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Abstract. Signature schemes are arguably the most crucial cryp-
tographic primitive, and devising tight security proofs for signature
schemes is an important endeavour, as it immediately impacts the feasi-
bility of deployment in real world applications. Hash-then-sign signature
schemes in the Random Oracle Model, such as RSA-FDH, and Rabin-
Williams variants are among the fastest schemes to date, but that unfor-
tunately do not enjoy tight security proofs based on the one-wayness of
their trapdoor function; instead, all known tight proofs rely on variants
of the (non-standard) Φ-Hiding assumption. As our main contribution,
we introduce a family of hash-then-sign signature schemes, inspired by
a lossy trapdoor function from Freeman et al. (JoC’ 13), that is tightly
secure under the Quadratic Residuosity assumption. Our first scheme
has the property of having unique signatures, while the second scheme
is deterministic with an extremely fast signature verification, requiring
at most 3 modular multiplications.
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1 Introduction

After the beginning of public-key cryptography [13] many new computational
problems were devised, and along with them came cryptographic schemes based
on the difficulty of solving those problems. At first, asymptotic security analysis
was enough to claim the robustness of a given scheme, but it was realized later
that a more precise analysis was required to measure the security of a scheme
under a realistic scenario. A security proof is built upon computational com-
plexity theory, using polynomial-time reductions from a well established hard
problem to the problem of solving (or breaking) the cryptographic scheme. If
this reduction is possible, we can say that breaking the cryptographic scheme is
as difficult as solving the well established hard problem (up to a polynomial).
If this polynomial is of a high degree, it can degrade the security of the scheme
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considerably, even rendering it useless for practical applications. Bellare and
Rogaway [4] started dealing with security reductions that explicitly stated the
polynomial factors involved in those reductions, making it possible to build tight
reductions, in which the polynomial is a small constant.

1.1 Hash-then-Sign Signature Schemes

In 1993, Bellare and Rogaway [3] introduced the Full Domain Hash (FDH) sig-
nature scheme based on RSA (RSA-FDH), where the message is hashed to the
full domain of the underlying trapdoor function before being signed (also known
as “hash-then-sign” schemes). The security proof presented in [3] for RSA-FDH
was not tight, making the actual scheme potentially impractical for an accept-
able level of security. Fortunately, probabilistic FDH (PFDH) schemes, which
prepend a short random string to the message, already allow for tight proofs. In
particular, Katz and Wang [22] showed that even a single bit of randomness is
enough for achieving tight proofs.

Signature schemes that behave deterministically are usually more efficient
and easier to implement, what makes them invaluable for practical applica-
tions. Moreover, it is a fact that signature schemes secure in the Random Oracle
Model (ROM) are much more practical than schemes secure in the standard
model [6,8,10,16,34], therefore, in this paper we only focus on FDH schemes
with deterministic signatures in the ROM.

We mainly categorize signature schemes into four distinct classes, namely
probabilistic, derandomized, deterministic and unique, that we describe next.

– Probabilistic schemes utilize randomness during the signing process; signa-
tures are always different (with high probability) even if the same message
is signed twice with the same signing key. Some examples of probabilistic
schemes are PSS [4], Schnorr [28], El-Gamal [14], and Bitcoin’s ECDSA.

– Derandomized schemes are probabilistic schemes that demonstrate a deter-
ministic behavior but still requires an internal use of randomness. It is folklore
that any randomized signature scheme can be turned into a deterministic one;
merely generate the random coins used during the signing algorithm through
a pseudo-random function (PRF) that takes the message as input. Then, the
random coins used to sign a particular message will be fixed, therefore pro-
ducing a deterministic signature for each message. Unfortunately, in some
cases, the derandomization process can lead to several vulnerabilities [23].
Signature schemes in the derandomized category include the Derandomized
Rabin-Williams (DRW) scheme, where the signature is a square root selected
uniformly at random out of four possibilities, and returned systematically (by
using the PRF “trick”).

– Deterministic schemes always produce the same signature for each message
without relying on randomness (or derandomization) for signing, but the
verification algorithm accepts more than 1 valid signature per message (for
each key pair).
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– Lastly, unique schemes are deterministic schemes where the verification algo-
rithm only accepts as valid the only signature ever produced by its signing
algorithm (for each message and key). Schemes in this category are the Abso-
lute Principal Rabin-Williams (APRW) scheme, and the RSA-FDH (since
RSA [27] defines a permutation over Z

∗
n).

In Table 1 we show a quick comparison between FDH signature schemes.

Table 1. Comparison of different hash-then-sign signature schemes.

Assumption Derandomized? Unique? Tight?

DRW [5] Factoring ✓ ✗ ✓

APRW [30] 2-Φ/4-Hiding ✗ ✓ ✓

RSA-FDH [20] Φ-Hiding ✗ ✓ ✓

BLS [7] EC-CDH ✗ ✓ ✗

Katz-Wang [22] RSA ✓ ✗ ✓

Our scheme Πu (Sect. 3.1) Quadratic residuosity ✗ ✓ ✓

Our scheme Πd (Sect. 3.2) Quadratic residuosity ✗ ✗ ✓

1.2 Previous Work

A seminal impossibility result by Coron [12] states that any FDH signature
scheme with unique signatures could not hope to have a tight security proof.
Kakvi and Kiltz [20] clarified that Coron’s impossibility result only holds when
the trapdoor permutation is certified. They also presented a tight security proof
for RSA-FDH based on the Φ-Hiding assumption [9].

Bernstein [5] studied all variants of Rabin-Williams signatures and devised an
ingenious tight proof for the DRW scheme (which he calls “fixed unstructured”),
where it releases systematically one of the four square roots that is initially
selected at random. Bernstein also provides a non-tight security proof for APRW
(the unique signature version of the scheme) and left as an open problem finding
a tight proof for it. Seurin [30] first showed that the Rabin function is lossy and
then presented a tight security proof for APRW, but under a new assumption
dubbed 2-Φ/4-Hiding assumption.

Unique signatures received renewed attention lately, as Bader et al. [2]
extended the seminal meta-reduction of Coron [12] by showing that any secu-
rity proof for unique signatures based on static assumptions or in the security
of the underlying trapdoor permutation must lose a factor of qs in its security
reduction, where qs is the number of signature queries asked by the adversary.
Later, Guo et al. [18] clarified that the authors of [2] implicitly assumed in
their meta-reduction that the simulator is only allowed to extract information
from the adversary’s forgeries when trying to invert the underlying trapdoor



A Family of FDH Signature Schemes 251

permutation; [18] circumvents the impossibility of [2] by allowing the simulator
(in addition) to extract information from the adversary’s hash queries. In [18]
the authors present a unique signature scheme based on Computational Diffie-
Hellman (CDH) with a tight security proof, with the drawback that the size of
a signature is logarithmic in the number of hash queries asked by the adversary.
Shacham [31] improves on the results of [18] and presents a version of the unique
scheme of [18] with succinct signatures, where each signature consists of 2 group
elements. Unfortunately, the scheme of [31] is still not as fast as RSA-FDH or
any Rabin-Williams variant.

Thus, to summarize: All the unique schemes with tight security proofs from
the assumption that the underlying trapdoor function (or permutation) is one-
way are not efficient. On the other hand, efficient unique schemes such as RSA-
FDH and APRW have a tight security proof that relies on the lossiness of the
trapdoor function and are based on variants of the Φ-Hiding assumption. Seurin
(cf. Theorem 5 in [30]) noted that it is very unlikely that FDH-RSA and APRW
will have a tight security reduction from, respectively, inverting RSA or factoring.
It is evident that the state of affairs is a bit confusing. FDH-RSA and Rabin-
Williams signatures with non-tight proofs were criticized as being potentially
impractical due to the large size of the parameters involved. Their tight proofs,
however, rely on new assumptions that appear to be markedly stronger than
factoring [19,29]. How should these results be interpreted in practice? Should
we trust these new assumptions and keep parameters short or should we use
large parameters to account for possible cryptanalytic attacks on these new
assumptions?

1.3 State of Affairs

What is wrong with randomness? Generating cryptographically-strong random
or pseudo-random numbers (RNG or PRNG) has always been a challenging
endeavor. Several devices are even unable to generate random numbers that are
good enough for cryptographic purposes. For instance, smart cards and sensors
are not usually capable of collecting enough entropy. Some are susceptible to
reset attacks where the PRNG is brought back to previous states. A reset attack
can be devastating for signature schemes since it could be possible even to recover
the signing keys of the user [26]. The same attack can be applied to virtualized
systems where the adversary can take snapshots of a virtual machine and later
replay them with distinct messages to recover the signing key. When possible,
probabilistic schemes should be avoided in these circumstances.

What is wrong with derandomization? Despite showing a deterministic behav-
ior, derandomized schemes still require randomness to sign messages. Therefore,
it is crucial to have a sound derandomization process; otherwise, it can be a
source of vulnerabilities [17,23]. For instance, a simple fault attack during the
derandomization leads to a full key recovery attack in the derandomized Rabin-
Williams scheme (by outputting 2 different square roots of the same message),
while deterministic schemes are immune to such attacks.
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What is wrong with the Φ-Hiding assumption? The Φ-Hiding assumption appears
to be much stronger than factoring, and it does not hold in some cases, as
shown in [19,29]. The RSA-FDH scheme is tightly secure under the Φ-Hiding
assumption, while the APRW scheme is tightly secure under a new assumption
dubbed 2-Φ/4-Hiding assumption [30]. As reported by Seurin [30], the 2-Φ/4-
Hiding assumption is clearly stronger than quadratic residuosity (on which our
schemes rely instead): When n ≡ 1 mod 4, the 2-Φ/4-Hiding problem is equiva-
lent to the problem of establishing whether −1 is a square in Z

∗
n; thus, it’s enough

to provide y = −x2 mod n, for a random x ∈ Z
∗
n, to a quadratic residuosity

solver to violate the 2-Φ/4-Hiding assumption.

A Case for Unique Signatures. Ateniese et al. [1] shows a generic subversion
attack against virtually all probabilistic and deterministic signature schemes that
leads to the complete recovery of the signing key. The intuition behind the attack
is that the adversary builds a subverted signing algorithm that leaks bits of the
signing key through the produced signatures; this is only possible because the
signature contains randomness that is used to “disguise” the parts of the signing
key that is being leaked. Deterministic schemes are also susceptible to such
attacks since the bits of the signing key can still be leaked through the choice of
the signature that is returned among the possible options. On the other hand, [1]
shows that unique signature schemes are secure against the class of subversion
attacks that satisfies the verifiability condition1. When used in tandem with a
cryptographic reverse firewall [25] unique signature schemes are secure against all
classes of subversion attacks [1]. Therefore, unique signatures are recommended
for settings where the generation of randomness is problematic, and subversion
attacks are a concern.

1.4 Our Contribution

Our contribution is a family of FDH signature schemes in the ROM with tight
security proofs to the Quadratic Residuosity (QR) assumption2. The family con-
sists of a unique scheme and a deterministic scheme, both based on a variation
of a lossy function from [15]. To argue tight security for the unique signature
scheme, we leverage the results of Kakvi and Kiltz [20] that show a generic
proof for any unique scheme based on a lossy trapdoor function. As far as we
could ascertain, this is the first unique signature scheme tightly secure under
the quadratic residuosity assumption (and non-tightly secure under factoring).
Besides, the reduction is tighter than the one in [30], i.e., our unique scheme is
closer to quadratic residuosity than principal Rabin-Williams is to the 2-Φ/4-
Hiding assumption.

1 The verifiability condition informally says that all signatures produced by the signing
algorithm must be valid for the corresponding verification key.

2 Arguably, the next best assumption after factoring is quadratic residuosity, which
has been extensively studied, at least as much as the RSA assumption.
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The efficiency of the schemes in our family is comparable to that of the
Rabin-Williams family, which are considered the fastest (for signature verifica-
tion) signature schemes ever devised [5]. The unique scheme does require the
computation of a Jacobi symbol (as the unique variant of Rabin-Williams also
does) but we believe such a computation carries an unfair stigma. In reality, com-
puting Jacobi symbols can be performed very efficiently [24,32] (in particular in
O(n2/ log n) as reported in [24]), and can be parallelized [24] to harness recent
multicore and/or distributed platforms. Nevertheless, for applications where the
verification process has to be even faster, we provide a deterministic signature
scheme that does not require the computation of Jacobi symbols.

2 Preliminaries

2.1 Basic Notations

When A is a deterministic algorithm, we write y := A(x) to denote a run of
A on input x and output y; if A is a randomized algorithm then y ← A(x; r)
denotes a run of A on input x and randomness r; when it is clear from context
we simply write y ← A(x). An algorithm A is probabilistic polynomial-time
(PPT) if A is randomized and for any input x, r ∈ {0, 1}∗ the computation of
A(x; r) terminates in at most poly(|x|) steps. We denote with κ ∈ N the security
parameter. A function ν : N → [0, 1] is negligible in the security parameter
(or simply negligible) if it vanishes faster than the inverse of any polynomial
in κ, i.e., ν(κ) = κ−ω(1). For a random variable X, we write P [X = x] for the
probability that X takes on a particular value x ∈ X (where X is the set where
X is defined).

2.2 Number Theory

We denote by Jn the set of all x ∈ Z
∗
n with Jacobi symbol 1, by Jn the set of all

x ∈ Z
∗
n with Jacobi symbol −1, and by QRn the set of all quadratic residues of

Z
∗
n. For n ∈ Z, we call n a Williams integer if n = pq for primes p and q of the

form p ≡ 3 mod 8 and q ≡ 7 mod 8. Our results rely on the following lemmas
from [15,33].

Lemma 1. Let n = pq be a Williams integer and let x ∈ QRn. The equation
x ≡ y2 mod n takes four distinct values, namely {±y0,±y1}, where

(i) for b ∈ {0, 1}, we have that yb and −yb are both either in Jn or Jn,
(ii) y0 ∈ Jn if and only if y1 ∈ Jn.

Lemma 2. Let n = pq be a Williams integer, then 2 ∈ Jn.

Lemma 3. For n, x, y ∈ Z, where x �≡ ±y mod n, if x2 ≡ y2 mod n then
gcd(n, x − y) gives a non-trivial factor of n.
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2.3 Signature Schemes

A signature scheme is a triple of algorithms Π = (KGen,Sign,Vrfy) specified as
follows:

– KGen takes as input the security parameter κ and outputs a verification/
signing key pair (vk , sk) ∈ VK × SK, where VK := VKκ and SK := SKκ

denote the sets of all verification and secret keys produced by KGen(1κ).
– Sign takes as input the signing key sk ∈ SK, a message m ∈ M and random

coins r ∈ R, and outputs a signature σ ∈ Σ.
– Vrfy takes as input the verification key vk ∈ VK and a pair (m,σ), and outputs

a decision bit that equals 1 iff σ is a valid signature for message m under the
key vk .

The correctness of a signature scheme informally says that verifying honestly
generated signatures always works.

Definition 1 (Correctness). Let Π = (KGen,Sign,Vrfy) be a signature
scheme. We say that Π satisfies (perfect) correctness if for all (vk , sk) output by
KGen, and all m ∈ M,

P [Vrfy(vk , (m,Sign(sk ,m))) = 1] = 1,

where the probability is taken over the randomness of the signing algorithm.

The standard notion of security for a signature scheme demands that no
PPT adversary given access to a signing oracle returning signatures for arbitrary
messages, can forge a signature on a “fresh” message (not asked to the signing
oracle).

Definition 2 (Existential unforgeability). Let Π = (KGen,Sign,Vrfy) be
a signature scheme. We say that Π is (t, q, ε)-existentially unforgeable under
chosen-message attacks if for all adversaries A running in time t it holds:

P

[
Vrfy(vk , (m∗, σ∗)) = 1 ∧ m∗ �∈ Q :

(vk , sk) ← KGen(1κ);
(m∗, σ∗) ← ASign(sk ,·)(vk)

]
≤ ε,

where Q = {m1, . . . , mq} denotes the set of queries to the signing oracle. If for
all t, q = poly(κ) there exists ε(κ) = negl(κ) such that Π is (t, q, ε)-existentially
unforgeable under chosen-message attacks (EUF-CMA for short), then we simply
say Π is EUF-CMA.

We define the so-called unique signatures next. Informally, a signature scheme
is unique if, for any message, there is only a single signature that verifies w.r.t.
an honestly generated verification key.

Definition 3 (Uniqueness). Let Π be a signature scheme. We say that Π
satisfies uniqueness if for all vk output by KGen, and all m ∈ M, there exists a
single value σ ∈ Σ such that Vrfy(vk , (m,σ)) = 1.
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3 The Signature Scheme Family

In this section, we describe the two components of our hash-and-sign family of
signature schemes. Our family is a variant of the Rabin-Williams family [5], and
is inspired by a lossy trapdoor function from [15]. We first describe the unique
signature scheme based on QR in Sect. 3.1, followed by the deterministic scheme
based on QR in Sect. 3.2.

3.1 Unique Scheme Πu

Let the functions h, j : Zn → {0, 1} be defined as

h(x) =
{

1, if x > n/2,
0, otherwise,

j(x) =
{

1, if x ∈ Jn,
0, otherwise.

We build the unique signature scheme Πu = (KGen,Sign,Vrfy) as follows:

– (vk , sk) ← KGen(1κ): The key generation algorithm takes as input the security
parameter 1κ and produces a pair of corresponding verification and signing
keys. The signing key sk is composed of two randomly sampled κ/2-bit primes
p and q of the form p ≡ 3 mod 8 and q ≡ 7 mod 8. The verification key vk
is defined by n := pq and a randomly sampled parameter s ∈ Jn \ QRn.

– σ := Sign(sk ,m): Set b := 0 and hash the message m to obtain x := H(m),
where H : {0, 1}∗ → Z

∗
n is a collision-resistant hash function. Compute x′ :=

x · 2j(x) mod n and iff x′ /∈ QRn set b := 1 and compute x′ := x′ · s mod n
with the public parameter s. Now that x′ ∈ QRn we use the signing key
to compute the four modular square roots of x′ and select the single root y
such that j(y) = j(x) and h(y) = b (according to Lemma 1); set σ := y and
output σ.

– b := Vrfy(vk ,m, σ): If σ /∈ {1, . . . , n − 1} then output 0, otherwise output
H(m) = σ2 · 2−j(σ) · s−h(σ) mod n.

On uniqueness. We note that for a signature scheme to be considered unique, it is
necessary, but not sufficient, that the signing algorithm always returns the same
signature when the same message is signed more than once. To fully characterize
a unique signature scheme, the verification algorithm needs (for each verification
key vk) to reject as invalid all the signatures for a particular message m, except
the only signature for m that is ever returned by the signing algorithm. It is
easy to see that the scheme Πu above satisfies these requirements, as for each
key a single signature σ is ever produced for some message m, and only σ is ever
accepted as a signature for m.
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3.2 Deterministic Scheme Πd

In order to achieve even better efficiency, we construct additionally the determin-
istic variant Πd of the previous signature scheme. We define the deterministic
scheme Πd = (KGen′,Sign′,Vrfy′), where the algorithms KGen′ and Sign′ are
exactly the same as KGen and Sign in Πu, and the verification algorithm Vrfy′ is
described below:

– b := Vrfy′(vk ,m, σ): If σ /∈ {1, . . . , n − 1} then output 0, otherwise output
(H(m) = σ2 · s−h(σ) mod n) ∨ (H(m) = σ2 · s−h(σ) · 2−1 mod n).

Note that although the signing algorithm will always return a unique signature
for each message, the verification algorithm does accept 2 different signatures
for a message. The main advantage of the deterministic scheme over the unique
scheme is efficiency; while the unique scheme requires computation of a Jacobi
symbol in the signature verification, the deterministic scheme only needs to
perform 3 modular multiplications (in the worst case).

4 Security Analysis

In this section, we analyze the security of the signature schemes presented in
Sect. 3. We first present a security proof for Πu based on the hardness of factoring,
and then a tight security proof based on QR. To achieve the latter, we leverage
the results of Kakvi and Kiltz [21] on unique signatures based on lossy functions.
Later we also present a tight security proof for the Πd signature scheme based
on QR.

4.1 Security of Πu Based on Factoring

Theorem 1. If the Integer Factorization Problem (IFP) is (t, ε)-hard, then the
unique signature scheme Πu is (t′, qh, qs, ε

′)-secure, with

t = t′ + (qh + qs + 1) · O(κ2) and ε =
ε′

4 · (qh + qs + 1)
.

Proof. Let A be an adversary that (t′, qh, qs, ε
′)-breaks Πu. We build a reduction

R that uses A as a subroutine and (t, ε)-breaks the IFP.
The reduction R receives a modulus n = pq from the challenger, and its

objective is to factor n. Instead of sampling s ∈ Jn \QRn, which R is not able to,
it simply samples an s ∈ Jn. When s ∈ QRn the reduction aborts, what happens
with probability 1/2. The reduction R sends vk := (n, s) to A. We allow the
adversary A to make two types of oracle queries, namely hash and sign queries,
that R must answer with the same distribution as a real signing oracle would.
The reduction R maintains a list L := ∅ of hash queries and a counter i that
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is initialized by 0. R chooses a random 	 ∈ {1, ..., q}, where q := qh + qs, and
answers the queries as follows:

– Hash queries: Upon a hash query for message m check if m ∈ L; if yes, then
return x from the triple (m,x, y) ∈ L, otherwise proceed as follows. Increment
the counter i, and if i �= 	 the reduction R chooses a random yi ∈ Z

∗
n and sets

xi = y2
i · 2−j(yi) · s−h(yi) mod n. However, when i = 	, reduction R chooses

random values yi ∈ Z
∗
n, α, β ∈ {0, 1} and sets xi = y2

i · 2−α · s−β mod n.
Store the triple (mi, xi, yi) in the list L and return xi.

– Sign queries: When A makes a sign query for a message m, reduction R
checks if there exists a triple (m,x, y) ∈ L; if not, R simply makes the corre-
sponding hash query itself. Return y as the signature of message m.

The adversary A eventually outputs a forgery (mi, σi), and we assume wlog that
(mi, xi, yi) ∈ L. If i = l we have that both y′ = σi · 2−j(σ) · s−h(σ) mod n
and yi are square roots of y2

i . With probability 1/2, the roots y′ and yi are not
the complement of each other, and in that case we can factor n by computing
gcd(n, y′ − yi), due to Lemma 3. The running time for R is the running time of
the adversary A plus all the oracle queries. �

The reduction R is required to answer all the oracle queries that A makes; in
particular, R needs to produce valid signatures to all the messages queried by A
without knowing the signing key. Before every signature query for message m is
made, a corresponding hash query for m needs to be made to the reduction R; the
reduction first samples a random y ∈ Z

∗
n and returns H(m) := y2 ·2−j(y) · s−h(y)

mod n as the answer to the hash query. To answer a signature query for message
m, the reduction R returns y as a valid signature for m.

In order to factor, R selects an index 	 ∈ {1, . . . , q} during initialization, and
for the 	-th hash query made by A the reduction R replies with x� = y2

� ·2−α ·s−β

mod n for y� ∈ Z
∗
n, α, β ∈ {0, 1}. The reduction is then able to factor with

probability 1/2 if A produces a pair (m�, σ�) as a forgery for the message m�.
We note that the above security reduction can be further improved to roughly

ε = ε′/4qs by applying a technique by Coron [11].

4.2 Tight Security of Πu Based on QR

The unique signature scheme Πu of Sect. 3.1 is a variant of a lossy trapdoor
function based on QR from [15]. In fact, the changes made to our scheme were
carefully crafted so the scheme would still maintain its lossiness; the main dif-
ference is that n is a Williams integer so that 2 ∈ Jn.

To instantiate the lossy version of our scheme, KGen needs to be modified to
sample the public parameter s ∈ QRn, in contrast to the injective version, where
s ∈ Jn \ QRn. Note that the only difference between the lossy and the injective
version of the scheme is the domain of s; in both cases s ∈ Jn, but in the lossy
version s ∈ QRn, while in the injective version s /∈ QRn. Distinguishing among
these two cases is precisely the QR assumption, so an adversary that is able to
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distinguish must solve the QR problem. Since the lossy version of the scheme is
2-to-1 [15] and the injective version is a permutation in {1, . . . , n}, the scheme
has lossiness of 1-bit.

For the tight security proof of the scheme Πu we leverage the generic result
of Kakvi and Kiltz [21] for unique signatures based on lossy functions, that
intuitively states that any unique signature scheme based on a lossy function
has a tight security reduction based on the lossiness of the function. From that,
we achieve the following result.

Theorem 2. If the Quadratic Residuosity assumption is (tQR, εQR)-hard, then
for any qh, qs the unique signature scheme Πu is (t, qh, qs, ε)-EUF-CMA secure
in the random oracle model with

t = tQR − qh · O(κ2) and ε = 3 · εQR.

4.3 Tight Security of Πd Based on QR

In this section, we build a reduction from breaking the security of the Πd scheme
to breaking the security of the Πu scheme. Since the Πu scheme has tight security
to the QR problem, then Πd has also tight security to the QR problem.

Theorem 3. If the Πu scheme is (t′, qh, qs, ε
′)-EUF-CMA secure, then the

deterministic signature scheme Πd is (t, qh, qs, ε)-EUF-CMA secure, with t = t′,
and ε = 2 · ε′.

Proof. Assume there exists an adversary A that (t, qh, qs, ε)-breaks the security
of Πd. Then, we build another adversary A′ that (t′, qh, qs, ε

′)-breaks the security
of Πu.

AdversaryA′:
– Receive the verification key vk := (n, s) from the challenger and send

it to A.
– Upon any hash or signature query from A, forward the query to its

corresponding oracle and send the reply to A.
– Eventually, receive a forgery (m,σ) from A. Sample a random bit b and

return the pair (m,σ ·2b) to the challenger as a forgery for message m.

For the analysis, we note that the simulation performed by A′ is perfect since
the hash and signature oracles from both schemes are exactly the same. By
assumption, A produces a valid forgery (m,σ) with non-negligible probability,
and in that case, (m,σ · 2b) is a valid forgery for A′ when σ · 2b has the same
Jacobi symbol as H(m), what happens with probability 1/2 when b is sampled
at random. Therefore, if A breaks the security of Πd with probability ε, then A′

breaks the security of Πu with probability ε/2. �
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5 Performance

When the factors p and q are known, calculating the Jacobi symbol of an ele-
ment is very efficient since it is enough to compute two Legendre symbols. In
particular, for x ∈ Z

∗
n, x ∈ Jn if x(p−1)/2 mod p = x(q−1)/2 mod q, otherwise

x ∈ Jn.3 The signature σ is the unique square root y of the square x such that
j(y) = j(x) and y > n/2 iff x > n/2. Computing such a square root is very
efficient thanks to the Chinese remainder theorem.

In general, when p and q are known, the computation of the Jacobi sym-
bol and a square root share several calculations and can be optimized when
performed simultaneously. Since computing Jacobi symbols when p and q are
unknown is computationally more expensive than other modular operations, we
recommend the deterministic version Πd of our scheme for applications where
unique signatures are not necessary.

While in the unique signature scheme the computation of a Jacobi symbol
(for signature verification) is necessary, in the deterministic scheme it is enough
to compute t := σ2 · s−h(σ) mod n and then check whether any of H(m) = t or
H(m) = t · 2−1 mod n holds to consider the signature σ as valid.

A note on efficiency. Our Πu scheme has comparable speed to the unique sig-
nature scheme from the Rabin-Williams family, denoted by APRW* in [30]. The
running time of the verification algorithm is dominated by the computation of
a Jacobi symbol in both schemes. Our deterministic scheme Πd is very efficient,
requiring at most 3 modular multiplications for signature verification.

6 Conclusions

We presented a family of FDH signature schemes with tight security based on
a standard assumption (QR). The schemes are as efficient as other variants of
Rabin-Williams which hold the record for fastest signature verification schemes
[5]. A tight security proof for the APRW scheme was presented only recently
by Seurin [30], and his proof is based on the lossiness of the APRW function,
which is based on a new assumption called 2-Φ/4-Hiding, that is a variation of
the Φ-Hiding problem [9]. Unlike QR, the Φ-Hiding problem is a new and poorly
understood assumption as remarked in [19,29].

In practice, since the security of our signature scheme is based on the QR
assumption, in comparison to RSA-FDH and APRW, it is possible to safely
employ smaller parameters for comparable levels of security, which leads to even
better efficiency.

3 We do not consider cases where the Jacobi or Legendre symbols are 0 since they
happen with negligible probability.
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