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1 Introduction

Water is one of the most vital bases for the living system and is used in daily life
activities. Due to rapid industrial growth, natural water resources are affected by
several water pollutants. The World Health Organization (WHO) 2014 report on
water supply and sanitation estimated that 748 million people still lack safe
drinking water, 2.5 billion peoples without access sanitation and 3900 children die
every day due to poor quality water and communicable diseases [1]. These statistics
indicated that water pollution by numerous pollutants becomes an alarming issue
worldwide. Consequently, competent water treatment technologies have been
established to raise the potential of water resources and to decline the challenges
and concerns associated with water pollution. In this regard, nanocomposite has to
play a significant role in the water purification technology including potable water
treatment, wastewater desalination, and treatment in order to deliver the real
technology to clean water at a lower price using less energy by decreasing further
ecological impacts.

Nanomaterials are materials which have the structural components sized from 1
to 100 nm [2]. They have unique properties when compared with other conven-
tional materials, such as mechanical, electrical, optical, and magnetic properties due
to their the small size and higher specific surface area, nanomaterials [2]. In recent
years, nanomaterials have been effectively applied to numerous perspectives as
catalysis [3], medicine [3], sensing, and biology [4]. They have extensive appli-
cations to prevent several environmental problems like water and wastewater
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treatment. Because, nanomaterials have the potential to eliminate different toxins,
for instance, heavy metals, organic pollutants, inorganic anions, and pathogens [5].
Zero-valent metal nanoparticles (nZVI), metal oxides nanoparticles, carbon nan-
otubes (CNTs) and nanocomposites are the most recent appropriate nanomaterials
for water and wastewater treatment [6].

The nZVI is one of the most useful nanomaterials for water purification [7–9].
The nZVI has a role in water purification as an electron subscriber which
encourages the conversion toxic metals to safe forms (the reduction of chromium
from hexavalent into trivalent form), adsorption, co-precipitation processes and
strong reducing ability [10]. The nZVI has discovered real application for elimi-
nating various organic and inorganic pollutants such as polychlorinated compounds
[11, 12], Nitrates, phosphates and perchlorates [13, 14], nitroaromatic compounds
[15], organic dyes [16], phenols [17], heavy metals [18], metalloids [19], and radio
elements [6, 20].

Other nanoparticles like silver (Ag), titanium oxide (TiO2), zinc oxide (ZnO),
iron oxides and CNT are applied in water treatment technology. Silver nanoparti-
cles (AgNPs) are very noxious to microbes and hence have solid antibacterial
effects for an extensive variety of microorganisms (viruses, bacteria, and fungi)
[21]. AgNPs are the promising antimicrobial agents, which have been extensively
used for water disinfection [21]. AgNPs have the removal potential for bacteria’s
like methicillin-resistant Staphylococcus aureus, ampicillin resistant E. coli, a
common water contaminant, erythromycin resistant Streptococcus pyogenes and
vancomycin-resistant Staphylococcus aureus [22], Pseudomonas aeruginosa,
Vibrio cholera [23], Bacillus subtilis [24]. There are different ways of Nanosilver
disinfection mechanisms such as the interaction of AgNPs with DNA, altering the
membrane and altering the enzymatic activity and thus destroy it [25–28], the
dissolution of AgNPs that able to react through the thiol sets of enzymes disable,
and interrupt usual services the cell [29].

In nanocomposites (NCs), there is no a previous documented review of their
application in water and wastewater treatment perspectives. NCs are formed
through the combination of more than two materials having various physical and
chemical properties and unique interface [28], [30]. Composites have many
advantages than other compounds due to their unique characteristics such as high
durability, high rigidity, high strength, gas-barrier features, corrosion resistance,
low density, and heat resistance. The combination of the matrix (continuous phase)
and the reinforced materials (dispersed) is knowns as composite materials. They are
materials of the 21st century which are multiple phase materials a minimum one of
the phase’s displays sizes from the range 10–100 nm [31]. Todays, NC materials
have developed as appropriate choices to overwhelmed restrictions of various
manufacturing tools. NCs have wide practice in various fields such as life sciences,
drug distribution schemes, and wastewater treatment. In NCs, the nanoparticles
were merged within diverse functionalized materials like multiwall CNT, activated
carbon, cheap graphene oxide, and polymeric media. NCs have a number of
application in the area of food packaging [32–34], anti-corrosion barrier protection
[31], biomedical [31, 35] and coating [36]. This chapter focuses on the exciting NC
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types and their current application in water purifications. Besides, the future per-
spective of nanocomposites in water treatment also addressed.

2 Conventional Water Purifications Technologies

Surface water (spring, rivers, and lakes) and unconventional water resources (which
are not available for direct use. For example, wastewater, seawater and brackish
water) are the major universal water resources potentials [37]. Globally, the upsurge
in industrialization and urbanization with a quick population growth and weather
change contributes to the pollution of freshwater resources [38–40]. Table 1 shows
the available conventional water purification technologies such as coagulation and
flocculation, air flotation and advanced oxidation processes. These methods are
very quiet in removing the contaminants efficiently. However, these methods
possess several challenges related to the formation of either secondary pollution or
higher energy requirement. Therefore, a massive attention should be given to the
improvement/innovation of technologies having ecologically friendly, low energy
consumption and economical feasible treatments perspectives applicable to the
feasible water sanitization systems. To meet the demand for clean water standards,
many authors have been focused on the suitable and economically viable water
purification approaches including water remediation, reclamation, and desalination
[41].

Table 1 Water purification methods [24, 41]

Water purification
technologies

Contaminate removed

Coagulation and
flocculation

Turbidity, dissolved organic carbon, bacteria and chemical
contaminants such as cyanide compounds, phosphorus, fluorides,
arsenic etc

Boiling Kill the bacterial cultures

Distillation To destroy microbial cells and unwanted chemicals such as calcium,
lead, magnesium

Ultraviolent treatment Can achieve disinfection of about 99.99%

Ultrasound Damage cellular structures of bacteria

Ozone It is effective in eradicating tastes, odour, colour, iron, and
manganese; and not affected by pH and temperature

Chlorine Kills several waterborne pathogens

Catalytic process Applied to breakdown down an extensive diversity of organic
materials like organic acids, estrogens, pesticides, dyes, crude oil and
microbes

Bioremediation Eradicating heavy metals, organic toxins, pesticides and dyes by
plant extracts and microbes.

Application of Sustainable Nanocomposites for Water … 389



3 Types of Nanocomposites and Its Application
in Water Purification

The use of nanoparticles in water management has associated with some practical
problems, such as accumulation, tough separation, drainage into the contact water,
possess environmental and human health [30]. One capable approach to improve
the application of nano-particulate materials is to develop NC materials that take
advantages of both the hosts and impregnated nanoparticles (Fig. 1) [42]. NCs have
the potential to mitigate the discharge of nanoparticles into the environment, and
improves the suitability of nanotechnology with current infrastructures. The NCs
are essentially multiphase solid material, including porous media, colloids, gels, and
copolymers in a broad sense. The selection of hosts for nanocomposites is of great
significance, and even dominates the performance of the resultant nanocomposites.
Compared with free nanomaterials, the performance and usability of nanocom-
posites were significantly improved, in terms of nanoparticle dispersion, stability,
and recyclability. Hence, nanocomposite materials could bond the gap between
nanoscopic and mesoscopic scale. Till now, nanocomposites were believed to be
the most likely way to forward water nanotechnology from laboratory up to the
large-scale applications [41].

3.1 Metal Nanocomposite

Polymer-supported nanosilver has recognized antibacterial properties of poly-
urethane and cellulose acetate impregnated nanosilver-fiber composites have good
inhibition activity for Gram-positive and negative bacteria. The dispersion

Fig. 1 Application of nanocomposite for water purification [42]
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nanoparticle in polyurethane foam has gained effective antibacterial filters [43].
Once announced in polymeric membranes, a decrease of biofouling as well as good
pathogen eradication efficiency was perceived. Nanosilver was also used in the
making of economical1y feasible microfilters for handling drinking water which is
mainly preferred in unreachable regions [44].

Silver-alginate composite beads were effectively prepared using three different
methods. Specifically, the adsorption-reduction (AR), hydraulic retention time
(HRT) and simultaneous gelation-reduction (SGR) composite beads were talented
to succeed a disinfection effectiveness for portable water purifying. Those
Composite beads equipped using diverse methods were established effective
cleaning in the E. coli to various degrees. Both SGR and the AR beads confirmed
equivalent disinfection efficiency but, the SGR beads released knowingly more Ag
than the AR beads fix, indicating that the SGR beads may have a higher lifespan
than the AR beads without losing sterilization success. These results weight the
significance of improving the synthesis method in yielding material configurations
that lead to the essential physical properties of numerous aspects [45].

The synthesized novel NC containing AgNPs and mesoporous alumina have
been used for the elimination of dye compounds like methyl orange, bromothymol
blue, and reactive yellow from synthetic waste. The results display that the silver/
mesoporous alumina nanocomposite (Ag/OMA NC) was noble adsorbent for the
elimination of anionic dyes from aqueous solution, and also this NCs had an
antibacterial activity against both Gram-negative and Gram-positive bacteria [46].

The addition of AgNPs and Moringa oleifera seed powder were improved
graphene structure which improves the removal efficiency of pollutants from liquid
industrial waste like textile, tannery, and paper mill. The adsorption study of the
adsorbents clearly revealed that the graphene loaded with AgNPs and seed powder
of Moringa. oleifera composite (GAM) designated superior results compared to
normal adsorbents due to the configuration of GAM sorbent which is recognized by
the high surface area, biocidal action, adsorption activity AgNPs, and coagulation
property of Moringa oleifera. Thus motivated the composite to be novel, eco-
nomically feasible, and environmental suitable and promising adsorbent for water
treatment [47].

Bimetallic nanocomposites supported on carbon are of great interest. Carbon
supported bimetallic nanoparticles have reduced surface area which enhances their
properties to a large extent. Nowadays, Water pollution is crucial problem happen
due to existence contaminates like chemicals, microbes (fungi, bacteria, and virus)
in water by human activities. Nanotechnology offers an alternative to the water
purification. The bimetallic nanoparticles like ruthenium-palladium are used as
reinforce to develop NC on the surface carbon matrix which had successfully
helped in wastewater treatment having perchlorate as the main pollutant [31].
Others like, NCs of Au/Pd nanoparticles reinforced on TO2 have been synthesis by
microemulsion means and being used as an efficient photocatalyst due to their high
light absorption ability. Bimetallic NCs of Fe/Ni-K have the capacity to remove
DBG from the wastewater. The degree of eliminating DBG in the NC (Ni/Fe-K) is
greater than that of separate kaolin and the bimetallic nanoparticles (Ni/Fe) [31, 48].
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3.2 Metal Oxide Nanocomposite

The Metal oxide nanocomposite (MONC) are often used as adsorbents, photocat-
alyst, and devices to challenge environmental pollution problems. MONC are used
merging with graphene, silica, other oxides, carbon nanotube (CNT), polymers for
the removal of various organic and inorganic of pollutants [49]. Currently, removal
of organic pollutants from wastewater is one of the most significant alarms in water
pollution control. In last decade, the interest in solving global water pollution by
means of photocatalysis is increased rapidly using metal oxide nanoparticles (TiO2

and ZnO). However, the use of basic TiO2 and ZnO nanoparticles are limited
because of their extensive band gap and the high recombination rate of photo
produced charges. Coupling is developing an approach to increase the destroying
degree of organic contaminants under visible light conditions. MONC provide a
current technique to modify the properties of semiconductor metal oxide photo-
catalyst through encouraging charge transfer processes and improving charge
separation [50].

The alumina composite reinforced by CNTs was produced by rising CNT above
Fe and Ni-doped energetic alumina. The composite was influenced by numerous
factors able to initiated high capacity synthesis which is factors includes activated
alumina, CNT, amorphous carbon and various surface functional groups such as
carboxyl, carbonyl and hydroxyl present in the clusters [51]. Ihsanullah et al. [52]
deliberated that the consequence CNT/Al2O3 for actual elimination of chlorophenol
and phenol from aqueous solutions. Alumina ornamented onto the exterior of
multi-well carbon nanotube (MWCNT) was an inspiring adsorbent for immediate
removal of Cd+2 and trichloroethylene (TCE) from poisoned groundwater.
Electrostatic interactions, the hydrogen bond interactions and the protonation or
hydroxylation of Al2O3 are the adsorption mechanism of Al2O3/MWCNTs to
remove Cd+2 and TCE from the polluted water Fig. 2 [53, 54].

TiO2 is the new greater type of composites based Metal oxide. TiO2 nanocom-
posite has received more attention in water purification due to its nontoxicity, and the
ability for the photo-oxidative degradation contaminates such as MB [55], benzene
derivatives [56], and carbamazepine [57] were powerfully photodegraded by CNT/
TiO2 composites. Researchers described that the bond of carbon-oxygen-titanium
can enlarge the light absorption to longer wavelengths and hence potentially
improvement of the photocatalytic action [53]. Senusi et al. [40] also indicated that
synthesized TiO2-zeolite NCs for the innovative water treatment of industrial dyes.
The results indicated that the nanocomposite followed an adsorption concerned with
photocatalytic degradation, which is mainly effective for eradicating trace dye
compounds [40]. A novel Cu–TiO2–SiO2 NCs synthesized by a sol-gel method and
used to degrade Rhodamine Blue in water modelling the dyes wastewater under both
UV and visible light irradiation. Studies revealed that the Cu–TiO2–SiO2

nanocomposite has smaller crystalline size, higher surface area, and slight
agglomeration by judging from the characteristic analysis. The Cu–TiO2–SiO2

nanocomposite exhibited higher photocatalytic activity than TiO2 for the

392 H. D. Beyene and T. G. Ambaye



degradation of Rhodamine Blue under both UV and visible light irradiation. The
increase in the photocatalytic activity may be due to the lower recombination rate of
electron-hole and the high dispersion of SiO2 [58].

Iron oxides (i.e. Fe2O3 and Fe3O4) are unique and talented magnetic constituents
which create a new composite with CNTs, and graphene. This is one of the greatest
smart magnetic metallic oxides and has established extensive consideration due to
its exceptional physical and chemical properties and several benefits such as high
reversible capacity, rich abundance, cheap, and environmentally friend [54].
Magnetic nanoparticles are highly advantageous than nonmagnetic nanoparticles

Fig. 2 The diagram representation of Cd(II) ion (a) and TCE (b) interface with Al2O3/MWCNTs
[53]
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since they can simply isolate from water via a magnetic field. Magnetic field
separation is a practice also allows simple isolation and recycled the adsorbents.
Magnetic nanocomposites can be fabricated using magnetite (Fe3O4), maghemite
(Fe2O3), and jacobsite (MnFe2O4) nanoparticles as reinforcer filling on a polymer
matrix which permits easy separation of the composite from the aqueous solutions
after the sorption process [29].

Researchers were investigated series of magnetic alginate polymers prepared and
batch trials were shown to examine their capacity to eliminate heavy metal ions such
as Co+2, Cr+6, Ni+4, Pb+2, Cu+2, Mn+2, La+3 and organic dyes (MB and MO) from
aqueous solutions. Different types of iron oxide magnetic composites have been
positively useful as an adsorbent for the elimination of various targets of impurities
from water and wastewater such as naphthylamine [59], metals [59], phenol [59],
and tetracycline [60], As+3, As+5 [61], dyes [62]. Moreover, graphene-based iron
oxide NCs have confirmed an exceptional adsorption capacity to fix extra heavy
metals and organic dyes such as Cr+6, Pb+2, Co+2, neutral red, MB etc. due to
magnetic properties, high surface to volume ratio and rapid diffusion rate [59].

In addition to the above, Currently, many researchers have studied also on the
practice of metal oxide NCs for water and wastewater purification. Currently, many
scientists focus on the heavy metals removal due to their strong influence on health
and environment. The Saad et al. [63] was to manufacture ZnO@Chitosan
nanocomposite (ZONC) to eliminate Pb+2, Cd+2 and Cu+2 ions from unclean water
with optimal removal efficiency for Pb+2, Cd+2 and Cu+2 ions at pH 4, 6 and 6.5
with adsorption capacity were 476.1, 135.1 and 117.6 mg/g, respectively. The
researchers also studied nonstop adsorption-desorption cyclic outcomes established
that ZONC can be reused after recovery of ions by EDTA solution, and the
regenerate ZOCS used over without significant efficiency loss [63].

Singh et al. [64] investigated that BC4/SnO2 NCs was an effective catalyst for
the degradation of industrial dyes such as Novacron red Huntsman (NRH) and MB.
This composite is also discovered for catalysis destruction of industrial dyes. The
Degradation study displays that 1 g/L catalyst concentration of BC4/SnO2 destroys
NRH and MB dye up to nearly 97.38 and 79.41%, respectively, in 20 min using
sun radiation. The catalyst can be recycled and recovered [64].

Zr-magnetic metal-organic frameworks composites (Zr-MFCs) are an amino-rich
prepared by a facile and efficient strategy. The achieved Zr-MFCs were confirmed
to be effective adsorbents with feasible adsorption ability and fast adsorption
kinetics for metal ions and organic dyes removal from water. The amine-decorated
MFCs were very efficient for metal ions and dyes elimination than row MFC-O.
MFC-N confirmed the maximum ability for Pb2+ (102 mg g−1) and MB
(128 mg g−1), while MFC-O revealed the maximum ability for MB (219 mg g−1).
Furthermore, Zr-MFCs have also good removal efficiency for anionic and cationic
dyes from the miscellaneous solution by adjusting pH. Zr-MFC adsorbents can be
simply improved by removing metal ions and/or organic dyes from the adsorbents
with appropriate reagents without change adsorption capacity up to 6 generations.
The attained results confirmed the prepared MFCs have the great application per-
spective as interesting adsorbents for water treatment [65].
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Saad et al. [63] investigated a facile method for in situ fabrication of
ZnO@Chitosan nanocomposite (ZONS), and the attained composite demonstrated
noble ability and rapid kinetics for Pb+2, Cd+2 and Cu+2 ions adsorption. The main
advantage of this product is the recovery of metal ions and the significant ability for
adsorption after many series of recycling. The ZONC demonstrations important
feasibility in ecological remediation for wastewater treatment and can attain the
increasing need for the purification of water resources [63].

3.3 Carbon Nanocomposite

A magnetic multi-wall carbon nanotube (MMWCNT) nanocomposite was used as
an adsorbent for removal of cationic dyes from aqueous solutions. The MMWCNT
nanocomposite was composed of viable multi-wall CNT and IONPs. The elimi-
nation of MB, neutral red and brilliant cresyl blue was deliberate using MMWCNT
nanocomposite adsorbent. Investigations were carried out to study adsorption
kinetics, the adsorption capacity of the sorbent and the effect of sorption dosage and
pH values on the elimination of cationic dyes [66].

Mesoporous carbon with entrenched iron carbide nanoparticles (ICNPs) was
effectively synthesized via a facile impregnation-carbonization method. Biomass
was used as a carbon basis and an iron pioneer was rooted to create mesopores
through a catalytic graphitization reaction. The pore conformation of the NCs
structured by the iron pioneer loadings and the immovable ICNPs support as a
dynamic component of magnetic isolation next sorption. The newly produced
mesopores were established as a critical feature to increase the adsorption capacity
of organic dyes while immovable ICNPs are responsible for the careful removal of
heavy metal ions (Zn2+, Cu2+, Ni2+, Cr6+, and Pb2+). Composed with the desirable
elimination of extra noxious heavy metal species (Cr6+ and Pb2+), these meso-
porous NCs show favourable applications in impurity removal from water. The
facile material preparation permits appropriate scale-up production with economical
feasible and lowest ecological impact [67].

Advanced technologies integrating with engineered nanoparticles into biochar
fabrication schemes might increase the roles of biochar for numerous uses com-
prising soil fertility upgrading, carbon sequestration, and wastewater treatment.
Inyang et al. [68], investigated that removal ability MB was evaluated in batch
sorption using untreated hickory biochars (HC), bagasse biochars (BC) and
CNT-biochar composites (HC-CNT and BC-CNT, respectively). The addition of
CNTs considerably enriched the physiochemical properties of HC-CNT and
BC-CNT such as extreme thermal stabilities, surface areas, and pore volumes.
These results recommend that electrostatic magnetism was the principal devices for
the removal of MB onto the biochar-nanocomposite. Hybridized CNT-biochar NC
can be considered as capable, cheap adsorbent material for eliminating dyes and
organic contaminants from water [68].
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Carbon-nanocomposites (CNCs) are constituents that have two or more elements
prepared to form a composite mixture with CNTs as the primary host synthesized
the poly 1,8-diaminonaphthalene/MWCNTs COOH hybrid material which could be
used as an active sorbent for the separation Cd+2 and Pb+2 at trace levels [40].
Muneeb et al. [69] was primed a new NCs from biomass used for the removal of
selected heavy metals (As, Cr, Cu, Pd and Zn) from the wastewater. With the
increase in pH, there was a decline in percentage adsorption of the metals [70].

Tian et al. [70] stated an eco-friendly, effective and synergistic nanocomposite
development for new antibacterial agents using both iron oxide nanoparticles
(IONPs) and AgNPs on the surface of graphene oxide (GO), resulted in novel
GO-IONP-Ag nanocomposite. When associated with pure AgNPs, GO-IONP-Ag
offers deliberately improved bacteriocidal action to both Gram-negative bacteria
and Gram-positive bacteria. GO has the beautiful benefit through GO-IONP-Ag
composite to kill Gram-positive bacteria at small agent concentration. Moreover,
GO-IONP-Ag nanocomposite can simply reprocess by magnetic separation, low
cost, and environmentally. In the account of those exceptional benefits, the
developed GO-IONP-Ag nanocomposite can use for prospective requests as a
multifunctional sterile agent in the diverse area [71].

3.4 Polymer Nanocomposite

Polymer nanocomposites (PNCs) are a superior type of tools which nanoparticles
spread in a polymer matrix resulting in novel materials having unique physical and
chemical properties [70]. Polymers are special supports for nanomaterials as they
usually possess tunable porous structures, excellent mechanical properties, and
chemically bounded functional groups. PNCs are prospecting materials for their
sound performance in water and wastewater treatment. Adsorption of contaminant
through PNC is among various treatment technologies, which is considered as an
advanced tool in water treatment technology. PNCs often integrate the essential
advantages of both the nanoparticles and the polymeric matrix [72]. PNCs could be
synthesis by either joining nanoparticles into polymer structures or by fixing
polymers to nanoparticles. Direct compounding and in situ synthesis are two
leading approaches used in the manufacture of several PNCs as shown in Fig. 3
[41]. PNC has of great potential for pollutants removal including heavy metals (Cu,
Pb, Cr (III), Ni), As, F, and P. The pollutants were often removed through multiple
mechanisms including surface complexation, electrostatic attraction and
co-precipitation [73].

These PNCs are avoided challenging issues such as nanoparticle dissolution,
which is common when using free nanoparticles [72]. Some of the nanocomposites
were also responsive to regeneration and recycle without significant capacity loss,
which is critical from economic outlook. Since of the large size of the PNCs, they
could be simply isolated from treated water.
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Alginate [74], macromolecule (polypyrrole) [75] polyaniline [76], porous resins
[77] and ion-exchangers [41] are most extensively used polymeric hosts. New types
of polymeric hosts are essentially bio-polymers such as chitosan and cellulose.
They are plentiful in nature and eco-friendly. However, they could suffer a serious
biodegradation problem in the long-term application. cellulose showed good
chemical stability and mechanical strength, due to its densely and systematic

Fig. 3 Graphic of fusion methods for PNCs. Adapted with permission [41]
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aligned, hydrogen-bonded molecules, sound swelling resistance and its character-
istics such as hydrophilicity and chirality. Chitosan is the another most naturally
rich polysaccharide next to cellulose. Chitosan has exceptional features such as high
reactivity, excellent complexation behaviour, and chemical stability. The amino and
hydroxyl groups of chitosan aid as energetic sites for water pollutants [78].
Generally, cross-linked chitosan was insoluble even at low pHs, so that they might
be applicable over a wide pH range. Djerahov et al. [78] prepared a steady
CS-AgNPs colloid by diffusing the AgNPs sol in chitosan medium and additional
recycled it to attain a cast film with high steadiness under packing and good
mechanical strength. It showed efficient isolation and extraction of Al+3, Cd+2,
Cu+2, Co+2, Fe+3, Ni+2, Pb + 2 and Zn+2 [40, 78].

Saxena and Saxena [79] developed Bimetal oxide fixed PNC by means of
Alumina and IONPs with Nylon-6,6 and Poly (sodium-4-,styrenesulphonate) as
polymer medium for pollutants elimination from the water. The prepared NCs have
maximum pollutant removal capacities for all factors. The exclusion of total
alkalinity, total hardness, calcium, magnesium, chloride, nitrate, fluoride, TDS and
EC was 66.67, 42.85, 66.67, 25, 58.66, 34.78, 63.85, 41.27 and 41.37% respec-
tively by this composite. This is an indication period towards emerging multi-
functional and profitable PNCs for water remediation requests [79].

CNTs powerfully sorb varied polar organic compounds attributable to the stuff
miscellaneous interfaces together with hydrophobic impact, peppiness interactions,
covalent bonding, valence bonding, and electrical connections. The п-electron
wealthy CNT apparent allows energy exchanges with carbon-based molecules with
C=C bonds. Organic compounds that have used functional groups like –COOH, –
OH, –NH2 might additionally kind a bond with the graphitic CNT exterior that pays
electrons. Electricity magnetism enables the surface assimilation of exciting
carbon-based chemicals like some antibiotics at appropriate pH range. PNCs are
sorbents tailored adsorbents which are talented for eliminating different types of
pollutants. Their internal shells can be hydrophobic for sorption of organic com-
pounds while the exterior channels can be tailored (e.g., –OH or –NH2) for sorption
of inorganic pollutants like heavy metals. complexation, electrostatic interactions,
hydrophobic effect, and hydrogen bonding are the mechanism established during
sorption process [80].

Carboxymethyl-cyclodextrin polymer adapted Fe3O4 nanoparticles (Copolymers)
was manufactured for selective elimination of Pb2+, Cd2+, Ni2+ ions from
wastewater. The adsorption efficiency of metallic ions was influenced by the factors
like contact time, a dose of copolymers pH, ionic strength, and temperature. At
equilibrium condition in single sorption way, the optimum uptakes of the adsorbent
for Pb2+, Cd2+, and Ni2+ were 64.5, 27.7 and 13.2 mg g−1 respectively at 45 min
and 25 °C. The PNC improved the sorption capacity since of the chelating abilities
of the several hydroxyl and carboxyl sets in polymer support with metal ions. In
mixed adsorption experiments, CDpoly-MNPs might favorably high sorption of
Pb2+ ions with an attraction order of Pb2+ � Cd2+ > Ni2+ [81].

Khaydarov. et al. [82] studies a new technique for emerging nanocarbon-
conjugated polymer nanocomposites (NCPC) by means of carbon colloids as
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nanoparticle and polyethyleneimine as a matrix for metal ions removal from water.
The researchers have been examined the efficiency of NCPC depends on size
carbon colloids, synthesis NCPC and its chemical features, the ratio of carbon
colloids and polyethyleneimine, the speed of coagulation NCPC, interaction
mechanism, removal potential NCPC against pH. The bonding capacity adsorbent
was 4.0–5.7 mmol/g with divalent metal ions at pH 6 which sorption has above
99% removal efficiency for Zn2+, Cd2+, Cu2+, Hg2+, Ni2+, Cr6+ [82].

Clay can found the suitable matrix for varnish of polyaniline. The characteri-
zation outcomes of NC established that the clay sheet was develop layered in the
synthesis NC. Parameters like contact time, pH, and concentration were determined
the adsorption capacity of modified adsorbent. The researchers were announced
new clay NC which use of polyaniline improved clay nanocomposite as an
adsorbent for water purification of lead ions. It can be used as talented sorption
scheme incoming water and wastewater treatment in order to eliminate lead ion
[83].

Nithya and Sudha [84] studied using chitosan-g-poly(butyl acrylate)/bentonite
NC as an adsorbent for chromium, lead and other significant physicochemical water
quality parameters such as total solids (TS), biological oxygen demand (BOD),
chemical oxygen demand (COD), total hardness, salinity, turbidity and conductivity
from the tannery wastewater. The effect of some parameters, such as contact time,
pH and dose adsorbent was assessed. The outcomes showed that NC can be used
tannery wastewater treatment containing heavy metals powerfully [84].

3.5 Membranes Nanocomposite

In membrane technology, porous materials are plays capturing role to trap pollutants.
Inclusive, numerous forms of membranes with diverse pore sizes engaged in water
treatment process including microfiltration, ultrafiltration, reverse osmosis and
nanofiltration membranes which depend on their shared materials that would be
clean out through each process as shown Fig. 4 [42]. The existing membranes have
numerous challenges for water purification, such as the exchange link between
permeability, selectivity and low resistance to fouling. Recent progress in nan-
otechnology have offered the growth of the new generation membrane for water
purification [40]. Nanocomposite membrane (NCM) has a great role in water
purification and reuses for several bases of water such as drinking water, brackish,
seawater, and wastewater treatment. NCM is an innovative type of membranes
prepared by merging complex constituents with nanomaterials that are developing as
a promising tool to answer membrane separation problems. The innovative NCM
can be deliberate to fulfil exact water purification uses by calibration their assembly
and chemical characters (e.g., water-heating, porousness, charge density, and ther-
mal and mechanical stability) and announcing distinctive functionalities (e.g.,
medicinal drug, photocatalytic or adsorbent capabilities). The advance of mem-
branes with high permeability, rejection and smart protective property is way
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required for water purification beneath the context of energy potency and
cost-effectiveness. According to membrane assembly and position of nanomaterials,
they can be classified into four groups: (1) conventional nanocomposite, (2) thin-film
nanocomposite (TFN), (3) thin-film composite (TFC) with nanocomposite substrate,
and (4) surface-located nanocomposite [85].

Fig. 4 Schematic illustration of membrane filtration [42]
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In water treatment applications, membranes have to significantly determine
hydrophilicity, surface structure, and high toughness with respect to physico-
chemical and mechanical stability. Pore size and porosity have also strong signif-
icant in membrane separation practices. NCM is a mixture of material that can have
nanoscale inorganic and/or organic solid phases in a porous structure. These
nanoscale constituents enrich membrane assets that would other not be fulfilled by
the polymer only [85]. Nanomaterials can improve numerous characteristics of
mechanical strength, thermal stability, antifouling properties, permeability, and
selectivity which have enhanced membrane separations process. Various con-
stituents such as CNTs, graphene and GO, silica and zeolites, metal and metal
oxides, polymers, dendrimers and biological nanomaterials are used in NCM to
improve water purification performance [86, 87].

NCM able to reflect as a novel class of filtration tools containing hybrid medium
membranes and surface active membranes. Hybrid medium membranes use nano-
fillers, which are auxiliary to a medium material. In most cases, the nanofillers are
inanimate and fixed in a polymeric or inorganic oxide medium. These nanofibers
article has larger specific surface area leading to a higher surface-to-mass ratio [88].
NCMs are materials which have no single application of separating pollutants from
water. They are also introducing new functionalities such as adsorption [89],
photocatalysis [90], antimicrobial activity [91] and surface modification [91] which
promoted adsorbing, degrading, and/or deactivating contaminates.

Most of the researchers have confirmed that the integration of nanomaterials into
polymers besides to adjust assembly and physicochemical assets like hydrophilic-
ity, porosity, and charge density, chemical, the thermal and mechanical stability of
membranes, they are also announced exceptional characteristics such as bactericidal
and photocatalytic features into the membranes. The effects of nanofiller on the
performance of on the 3 type’s NCMs are explained as follows.

3.5.1 Conventional Nanocomposite Membranes

Synthesis of CNM is commonly built on phase inversion (PI) technique in which
nanofibers are discrete in polymer solution previous to the PI method as shown
Fig. 5 [85]. It can be synthesised in either flat area or deep fiber arrangements.
CNM is mostly applied in microfiltration or Ultrafiltration methods because it’s
typical porous arrangement.

It is known to join nanoparticles inside the polymer medium to create efficient
membranes with an exact ability to adsorb heavy metals from water. For instance,
incorporated PANI/Fe3O4 NPs inside polyethersulfone (PES) [92] and chitosan
drops inside ethylene vinyl alcohol (EVAL) medium [93] had to remove Cu
(II) water. Both outlooks have confirmed the opportunity of making CNM for the
adsorptive elimination of impurities from water.

In the CNM research area, TiO2 has also merged into numerous membrane
mediums to deliver membrane with photocatalytic actions. TiO2 has been exten-
sively used for water treatment since its exceptional photocatalytic action, solidity,
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and simplicity for its fabrication [84]. Evolving antimicrobial membranes will be
expected to increase membrane efficiency and lifespan meaningfully which benefits
to deliver microbes free clean water. For example, Ag is an excellent biocidal that
usually used as an antimicrobial agent in CNM [85, 94]. AgNPs introduced into
various metrics such as cellulose acetate [84], PSU [84], and PES [95] enhanced the
membrane anti-bacterial activity, virus removal, and biofouling resistance respec-
tively. The efficiency of CNM can be improved by the role reinforcement as
indicated in Table 2.

Fig. 5 Production of conventional CNM through the PI process [85]

Table 2 Type and role of reinforcement for conventional nanocomposite membrane [84, 91, 96–
101]

Type of Reinforcement Role of Reinforcement

Carbon Nanotube Incorporation for improved properties such as anti-biofouling
and good strength

metal oxide (TiO2, ZnO,
SiO2, Al2O3, Fe3O4)

Adjusts the assembly and physicochemical assets, such as
hydrophilicity, Porosity, charge density, and chemical,
thermal, and mechanical stability of membranes.
Introduces the unique characteristics such as antifouling, and
photocatalytic action into the membranes.

Metals (Ag, Cu, Se) Antimicrobial functionality

Nano clay Improvement in abrasion resistance

Organic Material Enhance in hydrophilicity, upgrading sorption capacity, and
anti-compaction, the antifouling performance of resultant
membranes.

AgNPs Reduce biofouling

Zeolite Improvement hydrophilicity, advance cross-linking property
and increase membrane inflexibility

Biomaterial Water-channel membrane proteins

Hybrid material Synergistic effect
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3.5.2 Thin-Film Nanocomposites

Thin film nanocomposites (TFNs) membrane contains an extreme tinny wall sheet
above a more permeable assistant material. TFN is interfacially synthesized by
reverse osmosis or nanofiltration membrane which is extensively applied to remove
heavy metals, desalinate seawater/brackish water, hardness causing salts, organic
contaminants like pesticides, insecticides and disinfection intermediates.
Researchers have been focused to advance water flux, toxin elimination, and
antifouling characteristics of TFC l (1) to adapt the auxiliary film thus the linkage
among the wall layer and the second layer might be improved, and (2) to enhance
the wall layer by changing the IP settings, i.e. exchanging monomers, applying
physical layering [102]. Materials like zeolites, CNTs, silica, Ag, and TiO2 used for
CNM synthesis have also been discovered to make TFN membranes [85, 101].

In general technologies yield NCs, a novel theory has been projected centred on
diffusing nanomaterials into the extremely tinny wall to increase membrane effi-
ciency for water purification [84]. The known production method is done the in situ
IP course among aqueous phenylenediamine (MPD) and trimesoylchloride
(TMC) organic solution as shown in Fig. 6. The nanofiller able to spread either in
aqueous or an organic phase.

The additions nanoparticle make ready the thin films membranes to yield benefit
of the properties of the nanomaterials. Adding of nanoparticles to in between
polymerization routes or exterior accessory by self-assembly has announced the
concept of TFN, which offer possible profits of improved separation efficiency,
reduction fouling, antimicrobial action, and other novel properties. Like TFC
membranes, TFN membrane performance can be achieved with nanoparticle

Fig. 6 Production of TFN membranes through the IP method [85]
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additions to the preserve membrane the coating film, or both. Like CNM, The
efficiency of TFN can be improved by the role reinforcement as indicated in
Table 3.

3.5.3 TFC with Nanocomposite Substrate

This membrane has been established to look at the consequences of nanofiller on
membrane compassion manners. During this category, oxide nanoparticles were
entrenched into the postscript substrate [104] that utilized at IP process to arrange
TFC film. The ready membrane displays a better primary porousness and minor flux
failure throughout the compassion related with the first TFC one. The nanoparticles
deliver necessary automated care to moderate the failure of permeable arrangement
and resist thickness decline. Membranes with NC substrate tolerate so much less
physical compassion and show a vital role in sustaining high water porousness [96].

Nanocomposite membrane coated with nano-TiO2 shown higher catalytic and/or
photo activity properties. For instance, TiO2 imbedded PES membrane showed
enhanced antifouling capability while a novel anatase/titanate nanocomposite
membrane simultaneously remove Cr (VI) and 4-chlorophenol through adsorption
and photocatalytic oxidation. Impregnation of AgNPs into the membrane would
allow fabricating thin-film nanocomposite with an excellent antibacterial perfor-
mance for water treatment [41].

An important number of articles on membrane nanoscience has motivated on
production of multipurpose membranes by addition of nanoparticles into polymeric
or inorganic membranes. Hydrophilic metal oxides (e.g., Al2O3, TiO2, and zeolite),
antimicrobials (e.g., AgNPs and CNTs), and photocatalytic nanomaterials (e.g.,
bi-metallic nanomaterials, TiO2) are the nanomaterials used this application.

Table 3 Summary of TFN membranes with nanocomposite substrate [85, 103]

Type of
reinforcement

Role of reinforcement

Carboxylic
MWNTs

Better antifouling and anti-oxidative properties

Zeolite Salt elimination; Fighting to physical compaction

MWNTs Increase the flexible strength of substrate and salt elimination

Ag-zeolite/
PA-PSf

Improved water penetrability, Reduced tendency for biofouling

Titania/PA-PES Reduced porousness and improved elimination at small unit additions,
Improved permeability and reduced salt refusal beyond 5 wt%

Zeolite/PA-PSf Improved interaction with water and superficial charge, Reduced
superficial irregularity, Improved water penetrability by 80%

Zeolite/PA-PSf Improved interaction with water, Increased water penetrability, Improved
salt removal in RO testing

Note PA Polyamide, PSf Polysulfone, PES polyethersulfone
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The additional water loving metal oxide nanoparticles played a great role to decline
fouling by improving the membrane hydrophilicity while the adding of metal oxide
nanoparticles such as alumina [105], silica, zeolite [79] and TiO2 has contributed to
increasing membrane surface hydrophilicity, water permeability, or fouling resis-
tance to polymeric ultrafiltration membranes. Besides to this, this metal and/or
metal oxide nanoparticles also aid to improve the mechanical and thermal solidity
of polymeric membranes, decreasing the destructive influence of compassion and
heat on membrane porousness [79, 106].

Qin et al. [107] investigated that handling the wastewater effluent generated from
oil refinery and shell gas was difficult since this type of waste effluent was con-
taminated by contents of oils and salts. This type of wastewater was difficult to treat
using conventional membranes because the membrane was severe fouling or failure
by salts. The researchers developed another NCFO membrane for succeeding direct
oil/water isolation and desalination. This NCFO membrane was accumulated an oil
preventing and salt eliminating hydrogel separating layer on surface GO nanosheets
imparted polymeric sustenance layer. The hydrogel separating layer governs strong
water heating that leads to superior antifouling competency under several oil/, water
emulsions, and the imparted GO in support layer can considerably moderate interior
concentration polarization by decreasing FO membrane. Compared with viable FO
membrane, the new membrane establishes triple water flux, higher eliminations for
oil (>99.9%) and salts (>99.7%) and pointedly worse fouling attraction when
examined with replicated shale gas wastewater as shown the Fig. 7. These com-
bined benefits will validate this new NCFO membrane with wide requests in
handling highly salty and oily effluents [107].

Fig. 7 Illustration of immediate oil/water separation and desalination by Hydrogel/GOFO
membrane [107]
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4 Future Outlooks

In this chapter, the most extensively studied nanocomposite, Metal nanocomposite,
nanocomposite zero-valent metals (Ag, Pb, and Zn), MONCs (TiO2, ZnO, and iron
oxides), PNCs and MNCs were highlighted. Moreover, their applications in water
purification were discussed in detail. Since the current rapid water demand devel-
opment and sustainable application, NC look exceptionally favourable materials for
water purification.

However, more studies are quiet required to solve the NC encounters. Still, now,
insufficient types of nanocomposite are available commercially. Meanwhile, less
production price is critical to confirm their extensive requests for water purification,
future research has to devote to developing the commercial competence of NCs.
Moreover, with progressively widespread applications of the NCs in water treat-
ment, there are increasing alarms about their potential noxiousness to the envi-
ronment and human health. Existing evidence in the literature has discovered that
numerous NCs. However, principles for evaluating the noxiousness of NCs are
somewhat inadequate at present-day. Hence, widespread assessment of the toxicity
of NC is the crucial necessity to confirm their real applications. What is more, the
assessment and contrast of the performance of numerous NC in water purification
are recognized standards. It is hard to relate the performances of diverse
nanoparticles and figure out talented NC that merits extra application.
Consequently, the performance assessment tool of the NC in water purification
ought to be perfected in the future.

5 Conclusion

Growing demand and deficiency of clean water as a result of rapid urbanization,
population growth, and climate disruption have become unparalleled urgent global
issues. Globally, Water purification is a priority issue for human use, ecosystem
management, agriculture, and industry. The water sanitization process using
nanoparticles are quite efficient. However, these are linked with some weakness
such as aggregation, tough separation, and leakage into the contact water, envi-
ronmental impact and human health. Therefore, to improve water treatment process
system, researchers have been paid to develop eco-friendly, energy efficient and
low price for sustainable water purification. The nanocomposites are basically
multiphase solid materials, including porous media, colloids, gels, and copolymers
in a broad sense. The selection of hosts for nanocomposites have a great conse-
quence, and even controls the performance of nanocomposites in water purification.
Compared with free nanomaterials, the efficiency and usability of nanocomposites
were significantly improved, in terms of nanoparticle dispersion, stability, and
recyclability. Nowadays, nanocomposites were supposed to be the supreme likely
way of advancing water nanotechnology from lab study to large-scale application.
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A number of the researcher was investigated nanocomposites synthesis from metal,
metal oxide, carbon, polymer and membrane are the common materials used for
water purification. Polymer nanocomposites (PNCs) are a superior class of mate-
rials which nanoparticles (NPs) dispersed in a polymer matrix resulting in novel
materials having unique physical and chemical properties [74]. Polymers are special
supports for nanomaterials as they usually possess tunable porous structures,
excellent mechanical properties, and chemically bounded functional groups.
Polymer-based nanocomposites (PNCs) are prospecting materials for their sound
performance in water and wastewater treatment. Nanocomposite membrane has a
great role in water purification and reuses for various sources of water such as
drinking water, brackish, seawater, and wastewater treatment. Nanocomposite
membranes is an innovative type of membranes prepared by merging polymeric
materials with nanoparticles are developing as an encouraging solution to above
challenges.
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