast Ace2p. In addition,
we have no data that indicate transcriptional
regulation by the MOR during tip growth in
these fungi, and thus it remains open, if tran-
scriptional regulation impacts vegetative sep-
tum formation in the Pezizomycotina clade.

Asexual sporulation (conidium) in the Pezi-
zomycotina fungi involves the formation of
conidia, formed on specialized structures called
conidiophores. This is, in principle, achieved
by two distinct sporulation patterns exempli-
fied by A. nidulans and N. crassa, respectively
(Park and Yu 2012). During basipetal sporula-
tion the spore forms at the base of a chain and
pushes the older cells of the conidial chain away
from the spore-forming region, while the
acropetal sporulation pattern refers to the fact
that the most recently formed spore is at the tip
of a chain of spores. Thus, the machinery
required for septum formation and cell division
must be targeted accordingly. Conidiation in
molds is analogous to cell separation in the
unicellular yeasts and requires full cell separa-
tion through a multilayered cell wall, which is
followed by the digestion of the primary cell
wall material between two completely formed
secondary septum to release mature spores
(Springer and Yanofsky 1989; Adams et al.
1998). Consequently, all A. nidulans and N.
crassa mutants of currently characterized pro-
teins required for septum formation in vegeta-
tive hyphae are also aconidiate (Rasmussen and
Glass 2005; Maerz et al. 2009; Justa-Schuch et al.
2010; Dvash et al. 2010; Heilig et al. 2013; Bruno
et al. 2001; Kim et al. 2006, 2009; Si et al. 2010).
We have very limited mechanistic insights how
the cell division machinery is reprogrammed
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during the two basic developmental cell division
patterns observed in molds. It has recently been
shown that the A. nidulans homolog of the bud-
ding yeast axial bud-site landmark component
Axl2p has no obvious role during vegetative
growth (Si et al. 2012). Axl2 is specifically
required for the regulation of phialide morpho-
genesis during conidium, where it appears to
promote the recruitment of septins, and Axl2
mutants fail to produce the long chains of con-
idium. Consistently, Axl2 specifically localized to
the phialide-spore junction, implying Axl2 as
landmark for reorientation of the division pat-
tern from acropetal growth during phialide for-
mation to basipetal growth during sporulation
(Si et al. 2012).

All fungal and animal anillin (with the
exception of the S. pombe landmark Mid1)
interact with the septin scaffold. However, the
timing of this interaction and its importance for
cell division varies between the different fungal
groups (Fig. 5). In vegetative A. nidulans, A.
fumigatus, and N. crassa hyphae, the septin
play only a minor role during septum forma-
tion, and the three fungi form proper septa
when any of the five septin genes is deleted
(Lindsey et al. 2010; Hernandez-Rodriguez
et al. 2012; Berepiki and Read 2013; Vargas-
Muniz et al. 2015). In contrast, septin deletion
strains of both Aspergilli result in major defects
in conidiophore development. Similarly, N.

crassa core septin deletion mutants produce
chains of unseparated conidium (Berepiki and
Read 2013). In summary, these data are consis-
tent with a late-acting function of the septins
during cell separation, which—in molds—is
suppressed during vegetative growth.

Intriguingly, splice variants of C. albicans
transcription factor have recently been asso-
ciated with RAM/MOR-dependent coordina-
tion of septin dynamics and regulation of the
incorporation of the Sep7 septin into hyphal
septal rings in order to avoid cell separation
(Calderon-Norena et al. 2015). Thus, septin
dynamics during conidial development in
molds may also be regulated through NDR
kinase signals. Mutants, in which the activity
of the MOR effector kinase COT-1 is reduced,
result in conidial separation defect (Ziv et al.
2009), indicating that the MOR functions dur-
ing developmental cell separation in molds as
described for vegetative cell separation in the
two yeasts. Interestingly, an A. fumigatus Ace2
mutant displayed pleiotropic defects that were
primarily associated with conidium morpho-
genesis and resulted in reduced amounts of
generated conidial with highly thickened conid-
ial walls (Ejzykowicz et al. 2009). Thus, MOR-
dependent transcriptional regulation might be
inhibited during vegetative growth to inhibit
cell separation but is induced during the devel-
opmental program.

Fig. 5 Putative relationships between anillin-Rho GTPase
complexes and the septins. (a) The interplay between the
septins and the Bud3/4p-Cdc42p complex regulates bud-
site selection in budding yeast. (b) A similarMid2-Rho3/4
complex functions at a late stage of cell division to trigger
cell separation in fission yeast. In addition, Mid1 has a

unique function during septum placement in S. pombe.
(c) The Bud3/4-Rho4 complex is important for CAR
formation during vegetative growth of A. nidulans and
N. crassa hyphae. The septins play only a minor role at
this stage of the life cycle yet become critical for cell
separation during asexual development
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Sexual development is also affected in sep-
tum mutants. For example, N. crassa mutants
are female sterile and do not form protoper-
ithecia (Rasmussen and Glass 2005; Maerz et al.
2009; Justa-Schuch et al. 2010; Heilig et al.
2013). Moreover, homozygous crosses of sep-
tum strains, in which the female partner has
been sheltered by a helper strain, are barren
and produce very few ascospores. Interestingly,
no septa are formed in ascogenous hyphae in
these mutants, indicating multiple develop-
mental defects of theses strains (Rasmussen
and Glass 2005; Maerz et al. 2009). In budding
yeast and fission yeast, the SIN has recently
been shown to be dispensable for progression
through meiosis but required for subsequent
spore wall formation and ascospore morphol-
ogy (Krapp et al. 2006; Attner and Amon 2012).
Similarly, N. crassa SIN mutants produce few
but giant ascospores containing all eight nuclei
derived from the two meiotic and one mitotic
divisions (Raju and Newmeyer 1977; Freitag
et al. 2004; Maerz et al. 2009; Heilig et al.
2013). However, these nuclei are then enclosed
in a single giant ascospore, supporting an
essential function of the SIN during cross wall
formation in vegetative cells and during the
formation of asco- as well as conidiospores in
unicellular and filamentous ascomycetes.

C. Septal Pore-Associated Functions in
Filamentous Ascomycete Fungi

The septa of most Pezizomycotina species are
perforated by simple pores of 350–500 nm in
diameter, which allow nuclei, organelles, and
cytoplasm to move between compartments
(Hunsley and Gooday 1974; Mourino-Perez
and Riquelme 2013). However, the mechanisms
that terminate CAR constriction and incom-
plete cell separation are virtually unexplored.
The development of certain animal tissues also
requires incomplete cytokinesis and the forma-
tion of syncytia—a process that is very poorly
understood. For instance, in many species,
including humans, germ cells remain
connected by intercellular bridges, which are
required for germ cell development, and their
absence results in infertility (Haglund et al.

2011). The robust genetic and cell biological
tractability of filamentous fungi thus provides
an unparalleled opportunity to determine
mechanisms that control complete versus
incomplete cytokinesis and the regulated gating
of intercellular bridges/septum pores.

The presence of septa is essential for main-
taining colony integrity after hyphal injury by
rapid plugging of septal pores through
peroxisome-derived Woronin bodies (Jedd and
Chua 2000; Pieuchot and Jedd 2012). Moreover,
the structure and composition of the septum and
the connectivity status of septum in filamentous
ascomycotina fungi varies within the developing
mycelium. This allows age-dependent plugging
of interior regions of the colony (e.g., inN. crassa:
Trinci and Collinge 1973; Hunsley and Gooday
1974) and can establish cellular heterogeneity
(e.g., in A. niger: de Bekker et al. 2011; Vinck
et al. 2011; Wosten et al. 2013). Moreover,
dynamic pore closure can be important to sepa-
rate mitotically active versus inactive compart-
ments (e.g., in A. nidulans: Shen et al. 2014) or to
compartmentalize communicating regions
within the colony (e.g., in N. crassa: Dettmann
et al. 2014; Jonkers et al. 2014). How pore closure
is regulated and which components are involved
is poorly understood. Key candidate proteins
that are likely involved in this process in varying
composition are HEX-1-derived Woronin bodies
(Beck et al. 2013), the SOFT protein, which is also
involved in cell-cell communication and has
recently been identified as scaffold of the cell
wall integrity MAP kinase pathway (Fleissner
and Glass 2007; Teichert et al. 2014) and a set of
septum-associated intrinsically disordered pro-
teins (Lai et al. 2012; Shen et al. 2014). How
trafficking of growth-associated factors such as
small secretory vesicles toward the tip growth is
affected by pore closure is unknown. It also
remains possible that more selective transport
is still allowed although the pore is closed for
bulk transport. In this context, it is also worth
noting that a microtubule-organizing center
associates with the septum pore in A. nidulans
(Veith et al. 2005; Zekert et al. 2010; Takeshita
and Fischer 2011), which may promote such
intercompartmental transport in addition to its
implication as component of a speculative cell
size-sensing mechanism discussed in Sect. II-B.
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VI. Conclusions and Perspectives

Although septum formation is essential for cell
proliferation and fungal development, many
important questions remain to be addressed.
Of particular importance is the identification
of signals that determine septum placement in
a syncytial compartment. Do specific land-
mark proteins exist? Are nuclear and cell
end-dependent signals involved? What is the
function of sMTOCs in this context, and do
MTs have any role in sensing of the apical
cell size and site selection for septum place-
ment? A second battery of questions involve
the regulation of the actin cytoskeleton: how is
SAT formation regulated, and what is the rela-
tive importance of de novo f-actin nucleation
versus assembly of preformed filaments origi-
nating from previously formed septum? What
is the trigger for CAR constriction and how is
CAR constriction terminated? Third, how is
polar tip growth and subapical septum forma-
tion regulated, if both processes coexist in the
filament but depend on the same growth
machinery? Forth, why do so many (unrelated)
signaling modules associate with the mature
septal pore, and how is cell-cell connectivity
regulated? Finally, we need to understand how
these basic processes are remodeled during
fungal development and multicellular differ-
entiation. The answers to these questions will
require comparative approaches, and the
acknowledgement that yeast and filamentous
lifestyles have reused conserved molecular
modules in different contexts. In the long
term, this will not only improve our under-
standing of septum formation in vegetative
hyphae but also of cell differentiation during
ascomycete development and will shed light
on the evolutionary consequences of cell com-
partmentalization when compared to other
fungal phyla such as the aseptate zygomycetes
or the basidiomycetes that generate highly
complex septa.
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