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Preface

INDOCRYPT 2018, the 19th edition of the International Conference on Cryptology in
India, was held during December 9–12, 2018, in India Habitat Center, New Delhi.
Indocrypt is organized under the aegis of the Cryptology Research Society of India
(CRSI). It began in 2000 under the leadership of Prof. Bimal Roy of the Indian
Statistical Institute, Kolkata, and since then this annual event has gained its place
among prestigious cryptology conferences and is considered as the leading Indian
conference for cryptology. In the past, the conference took place in various cities of
India: Kolkata (2000, 2006, 2012, 2016), Chennai (2001, 2004, 2007, 2011, 2017),
Hyderabad (2002, 2010), New Delhi (2003, 2009, 2014), Bangalore (2005, 2015),
Kharagpur (2008), and Mumbai (2013).

INDOCRYPT 2018 attracted 60 submissions from 14 different countries. Out
of these 60 submissions, papers that were withdrawn before the submission deadline
and those submitted after the submission deadline were not reviewed, and after the
review process, 20 papers were accepted for inclusion in the program. All the papers
that satisfied the submission guidelines were reviewed by at least three reviewers.
Submissions of the Program Committee members were reviewed by at least four
reviewers. The individual review phase was followed by a discussion phase that
generated additional comments from the Program Committee members and the external
reviewers. A total of 44 Program Committee members and 48 external reviewers took
part in the process of reviewing and the subsequent discussions. We take this oppor-
tunity to thank the Program Committee members and the external reviewers for their
tremendous job in selecting the current program. The submissions and reviews were
managed using the “Web Submission and Review Software” written and maintained by
Shai Halevi. We thank him for providing us the software.

The proceedings include the revised versions of the 20 contributed papers. Revi-
sions were not checked by the Program Committee members and the authors bear
the full responsibility for the contents of the respective papers. In addition to the
20 papers, the program included three invited talks. Gilles Van Assche gave a talk
about “On dec(k) Functions,” Takahiro Matsuda spoke on “Public Key Encryption
Secure Against Related Randomness Attacks,” and Mridul Nandi’s talk was about
“How to Make a Single-Key Beyond Birthday Secure Nonce-Based MAC.” The
abstracts of the invited talks are also included in these proceedings.

We would like to thank the general chairs, Dr. Anu Khosla and Prof. Brishbhan
Singh Panwar, and the organizing chairs, Prof. Shri Kant and Dr. Indivar Gupta, along
with the Organizing Committee comprising members of Sharda University and
SAG DRDO for making the conference a success. Finally, we would like to thank all
the authors who submitted their work to INDOCRYPT 2018, and we also would like to



thank all the participants. Without their support and enthusiasm, the conference would
not have succeeded.

December 2018 Debrup Chakraborty
Tetsu Iwata

VI Preface



INDOCRYPT 2018

The 19th International Conference on Cryptology in India

New Delhi, India
December 9–12, 2018

General Chairs

Anu Khosla Scientific Analysis Group, DRDO, Delhi, India
Brishbhan Singh Panwar Sharda University, India

Program Chairs

Debrup Chakraborty Indian Statistical Institute, Kolkata, India
Tetsu Iwata Nagoya University, Japan

Organizing Chairs

Indivar Gupta Scientific Analysis Group, DRDO, Delhi, India
Shri Kant Sharda University, India

Program Committee

Diego Aranha University of Campinas, Brazil and Aarhus University,
Denmark

Shi Bai Florida Atlantic University, USA
Subhadeep Banik EPFL, Switzerland
Lejla Batina Radboud University, The Netherlands
Rishiraj Bhattacharyya NISER, India
Christina Boura University of Versailles and Inria, France
Debrup Chakraborty Indian Statistical Institute, Kolkata, India
Sanjit Chatterjee Indian Institute of Science, Bangalore, India
Geoffroy Couteau Karlsruher Institut für Technologie, Germany
Pooya Farshim CNRS and ENS, France
Shay Gueron University of Haifa, Israel
Divya Gupta Microsoft Research India, India
Indivar Gupta SAG, DRDO, Delhi, India
Gottfried Herold ENS de Lyon, France
Viet Tung Hoang Florida State University, USA
Takanori Isobe University of Hyogo, Japan
Tetsu Iwata Nagoya University, Japan
Elena Kirshanova ENS Lyon, France



Shanta Laishram Indian Statistical Institute, Delhi, India
Patrick Longa Microsoft Research, Redmond, USA
Atul Luykx Visa Research, USA
Subhamoy Maitra Indian Statistical Institute, Kolkata, India
Hemanta K. Maji Purdue University, USA
Bart Mennink Radboud University, The Netherlands
Kazuhiko Minematsu NEC Corporation, Japan
Debdeep Mukhopadhyay IIT Kharagpur, India
Mridul Nandi Indian Statistical Institute, Kolkata, India
Khoa Nguyen NTU, Singapore
Ryo Nishimaki NTT, Japan
Raphael Phan Multimedia University, Malaysia
Manoj Prabhakaran Indian Institute of Technology, Bombay, India
Somindu C. Ramanna Indian Institute of Technology, Kharagpur, India
Francisco

Rodriguez-Henriquez
CINVESTAV-IPN, Mexico

Adeline Roux-Langlois University of Rennes, CNRS, IRISA, France
Jacob Schuldt AIST, Japan
Peter Schwabe Radboud University, The Netherlands
Francois-Xavier Standaert UCL, Belgium
Siwei Sun Chinese Academy of Sciences, China
Atsushi Takayasu University of Tokyo, Japan
Srinivas Vivek IIIT Bangalore, India
Shota Yamada AIST, Japan
Kazuki Yoneyama Ibaraki University, Japan
Yu Yu Shanghai Jiao Tong University, China
Vassilis Zikas University of Edinburgh, UK

External Reviewers

Nuttapong Attrapadung
Arnab Bag
Balthazar Bauer
Sai Lakshmi Bhavana
Avik Chakraborti
Bishwajit Chakraborty
Joan Daemen
Prem Laxman Das
Martianus Frederic Ezerman
Chun Guo
Jian Guo
Muhammad Ishaq
Matthias Kannwischer
Louiza Khati

Manoj Kumar
Iraklis Leontiadis
Shun Li
Fuchun Lin
Fukang Liu
Alice Pellet–Mary
Ryutaroh Matsumoto
Nicky Mouha
Fabrice Mouhartem
Pierrick Méaux
Tapas Pandit
Christophe Petit
Shravan K. Parshuram Puria
Yogachandran Rahulamathavan

VIII INDOCRYPT 2018



Joost Renes
Yusuke Sakai
Palash Sarkar
Akash Shah
Danping Shi
Bhupendra Singh
Ben Smith
Shifeng Sun
Sharwan Kumar Tiwari
Yiannis Tselekounis

Alexandre Wallet
Weijia Wang
Xiao Wang
Yuyu Wang
Yohei Watanabe
Weiqiang Wen
Masaya Yasuda
Thomas Zacharias
Bin Zhang
Juanyang Zhang

INDOCRYPT 2018 IX



Abstracts of Invited Talks



On dec(k) Functions

Gilles Van Assche

STMicroelectronics, Diegem, Belgium

Cryptographic objects with input and output extension properties are very convenient
in numerous situations. With the duplex construction, we defined a cryptographic
object that can return a digest on a growing sequence of strings, with an incremental
cost, i.e., without the need to process again the entire sequence [2]. Similarly, the
Farfalle construction builds a keyed cryptographic function with an extendable input
and able to return an output of arbitrary length [1]. It supports for sequences of strings
as input and a specific incremental property, namely that computing F Y � Xð Þ costs
only the processing of Y if F Xð Þ was previously computed. Clearly, duplex and Far-
falle are not the only way to build functions with such properties, and the construction
should be decoupled from the input-output signature.

For this purpose, we propose the name dec function for a function that takes a
sequence of input strings and returns a digest of arbitrary length and that can be
computed incrementally. Here, “dec” stands for Doubly-Extendable Cryptographic.
Note that a dec function is a particular case of extendable-output function (XOF), as a
XOF is not required to accept growing inputs at an incremental cost. Likewise, we
propose the name deck function, with an additional “k” for Keyed, for a keyed function
with the same incremental properties and whose output is a pseudorandom string of
arbitrary length.

In this talk, I will explain the purpose of dec(k) functions, from transcript hashing to
authenticated encryption, and how to implement them. On this last point, I will relate
them to the duplex and full-state keyed duplex constructions, as well as to the Strobe
protocol framework [2, 4, 5]. Then, I will explore the permutation-based Farfalle
construction as a way to build an efficient deck function from permutation components
[1]. Finally, I will detail the recent Xoodoo permutation, its cryptographic properties
and the deck function Xoofff built on top of it [3].

References
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Public Key Encryption Secure Against Related
Randomness Attacks

Takahiro Matsuda

National Institute of Advanced Industrial Science and Technology (AIST),
Tokyo, Japan

t-matsuda@aist.go.jp

Abstract. Most cryptographic primitives are designed under the assumption that
perfect (uniform) randomness is available. Unfortunately, however, random
number generators (RNGs) are notoriously hard to implement and test, and we
have seen many examples of the failures of RNGs in practice. Motivated by the
challenge of designing public key encryption secure under randomness failure,
Paterson, Schuldt, and Sibborn (PKC 2014) introduced a security notion called
related randomness attack (RRA) security. This notion captures security against
adversaries that are allowed to control the randomness used in the encryption
scheme, but still requires that messages encrypted under an honestly generated
public key remain hidden, given that certain restrictions are placed on the
adversaries’ queries. RRA security is one of the promising security notions that
allows us to hedge against randomness failures in the usage of public key
encryption. In this talk, I will give a brief survey of the topic, in particular the
formalizations, existing results, and techniques used for achieving RRA
security.



How to Make a Single-Key Beyond Birthday
Secure Nonce-Based MAC

Mridul Nandi

Indian Statistical Institute, Kolkata
mridul.nandi@gmail.com

Abstract. At CRYPTO 2016, Cogliati and Seurin [1] have proposed a highly
secure nonce-based MAC called Encrypted Wegman-Carter with Davies-Meyer
(EWCDM) construction, as EK2 EK1 Nð Þ � N � HKh Mð Þð Þ for a nonce N and a
message M. This construction achieves roughly 22n=3 bit MAC security with the
assumption that E is a PRP secure n-bit block cipher and H is an almost xor
universal n-bit hash function. Note that EWCDM requires three keys; two block
cipher keys K1 and K2 and one hash key Kh. Thus, it is natural to ask that
whether one can achieve the similar security in the case of using less number of
keys. In fact, proving BBB security of single-keyed EDM (EK1 EK1 Nð Þ � Nð Þ),
is a highly complicated task as evident from [2] and it is not clear at all how to
build on this result to prove the MAC security of EWCDM construction with
K1 ¼ K2. Moreover, Cogliati and Seurin, in their proof of single-keyed EDM
[2], have also stated that

“For now, we have been unable to extend the current (already cumbersome)
counting used for the proof of the single-permutation EDM construction to the
more complicated case of single-key EWCDM.”

In this talk, I will discuss a recent design - Decrypted Wegman-Carter with
Davies-Meyer (DWCDM) construction - which is structurally very similar to its
predecessor EWCDM except that the outer encryption call is replaced by
decryption. The biggest advantage of DWCDM is that we can make a truly
single key MAC: the two block cipher calls can use the same block cipher key
K ¼ K1 ¼ K2. Moreover, we can derive the hash key as Kh ¼ EK 1ð Þ, as long as
Khj j ¼ n. Whether we use encryption or decryption in the outer layer makes a
huge difference; using the decryption instead enables us to apply an extended
version of the mirror theory by Patarin to the security analysis of the con-

struction. DWCDM is secure beyond the birthday bound, roughly up to 22n=3

MAC queries and 2n verification queries against nonce-respecting adversaries
when nonce is a 2n=3 bits string. I will also describe how this construction can
be further improved in two directions. We extend the nonce space to as large as
the set of all n� 1 bits. Moreover, the security bound can be extended against

23n=4 MAC queries. The details of a part of this talk can be found in [3].

Keywords: EDM � EWCDM � Mirror theory � Extended mirror theory
H-Coefficient
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Revisiting Single-Server Algorithms for
Outsourcing Modular Exponentiation

Jothi Rangasamy(B) and Lakshmi Kuppusamy

Society for Electronic Transactions and Security (SETS), Chennai, India
{jothiram,lakshdev}@setsindia.net

Abstract. We investigate the problem of securely outsourcing modular
exponentiations to a single, malicious computational resource. We revisit
recently proposed schemes using single server and analyse them against
two fundamental security properties, namely privacy of inputs and ver-
ifiability of outputs. Interestingly, we observe that the chosen schemes
do not appear to meet both the security properties. In fact we present
a simple polynomial-time attack on each algorithm, allowing the mali-
cious server either to recover a secret input or to convincingly fool the
client with wrong outputs. Then we provide a fix to the identified prob-
lem in the ExpSOS scheme. With our fix and without pre-processing,
the improved scheme becomes the best to-date outsourcing scheme for
single-server case. Finally we present the first precomputation-free single-
server algorithm, πExpSOS for simultaneous exponentiations, thereby
solving an important problem formulated in [6].

1 Introduction

The problem of securely offloading cryptographic computations from a (compar-
atively) weak device to a more powerful device has been considered since many
years [1] but the need for such a solution has been increasing rapidly [8–11]. A
low-cost RFID tag is a natural example as it has limited computing resources but
will benefit from running cryptographic protocols [18]. Proliferation of the usage
of mobile applications adds one more scenario wherein outsourcing resource-
consuming cryptographic tasks to a third-party is desirable.

The growing utilisation of cloud services such as Dropbox, Google and Ama-
zon Cloud Drives has raised concerns about the availability and integrity of
the data being handled and stored. By using cryptographic primitives such
as provable data possession [2] and proofs of retrievability [3], these service
providers could convince their clients that the actual data given by clients has
been retrieved entirely. However, during this process, the clients have to engage
in performing computationally-intensive operations to verify the claims of their
storage providers and this is not practically viable for many devices in use today.
Among complex cryptographic operations, modular exponentiation is invariably
the predominant and core operation; that is, to compute ua mod p with a vari-
able base u, a variable exponent a and a prime or RSA modulus p. In this paper,

c© Springer Nature Switzerland AG 2018
D. Chakraborty and T. Iwata (Eds.): INDOCRYPT 2018, LNCS 11356, pp. 3–20, 2018.
https://doi.org/10.1007/978-3-030-05378-9_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05378-9_1&domain=pdf
https://doi.org/10.1007/978-3-030-05378-9_1
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our goal is to inspect the recently proposed single-server outsourcing algorithms
for modular exponentiation.

1.1 Related Work

The problem of secure delegation of crypto computations to (untrusted) helpers
has been considered in various contexts [1,8–11,17,24]. In particular, the idea
of secure delegation of modular exponentiation can be attributed to the work
of Schnorr [21,22] as he was the first to propose speeding up modular expo-
nentiations in cryptography. However it has not received formal treatment until
Hohenberger and Lysyanskaya [12] developed a formal security framework for
secure outsourcing of cryptographic computations to untrusted servers in 2005.
In secure outsourcing scenario, preserving the secrecy of the inputs and/or out-
puts is vital. Hence, in Hohenberger-Lysyanskaya formalism, secrecy is the first
notion an outsourcing algorithm should aim to satisfy. The second security
notion, namely verifiability addresses the correctness of the output of the pow-
erful helper/server. Hohenberger and Lysyanskaya also presented a scheme for
outsourcing modular exponentiation to two non-colluding servers. This approach
was improved in [6] and further in [15] with better verifiability results.

Designing an efficient algorithm using single untrusted (cloud) server for
securely outsourcing (multi-)modular exponentiation has been a perennial prob-
lem. Towards solving this, Wang et al. presented (at ESORICS 2014) an efficient
protocol to outsource modular exponentiation to a single untrusted server [23].
They also presented a generic protocol for outsourcing multi-exponentiations to
a single server. However Chevalier et al. [7] presented a lattice-based attack on
Wang et al. scheme recovering the secret exponent. Independently, Kiraz and
Uzunkol designed an outsourcing scheme but requires an additional sub algo-
rithm [14]. In 2017, Cai et al. [5] proposed a new scheme using redundant inputs
but with increased communication complexity undesirably. Recently, Li et al.
[16] have come up with a novel approach of using logical divisions twice for
the given inputs. Then Zhou et al. [25] proposed a new scheme, which they call
ExpSOS, using special ring structure of ZN with the goal of eliminating the (de
facto) preprocessing and achieving near-full verifiability simultaneously. To the
best of our knowledge, ExpSOS is the only single-server algorithm which does
not require resource-demanding pre-processing techniques such as Rand in [4].

1.2 Our Contributions

Contributions of the paper is two-fold. We first present practical attacks on three
recent single-server algorithms and then we resolve the issue with the ExpSOS
scheme, making it the best to-date scheme for this purpose.

First we show that the CExp scheme due to Li et al. [16] is unfortunately
zero verifiable, instead of the authors’ claim of satisfying the full verifiability.
We demonstrate how to manipulate the outputs so that the delegator can be
tricked by 100% into accepting false outputs.
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Secondly, we note that the SgExp scheme proposed by Cai et al. [5] does not
provide the claimed verifiability guarantee. The idea behind this tricky attack is
to classify the queries to the untrusted (cloud) server into two categories because
exponents in a set of queries need to be powers of two. This makes the scheme
unfortunately totally unverifiable, instead of having the verifiability probability
1 − 1

n2 which is ≈ 0.99996 for n = 160. The result is applicable to the SmExp
scheme proposed by Cai et al. for the case of simultaneous exponentiation.

Thirdly, we describe an attack on the ExpSOS scheme of Zhou et al. [25]
on its second invocation with the same secret exponent. The scheme will leak
the exponent if it is used again, invalidating the claimed secrecy guarantee.
The demonstrated attack extends to the other versions of the ExpSOS scheme
in [25].

Our last and main contribution are new single-server algorithms for secure
outsourcing of single and simultaneous modular exponentiations. For single expo-
nentiation case, our algorithm is obtained by modifying ExpSOS. The modi-
fied scheme, which we call MExpSOS becomes the most efficient and simple
scheme available in the related literature in addition to eliminating the memory
requirement and the substantial computational cost of the precomputation step.
Finally, we present an elegant algorithm, πExpSOS extending MExpSOS for
simultaneous multiplications. The πExpSOS algorithm is near error-free and
preprocessing-free and hence is the first of its kind in the literature. Our obser-
vations are summarised in Table 1.

Table 1. Single server based outsourcing algorithms and their properties

Algorithm Secrecy Verifiability probability Pre-processing required

SgExp, SmExp [5] Yes 0 Yes

CExp [16] Yes 0 Yes

Kiraz-Uzunkol [14] Yes < 1 Yes

ExpSOS [25] No ≈ 1 No

MExpSOS, πExpSOS Yes ≈ 1 No

Outline. The paper is organised as follows. The Hohenberger-Lysyanskaya secu-
rity model is recalled in Sect. 2. In Sect. 3 we observe weaknesses in recent single-
server based outsourcing schemes. In Sect. 4 we propose a re-designed ExpSOS
scheme and prove that it satisfies security notions: secrecy and verifiability and
Sect. 5 concludes the paper.

2 Security Definitions

The first formal treatment for the problem of outsourcing cryptographic com-
putations from a weak client to a powerful server was due to Hohenberger and
Lysyanskaya [12]. The security model is useful in checking the privacy, efficiency
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and verifiability probability when outsourcing the task. In this section, we repro-
duce the security definitions of the Hohenberger-Lysyanskaya framework.
Adversarial Behaviour. Assume that an algorithm Alg is run by two par-
ties: a computationally weak and trusted party C (i.e., a client) who invokes
a computationally powerful and untrusted party U through oracle queries. An
outsource-secure implementation of an algorithm Alg = CU is specified by (C,U).
where C carries out the tasks by invoking U .

Hohenberger and Lysyanskaya modelled adversary A = (E ,U ′
) and its

behaviour in two parts: (i) the adversarial environment E simulated to
send/submit inputs to Alg; (ii) a malicious oracle U ′

simulated to mimic U .
E and U ′

can establish a direct communication channel only before agreeing on
a joint initial strategy after which the only way they can communicate is by
passing the messages through a channel re-directed/monitored by C.

Input/output specifications. The following are the forms of information the
algorithm’s input/output may have:

Secret information possessed by C;
Protected information known to both C and E but unknown to U ′

. This
protected information is categorized depending upon the honest or adversarial
generation of inputs;

Unprotected information known to C, E and U ′
.

Definition 1 (Algorithm with IO-outsource). The outsource algorithm Alg
obeys the input/output specification if it accepts five inputs and produces three
outputs. The honest entity generates the first three inputs and the last two inputs
are generated by the environment E . The first three inputs can be further classified
based on the information about them available to the adversary A = (E ,U ′

).
The first input is the honest, secret input which is unknown to both E and U ′

.
The second input is the honest, protected input which may be known by E , but
is protected from U ′

. The third input is the honest, unprotected input which
may be known by both E and U ′

. The fourth input is the adversarial, protected
input which may be known by E , but is protected from U ′

. The fifth input is
the adversarial, protected input which may be known by E , but is protected from
U ′

. Similarly, the first, second and third outputs are called secret, protected and
unprotected outputs respectively.

2.1 Outsource-Security Definitions

The following are the security requirements an outsource algorithm should
satisfy:

– Secrecy. It should be ensured that the malicious environment E should not
learn secret inputs and outputs of the algorithm Alg, although there exist a
joint initial strategy between E and the oracle U ′. In the formal definition,
it is assumed that a simulator S1 exists without having access to the secret
inputs and simulates the view of E .
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– verifiability. The malicious oracle U ′ does not gain any knowledge about the
inputs to Alg even when it mimics the behaviour of U to C. In the formal
definition it is assumed that a simulator S2 exists without having access to
the secret/protected inputs and simulates the view of U ′.

The following Definitions 2, 3, 4 and 5 are reproduced from [12].

Definition 2 (Outsource-security). [12] A pair of algorithms (C,U) is said
to be an outsource-secure implementation of an algorithm Alg with IO-outsource
if:

Correctness. CU is a correct implementation of Alg.
Security. For all probabilistic polynomial-time adversaries A = (E ,U ′), there

exist probabilistic expected polynomial-time simulators (S1,S2) such that the
following pairs of random variables are computationally indistinguishable.

Pair One. (E learns nothing): EVIEWreal ∼ EVIEWideal.

The real process: This process proceeds in rounds. Assume that the honestly
generated inputs are chosen by a process I. The view that the adversarial
environment obtains by participating in the following process:

EVIEWi
real = {

(
istatei, xi

hs, x
i
hp, x

i
hu

)
← I

(
1k, istatei−1

)
;

(
estatei, ji, xi

ap, x
i
au, stopi

) ← E
(
1k,EVIEWi−1

real, x
i
hp, x

i
hu

)
;

(
tstatei, ustatei, yi

s, y
i
p, y

i
u

) ← CU ′(ustatei−1)
(
tstatei−1, xji

hs, x
ji

hp, x
ji

hu, xi
ap, x

i
au

)
:(

estatei, yi
p, y

i
u

)}
EVIEWreal = EVIEWi

real if stopi = TRUE.

In round i, The adversarial environment does not have access to the honest
inputs (xi

hs, x
i
hp, x

i
hu) that are picked using an honest, stateful process I. The

environment based on its view from last round, chooses the value of its estatei

variable that is used to recall what it did next time it is invoked. Then, among
the previously generated honest inputs, the environment chooses a input vector
(xji

hs, x
ji

hp, x
ji

hu) to give it to CU ′
. Observe that the environment can specify the

index ji of the inputs but not the values. The environment also chooses the
adversarial protected and unprotected input xi

ap and xi
au respectively. It also

chooses the boolean variable stopi that determines whether round i is the last
round in this process.
Then, CU ′

is run on inputs (tstatei−1, xji

hs, x
ji

hp, x
ji

hu, xi
ap, x

i
au) where tstatei−1

is C’s previously saved state. The algorithm produces a new state tstatei for C
along with the secret yi

s, protected yi
p and unprotected yi

u outputs. The oracle
U ′ is given ustatei−1 as input and the current state in saved in ustatei. The
view of the real process in round i consists of estatei, and the values yi

p and
yi

u. The overall view of the environment in the real process is just its view in
the last round.
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The ideal process:
EVIEWi

ideal = {
(
istatei, xi

hs, x
i
hp, x

i
hu

)
← I

(
1k, istatei−1

)
;

(
estatei, ji, xi

ap, x
i
au, stopi

) ← E
(
1k,EVIEWi−1

ideal, x
i
hp, x

i
hu

)
;

(
astatei, yi

s, y
i
p, y

i
u

) ← Alg
(
astatei−1, xji

hs, x
ji

hp, x
ji

hu, xi
ap, x

i
au

)
;

(
sstatei, ustatei, Y i

p , Y i
u, replacei

) ← SU ′(ustatei−1)
1

(
sstatei−1, xji

hp, x
ji

hu, xi
ap, x

i
au, yi

p, y
i
u

)
;(

zi
p, z

i
u

)
= replacei

(
Y i

p , Y i
u

)
+

(
1 − replacei

) (
yi

p, y
i
u

)
:(

estatei, zi
p, z

i
u

)}
EVIEWideal = EVIEWi

ideal if stopi = TRUE.

This process also proceeds in rounds. The secret input xi
hs is hidden from the

stateful simulator S1. But, the non-secret inputs produced by the algorithm
that is run on all inputs of round i is given to S1. Now, S1 decides whether to
output the values (yi

p, y
i
u) generated by the algorithm Alg or replace them with

some other values (Y i
p , Y i

u). This replacement is captured using the indicator
variable replacei ∈ {0, 1}. The simulator is allowed to query the oracle U ′

which saves its state as in the real experiment.

Pair two (U ′ learns nothing): UVIEWreal ∼ UVIEWideal.

The view that the untrusted entity U ′ obtains by participating in the real
process is described in pair one. UVIEWreal = ustateiifstopi = TRUE. The
ideal process:

UVIEWi
ideal = {

(
istatei, xi

hs, x
i
hp, x

i
hu

)
← I

(
1k, istatei−1

)
;

(
estatei, ji, xi

ap, x
i
au, stopi

) ← E
(
1k, estatei−1, xi

hp, x
i
hu, yi−1

p , yi−1
u

)
;

(
astatei, yi

s, y
i
p, y

i
u

) ← Alg
(
astatei−1, xji

hs, x
ji

hp, x
ji

hu, xi
ap, x

i
au

)
;

(
sstatei, ustatei

) ← SU ′(ustatei−1)
2

(
sstatei−1, xji

hu, xi
au

)
;(

ustatei
)}

UVIEWideal = UVIEWi
ideal if stopi = TRUE.

In the ideal process, the stateful simulator S2 is given with only the unprotected
inputs (xi

hu, xi
au), queries U ′. As before, U ′ may maintain state.

Definition 3 (α−efficient, secure outsourcing). [12] A pair of algorithms
(C,U) is said to be an α−efficient implementation of an algorithm Alg if (C,U)
is an outsource secure implementation of algorithm Alg and for all inputs x, the
running time of C is ≤ an α− multiplicative factor of the running time of Alg(x)

Definition 4 (β−verifiable, secure outsourcing). [12] A pair of algorithms
(C,U) is a β−verifiable implementation of an algorithm Alg if (C,U) is an out-
source secure implementation of algorithm Alg and for all inputs x, if U ′ deviates
from its advertised functionality during the execution of CU ′

(x), C will detect the
error with probability ≥ β
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Definition 5 ((α, β)−outsource-security). [12] A pair of algorithms (C,U)
is said to be an (α, β)−outsource-secure implementation of an algorithm Alg if
they are both α−efficient and β−checkable.

3 On Recent Single-Server Outsourcing Schemes

This section presents security issues with three single-server algorithms proposed
in 2017; They are (1) Li et al. scheme (CExp), (2) Cai et al. scheme (SgExp)
and (3) Zhou et al. scheme (ExpSOS).

3.1 Li et al. Scheme (CExp) and Its Weakness

First, we present Li et al. scheme briefly and then show its security weakness of
not achieving full verifiability as claimed by the authors.

CExp Algorithm. We use the same notations followed by Li et al. [16] to
describe their outsourcing algorithm. Let N = pq for two large primes p and
q. Let CExp be an algorithm which outputs ud mod N upon accepting u ∈ Z

∗
N

and d ∈ Z
∗
φ(N) as inputs. The assumption is that the inputs u and d are secret

or (honest/adversarial) protected. Hence the inputs need to be computationally
blinded (masked) by the delegator C before passing them to the untrusted server
U .

Masking the Inputs. To mask the inputs, the algorithm CExp uses preprocess-
ing technique RandN for efficient generation of pairs of the form (x, xe mod N)
for a fixed e. (For more details about the description, analysis and efficiency
of these pre-processing techniques, please refer to [4, Sect. 2] and [20].)

The client C runs RandN to generate four pairs (g1, ge
1), (g2, g

e
2), (g3, g

e
3),

(g4, ge
4). Let v1 = ge

1 mod N,w1 = ge
2 mod N, v2 = ge

3 mod N, and w2 =
ge
4 mod N . To logically split base u and exponent d into random looking

pieces, the first logical divisions are done as follows:

ud = v1c
r1
1 w1w

�1(wk1g2)t1 , (1)

where c1 = g1/g2, r1 = d − e, w = u/g1, t1 = r1 − e and d = �1 + k1t1. For
second logical divisions, C computes an integer a such that ad ≡ 1 mod φ(N).
Then C computes ra mod N for a randomly chosen r ∈ {2, 10} and sets
u′ = u · ra.

(u′)d = v2c
r1
2 w2(w′)�1((w′)k1g4)t1 , (2)

where c2 = g3/g4, r1 = d − e, w′ = u′/g3, t1 = r1 − e and d = �1 + k1t1. It
is recommended to choose the random blinding factor t1 such that t1 ≥ 2λ,
where λ being the security parameter should be at least 64 bits long.
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Queries to U . C queries U in random order as follows:
1. (r1, c1) → cr1

1 ;
2. (r1, c2) → cr1

2 ;
3. (�1, w) → w�1 ;
4. (k1, w) → wk1 ;
5. (�1, w′) → (w′)�1 ;
6. (k1, w′) → (w′)k1 .

Verifying the correctness of U ’s outputs. The client C checks whether

r
(
v1c

r1
1 w1w

�1(wk1g2)t1
) ?= v2c

r1
2 w2(w′)�1((w′)k1g4)t1 (3)

Recovering ud mod N . If the above check passes, C computes the result as

ud = v1c
r1
1 w1w

�1(wk1g2)t1 . (4)

Otherwise C outputs error message.

Attack on CExp Algorithm. Li et al. claim that their algorithm CExp is
1-verifiable; that is, it allows the client C to verify the outputs returned by U
with probability 1. We show that with a minimal effort, U can cheat C with the
malformed outputs and hence CExp offers unfortunately 0-verifiability.

The attacker’s strategy is to identify and segregate just 2 out of 6 queries
for which the exponent is same. For instance, let U choose (r1, c1) and (r1, c2).
Note that this separation is easier since each base value ci is distinct and does
not appear twice. Now the malicious U manipulates the outputs corresponding
to these two queries only by multiplying them with a random δ ∈ {1, N} and
proceeds as follows.

1. (r1, c1) → δcr1
1 ;

2. (r1, c2) → δcr1
2 ;

3. (�1, w) → w�1 ;
4. (k1, w) → wk1 ;
5. (�1, w′) → (w′)�1 ;
6. (k1, w′) → (w′)k1 .

After receiving the outputs, C checks if

r
(
v1δc

r1
1 w1w

�1(wk1g2)t1
) ?= v2δc

r1
2 w2(w′)�1((w′)k1g4)t1 .

Or equivalently, rδud ?= δ(u′)d.

Since the check has been passed, C finally computes the unintended output:

ud = v1δc
r1
1 w1w

�1(wk1g2)t1 .
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3.2 Cai et al. Scheme (SgExp) and Its Weakness

For the single untrusted server model, Cai et al. [5] proposed two algorithms
to securely outsource single and simultaneous modular exponentiations with
verifiability probability being close to 1. We show in this section that both their
variants fail to detect wrong values output by the malicious server.

SgExp Algorithm. We use the same notations followed by Cai et al. to describe
their outsourcing algorithm SgExp.

Masking the Inputs. To mask the inputs, the algorithm SgExp used the pre-
processing techniques BPV+ or SMBL to generate four pairs (α, gα), (β, gβ),
(ε, gε), (θ, gθ) denoted by A,B,C and D respectively. Let w = u/A mod p
and v = u/C mod p. Then C represents u in the following two ways:

– ua = (Aw)a = gaαwa = gβgγwa mod p, where γ = (aα − β) mod q;
– ua = (Cv)a = gaεva = gθgτva mod p, where τ = (aε − θ) mod q.

To implicitly mask a in wa and va, C randomly chooses i, j such that 2i 
=
2j < a and computes

– a1 = a − 2i

– a2 = a − 2j .
Queries to U . C runs BPV+ or SMBL to generate 8 pairs (t1, gt1), (t2, gt2) and

(s1, gs1), (s2, gs2) · · · (s6, gs6). Then C query U in random order after choosing
m1, · · · mi−1,mi+1, · · · mj−1,mj+1, · · · mn as follows:

– (gt1 , γ/t1, p) → gγ ;
– (wgs1 , a1, p) → R11 = wa1gs1a1 ;
– (gs3 , s1a1−s2

s3
, p) → R12 = gs1a1−s2 ;

– (gt2 , τ/t2, p) → gτ ;
– (vgs4 , a2, p) → R21 = va2gs4a2 ;
– (gs6 , s4a2−s5

s6
, p) → R22 = gs4a2−s5 ;

– (m1, 2) → m[1] = m2
1;

– (m2, 22) → m[2] = m4
2;

– · · ·
– (w, 2i) → m[i] = w2i ;
– · · ·
– (v−1, 2j) → m[j] = v−2j ;
– · · ·
– (mn, 2n) → m[n] = m2n

n ;
Verifying the correctness of U ’s outputs.The client C computes

wa1 = R11(R12g
s2)−1

va2 = R21(R22g
s5)−1

and checks whether

Bgγwa1m[i]m[j] mod p
?≡ Dgτva2 mod p (5)

Recovering ua. If the above check passes, C computes

ua ≡ Bgγwa1m[i] mod p.

Otherwise C outputs the error symbol ⊥.
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Attack on SgExp Algorithm. Cai et al. claim that their algorithm SgExp
preserves secrecy and the client C can verify the outputs returned by U with
probability 1 − 1/n2. We show that even a minimal effort from U could lead to
cheating the client C with the malformed outputs and hence SgExp is unfortu-
nately 0-verifiable.

The attacker’s strategy is to identify and segregate n out of n+ 6 queries for
which the first argument is a power of 2. Then the attacker forms two bins; to
fill n number of queries of the form 2i in one bin and the remaining 6 queries
in the other bin. Note that this kind of separation of n + 6 queries is possible
as exponent is a power of 2 in n queries. After segregation of n queries, the
adversary manipulates the outputs of remaining 6 queries only by multiplying
them with a random δ ∈ G and proceeds as follows.

– (gt1 , γ/t1, p) → δgγ ;
– (wgs1 , a1, p) → R11 = δwa1gs1a1 ;
– (gs3 , s1a1−s2

s3
, p) → R12 = δgs1a1−s2 ;

– (gt2 , τ/t2, p) → δgτ ;
– (vgs4 , a2, p) → R21 = δva2gs4a2 ;
– (gs6 , s4a2−s5

s6
, p) → R22 = δgs4a2−s5 ;

– (m1, 2) → m[1] = m2
1;

– (m2, 22) → m[2] = m4
2;

– · · ·
– (w, 2i) → m[i] = w2i ;
– · · ·
– (v−1, 2j) → m[j] = v−2j ;
– · · ·
– (mn, 2n) → m[n] = m2n

n ;

After receiving the outputs, C computes

wa1 = δR11(δR12g
s2)−1 = R11(R12g

s2)−1

va2 = δR21(δR22g
s5)−1 = R21(R22g

s5)−1

and checks
Bδgγwa1m[i]m[j] mod p

?= Dδgτva2 mod p. (6)

Since the check has been passed, C finally computes the undesired output:

ua = Bδgγδwa1m[i] mod p 
= Bgγwa1m[i] mod p.

3.3 Zhou et al. Scheme (ExpSOS) and Its Weakness

Zhou et al. [25] proposed several algorithms for outsourcing variable-exponent
variable-base modular exponentiation using only a single untrusted server. In
this section, we consider only the most generic algorithm, namely ExpSOS
under malicious model [25, Sect. IV]. However our observations here are also
applicable to other versions in the paper [25].
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ExpSOS Algorithm. Let N be either a prime number or an RSA modulus
and u, a ∈ ZN . The aim of the client C is to compute ua mod N keeping the
variable values u, a and ua secret. The client runs the oracle U whose task is to
return ij mod k on input (i, j, k). In order to maintain the secrecy of u and a
they are computationally masked before being given as input to U .

Masking the Inputs. To mask the inputs, the client C generates a large prime
p and calculates L = pN keeping N and p secret from the server U . By
choosing the random integers k1, k2, t1, t2, r such that t1, t2 ≤ b, (where b is a
security parameter) C calculates the following:
1. A1 = a + k1φ(N)
2. A2 = t1a + t2 + k2φ(N)
3. U = u + rN mod L.

Queries to U . C queries U in random order as follows:
1. (U,A1, L) → R1

2. (U,A2, L) → R2.
Verifying the correctness of U ’s outputs. The client C checks whether

Rt1
1 · ut2

?≡ R2 mod N. (7)

Recovering ua. If the above check passes, C computes

ua ≡ R1 mod N. (8)

Otherwise C outputs error message.

Attack on ExpSOS Algorithm. The first generic algorithm for outsourc-
ing variable-exponent variable-base modular exponentiation using only a single
untrusted server was due to Wang et al. [23]. In [7] Chevalier et al. presented a
lattice-based attack on Wang et al.’s scheme recovering the secret exponent when
it appears again in another invocation. In this section, we follow the approach of
Chevalier et al. and describe a similar attack on ExpSOS when the same secret
exponent is used in two or more runs. In fact we will show that an exponent in
ExpSOS can be recovered in polynomial time when two exponentiations hav-
ing the same exponent are outsourced to the server U . The assumed scenario is
evident from the first application proposed in [25, Sect. VI.A] to securely offload
Inner Product Encryption for Biometric Authentication [13].

The considered attack scenario is the following: The client wants to compute
ua mod N first and (u′)a mod N later. Let (U,A1, A2) and (U ′, A′

1, A
′
2) be the

queries to U corresponding to two exponentiations such that

A1 = a + k1φ(N);A2 = t1a + t2 + k2φ(N)

and
A′

1 = a + k3φ(N);A′
2 = t3a + t4 + k4φ(N).

Now, subtracting the first exponents in two exponentiations gives A1 − A′
1 =

(k1−k3)φ(N). Thus, given a multiple of φ(N), U can recover the secret exponent
a in polynomial time using the well-known Miller’s algorithm. (Miller in [19]
showed that factoring of n is possible given any multiple of φ(n)).
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Remark 1. The above attack breaks the secrecy of other versions of ExpSOS in
[25]. In fact it is applicable even for ExpSOS under honest-but-curious server
model in [25, Sect. III.C]. The malicious server could act benignly in computing
the required values but can learn silently any reused secret exponent. In the next
section we attempt to thwart this attack under malicious server model since there
is no efficiency gain to consider having the semi-honest server.

4 Our Algorithms for Single and Simultaneous
Exponentiations

We first present the algorithm for single exponentiation by revising the ExpSOS
algorithm and then extend the resulting algorithm for simultaneous exponenti-
ations.

4.1 Improved ExpSOS Scheme for Single Exponentiation

In this section we present an improved ExpSOS algorithm which resists attack
described in Sect. 3.3. We use the same notations from Sect. 3.3 used to describe
the ExpSOS algorithm.

The MExpSOS Algorithm Let N be either a prime number or an RSA modulus
and u, a ∈ ZN . The aim of the client C is to compute ua mod N keeping the
variable values u, a and ua secret.

Masking the Inputs. To mask the inputs, the client C generates a large prime
p and calculates L = pN to keep N and p secret from the server U . Select
a random r such that N ′ = rN is fixed for all invocations. By choosing
the random integers k1, k2, t1, t2 such that t1, t2 ≤ b (where b is a security
parameter), C calculates the following:
1. a1 = a − t1
2. A1 = a1 + k1φ(N)
3. A2 = t2a + k2φ(N)
4. U = u + N ′ mod L

Queries to U . C queries U in random order as follows:
1. (U,A1, L) → R1

2. (U,A2, L) → R2

Verifying the correctness of U ’s outputs. The client C checks whether

(R1u
t1)t2 mod N

?= R2 mod N (9)

Recovering ua. If the above check passes, C computes

ua = R1u
t1 mod N (10)

Otherwise C outputs error message.
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Remark 2. The performance gain of the above algorithm is that instead of a full
modular exponentiation (on the size of an RSA private key, for example), the
client device needs to do 2 smaller exponentiations with size comparable to the
security parameter. Moreover the communication cost and the overhead for the
third-party server are not prohibitive compared to the previously-known algo-
rithms. Hence the proposed solution shall directly produce speed-ups in practice.

Lemma 1 (Correctness). In the malicious model, the algorithms (C,U) are
correct implementation of MExpSOS.

Proof. Whenever U returns R1 and R2, C computes ut1 on its own and then
raising the value R1u

t1 mod N to the power t2. Then the resultant (R1u
t1)t2

mod N is compared with R2. If the equality holds, then C computes the desired
result ua = R1u

t1 mod N. �
In the following theorem, we show that (C,U) is an outsource-secure implemen-
tation of MExpSOS using Hohenberger-Lysyanskaya security model for a single
malicious server [12].

Theorem 1 (Privacy). In the one malicious program model, the algorithms
(C,U) are an outsource-secure implementation of MExpSOS.

Proof. Assume that A = (E ,U ′
) be a probabilistic polynomial time (PPT) adver-

sary which interacts with the PPT algorithm C in the one malicious program
model.

Pair One: (E learns nothing) EVIEWreal ∼ EVIEWideal

If the input (u, a,N) is honest, protected or adversarial protected, the simu-
lator S1 behaves the same way as in the real experiment. If the input is honest
and secret, then S1 ignores the received input in the ith round. The goal of
S1 in this ith round is to query U ′

with the inputs (U∗, A∗
1, A

∗
2, L

∗) such that
the inputs U∗, A∗

1, A
∗
2 and L∗ are chosen at random by S1. After receiving the

outputs, S1 saves both the states of S1 and U ′
.

In real process, all the inputs that occur in the queries are re-randomized to
give computational indistinguishability. Whereas S1 always set the queries to U ′

with the random input values. Hence the input distributions to U ′
are compu-

tationally indistinguishable both in the real and ideal process.

Pair Two: ( U ′
learns nothing): UVIEWreal ∼ UVIEWideal :

Let S2 be a PPT simulator that behaves in the same manner regardless of
whether the input is honest, secret or honest, protected or adversarial protected.
That is, S2 ignores the actual input in the ith round and set the queries to U ′

with the random value. Then S2 saves not only its state but also U ′
’s state.

Whenever the inputs to the experiment are honest, protected and adversarial
protected, E can easily distinguish ith round of two experiments. But it is of no
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help as E cannot communicate to U ′
and the inputs are computationally blinded

by C before being given as input to U ′
in the ideal experiment. In the ideal

experiment, the simulator S2 always query the values selected uniform at random
from the same distribution. Hence UVIEWi

real ∼ UVIEWi
ideal for each round i.

By the hybrid argument, it is easy to see that UVIEWreal ∼ UVIEWideal. �
Theorem 2 (verifiability). In the one malicious program model, the above algo-
rithms (C,U) are an (3 + 1.5(log t1 + log t2), 1 − 1/2b)-outsource-secure imple-
mentation of MExpSOS.

Proof. The computation of modular exponentiation ua mod N without out-
sourcing requires roughly 1.5 log a modular multiplications (MM) using square
and multiply method. As discussed in [25], the computational overhead to cal-
culate φ(N), L and N ′ becomes negligible when the client C runs MExpSOS mul-
tiple times. The following paragraph shows that with outsourcing, the modular
exponentiation computation is reduced to 3 + 1.5(log t1 + log t2) modular multi-
plications: the computation of A1 and A2 during the masking step requires two
modular multiplication altogether. Then the verification step requires one mod-
ular exponentiation (ut1), one modular multiplication (R1u

t1) and one modular
exponentiation ((R1u

t1)t2). Thus our algorithm MExpSOS requires 3 modular
multiplications and two b−bit modular exponentiations. Therefore our algorithm
(C,U) is an (12 logb a)−efficient implementation of MExpSOS.

On the other hand the two outputs sent by U are verified as in Eq. 11. The
server U can trick the client C if it correctly guesses t2 as in the following:

– Assume that the malicious U sets A1 as A1 + θ and A2 as A2 + θ
– Then the Eq. 11 becomes

(UA1+θut1)t2 ≡ UA2+θ mod N
ua1t2+θt2ut1t2 ≡ ut2a+θ mod N

uat2uθt2 ≡ ut2a+θ mod N

If the value t2 is correctly guessed then the adversary can compute uθt2 and
set A1 as A1 + θ and A2 as A2 + θt2 to pass the verification. If t2 is guessed
with probability 1/b and θt2 is inserted accordingly in one out of two queries
sent in random order, the malicious server can pass the verification step with
false outputs with probability 1

2b . Hence our algorithm is a (1− 1
2b )-verifiable

implementation of MExpSOS.

The proof of the theorem completes by combining the above arguments. �

4.2 New Algorithm for Simultaneous Exponentiation

In this section, we present a generic algorithm πExpSOS for simultaneous expo-
nentiation whose complexity grows linearly in size of the number of exponenti-
ations. Simultaneous modular exponentiations appear predominantly in crypto-
graphic primitives such as provable data possession [2] and proofs of retrievability
[3].
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The πExpSOS Algorithm. Let us follow the notations used to describe the
MExpSOS algorithm. Let N be either a prime number or an RSA modulus and
ui, ai ∈ ZN for i = 1, . . . , n. In order to maintain the secrecy of ui and ai, i =
1, . . . , n they are computationally masked before being given as input to U .

Masking the Inputs. To mask the inputs, the client C generates a large prime
p and calculates L = pN to keep N and p secret from the server U . Select
a random r such that N ′ = rN is fixed for all invocations. By choosing
the random integers k1i, k2i(i = 1, . . . , n) and t1, t2 such that t1, t2 ≤ b, C
calculates the following for i = 1, . . . , n:
1. a1i = ai − t1
2. A1i = a1i + k1iφ(N)
3. A2i = t2ai + k2iφ(N)
4. Ui = ui + N ′ mod L

Queries to U . C issues 2n queries to U in random order as follows:
1. (Ui, A1i, L) → R1i

2. (Ui, A2i, L) → R2i

Verifying the correctness of U ’s outputs. The client C checks whether
[

n∏
i=1

R1i(
n∏

i=1

ui)t1

]t2

mod N
?=

n∏
i=1

R2i mod N (11)

Recovering ua. If the above check passes, C computes

n∏
i=1

uai
i ≡

n∏
i=1

R1i(
n∏

i=1

ui)t1 mod N (12)

Otherwise C outputs error message.

Lemma 2 (Correctness). In the malicious model, the algorithms (C,U) are cor-
rect implementation of πExpSOS.

Proof. Whenever U returns R1i and R2i for i = 1 . . . n, C computes (
∏n

i=1 ui)t1

on its own and then raising the value
∏n

i=1 R1i(
∏n

i=1 ui)t1 mod N to the
power t2. Then the resultant (

∏n
i=1 R1i(

∏n
i=1 ui)t1)t2 mod N is compared with∏n

i=1 R2i. If the equality holds, then C computes the desired result

n∏
i=1

uai
i ≡

n∏
i=1

R1i(
n∏

i=1

ui)t1 mod N. �

In the following theorem, we show that (C,U) is an outsource-secure imple-
mentation of πExpSOS using Hohenberger-Lysyanskaya security model for a sin-
gle malicious server [12].
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Theorem 3. (Privacy). In the one malicious program model, the algorithms
(C,U) are an outsource-secure implementation of πExpSOS.

We omit the proof to this theorem as this can be easily written using
Theorem 1

Theorem 4. (verifiability). In the one malicious program model, the above
algorithms (C,U) are an (5n − 2 + 1.5(log t1 + log t2), 1 − 1/2b)-outsource-secure
implementation of πExpSOS.

Proof. The computation of modular exponentiation
∏n

i=1 uai
i mod N without

outsourcing requires roughly 1.5n log a modular multiplications (MM) using
square and multiply method. Outsourcing the modular exponentiation com-
putation reduces the cost to 2n + 3(n − 1) + 1.5(log t1 + log t2) + 1 modular
multiplications as detailed below: the computation of A1i and A2i during the
masking step requires 2n modular multiplications altogether. Then the veri-
fication step requires n − 1 modular multiplications to compute

∏n
i=1 ui, one

modular exponentiation to compute
∏n

i=1 ut1
i , n − 1 modular multiplications to

compute
∏n

i=1 R1i, one modular multiplication to compute
∏n

i=1 R1i

∏n
i=1 ut1

i ,
one modular exponentiation to compute (

∏n
i=1 R1i

∏n
i=1 ut1

i )t2 and n − 1 modu-
lar multiplications to compute

∏n
i=1 R2i. Thus our algorithm πExpSOS requires

2n+1+3(n−1) = 5n−2 modular multiplications and 2 b-bit modular exponen-
tiations. Therefore our algorithm (C,U) is an (12 logb a)−efficient implementation
of πExpSOS.

On the other hand the 2n outputs sent by U are verified as in Eq. 11. The
server U can trick the client C if it correctly guess t2 as in explained in Theo-
rem 2 with probability 1/b. Thus an adversary can pass the verification step with
false outputs with probability 1

2b . Hence our algorithm is a (1 − 1
2b )-verifiable

implementation of πExpSOS. The proof of the theorem completes by combining
the above arguments. �

5 Conclusion

The need for reducing cost of cryptographic computations is growing especially
in the case of devices having resource scarcity. We reviewed several algorithms for
offloading single and simultaneous modular exponentiations to a single untrusted
helper. In CExp and SgExp algorithms, we demonstrated that the falsified val-
ues of a malicious server could go undetected by the client in the verification
and hence the client outputs the unintended value. For ExpSOS, we presented
a practical attack revealing the secret exponent challenging the claimed secu-
rity guarantees. We then proposed modifications to the ExpSOS algorithm and
proved that the resulting algorithm MExpSOS meets the fundamental secu-
rity requirements of the Hohenberger-Lysyanskaya security model. We finally
solved an intriguing problem underlined in [6] by proposing πExpSOS, the most
efficient to-date algorithm using single untrusted (cloud) server for securely out-
sourcing (multi-)modular exponentiation. Our proposal being near error-free and
preprocessing-free is of both theoretical and practical interest.
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Abstract. Searchable encryption (SE) allows users to securely store
sensitive data in encrypted form on cloud and at the same time perform
keyword search over the encrypted documents. In this work, we focus
on variants of SE schemes that along with keyword search, also sup-
port membership testing. The problem can be formulated in two flavors
depending on whether the search policy is encoded in the ciphertext or in
the trapdoor. The ciphertext-policy variant is called Broadcast Encryp-
tion with Keyword Search (BEKS) and allows only privileged users to
perform keyword search on an encrypted file. Available dedicated con-
structions could achieve selective security under parameterized assump-
tion. The key-policy variant, called Key-Aggregate Searchable Encryp-
tion (KASE), restricts the keyword search within a particular set of doc-
uments. Naive application of existing SE schemes in this scenario leads to
inefficient protocols with either variable length trapdoor or exponential
blowup of storage requirement in terms of the document set size. This
therefore calls for an efficient solution that allows such subset based
restricted search with constant trapdoor size.

In this work, we have presented adaptively secure solutions for both
the above problems. Our BEKS construction achieves constant-size
ciphertext whereas the KASE construction achieves constant-size trap-
door. Both the constructions are instantiated in prime-order bilinear
groups and are proven anonymous CPA-secure under SXDH assumption
by extending Jutla-Roy technique. Our proposed solutions improve upon
the only other adaptively secure schemes that can be obtained using the
generic technique of Ambrona et al.

1 Introduction

The advent of cloud has opened up the possibility of achieving a lot of func-
tionalities without virtually any restriction on storage space and/or computa-
tional power. However, storing data in cloud naturally invites concerns regarding
confidentiality. While conventional encryption schemes do provide confidential-
ity, they effectively destroy any possibility of performing computation in the
encrypted domain. Several flavors of searchable encryption have been suggested
in the literature [5,10,13,21] to address this question. In order to compute sim-
ple predicate such as searching a keyword in public key settings, Boneh et al. [3]
c© Springer Nature Switzerland AG 2018
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proposed Public-Key Encryption with Keyword Search (PEKS). Given a trap-
door corresponding to a keyword and some encrypted text, PEKS allows a third
party cloud to run the so-called Test algorithm to find whether the keyword is
present in the encrypted text or not without learning any other information.

Attrapadung et al. [2] introduced a generalization of PEKS involving
Broadcast Encryption (BE) [4] along with (hierarchical) identity-based encryp-
tion ((H)IBE) [11] for universe U and identity space ID. Every user in [2]
will have two identifiers – one is an index z ∈ U for broadcast encryption
while the other is a (hierarchical) identity id ∈ ID� corresponding to (H)IBE.
Each user gets a key associated with both the identifiers (z, id) and can
decrypt a ciphertext associated with a privileged set Ω̈ and a (hierarchical)
identity id′ if z ∈ Ω̈ and id ≺ id′ where Ω̈ ⊂ U , id, id′ ∈ ID�, ≺ denotes
the prefix relation and � ∈ N. Attrapadung et al. [2] termed this primitive
as (Hierarchical) Identity-Coupled Broadcast Encryption ((H)ICBE) and kick-
started the study of amalgamation of broadcast encryption with other primitives.
Such an amalgamation is useful in solving some real world applications of the
following type.

Suppose an encrypted file sharing system, where files are stored in the cloud
encrypted for some privileged set of users. A user can access a file if s/he is
among the privileged set of users for that file. Boneh et al. [4] casted their
broadcast encryption construction to achieve such a mechanism. Now, consider
a scenario where a privileged user (z) wants to employ the cloud server to
search whether a certain keyword is present in the file stored in the cloud.
In other words, user z wants to find files containing keyword (ω) gives trap-
door (SKx) to cloud server where x = (z, ω). The cloud server then searches
the encrypted files and returns those files that contains the keyword ω and
include z as privileged user. The security requirement of such a scheme is
that neither the cloud server nor any unprivileged user will get to learn any-
thing new about the file content. Attrapadung et al. [2] called such a scheme as
Broadcast Encryption with Keyword Search (BEKS) and presented a construc-
tion from anonymous Identity-Coupled Broadcast Encryption (ICBE).

Note that in the application scenario described above, the search policy is
decided while generating the encrypted file. A somewhat complementary problem
of interest is where the trapdoor-index of a user is x = (Ω, ω) for Ω ⊂ U and
the search policy is encoded in the corresponding trapdoor. To appreciate the
problem better, first recall that any conventional searchable encryption (SE),
roughly speaking, provides an all-or-nothing capability of search. Hence, given
a trapdoor, there is no way to restrict the trapdoor holder within a particular
set of documents. Naive solutions to restrict search for a keyword (ω) within a
(permitted) set (Ω), either require larger trapdoor (dependent on the cardinality
of Ω) or suffers from exponential blowup in the storage space [9]. The reason for
this sort of blow-up is that the trapdoor (SKΩ,ω) must contain information about
the set Ω it is restricted to and Ω could be any of the subsets of all files stored
in the cloud.
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1.1 Related Works

Boneh et al. [4] suggested few applications and extensions of broadcast
encryption. Attrapadung et al. [2] presented two constructions for (hierar-
chical) identity-coupled broadcast encryption ((H)ICBE) and constructed the
first broadcast encryption with keyword search from anonymous ICBE. Kiayias
et al. [15] recently proposed another construction for BEKS where some unnatu-
ral restrictions are placed on the adversary’s capability in order to achieve some
form of function privacy. Also note that both [2,15] achieved selective security
under parameterized q-type assumptions.

Related to the other problem, Cui et al. [9] introduced the notion of
Key-Aggregate Searchable Encryption (KASE) based on the compact-key cryp-
tosystem by Chu et al. [8]. Recently, another construction of KASE was proposed
[17] and was claimed to be secure in the random oracle model.

Ambrona et al. in a recent work [1], proposed generic construction for differ-
ent predicate encodings. Earlier, Chen et al. [6] proposed a compiler that con-
structs predicate encryption from predicate encoding in the prime-order bilinear
groups. Thus, one can employ [1] on top of the generic technique of [6] to con-
struct a BEKS or KASE. However, like any other generic constructions, we pay
the price in terms of bigger public parameter, ciphertext and/or trapdoor size.

Jutla and Roy [14] proposed quasi-adaptive non-interactive zero knowledge
(QA-NIZK) for linear subspaces over pairing groups. Unlike usual NIZK, the com-
mon reference string (CRS) in [14] can depend on the language. This effectively
is quite a powerful tool as Jutla and Roy constructed a number of primitives
like signature, CCA2-PKE, IBE, commitment etc. Later Kiltz and Wee [16] pre-
sented more intuitive approach towards various forms of QA-NIZK. JR-IBE, the
identity-based encryption construction of [14] actually spawns from a variation
of quasi-adaptive non-interactive zero knowledge called split-CRS QA-NIZK for
tag-based languages. The verification CRS here is split into two components that
will be combined during the verification by means of public tag. A number of
follow-up works by Ramanna et al. [18–20] explored the portability of JR-IBE
for different functionalities such as HIBE, IBBE and IPE respectively.

Chen and Gong [7] recently generalized the predicate encryption constructed
from JR-IBE [18–20] that achieves better efficiency than [6]. Generic merger of [1]
with [7] can also be casted to get efficient constructions for specific functionalities
like BEKS and KASE.

1.2 Our Contribution

In this work, we present two constructions that respectively deal with both
flavors of keyword search with membership testing: Broadcast Encryption with
Keyword Search (BEKS) and Key-Aggregate Searchable Encryption (KASE).
Note that, the ciphertext of BEKS is generated on data-index y = (Ω̈, ω′) and
trapdoor is generated on trapdoor-index x = (z, ω) where z ∈ U , Ω̈ ⊂ U ,
ω, ω′ ∈ W. In case of KASE, the ciphertext is generated on data-index y = (z, ω′)
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and trapdoor is generated on trapdoor-index x = (Ω, ω) where z ∈ U , Ω ⊂ U ,
ω, ω′ ∈ W for W being the keyword space.

Both the proposed constructions achieve adaptive IND-CPA security as well
as anonymity in standard model under SXDH assumption. The BEKS construc-
tion achieves constant size ciphertext whereas the KASE construction achieves
constant size trapdoor. The non-triviality of these constructions comes from
the fact that the ciphertext in BEKS (resp. the trapdoor in KASE) encodes the
privileged set information employing a (small) constant number of components
without recourse to random oracle.

Our BEKS construction uses GW-Hash (
∑

i∈Ω̈ wi) [12] to encode the priv-
ileged set Ω̈ where (wi)i is the randomness shared between public parameter,
trapdoor and ciphertext. We then merge ω′ with the original GW-Hash via an
affine relation to construct the ciphertext. Precisely, we hash both Ω̈ (via GW-
Hash) and ω′ together to form an affine equation which effectively constructs our
constant-size ciphertext out of data-index y = (Ω̈, ω′). The trapdoors here are
constructed in such a way that during decryption, given the set Ω̈, one can choose
appropriate components of the trapdoor thereby causing the trapdoor to con-
tain K1, . . . ,Kn elements. More precisely, Kz of the trapdoor for trapdoor-index
x = (z, ω), contains another affine equation on ω (i.e. wn+1ω + wz). Rest of the
trapdoor components are given by wi for i ∈ [n] \ {z}.

In case of KASE construction, we do the opposite namely we create such
an affine equation for the trapdoor generation for trapdoor-index x = (Ω, ω).
We add the affine equation to master secret key to generate a trapdoor that
is in a way a secret sharing of the master secret key α. The ciphertext here
contains C1, . . . ,Cn similar to trapdoor in BEKS. The Cz here also stores an
affine equation (wn+1ω

′ +wz) whereas the rest of the ciphertext components are
given by wi for i ∈ [n] \ {z} for data-index y = (z, ω′).

The JR-IBE [14] and all its descendants [18–20] used tags to argue
the reduction via dual system encryption [22]. As noted earlier, Chen and
Gong [7] generalized the approach by presenting a compiler that constructs
predicate encryption from predicate encoding in the prime-order bilinear set-
tings. Moreover, given an attribute-hiding predicate encoding, this compiler [7]
can construct corresponding anonymous predicate encryption. Thus, one can
simply use predicate encoding construction technique of Ambrona et al. [1]
on the top of compiler by Chen and Gong [7] to achieve various generic
predicate encryptions (including BEKS and KASE). We however present two
dedicated constructions for BEKS and KASE that further improves the com-
plexity of both the protocols. For that, our starting point was Ramanna’s
inner-product encryption constructions [18]. Our BEKS construction is a
constant-size ciphertext construction whereas the KASE construction achieves
constant-size trapdoor. Both these constructions achieve anonymity as well with
smaller parameter size and are proven to be adaptive secure under SXDH assump-
tion.

We have casted the generic construction of Ambrona et al. [1] on [6] and
on [7] in the setting of BEKS and KASE and compared their performance with
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our schemes in Table 1. As opposed to the merger of [1,6], our constructions
achieve exciting parameter size. We also achieve some improvement over generic
integration of [1,7] in this respect as can be seen next.

Table 1. Comparison of Efficiency with [1] in terms of size of public parameter |mpk|,
size of trapdoor |SK|, size of ciphertext |CT| and number of primitive operations
required in Test. Here n = |U|, [P] denotes number of pairing operations, [M] denotes
number of group element multiplications and [E] denotes number of group element
exponentiations.

|mpk| |SK| |CT| Test

BEKS [1,6] (2n + 6)G1 (2n + 4)G2 6G1 + GT 4[P] + (2 |Ω| + 2)[M]

BEKS [1,7] (n + 6)G1 (2n + 5)G2 4G1 + GT + 2Zp 3[P] + (|Ω| + 3)[M] + 2[E]

BEKS (n + 3)G1 (2n + 3)G2 3G1 + GT + Zp 3[P] + (|Ω| + 2)[M] + 2[E]

KASE [1,6] (2n + 8)G1 8G2 (2n + 4)G1 + GT 4[P] + (2 |Ω| + 6)[M]

KASE [1,7] (n + 7)G1 9G2 (n + 3)G1 + GT + (n + 1)Zp 3[P] + (|Ω| + 4)[M] + 2[E]

KASE (n + 3)G1 5G2 (n + 2)G1 + GT + nZp 3[P] + (|Ω| + 2)[M] + 2[E]

As a minor contribution, we have shown a simple attack on the recent KASE
construction of [17].

1.3 Organization of the Paper

In Sect. 2, we discuss the preliminaries such as notations, searchable encryption
definition. In Sect. 3, we present the construction of BEKS and its security proof.
Sect. 4 discusses secure construction of KASE. Section 5 concludes the paper. In
Appendix A we show that the KASE construction of [17] to be insecure.

2 Preliminaries

Notations. Here we denote [a, b] = {i ∈ N : a ≤ i ≤ b} and for any n ∈ N,
[n] = [1, n]. The security parameter is denoted by 1λ where λ ∈ N. By s ←↩
S we denote a uniformly random choice s from S. By P(S) we denote the
power set of set S. Here, U is the universe, W is set of all keywords and W is
set of all identifiers. We use Advi

A(λ) to denote the advantage adversary A has
when deciding the b in security game Gamei and AdvHP

A (λ) is used to denote the
advantage of A to solve the hard problem HP. Here neg(λ) denotes a negligible
function.

2.1 Searchable Encryption

We give a definition of Searchable Encryption (SE) that generalizes all
searchable encryption in public key settings (e.g. PEKS [3], BEKS [2] etc.).
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This definition resembles to the definition of predicate encryption that gener-
alized identity-based encryption and its descendants. For a predicate function
R : X × Y → {0, 1}, the searchable encryption is defined as a collection of
following four probabilistic polynomial-time algorithms.

– KeyGen: It takes 1λ and outputs public parameter mpk and master secret key
msk.

– Trapdoor: It takes mpk, msk and a trapdoor-index x ∈ X and outputs a
trapdoor SK ∈ SK corresponding to x.

– SrchEnc: It takes mpk and a data-index y ∈ Y and outputs ciphertext CT ∈ C
corresponding to y and encapsulation key K ∈ K .

– Test: It takes mpk, SK and (CT,K) as input. Outputs b ∈ {0, 1}.

Correctness. For all (mpk,msk) ← KeyGen(1λ), all key-indices x ∈ X , SK ←
Trapdoor(mpk,msk, x), all data-indices y ∈ Y, (CT,K) ← SrchEnc(mpk, y),

Pr[Test(mpk,SK, (CT,K)) = b] = 1 ⇐⇒ R(x, y) = b.

For simplicity of presentation, we will sometimes adhere to implicit use of
mpk by different algorithms. We sometime use the notation CTy (resp. SKx)
to denote the ciphertext (resp. trapdoor) corresponding to data-index y (resp.
trapdoor-index x).

2.2 Security of Searchable Encryption

The security of a searchable encryption scheme SE can be modeled as a security
game between challenger C and adversary A.

– Setup: C gives out mpk and keeps msk as secret.
– Query Phase-I: Queries are performed to available oracles as follows.

• Trapdoor Queries: Given trapdoor-index x, the trapdoor oracle OK

returns SK ← Trapdoor(msk, x).
– Challenge: A provides challenge data-index y∗ (such that R(x, y∗) = 0 for

any trapdoor query on x). C generates (CT
∗
0
,K0) ← SrchEnc(mpk, y∗) and

chooses (CT
∗
1
,K1) ←↩ C × K . Then it returns (CT

∗
b
,Kb) as challenge for b ←↩

{0, 1}.
– Query Phase-II: Queries are performed to available oracles as follows.

• Trapdoor Queries: Given a trapdoor-index x such that R(x, y∗) = 0,
trapdoor oracle OK returns SK ← Trapdoor(msk, x).

– Guess: A outputs its guess b′ ∈ {0, 1} and wins if b = b′.

For any adversary A the advantage is,

AdvSE
A (λ) = |Pr[b = b′] − 1/2| .

A searchable encryption scheme is said to be Id-CPA secure if for any efficient
adversary A, AdvSE

A (λ) ≤ neg(λ). If there is an Init phase before the Setup
where the adversary A commits to the challenge data-index y∗, we call such
security model as sId-CPA security model.
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Remark 1. Both BEKS and KASE deal with two different predicates, namely
a set-membership testing and an equality testing. The BEKS can be used to
perform keyword search in secure file system and the KASE can be used to
perform keyword search within a restricted set of files. It is therefore essential
that, in both BEKS and KASE, the ciphertext should not give out any new
information about the associated keyword. In case of BEKS, as mentioned ear-
lier, the challenge data-index is y∗ = (Ω̈∗, ω′∗). Following the security notion of
anonymous (H)ICBE [2], we call a BEKS anonymous, if the challenge ciphertext
(CT

∗
b
,Kb) hides ω′∗ (i.e. associated challenge keyword). The (H)ICBE construc-

tion of Attrapadung et al. [2] is only sId-CPA secure scheme in this sense. Notice
that, the other part of the data-index i.e. Ω̈∗ must accompany the ciphertext
in plaintext form for a correct decryption. This is quite natural as BEKS is a
descendant of broadcast encryption where it is customary that the privileged set
information is given out in plain for decryption purpose. Recall that, the chal-
lenge data-index in case of KASE is y∗ = (z∗, ω′∗). Unlike the case of BEKS, we
call a KASE anonymous [9], if the challenge ciphertext (CT

∗
b
,Kb) hides both z∗

and ω′∗.

2.3 Hardness Assumption

Let (p,G1,G2,GT, e) ← Gabg(1λ) be the output of asymmetric bilinear group
generator where G1,G2,GT are cyclic groups of order a large prime p.

Symmetric External Diffie-Hellman Assumption (SXDH). The SXDH rep-
resentation that is used in our work was introduced in [19]. The SXDH assump-
tion in group (G1,G2) is: DDH in G1 and DDH in G2 is hard. We rewrite DDH in
G1 in the form of 1-Lin assumption below and call it DDHG1 . The DDHG2 denotes
the hardness of DDH in G2.

– DDHG1 : {D,T0} ≈εDDHG1
{D,T1} for T0 = gs

1 and T1 = gs+ŝ
1 given D =

(g1, g2, gb
1, g

bs
1 ) where g1 ←↩ G1, g2 ←↩ G2, b ←↩ Z×

p , s, ŝ ←↩ Zp. In other words,
the advantage of any adversary A to solve the DDHG1 is

Adv
DDHG1
A (λ) = |Pr[A(D,T0) → 1] − Pr[A(D,T1) → 1]| ≤ εDDHG1

.

DDHG1 is hard if advantage of A is negligible i.e. εDDHG1
≤ neg(λ).

– DDHG2 : {D,T0} ≈εDDHG2
{D,T1} for T0 = gcr

2 and T1 = gcr+r̂
2 given D =

(g1, g2, gc
2, g

r
2) where g1 ←↩ G1, g2 ←↩ G2, c, r, r̂ ←↩ Zp. In other words, the

advantage of any adversary A to solve the DDHG2 is

Adv
DDHG2
A (λ) = |Pr[A(D,T0) → 1] − Pr[A(D,T1) → 1]| ≤ εDDHG2

.

DDHG2 is hard if advantage of A is negligible i.e. εDDHG2
≤ neg(λ).
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3 BEKS: Broadcast Encryption with Keyword Search

We now present our first construction that is BEKS. It is instantiated in the prime
order bilinear groups and achieves anonymous adaptive CPA (Id-CPA) security
under the SXDH assumption. Recall that the Trapdoor takes trapdoor-index x =
(z, ω) and SrchEnc takes data-index y = (Ω̈, ω′). BEKS is defined via predicate
function Rv : (U × W) × (P(U) × W) → {0, 1}. The index satisfies the predicate
function Rv if z ∈ Ω̈ and ω = ω′. On such occasion, the Test outputs 1.

3.1 Construction

BEKS for universe U = [n] where n = poly(λ) and identity space W of size exp(λ)
is defined as following four algorithms.

– KeyGen(1λ,U ,W): The asymmetric bilinear group generator outputs (p,G1,
G2,GT, e) ← Gabg(1λ) where G1,G2,GT are cyclic groups of order p. Choose
generators g1 ←↩ G1 and g2 ←↩ G2 and define gT = e(g1, g2). Choose α1, α2,
c, d, (ui, vi)i∈[n+1] ←↩ Zp, b ←↩ Z×

p and define α = (α1 + bα2) to set gα
T =

e(g1, g2)(α1+bα2). For i ∈ [n + 1], define gwi
1 = gui+bvi

1 and gw
1 = gc+bd

1 . Define
the msk = (g2, gc

2, α1, α2, d, (ui, vi)i∈[n+1]) and the public parameter is defined
as

mpk =
(
g1, g

b
1, (g

wi
1 )i∈[n+1] , g

w
1 , gα

T

)
.

– Trapdoor(msk, x = (z, ω)): Given trapdoor-index x such that z ∈ U and
ω ∈ W, choose r ←↩ Zp and compute the trapdoor SKx = (K1,K2, (K3,i)i∈[n] ,

K4, (K5,i)i∈[n]) where

K1 = gr
2 ,K2 = gcr

2 ,K3,i =

{
g

α1+r(un+1ω+uz)
2 if i = z

grui
2 otherwise

,

K4 = gdr
2 ,K5,i =

{
g

α2+r(vn+1ω+vz)
2 if i = z

grvi
2 otherwise

.

– SrchEnc(mpk, y = (Ω̈, ω′)): Given data-index y such that Ω̈ ⊆ U and ω′ ∈ W,
choose s, ẗ ←↩ Zp. Compute K = e(g1, g2)αs and CTy = (C0,C1,C2, ẗ) where,

C0 = gs
1 ,C1 = gbs

1 ,C2 = g

s(wn+1ω′+
∑

l∈Ω̈

wl+wẗ)

1 .

– Test(SKx , (CTy ,K, Ω̈)) : Let x = (z, ω) and y = (Ω̈, ω′); output 1 iff K = B/A
where,

A = e (C2,K1) , B = e

⎛

⎝C0,K
ẗ
2

∏

i∈Ω̈

K3,i

⎞

⎠ e

⎛

⎝C1,K
ẗ
4

∏

i∈Ω̈

K5,i

⎞

⎠ .

It is easy to verify correctness of this protocol which is omitted due to space
constraints.
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3.2 Security Proof

Theorem 1. For any adversary A of BEKS construction BEKS in the Id-CPA
model (ID-CPA) that makes at most q many trapdoor queries, there exist PPT
adversaries B1, B2 such that

AdvBEKS
A,ID-CPA(λ) ≤ Adv

DDHG1
B1

(λ) + q · Adv
DDHG2
B2

(λ) + 3/p.

Proof Sketch. We propose a hybrid argument based proof that uses dual sys-
tem proof technique [22] at its core. In case of dual system encryption, the
protocol creates normal ciphertext and normal trapdoor. For the sake of secu-
rity argument, another form of ciphertext and trapdoors are defined that are
called semi-functional. By definition, a semi-functional trapdoor cannot decrypt
a semi-functional ciphertext even if their associate indexes satisfy each other. The
proof technique changes the normal ciphertext to semi-functional ciphertext first,
followed by changing queried normal trapdoors into semi-functional trapdoors
individually. As the challenge ciphertext is semi-functional and trapdoors are
semi-functional, in the final game, simulating them becomes easy. The proof
completes by showing that the challenge ciphertext is indistinguishable from a
random ciphertext. The crux of any dual system-based argument is to show that
normal and semi-functional forms are indistinguishable to the adversary. The
simulator B uses hard problem to establish the such indistinguishability as we
will show next.

As noted, in the first game Game0 of this sequence of game based argu-
ment, both the challenge ciphertext and trapdoors are normal. The ciphertext
is changed first to semi-functional in Game1. Then the trapdoors are changed
to semi-functional in a series of games (Game2,k)k for k ∈ [q]. For all k ∈ [q],
in each Game2,k, all the jth queried trapdoor for 1 ≤ j ≤ k are semi-functional
whereas all of the following (i.e. k < j ≤ q) trapdoors are normal. We pro-
ceed till all the trapdoors become semi-functional. In the final game Game3,
the encapsulation key K and ciphertext CT are replaced by a uniform random
choice from K and C respectively. We show that the semi-functional components
of challenge ciphertext and trapdoors in Game3 supply enough entropy to hide
the encapsulation key K as well as the data-index in ciphertext CT. Hence K
and CT jointly are distributed identically to random choice from K ×C. We also
denote Game1 by Game2,0. Thus, the advantage an efficient adversary A has, to
break BEKS in Id-CPA security model is not more than sum of advantage of
games in the hybrid i.e.

AdvBEKS
A,ID-CPA(λ) ≤ ∣

∣Adv0A(λ) − Adv1A(λ)
∣
∣ +

∣
∣Adv1A(λ) − Adv2,0A (λ)

∣
∣

+
∑

k∈[1,q]

∣
∣
∣Adv

2,k−1
A (λ) − Adv2,kA (λ)

∣
∣
∣ +

∣
∣Adv2,qA (λ) − Adv3A(λ)

∣
∣ + Adv3A(λ).

Thus it is sufficient to argue that all the difference of advantages in above equa-
tion are either negligible or zero. We show that Game0 and Game1 are negligibly
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close in Lemma 1. The indistinguishability of Game2,k−1 and Game2,k for arbi-
trary k ∈ [1, q] is proved in Lemma 2. We then show that Game2,q and Game3
are negligibly close in Lemma 4. Finally, we argue that no efficient adversary has
any advantage in the Game3 resulting in Adv3A(λ) = 0. Since, Game1 and Game2,0

are same due to our notation, the advantage difference between the two is 0.
Broadly, our proof strategy resembles to that of [18–20] in constructing the

semi-functional form of trapdoors and ciphertexts. Recall that, our BEKS con-
struction despite being a constant-size ciphertext construction like IPE1 [18],
also achieves anonymity. Here, we note the structural difference between the two
constructions. In BEKS there is a single component in the trapdoor that encodes
both master secret key α and trapdoor-index x = (Ω, ω) in an affine equation
whereas in IPE1 they are encoded in separate components. Informally speaking,
IPE1 [18] decoupled α and x via new randomness and introduced another tag
ktag to argue security. Appropriating this technique in our context however does
not ensure hiding of ω′∗ in the challenge ciphertext thereby failing anonymity. In
fact encoding the α and x into a single trapdoor-component via affine equation
allows us to achieve anonymous adaptive CPA-security following an argument
that is in some sense closer to security argument of IPE2 [18].

3.2.1 Semi-functional Algorithms
– sfTrapdoor(msk, x = (z, ω)): Let the normal trapdoor be SK′

x = (K′
1,K

′
2,

(K′
3,i)i∈[n],K

′
4, (K

′
5,i)i∈[n]) ← Trapdoor(msk, x) where r is the corresponding

randomness used in Trapdoor. Choose r̂, (ti)i∈[n] ←↩ Zp. Compute the semi-
functional trapdoor SKx = (K1,K2, (K3,i)i∈[n],K4, (K5,i)i∈[n]) as follows:

K1 = K′
1 = gr

2 ,K2 = K′
2 · gr̂

2 = gcr+r̂
2 ,

K3,i = K′
3,i · gr̂ti

2 ,

=

{
g

α1+r(un+1ω+uz)+r̂tz
2 if i = z

grui+r̂ti
2 otherwise

,

K4 = K′
4 · g−r̂b−1

2 = gdr−r̂b−1

2 ,

K5,i = K′
5,i · g−r̂tzb−1

2

=

{
g

α2+r(vn+1ω+vz)−r̂tzb−1

2 if i = z

grvi−r̂tib
−1

2 otherwise
.

– sfSrchEnc(mpk,msk, y =
(
Ω̈, ω′

)
): Let the normal encapsulation key and nor-

mal ciphertext be (K′,CT′
y) ← SrchEnc(mpk, y) where s is the corresponding

randomness and ẗ is the random tag used in SrchEnc and CT′
y = (C′

0,C
′
1,C

′
2, ẗ).
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Choose ŝ ←↩ Zp. Compute the semi-functional ciphertext K and CT =
(C0,C1,C2, ẗ) where,

K = K′ · gα1ŝ
T = e(g1, g2)αs+α1ŝ ,C0 = C′

0 · gŝ
1 = gs+ŝ

1 ,C1 = C′
1 = gbs

1 ,

C2 = C′
2 · g

ŝ(un+1ω′+
∑

l∈Ω̈

ul+cẗ)

1

= g

s(wn+1ω′+
∑

l∈Ω̈

wl+wẗ)+ŝ(un+1ω′+
∑

l∈Ω̈

ul+cẗ)

1 .

Note that, Testing a semi-functional ciphertext against a semi-functional trap-
door fails as the encapsulation key K is blinded by a random GT component

namely g

ŝr̂(ẗ+
∑

l∈Ω̈

tl)

T . �

3.2.2 Sequence of Games
The idea is to change each game only by a small margin and prove indistin-
guishability of two consecutive games.

Lemma 1 (Game0 to Game1). For any efficient adversary A that makes at most
q trapdoor queries, there exists a PPT algorithm B such that

∣
∣Adv0A(λ) − Adv1A(λ)

∣
∣

≤ Adv
DDHG1
B (λ).

Proof. The solver B is given the DDHG1 problem instance D = (g1, g2, gb
1, g

bs
1 )

and the target T = gs+ŝ
1 where ŝ = 0 or chosen uniformly random from Z

×
p .

Setup. B chooses α1, α2, (ui, vi)i∈[n+1] , c, d ←↩ Zp. As both α1 and α2 are avail-
able to B, it can generate gα

T = e(gα1
1 · (gb

1)
α2 , g2). Hence, B outputs the

public parameter mpk. Notice that msk is available to B.
Query Phase-I. Since B knows the msk, it can answer with normal trapdoors

on any query of x = (z, ω).
Challenge. Given the challenge y∗, B chooses ẗ ←↩ Zp where y∗ = (Ω̈∗, ω′∗).

It then computes the encapsulation key as K0 and the challenge ciphertext
CT

∗
0

= (C0,C1,C2, ẗ) using the problem instance where,

K0 = e(C0, g2)α1 · e(C1, g2)α2 = e(gs(α1+bα2)+ŝα1
1 , g2) = gαs+α1ŝ

T ,

C0 = T = gs+ŝ
1 ,C1 = gbs

1 ,C2 = C

(un+1ω′+
∑

l∈Ω̈

ul+cẗ)

0 C

(vn+1ω′+
∑

l∈Ω̈

vl+dẗ)

1 .

B then chooses K1 ←↩ K , CT
∗
1

←↩ C and returns
(
Kb,CT

∗
b

)
as the challenge

for b ←↩ {0, 1}.
Query Phase-II. Same as Query Phase-I.
Guess. A output b′ ∈ {0, 1}. B outputs 1 if b = b′ and 0 otherwise.
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It is easy to see that the challenge ciphertext follows proper distribution. The
randomness ŝ that is due to the DDH instance, is injected into C2 as semi-
functional randomness ŝ via C0. Notice that, if ŝ in DDHG1 problem instance is 0,
then the challenge ciphertext CT

∗
0

is normal. Otherwise the challenge ciphertext
CT

∗
0

is semi-functional. Thus if any efficient adversary A can distinguish between

the two, B can use such A to find out if ŝ
?= 0. �

Lemma 2. (Game2,k−1 to Game2,k). For any efficient adversary A that makes
at most q trapdoor queries, there exists a PPT algorithm B such that |Adv2,k−1

A (λ)
−Adv2,k

A (λ)| ≤ Adv
DDHG2
B (λ).

Proof. The solver B is given the DDHG2 problem instance D = (g1, g2, gc
2, g

r
2)

and the target T = gcr+r̂
2 where r̂ = 0 or chosen uniformly random from Z

×
p .

Setup. B chooses b ←↩ Z
×
p , α, α1, w, (pi, qi, wi)i∈[n+1] ←↩ Zp. It sets α2 =

b−1(α−α1), d = b−1(w−c), ui = pi +cqi, vi = b−1(wi −ui). Note that, as c is
not known to B explicitly, all but α2 assignment has been done implicitly. The
public parameters mpk are generated as (g1, gb

1, (g
wi
1 )i∈[n+1], g

w
1 , gα

T) where
gT = e(g1, g2). However, few components of msk, precisely (d, (ui, vi)i∈[n+1])
are unavailable to B.

Query Phase-I. Given the jth trapdoor query on xj = (z, ω),
– If j > k: B has to return a normal trapdoor. However, (d, (ui, vi)i∈[n+1])

of msk are unavailable to B as mentioned earlier. Still, B could simulate
the normal trapdoors as it chose the b during Setup. B chooses rj ←↩ Zp.
Computes the trapdoor is SKxj = (K1,K2, (K3,i)i∈[n], K4, (K5,i)i∈[n]) such
that,

K1 = g
rj

2 ,K2 = (gc
2)

rj = g
crj

2 ,

K3,i =

{
gα1
2 · K

(pn+1ω+pz)
1 · K

(qn+1ω+qz)
2 if i = z

Kpi

1 · Kqi
2 otherwise

,

K4 = Kb−1w
1 · K−b−1

2 = g
wrjb−1

2 · g
−crjb−1

2 = g
drj

2 ,

K5,i =

{
K

b−1(wn+1ω+wz)
1 · K−b−1

3,z if i = z

Kb−1wi
1 · K−b−1

3,i otherwise
,

=

{
g

b−1rj(wn+1ω+wz)
2 · g

−b−1rj(un+1ω+uz)
2 if i = z

g
b−1rjwi

2 · g
−b−1rjui

2 otherwise
,

=

{
g

rj(vn+1ω+vz)
2 if i = z

g
rjvi

2 otherwise
.

Notice that SKxj is identically distributed to output of Trapdoor(msk, xj).
Thus B has managed to simulate the normal trapdoor without knowing
the msk completely.
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– If j < k: B has to return a semi-functional trapdoor. It first creates normal
trapdoors as above and chooses r̂, (ti)i∈[n] ←↩ Zp to create semi-functional
trapdoors following sfTrapdoor.

– If j = k: B will use DDHG2 problem instance to simulate the trapdoor.
It first sets (ti)i∈[n] to define SKx = (K1,K2, (K3,i)i∈[n], K4, (K5,i)i∈[n]) as
follows.

ti =

{
(qn+1ω + qz) if i = z

qi otherwise
.

K1 = gr
2 = K′

1,K2 = T = gcr+r̂
2 = K′

2 · gr̂
2 ,

K3,i =

{
gα1
2 · K

(pn+1ω+pz)
1 · K

(qn+1ω+qz)
2 if i = z

Kpi

1 · Kqi
2 otherwise

,

=

{
gα1
2 · K

′(pn+1ω+pz)
1 · K

′(qn+1ω+qz)
2 · g

r̂(qn+1ω+qz)
2 if i = z

K′pi

1 · K′qi
2 · gr̂qi

2 otherwise
,

= K′
3,i · gr̂ti

2 .

K4 = Kb−1w
1 · K−b−1

2 = gwrb−1

2 · g
−b−1(cr+r̂)
2 ,

= gdr
2 · g−r̂b−1

2 = K′
4 · g−r̂b−1

2 ,

K5,i =

{
gα
2 · K

b−1(wn+1ω+wz)
1 · K−b−1

3,z if i = z

Kb−1wi
1 · K−b−1

3,i otherwise
,

=

{
gα
2 · K

′b−1(wn+1ω+wz)
1 · K′−b−1

3,z · g−r̂tzb−1

2 if i = z

K′b−1wi
1 · K′−b−1

3,i · g−r̂tib
−1

2 otherwise
,

= K′
5,i · g−r̂tib

−1

2 .

Notice that if r̂ = 0 then the trapdoor is normal (i.e. K′
1,K

′
2, (K

′
3,i)i∈[n],

K′
4, (K

′
5,i)i∈[n]); otherwise it is semi-functional trapdoor.

Challenge. Given the challenge y∗ = (Ω̈∗, ω′∗), B chooses s, ŝ ←↩ Zp. It then
defines the encapsulation key as K0 and the challenge ciphertext CT

∗
0

=
(
C0,C1,C2, ẗ

)
where,

K0 = e(g1, g2)αs+α1ŝ = K′
0 · gα1ŝ

T ,C0 = gs+ŝ
1 = C′

0 · gŝ
1 ,C1 = gbs

1 ,

C2 = C′
2 · g

ŝ(un+1ω′∗+
∑

l∈Ω̈∗
ul+cẗ)

1 ,

= g

s(wn+1ω′∗+
∑

l∈Ω̈∗
wl+wẗ)+ŝ(un+1ω′∗+

∑

l∈Ω̈∗
ul+cẗ)

1 ,

= g

s(wn+1ω′∗+
∑

l∈Ω̈∗
wl+wẗ)+ŝ(pn+1ω′∗+

∑

l∈Ω̈∗
pl+c(qn+1ω′∗+

∑

l∈Ω̈∗
ql)+cẗ)

1 .

However, gc
1 is not available to B. Therefore, we implicitly set the tag ẗ =

−(qn+1ω
′∗ +

∑

l∈Ω̈∗
ql). Then, C2 = g

s(wn+1ω′∗+
∑

l∈Ω̈∗
wl+wẗ)+ŝ(pn+1ω′∗+

∑

l∈Ω̈∗
pl)

1 .
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As B chose (pi)i∈[n+1], (wi)i∈[n+1], s and ŝ, it can compute C2. Thus B can
properly generate CT

∗
0
.

B then chooses K1 ←↩ K , CT
∗
1

←↩ C and returns
(
Kb,CT

∗
b

)
as the challenge

ciphertext for b ←↩ {0, 1}.
Notice that, the challenge (K0,CT

∗
0
) is identically distributed to the output

of sfSrchEnc(mpk,msk, y∗). Hence, the ciphertext is semi-functional.
Query Phase-II. Same as Query Phase-I.
Guess. A output b′ ∈ {0, 1}. B outputs 1 if b = b′ and 0 otherwise.

As noted earlier, if r̂ in DDHG2 problem instance is 0, then the kth trapdoor is
normal. Otherwise the kth trapdoor is semi-functional. The challenge ciphertext
is semi-functional.

As defined in Sect. 3.2.1, the tags that are used in the semi-functional
trapdoor and semi-functional ciphertext, are independently chosen to be uni-
formly random. Thus, we need to argue that the tags (i.e. semi-functional cipher-
text tag ẗ and semi-functional trapdoor tag (ti)i∈[n]) are jointly uniform random
and independent. This will ensure that the challenge ciphertext and kth trapdoor
pair are jointly semi-functional where the challenge ciphertext is associated with
data-index y∗ ∈ Y and the kth trapdoor is associated with trapdoor-index
xk ∈ X . Thus the semi-functional trapdoor and semi-functional ciphertext that
are simulated are properly distributed. The following lemma ensures proper dis-
tribution of the tags and completes the proof of Lemma 2. We give the proof
of Lemma 3 later.

Lemma 3. Let (q1, . . . , qn+1) ←↩ Zn+1
p . Given xk = (z, ω) and y∗ = (Ω̈∗, ω′∗),

if Rv(xk, y∗) = 0, then (t1, . . . , tn, ẗ) is identically distributed to t ←↩ Zn+1
p where

ti =

{
(qn+1ω + qz) if i = z

qi otherwise
and ẗ = −(qn+1ω

′∗ +
∑

l∈Ω̈∗
ql). �

Lemma 4 (Game2,q to Game3). For any efficient adversary A that makes at

most q trapdoor queries,
∣
∣
∣Adv2,q

A (λ) − Adv3A(λ)
∣
∣
∣ ≤ 3/p.

Proof. In Game2,q, all the queried trapdoors and the challenge ciphertext are
transformed into semi-functional. To argue that the challenge (K0,CT

∗
0
) hides

the data-index y∗ = (Ω̈∗, ω′∗) completely, we perform a conceptual change on
the parameters of Game2,q. Informally, we remove the effect of (ui)i∈[n] from the
semi-functional component of the trapdoors and use these free variables (ui)i∈[n]

to hide ω′∗ in the challenge ciphertext.

Setup. Choose b ←↩ Z×
p , α1, α, c, w, (ui, wi)i∈[n+1] ←↩ Zp. Set α2 = b−1(α − α1),

d = b−1(w − c), vi = b−1(wi − ui). The public parameters are generated as
mpk = (g1, gb

1, (g
wi
1 )i∈[n+1], g

w
1 , gα

T) where gT = e(g1, g2). Notice that gα
T is

independent of α1 as α was chosen independently. Since w and (wi)i∈[n+1]

are chosen uniformly random, resulting mpk does not depend on neither c nor
(ui)i∈[n+1].
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Query Phase-I. Given trapdoor query on x = (z, ω), choose r, r′, (t′i)i∈[n] ←↩

Zp. Compute the trapdoor SKx = (K1,K2, (K3,i)i∈[n],K4, (K5,i)i∈[n]) as fol-
lows.

K1 = gr
2 ,K2 = g

r′

2 ,K3,i = g
t′
i
2 ,

K4 = Kw
1 · Kb−1

2 ,K5,i =

{
gα
2 · K

(wn+1ω+wz)
1 · K−b−1

3,z if i = z

Kwi
1 · K−b−1

3,i otherwise
.

The reduction sets t′i =

{
α1 + r(un+1ω + uz) + r̂tz if i = z

rui + r̂ti otherwise
. Due to inde-

pendent random choice of α1 and t′z, the tz is uniformly random. Here the
point of focus is that both K3,z and K5,z are generated using t′z that is
independent of α1 which is absent in rest of the trapdoor components. The
trapdoor SKΩ is therefore independent of α1 if r̂ �= 0. This happens with
probability 1 − 1/p.

Challenge. On challenge y∗ = (Ω̈∗, ω′∗), choose s, ŝ, ẗ ←↩ Zp. Compute the
encapsulation key K0 and challenge ciphertext CT

∗
0

= (C0,C1,C2, ẗ) where,

K0 = e(g1, g2)αs+α1ŝ = gαs
T · gα1ŝ

T ,C0 = gs+ŝ
1 ,C1 = gbs

1 ,

C2 = g

s(wn+1ω′∗+
∑

l∈Ω̈∗
wl+wẗ)+ŝ(un+1ω′∗+

∑

l∈Ω̈∗
ul+cẗ)

1 .

Query Phase-II. Same as Query Phase-I.
Guess. A output b′ ∈ {0, 1}. Output 1 if b = b′ and 0 otherwise.

We already have established that all the scalars used in mpk are independent
of α1, un+1 and c. As the trapdoor does not contain any of α1, un+1 or c,
the trapdoors

(
SKxj

)
j∈[q]

are also independent of those scalars chosen during
KeyGen. None of the ciphertext components but K0 contain uniformly random
α1. This essentially allows the replacement of K0 by a uniform random choice
K1 ←↩ K provided ŝ �= 0. Notice that, C2 alone contains uniformly random un+1

and c. Thus, if ŝ �= 0 and ẗ �= 0, C2 becomes uniformly random. For ŝ �= 0, ŝ is
chosen uniformly at random from Z

×
p . It thus hides s in C0 which in turn makes

C1 uniformly random as b ←↩ Z×
p . As a result, the challenge ciphertext CT

∗
0

is
identically distributed to CT

∗
1

where CT
∗
1

←↩ C provided ŝ �= 0 and ẗ �= 0. Thus,
∣
∣
∣Adv2,q

A (λ) − Adv3A(λ)
∣
∣
∣ ≤ Pr[r̂ = 0] + Pr[ŝ = 0] + Pr[ẗ = 0] ≤ 3/p.

As challenge Kb and CT
∗
b

output in Game3 completely hides b and ω′∗, for any
adversary A, Adv3A(λ) = 0. �
Remark 2. Recall, in Remark 1, we mentioned that BEKS hides the identity ω′∗

whereas the other part of challenge data-index that is the privileged set Ω̈∗ has
to be given in public for proper decryption. Our simulation of final game that
hides ω′∗ thus is in keeping with the security requirement of BEKS.



36 S. Chatterjee and S. Mukherjee

Proof of Lemma 3. Given x = (z, ω) and y∗ = (Ω̈∗, ω′∗), as Rv(x, y∗) = 0, there
could be two mutually exclusive and exhaustive cases.

1. z /∈ Ω̈∗: The linear equations (ẗ, t1, . . . , tn) can be expressed as system of
linear equation t = Aq as presented in Eq. (1) where bi = 1 iff i ∈ Ω̈∗ \ {z}
and bz = 0. ⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ẗ
t1
t2
t3
...
tz
...
tn

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ω′∗ b1 b2 b3 · · · bz · · · bn

0 1 0 0 · · · 0 · · · 0
0 0 1 0 · · · 0 · · · 0
0 0 0 1 · · · 0 · · · 0
...

...
...

...
. . .

...
. . .

...
ω 0 0 0 · · · 1 · · · 0
...

...
...

...
. . .

...
. . .

...
0 0 0 0 · · · 0 · · · 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

·

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

qn+1

q1
q2
q3
...

qz
...

qn

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(1)

Since A above has n+1 many pivots, A is non-singular. As (q1, . . . , qn+1) ←↩
Z

n+1
p then (ẗ, t1, t2, t3, · · · , tn) is identically distributed to t ←↩ Zn+1

p .
2. z ∈ Ω̈∗ and ω �= ω′∗: In this case we do a simple restructuring of t = Aq

presented above to t′ = Bq′. Precisely, t′[i] =

⎧
⎪⎨

⎪⎩

t[i] if i = 1
t[z+ 1] if i = 2
t[i − 1] for all i ∈ [3, n]

and do corresponding changes in both A and q to get B and q′ respectively.
This makes the analysis of the system of linear equation easier, namely the
determinant computation of B (in Eq. (3)) is now extremely straight forward.

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ẗ
tz
t1
t2
t3
...

tz−1

tz+1

...
tn

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ω′∗ bz b1 b2 b3 · · · bz−1 bz+1 · · · bn

ω 1 0 0 0 · · · 0 0 · · · 0
0 0 1 0 0 · · · 0 0 · · · 0
0 0 0 1 0 · · · 0 0 · · · 0
0 0 0 0 1 · · · 0 0 · · · 0
...

...
...

...
...

. . .
...

...
. . .

...
0 0 0 0 0 · · · 1 0 · · · 0
0 0 0 0 0 · · · 0 1 · · · 0
...

...
...

...
...

. . .
...

...
. . .

...
0 0 0 0 0 · · · 0 0 · · · 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

·

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

qn+1

qz
q1
q2
q3
...

qz−1

qz+1

...
qn

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(2)

The determinant of above matrix B is,

det(B) = ω′∗ · det(B′) − ω · det(B′′) (3)
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Now, B′ = In and B′′ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

bz b1 b2 b3 · · · bn

0 1 0 0 · · · 0
0 0 1 0 · · · 0
0 0 0 1 · · · 0
...

...
...

...
. . .

...
0 0 0 0 · · · 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

where bz = 1.

It is easy to see that B′′ can be row-reduced into In. Thus from Eq. (3),
det(B) = ω′∗ − ω (as determinant of both B′ and B′′ is 1). As ω′∗ �= ω,
then B is non-singular. As (q1, . . . , qn+1) ←↩ Zn+1

p then (ẗ, t1, t2, t3, · · · , tn) is
identically distributed to t ←↩ Zn+1

p .

4 KASE: Key-Aggregate Searchable Encryption

We now present our construction for KASE. It is also instantiated in the prime
order bilinear groups and achieves anonymous adaptive CPA security under
SXDH assumption. Recall that KASE is the key-policy variant of the key-
word search with membership testing and thus can be viewed as a dual of
the BEKS. Precisely, the Trapdoor here takes trapdoor-index x = (Ω, ω) and
SrchEnc takes data-index y = (z, ω′). This is defined via predicate function
Rk : (P(U) × W) × (U × W) → {0, 1}. The indexes here satisfy the predicate
function Rk if z ∈ Ω and ω = ω′. On such occasion, the Test outputs 1.

4.1 Construction

KASE for universe U = [n] for n = poly(λ) and keyword space W of size exp(λ)
is defined as following four algorithms.

– KeyGen(1λ,U ,W): The asymmetric bilinear group generator outputs (p,G1,
G2,GT, e) ← Gabg(1λ) where G1,G2,GT are cyclic groups of order p. Choose
generators g1 ←↩ G1 and g2 ←↩ G2 and define gT = e(g1, g2). Choose α1, α2,
c, d, (ui, vi)i∈[n+1] ←↩ Zp, b ←↩ Z

×
p and define α = (α1 + bα2) to set gα

T =
e(g1, g2)(α1+bα2). For i ∈ [n + 1], define gwi

1 = gui+bvi
1 and gw

1 = gc+bd
1 . Define

the msk = (g2, gc
2, α1, α2, d, (ui, vi)i∈[n+1]) and the public parameter is defined

as
mpk =

(
g1, g

b
1, (g

wi
1 )i∈[n+1] , g

w
1 , gα

T

)
.

– Trapdoor(msk, x = (Ω, ω)): Given trapdoor-index x such that Ω ⊆ U and
ω ∈ W, choose r ←↩ Zp. Compute the trapdoor SKx = (K1,K2,K3,K4,K5)
where

K1 = gr
2 ,K2 = gcr

2 ,K3 = g

α1+r(un+1ω+
∑

l∈Ω
ul)

2 ,

K4 = gdr
2 ,K5 = g

α2+r(vn+1ω+
∑

l∈Ω
vl)

2 .
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– SrchEnc(mpk, y = (z, ω′)): Given data-index y such that z ∈ U and
ω′ ∈ W, choose s, (ti)i∈[n] ←↩ Zp. Compute K = e(g1, g2)αs and CTy =
(C0,C1, (C2,i, ti)i∈[n]) where,

C0 = gs
1 ,C1 = gbs

1 ,C2,i =

{
g

s(wn+1ω′+wz+wtz)
1 if i = z

g
s(wi+wti)
1 otherwise

.

– Test((SKx ,Ω), (CTy ,K)): Let x = (Ω, ω) and y = (z, ω′); output 1 iff K = B/A
where

A = e

(
∏

i∈Ω

C2,i,K1

)

, B = e

(

C0,K3

∏

i∈Ω

Kti
2

)

e

(

C1,K5

∏

i∈Ω

Kti
4

)

.

It is easy to verify correctness of this protocol which is omitted due to space
constraints.

4.2 Security Proof

Theorem 2. For any adversary A of KASE construction KASE in the Id-CPA
model (ID-CPA) that makes at most q many trapdoor queries, there exist PPT
adversaries B1, B2 such that

AdvKASE
A,ID-CPA(λ) ≤ Adv

DDHG1
B1

(λ) + q · Adv
DDHG2
B2

(λ) + 2/p.

Proof Sketch. The proof, though similar in nature to that of Theorem 1, has its
own intricacies due to structural difference between the two constructions as well
as the notion of anonymity. More precisely, as the trapdoor in BEKS now looks
like ciphertext in KASE and vice-versa, the tags that are indispensable part of
the proof behave little differently. So, we present an intuitive sketch of the proof.

Here again, we use dual system encryption [22] to prove Theorem 2. We
first transform the normal ciphertext into semi-functional. Then, each trapdoor
is transformed into semi-functional trapdoor individually. Finally, we replace
the ciphertext component K and (C2,i)i∈[n] by uniformly random elements from
K × C. This proves that the data-index y∗ = (z∗, ω′∗) is completely hidden in
the ciphertext.

We now give a brief idea of the similarity and the difference between proof
of Theorem 1 and this one primarily focusing on the tags that are used in semi-
functional ciphertext and semi-functional trapdoors. The detailed proof is omit-
ted due to space constraint. The first lemma that changes normal ciphertext
into semi-functional, is proved similarly as was done in Lemma 1 with a small
difference. The difference stems from the fact that here we define n tags (ti)i∈[n]

for O(n)ciphertext components as opposed to BEKS where we required only one
ciphertext tag (ẗ) to be defined. During the translation of normal trapdoor to
semi-functional, the proof strategy shifts from the proof of Lemma 2 where kth

trapdoor set n tags (ti)i∈[n] and challenge ciphertext defines one tag ẗ. Whereas,
here, in the game where we perform the translation of the normal trapdoors
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into semi-functional one-by-one, the target kth trapdoor sets only one tag π and
challenge ciphertext defines n tags (ti)i∈[n]. At this point, we define,

π = (qn+1ω +
∑

l∈Ω

ql) and ti =

{
−(qn+1ω

′∗ + qz∗) if i = z∗

−qi otherwise
.

It is easy to see that the proof of Lemma 3 ensures independence of tags used
here. This allows us to perform a conceptual change on all the (C2,i)i∈[n] in the
final game. Note that, this strategy lets us hide whole data-index y = (z∗, ω′∗)
unlike Lemma 4 where we could hide only ω′∗. �

5 Conclusion

In this work, we have extended the Jutla-Roy’s technique of secure IBE con-
struction to search keywords along with membership testing. We have dealt
with both the ciphertext-policy (BEKS) and key-policy (KASE) flavors of such
functionality and have achieved adaptive security as well as anonymity in both
the cases. As shown in Table 1, our dedicated solution compares favorably with
the generic construction based on [1]. An interesting open problem would be to
achieve sub-linear ciphertext size (resp. trapdoor size) in KASE (resp. BEKS).

Acknowledgement. We thank the anonymous reviewers of INDOCRYPT 2018 for
their valuable suggestions.

A Insecurity of KASE Construction of [17]

Recently, [17] presented a construction of key-aggregate searchable encryption
that they named controlled-access searchable encryption (CASE). The primary
emphasis of [17] is to propose an FPGA implementation of their construction.
They also argued the security of their scheme.

We however demonstrate a simple mix-and-match attack on the construction
in their security model. The security model, described in [17, Definition A.3], is
a weaker version of IND-CKA1 [10]. Here we first present the security model
followed by an attack on the construction of [17]. The description of their con-
struction can be found in [17, Sect. 3.3]. To understand our attack, it is enough to
take a look at the GenTrpdr function of their description. Essentially, our attack
exploits the deterministic nature of the GenTrpdr of [17].

A.1 Security Model

We discuss the security game between the challenger C and adversary A below.
Let D be a dataset and we perform search on key-indices {(Sj , ωj)}j . Then, trace
(τ) of a search history (D, {(Sj , ωj)}j) is defined to be the list of access pattern.
Informally, access pattern of (D, (Ω, ω)) is the result denoted by δ(D, (Ω, ω))
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where δ is a function that takes dataset D and the trapdoor-index x = (Ω, ω)
and outputs document identifiers that satisfy this trapdoor-index.

Informally, the adversary A gives two datasets (D0,D1) of its own choice. It
is allowed to make queries that does not trivially distinguish the secure indexes
I0 and I1 where Ii ← BuildIndex(pk,Di) for i ∈ {0, 1}. At the end, the adversary
has to distinguish if I0 or I1 was given as the challenge secure index. We now
formally define the model where non-trivially is ensured by the restriction due
to trace τ .

– Setup. C generates msk, pk and gives pk to A.
– Trapdoor Queries. Given jth trapdoor query xj = (Sj , ωj), C outputs Γ ←

GenTrpdr(msk, xj).
– Challenge. On receiving two file collections D0 and D1 as challenge with

the restriction τ(D0, {(Sj , ωj)}j) = τ(D1, {(Sj , ωj)}j), C picks b ←↩ {0, 1}
and outputs Ib ← BuildIndex(pk,Db).

– Key Queries. A continues querying with x = (Ω, ω) with the restriction
τ(D0, {(Ω, ω)}) = τ(D1, {(Ω, ω)}).

– Guess. A outputs a guess b′ and wins if b = b′.

Intuitively, for a secure searchable scheme, for every jth query xj , if δ(D0, xj) =
δ(D1, xj), A will not be able to guess b except with negligible probability.

A.2 Attack Details

We present a simple attack on the KASE construction of [17]. Informally, in this
attack, we make few permitted queries to get corresponding trapdoors. Then we
mix-and-match those trapdoors to create a new trapdoor. The new trapdoor will
allow us to guess the challenge bit b with probability 1. Thereby, the adversary
can trivially distinguish I0 and I1. Observe that, the GenTrpdr [17, Sect. 3.3]
is deterministic. Thus each trapdoor does not have their own randomness. We
exploit this property to mount a mix-n-match attack on the said construction
that we present next. Note that, the natural restriction allows the adversary to
query for trapdoor-index x only if τ(D0, x) = τ(D1, x).

Now, for msk = (a, b), the trapdoor is (H1(ω), (aFS(α) + bH1(ω))P2) ←
GenTrpdr(msk, (Ω, ω)) where P2 is group generator, H1 is CRHF and for any
set Ω, the unique signature of Ω is FS(x) =

∏

z∈Ω

(x − i) (see [17, Sect. 3.3] for

more details). We discuss the attack below as a game between challenger C and
adversary A.

– Setup. C gives pk to A and keeps msk. Let msk = (a, b). A directly goes for
challenge phase.

– Challenge. A defines document collection D0 = {i0} and D1 = {i0, i1}
where file i0 contains keyword ω and file i1 contains keyword ω∗. Lets assume
Ω∗ = {i0, i1, i2} and Ω = {i2}. A sends (D0,D1) to C who picks b ←↩ {0, 1}
and returns Ib ← BuildIndex(pk,Db).

– Key Queries. A makes following 3 queries.
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1. On query x1 = (Ω, ω): As both i0, i1 /∈ Ω, result is φ in both the cases.
Therefore τ(D0, x1) = τ(D1, x1). C runs GenTrpdr(msk, x1) to compute
Γ1 = (H1(ω), (aFS(α) + bH1(ω))P2).

2. On query x2 = (Ω, ω∗): As both i0, i1 /∈ Ω, result is φ in both the cases.
Therefore τ(D0, x2) = τ(D1, x2). C runs GenTrpdr(msk, x2) to compute
Γ2 = (H1(ω∗), (aFS(α) + bH1(ω∗))P2).

3. On query x3 = (Ω∗, ω): Here both i0, i1 ∈ Ω∗. As only i0 contain ω,
result is {i0} in both the cases. Therefore τ(D0, x3) = τ(D1, x3). C runs
GenTrpdr(msk, x3) to compute Γ3 = (H1(ω∗), (aFS(α) + bH1(ω∗))P2).

Now A computes, Z = Γ2[2]
Γ1[2]

= b(H1(ω∗) − H1(ω))P2.

Then it computes Ẑ = Z × Γ3[2]
= b(H1(ω∗) − H1(ω))P2 + (aFΩ∗(α) + bH1(ω))P2

= (aFΩ∗(α) + bH1(ω∗))P2.

Then it defines Γ̂3 to be a valid trapdoor for (Ω∗, ω∗).

Γ̂3 = (Γ2[1], Ẑ) = (H1(ω∗), (aFΩ∗(α) + bH1(ω∗))P2). (4)

– Guess. A outputs b′ = 0 if Search(Ib, Γ̂3,Ω
∗) = φ, else outputs b′ = 1.

We already have shown, A gets hold of a valid trapdoor Γ̂3 on (Ω∗, ω∗) in
Eq. (4). As,

– δ(D0, (Ω∗, ω∗)) = φ as D0 = {i0} and i0 doesn’t contain keyword ω∗.
– δ(D1, (Ω∗, ω∗)) = {i1} as D1 = {i0, i1}, i1 ∈ Ω∗ and i1 contains keyword ω∗.

Therefore A wins the game with probability 1. This simple attack renders the
KASE construction by [17] insecure.

References

1. Ambrona, M., Barthe, G., Schmidt, B.: Generic transformations of predicate encod-
ings: constructions and applications. In: Katz, J., Shacham, H. (eds.) CRYPTO
2017. LNCS, vol. 10401, pp. 36–66. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-63688-7 2

2. Attrapadung, N., Furukawa, J., Imai, H.: Forward-secure and searchable broadcast
encryption with short ciphertexts and private keys. In: Lai, X., Chen, K. (eds.)
ASIACRYPT 2006. LNCS, vol. 4284, pp. 161–177. Springer, Heidelberg (2006).
https://doi.org/10.1007/11935230 11

3. Boneh, D., Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public key encryption
with keyword search. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 506–522. Springer, Heidelberg (2004). https://doi.org/10.
1007/978-3-540-24676-3 30

4. Boneh, D., Gentry, C., Waters, B.: Collusion resistant broadcast encryption with
short ciphertexts and private keys. In: Shoup, V. (ed.) CRYPTO 2005. LNCS,
vol. 3621, pp. 258–275. Springer, Heidelberg (2005). https://doi.org/10.1007/
11535218 16

https://doi.org/10.1007/978-3-319-63688-7_2
https://doi.org/10.1007/978-3-319-63688-7_2
https://doi.org/10.1007/11935230_11
https://doi.org/10.1007/978-3-540-24676-3_30
https://doi.org/10.1007/978-3-540-24676-3_30
https://doi.org/10.1007/11535218_16
https://doi.org/10.1007/11535218_16


42 S. Chatterjee and S. Mukherjee

5. Chang, Y.C., Mitzenmacher, M.: Privacy preserving keyword searches on remote
encrypted data. In: Ioannidis, J., Keromytis, A., Yung, M. (eds.) ACNS 2005.
LNCS, vol. 3531, pp. 442–455. Springer, Heidelberg (2005). https://doi.org/10.
1007/11496137 30

6. Chen, J., Gay, R., Wee, H.: Improved dual system ABE in prime-order groups
via predicate encodings. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015.
LNCS, vol. 9057, pp. 595–624. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-46803-6 20

7. Chen, J., Gong, J.: ABE with tag made easy. In: Takagi, T., Peyrin, T. (eds.)
ASIACRYPT 2017. LNCS, vol. 10625, pp. 35–65. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-70697-9 2

8. Chu, C.K., Chow, S.S.M., Tzeng, W.G., Zhou, J., Deng, R.H.: Key-aggregate cryp-
tosystem for scalable data sharing in cloud storage. IEEE Trans. Parallel Distrib.
Syst. 25(2), 468–477 (2014)

9. Cui, B., Liu, Z., Wang, L.: Key-aggregate searchable encryption (KASE) for group
data sharing via cloud storage. IEEE Trans. Comput. 65(8), 2374–2385 (2016)

10. Curtmola, R., Garay, J.A., Kamara, S., Ostrovsky, R.: Searchable symmetric
encryption: improved definitions and efficient constructions. J. Comput. Secur.
19(5), 895–934 (2011)

11. Gentry, C., Silverberg, A.: Hierarchical ID-based cryptography. In: Zheng, Y. (ed.)
ASIACRYPT 2002. LNCS, vol. 2501, pp. 548–566. Springer, Heidelberg (2002).
https://doi.org/10.1007/3-540-36178-2 34

12. Gentry, C., Waters, B.: Adaptive security in broadcast encryption systems (with
short ciphertexts). In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp.
171–188. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01001-
9 10

13. Goh, E.: Secure indexes. IACR Cryptology ePrint Archive 2003, 216 (2003). http://
eprint.iacr.org/2003/216

14. Jutla, C.S., Roy, A.: Shorter quasi-adaptive NIZK proofs for linear subspaces. J.
Cryptol. 30(4), 1116–1156 (2017)

15. Kiayias, A., Oksuz, O., Russell, A., Tang, Q., Wang, B.: Efficient encrypted key-
word search for multi-user data sharing. In: Askoxylakis, I., Ioannidis, S., Katsikas,
S., Meadows, C. (eds.) ESORICS 2016. LNCS, vol. 9878, pp. 173–195. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-45744-4 9

16. Kiltz, E., Wee, H.: Quasi-adaptive NIZK for linear subspaces revisited. In: Oswald,
E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 101–128. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6 4

17. Patranabis, S., Mukhopadhyay, D.: Spot the black hat in a dark room: parallelized
controlled access searchable encryption on FPGAs. Cryptology ePrint Archive,
Report 2017/668 (2017)

18. Ramanna, S.C.: More efficient constructions for inner-product encryption. In: Man-
ulis, M., Sadeghi, A.-R., Schneider, S. (eds.) ACNS 2016. LNCS, vol. 9696, pp.
231–248. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39555-5 13

19. Ramanna, S.C., Sarkar, P.: Efficient (Anonymous) compact HIBE from standard
assumptions. In: Chow, S.S.M., Liu, J.K., Hui, L.C.K., Yiu, S.M. (eds.) ProvSec
2014. LNCS, vol. 8782, pp. 243–258. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-12475-9 17

20. Ramanna, S.C., Sarkar, P.: Efficient adaptively secure IBBE from the SXDH
assumption. IEEE IT 62(10), 5709–5726 (2016)

https://doi.org/10.1007/11496137_30
https://doi.org/10.1007/11496137_30
https://doi.org/10.1007/978-3-662-46803-6_20
https://doi.org/10.1007/978-3-662-46803-6_20
https://doi.org/10.1007/978-3-319-70697-9_2
https://doi.org/10.1007/978-3-319-70697-9_2
https://doi.org/10.1007/3-540-36178-2_34
https://doi.org/10.1007/978-3-642-01001-9_10
https://doi.org/10.1007/978-3-642-01001-9_10
http://eprint.iacr.org/2003/216
http://eprint.iacr.org/2003/216
https://doi.org/10.1007/978-3-319-45744-4_9
https://doi.org/10.1007/978-3-662-46803-6_4
https://doi.org/10.1007/978-3-319-39555-5_13
https://doi.org/10.1007/978-3-319-12475-9_17
https://doi.org/10.1007/978-3-319-12475-9_17


Keyword Search Meets Membership Testing: Adaptive Security from SXDH 43

21. Song, D.X., Wagner, D., Perrig, A.: Practical techniques for searches on encrypted
data. In: Symposium on Security and Privacy, pp. 44–55. IEEE (2000)

22. Waters, B.: Dual system encryption: realizing fully secure IBE and HIBE under
simple assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 619–
636. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03356-8 36

https://doi.org/10.1007/978-3-642-03356-8_36


Symmetric Key Cryptography and
Format Preserving Encryption



Tweakable HCTR: A BBB Secure
Tweakable Enciphering Scheme

Avijit Dutta(B) and Mridul Nandi

Indian Statistical Institute, Kolkata, India
avirocks.dutta13@gmail.com, mridul.nandi@gmail.com

Abstract. HCTR, proposed by Wang et al., is one of the most efficient
candidates of tweakable enciphering schemes that turns an n-bit block
cipher into a variable input length tweakable block cipher. Wang et al.
have shown that HCTR offers a cubic security bound against all adaptive
chosen plaintext and chosen ciphertext adversaries. Later in FSE 2008,
Chakraborty and Nandi have improved its bound to O(σ2/2n), where
σ is the total number of blocks queried and n is the block size of the
block cipher. In this paper, we propose tweakable HCTR that turns an
n-bit tweakable block cipher to a variable input length tweakable block
cipher by replacing all the block cipher calls of HCTR with tweakable
block cipher. We show that when there is no repetition of the tweak,
tweakable HCTR enjoys the optimal security against all adaptive chosen
plaintext and chosen ciphertext adversaries. However, if the repetition of
the tweak is limited, then the security of the construction remains close
to the security bound in no repetition of the tweak case. Hence, it gives
a graceful security degradation with the maximum number of repetition
of tweaks.

Keywords: Tweakable enciphering scheme · HCTR · TSPRP
H-Coefficient.

1 Introduction

Tweakable Enciphering Scheme. A block cipher is a fundamental primi-
tive in symmetric key cryptography that processes only fixed length messages.
Examples of such block ciphers are DES [29], AES [10] etc. The general secu-
rity notion for a block cipher is pseudorandom permutation (PRP) which says
that any computationally bounded adversary should be unable to distinguish
between a random permutation and a permutation picked at random from a
keyed family of permutations over the input set. A stronger security notion for
block cipher called strong pseudorandom permutation (SPRP) requires compu-
tationally bounded adversary should be unable to distinguish between a random
permutation and its inverse from a permutation and its inverse, picked at ran-
dom from the keyed family of permutations. A mode of operation of a block
cipher specifies a particular way the block cipher should be used to process arbi-
trary and variable length messages; hence extending the domain of applicability
c© Springer Nature Switzerland AG 2018
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from fixed length messages to long and variable length messages. As its security
requirement, we require that it should be secure if the underlying block cipher
is a secure PRP, then the extended domain mode of operation also satisfies an
appropriate notion of security.

The two major goals of a mode of operation that it wants to achieve are
confidentiality and integrity. For example, CBC [36] mode provides only con-
fidentiality whereas CBC-MAC [1] is a mode of operation that guarantees only
integrity. OCB [33] is a mode of operation which provides both confidentiality and
integrity. A mode of operation that can encrypt arbitrary length messages and
provides SPRP security is called a length preserving transformation for which
no tag is produced. In that case, a change in the ciphertext remains undetected
but the decryption of a tampered ciphertext results in a plaintext which is indis-
tinguishable from a random string. The detection of tampering is possible by
allowing additional redundancy in the message by higher level applications as
discussed by Bellare and Rogaway [2].

A Tweakable Enciphering Scheme (TES) is a keyed family of length preserving
transformations E : K × T × M → M where K and T are the finite and non-
empty set of keys and tweaks respectively and M is a message space such that
for all K ∈ K and all T ∈ T , EK(T, ·) is a length preserving permutation1 over
M and there must be an inverse DK(T, ·) to EK(T, ·). Unlike the key K, tweak
T is public whose sole purpose is to introduce the variability of the ciphertext,
similar to that of the role of IV in the mode of encryption.

The general security notion of a TES is tweakable strong pseudorandom per-
mutation (TSPRP) which is to say that it is computationally infeasible for an
adversary to distinguish the oracle that maps (T,M) into EK(T,M) and maps
(T,C) into DK(T,C) when the key K is random and secret from an oracle
that realizes a T -indexed family of random permutations and their inverses. A
TSPRP secure TES is a desirable tool for solving the disk encryption problem
as pointed out in [14] where the sector address of the disk plays the role of the
tweak in TES.

1.1 Different Paradigm of Designing TES

In the past few years there have been various proposals of designing TES. If we
categorize all these proposals, then we see that all the proposals falls under one
of the following three categories:

Hash-Encrypt-Hash. Naor and Reingold [28] designed a wide block SPRP
using a invertible ECB mode of encryption sandwiched between two invertible
pairwise independent hash functions. This paradigm of construction is known
as Hash-Encrypt-Hash. However, as discussed in [14] that the description given
in [28] is at a top level and also the latter work [27] does not fully specify a mode
of operation. Moreover, the construction was not a tweakable SPRP. Later in
2006, Chakraborty and Sarkar [8] first instantiated Hash-Encrypt-Hash mode with
1 A length preserving permutation over M is a permutation π such that for all M ∈ M,

|π(M)| = |M |.
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PEP by sandwiching a ECB type encryption layer in between of two layers of
polynomial hashing. TET, a more efficient version of PEP, was later proposed
by Halevi [13]. HEH, an improvement upon TET, is also reported in [34].

Encrypt-Mix-Encrypt. CBC-Mix-CBC (CMC), proposed by Halevi and Rog-
away [14], is the first TES construction in which a mixing layer is sandwiched
between two CBC layers; hence the design is inherently sequential. Later, Halevi
and Rogaway proposed a parallel construction, called EME [15] in which the
encryption layers are of ECB type. Later EME was extended to EME∗ [12] for
handling arbitrary length messages. All of these constructions follow the same
design principle where a simple mixing layer is sandwiched between two invert-
ible encryption layers. Recently, Bhaumik et al. [3] proposed FMix, a variant of
CMC, that uses a single block cipher key (instead of two block cipher keys used
in CMC) and lifted up the requirement of the block cipher invertibility.

Hash-Counter-Hash. This paradigm is similar to the Hash-Encrypt-Hash, but
instead of a ECB layer, a counter mode encryption layer is sandwiched between
two almost-xor universal hash function2. The advantage of using the counter
mode encryption is to tackle the variable length messages easily. XCB [20] is the
first Hash-Counter-Hash type construction that requires 5 block cipher keys and
two block cipher calls (apart from block cipher calls in counter mode encryp-
tion). Later, Wang et al. proposed HCTR [35] with a single block cipher key and
removed one extra invocation of block cipher call. FAST, a pseudorandom func-
tion (PRF) based TES construction following the Hash-Counter-Hash paradigm
has recently been proposed by Chakraborty et al. [5].

Amongst the above mentioned constructions, only CMC and EME∗ are block
cipher based constructions with a light weight masking layer in between of two
encryption layers, whereas the other two paradigms require the field multipli-
cation (as a part of the hash function evaluation) along with the block cipher
evaluation. Thus, the only significant cost for Encrypt-Mix-Encrypt type construc-
tions are the block cipher calls, whereas for the other two paradigms the cost
involved in both evaluating the block cipher calls and the finite field multiplica-
tions. A detailed comparison of the performance and efficiency of different TES
can be found in [7,13,34]. This comparison study along with [19] suggests that
HCTR is one of the most efficient candidates amongst all proposed TES.

However, unlike other TES proposals which have the usual “birthday
bound” type security, HCTR was initially shown to have the cubic secu-
rity bound [35]. Later, the bound was improved to the birthday bound by
Chakraborty and Nandi [6]. Chakraborty and Sarkar [7] proposed HCH, a sim-
ple variant of HCTR, in which they introduce one more block cipher call before
initializing the counter and shown to have the birthday bound security.

2 An almost-xor universal hash function is a keyed hash function such that for any
two distinct messages, the probability, over the random draw of a hash key, the hash
differential being equal to a specific output is small.
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1.2 Our Contribution

In this paper, we propose tweakable HCTR, a variant of the HCTR construction,
that yields a variable input length tweakable block cipher (TBC)3 from a fixed
input length tweakable block cipher, in which all the block ciphers of HCTR
are replaced with TBC. In HCTR, the tweak is one of the inputs of the upper
and lower layer hash function (i.e., HKh

in Fig. 2), but in our construction, we
process the tweak through another independent keyed (n+m)-bit hash function
H′

L where the m-bit hash value becomes the tweak of the underlying tweakable
block cipher and the remaining n-bit hash output is used to mask the input
and the output of the leftmost TBC (see Fig. 1). We process tweak through an
independent keyed hash function for allowing large sized tweaks.

We have shown that if there is no repetition of tweaks, or in other words, all
the queried tweaks are distinct, then tweakable HCTR is secure upto 2n many
message blocks against any computationally unbounded chosen plaintext chosen
ciphertext adaptive adversaries. Moreover, when the repetition of the tweak is
limited, then the security we obtain is close to the optimal one. This is in con-
trast to the security of other nonce based constructions (e.g., Wegman-Carter
MAC [4], AES-GCM [21] etc.) where a single time repetition of the nonce com-
pletely breaks the scheme. This property is called the graceful degradation of
security when tweak repeats. Gracefully degrading secured construction based
on tweakable block ciphers has been studied in [32] and the notion of tweak
repetition has been studied in [22] by Mennink for proving 3n/4-bit security of
CLRW2. In [22], Mennink stated that:

“The condition on the occurrence of the tweak seems restrictive, but many modes
of operation based on a tweakable block cipher query their primitives for tweaks
that are constituted of a nonce or random number concatenated with a counter
value: in a nonce-respecting setting, every nonce appears at most 1 + qf times,
where qf is the amount of forgery attempts.”

In practical settings like disk-encryption problem where the sector address
plays the role of the tweak, tweak is not repeated arbitrarily and therefore the
security of any tweakable scheme where the tweak repeats in a limited way, is
worth to study.

1.3 Comparison with Minematsu-Iwata Proposal [24]

Hash-Sum-Expansion or (HSE) due to Minematsu and Matsushima [26] is a
generic structure that underlies the construction of HCTR and HCH. HSE is
instantiated with a TBC and a weak pseudorandom function (wPRF) [26] and
its security proof shows that the expansion function of HCTR and HCH, which
is achieved through the counter mode encryption, can be instantiated with any
secure wPRF. However, HSE is shown to have the birthday bound security.

3 A tweakable block cipher is basically a simple block cipher with an additional param-
eter called tweak.
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Fig. 1. Tweakable HCTR construction with tweak T and message M1‖M2‖ . . . ‖Ml and
the corresponding ciphertext C1‖C2‖ . . . ‖Cl. HKh is an n-bit almost-xor universal and
almost regular hash function with hash key Kh. H′

L is an (n + m)-bit partial almost
xor universal hash function with hash key L and H′

L(T ) = (H1, H2), where H1 is of

size n bits and H2 is of size m bits. ˜EK is the tweakable block cipher and Ctr
˜EK

is the
tweakable block cipher based counter mode encryption.

Later, Minematsu and Iwata [24] designed a block cipher for processing arbi-
trary length messages. For processing messages of shorter length than 2n bits,
they proposed Small-Block Cipher, which is instantiated with two indepen-
dent keyed TBCs with tweak size (m) < block size (n) and an n-bit PolyHash
function PolyKh

which eventually provides sprp security upto (n + m)/2 bits4.
The construction is identical to a scheme of [23]. To process messages larger than
2n bits, they proposed Large Block-Cipher, Method 1 and Large Block-
Cipher, Method-2. The former one is structurally similar to HCTR and hence
is of interest to us. LBC-1 (abbreviation for Large Block-Cipher, Method 1) uses
(a) a 2n-bit block cipher E2n, (b) a 2n-bit keyed hash function HK in upper and
lower layer and (c) a wPRF F. It has been shown [24] that LBC-1 provides the
optimal (i.e., 2n) sprp security, where block size and tweak size is of n bits.

Now, to instantiate each of the primitives, (a) E2n is instantiated through
Small-Block Cipher method and hence it requires two independent keyed
TBCs with tweak size and block size n and an n-bit PolyHash function. (b)
2n-bit keyed hash function HK is instantiated through the concatenation of two
independent keyed n-bit PolyHash functions and (c) the wPRF F is instantiated
through a counter mode of encryption based on two independent invocations of
TBCs with tweak size and block size n. Therefore, LBC-1 requires altogether
two independent keyed TBCs with n-bits tweak and block along with three
4 This security bound is beyond birthday in terms of the block size n, but with respect

to the input size of TBC (i.e., n + m bits), it is the birthday bound.
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independent keyed n-bit PolyHash functions. In contrast to this, our proposal
requires an n-bit almost xor universal hash function (e.g., polyhash) in upper and
lower layers, an (n + m)-bit partial-almost xor universal hash function5 [16,25]
and a single instance of a TBC with tweak size m. Note that, in our case the
tweak is provided as an additional input to the construction unlike to LBC-1
where the part of the input message is served as a tweak to the underlying TBC.

2 Preliminaries

Basic Notations. For a set X , X ←$X denotes that X is sampled uniformly
at random from X and independent of all other random variables defined so far.
For two sets X and Y, X � Y denotes the disjoint union, i.e, when there is no
common elements in X and Y. {0, 1}n denotes the set of all binary strings of
length n and {0, 1}∗ denotes the set of all binary strings of arbitrary length. 0i

denotes the string of length i with all bits zero. For any element X ∈ {0, 1}∗,
|X| denotes the number of bits of X. For any two elements X,Y ∈ {0, 1}∗,
X‖Y denotes the concatenation of X followed by Y . For X,Y ∈ {0, 1}n, we
write X ⊕ Y to denote the xor of X and Y . For any X ∈ {0, 1}∗, we parse
X as X = X1‖X2‖ . . . ‖Xl where for each i = 1, . . . , l − 1, Xi is an element of
{0, 1}n and 1 ≤ |Xl| ≤ n. We call each Xi a block. When there is a sequence of
elements X1,X2, . . . , Xs ∈ {0, 1}∗, we write Xi

a to denote the a-th block of the
i-th element Xi. For any integer j, 〈j〉 denotes the n-bit binary representation of
integer j. For integers 1 ≤ b ≤ a, we write (a)b to denote a(a − 1) . . . (a − b + 1),
where (a)0 = 1 by convention. We write [q] to refer to the set {1, . . . , q}.

For a function Φ : X → Y1 ×Y2, we write Φ(x) = (φ1, φ2) for all x ∈ X . Φ[1]
is the function from X to Y1 such that for all x ∈ X , Φ[1](x) = φ1. Similarly,
Φ[2] is a function from X to Y2 such that Φ[2](x) = φ2 for all x ∈ X .

Block Ciphers. A block cipher (BC) with key space K and domain X is a
mapping E : K × X → X such that for all key K ∈ K, X �→ E(K,X) is a
permutation of X . We denote BC(K,X ) the set of all block ciphers with key
space K and domain X . A permutation Π with domain X is a bijective mapping
of X and Perm(X ) denotes the set of all permutations over X . E ∈ BC(K,X ) is
said to be a strong pseudorandom permutation or equivalently a strong block
cipher if the sprp advantage of E against any chosen plaintext chosen ciphertext
adaptive adversary A with oracle access to a permutation and its inverse with
domain X , defined as follows

AdvSPRP
E (A) := |Pr[K ←$K : AEK ,E−1

K = 1] − Pr[Π ←$Perm(X ) : AΠ,Π−1
= 1]|

(1)

5 Informally, a keyed hash function is said to be a partial-almost xor universal hash
function, if for any two distinct inputs, the probability over the random draw of the
hash key, that the first n-bit part of the sum of their hash output takes any value
and the remaining m-bit part of the hash value collides, is very small.
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that makes at most q queries with maximum running time t, is very small. When
the adversary is given access only to the permutation and not its inverse, then
we say the PRP advantage of A against E.

Tweakable Block Ciphers. A tweakable block cipher (TBC) with key space
K, tweak space T and domain X is a mapping ˜E : K ×T ×X → X such that for
all key k ∈ K and all tweak t ∈ T , x �→ ˜E(k, t, x) is a permutation of X . We often
write ˜Ek(t, x) or ˜E

t

k(x) for ˜E(k, t, x). We call a tweakable block cipher as (m,n)
tweakable block cipher if T = {0, 1}m and X = {0, 1}n. We denote TBC(K, T ,X )
the set of all such (m,n) tweakable block ciphers with key space K, tweak space
T and domain X . A tweakable permutation with tweak space T and domain X
is a mapping ˜Π : T × X → X such that for all tweak T ∈ T , X �→ ˜Π(T,X)
is a permutation of X . We often write ˜ΠT (X) for ˜Π(T,X). TP(T ,X ) denotes
the set of all (m,n) tweakable permutations with tweak space T (= {0, 1}m) and
domain X (= {0, 1}n).

Adversarial Model for TBC. An adversary A for TBC has access to either
of the pair of oracles (˜EK(·, ·), ˜E

−1

K (·, ·)) for some fixed key K ∈ K or access to
the pair of oracles (˜Π(·, ·), ˜Π−1(·, ·)) oracles for some ˜Π ∈ TP(T ,X ). Adversary
A queries to the pair of oracles in an interleaved and adaptive way and after the
interaction is over, it outputs a single bit b. We assume that A can query any
tweak for at most μ times in all its encryption and decryption queries, which is
called the maximum tweak multiplicity, i.e., if μ = 1 then each queried tweak is
distinct. Moreover, we assume that A does not repeat any query to the encryption
or the decryption oracle. We also assume that A does not query the decryption
oracle (resp. the encryption oracle) with the value that it obtained as a result of
a previous encryption query (resp. decryption query). We call such an adversary
A, a non-trivial (μ, q, t) chosen plaintext chosen ciphertext adaptive adversary,
where A makes total q many encryption and decryption queries with running time
at most t and maximum tweak multiplicity μ. Sometimes we write (μ, q, �, σ, t)
chosen plaintext chosen ciphertext adaptive adversary A to emphasize that the
maximum number of message blocks in a queried message of A is � and the
total number of message blocks that A can query is σ. When the parameters
� = σ = 0, then we simply write (μ, q, t).

Definition 1 (TSPRP Security). Let ˜E ∈ TBC(K, T ,X ) be a tweakable block
cipher and A be a non-trivial (μ, q, t) chosen plaintext chosen ciphertext adap-
tive adversary with oracle access to a tweakable permutation and its inverse with
tweak space T and domain X . The advantage of A in breaking the TSPRP secu-
rity of ˜E is defined as

AdvTSPRP
˜E

(A) := |Pr[K ←$K : A
˜EK ,˜E−1

K = 1] − Pr[˜Π ←$TP(T ,X ) : A
˜Π,˜Π−1

= 1]|,
(2)

where the adversary queries with tweak T ∈ T and input X ∈ X . When the
adversary is given access only to the tweakable permutation and not its inverse,
then we say the tweakable pseudorandom permutation (TPRP) advantage of
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A against ˜E. Informally, ˜E is said to be a tweakable strong pseudorandom permu-
tation or equivalently a tweakable strong block cipher when the TSPRP advantage
of ˜E against any adversary A that makes at most q queries with maximum run-
ning time t, as defined in Eq. (2), is very small.

Almost (XOR) Universal and Almost Regular Hash Function. Let
Kh,X be two non-empty finite sets and H be an n-bit keyed function H : Kh ×
X → {0, 1}n. Then,

• H is said to be an ε-almost xor universal (AXU) hash function if for any
distinct X,X ′ ∈ X and for any Y ∈ {0, 1}n,

Pr[Kh ←$Kh : HKh
(X) ⊕ HKh

(X ′) = Y ] ≤ ε. (3)

As a special case, when Y = 0n, then H is said to be an ε-almost universal
(AU) hash function.

• H is said to be an ε-almost regular hash function if for any X ∈ X and for
any Y ∈ {0, 1}n,

Pr[Kh ←$Kh : HKh
(X) = Y ] ≤ ε. (4)

It is easy to see that PolyHash with an n-bit key, as defined in [11,24], is an �/2n-
AXU and �/2n-almsot regular hash function, where � is the maximum number
of message blocks. Proof of this result can be found in [11].

Partial Almost (XOR) Universal Hash Function. Let Kh,X be two
non-empty finite sets and H be an (n + m)-bit keyed function H : Kh × X →
{0, 1}n × {0, 1}m. Then, H is said to be an (n,m, ε)-partial almost xor universal
(pAXU) hash function if for any distinct X,X ′ ∈ X and for any Y ∈ {0, 1}n,

Pr[Kh ←$Kh : HKh
(X) ⊕ HKh

(X ′) = (Y, 0m)] ≤ ε. (5)

Note that, an ε-AXU (n + m)-bit keyed hash function is an (n,m, ε)-pAXU. We
write HKh

(X) = (H1,H2), where H1 ∈ {0, 1}n and H2 ∈ {0, 1}m.

3 Specification and Security Result of Tweakable HCTR

HCTR, as proposed by Wang et al. [35], is a mode of operation which turns an
n-bit strong prp into a tweakable strong prp that supports arbitrary and variable
length input and tweak which is no less than n bits. For any message M ∈ {0, 1}∗

and a tweak T , HCTR works as follows: it first parses the message M into l many
blocks such that its first l − 1 message blocks are of length n-bits and the length
of the last block is at most n. Then, it applies an n-bit PolyHash function on the
string M2‖ . . . Ml‖T and xor its n-bit output value with the first message block
M1 to produce X. This X is then feeded into an n-bit block cipher E whose
output Y is xor-ed with X to produce an IV value which acts a counter in the
counter mode encryption to produce the ciphertext blocks C2‖ . . . ‖Cl. Finally,
the first ciphertext block C1 is generated by applying the same PolyHash on
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Fig. 2. HCTR construction with tweak T and message M1‖M2‖ . . . ‖Ml and the corre-
sponding ciphertext C1‖C2‖ . . . ‖Cl. PolyKh

is the polynomial hash function with hash
key Kh. CtrEK is the block cipher based counter mode of encryption.

C2‖ . . . ‖Cl‖T and xor its output with Y . Schematic diagram of HCTR is shown
in Fig. 2.

Wang et al. [35] have shown HCTR to be a secure TES against all adap-
tive chosen plaintext and chosen ciphertext adversaries that make roughly
2n/3 encryption and decryption queries. Later in FSE 2008, Chakraborty and
Nandi [6] have improved its security bound to O(σ2/2n).

3.1 Specification of Tweakable HCTR

Our proposal Tweakable HCTR, which we denote as ˜HCTR, closely resembles to
the original HCTR with the exception that (i) the strong block cipher of HCTR
is replaced by a (m,n) tweakable strong block cipher, where m is the size of
the block cipher tweak and n is the block size of the TBC and (ii) the tweak
used for the construction, which is processed through the upper and lower hash
function in HCTR, is now processed through an independent keyed (n + m)-
bit partial AXU hash function whose n-bit output is masked with the input
and the output of the leftmost tweakable block cipher and the remaining m-bit
output plays the role of the tweak of the underlying TBC. Moreover, all the
block cipher calls of the counter mode encryption used in HCTR are replaced
by TBCs where the same m-bit hash value of the tweak becomes the tweak of
the underlying tweakable block cipher used in the tweakable counter mode of
encryption. Schematic diagram of the construction is shown in Fig. 1 and its
algorithmic description is shown in Fig. 3.
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Fig. 3. Tweakable HCTR Construction. Left part is the encryption algorithm of tweak-
able HCTR and right part is its decryption algorithm. 〈j〉 denotes the n-bit binary
representation of integer j. H is an n-bit almost xor universal hash function and H′ is
an (n + m)-bit partial almost xor universal hash function.

As can be seen from the algorithm there are three basic building blocks used
in the construction of ˜HCTR; an n-bit keyed AXU hash function H, an (n+m)-bit
keyed pAXU hash function H′ and a tweakable counter mode of encryption.

Given an n-bit string IV , we define a sequence (IV1, . . . , IVl), where each
IVi is some function of IV . Given such a sequence (IV1, . . . , IVl), a key K, a
message M = M1‖M2‖ . . . ‖Ml (for simplicity we assume that |M | is a multiple
of n) and the hash value of an (n + m)-bit keyed pAXU hash function of the
tweak T (i.e., H′

L(T )), the tweakable counter mode is defined as follows:

Ctr
˜E
H2
K ,IV

(M1, . . . , Ml) =
(

M1 ⊕ ˜EK(H2, IV1), . . . , Ml ⊕ ˜EK(H2, IVl)
)

,

where IVi = IV ⊕ 〈i〉 and H′
L(T ) = (H1,H2). In case the last block Ml is

incomplete then Ml⊕˜EK(H2, IVl) is replaced by Ml⊕dropr(˜EK(H2, IVl)), where
r = n − |Ml| and dropr(˜EK(H2, IVl)) is the first (n − r) bits of ˜EK(H2, IVl). If
l = 1 (when we have one block message), we ignore line 4 and 5 of both the
encryption and the decryption algorithm of ˜HCTR construction.

3.2 Security Result of Tweakable HCTR

In this section, we state the security result of ˜HCTR. In specific, we state that
if ˜E is a (m,n) tweakable strong block cipher, H is an ε-axu n-bit keyed hash
function, H′ is a δ-partial AXU (n+m)-bit keyed hash function, and H′[2] is a δau

almost universal m-bit keyed hash function, then ˜HCTR is a secure TES against
all (μ, q, �, σ, t) chosen plaintext and chosen ciphertext adaptive adversaries that
make roughly 2n/μ� many encryption and decryption queries, where � is the
maximum number of message blocks among all q queries and σ is the total
number of message blocks queried. Formally, the following result bounds the
tsprp advantage of ˜HCTR.
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Theorem 1. Let M, T ,K, Kh and L be finite and non-empty sets. Let ˜E :
K × {0, 1}m × {0, 1}n → {0, 1}n be a (m,n) tweakable strong block cipher, H :
Kh ×M → {0, 1}n be an ε-AXU and ε1-almost regular n-bit keyed hash function
and H′ : L × T → {0, 1}n × {0, 1}m be an (n,m, δ)-partial AXU (n + m)-bit
keyed hash function and H′[2] is a δau-almost universal m-bit keyed hash function.
Then, for any (μ, q, �, σ, t) chosen plaintext chosen ciphertext adaptive adversary
A against the tsprp security of ˜HCTR[˜E,H,H′], there exists a (μ, σ, t′) chosen
plaintext chosen ciphertext adaptive adversary A′ against the tsprp security of
˜E, where t′ = O(t + σ + q(2tH + tH′)), σ is the total number of message blocks
queried, tH be the time for computing the hash function H, tH′ be the time for
computing the hash function H′ and μ ≤ min{|T |, q}, such that

AdvTSPRP
˜HCTR[˜E,H,H′]

(A) ≤ AdvTSPRP
˜E

(A′) + 2(μ − 1)(qε + σ/2n) + 2qσδau/2n + q2δ

+ 2max{q�(μ − 1)/2n + qσδau/2n, σε1}.

By assuming ε, ε1 ≈ 2−n, δau ≈ 2−m, δ ≈ 2−(n+m) and m > n, ˜HCTR is secured
roughly upto 2n/μ� queries. Moreover, when all the tweaks are distinct, i.e.,
μ = 1, then the tsprp security of ˜HCTR becomes

AdvTSPRP
˜HCTR[˜E,H,H′]

(A) ≤ AdvTSPRP
˜E

(A′) + 2(σε1 + qσδau/2n) + q2δ.

Therefore, when all the tweaks in the encryption and decryption queries are
distinct, then by assuming ε, ε1 ≈ 2−n, δau ≈ 2−m, δ ≈ 2(n+m) and m > n,
˜HCTR is secured roughly upto 2n many message blocks.

4 Proof of Theorem 1

In this section, we prove Theorem 1. We would like to note that we will often
refer to the construction ˜HCTR[˜E,H,H′] as simply ˜HCTR when the underlying
primitives are assumed to be understood.

As the first step of the proof, we replace ˜EK with an (m,n)-bit tweak-
able uniform random permutation ˜Π and denote the resulting construction as
˜HCTR

∗
[˜Π,H,H′]. It is easy to show that there exists an adversary against the

tsprp security of ˜E, making at most σ oracle queries and running in time at most
O(t + σ + q(2tH + tH′)) with maximum tweak multiplicity μ, such that

AdvTSPRP
˜HCTR[˜E,H,H′]

(A) ≤ AdvTSPRP
˜E

(A′) + AdvTSPRP
˜HCTR

∗
[˜Π,H,H′]

(A)
︸ ︷︷ ︸

δ∗

. (6)

Now, our goal is to upper bound δ∗. For doing this, we first describe how the
ideal oracle works. Let us assume that n� be the maximum size of any message
M among all q many queries. Let Si denotes the set of all binary strings of length
i. Therefore, {0, 1}≤n�, which denotes the set of all binary strings of length at
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Ideal oracle ($) for Encryption
On ith input (Ti,Mi)

1. if Ti = Ta for some a ∈ [c]
2. if Mi ∈ Da, let Mi = Mj for some

j < i
3. then Ci ← Cj

4. else Ci ←$ Sli \ Ra

5. Da = Da ∪ {Mi};Ra = Ra ∪ {Ci}
6. else
7. c ← c+ 1;Tc ← Ti

8. Ci ←$ Sli

9. Dc = Dc ∪ {Mi};Rc = Rc ∪ {Ci}
10. return Ci

Ideal oracle ($−1) for Decryption
On ith input (Ti, Ci)

1. if Ti = Ta for some a ∈ [c]
2. if Ci ∈ Ra, let Ci = Cj for

some j < i
3. then Mi ← Mj

4. else Mi ←$ Sli \ Da

5. Da = Da∪{Mi};Ra = Ra∪{Ci}
6. else
7. c ← c+ 1;Tc ← Ti

8. Mi ←$ Sli

9. Dc = Dc∪{Mi};Rc = Rc∪{Ci}
10. return Mi

Fig. 4. Left part is the encryption algorithm of the ideal oracle and the right part is
the decryption algorithm of the ideal oracle. c is the number of equivalent classes over
the queried tweak space until the i-th query. Da denotes the set of all already sampled
output (for decryption) and queried input (for encryption) for a-th equivalent class and
Ra denotes the set of all already sampled output (for encryption) and queried input
(for decryption) for a-th equivalent class. li denotes the length of the i-th plaintext Mi,
for encryption or the i-th ciphertext Ci for decryption.

most n�, can be written as S1 � S2 � . . . � Sn�. Now, for the i-th encryption or
decryption query, the ideal oracle works as shown in Fig. 4.

In words, for the ith encryption query (Ti,Mi), the ideal oracle $ first checks
if the tag Ti matches with some previous existing tags. If so, then it samples the
ciphertext Ci without replacement from the set of all binary strings of length
|Mi|; otherwise, it samples the Ci uniformly at random from S|Mi|. Decryption
oracle also works in the similar way, except that the oracle samples the plaintext
instead of ciphertext. Since, we have assumed the distinguisher is non-trivial,
line 2–3 of both the algorithm will not be executed. Therefore, we write

δ∗ ≤ max
D

Pr[DEnc.˜HCTR
∗
,Dec.˜HCTR

∗
= 1] − Pr[D$,$−1

= 1],

where the maximum is taken over all non-trivial distinguishers D that make total
q many encryption and decryption queries with at most σ many blocks such that
the maximum number of message blocks among all the queried messages is � and
the maximum tweak multiplicity μ. This formulation allows us to apply the H-
Coefficient Technique [30,31], as we explain in more detail below, to prove

δ∗ ≤ 2(μ−1)(qε+σ/2n)+2qσδau/2n+q2δ+2max{q�(μ−1)/2n+qσδau/2n, σε1}.
(7)
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H-Coefficient Technique. From now on, we fix a non-trivial distinguisher
D that interacts with either (1) the real oracle (Enc. ˜HCTR

∗
,Dec. ˜HCTR

∗
) for a

(m,n)-bit tweakable random permutation ˜Π and a pair of random hashing keys
(Kh, L) or (2) the ideal oracle ($, $−1), making q queries to its encryption and
decryption oracle altogether with at most σ many blocks such that the maximum
number of message blocks among all the queried messages is � and the maximum
tweak multiplicity is μ. When all the interactions between the oracle and D gets
over, it outputs a single bit. We let,

Adv(D) = Pr[DEnc.˜HCTR
∗
,Dec.˜HCTR

∗
= 1] − Pr[D$,$−1

= 1].

We assume that D is computationally unbounded and hence without loss of
generality deterministic. Let

τ := {(T1,M1, C1), (T2,M2, C2), . . . , (Tq,Mq, Cq)}

be the list of all queries of D and its corresponding responses such that for all
i = 1, 2, . . . , q, |Ci| = |Mi|. Note that, as D is assumed to be non-trivial, there
cannot be any repetition of triplet in τ . τ is called the query transcript of the
attack. For convenience, we slightly modify the experiment where we reveal to
the distinguisher (after it made all its queries and obtains the corresponding
responses but before it output its decision) the hashing keys (Kh, L), if we are
in the real world, or a pair of uniformly random dummy keys (Kh, L) if we are
in the ideal world. All in all, the transcript of the attack is τ ′ = (τ,Kh, L).

A transcript τ ′ is said to be an attainable (with respect to D) transcript
if the probability to realize this transcript in the ideal world is non-zero. We
denote V to be the set of all attainable transcripts and Xre and Xid denotes the
probability distribution of transcript τ ′ induced by the real world and the ideal
world respectively. We state in the following the main lemma of the H-Coefficient
technique (see [9] for the proof of the lemma).

Lemma 1. Let D be a fixed deterministic distinguisher and V = GoodT � BadT
(disjoint union) be some partition of the set of all attainable transcripts. Suppose
there exists εratio ≥ 0 such that for any τ ′ ∈ GoodT,

Pr[Xre = τ ′]
Pr[Xid = τ ′]

≥ 1 − εratio,

and there exists εbad ≥ 0 such that Pr[Xid ∈ BadT] ≤ εbad. Then, Adv(D) ≤
εratio + εbad.

The remaining of the proof of Theorem 1 is structured as follows: in Sect. 4.1 we
define bad transcripts and upper bound their probability in the ideal world; in
Sect. 4.2, we analyze good transcripts and prove that they are almost as likely
in the real and the ideal world. Theorem 1 then follows easily by combining
Lemma 1, Eqs. (6) and (7) above, and Lemmas 2 and 3 proven below.
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4.1 Definition and Probability of Bad Transcripts

We begin with defining the bad transcripts and bound their probability in the
ideal world. We denote ̂Mi as M i

2‖ . . . ‖M i
li

and ̂Ci as Ci
2‖ . . . ‖Ci

li
. We recall that

for a transcript τ ′ = (τ,Kh, L), we denote Xi = HKh
(̂Mi) ⊕ M i

1 ⊕ H1,i, Yi =
HKh

( ̂Ci) ⊕ Ci
1 ⊕ H1,i and IV i

a = Xi ⊕ Yi ⊕ 〈a〉, where H′
L(Ti) = (H1,i,H2,i).

Definition 2. An attainable transcript τ ′ = (τ,Kh, L) is said to be a bad tran-
script if one of the following conditions are met

(B.1) if there exists two queries (Ti,Mi, Ci), (Tj ,Mj , Cj) such that (a) H2,i =
H2,j and Xi = Xj or (b) H2,i = H2,j and Yi = Yj

(B.2) if there exists two queries (Ti,Mi, Ci) and (Tj ,Mj , Cj) such that H2,i =
H2,j and IV i

a = IV j
b for a ∈ [li] and b ∈ [lj ].

(B.3) if there exists distinct two queries (Ti,Mi, Ci) and (Tj ,Mj , Cj) such
that H2,i = H2,j and M i

a ⊕ Ci
a = M j

b ⊕ Cj
b for a ∈ [li] and b ∈ [lj ].

(B.4) if there exists two queries (Ti,Mi, Ci) and (Tj ,Mj , Cj) such that H2,i =
H2,j and Xi = IV j

a for a ∈ [lj ].
(B.5) if there exists two queries (Ti,Mi, Ci) and (Tj ,Mj , Cj) such that H2,i =
H2,j and Yi = M j

a ⊕ Cj
a for a ∈ [lj ].

Note that in the ideal world, Xi and Yi’s are determined through the sampled
random dummy hash key (Kh, L).

The underlying principle for identifying the bad events is that

if hash of two tweak value happens to collide in two different invocations of the
cipher, then the block cipher input and output must not collide.

Let BadT denotes the set of all attainable transcripts τ ′ such that it satisfies
either of the above conditions and the event B denotes B := B.1 ∨ B.2 ∨ B.3 ∨
B.4∨B.5. We bound the probability of the event B in the ideal world as follows:

Lemma 2. Let Xid and BadT be defined as above. Then we have,

Pr[Xid ∈ BadT] ≤ εbad = 2(μ − 1)(qε + σ/2n) + q2δ + 2qσδau/2n

+2max{q�(μ − 1)/2n + qσδau/2n, σε1}.

Proof. We let Θi denote the set of attainable transcripts satisfying only (B.i)
condition. Recall that, in the ideal world, the pair of hash keys (Kh, L) is drawn
uniformly and independently from the query transcript. Moreover, Kh is drawn
independent of L. We are going to consider every conditions in turn.

Condition B.1. We first fix two distinct queries (Ti,Mi, Ci) and (Tj ,Mj , Cj).
Now, we compute the following probability over the random draw of the hash
keys L and Kh.

Pr[H2,i = H2,j ,Xi = Xj ]. (8)

We can write Eq. (8) as the joint probability of the following two events:

H2,i = H2,j , HKh
(̂Mi) ⊕ M i

1 ⊕ H1,i = HKh
(̂Mj) ⊕ M j

1 ⊕ H1,j .
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– Case (a): if Ti = Tj , then (H1,i,H2,i) = (H1,j ,H2,j). Therefore, the above
probability is bounded by ε, the AXU probability of H, as we assume the
adversary is non-trivial. The number of choices of i is q and j is μ − 1 and
thus the overall probability becomes q(μ − 1)ε.

– Case (b): if Ti �= Tj , then by conditioning the hash key Kh, the above
probability is bounded by δ, the partial almost xor universal probability of
the hash function H′. In this case, number of choices of (i, j) is

(

q
2

)

and thus
the overall probability becomes

(

q
2

)

δ.

As a result, we have the following

Pr[H2,i = H2,j ,Xi = Xj ] ≤ q(μ − 1)ε +
(

q

2

)

δ. (9)

By doing the exact similar analysis, the probability over the random draw of the
pair of hash keys (Kh, L),

Pr[H2,i = H2,j , Yi = Yj ] ≤ q(μ − 1)ε +
(

q

2

)

δ. (10)

By summing Eqs. (9) and (10), the overall probability becomes

Pr[Xid ∈ Θ1] ≤ 2(μ − 1)qε + q2δ. (11)

Condition B.2. We fix two distinct queries (Ti,Mi, Ci) and (Tj ,Mj , Cj) and
consider the joint probability of H2,i = H2,j and IV i

a = IV j
b . Note that,

IV i
a = HKh

(̂Mi) ⊕ HKh
( ̂Ci) ⊕ M i

1 ⊕ Ci
1 ⊕ 〈a〉. (12)

IV b
j = HKh

(̂Mj) ⊕ HKh
( ̂Cj) ⊕ M j

1 ⊕ Cj
1 ⊕ 〈b〉. (13)

Without loss of generality we assume that i < j. Now, for a fixed choice of
a ∈ [li] and b ∈ [lj ] and by fixing the hash key Kh, the probability over the
random draw of Cj

1 (if j-th query is an encryption query) or the random draw
of M j

i (if j-th query is a decryption query) that (12) = (13) is at most 2−n. We
have the following two cases:

– Case (a): if Ti = Tj , then the probability that H2,i = H2,j is one. In this
case, number of choices of (i, a) is at most σ and the number of choices of j
is at most μ − 1. Note that, the choices of b is only 1 as for fixed values of
IV i

a , IV j
b and a that satisfies IV i

a ⊕ IV j
b = 〈a〉 ⊕ 〈b〉, value of b is uniquely

determined. Summing over every possible choices of (i, a, j, b), we get

Pr[Xid ∈ Θ2] ≤ σ(μ − 1)/2n. (14)

– Case (b): if Ti �= Tj , then the probability that H2,i = H2,j is at most
δau, which follows from the almost universal property of H′[2]. As before, the
number of choices of (i, a) is at most σ and the number of choices of j is at
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most q. Moreover, as argued before, there is a unique choice of b for a fixed
values of IV i

a , IV j
b and a that satisfies IV i

a ⊕ IV j
b = 〈a〉 ⊕ 〈b〉. Summing over

every possible choices of (i, a, j, b), we get

Pr[Xid ∈ Θ2] ≤ qσδau/2n. (15)

By summing Eqs. (14) and (15), we have the following:

Pr[Xid ∈ Θ2] ≤ σ(μ − 1)/2n + qσδau/2n. (16)

Note that, when i = j, then we cannot have IV i
a = IV j

b for a �= b and hence in
that case the probability will become 0.

Condition B.3. Analysis of this condition is exactly similar to that of condition
B.2 and therefore, we have

Pr[Xid ∈ Θ3] ≤ σ(μ − 1)/2n + qσδau/2n. (17)

Condition B.4. We first fix two distinct queries (Ti,Mi, Ci), (Tj ,Mj , Cj) and
compute the following:

Pr[H2,i = H2,j ,Xi = IV j
a ].

For a fixed index a ∈ [lj ], we compute the probability of Xi = IV j
a . Recall that,

Xi = HKh
(̂Mi) ⊕ M i

1 ⊕ H1,i. Therefore, the probability of Xi = IV j
a is nothing

but to calculate the probability of the event that

HKh
(̂Mi) ⊕ HKh

(̂Mj) ⊕ HKh
( ̂Cj) = M i

1 ⊕ M j
1 ⊕ Cj

1 ⊕ H1,i ⊕ 〈a〉. (18)

Without loss of generality we assume that i < j. If the j-th query is an encryption
query, then Cj

1 is random and hence over the random draw of Cj
1 , the probability

of Eq. (18) is 2−n. Similarly, if the j-th query is a decryption query, then M j
1 is

random and hence over the random draw of M j
1 , the probability of Eq. (18) is

2−n. We have the following two cases:

– Case (a): if Ti = Tj , then the probability that H2,i = H2,j is one. In this
case, the number of choices of i is q and (j, a) is at most (μ − 1)�. Therefore,
by summing over every possible choices of (i, j, a), we get

Pr[Xid ∈ Θ4] ≤ q�(μ − 1)/2n. (19)

– Case (b): if Ti �= Tj , then the probability that H2,i = H2,j is at most δau,
which follows from the almost universal property of H′[2]. Here, the number
of choices of (j, a) is at most σ and the number of choices of i is at most q.
Summing over every possible choices of (i, j, a), we get

Pr[Xid ∈ Θ4] ≤ qσδau/2n. (20)
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By summing Eqs. (19) and (20), we obtain

Pr[Xid ∈ Θ4] ≤ q�(μ − 1)/2n + qσδau/2n. (21)

When i = j, then calculating the joint probability of H2,i = H2,j ,Xi = IV j
a is

nothing but to calculate the probability of the event that

HKh
( ̂Ci) = Ci

1 ⊕ H1,i ⊕ 〈a〉. (22)

Note that, when i = j, then the probability of H2,i = H2,j is one. Now, for a
fixed i ∈ [q] and a ∈ [li], over the random draw the hash key Kh, the probability
of the above event is bounded by ε1 due to the almost regular property of the
hash function. Now, summing over all possible choices of (i, a) we get

Pr[Xid ∈ Θ4] ≤ σε1. (23)

Therefore, from Eqs. (21) and (23) we have

Pr[Xid ∈ Θ4] ≤ max{q�(μ − 1)/2n + qσδau/2n, σε1}. (24)

Condition B.5. Analysis of this condition is exactly similar to that of condition
B.4. Therefore, we have

Pr[Xid ∈ Θ5] ≤ max{q�(μ − 1)/2n + qσδau/2n, σε1}. (25)

The result follows by the union bound of these conditions in Eqs. (11), (16),
(17), (24) and (25).

4.2 Analysis of Good Transcripts

In this section, we show that for a good transcript τ ′, realizing τ ′ is almost as
likely in the real and the ideal world. Formally, we prove the following lemma.

Lemma 3. Let τ ′ = (τ,Kh, L) be a good transcript. Then

pre(τ ′)
pid(τ ′)

:=
Pr[Xre = τ ′]
Pr[Xid = τ ′]

≥ 1.

Proof. Let τ ′ = (τ,Kh, L) ∈ GoodT and let τ = ((T1,M1, C1), . . . , (Tq,Mq,
Cq)). Now, we define an equivalence relation ∼τ over τ such that two elements
of τ are related through ∼τ , i.e., (Ti,Mi, Ci) ∼τ (Tj ,Mj , Cj), if and only if
H′

L(Ti)[2] = H′
L(Tj)[2]. This equivalence relation induces a partition over τ and

let P1,P2, . . . ,Pr be r many partitions of τ where |Pi| = qi, called the multiplic-
ity of the hash value of the tweak Ti. Therefore, we have q1 + q2 + . . . + qr = q.
Now, we consider any i-th partition Pi for i = 1, . . . , r. Note that, Pi is of the
form:

Pi = ((Tx1 ,Mx1 , Cx1), . . . , (Txqi
,Mxqi

, Cxqi
)),
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where H′
L(Tx1)[2] = H′

L(Tx2)[2] = . . . = H′
L(Txqi

)[2]. We say two elements
(Tx,Mx, Cx) and (Ty,My, Cy) of Pi are related through an equivalence rela-
tion ∼� if and only if |Mx| = |My| and hence |Cx| = |Cy|. Therefore, ∼� induces
another vi many inner partitions C1, C2, . . . , Cvi of Pi such that

c1 + c2 + . . . + cvi = qi,

where cj = |Cj | denotes the number of elements in the j-th partition Cj . More-
over, for the simplicity of the analysis, we assume that the length of each queried
message is a multiple of n.

Ideal Interpolation Probability. To compute the ideal interpolation prob-
ability for the fixed transcript τ ′ = (τ,Kh, L), we first consider any partition Pi

in which qi many hash values of the tweaks attain the same value. Now, let us
consider the j-th inner partition Cj of Pi for which we have cj many (M,C) pairs
having the same length nlj . Therefore, for Cj , the probability becomes 1/(2nlj )cj .
Similarly, for other inner partition Cj′ of Pi in which cj′ many (M,C) pairs hav-
ing the same length nlj′ , the probability becomes 1/(2nlj′ )cj′ . Thus, for a fixed
partition Pi, the probability becomes

vi
∏

j=1

1
(2nlj )cj

.

Since, we have r many such partitions, the overall probability becomes
r

∏

i=1

vi
∏

j=1

1
(2nlj )cj

.

By summarizing the above, we have

Pr[Xid = τ ′] =
1

|Kh|
1

|L| ·
r

∏

i=1

vi
∏

j=1

1
(2nlj )cj

, (26)

where nlj is the length of every message in partition Cj .

Real Interpolation Probability. To compute the real interpolation proba-
bility for the fixed good transcript τ ′ = (τ,Kh, L), we first consider several lists
created from τ :

LA = ((H2,1,X1, Y1), (H2,2,X2, Y2), . . . , (H2,q,Xq, Yq)),

where Xi = M i
1 ⊕HKh

(M̂i)⊕H1,i and Yi = Ci
1 ⊕HKh

(Ĉi)⊕H1,i. Moreover, we
also create q many different lists from τ as follows:

L1 = ((H2,1, IV 1
1 , Z1

1 ), (H2,1, IV 1
2 , Z1

2 ), . . . , (H2,1, IV 1
l1−1, Z

1
l1−1))

L2 = ((H2,2, IV 2
1 , Z2

1 ), (H2,2, IV 2
2 , Z2

2 ), . . . , (H2,2, IV 2
l2−1, Z

2
l2−1))

...
...

...
...

Lq = ((H2,q, IV q
1 , Zq

1), (H2,q, IV q
2 , Zq

2), . . . , (H2,q, IV q
lq−1, Z

q
lq−1)),
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where IV i
k = Xi ⊕ Yi ⊕ 〈k〉 and Zi

k = M i
k+1 ⊕ Ci

k+1. Now, we consider any
partition Pi, in which qi many hash values of the tweaks (i.e., H2,i) attain the
same value. This implies that qi many elements from the list LA i.e.

((H2,k1 ,Xk1 , Yk1), . . . , (H2,kqi
,Xkqi

, Ykqi
))

will have the same tweak value, but all the Xk1 ,Xk2 , . . . , XKqi
values are distinct.

Similarly, all the Yk1 , Yk2 , . . . , YKqi
values are distinct, otherwise condition B.1

would have been satisfied. Moreover, qi many lists from L1, . . . ,Lq will also have
the same tweak value i.e., H2,k1 = H2,k2 = . . . = H2,kqi

in

Lk1 = ((H2,k1 , IV k1
1 , Zk1

1 ), (H2,k1 , IV k1
2 , Zk1

2 ), . . . , (H2,k1 , IV k1
lk1−1, Z

k1
lk1−1))

Lk2 = ((H2,k2 , IV k2
1 , Zk2

1 ), (H2,k2 , IV k2
2 , Zk2

2 ), . . . , (H2,k2 , IV k2
lk2−1, Z

k2
lk2−1))

...
...

...
...

Lkqi
= ((H2,kqi

, IV
kqi
1 , Z

kqi
1 ), (H2,kqi

, IV
kqi
2 , Z

kqi
2 ), . . . , (H2,kqi

, IV
kqi

lkqi
−1, Z

kqi

lkqi
−1))

As τ ′ is a good transcript, it is evident that IV α
β �= IV α′

β′ where α, α′ ∈
{k1, . . . , kqi

} and β ∈ [lα − 1], β′ ∈ [lα′ − 1] otherwerise condition B.2 would
have been satisfied. Similarly, as τ ′ is a good transcript, we have Zα

β �= Zα′
β′

otherwise condition B.3 would have been satisfied. Moreover, due to condition
B.4 and B.5, we also have IV α

β �= Xα′ and Zα
β �= Yα′ . This immediately gives us

the probability for any such fixed partition Pi is

1
(2n)qi+(lk1−1)+(lk2−1)+...+(lkqi

−1)
=

1
(2n)lk1+lk2+...+lkqi

.

Now, let us consider the j-th inner partition Cj of Pi for which we have cj

many (M,C) pairs having the same message length nlj . Therefore, for the fixed
partition Pi, the eventual probability will be 1/(2n)qi+θ, where θ = c1(l1 − 1) +
c2(l2 − 1) + . . . + cvi(lvi − 1). Summarizing above, we have

Pr[Xre = τ ′] =
1

|Kh| · 1
|L| ·

r
∏

i=1

1
(2n)qi+θ

=
1

|Kh| · 1
|L| ·

r
∏

i=1

1
(2n)c1l1+c2l2+...+cvi

li

(27)

Compute The Ratio. Finally, by taking the ratio of Eqs. (27) to (26), we have

Pr[Xre = τ ′]
Pr[Xid = τ ′]

=
r

∏

i=1

vi
∏

j=1

(2nlj )cj

(2n)c1l1+c2l2+...+cvi
li

=
r

∏

i=1

(2nl1)c1 · (2nl2)c2 · · · (2nlvi )cvi

(2n)c1l1+c2l2+...+cvi
li

︸ ︷︷ ︸

(R)

The following proposition shows that for any i = 1, . . . , r, R ≥ 1 and hence the
result follows. ��
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Proposition 1. For positive integers c1, . . . , ct and l1, . . . , lt such that
t

∑

i=1

cili ≤
2n, we have,

(2n)c1l1+c2l2+...+ctlt ≤
t

∏

j=1

(2nlj )cj .

Proof of the result is trivial and hence omitted.

Corollary of Theorem 1. When the input tweak size of the construction
matches with the tweak size of the tweakable block cipher, then we can evade the
hash function evaluation for processing tweaks. As a result, we directly feed the
tweak of the construction to the tweakable block cipher and the security bound
of the resulting construction is obtained as a simple corollary of Theorem 1. For
an m-bit tweak T , we define the hash function H′

L(T ) as H′
L(T ) = (0n, T ). Note

that, for this partial almost xor universal hash function, δ = 0 and δau = 0.
Therefore, following Theorem 1, the information theoretic security bound of
tweakable HCTR∗ for m-bit tweak becomes

AdvTSPRP
˜HCTR

∗
[˜Π,H,H′]

(A) ≤ 2(μ − 1)(qε + σ/2n) + 2max{q�(μ − 1)/2n, σε1}.

When all the tweaks in the encryption and decryption queries are distinct (i.e.,

μ = 1), then by assuming ε, ε1 ≈ 2−n, ˜HCTR
∗

is secured roughly upto 2n many
message blocks.

5 Conclusion

HCTR is one of the most efficient TES candidates which turns an n-bit block
cipher into a variable length TBC. In this paper, we have proposed tweakable
HCTR, that turns an (m,n)-bit TBC into a variable length TBC, allowing to
process arbitrary large tweaks, and proven its optimal security (in terms of the
block size) for the case of distinct tweak. Moreover, we have shown that the
construction gives a graceful security degradation with the maximum number
of repetitions of tweak. It is evident that one can make the HCTR mode BBB
secure by just doubling the size of all its primitives. Nevertheless, designing a
double block sprp is not trivial. For example, 5 round Feistel construction [18]
provides 2n security against all adaptive chosen plaintext and chosen ciphertext
adversaries. Thus, designing an efficient TES based on an n-bit block cipher with
beyond the birthday bound security still remains an interesting open problem.
However, following [17], analysis of multi-key security of HCTR will be similar
to the analysis of ours.
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Abstract. Authenticated Encryption (AE) achieves confidentiality and
authenticity, the two most fundamental goals of cryptography, in a sin-
gle scheme. A common strategy to obtain AE is to combine a Message
Authentication Code (MAC) and an encryption scheme, either nonce-
based or iv-based. Out of the 180 possible combinations, Namprempre
et al. [20] proved that 12 were secure, 164 insecure and 4 were left unre-
solved: A10, A11 and A12 which use an iv-based encryption scheme
and N4 which uses a nonce-based one. The question of the security of
these composition modes is particularly intriguing as N4, A11, and A12
are more efficient than the 12 composition modes that are known to be
provably secure.

We prove that: (i) N4 is not secure in general, (ii) A10, A11 and A12
have equivalent security, (iii) A10, A11, A12 and N4 are secure if the
underlying encryption scheme is either misuse-resistant or “message mal-
leable”, a property that is satisfied by many classical encryption modes,
(iv) A10, A11 and A12 are insecure if the underlying encryption scheme
is stateful or untidy. All the results are quantitative.

1 Introduction

Authenticated Encryption and Generic Composition. From its start, the goal of
cryptography is to prevent that anyone but the intended receiver can read a
message (privacy) and that anyone can send a message impersonating someone
else (authenticity). In order to answer this privacy (resp. authenticity) require-
ment, encryption schemes (resp. Message Authentication Codes (MACs)) were
designed independently. When there is a need for both privacy and authenticity,
Authenticated Encryption (AE) can be used [5,6,15,17]. Moreover, AE may be
used to authenticate associated data (AD), which are data attached to a message
which do not need to be private, but do need to be authenticated (e.g., message
header [25]). We suppose that both the sender and the receiver share the same
private key (symmetric scenario).

There are two possible ways to create an AE scheme: the first is to design
it from scratch, using a single key, and the second is to combine an Encryp-
tion scheme with a MAC. Examples of the first path are AES-GCM [12], AES-
CCM [19], CHACHA20 POLY305 [21] (used in TLS 1.3 [13]), SCT [24] and the
c© Springer Nature Switzerland AG 2018
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CAESAR candidates [7]. When following the second path, the problem is to
decide how to compose the ingredients. This problem is called generic compo-
sition and was introduced and studied first by Bellare and Namprempre [5].
They and Krawczyk proved the well-known result that Encrypt-then-MAC is
secure [6,17]. Namprempre et al. have made a deeper analysis [20], which consid-
ered in detail the assumptions on the Encryption scheme, whether it is iv-based
(ivE [with the iv randomly picked]) or nonce-based (nE [with the nonce n never
repeated]) and assumed that the MACs are PRFs. Out of all the possible com-
position modes, 12 (9 with ivE, 3 with nE) were proved to be secure, 164 to be
insecure and 4 were unresolved: N4 which uses a nE and A10, A11, A12 which
use an ivE. These four modes, which are depicted in Fig. 1, are based on the
Tag-then-Encrypt paradigm: given a nonce n, an associated data a and a mes-
sage m, the resulting AEs simply output c = Encn

kE
(m‖τ) or c = Enciv

kE
(m‖τ)

for some n/iv, where τ is the tag provided by the MAC, and is computed either
as MackM

(a,m) or as MackM
(m) depending on the mode. When an ivE scheme

is used, the iv is computed using a PRF MAC that takes as input either n or
(n, a). Interestingly three of these modes (N4, A11 and A12) use the n, a and m

only once in total during both the computation of iv (MacIVkM
) and τ (MacTagkM

),
which makes them the most efficient among all Tag-then-Encrypt schemes. In
this paper, we investigate the security of these four composition modes, focusing
on ciphertext integrity, as Namprempre et al. already established the expected
confidentiality guarantees.

Fig. 1. The four modes A10, A11, A12, and N4.

Our Contribution. Our investigation gives several new results.
First, the mode N4 does not guarantee ciphertext integrity in general, and we

offer a counterexample. The idea of this counterexample is to carefully inject a
kind of Trojanin the nE encryption scheme, which can only be activated during
the decryption queries using well-crafted ciphertext. The Trojan is triggered
through the nonce and a block of the message.

Second, we show that A10, A11 and A12 have equivalent security, by offering
security reductions between these three modes. Different techniques are used in
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these reductions, which are based on the uniqueness of the nonce and, in other
cases, recrafting these nonces.

Third, we push our analysis further, by investigating the security of these
3 modes by making some additional hypothesis on the ivE scheme. We found
that these modes are secure if the ivE scheme is either misuse-resistant (that
is, repeated nonces can only lead to repeated ciphertexts without further secu-
rity degradation) or “message-malleable” (that is, given a triple (iv,m, c) with
c = Enciv(m), it is possible to compute correctly every other triple (iv,m′, c′)
with c′ = Enciv(m′) [resp. m′ = Deciv(c′)] for the same iv from m′ [resp. c′]).
Many common schemes, like CTR and OFB [14], CHACHA20 [21] or any other
stream ciphers, are “message-malleable”, thus we have proved that the three
composition modes are secure if implemented with these encryption schemes.
This is another evidence of the “generic composition’s sensitivity to definitional
and algorithmic adjustments” [20]. While the proof for misuse-resistant ivE-
schemes is relatively straightforward, the proof for “message-malleable” ivE is
more interesting as it uses a reduction of a INT-CTXT (ciphertext integrity)
adversary to a CPA (Chosen Plaintext Attack) adversary and not only to the
properties of the MAC schemes. Interestingly, the N4 mode also becomes secure
when the same extra requirements are made for the nE encryption scheme. With
respect to the Namprempre et al. [20], we have still to use an additional hypoth-
esis (they used Knowledge of Tag [KoT]), but ours are much easier to prove
although they are less general.

Fourth, we find two insecure variants for all three modes, one if the ivE
encryption scheme is not tidy, the other if it is stateful. Although Namprempre
et al. [20] already used tidiness in security proofs, our ivE scheme correctly
encrypts the tag and it decrypts in the “natural” way. Thus, our analysis
supports the idea that tidiness is also a security property (already present in
Namprempre et al. [20] and in Paterson et al. [23], with respect to CRD).
Concerning the attack using a secure stateful scheme (AE stateful schemes
were defined by Bellare et al. [3] and their security redefined by Rogaway and
Zhang [28]), the idea is to use the state in order to emulate the trojan approach
that was used in our attack against mode N4. Namprempre et al. considered only
stateless schemes, but it is interesting to see how the security of a mode may
depend on the fact of being stateful or stateless. Moreover, stateful AE schemes
are an interesting subject of studies [4,11,16,23].

There is an extended version of this paper [9] containing a more detailed
background and all the proofs.

Structure of the Paper. We give a section introducing all the notions we need
(Sect. 2); after that we present the four modes N4, A10, A11 and A12 which
we investigate (Sect. 3). Then, we show the proof that mode N4 is not secure
(Sect. 4) and the security relations among modes A10, A11 and A12 (Sect. 5).
After that, we prove that these modes are secure if we add some hypothesis on
the ivE scheme (Sect. 6) and we end analyzing our insecure variants of modes
A10, A11, and A12 (Sect. 7).
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2 Background

2.1 Notations

We use finite binary strings. The length of the string x is denoted by |x| and
the concatenation of the strings x and y is denoted by x‖y. The set of all finite
strings is denoted by {0, 1}∗. We denote the set of all n-bit strings as {0, 1}n and
the set of strings of at most n bits as {0, 1}≤n. Given a string x = (x1, x2, ..., xl)
of l bits, we denote with πt(x) the string (x1, ..., xT ) where T = min(|x|, t).

We reserve calligraphic notation for sets. In particular we denote with K,N ,
IV,A, M, T W, T , X and C respectively the key space, nonce space, iv-space,
associated data space, message space, tweak space, tag space, input space of the
MAC and the ciphertext space. We suppose that M = A = {0, 1}∗, that is, these
spaces contain all the finite binary strings. We suppose that C ⊆ {0, 1}∗.

Given the set Y, we write y ← Y to denote the uniformly random selection
of y in Y.

We reserve sans serif (Alg) notations for algorithms. If the algorithm Alg is
probabilistic, we can think of its output as a distribution. We denote with a ←
Alg(b, c, d) the fact that we sample from the distribution induced by algorithm
Alg on inputs (b, c, d), and we obtain a. We may write part of the arguments of the
algorithm as subscripts or superscripts, that is, Algc

b(d) = Algb(c, d) = Alg(b, c, d).
A (q, t)-adversary A is a probabilistic algorithm which can make at most q

queries to the oracle(s) he is granted access to, and runs in time bounded by t.
Let algorithm Alg be an algorithm whose inputs are in S1 × · · · × Sn and

whose output is in Y. We say that algorithm Alg does not reveal, via the length
of its output, any information about its inputs apart from their lengths if there
exists a deterministic function f : N

n �−→ N s.t. |y| = f(|s1|, ..., |sn|) for all
possible inputs (s1, ..., sn). We assume that all the Enc and AEnc algorithms we
use have this property.

Given a game, where the adversary A is allowed to query many oracles, we
use a single counter for all the queries made by adversary A, during the game.
The oracle ⊥(·, ·) always answers ⊥. When an adversary is playing a game where
he has access either to an oracle implemented with algorithm Alg(·, ·) or the
oracle $(·, ·) it means that the oracle $(·, ·) answers a random bit string of length
|Alg(·, ·)|. Moreover, it keeps in memory the answers it gives.

We denote with ci ← O(ai, bi) the output ci of the i-th query on oracle O
with input (ai, bi). Usually we use only one counter for all the queries, that is
the i query can be to oracle Oj and the i+1th to oracle Ol where oracle Oj and
Ol are among the oracles the adversary is granted access. It can be that that the
two oracle are the same, that is Oj = Ol.

We write Pr[B;A1, A2, ...] for the probability of event B after the experiment
described by steps A1, A2, ... .

In the rest of this section we provide many standard definitions. The expert
reader may skip all this section, except Definition 4, which is non-standard.
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2.2 Pseudorandom Functions (PRF)

We now define the PRF-security notion, the base of many cryptographic
primitives:

Definition 1. A function F : K×M �−→ T is a (q, t, ε)-pseudorandom function
(PRF) if for every (q, t) adversary A, the advantage:

AdvPRF
F (A) := |Pr[AFk(·) ⇒ 1 ]−Pr[Af(·) ⇒ 1 ]|

is upper bounded by ε where k and f are chosen uniformly at random from their
domains, namely K and the set of functions from M to T , FUNC(M, T ).

In a similar way, F is a pseudorandom permutation (PRP) if Fk is a per-
mutation and the above advantage is ε bounded when f is selected as a random
permutation.

We remind that a PRP is a PRF (see Proposition 3.27 [14]).
In some of our constructions, we will also use tweakable pseudorandom per-

mutations [18]. They are PRPs with an additional input, the tweak: E : K ×
T W ×M �−→ T , and their security advantage is then defined as AdvTPRP

E (A) :=
AdvPRF

F (A) where F(k, (tw,m)) := E(k, tw,m) and for any choice of k and
tw Ek(tw, ·) is a permutation.

2.3 Nonce-Based Authenticated Encryption (nAE) and Encryption
(nE and ivE) Schemes

For the syntax of encryption schemes we follow the approach of Namprempre
et al. [20] (taken by the work of Rogaway [26]) where the encryption algorithm
is deterministic and an “initialization vector” (IV) iv is surfaced (and it may be
seen as part of the AD [27]). Using this approach we classify encryption schemes
according to the requirements of this extra input to provide CPA-security.

Definition 2 ([20]). A scheme for nonce-based authenticated encryption
(nAE) is a triple Π := (K,AEnc,ADec), where the keyspace K is a nonempty set,
the encryption algorithm AEnc is a deterministic algorithm which takes as input
the tuple (k, n, a,m) ∈ K × N × A × M and outputs a string c ← AEncn,a

k (m)
called ciphertext.

The decryption algorithm ADec is a deterministic algorithm which takes as
input the tuple (k, n, a, c) ∈ K × N × A × C and outputs m ← ADecn,a

k (c) which
is either a string m ∈ M or the symbol ⊥ (“invalid”).

We require that the algorithms AEnc and ADec are the inverse of each other,
that is:

– (Correctness) if AEncn,a
k (m) = c then ADecn,a

k (c) = m
– (Tidiness) if ADecn,a

k (c) = m 
=⊥ then AEncn,a
k (m) = c

If ADecn,a
k (c) =⊥ we say that the algorithm rejects c, otherwise it accepts c.

A sloppy nAE scheme satisfies everything but the tidiness condition.
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A nonce-based Encryption scheme (nE) is a triple Π = (K,Enc,Dec), where
Enc and Dec do not take input the AD, that is, Enc : K × N × M �−→ C and
Dec : K × N × C �−→ M.

An iv-based encryption scheme ivE is syntactically equivalent to a nE scheme,
with the only difference that the nonce space N is replaced with an IV space IV.

Tidiness, as correctness, is usually seen as a syntactic requirement (for exam-
ple Namprempre et al. [20]). Instead, in this paper, we show an explicit case
where this property is fundamental to provide security (see Sect. 7.1).

Paterson et al. [23] defined the “collision-resistant decryption” (CRD), which
is a security property. Tidy schemes are inherently CRD-secure, since there is one
and only valid ciphertext for each input, but the converse is not valid (because
CRD-security is obtained when adversaries are able to break it with negligible
probability, while tidiness always works).

The difference between nE schemes and ivE schemes lies in their security
requirements. A complete survey about nAE, nE and ivE schemes can be found
in the extended version.

2.4 Security for nAE, nE and ivE Schemes

The security definitions for nAE, nE and ivE schemes are inspired from those
in [20,27].

Definition 3. A nonce-based authenticated encryption scheme (nAE)Π :=
(K, AEnc, ADec) is (q, t, ε)-nAE-secure if the advantage

AdvnAEΠ (A) :=
∣
∣
∣Pr

[

AAEnck(·,·,·),ADeck(·,·,·) ⇒ 1
]

− Pr
[

A$(·,·,·),⊥(·,·,·) ⇒ 1
]∣
∣
∣ (1)

is bounded by ε for every (q, t)-adversary A that respects the following two con-
ditions: (i) If A queried the first (encryption) oracle on input (n, a,m) and was
answered c, then he is not allowed to query the second (decryption) oracle on
input (n, a, c). (ii) A is not allowed to repeat the first component (the nonce) on
different left oracle queries.

Π is (q, t, ε)-nAE-E secure, if the advantage

AdvnAE-EΠ (A) :=
∣
∣
∣Pr

[

AAEnck(·,·,·) ⇒ 1
]

− Pr
[

A$(·,·,·) ⇒ 1
]∣
∣
∣ (2)

is bounded by ε for every (q, t)-adversary A that respects Condition (ii) above.
A nonce-based encryption scheme (nE)Π := (K,Enc,Dec) is (q, t, ε)-nE-

secure if the advantage,

AdvnEΠ (A) :=
∣
∣
∣Pr

[

AEnck(·,·) ⇒ 1
]

− Pr
[

A$(·,·) ⇒ 1
]∣
∣
∣ (3)

is bounded by ε for every (q, t)-adversary A that respects Condition (ii) above.
An iv-based encryption scheme ivEΠ := (K,Enc,Dec) is (q, t, ε)-ivE-secure if

the advantage

AdvivEΠ (A) :=
∣
∣
∣Pr

[

AEnc$k(·) ⇒ 1
]

− Pr
[

A$(·) ⇒ 1
]∣
∣
∣ (4)
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is bounded by ε for every (q, t)-adversary. Here the oracle Enc$(m) picks a ran-
dom iv ← IV, then computes c ← Enck(iv,m) and returns (iv, c).

As a result of this definition, the only difference between ivE and nE security
is the requirement on their auxiliary input: non-repeating nonces for nE and ran-
dom ivs for ivE. We observe that ivE-security implies nE security when uniformly
random ivs are expected to differ with overwhelming probability. The contrary
does not hold: the CTR mode is well-known illustration (details are provided in
the extended version).

In some cases, it is desirable to guarantee some security even if nonces are
repeated: this is called resistance to nonce misuse, or simply misuse resistance.

Definition 4. If we drop Condition (ii) on the non repetition of the nonces in
the nE security definitions, then we augment the security notions with misuse
resistance. Namely, we say that the nE scheme is (q, t, ε)-mrE secure.

We point out that in the mrE definition the adversary has only access to an
encryption oracle, differently from the standard misuse resistance for authenti-
cated encryption mrAE [27]. An example of an nE scheme which is mrE and not
mrAE is given in the extended version as well as many examples [8,24].

The mrE definition is trivially extended to ivE schemes, since the syntax of
nE schemes and ivE schemes is identical.

2.5 Chosen-Plaintext Attack Security with Chosen Nonce

We define mCPA security for nE and ivE schemes, following the left-or-right
definition of Bellare et al. [2], but adapted to the nonce-based setting. This
definition is a multi-challenge definition, contrary to the common single-challenge
variant [14]. The two versions of the definition are asymptotically equivalent, but
come with a difference of a linear factor when quantitative bounds are used, as
we do here.

Definition 5. A nonce-based Encryption scheme nEΠ = (K,Enc,Dec) is
(q, t, ε)-mCPA secure, or (q, t, ε)-secure against chosen plaintext attacks for mul-
tiple encryptions, if:

AdvmCPA
Π (A) :=

∣
∣
∣
∣

1
2

− Pr
[

b′ = b; b ← {0, 1}, b′ ← AEncbk(·,·,·)
]
∣
∣
∣
∣

is bounded by ε for any (q, t)-adversary. Here the oracle Encb
k(·, ·, ·) is an oracle,

which on input (n,m0,m1) ∈ N × M2 outputs c ← Enck(n,mb) for a random
secret bit b ← {0, 1}, which the oracle has picked at the start of the game. When
the adversary A queries Encb

k(·, ·, ·), he must choose two messages m0 and m1 s.t.
|m0| = |m1|. Moreover he cannot repeat the first input (the nonce) in different
queries.

There is a completely similar definition for ivE schemes. We only have to replace
Encb

k(·, ·, ·) with Encb,$
k (·, ·), and to adapt the $(·, ·, ·) oracle accordingly. Similarly

there is a similar notions for nAE schemes, obtained from the previous one by
replacing Enck(·, ·) with AEnck(·, ·, ·) and adapting $(·, ·, ·) accordingly.
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2.6 Authenticity (INT-CTXT)

Following Bellare et al. [5], we focus on the notion of ciphertext integrity with a
single decryption query.

Definition 6. A nonce-based authenticated encryption scheme nAEΠ = (K,
AEnc, ADec) is (q, t, ε)-INT-CTXT1 (Ciphertext integrity with only 1 decryption
query)-secure if

AdvINT-CTXT1
Π (A) := Pr

[

⊥
= m∗ ← ADeck(n∗, a∗, c∗); (n∗, a∗, c∗) ← AAEnck(·,·,·)
]

is bounded by ε for every (q, t) adversary. The adversary A is not allowed to
repeat the first component (the nonce) on different oracle queries. Moreover he
is not allowed to output (n∗, a∗, c∗) if he received c∗ as c∗ ← AEnck(n∗, a∗,m∗)
for a certain input (n∗, a∗,m∗) that he asked to the first oracle.

As we can expect, an nAE scheme that offers both mCPA and INT-CTXT1
security is an nAE scheme, (and we prove this the extended version).

2.7 Message Authentication Code (MAC)

Apart from an encryption scheme, all our composition modes are based on a
deterministic notion of Message Authentication Code (MAC).

Definition 7. A Message Authentication Code MAC is a triple Π =
(K,Mac,Vrfy) where the keyspace K is a non-empty set, the tag-generation algo-
rithm Mac is a deterministic algorithm that takes as input the couple (k,m) ∈
K×M and outputs the tag τ ← Mack(m) from the tag space T . The verification
algorithm Vrfy takes as input a triple (k,m, τ) in K × M × T and outputs �
(accept) or ⊥ (reject). We ask that Vrfy(k,m,Mac(k,m)) = �.

A string-input MAC strMAC has as input space a set of strings, that is M ⊆
{0, 1}∗.

A vector-input MAC vecMAC has as input space M which has one or more
component and it can accept tuples of strings as input.

Usually the security for MACs is expressed as unforgeability, but our compo-
sition modes rely on a Mac function that is a (q, t, εPRF) − PRF.

Definition 8 ([20]). A MACΠ = (K,Mac,Vrfy) is (q, t, ε) − PRF-secure if

AdvPRF
Π (A) := AdvPRF

Mac (B)

is bounded by ε for any (q, t) adversary B and if Vrfy(k,m,Mac(k,m)) = � iff
τ = Mac(k,m).

For completeness, the standard definitions are put in the extended version.
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3 Problem

As discussed earlier, Namprempre et al. [20] left open the problem of the nAE
security of 4 modes based on the Tag-then-Encrypt paradigm, which have been
shown in Fig. 1.

Formally, the first three modes compose an ivE scheme Π = (KE ,Enc,Dec)
and two vecMAC schemes using the same key, MACIV = (KM ,MacIV,VrfyIV) and
MACTag = (KM ,MacTag,VrfyTag) in this way:

– A10: AEncn,a
kE ,kM

(m) := c with iv = MacIVkM
(n, a), τ = MacTagkM

(a,m) and
c = EnckE

(iv,m||τ)
– A11: AEncn,a

kE ,kM
(m) := c with iv = MacIVkM

(n, a), τ = MacTagkM
(m) and c =

EnckE
(iv,m||τ)

– A12: AEncn,a
kE ,kM

(m) := c with iv = MacIVkM
(n), τ = MacTagkM

(a,m) and c =
EnckE

(iv,m||τ)

The fourth mode composes a nE Encryption scheme Π = (KE ,Enc,Dec) and a
vecMAC = MAC = (KM ,Mac,Vrfy):

– N4: AEncn,a
kE ,kM

(m) := c with τ = MacTagkM
(a,m) and c = EnckE

(n,m||τ)

For clarity we reserve bold notations m for the messages inputs of the nAE
scheme Π and normal notations m for the messages inputs to the underlying
nE (or ivE)-scheme Π (so, we typically have that m = m‖τ).

If Π is tidy and the MAC is PRF-secure, then the AE scheme Π, obtained
composing these components, is tidy. These modes also offer CPA security [20],
which directly results from the underlying encryption schemes (a quantitative
proof of this statement is available in the extended version [9]).

As a result, the open question lies in the INT-CTXT security of these modes.

4 Attack Against Mode N4

We provide here an attack against the mode N4, explicitly presenting an nAE-
scheme Π, based on an nE Encryption scheme Π = (KE ,Enc,Dec) and a
vecMACMAC = (KM ,Mac,Vrfy) which is PRF-secure. For simplicity, we con-
sider only the case when the message m of Π is λ-bit long and the tag is
λ-bit long, leaving the general case to the extended version. The nE Encryption
scheme, which encrypts 2λ-bit long message, is nE-secure and tidy, but the nAE-
scheme Π obtained composing them according to mode N4, is not secure and,
in particular, it is not INT-CTXT1-secure as we show a forgery.

The idea of the forgery is to force the tag τ of a couple (a,m) to be encrypted
identically for two different nonces, while keeping the nE-security.
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4.1 Construction

Following the definition of mode N4, an authenticated ciphertext is computed
as c = EnckE

(n,m||MackM
(a,m)), for which Mac is a PRF. We now define the

nE scheme Π.
The keys produced in Π are made of two components (k, v∗): the key k ∈ K

of a TPRP E and a random value v∗, which has the size of block of E, that
is, λ bits. This value v∗ will be leaked to Adv when asking for the encryption
of a message with the nonce n = 1, and will then be used to trigger a kind of
Trojan in the encryption scheme. That Trojan will have the following behavior:
for nonces n = 1, 2, and if the first message block is v∗, then the last ciphertext
block will be computed in a way that ignores the value of n.

This behavior is benign when considering the nE security of Π: the only way
to observe it would be to make two encryption queries with nonces 1 and 2, and
first message block v∗. But doing this would require guessing v∗ before querying
with nonce 1 (the nE adversary is nonce respecting), and this cannot be done
but with probability 2−λ: it would require guessing v∗.

As we will see, it is not benign anymore when considering the ciphertext
integrity property: there, Adv is free to use the nonces 1 and 2 in its decryption
query, even if these nonces were used in encryption queries.

To make things concrete, we define the encryption process Enc of Π using
a TPRP E : K × T W × {0, 1}λ �−→ T = {0, 1}λ with tweak space T W =
{0, 1, 2}×{0, 1}. For a message m = (m1,m2) ∈ {0, 1}2λ, the ciphertext Encn

k (m)
is made of three blocks (c0, c1, c2) computed as follows:

– c0 = E
(0,0)
k (n) unless n = 1, in which case c0 := v∗.

– c1 = m1 ⊕ E
(1,0)
k (n).

– c2 = m2 ⊕ E
(2,0)
k (n), unless the condition [(n = 1 ∨ n = 2) ∧ m1 = v∗] is met,

in which case c2 = m2 ⊕ E
(2,1)
k (0).

With such a definition, the block c0 looks random for any input, and its only
purpose is to leak v∗ when n = 1. The block c1 is a traditional encryption of the
message block m1 using the TPRP E. The block c2 is computed in the same way
(just incrementing the tweak), except under a very specific condition: the nonce
is either 1 or 2, and the first message block m1 = v∗. Under that condition,
the ciphertext block becomes independent of the nonce. As explained above,
this condition is designed in such a way that it cannot lead to any observable
event when Adv can only access an encryption oracle in a nonce respecting way:
that would require querying Enc on a message starting with v∗ on both n = 1
and n = 2, but v∗ is only learned after a query with n = 1, and it is then not
permitted to make a second query with n = 1 and v∗ as message block.

The decryption of Π works in the natural way. In particular, in order to guar-
antee the tidiness of the nE encryption scheme, Dec must verify the correctness
of the first ciphertext block c0.

The proofs that Π is nE-secure can be found in the extended version.
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4.2 Forgery

The composition of the previous nE scheme Π with a PRF-secure MAC according
to mode N4 is not INT-CTXT1-secure. In fact, we provide a forgery where the
adversary A asks the encryption of only two messages:

1. It first asks for an encryption of (1, a,m), for arbitrary choices of a and
m. This returns a ciphertext whose first block is v∗, second block is c1 =
m ⊕ E

(1,0)
k (1), and third block is ignored.

2. It then asks for an encryption of (2, a, v∗). This returns a ciphertext whose
last block is c2 = MackM

(a, v∗) ⊕ E
(2,1)
k (0).

Eventually, Adv makes a decryption query on (1, a, (v∗, c1 ⊕ m ⊕ v∗, c2)),
which is different of the two previously obtained ciphertexts, and has a valid
decryption to v∗, hence violating the ciphertext integrity property.

This shows that N4 is not a secure composition mode, in general.

Ciphertext Extension. We observe that the encryption scheme we use to break N4
uses the ciphertext expansion, that is the ciphertext is bigger than the plaintext
(i.e. |c| < |m| with c = Enck(m)). It is left the question whether if the encryption
scheme does not have the ciphertext expansion, scheme N4 is secure.

5 Security Relations Among A10, A11 and A12

While we are able to prove the generic insecurity of N4, we are not able to prove
that modes A10, A11 and A12 are either secure or insecure in general. Still, in
this section, we prove that these three modes are either all secure or all insecure.

To prove it we need to replace the two vecMACs vecMACIV and vecMACTag

with two vecMACs based on the random functions f IV and fTag. Now the key of
the new nAE scheme is k := (kE , f IV, fTag). To highlight these changes, we call
the new modes A10,A11 and A12 and the new nAE-schemes Π. The security
relations among modes A10,A11 and A12 immediately lift to modes A10, A11
and A12. The standard details (replacing MacIV and MacTag with two random
functions) are discussed in the extended version, where we prove that if Ai is
(q, t, εINT-CTXT)-INT-CTXT secure then Ai is (q, t, εINT-CTXT + εPRF)-INT-CTXT
secure provided that MacIV and MacTag are (q, t, εPRF)-PRF-secure.

We show the security equivalence of A10, A11 and A12 based on two events,
B and C, that we define below. Consider a INT-CTXT1 adversary A against an
nAE scheme Π (which is made according to any of A10, A11 or A12). If the q-th
decryption query (nq, aq, cq) is valid, then cq = AEnck(nq, aq,mq) for a certain
message mq, as a result of tidiness. Depending on the value of (nq, aq) (or only
nq for A12), we distinguish between two possibilities, which define event B:

– (nq, aq) is fresh, that is, (nq, aq) 
= (nj , aj) ∀j = 1, ..., q − 1 (we call this event
B) [for mode A12, we only demand that nq is fresh, that is nq 
= nj ∀j =
1, ..., q − 1].
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– (nq, aq) = (nj , aj) for a j ∈ {1, ..., q − 1} (This j is unique since the nonce
n cannot be repeated) [for mode A12, we only demand that nq = nj for a
j ∈ {1, ..., q − 1}].

With regard to (aq,mq) (or only mq for mode A11), we again consider two
possibilities, which define event C:

– (aq,mq) is fresh, that is (aq,mq) 
= (aj ,mj) ∀j = 1, ..., q − 1 (we call this
event C) [for mode A11, we only demand that mq is fresh, that is mq 
=
mj ∀j = 1, ..., q − 1].

– (aq,mq) = (aj ,mj) for some j ∈ {1, ..., q − 1} (there can be several such j’s)
[for mode A11, we only demand mq = mj for some j ∈ {1, ..., q − 1}].

Clearly by total law of probability

Pr[A wins] = Pr[A wins ∩ C] + Pr[A wins ∩ B ∩ C] + Pr[A wins ∩ B ∩ C]

With the following lemma we treat the first two addends of the previous
equation:

Lemma 1. Let f IV : N × A �−→ IV [for mode A12, f IV : N �−→ IV] and
fTag : A × M �−→ T [for mode A11, fTag : M �−→ T ] be two random functions
and let Π = (KE ,Enc,Dec) be a (q, t, εivE)-ivE-secure encryption scheme. Let Π
be the nAE scheme obtained composing f IV, fTag and Π according to mode A10
or A11 or A12. Then we can bound

Pr[A wins ∩ C] + Pr[A wins ∩ B ∩ C] ≤ q|T |−1 + (q − 1)εivE

The proof is completely standard and can be found in the extended version (the
ideas of this proof are already present in Namprempre et al. [20]. The proofs of
the security implications between the 3 “A” modes then results from implications
in the case A wins ∩ B ∩ C, which we examine in the rest of this section.

In order to make our notations more precise, if either f IV or fTag have different
signatures for two modes that we compare, we use a subscript to denote the mode
that is used (e.g. f IV10 for mode A10).

In some proves we use hash function and their collision resistance, for more
details about this see Katz and Lindell [14].

5.1 The INT-CTXT1-Security of A12 Implies the INT-CTXT1-
Security of A10

Proposition 1. Let f IV10 : N × A �−→ IV and fTag : A × M �−→ T be
two random functions and let Π = (KE ,Enc,Dec) be a (q, t, εivE)-ivE-secure
encryption scheme. Then, if mode A12 implemented with the random function
f IV12 : N �−→ IV is (q − 1, t, εINT-CTXT1)-INT-CTXT1-secure then mode A10 is
(q − 1, t, q|T |−1 + (q − 1)εivE + εINT-CTXT1)-INT-CTXT1-secure.
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Let f′IV12 : N × A �−→ IV be defined f′IV12(n, a) := f IV12(n) ∀n ∈ N , a ∈ A
(it is an extension of f IV12). The proof is based on the fact that it is impossible
using only encryption queries to mode A10 to distinguish if it is used f IV10 or
f′IV12 (as in mode A12), since it is not possible for the adversary A to force
the nAE algorithm to call f IV10 on inputs (n, a1) and (n, a2) (with a1 
= a2)
during encryption queries. Moreover, the couple (nq, aq) of the decryption query
must not be fresh (due to event B), thus, using f′IV12 is indistinguishable from
using f IV10 .

5.2 The INT-CTXT1-Security of A11 Implies the INT-CTXT1-
Security of A10

Proposition 2. Let f IV : N × A �−→ IV and fTag10 : A × M �−→ T be two ran-
dom functions and let Π = (KE ,Enc,Dec) be a (q, t, εivE)-ivE-secure encryption
scheme. Let H : A �−→ {0, 1}N be a (0, t, εcr) collision resistant hash function.
Then, if mode A11, implemented with the random function fTag11 : M �−→ T and
with any (q, t, εivE+ q2

2|IV| )-ivE-secure Encryption scheme, is (q−1, t, εINT-CTXT1)-
INT-CTXT1-secure then mode A10 is (q − 1, t, ε)-INT-CTXT1-secure, where

ε = q|T |−1 + (q − 1)εivE + εcr + εINT-CTXT1.

The idea is to reduce the INT-CTXT1 adversary A against scheme Π (mode
A10), which uses the ivE scheme Π, to a INT-CTXT1 adversary C against
scheme Π ′ (mode A11), which uses the ivE scheme Π ′. When the adversary
A makes an encryption query (ni, ai,mi) the adversary C makes an encryption
query (ni, ai,m′i) with m′i = H(ai)‖mi. The ivE scheme Π ′ encrypts m′i =
(H(ai)‖mi[= mi‖τ i]) in this way: Enc′(m′i) := H(ai) ⊕ fEnc(ivi)‖Enc(ivi,mi),
where fEnc is a random function (and it is part of the key the scheme Π ′). When
the adversary A makes his decryption query (nq, aq, cq) the adversary C simply
asks the decryption of (nq, aq,

[

fEnc(ivq) ⊕ H(aq)
]

‖cq) (the ivq must be not fresh
due to event B).

5.3 The INT-CTXT-Security of A10 Implies the INT-CTXT-Security
of A12

Proposition 3. Let f IV12 : N �−→ IV and fTag : A × M �−→ T be two ran-
dom functions and let Π = (KE ,Enc,Dec) be a (q, t, εivE)-ivE-secure encryption
scheme. Let Π be the nAE-scheme obtained composing these components accord-
ing to mode A12. Let H : A �−→ {0, 1}N be (0, t, εcr).

Then, if mode A10, implemented with the random function f IV10 : N ×
A �−→ IV and with any (q, t, εivE + q2

2|IV| ) − ivE-secure Encryption scheme, is
(q, t, εINT-CTXT1)-INT-CTXT1-secure then mode A12 is (q − 1, t, ε)-INT-CTXT1-
secure with

ε = q|T |−1 + (q − 1)εivE + εcr + εINT-CTXT1.

The idea of the proof is similar to the previous one (Proposition 2), where we
replace mi with m’i = (H(ai‖mi).
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5.4 The INT-CTXT-Security of A10 Implies the INT-CTXT-Security
of A11

Proposition 4. Let f IV : N × A �−→ IV and fTag11 : M �−→ T be two ran-
dom functions and let Π = (KE ,Enc,Dec) be a (q, t, εivE)-ivE-secure encryption
scheme. Let Π be the nAE scheme obtained composing these components accord-
ing to mode A11. Let H : A �−→ {0, 1}N be a (0, t, εcr)-collision resistant hash
function.

Then, if mode A10, implemented with the random function fTag10 : A ×
M �−→ T , is (q, t, εINT-CTXT1)-INT-CTXT1-secure then mode A11 is (q − 1, t, ε′)-
INT-CTXT1-secure with

ε = q|T |−1 + (q − 1)εivE + εcr + εINT-CTXT1.

The idea is to reduce the INT-CTXT1 adversary A against scheme Π (mode
A11) to a INT-CTXT1 adversary C against scheme Π10 (mode A10). When the
adversary A makes an encryption query (ni, ai,mi), the adversary C makes an
encryption query (ni‖H(ai), a,mi). When the adversary A makes his decryption
query (nq, aq, cq) the adversary A′ simply asks the decryption of (nq‖H(aq), a, cq).

6 Secure Variants of Modes N4, A10, A11 and A12

As a step towards the proof of the generic (in-)security of A10, A11 and A12,
we consider two natural conditions on the ivE scheme that are sufficient to guar-
antee a secure composition. More precisely, we show that, if the ivE scheme is
misuse resistant or if it is “message-malleable” (a condition that is satisfied by
many standard modes, and that we formalize precisely below), then these modes
are secure. Interestingly, these two properties are the two extreme of the range
(clearly, it is impossible for a scheme to have both properties).

We prove everything only for mode A10, since the proofs can be straight-
forwardly extended to the other two modes. In this section we use the same
replacement as in the previous one (we replace mode A10 with mode A10).
Surprisingly, we prove the same results for mode N4.

Then, we conclude this section, comparing our partial results about the (in)-
security of modes A10, A11 and A12 with those of Namprempre et al. [20].

6.1 Misuse-Resistant ivE Scheme

The question is interesting since the misuse notion we consider (mrE, Defini-
tion 4) does not consider decryption queries.

Proposition 5. Let the ivE scheme Π be a (q, t, εmrE)-misuse resistant mrE and
(q, t, εivE) − ivE secure, let f IV : N × A �−→ IV and fTag : A × M �−→ T be two
random functions. Then, the scheme Π obtained composing these components
according to mode A10, is (q − 1, t, (q − 1)|T |−1 + (q − 1)εivE + (q − 1)εmrE) −
INT-CTXT1-secure.
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As seen above, we only need to consider the case not studied in Lemma 1. The
idea of the proof is to reduce the INT-CTXT1 adversary to a mrE-adversary. Since
we are not in the cases studied in Lemma 1, the couples (nq, aq) and (aq,mq)
are not fresh, and it is enough for the mrE adversary to ask one more encryption
query guessing that the message encrypted mq‖τ q is one of the message the
INT-CTXT1 adversary has already asked to encrypt with the same AD aq (that
is, mq ∈ Maq where Maq := {mi i = 1, ..., q − 1 s.t. ai = aq}). If the ciphertext
obtained is the ciphertext cq that he is asked to decrypt, then he outputs 1 and,
otherwise, 0. The mrE adversary wins only if he guesses correctly and he can
guess correctly at most with probability (q − 1)−1.

Allowing the mrE adversary to ask (2q−2) encryption queries the scheme A10
would be (q, t, 2q−1

|T | + 2εmrE) − INT-CTXT1-secure, because the mrE adversary
may try every possible message in Maq .

We remember that for the misuse-resistance of Enc (Definition 3) the adver-
sary has only access to encryption queries.

6.2 “Message-Malleable” nE Scheme

Definition 9. A nonce-based encryption scheme nEΠ = (K,Enc,Dec) is
message-malleable if, given an encryption c of a message m with nonce n, an
adversary can efficiently decrypt all couples (n, c′), i.e., he is able to compute m′

s.t. m′ ← Deck(n, c′) without having access to a decryption oracle.

The same definition may be done for ivE schemes. Many schemes (as CTR
and OFB [14]) have this “malleability” property when they are used for fixed
length messages. We detail some examples the extended version [8,10]. Message-
malleability is easy to prove in many cases, e.g., when the ciphertext c =
Enciv

k (m) is computed as a pseudorandom bitstream r computed from the iv and
it is XORed with the message m (that is, c = r⊕m), then Deciv

k (c′) = c⊕c′ ⊕m.
Message-malleability allows us to prove the following proposition for A10,

which can be easily extended to modes A11 and A12).

Proposition 6. Let the ivE scheme Π be (q, t, εivE)-ivE-secure, (q − 1, t, εmCPA)-
mCPA-secure and “message-malleable”, let f IV : N × A �−→ IV and fTag : A ×
M �−→ T be two random functions. Then, the scheme Π obtained composing
these components according to mode A10, is (q, t, (q−1)εivE+q|T |−1+8εmCPA)−
INT-CTXT1-secure.

Again, we only need to consider the case that is not covered by Lemma 1. The
idea of the proof is to reduce the INT-CTXT1 adversary to an mCPA-adversary.
Since we are not in the cases studied in Lemma 1, the couples (nq, aq) (thus ivq)
and (aq,mq) are not fresh. The mCPA adversary, when he is asked to simulate
the AEnc oracle on input (ni, ai,mi) simply computes ivi and τ i using the appro-
priate functions and asks his Enc oracle on input (ivi,mi‖τ i,mi‖ri) where ri is
a random value picked in T , receiving ci which he forwards to the INT-CTXT
adversary. When this latter adversary outputs (nq, aq, cq), the mCPA adversary



Reconsidering Generic Composition: the Tag-then-Encrypt case 85

computes ivq, which, due to the fact that we are in the case not covered by
Lemma 1, is ivj for a j ∈ {1, ..., q − 1}. Now using the fact that Π is “nonce-
message-malleable”, he can decrypt cq as if ci = Encivi

kE
(mi‖τ i). He outputs 0 if

the decryption query is valid, 1 otherwise. We observe that if ci = Encivi

kE
(mi‖ri)

the decryption query may be valid with probability |T |−1 since the tags have
never been used before the decryption query.

6.3 Extension to N4

Surprisingly, although mode N4 is not secure in general (see Sect. 4), if the nE
scheme is either misuse-resistant or message-malleable, mode N4 is INT-CTXT1-
secure and, thus, nAE secure. It is easy to prove easily adapting the proofs of
Propositions 5 and 6 to the nE case.

This implies that for N4 it is capital that the adversary can efficiently decrypt
everything. In fact, the nE scheme used in Sect. 4 is message-malleable except in
the case if n = 1 or 2 when trying to decrypt or encrypt (v∗, ·).

6.4 Comparison to Namprempre et al. [20]

Namprempre et al. [20] gave partial results using the Knowledge-of-Tag property
(KoT) (introduced in the extended version). That is, adversaries must forge
without any (extractable) knowledge of the tag used in the decryption query [20].

With respect to their work, although the main ideas of the proofs are very
similar, it is much easier to prove that a scheme is mrE or message-malleable,
than to prove that a scheme is KoT-secure (while it may be easy to prove that
it is not KoT-secure). In fact, to prove that a scheme is message-malleable it is
enough to provide an algorithm which efficiently computes the result. On the
other hand to prove that a scheme is not message-malleable (a part from proving
that it is mrE), it must be proved that all efficient adversaries are not able always
to decrypt. Similarly to prove the KoT security it must be proved that for all
possible efficient extractors the scheme has this property, while to prove that a
scheme is not KoT secure, it is enough to provide a counterexample.

7 Insecure Variants of Modes A10, A11 and A12

While, in the previous section, we proved the security of A10, A11 and A12
by making some extra requirements on the ivE scheme, this section considers
the relaxation of some of the requirements on ivE that makes these 3 modes to
become insecure. More precisely, we show how to compute forgeries against the
INT-CTXT property of mode A10 when the ivE scheme is non tidy or stateful.
These attacks imply that the three modes are not nAE-secure, when implemented
with such schemes.
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7.1 Tidiness as a Security Property

Given an IV-based encryption Π = (K,Enc,Dec), our idea is to turn Π
into a sloppy IV-based scheme. This modification augments the ciphertext
c = Enck(iv,m) with c′ = Enck′(iv,m), leading to a double and independent
encryption m with the same iv. It is easy to see that, for random iv, the new
scheme has pseudorandom ciphertext C = (c, c′) as long as Π has pseudoran-
dom ciphertext, (that is, if Π is ivE-secure). However, given iv, if we define the
decryption of C = (c, c′) simply as Deck(iv, c) without any validity considera-
tion on c′, the new scheme is not tidy whether Π is tidy or not. Therefore, since
the c′ part of C is “out of control”, any ciphertext C ′ = (c, c′′) decrypts to m
and is deemed valid. Moreover, the A10 composition mode with two PRF-secure
vecMACs does not rule out this malleability so that we can build a forgery with
a single encryption query. Dropping the tidiness requirement of ivE, and then of
nAE, is thus sufficient to leave a security breach in the resulting nAE.

More formally, we build Π ′ = (K,Enc′,Dec′) with keyspace K2, message
space M and ciphertext space C2 as follows: Enc′

(k,k′)(iv,m) outputs C = (c, c′)
where c = Enck(iv,m) and c′ = Enck′(iv,m); Dec′

(k,k′)(iv, C) parses the cipher-
text as C = (c, c′) and outputs m = Deck(iv, c). For any c′′ 
= c′, we have
Enc′(iv,Dec′(iv, (c, c′′))) = (c, c′) 
= (c, c′′) so that Π ′ is not tidy.

Let nAE be the authenticated encryption obtained from the A10 mode
whose ciphertext has the form C = (c, c′) where c = Enck(iv,m‖τ) and
c′ = Enck′(iv,m‖τ) with iv = MacIVkM

(n, a) and τ = MacTagkM
(a,m). Now, we con-

sider the forger A which makes a single encryption query on any triple (n, a,m)
and receives back C = (c, c′) as above. Then, A picks any (samplable) c′′ ∈ C
distinct of c′ and outputs C� = (c, c′′). Following the description of the A10
mode we find that the decryption starts by running iv = MacIVkM

(n, a) and then
Dec′

(k,k′)(iv, C�) = Deck(iv, c) = m‖τ . Finally, since the check τ = MacTagkM
(a,m)

passes m 
= ⊥ is returned although C� 
= C.

Message-Malleability. In order to further emphasize the crucial role of the tidi-
ness in the insecurity of the authenticated encryption based on Π ′, we stress
that if the underlying IV-based scheme Π is tidy and message-malleable (Def-
inition 9), the A10 composition implemented with Π leads to an nAE-secure
scheme (as shown in Sect. 6.2). However, even if Π ′ is not tidy, it is easy to see
that Π ′ remains message-malleable while we proved that it never leads to a nAE-
secure scheme. As a summary, (non) tidiness alone has an intrinsic propensity to
degrade the nAE-security of the AEnc based on the Tag-then-Encrypt paradigm.

7.2 Forgery Against Stateful A10, A11 and A12

In stateful AE schemes the AEnc and ADec algorithms receive at the start of
the game an additional input, the state, which is updated during every call and
kept in memory to be reused in the following call. The scheme we use has a
stateless ADec algorithm, that is, it does not use the state and every reordering
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and omission is tolerable (L0 of Rogaway et al. [28]). With respect to their work
we allow the adversary to choose the state at the start of the game.

The idea of this forgery is to use the state, which in our case is simply a
counter of the encryption queries, as the nonce was used in the attack against
mode N4 (Sect. 4). At the end of the section we discuss the meaning of tidiness
for stateful schemes.

The ivE we present is an adaptation of the nE scheme used in Sect. 4. As
there, we present it only for N-bit long message, leaving the general case to the
extended version. The main changes are:

– We use a TPRPE : K × T W × {0, 1}λ �−→ {0, 1}λ.
– A new block c−1 is added to the ciphertext, in order to give the decryption

algorithm the actual value of the counter ctr which is an internal state only
of the encryption device, and c−1 = E

(0,1)
k (ctr). The Dec algorithm inverts

this to retrieve the correct ctr. The block c−1 is random since it is always
obtained with different inputs (as long as the number of encryption queries
is �2n).

– To compute this block, the TPRPE is called with a tweak (0, 1) that is never
used else

– The boxed if is triggered by the value of the counter ctr (not of the nonce)
and m

– The iv replaces the nonce n in the input of the TPRPE.

Note again that, due to mode A10, the messages which the nAE scheme Π can
encrypt, are λ bits long, while those which Π can encrypt are 2λ bits long.

The forgery is an easy adaptation of that presented in Sect. 4 .
The scheme Π is clearly ivE-secure, the only important change with Sect. 4

is the fact that we have to consider also the block c−1). Now we have to discuss
what means for a stateful nAE (or nE or ivE) scheme to be tidy.

For stateless nAE schemes the definition was given in Definition 2 (similarly
for nE and ivE): if ADecn,a

k (c) = m 
=⊥ then AEncn,a
k (m) = c.

Now if the nAE scheme is stateful it means that AEncn,a
k (m) is no more

defined, because the state s may influence the output of AEnc(·,·)k (·). Thus, denot-
ing with S the set of possible states, we redefine tidiness as:

Definition 10. We say that an nAE scheme is tidy if ADecn,a
k (c) = m then

c ∈ {AEncn,a
k,s (m)}s∈S .

Similarly an nE (resp. an ivE) scheme is tidy if Decn,a
k (c) = m (resp.

Deciv,a
k (c) = m then c ∈ {Encn,a

k,s (m)}s∈S (resp. c ∈ {Enciv,a
k,s (m)}s∈S).

According with this new definition, the ivE scheme Π which we have just
used, presented, is tidy, as it follows from a close inspection of the pseudocode
provided, thus the nAE scheme Π is tidy.

We have also to redefine for stateful schemes all the notions presented in
Sect. 2. We do it allowing the adversary at the start of the game to set the state
of the scheme as he wishes.
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8 Conclusion

In this paper we have studied four generic composition modes, N4, A10, A11
and A12, for building authenticated encryption for an encryption scheme and a
PRF MAC. The security of these four modes was left open in previous works,
and three of them are the most efficient among the 180 possible modes based on
these building blocks.

We have proved that mode N4 is not secure in general, and that modes A10,
A11 and A12 have equivalent security. Moreover we have proved that if these
four modes are instantiated with many common schemes (like CTR, OFB) they
are all secure. Finally, we have showed that tidiness (again) and being stateless
can have a decisive impact on security, as the application of A10, A11 and A12
on untidy or stateful modes can lead to insecure solutions.

Having used an encryption scheme using ciphertext expansion to break N4,
we leave as a question for future work the proof of the security of N4 if the
encryption scheme does not expand the ciphertext.

Our analysis still leaves as an open problem to decide if modes A10, A11,
and A12 are secure in general.

Acknowledgments. Thomas Peters is a postdoctoral researcher of the Belgian Fund
for Scientific Research (F.R.S.-FNRS). This work has been funded in parts by the
European Union (EU) and the Walloon Region through the FEDER project USER-
Media (convention number 501907-379156) and the ERC project SWORD (convention
number 724725).

References

1. Atluri, V. (ed.): Proceedings of the 9th ACM Conference on Computer and Com-
munications Security, CCS 2002, Washington, DC, 18–22 November 2002. ACM
(2002)

2. Bellare, M., Desai, A., Jokipii, E., Rogaway, P.: A concrete security treatment of
symmetric encryption. In: 38th Annual Symposium on Foundations of Computer
Science, FOCS 1997, Miami Beach, 19–22 October 1997, pp. 394–403. IEEE Com-
puter Society (1997)

3. Bellare, M., Kohno, T., Namprempre, C.: Authenticated encryption in SSH: prov-
ably fixing the SSH binary packet protocol. In: Atluri [1], pp. 1–11

4. Bellare, M., Kohno, T., Namprempre, C.: Breaking and provably repairing the
SSH authenticated encryption scheme: a case study of the encode-then-encrypt-
and-MAC paradigm. ACM Trans. Inf. Syst. Secur. 7(2), 206–241 (2004)

5. Bellare, M., Namprempre, C.: Authenticated encryption: relations among notions
and analysis of the generic composition paradigm. In: Okamoto [22], pp. 531–545

6. Bellare, M., Rogaway, P.: Encode-then-encipher encryption: how to exploit nonces
or redundancy in plaintexts for efficient cryptography. In: Okamoto [22], pp. 317–
330

7. Bernstein, D.J.: Caesar call for submissions, final, 27 January 2014



Reconsidering Generic Composition: the Tag-then-Encrypt case 89

8. Berti, F., Koeune, F., Pereira, O., Peters, T., Standaert, F.-X.: Ciphertext integrity
with misuse and leakage: definition and efficient constructions with symmetric
primitives. In: Kim, J., Ahn, G.-J., Kim, S., Kim, Y., López, J., Kim, T., (eds.)
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1 Introduction

In the current scenario, it seems easier to protect confidentiality of the data that
resides in today’s complex networks than to protect the networks themselves,
and symmetric encryption is a good way to do that. Block ciphers like AES and
DES are very popular and used all over the world to maintain confidentially of
the message. However, in many applications, it is convenient to encrypt messages
from an arbitrarily sized set onto the same set and here conventional block cipher
modes such as ECB, CBC, or CTR are not suitable. For example, a valid Social
Security Number (SSN) is encrypted into a valid SSN, a valid credit-card number
(CCN) is encrypted into a valid credit-card number, etc. This has given rise to
a new primitive called, format preserving encryption (FPE). With the advent
of format preserving encryption, one can deterministically encrypt the data by
preserving the format of the data, i.e., the ciphertext has the same format as
the plaintext.

FPE gained popularity due to its usage in several financial sectors for encrypt-
ing credit-card numbers. Moreover, FPE allows to add encryption to legacy
databases and applications without violating existing format constraints which
makes it a natural choice for applications where encrypted data needs to be
saved for future search.

The first known constructions for FPE were proposed in [3,4]. Later the
approach was formalized by Bellare et al. [1]. Following these, several construc-
tions on FPE were proposed in [2,3,5,9,10,12,15]. In their 2002 paper [3], the
authors proposed a practical approach for constructing an FPE. There are three
popular approaches for designing FPE based schemes, namely prefix ciphering,
cyclic walking and a Feistel based construction. To the best of our knowledge,
none of these schemes used substitution permutation network (SPN) as a core
construction technique for FPE except the one by Chang et al. [5]. In an SPN,
a diffusion layer may be modelled as a linear transformation. An SPN has three
main components - confusion, diffusion and key mixing. Confusion is achieved
by an S-box whereas diffusion is a linear transformation. FPE may be achieved
in several ways in an SPN as follows:

1. Either format is preserved only by the plaintext and the ciphertext, or
2. Let r be the number of rounds and each round preserves the format or
3. Each component of SPN preserves the format.

In [5], the key idea is same as (3) where format-preserving transformations are
used to ensure that the format of plaintext and ciphertext are always same. In [5],
each round of SPN consists of these basic transformations: (1) Format-Preserving
SubBytes (FPSB), (2) ShiftRows, (3) Format-Preserving MixColumns (FPMC),
(4) Format-Preserving Key Addition (FPKA) and (5) Format-Preserving Tweak
Addition (FPTA).

To understand the format preserving set in the context of diffusion layer, let
us consider an n × n matrix, M , whose entries are from an algebraic structure
A with + and ·. Let X be any set and φ be an injective map from X to A, i.e.
φ : X → A. We say that φ(X) is format preserving with respect to the matrix
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M if Mv ∈ φ(X)n for all v ∈ φ(X)n. Building a perfect diffusion layer for FPE
by constructing a format preserving set with respect to an MDS matrix is a
nontrivial task. This is mainly because of the following reasons.

1. All standard cryptographic primitives operate on fixed-length binary
domains, mostly the field F2n . On the other hand, for FPE, the underly-
ing domain is usually non-binary. For example, in the context of CCN, the
underlying domain set is {0, 1, . . . , 9}. Since the domain is of size 10 which
is a product of two different primes, one possibility is to consider a format
preserving set as a proper subset of a field or of a ring. However, not many
systematic study and construction of MDS matrices for format a preserving
set as a subset of a field was available until before [8], when Gupta et al.
studied the problem under some assumptions. So a full characterization of
format preserving sets was unavailable for subsets of a field.

2. In [8], a partial characterization of format preserving set was given when it is
a subset of a finite field with additive identity. They proved that the format
preserving set is a vector space and thus it should be of size q = pi where
p is the characteristic of the field. They were unable to construct format
preserving sets of cardinality of the form other than pi. For example, a for-
mat preserving set for CCN is of size 10, which compels us to study format
preserving sets over rings. In another instance, the ANSI ASC X9.124 stan-
dard adopted by the financial industry envisions applications with domains
as small as two decimal digits. Using the techniques used in [8], no format
preserving set can be designed to meet such requirements.

In [5], Chang et al. considered a 4 × 4 matrix
⎡
⎢⎢⎣

1̄ 1̄ 1̄ 0̄
0̄ 1̄ 1̄ 1̄
1̄ 0̄ 1̄ 1̄
1̄ 1̄ 0̄ 1̄

⎤
⎥⎥⎦

whose entries are from the ring Z10. The entries 0̄ and 1̄ in the matrix are
additive and multiplicative identities respectively. The choice of Z10 is natural
if the underlying format is a string of decimal digits 0–9. But the choice of the
matrix is not optimal as it is not MDS (maximum distance separable) and hence
does not provide the optimal branch number. In fact, its branch number is one
less than the optimal one. The question is - why was not an MDS matrix chosen
over Z10? Or, why not a subset of any other algebraic structure, either a ring
or a field, which could satisfy the requirements? Chang et al. could not provide
satisfactory answers for these questions. This paper attempts to find answers for
these questions.

Our Contribution: In [8], Gupta et al. could not provide a full characterisation
of a format preserving set when the underlying structure is a field. We resolved
this issue and give a full characterisation of a format preserving set over any
finite field. Furthermore, we tried to find its structure over commutative rings
with unity. Under some restrictive cases, we identified its structure over such
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rings also. Finally, we show how to construct format preserving sets of cardi-
nalities 20 with respect to 3 × 3 MDS matrices and of cardinalities of 103 and
263 with respect to 4 × 4 MDS matrices. Though we could not find any format
preserving set of cardinality 10 and 26 with respect to 4 × 4 MDS matrices yet,
we feel, our results are some progress in this direction.

2 Notations and Preliminaries

In this paper we assume elementary knowledge of semigroups, groups, rings,
fields, vector spaces and modules. For more details, see [6,11,13]. Here, we con-
sider only abelian semigroups without mentioning it explicitly. Recall that a
semigroup with an identity element is called a monoid.

Let S be a semigroup and X ⊆ S. The sub-semigroup generated by the set
X is the smallest semigroup which contains X and is denoted by 〈X 〉s. The set
〈X 〉s can be written as

〈X 〉s = {((· · · (x1x2) · · · )xn) | n ≥ 1, xi ∈ X}.

If X is finite, say X = {x1, x2, · · · , xk} ⊆ S, then

〈X 〉s = {(xr1
1 )(xr2

2 ) · · · (xrk

k ) | ri ≥ 0 and
k∑

i=1

ri ≥ 1}.

If G is a (multiplicative) group and S ⊆ G then the subgroup of G generated by
S, denoted by 〈S〉, is the smallest subgroup of G which contains S and is given
by

〈S〉 = {sr1
1 sr2

2 · · · srn
n | n ∈ N = {0, 1, 2, 3, · · · }, si ∈ S, ri ∈ {1,−1}}

with the convention that if n = 0, the product over the empty list is e (the
identity element of G). If G is finite, ri �= −1 (−1 in the exponent not required).
Let S = {g1, g2, · · · , gk} ⊆ G. If G is a finite abelian group, then

〈S〉 = {gr1
1 gr2

2 · · · grk

k | ri ∈ N}.

Let h ∈ G. By hS, we mean {hg1, hg2, · · · , hgk}.
Let B = {b1, · · · , bk} ⊆ R and a ∈ R, where R is a ring. Then aB =

{ab1, · · · , abk} and a + B = {a + b1, · · · , a + bk}. We shall denote a field with
q elements by Fq, where q = pr for some prime p. We denote by F

∗ the multi-
plicative group of non-zero elements of F.

In this paper, we assume that a module M is a unital R-module, i.e. 1̄m = m
for all m ∈ M where 1̄ is the unity in the ring R. A unit in a ring R is an element
of R which has its multiplicative inverse. A module M is a free R-module if M
has a free R-module basis. A subset Γ of M is a free R-module basis of M if
Γ is an R-module basis of M and Γ is linearly independent over R. For more
about rings and modules, see [16].
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The quotient ring of integers modulo r is denoted as Zr. The set Zr is com-
monly represented as {0, 1, 2, · · · , r − 1}. Addition (+) and multiplication (∗)
operations on this set are defined as addition and multiplication on integers
modulo r. The set of units of Zr, represented as Z

∗
r , are those elements from

Zr which are relatively prime to r over integers. For the notational convenience,
a ∗ b will be written as ab.

An m × n matrix M is written M(A) if the entries of M are from the set A.
If entries are evident from the context, we simply denote M(A) as M only. The
(i, j)th entry of a matrix M where 1 ≤ i ≤ m and 1 ≤ j ≤ n is denoted as mi,j

and the matrix M as (mi,j). The transpose of a matrix M = (mi,j) is denoted
as MT = (mj,i) where 1 ≤ i ≤ m and 1 ≤ j ≤ n. An n × n square matrix is said
to be a matrix of order n. An identity matrix of order n is denoted as In.

A vector is a special kind of a matrix. If m = 1, then a 1×n matrix is called
a row vector. If n = 1, then an m × 1 matrix is called a column vector. A row
vector is written as a horizontal array and column vector as a vertical array. If
the vector v (either row or column) has n entries, then we say that the vector
is n-dimensional. If the entries of the vector v are from the set A, then we write
v ∈ An. In this paper, by the term vector, we mean a column vector.

Given an n × n matrix M , we denote by Z the set

Z = {mi,j | mi,j �= 0̄, 1 ≤ i, j ≤ n}

where 0̄ is the additive identity of the corresponding algebraic structure. We also
set

mi = Σn
j=1mi,j and R = {mi | mi �= 0̄}.

Definition 1. Let R be a commutative ring with unity (1̄). A set S ⊆ R is said
to be a format preserving set with respect to an n × n matrix M(R) if Mv ∈ S

n

for all v ∈ S
n.

It may be noted that R may be a finite field Fq. Other notations or any undefined
terms in this paper have usual standard meanings.

3 Maximum Distance Separable (MDS) Codes

An [n, k, d] linear code over any field satisfies d ≤ n − k + 1 which is known
as singleton bound. Maximum Distance Separable (MDS) codes are those codes
which satisfy d = n − k + 1 [14]. Let a matrix [Im | M ] be a generator matrix of
an [m + n,m, n + 1] MDS code. Then M is called an MDS matrix. There is an
alternate way to define it which is as follows:

Definition 2 (Definition 4, [7]). An m × n matrix M is called MDS if and
only if all its square submatrices are non-singular.

Equivalently,
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Definition 3 (Fact 1, [7]). An m × n matrix M is called MDS if and only if

any n×n submatrix obtained after removing m rows from
[

In

M

]
is non-singular.

And when m = n, an equivalent definition of MDS matrix can be obtained again
which is as follows:

Definition 4 (Fact 1, [7]). An n×n matrix M is called MDS if and only if any
n×n submatrix obtained after removing n columns from [In |M ] is non-singular.

The above three definitions are equivalent in characterising MDS matrix over a
finite field. But it does not give the guarantee of the existence of an [n, k, d] MDS
code over Fq. Unfortunately, we do not have any such result. However, there is
a famous conjecture known as MDS conjecture which states the following.

Conjecture 1. For an [n, k, d] linear MDS code over Fq,

1. If q = 2h and k = 3, then n ≤ q + 2, or
2. If q = 2h and k = q − 1, then n ≤ q + 2, or
3. If k ≤ q, then n ≤ q + 1 otherwise.

3.1 MDS Matrices over a Finite Commutative Ring R with Unity

We assume that the ring R is a finite commutative ring with unity. An n × n
matrix M over a finite commutative ring R with unity is said to be non-singular
if the determinant of M is a unit in R.

Definition 5. An n × n matrix M over a finite commutative ring R with unity
is called MDS if and only if all its square submatrices are non-singular.

4 FPS Need Not Be an Invariant Subspace

A format preserving set S with respect to a matrix M(R) need not be an invariant
subspace. An invariant subspace W is a subspace of a vector space V that is
preserved by a linear transformation T : V → V , i.e. T (W ) ⊆ W . The difference
lies in the algebraic structure of S and W ; S is merely a set whereas W is a
vector space.

We emphasize that there exists a set S which is a format preserving set
with respect to some matrix M but it is not a vector space. Consider S =
{1̄, α3, α6, α9, α12} where α is a primitive element of the field F24 = F2[x]/〈x4 +
x + 1〉 and

M =

⎡
⎢⎢⎣

α3 0̄ 0̄ 0̄
0̄ α6 0̄ 0̄
0̄ 0̄ α9 0̄
0̄ 0̄ 0̄ α12

⎤
⎥⎥⎦

In the example above, S is an FPS but not an invariant subspace. But, an
invariant subspace W over a field F is a format preserving set with respect to
any matrix M(F).
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5 Our Results

5.1 Over Fields

In [8], Gupta et al. showed the algebraic structure of a format preserving set S

with respect to a matrix over a finite field when the additive identity 0̄ belongs
to the set S. It was not discussed what if the additive identity does not belong to
the set. We fill this gap by showing that, in such case, an affine transformation
of a format preserving set S results into a vector space over the smallest field
containing entries of the matrix M if M has a row which contains at least two
non-zero entries.

We assume that the set does not contain 0̄ and hence all elements are non-
zero. Let a ∈ S. Consider

S
′ = a−1

S

It is easy to check that 1̄ ∈ S
′ and S

′ is a format preserving set if and only if S is
a format preserving set with respect to the same matrix. Therefore, the algebraic
structure of S′ will determine the algebraic structure of S and hence we safely
assume that 1̄ ∈ S.

Now consider,
S̄ = S − 1̄.

The set S̄ is closed under addition if and only if s1 + s2 − 1̄ ∈ S for all s1, s2 ∈ S.
The reason behind considering S̄, instead of S, is to show that S̄ is a vector space
over the smallest field containing entries of the matrix M if M has a row which
contains at least two non-zero entries. However, for the sake of completeness, we
consider two cases:

1. If each row of M has at most one non-zero entry, and
2. If M has a row which contains at least two non-zero entries.

A similar result is obtained for the case (1) following the proof of the Theorem
1 discussed in [8]. The result is stated below. Recall that given an n × n matrix
M , we denote by Z the set

Z = {mi,j | mi,j �= 0̄, 1 ≤ i, j ≤ n}

where 0̄ is the additive identity of the corresponding algebraic structure. We also
set

mi = Σn
j=1mi,j and R = {mi | mi �= 0̄}.

Theorem 1. Let S ⊆ Fq. Suppose each row of M(Fq) contains at most one
non-zero entry. Then, S is a format preserving set with respect to M if and only
if there exists a set H ⊆ S such that S =

⋃
s∈H

s〈Z〉 = H〈Z〉.
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Proof. If each row of M contains at most one non-zero entry then R = Z and
hence 〈R〉 = 〈Z〉. By Theorem 3 of [8], we have S =

⋃
s∈H s〈Z〉 for some set

H ⊆ S.
Conversely, let S =

⋃
s∈H s〈Z〉. Assume s(i) ∈ H and αi ∈ 〈Z〉 for

all 1 ≤ i ≤ n. Consider a vector v = [s(1)α1 s(2)α2 · · · s(n)αn]T .
It is easy to see that v ∈ S

n. Without loss of generality, we assume that
each row of M has exactly one non-zero entry (the proof will be simi-
lar if each row has at most one non-zero entry). Suppose M has non-zero
entries in columns j1, j2, · · · , jn corresponding to rows 1, 2, · · · , n. Then Mv =
[s(j1)αj1m1,j1 s(j2)αj2m2,j2 · · · s(jn)αjn

mn,jn
] ∈ S

n since by our assumption,
s(ji)αji

mi,ji
∈ S for all 1 ≤ i ≤ n. Therefore, S is a format preserving set with

respect to M . Hence, the theorem. ��
It is interesting to note that Theorem 1 does not assume that 0̄ /∈ S and

hence it covers both cases when 0̄ ∈ S and 0̄ /∈ S.
Now, we consider the case (2) when M has a row which contains at least two

non-zero entries. Let mi =
∑n

j=1 mi,j .

Theorem 2. Let 1̄ ∈ S ⊆ Fq and 0̄ �= mi ∈ S for 1 ≤ i ≤ n. Suppose the n × n
matrix M(Fq) has at least one row with at least two non-zero entries. Then S is
a format preserving set with respect to M iff S̄ is a format preserving set with
respect to M .

Proof. Consider the map
φ(i,j) : S → Fq

defined by
φ(i,j)(s) = mi,j(s − m−1

i ) + 1̄.

It is certain that m−1
i exists because mi �= 0̄. Under this map, the image

φ(i,j)(S) ⊆ S. In-fact φ(i,j)(S) = S because φ(i,j) is a bijection from S to φ(i,j)(S).
Suppose at row i, the j1 and j2

th columns of the matrix M contain non-
zero entries. Choose s1, s2 ∈ S. Since φ(i,j) is a bijection from S to S, there
exist s′

1, s
′
2 ∈ S such that s1 = φ(s′

1) and φ(s′
2). Consider the vector v =

[m−1
i m−1

i · · · s′
1 · · · s′

2 · · · m−1
i ]T ∈ S

n where s′
1 is at the j1

th position,
s′
2 is at the j2

th position of the vector v and the rest are m−1
i . Take the vector

Mv. The ith element of the vector Mv will be s1 +s2 − 1̄ ∈ S and thus S̄ = S− 1̄
is closed under addition. As S̄ contains 0̄ and is closed under addition, so is a
format preserving set with respect to M if S is a format preserving set with
respect to M too.

Conversely, if S̄ is a format preserving set with respect to M , then it is
closed under addition because 0̄ ∈ S. Thus given any two elements s1, s2 ∈ S,
s1 + s2 − 1̄ ∈ S. Hence S too is a format preserving set with respect to M . ��
Remark 1. Theorem 2 does not provide if and only if condition when the con-
dition mi ∈ S is relaxed. We show by giving a simple example. Take any M(Fq)
whose first row has exactly two non-zero entries such that their sum is neither
0̄ nor 1̄. For this, consider q > 2. Rest rows of the matrix M has exactly one
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non-zero entry. Take S̄ = {0̄}. Then S = {1̄}. It is easy to check that S̄ is a
format preserving set with respect to M but not S.

The paper [8] characterises format preserving sets S when 0̄ ∈ S. For format
preserving sets S not containing 0̄, by invoking this theorem, we can obtain a
complete characterisation of S via the format preserving sets S̄. If there is any
such S, its cardinality must be pl for some prime p and some l ≥ 1. And thus,
it rules out the possibility of getting any format preserving set S over any finite
field such that |S| = 10 or 26.

5.2 Over Rings

The failure of obtaining format preserving sets of cardinality 10 or 26 with respect
to cryptographically significant matrices over finite fields lead us to search over
the next obvious algebraic structures which are rings. If S = Z10 or Z26, it is a
format preserving set with respect to any matrix M(Z10) or M(Z26) respectively.
We observe the same in [5].

Though it provides a solution, the matrix M does not provide the optimal
diffusion because any matrix M(Z2r) of order greater than or equal to 2 cannot
be maximum distance separable. Mathematically, matrices which provide the
optimal diffusion are known as maximum distance separable (MDS) matrices
and in cryptography, such matrices play a significant role particularly in the
diffusion layer of many cryptographic primitives.

Over Finite Commutative Rings with Unity: Our search will now mainly
focus upon the format preserving sets over MDS matrices, however, we build
our theory with respect to any arbitrary matrices. Instead of searching over
any arbitrary rings, we focus upon finite commutative rings with unity. The
result stated in Theorem 1 in [8] and in the previous subsection (Theorem 1)
can be extended over the rings under appropriate restrictions. These results are
summarised below.

Let Z ′ = {mi,j |mi,j �= 0̄}. Let Z = Z ′ ∪ {1̄} if 1̄ /∈ Z ′ else Z = Z ′. Recall
that 〈Z〉s is a submonoid generated by Z of the ring R under multiplication. We
first consider the case when each row of M has exactly one non-zero entry.

Theorem 3. Let S ⊆ R. Suppose each row of M(R) contains at most one non-
zero entry. Then, S is a format preserving set with respect to M if and only if
there exists a set H ⊆ S such that S =

⋃
s∈H

s〈Z〉s.

The theorem above assumes that the each row of the matrix M contains at
most one non-zero entry. The next theorem covers the rest case but when the
set S is closed under addition.

Define the following set

R = {k1α1 + k2α2 + · · · + krαr | r ≥ 0, ki ≥ 1, αi ∈ 〈Z〉s}
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with the convention that if r = 0, the sum over the empty list is 0̄. It is not hard
to check that the set R is in fact the smallest ring containing entries of Z. Note
that Z contains 1̄ and therefore 1̄ ∈ R too.

Theorem 4. The following statements are equivalent.

1. S ⊆ R is a format preserving set with respect to M and S is closed under +.
2. S is a module (unital) over the ring R.
3. S is closed under + and for all s ∈ S and α ∈ R, sα ∈ R.

Proof. (1) → (2).
Assume (1) holds. We shall show that S is a module over R. Since S is finite

and closed under +, it follows that S is an additive subgroup of R and 0̄ ∈ S.
Fix s ∈ S and j, 1 ≤ j ≤ n. Let v(j) = [0̄ 0̄ · · · s · · · 0̄ 0̄]T where s is at the jth

position of the vector v(j) and rest 0̄. Then Mv(j) = [sm0,j sm1,j · · · smn,j ]T

∈ S
n. Therefore, smi,j ∈ S for all 1 ≤ i ≤ n. Thus smi,j ∈ S for 1 ≤ i, j ≤ n.

Repeated applications of this shows that s〈Z〉s ⊆ S.
Take any α ∈ R. If α = 0̄, then αs = 0̄ ∈ S for any s ∈ S. Suppose α �= 0̄,

say α = k1α1 + k2α2 + · · · + krαr where αi ∈ 〈Z〉s, r ≥ 1 and ki ≥ 1 for all
1 ≤ i ≤ r. Take s ∈ S. Then αs = k1(α1s) + k2(α2s) + · · · + kr(αrs). From the
preceding argument, sαi ∈ S for all 1 ≤ i ≤ r. Since S is closed under +, we
have αs =

∑r
i=1 ki(αis) ∈ S. All other axioms of a module hold since S and R

are both subsets of R.
(2) → (3) follows from the fact that S is a module over R.
(3) → (1).

Consider the vector v = [s1 s2 · · · sn]T ∈ S
n. Take Mv =

M [s1 s2 · · · sn]T . Then the ith element of the vector Mv will be
∑n

r=1 mi,rsr.
Now, each mi,r ∈ R and so by assumption, each mi,rsr ∈ S. Since S is closed
under +, we have

∑n
r=1 mi,rsr ∈ S. Thus, the ith element of the vector Mv

belongs to S and hence Mv ∈ S
n. Therefore, S is a format preserving set with

respect to M . This completes the proof. ��
When S is a free R-module, then |S| = |R|l for some l ≥ 0. For |S| = 10 or 26,

the requirement is |R| = 10 or 26 respectively and l = 1. Since R is commutative
(because R ⊆ R) and contains the unity, therefore R ∼= Z10 or R ∼= Z26 if
|R| = 10 or 26 respectively. And thus, in such cases, M(R) cannot be MDS if
the order of the matrix is greater than or equal to 2.

The Closure of S: In general, S may not be closed under addition. For example,
consider a 3 × 3 matrix M(Z10) whose each row contains three elements from
the set {1̄, 3̄, 5̄, 7̄, 9̄}. Then the set S = {1̄, 3̄, 5̄, 7̄, 9̄} is a format preserving set
with respect to M though not closed. Nevertheless, an interesting observation
about this example is that the transformation S − 1̄ is closed. It is merely an
observation and we are not making any claim about those sets which are not
closed.

The closure of S implies 0̄ ∈ S, but the converse need not be true. It can be
easily shown using Theorem 3. But, Theorem 3 assumes that each row of the
matrix has at most one non-zero entry. Now, we show it by an example that this
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is true even when the matrix has a row which contains at least two non-zero
entries. Suppose R = F2[x]/〈x4 + x3〉. Consider

M =

⎡
⎢⎢⎣

1̄ 0̄ 0̄ 0̄
0̄ x̄3 x̄3 0̄
0̄ 0̄ 1̄ 0̄
0̄ 0̄ 0̄ 1̄

⎤
⎥⎥⎦

and S = {0̄, 1̄, x̄3} where x̄ is the residue class of polynomials which leave remain-
der x ∈ F2[x] when divided by the polynomial x4+x3 ∈ F2[x]. It is easy to check
that S is a format preserving set with respect to M(R), but not closed.

However, it is not hard to conclude that the set S is closed if 0̄ ∈ S and the
matrix M contains a row which has at least two units. The result is stated in
the following lemma and the proof can be done in a similar manner as it was
done as a part in the proof of Theorem 2.

Lemma 1. Let S ⊆ R be a format preserving set with respect to a matrix M(R).
Suppose there exists a row of M which contains at least two units. Then, S is
closed under addition.

Theorem 4 gives a nice characterisation of a format preserving set S over a
commutative ring R with unity when S is closed under addition. Furthermore,
it suggests that if S is a free module over R, then it is impossible to construct a
format preserving set of cardinality 10 or 26 with respect to an MDS matrix of
order greater than or equal to 2. However, some cases are yet unexplored which
are when (a) S is closed but not a free module over R, (b) S is not closed and
(c) R is any arbitrary ring. Thus, the possibility of getting S with respect to an
MDS matrix such that |S| = 10 or 26 is still open.

Though we could not provide S of cardinalities 10 or 26 with respect to an
MDS matrix, the next subsection provides some constructions for the same when
|S| = 103 or 263.

5.3 Search for Format Preserving Sets with Respect to MDS
Matrices over Rings

Let n = pα1
1 pα2

2 · · · pαr
r where pi’s are prime numbers and αi ≥ 1. A matrix

M(Zn) is MDS if and only if M modulo pi is MDS for all 1 ≤ i ≤ r. Suppose
p1 < p2 < · · · < pr. Then, by the MDS conjecture, the maximum order of the
matrix M so that it can be MDS over Zn is �(p1 + 1)/2�. However, we can
construct a ring R of n elements so that there exists an MDS matrix M over
the ring R whose order is less than or equal to min{3,min{�(pαi

i + 1)/2�}r
i=2}

if p1 = 2 and α1 = 2, otherwise min{�(pαi
i + 1)/2�}r

i=1. Now we show how to
construct R.

Construction of R: Suppose n = pα1
1 pα2

2 · · · pαr
r . Let (Fpi

αi ,+i, ·i) be fields for
1 ≤ i ≤ r. For notational convenience, we simply denote +i and ·i by + and ·
respectively if it is clear from the context. Then the ring (R,+, ·) is defined as

R = Fp
α1
1

× Fp
α2
2

× · · · × Fpαr
r

,
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where

(a1, a2, · · · , ar) + (b1, b2, · · · , br) = (a1 + b1, a2 + b2, · · · , ar + br)

and
(a1, a2, · · · , ar) · (b1, b2, · · · , br) = (a1 · b1, a2 · b2, · · · , ar · br)

It is easy to check that R is a commutative ring with unity (1̄, 1̄, · · · , 1̄). The
additive identity is (0̄, 0̄, · · · , 0̄) and the number of elements in R is n. Now, we
discuss how to construct an MDS matrix M over this ring R.

Construction of an MDS Matrix M : For 1 ≤ l ≤ r, let Ml = (m(l)
ij )

be MDS matrices over the field Fpl
αl all of the same order k. Then, M =

((m(1)
ij ,m

(2)
ij , · · · ,m

(r)
ij )) will become an MDS matrix of order k over R.

The construction above allows to have format preserving sets with respect
to MDS matrices whose cardinalities can be other than pr where p is a prime
and r > 0. For example, it was not possible to have a format preserving set of
cardinality 20 over any field. But, it is possible to have one over the ring Z20.
But, the matrix cannot be MDS if the order is greater than one. But it is possible
to have all when R′ = F22 ×F5. Consider M1(F22), M2(F5) and M(R′) given by

M1 =

⎡
⎣

1 1 1
1 α α2

1 α2 α

⎤
⎦ ; M2 =

⎡
⎣

1 1 1
1 2 3
1 3 4

⎤
⎦ ; M =

⎡
⎣

(1, 1) (1, 1) (1, 1)
(1, 1) (α, 2) (α2, 3)
(1, 1) (α2, 3) (α, 4)

⎤
⎦ ,

where α is a primitive element of the field F22 . It is easy to check that M is
MDS. Thus, S = R′ is a format preserving set with respect to MDS matrix M
and |S| = 20.

Remark 2. There does not exist any MDS matrix of order greater than or equal
to 4 over R′.

Construction of S with Respect to an MDS Matrix M and |S| = 103:
Though we are not successful to have |S| = 10 yet, we can construct for |S| = 103

with respect to a 4 × 4 MDS matrix. The construction is simple; take R′ =
F23 ×F53 and then construct 4×4 MDS matrices M1(F23), M2(F53) and M(R′)
similar as discussed previously.

The number 1000 is significant here because three digits can be taken at
a time instead of one. It requires four bits to represent 9 in binary and hence
altogether twelve bits for three digits each ranging from 0–9. Moreover, to rep-
resent R′ = F23 × F53 , it needs 3 + 3 ∗ 3 = 12 bits. Thus, a suitable encoding is
required before the diffusion layer which takes three digits as input and encodes
into an element of R′. Similarly, a decoder is required after the diffusion layer
which decodes an element from R′ to three digits. And M(R′) can be used at
the diffusion layer to provide the optimal diffusion. Of-course, it may not be
profitable to use M(R′) in the diffusion layer to achieve the optimal diffusion at
the cost of extra hardware or software used for encoder and decoder before and
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after the diffusion layer. Nevertheless, it is significant because of the theoretical
advancement towards achieving an optimal format preserving diffusion layer for
digits 0–9 and alphabets A–Z.

Now, we construct a format preserving set having 263 elements with respect
to a 4 × 4 MDS matrix M in a similar manner.

Construction of S with Respect to an MDS Matrix M and |S| = 263:
Take R′ = F23 ×F133 and then construct 4×4 MDS matrices M1(F23), M2(F133)
and M(R′) similar as discussed previously.

It requires five bits to represent 26 in binary and hence altogether fifteen
bits for three alphabets each ranging from A − Z. Moreover, to represent R′ =
F23 × F133 , it needs 3 + 4 ∗ 3 = 15 bits. Thus again, a suitable encoding and
decoding is required before and after the diffusion layer. The MDS matrix M(R′)
can be used at the diffusion layer.

6 Conclusion and Future Work

We have fully characterised the algebraic structure of a format preserving set
over finite fields. Under some restrictive cases, we provided the structure over
finite commutative rings with unity also. But the full characterisation over rings
is still open. The whole problem had started with the question - can we have a
format preserving set with respect to some MDS matrix and whose cardinality
is 10 or 26? Though we could not provide a solution in this paper, we have
given the same whose cardinalities are 103 or 263 which is a significant progress
towards finding the solution.
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Abstract. SIMON, a block cipher proposed by NSA (2013), has
received a lot of attention from the cryptology community. Several crypt-
analytic results have been presented on its reduced-round variants. In
this work, we evaluate the cipher against Differential Fault Attack (DFA).
Our analysis shows that SIMON32/64, SIMON48/96 and SIMON64/128
can be attacked by injecting as little as 4, 6 and 9 faults respectively. We
first describe the process of identifying the fault locations after injecting
random faults. This exploits statistical correlations. Then we show how
one can recover the complete key using SAT solvers. To the best of our
knowledge, our results are much superior in terms of minimal number
of faults compared to the existing results. We also show our results are
superior in terms of injecting the faults in the earlier rounds compared
to the existing works.

Keywords: Block cipher · Correlation · Cryptanalysis
Differential fault attack · Simon

1 Introduction

There are several motivation towards designing lightweight cryptographic prim-
itives to provide efficiency in resource-constrained environments – without com-
promising the confidentiality and integrity of the transmitted information. The
state size of such ciphers is kept as small as possible to minimize the area occu-
pied by the cryptographic device. Typically, stream cipher designers keep the
state size equal to or slightly greater than twice the size of the secret key,
to provide security against the notorious Time-Memory-Data Tradeoff attacks.
Presently there are some efforts to obtain ciphers with state size lesser than
twice the key size, though the designs are still being actively evaluated. Such
secure stream ciphers are frequently exploited in designing RFID tags, smart
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cards, etc. In the domain of block ciphers, the scenario is not only related to
the size of the states, but also on the design of the ciphers and the number of
rounds. In 2013, the National Security Agency (NSA) proposed two families of
light weight ciphers, SIMON and SPECK [3], which are flexible enough to pro-
vide very good performance in software as well as hardware environments. The
motivation behind developing this family of block ciphers was to secure appli-
cations operating in resource-constrained environments, where general purpose
ciphers such as AES might not be suitable. Since the structure of SIMON and
SPECK are very simple, and more importantly it is proposed from NSA, the
ciphers attracted serious attention from the cryptology community.

The different variants of SIMON are denoted by SIMON 2n/mn, where 2n
denotes the block size of the variant, and mn is the size of the secret key. Here n
can take values from 16, 24, 32, 48 or 64, and m from 2, 3 or 4. For each combina-
tion of (m,n), the corresponding round number T is adopted. For SIMON32/64,
n = 16,m = 4, and T = 32, for SIMON48/96 n = 24,m = 4, and T = 36 and
for SIMON64/128 n = 32,m = 4, and T = 44.

It is natural for the cipher designers to ignore that the adversary can take
advantage of the hardware implementation of the cipher and deduce critical
information. One may consider fault resistance upto certain level in the design,
but some assumptions must be considered and therefore, commercial ciphers
cannot be made completely secure against different kinds of fault attacks. That
is, under the assumptions of fault attack, the ciphers become inherently weaker.
The idea here is to obtain secret information by injecting faults into the state
of the cipher and then observing the differences between faulty and fault-free
ciphertexts. This approach is called a Differential Fault Attack (also referred to
as DFA). In the context of SIMON, there has already been some cryptanalysis
using DFA that we discuss in the following section. However, our approach is
different and it follows the overall scheme of Differential Fault Attack (DFA) that
works against stream ciphers (see [8] and the references therein). We consider
the L,R registers at certain round as states in comparison to stream cipher
and inject random faults there in certain rounds. Then we compare the faulty
and fault-free cipher-texts to identify the location of the faults. Once the fault
locations are known, we can prepare certain equations and solve them using SAT
solvers to obtain the secret key.

1.1 Existing DFAs on SIMON

SIMON was first cryptanalyzed using fault attack by Tupsamudre et al. in FDTC
2014 [10]. The authors proposed two models to retrieve the last-round key. The
first one is a one-bit-flip model and the second one is a random one-byte model.
In both models an adversary is able to inject a fault, flipping one bit, or one
complete byte, into the left input of (T − 2)th round and thus recover the last
n-bit round key. However, the complete secret key of SIMON, for mn-bit key
size, is revealed only if all the last m round keys are known. This is because of
the key scheduling algorithm. Thus, to recover the complete secret key in this
model, more faults had to be injected in (T − 3)th, · · · , (T − m − 1)th rounds
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consecutively. Such a situation would increase the cost of the attack because the
attacker has to control m round locations to inject the faults.

In ICISC 2014, Takashi et al. [9] presented a random fault attack in which
the fault injection randomly changes the bits in left input of (T − 2)th round.
Their attack model required 3.05 faults on an average to recover the last round
key of SIMON32/64. However, similar to [10], they had to inject faults in the
(T − 3)th, · · · , (T − m − 1)th rounds respectively.

Further, Vasquez et al. presented an improved fault attack against SIMON
in FDTC 2015 [11]. They considered the bit fault model and injected faults in
the (T − 3)th round instead of the (T − 2)th. When m = 2, the last two round
keys were enough to recover the complete secret key, but when m = 4, more
faults are required in the intermediate rounds.

Chen et al. presented an effective fault attack on SIMON under the random
byte fault model in FDTC 2016 [6]. For SIMON, with key size mn, their attack
needed to inject fault only once in the (T −m−1)th round to recover all the last
m round keys without injecting faults in any other intermediate rounds. However
for SIMON32/64, SIMON48/72, SIMON48/96 and SIMON64/128, their model
needed to inject faults in more than one rounds to recover all the last m round
keys. At the same time, how to attack these four SIMON instances by injecting
fault only once in the intermediate round and how to reduce the number of faults
required to attack SIMON were left as open problems by the authors.

1.2 Our Contribution

In this paper we demonstrate an improved fault attack on SIMON32/64,
SIMON48/96 and SIMON64/128 using a transient single bit-flip model of attack.
For SIMON, with the key word size m, we need to inject 1-bit faults into the
state at the beginning (T −m−1)th = (T −5)th round and recover the complete
secret key. By observing the faulty and fault-free ciphertexts, we compute sig-
natures to identify fault locations. Naturally, we would prefer injecting fault in
any round of SIMON2n/4n. We note that the more earlier we inject a fault, the
weaker is the signature, and more difficult it becomes to identify a fault location.
For example, according to our methods used here, identifying the location of a
fault injected in the 24th round or before of the 32-round SIMON32/64 is very
difficult. This can be seen as a new way to analyze “the mixing strength” of
SIMON.

We then explain how to recover the complete secret key. Comparisons of our
effort with the existing works are presented in Tables 4 and 5. As we can see, our
fault attack model requires much lesser faults to recover the complete key and
injection is performed in only one specific round. We observe that faults can be
injected upto 10 rounds and more before the final round of SIMON, however, the
number of faults required increases required increases (upto 8 for SIMON32/64,
12 for SIMON48/96 and SIMON64/128) and the computation time required is
higher. This is due to the rising non-linearity of equations. However, we show
that injecting faults from the beginning and after of the 25th round of the 32-
round SIMON32/64, the attack is successful with only 4 faults for deducing the
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key. Another important aspect of our model is that the faults can be injected
in any location of register L or register R, since we are able to identify the
fault locations in both cases, which the existing works tend to omit due to its
complexity.

The rest of the article has been organized as follows. We illustrate the design
of SIMON in Sect. 1.3 and explain our bit-flip transient model of attack in Sect. 2.
In Sect. 2.1, we show how we identify the locations of injected faults, and in
Sect. 2.2 we show how we obtain the complete secret key. Our experimental
results for the complete DFA are presented in Sect. 2.3. Finally, we conclude our
paper in Sect. 3.

1.3 Brief Description of Variants of SIMON

SIMON is a family of lightweight block ciphers released by the NSA in 2013.
SIMON has ten variants supporting different block sizes and key sizes.

Table 1. SIMON parameters

Block Size (2n) Key Size (mn) word size (n) keywords (m) Rounds (T )

32 64 16 4 32

48 72,96 24 3,4 36,36

64 96,128 32 3,4 42,44

96 96, 144 48 2,3 52,54

128 128,192,256 64 2,3,4 68,69,72

SIMON is a two branch balanced Feistel network which consists of three
operations: AND (&), XOR

⊕
and Rotation (≪). The State Update Function

of SIMON is shown in Fig. 1.
If (Li, Ri) be the input to the ith round then the state is updated as follows:

F (x) = (x ≪ 1)&(x ≪ 8)
⊕

(x ≪ 2)

Li+1 = Ri

⊕
F (Li)

⊕
ki

Ri+1 = Li

where ki is the round key which is generated by the key scheduling algorithm
described below.

The key scheduling algorithm of SIMON has three different procedures
depending on the key size. We discuss the variants of SIMON only for the value
of m = 4. Hence, from here, we will consider the value of m as 4. The first 4
round keys are initialized directly from the main key. The remaining (T − 4)
round keys are generated by the following procedure:

ki+4 = c ⊕ (zj)i ⊕ ki ⊕ (I ⊕ S−1)(S−3ki+3 ⊕ ki+1)

For a detailed description of SIMON, the readers are referred to [3].
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Fig. 1. SIMON round function

2 Proposed Differential Fault Attack

We follow a transient single bit-flip model of attack [4] here. It is transient,
because the injected fault propagates to other locations with further encryption
rounds. It is different from other fault attack models like hard faults [5], where
a fault is permanent and sticks to a certain position. Moreover, hard faults can
damage the device and prevent its re-usability.

As we discussed earlier, the attack model we employ here has been inspired
from Differential Fault Attack on Stream Ciphers. In a stream cipher, knowledge
of the plaintext is enough to know the generated keystream, using which fault
attack is mounted. The fault can be injected in any particular state of the stream
cipher and once injected, it is clocked � times to generate an �-length keystream
sequence. Then the cipher is reset to the same state, a new fault is injected
in a different register location of the state and is clocked again � times to give
out the faulty keystream. The process is repeated ρ many times, where ρ is the
fault requirement of the cipher. There have been many works on fault attacks on
stream ciphers, namely, [1,2,7,8]. In this work, we successfully adopt such models
to a popular block cipher, SIMON2n/4n. However, for block ciphers, we need
to assume that the plaintext remains fixed (contrary to stream ciphers where
knowledge of the plaintext is enough) and the differences in faulty and fault-free
ciphertexts are noted to deduce the secret key, hence � = 2n for SIMON2n/4n.
For the stream ciphers, the fault is injected in some initial rounds in PRGA. In
a similar line, here the fault is injected in some unknown register location of L
or R of SIMON2n/4n at the beginning of some round, say r = (T − 5). Then, in
the analysis, all the 4 round keys are involved from round r to round T . Thus,
the challenge is to mount the attack with fault injection at an earlier round.
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Note that our fault attack model assumes a flip of a single bit from 1 → 0 or
0 → 1. We assume that the adversary has the technology to inject a single laser
beam of wavelength not bigger than the target cell itself, i.e., only a single bit
will be affected. The adversary must have the ability to reset the cipher with the
original key and plaintext. Since the faults are not permanent, such assumptions
are considered to be feasible in literature. To summarize, our fault attack model
assumes the following.

1. The adversary has the required technology to inject faults, with precise
timing.

2. Fault injection causes a single bit-flip, and the effect propagates to other
locations with each clocking.

3. The adversary can reset the cipher using the original secret key.

We also assume that the location of the fault is not known to the adversary.
For this purpose, we explain in Sect. 2.1 how we can identify the location of the
injected fault.

2.1 Identifying the Fault Location Using Signatures

Consider an experiment where we encrypt a plaintext P = {p0, p1, · · · , p(2n−1)}
using key K to obtain the ciphertext C = {c0, c1, · · · , c(2n−1)}. Suppose we
repeat the experiment, where the plaintext P is encrypted with the key K, but
a 1-bit fault is injected in the rth round of SIMON, to obtain a faulty ciphertext
C(γ) = {c

(γ)
0 , c

(γ)
1 , · · · , c

(γ)
(2n−1)}, where γ denotes the location of the injected

fault. We take r = T − 5 here, that is, we inject fault in the 27th round of the 32
round SIMON32/64, 31st round of the 36 round SIMON48/96 and in the 39th

round of the 44 round SIMON64/128. The objective of this section is to the
determine the location of the injected fault, i.e., γ. The process of determining
γ is same for all the three variants, and consists of two phases, the offline phase
and the online phase.

The Offline Phase. In this phase, the adversary calculates signatures for each
possible fault location of SIMON, and stores it in a tabular form for accessing
in the online phase. The signature vector S(j) is calculated as:

S(j) = (s(j)0 , s
(j)
1 , · · · , s

(j)
(2n−1)), (1)

where

s
(j)
i =

1
2

− Pr(ci �= c
(j)
i ), (2)

for j = 0, 1, · · · , (2n − 1) and i = 0, 1, · · · , (2n − 1).
The probability (Pr(ci �= c

(j)
i )) is calculated over a sufficient number of

trials, where for each trial we consider a random key and a random plaintext.
From experiments, we find that 220 trials are sufficient for obtaining a reasonable
accuracy. The signatures S(0), S(1), · · · , S(2n−1) are stored for all possible 2n
fault locations.
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The Online Phase. For a plaintext P , the corresponding fault free ciphertext
C is obtained using an unknown key K. Next, the adversary obtains a faulty
ciphertext C(γ) from the same plaintext P and key K by injecting a fault at
location γ, 0 ≤ γ ≤ 2n − 1 in the internal state Sr. Sr is the internal state after
r rounds of encryption.

Once the adversary has λ faulty ciphertexts, he calculates the trail of each
faulty ciphertext C(γ) as:

τ (γ) = (ψ(γ)
0 , ψ

(γ)
1 , . . . , ψ

(γ)
(2n−1)), (3)

where ψ
(γ)
i is:

ψ
(γ)
i =

1
2

− (ci ⊕ c
(γ)
i ). (4)
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Fig. 2. The plot of sj
i on index (i) and fault location (j) for faults injected in (T −5)th

round

Now the adversary has to identify γ for each faulty ciphertext C(γ), by match-
ing the trail τ (γ) to some suitable signature S(j). For this, a modified version of
Pearson’s correlation coefficient is used.

Using the modified Correlation Coefficient µ. Note that −1 ≤ μ(S(j),

τ (γ)) ≤ 1. A signature S(j) = (sj
0, s

j
1, · · · , sj

(2n−1)) and a trail τ (γ) = (ψ(γ)
0 ,

ψ
(γ)
1 , · · · , ψ

(γ)
(2n−1)) are said to be a mismatch if there exists atleast one

j, 0 ≤ j ≤ (2n−1) such that (sj
i = 1

2 , ψγ
i = − 1

2 ) or (sj
i = − 1

2 , ψγ
i = 1

2 ) holds true.
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In case of a mismatch, we say μ(S(j), τ (γ)) = −1, where μ(Sj , τγ) is the correla-
tion coefficient

μ(x, y) =
∑n

i=1(xi − x̄)(yi − ȳ)
√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2
(5)

For each trail τ (γ), the adversary calculates the correlation μ(Sj , τγ) and
α(S(γ)) = |{j : (μ(Sj , τγ)) > μ(Sγ , τγ)}|.

For every unknown fault location γ, a table T(γ) is prepared, where each
fault location j is arranged in the decreasing order of the correlation coefficient
μ(S(j), τ (γ)), taken between its signature Sj and the trail τ (γ), i.e., μ(S(j), τ (γ)).

Since the fault locations j are arranged in decreasing order of correlation
coefficients μ(S(j), τ (γ)), it is intuitive that we expect the first entry in the table
to be the unknown fault location. However, our experiments show that it is
not always the case. To arrive at the correct set of fault locations we need to
consider all possible set S(γ) of fault locations, where S(γ) = {j : (μ(S(j), τγ)) ≥
μ(Sγ , τγ)} and α(S(γ)) = |S(γ)|.

For example, if we have injected λ faults in SIMON then the number of
possible combinations of faults locations which needs to be considered to arrive
at the correct set of fault locations is (α(Sγ))λ. So we have to run the SAT solver
(α(Sγ))λ many times.

Table 2. Expected number of times the SAT solver needs to be run to arrive at a
correct set of fault locations.

SIMON2n/4n
Variant

Round
injected

Number of
Faults (λ)

α(Sγ) Number of times SAT
solver is run (=(α(Sγ))λ)

SIMON32/64 27 4 9.13 ≈ 23.191 212.764

SIMON48/96 31 6 10.07 ≈ 23.345 220.070

SIMON64/128 39 9 39.49 ≈ 25.311 247.799

The Depreciating Rank. For identifying a fault injected in the (T − 5)th

round of SIMON2n/4n is relatively easier. The ranks of fault locations average
to 1, and very few combinations need to be checked for. However, while moving
each subsequent round away (earlier) from the final round, the average rank falls
pretty quickly due to further mixing. To be convinced, we have experimented
and the trend can be seen in all the three variants of SIMON2n/4n. This means
that it will become more and more difficult to identify location of the fault for
rounds prior to (T −8) of SIMON2n/4n, which is round 24 for SIMON32/64, 28
for SIMON48/96 and 36 for SIMON64/128. Naturally, identifying faults injected
in the beginning of first round of SIMON2n/4n will mean a differential attack
on SIMON2n/4n itself. Further, the number of faults required to deduce the key
also increases, due to the increasing non-linearity of the equations. This increases
the overall number of combinations to check for (that is (α(S(γ)))λ), since both
α and λ increase.
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While experimenting, we observed that the mixing is better in case of
SIMON48/96 followed by SIMON32/64 and SIMON64/128. This needs further
investigation, which is not in the scope of this paper. After the tables have been
prepared for all the faulty ciphertexts, we deduce the key using a SAT solver.
This is explained in the following section.

2.2 Recovering the Secret Key

Using our bit-flip model of attack mentioned in Sect. 2, we will show how we can
recover the secret key of SIMON. Suppose the adversary is able to inject λ many
faults in the rth round of the internal state register Sr; resetting the cipher to
its original state post every fault injection. Note that the fault can be injected in
both L and R register locations of SIMON2n/4n. For simplicity, the fault-free
ciphertext is denoted by C0 and the λ faulty ciphertexts by C1, C2, . . . , Cλ. We
consider r = T − 5 for each variant of SIMON2n/4n as mentioned before.

For every fault (out of λ many faults) injected in Sr, the fault propagates as
per the construction of SIMON to Sr+1 using the same round key that was used
to obtain C0. A fault injected in register Lr propagates as follows:

Lr+1 = F (L∗
r) ⊕ Ri ⊕ kr (6)

Rr+1 = L∗
r (7)

where L∗
r is the affected register. In case of injecting a fault in Rr, we have

Lr+1 = F (Lr) ⊕ R∗
i ⊕ kr (8)

Rr+1 = Lr (9)

For every round r′ from r + 1 to T , as illustrated in Sect. 1.3, we have two
functions:

1. The State Update Function, and
2. The Round Key Function (or the key scheduling algorithm).

We initialize 2n variables Lr,0 . . . , Lr,(n−1) and Rr,0 . . . Rr,(n−1) for the state of
SIMON at round r, where Lr,j (Rr,j) is the jth bit of the left (right) block of the
internal state Sr. After every state update, the variables will be initialized as:

Lr+1,j = (Lr,(j−1) mod(n) &Lr,(j−8) mod(n)) ⊕ Lr,(j−2) mod(n) (10)
⊕ Rr,j ⊕ kr,j (11)

Rr+1,j = Lr,j (12)

for j = 0, 1, . . . , (n − 1). However, every additional round of encryption will
increase the degree of the polynomials, hence we introduce new state variables
Lr′+1,0 . . . , Lr′+1,(n−1), Rr′+1,0, . . . Rr′+1,(n−1) for each round r′ and formulate



116 R. Anand et al.

equations accordingly. In a boolean polynomial system of equations, the same
would be:

0 ≡ Lr′+1,j ⊕ (Lr′,(j−1) mod(n)&Lr′,(j−8) mod(n)) ⊕ Lr′,(j−2) mod(n)

⊕ Rr′,j ⊕ kr′,j (13)
0 ≡ Rr′+1,j ⊕ Lr′,j (14)

Hence, we obtain 5 · 2n = 10n variables and 5 · 2 · 2n = 20n equations by
repeating Eqs. (13) and (14). Now, we have (λ + 1) cipher-texts, hence we have
10n · (λ + 1) variables and 20n · (λ + 1) equations, forming a system of Boolean
equations. We consider using SAT solvers here, for example, Cryptominisat,
which is available with SAGE. The SAT solver can return a solution set satisfying
the equations. The key is then tested by encrypting a plaintext and verifying
with the ciphertext.

As the number of rounds increases, the complexity of equations increases
drastically. Thus, we guess a certain portion of the state of SIMON for the
round in which the fault was injected. Here, we guess the entire register R. The
guessed bits are directly substituted into the equations. We discuss our results
in Sect. 2.3.

Because of the sharp rise in the non-linearity of the equations, we cannot
formulate equations for faults injected in round 23 or before, even if we may
be aware of the exact location of the injected faults. The computation time
required for the same increases significantly (more than 6 hours of solving time),
and also increasing the number of faults does not help – since this will only lead
to more equations and variables. We are looking at possible optimizations to
further improve this situation.

2.3 Experimental Results

In this section, we present the results of our fault attack.

Table 3. Fault requirements for DFA on SIMON.

Round fault is
injected in

Number of
faults (λ)

Number of bits
guessed in R

Time taken by
SAT solver

SIMON32/64 27 4 16 191.230 s

SIMON48/96 31 6 24 290.997 s

SIMON64/128 39 9 32 403.035 s

These experiments were conducted as shown in Table 3 on a consumer grade
laptop HP-15D103TX with CPU specifications Intel(R) Core(TM) i5-4200M
CPU @ 2.50GHz running SageMath version 8.1 along with Cryptominisat pack-
age on Ubuntu Bionic Beaver (development branch). For the experiments, we
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have considered 217 random plaintext and key pairs. For each pair λ faults are
injected in the (T −5)th round. We find the location of the faults as described in
Sect. 2.1. Then these fault locations are used to recover the key as in Sect. 2.2.
Since we were successful in locating the faults and recovering the secret key cor-
rectly for all the 217 pairs, we believe that our attack model will recover the
key for any random plaintext and key. We claim a minimum requirement of 4,
6 and 9 faults for SIMON32/64, SIMON48/96 and SIMON64/128 respectively,
to successfully recover the key.

2.4 Time Complexity Analysis

In all the previous papers, the discussions related to the time complexity for the
fault attack has been limited to calculating the average number of fault injections
required to deduce the round keys. The comparison of their attack models are
based on the experimental number of fault injections required and the rounds in
which the faults have been injected. However, we explain the fault requirements
and time complexity clearly, as given in Tables 4 and 5 respectively.

Table 4. Comparison of the experimental number of the fault injections

SIMON2n/mn Random n-bit model Random byte model Random bit model

[9] [10] [10] [11] Section 2.3

SIMON32/64 12.20 24 100 50.85 4

SIMON48/96 13.22 36 172 87.19 6

SIMON64/128 13.93 52 248 126.29 9

Table 5. Comparison of the rounds in which faults are injected in case of each attack
model

SIMON2n/mn Random n-bit model Random byte model Random bit model

[9] [10] [10] [11] Section 2.3

SIMON32/64 L27, L28, L29, L30 L27, L28, L29, L30 L27, L28, L29, L30 L27, L29 L27, R27

SIMON48/96 L31, L32, L33, L34 L31, L32, L33, L34 L31, L32, L33, L34 L31, L33 L31, R31

SIMON64/128 L39, L40, L41, L42 L39, L40, L41, L42 L39, L40, L41, L42 L39, L41 L39, R39

Since estimating the time complexity of the SAT solver compared to each
evaluation of the cipher with a single key is not inside the scope of this paper,
we give a rough estimate of the overall complexity of the attack. Our attack
procedure consists of the following two steps:

1. locating the faults using correlation between faulty and fault-free keystreams,
2. deriving the secret key by formulating equations from keystreams.
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Table 6. Time complexities of DFA on variants of SIMON.

Fault Requirements w x Time Complexity

SIMON32/64 4 16 12.76 228.76 · c

SIMON48/96 6 24 20.07 244.07 · c

SIMON64/128 9 32 47.80 279.80 · c

Consider that 2x is the number of times the SAT solver needs to be run to
arrive at a correct set of fault locations and w is the number of bits guessed by
SAT solver to derive the key. Then the time complexity of the attack is 2x∗2w ∗c,
where c is the time complexity of each execution of the SAT solver.

While the time complexity of our attack cannot be immediately compared to
the existing works, the fault requirement of our model is much lesser. Needless
to mention that injecting too many faults can damage the device and thus we
consider injecting as little faults as possible for a more practical attack. Further
our attack also works for same or earlier rounds than the existing efforts.

3 Conclusion

In this work, we present a Differential Fault Attack on SIMON32. First, we show
how one can identify the location of injected faults using signatures. Next, we
describe that by injecting as few as 4, 6 and 9 faults in the (T −m−1)th round of
the SIMON32/64, SIMON48/96 and SIMON64/128, we can recover the complete
key. Although our work does not compromise its security in normal mode, the
attack is achievable under certain constrained environment. We will analyze the
remaining seven SIMON instances using the same attack model and these results
will be available in the journal version of our paper.
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7. Hojśık, M., Rudolf, B.: Differential fault analysis of Trivium. In: Nyberg, K. (ed.)
FSE 2008. LNCS, vol. 5086, pp. 158–172. Springer, Heidelberg (2008). https://doi.
org/10.1007/978-3-540-71039-4 10

8. Maitra, S., Siddhanti, A., Sarkar, S.: A differential fault attack on plantlet.
IEEE Trans. Comput. 66(10), 1804–1808 (2017). https://doi.org/10.1109/TC.
2017.2700469

9. Takahashi, J., Fukunaga, T.: Fault analysis on SIMON family of lightweight block
ciphers. In: Lee, J., Kim, J. (eds.) ICISC 2014. LNCS, vol. 8949, pp. 175–189.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15943-0 11

10. Tupsamudre, H., Bisht, S., Mukhopadhyay, D.: Differential fault analysis on the
families of Simon and Speck ciphers. In: Workshop on Fault Diagnosis and Toler-
ance in Cryptography (FDTC), pp. 40–48. IEEE (2014)

11. Vasquez, J.d.C.G., Borges, F., Portugal, R., Lara, P.: An efficient one-bit model for
differential fault analysis on SIMON family. In: 2015 Workshop on Fault Diagnosis
and Tolerance in Cryptography (FDTC), pp. 61–70. IEEE (2015)

https://doi.org/10.1007/BFb0052259
https://doi.org/10.1007/978-3-540-71039-4_10
https://doi.org/10.1007/978-3-540-71039-4_10
https://doi.org/10.1109/TC.2017.2700469
https://doi.org/10.1109/TC.2017.2700469
https://doi.org/10.1007/978-3-319-15943-0_11


Cryptanalysis of 2 Round KECCAK-384

Rajendra Kumar1(B), Nikhil Mittal1, and Shashank Singh2

1 Center for Cybersecurity, Indian Institute of Technology Kanpur, Kanpur, India
{rjndr,mnikhil}@iitk.ac.in

2 Indian Institute of Science Education and Research Bhopal, Bhopal, India
shashank@iiserb.ac.in

Abstract. In this paper, we present a cryptanalysis of round reduced
Keccak-384 for 2 rounds. The best known preimage attack for this vari-
ant of Keccak has the time complexity 2129. In our analysis, we find
a preimage in the time complexity of 289 and almost same memory is
required.
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1 Introduction

Cryptographic hash functions are the important component of modern cryptog-
raphy. In 2008, U.S. National Institute of Standards and Technology (NIST)
announced a competition for the Secure Hash Algorithm-3 (Sha-3). A total
of 64 proposals were submitted to the competition. In the year 2012, NIST
announced Keccak as the winner of the competition. The Keccak hash func-
tion was designed by Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles
Van Assche [2]. Since 2015, Keccak has been standardized as Sha-3 by the
NIST.

The Keccak hash function is based on sponge construction [3] which is
different from previous Sha standards. Intensive cryptanalysis of Keccak is
done since its inception [1,4–9,11,13–15]. In 2012, Dinur et al. gave a practical
collision attack for 4 rounds of Keccak-224 and Keccak-256 using differential
and algebraic techniques [5] and also provided attacks for 3 rounds for Keccak-
384 and Keccak-512. They further gave collision attacks in 2013 for 5 rounds
of Keccak-256 using internal differential techniques [6]. In 2016, using linear
structures, Guo et al. proposed preimage attacks for 2 and 3 rounds of Keccak-
224, Keccak-256, Keccak-384, Keccak-512 and for 4 rounds in case of smaller
hash lengths [8]. Recently, in the year 2017, Kumar et al. gave efficient preimage
and collision attacks for 1 round of Keccak [9]. There are hardly any attack for
the full round Keccak, but there are many attacks for reduced round Keccak.
Some of the important results are shown in the Tables 1 and 2.
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Our Contribution: We propose a preimage attack for 2 rounds of round-
reduced Keccak-384. The time complexity of attack is 289 and the memory
complexity is 287. The attack is not practical, but it outperforms the previous
best-known attack [8], with a good gap. The proposed attack does not affect the
security of full Keccak.

Table 1. Preimage attack results.

No. of rounds Hash length Time complexity Reference

1 Keccak- 224/256/384/512 Practical [9]

2 Keccak- 224/256 233 [13]

2 Keccak- 224/256 1 [8]

2 Keccak- 384/512 2129/2384 [8]

3 Keccak- 224/256/384/512 297/2192/2322/2484 [8]

4 Keccak- 224/256 2213/2251 [8]

4 Keccak- 384/512 2378/2506 [10]

Table 2. Collision attack results.

No. of rounds Hash length Time complexity Reference

1 Keccak- 224/256/384/512 Practical [9]

2 Keccak- 224/256 233 [13]

3 Keccak- 384/512 practical [6]

4 Keccak- 224/256 224 [5]

4 Keccak- 224/256 212 [14]

4 Keccak- 384 2147 [6]

5 Keccak- 224 2101 [14]

5 Keccak- 224 Practical [15]

5 Keccak- 256 2115 [6]

2 Keccak Description and Notations

Keccak is a family of sponge hash functions with arbitrary output length. A
sponge construction consists of a permutation function, denoted by f , a param-
eter “rate”, denoted by r, and a padding rule pad. The construction produces a
sponge function which takes as input a bit string N and output length d. It is
described below.

The bit string N is first padded based on the pad rule. The padded string
is divided into blocks of length r. The function f maps a string of length b to
another of same length. The capacity, denoted by c, is a positive integer such
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Fig. 1. The sponge construction [3]

that r + c = b. The initial state is a b-bit string which is set to all zeros. After
a string N is padded, it undergoes two phases of sponge, namely absorbing and
squeezing. In the absorbing phase, the padded string N ′ is split into r-bit blocks,
say N1, N2, N3, . . . , Nm. The first r bits of initial state are XOR-ed with the first
block and the remaining c bits are appended to the output of XOR. Then it is
given as input to the function f as shown in the diagram given in the Fig. 1. The
output of this f becomes the initial state for the next block and the process is
repeated for all blocks of the message. After all the blocks are absorbed, let the
resulting state be P .

In the squeezing phase, an string Z is initialized with the first r bits of the
state P . The function f is applied on the state P and the first r bits of output, say
P ′, is appended to Z. The P ′ is again passed to f and this process is repeated
until |Z| ≥ d. The output of sponge construction is given by the first d bits
of Z.

The Keccak family of hash functions is based on the sponge construction.
The function f , in the sponge construction, is denoted by Keccak-f [b], where b
is the length of input string. Internally Keccak-f [b] consists of a round function
p which is recursively applied to a specified number of times, say nr. More pre-
cisely Keccak-f [b] function is specialization of Keccak-p [b, nr] family where
nr = 12 + 2 l and l = log2(b/25) i.e.,

Keccak-f [b] = Keccak-p [b, 12 + 2l] .

The round function p in Keccak consists of 5 steps, in each of which the
state undergoes transformations specified by the step mapping. These step map-
pings are called θ, ρ, π, χ and ι. A state S, which is a b-bit string, in Keccak
is usually denoted by a 3-dimensional grid of size (5 × 5 × w) as shown in the
Fig. 2. The value of w depends on the parameters of Keccak. For example in
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the case of Keccak-f [1600], w is equal to 64. It is usual practice to repre-
sent a state in terms of rows, columns, lanes, and slices of the 3-dimensional
grid. Given a bit location (x, y, z) in the grid, the corresponding row is given by
(S[x + i (mod 5), y, z] : i ∈ [0, 4]). Similarly the corresponding column is given
by the bits (S[x, y + i (mod 5), z] : i ∈ [0, 4]) and the corresponding lane is given
by (S[x, y, z + i (mod w)] : i ∈ [0, w − 1]). Further the slice corresponding to
a location (x, y, z), consists of (S[x + j (mod 5), y + i (mod 5), z] : i, j ∈ [0, 4])
bits. It is pictorially shown in the Fig. 2.

Fig. 2. A state in Keccak

In the following, we provide a brief description of the step mappings. Let A
and B respectively denote input and output states of a step mapping.

1. θ (theta): The theta step XORs each bit in the state with the parities of
two neighboring columns. For a given bit position (x, y, z), one column is
((x − 1) mod 5, z) and the other is ((x + 1) mod 5, (z − 1) mod w). Thus, we
have

B[x, y, z] = A[x, y, z] ⊕ P [(x − 1) mod 5, z]
⊕ P [(x + 1) mod 5, (z − 1) mod w] (1)

where P [x, z] = ⊕4
y=0A[x, y, z].

2. ρ (rho): This step rotates each lane by a constant value towards the MSB
i.e.,

B[x, y, z] = A[x, y, z + ρ(x, y) mod w], (2)

where ρ(x, y) is the constant for lane (x, y). The constant value ρ(x, y) is
specified for each lane in the construction of Keccak.
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3. π (pi): It permutes the positions of lanes. The new position of a lane is
determined by a matrix,

[
x′

y′

]
=

[
0 1
2 3

]
·
[
x
y

]
, (3)

where (x′, y′) is the position of lane (x, y) after π step.
4. χ (chi): This is a non-linear operation, where each bit in the original state is

XOR-ed with a non-linear function of next two bits in the same row i.e.,

B[x, y, z] = A[x, y, z] ⊕
((A[(x + 1) mod 5, y, z] ⊕ 1) · A[(x + 2) mod 5, y, z])) . (4)

5. ι (iota): This step mapping only modifies the (0, 0) lane depending on the
round number i.e.,

B[0, 0] = A[0, 0] ⊕ RCi, (5)

where RCi is round constant that depends on the round number. The remain-
ing 24 lanes remain unaffected.

Thus a round in Keccak is given by Round(A, ir) = ι(χ(π(ρ(θ(A)))), ir), where
A is the state and ir is the round index. In the Keccak-p[b, nr], nr iterations
of Round(·) is applied on the state A.

The Sha-3 hash function is Keccak-p[b, 12 + 2 l], where w = b/25 and l =
log2(w). The value of b is 1600, so we have l = 6. Thus the f function in Sha-3
is Keccak-p[1600, 24].

The Keccak team denotes the instances of Keccak by Keccak[r, c], where
r = 1600 − c and the capacity c is chosen to be twice the size of hash output
d, to avoid generic attacks with expected cost below 2d. Thus the hash function
with output length d is denoted by

Keccak-d = Keccak[r := 1600 − 2d, c := 2d], (6)

truncated to d bits. The Sha-3 hash family supports minimum four different
output length d ∈ {224, 256, 384, 512}. In the Keccak-384, the size of c =
2 · d = 768 and the rate r = 1600 − c = 1600 − 768 = 832 = 13 · 64.

3 Preimage Attack for 2 Rounds of Round Reduced
Keccak-384

In this section, we present a preimage attack for a round reduced Keccak. We
will show that the preimage can be found in 288 time and 287 memory for 2
rounds of round-reduced Keccak-384. Although it is not a practical attack, but
it is an improvement over the existing best attack, for 2 rounds of Keccak-384,
which takes 2129 time [8].
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3.1 Notations and Observations

In the analysis, we will represent a state by the lanes. There are in total 5 × 5
lanes. Each lane in a state will be represented by a variable which is a 64-bit
array. A variable with a number in round bracket “(.)” represents the shift of
the bits in array towards MSB. A variable with a number in square bracket
“[.]” represents the bit value of the variable at that index. If there are multiple
numbers in the square bracket then it represents the corresponding bit values.

We are going to use the following observations in our analysis.

1. Observation 1: The χ is a row-dependent operation. Guo et al. in [8],
observed that if we know all the bits of a row then we can invert χ for
that row. It is depicted in the Fig. 3.

a′
i = ai ⊕ (ai+1 ⊕ 1) · (ai+2 ⊕ (ai+3 ⊕ 1) · ai+4) (7)

a0 a1 a2 a3 a4 a′
0 a′

1 a′
2 a′

3 a′
4

χ−1

Fig. 3. Computation of χ−1

2. Observation 2: When only one output bit is known after χ step, then the
corresponding input bits have 24 possibilities. Kumar et al. [9] gave a way to
fix the first output bit to be the same as input bit and the second bit as 1. It
is shown in the Fig. 4.

a0 ∗ ∗ ∗ ∗ a0 1 ∗ ∗ ∗
χ−1

Fig. 4. Computation of χ−1

3.2 Description of the Attack

The Keccak-384 outputs 384 bits hash value, which is represented by the first
6 lanes in the state obtained in the start of the squeezing phase. The diagram
in the Fig. 5 represents this state. The values of remaining lanes are represented
by � and we do not care these values. We are interested in finding a preimage
for which 6 lanes of corresponding state matches. We will call this state as final
state. Furthermore, we can ignore the ι step without the loss of generality, as
it does not affect the procedure of the attack. However it should be taken into
account while implementing the attack.
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Fig. 5. Final state

We further note that the initial state, which is fed to Keccak-f function,
is the first message block which is represented by 25 − 2 · 6 i.e., 13 lanes. The
remaining 12 lanes are set to 0. Pictorially, this state is represented by the
diagram in the Fig. 6. We call this state initial state. Our aim is to find the
values of a0, a1, a2, b0, b1, b2, c0, c1, c2, d0, d1 and e0, e1 in the initial state which
lead to a final state having first six lanes as h0, h1, h2, h3, h4 and h5.

We follow the basic idea of the attack, given in the paper [13]. We start the
attack by setting variables in the initial state which ensures zero column parity.
This is done by imposing the following restrictions.

a2 = a0 ⊕ a1, b2 = b0 ⊕ b1, c2 = c0 ⊕ c1

d1 = 0, d0 = 0 and e1 = e0. (8)

Fig. 6. Setting of initial state in the attack

This type of assignment to the initial state will make the θ step mapping,
an identity mapping. Even though we have put some restrictions to the initial
state, we still find the input space of Keccak-384 (with 1 message block) large
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enough to ensure first 6 lanes of output state, the given hash value. We explain
the details of the analysis below.

Note that the output of attack is an assignment to the variables a0, a1, a2,
b0, b1, b2, c0, c1, c2, d0, d1 and e0, e1, which gives the target hash value. Recall
that we are mounting an attack on the 2-Round Keccak-384 (see the diagram
in Fig. 7). The overall attack is summarized in the diagram given in the Fig. 8.
The State 2, in the Fig. 8, represents the state after π ◦ ρ ◦ θ is applied to the
State 1. The θ-mapping becomes identity due to the condition (Eq. 8) imposed
on the initial state. The ρ and π mappings are, nevertheless, linear.

Fig. 7. Two round of Keccak-384

We are given with a hash value which is represented by first 6 lanes in the
State 4 (Fig. 8). It represents the final state (Round 2) of Keccak-384. The state
can be inverted by applying χ−1 ◦ ι−1 mapping. The ι−1 is trivial and χ−1 can
be computed using the Observations 3.1 and 3.1. The first 7 lanes of the output
is {h′

0, h
′
1, h

′
2, h

′
3, h

′
4, h

′
5, h

′
6, 1}. We do not care the remaining lanes. Then the

mappings π−1 and ρ−1 are applied, which are very easy to compute, to get the
State 3 (Fig. 8). Note that, at this point, the blank lanes in the State 3, of the
Fig. 8, could take any random value and this does not affect the target hash value.
The number shown in round brackets along with the variable, in the State 2 and
State 3 (Fig. 8), is due to ρ step mapping. On applying θ ◦ ι◦χ, operation on the
State 2, the output should match with the State 3 (Fig. 8). In the State 3, there
are 7 lanes whose values are fixed. This will impose a total of 7 × 64 conditions
on the variables we have set in the initial state. As mentioned earlier, we have
also set 6 conditions (see the Eq. 8) on the initial state variable and this will
further add 6 × 64 conditions. So there are in total 13 × 64 conditions. Since
the number of variables and the number of conditions is equal, we can expect to
find one solution and it is indeed the case. In the rest of this section, we provide
an algorithm to get the unique solution. Our method is based on the technique
proposed by Naya-Plasencia et al. in the paper [13].

We aim to find the assignment of bits to the initial state which leads to a
target hash value. We proceed as follows. We start with all possible assignments
in the groups successive 3 slices. Using the constraints (transformation from
State 2 to State 3 (Fig. 8)), we discard some of the assignments, and store the
remaining ones, out of which one would be a part of the solution. This is done
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Fig. 8. Diagram for 2-round preimage attack on Keccak-384

for every 3-slice. Next step is to merge the two successive 3-slices. Again we do
discard certain choices of assignments and keep the remaining ones. This process
is continued to fix a set of good assignments to the 6-slices, 12-slices, 16-slices,
24-slices and 48-slice. In the last, after combining all the assignments we are
left with a unique assignment, which is the required preimage. We explain the
details in the Sect. 3.3 below.

3.3 Finding Partial Solutions

We focus on the two intermediate states of the attack i.e., the State 2 and the
State 3 (see the Fig. 9 below). Note that, since d0 and d1 are set to 0 in the
beginning, we are now left with 11 lane variables a0, a1, a2, b0, b1, b2, c0, c1, c2, e0
and e1 only. We can ignore the ι mapping in the transformation form State 2 to
State 3, without the loss of generality. The χ-mapping depends only on the row,
so it will not get affected by the bit values of the other slices. It is θ-mapping
that depends on the values in the two slices; the slice on its original bit position
and a slice just before it.

Possible Solutions for 3-slices. In a 3-slice there are 3 · 11 = 33 bit variables
for which we have to find the possible assignments.
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Fig. 9. Intermediate states in 2-round preimage attack on Keccak-384

Note that the bit variables, for example take a0[i], a1[i] and a2[i], are related
(a2 = a0 ⊕ a1), but due to rotation, they do not appear together when the suc-
cessive 3 slices are considered. Similarly, the other variables are also independent
when restricted to a 3-slice. This can be explained using the following example. If
we take the first three slices then we get the following 33 independent variables,
given in the Eq. 9.

a0[0, 1, 2], a1[3, 4, 5], a2[36, 37, 38],
b0[1, 2, 3], b1[10, 11, 12], b2[44, 45, 46],
c0[62, 63, 0], c1[6, 7, 8], c2[43, 44, 45],
e0[27, 28, 29], e1[20, 21, 22].

(9)

None of these variables have any dependency despite the initial restriction, given
by Eq. 8. So we have an input space of 33 independent variables in a given 3-slice.

Given a 3-slice in the State 2, we need to apply θ ◦ ι ◦ χ mapping to get an
output in the State 3. Since the θ mapping depends on the values of two slices;
the current slice and one preceding it, we will only able to get the correct output
for two slices. In the State 3, we have the values of 7 lanes available with us. So
for the two slices, we have 7 · 2 fixed bit values. For each of 233 assignments in a
3-slice of the State 2, we compute the output of θ ◦ ι ◦ χ mapping and match it
to the 14 bit locations, the values of which are available in the State 3. Thus for
each 3-slice, we get 233−14 = 219 solutions. This is repeated for 16 consecutive
3-slices, other than last 16 slices. We use the fact that the time complexity of
building the list is given by the size of the list as stated in Sect. 6.4 of [13]. Thus
the required time and memory complexity is of the order 16 · 219 = 223.

Possible Solutions for 6-Slices. The possible solutions for a 6-slice are
obtained by merging the possible solutions of its constituents two 3-slices. The
variables restricted to the 6-slice is again independent. This can be explained in
the following manner. Consider the rotated lanes a0(0), a1(3) and a2(36). Since
the lane variable a2 is rotated by 36 and a1 is rotated by 3, the corresponding
bits of original lanes are still 33 places apart. Similarly e0 is rotated by 27 and
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e1 is rotated by 20, the corresponding bits are again 7 places apart, so there is
no repetitions of bits (remember initial condition e0 = e1). Since the difference
between the rotation of related variables is more than 6, the bit variables in
a 6-slice are also independent. So we have 219·2 = 238 possibilities for the bit
variables in a 6-slice.

We have already noted that the θ-mapping cannot be computed for the
first slice of a given 3-slice. But, when we are merging two consecutive 3-slices,
θ-mapping for the first slice of second 3-slice can be computed and this will
pose an additional restriction (of 7 bits) for the input space of the 6-slice. As an
example consider a group of slices (0, 1, 2) and another group of slices (3, 4, 5).
Note that the θ-mapping, on the slice 3, depends on the slice 3 and 2. So when
we are merging these two 3-slices, we will have to satisfy the bits corresponding
to slice 3, in the State 3.

So we get a total 219·2−7 = 231 solutions. There are 8 number of 6-slices. The
cost of this step is 8 · 231 in both time and memory. Note that the merging of
two lists is done using the instant matching algorithm described in [12] by the
method described in the Sect. 6.4 of the paper [13]. This method will be used
in the following steps also, where the time complexity will be bounded by the
number of solutions obtained. Thus this step has time and memory complexity
of 8 · 231 = 234.

Possible Solutions for 12-Slices. For computing the possible solutions for a
12-slice, we merge two of its constituents 6-slices, in a manner similar to what we
did for a 6-slice. In this case, the number of repeated bits in merge is 5, because the
corresponding bits in e0 and e1 are set 7 places apart by the rotation in the State 2.
Thus total number of possible solutions for a 12-slice is 231·2−5−7 = 250. There
are 4 groups of 12 slices, so it has time and memory complexity of 4 · 250 = 252.

Possible Solutions for 24-Slices. Similar to the previous cases, we merge
each of its two consecutive 12-slices. In this case, the number of repeated bits
is 24 − 7 = 17, out of which 5 · 2 = 10 has already been considered, during the
construction of possible solutions of 12-slices. So the number of new repeated
bit variables are 7. Hence, the total number of possible solutions for this case is
250·2−7−7 = 286. Note that the removal of addition seven bits is due to merg-
ing. There are 2 groups of 24 slices, so it has time and memory complexity of
2 · 286 = 287.

Possible Solutions for 48-Slice. Finally, we merge the two groups of 24 slices.
We have 2 sets of 24 slices as

1st group:
a0 → 0, 1, 2, . . . , 23
a1 → 3, 4, 5, . . . , 26
a2 → 36, 37, 38, . . . , 59

⎫⎪⎬
⎪⎭ (10)
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2nd group:
a0 → 24, 25, 26, . . . , 47
a1 → 27, 28, 29, . . . , 50
a2 → 60, 61, 62, . . . , 19

⎫⎪⎬
⎪⎭ . (11)

After Merging these two groups (Eqs. (10) and (11)) of 24 slices, we get

a0 → 0, 1, 2, . . . , 47
a1 → 3, 4, 5, . . . , 50
a2 → 36, 37, . . . , 63, 0, 1, . . . , 19

⎫⎪⎬
⎪⎭ . (12)

Here the common variables for 〈a0, a1, a2〉 are the bits with positions
36, 37, . . . , 47 and 3, 4, . . . , 19. They are total 29 in number. It will impose 29
conditions on the input space for the 48-slice. Similarly for the lanes 〈b0, b1, b2〉,
we get 23 conditions and for 〈c0, c1, c2〉, we get 24 such conditions. On the other
hand, there are 7 new repeated bits in the lanes e0 and e1. Thus the total number
of solutions turns out to be 286·2−(29+23+24+7)−7 = 282. Since, there is only one
48-slices, so it has time and memory complexity of 282.

Possible Solutions for Remaining 16 Slices. For finding solutions for the
remaining 16 slices, we first find solutions for the 12 rightmost slices, the same
way as before, and obtaining 250 possible solutions. Next, we obtain the possible
solutions for the remaining 4 slices, we have 44 variables and none of them are
repeated. Since we can get the output of θ-mapping for the last 3 slices out of the
4. We have 244−7·3 = 223 possible solutions for this 4-slice. Now, we can merge
12-slice and 4-slice to obtain possible solutions for the last 16 slices. Between
12-slice and 4-slice, there are 4 repetitions (due to e0 and e1) and there are
additional 7 bits of restrictions due to merging. This gives us 250+23−4−7 = 262

possible solutions.

Final Solution(s) and Attack Complexity. Now, we have to merge the
solutions for the group of first 48 slices and the group of last 16 slices. They
have in common 35 bits from a0, a1 and a2, 41 bits from b0, b1 and b2, 40 bits
from c0, c1 and c2 and 14 bits from e0 and e1. Additionally, in merging, we can
compute the θ mapping of the remaining two slices, in turn get the additional
restriction of 2 · 7 bits. Thus the total number of possible solutions, we are left
with, is 282+62−(35+41+40+14)−2·7 = 20 = 1. This step has time complexity 282.

Total time complexity of the attack is given by 233+234+252+287+263+282,
which is of the order 288. The total memory required is 287. This confirms that
there exists a set of values for the variables such that the preimage can be
obtained from the hash value for the Keccak-384.

Remark: In our attack, we have fixed d0, d1 lanes to be equal to 0 as shown in
Eq. (8) because otherwise, these variables would have increased the number of
solutions, due to shifting by ρ. And this would have increased the complexity of
the attack. We chose to eliminate their effects by setting them to 0. For further
implementation details, we refer to the Sect. 6.4 of the paper [13]. Also due to
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the padding rule on the message, the assignment to the c1[63] bit should be 1.
This happens with probability 1

2 . On failure we can repeat the attack by setting
any value to d0, d1 which satisfies d0[i] = d1[i].

In view of the above remark, the overall cost of the attack is 2 · 288 i.e., 289.

4 Conclusion and Future Works

In this paper, we have presented a preimage attack on the 2 rounds of round-
reduced Keccak-384. The attack is not yet practical but it is much better
than the existing best-known attack in term of the time complexity. The basic
idea of the attack can be used to mount a practical preimage attack on the
Keccak[r := 400−192, c := 192] and Keccak[r := 800−384, c := 384]. We are
working on their implementations. We will make the source code public, once it
is ready. Further, in future, we will try to explore a practical attack for the 2 or
more rounds of round-reduced Keccak-384.

Acknowledgement. We thank the reviewers of Indocrypt-2018 for providing com-
ments which helped in improving the work. In particular, we thank an anonymous
reviewer for suggesting us to implement the attack on the Keccak[r := 400−192, c :=
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work.
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Abstract. Recently Castryck, Lange, Martindale, Panny, and Renes
published CSIDH, a new key exchange scheme using supersingular ellip-
tic curve isogenies. Due to its small key sizes and the possibility of
a non-interactive and a static-static key exchange, CSIDH seems very
interesting for practical applications. However, the performance is rather
slow. Therefore, we employ some techniques to speed up the algorithms,
mainly by restructuring the elliptic curve point multiplications and by
using twisted Edwards curves in the isogeny image curve computations,
yielding a speed-up factor of 1.33 in comparison to the implementation
of Castryck et al. Furthermore, we suggest techniques for constant-time
implementations.

Keywords: CSIDH · Post-quantum cryptography
Supersingular elliptic curve isogenies

1 Introduction

Isogeny-Based Cryptography. Isogeny-based cryptography is one of the cur-
rent proposals for post-quantum cryptography. Already proposed in a talk (but
not published) by Couveignes in 1997 [12] and independently rediscovered by
Rostovtsev and Stolbunov in 2004 [22], a Diffie-Hellman-style key exchange based
on isogenies between ordinary elliptic curves was designed (called CRS in the
following). In 2010, Childs, Jao and Soukharev [9] showed, that this scheme can
be attacked by solving an abelian hidden shift problem, for which subexponential
quantum algorithms are known to exist.

Due to this, Jao and De Feo [16] considered the use of supersingular ellip-
tic curves, and designed the new key exchange scheme SIDH (supersingular
isogeny Diffie-Hellman), based on random walks in isogeny graphs for supersin-
gular elliptic curves defined over fields Fp2 . The performance of their scheme
was improved by Costello, Longa, and Naehrig [11], yielding an important step
towards practical deployment of SIDH, and also causing an increase of atten-
tion and research for isogeny-based cryptography. This led to the development
of SIKE [1], an isogeny-based key encapsulation scheme, as entry for the NIST
post-quantum cryptography competition [23], that aims for the standardization
c© Springer Nature Switzerland AG 2018
D. Chakraborty and T. Iwata (Eds.): INDOCRYPT 2018, LNCS 11356, pp. 137–152, 2018.
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of post-quantum schemes in order to start the transition to the practical use
of quantum-resistant primitives. The main advantage of SIKE comes from its
key sizes. Among all the submitted key encapsulation schemes, it provides the
smallest public keys. However, the price for this is a rather bad performance. In
comparison to the other competition entries, the running time of SIKE is slow1.

Recently, De Feo, Kieffer, and Smith [15] published some new ideas for the
optimization of the CRS scheme. Due to its commutative and non-interactive
structure, it is still an interesting alternative to SIDH and SIKE. However, the
performance is far from being practical. Therefore, Castryck, Lange, Martindale,
Panny, and Renes [8] found that the optimizations, that De Feo, Kieffer, and
Smith wanted to employ, work even better when adapting CRS to supersingular
elliptic curves, i.e. working with supersingular elliptic curves over Fp rather than
Fp2 like in SIDH. They obtain a non-interactive key exchange scheme with even
smaller key sizes than in SIDH, called CSIDH (commutative SIDH, pronounced
like “seaside”), that also allows static keys, since public keys can be validated, to
detect active attacks. The performance is rather slow in comparison to SIDH and
SIKE2, which explains why it is an interesting and important task to optimize
the running time of the scheme. However, we note that the security of the scheme
and hence also the choice of parameters is still an open problem, which we will
only briefly address in the next section.

Organization. In the following section, we give an introduction to CSIDH,
mainly focusing on the implementer’s point of view, and recall some aspects
about Montgomery and twisted Edwards curves. We then introduce a way to
restructure elliptic curve point multiplications in CSIDH, that allows a reduc-
tion of the computational effort. Thereafter, we review some methods to compute
isogenies, i.e. point evaluations and computations of the image curves. In the first
case, we employ an observation of Costello and Hisil [10] for a speed-up to the
implementation of [8], whereas in the latter case, we exploit the well-known cor-
respondence between Montgomery and twisted Edwards curves, to compute the
image curves more efficiently. We give some implementation results according to
our contributions, and give some remarks about constant-time implementations
and bounds for their running time.

1 In [1] it is stated that the best performance for SIKEp503 and SIKEp751 on a
3.4 GHz processor is 10.1 ms and 30.5 ms, respectively.

2 The implementation results in [8] suggest that SIKE is about 10x faster than CSIDH
at NIST security level 1. Note that SIKE uses a protected constant-time implementa-
tion, while the numbers for CSIDH are obtained from an unprotected non-constant-
time implementation.



A faster Way to the CSIDH 139

2 Preliminaries

2.1 CSIDH

Since our aim is to focus on implementations of CSIDH, we only give a very
brief description of the mathematical background based on [8]. We recommend
the lecture of [8] for a more detailed overview. We refer to [13] for additional
information about isogenies and their cryptographic applications.

Mathematical Background. First consider a quadratic number field k and
an order O ⊂ k. The ideal class group of O is defined as

cl(O) = I(O)/P (O),

where I(O) denotes the set of invertible fractional ideals and P (O) the set of
principal fractional ideals.

In the context of CRS and CSIDH, we use the group action of the ideal class
group of an imaginary quadratic order O on ordinary and supersingular elliptic
curves, respectively. In both cases the ideal class group cl(O) acts on E��p(O)
via isogenies, where E��p(O) is the set of elliptic curves E defined over Fp with
Endp(E) ∼= O. By Endp(E) we denote the subring of the endomorphism ring
End(E), that consists of endomorphisms defined over Fp.

In CSIDH, a prime p = 4 · �1 · ... · �n − 1 is chosen, where the �i are small
distinct odd primes, and the elliptic curve E0 : y2 = x3 + x over Fp, which is
supersingular because p ≡ 3 (mod 4). The supersingularity of E0 (and of all
curves that are isogenous to E0) now guarantees the existence of elliptic curve
points of order �i for all i ∈ {1, ..., n}.

The ideals �iO split as �iO = lili, where li = (�i, π − 1) and li = (�i, π + 1)
with the Frobenius endomorphism π. The kernel of the isogeny ϕli then is the
intersection of the kernels of the point multiplication [�i] and the endomorphism
π − 1, i.e. a subgroup generated by a point P of order �i defined over Fp. Anal-
ogously, the kernel of the isogeny ϕli

is a subgroup generated by an order-�i

point P defined over Fp2\Fp. Hence, the computation of the action of an ideal
class

∏
lei
i by computing the action of the li resp. li can be done by efficient

isogeny formulae: We have to find order-�i points defined over Fp resp. Fp2\Fp

and can apply efficient formulae such as Vélu-isogenies [24] or isogeny formulae
for Montgomery curves like in [10] or [21]. By construction such points always
exist. Ideal classes

∏
lei
i can simply be represented by vectors (e1, ..., en).

Key Exchange. As already observed by Couveignes in [12], the commutativity
of the class group action allows for a Diffie-Hellman-style key exchange in the
following way:

Alice chooses a secret ideal class [a], represented by a vector (e1, ..., en),
computes EA = [a]·E0 via isogenies, and sends the result to Bob as her public key
in terms of a curve parameter. Bob proceeds in the same way, chooses a secret [b]
and computes his public key EB = [b] ·E0. Then, because of the commutativity,
both parties can compute the shared secret [a] · [b] · E0 = [a] · EB = [b] · EA.
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Security of the Scheme. As for the CRS scheme, it is clear that the subex-
ponential quantum attack from [9] also applies to CSIDH. However, Castryck
et al. give some estimations for parameter sets for different security levels [8].
More recently, shortly after CSIDH was published, more analysis of this attack
has been done [4,5]. Since we are only focusing on efficient implementations
throughout this work, we will not discuss these attacks here, and we only note
that the appropriate choice of parameters is still an open problem, that requires
further analysis. However, our improvements don’t rely on a special choice of
parameters, and are thus independent of the selected parameters.

2.2 Implementation

We follow the implementation accompanying [8] here3.

Algorithm 1. Evaluating the class group action.
Input : A ∈ Fp and a list of integers (e1, ..., en).
Output: A′ such that [le11 · · · lenn ]EA = EA′ .

1 while some ei �= 0 do
2 Sample a random x ∈ Fp.
3 Set s ← +1 if x3 + Ax2 + x is a square in Fp, else s ← −1.
4 Let S = {i | sign(ei) = s}.
5 if S = ∅ then
6 Go to line 2.

7 P = (x : 1), k ← ∏
i∈S �i, P ← [(p + 1)/k]P .

8 foreach i ∈ S do
9 K ← [k/�i]P .

10 if K �= ∞ then
11 Compute a degree-�i isogeny ϕ : EA → EA′ with ker(ϕ) = 〈K〉.
12 A ← A′, P ← ϕ(P ), k ← k/�i, ei ← ei − s.

First, we define a prime number p = 4 · �1 · ... · �n −1 as above, where �1, ..., �n

are small distinct odd primes. Then we choose a supersingular curve E0 over Fp.
Therefore we have #E0 = p + 1, which means that there are points of order �i

for i = 1, ..., n on E0. Note that the factor 4 is needed to ensure that we can use
Montgomery curves.

The private key contains n integers sampled from an interval [−m,m], i.e.
has the form (e1, ..., en). For each i the absolute value |ei| determines how many
isogenies of degree �i are to be computed, while the sign of ei states if we have
to use points defined over Fp or Fp2\Fp to generate their kernels.

For the computation of isogenies, we choose a random point P by sampling a
random x ∈ Fp, and check in which of the cases above this leads us by checking

3 We refer to the version from 27.04.2018 throughout this work.
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the minimal field of definition of the corresponding y-coordinate by a square
root check. We then eliminate the possible unwanted factors in the order of P
by multiplying it by 4 · ∏j /∈S �j , where S is defined as in algorithm 1.

After that, we iterate over the �i for i ∈ S, removing all remaining possible
factors of the order except for �i of our point by multiplications, and check
whether the resulting point K can be used as kernel generator for computing an
�i-isogeny, i.e. if K �= ∞. If so, we compute the isogeny and push P through. Then
we go to the next prime and proceed in the same way. However, we don’t have
to consider the previous �i in the multiplication, since the isogeny evaluations of
P already eliminate the respective factors from its order, or in the other case,
the order of P did not contain the previous �i as factors in the first place.

We proceed in the same way, and sample new random points, until all of
the required isogenies are computed. The resulting curve then forms the public
key, or the shared secret, respectively. Note that the computational effort in
algorithm 1 highly depends on the private key. Therefore, for the practical usage
of CSIDH, it is important to transform this into a constant-time scheme without
adding too much computational overhead.

Public keys can also be validated by checking for supersingularity: We can
simply sample a random point P on the curve corresponding to the received
public key. For each �i we compute Qi = [(p + 1)/�i]P . For all i with Qi �= ∞,
we compute [�i]Qi and d =

∏
�i. If any of these [�i]Qi �= ∞, the curve cannot

be supersingular, since #E(Fp) � p + 1. If this is not the case, and d > 4
√

p,
the curve must be supersingular, as can be seen from the Hasse interval and
Lagrange’s theorem (see [8]). Otherwise, the procedure can be repeated with a
different point P . Following this approach, it is not possible to wrongly classify
an ordinary curve as supersingular. Therefore, we can check if a public key has
been honestly generated, and thus can prevent certain kinds of active attacks.

Choice of Parameters. The following discussions and implementation results
refer to the parameter set proposed in [8] for NIST’s post-quantum security
category I. They choose p = 4 · �1 · ... · �74 − 1, where �1, ...�73 are the 73 smallest
distinct odd primes and �74 = 587. The elements of the private keys (e1, ..., e74)
are chosen from the interval [−5, 5]. This parameter set leads to public key
lengths of 64 bytes. As mentioned before, the appropriate choice of parameters is
still an open problem, so the analysis of the actual security level of this parameter
set is left for future work.

2.3 Montgomery Curves

Montgomery curves are given by an equation over a field k with char(k) > 2 of
the form

Ea,b : by2 = x3 + ax2 + x,

where a ∈ k\{−2, 2} and b ∈ k\{0}. To avoid inversions during point additions
and doublings, projective coordinates can be used. Furthermore, the efficient
arithmetic given by Montgomery in [19] allows for dropping the Y -coordinate
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and still performing XZ-only point doublings and differential additions, that
require the knowledge of the XZ-coordinates of P , Q, and P − Q in order to
compute P + Q.

In [11], Costello et al. propose to projectivize not only the point coordinates,
but also the curve parameters. Instead of a Montgomery curve of the form given
above, we work with an equation of the form

E(A:B:C) : By2 = Cx3 + Ax2 + Cx,

where (A : B : C) ∈ P
2(k), such that a = A/C and b = B/C for the cor-

responding curve Ea,b. However, in isogeny-based schemes it suffices to work
with (A : C) ∈ P

1(k) in the projective model, since neither the Montgomery
curve arithmetic, nor the isogeny computations require the coefficients b or B,
respectively. In general a doubling then costs 4M+ 2S+ 8a, while a differential
addition costs 4M + 2S + 6a. As usual, we denote field multiplications by M,
field squarings by S, and field additions or subtractions by a.

2.4 Twisted Edwards Curves

Introduced by Bernstein et al. in [2], twisted Edwards curves over k with
char(k) > 2 are given by equations of the form

Ea,d : aX2 + Y 2 = 1 + dX2Y 2,

with ad �= 0, d �= 1, and a �= d. For a = 1 the twisted Edwards curve E1,d =
Ed is called Edwards curve, originally proposed by Edwards in [14]. As in the
Montgomery case, projective coordinates can be used in order to avoid inversions
during additions and doublings. Note that in the Edwards case there are different
models for doing this, as described in [3].

Similar to the XZ-only Montgomery curve arithmetic, Castryck, Galbraith,
and Farashahi introduced a Y Z-only doubling formula for twisted Edwards
curves in [7] with a cost of 4M+5S. A formula for Y Z-only differential addition
of twisted Edwards curve points of odd order is derived in [17], using 6M + 3S
in the projective case. Due to the fact that these operations are in general more
expensive than the respective operations on the Montgomery curve, isogeny-
based schemes usually use Montgomery curves (see [6,18] for a comparison to
twisted Edwards curve point arithmetic in SIDH). However, in the following
twisted Edwards curves are shown to be advantageous for the computation of
isogenies.

3 Elliptic Curve Point Multiplications

Define α = p+1
4 = �1 · �2 · ... · �n. For the sake of simplicity, we consider a private

key (e1, ..., en), where all ei > 0, or all ei < 0. We will return to the general
case later on. The algorithm used by Castryck et al. then samples a random
point P on the current curve E0, checks if its y-coordinate is defined over the
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corresponding field Fp or Fp2\Fp, and if so, sets P0 = [4]P in order to remove the
possible factor 4 from its order. Then they compute K0 = [ α

�1
]P0. If K0 = ∞,

the order of P does not contain the factor �1. We cannot use it to compute an
isogeny of degree �1 and set P1 = P0 and E1 = E0. If however K0 �= ∞, then K0

must have order �1 and can be used as generator of the kernel of an isogeny of
degree �1, mapping to a curve E1. In this case, we pull P0 through the isogeny
and obtain a point P1 ∈ E1. Note that this implies, that the order of P1 does
not contain the factor �1. Therefore, for checking if we can use P1 to compute
an isogeny of degree �2, it suffices to compute K1 = [ α

�1·�2 ]P1 and proceed as
before. Following this approach, the required factor for the scalar multiplication
of Pj reduces at each step, until only the factor �n remains at the last step of
the loop.

Castryck et al. go through the primes in ascending order in their implementa-
tion, starting with small degree isogenies. However, we found it advantageous to
change the direction of the loop, i.e. go through the primes in descending order.
By doing this, we can eliminate the larger factors of p+1 first, and therefore end
up with multiplications by significantly smaller factors as we proceed through
the loop. Note that as soon as one isogeny degree is done, i.e. |ei| isogenies of
degree �i were already computed, we include this factor in the first multiplica-
tion to compute P0, making sure that the order of P0 is not divided by �i. We
can then ignore the factor �i in the loop, which slightly reduces the advantage
of our approach every time this occurs. However, we note that our approach is
still faster, as long as at least two factors are left in the loop.

Figure 1 shows the effect of our approach, compared to the implementation
of [8]. Note that per bit of the factor of an elliptic curve point multiplication one
step in the Montgomery ladder is carried out, i.e. one combined doubling and

Fig. 1. Bitlengths of factors during the first loop, when all ei have the same sign. The
red line follows the algorithm of [8], the blue line follows our described approach. (Color
figure online)
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addition. Therefore, in the first loop, at each multiplication the computational
effort is reduced by δi times the cost of a ladder step, where δi is the difference
between the two plots for a given i < n, and hence δi · (8M + 4S + 8a). As
discussed before, the number of saved operations reduces in the following loops.

In the general case, our assumption that all elements of the private key
share the same sign obviously does not hold. However, the described effect will
translate at a lower scale to both of the somewhat distinct computations for the
sets S+ = {�i | ei > 0} and S− = {�i | ei < 0} corresponding to the private key
(e1, ..., en). Indeed, when plotting the bitlengths of the factors in the respective
first loops in such cases, this leads to a similar result as in Fig. 1, only at a lower
scale.

4 Isogeny Computations

The algorithm of [8] uses isogeny formulae for Montgomery curves by Costello
and Hisil [10] and Renes [21]. We will treat point evaluations and computations
of coefficients of image curves separately. First, we will state the isogeny formulae
of [10], which can be used for the computation of isogenies in CSIDH.

Let K be a point of order � = 2d + 1 on a Montgomery curve E : y2 =
x3 + ax2 + x. Then we can compute the coordinate map of the unique (up to
compositions by isomorphisms) �-isogeny ϕ : E → E′ with ker(ϕ) = 〈K〉 by

ϕ : (x, y) �→ (f(x), y · f ′(x)),

where

f(x) = x ·
d∏

i=1

(
x · x[i]K − 1
x − x[i]K

)2

,

and f ′(x) is its derivative. The curve parameters a′ and b′ of E′ can be computed
by a′ = (6σ − 6σ̃ + a) · π2 and b′ = b · π2, where we define σ =

∑d
i=1 x[i]K ,

σ̃ =
∑d

i=1 1/x[i]K , and π =
∏d

i=1 x[i]K .
Note that the representation of f(x) makes use of the fact that x[i]K = x[�−i]K

for all k ∈ {1, ..., (� − 1)/2}.

4.1 Point Evaluations

Since we work with XZ-only projective Montgomery coordinates, we have to
represent f(x) projectively. This is done in [10] by writing (Xi : Zi) = (x[i]K : 1)
for i = 1, ..., d, (X : Z) = (xP : 1) for the point P , at which the isogeny should
be evaluated, and (X ′ : Z ′) for the result. Then

X ′ = X ·
( d∏

i=1

(X · Xi − Zi · Z)
)2

, and

Z ′ = Z ·
( d∏

i=1

(X · Zi − Xi · Z)
)2

.
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In the implementation of [8], this is used directly by going through the (Xi : Zi)
for i = 1, ..., d and computing the pairs (X ·Xi −Zi ·Z) and (X ·Zi −Xi ·Z) at a
cost of 4M+ 2a per step. However, we can also use the observation by Costello
and Hisil in [10] to reduce the cost to 2M + 4a per step by

X ′ = X ·
( d∏

i=1

[
(X − Z)(Xi + Zi) + (X + Z)(Xi − Zi)

])2

, and

Z ′ = Z ·
( d∏

i=1

[
(X − Z)(Xi + Zi) − (X + Z)(Xi − Zi)

])2

,

assuming that X +Z and X −Z are precomputed, and hence save d · (2M− 2a)
per isogeny evaluation.

4.2 Computing the Image Curve

An efficient computation of the image curve parameters is not as straightforward
as for the point evaluations. This is due to the fact that the required parameters
σ and σ̃ consist of sums of fractions. Therefore, Costello and Hisil give two
different approaches to compute the isogenous curve [10].

The first approach uses the fact that the projective parameters (a′ : 1) =
(A′ : C ′) of the isogenous curve E′ can be recovered from the knowledge of
the three 2-torsion points of E′. Therefore, it is possible to recover the required
curve parameters of E′ by computing the 2-torsion points of E and pushing
one of these points through the odd-degree isogeny, which preserves its order on
the image curve. However, in contrast to SIDH, we only work over the field Fp

instead of Fp2 , while the required points of order 2 are not defined over Fp in
the CSIDH setting.

Their second approach uses the fact that the curve parameters can be recov-
ered from the knowledge of the x-coordinates of two points on the curve, and
their difference. While these points are typically available in SIDH during the
key generation phase, this is not the case for CSIDH, where we only want to
compute the isogenous curve and evaluate one point.

In [8], Castryck et al. compute the image curve by defining cj ∈ Fp such that

�−1∏

i=1

(Ziw + Xi) =
�−1∑

j=0

cjw
j

as polynomials in w. Then they observe that

(A′ : C ′) = (π̂(a − 3σ̂) : 1) = (ac0c�−1 − 3(c0c�−2 − c1c�−1) : c2�−1),

following the formulae and notation from Renes [21], where

π̂ =
�−1∏

i=0

x[i]K , and σ̂ =
�−1∑

i=0

(
x[i]K − 1

x[i]K

)
.
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In their implementation, this is computed iteratively, going through the (Xi : Zi)
for i = 2, ..., d, updating the required values at a cost of 6M + 2a per step. The
final computations after that take further 8M + 3S + 6a to compute the curve
parameters (A′ : C ′).

Using Twisted Edwards Curves for the Image Curve Computation.
Our idea to speed up this computation exploits the known correspondence
between Montgomery and twisted Edwards curves. Given a Montgomery curve
EA,B : Bv2 = u3 + Au2 + u, we can switch to a birationally equivalent twisted
Edwards curve Ea,d : ax2 + y2 = 1 + dx2y2, where

A =
2(a + d)
a − d

and B =
4

a − d
,

by the coordinate map

(u, v) �→ (x, y) =
(

u

v
,
u − 1
u + 1

)

.

and back by its inverse

(x, y) �→ (u, v) =
(

1 + y

1 − y
,

1 + y

(1 − y)x

)

In [18] it is shown how to switch to and from twisted Edwards curves in the
SIDH setting, which also applies to CSIDH, where Montgomery XZ-only coor-
dinates and projective curve parameters (A : C) are used, ignoring the Mont-
gomery parameter b. Following this and [7], a Montgomery point (XM : ZM )
can be transformed to the corresponding Edwards Y Z-coordinates (Y E : ZE)
by the map

(XM : ZM ) �→ (Y E : ZE) = (XM − ZM : XM + ZM ),

and the Montgomery parameters (A : C) to the corresponding twisted Edwards
parameters (aE , dE) by

aE = A + 2C and dE = A − 2C.

As this allows us to switch efficiently between Montgomery and twisted Edwards
curves in CSIDH at a cost of 3a for the curve parameters and 2a for point
coordinates, we may as well use isogeny formulae for twisted Edwards curves.
Therefore, we state the formulae given by Moody and Shumow in [20].

Let K be a point of order � = 2d+1 on a twisted Edwards curve E : aEx2 +
y2 = 1+dEx2y2. Then we can compute the coordinate map of the unique (up to
compositions by isomorphisms) �-isogeny ϕ : E → E′ with ker(ϕ) = 〈K〉 by

ϕ(P ) =

(
∏

Q∈〈K〉

xP+Q

yQ
,

∏

Q∈〈K〉

yP+Q

yQ

)

.
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The curve E′ is defined by the parameters a′
E = a�

E and d′
E = π8

yd�
E , where

πy =
∏d

i=1 y[i]K .
Since the coordinate map is not as simple to compute as for Montgomery

curves, we are only interested in the computation of the image curve parameters.
Writing (Y E

i : ZE
i ) for the projective coordinates of [i]K for i = 1, ..., d, we can

transform the formulae from above to the projective case by

a′
E = a�

E · π8
Z , and d′

E = d�
E · π8

Y ,

where πY =
∏d

i=1 Y E
i , and πZ =

∏d
i=1 ZE

i .
We can therefore use these formulae to compute the curve parameters of the

image curves in CSIDH, by switching to twisted Edwards coordinates and points,
and switch back after the computations by (A′ : C ′) = (2(a′

E + d′
E) : a′

E − d′
E),

again at a cost of 3a.
Note that the parameters a′

E and d′
E can be computed efficiently: While going

through the (Xi : Zi) on the Montgomery curve for i = 1, ..., d, we can compute
the corresponding Edwards coordinates (Y E

i : ZE
i ) at a cost of 2a. However,

the required sums and differences already occur at the point evaluation part,
and hence do not add any computational cost at all. We can then compute πY

and πZ iteratively by 1M each per step. Compared to the algorithm of [8], this
saves 4M + 2a per step. Furthermore, we have to compute π8

Y and π8
Z by three

squarings each, and a�
E and d�

E , which can be done efficiently, e.g. by a square-
and-multiply approach. We further note that the latter computation does not
require any values generated during the loop through the (Xi : Zi). This means
that especially hardware architectures that allow for parallel computations would
benefit from this, since the computation of a�

E and d�
E can be done in parallel to

the loop through the (Xi : Zi).
Figure 2 compares the costs of a combined image curve computation and

point evaluation for different prime degrees, where the red line arises from using
the Montgomery isogenies from [8], including the optimizations from [10], and the
blue line from using our approach utilizing twisted Edwards curves to compute
the isogenous curve. The cost is measured in field multiplications, assuming that
S = 0.8M and 20a = M. In this case, we computationally derive a reduction of
the costs by approximately 25% for the largest primes in the current parameter
set. We note that different choices for the field operation ratios don’t make a big
difference, since the main difference between the approaches lies in the number
of multiplications. To obtain the cost of the computations of a�

E and d�
E , we used

a square-and-multiply approach. Since the exponents �i are small fixed numbers,
it is also possible to precompute the optimal addition chains, and therefore save
some computational effort compared to square-and-multiply. However, we found
that even for the biggest �i from the current parameter set, this saves at most
four multiplications. Hence, the benefit of this is rather small compared to the
increased length of the code and the more complicated implementation.

Note that for � ≤ 5, our approach is slightly more expensive than the Mont-
gomery approach. Therefore, in this case, the Montgomery approach can be used.
However, the benefit of this is rather small compared to the total computational
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Fig. 2. Cost of different prime-degree isogeny computations. The red line uses Mont-
gomery point evaluations from [10] and image curve computations from [8], while the
blue line uses the same Montgomery point evaluations and twisted Edwards image
curve computations.

effort, so it might be better to stick with our approach for all �i in order to keep
the implementation simple.

It is further noted in [8], that for a fixed prime � one could reduce the com-
putational effort by finding an appropriate representative of the isogeny modulo
(a factor of) the �-division polynomial ψ�, as done in [11] for 3- and 4-isogenies.
However, every required isogeny degree would have to be implemented sepa-
rately, resulting in a much longer code.

5 Implementation Results

As a proof of concept and for measuring the efficiency of our work, we took
the mentioned implementation of Castryck et al. accompanying [8] as reference,
and added our optimizations. The implementation is written in C and uses Fp-
arithmetic in assembly. The parameters in use are the ones described in Sect. 2.2.
The validation of keys is not included in the following discussion.

The first optimization is the precomputation of the curve parameters (A +
2C : 4C) each time before entering the Montgomery ladder, as also done in
SIDH [11]. This only saves a few additions per ladder step, but in total leads to
a reduction of the computational effort by approximately 2%.

The other optimizations are as described above: One comes from rearranging
the factors in the class group action evaluation algorithm, and the other one from
more efficient isogeny computations by using the point evaluation from [10] and
our twisted Edwards approach for the image curve computations.
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Table 1. Performance comparison of the class group action evaluation in CSIDH with
different optimizations applied. All timings are given in 106 clock cycles and were mea-
sured on an Intel Core i7-6500 Skylake processor running Ubuntu 16.04 LTS, averaged
over 10 000 runs.

Clock cycles ×106 Acceleration factor

Castryck et al. [8]6 138.6 -

Precomputation of (A + 2C : 4C) 135.7 1.021

Rearranging factors 126.5 1.096

Isogeny optimization 118.2 1.173

Combination of all optimizations 103.9 1.334

Table 1 lists the influence of the different optimizations on the overall per-
formance. In the respective implementations, only the mentioned optimization
was used, leaving the rest as in the reference implementation from [8]. For the
last line, we combined all the described optimizations and therefore reduced the
total computational effort by 25%, yielding a speed-up factor of 1.33. The latter
implementation is available at https://zenon.cs.hs-rm.de/pqcrypto/faster-csidh.

6 On Constant-Time Implementations

As mentioned in the sections before, the discussed implementations do not
include any protection from side-channel attacks. In particular, the running time
depends on the private key, which corresponds to the number of isogenies, that
have to be computed. Therefore, the first step to prevent simple timing attacks
is a constant-time implementation.

One possibility to reach this is to fix the number of isogenies to the maxi-
mum for each degree, and use only as many of them as specified in the private
key. However, in addition to lots of useless computational effort, this means that
after each dummy isogeny, another multiplication by its degree �i is necessary
for the point P , since the algorithm uses the fact, that by pushing P through the
�i-isogeny, the order of the resulting point will not include the factor �i. The addi-
tionally required multiplications would then allow for a new timing attack, since
many extra multiplications mean that many dummy isogenies were computed.
This could be prevented by using constant-time ladders for the preparation of
each kernel point. This however is undesirable, since it would further blow up
the running time.

A possible tool for the design of a more optimized constant-time implemen-
tation could be specially tailored dummy isogenies, that, instead of computing
an �i-isogeny and pushing the point P through, simply compute [�i]P and leaves
the curve parameters unchanged. This is especially easy, since the �i-isogeny
algorithm requires to compute all [j]K for j ∈ {2, ..., (�i − 1)/2}. Therefore, by
replacing K with P and by two further differential additions, we can compute
[�i]P , and hence don’t have to perform more multiplications to compensate for

https://zenon.cs.hs-rm.de/pqcrypto/faster-csidh
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the dummy isogenies. Furthermore, the dummy isogenies can be designed to have
the exact same number of field operations as the real isogeny computations.

Running Time. First, we note that this discussion refers to the case, that
an implementation that follows algorithm 1 shall be transformed to a constant
running-time. If the structure of algorithm 1 is changed, the results may vary
accordingly.

It is obvious that the running time of a constant-time implementation must
be at least as high as the highest possible running time of the fastest non-constant
implementation. At first glance, this seems to be twice the average running time
of the non-constant implementation, when we fix all elements of the private key
to have the maximum absolute value. For a closer investigation, we consider the
parameter set from above, and the private keys e = (5,−5, 5,−5, ..., 5,−5) and
e′ = (5, 5, ..., 5).

When comparing the performance for the private key e to the average case,
our experiments suggest that indeed the running time roughly doubles. In fact,
the computational cost for isogenies doubles, while the factor for point multipli-
cations is slightly higher. One reason for this is that if we have to compute more
isogenies, on average there will be more cases in which our randomly chosen
points cannot be used to compute isogenies of certain degrees. Therefore, more
points have to be chosen and their order checked by multiplications.

Now we want to compare the performance for the keys e and e′. For the
sake of simplicity, assume that we can choose full order points, that allow for
the computation of isogenies of all required degrees. Consider that we first want
to compute one isogeny of each degree. For e′, the bitlengths of the factors
for the point multiplications are the ones shown in Fig. 1. After one loop, we
have computed one isogeny of each required degree. For the key e, we have to
perform one loop each for positive and negative key elements. When doing this
and counting the bitlengths of the factors for the point multiplications, after
computing one isogeny of each degree, we end up with only 0.54 times the sum
of the bitlengths for e′, already including the additional required multiplications
from line 7 of algorithm 1. Therefore, since we simply perform five such rounds
for e and e′, the total computational effort for point multiplications for e′ is
1.86 times as high as for e. When considering also isogeny computations, our
experiments suggest that the total running time for the key e′ is 1.49 times the
running time for e. Therefore, we conclude that the running time of a constant-
time implementation must be at least 2.98 times the running time of average-case
measurements of non-constant implementations such as in Sect. 5. In practice,
our experiments again suggest a higher factor for the running time for the key
e′, namely 3.07, for the same reasons as explained above7.

However, we note that more careful analysis is required for an optimized
constant-time implementation, and our proposal of dummy isogenies is merely

7 We measured 318.9 × 106 clock cycles for the running time for the key e′ in the
setting from Table 1, using the optimized implementation.
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a tool, that could possibly be used to design such an implementation, which we
leave for future work.

7 Conclusion and Future Work

Although we gained a speed-up factor of 1.33 in our CSIDH implementation, it
is still considerably slower than e.g. SIDH. Therefore, further research in that
direction is necessary, to make the practical deployment of the scheme more
attractive. In particular, side-channel protection, such as constant-time imple-
mentations, is required for that aim.

As mentioned before, also the security of CSIDH still requires some more
detailed analysis on the implication of new attacks for specific parameter choices.
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Abstract. We propose a quantum algorithm for computing an isogeny
between two elliptic curves E1, E2 defined over a finite field such that
there is an imaginary quadratic order O satisfying O � End(Ei) for
i = 1, 2. This concerns ordinary curves and supersingular curves defined
over Fp (the latter used in the recent CSIDH proposal). Our algorithm

has heuristic asymptotic run time e
O

(√
log(|Δ|)

)
and requires polyno-

mial quantum memory and e
O

(√
log(|Δ|)

)
quantumly accessible classical

memory, where Δ is the discriminant of O. This asymptotic complexity
outperforms all other available methods for computing isogenies.

We also show that a variant of our method has asymptotic run time

e
Õ

(√
log(|Δ|)

)
while requesting only polynomial memory (both quantum

and classical).

1 Introduction

Given two elliptic curves E1, E2 defined over a finite field Fq, the isogeny problem
consists in computing an isogeny φ : E1 → E2, i.e. a non-constant morphism
that maps the identity point on E1 to the identity point on E2. There are two
different types of elliptic curves: ordinary and supersingular. The latter have
very particular properties that impact the resolution of the isogeny problem. The
first instance of a cryptosystem based on the hardness of computing isogenies
was due to Couveignes [13], and its concept was independently rediscovered by
Stolbunov [34]. Both proposals used ordinary curves.

Childs, Jao and Soukharev observed in [11] that the problem of finding an
isogeny between two ordinary curves E1 and E2 defined over Fq and having the
same endomorphism ring could be reduced to the problem of solving the Hidden
Subgroup Problem (HSP) for a generalized dihedral group. More specifically,
let K = Q(

√
t2 − 4q) where t is the trace of the Frobenius endomorphism of
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the curves, and let O ⊆ K be the quadratic order isomorphic to the ring of
endomorphisms of E1 and E2. Let Cl(O) be the ideal class group of O. Classes of
ideals act on isomorphism classes of curves with endomorphism ring isomorphic
to O. The problem of finding an isogeny between E1 and E2 can be then reduced
to the problem of finding a “nicely” represented ideal a ⊆ O such that [a]∗E1 =
E2 where ∗ is the action of Cl(O), [a] is the class of a in Cl(O) and Ei is the
isomorphism class of the curve Ei. Childs, Jao and Soukharev showed that this
could be done by solving the HSP for Z2�Cl(O). Let N := |Cl(O)| ∼ √|t2 − 4q|.
Using Kuperberg’s sieve [27], this task requires 2O

(√
log(N)

)
queries to an oracle

that computes the action of the class of an element in Cl(O). Childs et al. used

a method with complexity in 2Õ
(√

log(N)
)

to evaluate this oracle, meaning that

the total cost is 2Õ
(√

log(N)
)
.

To avoid this subexponential attack, Jao and De Feo [23] described an ana-
logue of these isogeny-based systems that works with supersingular curves. The
endomorphism ring of such curves is a maximal order in a quaternion algebra.
The non-commutativity of the (left)-ideals corresponding to isogenies between
isomorphism classes of curves thwarts the attack mentioned above, but it also
restricts the possibilities offered by supersingular isogenies, which are typically
used for a Diffie-Hellman type of key exchange (known as SIDH) and for digi-
tal signatures. Most recently, two works revisited isogeny-based cryptosystems
by restricting themselves to cases where the subexponential attacks based on
the action of Cl(O) was applicable. The scheme known as CSIDH by Castryck
et al. [10] uses supersingular curves and isogenies defined over Fp, while the
scheme of Feo, Kieffer and Smith [15] uses ordinary curves with many practical
optimizations. In both cases, the appeal of using commutative structures is to
allow more functionalities, such as static-static key exchange protocols that are
not possible with SIDH without an expensive Fujisaki-Okamoto transform [2].

Contributions. Let E1, E2 be two elliptic curves defined over a finite field such
that there is an imaginary quadratic order O satisfying O � End(Ei) for i = 1, 2.
Let Δ = disc(O). In this note, we provide new insight into the security of CSIDH
as follows:

1. We describe a quantum algorithm for computing an isogeny between E1

and E2 with heuristic asymptotic run time in e
O

(√
log(|Δ|)

)
and with quan-

tum memory in Poly (log(|Δ|)) and quantumly accessible classical memory in

e
O

(√
log(|Δ|)

)
.

2. We show that we can use a variant of this method to compute an isogeny

between E1 and E2 in time e

(
1√
2
+o(1)

)√
ln(|Δ|) ln ln(|Δ|) with polynomial mem-

ory (both classical and quantum).

Our contributions bear similarities to the recent independent work of Bonnetain
and Schrottenloher [7]. The main differences are that they rely on a generating
set l1, . . . , lu of the class group, where u ∈ Θ(log(|Δ|)), provided with the CSIDH
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protocol, and that they primarily focused on practical improvements and con-
crete security levels. Their method inherits Kuperberg’s asymptotic complexity

which is in e
Õ

(√
log(|Δ|)

)
. Section 4.2 elaborates on the differences between our

algorithm and that of [7]. The run time of the variant described in Contribu-
tion 2 is asymptotically comparable to that of the algorithm of Childs, Jao and
Soukharev [11], and to that of Bonnetain and Schrottenloher [7] (if its exact
time complexity was to be worked out). The main appeal of our variant is the
fact that it uses a polynomial amount of memory, which is likely to impact the
performances in practice.

Our work is also connected to a recent and independent contribution of Jao,
LeGrow, Leonardi and Ruiz-Lopez. The main claim of their work (slides are avail-

able online [24]) is an algorithm with heuristic time complexity in e
Õ

(√
log(|Δ|)

)

that uses quantum polynomial memory and classical memory in e
O

(√
log(|Δ|)

)
.

Compared to our Contribution 2, the difference in terms of performances is that
our method requires only polynomial classical memory. The main technical dif-
ference between our work and that of Jao et al. is an alternative approach to
lattice reduction. Both works rely on unproven heuristics: ours pertains to the
connectivity of the Caley Graph of the ideal class group of the ring of endo-
morphisms, while Jao et al. make the assumption that this class group is cyclic,
leaving the question of non-cyclic class groups open. Note that by design, the
class group is very likely to be cyclic in instances of this problem pertaining to
the cryptanalysis of CSIDH. Therefore, the generalization of their method would
mostly be of fundamental interest.

2 Mathematical Background

An elliptic curve E defined over a finite field Fq of characteristic p 	= 2, 3 is a
projective algebraic curve with an affine plane model given by an equation of
the form y2 = x3 + ax + b, where a, b ∈ Fq and 4a3 + 27b2 	= 0. The set of
points of an elliptic curve is equipped with an additive group law. Details about
the arithmetic of elliptic curves can be found in many references, such as [33,
Chap. 3].

Let E1, E2 be two elliptic curves defined over Fq. An isogeny φ : E1 → E2

over Fq (resp. over Fq) is a non-constant rational map defined over Fq (resp.
over Fq) which sends the identity point on E1 to the identity point on E2. The
degree of an isogeny is its degree as a rational map, and an isogeny of degree
� is called an �-isogeny. Two curves are isogenous over Fq if and only if they
have the same number of points over Fq (see [36]). Moreover, E1, E2 are said to
be isomorphic over Fq, or Fq-isomorphic, if there exist isogenies φ1 : E1 → E2

and φ2 : E2 → E1 over Fq whose composition is the identity. Two Fq-isomorphic
elliptic curves have the same j-invariant given by j := 1728 4a3

4a3+27b2 .
An order O in a number field K such that [K : Q] = n is a subring of K

which is a Z-module of rank n. The notion of ideal of O can be generalized to
fractional ideals, which are sets of the form a = 1

dI where I is an ideal of O and
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d ∈ Z>0. A fractional ideal I is said to be invertible if there exists a fractional
ideal J such that IJ = O. The invertible fractional ideals form a multiplicative
group I, having a subgroup consisting of the invertible principal ideals P. The
ideal class group Cl(O) is by definition Cl(O) := I/P. In Cl(O), we identify two
fractional ideals a, b if there is α ∈ K∗ such that b = (α)a, where (α) := αO. We
denote by [a] the class of the fractional ideal a in Cl(O). The ideal class group
is finite and its cardinality is called the class number hO of O. For a quadratic
order O, the class number satisfies hO ≤ √|Δ| ln(|Δ|) (see [12, Sect. 5.10.1]),
where Δ is the discriminant of O.

Let E be an elliptic curve defined over Fq. An endomorphism of E is either an
isogeny defined over Fq between E and itself, or the zero morphism. The set of
endomorphisms of E forms a ring that is denoted by End(E). For each integer m,
the multiplication-by-m map [m] on E is an endomorphism. Therefore, we always
have Z ⊆ End(E). Moreover, to each isogeny φ : E1 → E2 corresponds an isogeny
φ̂ : E2 → E1 called its dual isogeny. It satisfies φ ◦ φ̂ = [m] where m = deg(φ).
For elliptic curves defined over a finite field, we know that Z � End(E). In this
particular case, End(E) is either an order in an imaginary quadratic field (and
has Z-rank 2) or a maximal order in a quaternion algebra ramified at p (the
characteristic of the base field) and ∞ (and has Z-rank 4). In the former case,
E is said to be ordinary while in the latter it is called supersingular. When a
supersingular curve is defined over Fp, then the ring of its Fp-endomorphisms,
denoted by EndFp

(E), is isomorphic to an imaginary quadratic order, much like
in the ordinary case.

The endomorphism ring of an elliptic curve plays a crucial role in most algo-
rithms for computing isogenies between curves. Indeed, if E is ordinary (resp.
supersingular over Fp), the class group of End(E) (resp. EndFp

(E)) acts transi-
tively on isomorphism classes of elliptic curves having the same endomorphism
ring. More precisely, the class of an ideal a ⊆ O acts on the isomorphism class
of a curve E with End(E) � O via an isogeny of degree N (a) (the algebraic
norm of a). Likewise, each isogeny ϕ : E → E′ where End(E) � End(E′) � O
corresponds (up to isomorphism) to the class of an ideal in O. From an ideal a
and the �-torsion (where � = N (a)), one can recover the kernel of ϕ, and then
using Vélu’s formulae [37], one can derive the corresponding isogeny. We denote
by [a] ∗E the action of the ideal class of a on the isomorphism class of the curve
E. The typical strategy to evaluate the action of [a] is to decompose it as a
product of classes of prime ideals of small norm �, and evaluate the action of
each prime ideal as an �-isogeny. This strategy was described by Couveignes [13],
Galbraith-Hess-Smart [16], and later by Bröker-Charles-Lauter [9] and reused in
many subsequent works.

Notation: In this paper, log denotes the base 2 logarithm while ln denotes the
natural logarithm.
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3 The CSIDH Non-interactive Key Exchange

As pointed out in [17], the original SIDH key agreement protocol is not secure
when using the same secret key over multiple instances of the protocol. This
can be fixed by a Fujisaki–Okamoto transform [2] at the cost of a drastic loss of
performance, requiring additional points in the protocol. These issues motivated
the description of CSIDH [10] which uses supersingular curves defined over Fp.

When Alice and Bob wish to create a shared secret, they rely on their secret
keys [a] and [b] which are classes of ideals in the ideal class group of O, where O
is isomorphic to the Fp-endomorphism ring of a supersingular curve E defined
over Fp. This key exchange procedure resembles the original Diffie–Hellman pro-
tocol [14]. Alice and Bob proceed as follow:

– Alice sends [a] ∗ E to Bob.
– Bob sends [b] ∗ E to Alice.

Then Alice and Bob can separately recover their shared secret

[ab] ∗ E = [b] ∗ [a] ∗ E = [a] ∗ [b] ∗ E.

The existence of a quantum subexponential attack forces the users to update the
size of keys at a faster pace (or by larger increments) than in the regular SIDH
protocol against which we only know quantum exponential attacks. This is partly
compensated by the fact that elements are represented in Fp, and are thus more
compact than elements of Fp2 needed in SIDH (because the corresponding curves
are defined over Fp2). Recommended parameter sizes and attack costs from [10]
for 80, 128, and 256 bit security are listed in Table 1. In Table 1, the cost is in
number of operations. These values do not account for the memory costs (the
security estimates are therefore more conservative than if memory costs were
accounted for). The NIST security levels are defined in the call for proposals for
the Post Quantum Cryptography project [29]. Note that subsequent works such
as that of Bonnetain and Schrottenloher [7] have suggested different values.

Table 1. Claimed security of CSIDH [10, Table 1].

NIST log(p) Cost quantum attack Cost classical attack

1 512 262 2128

3 1024 294 2256

5 1792 2129 2448

4 Asymptotic Complexity of Isogeny Computation

In this section, we show how to combine the general framework for computing
isogenies between curves whose endomorphism ring is isomorphic to a quadratic
order (due to Childs, Jao and Soukharev [11] in the ordinary case and to Biasse,
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Jao and Sankar in the supersingular case [5]) with the efficient algorithm of
Biasse, Fieker and Jacobson [4] for evaluating the class group action to produce
a quantum algorithm that finds an isogeny between E1 and E2. We give two
variants of our method:

– Heuristic time complexity 2O(log(|Δ|)), polynomial quantum memory and
quantumly accessible classical memory in 2O(log(|Δ|)).

– Heuristic time complexity e

(
1√
2
+o(1)

)√
ln(|Δ|) ln ln(|Δ|) with polynomial mem-

ory (both classical and quantum).

4.1 Isogenies from Solutions to the Hidden Subgroup Problem

As shown in [5,11], the computation of an isogeny between E1 and E2 such that
there is an imaginary quadratic order with O � End(Ei) for i = 1, 2 can be done
by exploiting the action of the ideal class group of O on isomorphism classes of
curves with endomorphism ring isomorphic to O. In particular, this concerns the
cases of

– ordinary curves, and
– supersingular curves defined over Fp.

Assume we are looking for a such that [a] ∗ E1 = E2. Let A = Z/d1Z × · · · ×
Z/dkZ � Cl(O) be the elementary decomposition of Cl(O). Then we define a
quantum oracle f : Z/2Z � A → {quantum states} by

f(x,y) :=
{ |[ay ] ∗ E1〉 if x = 0,

|[a−y ] ∗ E2〉 if x = 1,
(1)

where [ay ] is the element of Cl(O) corresponding to y ∈ A via the isomor-
phism Cl(O) � A. Let H be the subgroup of Z/2Z � A of the periods of
f . This means that f(x,y) = f(x′,y′) if and only if (x,y) − (x′,y′) ∈ H.
Then H = {(0,0), (1, s)} where s ∈ A such that [as ] ∗ E1 = E2. The com-
putation of s can thus be done through the resolution of the Hidden Sub-
group Problem in Z/2Z � A. In [11, Sect. 5], Childs, Jao and Soukharev
generalized the subexponential-time polynomial space dihedral HSP algorithm
of Regev [30] to the case of an arbitrary Abelian group A. Its run time is

in e(
√
2+o(1))

√
ln(|A|) ln ln(|A|) with a polynomial memory requirement. Kuper-

berg [27] describes a family of algorithms, one of which has running time in

e
O

(√
log(|A|)

)
while requiring polynomial quantum memory and e

O
(√

log(|A|)
)

quantumly accessible classical memory. The high-level approach for finding an
isogeny from the dihedral HSP is sketched in Algorithm 1.

Proposition 1. Let N = #Cl(O) ∼ √|Δ|. Algorithm1 is correct and requires:

– e
O

(√
log(N)

)
queries to the oracle defined by (1) while requiring a

Poly(log(N)) quantum memory and e
O

(√
log(N)

)
quantumly accessible clas-

sical memory overhead when using Kuperberg’s second dihedral HSP algo-
rithm [27] in Step 2.
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Algorithm 1. Quantum algorithm for evaluating the action in Cl(O)
Input: Elliptic curves E1, E2, imaginary quadratic order O such that End(Ei) � O

for i = 1, 2 such that there is [a] ∈ Cl(O) satisfying [a] ∗ E1 = E2.
Output: [a]
1: Compute A = Z/d1Z × · · · × Z/dkZ such that A � Cl(O).
2: Find H = {(0, 0), (1, s)} by solving the HSP in Z/2Z � A with oracle (1).
3: return [as]

– e(
√
2+o(1))

√
ln(N) ln ln(N) queries to the oracle defined by (1) while requiring

only polynomial memory overhead when using the dihedral HSP method of [11,
Sect. 5] in Step 2.

Remark 1. The cost of Algorithm 1 is dominated by Step 2. Indeed, Step 1 can
be done by using an algorithm for solving the HSP in a commutative group. Even
when the dimension grows to infinity, this step is known to run in polynomial
time [6].

Remark 2. Algorithm 1 only returns the ideal class [a] whose action on E1 gives
us E2. This is all we are interested in as far as the analysis of isogeny-based
cryptosystems goes. However, this is not an isogeny between E1 and E2. We can
use this ideal to derive an actual isogeny by evaluating the action of [a] using the
oracle of Sect. 4.2 together with the method of [9, Algorithm 4.1]. This returns
an isogeny φ : E1 → E2 as a composition of isogenies of small degree φ =

∏
i φei

i

with the same time complexity as Algorithm 1. Also note that the output fits in

polynomial space if the product is not evaluated, otherwise, it needs 2Õ
(

3
√

log(N)
)

memory.

4.2 The Quantum Oracle

To compute the oracle defined in (1), Childs, Jao and Soukharev [11] used a
purely classical subexponential method derived from the general subexponential
class group computation algorithm of Hafner and McCurley [19]. This approach,
mentioned in [10], was first suggested by Couveignes [13]. In a recent independent
work [7], Bonnetain and Schrottenloher used a method that bears similarities
with our oracle described in this section. They combined a quantum algorithm
for computing the class group with classical methods from Biasse, Fieker and
Jacobson [4, Algorithm 7] for evaluating the action of [a] with a precomputation
of Cl(O). More specifically, let l1, . . . , lu be prime ideals used to create the secret
ideal a of Alice. This means that there are (small) (e1, . . . , eu) ∈ Z

u such that
a =

∏
i l

ei
i . Let L be the lattice of relations between l1, . . . , lu, i.e. the lattice of

all the vectors (f1, . . . , fu) ∈ Z
u such that

∏
i l

fi

i is principal. In other words,

the ideal class
[∏

i l
fi

i

]
is the neutral element of Cl(O). The high-level approach

used in [7] deriving from [4, Algorithm 7] is the following:

1. Compute a basis B for L.
2. Find a BKZ-reduced basis B′ of L.
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3. Find (h1, . . . , hu) ∈ Z
u such that [a] =

[∏
i l

hi
i

]
.

4. Use Babai’s nearest plane method on B′ to find short (h′
1, . . . , h

′
u) ∈ Z

u such
that [a] =

[∏
i l

h′
i

i

]
.

5. Evaluate the action of
[∏

i l
h′

i
i

]
on E1 by applying repeatedly the action of

the li for i = 1, . . . , u.

Steps 1 and 2 can be performed as a precomputation. Step 1 takes quantum
polynomial time by using standard techniques for solving an instance of the
Abelian Hidden Subgroup Problem in Z

u where p = 4l1 · · · lu − 1 for small
primes l1, . . . , lu.

The oracle of Childs, Jao and Soukharev [11] has asymptotic time complexity

in 2Õ
(√

log(|Δ|)
)

and requires subexponential space due to the need for the stor-

age of the �-th modular polynomial Φ�(X,Y ) for � up to e
Õ

(√
log(|Δ|)

)
. Indeed,

the size of Φ�(X,Y ) is proportional to �. The oracle of Bonnetain and Schrot-
tenloher [7] relies on BKZ [31] lattice reduction in a lattice in Z

u. Typically,
u ∈ Θ(log(p)) = Θ(log(|Δ|)), since

∑
q≤l log(q) ∈ Θ(l). In addition to not hav-

ing a proven space complexity bound, the complexity of BKZ cannot be in

e
Õ

(√
log(|Δ|)

)
unless the block size is at least in Θ

(√
log(|Δ|)

)
, which forces the

overall complexity to be at best in e
Õ

(√
log(|Δ|)

)
.

Our strategy differs from that of Bonnetain and Schrottenloher on the fol-
lowing points:

– Our algorithm does not require the basis l1, . . . , lu provided with CSIDH.

– The complexity of our oracle is in e
Õ

(
3
√

log(|Δ|)
)

(instead of e
Õ

(√
log(|Δ|)

)
for

the method of [7]), thus leading to an overall complexity of e
O

(√
log(|Δ|)

)

(instead of e
Õ

(√
log(|Δ|)

)
for the method of [7]).

– We specify the use of a variant of BKZ with a proven poly-space complexity.

To avoid the dependence on the parameter u, we need to rely on the heuristics
stated by Biasse, Fieker and Jacobson [4] on the connectivity of the Caley graph
of the ideal class group when a set of edges is S ⊆ {p : N (p) ∈ Poly(log(|Δ|))}
with #S ≤ log(|Δ|)2/3 where Δ is the discriminant of O. By assuming [4, Heuris-
tic 2], we state that each class of Cl(O) has a representation over the class of
ideals in S with exponents less than elog

1/3(|Δ|). A quick calculation shows that
there are asymptotically many more such products than ideal classes, but their
distribution is not well enough understood to conclude that all classes decompose
over S with a small enough exponent vector. Numerical experiments reported
in [4, Table 2] showed that decompositions of random ideal classes over the first
log2/3(|Δ|) split primes always had exponents significantly less than elog

1/3(|Δ|).

Heuristic 1 (With parameter c > 1). Let c > 1 and O be an imaginary
quadratic order of discriminant Δ. Then there are (pi)i≤k for k = log2/3(|Δ|)
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Table 2. Maximal exponent occurring in short decompositions (over 1000 random
elements of the class group). Table 2 of [4].

log10(|Δ|) log2/3(|Δ|) Maximal coefficient elog
1/3(|Δ|)

20 13 6 36

25 15 8 48

30 17 7 61

35 19 9 75

40 20 10 91

45 22 14 110

50 24 13 130

split prime ideals of norm less than logc(|Δ|) whose classes generate Cl(O).
Furthermore, each class of Cl(O) has a representative of the form

∏
ip

ni
i for

|ni| ≤ elog
1/3 |Δ|.

A default choice for our set S could be the first log2/3(|Δ|) split primes of O
(as in Table 2). We can derive our results under the weaker assumption that
the log2/3(|Δ|) primes generating the ideal class group do not have to be the
first consecutive primes. Assume we know that Cl(O) is generated by at most
log2/3(|Δ|) distinct classes of the split prime ideals of norm up to logc(|Δ|) for
some constant c > 0. Our algorithm needs to first identify these prime ideals as
they might not be the first consecutive primes. Let p1, . . . , pk be the prime ideals
of norm up to logc(|Δ|). We first compute a basis for the lattice L of vectors
(e1, . . . , ek) such that

∏
ip

ei
i is principal (in other words, the ideal class [

∏
ip

ei
i ]

is trivial). Let M be the matrix whose rows are the vectors of a basis of L. There
is a polynomial time (and space) algorithm that finds a unimodular matrix U
such that

UM = H =

⎡

⎢⎢
⎢⎢
⎣

h1,1 0 . . . 0
... h2,2

. . .
...

...
...

. . . 0
∗ ∗ . . . hk,k

⎤

⎥⎥
⎥⎥
⎦

,

where H is in Hermite Normal Form [35]. The matrix H represents the unique
upper triangular basis of L such that hi,i > 0, and hj,j > hi,j for i > j. Every

time hi,i = 1, this means that we have a relation of the form [pi] =
[∏

j<ip
−hi,j

j

]
.

In other words, [pi] ∈ 〈[p1], . . . , [pi−1]〉. On the other hand, if hi,i 	= 1, then
[pi] /∈ 〈[p1], . . . , [pi−1]〉. Our algorithm proceeds by computing the HNF of M ,
and every time hi,i 	= 1, it moves pi to the beginning of the list of primes, and
moves the column i to the first column, recomputes the HNF and iterates the
process. In the end, the first log2/3(|Δ|) primes in the list generate Cl(O).
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Algorithm 2. Computation of log2/3(|Δ|) primes that generate Cl(O)
Input: Order O of discriminant Δ and c > 0.
Output: log2/3(|Δ|) split primes whose classes generate Cl(O).
1: S ← {Split primes p1, . . . , pk of norm less than logc(|Δ|)}.
2: L ← lattice of vectors (e1, . . . , ek) such that

∏
ip

ei
i is principal using [6].

3: Compute the matrix H ∈ Z
k×k of a basis of L in HNF using [35, Ch. 6].

4: for j = k down to log2/3(|Δ|) + 1 do
5: while hj,j �= 1 do
6: Insert pj at the beginning of S.
7: Insert the j-th column at the beginning of the list of columns of H.
8: H ← HNF(H).
9: end while

10: end for
11: return {p1, . . . , ps} for s = log2/3(|Δ|).

Proposition 2. Assuming Heuristic 1 for the parameter c, Algorithm2 is cor-
rect and runs in polynomial time in log(|Δ|).
Proof. Step 2 can be done in quantum polynomial time with the S-unit algorithm
of Biasse and Song [6]. Assuming that log2/3(|Δ|) primes of norm less than
logc(|Δ|) generate Cl(O), the loop of Steps 5 to 9 is entered at most j times as
one of [p1], . . . , [pj ] must be in the subgroup generated by the other j − 1 ideal
classes. The HNF computation runs in polynomial time, therefore the whole
procedure runs in polynomial time. ��

Once we have p1, . . . , ps, we compute with Algorithm 3 a reduced basis B′ of
the lattice L ⊆ Z

s of the vectors (e1, . . . , es) such that [
∏

ip
ei
i ] is trivial, and we

compute the generators g1, . . . , gl such that Cl(O) = 〈g1〉 × · · · × 〈gl〉 together
with vectors vi such that gi =

∏
jp

vi,j

j .

Lemma 1. Let L be an n-dimensional lattice with input basis B ∈ Z
n×n, and

let β < n be a block size. Then the BKZ variant of [21] used with Kannan’s
enumeration technique [26] returns a basis b′

1, . . . , b
′
n such that

‖b′
1‖ ≤ e

n
β ln(β)(1+o(1))λ1 (L) ,

using time Poly(n,Size(B))ββ( 1
2e+o(1)) and polynomial space.

Proof. According to [21, Theorem 1], ‖b′
1‖ ≤ 4 (γβ)

n−1
β−1+3

λ1 (L) where γβ is
the Hermite constant in dimension β. As asymptotically γβ ≤ 1.744β

2πe (1 + o(1))

(see [25]), we get that 4 (γβ)
n−1
β−1+3 ≤ e

n
β ln(β)(1+o(1)). Moreover, this reduction

is obtained with a number of calls to Kannan’s algorithm that is bounded
by Poly(n,Size(B)). According to [22, Theorem 2], each of these calls takes
time Poly(n,Size(B))ββ( 1

2e+o(1)) and polynomial space, which terminates the
proof. ��
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Algorithm 3. Precomputation for the oracle
Input: Order O of discriminant Δ and c > 0.
Output: Split prime ideals p1, . . . , ps whose classes generate Cl(O) where s =

log2/3(|Δ|), reduced basis B′ of the lattice L of vectors (e1, . . . , es) such that[∏
ip

ei
i

]
is trivial, generators g1, . . . , gl such that Cl(O) = 〈g1〉 × · · · × 〈gl〉 and

vectors vi such that gi =
∏

jp
vi,j

j .
1: p1, . . . , ps ← output of Algorithm 2.
2: L ← lattice of vectors (e1, . . . , es) such that

∏
ip

ei
i is principal.

3: Compute a BKZ-reduced matrix B′ ∈ Z
s×s of a basis of L with block size

log1/3(|Δ|).
4: Compute U, V ∈ GLs(Z) such that UB′V = diag(d1, . . . , ds) is the Smith Normal

Form of B′.
5: l ← mini≤s{i | di �= 1}. For i ≤ l, vi ← i-th column of V .

6: V ′ ← V −1. For i ≤ l, gi ← ∏
j≤sp

v′
i,j

j .

7: return {p1, . . . , ps}, B′, {g1, . . . , gl}, {v1, . . . , vl}.

Proposition 3. Assuming Heuristic 1 for c, Algorithm3 is correct, runs in time

e
Õ

(
3
√

log(|Δ|)
)
and has polynomial space complexity.

The precomputation of Algorithm3 allows us to design the quantum circuit
that implements the function described in (1). Generic techniques due to Bennett
[3] convert any algorithm taking time T and space S into a reversible algorithm
taking time T 1+ε, for an arbitrary small ε > 0, and space O(S log T ). From a
high-level point of view, this is simply the adaptation of the method of Biasse–
Fieker–Jacobson [4, Algorithm 7] to the quantum setting.

Algorithm 4. Quantum oracle for implementing f defined in (1)
Input: Curves E1, E2. Order O of discriminant Δ such that End(Ei) � O for i = 1, 2.

Split prime ideals p1, . . . , ps whose classes generate Cl(O) where s = log2/3(|Δ|),
reduced basis B′ of the lattice L of vectors (e1, . . . , es) such that

[∏
ip

ei
i

]
is trivial,

generators g1, . . . , gl such that Cl(O) = 〈g1〉 × · · · × 〈gl〉 and vectors vi such that
gi =

∏
jp

vi,j

j . Ideal class [ay ] ∈ Cl(O) represented by the vector y = (y1, . . . , yl) ∈
Z/d1Z × · · · × Z/dlZ � Cl(O), and x ∈ Z/2Z.

Output: f(x,y).
1: y ← ∑

i≤l yivi ∈ Z
s (now [ay ] =

[∏
ip

yi
i

]
).

2: Use Babai’s nearest plane method with the basis B′ to find u ∈ L close to y.
3: y ← y − u.
4: If x = 0 then E ← E1 else E ← E2.
5: for i ≤ s do
6: for j ≤ yi do
7: E ← [pi] ∗ E.
8: end for
9: end for

10: return |E〉.
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To bound the run time of Algorithm4, we need to assume that the BKZ-
reduced basis computed in Algorithm3 has good geometric properties. We
assume the following standard heuristic.

Heuristic 2 (Geometric Series Assumption). The basis B′ computed in
Algorithm3 satisfies the Geometric Series Assumption (GSA): there is 0 < q < 1
such that ‖b̂′

i‖ = qi−1‖b1‖ where
(
b̂′
i

)

i≤n
is the Gram-Schmidt basis correspond-

ing to B′.

Proposition 4. Assuming Heuristic 1 for some c > 1 and Heuristic 2, Algo-

rithm4 is correct and runs in quantum time e
Õ

(
3
√

log(|Δ|)
)
and has polynomial

space complexity.

Proof. Each group action of Step 7 is polynomial in log(p) and in N (pi). More-
over, Babai’s algorithm runs in polynomial time and returns u such that

‖y − u‖ ≤ 1
2

√∑

i

‖b̂′
i‖2 ≤ 1

2
√

n‖b′
1‖ ∈ e

Õ
(

3
√

log(|Δ|)
)
.

Therefore, the yi are in e
Õ

(
3
√

log(|Δ|)
)
, which is the cost of Steps 5 to 9. The main

observation allowing us to reduce the search to a close vector to the computation
of a BKZ-reduced basis is that Heuristic 1 gives us the promise that there is u ∈ L
at distance less than e

3
√

log(|Δ|)(1+o(1)) from y. ��
Corollary 1. Let E1, E2 be two elliptic curves and O be an imaginary quadratic
order of discriminant Δ such that End(Ei) � O for i = 1, 2. Then assuming
Heuristic 1 for some constant c > 0, there is a quantum algorithm for computing
[a] such that [a] ∗ E1 = E2 with:

– heuristic time complexity e
O

(√
log(|Δ|)

)
, polynomial quantum memory and

e
O

(√
log(|Δ|)

)
quantumly accessible classical memory,

– heuristic time complexity e

(
1√
2
+o(1)

)√
ln(|Δ|) ln ln(|Δ|) with polynomial memory

(both classical and quantum).

Remark 3. We referred to Heuristic 1 as Biasse, Fieker and Jacobson [4] pro-
vided numerical data supporting it. Heuristic 1 may be relaxed in the proof of

the e
O

(√
log(|Δ|)

)
asymptotic run time. As long as a number k in Õ

(
log1−ε(|Δ|))

of prime ideals of polynomial norm generate the ideal class group and that
each class has at least one decomposition involving exponents less than
eÕ(log1/2−ε(|Δ|)), the result still holds by BKZ-reducing with block size β =

√
k.

For the poly-space variant, these conditions can be relaxed even further. It
is known under GRH that a number k in Õ (log(|Δ|)) of prime ideals of norm
less than 12 log2(|Δ|) generate the ideal class group. We only need to argue that

each class can be decomposed with exponents bounded by e
Õ

(√
log(|Δ|)

)
. Then

by using the oracle of Algorithm 4 with block size β =
√

k, we get a run time of

e
Õ

(√
log(|Δ|)

)
with a poly-space requirement.
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5 A Remark on Subgroups

It is well-known that the cost of quantum and classical attacks on isogeny based
cryptosystems is more accurately measured by the size of the subgroup generated
by the ideal classes used in the cryptosystem. As stated in [10, Sect. 7.1], in order
to ensure that this is sufficiently large with high probability, the class group must
have a large cyclic subgroup of order M , where M is not much smaller than the
class number N . Assuming the Cohen-Lenstra heuristics this will be the case with
high probability and, according to Hamdy and Saidak [20], one even expects a
large prime-order subgroup.

It is an open problem as to whether the knowledge of smaller subgroups of
the class group can be exploited to reduce the security of CSIDH; the current
belief (see [10, p. 20]) is that there is no way to do this. There are neverthe-
less minor considerations that can easily be taken into account when selecting
CSIDH parameters to minimize risk in this regard, stemming from the practi-
cal difficulties in constructing quadratic fields whose class numbers have a given
divisor.

Constructing system parameters for which the class number has a known divi-
sor could be done by a quantum adversary using the polynomial-time algorithm
to compute the class group and trial-and-error. Using classical computation,
this is in most cases infeasible because the recommended discriminant sizes are
too large to compute the class number. Known methods to construct discrimi-
nants for which the class number has a given divisor M use a classical result of
Nagell [28] relating the problem to finding discriminants Δ = c2D that satisfy
c2D = a2 − 4bM for integers a, b, c. These methods thus produce discriminants
that are exponential in M , too large for practical purposes.

The one exception where classical computation can be used to find class num-
bers with a known divisor is when the divisor M = 2k. Bosma and Stevenhagen
[8] give an algorithm, formalizing methods described by Gauss [18, Sect. 286] and
Shanks [32], to compute the 2-Sylow subgroup of the class group of a quadratic
field. In addition to describing an algorithm that works in full generality, they
prove that the algorithm runs in expected time polynomial in log(|Δ|). Using
this algorithm would enable an adversary to use trial-and-error efficiently to
generate random primes p until the desired power of 2 divides the class number.

The primes p recommended for use with CSIDH are not amenable to this
method, because they are congruent to 3 mod 4, guaranteeing that the class
number of the non-maximal order of discriminant −4p is odd. However, in Sect. 5
of [10], the authors write that they pick p ≡ 3 (mod 4) because it makes it easy
to write down a supersingular curve, but that “in principle, this constraint is not
necessary for the theory to work”. We suggest that restricting to primes p ≡ 3
(mod 4) is also desirable in order to avoid unnecessary potential vulnerabilities
via the existence of even order subgroups.
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6 Conclusion

We described two variants of a quantum algorithm for computing an isogeny
between two elliptic curves E1, E2 defined over a finite field such that there is
an imaginary quadratic order O satisfying O � End(Ei) for i = 1, 2 with Δ =

disc(O). Our first variant runs in heuristic asymptotic run time 2O
(√

log(|Δ|)
)

and

requires polynomial quantum memory and 2O
(√

log(|Δ|)
)

quantumly accessible
classical memory. The second variant of our algorithm relying on Regev’s dihe-

dral HSP solver [30] runs in time e

(
1√
2
+o(1)

)√
ln(|Δ|) ln ln(|Δ|) while relying only on

polynomial (classical and quantum) memory. These variants of the HSP-based
algorithms for computing isogenies have the best asymptotic complexity, but we
left the assessment of their actual cost on specific instances such as the pro-
posed CSIDH parameters [10] for future work. Some of the constants involved
in lattice reduction were not calculated, and more importantly, the role of the
memory requirement should be addressed in light of the recent results on the
topic [1].
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Journal de Théorie des Nombres de Bordeaux 8(2), 283–313 (1996)
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Abstract. Isogeny based cryptographic systems are one of the very
competitive systems that are potentially secure against quantum attacks.
The run time of isogeny based systems are dominated by a sequence of
point multiplications and isogeny computations performed over supersin-
gular elliptic curves in a specific order. The order of the sequence play an
important role in the run time of the algorithms, and an optimal strat-
egy can be efficiently determined yielding the minimum cost among all
possible choices when a single processor is in use. In this paper, we gen-
eralize this idea and propose new algorithms that determine strategies
for K processors under two different parallelization models: Per-Curve
Parallelization (PCP) and Consecutive-Curve Parallelization (CCP). We
present several recursive formulation of canonical strategies and their
cost under the PCP model. As a result, we show how to construct the
best (optimal) strategies under the PCP model. For some cryptograph-
ically interesting parameters, we obtain up to 24% (for K = 2), 40%
(for K = 4), and 51% (for K = 8) theoretical speed ups over the opti-
mal strategies with one processor. The more general CCP model offers a
refinement of PCP, and yields up to 30% (for K = 2), 47% (for K = 4),
and 55% (for K = 8) theoretical speed ups over the optimal strategies
with one processor.

Keywords: SIDH · Isogeny-based cryptography · Parallelization

1 Introduction

Let E be a supersingular elliptic curve defined over a finite field Fq with q
elements. Furthermore, assume that q = p2 for some prime of the form p =
f�A

eA�B
eB ± 1. Here, �A and �B should be thought of as small primes, and f is

called a cofactor. We choose E so that |E(Fq)| = (f�A
eA�B

eB )2, and let {PA, QA}
and {PB , QB} generate the �A

eA -torsion group E[�A
eA ] ∼= Z�AeA ⊕Z�

eA
A

and the
�B

eB -torsion group E[�B
eB ] ∼= Z�BeB ⊕Z�BeB of E(Fq), respectively. Under this

setting, the supersingular isogeny-based Diffie-Hellman (SIDH) key exchange
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protocol between two parties A and B can be summarized at a high level as
follows (see [3] for more details and the correctness):

1. Fq, E, {PA, QA}, {PB , QB} are published as the domain parameters of the
protocol.

2. A chooses two random integers mA, nA ∈ Z�AeA , and computes an elliptic
curve EA, where φA : E → EA is an isogeny with kernel KA = 〈mAPA +
nAQA〉. A also computes the points φA(PB) and φA(QB).

3. B chooses two random integers mB , nB ∈ Z�BeB , and computes an elliptic
curve EB , where φB : E → EB is an isogney with kernel KB = 〈mBPB +
nBQB〉. B also computes the points φB(PA) and φB(QA).

4. A sends EA, φA(PB), and φA(QB) to B.
5. B sends EB , φB(PA), and φB(QA) to A.
6. A computes an elliptic curve EAB , where φ′

A : EB → EAB is an isogeny with
kernel KAB = 〈mAφB(PA)+nAφB(QA)〉. A computes the j-invariant jAB of
EAB .

7. B computes an elliptic curve EBA, where φ′
B : EA → EBA is an isogeny with

kernel KBA = 〈mBφA(PB) + nBφA(QB)〉. B computes the j-invariant jBA

of EBA.
8. A and B can now derive a shared key from their j-invariants because EAB

∼=
EBA and jAB = jBA.

In [3], other isogeny based public key cryptosystems were proposed includ-
ing zero knowledge proof of identity and public key encryption schemes. More
recently, isogeny based public key signature schemes were proposed in [5]. The
security of these schemes rely on the conjectural hardness of the computational
problems in supersingular elliptic curve isogenies; see [6] for an extensive list
of these problems. Currently, the best known classical and quantum algorithms
to solve these problems run in exponential time, and therefore, supersingular
isogeny based cryptosystems are believed to be quantum resistant.

The run time of SIDH (as well as the run time of other supersingular isogeny
based cryptosystems) is dominated by point multiplications and isogeny com-
putations performed over supersingular elliptic curves in a specific order. More
specifically, given an elliptic curve E/Fq and a point R ∈ E(Fq) of order �n, one
needs to compute a curve En and an isogeny φ : E → En having kernel 〈R〉.
Moreover, one needs to compute φ(P ) and φ(Q) for some points P and Q on E.
For example, see the steps 2, 3, 6, and 7 in the above description of SIDH. De
Feo and Jao [3] describes a method to perform these computations efficiently.
The main idea is to set E0 = E, R0 = R, and to factor an isogeny φ of degeree-�n

as a composition of n degree-� isogenies φi, i = 0, ..., n − 1, satisfying:

φi : Ei → Ei+1, Kernel(φi) = �n−i−1Ri, Ri+1 = φi(Ri) (1)

The decomposition yields

φ = φn−1 ◦ φn−2 ◦ · · · ◦ φ1 ◦ φ0, φ : E → En, Kernel(φ) = R, (2)

as required.
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Given E0 = E and R0 = R, there exist different strategies to compute En

(and to evaluate φ at some given points on E). In [3], each strategy is associated
with a subgraph S of a graph Tn. Here, Tn is a weighted directed graph whose
vertices are lattice points of the unit triangular equilateral lattice between the
x-axis, the line y =

√
3x, and the line y = −√

3(x − n + 1). For a given pair
of vertices v and w in Tn, {v, w} is an edge of Tn if and only if v and w are a
unit away from each other, and the line connecting v and w is not horizontal.
Each edge {v, w} of Tn is directed in a top-down fashion from v to w. The top
most vertex of Tn is labeled with the point R0 = R, and each vertex in Tn

corresponds to a point on an elliptic curve. An edge {P,Q} with a positive slope
in Tn correspond to multiplication by �, that is, P and Q lie on the same curve
Ei, and Q = �P . An edge {P,Q} with a negative slope correspond to an isogeny
computation, that is, P is on Ei, Q is on Ei+1, and Q = φi(P ). The weights p
(the cost of an �-multiplication) and q (the cost of degree-� isogeny computation)
are assigned to the edges of Tn with positive and negative slopes, respectively.
As an example, T4 is shown in Fig. 1.

�3R0

φ0

�2R0

φ0

�1R0

φ0

R0 = R

�2R1

φ1

φ1

R1

�1R2

φ2

R2

R3

Fig. 1. Decomposing an isogeny for n = 4: φ = φ3 ◦ φ2 ◦ φ1 ◦ φ0.

In [3], a correspondence is established between well-formed full strategies S
and binary trees with n leaves, which contain the strategies with minimal cost,
and the cost of a strategy is computed as the sum of the weights of the edges of S.
Furthermore, all well-formed full strategies can be partitioned such that binary
trees of all strategies in the same class share the same tree topology. It is shown
in [3] that a strategy with minimal cost must correspond to a strategy that is
canonically constructed from the representative of its class, independent of the
weights p and q. This correspondence yields the following recursive formula to
determine the cost Cp,q(n) of the optimal strategies with n leaves:

Cp,q(n) = min
i=1,...,n−1

(Cp,q(i) + Cp,q(n − i) + (n − i)p + iq). (3)
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Note that one can recover all optimal strategies by keeping track of the parti-
tionings in the recursion. For example, there are two canonical strategies S1 and
S2 for n = 3, as shown in Fig. 2. The cost of S1 is 3p + 2q, and the cost of S2 is
2p + 3q. Therefore, S1 is optimal when q ≥ p, and S2 is optimal when p ≥ q.

Strategy S1

p

p
q

p
q

Strategy S2

p

p

q

q

q

Fig. 2. Two strategies S1 and S2 for n = 3. The cost of S1 is 3p + 2q, and the cost
of S2 is 2p + 3q. S1 is optimal when q ≥ p and the number of processors is K = 1.
Isogeny computations in S1 cannot be parallelized. The parallelized cost of S2 is 2p+2q.
Therefore, S2 is optimal for all p, q when K = 2, even though it is not optimal when
K = 1 and q > p.

Recently, several high-speed software and hardware implementations of SIDH
have been presented [1,2,4,7,8]. Speed ups are achieved as a combination of
several techniques at the algorithmic and implementation level, including careful
choices of parameters and curve models, optimizing finite field and elliptic curve
arithmetic. Most of these papers do not utilize the parallelization of isogeny
computations in the protocol and they all pick the optimal strategy as described
in [3]. In fact, the implementation in [8] shows that SIDH can greatly benefit from
parallelizing isogeny computations and they claim a speed-up by over a factor
of 1.5 after parallelizing the isogeny computations. It is our understanding that
the parallization technique deployed in [8] is based on a rather naive approach,
which first determines an optimal strategy, and then parallelizes it. We observe
though that this approach may not necessarily yield the best parallel strategy
in general. For example, consider the canonical strategies S1 and S2, with costs
3p+2q and 2p+3q, as in Fig. 2. The strategy S2 cannot be optimal for q > p but
its cost can be reduced from 2p + 3q to 2p + 2q if the two isogeny computations
φ0 are performed in parallel. This makes S2 an optimal parallel strategy for all
p and q because no parallelization can be applied to S1.

Contributions: We summarize our contributions as follows:

1. In Sect. 3 we detail the parallelization models considered in this work.
We propose two models: a Per-Curve Parallelization (PCP) model, and a
Consecutive-Curve Parallelization (CCP) model. In Sect. 4.1 we derive a
recursive formula for CK

p,q(n), the cost of an optimal strategy with n leaves
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using K processors, under the PCP model that determines the cost of an
optimal parallelized strategy. Our formula can also be used to extract such a
strategy explicitly. In Sect. 4.2, we refine our PCP model, and generalize it to
the CCP model. We detail an algorithm for computing the cost of evaluating
a canonical strategy S under the CCP model.

2. In Sect. 5 for the cryptographically interesting parameters (n, p, q) =
(239, 27.8, 17) and (n, p, q) = (186, 25.8, 22.8) at the 124-bit quantum security
level, our experiments with the PCP model found strategies which yield up to
24% (for K = 2), 40% (for K = 4), and 51% (for K = 8) theoretical speed
ups over the optimal serial strategies for n = 186, and up to 23% (for K = 2),
39% (for K = 4), and 50% (for K = 8) theoretical speed ups over the optimal
serial strategies for n = 239.

3. We observe that strategies constructed under the PCP model serves as a
good basis to be evaluated under the more generalized CCP model. More
specifically, for the CCP model, we were able to find strategies which yield
up to 30% (for K = 2), 47% (for K = 4), and 55% (for K = 8) theoretical
speed ups over the optimal serial strategies for n = 186, and up to 28% (for
K = 2), 44% (for K = 4), and 52% (for K = 8) theoretical speed ups over
the optimal serial strategies for n = 239.

2 Motivation

In this section we give motivation for both of the parallelization models to be
defined in Sect. 3 and for our choice to restrict to looking only at canonical
strategies. For this section we treat the models themselves as black boxes, and
the interested reader may later verify the claims made in this section after reading
Sects. 3 and 4.

In Sect. 3 we will define the PCP and CCP parallelization models. It will
later be clear that the CCP model never performs worse than the PCP model.
So why bother studying the PCP model? As it turns out, we are able to con-
structively characterize optimal canonical strategies with minimal costs under
the PCP model. This can be thought of as a generalization of the method in
[3] to find optimal canonical strategies in the serial computation setting. As we
pointed out before in the Introduction (also see Fig. 2), our strategies under PCP
already have the potential to outperform some naive and intuitive paralleliza-
tion methods. On the other hand, the PCP model is somewhat restrictive, and
we introduce our second model CCP. The CCP model is quite complex and we
have been unable to find a method for finding optimal canonical strategies under
the CCP model. Instead, we develop an algorithm that can parallelize any given
canonical strategy and compute its cost under the CCP model. Our experiments
have shown that taking strategies which are optimal under PCP and paralleliz-
ing them under the CCP model provides very good results, and so we use PCP
optimal strategies as a starting point in our search for well-performing CCP
strategies.

One might also question why we restrict to looking only at canonical strate-
gies rather than the more general well-formed strategies. The analysis in [3]
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shows that an optimal strategy is always canonical in the serial setting, and so
intuitively one would expect that this fact carries over to the parallel setting.
Furthermore, the simple structure that canonical strategies provide offer a much
simpler analysis of their cost in the parallel setting when compared to the set of
well-formed strategies. In our analysis, we computed all strategies having n ≤ 5
leaves and, while there were sometimes non-canonical strategies having mini-
mal parallelized cost (with an ad-hoc assignment of processors), the minimal
cost strategies could each be achieved through a canonical strategy which was
parallelized under the CCP model.

As an example, we single out the three strategies S3, S4, and S5 shown in
Fig. 3. S3 is clearly non-canonical, while S4 and S5 are canonical strategies.
When taking p = q = 1, the costs of S3, S4 and S5 using one processor are
13, 12, and 13, respectively, and S4 is an optimal strategy in this scenario. When
using two processors we cannot apply PCP or CCP parallelization to S3 since
it is non-canonical, but exhausting all possible parallelizations of S3 one finds
that the minimal cost of S3 using two processors is 9. Using Theorem 2 and
Algorithm 1 in the sections to follow, we find that when using two processors
S4 has a PCP cost and a CCP cost of 10, while S5 has a PCP cost of 10 and a
CCP cost of 9. We illustrate these minimal costs in Fig. 3. We label each edge in
each strategy with an integer i indicating that the corresponding computation
is performed at the i’th iteration. In particular, if two edges are labeled with the
same integer, then the corresponding computations are performed in parallel.
This shows that finding minimal parallelized cost non-canonical strategies is
sometimes possible, but we seem to be able to do just as well by searching
through canonical strategies using the CCP model. In other words, we propose
some systematic and efficient methods for constructing strategies for parallel
implementation of isogeny based systems. Searching for parallel strategies in an
ad-hoc way (e.g. exhausting all (non-)canonical strategies, or trying all possible
parallelizations of a strategy) may yield better results but it may not be feasible
for cryptographically interesting parameters.

3 Parallelization Models

In this section we detail the parallelization models we consider in this paper.
We begin with a couple definitions. Recall from Sect. 1 that Tn is the weighted
directed graph whose vertices are lattice points of the unit triangular equilateral
lattice between the x-axis, the line y =

√
3x, and the line y = −√

3(x − n + 1).

Definition 1. For 1 ≤ i ≤ n we define Li and Ri as the positive and negative
slope diagonals, respectively, of Tn containing the point (i − 1, 0).

Definition 2. Let S be a set of edges in Tn. We define

– the i-th q-bin of S, denoted Qi(S), for 1 ≤ i ≤ n − 1 as the set of negative
slope edges in S lying between the lines Li and Li+1;

– the i-th p-bin of S, denoted Pi(S), for 0 ≤ i ≤ n − 1 as the set of positive
slope edges in S lying on the line Li+1.
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Fig. 3. Three strategies for comparing our methods against ad-hoc methods. We
assume p = q = 1. S3 is non-canonical with a serial computation cost of 12, and
its minimum cost with 2 processors is 9. S4 and S5 are canonical strategies with serial
costs 12 and 13, respectively. Using our algorithms, both S4 and S5 can be extracted
as two optimal strategies with cost 10 under the PCP model using two processors.
S5 can further be refined under the CCP model, and its cost reduces to 9 matching
the parallelized cost of S3. Each edge in each strategy is labeled with an integer i
indicating that the corresponding computation is performed at the i’th iteration. If
two edges are labeled with the same integer, then the corresponding computations are
performed in parallel. Labels were assigned in S4 using the PCP or CPC models (they
are equivalent in this case), and in S5 using the CCP model. (We thank the anonymous
reviewer of PQC 2018 for pointing out the example of strategy S3. The example was
very enlightening in our analysis and led us to consider the CCP model.)

We note that |P0(S)| = n−1 and that Pn−1(S) is always empty for canonical
strategies S, but these are included for algorithmic purposes. See Fig. 4 for an
example of these definitions on a strategy with n = 4. We then have that the

serial cost of a strategy S is Cp,q(S) =
n−1∑

i=0

|Pi(S)|p +
n−1∑

i=1

|Qi(S)|q.
We adopt the definition of a strategy as in [3]; more precisely, we work entirely

with canonical strategies unless otherwise stated. Throughout this paper, S will
denote a strategy on n leaves, and K will be the total number of processing
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L1

L2

L3

L4R1

R2

R3

R4

P0(S), 3 edges
P1(S), empty

P2(S), 1 edge
P3(S), empty

Q1(S), 2 edges

Q2(S), 1 edge

Q3(S), 1 edge

Fig. 4. An example of the lines Li and Ri and the bins Pi(S) and Qi(S) on a strategy
S with n = 4.

units deployed for parallelization. Evaluating a strategy S involves the following
computations:

(1) computation of elliptic curves Ei for i = 0, 1, . . . , n.
(2) the evaluation of [�] at varying points on varying curves: for P ∈ Ei for some

i, we must compute � · P . These evaluations correspond to edges in Pi(S).
(3) the evaluation of isogenies at varying points on varying curves: for P ∈ Ei−1

and φi : Ei−1 → Ei for some i, we must compute φi(P ). These evaluations
correspond to edges in Qi(S).

Item (1) is done through Vélu’s formulas and its variants [9]. What kind of
parallelization might one consider among the above computations? The following
theorem limits the possibilities.

Theorem 1. Let S be a canonical strategy with n ≥ 3 leaves and let a and b be
distinct edges in the bins Pi(S) and Pj(S), respectively. Then a and b cannot be
parallelized together.

Proof. We use induction on n. There are only two strategies with n = 3 leaves,
pictured in Fig. 2. If i = j = 0, we may assume the path in P0(S) is ab; in this case
the input to the computation corresponding to b is the output of the computation
corresponding to a, and so these computations must be done sequentially. If i �= j
then we may assume i = 0 and j = 1; the elliptic curve E1 cannot be defined
until the point corresponding to the leaf at the vertex (0, 0) is reached, and so a
must be evaluated before b.
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Suppose the theorem holds for all canonical strategies having less than n
leaves. Let S′ and S′′ be the left and right branches of S, respectively (these
exist since S is well-formed and canonical). Let r, r′ and r′′ be the roots of S, S′

and S′′, respectively. Then S = S′∪S′′∪rr′∪rr′′. See Fig. 5 for a visual depiction.
Then a and b each lie in either rr′, S′, or S′′. To begin evaluating S′′ we must
have S′ completely evaluated first, and to begin evaluating S′ we must have rr′

completely evaluated first. We can therefore assume that a and b both lie in the
same set: either rr′, S′ or S′′. The edges in rr′ must be done successively, and
so we get no parallelization in this case. Our induction hypothesis takes care of
the S′ and S′′ cases.

In light of this theorem, we focus on grouping together edges a1, . . . , aK in
batches to be parallelized, with all ai lying in some Qji(S) with the possible
exception that one edge is in some Pm(S). In this work we consider two dif-
ferent but similar parallelization models: the per-curve parallel model and the
consecutive-curve parallel model. The per-curve model is simpler and gives very
nice theoretic results. Under this model we prove the existence of optimal strate-
gies and show how to extract them efficiently. However, this model suffers from
a fairly large amount of idle processors, which motivates the consecutive-curve
model. We found that the consecutive-curve model gives overall lower costs as
we will see in Sect. 5.

Parallelization Model 1. The Per-Curve Parallel (PCP) model imposes a
parallelization on a canonical strategy S in which the only computations that we
allow to be parallelized are isogeny evaluations which involve the same isogeny.
That is, we evaluate P0(S) in serial, then evaluate Q1(S) in parallel, then eval-
uate P1(S) in serial, then evaluate Q2(S) in parallel, etc.

It should now be clear why the name “Per-Curve Parallel” was chosen: par-
allelization is applied on a per-curve basis.

Remark 1. Fix an index i with 1 ≤ i ≤ n − 1. For a canonical strategy S we
remark that all edges in Pi(S) form a connected path whose target is a leaf of
S. This means there is some point Pi ∈ Ei and some non-negative integer ti
such that the vertices on the path of Pi(S) correspond exactly to the points
Pi, [�] Pi, [�]

2
Pi, . . . , [�]

ti Pi and such that Pi is reached through an isogeny eval-
uation (and not a multiplication by �). The isogeny evaluation which produces
Pi will be the bottom-most edge in Qi(S), for otherwise S would not be well-
formed. As a consequence, the bottom-most edge in Qi(S) must be evaluated
in order to begin the evaluations in Pi(S). When i = 0, Pi is the root of S and
t0 = n − 1.

Parallelization Model 2. The Consecutive-Curve Parallel (CCP) model
imposes a parallelization on a canonical strategy S in which:

1. we apply parallelization among Pi(S)∪Qi(S) for i = 1, 2, . . . , n−1 and among
Qi(S) ∪ Qi−1(S) for i = 2, . . . , n − 1. In the former case due to Theorem 1,
we parallelize 1 edge from Pi(S) with K − 1 edges from Qi(S) when possible.
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In the latter case we parallelize K edges from Qi(S) together when possible,
and if the last of these batches has idle processors then we apply these pro-
cessors to the bottom-most edges in the next bin Qi+1(S) whenever possible
(so that the last few edges from Qi−1(S) will be parallelized with the first few
edges in Qi(S)).

2. before any edges in Pi(S) can be evaluated, the bottom-most edge in Qi(S)
must be evaluated (see Remark 1)

The name “Consecutive-Curve Parallel” comes from parallelizing Qi(S) with
Qi+1(S). The CCP model is more involved than the PCP model, but it signifi-
cantly reduces the number of idle processors overall since all evaluations in Pi(S)
are done in serial in the PCP model. In addition, any “leftover” processors from
evaluating Qi(S) are tasked with beginning evaluations in Qi+1(S), which the
PCP model doesn’t account for.

In the single processor K = 1 setting, the notion of cost Cp,q(S) of a strategy
S is well defined as in Eq. 3. When K > 1, the cost of the strategy depends upon
the model used. We will write CK

p,q(S) for the parallelized cost of the strategy
S, with the choice of parallelization model understood from context.

Naturally, for given n and K we seek parallelized strategies S having n leaves
which are optimal under the PCP and CCP parallelization models, by which we
mean that CK

p,q(S) is minimal among all possible strategies S with the same
parameters p, q,K under the corresponding model.

4 Parallelized Strategies and Their Optimality

Let S be a strategy and (p, q) a measure. We expand our definition of measure to
include a parallelization parameter K denoting the total number of processing
units deployed for the evaluation of the strategy. We also write |S| for the number
of leaves in the strategy S.

In this section we are concerned with finding optimal strategies in the PCP
and CCP models. In the PCP case, we will see in Subsect. 4.1 that we are able
to determine explicitly what these optimal strategies are and easily find their
cost. In the CCP model, we give an algorithm that will determine the cost of a
given strategy under this model.

4.1 Constructing Optimal Strategies Under PCP

Here we restrict exclusively to the PCP model unless otherwise stated. In the
terminology of Definition 2, recall that the PCP model performs calculations on
a per-bin basis. That is, we perform the computations in Pi(S) in serial, then
we parallelize the edges in Qi(S), and repeat for the next index i+1. One would
expect the parallelized cost of S to be

n∑

i=0

|Pi(S)|p +
n−1∑

i=1

⌈ |Qi(S)|
K

⌉

q (4)

when parallelizing computations on each curve individually.
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Definition 3. Let S be a set of edges in Tn and let K be the total number of
processors deployed. For k ∈ [1, . . . , K], we let Ck/K(S) denote the parallelized
cost of S when exactly k out of the total K processors are available for the first
batch of computations within each bin Qi(S), with the understanding that the
other processors are occupied with other computations during this first batch.

This relates to our previous cost definition by the equality CK(S) =
CK/K(S). As we will see shortly, we can compute this cost by examining the
cost of the left and right branches of S, but will have “one less processor” at
the start of computations in the left branch of S, which motivates the above
definition. We make this precise now by stating and proving our main result for
this section.

Theorem 2. Let S be a canonical strategy with n ≥ 2 leaves. Let S′ and S′′

be, respectively, the left and right branches of S, having i and n − i leaves,
respectively. Fix k with 1 ≤ k ≤ K. Then under the PCP model we have

Ck/K
p,q (S) =

{
C

k−1/K
p,q (S′) + C

k/K
p,q (S′′) + (n − i)p + q if k > 1

C
K/K
p,q (S′) + C

k/K
p,q (S′′) + (n − i)p + iq if k = 1

Proof. Let r, r′ and r′′ be the roots of S, S′ and S′′, respectively. Let r̂ be the
vertex on the edge rr′′ lying at the intersection of Li and Rn (so that r̂r′′ is just a
single edge). Then because S is canonical we can write S = S′∪S′′∪rr′∪rr̂∪r̂r′′.
See Fig. 5.

r′

r′′

S′

r

r̂

S′′

L1 Li Li+1 Ln Rn

Fig. 5. Separating a strategy into its branches and connecting paths.
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Then since

– the negative slope edges in S′ ∪ rr̂ are exactly those in
i−1⋃

j=1

Qj(S),

– the negative slope edge r̂r′′ is exactly Qi(S), and

– the negative slope edges in S′′ are exactly
n−1⋃

j=i+1

Qj(S),

these portions of S can be parallelized separately and we get

Ck/K(S) = Ck/K(S′ ∪ rr̂) + Ck/K(S′′) + Ck/K(rr′) + Ck/K(r̂r′′). (5)

As r̂r′′ is a single edge, we get C
k/K
p,q (r̂r′′) = q. Since rr′ contains exactly |S′′|

many positive slope edges, no parallelization can be applied and so C
k/K
p,q (rr′) =

|S′′|p = (n − i)p. We now have

Ck/K
p,q (S) = Ck/K

p,q (S′ ∪ rr̂) + Ck/K
p,q (S′′) + (n − i)p + q.

We examine Ck/K(S′ ∪ rr̂). Let q1, . . . , qi−1 be the edges making up rr̂, with
qj ∈ Qj(S) for 1 ≤ j ≤ i − 1. If k > 1, then the computation of the edge qj

must put in the first batch of bin Qj(S′), occupying one of the processors on
the first batch of computations. This leaves k − 1 available processors on the
first batch in S′, and so Ck/K(S′ ∪ rr̂) = Ck−1/K(S′). If k = 1, then only one
processor is available for our first computation; we use this processor on the
edges qj to fill a batch within each Qj(S), and perform the computations in S′

with a fresh batch. Adding on the cost of the filled batch in each bin, this yields
C

k/K
p,q (S′ ∪ rr̂) = C

K/K
p,q (S′) + (i − 1)q. This yields the desired equality:

Ck/K
p,q (S) =

{
C

k−1/K
p,q (S′) + C

k/K
p,q (S′′) + (n − i)p + q if k > 1

C
K/K
p,q (S′) + C

k/K
p,q (S′′) + (n − i)p + iq if k = 1

(6)

Corollary 1. Let S′ and S′′ be canonical strategies with i and n − i leaves,
respectively. Fix k with 1 ≤ k ≤ K. Assuming the PCP model, suppose that
C

k/K
p,q (S′′) is minimal among all choices of strategies with n − i leaves, and:

– if k > 1 that C
k−1/K
p,q (S′) is minimal among all choices of strategies with i

leaves,
– if k = 1 that C

K/K
p,q (S′) is minimal among all choices of strategies with i

leaves.

Let S be the strategy having n leaves and whose left branch is S′ and right
branch is S′′. Then C

k/K
p,q (S) is minimal among all strategies having n leaves

with i leaves in the left branch.

Proof. Let Ŝ be any canonical strategy with n leaves having i leaves in the left
branch. Let Ŝ′ and Ŝ′′ be the left and right branches of Ŝ, respectively. We must
show that Ck/K(Ŝ) ≥ Ck/K(S).
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Suppose k > 1. Both S and Ŝ satisfy the hypotheses of Theorem 2, and by
the minimality assumptions on S′ and S′′ we have

Ck/K(Ŝ) = Ck−1/K
p,q (Ŝ′) + Ck/K

p,q (Ŝ′′) + (n − i)p + q

≥ Ck−1/K
p,q (S′) + Ck/K

p,q (S′′) + (n − i)p + q

= Ck/K(S).

When k = 1, a similar sequence of (in)equalities can be derived by using the
k = 1 case of Eq. 6.

The above corollary tells us that we can construct optimal strategies induc-
tively from smaller optimal strategies, just as in the serial setting. We now define
a function which computes the cost of an optimal parallelized strategy with n
leaves, and can be used to construct such a strategy. Due to Theorem 2, we need
only take a minimum over all possible partitions of the leaves of a strategy to
find an optimal strategy.

Definition 4. For a measure (p, q,K), we define a cost function C
k/K
p,q (n), or

Ck/K(n) when p, q are clear from context, for n ∈ N and 0 ≤ k ≤ K recursively
as

1. C
k/K
p,q (1) = 0 for k > 0

2. C
k/K
p,q (2) = p + q for k > 0

3. C
0/K
p,q (n) = C

K/K
p,q (n) + (n − 1)q for all n

4. C
k/K
p,q (n) = min

i∈[1,n−1]
{C

k−1/K
p,q (i)+C

k/K
p,q (n− i)+(n− i)p+q} for k > 0, n > 2.

We define CK
p,q(n) to be C

K/K
p,q (n).

Property (3.) is justified as beginning a new batch of computations since
we’ve “run out” of processors. The cost of the new batch is calculated in
C

K/K
p,q (n), and we add the cost of (n − 1)q for the completed batch.

Note that when K = 1, we have

C1
p,q(n) = min

i∈[1,n−1]
{C0/1

p,q (i) + C1/1
p,q (n − i) + (n − i)p + q}

= min
i∈[1,n−1]

{C1
p,q(i) + C1

p,q(n − i) + (n − i)p + iq}

and so C1
p,q(n) = Cp,q(n) for all p, q, n, as one would expect when using one

processor.
If one computes CK(n) for n ≤ K + 1, then property (3.) above will never

be used. In this case, we can derive an explicit formula for CK(n).

Theorem 3. For all n ≤ K + 1, we have CK
p,q(n) = (n − 1)(p + q) for all p, q.

Proof. We use induction on n. The base case n = 1 is given by property (1.) in
the definition above.
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Assume the theorem holds for all i < n. Then

CK
p,q(n) = min

i∈[1,n−1]
{CK−1/K

p,q (i) + CK
p,q(n − i) + (n − i)p + q}

= min
i∈[1,n−1]

{(i − 1)(p + q) + (n − i − 1)(p + q) + (n − i)p + q}

= min
i∈[1,n−1]

{(2n − i − 2)p + (n − 1)q}

= (n − 1)(p + q)

where the second equality follows from the inductive hypothesis since i ≤ n−1 ≤
k and n − i < n ≤ k + 1.

Note that in the proof above the minimum always occurs when i is maxi-
mized, meaning that the partition on the leaves used in the optimal strategy is
(n−1, 1). This yields an entirely isogeny-based strategy. We should also point out
that the number (n−1)(p+q) is a universal lower bound on the parallelized cost
of any strategy with n leaves, independent of which method of parallelization is
used; this is because the edges on the lines L1 and Rn can never be parallelized
together in any way, and adding the cost of these edges gives (n − 1)(p + q).

4.2 Searching for Optimal Strategies Under CCP

The CCP model is more difficult to work with than the PCP model. In our
analysis, we were unable to find any direct or recursive formula which gives the
cost of a strategy S having n leaves using K processors under the CCP model.
As a consequence, we settle for an algorithm which computes the cost of a given
strategy S under fixed parameters p, q,K.

We give a high level overview of the algorithm before jumping into the specific
details. Recall that the CCP model iterates through the Q bins of a strategy S,
attempting to apply parallelization to Pi(S) ∪ Qi(S) and Qi(S) ∪ Qi−1(S). The
edges in Qi(S) are evaluated in a bottom-to-top fashion. We define a variable
leftoveri as the number of processors not initially assigned an edge on the last
batch of isogeny computations in Qi(S). The i-th iteration of the algorithm will
consider a picture resembling that of Fig. 6.

In order to gain access to the bin Pi(S), the bottom-most edge in Qi(S)
must first be evaluated. If leftoveri is zero (meaning that the last batch in the
previous iteration was actually full), we must perform one batch of entirely
isogeny computations to access the Pi(S) bin. Following this the Pi(S) edges
cannot be parallelized among themselves due to Theorem 1, and so in order to
avoid idle processors we group one edge from Pi(S) with K−1 edges from Qi(S).
Two cases arise when grouping edges in this way: the bin Pi(S) is exhausted first,
or Qi(S) is.

The latter case is handled simply: we compute any edges remaining in Pi(S)
in serial and begin anew on the next index. In the former case we will have

ui = |Qi(S)| − vi − |Pi(S)|(K − 1)
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edges from Qi(S) left to compute, where vi is either leftoveri if leftoveri �= 0
or K otherwise. We group these edges into batches of size K; if (ui mod K) is
nonzero then the remaining K − (ui mod K) many processors can be tasked
with performing computations in the next Q bin Qi+1(S), which determines
leftoveri+1.

All of the above assumes that |Qi(S)| − K ≥ 0, and special care must be
taken when this is not the case (when the bin size is very small). Recall that
we group the few top-most edges in Qi−1(S) with the few bottom-most edges in
Qi(S), but we cannot put any edges on the same Rj line into the same batch. In
this situation we put as many of the bottom-most edges of Qi(S) into the batch
as possible (and so possibly having idle processors in this batch).

This methodology gives rise to Algorithm 1. We now explain each step of
this algorithm.

· · ·

· · ·
· · ·

· · ·
· · ·

|Pi(S
)|

left
ove

r i

|Qi(S
)| − K

(−left
ove

r i
) mod K

Li+1

Li

Li−1

Fig. 6. The i-th q and p bins of a strategy S, together with the edges placed into
the last batch of isogeny computations in bin Qi−1(S). Other edges in Qi−1(S) which
are not in the last batch have been omitted from this figure, as they will have been
parallelized on the previous iteration of the algorithm.

Details of Algorithm 1: We keep track of variables r, s, and t representing
the p, q, and max{p, q} costs, respectively. The algorithm begins by initializing
s and t to 0, and r to n − 1 to account for the n − 1 multiplications by �
occurring on curve 0. We then iterate through each Qi(S) bin with the index
i, determining the cost while accounting for processors which were idle in the
final batch of isogeny evaluations being carried over to the next bin through the
variable leftover. Recall that we perform isogeny evaluations in a bottom-to-top
fashion, and so the lowest positioned edges in each bin have priority on being
grouped into batches first.
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Algorithm 1. CCP-Cost

Parameters: p, q, K
Input : Integer vectors Q = (Q1, . . . , Qn−1) and P = (P1, . . . , Pn−2)

referencing some canonical strategy S having n leaves, where
– Qi is the number of negative slope edges in S between curves i − 1 and i
– Pi is the number of positive slope edges in S on curve i.

with the first curve being curve 0.
Output: A tuple (r, s, t), where r, s, and t are respectively the number of p, q,

and max{p, q} computations when parallelizing S with K processors
1 s, t, leftover ← 0, r ← n − 1
2 for i = 1 to n − 1 do
3 binSize ← Qi − K
4 if binSize < 0 then
5 binSize ← K − leftover
6 leftover ← Qi − (K − leftover)

7 else
8 binSize ← binSize + K − leftover
9 end

10 if leftover == 0 then
11 binSize ← binSize − K
12 s ← s + 1

13 if binSize > 0 then
14 if binSize ≥ (K − 1)Pi then
15 binSize ← binSize − (K − 1)Pi

16 t ← t + Pi

17 s ← s + �binSize
K

�
18 leftover ← (−binSize) mod K

19 else
20 t ← t + �binSize

K−1
�

21 r ← r + Pi − �binSize
K−1

�
22 leftover ← 0

23 end

24 else
25 r ← r + Pi

26 leftover ← 0

27 end

28 end
29 return (r, s, t)

Lines 3–9: Together lines 3–9 account for subtracting off a number of edges
from the Qi(S) bin according to the number of leftover processors from the
previous iteration. However we cannot group together an edge in Qi−1(S) with
an edge in Qi(S) which lie on the same line Rj , since these would have to be
done sequentially. We note that

if an edge on line Rj is present in bin Qi−1(S) in a canonical strategy, then
either the target of this edge is a leaf or the edge on line Rj is present in
bin Qi(S).
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Suppose that there are leftover many idle processors on the last batch of isogeny
computations in bin Qi−1(S). Then the first batch of isogeny computations in
bin Qi(S) will include the K − leftover isogeny computations from bin Qi−1(S).
From the note above, we cannot include the last K − leftover edges in the first
batch of bin Qi(S) since they lie on the same R lines as the leftover edges in bin
Qi−1(S) already being included in the first batch. We subtract these K− leftover
edges from the bin to prevent them from being included in the batch. Then we
subtract off the first leftover many edges from the bin to include them in the
first batch, which gives

binSize ← Qi − (K − leftover) − leftover = Qi − K

in line 3.
If the first leftover edges and the last k − leftover edges in Qi(S) overlap,

then this will cause the size of the bin to become negative, which is checked for
in line 4. In this case, we reset the bin size to the K − leftover edges that we took
out in line 5. We also change leftover in line 6 to the actual amount of edges of
Qi(S) which were included in this first batch.

If there was no overlap between these two groups, we simple add back in the
edges we previously took out in line 8.

Lines 10–13: if there were no leftover processors from isogeny evaluations in
bin Qi−1(S), then we must perform a single batch of isogeny evaluations in bin
Qi(S) in order to access the bin Pi(S).

Lines 13–27: Line 13 checks if there are still remaining edges in the bin after
the execution of line 10. If there are no edges left, we perform the multiplications
by � in bin Pi(S) in serial in the Else clause of line 24. In this case, there is no
remainder on the isogeny evaluations since we must compute all edges in Pi(S)
before beginning on Qi+1(S).

When there are edges left in Qi(S), we group them in “mixed” batches con-
sisting of one single edge from Pi(S) with K − 1 edges from Qi(S). Line 14
checks if there are enough remaining edges in Qi(S) to do |Pi(S)| many of these
mixed batches. If there are (lines 15–18), we add their cost and then group any
remaining edges from Qi(S) into batches of size K. If there aren’t enough edges
in Pi(S) (lines 20–22), we perform as many mixed batches as we can and then
compute the remaining Pi(S) edges in serial.

We make a note that when K = 1, line 16 should be changed to r ← r + Pi

since each batch consists of only a single positive slope edge.

5 An Analysis of Parallelized Strategies and Comparisons

In this section, we detail how we search for optimal strategies and report on
their costs and the speedup percentages that they provide.

The PCP model is quite easy to work with due to the convenient recursive
formula in Definition 4. This formula tells us exactly the cost of the best possible
strategy having n leaves using K processors in the PCP model. A simple recursive
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script will compute CK
p,q(n) for any n and K in the PCP setting and allow us to

determine which strategies are universally optimal under this model.
The CCP model is much more problematic. In Sect. 4.2 we gave an algorithm

for determining the cost of a given strategy under the CCP model. Since the num-
ber of canonical strategies having n leaves is equal to the n-th Catalan number,
it is infeasible to use this algorithm to compute the cost of every canonical strat-
egy for large n. In our analysis we focused on the cryptographically interesting
parameters (n, p, q) taken from [8] of (239, 27.8, 17) and (186, 25.8, 22.8) for K
in the set {2, 3, 4, 7, 8, n − 2, n − 1} (where n = 186 is derived from 372/2, in
which the division by 2 comes from using 4-isogenies as a composition of two
2-isogenies). These parameters together provide 124-bits of quantum security
for SIDH. For each set of parameters we looked at three sets of strategies: all
canonical strategies, serially optimal strategies, and PCP optimal strategies.

For our parameters the sets of serially optimal strategies have size
183, 579, 396 for n = 239 and 1, 623, 160 for n = 186. For the n = 186 case
we are able to parallelize every strategy in the set using Algorithm 1, and the
minimal costs for a few values of K are shown in Table 1.

Table 1. Data for parameters n = 186, p = 25.8, q = 22.8. Row PCP: optimal PCP
costs over all canonical strategies. Row CCP S.O.: best CCP costs over all 1,623,160
serially optimal strategies. Row CCP A.C.: best CCP costs among 5,000,000 randomly
sampled canonical strategies. Row CCP P.O: best CCP costs among 5,000,000 ran-
domly sampled PCP optimal strategies. Percent speedup is over the optimal serial cost
of 34256.4.

K 2 3 4 5 6 7 8

PCP Cost 25942.2 22521.6 20373.0 19197.0 17941.2 16978.8 16617.0

% speedup 24.27 34.26 40.53 43.96 47.63 50.44 51.49

CCP S.O. Cost 24247.2 21784.8 20941.2 20781.6 20781.6 20781.6 20781.6

% speedup 29.22 36.41 38.87 39.34 39.34 39.34 39.34

CCP A.C. Cost 25440.6 22200.6 20880.6 19825.2 19606.2 19218.6 18739.2

% speedup 25.73 35.19 39.05 42.13 42.77 43.90 45.30

CCP P.O. Cost 23890.2 20515.2 18252.6 17555.4 16482.0 16021.2 15294.6

% speedup 30.26 40.11 46.72 48.75 51.89 53.23 55.35

For the other two sets we chose a uniformly random subset of 5, 000, 000
strategies for each parameter tuple. In each case we computed the cost of all
strategies in the subset using Algorithm 1 and reported on the minimal cost
found within that set. The results from the all canonical strategies set were not
as good as one might hope as shown in the “CCP A.C.” row of Table 1 for
n = 186, and this is likely because there are simply too many strategies which
don’t parallelize very well. Better results might come from this set upon further
statistical or theoretical analysis. For example, choosing a different distribution
than uniform on the partitioning of the leaves of a strategy based on (n, p, q,K)
might give better results. We found no obvious correlation between the
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parameters and the optimal partitions, but due to Theorem3 we know that
the initial partitioning tends toward (n − 1, 1) as K → n.

In contrast the results from the PCP optimal strategies sets were typically
the best of all. The data we found is shown in Table 2 with comparisons to
the optimal PCP strategy cost and the optimal serial cost. As expected the
CCP model performs no worse than the PCP model in this case, and often
performs much better with speedups of up to 10% over the best PCP strategy.
Of particular interest are the cases of K = 2, 4, 8, where we find speedups over the
serially optimal strategy of 28.40%, 43.85%, 52.43% respectively in the n = 239
case and 30.26%, 46.72%, 55.35% respectively in the n = 186 case, and each
of these cases we have noticeably lower costs than what we get with the PCP
method. We have no reason to suspect that the strategies we found (which were
chosen uniformly at random from a subset of canonical strategies) are optimal
strategies under the CCP model, and so further speedups than this may be
possible.

It’s worth pointing out that as far as we are aware of in the literature the
method of choosing a serially optimal strategy and applying parallelization to it
has been the only approach used to apply parallelization to the SIDH protocol,
such as in [8]. Table 1 shows at least for n = 186 that this is not an optimal
approach, as the best serially optimal strategy (row CCP S.O.) is outperformed
by a PCP optimal strategy parallelized under CCP (row CCP P.O.) for every
parameter value K.

Tables 1 and 2 suggest that if one were to implement a parallelized version of
SIDH, they would fix a parameter tuple (n, p, q,K) and find a strategy which per-
forms well under the CCP model. We found such efficient strategies by sampling
randomly from the optimal PCP strategies and saving the ones with minimal
costs under Algorithm 1, but other methods of finding efficient strategies under
CCP may exist. Once a strategy has been chosen to be used with CCP, Algo-
rithm 1 also tells the user how to group the operations for parallelization to
achieve the desired cost.

6 Concluding Remarks

We have introduced two models of parallelization, Per-Curve Parallel (PCP) and
Consecutive-Curve Parallel (CCP), for computation of an isogeny of large degree,
which can be used in supersingular isogeny-based Diffie-Hellman key exchange.
For the PCP model we gave a recursive formula for the cost an optimal strategy,
and for the CCP model we gave Algorithm 1 which computes the cost of a given
strategy under CCP. Intuitively we expect that strategies parallelized under
the CCP model should perform better than under the PCP model, and our
experiments reflect this as well. Furthermore, our constructions (cost formula
for PCP and algorithm for CCP) tell the user explicitly how to parallelize the
operations within the strategy. In the case of the PCP model, our cost formula
also tells the user how to construct a strategy which is optimal under the PCP
model.
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Table 2. Comparison of PCP and CCP strategy costs. Above is the costs for parame-
ters n = 239, p = 27.8, q = 17, while below is the costs for n = 186, p = 25.8, q = 22.8.
For each parameter set (n, p, q, K) in the CCP rows, we chose 5, 000, 000 strategies
uniformly at random from the set of strategies which were optimal under the PCP
model; these strategies were parallelized under the CCP model and the minimum cost
from this set is reported in the table.

n = 239 K 1 2 3 4 7 8 237 238

Serial Cost 41653.8 − − − − − − −
PCP Cost 41653.8 31886.0 27858.0 25328.8 21572.6 20851.2 10679.4 10662.4

% speedup

over Serial

0 23.45 33.12 39.19 48.21 49.94 74.36 74.40

CCP Cost 41653.8 29931.0 25835.0 23390.8 20399.6 19814.2 10679.4 10662.4

% speedup

over Serial

0 28.14 37.98 43.85 51.03 52.43 74.36 74.40

% speedup

over PCP

0 6.13 7.26 7.65 5.44 4.97 0 0

n = 186 K 1 2 3 4 7 8 184 185

Serial Cost 34256.4 − − − − − − −
PCP Cost 34256.4 25942.2 22521.6 20373.0 16978.8 16617.0 9013.8 8991.0

% speedup

over Serial

0 24.27 34.26 40.53 50.44 51.50 73.69 73.75

CCP Cost 34256.4 23890.2 20515.2 18252.6 16021.2 15294.6 9013.8 8991.0

% speedup

over Serial

0 30.26 40.11 46.72 53.23 55.35 73.69 73.75

% speedup

over PCP

0 7.91 8.91 10.40 5.64 7.96 0 0

For cryptographically interesting parameters at the 124-bit quantum security
level, our experiments with the PCP model found strategies which yield up to
24% (for K = 2), 40% (for K = 4), and 51% (for K = 8) theoretical speed
ups over the optimal serial strategies for n = 186, and up to 23% (for K = 2),
39% (for K = 4), and 50% (for K = 8) theoretical speed ups over the optimal
serial strategies for n = 239. Furthermore for the CCP model we were able to
find strategies which yield up to 30% (for K = 2), 47% (for K = 4), and 55%
(for K = 8) theoretical speed ups over the optimal serial strategies for n = 186,
and up to 28% (for K = 2), 44% (for K = 4), and 52% (for K = 8) theoretical
speed ups over the optimal serial strategies for n = 239. In the CCP case the
costs that we found were only the best strategies that we happened to come
across, and so further speedups may be possible in this case. Our results and
comparison are purely theoretical as we do not take into account implementation
related (scheduling, sycronization, etc.) costs. It would be interesting to see the
practical impact of our methods in a side-channel protected implementation.
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Abstract. We develop new constructions of lattice-based PRFs using
keyed pseudorandom synthesizers. We generalize all of the known ‘basic’
parallel lattice-based PRFs–those of [BPR12], [BLMR13], and [BP14]–to
build highly parallel lattice-based PRFs with smaller modulus (and thus
better reductions from worst-case lattice problems) while still maintain-
ing computational efficiency asymptotically equal to the fastest known
lattice-based PRFs at only the cost of larger key sizes.

In particular, we build several parallel (in NC2) lattice-based PRFs
with modulus independent of the number of PRF input bits based on
both standard LWE and ring LWE. Our modulus for these PRFs is

just O
(
mf(m)

)
for lattice dimension m and any function f (m) ∈ ω (1).

The only known parallel construction of a lattice-based PRF with such
a small modulus is a construction from Banerjee’s thesis [Ban15], and
some of our parallel PRFs with equivalently small modulus have smaller
key sizes and are very slightly faster (when using FFT multiplication).
These PRFs also asymptotically match the computational efficiency of
the most efficient PRFs built from any LWE- or ring LWE-based assump-
tions known today, respectively, and concretely require less computation
per output than any known parallel lattice-based PRFs (again when
using FFT multiplication).

We additionally use our techniques to build other efficient PRFs with
very low circuit complexity (but higher modulus) which improve known
results on highly parallel lattice PRFs. For instance, for input length λ,
we show that there exists a ring LWE-based PRF in NC1 with modulus
proportional to mλc

for any c ∈ (0, 1). Constructions from lattices with
this circuit depth were only previously known from larger moduli.

Keywords: Lattices · Pseudorandom functions
Learning with errors · Pseudorandom synthesizers

1 Introduction

Pseudorandom functions, first defined by Goldreich, Goldwasser, and
Micali [GGM84], are one of the most fundamental building blocks in cryptogra-
phy. They are used for a wide variety of cryptographic applications, including
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encryption, message integrity, signatures, key derivation, user authentication,
and much more. PRFs are important in computational complexity as well since
they can be used to build lower bounds in learning theory.

In a nutshell, a PRF is a function that is indistinguishable from a truly
random function1. The most efficient PRFs are built from block ciphers like
AES and security is based on ad-hoc interactive assumptions. It is a longstanding
open problem to construct PRFs that are efficient as these block ciphers from
offline assumptions like factoring or the decisional Diffie-Hellman problem. The
history of PRFs based on standard, offline assumptions is long and filled with
many interesting constructions [NR97]. For a full treatment of PRFs and their
applications, we highly recommend reading [BR17]. In this work, however, we
specifically focus on lattice-based PRFs.

While there are many desirable properties of good PRFs, three that immedi-
ately come to mind are speed, parallelization, and cryptographic hardness. Speed
speaks for itself: all other things equal, faster PRFs are better. Parallelization is
also another desired quality: it means that PRFs can practically be computed
more quickly and has interesting implications for complexity theory [BFKL94].
Of course, PRFs that are harder to break are also more desirable. Throughout
this paper we will examine all of these PRF qualities.

Learning with Errors. In this work, we base our PRFs on the hardness of the
learning with errors (LWE) problem [Reg05], which is the most commonly used
lattice problem in cryptography2. Informally, the LWE problem is, for a uni-
formly random fixed key s ∈ Z

n
q , random samples ai ← Z

n
q , and discrete Gaus-

sian noise terms δi, to distinguish from random the distribution consisting of
samples of the form (ai,ai

ᵀ · s + δi mod q).
Regev [Reg05] showed that solving the LWE problem is as hard as finding

approximate solutions to certain worst-case lattice problems. The quality of the
approximate solution (and thus the hardness of the problem solved) was propor-
tional to the ratio of the modulus q to the width of the Gaussian noise terms.
Most LWE-based cryptosystems today rely on the hardness of an LWE instance
with a small, polynomial Gaussian noise distribution, so the hardness of the
scheme is typically directly tied to the modulus q. Thus, decreasing the modulus
of LWE-based cryptosystems is an important goal across many areas of lattice
cryptography3.

1.1 Lattice-Based PRFs

It has been known how to build completely sequential (and thus high depth)
PRFs from LWE by using generic constructions like [GGM84] since the original
LWE result [Reg05] was published. For instance, it is possible to build a very

1 We give a precise definition in Sect. 2.
2 Please see Sect. 2 for a comprehensive definition of and discussion on the LWE prob-

lem.
3 For a full treatment of lattice and LWE complexity, we strongly recommend [MG12].
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simple lattice-based PRF using the [GGM84] construction by treating LWE as
a PRG. This simple construction also has the added benefit of a polynomially
sized modulus q. However, these PRFs from generic constructions are maxi-
mally sequential and very inefficient, since LWE noise (i.e. Gaussians) has to be
sampled at every step in the generic construction.

The study of PRFs based on lattice problems truly began in 2011, when
Banerjee, Peikert, and Rosen [BPR12] invented the learning with rounding
(LWR) problem, reduced to it from LWE, and showed that it could be used
to build efficient and highly parallel PRFs. The authors built three new PRFs
using the new rounding technique: one using the GGM construction, one using
pseudorandom synthesizers, and one direct construction. The ring-based direct
construction had the nice property that it could be implemented in NC1, even
if it was slightly less efficient than the generic constructions.

In a follow-up work, Boneh, Lewi, Montgomery, and Raghunathan [BLMR13]
invented the first key homomorphic PRF in the standard model (from any
assumption) using lattices. While their PRF was not extremely efficient, key
homomorphic PRFs have a wide variety of applications, and their techniques (in
particular, the use of LWE samples with low noise) turned out to be useful in
other applications.

Most recently, Banerjee and Peikert [BP14] developed a general family of key
homomorphic PRFs that dramatically improved upon the PRFs in [BLMR13]
and even were (for certain choices of parameters) competitive with the non-key
homomorphic PRFs of [BPR12] in terms of performance. The authors used a
clever tree structure and rigorous analysis to carefully schedule ‘bit decompo-
sition’ that allowed for good performance while still managing to retain key
homomorphism.

In his Ph.D. thesis, Banerjee [Ban15] further improved the pseudorandom
synthesizer construction technique from [BPR12], which allowed for tighter
asymptotic constructions than previously known4. Around the same time,
Döttling and Schröder [DS15] showed how to use their general technique of on-
the-fly adaptation to also build LWE-based PRFs with relatively small moduli
from low-depth circuits.

Concurrent Work. Very recently, and in a work concurrent with (and indepen-
dent from) ours, Jager, Kurek, and Pan [JKP18] introduce all-prefix universal
hash functions and show how to use these in conjunction with the augmented
cascade construction [BMR10] to build efficient lattice-based PRFs with slightly
superpolynomial modulus. Their LWE-based PRF can be thought of as a much
more efficient version of [DS15]. We do not fully analyze this construction here,
but it is likely more efficient than ours (although it does not have quite as small
of a modulus as some of our constructions).

4 To our knowledge this result has not been formally published in conference proceed-
ings.
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Application-Focused Lattice PRFs. Lattice PRFs have also been used for
a number application specific PRFs, including puncturable PRFs [GGM84],
constrained PRFs [BW13], [DKW16] (including key homomorphic con-
strained PRFs [BFP+15], [BV15]), PRFs secure against related key
attacks [LMR14], and PRFs that hide constraints or functions [CC17], [BKM17],
[BTVW17], [KW17], [PS17]. It is not known how to achieve many of these results
from standard, non-lattice assumptions. Moreover, many of these works utilize
very strong versions of the LWE assumption. It is our hope that the techniques
introduced in this paper can be used to improve the efficiency and assumptions
of some of these works.

1.2 Pseudorandom Synthesizers and Lattices

Pseudorandom synthesizers were first invented by Naor and Reingold in their
famous work [NR95] as a way to construct PRFs with low circuit depth. The
first synthesizer PRF constructions from lattices were introduced in [BPR12].

It can be cumbersome to define synthesizer PRFs in a way that is imme-
diately understandable, so we present an 8-bit version of the synthesizer PRF
from [BPR12]. Let the matrices Si,b ∈ Z

m×m
q for i ∈ [1, ..., 8] and b ∈ {0, 1} be

sampled uniformly at random. The original lattice-based synthesizer construc-
tion of [BPR12] had the following form on an 8-bit input x = x1...x8:
⌊⌊

�S1,x1 · S2,x2�p2
· �S3,x3 · S4,x4�p2

⌉
p1

·
⌊
�S5,x5 · S6,x6�p2

· �S7,x7 · S8,x8�p2

⌉
p1

⌉
p0

Note that this construction has the unfortunate requirement that q >> p2 >>
p1 >> p0. In his thesis [Ban15], Banerjee showed how to eliminate this ‘tower
of moduli’ requirement from this synthesizer construction by using rectangular
matrices. To illustrate this, suppose we set our modulus q and our rounding
parameter p such that q = p2. Let the matrices Si,b for i ∈ [1, ..., 4] and b ∈ {0, 1}
now be defined such that Si,b ∈ Z

m×2m
q . We can take the product of the transpose

of one of these matrices with another and round in the following way:
⎢⎢⎢⎣
⎡
⎣Si,bi

ᵀ

⎤
⎦ · [ Si+1,bi+1

]
⎤
⎥⎥⎥

p

= T ∈ Z
2m×2m
p

for some matrix T that will be indistinguishable from random by the hardness of
LWR. In addition, note that T has enough entropy to produce a new, uniformly
random matrix S′ ∈ Z

m×2m
q . In fact, we can just set

S′ = T ·
[
Im

qIm

]

to trivially extract this randomness. Suppose we now consider a 4-bit input
x = x1...x4: if we put this all together, we can present a four-bit version of the
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PRF based on the improved synthesizer from [Ban15] in the following way:
⎢⎢⎢⎣
⎛
⎝
⎢⎢⎢⎣
⎡
⎣S1,x1

ᵀ

⎤
⎦ · [ S2,x2

]
⎤
⎥⎥⎥

p

·
[
Im

qIm

]⎞
⎠ ·

⎛
⎝
⎢⎢⎢⎣
⎡
⎣S3,x3

ᵀ

⎤
⎦ · [ S4,x4

]
⎤
⎥⎥⎥

p

·
[
Im

qIm

]⎞
⎠

ᵀ⎤
⎥⎥⎥

p

·
[
Im

qIm

]

This new synthesizer construction from [Ban15] was the first lattice-based
PRF construction where the modulus q was independent of the input length λ
of the PRF.

1.3 Our Contributions

In this paper, we introduce a new, general technique that we use to build new
lattice-based PRFs by applying a pseudorandom synthesizer structure [NR95] to
the three main generic PRF constructions of [BPR12], [BLMR13], and [BP14].
While our constructions are not key homomorphic, they are either as efficient or
more efficient and have as small or smaller modulus (and thus better reductions
to worst-case lattice problems) than existing lattice-based PRFs. For lattice-
based PRFs with any degree of parallelism, only the synthesizer-based PRF
from Banerjee’s thesis [Ban15] matches the most efficient of our constructions
asymptotically, and our constructions are (slightly) more efficient in practice
assuming we use fast Fourier transform multiplication5.

In order to illustrate our construction technique, we will start by consider-
ing the [BLMR13] PRF FBLMR. Recall that FBLMR uses two public matrices
A0,A1 ∈ Z

m×m
2 where the entries of these matrices are sampled uniformly at

random from {0, 1} such that A0 and A1 are full-rank. The dimension m is
derived from the security parameter, and the key for the PRF is a single vector
k ∈ Z

m
q and its input domain is {0, 1}λ. We also need an integer modulus q

and a rounding parameter p. The PRF at the point x = x1 · · · xλ ∈ {0, 1}λ is
defined as

FBLMR(k, x) =

⌈
λ∏

i=1

Axi
· k
⌋

p

(1.1)

where �·�p denotes the standard rounding operation6. FBLMR is both key homo-
morphic and massively parallelizable (in NC2) which is quite desirable. However
the construction is quite inefficient, and the modulus q required for the PRF to
be secure is enormous (log q scales linearly with the input length λ), meaning

5 See [Fat06] and especially [KSN+04] for a discussion of integer multiplication algo-
rithms.

6 �·�p : Zq → Zp as �x�p = i, where i · �q/p� is the largest multiple of �q/p� that does
not exceed x.
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that the worst-case lattice problems that we can reduce to the PRF require quite
strong assumptions. The work of [BP14] aims to alleviate some of these problems
by cleverly inserting some ‘bit decomposition’ operations into the evaluation of
the PRF, getting an overall tree structure that results in more efficient PRFs
with better modulus.

Many years ago, the cascade construction [BCK96] and the augmented cas-
cade construction [BMR10] were used to build more efficient PRFs by adding
‘key material’ at every layer of the PRF. This generally increased the key size of
the resulting PRFs, but increased efficiency and (sometimes) allowed for weaker
assumptions. To this point, no such ideas have been applied to PRFs based
on lattice assumptions. While we cannot directly utilize these constructions for
lattices, we can apply their core idea–add ‘key material’ at every layer of the
construction–to build more efficient PRFs.

To this end, suppose we view FBLMR in tree form and add an additional
secret key at every layer of the tree (up to log λ total). In order to do this effi-
ciently, we use a pseudorandom synthesizer construction [NR95]. Pseudorandom
synthesizers, which we define in Sect. 3, are efficient ways to construct paralleliz-
able PRFs.

In our work, we construct a keyed synthesizer S� which has a square matrix
S ∈ Z

m×m
q with entries sampled uniformly at random over Zq as a key. Our

synthesizer is parameterized by a parallelization factor � and uses � ‘lists’ of
binary random matrices Ai,xi

∈ Z
m×m
2 , where i ∈ [1, �] is the list indicator and

xi ∈ [1, ki] is the index of a particular matrix Ai,xi
in the list i. Each output

block of our synthesizer S� looks like the following:

S� (x1, ...x�)
def=

⌈[
�∏

i=1

Ai,xi

]
S

⌋

p

S� looks very much like FBLMR with input length �, although there are some key
differences that we need in order for the synthesizer construction to efficiently
work. We rigorously define and prove the security of this synthesiser S� later in
the paper, and show how the pseudorandom synthesizer construction of [NR95]
can be used to turn various versions of this synthesizer into PRFs. The proof of
security borrows elements from the proofs of [BLMR13] and especially [BP14].

Now suppose that we set our rounding parameter p = 2. This will turn out
to be a practical parameter choice. We next select binary matrices Ai,b ∈ Z

m×m
2

uniformly at random for i ∈ [1, ..., 8] and b ∈ {0, 1} and keys S1,S2,S3 ∈ Z
m×m
q

uniformly at random. Our synthesizer S2 can be used to build what we call the
PRF F 2 which, on 8-bit input x = x1...x8, gives us the following construction:
⌊⌊�A1,x1A2,x2S1�2 · �A3,x3A4,x4S1�2 S2

⌉
2

· (1.2)⌊�A5,x5A6,x6S1�2 · �A7,x7A8,x8S1�2 S2

⌉
2
S3

⌉
2

Note that each rounded subset product (i.e. �A1,x1A2,x2S1�2) evaluates
to a new random-looking matrix over Z

m×m
2 (assuming the nonuniform LWE
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assumption from [BLMR13]), so after one stage of (parallel) evaluation, the
above 8-bit PRF looks like the following:

⌊⌊
Ãx1,x2Ãx3,x4S2

⌉
2

·
⌊
Ãx5,x6Ãx7,x8S2

⌉
2
S3

⌉
2

for random-looking matrices Ãxi,xi+1 ∈ Z
m×m
2 that depend on the bits xi and

xi+1. We can also generalize and pick higher values of �, some of which will have
interesting ramifications. Below we show a (abbreviated) 16-bit construction of
a PRF F 4 using S4:
⌊�A1,x1A2,x2A3,x3A4,x4S1�2 · �A5,x5A6,x6A7,x7A8,x8S1�2 · �·�2 · �·�2 · S2

⌉
2

The inputs to each layer of our PRFs are new, random-looking binary matri-
ces, which allows our synthesizer to compose nicely. Right away, it should be
obvious that our synthesizer offers some advantages over the basic synthesizer
construction of [BPR12]. Most obviously, our rounding parameter and modulus
can be independent of the PRF length. However, some of the comparisons are
a bit more nuanced. While we can build PRFs from (almost) any choice of �–
including PRFs that include synthesizers with different choices of �–we examine
one particular choice in Sect. 5 which we briefly discuss here.

PRF F 2 from Synthesizer S2. Our PRF F 2, which we showed for 8 bits in Eq. 1.2,
is one of the simplest PRFs we can build, but also one of the most efficient. F 2

has modulus O
(
mω(1)

)
7 which is currently the (asymptotically) smallest known

modulus for any lattice PRF that uses rounding. We note that this modulus is
independent of the input length λ of the PRF. F 2 is as asymptotically efficient
in terms of output per work as the naive pseudorandom synthesizer of [BPR12],
which is currently the most efficient known PRF in this regard from standard
lattices. Additionally, F 2 can be computed (practically, even) in circuit class
NC2, meaning that it is highly parallelizable. The only drawback of F 2 is the
relatively large key size.

F 2 is the second (after that in [Ban15]) known lattice PRF with modulus
mω(1) independent of the number of input bits of the PRF with any sublinear
circuit depth and also happens to also be one of the most efficient known lattice
PRF (from standard lattices) in terms of output per work.

Synthesizing [BPR12]. We can also apply pseudorandom synthesizers to other
lattice PRF constructions. The logical place to continue is, of course, the
original lattice PRF construction: [BPR12]. There are substantial differences
between [BLMR13] and [BPR12], the largest of which is that FBLMR uses a LWE
sample subset-product structure while the direct PRF FBPR from [BPR12] uses
a key subset-product structure. However, it turns out we can still build interest-
ing PRFs by synthesizing FBPR with a few minor tricks.

7 We use this as shorthand for O
(
mf(m)

)
for any function f (m) ∈ ω (1). This is

technically incorrect, but a nice convenience and is common in LWR literature.
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In this vein, we next construct a keyed synthesizer K� inspired by (and almost
identical to) FBPR which has a square matrix A ∈ Z

m×m
q with entries sampled

uniformly at random over Zq as a key. K� is parameterized by a parallelization
factor � and uses � ‘lists’ of random matrices Si,xi

∈ Z
m×m
p for some superpoly-

nomially large p, where i ∈ [1, �] is the list indicator and xi ∈ [1, ki] is the index
of a particular matrix Si,xi

in the list i. Each output block of K� looks like the
following:

K� (x1, ...x�)
def=

⌈
A

[
�∏

i=1

Si,xi

]⌋

p

(1.3)

We chose to make the keys uniformly random in order to make the synthesizer
compose properly when used to construct PRFs8. Of course, proving synthesizer
security requires that LWE problem is hard with superpolynomially large uni-
form key and noise, but this is a very straightforward (and probably known in
folklore) result. We prove this as a part of our analysis. In the meantime, we
again demonstrate how such a synthesizer would look by spelling out an 8-bit
version of K�.

Suppose we select ‘public samples’ A1,A2,A3 ∈ Z
m×m
q uniformly at random

and ‘secret’ matrices Si,b ∈ Z
m×m
p uniformly at random for i ∈ [1, ..., 8] and

b ∈ {0, 1}. K2 can be used to build a PRF that we refer to as P 2, which, on 8-bit
input x = x1...x8, gives us the following construction (where all computations
are performed mod q):

⌊
A1

⌊
A2 �A3S1,x1S2,x2�p · �A3S3,x3S4,x4�p

⌉
p

· (1.4)

⌊
A2 �A3S5,x5S6,x6�p · �A3S7,x7S8,x8�p

⌉
p

⌉
p

As is evident from the equations, one can view K� as a sort of key-sample flip-
flop with S�. However, this relationship is not exact, since the hardness results
of LWE with different distributions of keys and samples are not equivalent.

Moving to Rings. While PRFs derived from K� (which we will call P �) are a
little bit more complicated and slightly less efficient than those built from S�

(although this doesn’t show up asymptotically under Õ (·) notation), they have
one huge advantage over constructions from S�: they admit ring instantiations.
As in [BPR12], we can almost immediately derive a ring form of K�, which we
call KR,�, and a corresponding PRF PR,�. These ring PRFs allow us to match
the efficiency of all previously known ring LWE-based PRFs while maintaining
a slightly superpolynomial modulus at the cost of only more key size.

PRFs P 2 and PR,2 from Synthesizers K2 and KR,2. Our PRF P 2, which we
showed for 8 bits in Eq. 1.4, turns out to have parameters almost exactly

8 There are other choices available for the key distribution here–perhaps even more
efficient ones.



198 H. Montgomery

asymptotically equivalent to F 2, including modulus O
(
mω(1)

)
. The only dif-

ference is that P 2 has large secret keys, while F 2 has large public parameters.
We see substantial improvements when we move to rings. The PRF PR,2 is

the second (after that in [Ban15]) known PRF based on the hardness of ring
LWE with modulus mω(1) (where m is now the degree of the polynomial of
the ring R) with any sublinear circuit depth. In addition, PR,2 matches the
most efficient known ring LWE-based PRFs (like those of [BP14]) in terms of
asymptotic computational efficiency. Again, the only drawback is larger key sizes.

Synthesizing [BP14]. We can also build what we call tree-based synthesizers,
which are based on and look almost identical to the PRFs from [BP14]. We
call these synthesizers T� and TR,� for the standard and ring-based versions,
respectively. While the tree constructions are a bit too complicated to explain
here, we note that we can get parameters asymptotically equivalent to what we
have achieved earlier for simple PRFs based on T2 and TR,2 (which we call B2

and BR,2, respectively).
The main advantage of these tree-based synthesizers is that we can poten-

tially build many more interesting PRFs than we otherwise could with the sim-
pler synthesizers. We have yet to fully explore the potential of these synthesizers,
but we think that there might be many interesting applications.

Moving to Higher �. In our PRF constructions, � essentially acts as a paralleliza-
tion parameter–it can be thought of as a ‘locality’ parameter for the synthesizer.
While we do not seem to gain anything in the integer lattice setting from setting
� to be anything higher than a constant (other than the case where � = λ and
we gain key homomorphic properties for certain PRFs), we can achieve some
theoretically interesting results from a higher � in the ring setting.

In [BPR12], the authors showed how to construct a PRF in NC1 using ring
LWE. We generalize this PRF with our synthesizer KR,� and show two inter-
esting choices of PRF to examine with higher �. We first consider the PRF

PR,λ
1√

log λ which is built using the synthesizer K
R,λ

1√
log λ

. This PRF has mod-

ulus m
ω(1)

(
λ

1√
log λ

)
, which is clearly large but is still smaller than mλc

for any
constant c. The synthesizer construction tree of this PRF also has depth

√
log n,

so we can build this PRF in overall circuit depth of O
(
(log n)

3
2

)
, giving us a

PRF in the unorthodox class NC1.5.
We finally consider the PRF PR,λλc

for some constant c ∈ (0, 1) which is
based upon the synthesizer KR,λλc . This PRF has modulus mω(1)λc

and synthe-
sizer construction with constant depth, meaning that it can be built in NC1.
This PRF is interesting because it is the PRF with the smallest modulus that
we can build in NC1 using our techniques. This lets us build lattice PRFs in
NC1 with any subexponential modulus (assuming λ is polynomial in m), but
we still do not know how to break this subexponential barrier (or if it is even
possible). The existence of PRFs in NC1 has many interesting implications in
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complexity theory [BFKL94], so building them from maximally hard assump-
tions is an important problem.

Comparison with Previous Work. In Table 1 on the adjacent page, we compare
our new PRFs with those of the relevant previous works. We borrow the table
format from [BP14].

The General View. While our synthesizers look very similar to existing PRF
constructions, the PRF constructions themselves can be viewed as generaliza-
tions of those in [BPR12], [BLMR13], and [BP14]. In fact, setting � = λ for the
synthesizers S�, K�, and T� result in PRFs that are almost identical to those
in [BLMR13], [BPR12], and [BP14], respectively. However, we do lose the key
homomorphic properties of [BLMR13] and [BP14] when we set � < λ.

Concrete Instantiations and Parameters. If we want to instantiate an actual
PRF, we need to look beyond the asymptotics. It is relatively straightforward
to see that, except for the highly sequential GGM-based and [BP14] sequential
constructions, the constructions of PRFs from synthesizers with small values
of � and the construction from Banerjee’s thesis [Ban15] are the most efficient
overall PRF constructions (although the key sizes are larger) for large input
lengths: these have at most a small constant (either 2 or 4) times the number
of multiplications as the more direct constructions with a substantially smaller
modulus. So, we choose to analyze concretely the synthesizer constructions here.

If we fix a particular ‘lattice security dimension’ m and a particular subex-
ponential parameter (derived from how we set the modulus in any learning with
rounding reduction) rp, we can examine how some of the schemes work practi-
cally. We show these concrete metrics in Table 2. While we have not implemented
these PRFs or closely examined the speed for various multiplication algorithms,
it seems like the PRF PR,2 is a strong candidate to be the fastest parallel PRF
from lattices known today.

Theoretical Implications. A lofty goal in lattice-based cryptography is to build
a PRF based on the hardness of LWE with polynomial modulus q. While we
obviously do not achieve that in this work, we seemingly make progress towards
this goal. In particular, previous lattice-based PRFs typically relied on long
subset-products of matrices multiplied by a secret key. In this work, we show
that only a 2-subset product of matrices multiplied by a key is generally sufficient
to build a PRF. This substantially generalizes the requirements seemingly needed
to build a lattice-based PRF with polynomial modulus. We hope that this result
can be used as a stepping stone towards such PRFs.

1.4 Paper Outline

Unfortunately, due to the space constraints for the conference version of the
paper, we do not have space to include a substantial amount of content. However,
we hope that the main body of the paper provides a clear and concise explanation
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Table 1. Comparison with Previous Work: The parameters are with respect to
PRFs with input length λ and reductions to worst-case lattice problems in dimension m.
We let τ denote the exponent of matrix multiplication. Brackets [·] denote parameters
of a ring-LWE construction that are better than those of integer lattices (when ring
LWE schemes are possible). We ignore constants, lower-order terms, and logarithmic
factors. Parallel Circuit Complexity refers to the parallel circuit complexity class of the
PRF, when applicable. Parallel Matrix Comp. refers to the parallel matrix complexity
of a PRF in terms of matrix multiplication operations, which is a much better measure
of practical parallelizability than circuit depth. PP refers to public parameters, again
when applicable. � refers to polynomially-sized parameters that are too big to fit nicely
in the table (and are relatively unimportant anyway). � refers to parameters that are
dependent on a (unspecified) universal hash function.

Reference Modulus Parallel circuit complexity Parallel matrix or

Ring Comp.

[BPR12] GGM mω(1) – λ

[BPR12] synth mlog λ NC2 log λ

[BPR12] direct mλ NC2 [
NC1]

log λ

[BLMR13] mλ NC2 log λ

[BP14] sequen mω(1) – λ

[BP14] balanced mlog λ NC2 log λ

[Ban15] synth mω(1) NC2 log λ

[DS15] mlog λ NC1+o(1) log log λ

This Work: F 2 mω(1) NC2 log λ

This Work: P 2 mω(1) NC2 log λ

This Work: B2 mω(1) NC2 log λ

This Work: P λ

1√
log λ

mω(1)λ

⎛
⎝λ

1√
log λ

⎞
⎠

NC2 [
NC1.5]

log λ

This Work: P λc
mω(1)λc

NC2 [
NC1]

log λ

Reference Key size PP size Time/out Out

[BPR12] GGM m m2 [m] λm [λ] m

[BPR12] synth λm2 [λm] 0 [0] λmτ−2 [λ] m2 [m]

[BPR12] direct λ3m2 [
λ2m

]
0 [0] λ3m

[
λ2]

λm [λm]

[BLMR13] λ2m λ3m2 λ3m λm

[BP14] sequen m m2 [m] λmτ−1 [λ] m

[BP14] balanced m m2 [m] λmτ−1 [λ] m

[Ban15] synth λm2 [λm] 0 [0] λmτ−2 [λ] m2 [m]

[DS15] m2 [m] � � m

This Work: F 2 m2 λm2 λmτ−2 m2

This Work: P 2 λm2 [λm] m2 [m] λmτ−2 [λ] m2 [m]

This Work: B2 m2 [m] λm2 [λm] λmτ−2 [λ] m2 [m]

This Work: P λ

1√
log λ � � � �

This Work: P λc � � � �
Some Comments: We note that the large keys of some of the PRFs (including ours) can be

computed using a lattice-based PRG in practical cases, making this less of an issue in practice.

In addition, we note that it is trivial to modify the (standard LWE-based) PRFs from [BP14]

to have exactly the same time per output and output sizes as our PRFs F 2, P 2, and B2 by

expanding the secret to be a full-rank matrix rather than a vector. The authors of [BP14]

mention this as an optimization in their work.
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Table 2. Practical Comparison with Previous Work: In this table we consider the
practical implementation of the most efficient parallel lattice-based PRFs. We compare
our PRFs to that from [Ban15] in terms of concrete efficiency. The parameters are with
respect to PRFs with input length λ and reductions from worst-case lattice problems in
dimension m. Brackets [·] denote parameters of a ring-LWE construction that are better
than those of integer lattices (when ring LWE schemes are possible). For simplicity, we
only state higher-order terms (i.e., we ignore polynomial terms when superpolynomial
terms exist, and we ignore constants when polynomial terms exist). The term rp–short
for ‘rounding parameter’–refers to the (superpolynomially large) value induced by the
LWE → LWR reduction that we have denoted in Table 1 as mω(1).

Reference Modulus Matrix/Ring
dimension

Key size (Matrices/Ring elements)

[Ban15] synth r2p m 8λ × Z
m×m
q [Rq ]

This Work: F 2 rp m log q 4λ × Zm log q×m log q
2 , log λ × Z

m log q×m log q
q

This Work: P 2 r3p m 4λ × Z
m×m
p [Rp] , log λ × Z

m×m
q [Rq ]

Reference Matrix/Ring
multiplies

Matrix/Ring product computation

[Ban15] synth 4 (λ − 1) U
(
Zm×m

q

)
× U

(
Zm×m

q

)
[U (Rq)× U (Rq)]

This Work: F 2 2 (λ − 1) U
(
Z

m log q×m log q
2

)
× U

(
Z

m log q×m log q
q

)

This Work: P 2 2 (λ − 1) U
(
Z

m×m
rp

)
× U

(
Z

m×m
q

)
[U (Rrp)× U (Rq)]

Some Comments: The ‘matrix/ring product computation’ shows the distributions of
what matrices or rings we are multiplying in the PRFs above. All of the operations are
computed modulo q, but, for our PRFs listed here, some of the matrices or rings are
nonuniform (and thus can be multiplied more quickly). The fastest PRF is most likely
either P 2 for regular LWE or the ring version of P 2 for ring LWE (this is definitely the
case if we use fast Fourier transform (FFT) multiplication over field elements, but less
clear for other multiplication algorithms–the construction from [Ban15] or F 2 may be
faster for asymptotically slow modular multiplication algorithms).

of the results. As we have mentioned before, we encourage interested readers to
find the full version of our paper on the IACR cryptology eprint archive.

The rest of the paper proceeds as follows: we begin by defining some basic
cryptographic notation and facts about PRFs and lattice problems in Sect. 2.
A reader knowledgeable in lattices and PRFs can safely skip this section. In
Sect. 3, we define pseudorandom synthesizers and state results from [NR95]
on constructions of PRFs from pseudorandom synthesizers. Our definitions are
phrased a little differently than those in [NR95], but the meaning is identical.

In Sect. 4 we formally define our first pseudorandom synthesizer S� which is
based on FBLMR and give an overview of the proof of security. We then give
formal analysis of the PRF F 2 which we build from S2 in Sect. 5. Finally, in
Sect. 6 we conclude and state what we consider are interesting and important
open problems in the area.
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2 Preliminaries

We start by discussing some basic background material for the paper. A reader
who is familiar with the basic cryptographic concepts in each subsection can
safely skip the respective subsections.

2.1 Notation

For a random variable X we denote by x ← X the process of sampling a value
x according to the distribution of X. Similarly, for a finite set S we denote by
x ← S the process of sampling a value x according to the uniform distribution
over S. We sometimes also use U (S) to denote the uniform distribution over a
set S. We typically use bold lowercase letters (i.e. a) to denote vectors and bold
uppercase letters (i.e. A) to denote matrices.

For two bit-strings x and y (or vectors x and y) we denote by x‖y their
concatenation. A non-negative function f : N → R is negligible if it vanishes
faster than any inverse polynomial. We denote by Rki(Za×b

p ) the set of all a × b
matrices over Zp of rank i.

We unfortunately do not have space for a comprehensive preliminaries section
in the conference proceedings format. For a full preliminaries, please refer to the
full version of our paper9.

3 Pseudorandom Synthesizers

In this section we introduce pseudorandom synthesizers. Pseudorandom synthe-
sizers were invented by Naor and Reingold in their seminal work [NR95]. Since
previous general-purpose PRF constructions were entirely sequential [GGM84]
(i.e. had circuit depth at least linear in the number of input bits), which was
both theoretically and practically inefficient, Naor and Reingold developed a
new technique for building highly parallel PRF constructions which they called
pseudorandom synthesizers.

We spend a little bit more time on this than usual because we present the
material in a different way than [NR95] or Omer Reingold’s thesis [Rei]. Rather
than using synthesizer ensembles, we opt for the more modern game-based def-
initions where keys are chosen randomly (rather than functions are selected
randomly from an ensemble). This means that, in addition to a traditional syn-
thesizer, we need to define a keyed synthesizer as well. The definitional changes
require us to change the way the definitions of synthesizers are presented, but
we note that the content remains exactly the same.

We additionally generalize some of the definitions to cover alternative con-
structions that are mentioned in [NR95] (and shown to be secure), but not
covered by the main definition. We start by defining a basic pseudorandom
synthesizer.

9 Available on the IACR cryptology eprint archive.
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Pseudorandom Synthesizer Basics. A pseudorandom synthesizer is, in rough
terms, a two-input function S (·, ·) parameterized by two integers m and n such
that on random inputs (x1, ...., xm) ∈ X and (w1, ..., wn) ∈ W, the matrix M of
all mn values of S (xi, wj) = Mij is indistinguishable from random.

Let m and n be integers. In precise terms, a pseudorandom synthesizer is
an efficiently computable function S : X × W → Y parameterized by m and n,
where X and W are the two input domains and Y is the range. In this paper,
we sometimes allow the synthesizer to take additional public parameters pp and
use Spp : X × W → Y to denote such a synthesizer.

Security for a synthesizer is defined using two experiments between a chal-
lenger and an adversary A. For b ∈ {0, 1} the challenger in Expb works as follows.

1. When b = 0 the challenger sets f(·, ·) def= S(·, ·).
2. When b = 1 the challenger chooses a random function f : X × W → Y.
3. The challenger samples input values (x1, ..., xm) ← X and (w1, ..., wn) ← W

and sends the values f (xi, wj) for all i ∈ [1,m] and j ∈ [1, n] to the adversary.
Eventually the adversary outputs a bit b′ ∈ {0, 1}.

For b ∈ {0, 1} let Wb be the probability that A outputs 1 in Expb.

Definition 1. A synthesizer S : X × W → Y is secure if for all efficient adver-
saries A the quantity

SYNTHadv[A, F ] def= |W0 − W1|

is negligible.

The above definition is what most papers that present pseudorandom syn-
thesizers use. However, as we earlier alluded, the work of [NR95] allows for sub-
stantially more generality. First, we note that we can also use keyed synthesizers.
A keyed pseudorandom synthesizer (KPS) is, in rough terms, a keyed two-input
function S (k, ·, ·) parameterized by two integers m and n such that on sets of
random inputs (x1, ...., xm) ∈ X and (w1, ..., wn) ∈ W, the matrix M of all mn
values of S (k, xi, wj) = Mij is indistinguishable from random. We note that on
successive queries to the KPS, the same key is used but new input values xi and
yi are chosen.

Additionally, we note that it is not necessary that our synthesizer S be a
function with two inputs and one output. S could have three (or more) inputs,
as long as we can still prove security. Once again, Naor and Reingold show a proof
of security for this case as well in [NR95]. Thus, we overload S so that it can take
more than two inputs. We next present a modified definition of a pseudorandom
synthesizer that takes all of these extra considerations into account.

Keyed Pseudorandom Synthesizer Definition. Let � be an integer, and let
n1, ..., n� be integers as well. In precise terms, a pseudorandom synthesizer is
an efficiently computable function S : K×X1 × ...×X� → Y parameterized by �,
n1, ... , n� where K is the keyspace, X1, ... , X� are the � input domains and Y is
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the range. In this paper, we sometimes allow the synthesizer to take additional
public parameters pp and use Spp : K×X1 × ...×X� → Y to denote such a keyed
synthesizer.

Security for a synthesizer is defined using two experiments between a chal-
lenger and an adversary A. For b ∈ {0, 1} the challenger in Expb works as follows.

1. When b = 0 the challenger selects a random key k ← K and sets f(·, ·) def=
S(k, ·, ..., ·).

2. When b = 1 the challenger chooses a random function f : X1 × ... × X� → Y.
3. The challenger samples input values (x1,1, ..., x1,n) ← X1, (x2,1, ..., x2,n) ←

X2, ... , (x�,1, ..., x�,n) ← X� and sends the values f (x1,i1 , x2,i2 ..., x�,i�
) for all

i1 ∈ [1, n1] , ... , i� ∈ [1, n�] to the adversary. If the number of possible values
of f is superpolynomial, the adversary is allowed to adaptively query f on
inputs of the form (i1, ..., i�) of its choice. The challenger repeats this process
an arbitrary polynomial number of times. Eventually the adversary outputs
a bit b′ ∈ {0, 1}.

For b ∈ {0, 1} let Wb be the probability that A outputs 1 in Expb.

Definition 2. A synthesizer S : K × X1 × ... × X� → Y is secure if for all
efficient adversaries A the quantity

SYNTHadv[A, F ] def= |W0 − W1|
is negligible.

3.1 Building PRFs from Synthesizers

In this section we explain how to build pseudorandom functions from synthesizers
using the main theorem from [NR95]. We use different terminology but the
content of the theorem statement remains the same.

�-Admissible Synthesizers. In order to build synthesizers that combine � inputs
into one, we need to make sure that the overall bit length of our input is appro-
priate for our synthesizer length �. To see how this might go wrong, suppose
we are trying to construct a 4-bit PRF from a 3-way synthesizer. If we combine
inputs 1, 2, and 3, we will get another input 1′. But we will only have input 4
to combine with it. If our synthesizer only works on three inputs (and not two–
some synthesizers might work on both two or three inputs), we will be stuck and
unable to finish our PRF! The authors of [NR95] do not explicitly mention such
an idea, but it is implicit in their work.

Definition 3. We say that a number λ is �-admissible if the following procedure
outputs one:

1. While λ ≥ �:
(a) Write λ = �k + r where r ∈ [0, �]
(b) Set λ = λ−r

� + r.
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2. Output λ

We note that any λ is 2-admissible. For larger values of �, the situation is
slightly more complicated. In practice, this admissibility fact won’t be too much
of an issue–we can just pick λ to be a multiple of �, for instance–but we need it
for our synthesizer definition to be complete.

Definition 4. Squeeze Function SQ�
sk: Let X be some set and sk some

secret key. Let k and � be an integers, and let k mod � = r. For every
function S�

sk : X � → X , and every sequence of inputs L = {x1, ..., xk}
where xi ∈ X we define the squeeze SQsk (L) to be the sequence L′ ={

x′
1, ...., x

′
� k

� �, x
′
� k

� �+1
, ..., x′

� k
� �+r

}
where x′

i = Ssk

(
x�i−(�−1), ...x�i−1, x�i

)
for

i ≤ ⌊
k
�

⌋
, and if k = 0 mod �, then for each i ≥ ⌊

k
�

⌋
we set x′

i = x(�−1)� k
� �+i.

Definition 5. Let � be an integer, and let λ be an �-admissible integer. Let S�
sk :

X � → X be a family of keyed pseudorandom synthesizers with key generation
algorithm KeyGen. We define a pseudorandom function F in the following way:
Key Generation:

1. For j ∈ [1, ..., �log� λ�], sample ski ← KeyGen.
2. For i ∈ [1, ..., λ] and b ∈ [0, 1], sample xi,b ← X .

Evaluation: For some bit string i ∈ Z
Λ
2 = {i1i2...iλ} we have

Fpp (i) = SQ�
sk1

(
SQ�

sk2

(
...SQ�

sk�log� λ� {x1,i1 , x2,i2 , ..., xλ,iλ
} ...

))

We next state the main theorem from [NR95], which proves that any adver-
sary that can distinguish the PRF construction in Definition 5 from random can
be used to distinguish the output of the synthesizer S�

sk from random. We para-
phrase the theorem slightly to accommodate our definitions, which, as we have
mentioned numerous times, are slightly different from those in [NR95].

Theorem 1. Let � and λ be integers. Let S�
sk be a pseudorandom synthesizer

as defined in Definition 2, and let Fpp be the function defined in Definition 5. Any
adversary that can distinguish Fpp from a truly random function with advantage
ε can be used to distinguish S�

sk from random with advantage ε
log� λ .

Proof. This theorem is almost exactly Theorem 5.1 of [NR95] and the proof can
be found there.

4 Sample Subset-Product Pseudorandom Synthesizer

In this section we define a new pseudorandom synthesizer based on the LWE
assumption and prove that it is secure. Our synthesizer S� very closely resembles
the PRF from [BLMR13]. We choose to present this synthesizer first because it
is the simplest and most intuitive construction and has the easiest composition
into PRFs.
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4.1 Synthesizer Definition

Definition 6. Let m, q, p, and � be integers such that p ≤ q and 2�log q�−q
q

is negligible. Let k1, ..., k� ∈ Z be positive integers. For i ∈ [1, �] and j ∈ [1, ki]
let Ai,j ∈ Z

m×m
2 be a uniformly distributed binary matrix. Let S ∈ Z

m×m
q be a

matrix sampled uniformly at random.
We define the synthesizer S� : Z

m×m
q ×

[(
Z

m×m
2

)k1 × ... × (Zm×m
2

)k�
]

→
Z

k1m×...×k�m
p in the following way: for each m × m block of output of S�, define

S� (x1, ...x�)
def=

⌈[
�∏

i=1

Ai,xi

]
S

⌋

p

(4.1)

where xi ∈ [1, ki].

We now offer some comments on our synthesizer SLWE. First, note that as
long as p is even, we can ‘chain’ this synthesizer. In other words, if this is the
case, we can modify the output of each (i, j)-block of the synthesizer SLWE(i,j)

to be a random matrix over Z
m×m
2 by just computing the output modulo two.

Later in the paper (when we select parameters and analyze the overall PRF’s
performance) we will comment more on this.

We defer the security proof of this construction to the full version of the
paper. We note that, while the proof of [BP14] could be applied obliquely to get
the same result, the implied parameters are not as good as we can achieve with
a direct proof.

5 Constructions of PRFs from S�

In this section we show how our synthesizer S� can be used to build PRFs.
We also show some optimizations that we can achieve by slightly modifying the
overall synthesizer construction (in a way that doesn’t affect security).

We start by stating an overall theorem about the security of PRFs con-
structed from our pseudorandom synthesizers using the synthesizer construction
of [NR95]. This theorem follows almost immediately from applying the synthe-
sizer construction security theorem of [NR95] as we stated in Theorem 1 to our
theorem in the full version of the paper proving our synthesizers S� secure.

Theorem 2. Let m, n, q, p, λ, and � be integers. In words, m will be our
lattice dimension, n will be the dimension of the LWE problem we reduce to,
q is our modulus, p is our rounding parameter, λ is our PRF length, and � is
our synthesizer parameter. Let ψ ∈ Z be a B-bounded noise distribution. We
additionally require that q ≥ 2m�+ω(1)Bp and 2k−q

q is negligible for some integer
k. Let p = 2.

Let the PRF F � defined by applying the synthesizer construction defined in
Definition 5 to the synthesizer S� defined in Definition 6. Let Q be the number of
queries an adversary makes to F �.
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Any adversary that can distinguish F � from random with advantage ε can be
used to solve the

(
q, n, ψ,Un

q , Un
q

)
-LWE problem (the standard version of LWE)

with advantage ε
2mQ log λ .

As long as we follow the parameter choices implied by Theorem 2, we can
build PRFs from S� for any choice of �. In fact, we could mix and match different
values of � in a single PRF, but we do not see any logical reason to do so (perhaps
odd hardware constraints could make such a thing useful).

In the rest of the section, we examine the PRF F 2, which we build from S2.

5.1 The Synthesizer S2

We start by analyzing the simplest, and yet one of the most efficient, synthesizers:
S2. From Theorem 2, we know that F 2–the PRF built using S2–is secure as long
as q ≥ 2m2+ω(1)Bp = 2mω(1)Bp and 2k−q

q is negligible for some integer k. We
let p = 2.

Let’s evaluate our PRF construction F 2. We start by noting that, due to our
choice of parameters, q ≥ 4m2+ω(1)Bp = 2mω(1)Bp, and thus

log q = O (ω (1) (log m)) = O (ω (1) (log (n log q))) =

O (ω (1) (log (n) log log (q))) = O (ω (1) log n)

Efficiency Calculations. At level i of the synthesizer tree, we do 2 · 2log(λ)−i

matrix multiplications and 2log(λ)−i matrix rounding operations. If we sum over
all levels of the tree, we perform 4λ−1 matrix multiplications and 2λ−1 matrix
rounding operations. Since p = 2, the output of our synthesizer is a random-
looking binary matrix that can be immediately used at the next level, and we
do not have to spend any computational time reformatting this output.

Our matrices are of dimension size m = n log q. If we set τ to be the exponent
corresponding to optimal matrix multiplication, this means our PRF can be
computed in time Õ (λnτ ). In addition, note that we output m2 bits, so our
operations per output bit is Õ

(
λnτ−2

)
.

Parallel Complexity. We subdivide parallel complexity into two categories: com-
plexity in terms of matrix operations if this is what we are only allowed (i.e.
multiply, add, and round) and absolute complexity. Our PRF F 2 clearly has
O (log λ) matrix operation complexity, since the longest potential path from
root to leaf on our synthesizer tree has 2 log (λ) multiplies and log (λ) rounding
operations. Since matrix multiplication is in NC1 [RW04] and our synthesizer
tree has depth log λ, this means F 2 is in NC2.

Key and Public Parameter Size. The one area that our construction F 2 does
not do well on is key size. For our key, we need log λ uniform matrices in Z

m×m
q

as well as 2λ matrices in Z
m×m
2 . We note that these additional binary matrices

can be made public without any loss of security (since they are what would
traditionally be the public matrices of an LWE instance). This gives us secret
key sizes of log (λ)

(
m2 log q

)
and public parameter sizes of λm2.



208 H. Montgomery

6 Conclusion and Open Problems

In this paper, we showed how to build more efficient lattice-based PRFs using
keyed pseudorandom synthesizers. We constructed PRFs with only slightly
superpolynomial modulus (independent of the number of input bits) that match
the efficiency of the otherwise most efficient known constructions. We also show
how to build other PRFs that imply interesting results on the parallel circuit
complexity of lattice PRFs.

6.1 Open Problems

We conclude the paper by stating two open problems. We think these problems
are very important for lattice cryptography in general, as well as (obviously)
PRFs.

LWR with Polynomial Modulus. Recall that the learning with rounding prob-
lem states that, informally, it is hard to distinguish samples of the form(
ai, �ai

ᵀs�p

)
from random for uniformly random samples ai and secret key s.

For an unbounded number of samples (what is needed for a PRF reduction), the
hardness of LWR is only known when the modulus q of the problem instance is
superpolynomially large. This doesn’t seem natural to us, and we think attempt-
ing to prove that LWR is hard for a polynomial modulus and unbounded samples
(or showing evidence that this is not true, although we consider this unlikely)
is a worthwhile endeavor. While there have been several papers establishing
the hardness of LWR with polynomial hardness and a fixed numbers of sam-
ples [AKPW13], [BGM+16], [BLL+15], [AA16], the security of LWR with a
polynomial modulus and unbounded polynomial samples is still unknown.

Earlier this year, Montgomery [Mon18] showed how to build a (highly non-
standard) variant of learning with rounding with polynomial modulus and
unbounded samples. However, at a first glance, this new LWR variant does not
seem to be able to be used with our techniques (or any others, for that matter)
to build PRFs with polynomial modulus. Constructing a variant of LWR that
can be used to build PRFs with polynomial modulus (or showing a security
proof with polynomial modulus and unbounded samples for the regular version
of LWR) remains an important open problem in our opinion.

Subset Product LWE with Polynomial Modulus. Let Ai,bi
∈ Z

m×m
q for i ∈ [1, ...λ]

and bi ∈ {0, 1} be matrices selected uniformly at random, and let s ∈ Z
m
q also be

sampled uniformly from random. We call the following function subset product
LWE:

F (x1...xλ) =
λ∏

i=1

Ai,xi
s + δx

where δx is a noise vector selected independently at random for each input x.
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Currently, for polynomial λ, this function F can only be shown to be hard for
modulus on the order of mλ. Like LWR, we see no real reason why this problem
should not be hard for a polynomial modulus: there are no known attacks, and
the large modulus seems to be a relic of the hybrid argument in the proofs. We
think attempting to prove this function secure for smaller modulus (and thus
achieve better lattice hardness results) is a great candidate for future research.
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Abstract. In this paper, we describe a new Las Vegas algorithm to solve
the elliptic curve discrete logarithm problem. The algorithm depends
on a property of the group of rational points on an elliptic curve and
is thus not a generic algorithm. The algorithm that we describe has
some similarities with the most powerful index-calculus algorithm for
the discrete logarithm problem over a finite field. The algorithm has no
restriction on the finite field over which the elliptic curve is defined.

Keyword: Elliptic curve discrete logarithm problem

1 Introduction

Public-key cryptography is a backbone of this modern society. Many of the
public-key cryptosystems depend on the discrete logarithm problem as their
cryptographic primitive. Of all the groups used in a discrete logarithm based
protocol, the group of rational points of an elliptic curve is the most popular.
In this paper, we describe a Las Vegas algorithm to solve the elliptic curve
discrete logarithm problem.

There are two kinds of attack on the discrete logarithm problem. One is
generic. This kind of attack works in any group. Examples of such attacks are the
baby-step giant-step attack [8, Proposition 2.22] and Pollard’s rho [8, Sect. 4.5].
The other kind of attack depends on the group used. Example of such an attack is
the index-calculus attack [8, Sect. 3.8] on the multiplicative group of a finite field.
An attack similar to index-calculus for elliptic curves, known as xedni calculus,
was developed by Silverman [9,13]. However, it was found to be no better than
exhaustive search. Another similar work in the direction of ours is Semaev [11]
which has given rise to index-calculus algorithms for elliptic curves. A curious
reader can consult Amadori et al. [1] for a list of references. Our approach to
solve the elliptic curve discrete logarithm problem is completely different and
has no restriction on the finite field on which the elliptic curve is defined.
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The main algorithm is divided into two algorithms. The first one reduces
the elliptic curve discrete logarithm problem to a problem in linear algebra.
We call the linear algebra problem, Problem L. This reduction is a Las Vegas
algorithm with probability of success 0.6 and is polynomial in both time
and space complexity. The second half of the algorithm is solving Problem L.
This is the current bottle-neck of the whole algorithm and better algorithms to
solve Problem L will produce better algorithms to solve elliptic curve discrete
logarithm problem. The success of the main algorithm is 0.6 × (log p)2 /p where
every pass is polynomial in time and space complexity. This also shows that our
algorithm is worse than Pollard’s rho or other square root attack for sufficiently
large p.

1.1 Notations

All elliptic curves in this paper are non-singular curves defined over a finite field
of arbitrary characteristic.

All curves are projective plane curves. We do not deal with the affine case though
that can be achieved with minor modification.

The group of rational points of the elliptic curve is assumed to be of prime
order [8, Remark 2.33] and we reserve p for that prime.

We denote by P
2 (F) the projective plane over the field F.

1.2 The Central Idea Behind Our Attack

Let G be a cyclic group of prime order p. Let P be a non-identity element and
Q(= mP ) belong to G. The discrete logarithm problem is to compute the m
mod p. One way to find m is the following: fix a positive integer k; for i =
1, 2, . . . , k find positive integers ni, 1 ≤ ni < p such that

∑k
i=1 ni = m mod p.

The last equality is hard to compute because we do not know m. However we
can decide whether

k∑

i=1

niP = Q (1)

and based on that we can decide if
∑k

i=1 ni = m mod p. Once the equality holds,
we have found m and the discrete logarithm problem is solved.

The number of possible choices of ni for a given k that can solve the discrete
logarithm problem is the number of partitions of m into k parts modulo a prime
p. The applicability of the above method depends on, how fast can one decide
on the equality in the above equation and on the probability, how likely is it
that a given set of positive integers ni sums to m mod p?

2 The Elliptic Curve Discrete Logarithm Problem

The elliptic curve discrete logarithm problem (ECDLP) is an important problem
in modern public-key cryptography. This paper is about a new probabilistic
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algorithm to solve this problem. We denote by E(Fq) the group of rational points
of the elliptic curve E over Fq. It is well known that there is an isomorphism
E(Fq) → Pic0(E) given by P �→ [P ] − [O] [10, Proposition I.4.10].

Theorem 1. Let E be an elliptic curve over Fq and P1, P2, . . . , Pk be points on
that curve, where k = 3n′ for some positive integer n′. Then

∑k
i=1 Pi = O if and

only if there is a curve C over Fq of degree n′ that passes through these points.
Multiplicities are intersection multiplicities.

Proof. Assume that
∑k

i=1 Pi = O in Fq and then it is such in the algebraic
closure F̄q. From the above isomorphism,

∑k
i=1 Pi �→ ∑k

i=1[Pi] − k[O]. Then
∑k

i=1[Pi] − k[O] is zero in the Picard group Pic0
F̄q

(E). Then there is a rational

function
φ

zn′ over P
2
(
F̄q

)
such that

k∑

i=1

[Pi] − k[O] = div
(

φ

zn′

)

(2)

Bezout’s theorem justifies that deg(φ) = n′, since φ is zero on P1, P2, . . . , Pk. We
now claim, there is ψ over Fq which is also of degree n′ and passes through
P1, P2, . . . , Pk. First thing to note is that there is a finite extension of Fq,
FqN (say) in which all the coefficients of φ lies and gcd(q,N) = 1. Let G be
the Galois group of FqN over Fq and define

ψ =
∑

σ∈G
φσ. (3)

Clearly deg(ψ) = n′. Note that, since Pi for i = 1, 2, . . . , k is in Fq is invariant
under σ. Furthermore, σ being a field automorphism, Pi is a zero of φσ for all
σ ∈ G. This proves that Pi are zeros of ψ and then Bezout’s theorem shows
that these are the all possible zeros of ψ on E . The only thing left to show
is that ψ is over Fq. To see that, lets write φ =

∑
i+j+k=n′ aijkxiyjzk. Then

ψ =
∑

i+j+k=n′
∑

σ∈G aσ
ijkxiyjzk. However, it is well known that

∑
σ∈G aσ ∈ Fq

for all a ∈ FqN .
Conversely, suppose we are given a curve C of degree n′ that passes through

P1, P2, . . . , Pk. Then consider the rational function C/zn′
. Then this function has

zeros on Pi, i = 1, 2, . . . , k and a pole of order k at O. The above isomorphism
says

∑k
i=1 Pi = O. ��

2.1 How to Use the Above Theorem in Our Algorithm

We choose k such that k = 3n′ for some positive integer n′. Then we choose
random points P1, P2, . . . , Ps and Q1, Q2, . . . , Qt such that s+ t = k from E and
check if there is a homogeneous curve of degree n′ that passes through these
points where Pi = niP and Qj = −n′

jQ for some integers ni and n′
j . If there is a

curve, the discrete logarithm problem is solved. Otherwise repeat the process by
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choosing a new set of points P1, P2, . . . , Ps and Q1, Q2, . . . , Qt. To choose these
points Pi and Qj , we choose random integers ni, n

′
j and compute niP and −n′

jQ.
We choose ni and n′

j to be distinct from the ones chosen before. This gives rise
to distinct points Pi and Qj on E .

The only question remains, how do we say if there is a homogeneous curve of
degree n′ passing through these selected points? One can answer this question
using linear algebra.

Let C =
∑

i+j+k=n′ aijkxiyjzk be a complete homogeneous curve of degree
n′. We assume that an ordering of i, j, k is fixed throughout this paper and C is
presented according to that ordering. By complete we mean that the curve has
all the possible monomials of degree n′. We need to check if Pi for i = 1, 2, . . . , s
and Qj for j = 1, 2, . . . , t satisfy the curve C. Note that, there is no need to
compute the values of aijk, just mere existence will solve the discrete logarithm
problem.

Let P be a point on E . We denote by P the value of C when the values of
x, y, z in P is substituted in C. In other words, P is a linear combination of aijk

with the fixed ordering. Similarly for Qs. We now form a matrix M where the
rows of M are Pi for i = 1, 2, . . . , s and Qj for j = 1, 2, . . . , t. If this matrix
has a non-zero left-kernel, we have solved the discrete logarithm problem. By
left-kernel we mean the kernel of MT, the transpose of M.

2.2 Why Look at the Left-Kernel Instead of the Kernel

In this paper, we will use the left-kernel more often than the (right) kernel of M.
We denote the left-kernel by K and kernel by K′. We first prove the following
theorem:

Theorem 2. The following are equivalent:

(a) K = 0.
(b) K′ only contain curves that are a multiple of E.
Proof. The proof uses a simple counting argument. First recall the well-known
fact that the number of monomials of degree d is

(
d+2
2

)
. Furthermore, notice two

things – all multiples of E belongs to K′ and the dimension of that vector-space

(multiples of E) is
(
n′−1
2

)
=

(n′ − 2)(n′ − 1)
2

, where n′ is as defined earlier.

Now, M is as defined earlier, has 3n′ rows and
(n′ + 1)(n′ + 2)

2
columns.

Then K = 0 means that the row-rank of M is 3n′. So the dimension of the K′ is

(n′ + 1)(n′ + 2)
2

− 3n′ =
(n′ − 2)(n′ − 1)

2
.

This proves (a) implies (b).
Conversely, if K′ contains all the curves that are a multiple of E then its

dimension is at least
(n′ − 2)(n′ − 1)

2
, then the rank is 3n′, making K = 0. ��
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It is easy to see, while working with the above theorem M cannot repeat any
row. So from now onward we would assume that M has no repeating rows. For
all practical purposes this means that we are working with distinct partitions
(also known as unique partitions). By distinct partition we mean those partitions
which has no repeating parts.

A question that becomes significantly important later is, instead of choosing
k points from the elliptic curve what happens if we choose k + l points for some
positive integer l. The answer to the question lies in the following theorem.

Theorem 3. If l ≥ 1, the dimension of the left kernel of M is l.

Proof. First assume l ≥ 1. In this case, any non-trivial element of K′ will define
a curve which passes through more than 3n′ points of the elliptic curve. Since
the elliptic curve is irreducible, it must be a component of the curve. Thus the
equation defining the curve must be divisible by the equation defining the elliptic
curve. Thus, the dimension of K′ is the dimension of all degree n′ homogeneous
polynomials which are divisible by the elliptic curve. This is the dimension of all
degree n′ − 3 homogeneous polynomials. Thus, we get

dim(K′) =
(n′ − 2)(n′ − 1)

2
.

On the other hand, by rank-nullity theorem, it follows:

dim(K′) + dim(image(M)) = (n′+2)(n′+1)
2

dim(K) + dim(image(MT)) = 3n′ + l.

Thus, since row rank and the column rank of a matrix are equal,

dim(K) = 3n′ + l − (n′ + 2)(n′ + 1)
2

+ dim(K′) = l.

Corollary 1. Assume that M has 3n′+l rows, computed from the same number
of points of the elliptic curve E. If there is a curve C intersecting E non-trivially
in 3n′ points among 3n′ + l points, then there is a vector v in K with at least l
zeros. Conversely, if there is a vector v in K with at least l zeros, then there is a
curve C passing through those 3n′ points that correspond to the non-zero entries
of v in M.

Proof. Assume that there is a non-trivial curve C intersecting E in 3n′ points.
Then construct the matrix M′ whose rows are the points of intersection. Then
from the earlier theorem we see that K for this matrix M′ is non-zero. In all
the vectors of K if we put zeros in the place where where we deleted rows then
those are element of the left kernel of M. It is clear that these vectors will have
at least l zeros.

Conversely, if there is a vector with at least l zeros in K, then by deleting
l zeros from the vector and corresponding rows from M we have the required
result from the theorem above. ��
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Algorithm 1. Reducing ECDLP to a linear algebra problem (Problem L)
Data: Two points P and Q, such that mP = Q
Result: m
Select a positive integers, n′ and l = 3n′. Initialize a matrix with 3n′ + l rows

and
(
n′+2

2

)
columns. Initialize a vector I of length 3n′ − 1 and another vector J

of length l + 1. Initialize integers A,B = 0.
repeat

for i = 1 to 3n′ − 1 do
repeat

choose a random integer r in the range [1, p)

until r is not in I
I[i] ← r
compute rP

compute rP

insert rP as the ith row of the matrix M
end
for i = 1 to l + 1 do

repeat
choose a random integer r in the range [1, p)

until r is not in J
J [i] ← r
compute −rQ

compute −rQ

insert −rQ as the (3n′ + i − 1)th row of the matrix M
end
compute K as the left-kernel of M

until K has a vector v with l zeros (Problem L)
for i = 1 to 3n′ − 1 do

if v[i] �= 0 then
A = A + I[i]

end

end
for i = 3n′ to 3n′ + l do

if v[i] �= 0 then
B = B + J [i − 3n′ + 1]

end

end
return A × B−1 mod p

The algorithm that we present in this paper has two parts. One reduces it to a
problem in linear algebra and the other solves that linear algebra problem which
we call Problem L. The first algorithm, Algorithm 1, is Las Vegas in nature with
high success probability and is polynomial in both time and space complexity.
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3 The Main Algorithm – Reducing ECDLP to a Linear
Algebra Problem (Problem L)

Why Is This Algorithm Better Than Exhaustive Search. In the exhaus-
tive search we would have picked a random set of 3n′ points and then checked
to see if the sum of those points is Q. In the above algorithm we are taking a
set of 3n′ + l points and then checking all possible 3n′ subsets of this set simul-
taneously. There are

(
3n′+l

l

)
such subsets. This is one of the main advantage of

our algorithm.

Probability of Success of the Above Algorithm. To compute the proba-
bility, we need to understand the number of unique partitions of an integer m
modulo a prime p. For our definition of partition, order of the parts does not
matter. The number of partitions is proved in the following theorem:

Theorem 4. Let 2 < k ≤ p/2 be an integer. The number of k unique partitions
of m modulo a odd prime p is at least

(p − 1)(p − 2) . . . (p − k + 2)(p − 2k + 1)
k!

.

Proof. The argument is a straight forward counting argument. We think of k
parts as k boxes. Then the first box can be filled with p− 1 choices, second with
p − 2 choices and so on. The last but one, k − 1 box can be filled with p − k + 1
choices. When all k − 1 boxes are filled then there is only one choice for the last
box, it is m minus the sum of the other boxes. So it seems that the count is
(p − 1)(p − 2) . . . (p − k + 1) choices.

However there is a problem, the choice in the last box might not be different
from the first k − 1 choices. To remove that possibility we remove k − 1 choices
from the last but one box. Furthermore, the choice in the last box can not be
zero that removes one more choice from the last but one box.

In some pathological cases, the above argument might remove more choices
than necessary. Thus the above formula gives a lower bound for the number of
k distinct partitions.

Since order does not matter, we divide by k!. ��
Consider the event, m is fixed, we pick k integers less than p/2. What is the
probability that those numbers form a partition of m. From the above theorem,
number of favorable events is

(p − 1)(p − 2) . . . (p − k + 2)(p − 2k + 1)
k!

and the total number of events is
(

p
k

)
. Since for all practical purposes k is much

smaller than p, we approximate the probability to be 1
p .

Now we look at the probability of success of our algorithm. In our algorithm
we choose 3n′ points from 3n′ + l points. This can be done in

(
3n′+l

l

)
ways. Then

the probability of success of the algorithm is 1 −
(
1 − 1

p

)(3n′+l
l )

.
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Let us first look at the
(
1 − 1

p

)p

. It is well known that
(
1 − 1

p

)p

tends to 1
e

when p tends to infinity. So if we can make
(
3n′+l

l

)
close to p, then we can claim

the asymptotic probability of our algorithm is 1 − 1
e which is greater than 1

2 .
Since we are dealing with matrices, it is probably the best that we try to

keep the size of it as small as possible. Note that the binomial coefficient is the
biggest when it is of the form

(
2n
n

)
for some positive integer n. Furthermore,

from Stirling’s approximation it follows that for large enough n,
(
2n
n

) ≈ 4n√
πn

.

So, when we take 3n′ = l and such that
(
3n′+l

l

)
= p then l is the solution to

the equation l = O(1) + log l + log p.
To understand the time complexity of this algorithm (without the linear

algebra problem), the major work done is finding the kernel of a matrix. Using
Gaussian elimination, there is an algorithm to compute the kernel which is cubic
in time complexity. Thus we have proved the following theorem:

Theorem 5. When p tends to infinity, the probability of success of the above
algorithm is approximately 1 − 1

e ≈ 0.6321. The size of the matrix required to
reach this probability is O(log p). This makes our algorithm polynomial in both
time and space complexity.

3.1 Few Comments

Accidentally Solving the Discrete Logarithm Problem. It might happen,
that while computing rP and rQ in our algorithm, it turns out that for some
r1 and r2, r1P = r2Q. In that case, we have solved the discrete logarithm
problem. We should check for such accidents. However, in a real life situation,
the possibility of an accident is virtually zero, so we ignored that in our algorithm
completely.

On the Number of P s and Qs in Our Algorithm. The algorithm will take
as input P and Q and produce different P s and Qs and the produce a vector
v with l many zeros. If all of these l zeros fall either in the place of P s or Qs
exclusively, then we have not solved the discrete logarithm problem. To avoid
this, we have chosen P s and Qs of roughly same size, with one more P than Q.
This way the vector v will have atleast one non-zero in the place of both P
and Q.

Allowing, Detecting and Using Multiple Intersection Points in Our
Algorithm. One obvious idea to make our algorithm slightly faster: allow mul-
tiplicities of intersection between the curve C and the elliptic curve E . This will
increase the computational complexity. Since the elliptic curve is smooth at the
points one is interested in, one observes that with high probability the multi-
plicity of intersection will coincide with the multiplicity of the point in C. This
reduces to checking if various partial derivatives are zero. This can easily be done



A Las Vegas Algorithm 223

by introducing extra rows in the matrix M. Then the algorithm reduces to find-
ing vectors with zeroes in a particular pattern. This is same as asking for special
type of solutions in Problem L. However, this has to be implemented efficiently
as probability of such an event occurring is around 1/p for large primes p.

3.2 Choosing P s and Qs Uniformly Random

We raise an obvious question, can one choose the set of ni and n′
j (see Sect. 2.1)

which give rise to Pi and Qj respectively in such a way that the probability
of solving the discrete logarithm problem is higher than the uniformly random
selection? In this paper we choose Pi and Qj uniformly random.

4 Dealing with the Linear Algebra Problem

This paper provides an efficient algorithm to reduce the elliptic curve discrete
logarithm problem to a problem in linear algebra. We call it the Problem L.

At this stage we draw the attention of the reader to some similarities that
emerge between the most powerful attack on the discrete logarithm problem over
finite fields, the index-calculus algorithm, and our algorithm. In an index-calculus
algorithm, the discrete logarithm problem is reduced to a linear algebra problem.
Similar is the case with our algorithm. However, in our case, the linear algebra
problem is of a different genre and not much is known about this problem. In
this paper, we have not been able to solve the linear algebra problem completely.
However, we made some progress and we report on that in this section.

Problem L. Let W be a l-dimensional subspace of a n-dimensional vector space
V . The vectors in the vectors space are presented as linear sum of some fixed
basis of V . The problem is to determine, if W contains a vector with l zeros. If
there is one such vector, find that vector.

This problem is connected with the earlier algorithm in a very straightforward
way. We need to determine if the left-kernel of the matrix M contains a vector
with l zeros and that is where Problem L must be solved efficiently for the overall
algorithm to run efficiently. As is customary, we would assume that the kernel
K is presented as a matrix of size l × (3n′ + l), where each row is an element of
the basis of K. Recall that we chose 3n′ = l.

A algorithm that we developed, uses Gaussian elimination algorithm multiple
times to solve Problem L. In particular we use the row operations from the
Gaussian elimination algorithm. Abusing our notations slightly, we denote the
basis matrix of K by K as well. Now we can think of K to be made up of two
blocks of l × l matrix. Our idea is to do Gaussian elimination to reduce each of
these blocks to a diagonal matrix one after the other. The reason that we do that
is, when the first block has been reduced to diagonal, every row of the matrix
has at least l − 1 zeros. So we are looking for another zero in some row. The row
reduction that produced the diagonal matrix in the first block might also have
produced that extra zero and we are done. However, if this is not the case, we



224 A. Mahalanobis et al.

go on to diagonalize the second block and check for that extra zero like we did
for the first block.

Algorithm 2. Multiple Gaussian elimination algorithm
Data: The basis matrix K
Result: Determine if Problem L is solved. If yes, output the vector that

solves Problem L
for i=1 to 2 do

row reduce block i to a lower triangular block
check all rows of the new matrix to check if any one has l zeros
if there is a row with l zeros then

STOP and return the row
end
row reduce the lower-triangular block to a diagonal block
check all rows of the new matrix to check if any one has l zeros
if there is a row with l zeros then

STOP and return the row
end

end
STOP (Problem L not solved)

5 Complexity, Implementation and Conclusion

5.1 Complexity

We describe the complexity of the whole algorithm in this section. First note that
the whole algorithm is the composition of two algorithms, one is Algorithm 1,
which has success probability 0.6 and the other is the linear algebra problem.
It is easy to see from conditional probability that the probability of success of
the whole algorithm is the product of the probability of success of Algorithms 1
and 2.

Let us now calculate the probability of Algorithm 2 under the condition that
Algorithm 1 is successful. In other words, we know that Algorithm 1 has found
a K whose span contains a vector with l zeros. What is the probability that
Algorithm 2 will find it?

Notice that Algorithm 2 can only find zero if they are in certain positions
and the number of such positions is l2. Total number of ways that there can be l

zeros in a vector of size 3n′ + l is
(
3n′+l

l

)
. In our setting we have already assumed

that
(
3n′+l

l

) ≈ p. Then the probability of success of the whole algorithm is

0.6 × (log p)2

p
.

Which is a significant improvement over exhaustive search!
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One thing to notice, the probability of success is 1 −
(
1 − 1

p

)(3n′+l
l )

and in

the probability estimate we have
(
3n′+l

l

)
in the denominator. Furthermore, one

observes that in this paper we have taken
(
3n′+l

l

)
to approximately equal the

prime p. One can now question our choice and argue, if we took
(
3n′+l

l

)
to be

much smaller than p, we might get a better algorithm. Alas, this is not the case,

1 −
(
1 − 1

p

)p
1
n

tends to 0 as p tends to infinity for n ≥ 2.

5.2 Implementation

The aim of our implementation is to determine an average number of tries
required by the Las Vegas algorithm to solve a elliptic curve discrete logarithm
problem. However to generate real life data that solves discrete logarithm prob-
lems is very time consuming. So we set a cut off, if the number of steps taken by
the program is more than

√
p where p is the order of P , we stop the program.

This way we deal with the black swan situation that normally happens in any
Las Vegas algorithm. In each step we generate points on the elliptic curve, form
the matrix M and then the left kernel K, perform two row-operations on K and
see if there are l zeros in a row after each row-reduction of K. The algorithm
was implemented using NTL [12].

The left-kernel K of M is a matrix of size l × 2l. Thus K consists of two
matrices of size l× l stacked sideways. Both these matrices in K are row-reduced
to a diagonal matrix using only row operations in our experiment. The first
attempt reduces columns 1 to l in K and checks for a row with l zeros. If a row
with l zeros is present, the discrete logarithm is solved. If the first attempt fails
to reduce K which contain a row with l zeros, second row reduction is applied.
The second attempt reduces columns l+1 to 2l and checks for a row with l zeros.
If this reduced form contains a row with l zeros DLP is solved. If the first as well
as the second row reduction does not yield a row with l zeros the algorithm is
restarted with a fresh choice of random points on the elliptic curve.

The Las Vegas algorithm was executed 80 times and try-count, the number
of tries, for each execution was recorded. The data is presented in Table 1. Each

Table 1. No. of steps required to solve ECDLP using our algorithm

Field Size
√
p Solved in less than

√
p

tries
Can’t solve in less than

√
p

tries

217 256 80 00

219 512 80 00

223 2048 77 03

229 16384 39 41

231 32768 26 54

237 262144 07 73
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of the 80 executions resulted in either a value for try-count if the DLP was solved
before the try-count reached

√
p or no value for try-count if DLP was not solved

in less than
√

p steps.

5.3 Conclusion

We conclude this paper by saying that we have found a new genre of attack
against the elliptic curve discrete logarithm problem. This attack has some simi-
larities with the well-known index-calculus algorithm. In an index-calculus algo-
rithm, the discrete logarithm problem is reduced to a problem in linear algebra
and then the linear algebra problem is solved. However, the similarities are only
skin deep as our linear algebra problem is completely new.
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Abstract. This paper presents efficient formulas to compute Miller
doubling and Miller addition utilizing degree-3 twists on curves with
j-invariant 0 written in Hessian form. We give the formulas for both
odd and even embedding degrees and for pairings on both G1 × G2 and
G2 ×G1. We propose the use of embedding degrees 15 and 21 for 128-bit
and 192-bit security respectively in light of the NFS attacks and their
variants. We give a comprehensive comparison with other curve models;
our formulas give the fastest known pairing computation for embedding
degrees 15, 21, and 24.

Keywords: Twisted Hessian curves · Pairing-friendly curves
Ate pairing · Degree-3 twists · Explicit formulas

1 Introduction

Pairings on elliptic curves have various applications in cryptography, ranging
from very basic key exchange protocols, such as one round tripartite Diffie–
Hellman [29,30], to complicated protocols, such as identity-based encryption [8,
22,26,47]. Pairings also help to improve currently existing protocols, such as
signature schemes, to have shortest possible signatures [9].

Curves that are suitable for pairings are called pairing-friendly curves, and
these curves must satisfy specific properties. It is extremely rare that a ran-
domly generated elliptic curve is pairing-friendly, so pairing-friendly curves have
to be generated in a specific way. Examples of famous and commonly used
pairing-friendly curves include Barreto-Naehrig curves [5] (BN curves), Barreto-
Lynn-Scott curves [4] (BLS curves), and Kachisa-Schaefer-Scott curves [33] (KSS
curves).
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The performance of pairing-based cryptography relies on elliptic-curve-point
arithmetic, computation of line functions and pairing algorithms. A pairing is a
bilinear map from two elliptic curve groups G1 and G2 to a target group GT . To
achieve a good performance, as well as having an efficient pairing algorithm, it
is desirable to have a fast elliptic-curve-point arithmetic in both G1 and G2.

The security of pairings depends mainly on the cost of solving the discrete
logarithm problem (DLP) in the three groups previously mentioned, namely, G1,
G2, and GT . Since one can attack pairing-based protocols by attacking any of
these three groups, the cost of solving DLP must be sufficiently high in all of
these three groups.

1.1 Choice of Curves and Embedding Degrees

One way to improve the performance of pairings is to improve the performance of
the underlying point arithmetic. Many authors have studied efficient point arith-
metic via the representation of elliptic curves in a specific model, for example,
Hessian form [32,50] and Edwards form [7,17].

Pairings based on Edwards curves, along with examples of pairing-friendly
Edwards curves, were proposed by Arene, Lange, Naehrig and Ritzenthaler [1].
They found that the computation of line functions necessary to compute the
pairing is much more complicated than if the curves were written in Weierstrass
form. In other words, even though Edwards curves allow faster point arithmetic,
this gain is somewhat outweighed by the slower computation of line functions.
Li, Wu, and Zhang [40] proposed the use of quartic and sextic twists for Edwards
curves, improving the efficiency of both the point arithmetic and the computation
of the line functions.

Pairings based on Hessian curves with even embedding degrees were proposed
by Gu, Gu and Xie [23]. They provided a geometric interpretation of the group
law on Hessian curves along with an algorithm for computing Tate pairing on
elliptic curves in Hessian form. However, no pairing-friendly curves in Hessian
form were given.

Bos, Costello and Naehrig [10] investigated the possibility of using a model
of a curve (such as Edwards or Hessian) allowing for fast point arithmetic and
transforming to Weierstrass form for the actual computation of the pairing.
They found that for every elliptic curve E in the BN-12, BLS-12, and KSS-18
families of pairing-friendly curves, if E is isomorphic over Fq to a curve in Hessian
or Edwards form, then it is not isomorphic over Fqk to a curve in Hessian or
Edwards form, where k is the embedding degree. This implies that the point
arithmetic has to be performed on curves in Weierstrass form — not all curves
can be written in special forms such as Hessian or Edwards form. This idea of
using different curve models comes at a cost of at least one conversion between
other curve models into Weierstrass form.

In this article we study the efficiency of curves in Hessian form for pairing
computations. Hessian curves with j-invariant 0 have degree-3 twists that can
also be written in Hessian form. This means that we can take full advantage of
speed-up techniques for point arithmetic and pairing computations that move
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arithmetic to subfields via the twist, e.g., as studied for Edwards curves in [40],
without the expensive curve conversion to Weierstrass form. We use the families
proposed by [20], in which we could find three families that can be written in
Hessian form.

Regardless of which model of elliptic curve was being studied, most of the pre-
vious articles on this topic were considering even embedding degrees. One of the
main advantages of even embedding degrees is the applicability of a denomina-
tor elimination technique in the pairing computation (avoiding a field inversion)
which does not directly apply to odd embedding degrees. Examples of pairing
algorithms for curves in Weierstrass form with odd embedding degree include
the work by Lin, Zhao, Zhang and Wang in [41], by Mrabet, Guillermin and
Ionica in [43], and by Fouotsa, Mrabet and Pecha in [19].

1.2 Attacks on Solving DLP over Finite Fields

Due to recent advances in number field sieve (NFS) techniques for attacking
the discrete logarithm problem for pairing-friendly elliptic curves over finite
fields [2,3,31,35] (NFS attacks and their variants), it is necessary to re-evaluate
the security of pairing-friendly curves. In [18], Fotiadis and Konstantinou propose
countering these attacks by using families with a higher ρ-value. In this paper,
we investigate the feasibility of an alternative method: increasing the embedding
degree. This has the advantage of keeping the low ρ-value of previously proposed
families, but it is disadvantaged by the less efficient pairing computations. This
article attempts to analyze the use of Hessian curves in combating this. Pre-
vious research on computing pairings with Hessian curves addressed only even
embedding degrees, and in order to make use of degree-3 twists the embedding
degree should be divisible by 6. Prior to the NFS attacks and their variants,
the favoured embedding degree for 128-bit security was 12, so that to increase
the embedding degree while making use of cubic twists the next candidate is
15. However, as 15 is odd the formulas of [23] do not apply; for this reason one
focus of this article is to provide formulas for embedding degree 15. Similarly,
the pre-NFS favourite embedding degree for 192-bit security was 18, which we
propose to increase to 21. Observe further that for 192-bit security, the families
of [18] all require the embedding degree to be greater than 21.

1.3 Our Contributions

We present formulas for computing pairings on both G1 × G2 and G2 × G1 for a
curve given in Hessian form that admits degree-3 twists. These formulas exploit
the degree-3 twists where possible: in moving the point arithmetic in Fqk to
Fqk/3 and performing the computations for the line functions in Fqk/3 in place
of Fqk . For efficient curve arithmetic (before applying the use of twists) we refer
to Bernstein, Chuengsatiansup, Kohel, and Lange [6].

We analyze the efficiency of the pairing computation in each case, focussing
on the embedding degrees that should correspond to 128- and 192-bit security.
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Our analysis shows that for embedding degree 12, Hessian curves are outper-
formed by twisted Edwards curves, but for embedding degrees 15, 21, and 24
our formulas give the most efficient known pairing computation. We do not con-
sider 18 as we do not know of any curve constructions for this case. As explained
above, our main focus is on odd embedding degrees, as we propose the use of
k = 15 and k = 21 as a countermeasure against the NFS attacks and their
variants.

We also give concrete constructions of pairing-friendly Hessian curves for
both embedding degrees and a proof-of-concept implementation of the optimal
ate pairing for these cases.

2 Background on Pairings

Let E be an elliptic curve defined over a finite field Fq where q is a prime.
Let r be the largest prime factor of n = #E(Fq) = q + 1 − t where t is the
trace of Frobenius. The embedding degree with respect to r is defined to be the
smallest positive integer k such that r|(qk − 1). Let μr ⊆ F

∗
qk be the group of

r-th roots of unity. For m ∈ Z and P ∈ E[r], let fm,P be a function with divisor
div(fm,P ) = m(P )− ([m]P )− (m− 1)(O), where O denotes the neutral element
of E. The reduced Tate pairing is defined as

τr : E(Fqk)[r] × E(Fqk)/[r]E(Fqk) −→ μr

(P,Q) �→ fr,P (Q)
qk−1

r .

We address the computation of the reduced Tate pairing restricted to G1 × G2,
where

G1 = E[r] ∩ ker(φq − [1]) and G2 = E[r] ∩ ker(φq − [q]) ⊆ E(Fqk).

Here φq denotes the q-power Frobenius morphism on E. We denote the restriction
of τr to G1 × G2 by

er : G1 × G2 −→ μr.

Let T = t − 1. We define the ate pairing aT by restricting the Tate pairing to
G2 × G1 so that

aT : G2 × G1 −→ μr

(P,Q) �→ fT,P (Q)
qk−1

r .

Note that in addition to G1 and G2 being switched, the subscript r (i.e., the
number of loops) is also changed to T .

Algorithm 1 shows Miller’s algorithm to compute the reduced Tate pairing
or the ate pairing. Let m ∈ {r, T} and represent the binary format of m by
(mn−1, . . . ,m1,m0)2. For any two points R,S on E denote by lR,S the line
passing through R and S, and by vR the line passing through R and −R. We
further define �2R = lR,R/v2R and �R,P = lR,P /vR+P . Miller’s algorithm outputs
the Tate pairing if m = r, P ∈ G1, and Q ∈ G2, and outputs the ate pairing if
m = T , P ∈ G2, and Q ∈ G1.
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Algorithm 1 Miller’s algorithm
Require: m = (mn−1, . . . , m1, m0)2 and P, Q ∈ E[r] with P �= Q
1: Initialize R = P and f = 1
2: for i := n − 2 down to 0 do
3: f ← f2 · �2R(Q)
4: R ← 2R
5: if mi = 1 then
6: f ← f · �R,P (Q)
7: R ← R + P

8: f ← f (qk−1)/r

3 Curve Constructions

Even though every elliptic curve can be written in Weierstrass form, only those
that contain points of order 3 can be written in (twisted) Hessian form. Almost
all methods to generate pairing-friendly curves are for generating pairing-friendly
Weierstrass curves, so we find pairing-friendly Hessian curves by searching
through constructions of pairing-friendly Weierstrass curves for curves that have
points of order 3, and converting those curves into Hessian form. The families
that we present below are guaranteed to have points of order 3.

In order to give fast formulas for curve arithmetic, it is desirable for the
pairing-friendly curves that we consider to have twists. Recall that a degree-d
twist of an elliptic curve E/Fq is an elliptic curve E′/Fqe that is isomorphic
to E over a degree-d extension of Fqe but not over any smaller field. Recall
also (e.g., [49]) that the only degrees of twists that occur for elliptic curves are
d ∈ {2, 3, 4, 6} such that d|k, and that degree 3 and 6 twists occur only for elliptic
curves with j-invariant 0. We concentrate in this article on twists of degree 3,
partly motivated by our aforementioned interest in embedding degrees k = 15
and 21. Twisted Hessian curves with j-invariant 0 are of the form

Ha : aX3 + Y 3 + Z3 = 0.

Suppose that a ∈ Fq is a non-cube such that for ω ∈ Fq3 with a = ω3, the
element ω generates Fqk as a Fqk/3-vector space. Then Ha is a degree-3 twist of
H1; the two curves are isomorphic via

ϕ : Ha → H1

(X : Y : Z) �→ (ωX : Y : Z). (1)

In particular, if R′ ∈ Ha(Fqk/3), then ϕ(R′) ∈ G2. Analogously to [4], we choose
the G2 input point for the pairing from ϕ(Ha(Fqk/3)). The simplicity of the
twist isomorphism allows us to do many calculations in Fqk/3 instead of Fqk , as
explained in detail on a case-by-case basis in Sect. 4.

3.1 Degree Six Twists of Hessian Curves

In this article we include, for completeness, formulas for computing pairings
of Hessian curves with even embedding degree. As we want to make use of
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the natural twist of degree 3, the embedding degrees that we consider are also
divisible by 3, so that we are in fact considering embedding degrees divisible
by 6.

As mentioned above, degree-6 twists only occur for elliptic curves with
j-invariant 0. Let a and ω be as in the previous section and let α ∈ Fq2 generate
Fqk/3 as a Fqk/6-vector space. Then

Fqk = Fqk/6 + αFqk/6 + ωFqk/6 + αωFqk/6 + ω2
Fqk/6 + αω2

Fqk/6 .

Define the triangular elliptic curve T/Fq : α2V W (V + aW ) = U3. Then we can
adapt the isomorphism of [6, Theorem 5.3] to see that T is a degree-2 twist of
Ha via the isomorphism

ψ : T → Ha

(U : V : W ) �→ (U : β(αV − 54W ) : β(−αV + 54ζ23W )), (2)

where β = ζ3−ζ23 and ζ3 ∈ Fq is a primitive cube root of unity. In particular, the
triangular elliptic curve T is a degree-6 twist of H1 via the composition ϕ ◦ ψ,
where ϕ is as given in Eq. 1.

3.2 Checking for Points of Order 3

Let E/Fq be an elliptic curve. There is a Hessian model of E if and only if E(Fq)
contains a point of order 3. To apply the formulas in the following sections we
require both E and the degree-3 twist of E that we consider to have order 3.
Recall that #E(Fq) = q + 1 − t, where t is the trace of Frobenius; by [24] the
two non-trivial degree-3 twists E′ satisfy:

#E′(Fq) = q + 1 − (3f − t)/2 with t2 − 4q = −3f2,

#E′(Fq) = q + 1 − (−3f − t)/2 with t2 − 4q = −3f2.

It is also necessary that, for the twist E′ that we use, #E′(Fq) is divisible by
r (recall that r was the largest prime factor of #E(Fq)); exactly one of the
two possible twists satisfies this condition. So to choose a family for which the
elliptic curve E can be rewritten in Hessian form together with a degree-3 twist,
it suffices to check that 3 divides q+1− t and that 3r divides q+1− (±3f − t)/2
(for one choice of sign).

3.3 Generating Curves

Recall that E is an elliptic curve defined over a finite field Fq where q is prime,
and r is the largest prime factor of #E(Fq). The embedding degree k is the
smallest integer k such that r|qk − 1. Constructions of parametric families of
pairing-friendly curves give an elliptic curve E with integral coefficients and
polynomials q(x) and r(x), where for each x0 such that q(x0) is prime and r(x0)
has a large prime factor, the reduction of E mod q(x0) is a pairing-friendly curve
with parameters q = q(x0) and r = r(x0).



234 C. Chuengsatiansup and C. Martindale

Cyclotomic families are families of curves where the underlying field K is a
cyclotomic field, the size r of the largest prime-order subgroup of the group of
Fq-point is a cyclotomic polynomial, and the field K contains

√−D for some
small discriminant D. We searched through [20] and found three cyclotomic-
family constructions that satisfy the conditions outlined in the previous section;
for each family D = 3. The following constructions generate pairing-friendly
Weierstrass curves which have a (twisted) Hessian model [6, Sect. 5]. Note that
twists of these curves (see Sect. 3.2) are also expressible in twisted Hessian form.
We denote the cyclotomic polynomial of degree n by Φn(x).

Recall the L-notation: LN [�, c] = exp
(
(c+o(1))(ln N)�(ln lnN)1−�

)
. The best

complexity for NFS attacks up until recently was Lqk [1/3, 1.923], but now due
to work of [35] the best complexity for composite k is reduced to Lqk [1/3, 1.526].
In particular, with the earlier figure, a 256-bit prime q together with embed-
ding degree k = 12 gave a security complexity of 139 bits, but that has now
been brought down to 110 bits. To compensate, a pairing implementation using
embedding degree 12 aiming for 128-bit security would have to increase the
size of the base field to about 364 bits. We propose increasing the embedding
degree instead to k = 15, for which the base field does not have to increased
so dramatically; see details below. Similarly, with the earlier figure, a 384-bit
prime q together with embedding degree k = 18 gave a security complexity of
194 bits, but that has now been brought down to 154 bits. To compensate, a
pairing implementation using embedding degree 18 aiming for 192-bit security
now requires log(q) ≈ 653, giving k log(q) ≈ 11754. We propose increasing the
embedding degree instead to k = 21 or k = 24, for which the base field does not
have to be increased so dramatically; see details below.

Construction 1: k ≡ 3 (mod 18). This construction follows Construction 6.6
in [20]. Pairing-friendly curves with embedding degree k ≡ 3 (mod 18) can be
constructed using the following polynomials:

r(x) = Φ2k(x),

t(x) = xk/3+1 + 1,

q(x) = 1
3 (x2 − x + 1)(x2k/3 − xk/3 + 1) + xk/3+1.

For this construction, the resulting curves and their twists all have points of
order 3. However, there is no such x0 for which both q(x0) and r(x0) are prime.
This means that r(x0) factors, and the largest prime-order subgroup of E(Fq)
actually has less than r(x0) elements. Recall that the discriminant D = 3: the
curves are defined by an equation of the form y2 = x3 + b and have cubic twists.
The ρ-value of this family is ρ = (2k/3+2)/ϕ(k) where ϕ is the Euler ϕ-function.
For k = 21 this gives ρ = 4/3. To get 192-bit security we have to take r about
420 bits, for which we get log(q) ≈ 560 and k log(q) ≈ 11760.
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Construction 2: k ≡ 9, 15 (mod 18). This construction follows Construction
6.6 in [20]. Pairing-friendly curves with embedding degree k ≡ 9, 15 (mod 18)
can be constructed using the following polynomials:

r(x) = Φ2k(x),

t(x) = −xk/3+1 + x + 1,

q(x) = 1
3 (x + 1)2(x2k/3 − xk/3 + 1) − x2k/3+1.

This satisfies all the same properties as Construction 1. For k = 15 the ρ-value is
ρ = 3/2. To get 128-bit security we have to take log(r) ≈ 256. Then log(q) ≈ 384,
and k log(q) ≈ 5760. This actually gives 143-bit security; a family with a lower
ρ-value would be more efficient.

Construction 3: k ≡ 0 (mod 6) and 18 � k. This construction follows Con-
struction 6.6 in [20]. Pairing-friendly curves with embedding degree k ≡ 0
(mod 6) where 18 � k can be constructed using the following polynomials:

r(x) = Φk(x),
t(x) = x + 1,

q(x) = 1
3 (x − 1)2(xk/3 − xk/6 + 1) + x.

For this construction, the resulting curves and their twists all have points of
order 3. There also exists x0 such that both q(x0) and r(x0) are prime. The
curves generated by this construction admit sextic twists. The ρ-value for this
construction is given by ρ = (k/3 + 2)/ϕ(k) where ϕ is the Euler ϕ-function.
For k = 12 this gives ρ = 3/2 and for k = 24 this gives ρ = 5/4. To get 192-
bit security with k = 24 we need log(r) ≈ 392, for which log(q) ≈ 490 and
k log(q) ≈ 11760.

For all the constructions outlined above, the curves are given in Weierstrass
form as v2 = u3 + b. To convert a pairing-friendly Weierstrass curve of the above
form that has a point (u3, v3) of order 3 into twisted Hessian form, we refer to [6].
The authors give explicit transformations showing that there is a Hessian model
of the above curve given by aX3 +Y 3 +Z3 = 0, where a = 27(u6

3/v3
3 − 2v3). Let

m, s and mc denote field multiplication, field squaring and field multiplication
by a small constant respectively. They compute the total cost for the whole
conversion to be 9m+2s+5mc plus one inversion and one cube root computation.

4 Computation of Line Functions

Each iteration of Miller’s loop (Algorithm 1) includes a Miller doubling step and
some of the iterations also include a Miller addition step. The Miller doubling
step has four costly parts: computing the double of a point R on the curve,
computing the Miller function �R,R = lR,R/v2R, squaring an element f ∈ Fqk ,
and multiplying f2 by �R,R. The Miller addition step has three costly parts:
computing the sum of two points P and R on the curve, computing the Miller
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function �P,R = lP,R/vP+R, and multiplying an element f ∈ Fqk by �P,R. We
attempt in the following sections to optimize each of these parts for Hessian
curves H/Fq : X3 + Y 3 + Z3 = 0 of j-invariant 0 for pairings on both G1 × G2

(such as the Tate pairing) and G2 × G1 (such as the ate pairing).

4.1 Denominator Elimination

It is, of course, desirable to avoid the field inversion that results from dividing
by vP1+P2(Q), with P2 = R and P1 ∈ {R,P}, which we can do (to some extent).
For curves in (twisted) Hessian form, the neutral group element is given by
(0 : −1 : 1), and negation by −(x, y) = (x/y, 1/y) (in affine coordinates). This
means that the line vP1+P2 passing through P3 = P1 + P2 and (0 : −1 : 1)
has a more complicated form than for many other popular curve shapes (such
as short Weierstrass or Edwards). Namely, writing (X3 : Y3 : Z3) = P3 and
(XQ : YQ : ZQ), we have

vP3(Q) : (Z3 + Y3)XQ − (ZQ + YQ)X3.

When considering pairings on G1 × G2, we have that P3 ∈ G1 and Q ∈ G2,
and when considering pairings on G2 × G1, we have that P3 ∈ G2 and Q ∈ G1.
As vP3(Q) = vQ(P3), exactly the same arguments apply to G1×G2 as to G2×G1

in this case; say for simplicity that P3 ∈ G1 and Q ∈ G2. Suppose that we have
chosen Q such that there exists Q′ ∈ Ha(Fqk/3) for which Q = ϕ(Q′), where ϕ
is the cubic twist isomorphism from Eq. 1.

Even Embedding Degrees. The following is essentially a rephrasing of the denom-
inator elimination technique presented in [23] (although they do not mention
pairings on G2 × G1).

Assume now that 6|k. In particular, by the discussion in Sect. 3.1, the tri-
angular curve T : α2V W (V + ω3W ) = U3, with α and ω as in Sect. 3.1,
defines a quadratic twist of Hω3 via the isomorphism ψ of Eq. 2. We choose
our point Q′ ∈ Hω3(Fqk/3) from the image under ψ of T (Fqk/6), so that there
exist U, V,W ∈ Fqk/6 for which Q′ = (U : β(αV − 54W ) : β(−αV + 54ζ23W )),
where β = ζ3 − ζ23 and ζ3 ∈ Fq is a primitive cube root of unity. Evaluation of
vP3 at Q = ϕ(Q′) then gives

v2R(Q) : (Z3 + Y3)Uω − 54β(ζ23 − 1)WX3 ∈ Fqk/2 .

This value will go to 1 in the final expontentiation step of Miller’s algorithm
(Algorithm 1), so without loss of generality we can set it to 1 throughout the
computation.

Odd Embedding Degrees. Unfortunately the denominator elimination technique
of [23] does not apply to this case; instead we extend ideas of [41,43]. Observe
that 1

x−y = x2+xy+y2

x3−y3 . Let Q′ = (XQ′ , YQ′ , ZQ′). Plugging x = (Z3 + Y3)XQ′ω

and y = (ZQ′ + YQ′)X3 in 1
vP3 (Q) with Q = ϕ(Q′), we get that the denominator
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x3 − y3 is in Fqk/3 so will go to 1 in the final exponentiation, hence can be set
to 1 for the whole computation. That is, we replace 1

vP3 (Q) by the numerator

nP3(Q) = ((Z3 + Y3)XQ′)2ω2 + (Z3 + Y3)XQ′(1 + YQ′)X3ω + ((1 + YQ′)X3)2,

and we replace the Miller function �P1,P2(Q) by nP3(Q)·lP1,P2(Q). The numerator
nP3(Q) can be computed with cost 2k

3 m + 1
9M + 2

9S via

u = (Z3 + Y3)XQ′ ; v = (1 + YQ′)X3; n = u2ω2 + (u · v)ω + v2.

4.2 Miller Doubling

Let R = (X1 : Y1 : Z1) ∈ Hb(K) for b ∈ {1, a}. The fastest known formulas to
compute 2R = (X3 : Y3 : Z3) (due to [6]) are as follows:

T = Y 2
1 ; A = Y1 · T ; S = Z2

1 ; B = Z1 · S;
X3 = X1 · (A − B); Y3 = −Z1 · (2A + B); Z3 = Y1 · (A + 2B).

The cost for point doubling with the above formulas is 5m + 2s in K.
In all that follows we denote multiplication and squaring in Fq by m and s

respectively, and multiplication and squaring in Fqk by M and S respectively.
We also assume always that 3|k.

Pairings on G1 × G2. The Miller doubling function is given by

�R,R(Q) = lR,R(Q)/v2R(Q).

For pairings on G1 × G2 the input points are P ∈ G1 and Q ∈ G2, and R will
be a multiple of P .

We first address the computation of lR,R(Q). This line is the tangent line to
H1 at R evaluated at Q, which is given by lR,R(Q) : X2

1XQ + TYQ + S, where
R = (X1 : Y1 : Z1) and T = Y 2

1 , and S = Z2
1 are the values that were computed

in the point doubling computation. Set Q′ = (XQ′ : YQ′ : 1) and Q = ϕ(Q′),
where ϕ : Ha → H1 is the twist isomorphism Eq. 1 (this is possible as 3|k). Then
we can write lR,R(Q) as

lR,R(Q) : (SYQ′ + T ) + aXQ′X2
1ω,

which can be computed with cost 2k
3 m + s via

U = X2
1 ; V = SYQ′ ; W = ηU ; lR,R(Q) = V + T + Wω,

where η = aXQ′ and can be precomputed. We now split into cases.

Even Embedding Degrees. By Sect. 4.1, we can set the denominator of the Miller
doubling function to 1, so that the computation of the line function lR,R(Q) is
in fact the computation of the whole Miller (doubling) function �R,R(Q).
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Furthermore, a general element of Fqk considered as element of the Fqk/3-
vector space generated by ω will be of the form c1ω + c2ω

2 + c3ω
3, but for

�2R(Q) we have that c2 = 0. In particular, the multiplication of �2R(Q) with f2

in Step 3 of Algorithm 1 will not be the full cost of a general multiplication in
Fqk (that is, approximately k2m), but by schoolbook multiplication will cost 6
multiplications in Fqk/3 , which amounts to 6

(
k
3

)2
m = 2

3M. Putting together all
of the above, the Miller doubling step for even embedding degrees costs

(
5 +

2k

3

)
m + 3s +

2
3
M + S.

Odd Embedding Degrees. By Sect. 4.1, we have �2R(Q) = n2R(Q)·lR,R(Q), where
n2R(Q) is as given in Sect. 4.1. Putting the above together, the Miller doubling
step for odd embedding degrees costs

(
5 +

4k

3

)
m + 3s +

16
9
M +

11
9
S.

Pairings on G2 × G1. In this case, the input points are P ∈ G2 and Q ∈ G1,
and R will be a multiple of P . We choose P = (XP : YP : 1) ∈ ϕ(Ha(Fpk/3)),
where ϕ is the twist isomorphism given in Eq. 1. As R = (X1 : Y1 : Z1) is a
multiple of P , it is also in the image of Ha(Fpk/3) under ϕ; let R′ ∈ Ha(Fpk/3)
be the pre-image of R under ϕ. As 2R = 2ϕ(R′) = ϕ(2R′), we can perform the
doubling operation on the cubic twist Ha, so that the operation count occurs
in Fqk/3 . That is, point doubling can be performed using 5 multiplications and
2 squarings in Fqk/3 , which amounts to 5

9M + 2
9S. For even embedding degrees

this can be done slightly faster, which we address below.
As for pairings on G1 ×G2, we address the computations of the line function

lR,R(Q) : X2
1XQ + TYQ + S, (3)

where T = Y 2
1 and S = Z2

1 , in order to compute the Miller doubling function.

Even Embedding Degrees. Assume now that 6|k. As described in Sect. 4.1 we
choose the input point from G2, in this case P = ϕ(P ′), such that P ′ is in the
image of the quadratic twist isomorphism ψ given in Sect. 3.1. This implies that
R′ = ϕ−1(R), as a multiple of P ′, also lies in this image, so that there exist
U1, V1,W1 ∈ Fqk/6 for which

R′ = (X ′
1 : Y ′

1 : Z ′
1) = (U1 : β(αV1 − 54W1) : β(−αV1 + 54ζ23W1)), (4)

where β = ζ3 − ζ23 and ζ3 ∈ Fq is a primitive cube root of unity. Here ω and α
are as in Sect. 3.1. We also have X ′

1 ∈ Fqk/6 and Y ′
1 , Z

′
1 ∈ Fqk/3 .

This gives us a small saving in the point doubling calculation. In the preamble
we stated that all the point doubling arithmetic is performed in Fqk/3 . However,
the final step in the computation of X ′

3 (the X-coordinate of 2R′) is not a



Pairing-Friendly Twisted Hessian Curves 239

full multiplication in Fqk/3 but a multiplication of a Fqk/6-element X ′
1 with a

Fqk/3-element (A−B), costing 2
(

k
6

)2
m = 1

18M using schoolbook multiplication
instead of 1

9M. So we save 1
18M on the point doubling for even embedding

degrees, resulting in 1
2M + 2

9S.
As shown in Sect. 4.1, the Miller doubling function �R,R(Q) is just given by

the line function lR,R(Q) in this case, the computation of which we now address.
As above we have that R = (X1 : Y1 : Z1) = (X ′

1ω : Y ′
1 : Z ′

1) so that Eq. 3
becomes

lR,R(Q) : (X ′
1)

2XQω2 + TYQ + S.

The values S and T are computed during the point doubling computation and lie
in Fqk/3 , so the computation of �R,R(Q) = lR,R(Q) costs an additional squaring
in Fqk/6 , multiplication of a Fqk/6 -element with a Fq-element, and multiplication
of a Fqk/3-element with a Fq-element, giving k

2m + 1
36S via

c1 = (X ′
1)

2; c2 = c1XQ; c3 = TYQ.

Additionally, the formula for �R,R(Q) considered as an element of the Fqk/6-
vector space generated by ω and α has no coefficient of ω, αω, or αω2. Therefore
the multiplication of �R,R(Q) with a general element (i.e., f2) of Fqk costs only
3 · 6

(
k
6

)2
m = 1

2M with schoolbook arithmetic.
Putting the above together, the full Miller doubling step for even embedding

degrees costs
k

2
m + M +

5
4
S.

Odd Embedding Degrees. By Sect. 4.1, the Miller doubling function �R,R(Q) is
given by �R,R(Q) = n2R(Q) · lR,R(Q), where n2R(Q) is as given in Sect. 4.1. As
described above for even embedding degrees, we have that

lR,R(Q) : (X ′
1)

2XQω2 + TYQ + S,

where S, T ∈ Fqk/3 and are computed during the point doubling computation.
In the case of odd embedding degrees, we have that X ′

1 ∈ Fqk/3 , so that the cost
of commutating lR,R(Q) via c1, c2, and c3 as above is 2k

3 m + 1
9S. Putting the

above together, the whole Miller doubling step for odd embedding degrees costs

4k

3
m +

7
3
M +

14
9
S.

4.3 Miller Addition

Let P1 = P = (X1 : Y1 : 1) and P2 = R = (X2 : Y2 : Z2) ∈ Hb(K) for b ∈ {1, a}.
The fastest known formulas to compute P1 + P2 = P3 = (X3 : Y3 : Z3) for
P1 �= P2 (due to [25]) are as follows:

A = X1 · Z2; C = Y1 · X2; D = Y1 · Y2; F = η · X2;
G = (D + Z2) · (A − C); H = (D − Z2) · (A + C); X3 = G − H;
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J = (D + F ) · (A − Y2); K = (D − F ) · (A + Y2); Y3 = K − J ;
Z3 = J + K − G − H − 2(Z2 − F ) · (C + Y2),

where η = aX1 can be precomputed. The cost for point addition with the above
formulas is 9m in K.

Pairings on G1 × G2. The Miller addition function is given by

�P1,P2(Q) = lP1,P2(Q)/vP1+P2(Q).

For pairings on G1 × G2 the input points are P ∈ G1 and Q ∈ G2, and for
addition we have that P1 = P = (X1 : Y1 : 1) and P2 = R = (X2 : Y2 : Z2) is a
multiple of P .

The line lP1,P2(Q) is the line passing through P and R evaluated at Q. As
above we write Q = (ωX ′

Q : Y ′
Q : 1) with Q′ = (XQ′ , YQ′ : 1) ∈ Ha(Fqk/3). Then

lP,R(Q) : (E − Y2)X1 + (YQ′ − Y1)(A − X2) − (E − Y2)XQ′ω,

where E = Y1Z2, and where A is the value that was computed during the
computation of P +R. In particular, the cost of computing lP,R(Q) is

(
2 + 2k

3

)
m

via

E = Y1 · Z2; L = (E − Y2) · X1; M = (YQ′ − Y1) · (A − X2);
N = (E − Y2) · XQ′ ; lP,R(Q) = L + M − Nω.

Even Embedding Degrees. By Sect. 4.1, the Miller addition function �P1,P2(Q)
is just given by lP1,P2(Q) in this case. Also, exactly as for the Miller doubling
function, multiplying a general element of Fqk with lP,R(Q) costs only 2

3M.
Putting together all of the above, the entire Miller addition step costs

(
11 +

2k

3

)
m +

2
3
M.

Odd Embedding Degrees. By Sect. 4.1, the Miller addition function �P1,P2(Q)
is given by �P1,P2(Q) = nP1+P2(Q) · lP1,P2(Q), where nP1+P2(Q) is as given in
Sect. 4.1. Putting together all of the above, the entire Miller addition step costs

(
11 +

4k

3

)
m +

16
9
M +

2
9
S.

Pairings on G2 × G1. For pairings on G2 × G1 the input points P ∈ G2 and
Q ∈ G1, and in the Miller addition function �P1,P2(Q) we have that P1 = P =
(X1 : Y1 : 1) and P2 = R = (X2 : Y2 : Z2), which is some multiple of P . In
exactly the same way as discussed for the Miller doubling function, the point
addition can be performed in the group Ha(Fqk/3) in place of H(Fqk), so that the
operation count occurs in Fqk/3 . That is, point addition can be performed using
9 multiplications in Fqk/3 , which amounts to 1M. For even embedding degrees
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this can be done faster, which we address below. As for pairings on G1 × G2, we
will need to compute the line function

lP,R(Q) : −(E − Y2)XQ + (E − Y2)X1 + (YQ − Y1)(A − X2),

where E = Y1Z2 and A = X1Z2. Let P = ϕ(P ′) and R = ϕ(R′) be the images
of P ′ = (X ′

1, Y
′
1 , 1) and R′ = (X ′

2, Y
′
2 , Z

′
2) ∈ Ha(Fqk/3) respectively under the

twist isomorphism ϕ of Eq. 1. Then

lP,R(Q) : −(E′ − Y ′
2)XQ + (C ′ − Y ′

2X
′
1 + YQ(A′ − X ′

2))ω,

where E′ = Y ′
1Z

′
2, A = A′ω, C = C ′ω and A′ = X ′

1Z
′
2 and C ′ = Y ′

1X
′
2 are the

values that were computed during the point addition. This can be computed in
2k
3 m + 2

9M via

E′ = Y ′
1 · Z ′

2; d1 = Y ′
2 · X ′

1; d2 = (E′−Y ′
2) · XQ; d3 = (A′−X ′

2) · YQ.

Even Embedding Degrees. Suppose now that 6|k. As described already for Miller
doubling, we may choose U2, V2,W2 ∈ Fqk/6 such that

R′ = (U2 : β(αV2 − 54W2) : β(−αV2 + 54ζ23W2)),

where β = ζ3 − ζ23 and ζ3 ∈ Fq is a primitive cube root of unity (c.f. Eq. 4).
Note that we do not apply this to P because we want to make use of the mixed
addition with Z1 = 1.

This gives us a small saving in the point addition calculation: the computa-
tions of C and of F now cost 1

18M each instead of 1
9M each, saving 1

18M; the
cost for point addition is therefore 8

9M.
As shown in Sect. 4.1, the Miller addition function �P,R(Q) is just given by

the line function lP,R(Q) in this case. Multiplication of a general element in Fqk

with �P,R(Q) costs only 2
3M as �P,R(Q) has no coefficient of ω2. Putting together

all of the above, we get the cost for the whole Miller addition step

2k

3
m +

16
9
M.

Odd Embedding Degrees. By Sect. 4.1, the Miller addition function �P,R(Q) is
given by nP+R(Q) · lP,R(Q) in this case, where nP+R(Q) is as given in Sect. 4.1.
Putting together all of the above, we get the cost for the full Miller addition step

4k

3
m + 3M +

2
9
S.

5 Comparison

As this paper primarily concerns cubic twists, we only discuss results for embed-
ding degrees that are divisible by 3. To our knowledge, most of the previous
work on the optimization of operation counts for one iteration of Miller’s loop



242 C. Chuengsatiansup and C. Martindale

concentrated on pairings for G1 × G2. To properly compare different results, we
need to take into account the number of iterations of Miller’s loop, which differs
greatly between G1 × G2 and G2 × G1.

For pairings on G1×G2, the lowest number of iterations occurs for the twisted
ate pairing when twists are available, or the reduced Tate pairing when twists are
not available. In this paper, we explicitly address the first case, so the twisted ate
pairing gives the minimal number of iterations. Let t be the trace of Frobenius,
let T = t − 1, and let d be the degree of the twist. The number of iterations
of Miller’s loop for the twisted ate pairing is given by log(Te), where Te ≡ T e

(mod r) and 1 < e|d. Also T is a d-th root of unity in Fr, so when d = 6 the
smallest value of log(Te) is log(T2) ≈ log(r)/3, and when d = 3 the smallest
value of log(Te) is log(T3) ≈ log(r). For more details on the twisted ate pairing
see [24].

For pairings on G2 × G1, the lowest number of iterations occurs for the
optimal ate pairing. The best-case-scenario (which can in principle occur for any
embedding degree) is log(r)/ϕ(k) iterations of Miller’s loop, where ϕ is the Euler
ϕ-function. This scenario takes x as the input for the Miller’s algorithm (e.g.,
in place of r = r(x) as in Tate). For more details on the optimal ate pairing
see [51].

We compared previous results in this area for Weierstrass curves with Jaco-
bian coordinates [1,27], Weierstrass curves with projective coordinates [15],
Edwards curves [1], Edwards curves with sextic twists [40], and Hessian curves
with quadratic twists [23]. Most of these papers considered only pairings on
G1 ×G2 (many of them were written before Vercauteren’s paper [51] on optimal
pairings) and only even embedding degree (to avoid dealing with denominators).

5.1 Comparing Results for G2 × G1

The only other paper containing operation counts for pairings on G2 × G1 and
embedding degree divisible by 3, to our knowledge, is [15], which considers
projective Weierstrass coordinates. In that paper they look at even embedding
degrees, so we only compare our results for the optimal ate pairing when k = 12
and 24 (c.f. Construction 3). Assume for simplicity that s ≈ 0.8m. The formulas
presented in [15] give an operation count of

41
36M + 41

36S ≈
{

295.2m k = 12
1180.8m k = 24 for Miller doubling and

4
3M + 1

18S ≈
{

198.4m k = 12
793.6m k = 24 for Miller addition.

The formulas presented in this paper give an operation count of

k
2m + M + 5

4S ≈
{

294.0m k = 12
1164.0m k = 24 for Miller doubling and

2k
3 m + 16

9 M ≈
{

264.0m k = 12
1040.0m k = 24 for Miller addition.
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As the formulas for Hessian form are faster for doubling but slower for adding
(with respect to projective Weierstrass form), there is a trade-off to assess.
Suppose that we wish to compute the optimal ate pairing and that we have
an example for which the input for Miller’s algorithm is x. The pairing can
then be computed in log(x) = log(r)/ϕ(k) iterations of Miller’s loop — this
amounts to O(log(x)) Miller doubling steps, O(Ham(x)) Miller addition steps,
where Ham(x) denotes the Hamming weight of x, and the final exponentia-
tion. When k = 12, the formulas presented in [15] compute the pairing in
≈ 295.2 · O(log(x)) + 198.4 · O(Ham(x)) multiplications in Fq and an expo-
nentiation, and the formulas presented in this paper compute the pairing in
≈ 294.0 · O(log(x)) + 264.0 · O(Ham(x)) multiplications in Fq and an exponen-
tiation. That is, the formulas using Hessian curves outperform the projective
Weierstrass curves only for an x-value such that log(x) > 54.67 ·Ham(x). When
k = 24, the formulas using Hessian curves outperform the projective Weierstrass
curves for an x-value such that log(x) > 14.67 · Ham(x).

5.2 Comparing Results for G1 × G2

Comparing the aforementioned papers [1,15,23,27,40], and our results, we see
that the fastest curve model for embedding degree divisible by 6 together with a
G1 × G2 pairing is the Edwards form with sextic twists [40] using

(
4k
3 + 4

)
m+

7s + 1
3M + S for one Miller doubling step and

(
4k
3 +12

)
m+ 1

3M for one Miller
addition step. The fastest curve model for odd embedding degree divisible by
3 together with a G1 × G2 pairing is the projective Weierstrass form [15] using
(k + 6)m+ 7s+M+S for one Miller doubling step and (k + 13)m+ 3s+M for
one Miller addition step.

5.3 Comparing G1 × G2 and G2 × G1

In the following table we compare the operation counts from the most efficient
curve shape for each subcase (optimal ate vs. twisted ate and even vs. odd) in
what we hope is a meaningful way: we give the number of Fq-multiplications per
Miller doubling/addition multiplied by 1

log(r)× the number of iterations. We call
these numbers DBLc (for doubling compare) and ADDc (for addition compare).
We assume here that s = 0.8m for simplicity. The most efficient option for each
subcase is as follows.

For embedding degree 12, [40] is clearly the most efficient. For embedding
degrees 15 and 21, our results are clearly the most efficient. For embedding degree
24, doubling is more efficient in Hessian form with optimal ate while addition is
more efficient in Edwards form with twisted ate. We could assess this trade-off
in a similar way to the trade-off that was required to compare results for even
embedding degrees for optimal ate pairings; our results will outperform those
of [40] when the Hamming weight of x is sufficiently low compared to log(x).

Not included in Table 1 are the precomputation costs (which are relatively
low for our constructions) and the final exponentiation costs (which are roughly



244 C. Chuengsatiansup and C. Martindale

Table 1. Best operation counts for DBLc and ADDc for each embedding degree and
type of pairing

k Pairing Model # iterations DBLc ADDc

12 Twisted ate Edwards [40] log(r)/3 62.9 25.3

Optimal ate Projective [15] log(r)/4 73.8 49.6

Optimal ate Hessian (this paper) log(r)/4 73.5 66.0

15 Twisted ate Projective [15] log(r) 431.6 255.4

Optimal ate Hessian (this paper) log(r)/8 103.1 120.0

21 Twisted ate Projective [15] log(r) 826.4 477.4

Optimal ate Hessian (this paper) log(r)/12 133.8 155.9

24 Twisted ate Edwards [40] log(r)/3 231.5 78.7

Optimal ate Projective [15] log(r)/8 147.5 99.2

Optimal ate Hessian (this paper) log(r)/8 140.7 134.0

uniform across all curve shapes). A significant part of the precomputation cost
for many models is the conversion between curve models, which is not necessary
for our constructions. (Recall that for BN, BLS, and KSS, this conversion is
always necessary if one wants to take advantage of the fast point arithmetic on
Hessian or Edwards curves, as proven in [10].)

6 Concluding Remarks

This paper presents efficient formulas to compute Miller doubling and Miller
addition on curves of j-invariant 0 with embedding degree divisible by 3 when
written in Hessian form. This paper presents formulas for both pairings of the
form G1 × G2 and G2 × G1 and compares the efficiency of these formulas to
the best known formulas of previous research. We present the first formulas for
pairings on G2 × G1 that utilize twists of degree 3 in the case of odd embedding
degrees, and the first formulas that utilize twists of degree 3 for Hessian curves in
all cases. Our formulas for embedding degrees 15, 21, and (subject to trade-offs)
24 are the most efficient among known choices.

Curves generated by the methods used in this paper (originally due to [20])
are guaranteed to have twists of degree 3 and have embedding degree k ≡ 3, 9, 15
(mod 18) or k ≡ 0 (mod 6) where 18 � k. We suggest updating the use of embed-
ding degree 12 to 15 for 128-bit security and 18 to 21 for 192-bit security in light
of the NFS attacks and their variants. This allows us to keep the relatively small
primes for the base field and a low ρ-value. We additionally suggest including
k = 24 in any future (more precise) comparisons, as our results show that this
may be competitive with k = 21 (since the ρ-value for k = 24 is lower than that
of k = 21).

In future work, we plan to study precisely how the NFS attacks and their
variants apply to our constructions in order to be able to properly evaluate
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the security and propose concrete parameters. A comparison between the larger
embedding degrees (but low ρ-value) that we suggest in this paper and the
higher ρ-value (but small embedding degrees) suggested in [18] would be very
interesting, but we leave this for future work. It would also be interesting to
evaluate the performance of other curve models with degree 3 twists on G2 ×G1

pairings. We also consider the optimized implementation as future work.
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Abstract. Signature schemes are arguably the most crucial cryp-
tographic primitive, and devising tight security proofs for signature
schemes is an important endeavour, as it immediately impacts the feasi-
bility of deployment in real world applications. Hash-then-sign signature
schemes in the Random Oracle Model, such as RSA-FDH, and Rabin-
Williams variants are among the fastest schemes to date, but that unfor-
tunately do not enjoy tight security proofs based on the one-wayness of
their trapdoor function; instead, all known tight proofs rely on variants
of the (non-standard) Φ-Hiding assumption. As our main contribution,
we introduce a family of hash-then-sign signature schemes, inspired by
a lossy trapdoor function from Freeman et al. (JoC’ 13), that is tightly
secure under the Quadratic Residuosity assumption. Our first scheme
has the property of having unique signatures, while the second scheme
is deterministic with an extremely fast signature verification, requiring
at most 3 modular multiplications.

Keywords: Digital signatures · Full domain hash
Tight security proof · Quadratic residuosity · Lossy trapdoor function

1 Introduction

After the beginning of public-key cryptography [13] many new computational
problems were devised, and along with them came cryptographic schemes based
on the difficulty of solving those problems. At first, asymptotic security analysis
was enough to claim the robustness of a given scheme, but it was realized later
that a more precise analysis was required to measure the security of a scheme
under a realistic scenario. A security proof is built upon computational com-
plexity theory, using polynomial-time reductions from a well established hard
problem to the problem of solving (or breaking) the cryptographic scheme. If
this reduction is possible, we can say that breaking the cryptographic scheme is
as difficult as solving the well established hard problem (up to a polynomial).
If this polynomial is of a high degree, it can degrade the security of the scheme
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considerably, even rendering it useless for practical applications. Bellare and
Rogaway [4] started dealing with security reductions that explicitly stated the
polynomial factors involved in those reductions, making it possible to build tight
reductions, in which the polynomial is a small constant.

1.1 Hash-then-Sign Signature Schemes

In 1993, Bellare and Rogaway [3] introduced the Full Domain Hash (FDH) sig-
nature scheme based on RSA (RSA-FDH), where the message is hashed to the
full domain of the underlying trapdoor function before being signed (also known
as “hash-then-sign” schemes). The security proof presented in [3] for RSA-FDH
was not tight, making the actual scheme potentially impractical for an accept-
able level of security. Fortunately, probabilistic FDH (PFDH) schemes, which
prepend a short random string to the message, already allow for tight proofs. In
particular, Katz and Wang [22] showed that even a single bit of randomness is
enough for achieving tight proofs.

Signature schemes that behave deterministically are usually more efficient
and easier to implement, what makes them invaluable for practical applica-
tions. Moreover, it is a fact that signature schemes secure in the Random Oracle
Model (ROM) are much more practical than schemes secure in the standard
model [6,8,10,16,34], therefore, in this paper we only focus on FDH schemes
with deterministic signatures in the ROM.

We mainly categorize signature schemes into four distinct classes, namely
probabilistic, derandomized, deterministic and unique, that we describe next.

– Probabilistic schemes utilize randomness during the signing process; signa-
tures are always different (with high probability) even if the same message
is signed twice with the same signing key. Some examples of probabilistic
schemes are PSS [4], Schnorr [28], El-Gamal [14], and Bitcoin’s ECDSA.

– Derandomized schemes are probabilistic schemes that demonstrate a deter-
ministic behavior but still requires an internal use of randomness. It is folklore
that any randomized signature scheme can be turned into a deterministic one;
merely generate the random coins used during the signing algorithm through
a pseudo-random function (PRF) that takes the message as input. Then, the
random coins used to sign a particular message will be fixed, therefore pro-
ducing a deterministic signature for each message. Unfortunately, in some
cases, the derandomization process can lead to several vulnerabilities [23].
Signature schemes in the derandomized category include the Derandomized
Rabin-Williams (DRW) scheme, where the signature is a square root selected
uniformly at random out of four possibilities, and returned systematically (by
using the PRF “trick”).

– Deterministic schemes always produce the same signature for each message
without relying on randomness (or derandomization) for signing, but the
verification algorithm accepts more than 1 valid signature per message (for
each key pair).
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– Lastly, unique schemes are deterministic schemes where the verification algo-
rithm only accepts as valid the only signature ever produced by its signing
algorithm (for each message and key). Schemes in this category are the Abso-
lute Principal Rabin-Williams (APRW) scheme, and the RSA-FDH (since
RSA [27] defines a permutation over Z

∗
n).

In Table 1 we show a quick comparison between FDH signature schemes.

Table 1. Comparison of different hash-then-sign signature schemes.

Assumption Derandomized? Unique? Tight?

DRW [5] Factoring ✓ ✗ ✓

APRW [30] 2-Φ/4-Hiding ✗ ✓ ✓

RSA-FDH [20] Φ-Hiding ✗ ✓ ✓

BLS [7] EC-CDH ✗ ✓ ✗

Katz-Wang [22] RSA ✓ ✗ ✓

Our scheme Πu (Sect. 3.1) Quadratic residuosity ✗ ✓ ✓

Our scheme Πd (Sect. 3.2) Quadratic residuosity ✗ ✗ ✓

1.2 Previous Work

A seminal impossibility result by Coron [12] states that any FDH signature
scheme with unique signatures could not hope to have a tight security proof.
Kakvi and Kiltz [20] clarified that Coron’s impossibility result only holds when
the trapdoor permutation is certified. They also presented a tight security proof
for RSA-FDH based on the Φ-Hiding assumption [9].

Bernstein [5] studied all variants of Rabin-Williams signatures and devised an
ingenious tight proof for the DRW scheme (which he calls “fixed unstructured”),
where it releases systematically one of the four square roots that is initially
selected at random. Bernstein also provides a non-tight security proof for APRW
(the unique signature version of the scheme) and left as an open problem finding
a tight proof for it. Seurin [30] first showed that the Rabin function is lossy and
then presented a tight security proof for APRW, but under a new assumption
dubbed 2-Φ/4-Hiding assumption.

Unique signatures received renewed attention lately, as Bader et al. [2]
extended the seminal meta-reduction of Coron [12] by showing that any secu-
rity proof for unique signatures based on static assumptions or in the security
of the underlying trapdoor permutation must lose a factor of qs in its security
reduction, where qs is the number of signature queries asked by the adversary.
Later, Guo et al. [18] clarified that the authors of [2] implicitly assumed in
their meta-reduction that the simulator is only allowed to extract information
from the adversary’s forgeries when trying to invert the underlying trapdoor
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permutation; [18] circumvents the impossibility of [2] by allowing the simulator
(in addition) to extract information from the adversary’s hash queries. In [18]
the authors present a unique signature scheme based on Computational Diffie-
Hellman (CDH) with a tight security proof, with the drawback that the size of
a signature is logarithmic in the number of hash queries asked by the adversary.
Shacham [31] improves on the results of [18] and presents a version of the unique
scheme of [18] with succinct signatures, where each signature consists of 2 group
elements. Unfortunately, the scheme of [31] is still not as fast as RSA-FDH or
any Rabin-Williams variant.

Thus, to summarize: All the unique schemes with tight security proofs from
the assumption that the underlying trapdoor function (or permutation) is one-
way are not efficient. On the other hand, efficient unique schemes such as RSA-
FDH and APRW have a tight security proof that relies on the lossiness of the
trapdoor function and are based on variants of the Φ-Hiding assumption. Seurin
(cf. Theorem 5 in [30]) noted that it is very unlikely that FDH-RSA and APRW
will have a tight security reduction from, respectively, inverting RSA or factoring.
It is evident that the state of affairs is a bit confusing. FDH-RSA and Rabin-
Williams signatures with non-tight proofs were criticized as being potentially
impractical due to the large size of the parameters involved. Their tight proofs,
however, rely on new assumptions that appear to be markedly stronger than
factoring [19,29]. How should these results be interpreted in practice? Should
we trust these new assumptions and keep parameters short or should we use
large parameters to account for possible cryptanalytic attacks on these new
assumptions?

1.3 State of Affairs

What is wrong with randomness? Generating cryptographically-strong random
or pseudo-random numbers (RNG or PRNG) has always been a challenging
endeavor. Several devices are even unable to generate random numbers that are
good enough for cryptographic purposes. For instance, smart cards and sensors
are not usually capable of collecting enough entropy. Some are susceptible to
reset attacks where the PRNG is brought back to previous states. A reset attack
can be devastating for signature schemes since it could be possible even to recover
the signing keys of the user [26]. The same attack can be applied to virtualized
systems where the adversary can take snapshots of a virtual machine and later
replay them with distinct messages to recover the signing key. When possible,
probabilistic schemes should be avoided in these circumstances.

What is wrong with derandomization? Despite showing a deterministic behav-
ior, derandomized schemes still require randomness to sign messages. Therefore,
it is crucial to have a sound derandomization process; otherwise, it can be a
source of vulnerabilities [17,23]. For instance, a simple fault attack during the
derandomization leads to a full key recovery attack in the derandomized Rabin-
Williams scheme (by outputting 2 different square roots of the same message),
while deterministic schemes are immune to such attacks.
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What is wrong with the Φ-Hiding assumption? The Φ-Hiding assumption appears
to be much stronger than factoring, and it does not hold in some cases, as
shown in [19,29]. The RSA-FDH scheme is tightly secure under the Φ-Hiding
assumption, while the APRW scheme is tightly secure under a new assumption
dubbed 2-Φ/4-Hiding assumption [30]. As reported by Seurin [30], the 2-Φ/4-
Hiding assumption is clearly stronger than quadratic residuosity (on which our
schemes rely instead): When n ≡ 1 mod 4, the 2-Φ/4-Hiding problem is equiva-
lent to the problem of establishing whether −1 is a square in Z

∗
n; thus, it’s enough

to provide y = −x2 mod n, for a random x ∈ Z
∗
n, to a quadratic residuosity

solver to violate the 2-Φ/4-Hiding assumption.

A Case for Unique Signatures. Ateniese et al. [1] shows a generic subversion
attack against virtually all probabilistic and deterministic signature schemes that
leads to the complete recovery of the signing key. The intuition behind the attack
is that the adversary builds a subverted signing algorithm that leaks bits of the
signing key through the produced signatures; this is only possible because the
signature contains randomness that is used to “disguise” the parts of the signing
key that is being leaked. Deterministic schemes are also susceptible to such
attacks since the bits of the signing key can still be leaked through the choice of
the signature that is returned among the possible options. On the other hand, [1]
shows that unique signature schemes are secure against the class of subversion
attacks that satisfies the verifiability condition1. When used in tandem with a
cryptographic reverse firewall [25] unique signature schemes are secure against all
classes of subversion attacks [1]. Therefore, unique signatures are recommended
for settings where the generation of randomness is problematic, and subversion
attacks are a concern.

1.4 Our Contribution

Our contribution is a family of FDH signature schemes in the ROM with tight
security proofs to the Quadratic Residuosity (QR) assumption2. The family con-
sists of a unique scheme and a deterministic scheme, both based on a variation
of a lossy function from [15]. To argue tight security for the unique signature
scheme, we leverage the results of Kakvi and Kiltz [20] that show a generic
proof for any unique scheme based on a lossy trapdoor function. As far as we
could ascertain, this is the first unique signature scheme tightly secure under
the quadratic residuosity assumption (and non-tightly secure under factoring).
Besides, the reduction is tighter than the one in [30], i.e., our unique scheme is
closer to quadratic residuosity than principal Rabin-Williams is to the 2-Φ/4-
Hiding assumption.

1 The verifiability condition informally says that all signatures produced by the signing
algorithm must be valid for the corresponding verification key.

2 Arguably, the next best assumption after factoring is quadratic residuosity, which
has been extensively studied, at least as much as the RSA assumption.
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The efficiency of the schemes in our family is comparable to that of the
Rabin-Williams family, which are considered the fastest (for signature verifica-
tion) signature schemes ever devised [5]. The unique scheme does require the
computation of a Jacobi symbol (as the unique variant of Rabin-Williams also
does) but we believe such a computation carries an unfair stigma. In reality, com-
puting Jacobi symbols can be performed very efficiently [24,32] (in particular in
O(n2/ log n) as reported in [24]), and can be parallelized [24] to harness recent
multicore and/or distributed platforms. Nevertheless, for applications where the
verification process has to be even faster, we provide a deterministic signature
scheme that does not require the computation of Jacobi symbols.

2 Preliminaries

2.1 Basic Notations

When A is a deterministic algorithm, we write y := A(x) to denote a run of
A on input x and output y; if A is a randomized algorithm then y ← A(x; r)
denotes a run of A on input x and randomness r; when it is clear from context
we simply write y ← A(x). An algorithm A is probabilistic polynomial-time
(PPT) if A is randomized and for any input x, r ∈ {0, 1}∗ the computation of
A(x; r) terminates in at most poly(|x|) steps. We denote with κ ∈ N the security
parameter. A function ν : N → [0, 1] is negligible in the security parameter
(or simply negligible) if it vanishes faster than the inverse of any polynomial
in κ, i.e., ν(κ) = κ−ω(1). For a random variable X, we write P [X = x] for the
probability that X takes on a particular value x ∈ X (where X is the set where
X is defined).

2.2 Number Theory

We denote by Jn the set of all x ∈ Z
∗
n with Jacobi symbol 1, by Jn the set of all

x ∈ Z
∗
n with Jacobi symbol −1, and by QRn the set of all quadratic residues of

Z
∗
n. For n ∈ Z, we call n a Williams integer if n = pq for primes p and q of the

form p ≡ 3 mod 8 and q ≡ 7 mod 8. Our results rely on the following lemmas
from [15,33].

Lemma 1. Let n = pq be a Williams integer and let x ∈ QRn. The equation
x ≡ y2 mod n takes four distinct values, namely {±y0,±y1}, where

(i) for b ∈ {0, 1}, we have that yb and −yb are both either in Jn or Jn,
(ii) y0 ∈ Jn if and only if y1 ∈ Jn.

Lemma 2. Let n = pq be a Williams integer, then 2 ∈ Jn.

Lemma 3. For n, x, y ∈ Z, where x �≡ ±y mod n, if x2 ≡ y2 mod n then
gcd(n, x − y) gives a non-trivial factor of n.
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2.3 Signature Schemes

A signature scheme is a triple of algorithms Π = (KGen,Sign,Vrfy) specified as
follows:

– KGen takes as input the security parameter κ and outputs a verification/
signing key pair (vk , sk) ∈ VK × SK, where VK := VKκ and SK := SKκ

denote the sets of all verification and secret keys produced by KGen(1κ).
– Sign takes as input the signing key sk ∈ SK, a message m ∈ M and random

coins r ∈ R, and outputs a signature σ ∈ Σ.
– Vrfy takes as input the verification key vk ∈ VK and a pair (m,σ), and outputs

a decision bit that equals 1 iff σ is a valid signature for message m under the
key vk .

The correctness of a signature scheme informally says that verifying honestly
generated signatures always works.

Definition 1 (Correctness). Let Π = (KGen,Sign,Vrfy) be a signature
scheme. We say that Π satisfies (perfect) correctness if for all (vk , sk) output by
KGen, and all m ∈ M,

P [Vrfy(vk , (m,Sign(sk ,m))) = 1] = 1,

where the probability is taken over the randomness of the signing algorithm.

The standard notion of security for a signature scheme demands that no
PPT adversary given access to a signing oracle returning signatures for arbitrary
messages, can forge a signature on a “fresh” message (not asked to the signing
oracle).

Definition 2 (Existential unforgeability). Let Π = (KGen,Sign,Vrfy) be
a signature scheme. We say that Π is (t, q, ε)-existentially unforgeable under
chosen-message attacks if for all adversaries A running in time t it holds:

P

[
Vrfy(vk , (m∗, σ∗)) = 1 ∧ m∗ �∈ Q :

(vk , sk) ← KGen(1κ);
(m∗, σ∗) ← ASign(sk ,·)(vk)

]
≤ ε,

where Q = {m1, . . . , mq} denotes the set of queries to the signing oracle. If for
all t, q = poly(κ) there exists ε(κ) = negl(κ) such that Π is (t, q, ε)-existentially
unforgeable under chosen-message attacks (EUF-CMA for short), then we simply
say Π is EUF-CMA.

We define the so-called unique signatures next. Informally, a signature scheme
is unique if, for any message, there is only a single signature that verifies w.r.t.
an honestly generated verification key.

Definition 3 (Uniqueness). Let Π be a signature scheme. We say that Π
satisfies uniqueness if for all vk output by KGen, and all m ∈ M, there exists a
single value σ ∈ Σ such that Vrfy(vk , (m,σ)) = 1.
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3 The Signature Scheme Family

In this section, we describe the two components of our hash-and-sign family of
signature schemes. Our family is a variant of the Rabin-Williams family [5], and
is inspired by a lossy trapdoor function from [15]. We first describe the unique
signature scheme based on QR in Sect. 3.1, followed by the deterministic scheme
based on QR in Sect. 3.2.

3.1 Unique Scheme Πu

Let the functions h, j : Zn → {0, 1} be defined as

h(x) =
{

1, if x > n/2,
0, otherwise,

j(x) =
{

1, if x ∈ Jn,
0, otherwise.

We build the unique signature scheme Πu = (KGen,Sign,Vrfy) as follows:

– (vk , sk) ← KGen(1κ): The key generation algorithm takes as input the security
parameter 1κ and produces a pair of corresponding verification and signing
keys. The signing key sk is composed of two randomly sampled κ/2-bit primes
p and q of the form p ≡ 3 mod 8 and q ≡ 7 mod 8. The verification key vk
is defined by n := pq and a randomly sampled parameter s ∈ Jn \ QRn.

– σ := Sign(sk ,m): Set b := 0 and hash the message m to obtain x := H(m),
where H : {0, 1}∗ → Z

∗
n is a collision-resistant hash function. Compute x′ :=

x · 2j(x) mod n and iff x′ /∈ QRn set b := 1 and compute x′ := x′ · s mod n
with the public parameter s. Now that x′ ∈ QRn we use the signing key
to compute the four modular square roots of x′ and select the single root y
such that j(y) = j(x) and h(y) = b (according to Lemma 1); set σ := y and
output σ.

– b := Vrfy(vk ,m, σ): If σ /∈ {1, . . . , n − 1} then output 0, otherwise output
H(m) = σ2 · 2−j(σ) · s−h(σ) mod n.

On uniqueness. We note that for a signature scheme to be considered unique, it is
necessary, but not sufficient, that the signing algorithm always returns the same
signature when the same message is signed more than once. To fully characterize
a unique signature scheme, the verification algorithm needs (for each verification
key vk) to reject as invalid all the signatures for a particular message m, except
the only signature for m that is ever returned by the signing algorithm. It is
easy to see that the scheme Πu above satisfies these requirements, as for each
key a single signature σ is ever produced for some message m, and only σ is ever
accepted as a signature for m.
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3.2 Deterministic Scheme Πd

In order to achieve even better efficiency, we construct additionally the determin-
istic variant Πd of the previous signature scheme. We define the deterministic
scheme Πd = (KGen′,Sign′,Vrfy′), where the algorithms KGen′ and Sign′ are
exactly the same as KGen and Sign in Πu, and the verification algorithm Vrfy′ is
described below:

– b := Vrfy′(vk ,m, σ): If σ /∈ {1, . . . , n − 1} then output 0, otherwise output
(H(m) = σ2 · s−h(σ) mod n) ∨ (H(m) = σ2 · s−h(σ) · 2−1 mod n).

Note that although the signing algorithm will always return a unique signature
for each message, the verification algorithm does accept 2 different signatures
for a message. The main advantage of the deterministic scheme over the unique
scheme is efficiency; while the unique scheme requires computation of a Jacobi
symbol in the signature verification, the deterministic scheme only needs to
perform 3 modular multiplications (in the worst case).

4 Security Analysis

In this section, we analyze the security of the signature schemes presented in
Sect. 3. We first present a security proof for Πu based on the hardness of factoring,
and then a tight security proof based on QR. To achieve the latter, we leverage
the results of Kakvi and Kiltz [21] on unique signatures based on lossy functions.
Later we also present a tight security proof for the Πd signature scheme based
on QR.

4.1 Security of Πu Based on Factoring

Theorem 1. If the Integer Factorization Problem (IFP) is (t, ε)-hard, then the
unique signature scheme Πu is (t′, qh, qs, ε

′)-secure, with

t = t′ + (qh + qs + 1) · O(κ2) and ε =
ε′

4 · (qh + qs + 1)
.

Proof. Let A be an adversary that (t′, qh, qs, ε
′)-breaks Πu. We build a reduction

R that uses A as a subroutine and (t, ε)-breaks the IFP.
The reduction R receives a modulus n = pq from the challenger, and its

objective is to factor n. Instead of sampling s ∈ Jn \QRn, which R is not able to,
it simply samples an s ∈ Jn. When s ∈ QRn the reduction aborts, what happens
with probability 1/2. The reduction R sends vk := (n, s) to A. We allow the
adversary A to make two types of oracle queries, namely hash and sign queries,
that R must answer with the same distribution as a real signing oracle would.
The reduction R maintains a list L := ∅ of hash queries and a counter i that
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is initialized by 0. R chooses a random 	 ∈ {1, ..., q}, where q := qh + qs, and
answers the queries as follows:

– Hash queries: Upon a hash query for message m check if m ∈ L; if yes, then
return x from the triple (m,x, y) ∈ L, otherwise proceed as follows. Increment
the counter i, and if i �= 	 the reduction R chooses a random yi ∈ Z

∗
n and sets

xi = y2
i · 2−j(yi) · s−h(yi) mod n. However, when i = 	, reduction R chooses

random values yi ∈ Z
∗
n, α, β ∈ {0, 1} and sets xi = y2

i · 2−α · s−β mod n.
Store the triple (mi, xi, yi) in the list L and return xi.

– Sign queries: When A makes a sign query for a message m, reduction R
checks if there exists a triple (m,x, y) ∈ L; if not, R simply makes the corre-
sponding hash query itself. Return y as the signature of message m.

The adversary A eventually outputs a forgery (mi, σi), and we assume wlog that
(mi, xi, yi) ∈ L. If i = l we have that both y′ = σi · 2−j(σ) · s−h(σ) mod n
and yi are square roots of y2

i . With probability 1/2, the roots y′ and yi are not
the complement of each other, and in that case we can factor n by computing
gcd(n, y′ − yi), due to Lemma 3. The running time for R is the running time of
the adversary A plus all the oracle queries. �

The reduction R is required to answer all the oracle queries that A makes; in
particular, R needs to produce valid signatures to all the messages queried by A
without knowing the signing key. Before every signature query for message m is
made, a corresponding hash query for m needs to be made to the reduction R; the
reduction first samples a random y ∈ Z

∗
n and returns H(m) := y2 ·2−j(y) · s−h(y)

mod n as the answer to the hash query. To answer a signature query for message
m, the reduction R returns y as a valid signature for m.

In order to factor, R selects an index 	 ∈ {1, . . . , q} during initialization, and
for the 	-th hash query made by A the reduction R replies with x� = y2

� ·2−α ·s−β

mod n for y� ∈ Z
∗
n, α, β ∈ {0, 1}. The reduction is then able to factor with

probability 1/2 if A produces a pair (m�, σ�) as a forgery for the message m�.
We note that the above security reduction can be further improved to roughly

ε = ε′/4qs by applying a technique by Coron [11].

4.2 Tight Security of Πu Based on QR

The unique signature scheme Πu of Sect. 3.1 is a variant of a lossy trapdoor
function based on QR from [15]. In fact, the changes made to our scheme were
carefully crafted so the scheme would still maintain its lossiness; the main dif-
ference is that n is a Williams integer so that 2 ∈ Jn.

To instantiate the lossy version of our scheme, KGen needs to be modified to
sample the public parameter s ∈ QRn, in contrast to the injective version, where
s ∈ Jn \ QRn. Note that the only difference between the lossy and the injective
version of the scheme is the domain of s; in both cases s ∈ Jn, but in the lossy
version s ∈ QRn, while in the injective version s /∈ QRn. Distinguishing among
these two cases is precisely the QR assumption, so an adversary that is able to
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distinguish must solve the QR problem. Since the lossy version of the scheme is
2-to-1 [15] and the injective version is a permutation in {1, . . . , n}, the scheme
has lossiness of 1-bit.

For the tight security proof of the scheme Πu we leverage the generic result
of Kakvi and Kiltz [21] for unique signatures based on lossy functions, that
intuitively states that any unique signature scheme based on a lossy function
has a tight security reduction based on the lossiness of the function. From that,
we achieve the following result.

Theorem 2. If the Quadratic Residuosity assumption is (tQR, εQR)-hard, then
for any qh, qs the unique signature scheme Πu is (t, qh, qs, ε)-EUF-CMA secure
in the random oracle model with

t = tQR − qh · O(κ2) and ε = 3 · εQR.

4.3 Tight Security of Πd Based on QR

In this section, we build a reduction from breaking the security of the Πd scheme
to breaking the security of the Πu scheme. Since the Πu scheme has tight security
to the QR problem, then Πd has also tight security to the QR problem.

Theorem 3. If the Πu scheme is (t′, qh, qs, ε
′)-EUF-CMA secure, then the

deterministic signature scheme Πd is (t, qh, qs, ε)-EUF-CMA secure, with t = t′,
and ε = 2 · ε′.

Proof. Assume there exists an adversary A that (t, qh, qs, ε)-breaks the security
of Πd. Then, we build another adversary A′ that (t′, qh, qs, ε

′)-breaks the security
of Πu.

AdversaryA′:
– Receive the verification key vk := (n, s) from the challenger and send

it to A.
– Upon any hash or signature query from A, forward the query to its

corresponding oracle and send the reply to A.
– Eventually, receive a forgery (m,σ) from A. Sample a random bit b and

return the pair (m,σ ·2b) to the challenger as a forgery for message m.

For the analysis, we note that the simulation performed by A′ is perfect since
the hash and signature oracles from both schemes are exactly the same. By
assumption, A produces a valid forgery (m,σ) with non-negligible probability,
and in that case, (m,σ · 2b) is a valid forgery for A′ when σ · 2b has the same
Jacobi symbol as H(m), what happens with probability 1/2 when b is sampled
at random. Therefore, if A breaks the security of Πd with probability ε, then A′

breaks the security of Πu with probability ε/2. �
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5 Performance

When the factors p and q are known, calculating the Jacobi symbol of an ele-
ment is very efficient since it is enough to compute two Legendre symbols. In
particular, for x ∈ Z

∗
n, x ∈ Jn if x(p−1)/2 mod p = x(q−1)/2 mod q, otherwise

x ∈ Jn.3 The signature σ is the unique square root y of the square x such that
j(y) = j(x) and y > n/2 iff x > n/2. Computing such a square root is very
efficient thanks to the Chinese remainder theorem.

In general, when p and q are known, the computation of the Jacobi sym-
bol and a square root share several calculations and can be optimized when
performed simultaneously. Since computing Jacobi symbols when p and q are
unknown is computationally more expensive than other modular operations, we
recommend the deterministic version Πd of our scheme for applications where
unique signatures are not necessary.

While in the unique signature scheme the computation of a Jacobi symbol
(for signature verification) is necessary, in the deterministic scheme it is enough
to compute t := σ2 · s−h(σ) mod n and then check whether any of H(m) = t or
H(m) = t · 2−1 mod n holds to consider the signature σ as valid.

A note on efficiency. Our Πu scheme has comparable speed to the unique sig-
nature scheme from the Rabin-Williams family, denoted by APRW* in [30]. The
running time of the verification algorithm is dominated by the computation of
a Jacobi symbol in both schemes. Our deterministic scheme Πd is very efficient,
requiring at most 3 modular multiplications for signature verification.

6 Conclusions

We presented a family of FDH signature schemes with tight security based on
a standard assumption (QR). The schemes are as efficient as other variants of
Rabin-Williams which hold the record for fastest signature verification schemes
[5]. A tight security proof for the APRW scheme was presented only recently
by Seurin [30], and his proof is based on the lossiness of the APRW function,
which is based on a new assumption called 2-Φ/4-Hiding, that is a variation of
the Φ-Hiding problem [9]. Unlike QR, the Φ-Hiding problem is a new and poorly
understood assumption as remarked in [19,29].

In practice, since the security of our signature scheme is based on the QR
assumption, in comparison to RSA-FDH and APRW, it is possible to safely
employ smaller parameters for comparable levels of security, which leads to even
better efficiency.

3 We do not consider cases where the Jacobi or Legendre symbols are 0 since they
happen with negligible probability.
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Abstract. Some features of Feistel structures have caused them to be
considered as an efficient structure for design of block ciphers. Although
several structures are proposed relied on Feistel structure, the type-II
generalized Feistel structures (GFS) based on SP-functions are more
prominent. Because of difference cancellation, which occurs in Feistel
structures, their resistance against differential and linear attack is not as
expected. In order to improve the immunity of Feistel structures against
differential and linear attack, two methods are proposed. One of them is
using multiple MDS matrices, and the other is using changing permuta-
tions of sub-blocks.

In this paper by using mixed-integer linear programming (MILP) and
summation representation method, a technique to count the active S-
boxes is proposed. Moreover in some cases, the results proposed by Shibu-
tani at SAC 2010 are improved. Also multiple MDS matrices are applied
to GFS, and by relying on a proposed approach, the new inequalities
related to using multiple MDS matrices are extracted, and results of
using the multiple MDS matrices in type II GFS are evaluated. Finally
results related to linear cryptanalysis are presented. Our results show
that using multiple MDS matrices leads to 22% and 19% improvement
in differential cryptanalysis of standard and improved 8 sub-blocks struc-
tures, respectively, after 18 rounds.

Keywords: MILP · Generalized Feistel structure
Switching mechanism · Differential cryptanalysis · Linear cryptanalysis

1 Introduction

Nowadays, security is one of the most important components of information
transition, and cryptography is an inseparable part of security. Block ciphers are
one of the most important tools, which are used in cryptography. These ciphers
must be resistant against the existing security cryptanalysis such as differential
and linear cryptanalysis.
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Feistel structures form a significant category of block ciphers, which have
been under several evaluation so far. Perhaps CAMELLIA [1] and CLEFIA [13]
are the most important block ciphers that are designed based on these structures.
The CLEFIA block cipher uses four sub-blocks Feistel structure with switching
mechanism [11]. In switching mechanism multiple MDS matrices with specified
properties are used. Using switching mechanism in CLEFIA provides 1.3 times
more active S-boxes rather than the structure with one matrix. Also as mentioned
in [11,12], for two sub-blocks Feistel structure with multiple MDS matrices, the
total number of active S-boxes is 1.2 times higher than two sub-blocks Feistel
structure with one MDS matrix.

A lot of methods have so far been proposed to count the number of active
S-boxes of Feistel structures. The first method for Feistel structures with SPN
round functions is proposed in [5]. This method is able to offer a lower bound
for the number of differentially and linearly active S-boxes with branch number
β. In [10], a method is proposed to calculate the minimum number of active S-
boxes of block cipher Camellia, and the existing bound is improved for this block
cipher. Also in [8,14], the number of active S-boxes is obtained by changing the
standard method, and proposing a particular algorithm. Although employing
multiple MDS matrices in GFS is discussed in [3,9], accurate results are not
reported.

Probably, using mixed-integer linear programming method in calculating the
number of active S-boxes of block ciphers is one of the most important existing
methods. This method is discussed in several papers such as [2,6]. In order
to evaluate word-oriented block ciphers, however, a comprehensive method is
proposed in [6]. Also in [7] due to the better performance of the features of MDS
matrices, a method is proposed.

In this paper by using linear programming and the proposed idea in [7], first a
method to count the number of differentially and linearly active S-boxes in Feistel
structures is presented, and the obtained results are compared with results in
[8]. Other major contribution of the paper is referring to inequalities that are
extracted from imposing switching mechanism, and results that are obtained by
imposing switching mechanism on generalized Feistel structures are presented.
Moreover, the results for the best 8 sub-blocks Feistel structures that employ 2
and 4 multiple MDS matrices are reported. Based on our researchs, the results of

using
l

4
MDS matrices and

l

2
MDS matrices in differential cryptanalysis of l sub-

blocks structures, are fairly close. Finally we analyze the switching mechanism
in linear attack.

The rest of the paper is organized as follows. In Sect. 2 we review the
details of GFS structures, give a brief description about MILP, and explain
about summation representation, which is used in our MILP method. In Sect. 3
first we present our method to calculate the minimum number of differentially
active S-boxes of 2 sub-blocks Feistel structures, and we generalize this method
for structures with higher number of sub-blocks. In Sect. 4 inequalities which
describe switching mechanism are proposed, and the results of imposing the
switching properties on generalized Feistel structures are presented. In Sect. 5 by
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expanding the proposed method, linear cryptanalysis is evaluated. Finally, we
conclude in Sect. 6.

2 Preliminaries

In this section we clarify what type of Feistel structures exactly we aim to eval-
uate, and then give a definition of MILP. Moreover, we point out what is the
difference between our method and the well-known MILP method, which is pro-
posed in [6].

2.1 GFS Structures

In GFS, a plaintext is divided to l sub-blocks, where l is an even integer. If
(X0,X1, ...,Xl−1) represents the l divided sub-blocks of a state with size of lmn-
bit, a single round of l sub-blocks GFS follows a permutation over ({0, 1}mn)l, as:

(X0, X1, ..., Xl−1) → π(X0, F0(X0) ⊕ X1, X2, F1(X2) ⊕ X3, ..., Fl/2−1(Xl−2) ⊕ Xl−1) (1)

In relation (1) Fi : {0, 1}mn → {0, 1}mn is the i-th round function, and
π : ({0, 1}mn)l → ({0, 1}mn)l is a deterministic permutation over l sub-blocks.
Figure 1, illustrates the relation (1), where possible connections of output sub-
blocks of the state and input sub-blocks of next state are denoted by dotted lines.
Throughout the paper, we consider each round function be an SP-function, and
each sub-block is consisted of n S-boxes with size of m bits. Therefore, it is easy
to verify that a GFS with l sub-blocks is an lmn-bit block cipher.

In this paper we assume that π is a word-based permutation. In the rest of the
paper, GFSstd

l is interpretted as a standard type-II GFS [8] with l sub-blocks,
where π(X0,X1, ...,Xl−1) = (X1,X2, ...,Xl−1,X0), and GFSimp

l is interpretted
as an improved type-II GFS with l sub-blocks as pointed out by the authors of
[14]. For instance, the permutation in GFSimp

6 (No.1) is as π(X0,X1, ...,X5) =
(X3,X0,X1,X4,X5,X2), and the permutation in GFSimp

8 (No.1), which is one of
the most important evaluated structures in this paper, is as π(X0,X1, ...,X7) =
(X3,X0,X1,X4,X7,X2,X5,X6).

Fl/2−1

Xl−2

⊕F1

X2 X3

⊕F0

X0

⊕

⊕⊕⊕

X1 Xl−1

Fig. 1. GFS with l sub-blocks
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2.2 MILP

In linear programming, a linear objective function f(x1, x2, ..., xn) is optimized,
subject to a given set of linear constraints, which are produced by decision
variables xi, 1 ≤ i ≤ n. If certain decision variables are restricted to be integer
values, such programs are called mixed-integer linear programming.

2.3 Summation Representation

As mentioned above, each round function in GFS contains an mn-bit block as
an input, and each bijective S-box is m bits (n parallel m-bit S-boxes), and
also P is an n × n matrix with m-bit elements, where we assume that β is the
branch number of this matrix. In order to count the number of active S-boxes,
the truncated method [7] is used. Therefore, in this case, the S-box does not have
any effect on truncated difference or mask. Because of using branch number, the
place of elements does not care to be zero or not, and just the number of them is
important. Hence for every n truncated vector bits, the summation of elements
of that vector are allocated (i.e. we replace an integer number between 0 and n
instead of a vector with size n). From now on, we call this method “summation
representation” [7]. We emphasize that in summation representation, 2n possible
representation reduces to n + 1 possible representation. For instance, in relation
(2) the truncated representation and summation representation are shown for a
vector as an input of F-function with 4 8-bit elements:

⎛
⎜⎜⎝

6
15
0

158

⎞
⎟⎟⎠ truncated−−−−−−→

⎛
⎜⎜⎝

1
1
0
1

⎞
⎟⎟⎠ summation−−−−−−−−→ 3 (2)

In order to count the differentially and linearly active S-boxes of word-
oriented block ciphers, the truncated method is used in [6]. In contrast, we
use summation method to count the differentially and linearly active S-boxes of
word-oriented block ciphers. Throughout this paper all of the inputs and out-
puts are shown in a summation representation. It is worth mentioning that, our
method can be exploited for both structures with MDS and non MDS matrices.
However, in this paper we assume that all of applied matrices are MDS.

3 Counting the Differentially Active S-Boxes

In cryptanalysis of Feistel structure (two sub-blocks or multiple sub-blocks) with
SP-functions, we deal with two functions. One of them is SP-function and the
other is XOR function.

Hereafter, summation representation of a difference vector “x” is denoted by
“xc”, where “xc” is the number of non zero elements of “x” shows the results for.

Equations Describing the SP-Function. According to Fig. 2, assume that
input and output of the i-th SP-function are xc

i and zci , respectively, where both
of them are an integer number between 0 and n.
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xc
i

SP
zci ⊕

Fig. 2. Summation variables related to the SP-function of Feistel structure

The branch number of matrix P is β. Therefore, we have:
{

zci = 0 if xc
i = 0

xc
i + zci ≥ β otherwise (3)

The function is conditional. Considering [6], we need to introduce a new
binary dummy variable bi to convert the condition into inequality, where bi ∈
{0, 1}. Then we have: ⎧⎨

⎩
xc
i + zci ≥ βbi

bi ≤ xc
i ≤ nbi

bi ≤ zci ≤ nbi

. (4)

Note that we assumed that an employed matrix be MDS, and this leads
to β = n + 1. In this case if xc

i be nonzero, certainly zci is nonzero, since the
maximum amount of xc

i is n, and xc
i + zci ≥ n + 1 causes that zci ≥ 1. Therefore

inequality bi ≤ zci is redundant and it could be eliminated. As a rule, for an
SP-function, inequalities are turned as follows:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 ≤ xc
i ≤ n

0 ≤ zci ≤ n
xc
i + zci ≥ (n + 1)bi

bi ≤ xc
i ≤ nbi

zci ≤ nbi

(5)

Equations Describing the XOR Operation. For describing the XOR opera-
tion consider Fig. 3. To evaluate XOR operation in summation structure, regard
to yi = xi ⊕ zi, it is clear that the maximum amount of yc

i is equal to the sum-
mation of two inputs. Also the minimum amount of yc

i won’t be less than the
difference of the absolute value of two inputs.

⊕
xc
i

yc
i

zci

Fig. 3. Summation variables related to XOR operation of Feistel structure
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For instance, if xc
i and zci are equal to 3 and 1, respectively, the maximum

amount that zci can eliminate from 3 nonzero elements of xc
i is 1, and the min-

imum amount of yc
i will be 2. Also in best case zci is nonzero in a place that

xc
i is zero and in this case the result of XOR has 4 nonzero elements. Under

this notation, for converting XOR relation into inequality, the following three
inequalities are obtained:

{
xc
i + zci ≥ yc

i

‖xc
i − zci ‖ ≤ yc

i
=⇒

⎧⎨
⎩

xc
i + zci ≥ yc

i

xc
i − zci ≤ yc

i

zci − xc
i ≤ yc

i

(6)

Therefore, for each round of Feistel structure with an SP-type F-function,
where matrix P is an MDS matrix, we need 4 variables and 11 inequalities.
More precisely 8 inequalities are derived from SP-function, and 3 inequalities
are derived from XOR operation. Needless to say, if we wanted to describe such
a structure, which contains n S-boxes in its F-functions, with prior well-known
MILP model, we needed to define 4n variables. Also 2n + 1 inequalities were
needed to describe the SP-function, and 4n inequalities were needed to describe
the XOR operation. Besides that, we need just 1 binary dummy variable for
SP-function in our model, whereas we need 1 and n binary dummy variables for
SP-function and XOR operation in prior model, respectively.

We know that, counting the number of nonzero inputs of SP-functions is
equivalent to count the number of active S-boxes. According to the way of defin-
ing variables in our method, xi variable denotes the number of active S-boxes
in the i-th SP-function. Therefore, to calculate the minimum number of active
S-boxes, the summation of xi variables must be minimized.

3.1 Evaluating Two Sub-blocks Feistel Structure

Figure 4 shows the details of a two sub-blocks Feistel structure starting from the
first round.

According to indices of variables in Fig. 4, and inequalities (5) and (6), for
each round with an MDS matrix we have:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 ≤ xc
i ≤ n

0 ≤ zci ≤ n
xc
i + zci ≥ (n + 1)bi

bi ≤ xc
i ≤ nbi

zci ≤ nbi

and (for i ≥ 1)

⎧⎨
⎩

xc
i−2 + zci−1 ≥ xc

i

xc
i−2 − zci−1 ≤ xc

i

zci−1 − xc
i−2 ≤ xc

i

(7)

It is worth noting that, the variable corresponding plain text (xc
−1 + xc

0)
must be nonzero. Thus the inequality xc

−1 + xc
0 ≥ 1 must be added. Finally by

organizing inequalities system and calculating the minimum amount of
∑n−1

j=0 xc
j

and solving it by IBM ILOG CPLEX [4], the minimum number of active S-
boxes for n = 4 and n = 8 for r rounds with branch number β are obtained as
	r

4

(β + 1) + (r)mod4 − 1. Table 1 shows our results for two sub-blocks Feistel

with n = 4 and n = 8 and β = n + 1, which are corresponded with [8].
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xc
0

SP
zc0 ⊕

xc
1

SP
zc1 ⊕

xc
2

SP
zc2 ⊕

Fig. 4. The way of defining summation variables in two sub-blocks Feistel structure

Table 1. Minimum number of active S-boxes of two sub-blocks Feistel

Round Feistel with n = 4 Feistel with n = 8

1 0 0

2 1 1

3 2 2

4 5 9

5 6 10

6 7 11

7 8 12

8 11 19

9 12 20

10 13 21

11 14 22

12 17 29

13 18 30

14 19 31

15 20 32

16 23 39

17 24 40

18 25 41
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3.2 Evaluating Generalized Feistel Structures

The process that has been described for two sub-blocks Feistel structure can
be expanded to type I and type II GFS. In the following the inequalities are
described for GFSstd

8 . Figure 5 shows summation variables for the first three
rounds of GFSstd

8 .
According to the above rules, GFSstd

8 is subjected to:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 ≤ xc
i ≤ n

0 ≤ zci ≤ n
xc
i + zci ≥ (n + 1)bi

bi ≤ xc
i ≤ nbi

zci ≤ nbi

(8)

(for 4 ≤ i ≤ 7)

⎧
⎨

⎩

xc
i−8 + zci−4 ≥ xc

i

xc
i−8 − zci−4 ≤ xc

i

zci−8 − xc
i−4 ≤ xc

i

(for i ≥ 8)

⎧
⎪⎨

⎪⎩

xc
i−8+(i+1)mod4−(i)mod4

+ zci−4 ≥ xi

xc
i−8+(i+1)mod4−(i)mod4

− zci−4 ≤ xc
i

zci−4 − xc
i−8+(i+1)mod4−(i)mod4

≤ xc
i

(9)

Our results for n = 4 are summarized for standard and improved general-
ized Feistel structures from l = 4 sub-blocks till l = 16 sub-blocks in Tables 2
and 3, respectively. In these tables results are compared with [8]. In these tables
our different results are bold.

SP
xc
3 zc3⊕SP

xc
1 zc1⊕ SP

xc
2 zc2⊕SP

xc
0 zc0⊕

SP
xc
7 zc7⊕SP

xc
5 zc5⊕ SP

xc
6 zc6⊕SP

xc
4 zc4⊕

SP
xc
11 zc11⊕SP

xc
9 zc9⊕ SP

xc
10 zc10⊕SP

xc
8 zc8⊕

xc
−4 xc

−3 xc
−2 xc

−1

Fig. 5. The way of defining summation variables in standard eight sub-blocks Feistel
structure
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Table 2. The minimum number of active S-boxes in GFSstd
l with n = 4, the columns

marked by “*” are our results

Round GFSstd
4 GFSstd

6 GFSstd
8 GFSstd

10 GFSstd
12 GFSstd

14 GFSstd
16

* [8] * [8] * [8] * [8] * [8] * [8] * [8]

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 1 1 1 1 1 1 1 1 1 1 1 1 1 1

3 2 2 2 2 2 2 2 2 2 2 2 2 2 2

4 6 6 6 6 6 6 6 6 6 6 6 6 6 6

5 8 8 8 8 8 8 8 8 8 8 8 8 8 8

6 12 12 12 12 12 12 12 12 12 12 12 12 12 12

7 12 12 14 14 14 14 14 14 14 14 14 14 14 14

8 13 13 18 18 18 18 18 18 18 18 18 18 18 18

9 14 14 21 21 21 21 21 21 21 21 21 21 21 21

10 18 18 25 25 25 25 25 25 25 25 25 25 25 25

11 20 20 27 27 28 28 28 28 28 28 28 28 28 28

12 24 24 30 30 36 36 36 36 36 36 36 36 36 36

13 24 24 31 31 36 36 39 39 39 39 39 39 39 39

14 25 25 35 35 37 37 43 43 43 43 43 43 43 43

15 26 26 37 37 38 38 47 47 47 47 47 47 47 47

16 30 30 41 41 42 42 54 54 54 54 54 54 54 54

17 32 32 43 43 44 44 58 58 58 58 58 58 52 52

18 36 36 47 47 48 48 62 58 62 62 62 62 62 62

4 Evaluating Switching Mechanism

In switching mechanism instead of using one matrix, multiple matrices are used
in a way that the number of differentially and linearly active S-boxes will be sig-
nificantly more than the case of using one matrix. In this section, at first inequal-
ities related to switching properties for two sub-blocks structure are described,
and then for four sub-blocks. Finally inequalities for six and eight sub-blocks
structure are listed.

In Fig. 6 switching mechanism is imposed on two sub-blocks Feistel structure.
In this structure, two MDS matrices M1 and M2 are used, where the branch
number of matrix

[
M1 M2

]
n×2n

is n + 1. The matrices M1 and M2 should
be allocated to round functions, in a way that avoid difference cancellation. For
more details, we refer to [11]. In order to count the number of active S-boxes of
this block cipher, some inequalities must be added to prior corresponded model,
which has only one matrix in its structure.
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Table 3. The minimum number of active S-boxes in GFSimp
l with n = 4, the columns

marked by “*” are our results

Round GFSimp
6 GFSimp

8 GFSimp
10 GFSimp

12 GFSimp
14 GFSimp

16

* [8] * [8] * [8] * [8] * [8] * [8]

1 0 0 0 0 0 0 0 0 0 0 0 0

2 1 1 1 1 1 1 1 1 1 1 1 1

3 2 2 2 2 2 2 2 2 2 2 2 2

4 6 6 6 6 6 6 6 6 6 6 6 6

5 8 8 8 8 8 8 8 8 8 8 8 8

6 12 12 12 12 12 12 12 12 12 12 12 12

7 14 14 14 14 14 14 14 14 14 14 14 14

8 23 22 23 23 26 23 18 18 26 23 26 23

9 24 24 26 26 29 29 21 21 29 29 31 31

10 26 26 29 29 35 34 29 29 37 37 43 40

11 28 28 32 32 36 36 32 32 40 40 48 48

12 32 32 39 39 43 45 42 39 52 49 57 54

13 34 33 42 40 44 44 45 45 54 54 60 60

14 38 38 45 44 48 48 54 53 64 60 66 63

15 40 40 46 46 50 50 57 57 66 63 69 70

16 48 46 50 50 54 54 61 60 77 71 76 76

17 48 48 52 52 56 56 64 64 82 76 78 78

18 50 50 56 56 68 65 70 68 84 83 87 87

According to Fig. 6, relations between inputs and outputs of five consecutive
rounds are as follows:

{
xi = zi−1 ⊕ xi−2

xi−2 = zi−3 ⊕ xi−4
=⇒ xi = zi−1 ⊕ zi−3 ⊕ xi−4 (10)

More precisely, according to the effect of S-box on truncated method, the
above relation can be described as follows:

[
M1 M2

] [
xi−1

xi−3

]
= xi ⊕ xi−4 or

[
M2 M1

] [
xi−1

xi−3

]
= xi ⊕ xi−4 (11)

Now converting switching mechanism into inequalities contains two steps: the
first step refers to the way of interpreting the relation (10), and the second step
refers to guaranteeing at least one of amounts xi−1 and xi−3 must be nonzero.
In the following, the above two steps are elaborated, respectively.

Firstly, according to feature of switching, the matrix
[
M1 M2

]
n×2n

has

branch number n + 1. Thus, if in a relation
[
M1 M2

] [
a
b

]
= c ⊕ d, at least
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xc
i−4

M1
zci−4⊕

xc
i−1

M1
zci−1⊕

xc
i−3

M2
zci−3⊕

xc
i−2

M2
zci−2⊕

xc
i

M1
zci ⊕

Fig. 6. The way of defining summation variables in two sub-blocks Feistel structure,
imposed by switching mechanism

one of the amounts a and b are nonzero, the relation ac + bc + cc + dc ≥ n + 1 is
established. To be more specific, ac + bc +‖c⊕d‖ ≥ n+1 is correct, and since it
is easy to verify that cc + dc ≥ ‖c⊕d‖, consequently the relation is described as
mentioned. It is remarkable that, this relation corresponds with proposed lemma
in [12]. If all the variables ac, bc, cc, dc are zero, a paradox occurs in the inequity.
In order to avoid this paradox, a new binary dummy variable needs to be defined.

Secondly, at least one of amounts a and b are supposed to be nonzero.
Towards this end, the addition of ac and bc must be greater or equal to 1.
Also, it is obvious that the addition of ac and bc is not more than 2n. As a
result, the relation 1 ≤ ac + bc ≤ 2n is attained. It is easy to verify that the
paradox in prior step appears again. In order to overcome the aforementioned
problem, the same dummy variable, which is defined in previous step, is used.

With all these taken to account, by defining the new binary dummy variable
called bbi, the description of switching properties for five consecutive rounds of
two sub-blocks Feistel structure is as follows:

xc
i + xc

i−1 + xc
i−3 + xc

i−4 ≥ (n + 1)bbi
bbi ≤ xc

i−1 + xc
i−3 ≤ 2nbbi

(12)

Therefore, for each five consecutive rounds, inequalities related to switching
mechanism must be added.
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Figure 7 shows the structure of four sub-blocks type II GFS (CLEFIA), which
two matrices M1 and M2 are used in it:

xc
i−9

M1
zci−9⊕

xc
i−3

M1
zci−3⊕

xc
i−7

M1
zci−7⊕

xc
i−8

M2
zci−8⊕

xc
i−5

M1
zci−5⊕

xc
i−1

M1
zci−1⊕

xc
i

M2
zci ⊕

xc
i−6

M2
zci−6⊕

xc
i−4

M2
zci−4⊕

xc
i−2

M2
zci−2⊕

Fig. 7. The way of defining summation variables in CLEFIA

As mentioned above, in CLEFIA two MDS matrices are used. Patterning
the process that was done for two sub-blocks structure, for adding inequalities
related to switching mechanism, relation between inputs and outputs of five
consecutive rounds is as follows:

{
xi−1 = zi−3 ⊕ zi−6 ⊕ xi−9

xi = zi−2 ⊕ zi−7 ⊕ xi−8
(13)

By following the same process which was done for two sub-blocks structure,
we have:

xc
i−1 + xc

i−3 + xc
i−6 + xc

i−9 ≥ (n + 1)bbi−1

bbi−1 ≤ xc
i−3 + xc

i−6 ≤ 2nbbi−1

xc
i + xc

i−2 + xc
i−7 + xc

i−8 ≥ (n + 1)bbi
bbi ≤ xc

i−2 + xc
i−7 ≤ 2nbbi

(14)

Therefore, for each five consecutive rounds, the inequalities of switching fea-
ture must be added. We stress that, the obtained results exactly match with [13].
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In six sub-blocks type II GFS which consists of standard and improved struc-
ture [14], in order to have the best performance, three MDS matrices M1, M2

and M3 must be used. More matrices have not considerable influence. Inequali-
ties that are obtained for switching feature in GFSstd

6 are generalized of CLEFIA.
For GFSimp

6 (No.1), one of the relations between inputs and outputs for each
seven consecutive rounds is as follows:

xi−2 = zi−5 ⊕ zi−9 ⊕ zi−16 ⊕ xi−20 (15)

And finally we have:

xc
i−2 + xc

i−5 + xc
i−9 + xc

i−16 + xc
i−20 ≥ (n + 1)bbi−2

bbi−2 ≤ xc
i−5 + xc

i−9 + xc
i−16 ≤ 3nbbi−2 (16)

Therefore, for each seven consecutive rounds the inequalities of switching feature
must be added.

In eight sub-blocks type II GFS that consists of standard and improved struc-
ture [14], four MDS matrices M1, M2, M3 and M4 are recommended to apply.
Inequalities that are obtained for switching feature in GFSstd

8 are generalized of
prior structure, and for GFSimp

8 (No.1), one of the relations between inputs and
outputs for each nine consecutive rounds is as follows:

xc
i−3 + xc

i−7 + xc
i−13 + xc

i−20 + xc
i−30 + xc

i−35 ≥ (n + 1)bbi−3

bbi−3 ≤ xc
i−7 + xc

i−13 + xc
i−20 + xc

i−30 ≤ 4nbbi−3

(17)

Table 4, shows the results for standard and improved generalized Feistel struc-
tures with n = 4, by considering switching properties. We point out that in l

sub-blocks structures, in order to have more powerful structure
l

2
different MDS

matrices must be applied. However, this process negatively impacts the costs
on generalized Feistel structures with larger sub-blocks. Fortunately, although
using less matrices in structures with larger sub-blocks makes them a bit weaker,
such these structures are still efficient, and instead lead to reduce the costs sig-
nificantly. The obtained results for GFSimp

8 with 2 MDS matrices and GFSimp
12

with 3 MDS matrices, which are listed in Table 4, are enough to emphasis our
claim.

5 Counting the Linearly Active S-Boxes

It is well known that, because of duality between differential and linear attack,
the method of counting the linearly active S-boxes is identical to differentially
active S-boxes in many regards. As shown in [5,12], counting the linearly active
S-boxes could be calculated by using the simple transformation in Fig. 8. We
emphasize that, in linear cryptanalysis, Feistel structures with SP-functions con-
vert to Feistel structures with PS-functions, and xc denotes the summation rep-
resentation of vector Γ.x.
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Table 4. Minimum number of differentially active S-boxes of generalized Feistel struc-
tures imposed by switching properties with n = 4

xc
i

M
zci xc

i
(MT )−1 zci⊕ ⊕

Fig. 8. transforming differential vectors to linear masks

Regardless of switching mechanism, if the matrix M is an MDS matrix, the
number of linearly active S-boxes for both standard and improved structures will
be equal to differentially active S-boxes. In case of using switching mechanism,
in order to clarify, consider Fig. 9 as a special example.

The inequalities related to switching mechanism in linear cryptanalysis read-
ily can be extracted from Theorem 3 in [12]. The relation (18) shows one of 4
relations between inputs and outputs of three consecutive rounds, in Fig. 9:

Γ.x5 = (MT
2 )−1Γ.x1 ⊕ (MT

1 )−1Γ.x8 =
[
(MT

1 )−1 (MT
2 )−1

] [
Γ.x1

Γ.x8

]
(18)
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(MT
4 )−1

xc
3 zc3⊕(MT

2 )−1
xc
1 zc1⊕ (MT

3 )−1
xc
2 zc2⊕(MT

1 )−1
xc
0 zc0⊕

(MT
4 )−1

xc
7 zc7⊕(MT

2 )−1
xc
5 zc5⊕ (MT

3 )−1
xc
6 zc6⊕(MT

1 )−1
xc
4 zc4⊕

(MT
4 )−1

xc
11 zc11⊕(MT

2 )−1
xc
9 zc9⊕ (MT

3 )−1
xc
10 zc10⊕(MT

1 )−1
xc
8 zc8⊕

xc
−4 xc

−3 xc
−2 xc

−1

Fig. 9. Defining summation variables in GFSstd
8 imposed by switching mechanism

Table 5. Minimum number of linearly active S-boxes of standard and improved gen-
eralized Feistel structures imposed by switching properties with n = 4

Round Feistel CLEFIA GFSstd
6 GFS

imp
6 GFSstd

8 GFS
imp
8 GFSstd

10 GFS
imp
10 GFSstd

12 GFS
imp
12

1 0 0 0 0 0 0 0 0 0

2 1 1 1 1 1 1 1 1 1 1

3 5 5 5 5 5 5 5 5 5 5

4 5 8 8 8 8 8 8 8 8 8

5 7 10 10 10 10 10 10 11 10 11

6 10 15 16 16 16 16 16 16 16 16

7 11 16 18 22 18 22 18 22 18 22

8 12 19 24 27 24 30 24 30 24 30

9 15 21 26 30 26 32 26 38 26 38

10 16 24 32 33 34 38 34 43 34 43

11 17 26 35 35 39 43 39 50 39 51

12 20 31 37 38 45 49 45 53 45 59

13 21 32 40 40 48 51 50 55 50 65

14 22 35 42 46 51 54 58 58 58 72

15 25 37 47 52 53 56 63 61 63 74

16 26 40 50 56 56 62 69 66 69 77

17 27 42 55 60 58 66 73 72 74 79

18 30 47 58 63 64 72 75 78 85 85

19 31 48 63 65 66 77 78 86 92 91

20 32 51 67 68 72 82 80 91 99 99

21 35 53 69 71 74 88 86 97 101 107

22 36 56 72 76 82 94 88 103 104 112

23 37 58 74 82 87 97 94 105 106 120

24 40 63 79 86 93 100 96 108 112 ..
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Without loss of generality, under the assumption that at least one of amounts
x1 and x8 must be nonzero, by defining a new binary dummy variable bbi,
the relations (19) are obtained, based on the same process which was done for
extracting the relations (12).

xc
1 + xc

5 + xc
8 ≥ (n + 1)bbi

bbi ≤ xc
1 + xc

8 ≤ 2nbbi
(19)

Due to obtained inequalities in (19), other inequalities can be obtained in a
similar way. The results for standard and improved generalized Feistel structures
with n = 4 by considering switching properties are listed in Table 5.

6 Conclusion

In this paper, by relying on MILP and summation representation, we introduced
an approach to calculate the number of differentially and linearly active S-boxes
until 24 rounds. We first explained, how XOR relation and SP-function can be
converted to inequalities. Then we listed the tables related to standard, and
improved generalized Feistel structures. Moreover, we clarified the way of con-
structing inequalities related to employing multiple MDS matrices in generalized
Feistel structures type II, and presented the results. Finally, we confirmed the
effect of switching mechanism on linear cryptanalysis. Due to obtained results
for linear cryptanalysis, it is clear that switching is more effective on linear crypt-
analysis. Since, the effect of switching on each GFS starts from the third round,
in linear cryptanalysis. Aside from the fact that our method does not apply for
structures such as AES (because of shiftrow operation), our approach signif-
icantly reduces the number of inequalities for other structures compared with
the previous approach based on MILP.

We would like to point out that, employing the multiple MDS matrices in
improved 8 sub-blocks structures leads to enhance the number of active S-boxes
almost 20% for 18 rounds, and creates a structure so close to RIJNDAEL-256
(RIJNDAEL-256 has 105 differentially active S-boxes for 12 rounds). For larger
blocks, switching can not diffuse until 18 rounds, in differential cryptanalysis.

Besides that, in differential cryptanalysis, we have confirmed that in improved
8 sub-blocks structure, if we apply 2 different MDS matrices, only 3 differen-
tially active S-boxes is lower than applying 4 matrices after 24 rounds (91 for 4
matrices and 88 for 2 matrices). By doing so, we not only benefit from switching
features, but also apply fewer resources. It is worth mentioning that, our app-
roach can be generalized for other Feistel structures, and is usable in designing
future block ciphers.
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Abstract. For cryptographic purposes, we generally study the charac-
teristics of a Boolean function in n-variables with the inherent assump-
tion that each of the n-bit inputs take the value 0 or 1, independently
and randomly with probability 1/2. However, in the context of the FLIP
stream cipher proposed by Méaux et al. (Eurocrypt 2016), this type of
analysis warrants a different approach. To this end, Carlet et al. (IACR
Trans. Symm. Crypto. 2018) recently presented a detailed analysis of
Boolean functions with restricted inputs (mostly considering inputs with
weight n

2
) and provided certain bounds on linear approximation, which

are related to restricted nonlinearity. The Boolean function used in the
FLIP cipher reveals that it is actually a direct sum of several Boolean
functions on a small number of inputs. Thus, with a different approach,
we start a study in order to understand how the inputs to the composite
function are distributed on the smaller functions. In this direction, we
obtain several results that summarize the exact biases related to such
Boolean functions. Finally, for the nonlinear filter function of FLIP, we
obtain the lower bound on the restricted Walsh–Hadamard transform
(i.e., upper bound on restricted nonlinearity). Our techniques provide a
general theoretical framework to study such functions and better than
previously published estimations of the biases, which is directly linked
to the security parameters of the stream cipher.

Keywords: Bias · Boolean function · FLIP
Homomorphic encryption · Restricted domain · Stream cipher

1 Introduction

The search for practical solutions to efficient homomorphic encryption schemes,
ushered in a new paradigm in stream cipher design, and received serious atten-
tion, recently. One important step in this direction has appeared in [1]. Shortly
thereafter, the papers [5,6] started analyzing the constituent Boolean function(s)
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in the FLIP stream cipher. An initial version of this cipher was cryptanalyzed
in [3]. In the FLIP stream cipher, the keystream bit is computed by using one
nonlinear filter function, which takes input from a restricted domain. Recently,
in [2,7], the properties of the Boolean functions in such a restricted domain [6]
were studied in detail.

In this paper we consider a different approach. It is evident that for the imple-
mentation of efficient homomorphic encryption schemes, the underlying stream
cipher must be simple. This requires Boolean functions with simple Algebraic
Normal Form (ANF) having many linear and low degree terms connected by
simple F2 addition. Further, the existing Boolean functions in the FLIP cipher
require each variable to be part of only one subfunction in the ANF. Given such
restrictions, it is evident that such functions will not have good cryptographic
properties. Thus, one requires a large number of variables, and consequently,
we want to get the required security with the least possible number of inputs.
The study of such functions is much easier using the standard Walsh–Hadamard
transform if we consider that the inputs appear independently and uniformly at
random. However, this is not the case here, since only the inputs of a specific
weight play a role. Quite involved mathematical techniques have been exploited
in [2,7] to study such functions. The analysis of FLIP, as a consequence of these
works, requires more attention, as specific numerical bounds on both sides are
not available.

Let us now discuss the issue from a more technical viewpoint (we refer to the
notations later in this section). Carlet et al. [2] observed that different properties
of a Boolean function F defined over F

n
2 degrade significantly when the inputs

come from a restricted subset E ⊂ F
n
2 . In the case of the FLIP stream cipher,

the inputs of the nonlinear filter function remain a 0/1 string of length n with
weight n

2 for all rounds. So, the nonlinear filter function always takes input from
a restricted subset E ⊂ F

n
2 . Based on this observation, Carlet et al. [2] studied

several properties of a Boolean function in a restricted domain. Mesnager et al. [7]
further analyzed Boolean functions on restricted domains and proposed a lower
bound of the bias, although, the numerical computation of the upper bound of
the bias is practically not possible by that technique. The papers [2,7] consider
the properties of the complete function F (see Sect. 1.2), given that the input is
of fixed weight.

In this paper, we concentrate on this issue and first notice that if x =
x1||x2|| . . . ||xn (concatenation) and x ∈ En,k (the definition of En,k is pro-
vided in Sect. 1.1) then x1, x2, . . . , xn does not follow a uniform distribution.
This observation motivates us to study the restricted Walsh–Hadamard trans-
form by considering the exact probability distribution of x1, x2, . . ., xn. In fact,
it is worth mentioning now that if the input xi of a Boolean function fi does
not follow a uniform distribution, then the original properties of fi (assuming
uniform distribution) changes significantly. Further, by considering the actual
distribution of the input (rather than a uniform one), we expect to achieve a
tighter bound for the bias given the nonlinear filter function used in the FLIP
stream cipher. Naturally a tighter bound will provide much better approximation
for the security parameters of the FLIP cipher.



284 S. Maitra et al.

Contribution and Organization. Our approach considers how the inputs to
the composite function are distributed on the smaller functions. In this direction,
we present some tools to start our analysis in Sect. 2. Then our main motivation
is to obtain more accurate linear approximations of nonlinear Boolean functions
when the inputs are restricted, which we discuss in Sect. 3. However, the formulae
that we arrive at are quite complicated to be directly compared with equally
complicated expressions of [2,7]. Thus, in this direction, numerical data will
provide better understanding of these results, as we discuss in Sect. 4. For that
we refer to the n = 530 variable Boolean function that has been considered
in [2]. Straightforward analysis of the Walsh–Hadamard spectrum shows that
when we consider that the inputs are uniform, such a function has maximum
absolute Walsh–Hadamard transform value in [2−79, 2−78]. Thus, the bias to a
linear function looks quite low. However, our analysis shows that when the inputs
are taken of weight n

2 = 265, then the restricted Walsh–Hadamard transform
is much higher. The maximum absolute value is in [2−18.49, 2−13.59]. We obtain
the upper bound by considering the idea of [2] and the lower bound is obtained
from our detailed analysis in this paper. That is, our work complements the work
of [2] to bound the maximum absolute restricted Walsh–Hadamard transform
value of a function on large number of variables used in the FLIP stream cipher.

Before proceeding further let us present some background material.

1.1 Boolean Functions

Let F2 and F
n
2 be the prime binary field, respectively, the extension field over

F2 of degree n. Let F
n
2 = {x = (x1, x2, . . . , xn) : xi ∈ F2, for all 1 ≤ i ≤ n} be

the vector space over F2 of dimension n. We denote the concatenation of two (or
more) binary strings x′,x′′ by x′||x′′. The cardinality of a set S is denoted by
|S|. Any function f : Fn

2 −→ F2 is said to be a Boolean function in n-variables,
whose set is denoted by Bn. These functions can be represented in a unique way
(called the Algebraic Normal Form (ANF) of f) as

f(x) =
∑

a∈F
n
2

μa

(
n∏

i=1

xai
i

)
, for allx ∈ F

n
2 ,where μa ∈ F2.

The Hamming weight of x ∈ F
n
2 is defined as wt(x) =

∑n
i=1 xi, where the

sum is over Z, the ring of integers. The algebraic degree of a Boolean function
f ∈ Bn is defined as deg(f) = maxa∈F

n
2
{wt(a) : μa �= 0}. Let En,i = {x ∈

F
n
2 : wt(x) = i}, for all 0 ≤ i ≤ n. The support of f ∈ Bn is defined as

supp(f) = {x ∈ F
n
2 : f(x) = 1}. A Boolean function is said to be balanced if

the cardinality of its support set is |supp(f)| = 2n−1. If the algebraic degree of
a Boolean function f ∈ Bn is at most 1 then f is an affine function, and its set
is An = {la,ε : a ∈ F

n
2 , ε ∈ F2}, where la,ε(x) = a ·x+ ε, for all x ∈ F

n
2 . If ε = 0,

then la,0 is a linear function. The Hamming distance between any f, g ∈ Bn is
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defined by dH(f, g) = |{x ∈ F
n
2 : f(x) �= g(x)}|. The correlation between two

Boolean functions f, g ∈ Bn is defined by

corr(f, g) =
∣∣∣∣
|{x : f(x) = g(x)}| − |{x : f(x) �= g(x)}|

2n

∣∣∣∣ .

To measure the correlation between an n-variable Boolean function f and a
linear function la,0, we use the Walsh–Hadamard transform, defined by

Wf (a) =
1
2n

∑

x∈F
n
2

(−1)f(x)+a·x.

We observe that the absolute value of the Walsh–Hadamard transform of f ∈
Bn at a fixed point a ∈ F

n
2 provides us the correlation between the Boolean

function f and the linear function la,0, i.e., corr(f, la,0) = |Wf (a)|, for all a ∈ F
n
2 .

The multiset [Wf (a) : a ∈ F
n
2 ], which is the Walsh–Hadamard spectrum of f ,

provides us the correlation between the Boolean function f and all possible
linear functions. From the Parseval’s identity for arbitrary f ∈ Bn,

∑

a∈F
n
2

Wf (a)2 = 1,

we obtain maxa∈F
n
2

|Wf (a)| ≥ 1
2n/2 .

A Boolean function f ∈ Bn (n even) is said to be bent if and only if the
correlation between f and {la,0|a ∈ F

n
2} is 1

2n/2 , i.e., corr(f, la,0) = |Wf (a)| =
2− n

2 , for all a ∈ F
n
2 .

Now if we assume that an n-variable Boolean function f ∈ Bn takes input
from a restricted domain, then to calculate the correlation between f and a
linear function la,0, we need to consider the inputs x only from a restricted
domain. Here we assume that f takes inputs of weight k, i.e., x ∈ En,k := {x ∈
F

n
2 : wt(x) = k}. Certainly, |En,k| =

(
n
k

)
. Under this assumption, the (restricted

domain) correlation between the Boolean function f and a linear function la,0 is

corr(k)(f, la,0) =
∣∣∣
|{x : f(x) = la,0(x)}| − |{x : f(x) �= la,0(x)}|

|En,k|
∣∣∣.

Further, to calculate this correlation, we shall define the Walsh–Hadamard trans-
form W(k)

f (a) of a Boolean function f in a restricted domain En,k, 0 ≤ k ≤ n,
by

W(k)
f (a) =

1
|En,k|

∑

x∈En,k

(−1)f(x)+a·x.

Here we define two more notations, which are used throughout the article.

Definition 1. Let x = (x1, . . . , xn) ∈ En,k and n = n1 + n2, and x′ = (x1, . . . ,

xn1), x′′ = (xn1+1, . . . , xn). Then En=n1+n2,k
n1,i = {x′ ∈ F

n1
2 | x ∈ En,k, n =

n1 + n2 and wt(x′) = i} and En=n1+n2,k
n2,j = {x′′ ∈ F

n2
2 | x ∈ En,k, n = n1 +

n2 and wt(x′′) = j}.
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Certainly, we can continue the splitting process, and if n = n1 + n2 + n3 then
En=n1+n2+n3,k

n1,i , En=n1+n2+n3,k
n2,j and En=n1+n2+n3,k

n3,r can be inferred from the
above definition. More generally it can be extended to n = n1 + n2 + · · · + nq.

1.2 Design Specification of the FLIP Stream Cipher

In this section we describe the design specification of the FLIP family of stream
ciphers (initially, presented in [5]). The main motivation behind this proposal
was to construct a fully homomorphic encryption (FHE) scheme with the limited
error growth using a symmetric key primitive. Since block ciphers are based on
complicated round functions, it seems to be difficult to construct such a FHE.
After this proposal, Duval et al. [3] came up with an attack on the FLIP ciphers.
Shortly thereafter, Méaux et al. [6] modified the design specification of FLIP and
proposed the final modified version of the FLIP stream cipher.

The FLIP cipher is based on three components: one register of length n,
one pseudorandom number generator (PRNG), one nonlinear filter function F
involving n-variables.

The cipher stores the secret key K of length n into the register and a PRNG
is initialized with the initialization vector IV . In each clock, the PRNG generates
a number which corresponds to a permutation. This pseudorandom permutation
permutes the state bits of the register. Finally, the nonlinear filter function takes
the current state as input to generate keystream bits. The pictorial description
of the FLIP stream cipher is described in Fig. 1.

Fig. 1. Design specification of FLIP

The nonlinear filter function F = f1+f2+f3 has three component functions:
f1 is a linear function, f2 is a quadratic bent function and f3 is a special type
of triangular function. The ANFs of these functions are described below:

– L-type function. A Boolean function Ln in n-variables is said to be of
L-type if it is of the following form Ln(x0, x1, . . . , xn−1) =

∑n−1
i=0 xi.
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– Q-type function. The algebraic normal form of the Q-type bent function
Q2n in 2n-variables is Q2n(x0, x1, . . . , x2n−1) =

∑n−1
i=0 x2ix2i+1.

– T-type function. For a positive integer n, the algebraic normal form of the
n-th T -type triangular function Tn in n(n+1)

2 variables is
Tn(x0, x1, . . . , xn(n+1)

2 −1
) =

∑n
i=1

∏i−1
j=0 xj+

∑i−1
�=0 � .

Thus, the nonlinear filter function F in n-variables is a direct sum of three
Boolean functions f1, f2 and f3 involving n1, n2 and n3 variables (such that
n = n1+n2+n3), respectively, where the algebraic normal form of these functions
are as follows:

– f1(x0, x1, . . . , xn1−1) = Ln1(x0, x1, . . . , xn1−1).
– f2(xn1 , xn1+1, . . . , xn1+n2−1) = Qn2(xn1 , xn1+1, . . . , xn1+n2−1).
– f3(xn1+n2 , xn1+n2+1, . . . , xn1+n2+n3−1) is the direct sum of r triangular func-

tion Tk, where each Tk involves independent variables.

The final algebraic normal form of the nonlinear filter function F is

F = Ln1 + Qn2 +
r∑

i=1

Tk.

The function that we concentrate on in this paper is the one with the notation
FLIP(42, 128, 8Δ9) as described in [6]. This means that n1 = 42, n2 = 2 · 64 =
128, n3 = 8 · (1 + 2 + · · · + 9) = 360. That is there are 42 terms in the linear
functions (L-type), 64 many quadratic terms in the quadratic functions (Q-type)
and further there are eight T -type functions each having terms of degree 1 to 9,
i.e., each one having 45 many variables.

The designers of the FLIP stream ciphers suggested that the weight of the
secret key of length n must be n

2 . In each round, one pseudorandom permutation
is applied on the register, which permutes the index of the secret key bits. The
nonlinear filter function F takes the updated state of the register as input to
produce an output bit. It is then clear that the weight of the state of the cipher
in each round remains fixed (i.e., n

2 ). From the expression of the keystream we
can formally write F (St

n) = zt, where wt(St
n) = n

2 .
At Crypto 2016, Duval et al. [3] proposed an attack on the old version of

the FLIP stream cipher as introduced in [5]. The attack complexities for two
instances of FLIP, namely, n = 192 (n1 = 47, n2 = 40, n3 = 105) and n = 400
(n1 = 87, n2 = 82, n3 = 231), are 254, respectively, 268. The previously described
modified design has then been proposed by Méaux et al. [6] to counter this
attack.
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2 Tools for Our Analysis

Here we first review the existing techniques and then move forward to our new
ideas. One may note that given the simple structure of the Boolean function in
the FLIP cipher, it is not hard to study the nonlinearity under the framework
of Walsh–Hadamard transform. One can easily verify that, in uniform domain
2−79 < maxa∈F

530
2

|Wf (a)| < 2−78.
However, the scenario is completely different in restricted domain. We will

actually see at the end of this paper, due to the restriction on inputs, this
maximum absolute restricted Walsh–Hadamard spectrum value is indeed much
higher, which is ≥ 1

218.49 . Following the work of [2] it can be calculated that this
is also less than 1

213.59 . Thus, the bound obtained by simple Walsh–Hadamard
transform does not provide the actual picture and it is indeed much higher in
FLIP stream cipher when restricted inputs are considered.

2.1 Our Idea: Frequency Distribution of Concatenated Sub-strings
of a Fixed Weight Bit String

Recall that each element x = (x1, x2, . . . , xn) ∈ En,k is an n bit binary string
with weight wt(x) = k. In x, if we consider the first n1 components xi’s, then the
weight distributions may not be uniform. This may affect different cryptographic
properties of a Boolean function defined over the first n1 number of variables
of x ∈ En,k. Carlet et al. [2] did not consider this issue, although they studied
several properties of the complete function F = f1 + f2 + f3, when the input is
restricted to a set. As the nonlinear filter function in the FLIP stream cipher is
F = f1 + f2 + f3, we need to study the individual functions f1, f2 and f3 by
considering the weight distribution of inputs for each of these functions.

For n = n1 + n2 + n3 and x ∈ F
n
2 , we write x = x′||x′′||x′′′, where x′ ∈

F
n1
2 , x′′ ∈ F

n2
2 and x′′′ ∈ F

n3
2 with Pr(x) = 1

2n , representing the probability of
picking any element x ∈ F

n
2 . The cardinality of En,k is equal to

(
n
k

)
, 0 ≤ k ≤ n,

which follows the normal distribution (when n approaches to ∞). Also, if we
consider the first n1 bits of Fn

2 , then all elements belonging to F
n1
2 of whatever

weight distribution will follow the normal distribution. However, fixing k, that is,
by considering only one set En,k, the cardinality of En=n1+n2+n3,k

n1,i , 0 ≤ i ≤ n1,
does not follow the normal distribution.

For example, let n = 4 and n1 = 2. Then E4,i, 0 ≤ i ≤ 4, satisfy the normal
distribution, as well as E4=2+2,i

2,j , 0 ≤ j ≤ 2, as |E4=2+2,i
2,0 | = 4 = |E4=2+2,i

2,2 | =
|E4=2+2,i

2,1 |/2. (|E4=2+2,i
2,1 | = 8, as for each one weight element of length two

there are four possibilities in the last two bits for 0 < i < 4.) Let us consider
only the set E4,2 of cardinality 6 and, if we consider the first two bits then
|E4=2+2,2

2,0 | = 1, |E4=2+2,2
2,1 | = 4 and |E4=2+2,2

2,2 | = 1, then Pr(x′ = 00) = 1
6 =

Pr(x′ = 11), P r(x′ = 01) = 1
3 = Pr(x′ = 10). The probability distribution is

provided in Fig. 2.
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Fig. 2. Probability distributions

Let P be any permutation of the set {x1, x2, . . . , xn}. Then P (x) ∈ En,k, for
all x ∈ En,k. In the rest of the paper, we consider x = (x1, x2, . . . , xn) ∈ En, n

2

and x′ = (y1, y2, . . . , yn1) ∈ F
n1
2 where yi = xi, 1 ≤ i ≤ n1. We now calculate

the frequency distributions of x′’s with respect to their weights.

Case 1: Let n1 = n
2 . Then all possible elements x′ of Fn1

2 exist. We observe that
there are

(n
2
i

)( n
2

n
2 −i

)
elements x′ such that wt(x′) = i, 0 ≤ i ≤ n

2 and each bit
pattern of the same weight will occur an equal number of times.
Case 2: Let n1 < n

2 . Again all possible elements x′ of Fn1
2 exist. We observe that

there are
(
n1
i

)(
n−n1
n
2 −i

)
elements x′ ∈ F

n1
2 such that wt(x′) = i; 0 ≤ i ≤ n1.

Case 3: Let n1 > n
2 . Now we find the number of possible x′ with weight wt(x′) =

i, n1 − n
2 ≤ i ≤ n

2 . We observe that the cardinality
∣∣{x′ ∈ F

n1
2 | wt(x′) = n

2 }∣∣ =(
n1
n
2

)
, where every such element occurs exactly once. In general, for each

Table 1. Frequency distribution of Fn1
2 for n1 = 2, 3 and 4

x2x1 Frequency
00 4
01 6
10 6
11 4

x3x2x1 Frequency
000 1
001 3
010 3
011 3
100 3
101 3
110 3
111 1

x4x3x2x1 frequency
0000 0
0001 1
0010 1
0011 2
0100 1
0101 2
0110 2
0111 1
1000 1
1001 2
1010 2
1011 1
1100 2
1101 1
1110 1
1111 0
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i, 0 ≤ i ≤ n − n1, such that wt(x′) = n
2 − i, then x′ occurs

(
n1

n
2 −i

)(
n−n1

i

)

times (0 ≤ i ≤ n − n1).

For example, let n = 6 and x ∈ E6,3, where |E6,3| = 20. In Table 1, we display
the frequency of occurrence of each element in F

n1
2 for n1 = 2, 3 and 4.

In the remainder of the paper, we consider ni < n, 1 ≤ i ≤ 3, and the weight
of the input x ∈ F

n
2 is equal to n

2 .

3 Biased Walsh–Hadamard Transform

We define the Walsh–Hadamard transform of a Boolean function when the input
elements have different probabilities, not necessarily uniform. We shall call this
transform, a biased Walsh–Hadamard transform of a Boolean function (see [4],
for yet another definition), which is the same as the bias between a Boolean
function and a linear function over a non-uniform domain. If the input to a
Boolean function does not follow the uniform distribution, several properties of
the function change significantly.

Let p(a) be the probability of an input element a ∈ F
n
2 in f ∈ Bn. Recall

that 0 ≤ p(a) ≤ 1, for all a ∈ F
n
2 , and

∑
a∈F

n
2

p(a) = 1. For any f, g ∈ Bn, we
let S(f, g) = {x ∈ F

n
2 : f(x) �= g(x)} and S̄(f, g) = F

n
2 \ S(f, g) = {x ∈

F
n
2 : f(x) = g(x)}.

The biased Hamming distance, dB
H(f, g), between two Boolean functions

f, g ∈ Bn, when the inputs are not uniformly distributed, is defined by dB
H(f, g) =∑

x∈S(f,g)

p(x). Further, the biased Hamming distance between two Boolean func-

tions f, g ∈ Bn is

dB
H(f, g) =

1

2

⎧
⎨

⎩

∑

x∈S̄(f,g)

p(x) +
∑

x∈S(f,g)

p(x)

⎫
⎬

⎭
− 1

2

⎧
⎨

⎩

∑

x∈S̄(f,g)

p(x) −
∑

x∈S(f,g)

p(x)

⎫
⎬

⎭

=
1

2
− 1

2

∑

x∈F
n
2

p(x)(−1)f(x)+g(x).

In particular, dB
H(f, la,ε) = 1

2 − (−1)ε

2

∑
x∈F

n
2

p(x)(−1)f(x)+a·x = 1
2 −

(−1)ε

2 WB
f (a), where WB

f (a) =
∑

x∈F
n
2

p(x)(−1)f(x)+a·x is the biased Walsh–

Hadamard transform of f ∈ Bn at a ∈ F
n
2 . The multiset

[
WB

f (a) : a ∈ F
n
2

]

is the biased Walsh–Hadamard spectrum of f ∈ Bn. Note that WB
la,0

(a) = 1 and
for any other point, the value of this biased Walsh–Hadamard transform may or
may not be zero, which is not the case for the uniform domain.

Further, for the non-uniform case, we define the corrB(f, g) between f, g ∈
Bn, by
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corrB(f, g) =

∣∣∣∣∣∣

∑

x∈S̄(f,g)

p(x) −
∑

x∈S(f,g)

p(x)

∣∣∣∣∣∣
.

Note that corrB(f, la,0) =
∣∣WB

f (a)
∣∣ .

3.1 The Biased Walsh–Hadamard Transform of a Direct Sum
of Boolean Functions

This section presents a convolution theorem in the biased domain and several
bounds related to a direct sum of Boolean functions. Let n = n1 + n2, and
x = x′||x′′ ∈ F

n
2 , where x′ ∈ F

n1
2 and x′′ ∈ F

n2
2 . Then, Pr[x] = Pr[x′,x′′] =

Pr[x′/x′′]Pr[x′′] = Pr[x′′/x′]Pr[x′], for any x ∈ F
n
2 . The biased Walsh–

Hadamard transform of f(x) = f1(x′) + f2(x′′) at a = a′||a′′ is equal to

WB
f (a) =

∑

x∈F
n
2

p(x)(−1)f(x)+a·x

=
∑

x′′∈F
n2
2

p(x′′)(−1)f2(x
′′)+a′′·x′′ ∑

x′∈F
n1
2

p(x′/x′′)(−1)f1(x
′)+a′·x′

,
(1)

where p(x′/x′′) = Pr[x′/x′′]. From Eq. (1), it is clear that we are unable to
directly calculate the biased Walsh–Hadamard transform of f = f1 + f2 even
though we may know the biased Walsh–Hadamard transform of two component
functions f1 and f2, as Pr[x′/x′′] �= Pr[x′], in general.

Let now f = f1 + f2 on F
n
2 , where f1, f2 depend upon independent sets of

variables. If the domain is uniform, to calculate the Walsh–Hadamard transform
of f at any point a ∈ F

n
2 , we only need to calculate the Walsh–Hadamard trans-

form of the component functions f1 and f2 at the points a′ and a′′, respectively.
Thus, we only need two tables of sizes 1 × 2n1 and 1 × 2n2 corresponding to
the Walsh–Hadamard values of f1 and f2, respectively. However, for the biased
domain, we need more data to calculate the biased Walsh–Hadamard value at
any point a, as it can be seen from Theorem 1 and Corollary 1 (under the
assumption that if wt(x) = wt(y), then Pr[x] = Pr[y]). To compute the biased
Walsh–Hadamard transform values of f at any point, we need three probability
tables P1, P2 and P3 of sizes 1×(n+1), 1×(n1+1) and 1×(n2+1) corresponding
to the probabilities x ∈ F

n
2 , x′ ∈ F

n1
2 and x′′ ∈ F

n2
2 , respectively. We also need

two tables Tf1 and Tf2 of sizes 2n1 × (n1 + 1) and 2n2 × (n2 + 1) (worst case)
corresponding to the restricted biased Walsh–Hadamard values of f1 and f2,
respectively. Certainly, the complexity increases when the size of the partition
for n gets larger.

Further, we show a convolution theorem, which will depend on the Walsh–
Hadamard transform over the inputs of fixed weight. We want to compute WB(k)

f

(defined as in Eq. (1) but summing for x ∈ En,k), where f = f1 + f2 and
0 ≤ k ≤ n. Here we use the fact that if x,y ∈ F

m
2 with wt(x) = wt(y), then

p(x) = p(y), and pm,i = Pr[x], for all x ∈ Em,i, 0 ≤ i ≤ m. From the definition
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of the Walsh–Hadamard transform of a Boolean function in both uniform and
non-uniform cases, we infer the following relation

WB(k)
f (a) = p

(
n

k

)
W(k)

f (a), ∀a ∈ F
n
2 , (2)

where 0 ≤ k ≤ n and p = Pr[x : wt(x) = k].

Theorem 1 (Restricted Domain Convolution). Let n = n1 + n2 and f =
f1+f2, where fi ∈ Bni

, i ∈ {1, 2}. Then, for any a = a′||a′′ ∈ F
n
2 and 0 ≤ k ≤ n,

WB(k)
f (a) = pn,k

k∑

i=0

(
n1

i

)(
n2

k − i

)
W(i)

f1
(a′)W(k−i)

f2
(a′′)

=
k∑

i=0

pn,k

qn1,iqn2,k−i
WB(i)

f1
(a′)WB(k−i)

f2
(a′′),

where qn1,i = ( n2
k−i)
(n

k)
, qn2,k−i = (n1

i )
(n

k)
.

Proof. For any a = a′||a′′ ∈ F
n
2 and 0 ≤ k ≤ n, we have

WB(k)
f (a) =

∑

x∈En,k

Pr[x](−1)f(x)+a·x = pn,k

∑

x∈En,k

(−1)f(x)+a·x

= pn,k

k∑

i=0

∑

x′∈E
n=n1+n2,k
n1,i

∑

x′′∈E
n=n1+n2,k

n2,k−i

(−1)f1(x
′)+a′·x′

(−1)f2(x
′′)+a′′·x′′

= pn,k

k∑

i=0

∑

x′∈E
n=n1+n2,k
n1,i

(−1)f1(x
′)+a′·x′ ∑

x′′∈E
n=n1+n2,k

n2,k−i

(−1)f2(x
′′)+a′′·x′′

= pn,k

k∑

i=0

(
n1

i

)(
n2

k − i

)
W(i)

f1
(a′)W(k−i)

f2
(a′′).

We can also rewrite the above in terms of the biased Walsh–Hadamard transform
by using Eq. (2), obtaining

WB(k)
f (a) =

k∑

i=0

pn,k

qn1,iqn2,k−i
WB(i)

f1
(a′)WB(k−i)

f2
(a′′),

Hence we get both equalities in terms of the Walsh–Hadamard transform in the
uniform and biased domains. 
�
From Theorem 1, we obtain the next corollary.
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Corollary 1. Let n = n1 + n2 and f = f1 + f2, where fi ∈ Bni
, i ∈ {1, 2}. For

any a = a′||a′′ ∈ F
n
2 ,

WB
f (a) =

n∑

k=0

WB(k)
f (a) =

n∑

k=0

pn,k

k∑

i=0

(
n1

i

)(
n2

k − i

)
W(i)

f1
(a′)W(k−i)

f2
(a′′)

=
n∑

k=0

k∑

i=0

pn,k

qn1,iqn2,k−i
WB(i)

f1
(a′)WB(k−i)

f2
(a′′).

We observe that it is very difficult to compute the biased Walsh–Hadamard
transform for a direct sum of two Boolean functions, in arbitrary (large) number
of variables. So we have to find an appropriate bound for the biased Walsh–
Hadamard transform of f ∈ Bn, where f = f1 +f2 ∈ Bn, with fi ∈ Bni

, i = 1, 2.
In the following theorem, we show that the biased Walsh–Hadamard trans-

form may help us obtain a better bound.

Theorem 2. For all 0 ≤ k ≤ n, the following inequality holds

k∑

i=0

pn,k max
a1∈F

n1
2

∣∣∣∣∣∣

∑

x1∈En1,i

(−1)f1(x1)+a1·x1

∣∣∣∣∣∣
max

a2∈F
n2
2

∣∣∣∣∣∣

∑

x2∈En2,k−i

(−1)f1(x2)+a2·x2

∣∣∣∣∣∣

≥
k∑

i=0

max
a1∈F

n1
2

∣∣∣WB(i)
f1

(a1)
∣∣∣ max
a2∈F

n2
2

∣∣∣WB(k−i)
f2

(a2)
∣∣∣ .

Proof. Using Vandermonde’s identity,
(

n

k

)
=

k∑

i=0

(
n1

i

)(
n2

k − i

)
, or directly

using Stirling’s formula, we infer that

(
n
k

)
(
n1
i

)(
n2
k−i

) ≥ 1, for all 0 ≤ i ≤ k.

Further,

k∑

i=0

pn,k max
a1∈F

n1
2

∣∣∣∣∣∣

∑

x1∈En1,i

(−1)f1(x1)+a1·x1

∣∣∣∣∣∣
max

a2∈F
n2
2

∣∣∣∣∣∣

∑

x2∈En2,k−i

(−1)f1(x2)+a2·x2

∣∣∣∣∣∣

=
k∑

i=0

pn,k

qn1,iqn2,k−i
max

a1∈F
n1
2

∣∣∣WB(i)
f1

(a1)
∣∣∣ max
a2∈F

n2
2

∣∣∣WB(k−i)
f2

(a2)
∣∣∣

=
k∑

i=0

1
pn,k

(
n1
i

)(
n2

k−i

) max
a1∈F

n1
2

∣∣∣WB(i)
f1

(a1)
∣∣∣ max
a2∈F

n2
2

∣∣∣WB(k−i)
f2

(a2)
∣∣∣

=
k∑

i=0

(
n
k

)
(
n1
i

)(
n2

k−i

) max
a1∈F

n1
2

∣∣∣WB(i)
f1

(a1)
∣∣∣ max
a2∈F

n2
2

∣∣∣WB(k−i)
f2

(a2)
∣∣∣

≥
k∑

i=0

max
a1∈F

n1
2

∣∣∣WB(i)
f1

(a1)
∣∣∣ max
a2∈F

n2
2

∣∣∣WB(k−i)
f2

(a2)
∣∣∣ ,

and the result is shown. 
�
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From the above inequality we can theoretically claim that the bound provided
by Carlet et al. [2] is much higher than our bound

G =
k∑

i=0

max
a1∈F

n1
2

|WB(i)
f1

(a1)| max
a2∈F

n2
2

|WB(k−i)
f2

(a2)|.

It might be tempting to conjecture that G is smaller than maxa∈F
n
2

|W(k)
f (a)|.

Experimentally, using some small functions, we found that in many cases
G ≤ maxa∈F

n
2

|W(k)
f (a)|, but we also observed that under some conditions this

inequality will change its direction. Now we are interested to find such conditions
for which G ≥ maxa∈F

n
2

|W(k)
f (a)|. We start with the following lemma.

Lemma 1. Let ai be positive numbers and bi be any integer numbers (positive

or negative), where i = 0, 1, . . . , k. If

∣∣∣∣∣∣

∣∣∣∣∣

k∑

i=0

aibi

∣∣∣∣∣ −
∣∣∣∣∣∣

k∑

i,j=0;i�=j=0

aibj

∣∣∣∣∣∣

∣∣∣∣∣∣
≤

∣∣∣∣∣

k∑

i=0

aibi

∣∣∣∣∣,

and the sums
k∑

i=0

aibi,
k∑

i,j=0; i�=j

aibj have opposite signs, then

∣∣∣∣∣

k∑

i=0

aibi

∣∣∣∣∣ ≥
(

k∑

i=0

ai

)∣∣∣∣∣∣

k∑

j=0

bj

∣∣∣∣∣∣
.

Proof. We start with the following simple observation

(
k∑

i=0

ai

)⎛

⎝
k∑

j=0

bj

⎞

⎠ =

k∑

i=0

aibi +
k∑

i,j=0; i�=j

aibj . By our assumption,

∣∣∣∣∣∣

∣∣∣∣∣

k∑

i=0

aibi

∣∣∣∣∣ −
∣∣∣∣∣∣

k∑

i,j=0; i�=j

aibj

∣∣∣∣∣∣

∣∣∣∣∣∣
≤

∣∣∣∣∣

k∑

i=0

aibi

∣∣∣∣∣, and
k∑

i=0

aibi,
k∑

i,j=0; i�=j

aibj have opposite signs, so,

∣∣∣∣∣

k∑

i=0

aibi

∣∣∣∣∣ ≥
∣∣∣∣∣∣

∣∣∣∣∣

k∑

i=0

aibi

∣∣∣∣∣ −
∣∣∣∣∣∣

k∑

i,j=0; i�=j

aibj

∣∣∣∣∣∣

∣∣∣∣∣∣
=

∣∣∣∣∣∣

k∑

i=0

aibi +
k∑

i,j=0; i�=j

aibj

∣∣∣∣∣∣

=

∣∣∣∣∣∣

(
k∑

i=0

ai

)⎛

⎝
k∑

j=0

bj

⎞

⎠

∣∣∣∣∣∣
=

(
k∑

i=0

ai

)∣∣∣∣∣∣

k∑

j=0

bj

∣∣∣∣∣∣
,

and the lemma is shown. 
�
With the help of the above lemma we will prove that G ≥ max

a∈F
n
2

|W(k)
f (a)|

holds under some conditions.
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Theorem 3. Let f = f1 + f2 ∈ Bn, fi ∈ Bni
, i = 1, 2, Ai := qn1,iqn2,k−i and

Bi :=
∑

x1∈En1,i
(−1)f1(x1)+a1·x1

∑
x2∈En2,k−i

(−1)f2(x2)+a2·x2 , for all 0 ≤ i ≤ k

(here qn1,i = ( n2
k−i)
(n

k)
, qn2,k−i = (n1

i )
(n

k)
). Then

max
a∈F

n
2

∣∣∣W(k)
f (a)

∣∣∣ ≤
k∑

i=0

max
a1∈F

n1
2

∣∣∣WB(i)
f1

(a1)
∣∣∣ max
a2∈F

n2
2

∣∣∣WB(k−i)
f2

(a2)
∣∣∣ ,

if

∣∣∣∣∣∣

∣∣∣∣∣

k∑

i=0

AiBi

∣∣∣∣∣ −
∣∣∣∣∣∣

k∑

i=0

AiBi − pn,k

k∑

j=0

Bj

∣∣∣∣∣∣

∣∣∣∣∣∣
≤

∣∣∣∣∣

k∑

i=0

AiBi

∣∣∣∣∣, where pn,k = 1

(n
k)
, and,

the expressions
k∑

i=0

AiBi, pn,k

k∑

j=0

Bj −
k∑

i=0

AiBi have opposite signs.

Proof. We compute

k∑

i=0

max
a1∈F

n1
2

∣
∣
∣WB(i)

f1
(a1)

∣
∣
∣ max
a2∈F

n2
2

∣
∣
∣WB(k−i)

f2
(a2)

∣
∣
∣ ≥ max

a1||a2

k∑

i=0

∣
∣
∣WB(i)

f1
(a1)

∣
∣
∣

∣
∣
∣WB(k−i)

f2
(a2)

∣
∣
∣

= max
a1,a2

k∑

i=0

∣
∣
∣
∣
∣
∣
qn1,iqn2,k−i

∑

x1∈En1,i

(−1)f1(x1)+a1·x1
∑

x2∈En2,k−i

(−1)f2(x2)+a2·x2

∣
∣
∣
∣
∣
∣

≥ max
a1,a2

∣
∣
∣
∣
∣
∣

k∑

i=0

qn1,iqn2,k−i

∑

x1∈En1,i

(−1)f1(x1)+a1·x1
∑

x2∈En2,k−i

(−1)f2(x2)+a2·x2

∣
∣
∣
∣
∣
∣

≥
(

k∑

i=0

qn1,iqn2,k−i

)

max
a1,a2

∣
∣
∣
∣
∣
∣

k∑

i=0

∑

x1∈En1,i

(−1)f1(x1)+a1·x1
∑

x2∈En2,k−i

(−1)f2(x2)+a2·x2

∣
∣
∣
∣
∣
∣
.

By Lemma 1, the last inequality holds if
k∑

i=0

AiBi and
k∑

i,j=0;i�=j

AiBj have

opposite signs, and

∣∣∣∣∣∣

∣∣∣∣∣

k∑

i=0

AiBi

∣∣∣∣∣ −
∣∣∣∣∣∣

k∑

i,j=0;i�=j

AiBj

∣∣∣∣∣∣

∣∣∣∣∣∣
≤

∣∣∣∣∣

k∑

i=0

AiBi

∣∣∣∣∣. We argue that

this last condition is equivalent to

∣∣∣∣∣∣

∣∣∣∣∣

k∑

i=0

AiBi

∣∣∣∣∣ −
∣∣∣∣∣∣

k∑

i=0

AiBi − pn,k

k∑

j=0

Bj

∣∣∣∣∣∣

∣∣∣∣∣∣
≤

∣∣∣∣∣

k∑

i=0

AiBi

∣∣∣∣∣, where pn,k = 1

(n
k)

. That follows from the observation that for any
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j, 0 ≤ j ≤ k, we have
k∑

i=0;i�=j

AiBj =
k∑

i=0

AiBj − AjBj = pn,kBj − AjBj .

Further, using Vandermonde’s identity,
k∑

i=0

qn1,iqn2,k−i =
k∑

i=0

(
n2
k−i

)(
n1
i

)
(
n
k

)(
n
k

) =
1(
n
k

) ,

therefore,

k∑

i=0

max
a1∈F

n1
2

∣∣∣WB(i)
f1

(a1)
∣∣∣ · max

a2∈F
n2
2

∣∣∣WB(k−i)
f2

(a2)
∣∣∣

≥ max
a1,a2

1(
n
k

)

∣∣∣∣∣∣

k∑

i=0

∑

x1∈En1,i

(−1)f1(x1)+a1·x1
∑

x2∈En2,k−i

(−1)f2(x2)+a2·x2

∣∣∣∣∣∣

= max
a

∣∣∣W(k)
f (a)

∣∣∣ ,

and the claim is shown. 
�
In our next result we show that under some conditions we could achieve the

lower bound of max
a∈F

n
2

|W(k)
f (a)| in terms of the biased Walsh–Hadamard transform.

Theorem 4. Let 0 ≤ i ≤ k, ci ∈ F
n1
2 , di ∈ F

n2
2 , qn1,i = ( n2

k−i)
(n

k)
, qn2,k−i = (n1

i )
(n

k)
,

and

max
a1∈F

n1
2

∣∣∣WB(i)
f1

(a1)
∣∣∣ = qn1,i

∣∣∣∣∣∣

∑

x1∈En1,i

(−1)f1(x1)+ci·x1

∣∣∣∣∣∣
,

max
a2∈F

n2
2

∣∣∣WB(k−i)
f2

(a2)
∣∣∣ = qn2,k−i

∣∣∣∣∣∣

∑

x2∈En2,k−i

(−1)f2(x2)+di·x2

∣∣∣∣∣∣
.

If
∑

x1∈En1,i

(−1)f1(x1)+ci·x1
∑

x2∈En2,k−i

(−1)f2(x2)+di·x2 has constant sign, for all

0 ≤ i ≤ k, then,

k∑

i=0

max
a1∈F

n1
2

∣∣∣WB(i)
f1

(a1)
∣∣∣ max
a2∈F

n2
2

∣∣∣WB(k−i)
f2

(a2)
∣∣∣ ≤ max

a∈F
n
2

∣∣∣W(k)
f (a)

∣∣∣ .
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Proof. We compute

k∑

i=0

max
a1∈F

n1
2

∣∣∣WB(i)
f1

(a1)
∣∣∣ max
a2∈F

n2
2

∣∣∣WB(k−i)
f2

(a2)
∣∣∣

=
k∑

i=0

∣∣∣WB(i)
f1

(ci)
∣∣∣
∣∣∣WB(k−i)

f2
(di)

∣∣∣ =
k∑

i=0

∣∣∣WB(i)
f1

(ci)WB(k−i)
f2

(di)
∣∣∣

=
k∑

i=0

∣∣∣∣∣∣
qn1,iqn2,k−i

∑

x1∈En1,i

(−1)f1(x1)+ci·x1
∑

x2∈En2,k−i

(−1)f2(x2)+di·x2

∣∣∣∣∣∣

=
k∑

i=0

qn1,iqn2,k−i

∣∣∣∣∣∣

∑

x1∈En1,i

(−1)f1(x1)+ci·x1
∑

x2∈En2,k−i

(−1)f2(x2)+di·x2

∣∣∣∣∣∣
(3)

≤
k∑

i=0

qn1,iqn2,k−i

k∑

i=0

∣∣∣∣∣∣

∑

x1∈En1,i

(−1)f1(x1)+ci·x1
∑

x2∈En2,k−i

(−1)f2(x2)+di·x2

∣∣∣∣∣∣

=
1(
n
k

)
k∑

i=0

∣∣∣∣∣∣

∑

x1∈En1,i

(−1)f1(x1)+ci·x1
∑

x2∈En2,k−i

(−1)f2(x2)+di·x2

∣∣∣∣∣∣
(4)

=
1(
n
k

)

∣∣∣∣∣∣

k∑

i=0

∑

x1∈En1,i

(−1)f1(x1)+ci·x1
∑

x2∈En2,k−i

(−1)f2(x2)+di·x2

∣∣∣∣∣∣
,

≤ 1(
n
k

) max
a=b1||b2

∣∣∣∣∣∣

k∑

i=0

∑

x1∈En1,i

(−1)f1(x1)+b1·x1
∑

x2∈En2,k−i

(−1)f2(x2)+b2·x2

∣∣∣∣∣∣

≤ max
a∈F

n
2

∣∣∣W(k)
f (a)

∣∣∣ ,

and the theorem is shown. 
�

4 More Accurate Calculations of Biases by Our
Technique and Comparisons with Previous Work

In this section we compare our bound with the one proposed by Carlet et al. [2].
We first consider a small Boolean function, then we further do the same for the
nonlinear filter function used in the FLIP stream cipher.

4.1 Comparison for a Small Boolean Function

Here, we consider a small Boolean function (of FLIP type), involving 12 variables
to compare our result with the one obtained from Carlet et al.’s technique [2].
The function f = f1+f2+f3 is a direct sum of three Boolean functions f1, f2 and
f3, where f1(x0, x1) = x0+x1 is linear, f2(x0, . . . , x3) = x0x1+x2x3 is quadratic
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bent, and f3(x0, . . . , x5) = x0 + x1x2 + x3x4x5 is triangular, respectively. Note
that out of 12 variables of f , f1 depends on the first 2 variables, f2 depends on
the next 4 variables and f3 depends on the last 6 variables. As before, we let
En,k = {x | wt(x) = k}. We here assume that f takes inputs from the set E12,6.

To obtain a bound for the bias of f , we consider the two types of Walsh–
Hadamard transforms. First, the classical Walsh–Hadamard transform Wf ,
which is also used in the paper of Carlet et al. [2], and the second is our
newly defined biased Walsh–Hadamard transform WB

f . We compute both types
of Walsh–Hadamard transform values for f1, f2, f3 for all possible weights of x1,
x2, x3. Here the functions depend on the variables x1, x2, x3 and x = x1||x2||x3.
For each weight of x1, x2 and x3 we find the maximum absolute Walsh–
Hadamard transform values of f1, f2, f3. From these maximum absolute Walsh–
Hadamard transform values we can compute the maximum absolute value of
Walsh–Hadamard transform of f = f1 + f2 + f3, when wt(x) = 6 is fixed. We
multiply those maximum absolute Walsh–Hadamard transform values (corre-
sponding to weights) when wt(x1)+wt(x2)+wt(x3) = 6 and add them. Finally,
the bias bound of the function f in the classical Walsh–Hadamard transform set
up can be found by dividing the maximum absolute value by

(
12
6

)
. We provide

the bias comparison for the classical and biased Walsh–Hadamard transforms
with the original bias in Table 2.

Table 2. Correlation bound comparison

Original bias ≈ 0.264069

Carlet et al. [2] ≤ 0.772727

This paper ≥ 0.20857

The comparison of Table 2 clearly shows that our correlation bound is much
tighter than Carlet et al. [2]. For better understanding, we refer to Appendix A.

4.2 Comparison for the Actual Nonlinear Filter Function of FLIP

Here we compare the bound for the bias of the nonlinear filter function of the
FLIP stream cipher, by extending the ideas explained in Sect. 4.1. The nonlinear
filter function of the FLIP530(42, 128, 360) stream cipher is a direct sum of a
linear function of 42 variables, a quadratic bent function of 128 variables and a
direct sum of 8 triangular functions each of 45 variables. Since in the triangular
part there are 8 terms of degree 1, the final linear function is of 50 variables.
Also, since there are 8 terms of degree 2 in the triangular part, the complete
quadratic function will be of 144 variables.

As in the toy example, we compute the bias by using the classical Walsh–
Hadamard transform and our biased Walsh–Hadamard transform. To compute
the bias of the complete function (in classical and biased domain) we break the
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function in the following form: 5 linear Boolean function involving 10 variables,
18 quadratic function involving 8 variables and 8 degree 3, 4, . . . , 9 terms.

By following the same process, as described in Sect. 4.1 we compute the bias
bound value for the normal and biased domain for the Carlet et al.’s study [2]
and our study. For Carlet et al.’s case we get the bias bound Gc = 1

213.59 and
for our biased case the bias bound is Go = 1

218.49 . Now, this shows that the
computed bias value for Carlet et al.’s study [2], that is, Gc will be an upper
bound of the original bias (which can be found in Lemma 3 of [2]).

Table 3. Correlation comparison

Carlet et al. [2] ≤ 1
213.59

This paper ≥ 1
218.49

Next, we show that Go is a lower bound of the original bias. To show this
we use our Theorem 4. In our computation, the product of the probabilities
(qn1,i, qn2,k−i of Theorem 4) will be the product of the probabilities correspond-
ing to the 5 linear Boolean function involving 10 variables, probabilities corre-
sponding to 18 quadratic function involving 8 variables, and probabilities corre-
sponding to the 8 degree 3, 4, . . . , 9 terms. We have observed that the maximum
of this for all product terms is much smaller than 1

(530265)
. So we replace all these

products of probabilities by 1

(530265)
to get the inequality between Eqs. (3) and (4)

from the proof of Theorem 4. Computationally, we found that all these functions
f1 = x0+x1+x2+x3+x4+x5+x6+x7+x8+x9, f2 = x0x1+x2x3+x4x5+x6x7,
f3 = x0x1x2, f4 = x0x1x2x3, f5 = x0x1x2x3x4, f6 = x0x1x2x3x4x5, f7 =
x0x1x2x3x4x5x6, f8 = x0x1x2x3x4x5x6x7, f9 = x0x1x2x3x4x5x6x7x8 satisfy
the required condition of Theorem 4. More specifically, in the case of all these
functions fj , there exists at least one point b for which

∑
x∈En,i

(−1)fj(x)+b·x

attains maxa

∣∣∣
∑

x∈En,i
(−1)fj(x)+a·x

∣∣∣ for all weights i (See Appendix B). Thus,

by Theorem 4 we infer that Go = 1
218.49 is the lower bound of the original bias

of the nonlinear filter function of FLIP. Table 3 summarizes the comparison of
the biases.

4.3 Computation Process

To compute the bias by using the normal and biased Walsh–Hadamard trans-
forms, we split each component function into very small functions and the choices
we made are simply dependent upon the power of the machine we ran the code
on. We first divide the 50 variables linear function into 5 functions each involv-
ing 10 variables. We divide the second function (which is quadratic) in 144 vari-
ables into 18 Boolean functions involving 8 variables and similarly, for the other
degree terms. We compute the Walsh–Hadamard transform for each component
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function of the linear, bent, and the combination of the other degree terms,
separately. We find the Walsh–Hadamard transform values (corresponding to
each weight of the input) for all functions and save them in separate files. Now
we need to combine all these Walsh–Hadamard transform values to calculate a
bound of the correlation value. We do the following to compute that bound.

1. For the linear function involving 50 variables, we do the following: from the
Walsh–Hadamard transform value corresponding to each weight of the 10
variable linear function we compute the maximum absolute Walsh–Hadamard
transform value corresponding to each weight.

2. Now we compute the maximum Walsh–Hadamard transform values corre-
sponding to each weight of the quadratic function involving 144 variables.
We first compute the maximum absolute Walsh–Hadamard transform values
corresponding to each weight of the quadratic function involving 8 variables.
Then we evaluate the maximum absolute Walsh–Hadamard coefficients of the
16 variable function by using the data for the 8 variable function. By doing
this, we go up to a quadratic function involving 128 variables. After that we
merge 128 variables with a 16 variable function to obtain a similar type of
data for 144 variables.

3. Further, we need to do a similar analysis for the combination of degree
3 to degree 9 of the 8 triangular functions, each involving 42 variables.
We first compute the maximum absolute Walsh–Hadamard transform val-
ues corresponding to each weight of the 42 variable function by considering
each monomial as a separate Boolean function. From the maximum abso-
lute Walsh–Hadamard transform values corresponding to each weight of the
42 variable function, we compute the maximum absolute Walsh–Hadamard
transform values corresponding to each weight of the 84 variable function. By
following the same technique we can compute the maximum absolute Walsh–
Hadamard transform values corresponding to each weight of the combination
of the degree 3 to degree 9 of 8 triangular functions involving 336 variables.

4. Finally we combine all these absolute Walsh–Hadamard transform values to
compute the bias of the complete function F involving 530 variables which
takes input of weight 265, only.

Finally, let us summarize the theoretical formulae of our work as well as those
provided in [2,7]. Carlet et al. [2] showed the lower bound of the bias in restricted

domain is max
a∈F

n
2

|W(k)
f (a)| ≥ 1

(
n
k

)

√
√
√
√

(
n

k

)

+ λ (for a parameter λ defined in [2, Prop.

8, p. 207]). Later, Mesnager et al. [7] improved the lower bound of the bias

to max
a∈F

n
2

|W(k)
f (a)| ≥ 1

(
n
k

)

√
√
√
√

(
n

k

)

+ λ + max
(
θ,

1
(
n
k

)γ − λ
)

(where λ, γ, θ are defined

in [7, Thm. 16]). These two bounds are not related to the direct sum of functions
in restricted domain. In this paper we have shown that the bias of direct sum of
two functions f1 + f2 in a restricted domain can be expressed in terms of biased
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Walsh–Hadamard transform of f1, f2. The lower bound of the bias under some

constraints is max
a∈F

n
2

∣
∣
∣W(k)

f1+f2
(a)

∣
∣
∣ ≥

k∑

i=0

max
a1∈F

n1
2

∣
∣
∣WB(i)

f1
(a1)

∣
∣
∣ max
a2∈F

n2
2

∣
∣
∣WB(k−i)

f2
(a2)

∣
∣
∣.

Carlet et al. [2] found an upper bound of the bias of a direct sum of two func-
tions in a restricted domain. The expression of the bound is max

a∈F
n
2

∣
∣
∣W(k)

f1+f2
(a)

∣
∣
∣ ≤

1
(
n
k

)

k∑

i=0

⎛

⎝ max
a∈F

n1
2

∣
∣
∣
∣
∣
∣

∑

x∈En1,i

(−1)f1(x)+a.x

∣
∣
∣
∣
∣
∣

max
b∈F

n2
2

∣
∣
∣
∣
∣
∣

∑

y∈En2,k−i

(−1)f2(y)+b.y

∣
∣
∣
∣
∣
∣

⎞

⎠. We note that

the paper [7] of Mesnager et al. does not contain any result related to
the direct sum of Boolean functions in a restricted domain. Here, we found
(under some technical conditions) an upper bound of the bias of a direct
sum of two functions f1 + f2 in a restricted domain in terms of the
biased Walsh–Hadamard transform of f1 and f2, namely, max

a∈F
n
2

|W(k)
f1+f2

(a)| ≤
k∑

i=0

max
a1∈F

n1
2

∣
∣
∣WB(i)

f1
(a1)

∣
∣
∣ max
a2∈F

n2
2

∣
∣
∣WB(k−i)

f2
(a2)

∣
∣
∣.

5 Conclusion

In this paper we have proposed a non-uniform (biased) way to investigate the
cryptographic properties of a Boolean function, when the inputs to the Boolean
function do not follow a uniform distribution. To study this we first define the
notion of correlation (biased Walsh–Hadamard transform) for a non-uniform
domain, along with the necessary tools. Further, we show how this correlation
is related with our newly defined biased Walsh–Hadamard transform, which is
used to study several cryptographic properties of a Boolean function in a non-
uniform domain. As the computation using our theoretical convolution theorem
for the biased Walsh–Hadamard transform cannot be done in an efficient way for
Boolean functions with a large number of variables, we use several inequalities
for these coefficients. Consequently, we find a lower bound for the bias of the
nonlinear filter function of the FLIP stream cipher by exploiting the biased
Walsh–Hadamard transform, and compare that with previous work. Certainly,
the properties when the domain of the Boolean function does not follow a uniform
distribution is worthy of investigation. In this context, our results provide a more
accurate calculation of biases related to Boolean functions. This is important in
the security evaluation of the stream ciphers, in particular, the ones used in
efficient homomorphic encryption schemes.
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A Biases for 12-variable Function

In our example, the function F = x0 + x1 + x2x3 + x4x5 + x6 + x7x8 + x9x10x11

takes input from E12,6. The bias of the function F in this restricted domain is
≈ 0.264069. It is worth noticing that in the uniform domain (i.e., the function
takes input from F

12
2 instead of E12,6) the bias between the original function F

and the linear function l1 = la1,0 = x0 + x1 + x6 is high, as the monomial of the
form xixj or xixjxk is always 0 unless all variables involved in the monomials
are 1. It can be observed that, the bias between F and l1 in the domain F

12
2 and

E12,6 are |WF (a1)| = 0.09375 and |W(6)
F (a1)| = 0.099567, respectively.

The situation is different when the domain of the function F is E12,6

(restricted domain). In this domain, the bias between the original function F
and a linear function is highest for l2 = la2,0 = x0 + x1 + x2 + x3 + x4 + x5 + x6

instead of l1 = x0 + x1 + x6. The bias between F and l2 in restricted domain
E12,6 is |W(6)

F (a2)| = 0.264069, but the bias between F and l1 in the restricted
domain E12,6 is |W(6)

F (a1)| = 0.099567. All the linear function for which the bias
is high in the restricted domain E12,6 are provided below:

1. la2,0 = l2 = x0+x1+x2+x3+x4+x5+x6: |W(6)
F (a2)| = 0.264069, |WF (a2)| =

0.09375.
2. la3,0 = l3 = x0+x1+x2+x3+x6+x7+x8: |W(6)

F (a3)| = 0.264069, |WF (a3)| =
0.09375.

3. la4,0 = l4 = x0+x1+x4+x5+x6+x7+x8: |W(6)
F (a4)| = 0.264069, |WF (a4)| =

0.09375.
4. la5,0 = l5 = x2 + x3 + x9 + x10 + x11: |W(6)

F (a5)| = 0.264069, |WF (a5)| = 0.
5. la6,0 = l6 = x4 + x5 + x9 + x10 + x11: |W(6)

F (a6)| = 0.264069, |WF (a6)| = 0.
6. la7,0 = l7 = x7 + x8 + x9 + x10 + x11: |W(6)

F (a7)| = 0.264069, |WF (a7)| = 0.

B Existence of a Point b Referred to in Sect. 4.2

This appendix describes the existence of a point b for each function fj at which
∑

x∈En,i

(−1)fj(x)+b·x attains max
a

∣∣∣∣∣∣

∑

x∈En,i

(−1)fj(x)+a·x

∣∣∣∣∣∣
for all weight i.

1. First, let f1 = x0 + x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9. The
existence of a point b corresponding to each weight starting from weight
zero to weight ten is given below (points are provided in integer form):
0, 1023, 0, 1023, 0, 1023, 0, 1023, 0, 1023, 0.

2. For f2 = x0x1 +x2x3 +x4x5 +x6x7, the existence of a point b corresponding
to each weight starting from weight zero to weight eight is mentioned below
(points are provided in integer form): 0, 0, 0, 63, 15, 3, 0, 255, 0.

3. For f3 = x0x1x2, the existence of a point b corresponding to each weight
starting from weight zero to weight three is provided below (points are pro-
vided in integer form): 0, 0, 0, 1.



Tools in Analyzing Linear Approximation 303

4. For f4 = x0x1x2x3, the existence of a point b corresponding to each weight
starting from weight zero to weight four is mentioned below (points are pro-
vided in integer form): 0, 0, 0, 0, 1.

5. For f5 = x0x1x2x3x4, the existence of a point b corresponding to each weight
starting from weight zero to weight five is given below (points are provided
in integer form): 0, 0, 0, 0, 0, 1.

6. For f6 = x0x1x2x3x4x5, the existence of a point b corresponding to each
weight starting from weight zero to weight six is provided below (points are
provided in integer form): 0, 0, 0, 0, 0, 0, 1.

7. For f7 = x0x1x2x3x4x5x6, the existence of a point b corresponding to each
weight starting from weight zero to weight seven is mentioned below (points
are provided in integer form): 0, 0, 0, 0, 0, 0, 0, 1.

8. For f8 = x0x1x2x3x4x5x6x7, the existence of a point b corresponding to each
weight starting from weight zero to weight eight is given below (points are
provided in integer form): 0, 0, 0, 0, 0, 0, 0, 0, 1.

9. For f9 = x0x1x2x3x4x5x6x7x8, the existence of a point b corresponding to
each weight starting from weight zero to weight nine is mentioned below
(points are provided in integer form): 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.
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Abstract. There are natural cryptographic applications where an
adversary only gets to tamper a high-speed data stream on the fly based
on her view so far, namely, the lookahead tampering model. Since the
adversary can easily substitute transmitted messages with her messages,
it is farfetched to insist on strong guarantees like error-correction or,
even, manipulation detection. Dziembowski, Pietrzak, and Wichs (ICS–
2010) introduced the notion of non-malleable codes that provide a useful
message integrity for such scenarios. Intuitively, a non-malleable code
ensures that the tampered codeword encodes the original message or a
message that is entirely independent of the original message.

Our work studies the following tampering model. We encode a mes-
sage into k � 1 secret shares, and we transmit each share as a separate
stream of data. Adversaries can perform lookahead tampering on each
share, albeit, independently. We call this k-lookahead model.

First, we show a hardness result for the k-lookahead model. To trans-
mit an �-bit message, the cumulative length of the secret shares must
be at least k

k−1
�. This result immediately rules out the possibility of a

solution with k = 1. Next, we construct a solution for 2-lookahead model
such that the total length of the shares is 3�, which is only 1.5x of the
optimal encoding as indicated by our hardness result.

Prior work considers stronger model of split-state encoding that cre-
ates k � 2 secret shares, but protects against adversaries who per-
form arbitrary (but independent) tampering on each secret share. The
size of the secret shares of the most efficient 2-split-state encoding is
� log �/ log log � (Li, ECCC–2018). Even though k-lookahead is a weaker
tampering class, our hardness result matches that of k-split-state tamper-
ing by Cheraghchi and Guruswami (TCC–2014). However, our explicit
constructions above achieve much higher efficiency in encoding.
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1 Introduction

Dziembowski, Pietrzak, and Wichs [15] introduced the powerful notion of non-
malleable codes for message integrity for scenarios where error-correction or,
even, error-detection is impossible. Some of the main applications of non-
malleable codes are tamper resilient storage and computation [15], and non-
malleable message transmission between two parties [17]. In this work, we
focus on the application of non-malleable message transmission. Intuitively, non-
malleable coding scheme guarantees that the decoding of the tampered codeword
is either the original message or an unrelated message and the probability of
either of these events happening is independent of the original message. To build
such a scheme against some of the simpler tampering functions such as adding
an arbitrary low Hamming weight error, the sender can encode the message
using appropriate error-correcting codes, and the receiver would always recover
the original message (by error correcting). Moreover, against the family of tam-
pering functions that add an arbitrary constant, the sender can use Algebraic
Manipulation Detection codes to help the receiver detect the tampering with
high probability [12]. However, against more complex tampering functions, where
error correction or detection are impossible, non-malleable codes can still give
the following meaningful guarantee: Let (Enc,Dec) be the encoding and decod-
ing algorithms for messages in {0, 1}� against the tampering family F . Then,
for any message m ∈ {0, 1}�, f ∈ F , the decoding of the tampered codeword,
i.e., the message Dec(f(Enc(m)), is either the original message m or a simula-
tor Simf , which is entirely independent of the original message, can simulate
its distribution. Ensuring this weak message integrity turns out to be extremely
useful for cryptography. For example, tampering the secret-key of a signature
scheme either yields the original secret-key (in which case the signature’s secu-
rity already holds) or yields an unrelated secret-key (which, again, is useless for
forging signatures using the original secret-key).

However, it is impossible to construct non-malleable codes that are secure
against class of all tampering functions. For instance, the adversary can inter-
cept the entire encoding, decode the transmitted codeword c to retrieve the
original message m and then write a particular encoding of the related message
m�

1, where m1 is the first bit of m. So, it is necessary to ensure that the decod-
ing algorithm Dec (or any of its approximations) does not lie in the tampering
function family itself. Therefore, non-malleable codes are typically constructed
against a restricted class of tampering functions. Next, we discuss some tamper-
ing families considered in this work.

Lookahead Tampering and Non-malleable Messaging. Consider the motivating
application of non-malleable message transmission, where the high-speed net-
work switches routing the communication between parties shall forward their
data packets at several gigabits per second. An adversary, who is monitoring the
communication at a network switch, cannot block or slow the information stream,
which would outrightly signal her intrusion. So, the adversary is naturally left
to innocuously substituting data packets based on all the information that she
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has seen so far, namely, the lookahead tampering model [2,6]. This restricts the
tampering power of the adversary as she cannot tamper the encoding arbitrarily.

Split-State Tampering. A widely studied setting is k-split-state tampering [2,3,
8,14,20,22]. Here, message is encoded into k states and the adversary can only
tamper each of the states independently (and arbitrarily). More formally, the
message m ∈ {0, 1}� is encoded as c = (c1, c2, . . . , ck) ∈ {0, 1}n1 × {0, 1}n2 ×
· · ·×{0, 1}nk . A tampering function is a k-tuple of functions f = (f1, f2, . . . , fk)
s.t. the function fi : {0, 1}ni → {0, 1}ni is an arbitrary function. Note that
the tampering function only sees single states locally, and decoding requires
aggregating information across all states.

Our Objective. Motivated by applications like non-malleable message transmis-
sion over high-speed networks, our work studies the limits of the efficiency of
constructing non-malleable codes in the k-split-state model where a lookahead
adversary tampers each state independently, i.e., the k-lookahead model. We
know that constructing non-malleable codes against single state, i.e., k = 1,
lookahead adversary is impossible [6]. So, we consider the next best setting of
2-split-state lookahead tampering, where the message is encoded into 2 states
and transmitted using 2 independent paths. Each of these states is tampered
independently using lookahead tampering. Since split-state lookahead tamper-
ing is a sub-class of split-state tampering, a conservative approach is to use
generic non-malleable codes in the k-split-state, which protect against arbitrary
split-state tamperings. Prior to our work, the most efficient non-malleable codes
achieved rate R = log log �/ log � for k = 2 [23], and rate R = 1/3 for k = 4 [20].
In a concurrent and independent work, [21] achieves rate R = 1/3 for k = 3.

As illustrated above, there are natural cryptographic applications where
lookahead attacks appropriately model the adversarial threat. We ask the fol-
lowing question: Can we leverage the structure of the lookahead tampering to
construct a constant rate non-malleable code that requires establishing least
number of, i.e., only 2, independent communication routes between the sender
and the receiver?

Our Results. We first prove an upper-bound that the rate of any non-malleable
code in the 2-split-state lookahead model is at most 1/2. Next, we construct a
non-malleable code for the 2-lookahead model with rate R = 1/3, which is 2/3-
close to the above mentioned optimal upper-bound. En route, we also indepen-
dently construct a 3-split-state non-malleable code that achieves rate R = 1/3.
The starting point of all our non-malleable code constructions is the recent con-
struction of [20] in the 4-split-state model.

Finally, we interpret our results in the context of the original motivating
example of non-malleable message transmission. It is necessary to establish at
least two independent routes of communication to facilitate non-malleable mes-
sage transmission between two parties. We show that the cumulative size of the
encoding of the message sent by the sender must be at least twice the mes-
sage length when the sender transmits the shares of the encoded message over
two independent routes. For this setting, we provide a construction where the
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encoding of the message is (roughly) three-times the size of the message (1.5x
the optimal solution).

1.1 Our Contribution

Let Sn represent the set of all functions from {0, 1}n to {0, 1}n. We call any
subset F ⊆ Sn a tampering family on {0, 1}n. We denote k-split-state tamper-
ing families on {0, 1}n1+n2+···+nk by F1 × F2 × · · · × Fk, where F1,F2, . . . ,Fk

are tampering families on {0, 1}n1 , {0, 1}n2 , . . . , {0, 1}nk . Here, the codeword is
distributed over k states of size n1, n2, . . . , nk.
(Split-State) Lookahead Tampering. Motivated by the example in the intro-
duction, instead of considering an arbitrary tampering function for each
state, we consider tampering functions that encounter the information as a
stream. Let LAn1,n2,...,nB

be the set of all functions f : {0, 1}n1+n2+···+nB →
{0, 1}n1+n2+···+nB such that there exists functions f (1), f (2), . . . , f (B) with the
following properties.

1. For each 1 ≤ i ≤ B, we have f (i) : {0, 1}n1+n2+···+ni → {0, 1}ni , and
2. The function f(x1, x2, . . . , xB) is the concatenation of f (i)(x1, x2, . . . , xi), i.e.,

f(x1, x2, . . . , xB) = f (1)(x1)||f (2)(x1, x2)|| · · · ||f (B)(x1, x2, . . . , xB)

Intuitively, the codeword arrives as B blocks of information, and the i-th block is
tampered based on all the blocks so far {1, 2, . . . , i}. In the k-split-state lookahead
tampering, denoted by k-lookahead, the tampering function for each state is a
lookahead function. The k-lookahead tampering family was introduced in [2] for
the purpose of constructing non-malleable codes in the 2-split-state model. A
similar notion called block-wise tampering function was introduced by [6]. Our
first result is the hardness result. We give a more precise statement of this result
in Theorem 5.

Theorem 1. For k-lookahead tampering family, the best achievable rate is
1 − 1/k.

In fact, we prove the above upper bound for the weakest tampering fam-
ily in this class where each block in lookahead tampering is a single bit,
i.e., LAn1,n2,...,nB

s.t. B = n and ni = 1. For brevity, we represent this
function by LA1⊗n . Surprisingly, analogous to the result of Cheraghchi and
Guruswami [10] for the k-split-state model, we prove that even against signifi-
cantly more restricted k-lookahead tampering LA1⊗n1 × · · · × LA1⊗nk , the rate
of any non-malleable code is at most 1 − 1/k (see Subsect. 3.1).

We use Fig. 1 to summarize our positive results in k-lookahead and k-split-
state model and position our results relative to relevant prior works. Intuitively,
lower the k, the more powerful is the tampering family, and the harder it is to
construct the non-malleable codes. The state-of-the-art in non-malleable code
construction against k-lookahead coincides with the general k-split-state model.
In particular, no constant-rate non-malleable codes are known even against the
restricted 2-lookahead model. We resolve this open question in the positive (with
2/3 the optimal rate).
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Theorem 2 (Rate-1/3 NMC against 2-Lookahead). There exists a com-
putationally efficient non-malleable code, with negligible simulation error, against
the 2-lookahead tampering LAn1,n2

×LAn3,n4
, where n1 = (2+o(1))�, n2 = o(�),

n3 = o(�), n4 = �, where � is the length of the message.

We start from the construction of 4-split-state non-malleable codes by
Kanukruthi et al. [20] and leverage a unique characteristic of the (rate-0)
2-split-state code of Aggarwal, Dodis, and Lovett [3], namely augmented non-
malleability that was identified by [1].

By manipulating the way we store information in the construction of
Theorem 2, we also obtain the first constant-rate non-malleable codes in
3-split-state1.

Theorem 3 (Rate-1/3 NMC in 3-Split-State). There exists a computa-
tionally efficient non-malleable code, with negligible simulation error, in the
3-split-state model Sn1

× Sn2
× Sn3

, where n1 = �, n2 = (2 + o(1))�, n3 = o(�),
where � is the length of the message.

k

Fig. 1. A comparison of the efficiency of our 2-lookahead non-malleable code with
the efficiency of generic k-split-state non-malleable codes in the information-theoretic
setting. The diamond represents a k-lookahead result, and the circles represent k-split-
state results. Black color represents our results, and gray color represents other known
results (includes both prior and concurrent works).

Lastly, [2] motivated constant-rate construction achieving non-malleability
against 2-lookahead tampering along with another particular family of functions
(namely, forgetful functions) as an intermediate step to constructing constant-
rate non-malleable codes in the 2-split-state model. We achieve partial progress
towards this goal, and Theorem 6 summarizes this result.

1 Concurrent and independent work of [21] obtained similar result.
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1.2 Prior Relevant Works

As explained earlier, it is impossible to construct non-malleable codes against the
set of all tampering functions. If the size of the tampering family F is bounded
then Monte-Carlo constructions of non-malleable codes exist [10,16]. However,
for a single state, explicit constructions are known only for a few tampering
families. For example, (1) bit-level perturbation and permutations [4,11,15], and
(2) local or AC0 tampering functions [5,7] are a few representative families of
tampering functions.

Another well-studied restriction on the tampering class is the k-split-state,
for k � 2, where the tampering function tampers each state independently. Cher-
aghchi and Guruswami [10] proved an upper bound of 1−1/k on the rate of any
non-malleable code in the k-split-state model. Decreasing the number of states
k escalates the complexity of constructing non-malleable codes significantly. For
k = 2, technically the most challenging problem and most reliable for crypto-
graphic applications, [14] constructed the first explicit non-malleable code for
one-bit messages. In a breakthrough result, Aggarwal, Dodis, and Lovett [3]
presented the first multi-bit non-malleable code with rate O(�−ρ), for a suitable
constant ρ > 1. The subsequent work of [2] introduced the general notions of non-
malleable reductions and transformations and exhibited their utility for modular
constructions of non-malleable codes. Currently, the best rate of log log �/ log �
is achieved by [23]. For higher values of k, Chattopadhyay, and Zuckerman [8]
constructed the first constant-rate non-malleable code when k = 10. Recently,
[20] constructed a rate-1/3 non-malleable code in the 4-split-state model. The
construction of constant rate non-malleable codes in the 2-split-state and 3-split-
state models was open.

The computational version of this problem restricts to only computationally
efficient tampering, and [1] provided the qualitatively and quantitatively optimal
solution. In the 2-split-state model, they showed that one-way functions are
necessary to surpass the upper bound of rate-1/2 in the information-theoretic
setting [10], and one-way functions suffice to achieve rate-1.

Lookahead Model. In the lookahead model, tampering functions encounter the
state as a stream, and the tampering functions tampers a block of the state
based solely on the blocks of the state it has seen thus far. [6] first considered
this family of tampering functions (referred to as block-wise tampering). In fact,
they focused on the 1-lookahead family and showed the impossibility even in the
computational setting. Thus, they relaxed the non-malleability guarantee and
gave a construction using computational assumptions.

This family of tampering has also been considered by [2] as an interesting
pit stop on the route to constructing non-malleable codes in the 2-split-state
model. Specifically, they showed that given any non-malleable codes against
k-lookahead tampering family together with another so-called forgetful tamper-
ing, they can transform it to get a 2-split-state non-malleable codes with only
constant overhead on the rate.

Observe that a non-malleable code in the k-split-state model is also a non-
malleable code in the k-lookahead version. Currently, the state-of-the-art in the
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k-lookahead model coincides with the general k-split-state model.2 In particu-
lar, there are no known constant-rate non-malleable codes in the information-
theoretic setting for k = 2 and k = 3.

Concurrent and Independent Work. In a recent, concurrent and independent
work, Kanukurthi et al. [21] obtain a similar construction for non-malleable codes
in the 3-split-state setting that achieves an identical rate as our construction.
In their work, they study the problem of storing random secrets. While, the
primary focus of our work is to study the family of tampering function in the
lookahead model and explore the hardness of achieving non-malleability against
this family of tampering functions.

2 Preliminaries

For any natural number n, the symbol [n] denotes the set {1, 2, . . . , n}. For a
probability distribution A over a finite sample space Ω, A(x) denotes the prob-
ability of sampling x ∈ Ω according to the distribution A and x∼A denotes
that x is sampled from Ω according to A. For any n ∈ N, Un denotes the uniform
distribution over {0, 1}n. Similarly, for a set S, US denotes the uniform distri-
bution over S. For two probability distributions A and B over the same sample
space Ω, the statistical distance between A and B, represented by SD(A,B), is
defined to be 1

2

∑
x∈Ω |A(x) − B(x)|.

Let f : {0, 1}p ×{0, 1}q −→ {0, 1}p ×{0, 1}q. For any x ∈ {0, 1}p
, y ∈ {0, 1}q,

let (x̃, ỹ) = f(x, y). Then, we define fx(y) = ỹ and fy(x) = x̃. Note that fx :
{0, 1}q → {0, 1}q and fy : {0, 1}p → {0, 1}p.

2.1 Non-malleable Codes

We follow the presentation in previous works and define non-malleable codes
below.

Definition 1 (Coding Schemes). Let Enc: {0, 1}� → {0, 1}n and
Dec: {0, 1}n → {0, 1}� ∪ {⊥} be functions such that Enc is a randomized func-
tion (that is, it has access to private randomness) and Dec is a deterministic
function. The pair (Enc,Dec) is called a coding scheme with block length n and
message length � if it satisfies perfect correctness, i.e., for all m ∈ {0, 1}�, over
the randomness of Enc, Pr[Dec(Enc(m)) = m] = 1.

A non-malleable code is defined w.r.t. a family of tampering functions. For
an encoding scheme with block length n, let Fn denote the set of all functions
f : {0, 1}n → {0, 1}n. Any subset F ⊆ Fn is considered to a family of tampering
functions. Please refer to Sect. 1.1 for definition of k-split-state tampering func-
tion family Sn1

× Sn2
×· · · × Snk

and the lookahead version of the k-split-state
tampering function family LA1⊗n1 ×· · · × LA1⊗nk .

2 In light of the objection raised by [22] in the argument of [2], their constructions
against lookahead tampering are flawed.
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Next, we define the non-malleable codes against a family F of tampering
functions. We need the following copy(x, y) function defined as follows:

copy(x, y) =

{
y, if x = same*;
x, otherwise.

Definition 2 ((n, �, ε)-Non-malleable Codes). A coding scheme (Enc,Dec)
with block length n and message length � is said to be non-malleable against
tampering family F ⊆ Fn with error ε if for all function f ∈ F , there exists a
distribution Simf over {0, 1}� ∪ {⊥} ∪ {same*} such that for all m ∈ {0, 1}�,

Tamperm
f ≈ε copy (Simf ,m)

where Tamperm
f stands for the following tampering distribution

Tamperm
f :=

{
c ∼ Enc(m), c̃ = f(c), m̃ = Dec(c̃)

Output: m̃.

}

The rate of a non-malleable code is defined as �/n.

Our constructions rely on leveraging a unique characteristic of the non-
malleable code in 2-split-state (Sn1

×Sn2
s.t. n1+n2 = n) provided by Aggarwal,

Dodis, and Lovett [3], namely augmented non-malleability, which was identified
by [1]. We formally define this notion next. Below, we denote the two states of
the codeword as (L,R) ∈ {0, 1}n1 × {0, 1}n2 .

Definition 3 ((n1, n2, �, ε)-Augmented Non-malleable Codes against
2-split-state tampering family). A coding scheme (Enc,Dec) with mes-
sage length � is said to be an augmented non-malleable coding scheme against
tampering family Sn1

× Sn2
with n1 + n2 = n and error ε if for all functions

(f, g) ∈ Sn1
×Sn2

, there exists a distribution SimPlusf,g over {0, 1}n1 ×({0, 1}�∪
{⊥} ∪ {same*}) such that for all m ∈ {0, 1}�,

TamperPlusm
f,g ≈ε copy (SimPlusf,g,m)

where TamperPlusm
f,g stands for the following augmented tampering distribution

TamperPlusm
f,g :=

⎧
⎨

⎩

(L,R) ∼ Enc(m), L̃ = f(L), R̃ = g(R)

Output
(
L,Dec(L̃, R̃)

)

⎫
⎬

⎭

Note that above we abuse notation for copy (SimPlusf,g,m). Formally, it is
defined as follows: copy (SimPlusf,g,m) = (L,m) when SimPlusf,g = (L, same*)
and SimPlusf,g otherwise.

It was shown in [1] that the construction of Aggarwal et al. [3] satisfies this
stronger definition of augmented non-malleability with rate 1/poly(�) and neg-
ligible error ε. More formally, the following holds.

Imported Theorem 1 ([1]). For any message length �, there is a coding
scheme (Enc+,Dec+) of block length n = p(�) (where p is a polynomial) that sat-
isfies augmented non-malleability against 2-split-state tampering functions with
error that is negligible in �.
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2.2 Building Blocks

Next, we describe average min-entropy seeded extractors with small seed and
one-time message authentication codes that we use in our construction.

Definition 4 (Average conditional min-entropy). The average conditional
min-entropy of a distribution A conditioned on distribution L is defined to be

H̃∞(A|L) = − log
(

E�∼L

[
2−H∞(A|L=�)

])

Following lemma holds for average conditional min-entropy in the presence
of leakage.

Lemma 1 ([13]). Let L be an arbitrary κ-bit leakage on A, then H̃∞(A|L) �
H∞(A) − κ.

Definition 5 (Seeded Average Min-entropy Extractor). We say Ext :
{0, 1}n × {0, 1}d −→ {0, 1}� is a (k, ε)-average min-entropy strong extractor
if for every joint distribution (A,L) such that H̃∞(A|L) � k, we have that
(Ext(A,Ud), Ud, L) ≈ε (U�, Ud, L).

It is proved in [24] that any extractor is also a average min-entropy extractor
with only a loss of constant factor on error. Also, [19] gave strong extractors with
small seed length that extract arbitrarily close to k uniform bits. We summarize
these in the following lemma.

Combining these results with the following known construction for extractors,
we have that there exists average min-entropy extractor that require seed length
O(log n + log(1/ε)) and extracts uniform random strings of length arbitrarily
close to the conditional min-entropy of the source.

Lemma 2 ([19,24]). For all constants α > 0 and all integers n � k, there exists
an efficient (k, ε)-average min-entropy strong extractor Ext : {0, 1}n×{0, 1}d −→
{0, 1}� with seed length d = O(log n + log(1/ε)) and � = (1 − α)k − O(log(n) +
log(1/ε)).

Next, we define one-time message authentication codes.

Definition 6 (Message authentication code). A μ-secure one-time message
authentication code (MAC) is a family of pairs of function

{
Tagk : {0, 1}α −→ {0, 1}β , Verifyk : {0, 1}α × {0, 1}β −→ {0, 1}}

k∈K

such that

(1) For all m, k, Verifyk(m,Tagk(m)) = 1.

(2) For all m 
= m′ and t, t′, Prk∼UK
[Tagk(m) = t | Tagk(m′) = t′] ≤ μ.

Remark 1. Message authentication code can be constructed from μ-almost pair-
wise hash function family with the key length 2 log(1/μ). An example construc-
tion can be found in the full version [18] of this paper.
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3 Non-malleable Codes Against k-Lookahead

In this section, we study the k-lookahead tampering family. We first prove an
upper-bound on the maximum rate that can be achieved for any non-malleable
code against k-lookahead tampering family. For this, Theorem 5 states that
the maximum rate that can be achieved is roughly 1 − 1/k. Surprisingly, this
matches the upper bound on the rate non-malleable codes against much stronger
tampering family of k-split-state by [10]. Our upper bound as well as the impos-
sibility result by [6] rules the information theoretic construction against single
state lookahead tampering. On the constructive side, for 2-lookahead model, the
technically most challenging setting among k-lookahead tampering families, we
construct a non-malleable code that achieves rate 1/3.

Notation. Recall that LAn1,n2,...,nB
⊆ ({0, 1}n){0,1}n

, where n =
∑

i∈[B] ni,
denotes the family of lookahead tampering functions f = (f (1), f (2), . . . , f (B))
for f (i) : {0, 1}

∑
j∈[i] nj → {0, 1}ni such that

c̃ := f(c) = f (1)(c1)||f (2)(c1, c2)|| . . . ||f (i)(c1, . . . , ci)|| . . . ||f (B)(c1, . . . , cB)

for c = c1||c2|| . . . ||cB and for all i ∈ [B], ci ∈ {0, 1}ni . That is, if c consists of B
parts such that ith part has length ni, then ith tampered part depends on first
i parts of c. We also use LAm⊗B to denote the family of lookahead tampering
functions LAm,m, . . . ,m

︸ ︷︷ ︸
B-times

, i.e., the codeword has B parts of length m each.

3.1 Impossibility Results for the Split-State Lookahead Model

In this section, we first prove an upper-bound on the rate of any non-malleable
encoding against 2-lookahead tampering function, where each bit is treated as
a block, i.e., LA1⊗n/2 × LA1⊗n/2 . In our proof, we use ideas similar to [10] and
the following imported lemma is used in their proof of theorem 5.3 (see [9]).3

Imported Lemma 1. For any constant 0 < δ < α and any encoding scheme
(Enc,Dec) with block length n and rate 1 − α + δ, the following holds. Let the
codeword c be written as (c1, c2) ∈ {0, 1}αn × {0, 1}(1−α)n. Let η = δ

4α . Then,
there exists a set Xη ⊆ {0, 1}αn and two messages m0,m1 such that

Pr[c1 ∈ Xη|Dec(c) = m0] � η

Pr[c1 ∈ Xη|Dec(c) = m1] ≤ η/2

Theorem 4. Let (Enc,Dec) be any encoding scheme that is non-malleable
against the family of tampering functions LA1⊗n/2 × LA1⊗n/2 and achieves rate
1/2 + δ, for any constant δ > 0 and simulation error ε. Then, ε > δ/8.
3 Specifically, in their proof of Theorem 5.3, they picked two messages s0, s1 along with

Xη that satisfy the property we require for m0, m1 in the imported lemma. Also,
we stress that their proof not only showed s0 and s1 exist, but there are multiple
choices for the pair. This gives us the freedom when we pick our m0 and m1. We
make use of this in our proof.
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Proof. Note that any codeword c in support of Enc consists of two states c1
and c2, each of length n/2. We use ci,j for i ∈ {1, 2} and j ∈ {1, . . . , n/2} to
denote the jth bit in state i. Any tampering function f = (f1, f2) generates a
tampered codeword c̃ = (c̃1, c̃2) = (f1(c1), f2(c2)). Below, we will construct a
tampering function f∗ such that any simulated distribution Simf∗ will be ε far
from tampering distribution Tamperf∗ .

Next, we fix a message m̂ and its codeword ĉ(0) = (ĉ(0)1 , ĉ
(0)
2 ) ∈ Enc(m̂)

such that the following holds. Let ĉ(1) ∈ {0, 1}n be such that for all j ∈
{1, . . . , n/2−1}, ĉ

(0)
1,j = ĉ

(1)
1,j , ĉ

(0)
1,n/2 
= ĉ

(1)
1,n/2 and ĉ

(0)
2 = ĉ

(1)
2 . Moreover, we require

that Dec(ĉ(1)) 
= m̂. That is, the two codewords are identical except the last bit
of first block and the second codeword does not encode the same message4 m̂.
Above condition is still satisfied if Dec(ĉ(1)) = ⊥.

Since the rate of the given scheme (Enc,Dec) is 1 − 1/2 + δ (with a constant
δ), by Imported Lemma 1, we have that there exist special messages m0,m1 and
set Xη with the above guarantees where c1 corresponds to the first state. In fact,
Imported Lemma 1 gives many such pair of messages and we will pick such that
m̂,m0,m1 are all unique.

Now, our tampering function f∗ = (f∗
1, f

∗
2) is as follows: f∗ tampers a

codeword c = (c1, c2) to c̃ = (c̃1, c̃2) such that for all j ∈ {1, . . . , n/2 − 1},
c̃1,j = ĉ

(0)
1,j , c̃1,n/2 = ĉ

(0)
1,n/2 if c1 ∈ Xη, else ĉ

(1)
1,n/2 and c̃2 = ĉ

(0)
2 . That is, if

c1 ∈ Xη, the resulting codeword is ĉ(0), else it is ĉ(1). Note that the above
tampering attack can be done using a split-state lookahead tampering function.

Finally, it is evident that for message m0, the tampering experiment results
in m̂ with probability at least η. On the other hand, for message m1, the tam-
pering experiment results in m̂ with probability at most η/2. Hence, probability
assigned by Tamperm0

f∗ and Tamperm1
f∗ to message m̂ differs by at least η/2. Since

m̂ is different from m0,m1, it holds that ε, the simulation error of non-malleable
code, is at least η/4 by triangle inequality.

The above result can be extended to k-lookahead tampering as follows:

Theorem 5. Let (Enc,Dec) be any encoding scheme that is non-malleable
against the family of tampering functions LA1⊗n1 . . . × . . . LA1⊗nk and achieves
rate 1−1/k+δ, for any constant δ > 0 and simulation error ε. Then, ε > kδ/16.

Proof Outline. The proof follows by doing a similar analysis as above for the
largest state. Without loss of generality, let the first state be the largest state,
i.e., n1 � ni for all i ∈ {2, . . . , k}. By averaging argument it holds that n1 � n/k,
where n is the block length. Now, the theorem follows along the same lines as
the proof of 2-lookahead tampering above when we consider the code for the
first state as c1 and rest of the code as c2. We note that the above proof does
not require c1 and c2 to have the same size.

4 We note that such codewords would exist otherwise we can show that the last bit of
the first state is redundant for decoding. This way we can obtain a smaller encoding.
Then, w.l.o.g., we can apply our argument on this new encoding.
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3.2 Rate-1/3 Non-malleable Code in 2-Lookahead Model

In this section, we present our construction for non-malleable codes against
2-lookahead tampering functions. Our construction relies on the following tools.
Let (Tag,Verify) (resp., (Tag′,Verify′)) be a μ (resp., μ′) secure message authen-
tication code with message length � (resp., n), tag length β (resp., β′) and key
length γ (resp., γ′). Let Ext : {0, 1}n×{0, 1}d → {0, 1}� be a (k, ε1) average min-
entropy strong extractor. We define k later during parameter setting. Finally,
let (Enc+,Dec+) be (n+

1 , n+
2 , �+, ε+)-augmented 2-split-state non-malleable code

(see Definition 3), where �+ = γ + γ′ + β + β′ + d. We denote the codewords of
this scheme as (L,R) and given a tampering function, we denote the output of
the simulator SimPlus as (L,Ans).

Construction Overview. We define our encoding and decoding functions formally
in Fig. 2. In our encoding procedure, we first sample a uniform source w of n bits
and a uniform seed s of d bits. Next, we extract a randomness r from (w, s) using
the strong extractor Ext. We hide the message m using r as the one-time pad to
obtain a ciphertext c. Next, we sample random keys k1, k2 and authenticate the
ciphertext c using Tagk1

and the source w using Tag′
k2

to obtain tags t1 and t2,
respectively. Now, we think of (k1, k2, t1, t2, s) as the digest and protect it using
an augmented 2-state non-malleable encoding Enc+ to obtain (L,R). Finally,
our codeword is

(
(c1, c2), (c3, c4)

)
where c1 = w, c2 = R, c3 = L and c4 = c.

We also note that n1 := |c1| = |w| = n, n2 := |c2| = |R| = n+
2 , n3 := |c3| =

|L| = n+
1 and n4 := |c4| = |c| = �. From Fig. 2, it is evident that our construction

satisfies perfect correctness.

Fig. 2. Non-malleable coding scheme against LAn1,n2 × LAn3,n4 , where n1 = |w|,
n2 = |R|, n3 = |L|, and n4 = |c|.

Proof of Non-malleability against 2-lookahead tampering. Given a tampering
function (f, g) ∈ LAn1,n2

× LAn3,n4
, where f = (f (1), f (2)) and g = (g(1), g(2)),

we formally describe our simulator in Fig. 3.
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Our simulator describes a leakage function L(w) that captures the leakage
required on the source w in order to simulate the tampering experiment. This
leakage has five parts (L,Ans,flag1,flag2,mask). The values L and Ans are the
outputs of simulator SimPlus on tampering function (g(1), f (2)

w ), where f
(2)
w repre-

sents the tampering function on R given w. Next, for the case when Ans = same*,
flag1 denotes the bit w̃ = w. When Ans = (k̃1, k̃2, t̃1, t̃2, s̃), flag2 captures the
bit Verify′

k̃2
(w̃, t̃2), i.e., whether the new key k̃2 and tag t̃2 are valid authenti-

cation on new source w̃. In this case, the value mask is the extracted output of
tampered source w̃ using tampered seed s̃.

Fig. 3. The simulator Simf,g for the non-malleable code against 2-lookahead tampering
family.

We give the formal proof on indistinguishability between simulated and tam-
pering distributions in Subsect. 3.3 using a series of statistically close hybrids.

Rate analysis. We will use λ as our security parameter. By Remark 1, we will
let k1, k2 be of length 2λ, i.e. γ = γ′ = 2λ and t1, t2 will have length λ, i.e.
β = β′ = λ and both (Tag,Verify) and (Tag′,Verify′) will have error 2−λ.

Since we will need to extract � bits as a one-time pad to mask the message,
by Lemma 2, we will set min-entropy k to be (1 + α′)� for some constant α′ and
let Ext be a ((1 + α′)�, 2−λ)-strong average min-entropy extractor that extract
�-bit randomness with seed length O(log n + λ). By our analysis in Subsect. 3.3,
it suffices to have n− (�+n+

1 + �+ +3) = n− �−p(log n+λ) � (1+α′)�. Hence,
we will set n = (2 + α)� for some constant α > α′.
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Now the message length for our augmented 2-state non-malleable code will
be 2λ+2λ+λ+λ+O(log n+λ) = O(log n+λ). Now by Theorem 1, we will let
ζ be the constant such that p(nζ) = o(n) and set λ = O(nζ). Hence, the length
of (L,R) will be o(n). Therefore, the total length of our coding scheme will be
� + (2 + α)� + o(n) and the rate is 1

3+α with error O(2−nζ

). This completes the
proof for Theorem 2.

3.3 Proof of Non-malleability Against 2-Lookahead (Theorem 2)

In this section, we prove that our code scheme Fig. 2 is secure against the tam-
pering family LAn1,n2

× LAn3,n4
. In order to prove the non-malleability, we

need to show that for all tampering functions (f, g) ∈ LAn1,n2 ×LAn3,n4 , where
f = (f (1), f (2)) and g = (g(1), g(2)), our simulator as defined in Fig. 3 satisfies
that, for all m, we have

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(
(w,R), (L, c)

) ∼ Enc(m)

w̃ = f (1)(w), R̃ = f (2)(w,R)

L̃ = g(1)(L), c̃ = g(2)(L, c)

Output: m̃ = Dec
(
(w̃, R̃), (L̃, c̃)

)

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

= Tamperm
f,g ≈ copy

(
Simf,g , m

)

The following sequence of hybrids will lead us from tampering experiment
to the simulator. Throughout this section, we use the following color/highlight
notation. In a current hybrid, the text in red denotes the changes from the pre-
vious hybrid. The text in shaded part represents the steps that will be replaced
by red part of the next hybrid.

The initial hybrid represents the tampering experiment Tamperm
f,g and the

last hybrid represents copy(Simf,g,m).

H0(f, g, m):

1. w ∼ Un, s ∼ Ud, k1 ∼ Uγ , k2 ∼ Uγ′

2. r = Ext(w, s), c = m ⊕ r, t1 = Tagk1
(c), t2 = Tag′

k2
(w)

3. (L, R) ∼ Enc+(k1, k2, t1, t2, s)

4. w̃ = f (1)(w), ˜R = f (2)(w, R) , ˜L = g(1)(L), c̃ = g(2)(L, c)

5. ( ˜k1, ˜k2, ˜t1, ˜t2, s̃) = Dec+(˜L, ˜R)

6. If ( ˜k1, ˜k2, ˜t1, ˜t2, s̃) = ⊥, output ⊥
7. Else If

(

Verifyk̃1
(c̃, ˜t1)=0 or Verify′

k̃2
(w̃, ˜t2) = 0

)

, output ⊥
8. Else Output c̃ ⊕ Ext(w̃, s̃)
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Next, we rewrite R̃ = f (2)(w,R) and c̃ = g(2)(L, c) as R̃ = f
(2)
w (R) and

c̃ = g
(2)
L (c). Now, rearrange the steps leads us to the next hybrid.

H1(f, g, m):

1. w ∼ Un, s ∼ Ud, k1 ∼ Uγ , k2 ∼ Uγ′

2. r = Ext(w, s), c = m ⊕ r, t1 = Tagk1
(c), t2 = Tag′

k2
(w)

3. w̃ = f (1)(w)

4. (L, R) ∼ Enc+(k1, k2, t1, t2, s)

5. ˜L = g(1)(L), ˜R = f
(2)
w (R)

6. ( ˜k1, ˜k2, ˜t1, ˜t2, s̃) = Dec+(˜L, ˜R)

7. c̃ = g
(2)
L (c)

8. If ( ˜k1, ˜k2, ˜t1, ˜t2, s̃) = ⊥, output ⊥
9. Else If

(

Verifyk̃1
(c̃, ˜t1)=0 or Verify′

k̃2
(w̃, ˜t2) = 0

)

, output ⊥
10. Else Output c̃ ⊕ Ext(w̃, s̃)

Note that shaded steps in the previous hybrid formulate a 2-state tamper-
ing experiment onto (L,R). Therefore, we could use the augmented simula-
tor to replace the tampering experiment of augmented two-state non-malleable
codes.

H2(f, g, m):

1. w ∼ Un, s ∼ Ud, k1 ∼ Uγ , k2 ∼ Uγ′

2. r = Ext(w, s), c = m ⊕ r, t1 = Tagk1
(c), t2 = Tag′

k2
(w)

3. w̃ = f (1)(w)
4. (L, Ans) ∼ SimPlus

g(1),f
(2)
w

5. ( ˜k1, ˜k2, ˜t1, ˜t2, s̃) = copy
(

Ans, (k1, k2, t1, t2, s)
)

.

6. c̃ = g
(2)
L (c)

7. If ( ˜k1, ˜k2, ˜t1, ˜t2, s̃) = ⊥, output ⊥

8. Else If
(

Verifyk̃1
(c̃, ˜t1)=0 or Verify′

k̃2
(w̃, ˜t2) = 0

)

, output ⊥

9. Else Output c̃ ⊕ Ext(w̃, s̃)

Now in hybrid H3(f, g,m), instead of doing copy(), we do a case analysis on
Ans. We note that the hybrids H2(f, g,m) and H3(f, g,m) are identical.
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H3(f, g, m):

1. w ∼ Un, s ∼ Ud, k1 ∼ Uγ , k2 ∼ Uγ′

2. r = Ext(w, s), c = m ⊕ r, t1 = Tagk1
(c), t2 = Tag′

k2
(w)

3. w̃ = f (1)(w)
4. (L, Ans) ∼ SimPlus

g(1),f
(2)
w

5. c̃ = g
(2)
L (c)

6. If Ans =
– Case ⊥: Output ⊥
– Case same*: If

(

Verifyk1
(c̃, t1)=0 or Verify′

k2
(w̃, t2) = 0

)

,

output ⊥; Else output c̃ ⊕ Ext(w̃, s)

– Case ( ˜k1, ˜k2, ˜t1, ˜t2, s̃): If
(

Verifyk̃1
(c̃, ˜t1)=0 or Verify′

k̃2
(w̃, ˜t2) =

0
)

, output ⊥
Else output c̃ ⊕ Ext(w̃, s̃)

Next, in hybrid H3(f, g,m) we change the case when Ans = same*. Note that
Ans = same* says that the both the authentication keys k1, k2 as well as the tags
are unchanged. Hence, with probability at least (1−μ−μ′), both authentications
would verify only if w and c are unchanged. Hence, in H4(f, g,m), we check if
the ciphertext c and source w are the same.

Given that (Tag,Verify) and (Tag′,Verify′) are μ and μ′-secure message
authentication codes, H3(f, g,m) ≈μ+μ′ H4(f, g,m).

H4(f, g, m):
copy

(

1. w ∼ Un, s ∼ Ud, k1 ∼ Uγ , k2 ∼ Uγ′

2. r = Ext(w, s), c = m ⊕ r, t1 = Tagk1
(c), t2 = Tag′

k2
(w)

3. w̃ = f (1)(w)
4. (L, Ans) ∼ SimPlus

g(1),f
(2)
w

5. c̃ = g
(2)
L (c)

6. If Ans =
– Case ⊥: Output ⊥
– Case same*: If

(

c̃ = c and w̃ = w
)

= 1, output same*

Else output ⊥
– Case ( ˜k1, ˜k2, ˜t1, ˜t2, s̃): If

(

Verifyk̃1
(c̃, ˜t1)=0 or

Verify′
k̃2

(w̃, ˜t2) = 0
)

, output ⊥
Else output c̃ ⊕ Ext(w̃, s̃)

, m

)

We note that the variables k1, k2, t1, t2 are no longer used in the hybrid.
Hence, we remove the sampling of these in the next hybrid. It is clear that the
two hybrids H4(f, g,m) and H5(f, g,m) are identical.
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H5(f, g, m):
copy

(

1. w ∼ Un, s ∼ Ud, r = Ext(w, s), c = m ⊕ r
2. (L, Ans) ∼ SimPlus

g(1),f
(2)
w

3. w̃ = f (1)(w), c̃ = g
(2)
L (c)

4. If Ans =
– Case ⊥: Output ⊥
– Case same*: If

(

c̃ = c and w̃ = w
)

= 1, output same*

Else output ⊥
– Case ( ˜k1, ˜k2, ˜t1, ˜t2, s̃): If

(

Verifyk̃1
(c̃, ˜t1)=0 or

Verify′
k̃2

(w̃, ˜t2) = 0
)

, output ⊥
Else output c̃⊕ Ext(w̃, s̃)

, m

)

Now, we wish to use the property of average min-entropy extractor to remove
the dependence between c and w. Before we do the trick, we shall first rearrange
the steps in H5(f, g,m) to get H6(f, g,m). We process all the leakage we need
at the first part of our hybrid and use only the leakage of w in the remaining.
Intuitively, when Ans = same*, flag1 records whether w̃ = w and when Ans =
(k̃1, k̃2, t̃1, t̃2, s̃), flag2 records whether w̃ can pass the MAC verification under
new key and tag and mask is the new one-time pad we need for decoding the
tampered message. We note that the hybrids H5(f, g,m) and H6(f, g,m) are
identical.

H6(f, g, m):
copy

(

1. w ∼ Un

2. (L, Ans) ∼ SimPlus
g(1),f

(2)
w

, w̃ = f (1)(w)

3. If Ans =
– Case same*: If (w̃ = w), flag1 = 1; Else flag1 = 0

– Case ( ˜k1, ˜k2, ˜t1, ˜t2, s̃): If
(
Verify′

k̃2
(w̃, ˜t2)

)

= 1, flag2 = 1;

Else flag2 = 0.

Let mask = Ext(w̃, s̃)

4. s ∼ Ud, r = Ext(w, s), c = m ⊕ r, c̃ = g
(2)
L (c)

5. If Ans =
– Case ⊥: Output ⊥
– Case same*: If

(

c̃ = c and flag1

)

= 1, output same*

Else output ⊥
– Case ( ˜k1, ˜k2, ˜t1, ˜t2, s̃): If

(

Verifyk̃1
(c̃, ˜t1)=0 or flag2 = 0

)

,

output ⊥
Else output c̃ ⊕ mask

, m

)

In the next hybrid, we formalize (L,Ans,flag1,flag2,mask) as the leakage on
source w. Note that the hybrids H6(f, g,m) and H7(f, g,m) are identical.
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H7(f, g, m):
copy

(

1. w ∼ Un

2. Leakage function L(w) : {0, 1}n −→ {0, 1}n+
1 ×{0, 1}β+β′+γ+γ′+d+1 ×

{0, 1} × {0, 1} × {0, 1}� be the following function:
(a) (L, Ans) ∼ SimPlus

g(1),f
(2)
w

, w̃ = f (1)(w)

(b) If Ans =
– Case ⊥: flag1 = 0, flag2 = 0, mask = 0�

– Case same*: If (w̃ = w), flag1 = 1; Else flag1 = 0

flag2 = 0, mask = 0�

– Case (k̃1, k̃2, t̃1, t̃2, s̃): flag1 = 0, Let mask = Ext(w̃, s̃)

If
(
Verify′

k̃2
(w̃, t̃2)

)
= 1, flag2 = 1; Else flag2 = 0

(c) L(w) := (L, Ans, flag1, flag2, mask)

3. s ∼ Ud, r = Ext(w, s) , c = m ⊕ r, c̃ = g
(2)
L (c)

4. If Ans =
– Case ⊥: Output ⊥
– Case same*: If

(
c̃ = c and flag1

)
= 1, output same*; Else output ⊥

– Case (k̃1, k̃2, t̃1, t̃2, s̃): If
(
Verify

k̃1
(c̃, t̃1)=0 or flag2 = 0

)
, output ⊥

Else output c̃ ⊕ mask

, m

)

In the next hybrid, we replace the extracted output r with a uniform random
� bit string. We argue that the hybrids H7(f, g,m) and H8(f, g,m) are ε1 close
for appropriate length n of source w.

Since L(w) outputs a � + n+
1 + �+ + 3 bits of leakage, by Lemma 1,

H∞(W |L(W )) � n − (� + n+
1 �+ + 3). Here, W denotes the random variable

corresponding to w. We will pick n such that n − (� + n+
1 + �+ + 3) > � for the

min-entropy extraction to give a uniform string (see Lemma 2).

H8(f, g, m):
copy

(

1. w ∼ Un

2. Leakage function L(w) : {0, 1}n −→ {0, 1}n+
1 ×{0, 1}β+β′+γ+γ′+d+1 ×

{0, 1} × {0, 1} × {0, 1}� be the following function:
(a) (L, Ans) ∼ SimPlus

g(1),f
(2)
w

, w̃ = f (1)(w)

(b) If Ans =
– Case ⊥: flag1 = 0, flag2 = 0, mask = 0�

– Case same*: If (w̃ = w), flag1 = 1; Else flag1 = 0

flag2 = 0, mask = 0�

– Case (k̃1, k̃2, t̃1, t̃2, s̃): flag1 = 0, Let mask = Ext(w̃, s̃)

If
(
Verify′

k̃
(w̃, t̃2)

)
= 1, flag2 = 1; Else flag2 = 0

(c) L(w) := (L, Ans, flag1, flag2, mask)

3. r ∼ U�, c = m ⊕ r , c̃ = g
(2)
L (c)

4. If Ans =
– Case ⊥: Output ⊥
– Case same*: If

(
c̃ = c and flag1

)
= 1, output same*; Else output ⊥

– Case (k̃1, k̃2, t̃1, t̃2, s̃): If
(
Verify

k̃1
(c̃, t̃1)=0 or flag2 = 0

)
, output ⊥

Else output c̃ ⊕ mask

, m

)
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Finally, notice that the distribution of c is independent of m and we can use
the message 0�. This gives us our simulator. Clearly H8(f, g,m) = H9(f, g,m).
Notice that H9(f, g,m) = copy

(
Simf,g,m

)
.

H9(f, g, m):
copy

(

1. w ∼ Un

2. Leakage function L(w) : {0, 1}n −→ {0, 1}n+
1 ×{0, 1}β+β′+γ+γ′+d+1 ×

{0, 1} × {0, 1} × {0, 1}� be the following function:
(a) (L, Ans) ∼ SimPlus

g(1),f
(2)
w

, w̃ = f (1)(w)

(b) If Ans =
– Case ⊥: flag1 = 0, flag2 = 0, mask = 0�

– Case same*: If (w̃ = w), flag1 = 1; Else flag1 = 0

flag2 = 0, mask = 0�

– Case (k̃1, k̃2, t̃1, t̃2, s̃): flag1 = 0, Let mask = Ext(w̃, s̃)

If
(
Verify′

k̃2
(w̃, t̃2)

)
= 1, flag2 = 1; Else flag2 = 0

(c) L(w) := (L, Ans, flag1, flag2, mask)

3. r ∼ U�, c = 0� ⊕ r, c̃ = g
(2)
L (c)

4. If Ans =
– Case ⊥: Output ⊥
– Case same*: If

(
c̃ = c and flag1

)
= 1, output same*

Else output ⊥
– Case (k̃1, k̃2, t̃1, t̃2, s̃): If

(
Verify

k̃1
(c̃, t̃1)=0 or flag2 = 0

)
, output ⊥

Else output c̃ ⊕ mask

, m

)

4 Construction for 3-Split-State Non-malleable Code

By re-organizing the information between states, we also obtain a rate-1/3 3-
split-state non-malleable codes. Our coding scheme is defined in Fig. 4. Specifi-
cally, instead of storing w with R and L with c, we merge w and L into one

Fig. 4. Non-malleable coding scheme against 3-split-state tampering.
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state and store c, (w,L) and R independently. We defer the proof of non-
malleability for this coding scheme to the full version [18]. By similar analysis
as in 2-lookahead case, it is easy to see our non-malleable codes in 3-split-state
scheme also has rate-1/3.

5 Forgetful Tampering in the 2-Lookahead Model

In this section we restrict ourselves to the 2-lookhead model. Let us define
an additional family of tampering functions. Consider a tampering function
f : {0, 1}n1+n2+n3+n4 → {0, 1}n1+n2+n3+n4 . The function f is 1-forgetful, if
there exists a function g : {0, 1}n2+n3+n4 → {0, 1}n1+n2+n3+n4 such that
f(x1, x2, x3, x4) = g(x2, x3, x4) for all x1 ∈ {0, 1}n1 , x2 ∈ {0, 1}n2 , x3 ∈ {0, 1}n3 ,
and x4 ∈ {0, 1}n4 . Intuitively, the tampering function f forgets its first n1-bits
of the codeword and do the entire tampering using only x2, x3, x4. The set of
all functions that are 1-forgetful are represented by FORn1,n2,n3,n4−{1}. Analo-
gously, we define FORn1,n2,n3,n4−{i}, for each i ∈ {2, 3, 4}.

Aggarwal et al. [2] proved that we can construct constant-rate non-malleable
code in the 2-split-state from a constant-rate non-malleable code that protects
against the following tampering family5

(
LAn1,n2

× LAn3,n4

) 4⋃

i=1

FORn1,n2,n3,n4−{i}

We make partial progress towards the goal of constructing non-malleable codes
secure against above tampering family (and hence, constant rate codes against
2-split-state family), and prove the following theorem.

Theorem 6. For all constants α, there exists a constant ζ and a computa-
tionally efficient non-malleable coding scheme against

(LAn1,n2 × LAn3,n4

) ∪
FORn1,n2,n3,n4−{1} ∪ FORn1,n2,n3,n4−{3} with rate 1

4+α and error 2−nζ

.

We defer the proof of Theorem 6 to the full version [18].
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Abstract. Multilinear maps enable homomorphic computation on
encoded values and a public procedure to check if the computation on
the encoded values results in a zero. Encodings in known candidate con-
structions of multilinear maps have a (growing) noise component, which
is crucial for security. For example, noise in GGH13 multilinear maps
grows with the number of levels that need to be supported and must
remain below the maximal noise supported by the multilinear map for
correctness. A smaller maximal noise, which must be supported, is desir-
able both for reasons of security and efficiency.

In this work, we put forward new candidate constructions of obfusca-
tion for which the maximal supported noise is polynomial (in the security
parameter). Our constructions are obtained by instantiating a modifica-
tion of Lin’s obfuscation construction (EUROCRYPT 2016) with com-
posite order variants of the GGH13 multilinear maps. For these schemes,
we show that the maximal supported noise only needs to grow polyno-
mially in the security parameter. We prove the security of these con-
structions in the weak multilinear map model that captures all known
vulnerabilities of GGH13 maps. Finally, we investigate the security of the
considered composite order variants of GGH13 multilinear maps from a
cryptanalytic standpoint.

1 Introduction

Program obfuscation aims to make computer programs “unintelligible” while
keeping their functionalities intact. The known obfuscation constructions
[5–8,11,12,26,27,30,39,46,51] are all based on new candidate constructions

Research supported in part from DARPA/ARL SAFEWARE Award W911NF15C0210,
AFOSR Award FA9550-15-1-0274, AFOSR YIP Award, DARPA and SPAWAR under
contract N66001-15-C-4065, a Hellman Award and research grants by the Okawa Foun-
dation, Visa Inc., and Center for Long-Term Cybersecurity (CLTC, UC Berkeley). The
views expressed are those of the author and do not reflect the official policy or position
of the funding agencies.

c© Springer Nature Switzerland AG 2018
D. Chakraborty and T. Iwata (Eds.): INDOCRYPT 2018, LNCS 11356, pp. 329–352, 2018.
https://doi.org/10.1007/978-3-030-05378-9_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05378-9_18&domain=pdf
https://doi.org/10.1007/978-3-030-05378-9_18
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[17,18,25,28] of multilinear maps [10], security of which is poorly understood [14–
16,25,34,44].

Briefly, multilinear maps (a.k.a. graded encodings) allow “leveled” homomor-
phic computations of a-priori bounded degree (say κ) polynomials on “encoded”
values. Furthermore, they provide a mechanism to publicly check if the result
of a polynomial computation is a zero or not. At a high level, known obfusca-
tion methods map the program to a sequence of encodings. These encodings are
such that the output of the program on a specific input is zero if and only if
the output of a corresponding input dependent polynomial (of degree κ) on the
encoded values yields a zero.

Noise in GGH-Based Obfuscations. Encodings in the known candidate mul-
tilinear map1 constructions are generated to have a noise component (referred
to as “fresh” encoding/noise2) that is necessary for security. Homomorphic com-
putations on these fresh encodings yield encodings with increased noise due to
accumulation of the fresh noise (hence called “accumulated” noise). In the can-
didate construction by Garg, Gentry and Halevi [25] (a.k.a. GGH), the noise
level in the fresh level-1 encodings can be set to be as low as a polynomial in the
security parameter, without hurting the security. However, the noise level in the
fresh level-i encodings grows exponentially in i.3 Furthermore, the accumulated
noise also grows with the number of homomorphic multiplications. The GGH
construction is parameterized by a modulus q that needs to be greater than the
maximum supported noise (referred to as “noise bound”) of any encoding in the
system in order to preserve functionality. Most obfuscation constructions involve
homomorphic multiplication of polynomially many “fresh” encodings. Therefore,
these constructions need to support exponentially large noise. An exception4 to
this is the recent construction of Lin [39] that only needs a constant number
of multiplications on composite-order multilinear maps. However, this construc-
tion still needs to give out “fresh” encodings at polynomially high levels. Thus
it would still need exponential noise if one was to use a composite order variant
of GGH multilinear maps (e.g. the one eluded to in the first EPRINT draft of
GGH [24] or the one from [31, Appendix B.3]). Another alternative is to use a
composite order variant of the [17,18] multilinear maps, e.g. the one by Gentry
et al. [31, Appendix B.3 and B.4]. Note that in the CLT based constructions the
number of primes needed is always polynomial in the security parameter. This

1 Throughout this paper, we use multilinear maps to refer to private encoding mul-
tilinear maps. In other words, no public low-level encodings of zero are provided in
our constructions.

2 By “fresh” encodings we mean that it is generated via the encoding procedure using
the secret parameters and not produced as a result of homomorphic computations.

3 The reported noise is for the recommended version of the GGH multilinear maps [24,
Sect. 6.4]. This recommendation was made in [25] with the goal of avoiding averaging
attacks [20,33,45]. Similar recommendation is made in [3, Sect. 4.2].

4 Another exception is [37] which uses Reniy divergence to construct a map called
GGHLite that supports more efficient concrete parameters than GGH.
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is the case even if the construction itself uses a constant number of slots, as is
the case in Lin’s scheme. This use of polynomially many primes is essential for
security — specifically, in order to avoid lattice attacks. Consequently, the noise
growth in this case is also exponential (as elaborated on in [31, Appendix B.5]).

In the context of GGH multilinear maps, the use of an exponential “noise
bound,” and hence the modulus q, is not desirable in light of the recent NTRU
attacks5 [3,35]. It is desirable to have a much smaller value of q (say poly(λ)).
Furthermore, having a smaller modulus offers asymptotic efficiency improve-
ments.

Weak Multilinear Map Model for GGH. Typically, candidate obfuscation
schemes (including the above constructions) are proven secure in so-called ideal
graded encoding model, that does not capture all the known vulnerabilities of the
GGH multilinear maps [25,34,44]. In particular, Miles, Sahai and Zhandry [44]
exploit these vulnerabilities of GGH to show attacks against obfuscation con-
structions. In light of these attacks, [44] proposed the weak multilinear map
model that better captures the known vulnerabilities of the GGH multilinear
maps. Subsequently, Garg et al. [27] gave an obfuscation scheme provable secure
in this model.

In this work, we ask the following question.

Can we construct an obfuscation scheme using low noise multilinear maps and
prove its security in the weak multilinear map model?

1.1 Our Result

In this work, we resolve the above question affirmatively providing new candidate
indistinguishability obfuscation constructions such that: (i) they only require a
modulus q which grows polynomially in the security parameter, and (ii) they are
provably secure in the weak multilinear map model.

Our construction is instantiated using composite order GGH multilinear
maps6 that are the same as the composite order proposal of [24] except that

5 Specifically, the subfield lattice attack is sub-exponential as soon as q is super-
polynomial. Furthermore, using attack of [35] becomes polynomial for power-of-two

cyclotomic fields when q = 2Ω(
√

n log log n). We note that the attack of [35] is much
more general, but we are only concerned with these parameter choices.

6 In the first draft of [24], authors suggested a composite order variant of multilinear
maps. However, in later versions they restricted their claims to the prime order
construction. This was in light of the weak-discrete log attacks they found against
their construction. However, these attacks worked only when public encodings of zero
are provided and rendered assumptions such as subgroup hiding easy. In particular,
all known attacks against composite order GGH maps use low level encodings of
zero [25] or some specific high-level encodings of zero [15]. In light of the Miles et al.
attacks [44] we envision more (potential) attacks but they are all captured by the
weak multilinear map model.
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we use a specific choice of the Lagrange Coefficients used in Chinese Remainder-
ing in our construction.7 This specific choice of Lagrange Coefficients is done in
order to strengthen security — specifically, in order to obtain a proof of security
in the weak multilinear map model. We evaluate the security of the GGH com-
posite order multilinear maps (with our choice of Lagrange Coefficients) in light
of known attack strategies (see Sect. C.3 of the full version [19]).

Next, in order to enable constructions with low noise, we suggest two ways to
modify the GGH sampling procedure [24, Sect. 6.4] such that: (i) The first one
is a variation of the original GGH sampling procedure. (ii) Our second variant
departs more from the GGH sampling procedure but obtains better efficiency in
terms of the dimension of the lattice necessary. From a cryptanalytic standpoint
(see Sect. C.3 of the full version [19]), we do not know of any attacks against
this more aggressive variation.

Additional Contribution. As mentioned earlier, recent work by Garg
et al. [27] provides the first construction of obfuscation in the weak multilin-
ear map model. However, this construction works by converting a circuit into
a branching program. Our work also provides a direct construction (obtained
by slightly modifying our main construction) for circuits, for which security can
be argued in the weak multilinear map model. Previous works [6,51] in this
direction proved security only in the ideal graded encoding model.

Independent and Follow-Up Work. In a concurrent and independent work,
Lin and Vaikuntanathan [42] obtain a construction which when instantiated
with GGH multilinear maps would yield a construction that supports low noise.
However, a bonus of our scheme is that it is proved secure in the weak multilinear
map model. Furthermore, the techniques introduced in this work are orthogonal
to the work of Lin and Vaikuntanathan [42] and are of independent interest.
Following [42], Lin [40] and Ananth and Sahai [4] provided constructions of iO
from degree 5 multilinear maps, which were subsequently improved to degree
3 by Lin and Tessaro [41]. Both these results rely on yet unrealized notions
of noise-free multilinear maps and do not deal with imperfections of candidate
constructions of multilinear maps. In particular, they have no mechanism to
protect against zeroizing attacks.

Ducas and Pellet-Mary [21] consider the security of the modified straddling
set systems proposed in this work and identify a statistical leak in one of our two
candidates. This statistical leak weakly depends on the (secret) ideal generator
g of the ideal lattice I. While [21] shows that this leak can be used to attack a
simplified instantiation of our multilinear maps, it falls short of a full attack.

7 We do not provide public encodings of zero in our constructions. Therefore, they are
insufficient to instantiate the assumptions made by Gentry et al. [29,30].
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1.2 Technical Overview

We start from a brief overview of Lin’s construction [39].

Overview of Lin’s Construction: iO from constant-degree multilinear
map. It has two main steps.

Step-1: Stronger bootstrapping. All existing candidates of indistinguisha-
bility obfuscation (iO for short) for all circuits (i.e., P/Poly) rely on “boot-
strapping” iO for weaker class of circuits. Known techniques [13,26] require
iO for NC1 to start with: the idea is to first construct a scheme only for
NC1 circuits and then use cryptographic primitives (e.g., fully homomorphic
encryption) to “bootstrap” this into a construction for P/Poly. In contrast,
[39] uses a much stronger bootstrapping technique that only requires iO (with
some necessary efficiency requirements) for specific constant-degree circuits
(as opposed to general NC1 circuits in the earlier constructions). To realize
that, only multilinear maps supporting a constant number of multiplications
suffice. Such specific circuit class is referred to as the “seed class” and denoted
by Cseed in the following.

Step-2: Special purpose iO for Cseed. In the second step, [39] gives a candidate
iO-construction for this seed class. The construction builds on the techniques
from [6,51] for obfuscating NC1 circuits directly while ensuring constant-
degree computation. Lin then proves that her construction is secure in the
ideal graded encoding model.

Our Techniques: Main Steps. To achieve our result, we build on the boot-
straping result of [39] and focus on building the iO-candidate (Step-2) for Cseed

such that it only requires a polynomial sized modulus and is secure in weak
multilinear map model. Our main steps of construction are as follows:

1. Composite-order GGH multilinear map. We propose a composite-order
extension of the GGH multilinear map candidate. Our candidate is the same
as the first proposal of GGH maps (as in the first EPRINT version of [24])
except that we use specific Lagrange Coefficients in Chinese Remaindering in
the construction. This choice allows us to argue security in the weak multi-
linear map model.

2. Security in the weak multilinear map model. We strengthen the secu-
rity of the basic iO construction of [39] via the so-called self-fortification tech-
nique, similar to [27]. As a result we are able to prove that our construction
is secure in the (GGH-based) weak multilinear map model (see Appendix F
of the full version [19] for details on the model).

3. GGH with low-noise. We propose two modifications of composite-order
GGH multilinear maps such that all “fresh” encodings that need to be pro-
vided in our construction can be provided with noise of size poly(λ). More-
over, any κ degree computation results in final encodings with noise of size
O(exp(κ)poly(λ)). Using the fact that Cseed has constant degree (i.e., κ is
constant), we obtain polynomial sized modulus q.



334 N. Döttling et al.

Overview of Composite-Order GGH Multilinear Maps. An instance of
the GGH scheme is parameterized by the security parameter λ and the required
multilinearity level κ ≤poly(λ). Based on these parameters, consider the 2n-th
cyclotomic ring R = Z[X]/(Xn + 1), where n is a power of 2 (n is set large
enough to ensure security), and a modulus q that defines Rq = R/qR (with q
large enough to support functionality). The secret encoding procedure encodes
elements of a quotient ring R/I, where I is a principal ideal I = 〈g〉 ⊂ R,
generated by g. In the composite order setting, g is equal to a product of several
(say t) “short” ring elements g1, g2, . . . , gt. These ring elements are chosen such
that the norms N(gi) = |R/〈gi〉| are equal to “large” (exponential in λ) primes
pi for each gi. By the Chinese Remainder Theorem (CRT for short) one can
observe that the following isomorphism R/I ∼= R/I1 × . . .×R/It for ideals Ii =
〈gi〉 holds. Hence each element e ∈ R/I has an equivalent CRT representation
in R/I1 × . . . × R/It that is denoted by (e�1�, . . . ,e�t�). Recall that, in this
representation it holds that e ≡ e�i�mod Ii and e�i� is called the value of e in
the i-th slot ; moreover, any arithmetic operation over R/I can be done “slot-
wise.” The short generator g (and all gi) is kept secret, and no “good” description
of I (or of Ii) is made public.

Let U denote the universe such that U = [�].8 To enforce the restricted
multilinear structure (a.k.a. straddling sets) secrets z1, . . . ,z� are sampled ran-
domly from Rq (and hence, they are “not short”). The sets v ⊆ U are called
the levels. An encoding of an element a ∈ R/I at a level v is given by
e = [ã/

∏
i∈v zi]q ∈ Rq where ã is a “short element” in the coset a + I sampled

via a specific procedure.9 The quantity ‖ã‖ is called the noise of the encoding
e and is denoted by noise(e). Rigorous calculation from the sampling procedure
(c.f. Appendix A of the full version [19]) shows that noise(e) = O(exp(t, |v|)).
Note that in Lin’s construction [39] as well as our construction, t will be a con-
stant, but |v| is not.

The arithmetic computations are restricted by the levels of the encodings:
addition is allowed between encodings in the same level whereas multiplication is
allowed at levels v and v′ when v∩v′ = ∅.10 Furthermore, the GGH map provides
a public zero-testing mechanism to check if any given encoding at level U is an
encoding of an element that is equal to 0mod g (equivalently 0mod gi in the
i-th slot for all i ∈ [t]). Notice that since the map allows κ-degree computations,
the noise in the top-level encoding resulting after such a computation can be at
most O(exp(κ, t, �)).

Reducing Noise in GGH. We first elaborate on the GGH sampling proce-
dure [24, Sect. 6.4] as follows: To encode at level v ⊆ U, the encoding procedure

8 In the actual construction the structure of the elements of U are much involved. But
for simplicity here we just assume U = [�] that suffices to convey the main idea.

9 We use the notation [·]q to denote operations in Rq.
10 Note that in the actual construction we use different restriction for multiplication

due to difference in the structure of the straddling levels and the universe.
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samples a ring element from the fractional ideal 〈g/zv〉, where zv =
∏

i∈v zi.11

Hence, the amount of noise generated by the encoding procedure depends on
the size of the generator g/zv, which is in turn dominated by the size of 1/zv.
Generally, following [25], one can sample atoms zi such that their inverse 1/zi

is short in K, say n2/q (where K is the quotient field of R). Now, expressing
zv as zv =

∏
i∈v zi we obtain ‖1/zv‖ = O(exp(|v|)/q|v|). We show in the full

version [19] (Appendix A) that the noise of the fresh encoding is dominated by
‖zv‖ · ‖1/zv‖ which grows exponentially with |v|, i.e., the cardinality of v. As
mentioned earlier, in Lin’s construction, some elements are encoded at levels v
of cardinality polynomial in λ resulting in fresh encodings of noise O(exp(λ)).

To handle the noise in encodings more carefully, we provide two possible
techniques specific to our construction. The first technique is fairly simple and
works by choosing the degree n of the ring R sufficiently large (larger than the size
of the circuit we obfuscate). With this parameter choice we can guarantee with
probability close to 1 that for all levels at which we encode and the zero-testing
level that ‖zv‖ · ‖1/zv‖ = poly(n). This comes at the expense of making the
degree n of the ring R grow with the size of the circuit (which is still polynomial
in the security parameter).

The second technique follows a different strategy and avoids the dependence
of n on the size of the circuit. We first observe that, in our obfuscation con-
struction many combinations of

∏
i zi (i.e. many subsets of [�]) terms actually

never arise. We illustrate our main idea with a toy example. Assume that we
only need to encode in levels v̂i = [�] \ {i} and vi = {i} for all i ∈ [� − 1] (and
not at the level {�}). Now, if we were to follow the above sampling procedure
then clearly we will end up with ‖zv̂i

‖ · ‖1/zv̂i
‖ = O(exp(� − 1)). Instead, we

actually follow a different strategy, namely we sample all the zi for i ∈ [� − 1]
except the last z� term “as usual”, i.e. such that 1/zi is “short” in K. However
for the one remaining term (i.e. z�) we instead sample another value z�, such
that 1/z� is “short” in K and then set

z� :=

[
z�

(
∏

i∈[�−1] zi)

]

q

.

Furthermore, we require that for i ∈ [� − 1], 1/[z−1
i ]q is also short in K. We can

now compute a value zv̂i
:= z� · [z−1

i ]q.12 Observe that it holds that [zv̂i
]q =

[
∏

i∈[�]\{i} zi]q as desired. Moreover, 1/zv̂i
is now short in K:

‖1/zv̂i
‖ = ‖1/(z� · [z−1

i ]q)‖ ≤ √
n · ‖1/z�‖ · ‖1/[z−1

i ]q‖,

which is “short”. The cost incurred by this modification is that 1/z� may not
be “short” in K. However, this will not pose a problem as z� is not used to
11 Notice that g/zv is in K. We generally use a/b ∈ K to denote “division” in the

quotient field K of R for a, b ∈ R. This is not to be confused with the notation
a · [b−1]q ∈ R which is a multiplication operation in R where the inverse [b−1]q is
in Rq.

12 Notice that, the inverse is in Rq but the product is in R.
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sample encodings anyway (recall that we do not require to sample at level {�}).
We show that such modification brings down the noise bound of fresh encodings
to O(poly(�)exp(t)) and maximum noise bound (in any encoding produced in
our construction) to O(poly(�)exp(κ, t)). In our scheme, both κ and t will be
constants.

Our Security Model: The Weak Multilinear Map Model. Typically,
obfuscation candidates13 were proven secure in the so-called ideal graded encod-
ing model. In contrast, we prove security of our construction in the weak multi-
linear map model [44], a model that captures all currently known vulnerabilities
of multilinear maps. This model is similar to the ideal multilinear map model
(a.k.a., the ideal graded encoding model). However, it additionally allows for
computation on ring elements resulting from a zero-test performed on encod-
ings of 0. The security definition requires that the adversary can not come up
with a polynomial which evaluates to 0 over these post-zero ring elements. In
the composite order setting we require that the adversary can not come up
with a polynomial which evaluates to 0 in any of the slots. Unlike the ideal
model, this model is not entirely agnostic about the underlying multilinear map
instantiation. In particular, our weak multilinear map model is based on the
composite-order GGH multilinear maps and captures all the attack directions
investigated in our cryptanalysis.

Self-fortification from Constant-Degree Multilinear Map. To prove
security of our obfuscation candidate in the weak multilinear map model, we
make another modification to Lin’s obfuscation scheme for Cseed using a self-
fortification technique similar to [27].

Recall that multilinear maps allow for testing of zero-encodings at the uni-
verse set (a.k.a. the top level). All known attacks against multilinear map candi-
dates exploit the “sensitive information” leaked upon a successful zero-test. To
protect against these attacks, the idea of [27] is to render this “sensitive leak-
age” useless by “masking” it with a PRF output. Similarly, we achieve this by
augmenting the given circuit C with a parallel PRF computation, the output
of which is used to mask the leakage from the real computation. More care is
required so that the PRF computation does not affect the actual computation
of C and “comes alive” only after a successful zero-test.

Before we describe our transformation, let us first describe the techniques of
obfuscating circuits directly of [6,51], also used in [39]. At a high level, consider a
universal circuit U that takes as input the circuit (to obfuscate) C and the input
x to C and outputs C(x). The obfuscation consists of a collection of values in R/I
encoded at carefully chosen levels (i.e., straddling sets). Multiple slots are used
where w.l.o.g. the first slot is used for actual computation and a bunch of other

13 There are some works e.g. [7,11] that prove security of their constructions in slightly
stronger models than the ideal graded encoding model which captures some attacks
on multilinear maps.
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slots are added with random values. These random values along with the choice
of straddling sets ensure that the random values are nullified only with a correct
(and consistent) evaluation corresponding to some input x. More precisely, a cor-
rect evaluation leads to an encoding of (U(C, x)mod g1, 0mod g2, . . . , 0mod gt)
at the highest level U; zero-testing of which would reveal the output. On the
other hand, any incorrect computation would not cancel out all random values,
and hence would result in a non-zero value in mod g with all but negligible
probability.

Our idea is to add an extra slot (say the second slot) for PRF computation
such that a correct computation produces an encoding of (U(C, x)mod g1, g2 ·
U(CPRFψ , x), 0mod g3, . . . , 0mod gt+1)14 at the top level.15 Notice that due to a
g2 multiplier in the second slot, the computation is not affected by the PRF
output as the value in the second slot is still 0mod g2. Nonetheless, we show
that a successful zero-test returns a ring element (say f) in R/I that has an
additive blinding factor α · CPRFψ (x) for some α ∈ R/I. Furthermore, we are
able to show that as long as α is invertible in (the composite order quotient
ring) R/I the CRT representation of f given by (f�1�, . . . ,f�t�) is “somewhat
random” in each slot (formally, f�i� has high min-entropy).

Cryptanalysis. In the full version [19] (Appendix C.2), we discuss our change to
the composite order generators g from a cryptanalytic perspective. In a nutshell,
existing lattice attacks, such as attacks against overstretched NTRU assumptions
[3,35], do not exploit the specific distribution of instances, but rather geometric
properties (i.e. noise terms being short). Thus, our construction resists currently
known lattice attacks and there is no reason to believe choosing composite gener-
ators g =

∏
i gi leads to less secure schemes than choosing primes ones. However,

we do know that top-level encodings of zero, with correlated randomness, can be
dangerous. This is especially the case if they can be used to obtain an element
in the ideal 〈g〉. In the composite order setting, we expect potential attacks if an
element in the ideal 〈gi〉 for any i can be computed. However, all these potential
attacks are captured by the weak multilinear map model that we consider. At
a high level, our proof in the weak multilinear map model guarantees that no
element in the ideal 〈gi〉 for any i can be computed.

In the full version [19] (Appendix C.3), we discuss reasons for the believed
security of our variants of the GGH sampling procedure.

Roadmap. The rest of the paper is organized as follows. After providing
notations and basic preliminaries on lattices in Sect. 2, in Sect. 3 we briefly
summarize Lin’s bootstrapping theorem and a few related definitions. Our
main iO-construction is provided in Sect. 4. We defer the rest to the full ver-
sion [19], in which we provide a composite-order GGH multilinear map candidate

14 CPRFψ is a circuit for computing PRF with the key ψ.
15 In the construction this is implemented by canceling out the PRF value by multi-

plying with an appropriate encoding that encodes a value which is 0mod g2 in the
second slot.
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(Appendix A); our our modifications on the composite-order GGH multilinear
map to achieve low noise (Appendix B); a cryptanalytic discussion of our mod-
ifications to the asymmetric GGH multilinear maps (Appendix C); the formal
description of weak multilinear map model (Appendix F); some additional pre-
liminaries on number fields and ideal lattices (Appendix E).

2 Preliminaries

Notations. The natural security parameter throughout this paper is λ, and all
other quantities are implicitly assumed to be functions of λ. We use standard
big-O notation to classify the growth of functions, and say that f(λ) = Õ(g(λ))
if f(λ) = O(g(λ) · logc λ) for some fixed constant c. We let poly(λ) denote an
unspecified function f(λ) = O(λc) for some constant c. A negligible function,
denoted generically by negl(λ), is an f(λ) such that f(λ) = o(λ−c) for every
fixed constant c. We say that a function is overwhelming if it is 1 − negl(λ).

The statistical distance between two distributions X and Y over a domain D
is defined to be 1

2

∑
d∈D |Pr[X = d] − Pr[Y = d]|. We say that two ensembles of

distributions {Xλ} and {Yλ} are statistically indistinguishable if for every λ the
statistical distance between Xλ and Yλ is negligible in λ.

Two ensembles of distributions {Xλ} and {Yλ} are computationally indis-
tinguishable if for every probabilistic poly-time non-uniform (in λ) machine A,
|Pr[A(1λ,Xλ) = 1] − Pr[A(1λ, Yλ) = 1]| is negligible in λ. The definition is
extended to non-uniform families of poly-sized circuits in the standard way.

Lemma 1 (Schwarz-Zippel Lemma). Let F be a finite field and let p ∈
F[x1, . . . , xn] be a multivariate polynomial of degree at most d. Further let
X1, . . . , Xn be independently distributed random variables on F such that
H∞(Xi) ≥ k for all i. Then it holds that

Pr[p(X1, . . . , Xn) = 0] ≤ d

2k
,

where the probability runs over the random choices of X1, . . . , Xn.

2.1 Lattices

We denote set of complex number by C, real numbers by R, the rationals by Q

and the integers by Z. For a positive integer n, [n] denotes the set {1, . . . , n}.
By convention, vectors are assumed to be in column form and are written using
bold lower-case letters, e.g. x. The ith component of x will be denoted by xi.
We will use xT to denotes the transpose of x. For a vector x in R

n or C
n and

p ∈ [1,∞], we define the �p norm as ‖x‖p =
(∑

i∈[n] |xi|p
)1/p

where p < ∞, and
‖x‖∞ = maxi∈[n] |xi| where p = ∞. Whenever p is not specified, ‖x‖ is assumed
to represent the �2 norm (also referred to as the Euclidean norm).
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Matrices are written as bold capital letters, e.g. X, and the ith column vector
of a matrix X is denoted xi. Finally we will denote the transpose and the inverse
(if it exists) of a matrix X with XT and X−1 respectively.

A lattice Λ is an additive discrete sub-group of Rn, i.e., it is a subset Λ ⊂ R
n

satisfying the following properties:

(subgroup) Λ is closed under addition and subtraction,
(discrete) there is a real ε > 0 such that any two distinct lattice points
x �= y ∈ Λ are at distance at least ‖x − y‖ ≥ ε.

Let B = {b1, . . . , bk} ⊂ R
n consist of k linearly independent vectors in R

n. The
lattice generated by the B is the set

L(B) = {Bz =
k∑

i=1

zibi : z ∈ Z
k},

of all the integer linear combinations of the columns of B. The matrix B is called
a basis for the lattice L(B). The integers n and k are called the dimension and
rank of the lattice. If n = k then L(B) is called a full-rank lattice. We will only
be concerned with full-rank lattices, hence unless otherwise mentioned we will
assume that the lattice considered is full-rank.

For lattices Λ′ ⊆ Λ, the quotient group Λ/Λ′ (also written as ΛmodΛ′) is
well-defined as the additive group of distinct cosets v + Λ′ for v ∈ Λ, with
addition of cosets defined in the usual way.

2.2 Gaussians on Lattices

Review of Gaussian measure over lattices presented here follows the development
by prior works [1,2,32,43,48]. For any real s > 0, define the (spherical) Gaussian
function ρs : Rn → (0, 1] with parameter s as:

∀x ∈ R
n, ρs(x) = exp(−π〈x,x〉/s2) = exp(−π‖x‖2/s2).

For any real s > 0, any n-dimensional lattice Λ and any vector c ∈ R
n, define

the (spherical) discrete Gaussian distribution over the coset Λ + c as:

∀x ∈ Λ + c,DΛ+c,s(x) =
ρs(x)

ρs(Λ + c)
.

Klein [36] and Gentry, Peikert and Vaikuntanathan [32] provide an efficient
algorithm to sample from a discrete gaussian given a good basis. We will use a
version of this algorithm due to Peikert [47] which directly samples from a coset
of a lattice.

Theorem 1 ([47], Theorem 4.2). There exists an efficient algorithm SampleD,
which given a basis B of an n-dimensional lattice Λ and a parameter s ≥ ‖B‖ ·
ω(

√
log(n)) and any vector c efficiently samples a distribution within negligible

distance of DΛ+c,s.
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Smoothing Parameter. Micciancio and Regev [43] introduced a lattice quan-
tity called the smoothing parameter, and related it other lattice parameters.

Definition 1 (Smoothing Parameter, [43, Definition 3.1]). For an
n-dimensional lattice Λ, and positive real ε > 0, we define its smoothing param-
eter denoted ηε(Λ), to be the smallest s such that ρ1/s(Λ∗ \ {0}) ≤ ε.

Intuitively, for a small enough ε, the number ηε(Λ) is sufficiently larger than a
fundamental parallelepiped of Λ so that sampling from the corresponding Gaus-
sian “wipes out the internal structure” of Λ. The following Lemma 2 formally
provide this claim. Finally Lemma 3 provides bounds on the length of a vector
sampled from a Gaussian.

Lemma 2 ([32, Corollary 2.8]). Let Λ,Λ′ be n-dimensional lattices, with Λ′ ⊆
Λ. Then for any ε ∈ (0, 1

2 ), any s ≥ ηε(Λ′), the distribution of (DΛ,s (mod Λ′))
is within a statistical distance at most 2ε of uniform over (Λ (mod Λ′)).

Lemma 3 ([43, Lemma 4.4] and [9, Proposition 4.7]). For any n-dimensional
lattice Λ, an s ≥ ηε(Λ) for some negligible ε, any vector c and any constant
δ > 0 we have

Pr
x←DΛ+c ,s

[

(1 − δ)s
√

n

2π
≤ ‖x‖ ≤ (1 + δ)s

√
n

2π

]

≥ 1 − negl(n).

Invertibility of Ring Elements. Let R denote the 2nth cyclotomic ring and
let Rq denote R/qR for a prime q. We note that Rq is also a ring and not all
elements in it are invertible. Let R×

q denote the set of elements in Rq that are
invertible. We next provide a lemma of Stehlé and Steinfeld that points out that
a (large enough) random element is Rq is also in R×

q with large probability.

Lemma 4 ([50, Lemma 4.1]). Let n ≥ 8 be a power of 2 such that Xn +1 splits
into n linear factors modulo q ≥ 5. Let σ ≥ √

n ln(2n(1 + 1/δ))/π · q1/n, for an
arbitrary δ ∈ (0, 1/2). Then

Pr
f←DZn,σ

[f (mod q) /∈ R×
q ] ≤ n(1/q + 2δ).

We will use the following simple lemma to lower bound the length of the
shortest vector in an ideal lattice via its norm.

Lemma 5 Let I ⊂ R be an ideal lattice. Then it holds that λ1(I) ≥ √
n ·

N(I)1/n.

Babai’s Roundoff Algorithm. We will need to compute short representatives
of residual classes xmod I ∈ R/I for ideals I = 〈g〉. A simple algorithm for
this task is Babai’s roundoff algorithm. Given an x ∈ R, we can find a small
representative x̂ of xmod I by computing

x̂ = x − �x · g−1� · g,
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where the �·� operation round each component to the nearest integer. Clearly,
it holds that x̂ ≡ xmod I and

‖x̂‖ = ‖x − �x · g−1� · g‖ = ‖(x · g−1 − �x · g−1�) · g‖
≤ √

n · ‖x · g−1 − �x · g−1�‖ · ‖g‖ ≤ n

2
· ‖g‖,

as x · g−1 − �x · g−1� ∈ K is a field element with coefficients of size at most 1/2.
Therefore, if g is short then so is x̂.

3 Bootstrapping iO for Special Purpose Circuits

In this section, we state the main results from [39] relevant to our work.

Theorem 2 (Bootstrapping iO for constant degree circuits, [39], The-
orem 5]). Assume sub-exponential hardness of LWE, and the existence of a
sub-exponentially secure constant-degree PRG. There exist a family of circuit
classes of constant degree, such that iO for that family with universal efficiency
can be bootstrapped into iO for P/poly.

Universal efficiency means the following: iO for constant degree circuits has
universal efficiency if the run-time of the obfuscator is independent of the degree
of the computation. More precisely, there is a universal polynomial p such that for
every circuit C of degree d, obfuscating C takes time p(1λ, |C|), for a sufficiently
large λ.

Moreover, in Lin’s iO construction, it does not suffice that the circuits of the
seed class are of a constant degree. In fact, the degree of multilinearity required
of multilinear maps grows with the type degree and input types of the special
circuits used for bootstrapping in the above theorem.

One of the main contributions of [39] is to prove that the seed class of circuits
indeed has constant number of input types as well as constant type degree. For
the purpose of being self-contained, we define the input types and type degree
first.

Definition 2 (Type Function, [39], Definition 18). Let Σ be any alphabet
where every symbol in Σ is represented as a binary string of length � ∈ N. Let
U(�, �) be an arithmetic circuit over domain Σc × {0, 1}m with some m, c ∈ N.
We say that U has c input types and assign every wire w ∈ U with a type
tw ∈ N

c+1 through the following recursively defined function tw = type (U , w).

– Base Case: If w is the ith input wire,
• If i ∈ [(k − 1)� + 1, k�] for some k ∈ [c] (meaning that w describes xk),

assign type tw = 1k (a vector with one at position k and zeros everywhere
else).

• If i ∈ [c� + 1, c� + m] (meaning that w describes the circuit C), assign
type tw = 1c+1.
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– Recursion: If w is the output wire of gate g with input wires u, v of types
tu = type (U , u) and tv = type (U , v) respectively.

• If g is an addition/subtraction gate and tu = tv, then assign type tw = tu.
• Otherwise (i.e., g is a multiplication gate or tu �= tv), then assign tw =
tu + tv.

Definition 3 (Type Degree). We define the type degree of the following
objects:

– The type degree of a wire w of U is tdeg (U , w) = |type (U , w)|1.
– The type degree of U is tdeg (U) = maxw∈U (tdeg (U , w)).

The fact that the seed class of [39] has constant input types and constant
type degree is summarized in the following lemma.

Lemma 6 (The Special-Purpose Circuits Have Constant Type-
Degree, [39], Lemma 5). The class of special purpose circuits {PT,n

λ } has
universal arithmetic circuits {Uλ} of constant cT,n input-types, constant type
degree tdegT,n, and size u(1λ, n, log T ), for a universal polynomial u indepen-
dent of T, n.

Given the above lemma, [39] gives an iO construction in the ideal graded
encoding model, where the oracle has degree d = O(tdeg+ c), i.e. a constant. In
our work, we give an iO construction that improves upon the construction of [39]
in two ways. We show that our construction is secure against all known attacks
including annihilation attacks [44] and has only a polynomial noise growth as
mentioned in Sect. 1.

4 Construction of the Obfuscator

In this section, we give our iO construction for the seed class of circuits from [39]
and prove security in the weak multilinear map model. We build on the construc-
tion of [39] in composite-order ideal graded encoding model, and use new ideas to
achieve security in the weak multilinear map model and constant noise growth.

[39] gives a construction for obfuscation which obfuscates circuits with multi-
bit outputs directly. The reason stated in [39] is the following: Direct conversion
from a multi-bit output circuit C to a single-bit output circuit C̄ by taking an
additional input for an index of the output wire as C̄(x, i) = C(x)i might not
preserve constant type degree of C (which is crucial for the construction). This is
because the multiplexer circuit that chooses the ith output depending on input i
might not have constant type degree. In this work, we observe that obfuscating
one-bit output circuits suffices if we give out a different obfuscation per-output
bit of the circuit. Let Ci = C(x)i denote the circuit that that outputs the ith

bit of the circuit. We can easily construct Ci by removing some gates of C that
do not contribute to ith output wire. This transformation does not increase the
type-degree. Hence, for simplicity, we only focus on obfuscating Lin’s seed class
of circuits for one bit outputs.
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Construction Overview. Let C be a circuit that has a single bit output and
which can be computed by a universal arithmetic circuit U(x, C). Recall that
x ∈ Σc and each input wire takes in a symbol from Σ as input. At a high level,
in Lin’s [39] construction, for every input wire and every symbol, encodings
are given per symbol bit. Also, encodings are given per description bit of the
circuit C. Then given an input x, an evaluator can simply pick the encodings
corresponding to x, C and homomorphically evaluate U on the encodings of x and
C to obtain an encoding of U(x, C), which can then be zero-tested. This basic
idea is not secure and [6,39] need a composite ring with many primes to make it
secure. The actual computation happens in one of the sub-rings and computation
on random elements happen in other sub-rings to protect against input-mixing
attacks as well as low-level zeroes. Moreover, they also need carefully chosen
straddling sets (to encode the elements) to ensure input consistency.

In our case, the goal is to prove security against post-zeroizing computations
as well. For this, as already mentioned in the introduction, the main idea is
the following: We add one more sub-ring where a PRF is computed.16 The
key idea is that though the PRF is being computed in only one of the sub-
rings, after zero-testing it yields a random ring element in all the sub-rings, in
particular, a random element in Rmod I, where I = 〈g〉 (c.f. Appendix A of the
full version [19] for definitions of R and I). So we start by computing a one-bit
PRF on input x in one of the sub-rings.

To argue security, we need that the PRF output has sufficient min-entropy.
But since the PRF has a one-bit output similar to U , it does not have enough
min-entropy. So the final idea is to compute multiple PRFs in parallel and com-
bine them to get a ring element. In doing this, we need to use an unbounded
addition gate and need to take care that it does not blow up the type-degree
of the computation. For this, we ensure that, before being added, all PRF out-
puts are at the same type-degree or straddling set and also have the same El-
Gamal randomness of the encodings. Recall that [6,39] use El-Gamal encodings
to encode elements and to be able to add two encodings without increasing the
type-degree, it is important that they have the same randomness r term.

Finally, the straddling sets are matrices of polynomial size and as detailed
in Appendix A.2 of the full version [19] if we pick a zij corresponding to each
entry in the matrix, the noise of encodings would be too high. We explain
in Appendix B of the full version, how we change the GGH instantiation
of Appendix A (of the full version) to control the noise growth.

4.1 Setting and Parameters

Consider an arbitrary circuit class {Cλ} with universal circuits {Uλ}. The uni-
versal circuit U = Uλ has the following parameters:

– alphabet Σ with |Σ| symbols, each of length �, both |Σ| and � being poly(λ),

16 We note that such a PRF can be computed using constant input types and constant
type degree. See more details in Appendix G.2 of the full version [19].
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– domain Σc × {0, 1}m, that is, every circuit C ∈ Cλ has input x = x1, · · · , xc

where xk ∈ Σ for every k ∈ [c] and can be described by an m-bit string,
– degree of the universal circuit is d = deg (U),
– an output wire o, denoted by t = type (U , o) ∈ N

c+1 the type of the output
wire (see Definition 2). Note that t[k] denotes the type degree of xk in the
output wire.

Recall the ring R = Z[X]/(Xn + 1) defined in the composite-order GGH
graded encoding scheme (see Appendix A.1 of the full version [19]). In our con-
struction, we will use PRF circuits with 1 bit output. Our construction uses n
independent PRFs, where n is the dimension of R. Let CPRFt

: Σc → {0, 1} be
a PRF for all t ∈ [n]. As already shown in [39], these circuits also satisfy the
constraints for constant input types and constant type degree as the seed-class
(c.f. Lemma G.9 of the full version [19]). More precisely, CPRFt

(x) is a circuit
computing 1 bit for every t ∈ [n], and each circuit can be described by an m-bit
string.

Encoding Levels: We specify the levels used in the iO construction in Fig. 1.
All levels are represented as a (|Σ| + 1) × (c + 2) matrices over N.

Notation: In the following construction, we abuse the notations 0/1 to refer to
both bits 0/1 and ring elements 0/1.

4.2 Our Obfuscator

Input: Security parameter λ, program description C ∈ Cλ.
Output: Obfuscated program with the same functionality as C.
Algorithm: Our obfuscator proceeds as follows:

1. Instantiate a (c + 3)-composite graded encoding scheme (params,
sparams,pzt) ← InstGen(1λ, 1c+3,vzt), and receive a ring R ∼= R1 × R2 ×
· · · × Rc+3. Note that Ri

∼= Zpi
for some prime pi for all i ∈ [c + 3]. Hence,

given sparams it is easy to sample a uniform element in any of the sub-rings.
2. Compute encoding Z∗ = [w∗]v∗ for w∗ = (1, 1, 1, ρ∗

1, · · · , ρ∗
c) where ρ∗

k
$←−

Rk+3 for ∀k ∈ [c].
3. Encode the input symbol. For ∀k ∈ [c], encode the k-th input symbol:

– For every symbol s ∈ Σ, sample rk
s

$←− R and compute Rk
s =

[
rk
s

]
vk

s
.

– For ∀j ∈ [�], sample yk
j

$←− R1.
– For every symbol s ∈ Σ, and every j-th bit sj , compute encoding

Zk
s,j =

[
rk
s · wk

s,j

]

vk
s+v∗ for wk

s,j =
(
yk

j , sj , sj , ρ
k
s,j,1, · · · , ρk

s,j,c

)
where

(
ρk

s,j,1, · · · , ρk
s,j,c

) $←− R4 × · · · × Rc+3.
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Fig. 1. Levels used in the obfuscation.

4. Encode the circuit and PRFs. Compute encoding Rc+1 =
[
rc+1

]
vc+1

where rc+1 $←− R. For ∀t ∈ [n], generate the following encodings for program
description: We will encode the circuit C in R2 and circuit CPRFt

in R3.
(a) For ∀j ∈ [m], compute encoding Zc+1

t,j =
[
rc+1 · wc+1

t,j

]

vc+1+v∗

for wc+1
t,j =

(
yc+1

t,j , Cj , CPRFt

j , ρc+1
t,j,1, · · · , ρc+1

t,j,c

)
where yc+1

t,j
$←− R1 and

(
ρc+1

t,j,1, · · · , ρc+1
t,j,c

) $←− R4 × · · · × Rc+3.
(b) Compute encoding Zc+1

t,m+1 =
[
rc+1 · wc+1

t,m+1

]

vc+1+v∗

for wc+1
t,m+1 =

(
yc+1

t,m+1, 1, et, ρc+1
t,m+1,1, · · · , ρc+1

t,m+1,c

)

where et is an element in the ring R of the composite order GGH graded
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encoding scheme (see Appendix A of the full version [19]),17 yc+1
t,m+1

$←− R1

and
(
ρc+1

t,m+1,1, · · · , ρc+1
t,m+1,c

) $←− R4 × · · · × Rc+3. During computation,
these encodings will be used to combine the n one-bit PRF computations
into a ring element.

5. Encode c elements for the purpose of canceling ρ in the last c slots: For
∀k ∈ [c] sample ŵk =

(
ŷk, β̂k, α̂k, ρ̂k

1 , · · · , ρ̂k
c

)
where ŷk, β̂k, α̂k, ρ̂k

1 , · · · , ρk
c

are all uniformly random except that ρ̂k
k = 0 and generate the following

encodings:
For all s ∈ Σ, sample r̂k

s
$←− R and compute encodings R̂k

s =
[
r̂k
s

]
v̂k

s
and

Ẑk
s =

[
r̂k
s · ŵk

]
v̂k

s+v∗ .

For the following: denote ŷ =
∏c

k=1 ŷk, β̂ =
∏c

k=1 β̂k, α̂ =
∏c

k=1 α̂k, ŵ =
∏c

k=1 ŵk =
(
ŷ, β̂, α̂, 0, · · · , 0

)
.

6. Encode an element to cancel out the PRF computation in the 3rd slot:
Compute encodings R̃ = [r̃]ṽ and Z̃ = [r̃ · w̃]ṽ+v∗ for r̃

$←− R and w̃ =
(
ỹ, β̃, 0, ρ̃1, · · · , ρ̃c

)
where ỹ, β̃, ρ̃1, · · · , ρ̃c are all uniformly random in respec-

tive sub-rings.
7. Encode an element for the purpose of authentication of computation: Com-

pute encodings R̄ = [r̄]v̄ and Z̄ = [r̄ · w̄]v̄+Dv∗ , where D = d + c + 2, for

r̄
$←− R and w̄ = ŵ · w̃ · (ȳ, n, 0, 0, · · · , 0), where ȳ =

∑n
t=1

(
ȳt · yc+1

t,m+1

)
for

ȳt =
U

({
y1

j

}

j∈[�]
, · · · ,

{
yc

j

}

j∈[�]
,
{
yc+1

t,j

}

j∈[m]

)
.

8. The obfuscation. The obfuscated program consists of the following:
– The evaluation parameters params,pzt.
– The encoding Z∗.
– For ∀k ∈ [c],∀s ∈ Σ, the encodings Rk

s , R̂k
s , Ẑk

s , and for ∀j ∈ [�], Zk
s,j .

– Rc+1, and for ∀t ∈ [n],∀j ∈ [m + 1], Zc+1
t,j .

– The encodings R̃, Z̃, R̄, Z̄.

Efficiency: It is easy to see that the number of encodings in the obfuscated
program is bounded by poly(1λ, S(λ)), where S(λ) is the size of Uλ. The size of
each encoding and �1-norm of vzt are also bounded by poly(1λ, S(λ)). It is easy
to check that all poly above are fixed universal polynomials. Therefore the size of
obfuscation is bounded by p(1λ, S(λ)) for a universal polynomial, which satisfies
the universal efficiency requirement in Sect. 3.

17 The values of et is specified in the proof of Theorem G.20 of the full version [19],
which is crucial for proving post zeroizing security, but does not affect the correctness
of the obfuscator.
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Evaluation: To evaluate the program on an input x = x1, . . . , xc ∈ Σc, we will
use the following encodings:

{(
Rk

xk , Zk
xk,j

)}

k∈[c],j∈[�]
,

{(
Rc+1, Zc+1

t,j

)}

t∈[n],j∈[m+1]
,

{(
R̂k

xk , Ẑk
xk

)}

k∈[c]
,

(
R̃, Z̃

)
,
(
R̄, Z̄

)
, Z∗.

We in-line the analysis of correctness in the description of the evaluation below.

Fig. 2. Computation over El-Gamal encodings

1. For every t ∈ [n], do the following:
(a) Consider the encodings

(
Rk

xk , Zk
xk,j

)
for k ∈ [c], j ∈ [�], and

(
Rc+1, Zc+1

t,j

)

for j ∈ [m]. Apply the circuit U on these pairs of encodings. More specif-
ically, we recursively associate every wire α in U with a pair of encodings(
Rα = [rα]vα

, Zα = [rα · wα]vα+dαv∗
)

in El-Gamal form as follows:
– Base Case: For every k ∈ [c] and every j ∈ [�], the jth input wire

of xk is associated with pair
(
Rk

xk , Zk
xk,j

)
. For every j ∈ [m], the jth

program bit is associated with
(
Rc+1, Zc+1

t,j

)
.

– Recursion: For every gate g ∈ U with input wires α, β and out-
put wire σ, apply the computation as described in Fig. 2, over the
encodings Z∗, (Rα, Zα) , (Rβ , Zβ) and the operator of g.
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A pair of encodings for the output wire o is obtained:
(
RU = [rU ]vU , Zt,U = [rU · wt,U ]vU+dv∗

)
,

where (let 1 denote an all-one vector, 0 an all-zero vector, and let 1i denote a
vector with one at position i and zeros everywhere else)

vU =
[
t[1] · 1x1 · · · t[c] · 1xc t[c + 1] · 1 0

0 · · · 0 0 0

]

,

wt,U =
(
U

({
y1

j

}
j∈[�]

, · · · ,
{
yc

j

}
j∈[�]

,
{
yc+1

t,j

}

j∈[m]

)
,U (x, C) ,U

(
x, CPRFt

)
,

�, · · · , �)

=
(
ȳt, C(x), CPRFt

(x), �, · · · , �
)

.

In the above, the values denoted by � do not matter for correctness, and hence
are not mentioned explicitly.
(b) Take the product of (RU , Zt,U ) with

(
Rc+1, Zc+1

t,m+1

)
and obtain a pair of

encodings (computation done as in Fig. 2):
(
R̈U = [r̈U ]v̈U , Z̈t,U = [r̈U · ẅt,U ]v̈U+(d+1)v∗

)
, where

v̈U =
[
t[1] · 1x1 · · · t[c] · 1xc (t[c + 1] + 1) · 1 0

0 · · · 0 0 0

]

,

ẅt,U = wt,U · wc+1
t,m+1 =

(
ȳt · yc+1

t,m+1, C(x), CPRFt

(x) · et, �, · · · , �
)

.

Remark 1. Note that our construction ensures that
(
R̈U , Z̈t,U

)
has the same

level and same r̈U for every t ∈ [n]. This is crucial to do the next step of addition
of n terms using constrained addition. This ensures that the addition does not
grow the levels of multilinearity needed.

2. Take the sum of
{(

R̈U , Z̈t,U
)}

t∈[n]
and obtain a pair of encodings:

(
R̈U = [r̈U ]v̈U , Z̈U = [r̈U · ẅU ]v̈U+(d+1)v∗

)
, where

ẅU =
n∑

t=1

ẅt,U =
(
ȳ, n · C(x), CPRF(x), �, · · · , �

)
,

where CPRF(x) =
∑

t∈[n] e
tCPRFt

(x).

3. Take the product of
(
R̈U , Z̈U

)
with the product of

{(
R̂k

xk , Ẑk
xk

)}

k∈[c]
and

obtain a pair:
(
R̂U = [r̂U ]v̂U , ẐU = [r̂U · ŵU ]v̂U+(d+1+c)v∗

)
, where

v̂U =
[
t[1] · 1 · · · t[c] · 1 (t[c + 1] + 1) · 1 0

1 · · · 1 0 0

]

,

ŵU = ŵ · ẅU =
(
ŷȳ, β̂n · C(x), α̂ · CPRF(x), 0, · · · , 0

)
.
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4. Take the product of
(
R̂U , ẐU

)
with

(
R̃, Z̃

)
and obtain a pair:

(
R̃U = [r̃U ]ṽU , Z̃U = [r̃U · w̃U ]ṽU+Dv∗

)
, where

ṽU =
[
t[1] · 1 · · · t[c] · 1 (t[c + 1] + 1) · 1 0

1 · · · 1 1 0

]

,

w̃U = w̃ · ŵU =
(
ỹŷȳ, β̃β̂n · C(x), 0, 0, · · · , 0

)
.

5. Subtract the pair
(
R̄, Z̄

)
from

(
R̃U , Z̃U

)
and obtain the pair:

(
R̄U = [r̄U ]v̄U , Z̄U = [r̄U · w̄U ]v̄U+Dv∗

)
, where

v̄U =
[
t[1] · 1 · · · t[c] · 1 (t[c + 1] + 1) · 1 1

1 · · · 1 1 0

]

,

w̄U =
(
0, β̃β̂n · (C(x) − 1) , 0, 0, · · · , 0

)
.

6. Finally, apply zero testing on Z̄U . If isZero(params,pzt, Z̄U ) = 1 then output
1, otherwise output 0.
As analyzed above, in an honest evaluation, Z̄U is an encoding of 0 under vzt

iff C(x) = 1 with high probability over choice of β̃, β̂. Hence the correctness
of the evaluation procedure follows.
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Abstract. Private comparison protocols are fundamental to the field
of secure computation. Recently, Lu et al. (ASIACCS 2018) proposed
a new protocol, XCMP, which is based on a ring-based fully homomor-
phic encryption (FHE) scheme. In that scheme, two μ-bit integers a
and b are compared in encrypted form without revealing the plaintext
to an evaluator. The protocol outputs a bit in encrypted form, which
indicates whether a > b. XCMP has the following three advantages:
the output can be reused for further processing, the evaluation is per-
formed without any interactions with a decryptor having a secret key,
and the required multiplicative depth is only 1. However, XCMP has
two potential disadvantages. First, the protocol result preserves both
additive and multiplicative homomorphisms over Zt only, whereas the
underlying FHE scheme can support a much larger plaintext space of
Zt[X]/(XN + 1) for a prime t and a power-of-two N ; this restricts the
functionality of applications using the comparison result. Second, the bit
length μ of the integers to be compared is no more than log N (typi-
cally 16 bits, at most). Thus, it is difficult for XCMP to handle larger
integers. In this paper, we propose a non-interactive private compari-
son protocol that solves the aforementioned problems and outputs an
additively and multiplicatively reusable comparison result over the ring
without adding an extremely large computational overhead over XCMP.
Moreover, by regarding a μ (> 16)-bit integer as a sequence of chunks,
we show that the multiplicative depth required for our comparison pro-
tocol is logarithmic in the number of chunks. This value is much smaller
than the näıve solution with a multiplicative depth of log μ. Experiment
results demonstrate that our protocol introduces a subtle overhead over
XCMP. Remarkably, we experimentally demonstrate that our protocol
for a larger domain is comparable to the construction given by one of
the state-of-the-art bitwise FHE schemes.

Keywords: Homomorphic encryption · Secure computation
Non-interactive private comparison

1 Introduction

Private comparison is a fundamental protocol in the field of secure computation.
The protocol takes two private μ-bit integers a and b as input and outputs a bit
c© Springer Nature Switzerland AG 2018
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that indicates whether a > b. While there exist variants of private comparison
protocols, we focus on two-party private comparison protocol since it is already
adopted in many applications [4,6,17]. The protocol can be constructed from
an interactive or non-interactive setting [15,19,24,27]. The interactive setting
requires the parties to be online during the protocol evaluation, which generates
a burden to the parties, i.e., they have to consume bandwidth and turn on their
devices (machines) until the protocol finishes. In order to mitigate such burden,
one can construct a non-interactive protocol where a third party (evaluator)
receives two private integers from the two parties and runs private comparison
protocol on his machine. Then, the two parties are able to go offline during the
evaluation. Similarly, we can mitigate a burden for one of the two parties by
letting the other party being the evaluator.

The non-interactive comparison protocol can be constructed through homo-
morphic encryption [12,15,22,24,25], where the protocol supposes a decryptor
having a secret key and an evaluator. The evaluator takes two encrypted integers
as input and the evaluation is performed on his machine without interaction with
the decyptor. The protocol output is either an indicator that reveals whether
the Boolean expression a > b holds [15,24] or the result of a computation result
based on the indicator [22]. The former output can be achieved by simply sub-
tracting the difference of the encrypted integers from all possible integers in the
integer domain, followed by decryption and determination of whether a zero is
present in the resultant list [15,24,25]. Thus, it is difficult to reuse the result
in encrypted form as the indicator can only be obtained after the decryption.
In contrast, the latter approach typically requires that a plaintext integer is
encoded as a bit string [12]. With fully homomorphic encryption (FHE), we can
trivially obtain both additive and multiplicative homomorphisms for the com-
parison result over the native plaintext space at the cost of a large multiplicative
depth of O(log μ). Therefore, both time and space complexities of FHE scheme
increase. Thus, there is no efficient non-interactive comparison where the output
of the method preserves both additive and multiplicative homomorphisms.

Recently, this problem was noted by Lu et al. [22]. They partially addressed
this issue by introducing a new private comparison protocol using ring-based
FHE, called XCMP. Since it relies on a new integer encoding method, XCMP
allows to evaluate the comparison with a multiplicative depth of only 1 for
μ ≤ 16. The protocol takes two encrypted μ-bit integers as input and privately
compare them on the evaluator, with no interactions with the decryptor. After
the evaluation, the encrypted result represents the indicator. This protocol can
efficiently evaluate the comparison with multiplicative depth only one for rel-
atively small domain, and the comparison result can be used for subsequent
computations that require additive homomorphism (i.e., the approach is output
expressive [22]).

However, XCMP has two main disadvantages. First, the comparison result
provides additive and multiplicative homomorphisms over Zt only, which
restricts the functionality of subsequent computations. In contrast, the encryp-
tion scheme provides much larger space, i.e., a polynomial ring Zt[X]/(XN + 1)
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for a prime t and a power-of-two N . Second, XCMP does not scale in the larger
message domain.

In this paper, we continue to study the same setting as Lu et al. [22], but
target a more practical and a more efficient result. More precisely, we make the
following contributions:

– We propose a non-interactive and fully output expressive private comparison
protocol providing a comparison result that is fully reusable over the polyno-
mial ring, with no interactions with the decryptor. To the best of our knowl-
edge, our protocol is the first non-interactive comparison protocol where the
comparison result preserves both additive and multiplicative homomorphisms
over the polynomial ring without encoding integers into bit strings. Our con-
struction is performed by introducing a constant term extraction technique
over the ring.

– We propose a more efficient non-interactive private comparison protocol for
a large domain. The required multiplicative depth is

⌈
log� µ

logN �⌉ + 1, which
is less than the näıve solution with a depth of log μ. We discuss the outcome
that the multiplicative depth of the proposed protocol is significantly reduced
from the theoretical construction given by Lu et al. [22] for μ ≤ 2 log N . The
constant term extraction also contributes to the construction. Moreover, we
revisit the definition of a non-interactive and output-expressive protocol given
in [22], to define a more practical metric.

The remainder of this paper is organized as follows. We first introduce the nec-
essary background information and definitions in Sect. 2. Then, we present our
proposed protocol in Sect. 3 and provide evaluation results in Sect. 4. We describe
related work in Sect. 5 and, finally, conclude the paper in Sect. 6.

2 Preliminaries

2.1 Notations

All notation is summarized in Table 1.
Homomorphic addition and multiplication can take two ciphertexts or a

single ciphertext and a single plaintext as operands. We distinguish the term
“domain size” from “plaintext space.” The domain size indicates the range of
an integer to be compared (i.e., [0, 2µ −1]), whereas the plaintext space specifies
the message space that the homomorphic encryption scheme can natively use
(i.e., Rt). We assume that an integer over Rt represents a constant polynomial;
i.e., a polynomial with all coefficients being zero except its constant term (the
integer). All logarithms are base 2.

2.2 Ring-Based Homomorphic Encryption Scheme

The proposed protocol can be implemented using a ring-based FHE scheme. In
this study, we have implemented the protocol using Brakerski/Fan-Vercauteran
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Table 1. Notation and definitions

Notation Definition

μ Domain bit size

N Ring dimension (power of two)

R Ring Z[X]/(XN + 1)

Rt Ring defining plaintext space
R/tR = Zt[X]/(XN + 1)

Rq Ring defining ciphertext space
R/qR = Zq[X]/(XN + 1)

� Homomorphic addition

� Homomorphic multiplication

σi(·) Automorphism by index i ∈ Z
∗
2N on a polynomial

or a vector of polynomials

Enc(·) Encryption of an element over Rt

(BFV) scheme [7,18], which is one of the most well-used among the various
homomorphic encryption schemes provided in open-source libraries (e.g., [1,11,
23]). Thus, in this subsection, we describe the core operations supported in ring-
based FHE schemes, that are required for our method. Let Rt = Zt[X]/(XN +1)
be a quotient ring for some positive integer t. A plaintext p ∈ Rt is encrypted
into a ciphertext Enc(p) ∈ R2

q , where Rq = Zq[X]/(XN + 1) and q >> t. Thus,
a ciphertext can be viewed as a two-dimensional vector of polynomials in Rq.

Note that each ciphertext contains a noise term to guarantee the security of
the encryption scheme. The inherent noise increases with every homomorphic
operation, and the noise growth depends on the computation to be performed.
When the noise exceeds some threshold, a correct decryption result can no longer
be obtained. To avoid a decryption error, the parameter q, which determines the
maximum noise that a single ciphertext can contain, is determined based on the
performed operations.

The following operations provided by the ring-based FHE scheme are used:

– Homomorphic Addition
Two ciphertexts can be added through component-wise addition of their poly-
nomials, which involves additive noise growth.

– Homomorphic Multiplication
Homomorphic multiplication is an expensive operation which is orders of mag-
nitude slower than homomorphic addition and automorphism [3]. The noise
growth involved in homomorphic multiplication is multiplicative. Note that
ciphertext-plaintext multiplication is more efficient in terms of computational
cost. The noise growth is also multiplicative, which depends on the number
of non-zero coefficients and the value of each coefficient.

– Automorphism
Applying automorphism over a ciphertext that encrypts p ∈ Rt yields an
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encryption of p(Xi) for some i ∈ Z
∗
2N [20]. After any automorphism on a

ciphertext, the form of the corresponding secret key is changed. This oper-
ation is required when the associated secret keys of the two ciphertexts to
be evaluated are different, while the original secret keys remain the same. To
perform further evaluation over the ciphertexs, where the associated secret
keys of the two ciphertexts are different, we must perform a key-switching
operation which restores the current corresponding secret key to the original
secret key associated with the original ciphertext. In this study, we assume
that an appropriate key-switching operation is always performed after each
automorphism.

One of the challenging aspects of homomorphic encryption is setting the min-
imum possible parameter size. In this study, we do not use bootstrapping, as
that approach necessitates a large parameter size for the FHE scheme to homo-
morphically evaluate the decryption circuit. Thus, we set the smallest possible
values for the parameter set to avoid costly bootstrapping, and limit the number
of computations over the encrypted data without decryption error. Note that
our proposed method can be evaluated on FHE with a smaller plaintext space
using bootstrapping. Further, our proposed method is applicable to other ring-
based homomorphic encryption schemes that support the above functions, such
as BGV [8] and YASHE [5].

2.3 XCMP

We recall the non-interactive and output expressive private comparison protocol
XCMP presented by Lu et al. [22], which can homomorphically evaluate the
validity of a ≥ b for two log N -bit integers a and b, with a multiplicative depth
of 1 over Rt. The underlying concept is comparison of two integers over a degree
of a monomial; hence, it is easier to obtain a comparison result as a bit on
the coefficient over Rt. First, XCMP encodes two integers into two monomials.
Specifically, two μ (= log N)-bit integers a, b ∈ [0, N−1] are encoded into Xa and
Xb over Rt followed by encryption. Homomorphically negating the degree of one
of those monomials (e.g., we obtain Enc(X−b) by homomorphically negating the
degree of Enc(Xb) via an automorphism σ2N−1), multiplication between Enc(Xa)
and Enc(X−b) yields Enc(Xa−b). Note that X−b is congruent to −XN−b mod
XN + 1. As a − b ∈ [−(N − 1), N − 1], we obtain an encryption of a polynomial
p(X) = dXe, where d = ±1 and e ∈ [0, N − 1]. Then, Enc(p(X)) is multiplied
by a plaintext polynomial T (X) =

∑N−1
i=0 Xi and we obtain an encryption of

p′(X) = p(X)T (X)1.
The interesting property of p′(X) is that it contains 1 at a constant term if

a ≤ b, and −1 otherwise. This is because the degree of the monomial p(X) (i.e.,
the difference between the two integers) is some integer in [−(N − 1), N − 1].

1 In the original study [22], it is assumed that T (X) = α
∑N−1

i=0 Xi for some α ∈ Zt,

to render the protocol parameterizable. In this study, we define T (X) =
∑N−1

i=0 Xi,
i.e. α = 1 for simplicity.
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There is a one-to-one mapping between the set of all possible differences of two
integers {−(N − 1),−(N − 2), . . . ,−1, 0, 1, . . . , N − 1} and a set of monomials
{−X,−X2, . . . ,−XN−1, 1,X, . . . ,XN−1} with sign ±1 over R. Therefore, mul-
tiplying p(X) by T (X) moves a coefficient of p(X) to the constant term of p′(X),
iff. a−b ∈ [−(N −1), 0]; i.e., a ≤ b. Otherwise p′(X) contains −1 as the constant
term (a > b); i.e., a − b ∈ [1, N − 1].

However, because of the polynomial T (X), the result p′(X) consists of not
only ±1 as the constant term, but values for the higher terms. These values for
the higher terms reveal the exact difference between the two compared integers.
To hide the undesired information and to change the constant term from ±1 to
{0, 1} simultaneously, a plaintext polynomial R(X) = 1 +

∑N−1
i=1 riX

i (where
each of the ri terms represents a random value uniformly sampled from Zt) is
added to Enc(p′(X)). Finally, multiplying by an inverse of two, we obtain an
encryption of a polynomial that contains 1 as the constant term, iff a < b, and 0
otherwise. The plaintext modulus t must be large enough in order to guarantee
the correctness of a subsequent computation.

Recall that the result is an encryption of a polynomial that contains (random)
values for the higher terms, except for the constant term, which is a bit. Thus,
the result given by XCMP retains additive and multiplicative homomorphisms on
the constant term (i.e., Zt) only, however, the encryption scheme itself supports
a much larger plaintext space (i.e., Rt).

2.4 Efficient Private Comparison from Homomorphic Encryption

In order to clarify our goal, we define the term efficient non-interactive and fully
output expressive private comparison below.

Definition 1. Let a and b be two μ-bit integers. A private comparison proto-
col that takes encryptions of a and b as input can be said to be efficient non-
interactive and fully output expressive iff it satisfies all the following properties:

1. The comparison protocol does not require any communication with a party
having a secret key during the evaluation (non-interactive);

2. The multiplicative depth required for the protocol is less than log μ and the
native plaintext space exceeds Z2 (efficient);

3. The comparison result is an encryption of a bit over the native plaintext space
that preserves both the additive and multiplicative homomorphism over the
native plaintext space (fully output expressive).

The terms non-interactive and output expressive are borrowed from [22].
Our definition differs from those of [22] in two aspects: we append the metric
“efficient” and add the prefix “fully” to the last metric. Note that XCMP does
not satisfy the second (for μ > log N) and third properties.
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3 Proposed Protocol

In this section, we describe our proposed private comparison protocol that
overcomes the disadvantages underlying XCMP. As mentioned in Sect. 2.4,
XCMP suffers from the following two problems. First, the comparison result
provides both additive and multiplicative homomorphisms over Zt only, while
the underlying FHE scheme supports much larger plaintext space Rt. Second,
XCMP cannot efficiently deal with message domain of size more than log N
bits. In order to solve the aforementioned problems and achieve efficient non-
interactive and fully output expressiveness, we introduce a new constant term
extraction method in Sect. 3.1. Then, in Sect. 3.2, we demonstrate how to inte-
grate it into XCMP without changing the multiplicative depth of it for domain
size of μ (≤ log N) bits. Finally, in Sect. 3.3 we describe how to achieve the pri-
vate comparison for μ > log N by utilizing our constant term extraction method.

In addition to XCMP, a bitwise FHE scheme also supports non-interactive
private comparison protocol. In Table 2, we demonstrate the advantages of our
method compared with those methods.

Table 2. Comparison with existing non-interactive private comparison pro-
tocols using homomorphic encryption. Here, μ denotes the bit size of the
input domain. The plaintext space of ring-based homomorphic encryption is Rt =
Zt[X]/(XN + 1), where an element of Rt is a polynomial of degree (N − 1) and its
coefficient is modulo t. Being dependent on N (power of two) and t, d is determined
by arg min

d
(td ≡ 1 mod N).

Method Message domain
[0, 2µ − 1]

Multiplicative
depth

Plaintext
space

Homomorphism
after comparison

Proposed
method

μ ≤ log N
μ > logN (any)

1⌈
log� µ

logN
�⌉ + 1

Rt Additive /
multiplicative
over Rt

XCMP [22] μ ≤ log N
log N < μ ≤
2 log N

1
log t + log d + 2

Rt Additive /
multiplicative over
Zt

Bitwise
FHE

any – Z2 Additive /
multiplicative over
Z2

Recall that XCMP uses a single polynomial to represent a single integer, as
the integer is encoded as a monomial degree. Thus, the upper limit of the mes-
sage domain is the ring dimension (log N bits) of R. Lu et al. [22] concluded
that their method is feasible in practice for domain sizes of up to log N bits.
Although XCMP provides a means of extending the domain size to 2 log N bits,
the multiplicative depth is extremely large when the plaintext modulus t is large,
because of the use of Fermat’s little theorem over R. The concrete multiplicative
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depth required for the protocol is log t + log d + 2 for μ ≤ 2 log N , where d is a
constant such that td ≡ 1 mod N . Therefore, implementation of XCMP for a
larger domain size was not provided. In contrast, our proposed method works
with any size μ and a multiplicative depth of log� µ

logN � + 1. For concrete com-
parison, we consider the case of μ = 2 log N . The multiplicative depth required
for our method is, 1+log 2 logN

logN = 2. This is much more efficient than XCMP [22],
as the multiplicative depth required for our method is independent of t.

For a bitwise FHE scheme, it is assumed that recent constructions [13,14,16]
are used, which provide fast bootstrapping for an encryption of a single-bit mes-
sage. The bootstrapping is performed on every homomorphic gate operation, such
as AND-gate and XOR-gate operations. Thus, an unlimited number of computa-
tions without decryption errors for any function are offered. Therefore, we ignore
the multiplicative depth for the comparison in the FHE. Our proposed protocol
is able to preserve the homomorphism after the comparison over Rt; this feature
is missing from the existing techniques. Specifically, for concrete evaluation, we
compare the running time of our method with that of TFHE-based comparison
in Sect. 4.2.

3.1 Constant Term Extraction

In this subsection, we describe our new constant term extraction method which
allows to homomorphically extract a constant term of a polynomial. The output
of XCMP is given on the constant term of a polynomial in encrypted form,
however, there exists several random coefficients on the higher terms. Those
random values restricts the functionalities of the subsequent computations based
on the comparison result. Namely, (an encryption of) an element over Zt can only
be evaluated over the comparison result while the FHE scheme natively supports
much larger plaintext space Rt. Thus, in order to leverage the native plaintext
space after the comparison, the constant term p0 must be homomorphically
extracted from the encryption of the polynomial p(X) =

∑N−1
i=0 piX

i ∈ Rt.
Our proposed method is shown in Algorithm 1.

Algorithm 1. Constant Term Extraction
1: Input: an encryption of p =

∑N−1
i=0 piX

i ∈ Rt

2: Output: an encryption of p0 ∈ Rt

3: c ← σN+1(Enc(p))
4: c ← Enc(p) � c
5: for k = 1 to log N − 1 do
6: c′ ← σ N

2k
+1(c)

7: c ← c � c′

8: end for
9: d ← c � (2logN )−1

10: return d
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The constant term extraction method is performed without using costly
ciphertext-ciphertext multiplications, and primarily uses automorphism and
ciphertext-ciphertext addition. The automorphism σ N

2k
+1 maps X → XN+2k ,

where XN+2k is congruent to −X2k mod XN + 1. When k = 0, the automor-
phism negates the odd coefficients of the input polynomial while keeping the
even coefficients unchanged. Thus, we are able to discard the odd coefficients
via σN+1(Enc(p(X))) + Enc(p(X)) for p ∈ Rt, while the even coefficients are
doubled. Then, we recursively apply σN/2k+1 followed by ciphertext-ciphertext
addition for k ∈ [1, μ−1]. The final result is a polynomial with the constant term
multiplied by 2logN , while the other coefficients are all zero. To obtain the exact
constant term, we require multiplication by (2logN )−1 mod t. Our method is
inspired by the optimization for linear transformation procedure in the context
of bootstrapping proposed by Chen and Han (see Coefficient Selection [10, A.2]),
which we adopt the technique in the context of private comparison.

Recall that an automorphism requires a key-switching operation; thus, a
special key must be stored for every index subjected to automorphism. In our
proposed method, we must perform log N automorphisms for distinct indices.
Thus, our method contains both additional computational overhead and addi-
tional storage overhead compared to XCMP. As regards the computational cost,
we must additionally perform log N automorphisms, log N ciphertext-ciphertext
addition, and a single ciphertext-plaintext multiplication. Nevertheless we exper-
imentally show that the additional computational overhead is acceptable. The
storage overhead is more expensive than XCMP by a factor of log N , as we require
additional log N keys for automorphism.

3.2 Private Comparison for Small Domain (µ ≤ logN)

In this subsection, we demonstrate our private comparison protocol for two
μ-bit integers a and b, where μ ≤ log N , using a single polynomial to repre-
sent a single integer. Our protocol is constructed from ring-based FHE scheme.
We first describe private comparison protocol. Then, we also demonstrate con-
struction of the private equality check protocol since it is required in order to
construct the comparison protocol for a large domain.

Proposed Private Comparison Protocol. The private comparison protocol
evaluates whether the Boolean expression a > b holds in a privacy-preserving
manner. The protocol is described in Algorithm 2. Our protocol is almost iden-
tical to XCMP. The difference is that constant term extraction (Sect. 3.1), which
homomorphically extracts a constant term of a polynomial, is performed in our
protocol. Thus, our protocol does not perform adding a random polynomial
with a constant term of zero to the multiplication result. Moreover, we note that
preparation for a plaintext polynomial T (X) has two effects on the protocol.

The first is reduction of both the computational cost and noise growth. Recall
that XCMP uses T (X) =

∑N−1
i Xi to compare log N -bit integers over the expo-

nents of X by a single ciphertext-plaintext multiplication. The caveat is that a
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wrap-around mod XN + 1 (line 4 of Algorithm 2) is involved. Thus, the result
appears as the constant term with the value being ±1 depending on the compar-
ison result. This requires adjustment of ±1 to {0, 1} (line 5,6 of Algorithm 2).
These two operations can be removed by setting μ = μ′ < log N . That is, we set

the plaintext polynomial T (X) =
∑2µ

′ −1
i=0 Xi by setting μ = μ′ < log N . This

allows to constant term have {0, 1} after the multiplication Enc(Xa−b) � T (X),
without multiplying by 2−1. Disadvantage is that we must (at least) halve the
original domain size.

The second affect is that parameter selection becomes easier in the protocol.
As described in Sect. 2.2, the security level is determined by the choice of N and q.
Then, q depends on a computation to be performed. Meanwhile, in our protocol,
N is determined by μ and q for the comparison and the security parameter,
respectively. Thus, selection for both q and N totally depends on the subsequent
computation. In our evaluation, we consistently chose μ′ = 10. This is because
we found the minimum recommended value of N is 1024 by following the recent
security recommendation in the homomorphic encryption standardization [9].
Thus, treating μ′ = 10 is reasonable for parameter selection. This is helpful for
the case that μ > log N , as we describe in Sect. 3.3.

Note that the multiplicative depth required for our protocol is identical to
that of XCMP as we need to perform a single ciphertext-ciphertext multiplica-
tion and two ciphertext-plaintext multiplications. We also note that an integer
encoded in the protocol is just a monomial, i.e., there is only one non-zero coeffi-
cient and the coefficient is ±1. This indicates that there is no noise growth during
the homomorphic multiplication of two monomials (line 3 of Algorithm 2) when
one of the two monomials is not encrypted. In addition, it is possible to homo-
morphically convert Xb to X−b via σ2N−1 as applied in XCMP. Here, we omit
the procedure for simplicity.

By adopting our constant term extraction method, the output of the protocol
is an encryption of a bit over Rt. Thus, our private comparison protocol is
efficient non-interactive and fully output expressive.

Algorithm 2. Fully Output Expressive Private Comparison for Small Domain
1: Input: encryptions of two integers a, b ∈ Z2µ

2: Output: an encryption of a bit
3: c ← Enc(Xa) � Enc(X−b)
4: c′ ← c � T (X)
5: c′ ← c′ � 1
6: c′ ← c′ � 2−1

7: d ← ConstantTermExtract(c′)
8: return d

Private Equality Check. We here demonstrate the construction of private
equality check protocol to handle a larger domain size for μ > log N . We can
simply perform the private equality check protocol by applying constant term
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extraction on Enc(Xa−b). This is because 1 appears as the constant term iff a = b,
and 0 appears otherwise. We can trivially confirm that our private equality check
protocol is efficient non-interactive and fully output expressive.

3.3 Private Comparison for Large Domain (µ > logN)

The private comparison described in the previous section assumes that domain
size is log N bits at most. Although larger domain size can be handled by enlarg-
ing N by a factor of a power of two, this induces significant performance loss, as
every operation and every object size in the ring-based homomorphic encryption
becomes exponentially larger. In this subsection, we demonstrate management of
the private comparison for a larger-bit integer without enlarging N , while retain-
ing the efficient non-interactive and fully output expressive properties. We realize
the private comparison protocol by regarding log N -bit integers as one chunk.
Namely, we split two μ-bit integers a and b by log N bits. That is, we define
a =

∑� µ
log N �−1

i=0 ai2(logN)i and b =
∑� µ

log N �−1

i=0 bi2(logN)i , with ai, bi ∈ ZN . We
call each of ai and bi components i-th chunks. The comparison can be performed
on every pair of i-th chunks individually. Therefore, we need a set of ciphertexts
for a single integer by generating a ciphertext on each chunk.

The concept underlying our private comparison technique is similar to the
standard solution in the literature [12]; that is, the private comparison is recur-
sively computed from the most significant bit down to the least significant bit. In
contrast to the literature, however, we can adopt the same concept while using
a chunk -by-chunk approach rather than a bit-by-bit method.

Let K be the number of chunks, i.e., � µ
logN �, and let EQi and GTi be the

result (an encryption of a bit) of an equality check and a comparison applied on
the i-th chunk, respectively. In addition, let EQi be the flipped bit result of EQi,
which can be computed by subtraction of EQi from 1 when t > 2. Recall that we
can evaluate private comparison and private equality check for every chunk by
using the method described in Sect. 3.2. Thus, the private comparison for large
domain can be performed by recursively evaluating the following expression:

cK−1 = (EQK−1 � GTK−1) � (EQK−1 � cK−2),

where c0 = GT0 and ci = (EQi � GTi) � (EQi � ci−1) for i ∈ [1,K − 1]. By
recursively evaluating cK−2, we can obtain the following:

cK−1 = (EQK−1 � GTK−1) �K−2
i=1 (EQi � GTi �K−1

j=i+1 EQj) � (GT0 �K−1
i=1 EQi).

It is apparent that the maximum multiplicative depth required for the
above expression is dominated by the evaluation of GT0 �K−1

i=1 EQi, which is⌈
log� µ

logN �⌉. Note that, without expanding the expression, the depth required
for the cK−1 evaluation is � µ

logN � − 1. The depth for evaluating a private com-
parison on every chunk is 1. Hence, the overall multiplicative depth to evaluate
private comparison is

⌈
log� µ

logN �⌉ + 1. This is significantly smaller than that of
the näıve method of log μ since log N ≥ 10 in general. As the overall protocol con-
sists of private comparison and private equality check on every chunk, where they
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are efficient non-interactive and fully output expressive, the result of the overall
private comparison for large domain is also an encryption of {0, 1} over Rt. Thus,
we can say that our comparison protocol is efficient non-interactive and fully out-
put expressive even for large domain. Our method can be viewed as a general-
ization of the XCMP approach proposed by Lu et al. [22] but in more efficient
manner. Note that XCMP only provided a theoretical construction to extend the
domain size to 2 log N -bit space with a large multiplicative depth, because it
employed Fermat’s little theorem over R.

Recall that we can control the domain size for each chunk by setting the
domain range [0, 2µ

′ − 1] to which a single chunk corresponds. Specifically, we
set μ′ < log N and split the original large domain size μ by μ′ rather than
log N . Hence, the number of chunks is� µ

µ′ � < � µ
logN �, and we can retain easier

parameter selection while also reducing the computational cost. In addition,
the computation is easily parallelizable. We can reuse the multiplication result
Enc(xai−bi) for every chunk to evaluate EQi and GTi.

3.4 Optimization

In our protocol, there are several (large) constant multiplications which increases
the inherent noise by a factor of the same constant value. Thus, we do not wish
to implement this multiplication in order to retain the smallest possible param-
eter size. As the constant term extraction multiplies the coefficient by 2logN ,
multiplication by its inverse is required to obtain 1, if the coefficient is 2logN

and 0 otherwise. On the other hand, the multiplication by (2logN )−1 (Line 9
in Algorithm 1) also multiplies the inherent noise. To avoid this multiplication,
we set the plaintext modulus t to be 2logN − 1. Then, we can treat 2logN ≡ 1
mod (2logN − 1), thereby avoiding multiplication by a large constant. In addi-
tion, one can use plaintext space reduction technique for free when the underlying
scheme is BFV with the plaintext modulus t = 2r for some r > log N [3]. Note
that, in those cases, t must not be prime.

3.5 Secure Private Comparison Protocol

Now, we can construct a secure private comparison protocol in the semi-honest
model, assuming the same stake-holders discussed in [22], i.e., encryptor, decryp-
tor, and evaluator.

The evaluator receives encryptions of two μ-bit integers from two different
encryptors. The evaluation is performed on the evaluator without any communi-
cations with the decryptor, while the comparison result offers both additive and
multiplicative homomorphisms over Rt rather than Zt. Finally, the decryptor
obtains the result by decrypting the data. We assume that the evaluator is semi-
honest, i.e., he/she attempts to acquire meaningful information while correctly
following the protocol. The security proof is identical to that of XCMP (thus, we
refer the reader to [22] for more detail).
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3.6 Applications and Limitation

The structure of plaintext Rt underlying ring-based FHE schemes enables to
pack a set of integers into a single plaintext polynomial [26]. Since the compu-
tation to the plaintext performed element-wisely on each element in the vectors,
computational cost is amortized. In contrast, our method requires an entire
single polynomial to represent a single integer of up to log N bits, or requires
multiple polynomials to represent a single integer of more than log N bits. Thus,
our proposed method is best suited for applications in which the latency of the
comparison is more important than the throughput.

4 Performance Result

In order to confirm the performance of our protocol, we evaluated runtime of
our protocol. We implemented our protocol with C++ using the g++-7. We ran
all experiments on a machine equipped with an Intel Xeon E5-1620 v4 with a
3.50 GHz CPU having four cores and 32 GB RAM running Ubuntu 16.04. All
experiments were performed with a single thread setting. The protocol runtime
performance was measured by the C++ Chrono library, and was averaged over
30 experiments.

4.1 Performance Comparison with XCMP

Recall that our proposed protocol introduces an additional operation, i.e., con-
stant term extraction over XCMP, to render the scheme fully output expressive.
Thus, there exists some additional overhead in our protocol. To determine the
performance loss, we experimentally compared our protocol with XCMP by vary-
ing the bit length μ from 10 to 16.

Since XCMP was implemented with both SEAL v2.3.0.4 and HElib, we
selected SEAL library for the implementation of XCMP for efficiency reason.
Note that SEAL v2.3.0.4 does not support automorphism from user API. Thus,
we used the more recent release of SEAL (version 2.3.1) which supports auto-
morphisms from user API. Then, we implemented our protocol over XCMP.

In the experiments, we used almost the same FHE parameter set for both
XCMP and our protocol for fair comparison. The only difference is the ciphertext
modulus q due to the noise growth involved in the constant term extraction in
our protocol. The ciphertext modulus q was determined in order to support
multiplicative depth of 1 after the comparison. We set the ring dimension N
equal to 2µ. As smaller N requires smaller q to guarantee the security level, we
chose a different parameter set according to μ. We chose the parameter set so that
at least 80-bit security level is achieved against known attacks. The security level
was estimated using an open-source implementation2 of Learning With Errors
estimator by Albrecht et al. [2]. The parameter set is shown in Table 3. Here,
we chose log N = 11 for μ = 10 instead of choosing log N = 10, in order to
guarantee the correctness of the computation.
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Table 3. FHE Parameters

μ 10 11 12 13 14 15 16

log N 11 11 12 13 14 15 16

t 2,047 2,047 4,095 8,191 16,383 32,767 65,535

log q XCMP 120 120 120 120 120 120 180

Ours 180
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Fig. 1. Runtime comparison of proposed protocol with XCMP. After the comparison,
both the protocol could perform a single ciphertext-ciphertext multiplication.

Figure 1 shows the runtime performance of the proposed protocol and XCMP.
It is apparent that our protocol is slower than XCMP, with a maximum per-
formance gap of a factor of six when μ = 15. Our protocol involves a large
computational overhead over XCMP, however, the runtime is still less than
1 s for μ ≤ 16. Note that our protocol has larger computational capability
after the comparison than XCMP. Thus, the additional overhead associated with
the proposed protocol is allowable in terms of a trade-off between functionality
and efficiency.

4.2 Performance Comparison with Bitwise FHE-based Solution

In Sect. 3.3, we demonstrated extension of the message domain size from
log N -bit to a bit size more than log N by combining constant term extraction
method and private comparison of multiple chunks. As XCMP does not facilitate
implementation for a larger domain size, we cannot compare it with our protocol

2 https://bitbucket.org/malb/lwe-estimator commit:2094ada.

https://bitbucket.org/malb/lwe-estimator
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in experiment. Therefore, we compared our protocol with a construction by a
bitwise FHE scheme instead. Specifically, we chose TFHE [13,14], a state-of-the-
art FHE scheme with fast bootstrapping for an encryption of a single bit message,
as a baseline. For the implementation, we used the TFHE open-source library3.
Our protocol was implemented by using the PALISADE [23] lattice cryptogra-
phy library, which provides implementations of several homomorphic encryption
schemes. In particular, we chose the BFV [18] variant of Halevi-Polyakov-Shoup
scheme [21]. Note that current version of TFHE provides neither multi-threading
nor an asymmetric cryptosystem. Thus, we implemented our protocol with sin-
gle thread setting to conduct fair comparison as much as possible, however,
we used an asymmetric cryptosystem which is computationally more expensive
than an symmetric one since PALISADE does not support symmetric one. In
the experiment, we varied μ from 2 to 130.

For μ ∈ [2, 10], we represent a single integer by a single polynomial. Then, for
μ ∈ [11, 130], we split a single μ-bit integer by 10 bits into � µ

10� chunks. We set
t = 2logN − 1 to obtain {0, 1} for the comparison in each chunk without multi-
plying the inverse of 2logN . Figure 2 shows runtime performance for evaluation
of the comparison ranging over the remaining multiplicative depth after the
comparison from 0 to 2. Note that the comparison protocol is not fully output
expressive when the remaining depth is 0; this functionality is exactly identical to
that of XCMP, for which only several homomorphic additions can be performed
over Rt.

Recall that our protocol is parameterized by N and q following the multi-
plicative depth of

⌈
log� µ

logN �⌉ + 1 (in our experiment, it was �log� µ
10�� + 1)

and the security level. Thus, the parameter size increases as μ increases, which
deteriorates the overall performance. From 2 to 130, the multiplicative depth
changes when μ exceeds 10, 20, 40 and 80. Thus, there exist some performance
gap when μ exceeds each of those values, which are due to the increase in the
FHE parameter q. On the other hand, TFHE relies on bootstrapping after every
gate operation. Hence, the parameter size does not change depending on the
computation. As a result, the complexity of TFHE-based protocol is linear in μ
with no concern for the parameter growth due to homomorphic multiplications.
In contrast, the complexity of our proposed protocol is linear in the number of
chunks with the increase of q and N at some value.

It is apparent that our method is comparable to TFHE. Specifically, for
μ ∈ [3, 40] (resp. ∈ [3, 20]) our proposed protocol is faster than TFHE-based
protocol by a factor of 2–3 with the setting of the remaining depth to 0 (resp. 1).
For the other parameter sets, our proposed protocol is slower than TFHE-based
protocol. For example, when μ = 130 our protocol with remaining depth 2 is
slower than TFHE-based protocol by a factor of approximately four. We remark
that the performance gap seen on the comparison protocol can be absorbed
depending on the computation after the comparison since the amortized cost
per operation for TFHE that encrypts a bit is much smaller than other ring-
based HE that encrypts a polynomial. Although there exists a trade-off between

3 https://github.com/tfhe/tfhecommit:6297bc7.

https://github.com/tfhe/tfhecommit:6297bc7
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Fig. 2. Runtime comparison for proposed method and method based on bitwise FHE
scheme. We ranged the remaining multiplicative depth after the comparison from 0 to
2 for our proposed method. In the figure, rem-depth-i represents that the scheme is
able to handle multiplicative depth-i after the comparison. The bitwise FHE scheme
has no multiplicative depth limitation.

the performance and the functionality, this is an allowable trade-off up to a few
remaining depth in our case.

The concrete parameter set, which satisfies 80-bit security against known
attacks, for our protocol is presented in Table 4. The difference in t is due to
the constant term extraction. Recall that constant term extraction must be per-
formed on all coefficients on a polynomial. Further, the degree of the polynomial
is determined by the security level and q. In our protocol, q depends on μ as
it determines the multiplicative depth. Thus, N varies based on μ due to the
security reason.

5 Related Work

Many studies on private comparison protocols have been conducted. One well-
known protocol was developed by Damg̊ard et al. [15], i.e., the so-called DGK
protocol. The DGK protocol can perform private comparison in a non-interactive
manner, when one of two input integers are plaintext, however, the protocol does
not offer multiplicative and additive homomorphisms over the comparison result
since zero check after decryption is required.

Gentry et al. [19] constructed a private comparison protocol from a lattice-
based somewhat homomorphic encryption in an interactive manner. While the
comparison result is reusable over R2r for some r, it requires O(log μ) rounds of
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Table 4. FHE parameters for our proposed method

Remaining Depth μ log q log N t

0 [2, 20] 89.97 12 4,095

[25, 40] 119.96 12 4,095

[45, 80] 149.93 13 8,191

[85, 130] 179.91 13 8,191

1 [2, 20] 119.96 12 4,095

[25, 40] 149.92 13 8,191

[45, 80] 179.91 13 8,191

[85, 130] 209.89 13 8,191

2 [2, 20] 149.92 13 8,191

[25, 40] 179.91 13 8,191

[45, 80] 209.89 13 8,191

[85, 130] 239.87 13 8,191

communication between two parties. Cheon et al. [12] developed a set of non-
interactive homomorphic circuit evaluation primitives including a comparison
protocol and equality check protocol for database query purposes. Although
the suggested protocols can handle several integers by packing a set of bits
into a single polynomial using a well-known batching technique [26], it does not
overcome the multiplicative depth O(log μ) complexity problem.

Saha and Koshiba [24] suggested a non-interactive private comparison pro-
tocol. Specifically, they proposed a new encoding method that enables efficient
evaluation of multiple hamming distances of a set of two binary vectors and
recursive addition of those hamming distances. The protocol outputs a vector
that indicates whether a > b holds in a similar manner to the DGK protocol,
that is the comparison is performed by checking if there exists a zero in the
result vector after decryption. Thus, it is difficult to non-interactively reuse the
comparison result. The follow-up work [25] improved the efficiency by modifying
the packing method in such a manner as to encode a vector of base-β integers
into a single polynomial rather than to encode a binary vector, thereby han-
dling much more integers in a single polynomial. The comparison result is not
non-interactively reusable as well as the protocol of Saha and Koshiba [24].

From another technical perspective, one can use the constant term extraction
method introduced by Ducas and Micciancio [16], which is used in the context
of bootstrapping [13,14]. However, the result is an encryption of an element of
Zt, not Rt, and homomorphically converting an element over Zt back to an
element over Rt requires bootstrapping that works in binary message space only.
In contrast, the method proposed in this work does not use binary message space.
Thus, it cannot be used directly for further processing over Rt.
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6 Conclusion

In this paper, we improved upon the previous non-interactive private compari-
son protocol in two ways. First, we achieved a non-interactive and fully output
expressive comparison protocol. Second, our protocol exhibits functionality com-
parable to the bitwise FHE solution with support for a few multiplicative depths,
even for larger integers. Those two functionalities can be achieved by introduc-
ing a constant term extraction technique. The proposed protocol can be applied
with a larger plaintext space in a similar manner to XCMP [22]. In addition, our
method allows comparison of larger bits (>16), which were previously expensive
in XCMP. The runtime performance of our protocol is comparable to a state-of-
the-art bitwise FHE scheme. Further, the method developed in this work has the
advantages that several addition and multiplication operations can be performed
over Rt after the comparison has been conducted.

We hope that our protocol will be adopted as a sub-protocol for various
secure computation protocols.

Acknowledgment. This work was supported by JST CREST Grant Number
JPMJCR1503, Japan and Japan-US Network Opportunity 2 by the Commissioned
Research of National Institute of Information and Communications Technology
(NICT), JAPAN. The authors would like to thank Kurt Rohloff and Yuriy Polyakov
for their supports for PALISADE library.

References

1. Aguilar-Melchor, C., Barrier, J., Guelton, S., Guinet, A., Killijian, M.-O., Lepoint,
T.: NFLlib: NTT-Based fast lattice library. In: Sako, K. (ed.) CT-RSA 2016.
LNCS, vol. 9610, pp. 341–356. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-29485-8 20

2. Albrecht, M., Player, R., Scott, S.: On the concrete hardness of learning with
Errors. J. Math. Cryptol. 9(3), 169–203 (2015)

3. Angel, S., Chen, H., Laine, K., Setty, S.: PIR with compressed queries and amor-
tized query processing. In: Proceedings of the 2018 IEEE Symposium on Security
and Privacy (SP), pp. 962–979 (2018)

4. Barni, M., et al.: Privacy-preserving fingercode authentication. In: Proceedings
of the 12th ACM Workshop on Multimedia and Security (MM& Sec 2010), pp.
231–240 (2010)

5. Bos, J.W., Lauter, K., Loftus, J., Naehrig, M.: Improved security for a ring-based
fully homomorphic encryption scheme. In: Stam, M. (ed.) IMACC 2013. LNCS,
vol. 8308, pp. 45–64. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-45239-0 4

6. Bost, R., Popa, R.A., Tu, S., Goldwasser, S.: Machine learning classification over
encrypted data. In: Proceedings of NDSS 2015 (2015)

7. Brakerski, Z.: Fully homomorphic encryption without modulus switching from clas-
sical GapSVP. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol.
7417, pp. 868–886. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-32009-5 50

https://doi.org/10.1007/978-3-319-29485-8_20
https://doi.org/10.1007/978-3-319-29485-8_20
https://doi.org/10.1007/978-3-642-45239-0_4
https://doi.org/10.1007/978-3-642-45239-0_4
https://doi.org/10.1007/978-3-642-32009-5_50
https://doi.org/10.1007/978-3-642-32009-5_50


Non-Interactive and Fully Output Expressive Private Comparison 373

8. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic
encryption without bootstrapping. In: Proceedings of ITCS 2012, pp. 309–325
(2012)

9. Chase, M., et al.: Security of Homomorphic Encryption. Technical report (2017).
HomomorphicEncryption.org

10. Chen, H., Han, K.: Homomorphic lower digits removal and improved FHE boot-
strapping. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol.
10820, pp. 315–337. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
78381-9 12

11. Chen, H., Han, K., Huang, Z., Jalali, A., Laine, K.: Simple Encrypted Arith-
metic Library v2.3.0. Technical report (2017). https://www.microsoft.com/en-us/
research/publication/simple-encrypted-arithmetic-library-v2-3-0/

12. Cheon, J.H., Kim, M., Kim, M.: Optimized search-and-compute circuits and their
application to query evaluation on encrypted data. IEEE Trans. Inf. Forensics
Secur. 11(1), 188–199 (2016)

13. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Faster fully homomorphic
encryption: bootstrapping in less than 0.1 seconds. In: Cheon, J.H., Takagi, T.
(eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 3–33. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53887-6 1

14. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Faster packed homomorphic
operations and efficient circuit bootstrapping for TFHE. In: Takagi, T., Peyrin, T.
(eds.) ASIACRYPT 2017. LNCS, vol. 10624, pp. 377–408. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-70694-8 14

15. Damgard, I., Geisler, M., Kroigard, M.: Homomorphic encryption and secure com-
parison. Int. J. Appl. Cryptol. 1(1), 22–31 (2008)

16. Ducas, L., Micciancio, D.: FHEW: Bootstrapping homomorphic encryption in less
than a second. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS,
vol. 9056, pp. 617–640. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46800-5 24

17. Erkin, Z., Franz, M., Guajardo, J., Katzenbeisser, S., Lagendijk, I., Toft, T.:
Privacy-preserving face recognition. In: Goldberg, I., Atallah, M.J. (eds.) PETS
2009. LNCS, vol. 5672, pp. 235–253. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-3-642-03168-7 14

18. Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. Cryp-
tology ePrint Archive, Report 2012/144 (2012)

19. Gentry, C., Halevi, S., Jutla, C., Raykova, M.: Private database access with HE-
over-ORAM architecture. In: Malkin, T., Kolesnikov, V., Lewko, A.B., Polychron-
akis, M. (eds.) ACNS 2015. LNCS, vol. 9092, pp. 172–191. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-28166-7 9

20. Gentry, C., Halevi, S., Smart, N.P.: Fully homomorphic encryption with polylog
overhead. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS,
vol. 7237, pp. 465–482. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-29011-4 28

21. Halevi, S., Polyakov, Y., Shoup, V.: An improved RNS variant of the BFV Homo-
morphic encryption scheme. Cryptology ePrint Archive, Report 2018/117 (2018)

22. Lu, W., Zhou, J., Sakuma, J.: Non-interactive and output expressive private com-
parison from homomorphic encryption. In: Proceedings of the 2018 on Asia Con-
ference on Computer and Communications Security (ASIACCS 2018), pp. 67–74
(2018)

https://doi.org/10.1007/978-3-319-78381-9_12
https://doi.org/10.1007/978-3-319-78381-9_12
https://www.microsoft.com/en-us/research/publication/simple-encrypted-arithmetic-library-v2-3-0/
https://www.microsoft.com/en-us/research/publication/simple-encrypted-arithmetic-library-v2-3-0/
https://doi.org/10.1007/978-3-662-53887-6_1
https://doi.org/10.1007/978-3-319-70694-8_14
https://doi.org/10.1007/978-3-662-46800-5_24
https://doi.org/10.1007/978-3-662-46800-5_24
https://doi.org/10.1007/978-3-642-03168-7_14
https://doi.org/10.1007/978-3-642-03168-7_14
https://doi.org/10.1007/978-3-319-28166-7_9
https://doi.org/10.1007/978-3-642-29011-4_28
https://doi.org/10.1007/978-3-642-29011-4_28


374 Y. Ishimaki and H. Yamana

23. Polyakov, Y., Rohloff, K., Ryan, G.W.: PALISADE Lattice Cryptography Library
User Manual (v1.2.0). Technical report (2018). https://git.njit.edu/palisade/
PALISADE/blob/PALISADE-v1.2/doc/palisade manual.pdf

24. Saha, T.K., Koshiba, T.: An efficient privacy-preserving comparison protocol. In:
Barolli, L., Enokido, T., Takizawa, M. (eds.) NBiS 2017. LNDECT, vol. 7, pp.
553–565. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-65521-5 48

25. Saha, T.K., Deevashwer, D., Koshiba, T.: Private comparison protocol and its
application to range queries. In: Fortino, G., Ali, A., Pathan, M., Guerrieri, A.,
Di Fatta, G. (eds.) IDCS 2017. LNCS, vol. 10794, pp. 128–141. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-97795-9 12

26. Smart, N.P., Vercauteren, F.: Fully homomorphic SIMD operations. Des. Codes
Cryptogr. 71(1), 57–81 (2014)

27. Yao, A.C.: How to generate and exchange secrets. In: Proceedings of 27th Annual
Symposium on Foundations of Computer Science (SFCS 1986), pp. 162–167 (1986)

https://git.njit.edu/palisade/PALISADE/blob/PALISADE-v1.2/doc/palisade_manual.pdf
https://git.njit.edu/palisade/PALISADE/blob/PALISADE-v1.2/doc/palisade_manual.pdf
https://doi.org/10.1007/978-3-319-65521-5_48
https://doi.org/10.1007/978-3-319-97795-9_12


Secure Computation with Constant
Communication Overhead Using

Multiplication Embeddings

Alexander R. Block(B), Hemanta K. Maji, and Hai H. Nguyen

Department of Computer Science, Purdue University, West Lafayette, IN, USA
{block9,hmaji,nguye245}@purdue.edu

Abstract. Secure multi-party computation (MPC) allows mutually dis-
trusting parties to compute securely over their private data. The hard-
ness of MPC, essentially, lies in performing secure multiplications over
suitable algebras.

There are several cryptographic resources that help securely com-
pute one multiplication over a large finite field, say GF [2n], with lin-
ear communication complexity. For example, the computational hard-
ness assumption like noisy Reed-Solomon codewords are pseudorandom.
However, it is not known if we can securely compute, say, a linear number
of AND-gates from such resources, i.e., a linear number of multiplications
over the base field GF [2]. Before our work, we could only perform o(n)
secure AND-evaluations.

Technically, we construct a perfectly secure protocol that realizes a
linear number of multiplication gates over the base field using one mul-
tiplication gate over a degree-n extension field. This construction relies
on the toolkit provided by algebraic function fields.

Using this construction, we obtain the following results. We provide
the first construction that computes a linear number of oblivious trans-
fers with linear communication complexity from the computational hard-
ness assumptions like noisy Reed-Solomon codewords are pseudorandom,
or arithmetic-analogues of LPN-style assumptions. Next, we highlight the
potential of our result for other applications to MPC by constructing the
first correlation extractor that has 1/2 resilience and produces a linear
number of oblivious transfers.

Keywords: Secure computation · Multiplication embeddings
Oblivious transfer · Basis-independent circuit compututation
Leakage-resilient cryptography · Randomness extractors

1 Introduction

Secure multi-party computation [30,53] (MPC) allows mutually distrusting par-
ties to compute securely over their private data. Even when parties follow
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the protocols honestly, but are curious to find additional information about
other parties’ private inputs, most functionalities cannot be securely computed
[7,33,41,44]. So, we rely on diverse forms of cryptographic resources to help par-
ties perform computations over their private data. These cryptographic resources
can either be computational hardness assumptions [30,38] or physical resources
like noisy channels [8,22,42,43], correlated private randomness [43,52], trusted
resources [14,38,39], and tamper-proof hardware [18,24,40,46].

In this paper, for the simplicity of exposition of the key ideas, we consider
2-party secure computation against honest-but-curious adversaries. Suppose two
parties are interested in securely computing a boolean circuit C that uses AND,
and XOR, and represent the input, output, and the intermediate values of the
computation in binary. Parties can use the oblivious transfer (OT) functionality
to securely compute C (with perfect security and linear communication com-
plexity) using the GMW protocol [30]. The OT functionality takes as input a
pair of bits (x0, x1) from the sender and a choice bit b from the receiver, and
outputs the bit xb to the receiver. Notice Alice does not know Bob’s choice bit
b, and Bob does not know Alice’s other bit x1−b. Parties perform m calls to
the OT functionality to securely compute circuits that have m AND gates (and
an arbitrary number of XOR gates) with Θ(m) communication complexity. In
this work, we consider secure computation protocols that have communication
complexity proportional to the size of the circuit C.1

Parties can also compute arithmetic circuits that use MUL and ADD gates
over large fields by emulating the arithmetic gates using finite fields. In partic-
ular, using efficient bilinear multiplication algorithms [21], parties can securely
compute one multiplication over the finite field GF [2n] by performing m OT
calls and linear communication complexity, where n = Θ(m). In general, using
m OT calls, parties can securely compute any circuit C that has mi arithmetic
gates over GF [2ni ], for i ∈ N, such that

∑
i mi · ni = Θ(m), which measures the

size of C. Intuitively, the size of the arithmetic circuit C refers to the cumulative
size of representing the elements of the (multiplication) gates in the circuit.

Summarizing this discussion, we conclude that m OT calls help the par-
ties securely compute arithmetic circuits (over characteristic 2 fields) of size
Θ(m) with communication complexity Θ(m). Several cryptographic resources
can implement the m instances of the OT functionality using a linear commu-
nication complexity. For example, there are instantiations based on polynomial-
stretch local pseudorandom generators [35], the Phi-hiding assumption [36],
LWE [26], DDH-hard groups [12], and noisy channels [34]. By composing these
protocols, parties can use the corresponding cryptographic resources and securely
compute linear-size circuits using only linear communication.

On the other hand, there are cryptographic resources that directly enable
secure multiplication over a large extension field using communication that is
proportional to the size of the field. For example, consider the constructions
based on Paillier encryption [23,29,48], LWE [25,45], pseudorandomness of noisy

1 Network latency considerations typically motivate the study of MPC protocols with
linear communication complexity.
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random Reed-Solomon codewords [39,47], and arithmetic analogues of well-
studied cryptographic assumptions [1]. The key functionality in this context is
a generalization of the OT functionality, namely the Oblivious Linear-function
Evaluation [52] (OLE) over a field K, say K = GF [2n]. The OLE functionality
takes as input a pair of field elements (A,B) ∈ K

2 from the sender and an ele-
ment X ∈ K from the receiver, and outputs the linear evaluation Z = A ·X +B
to the receiver. Note that, for x0, x1, b ∈ GF [2], we have xb = (x0 + x1)b + x0,
i.e., OT is a particular instantiation of the OLE functionality. Using (the gener-
alization of) the GMW protocol, parties can compute one multiplication over K

with Θ(lg |K|) communication complexity. Note that the circuit with one MUL
gate (over K) has size lg |K|, so the communication complexity of the protocol is
linear in the circuit size. However, using OLE over K = GF [2n], can we securely
compute boolean circuits such that the communication complexity is linear in the
circuit size?

The question motivated above with the illustrative example of K = GF [2n]
and F = GF [2] generalizes to any K that is an extension field of a constant-
size base field F. Before our work, the best solution securely evaluated size
m = o(n) boolean circuits using Θ(n) = ω(m) communication complexity from
one OLE over GF [2n] (refer to Sect. 1.3 for the state-of-the-art construction).
We present the first solution that securely evaluates size m = Θ(n) boolean
circuits using one OLE over GF [2n] and, thus, has communication complexity
linear in the circuit size. Additionally, we found secure computation of size-m
boolean circuits using linear communication from more diverse cryptographic
resources. Because, any cryptographic resource that securely implements OLE
over K with a linear communication complexity, also enables the secure com-
putation of linear-size boolean circuits with a linear communication complexity.
In particular, we provide the first linear communication protocols for m OTs
from cryptographic hardness assumptions such as the pseudorandomness of noisy
Reed-Solomon codewords [39,47] and arithmetic analogues of well-studied cryp-
tographic assumptions [1].

1.1 Multiplication Embedding Problem

Our approach to the MPC problem begins with the following combinatorial
embedding problem, which was originally introduced by Block, Maji, and Nguyen
[10] in the context of leakage-resilient MPC. Let F be a finite field. Alice has pri-
vate input a = (a1, . . . , am) ∈ F

m and Bob has private input b = (b1, . . . , bm) ∈
F

m. The two parties want Bob to receive the output c = (c1, . . . , cm) ∈ F
m such

that ci = ai · bi, for all i ∈ {1, . . . , m}.
Alice and Bob have access to an oracle that takes input A ∈ K from Alice

and B ∈ K from Bob, where K is a degree-n extension of the field F, and outputs
C = A · B to Bob. Alice and Bob want to perform only one call to this oracle
and enable Bob to compute c. Note that Alice and Bob perform no additional
interactions. Given a fixed value of n and a particular base field F, how large
can m be?
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The prior work of Block et al. [10] constructed an embedding that achieved
m = n1−o(1) using techniques from additive combinatorics. This paper, using
algebraic function fields, provides an asymptotically optimal m = Θ(n) construc-
tion. Section 1.2 summarizes our results and a few of its consequences for MPC.

Recent Independent Work. Recently, in an independent work, Cascudo
et al. [16] (CRYPTO-2018) also studied this embedding problem as reverse
multiplication-friendly embeddings (RMFE), and provide a constant-rate con-
struction. They use this result to achieve new amortization results in MPC.

1.2 Our Contributions

Given two vectors a = (a1, . . . , am) ∈ F
m and b = (b1, . . . , bm) ∈ F

m, we
represent their Schur product as the vector a ∗ b = (a1 · b1, . . . , am · bm). We
prove the following theorem.

Theorem 1 (Embedding Theorem). Let Fq be a finite field of size q, a
power of a prime. There exist constants c∗

q ∈ {1, 2, 3, 4, 6}, cq > 0, and n0 ∈ N

such that for all n � n0 where c∗
q divides n, there exist (linear) maps E : F

m
q → K

and D : K → F
m
q , where K is the degree-n extension of the field Fq, such that the

following constraints are satisfied.

1. We have m � cqn, and
2. For all a,b ∈ F

m
q , we have: D

(
E(a) · E(b)

)
= a ∗ b.

Intuitively, an oracle that implements one multiplication over a degree-n
extension field K facilitates the computation of m = Θ(n) multiplications over
the base field F. For instance, assuming the base field F = GF [2], our result shows
that we can implement m = Θ(n) AND gates, which are equivalent to the MUL
arithmetic gates over the GF [2], by performing only one call to the functionality
that implements MUL over K = GF [2n]. Section 1.3 presents a summary of
the intuition that inspired our construction, and Sect. 2 provides the required
technical background, and Sect. 2.2 presents the proof of Theorem 1.

Consequences for MPC. Recall that the OLE functionality over the field K

takes as input (A,B) from the sender and X from the receiver, and outputs
Z = A · X + B to the receiver. Essentially, OLE over the field K generates an
additive secret share (−B,Z) of the product A ·X. The embedding of Theorem 1
also helps Alice and Bob implement m independent OLEs over the base field F,
represented by the OLE (F)m functionality, using one OLE over the extension
field K.

Theorem 2. Let F be a finite field, and K be a degree-n extension of F. There
exists a 2-party semi-honest secure protocol for the OLE (F)m functionality in the
OLE (K)-hybrid, where m = Θ(n), that performs only one call to the OLE (K)
functionality (and no additional communication).
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Section 3 provides the proof of Theorem 2 in the semi-honest setting. Continuing
our working example of F = GF [2], we can implement m = Θ(n) independent
OT functionalities by performing one call to the OLE (K) functionality.

Using Theorem 2, we can implement a linear number of OTs at a constant
communication overhead based on computational hardness assumptions like the
pseudorandomness of noisy Reed-Solomon codewords [39,47] and arithmetic ana-
logues of well-studied cryptographic assumptions [1], which help construct an
OLE over large (but finite) fields. In general, if a cryptographic resource supports
the generation of one OLE over K using Θ(lg |K|) communication complexity,
then the following result also applies to that resource.

Corollary 1. There exists a computationally secure protocol implementing m
OTs using Θ(m) communication based on (any of) the following computational
hardness assumptions.

1. Pseudorandomness of noisy random Reed-Solomon codewords [39,47],
2. Arithmetic analogues of “LPN-style assumptions” and the existence of

polynomial-stretch local arithmetic PRGs [1].

In fact, we can leverage efficient bilinear multiplication algorithms [21] that
incur a constant communication overhead, to obtain the following result.

Corollary 2. Let F be a finite field, and K be a degree-n extension of F. Let
F1, . . . , Fk are finite fields such that Fi is a degree-ni extension of the base field
F, for i ∈ {1, . . . , k}. Let C be a circuit that uses mi arithmetic gates over the
field Fi. If m1n1 +· · · + mknk ≤ Θ(n), then there exists a secure protocol for C
in the OLE (K)-hybrid that performs only one call to the OLE (K) functionality.

Section 5 presents Corollary 2 and provides the outline of constant overhead
secure computation of OLE (Fi) by performing Θ(ni) calls to the OLE (F) func-
tionality, where Fi is a degree-ni extension of the base field F. We emphasize
that Corollary 2 allows the flexibility to generate the (randomized version of
the) OLE (K) in an offline phase of the computation without the necessity to fix
the representation of the computation itself. We only fix the base field F and an
upper-bound n estimating the size of the circuit C.

Finally, using our embedding, instead of the original multiplication embed-
ding of [10], we obtain the following result for correlation extractors (cf., [36] for
definitions and an introduction).

Corollary 3. For every 1/2 � ε > 0, there exists an n-bit correlated private
randomness such that, despite t = (1/2 − ε)n bits of leakage, we can securely
construct m = Θ(εn) independent OTs from this leaky correlation.

Section 4 presents the details of the definition of correlation extractors and the
proof of this corollary.

1.3 Technical Overview

To illustrate the underlying idea of our embedding, we use the example where
|F| = 3n/2, and K is a degree-n extension of F. Note that in this intuition the size
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of the base field implicitly bounds the degree of the extension field K that we can
consider. Ideally, our objective is to obtain multiplication embeddings for small
constant-size F for infinitely many n, which our theorem provides. Nevertheless,
we feel that the intuition presented in the sequel assists the reading of the details
of Sect. 2.

Assume that n is even and m := (n/2 − 1). We arbitrarily enumerate the
elements in F as

F = {f−m, . . . , f−2, f−1, f1, f2, . . . , fn−1} .

Suppose the field K is isomorphic to F[t]/π(t), where π(t) ∈ F[t] is an irreducible
polynomial of degree n.

Recall that Alice and Bob have private inputs a = (a1, . . . , am) ∈ F
m and

b = (b1, . . . , bm) ∈ F
m. Alice constructs the unique polynomial A(t) ∈ F[t]/π(t)

of degree < m such that A(f−i) = ai, for all i ∈ {1, . . . , m} using Lagrange
interpolation. Similarly, Bob constructs the unique polynomial B(t) ∈ F[t]/π(t)
of degree < m such that B(f−i) = bi, for all i ∈ {1, . . . , m}.

Suppose the two parties have access to an oracle that multiplies two elements
of K and outputs the result to Bob. Upon receiving the inputs A(t) and B(t)
from Alice and Bob, respectively, which correspond to elements in K, the oracle
outputs the result C(t) = A(t)·B(t) to Bob.2 Note that C(t) is the convolution of
the two polynomials A(t) and B(t). Moreover, it has the property that C(f−i) =
ai · bi, for all i ∈ {1, . . . ,m}. So, Bob can evaluate the polynomial C(t) at
appropriate places to obtain c = a ∗ b.

Note that this protocol crucially relies on the fact that the field F has suffi-
ciently many places {f−1, . . . , f−m} to enable the encoding of a1, . . . , am as the
evaluation of polynomials at those respective places. For constant-size fields F,
this intuition fails to scale to large values of n. So, we use the toolkit of algebraic
function fields for a more generalized and formal treatment of these intuitive
concepts and construct these multiplication embeddings for every base field F.

Prior Best Construction. [10] showed that (lg |F|)1−o(1) OTs could be embed-
ded into one OLE over F if F has characteristic 2. Overall, this construction yields
s(log s)−o(1) OTs from one OLE over K, where s = lg |K|.
Reduction of our Construction to Chen and Cramer [20]. Chen and
Cramer [20] construct algebraic geometry codes/secret sharing schemes that have
properties similar to the Reed-Solomon codes, except that these linear codes are
over finite fields of appropriate size. It is not clear how to rely solely on the
distance and independence properties of these codes to get our results. However,
the algebraic geometric techniques underlying the construction of [20] and our
construction have a significant overlap.

2 Note that this is exact polynomial multiplication because the degree of A(t) and B(t)
are both < m. So, the degree of C(t) is < 2m − 1 = n. This observation, intuitively,
implies that “mod π(t)” does not affect C(t).
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2 Embedding Multiplications

Our goal is to embed m multiplications over Fq using a single multiplication over
Fqn such that m = Θ(n). To do so, we use algebraic function fields over Fq with
appropriate parameters.

2.1 Preliminaries

We introduce the basics of algebraic function fields necessary for our construc-
tion. For explicit details we refer the reader to the full version of our work
[11]. Let Fq be a finite field of q elements, where q is a power of prime.
Then an algebraic function field K/Fq of one variable over Fq is a finite
algebraic extension of Fq(x) for some x transcendental over Fq. Recall that
Fq(x) = {f(x)/g(x) : f, g ∈ Fq[x], g �= 0}. When clear from context, we write
K in place of K/Fq.

Every function field K has an infinite set of “points” called places, denoted
by P ∈ P(K). Every place P has an associated degree deg P ∈ N, and for any
k ∈ N, the set P

(k)(K) denotes the set of places of degree k. In particular, for
every k ∈ N, this set is finite, and the set P

(1)(K) is called the set of rational
places. For every element f ∈ K, and any place P , we can evaluate f at place
P , denoted as f(P ). Then two cases occur: either f has a pole at P , which we
denote as f(P ) = ∞; or f is defined at P . For P which is not a pole of f and
deg P = k, we have that f(P ) is isomorphic to some element of Fqk . For any
two functions f, g and place P such that P is not a pole of f or g, we have that
f(P ) + g(P ) = (f + g)(P ), f(P ) · g(P ) = (f · g)(P ), and xf(P ) = (x · f)(P )
for any x ∈ Fq. Every place P has an associated valuation ring OP . A valuation
ring O of K is a ring such that Fq � O � K and for every z ∈ K either z ∈ O
or z−1 ∈ O.

A divisor D of K is a formal sum of places. Namely, D =
∑

P∈P(K) mP P
where mP ∈ Z and mP = 0 for all but finitely many places P . The set of places
P where mP �= 0 is called the support of D and is denoted as Supp(D). Any
divisor D also has associated degree deg D :=

∑
P∈P(K) mP (deg P ) ∈ Z. Note

that every place is also a divisor; namely P = 1 · P . Such divisors are called
prime divisors. For any two divisors D =

∑
mP P and D′ =

∑
nP P , we define

D + D′ =
∑

(mP + nP )P . We say that D ≤ D′ if mP ≤ nP for all places P .
For any f ∈ K \ {0}, the principal divisor associated to f is denoted as (f).

Informally, the principal divisor (f) =
∑

aP P for places P , where aP = 0 if P is
not a zero or a pole of f , aP > 0 if P is a pole of f of order aP , and aP < 0 if P is
a zero of f of order |aP |. Given any divisor D, we can define the Riemann-Roch
space associated to D. This space is defined as L (D) := {f ∈ K : (f) + D �
0} ∪ {0}. The Riemann-Roch space of any divisor D is a vector space over Fq

and has dimension �(D). This dimension is bounded by the degree of the divisor.

Imported Lemma 1 ([15, Lemma 2.51]). For any D ∈ Div(K), we have
�(D) ≤ deg D + 1. In particular, if deg D < 0, then �(D) = 0.
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Every function field K has associated g(K) ∈ N called the genus. In partic-
ular, g(K) := maxD deg D − �(D) + 1, where the max is taken over all divisors
D of K. When clear from context, we simply write g := g(K).

2.2 Our Construction

In this section we present our construction that proves Theorem 1. We need
three results to prove our result. First, we need Imported Lemma 1. The second
needed result shows that there always exists a prime divisor of degree n for large
enough n. This is given by the following lemma.

Imported Lemma 2 ([13, Lemma 18.21]). Let K/Fq be an algebraic func-
tion field of one variable of genus g and degree at least n satisfying n �
2 logq g + 6. Then there exists a prime divisor of degree n of K/Fq.

Finally, we need the following result.

Lemma 1. Let V be a subspace of dimension m of F
r
q. Then there exists a

linear mapping ψ : F
r
q → F

m
q such that ψ is a bijection from V to F

m
q and that

ψ(x) ∗ ψ(y) = ψ(x ∗ y) for every x, y ∈ F
r
q.

Proof. Let G be a generator matrix of V ⊆ F
r
q, then V = {uG : u ∈ F

m
q } and for

any x ∈ V there exists a unique z ∈ F
m
q such that x = zG. Let GT denote the

columns of G indexed by set T ⊆ {1, . . . , r} and xT denote the entries of x ∈ F
r
q

indexed by T . Choose S ⊆ {1, . . . r} such that G \ GS has full rank. Note that
|S| = r − m. Let G′ = G \ GS and S′ = {1, . . . , r} \ S. Define ψ : F

r
q → F

m
q as

ψ(x) = xS′ . Now, for any x, y ∈ F
r, we have ψ(x)∗ψ(y) = xS′ ∗yS′ = (x∗y)S′ =

ψ(x ∗ y). Finally, it follows that ψ is a bijection from V to F
m since G′ has full

rank and for any x ∈ V there exists a unique z ∈ F
m such that x = zG. 
�

At a high level, the proof of Theorem 1 follows from Fig. 1 and the intuition
presented in Sect. 1.3, with the main difference being now the base field F here
is of constant size.

Proof (Theorem 1). We consider two cases for the size q of the field: (1) q is an
even power of a prime and q � 49, and (2) q < 49 or q is an odd power of a
prime.

Case 1. Suppose q � 49 and q is an even power of a prime. In this case we
choose c∗

q = 1. Suppose there exists an algebraic function field K/Fq of genus
g and degree n � max{2 logq g + 6, 6g}. Let P be a prime divisor of degree
one of K/Fq. By Imported Lemma 2 there exists a prime divisor Q of degree
n. Let s = �(n − 1)/2 and consider the Riemann-Roch space L (2sP ) = {z ∈
K/Fq | (z)+2sP � 0} and the valuation ring OQ of Q. The vector space L (2sP )
is contained in OQ, which yields that the map κ : L (2sP ) → Fqn defined as
z �→ z(Q) is a ring homomorphism. The kernel of κ is L (2sP − Q), which
has dimension 0 by Imported Lemma 1 (since deg(2sP − Q) = 2s − n < 0).
This implies that κ is injective. Since L (sP ) ⊆ L (2sP ), the evaluation map κ
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Fig. 1. Commutative diagram for performing r pointwise multiplications (the Schur
product) over Fq using one multiplication over Fqn . The map φ represents polynomial
multiplication.

restricted to L (sP ), represented by κ|L (sP ), is a homomorphism from L (sP )
to Fqn and is injective.

Let r > s and suppose K/Fq has at least r + 1 distinct prime divisors of
degree one. Let P1, P2, . . . , Pr be distinct prime divisors of degree one other
than P . Consider the evaluation map γ : L (2sP ) → F

r
q defined by x �→

(x(P1), x(P2), . . . , x(Pr)) . Since deg(sP−∑
Pi) = s−r < 0, the kernel of γ|L (sP )

is L (sP − ∑
Pi), which has dimension 0. Note that γ is a linear map, therefore

by the rank-nullity theorem we have dim(ker(γ|L (sP ))) + dim(Im(γ|L (sP ))) =
dim(L (sP )). So dim(Im(γ|L (sP ))) = dim(L (sP )) = s − g + 1 since deg(sP ) =
s > 2g−1. Let m = s−g+1 and V = Im(γ|L (sP )). Then V is a vector subspace
of F

r
q of dimension m. By Lemma 1, there exists a bijection ψ : V → F

m
q such

that it preserves the point-wise product operation; that is, ψ(x)∗ψ(y) = ψ(x∗y)
for every x, y ∈ V .

We define E : F
m
q → K such that E = κ ◦ γ−1 ◦ψ−1, and D : Im(κ) ⊆ Fqn →

F
m
q such that D = ψ ◦ γ ◦ κ−1, where K = Fqn .

Claim 1. The maps E and D are well-defined.

Proof. The definitions of E and D have inversion of functions and the fact is that
not all functions have inverse functions. So we need to prove that we can always
perform the inversions γ−1, ψ−1, and κ−1. Since ψ is a bijection from V to F

m
q

and γ is also a bijection from L (sP ) to V , the mapping E is well-defined. Next,
since κ is injective it is a bijection from L (2sP ) to Im(κ). Thus, the mapping
D is also well-defined.

Claim 2. E and D are linear maps.

This follows directly from the fact that ψ, κ, and γ are all linear maps.
Next we will show that D

(
E(a) · E(b)

)
= a ∗ b for every a,b ∈ F

m
q .

Let x, y ∈ L (sP ) such that a = ψ(x(P1), x(P2), . . . , x(Pr)) = ψ(γ(x)) and
b = ψ(y(P1), y(P2), . . . , y(Pr)) = ψ(γ(y)) (such x and y always exist by proper-
ties of ψ and γ). Note that (x ·y) ∈ L (2sP ) because L (sP ) ·L (sP ) ⊆ L (2sP ),
so γ has the following property.
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γ(x · y) = ((x · y)(P1), . . . , (x · y)(Pr)) = (x(P1) · y(P1), . . . , x(Pr) · y(Pr))
= (x(P1), . . . , x(Pr)) ∗ (y(P1), . . . , y(Pr)) = γ(x) ∗ γ(y).

Therefore, we have

D(E(a) · E(b)) = D(κ(x) · κ(y)) = D(κ(x · y))
= ψ(γ(x · y)) = ψ(γ(x) ∗ γ(y))
= ψ(γ(x)) ∗ ψ(γ(y)) = a ∗ b.

Finally, since s = �(n − 1)/2 and n � 6g, we have that m = s−g+1 = Θ(n).
This completes the proof of Case 1.

Case 2. Suppose q < 49 is a power of prime or q is an odd power of a prime.
Then Fig. 2 presents how to choose c∗

q such that qc∗
q is an even power of a prime

and is at least 49.

Fig. 2. Table for our choices of c∗
q for Theorem 1. The value of c∗

q is chosen minimally

such that qc
∗
q is an even power of a prime and qc

∗
q � 49.

Let q∗ := qc∗
q . Suppose that n is sufficiently large and is divisible by c∗

q , and
that n/c∗

q � max{2 logq∗ g + 6, 6g}. Now q∗ is an even power of a prime and
q∗ � 49, so we are in Case 1 with the following parameters. Let n∗ := n/c∗

q , let
K/Fq∗ be an algebraic function field of genus g, and let Q be a prime divisor of
degree n∗. Divisor Q exists since n∗ � 2 logq∗ g + 6. Let s = �(n∗ − 1)/2 and
set m = s − g + 1.

Notice for every x ∈ Fq, it holds that x ∈ Fq∗ since Fq is a subfield of Fq∗ .
Now consider any a,b ∈ F

m
q . Again we have a,b ∈ F

m
q∗ . We define the maps of

Case 1 with respect to q∗ and n∗. In particular, we apply the algorithm from Case
1 with appropriate changes to q and n. Concretely, let κ : L (2sP ) → F(q∗)n∗ ,
let γ : L (2sP ) → F

r
q∗ , and let V = Im(γ|L (sP )). Let ψ : V → F

m
q∗ be a bijection

defined by Lemma 1. Let E = κ ◦ γ−1 ◦ ψ−1 and D = ψ ◦ γ ◦ κ−1. Consequently,
we have D(E(a) · E(b)) = a ∗ b.

We now have s = �(n∗ − 1)/2 = �(n/c∗
q − 1)/2 = Θ(n) and g = Θ(n∗) =

Θ(n). Therefore, we have m = s−g+1 = Θ(n). This completes the proof of case
2. Finally, Imported Theorem 1 gives concrete constructions of function fields
with degree n prime divisors and r + 1 distinct rational places, which gives the
result. 
�
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2.3 Function Field Instantiation Using Garcia-Stichtenoth Curves

In the proof of Theorem1, we assume that there exists at least r+1 distinct places
of degree one and there exists a prime divisor of degree n. We use appropriate
Garcia-Stichtenoth curves to ensure this is indeed the case. Formally, we have
the following theorem.

Imported Theorem 1 (Garcia-Stichtenoth [28]). For every q that is an
even power of a prime, there exists an infinite family of curves {Cu}u∈N such
that:

1. The number of rational places #Cu(Fq) � qu/2(
√

q − 1), and
2. The genus of the curve g(Cu) ≤ qu/2.

For Theorem 1, we want the following conditions to be satisfied.

1. The number of distinct degree one places is at least r + 1
2. There exists a prime divisor of degree n.

Let q � 49 be an even power of a prime. Then for any u ∈ N, we choose
n = qu/2(

√
q − 1) ∈ N and consider the function field given by the curve Cu. By

Imported Theorem 1, we have that the number of rational points #Cu(Fq) �
qu/2(

√
q − 1) = n and g(Cu) ≤ qu/2 = n√

q−1 . In particular, for s =
⌊

n−1
2

⌋
, we

have s < n and we can always choose r such that s < r ≤ n. Setting r = n − 1,
we have that the map γ in the proof of Theorem 1 defines a suitable Goppa code
[31] over Fq. With r = n−1, we in fact have that there are at least r+1 distinct
prime divisors of degree one. Furthermore, we have n � 6g and g ≤ n√

q−1 , so

2 logq g + 6 ≤ 2 logq (n/(
√

q − 1)) + 6 ≤ n.

So there exists a prime divisor of degree n by Imported Lemma 2. Finally we
have

m = s − g + 1 � �(n − 1)/2 − n/(
√

q − 1) + 6 = Θ(n).

Note that g � 0, so we also have m ≤ ⌊
n−1
2

⌋
+ 6 = Θ(n).

2.4 Efficiency

There are efficient algorithms to generate the places on the Garcia-Stichtenoth
curves in Imported Theorem 1. In particular, the evaluation and the interpo-
lation algorithms are efficient. The existence of such algorithms is one of the
primary motivations for using Garcia-Stichtenoth curves instead of other alter-
nate constructions.

For example, the cost of creating the generator matrices for multiplication-
friendly linear secret sharing schemes as introduced by the seminal work of Chen-
Cramer [20] corresponds to the cost of the encoding in our construction. The
result of Shum-Aleshnikov-Kumar-Stichtenoth-Deolalikar [51], for instance, pro-
vides such an efficient encoding algorithm. The reconstruction/decoding problem
has an efficient algorithm using the Berlekamp-Massey-Sakata algorithm with
Feng-Rao majority voting.
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3 Realizing OLE (F)m Using One ROLE
(
K

)

In this section, we show how to securely realize m independent copies of OLE (F)
using one sample of ROLE

(
K

)
(Random-OLE), for field F = Fq and K a degree

n extension field of F. Intuitively, the ROLE
(
K

)
functionality is an inputless

functionality that samples A,B,X uniformly and independently at random from
K, and outputs (A,B) to one party and (X,Z) to the other party. This secure
realization is achieved by composing two steps. First, we securely realize one
OLE (K) from one ROLE

(
K

)
using a standard protocol (cf. the randomized self-

reducibility of the OLE functionality [52]). Then, we embed m copies of OLE (F)
into one OLE (K). Formally, we have the following theorem.

Theorem 3 (Realizing multiple small OLEusing one large ROLE). Let F

be a field of size q, a power of a prime. Let K be a degree n extension field of
F. There exists a perfectly secure protocol for OLE (F)m in the ROLE

(
K

)
-hybrid

that performs only one call to the ROLE
(
K

)
functionality, m = Θ(n), and has

communication complexity 3 lg |K|.

3.1 Preliminaries

We introduce the functionalities we are interested in.

Oblivious Linear-function Evaluation. For a field (F,+, ·), oblivious linear-
function evaluation over F, represented by OLE (F), is a two-party functionality
that takes as input (a, b) ∈ F

2 from Alice and x ∈ F from Bob and outputs
z = ax + b to Bob. In particular, OLE refers to the OLE (GF [2]) functionality.

Random Oblivious Linear-function Evaluation. For a field (F,+, ·), ran-
dom oblivious linear-function evaluation over F, represented by ROLE

(
F
)
, is a

correlation that samples a, b, x ∈ F uniformly and independently at random. It
provides Alice the secret share rA = (a, b) and provides Bob the secret share
rB = (x, z), where z = ax + b. In particular, ROLE refers to the ROLE

(
GF [2]

)

correlation.

3.2 Securely Realizing OLE (K) using one ROLE
(
K

)

The protocol presented in Fig. 3 is the standard protocol that implements the
OLE (K) functionality in the ROLE

(
K

)
-hybrid with perfect semi-honest security

(cf. [52]).

3.3 Securely Realizing OLE (F)m using one OLE (K)

This section presents the realization of Theorem 2. Our goal is to embed m inde-
pendent copies of OLE (F) into one OLE (K), where m = Θ(n). More concretely,
suppose we are given an oracle that takes as input A∗, B∗ ∈ K from Alice and
X∗ ∈ K from Bob, and outputs Z∗ = A∗ ·X∗ +B∗ to Bob. Our aim is to imple-
ment the following functionality. Alice has inputs a = (a1, . . . , am) ∈ F

m
q and
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Fig. 3. Perfectly secure protocol realizing OLE (K) in the ROLE
(
K

)
correlation hybrid.

b = (b1, . . . , bm) ∈ F
m
q , and Bob has input x = (x1, . . . , xm) ∈ F

m
q . We want Bob

to obtain z = (z1, . . . , zm), where z = a∗x+b, in other words, zi = ai ·xi +bi for
every i ∈ [m]. To do that, we extend our multiplication embedding with addi-
tion using a standard technique like in [10,32]. We define a randomized encoding
function E2 needed for our protocol as the following.

Definition of the (randomized) encoding function E2

E2 : F
m
q → Fqn . E2(b) returns a uniformly random B ∈ Im(κ) ⊆ Fqn such that

D(B) = b; that is, ψ(γ(κ−1(B))) = b.

We show that the protocol presented in Fig. 4 achieves m = Θ(n) and realizes
Theorem 2.

Correctness. We argue the correctness of the protocol by showing that
D(Z∗) = a ∗ x + b. In the protocol, Alice creates A∗ = E(a) and B∗ = E2(b),
and Bob creates X∗ = E(x). Calling the OLE (K) functionality, Bob receives

Fig. 4. Protocol for embedding m copies of OLE (F) into one OLE (K), where K is a
degree n extension field of F.
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Z∗ = A∗ · X∗ + B∗. In particular, Bob receives Z∗ = E(a) · E(x) + E2(b).
Then Bob computes D(Z∗). Since D is a linear map and by Theorem 1, we have
m = Θ(n) and the following.

D(Z∗) = D (E(a) · E(x) + E2(b)) = D (E(a) · E(x)) + D(E2(b)) = a ∗ x + b

Security. We argue the security for our protocol. The security relies on the
observation that E(a) · E(x) + E2(b) is uniformly distributed over the set

{Z : Z ∈ Im(κ) and D(Z) = z} ,

where z = a ∗ b + c. Note that Alice does not receive any message, so the
simulation of semi-honest corrupt Alice is trivial.

Consider the case that Bob is semi-honest corrupt. In this case, the simula-
tor receives x from the environment, sends x to the external functionality, and
receives z as output. It samples Z∗ = E2(z), and sends (X∗ = E(x), Z∗, z) as
the view of Bob to the environment.

We shall show that this simulation is perfect. Note that E(a) · E(x) ∈
Im(κ). Observe that E2(b) is a uniform distribution over a coset of
E2(0m). Now, E(a) · E(x) + E2(b) is a uniform distribution over the coset
{Z : Z ∈ Im(κ) and D(Z) = z} , where z = a ∗ x + b. That is, the distribution
of E(a) · E(x) + E2(b) is identical to the distribution of E2(z).

3.4 Realization of OLE (F)m in the ROLE
(
K

)
-hybrid

The protocol that realizes Theorem 3 is the parallel composition of the protocols
presented in Figs. 3 and 4 (Theorem 2). The composition of these protocols
in parallel gives an optimal two-round protocol for realizing OLE (F)m in the
ROLE

(
K

)
-hybrid with perfect security and m = Θ(n) by Theorem 1, as desired.

4 Linear Production Correlation Extractors in the High
Resilience Setting

This section provides the necessary background of correlation extractors and
proves Corollary 3. In particular, Corollary 3 is achieved by the construction
of a suitable correlation extractor. A correlated private randomness, or corre-
lation in short, is a joint distribution (RA, RB) which samples shares (rA, rB)
according to the distribution and sends secret shares rA to Alice and rB to Bob.
Correlations are given to parties in an offline preprocessing phase. Parties then
use their respective secret shares in an online phase in an interactive proto-
col to securely compute an intended functionality. Correlation extractors take
leaky shares of correlations and distill them into fresh randomness to be used to
securely compute the intended functionality. Formally, we define a correlation
extractor below.
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Definition 1 (Correlation Extractor [36]). Let (RA, RB) be a correlated pri-
vate randomness such that the secret share size of each party is n′-bits. An
(n′,m, t, ε)-correlation extractor for (RA, RB) is a two-party interactive proto-
col in the

(
RA, RB

)[t]-hybrid that securely implements m copies of the OT func-
tionality against information-theoretic semi-honest adversaries with ε-simulation
error.

Using this definition we restate Corollary 3 as follows.

Theorem 4 (Half Resilience, Linear Production Correlation Extrac-
tor). For all constants 0 < δ < g ≤ 1/2, there exists a correlation (RA, RB),
where each party gets n′-bit secret shares, such that there exists a two-round
(n′,m, t, ε)-correlation extractor for (RA, RB), where m = Θ(n′), t = (1/2−g)n′,
and ε = 2−(g−δ)n′/2.

The construction of this correlation extractor achieves linear production m =
Θ(n′) and 1/2 leakage resilience by composing our embedding (Theorems 1
and 2) with the correlation extractor of Block, Maji, and Nguyen (BMN) [10].
Prior correlation extractors either achieved sub-linear production, (significantly)
less than 1/2 resilience, or were not round-optimal.

4.1 Preliminaries

We introduce some useful functionalities and correlations.

Random Oblivious Transfer Correlation. Random oblivious transfer, rep-
resented by ROT, is a correlation that samples x0, x1, b uniformly and indepen-
dently at random. It provides Alice the secret share rA = (x0, x1) and provides
Bob the secret share rB = (b, xb).

Recall also the Oblivious Linear-function Evaluation and Random
Oblivious Linear-function Evaluation functionalities from Sect. 3.1. We
denote ROLE

(
GF [2]

)
by ROLE. Note that ROT and ROLE are identical (func-

tionally equivalent) correlations.

Inner-product Correlation. For a field (K,+, ·) and n′ ∈ N, inner-product
correlation over K of size n′, represented by IP

(
K

n′)
, is a correlation that samples

random rA = (x0, . . . , xn′−1) ∈ K
n′

and rB = (y0, . . . , yn′−1) ∈ K
n′

subject to
the constraint that x0 + y0 =

∑n′−1
i=1 xiyi. The secret shares of Alice and Bob

are, respectively, rA and rB .

4.2 Realizing Theorem 4

The realization of Theorem 4 is the parallel composition of two protocols. First,
we utilize the BMN ROLE

(
K

)
extraction protocol [10, Fig. 7]. Informally, the

BMN extraction protocol takes leaky shares of the inner-product correlation
over the field K, and securely extracts one sample of ROLE

(
K

)
. In particular,

the BMN extraction protocol is resilient to t = (1/2 − g)n′ bits of leakage, for
any g ∈ (0, 1/2].
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Second, we utilize our new embedding protocol of Theorem 3 which produces
m copies of OLE (F) from one ROLE

(
K

)
, and compose it in parallel with the BMN

extraction protocol for ROLE
(
K

)
. Previously, the BMN embedding achieved m =

(n′)1−o(1) production, whereas with Theorem 3 we achieve m = Θ(n′) production
with the following parameters. We take F = GF [2] and K = GF[2δn′

], where
n′ and δ are given, η := 1

δ − 1, and n := n′
(η+1) . In particular, K is a degree-n

extension of F, and n here corresponds to the n of Corollary 3. So m = Θ(n′) =
Θ(n). We then take (RA, RB) = IP

(
K

1/δ
)

to be the input correlation for the
BMN extraction protocol.

The BMN extraction protocol is a perfectly secure semi-honest protocol
for extracting one ROLE

(
GF[2δn′

]
)

in the
(
IP

(
GF[2δn′

]
1/δ))[t]-hybrid which is

resilient to t = (1/2 − g)n′ bits of leakage, for all 0 < δ < g ≤ 1/2 (cf. [10,
Theorem 1]). Then the parallel composition of the protocols of Figs. 3 and 4 is
a perfectly secure semi-honest protocol for realizing m copies of OLE (GF [2]) in
the ROLE

(
GF[2δn′

]
)
-hybrid, and m = Θ(n′) = Θ(n). This proves Theorem 4,

and thus Corollary 3.

4.3 Comparison with Prior Works

Correlation extractors were introduced by Ishai, Kushilevitz, Ostrovsky, and
Sahai [36] as a natural generalization of privacy amplification and randomness
extraction. Since the initial feasibility result of [36], there have been significant
qualitative and quantitative improvements in correlation extractor constructions.
Figure 5 summarizes the current state-of-the-art of correlation extractors.

Prior to our work, the Block, Gupta, Maji, and Nguyen (BGMN) correla-
tion extractors [9] achieve the best qualitative and quantitative parameters. For
example, starting with n/2 independent samples of the ROT correlation, they
construct the first round-optimal correlation extractor that produces m = Θ(n)

Fig. 5. A qualitative summary of prior relevant works in correlation extractors and a
comparison to our correlation extractor construction. Here K is a finite field and F is
a finite field of constant size. All correlations have been normalized so that each party
gets an n-bit secret share. The parameter g is defined as the gap to leakage resilience
s.t. t � 0.
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secure ROT samples despite t = (1/4 − ε)n bits of leakage, for any ε > 0. Note
that any correlation extractor for n/2 ROT samples can have at most t = n/4
resilience [37].

Our correlation extractor is also round optimal. However, the BMN [10] cor-
relation extractor and our correlation extractor have resilience in the range
t/n ∈ [1/4, 1/2). Intuitively, our correlation extractor is ideal where high
resilience is necessary. Our correlation extractor needs a large correlation, for
example, the inner-product correlation over large fields. Contrast this with the
case of BGMN extractor that uses multiple samples of the ROT correlation.
To achieve t = (1/2 − g)n resilience, where g ∈ (0, 1/4], we use the inner-
product correlation over fields of size (roughly) 2gn. Using the multiplication
embedding in Theorem 1, our work demonstrates the feasibility of extracting
m = Θ(gn) independent ROT samples when the fractional resilience is in the
range t/n ∈ [1/4, 1/2).

5 Chudnovsky-Chudnovsky Bilinear Multiplication

We discuss the reverse problems of Theorems 1 and 3. We assume familiarity with
Sect. 2. First we consider the problem of computing one large field multiplications
using many small field multiplications. This is given by the following theorem.

Theorem 5 (Field Extension Multiplication via Pointwise Base Field
Multiplication). Let F be a finite field of size q, a power of a prime. For
sufficiently large n, there exists a constant c′ > 0 and (linear) maps E′ : K → F

m

and D′ : F
m → K, where K is the degree-n extension of the field F, such that the

following constraints are satisfied.

1. We have m � c′n, and
2. For all A,B ∈ K, the following identity holds

D′ (E′(A) ∗ E′(B)) = A · B

where “∗” is pointwise multiplication over F
m.

Note that since the maps E′ and D′ are linear, the following holds.

Corollary 4. For all A,B,C ∈ K, we have

D′(E′(A) ∗ E′(B) + E′(C)
)

= D′(E′(A) ∗ E′(B)
)

+ D′(E′(C)
)
.

Theorem 5 follows from the results of Chudnovsky-Chudnovsk [21]. In par-
ticular, they show that the rank of bilinear multiplication is Θ(n).

Imported Theorem 2 (Chudnovsky and Chudnovsky [13, Theorem
18.20]). For every power of a prime q there exists a constant cq such that
R(Fqn/Fq) ≤ cqn, where R is the rank of the Fq-bilinear map that is multi-
plication over Fqn .
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The theorem states that if K is a degree n extension of Fq, then the bilinear com-
plexity of multiplication over K is Θ(n). This result is due to the Chudnovsky-
Chudnovsky interpolation algorithm (cf. Imported Lemma 2) and the following
result of Garcia and Stichtenoth.

Imported Theorem 3 (Garcia and Stichtenoth [27], [13, Theorem
18.24]). Let p be a power of prime, X1 be an indeterminate over Fp2 , and
K1 := Fp2(X1). For i � 1 let Ki+1 := Ki(Zi+1), where Zi+1 satisfies the Artin-
Schreier equation Zp

i+1 + Zi+1 = Xp+1
m and Xi := Zi/Xi−1 ∈ Ki (for i � 2).

Then Ki/Fp2 has genus gi given by

gi =

{
pi + pi−1 − p

i+1
2 − 2p

i−1
2 + 1 if i ≡ 1 mod 2,

pi + pi−1 − 1
2p

i
2+1 − 3

2p
i
2 − p

i
2−1 + 1 if i ≡ 0 mod 2,

and |P(1)(Ki/Fp2)| � (p2 − 1)pi−1 + 2p � (p − 1)gi.

Imported Lemma 3 (Chudnovsky-Chudnovsky Interpolation Algo-
rithm [13, Proposition 18.22]). Let K/Fq be an algebraic function field of one
variable of genus g, n � 2 logq g +6, and assume that there exist at least 4g +2n
prime divisors of degree one of K/Fq. Then we have R(Fqn/Fq) ≤ 3g + 2n − 1.

Imported Lemma 3 gives rise to the commutative diagram of Fig. 6 which defines
the interpolation method. This interpolation method implements multiplication
over Fqn using r′ pointwise multiplications over F

r′
q . This gives that r′ = 3g +2n

−1 = Θ(n). Setting m = r′ and setting E′ and D′ according to the interpolation
algorithm directly yields Theorem 5. Concretely, we have the maps E′ and D′

defined as follows.

E′ := κ′ ◦ (γ′)−1 D′ := γ′ ◦ (κ′)−1.

Note both κ′ and γ′ are linear maps, so E′ and D′ are also linear maps.
Given E′ and D′ of Theorem 5, we compute the reverse problem of

Theorem 3. That is, we can use multiple small ROLE to realize one large OLE.

Fig. 6. Chudnovsky-Chudnovsky interpolation algorithm for performing multiplication
over Fqn using r′ pointwise multiplications over F

r′
q , where r′ = Θ(n) and s′ = n+2g−1.
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Theorem 6 (Realizing one large OLEusing multiple small ROLE). Let F

be a field of size q, a power of a prime. Let K be a degree n extension field of
F. There exists a perfectly secure protocol for OLE (K) in the ROLE

(
F
)m-hybrid

that performs only one call to the ROLE
(
F
)m functionality, m = Θ(n), and has

communication complexity 3m lg |F|.
To realize Theorem 6, we compose two steps in parallel. First we securely

realize OLE (F)m from ROLE
(
F
)m using a standard protocol. Then we use m

copies of OLE (F) to implement a single OLE (K).

5.1 Securely Realizing OLE (F)m Using ROLE
(
F
)m

The protocol presented in Fig. 7 is an extension of the standard protocol that
implements the OLE (F) functionality in the ROLE

(
F
)
-hybrid with perfect semi-

honest security. In particular, it is the m parallel composition of the OLE (F)
functionality in the ROLE

(
F
)
-hybrid.

Fig. 7. Perfectly secure protocol realizing OLE (F)m in the ROLE
(
F
)m

correlation
hybrid.

5.2 Securely Realizing OLE (K) from OLE (F)m

The goal is to use m copies of OLE (F) to compute one OLE (K), where m = Θ(n).
Concretely, suppose we are given an oracle which takes as input a,b ∈ F

m from
Alice and x ∈ F

m from Bob, and outputs z = a ∗ x + b to Bob. Our aim is
to implement the following functionality. Alice has private inputs A ∈ K and
B ∈ K, and Bob has input X ∈ K. We want Bob to obtain Z = AX + B ∈ K.
We show that if Alice and Bob use the protocol presented in Fig. 8, we can
achieve m = Θ(n). More formally, we have the following lemma.

Lemma 2 (Performing one large OLEusing multiple small OLE). Let K

be an extension field of F of degree n. There exists a perfectly secure protocol
for OLE (K) in the OLE (F)m-hybrid that performs only one call to the OLE (F)m

functionality and m = Θ(n).
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Fig. 8. Protocol for computing one OLE (K) using m copies of OLE (F), where K is a
degree n extension field of F.

Figure 8 realizes Lemma 2. In the protocol, Alice creates a = E′(A) and
b = E′(B), and Bob creates x = E′(X). Calling the OLE (F)m functionality,
Bob receives z = a∗x+b. In particular, he receives z = E′(A)∗E′(X)+E′(B).
Bob then computes D′(z). Since D′ is a linear map and by Theorem 5, we have
the following.

D′(z) = D′(E′(A) ∗ E′(X) + E′(B)
)

= D′(E′(A) ∗ E′(X)
)

+ D′(E′(B)
)

= AX + B

5.3 Proof of Theorem 6

The protocol which satisfies Theorem 6 is the parallel composition of the pro-
tocols presented in Figs. 7 and 8 (Lemma 2). The composition of these proto-
cols in parallel gives an optimal two-round protocol for realizing OLE (K) in the
ROLE

(
F
)m-hybrid with perfect security and m = Θ(n) by Theorem 5, as desired.

5.4 Prior Work

Chudnovsky-Chudnovsky [21] gave the first feasibility result on the bilinear com-
plexity of multiplication, showing Θ(n) multiplications in Fq suffice to perform
one multiplication over Fqn . Since then there have been several works on explicit
constructions and variants of the bilinear multiplication algorithms and improved
the bounds on the bilinear complexity.

The works of [27,28,50] discuss the construction of appropriate function fields
such that there is sufficient number of rational points for interpolation. Improve-
ment on the bounds for the bilinear complexity of multiplication and general-
izations of the Chudnovsky-Chudnovsky method appear in [3,4,6,49]. Explicit
construction of multiplication algorithms are discussed in [2,4,17], and in the
particular case of function fields over elliptic curves in [5,19].
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