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Abstract. Since the last decade, High Utility Itemset (HUI) mining has
emerged as a popular pattern mining approach. HUI mining discovers a
set of itemset with their profit more than a user defined profit threshold.
High Average-Utility Itemset (HAUI) mining is an improvement over
HUI mining that involves the length of items to refine the patterns and
keep a fair mining process. In the era of big data, traditional HAUI
mining algorithms are not suitable to process large transaction dataset on
standalone system due to limitation of processing resources. Therefore,
several distributed frameworks have been developed to process big data
on cluster of commodity hardwares. This paper presents a parallel version
of the traditional HAUI-Miner algorithm and names it as Parallel High-
Average Utility Itemset Miner (PHAUIM). PHAUIM is a Spark-based
distributed algorithm which splits the dataset into multiple chunks and
distributes on cluster nodes to process each data chunk in parallel. In
addition, an improved approach for search space division is developed.
Proposed search space division technique fairly assigns the workload to
each node and upgrades the performance. Comprehensive experiments
have been performed to measure the performance of PHAUIM in terms of
speedup and data scalability. PHAUIM is also compared with traditional
HAUIM.

Keywords: High average-utility itemset mining · Big data
Apache-Spark · Search space

1 Introduction

Discovery of useful patterns from a dataset is the task of pattern mining tech-
niques [7,10]. Association rule and frequent itemset are two major constructs
in the traditional pattern mining approaches that are still used for several real-
life applications. Frequent Itemset Mining (FIM) [1,2,8,11] searches all frequent
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itemsets from a transaction dataset which have frequency(also called as support)
more than a user defined support threshold. Apriori algorithm is a fundamental
algorithm which performs a level-wise searching to discover a set of frequent item-
sets [2]. It applies a Downward Closure (DC) property to prune the unpromising
candidate itemsets from the search space. The DC property states that if any
item in the search space is not frequent then none of its superset can be fre-
quent. However, support is not an important measure to define useful patterns
for various organizations. Therefore, FIM is extended by incorporating two new
parameters called utility and quantity of itemset. Utility of an itemset means
the profit obtained by that itemset. This new field of pattern mining is named as
high utility itemset mining [3,28]. An itemset is termed as high utility itemset if
its utility is no less than a user defined minimum utility threshold. Utility mea-
sure does not follow the DC property unlike the apriori algorithm. Therefore, a
novel measure called Transaction Weighted Utility (TWU) [22] is introduced to
retain the DC property in HUI mining. Several two-phase algorithms [17,23,26]
have adopted TWU model to apply pruning. All two-phase algorithms search
a set of strong candidate itemsets at the end of first phase and calculate the
actual utility value to find the HUIs in the second phase. HUI-Miner [21] is the
earliest algorithm which discovers HUIs from a dataset in one-phase. It has intro-
duced a list structure called utility list to store utility of itemset and required
information to apply pruning method. Thereafter, several improved one-phase
algorithms [9,13,14,31] have been developed.

HUI miner suffers from a major limitation that length of the itemset affects
the quality of the patterns. It is most likely that an itemset with larger length will
has more chances to be a HUI regardless its usefulness. Therefore, an alterna-
tive of utility measure called average-utility is introduced to remove the impact
of length constraint from the HUI miner. Average-utility of an itemset is mea-
sured by dividing the utility by its length. Pattern mining using average-utility
is named as high average-utility itemset mining [12,15,16]. TWU is not appli-
cable in HAUI mining algorithms. Therefore, a novel measure called Average
Utility Upper-Bound (AUUB) [12] is introduced to acquire the downward clo-
sure property. Several HAUI mining algorithms [15,18] have adopted AUUB
model to serve the pruning method. However, these algorithms are two-phase in
nature and require more time and computing resources to search HAUIs. HAUI-
Miner [18] is the first one-phase algorithm which produces candidate itemsets
and HAUIs together. It has presented a list structure called Average-Utility (AU)
list. Average-utility list is similar concept like utility list of HUI-Miner [21]. It
requires a dataset scan to construct the AU-list of 1-itemset. Then, joining of
AU-list of (k − 1)-itemset is performed to build the AU-list of k -itemset. Vari-
ous advanced HAUI mining algorithms [19,29] have been developed with tighter
upper-bounds and efficient pruning methods.

A big explosion in technology and data industries have generated huge volume
of data, lying on the servers. This data is termed as big data [4]. To apply
pattern mining techniques on big transaction data is a challenging task because
of two factors. First, big transaction data generates massive number of candidate
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itemset which might not fit in the system memory. Second, most of the pattern
mining algorithms are developed for the standalone system which might not
suitable to store and process big data. Many distributed frameworks such as
hadoop [27], Spark [30] have been developed to effectively process big data with
cluster computing approach. Many studies [5,20,24,25] have been performed to
apply pattern mining techniques such as FIM, HUI mining on big data. Mining
in distributed systems requires to divide and distribute the processing load on
multiple machines so that processing can be achieved independently in a parallel
manner. Therefore, search space division is a challenging task for data processing
in distributed manner.

In this paper, parallel version of HAUI-Miner algorithm [18] named paral-
lel HAUI-Miner is proposed. PHAUIM is a Spark based distributed algorithm.
Apache Spark is considered as one of the best distributed framework for itera-
tive data processing. Its in-memory processing and flexible programming envi-
ronment uplift it over the hadoop framework. It introduces a new data structure
called Resilient Distributed Dataset (RDD) that is collection of immutable dis-
tributed objects. Data in RDD is automatically distributed across the cluster
nodes by spark framework to parallelize data processing. Moreover, a better
search space division method is introduced to fairly divide the workload on each
node. This method considers both AUUB values of items and length of subspace
to define a weight factor for each node. It assures that no node with higher
weight gets more workload than lower weight node. This paper has the following
contributions.

1. A parallel algorithm PHAUIM is presented which models the traditional
HAUI-Miner to work in distributed framework, i.e., Spark. Apache-Spark
provides fast processing for iterative algorithms.

2. A better search space division method is introduced to assign the workload
fairly on each computing node.

3. Substantial experiments have been conducted to evaluate the performance
of proposed algorithm PHAUIM. It has also been compared with the base
algorithm HAUI-Miner. It is observed that PHAUIM outperforms HAUI-
Miner in speedup.

Remaining paper is arranged in the following manner. Section 2 explains the
terms and definitions to describe HUI-mining and HAUI-mining. The proposed
algorithm PHAUIM is discussed in Sect. 3. Section 4 contains experiments and
performance evaluation of the PHAUIM. Section 5 concludes the paper.

2 Prerequisites

2.1 High Average-Utility Itemset Mining

Let D = {t1, t2, ..., tn} be a transaction dataset with n transactions and m dis-
tinct items I = {i1, i2, ..., im}. Each transaction tp ∈ D(p ∈ [1, n]) is denoted as a
unique identifier called as Transaction identifier (Tid) and contains a set of items
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from I. Let X = {i1, i2, ...., ik} be a set of k distinct items from I that is called k-
itemset. Each item x ∈ I in a transaction tp is associated with a positive integer
called as purchasing quantity or internal utility of x. Internal utility of the item x
in transaction tp is denoted as IU(x, tp). Each item also acquires a positive inte-
ger for the whole dataset that is called per unit profit or external utility. External
utility of item x is denoted as EU(x). External utility values for all the item-
sets are stored in the profit table such as PT = {EU(i1), EU(i2), ..., EU(im)}. A
sample transaction data and profit table are shown in respective Tables 1 and 2.
These tables are used as running example throughout the paper.

Table 1. A sample dataset

Tid item:quantity

t1 a:2, c:3, d:1, e:5

t2 a:3, b:4, c:1, e:2

t3 b:4, c:1, d:4, e:2, f:1

t4 a:2, b:3, c:3, d:1, e:4

t5 a:1, b:3, c:2, d:2

t6 a:2, b:5, c:2, f:2

Table 2. Profit table

Items Per unit profit

a 2

b 3

c 3

d 2

e 4

f 1

Definition 1 (Item utility). Let x be an item in a transaction tp, utility of x in
tp is denoted as U(x, tp) and defined as follows.

U(x, tp) = IU(x, tp) × EU(x) (1)

Definition 2 (Itemset utility). Let X be an itemset in transaction tp, utility of
X in tp is denoted as U(X, tp) and defined as follows.

U(X, tp) =
∑

x∈X&X⊆tp

U(x, tp) (2)
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Utility of itemset X in dataset D is denoted as U(X) and defined as:

U(X) =
∑

X⊆tp&tp∈D

U(X, tp) (3)

Definition 3 (Average-utility). Average-utility of a k-itemset X in transaction
tp is denoted as AU(X, tp) and defined as follows.

AU(X, tp) =
U(X, tp)

| X | =

∑
x∈X&X⊆tp

U(x, tp)

k
(4)

Where, | X | is the cardinality of itemset X, i.e. | X |= k. Average-utility of X
in dataset D is denoted as AU(X) and computed as follows.

AU(X) =
∑

X⊆tp&tp∈D

AU(X, tp) (5)

For example, in the running dataset, AU(ac) = AU(ac, t1) + AU(ac, t2) + AU(ac,
t4) + AU(ac, t5) + AU(ac, t6) = 6.5 + 4.5 + 6.5 + 4 + 5 = 26.5.

Definition 4 (Total dataset utility). Total dataset utility of the dataset D is
denoted as TDU(D) and defined as follows.

TDU(D) =
∑

tp∈D

TU(tp) (6)

Where, TU(tp) is transaction utility of tp that is computed as:
TU(tp) =

∑
x∈tp

U(x, tp).

Definition 5 (Minimum average-utility threshold). Minimum average-utility
threshold is a user defined percentage value of TDU. Let δ be the user defined
percentage value, then minimum average-utility threshold (denoted as minUtil)
is defined as follows.

minUtil = TDU × δ (7)

For example, in the running dataset, TDU(D) = 182. Let δ be 18% then
minUtil = 182 × 0.18 = 32.76.

Definition 6 (High average-utility itemset). The itemset X is called as High
Average-Utility Itemset (HAUI) if AU(X) ≥ minUtil.

HAUIs ← {X|AU(X) ≥ minUtil} (8)

For example, in the running dataset, AU(ac) = 26.5 < minUtil. Therefore, item-
set (ac) is not a HAUI.

Definition 7 (Transaction maximum utility). Transaction maximum utility
(TMU) for a transaction tp is denoted as TMU(tp) and defined as the maxi-
mum utility value in tp.

TMU(tp) = max(U(x, tp)|x ∈ tp) (9)
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Definition 8 (Average-utility upper bound). The average-utility upper bound
for itemset X is denoted as AUUB(X) and defined as follows.

AUUB(X) =
∑

X⊆tp&tp∈D

TMU(tp) (10)

For example, in the running dataset, AUUB values of the items are
as follows. AUUB(a) = 72, AUUB(b)= 64, AUUB(c)= 84, AUUB(d)= 57,
AUUB(e)= 60, AUUB(f)= 27.

Property 1 (Downward closure property using AUUB). If an itemset X has
AUUB value lesser than minUtil then neither X nor any superset of X is HAUI.

Property 1 is used to apply the pruning step in HAUI-mining algorithms.
AUUB provides the upper-bound of average-utility for itemsets to remove the
weak candidate itemsets. For example, in the running dataset, AUUB(f)= 27 <
minUtil. Therefore, item f is a weak candidate and can be removed from the
search space.

Definition 9 (Processing order and revised dataset). In the first scan of dataset,
AUUB of all the items is computed. Then, the dataset is revised and used in place
of original dataset. There are following two constrains for the dataset revision.

1. All the items with AUUB value lesser than minUtil are removed. As per the
Property 1, such items are no longer needed.

2. Items in a revised transaction are arranged as per the ascending order of the
AUUB values.

Definition 10 (Average-utility list). Average-utility list for an itemset X is a
list of tuples <Tid, U, TMU>, where Tid is the transaction ID which stores X,
U is the utility of X in Tid and, TMU is the maximum utility of transaction
Tid. AU-list of 1-itemset is constructed by a scan of revised dataset. Thereafter,
AU-list of k-itemset (k ≥ 2) can be constructed by joining the AU-list of (k−1)-
itemset. Hence, no extra dataset scans are required to built the AU-list of larger
itemsets. Let X.AUL (m length) and Y.AUL (n length) be the AU-list of two
itemsets X and Y . To construct the AU-list of itemset XY , i.e. XY.AUL requires
following rules to be employed.

1. All the common Tids in both the AU-lists are put in XY.AUL. Tid in both
the AU-lists are sorted, therefore searching of common Tids requires (m + n)
comparison.

2. For each common Tid, U field is measured as X.U+Y.U .
3. Y.TMU value is assigned to XY.TMU .

Property 2 (Pruning using AU-list). Let X be an itemset and SUM(X.TMU)
be the sum of all TMU values in the AU-list of X. If SUM(X.TMU) is lesser
than minUtil, then neither X nor any superset of X can be HAUI. Therefore,
X and all its extensions can be pruned from the search space.
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3 Proposed Algorithm: Parallel High Average-Utility
Itemset Miner

Parallel High Average-Utility Itemset Miner (PHAUIM) is a Spark based algo-
rithm which is suited to run on big transaction dataset in a distributed man-
ner. PHAUIM works on divide and conquer concept where large problem is
divided into smaller problems and solved individually by each node to make
mining process faster. Execution flow of the PHAUIM is depicted in Fig. 1.
Transaction data are partitioned into smaller and equal size of chunks and dis-
tributed across the cluster nodes. The distribution is part of Hadoop frame-
work where we used HDFS as file system. The Data are loaded in a RDD
<Transaction> and each node processes the assigned data in parallel. Then,
each item is associated with TMU value to form a paired RDD <item, TMU>.
Thereafter, TMU values of each item across all the nodes is summed to produce
another RDD <item,AUUB> and collected at the master node. The trans-
action data is revised as per the List([item,AUUB]) where, each transaction
omits all the items with AUUB value lesser than minUtil and remaining items
are sorted in ascending order of their AUUB values. All the items from the
List([item,AUUB]) are extracted and mapped to the number of nodes in the
cluster. Thus, a List([item,Node]) is obtained which is used for search space
division such that only assigned items and their extensions are explored by each
node. Moreover, the required transactions from the revised dataset are extracted
for each node to reduce the processing complexity. Each node constructs average-
utility list, i.e., items.AUL for each assigned item. Then a recursive HAUI min-
ing procedure is applied on items.AUL to produce a set of HAUIs. The HAUIs
produced by all the nodes are combined to produce the final output.

The pseudo code of PHAUIM is shown in Algorithm1. It takes three inputs:
transaction dataset D, number of nodes N , minimum average-utility threshold
minUtil and produces a list of HAUIs as output. In the first dataset scan, it
applies flatmap() method to the D and each item x in transaction tp is mapped
to a key-value form (x, TMU) (line 4). TMU values of each item across the clus-
ter nodes is summed to built another RDD <x,AUUB> using reduceByKey()
method (line 5). All the items with AUUB lesser then minUtil are pruned out
(line 6) and remaining items along with their AUUB are assigned to RDD
itemAUUB. Thereafter, a list of items items from the RDD itemAUUB is
extracted where items are sorted in ascending order of their AUUB values (line
11). Then, mapping() method is invoked to assign a set of items to each node,
i.e., itemNode so that the node can search the HAUIs from all the extensions
of assigned items (line 12). Both the itemAUUB and itenNode are broadcasted
to each node using broadcast variable (line 13). In the second dataset scan, the
dataset is revised and the AUUB value of each item is recalculated from the
revised dataset (lines 14–16). Thereafter, revised dataset is again scanned to
assign required data to each cluster node using DataGenerator() method (lines
17–18). Each cluster node constructs the AU-list for every assigned item x (lines
19–22). Then, the HAUIMiner() method is recursively called to generate a set of
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Fig. 1. Execution flow of PHAUIM

HAUIs. All the three methods mapping(), DataGenerator() and HAUIMiner()
are discussed in detail in the following subsections.

3.1 Search Space Division

Entire Search space is divided into several subspaces and processed by individual
cluster node to speedup the mining. For example, in the running dataset, after
the first scan, five items (along with their AUUB values) {d: 57, e: 60, b: 64, a: 72,
c: 84} are discovered and sorted in ascending order of their AUUB values. The
search space is represented in form of enumeration tree [21] as shown in Fig. 2.
Each Node with an item is responsible to mine a set of HAUIs such that any
node with item d discovers all the itemsets with item d, node with item e mines
all the itemsets having e but not d, node with item b mines itemsets having b
but not item d and e, and so on. A fair division of search space is a difficult
task. PHAUI-Miner [5] is the first algorithm to implement the HUI-Miner [21] in
Spark framework. It assigns the items to cluster nodes in the following sequence.
Let {1, 2, ..., N} be the number of nodes in the cluster and {i1, i2, ..., ik} be the
items to be assigned to the nodes. Items are assigned to nodes 1, 2,..., N and,
then N, N− 1, ..., 1 and so on. For example, let there are 2 nodes in the cluster
then, items assignment will be like this: {Node 1: d, a, c; Node 2: e, b}.
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Algorithm 1. PHAUIM
INPUT: D: Transaction dataset, N : number of nodes

minUtil : Minimum average-utility threshold
OUTPUT: HAUI: List of high average-utility itemsets

//First dataset scan
1: flatMap (D)
2: for each transaction tp in D do
3: for each item x in tp do
4: map (x → (x, TMU))
5: redeuceByKey ( + )
6: filter (x → x. 2 ≥ minUtil)
7: itemAUUB ← (x,AUUB)
8: end for
9: end for

10: end flatMap
11: items = itemAUUB.toList.sortBy(x → (x. 2, x. 1)).map(x → x. 1)
12: itemNode= mapping(itemAUUB,N)
13: Boradcast the hashmap itemAUUB and itemNode

//Second dataset scan
14: Revise the dataset: remove the items whose AUUB < minUtil
15: Each transaction is sorted in ascending order of AUUB values.
16: Recalculate the AUUB values.

//Third dataset(revised) scan
17: NodeTrasnactions= DataGenerator(revisedData, itemNode)
18: NodeData=NodeTrasnactions.groupByKey()
19: flatMap (NodeData)
20: for each Node N in NodeData do
21: for each item x at the Node N do
22: P= x.AUL
23: end for
24: HAUI ← HAUIMiner(Null, P , minUtil, itemNode, NodeID, 1 )
25: end for
26: end flatMap
27: Output (HAUI)

It is observed that the existing search space division method may not perform
efficiently because of two factors. First, There is a big difference in number of
itemsets in each subspace, e.g., items d, e, b, a, c has 16, 8, 4, 2, 1 itemsets in their
respectively subspaces. Second, there may be a large gap in AUUB values of the
subspace itemsets. A large AUUB value means more entries in AU-list. Therefore,
processing of a larger AU-list requires some extra time. To accommodate these
constraints, in this paper, a novel search space division method is proposed that
considers both subspace size and items AUUB value for a fair division. Each
node is assigned a weight that is computed by using both size of subspace and
AUUB value of items. An item is assigned to a node which has the lowest weight
after that item assignment. Search space division method mapping() is depicted
in Algorithm 2. It takes two inputs: itemAUUB and number of nodes N and,
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Fig. 2. Search space for the running dataset

produces a hashmap itemNode which maps each item to a node. For each item
x in itemAUUB, the weight of x is computed by adding the subspace size to
AUUB value of item (lines 3–4). If a node is not assigned any item then x
is assigned to that node and nodeWeight is also updated (lines 8–11, 19–20).
Otherwise, for each node, afterWeight is measured which is weight of the node
after assignment of x (line 12). Item x is assigned to a node which has lowest
value of afterWeight (lines 13–16, 19–20). In the end, itemNode is returned
as an output. In the running dataset, search space division after applying the
proposed method is as follows: {Node 1: d, a; Node 2: e, b, c}.

3.2 Data Generation on Node

Each node is responsible to discover HAUIs from the assigned subspace. There-
fore, only required transactions or subset of transactions are stores at each node.
If a node is assigned an item x then only those transactions are stored which
have x. Moreover, if x is not the first item in revised dataset then subset of
transaction, i.e., from x to end of the transaction will be stored.

The method DataGenerator() for node data generation is depicted in Algo-
rithm3. It takes two inputs: revisedData and itemNode and, produces a paired
RDD NodeTransaction <NodeID, transaction> as an output. For each trans-
action tp in revisedData, algorithm searches each item x of tp in itemNode and
grabs the NodeID (lines 1–5). If NodeID has not been delivered as output then
subset of tp from the item x to the end of the tp is associated with NodeID to
make a key-value pair and given in the output (lines 6–10).
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Algorithm 2. Search space division: mapping()
INPUT: itemAUUB: List of items along with AUUB values

N : Number of nodes
OUTPUT: itemNode: A hashmap that maps each item to a NodeID
1: itemNode = empty hashmap
2: len=Length of itemAUUB
3: for each item x in itemAUUB do
4: weight = 2len−1 + x.AUUB
5: NodeID=-1
6: minimum = Int.MaxV alue
7: for each node n in N do
8: if nodeWeight(n) is equal to 0 then
9: NodeID = n

10: break
11: else
12: afterWeight = nodeWeight(n) + weight
13: if nodeWeight(n) is lesser than minimum then
14: minimum = afterWeight
15: NodeID = n
16: end if
17: end if
18: end for
19: itemNode ← (item,NodeID)
20: nodeWeight(NodeID)+ = weight
21: len = len -1
22: end for
23: return itemNode

3.3 HAUI Mining

The HAUIMiner() procedure is similar as described in HAUI-Miner [18]. How-
ever, Each cluster node runs its own HAUIMiner() for the assigned search space.
The Pseudo code for the HAUI mining method is depicted in Algorithm4. Ini-
tially, P is set to null and extensionOfP is assigned the AU-list of all 1-itemset.
For assigned items to a node, the search space is explored in top-down manner.
If the itemset X from the extensioOfP have average-utility more than minUtil
then it is assigned to output set HAUI (lines 3–4). Then, pruning strategy
is applied such that, if X.AUUB = SUM(X.TMU) ≥ minUtil then exten-
sions of X are explored in the search tree (line 6). Each itemset Y after X in
extensionOfP is concatenated with X and a construct() method is called to
build the AU-list of itemset XY (lines 7–9). Construct() method is not sepa-
rately defined in this paper, as it is already given in HAUI-Miner [18]. Thereafter,
HAUIMiner() method is called recursively to explore the extensions of itemset
XY (line 11). At the end of the algorithm, a set of HAUIs is discovered.



Parallel High Average-Utility Itemset Mining 119

Algorithm 3. Node data generation: DataGenerator()
INPUT: revisedData: Revised dataset

itemNode: mapping of item to NodeID
OUTPUT: NodeTransaction: 0 or more <NodeID, transaction>
1: flatMap (revisedData)
2: for each transaction tp in revisedData do
3: added ← emptyhasmap
4: for each item x in each tp do
5: search item x in itemNode and grab its NodeID
6: if NodeID is not in added then
7: added ← NodeID
8: T ← subset of transaction tp from item x to the end
9: output (NodeID, T )

10: end if
11: end for
12: end for
13: end flatMap

4 Experiments and Results Analysis

In order to evaluate the performance of PHAUIM, a comparison with HAUI-
Miner [18] is performed. All the experiments were conducted on a Spark cluster
of six nodes. Four nodes were having CPU Xeon(R) CPU E3-1225 v5 clocked @
3.30 GHz and two nodes were configured with core i7-7700HQ clocked @ 3.8 GHz.
Each node was equipped with 8 GB of DDR4 RAM and 2 TB of hard drive. Each
node was having following software modules: Ubuntu 16.04 OS, Spark version
2.2.1, Java v-8.01 and Scala v-1.12.4. PHAUIM is evaluated in terms of run time
performance and scalability.

4.1 Datasets

Both the algorithms were run for four distinct real-life datasets: accidents, chess,
retail and mushroom. Attributes of each dataset are shown in Table 3. All the
datasets were taken from the SPMF library [6].

Table 3. Datasets

Dataset # of transactions # of items avg.len. Type

Accidents 340,183 468 33.8 Dense

Chess 3,196 75 37 Dense

Retail 88,162 16,407 10.3 Sparse

Mushroom 8,124 119 23 Dense
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Algorithm 4. HAUI Mining on node: HAUIMiner()
INPUT: P : AU-list of itemset P, extensionOfP : AU-list of all 1-extensions of P,

itemNode: mapping of item to NodeID, minUtil: Minimum
average-utility threshold, NodeID: Node ID of current node,
length: length of current itemset

OUTPUT: HAUI : A set of high average-utility itemsets with P prefix
1: for each AU-list X in extensionOfP do
2: if P is not empty OR itemNode(X.itemset) is equal to NodeID then

3: if SUM(X.U)
length

≥ minUtil then
4: HAUI ← HAUI ∪ X
5: end if
6: if SUM(X.TMU) ≥ minUtil then
7: exAUL ← Null
8: for each AU-list Y in extensionOfP do
9: exAUL ← exAUL ∪ construct(P.AUL,X, Y )

10: end for
11: HAUIMiner(X, exAUL,minUtil, itemNode,NodeID, length + 1)
12: end if
13: end if
14: end for

4.2 Runtime Performance

Run time performance of PHAUIM is evaluated by comparing it with traditional
HAUI-Miner. Moreover, to measure the performance of search space division
strategy, three distinct variations of PHAUIM were implemented: PHAUIM-
Rnd, PHAUIM-Ex and PHAUIM. PHAUIM-Rnd divides the search space items
in random manner. On the other hand, PHAUIM-Ex includes the existing
method discussed in PHUI-Miner [5], while PHAUIM includes the proposed
search space division technique. All three provide same functionality with dif-
ferent search space division technique. Run time of both the algorithms was
measured with respect to different value of minUtil, as depicted in Fig. 3. It
can be observed from the results that each version of PHAUIM outperforms
the HAUI-Miner. The reason is that, HAUI-Miner performs all the computation
on a single machine while PHAUIM assigns the workload to multiple nodes to
search the HAUIs faster. PHAUIM-Rnd takes more time to terminate than the
other two PHAUIM-Ex and PHAUIM. Random division of search space may
assign some nodes more workload than others. Therefore, such nodes produces
the results lately than other nodes and increase job completion time. PHAUIM-
Ex takes slightly more time than the PHAUIM. PHAUIM handles the items
with large gap in AUUB value and make a fair assignment. On the other hand,
there is a fix pattern of item assignment in PHAUIM-Ex. It is also observed that
PHAUIM shows the best performance for chess and accidents datasets.
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Fig. 3. Run time performance of PHAUIM

4.3 Scalability Test

Scalability test is performed to analyze nature of both the algorithms while
data size is linearly increased. To evaluate the scalability of PHAUIM, both the
algorithms were run by varying the data size in a certain proportion. The run
time of each algorithm was measured to check the performance. Each dataset
is replicated by a factor f such that experiment data = original data ×f , where
f = 1, 2, .., 5. Both the HAUI-Miner and PHAUIM were run with replicated
benchmark datasets. The results were taken with a fixed value of minUtil for
each dataset. Value of minUtil for chess, accidents, mushroom and retail dataset
was set to respectively 3.9%, 3.2%, 0.29 % and 9.1e−4 % of the total dataset
utility. The results are depicted in Fig. 4. From the results, it can be noticed
that, with increase in data size, run time also grows linearly. The reason is that,
with the increase in number of transactions, there are more entries in the AU-list
of itemset and requires additional run time. Run time of the HAUI-Miner for all
datasets increases sharply with rise in data size. In contrast, PHAUIM run time
increases slowly and remains close to x-axis.
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Fig. 4. Scalability test of PHAUIM

5 Conclusion

This paper presents a detailed study about the pattern mining approaches such
as HUI (High utility itemset) mining and HAUI (High-average utility itemset)
mining. With the introduction to big data, pattern mining has acquired many
challenges such as searching of high average-utility itemsets from a big trans-
action dataset. Huge number of candidate itemsets are generated while HAUI
searching which requires massive computing resources and memory. Standalone
system is not suitable to process big data in efficient manner. In this paper, a par-
allel version of traditional HAUI-Miner called PHAUIM is proposed to discover
HAUIs from big transaction datasets. PHAUIM is a Spark-based distributed
algorithm that model the HAUI-Miner to work in parallel on a multi node clus-
ter. Search space is divided into subspaces and distributed to cluster nodes.
Each node individually processes its subspace and produces a set of HAUIs. A
novel search space division method is also presented that considers the AUUB
of items along with the subspace size to divide the search space fairly. Various
experiments have been conducted to evaluate the performance of PHAUIM with
respect to four benchmark datasets. Moreover, it is also compared with HAUI-
Miner. Experimental results show that PHAUIM outperforms the HAUI-Miner
with a huge margin.
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