
CAVE: Configuration Assessment,
Visualization and Evaluation

André Biedenkapp(B), Joshua Marben, Marius Lindauer, and Frank Hutter

University of Freiburg, Freiburg, Germany
{biedenka,marbenj,lindauer,fh}@cs.uni-freiburg.de

Abstract. To achieve peak performance of an algorithm (in particular
for problems in AI), algorithm configuration is often necessary to deter-
mine a well-performing parameter configuration. So far, most studies in
algorithm configuration focused on proposing better algorithm configu-
ration procedures or on improving a particular algorithm’s performance.
In contrast, we use all the collected empirical performance data gath-
ered during algorithm configuration runs to generate extensive insights
into an algorithm, given problem instances and the used configurator. To
this end, we provide a tool, called CAVE , that automatically generates
comprehensive reports and insightful figures from all available empirical
data. CAVE aims to help algorithm and configurator developers to better
understand their experimental setup in an automated fashion. We show-
case its use by thoroughly analyzing the well studied SAT solver spear
on a benchmark of software verification instances and by empirically
verifying two long-standing assumptions in algorithm configuration and
parameter importance: (i) Parameter importance changes depending on
the instance set at hand and (ii) Local and global parameter importance
analysis do not necessarily agree with each other.

1 Introduction

In the AI community, it is well known that the algorithm parameters have to be
tuned to achieve peak performance. Since manual parameter tuning is a tedious
and error-prone task, several methods were proposed in recent years to auto-
matically optimize parameter configurations of arbitrary algorithms [1–5]. This
led to performance improvements in many AI domains, such as propositional
satisfiability solving [6], AI planning [7], the traveling salesperson problem [8],
set covering [9], mixed-integer programming [10], hyper-parameter optimization
of machine learning algorithms [11] and architecture search for deep neural net-
works [12]. These studies focus either on proposing more efficient automated
parameter optimization methods or on improving the performance of a particu-
lar algorithm (the so-called target algorithm).

To determine a well-performing parameter configuration of a given algorithm
on a given instance set, algorithm configuration procedures (in short configura-
tors) have to collect a lot of empirical performance data. This entails running the
algorithm at hand with different parameter configurations on several problem
c© Springer Nature Switzerland AG 2019
R. Battiti et al. (Eds.): LION 12 2018, LNCS 11353, pp. 115–130, 2019.
https://doi.org/10.1007/978-3-030-05348-2_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05348-2_10&domain=pdf
https://doi.org/10.1007/978-3-030-05348-2_10

116 A. Biedenkapp et al.

instances to measure its performance. Only the best performing configuration is
returned in the end and all the collected performance data is typically not used
further, although it was very expensive to collect.

In this paper, we reuse this data to further analyze all parts involved in the
configuration process. This includes the target algorithm, its parameters, the
used instances as well as the configurator. Hence, users will not only obtain a
well-performing parameter configuration by using our methods in combination
with a configurator but several additional insights.

A potential use-case is that algorithm developers implemented a new algo-
rithm and want to empirically study that algorithm thoroughly as part of a
publication. In a first step, they run a configurator to optimize their algorithm’s
parameters on a given instance set to achieve peak performance. As the next
step, our automatic analysis tool CAVE (Configuration Assessment, Visualiza-
tion and Evaluation) generates figures that can be directly used in a publication.

In CAVE, we build on existing methods to analyze algorithms and instances,
reaching from traditional visualization approaches (such as scatter plots) over
exploratory data analysis (used, e.g., for algorithm selection [13,14]) to recent
parameter importance analysis methods [15–18]. We combine all these methods
into a comprehensive analysis tool tailored to algorithm development and config-
uration studies, and propose two new approaches to complement their insights.
Specifically, the contributions of our paper are:

1. We give an overview of different approaches to analyze a target algorithm, a
given instance set and the configurator’s behavior based on collected empirical
data. We use these for an exemplary analysis of the SAT solver spear [19] on
a benchmark of SAT-encoded software verification instances.

2. We propose a new qualitative analysis of configurator footprints based on a
recently proposed similarity metric of configurations [20].

3. We propose a new parameter importance analysis by studying the impact
on performance when changing one parameter at a time, thus exploring the
immediate neighborhood of the best found configuration.

4. We provide a ready-to-use toolkit, called CAVE 1, for such analyses, which
can be directly used in combination with the configurator SMAC [3].

5. We show the value of our tool and the need of such comprehensive analyses
by verifying two common assumptions for algorithm configuration:
(a) Parameter importance changes depending on the instance set at hand.
(b) Local and global parameter importance analysis do not necessarily agree

with each other and hence complement each other.

2 Related Work

Empirical evaluation of algorithms is as old as computer science. One of the first
systematic approaches for ensuring reproducibility and insights in comparing a
set of algorithms is the PAVER service [21,22]. The tool is primarily tailored to

1 https://github.com/automl/CAVE

https://github.com/automl/CAVE

CAVE: Configuration Assessment, Visualization and Evaluation 117

mixed integer programming solvers and provides some tables and visualization
of the performance of algorithms. In contrast to PAVER, our tool also considers
parameters of an algorithm and is designed to be used on arbitrary algorithms.

In the context of algorithm selection [23], a lot of performance data of differ-
ent algorithms is collected, which can be used to analyze algorithms and instance
sets. An example of an exploratory data analysis for algorithm selection is part of
the algorithm selection library ASlib [13] that provides some simple performance
and distribution tables and corresponding plots, e.g., scatter and box plots.

The first system that included an automatic analysis of algorithm perfor-
mance in the context of algorithm configuration was the high-performance algo-
rithm laboratory HAL [24]. Its main purpose was to help algorithm developers
to apply automated algorithm design methods (such as algorithm configuration
and selection) in a uniform framework by handling all interfaces, data storage,
running experiments and some basic aggregation and visualizations of results,
such as scatter and performance distribution plots. In contrast to HAL, CAVE
focuses on the analysis part and provides a far more extensive analysis.

The tool SpySMAC [25] followed a similar approach as HAL but was specif-
ically tailored to the needs of the propositional satisfiability (SAT) community.
It provided an easy-to-use interface to run the configurator SMAC [3] for opti-
mizing parameter configurations of a SAT solver. Our approach is inspired by
SpySMAC but with the focus on the analysis part and extends it substantially.
Furthermore, our new approach is no longer specific to SAT and SMAC , but it
can be applied to any algorithm and configurator.

In the context of black-box optimization and in particular for hyper-
parameter optimization of machine learning algorithms, Golovin et al. [26]
proposed Google Vizier. Similar to HAL and SpySMAC , it is a service to
run optimization benchmarks and also provides some visualizations, such as
performance-over-time of the target function or parallel coordinate visualiza-
tions [27]. Since Google Vizier focuses on black-box optimization, it does not
have a concept of instances, which are an integral part of algorithm configura-
tion.

Lloyd et al. [28] proposed automatically constructed natural language reports
of regression models, giving raise to the automatic statistician tool. Although we
have the same goal (providing automatically constructed reports to help users
to get more out of their data), our goal is not to provide a natural language
report, but to leave the interpretation of the results to the users.

3 Generation of Algorithm Configuration Data

In this section, we describe the general work-flow of generating algorithm con-
figuration data (see Fig. 1), which will be the input for CAVE ’s analyses in the
next section. The typical inputs of configurators are2:
2 We ignore in this simplified view that several budgets have to be defined, such as,

the configuration budget (e.g., time budget or maximal number of algorithm calls)
and resource limits of the target algorithm runs (e.g., runtime and memory limits).

118 A. Biedenkapp et al.

Configurator’s Input

CAVE

Configurator’s Output
CAVE ’s Input

Algorithm A with
Config. Space Θ

Instance set Π
(with Features f(π))

Cost metric
c : Θ × Π → R

Configuration
(e.g., SMAC)
Configuration
(e.g., SMAC)
Configuration
(e.g., SMAC)

Trajectories
〈θ̂i, ti〉i

Runhistories
{θj , πj , c(θj , πj)}N

j

EPM
ĉ : Θ × Π → R

Performance
Analysis

Feature
Analysis

Parameter
Importance

Configurator
Behavior

Train

Fig. 1. Work-flow of algorithm configuration (AC) and analysis.

– a target algorithm A with a description of the parameter configuration
space Θ, i.e., all possible parameter configurations,

– an instance set Π drawn from a distribution DΠ over all possible instances3,
– a cost metric c : Θ × Π → R to be optimized (e.g., the runtime of an

algorithm, the quality of a plan for an AI planning problem instance or the
error of a machine learning algorithm).

A configurator’s task is to find θ∗ ∈ Θ such that the cost c of running A using
θ∗ across Π is optimized, i.e., θ∗ ∈ arg minθ∈Θ

∑
π∈Π c(θ, π). Since a configurator

iteratively improves the currently best configuration θ̂ (called incumbent), its
trajectory includes the incumbent θ̂i at each time point ti.

In this process, the configurator follows a strategy to explore the joint space
of configurations and instances, e.g., local search [1], genetic algorithms [2]
or model-based [3] and it collects empirical cost data. Internally, a configu-
rator keeps track of a set {θj , πj , cj}N

j=1 of all evaluated configurations θj on
instance πj with the corresponding cost cj , called the runhistory. The runhis-
tory is an optional output, but it is crucial for CAVE ’s analyses. If several runs
of a configurator were performed, CAVE can use all resulting outputs as input.

To guide the search of configurators, a recent approach is to use empirical
performance models (EPMs) ĉ : Θ×Π → R that use the observed empirical data
from the runhistory to predict the cost of new configuration-instance pairs [29],
e.g., using random forests [30]. Based on these predictions, a configurator can
decide whether to explore new regions in the configuration space or to exploit
knowledge of the presumably well-performing regions in the configuration space.
Model-based configurators [3,4] can return these EPMs directly, and for model-
free configurators [1,5], such a model can be subsequently learned based on the

3 Typically, the instance set is split into a training and a test set. On the training set,
the target algorithm is optimized and on the test set, an unbiased cost estimate of
the optimized parameter configuration is obtained.

CAVE: Configuration Assessment, Visualization and Evaluation 119

returned runhistories. To this end, an optional input to configurators are instance
features providing numerical descriptions of the instances at hand [29,31]. Hutter
et al. [29] showed that predictions of new cost data is fairly accurate if enough
training data is provided. Further, Eggensperger et al. [32] showed that EPMs
trained on runhistory data from configurator runs are good surrogates for real
target algorithm runs. Thus, we also use EPMs trained on the union of all
runhistories for our analyses, e.g., to impute missing cost data of configurations
that were evaluated only on some but not all instances.

Our tool CAVE analyzes all this data as described in the next section.
Thereby we use an extended version of the output format defined for the second
edition of the algorithm configuration library AClib [33] such that CAVE can
be in principle used with any configurator. Right now, we have a ready-to-use
implementation in combination with the configurator SMAC [3].

4 Analyzing Algorithm Configuration Data

In this section, we give a brief overview of all components of our analysis report
generated based on the trajectory, runhistory data and EPMs described in the
last section. A detailed description of the individual elements of CAVE can be
found in the online appendix4. As a running example, we show figures for study-
ing the SAT solver spear [19] on SAT instances encoding software verification
problems based on three 2-day SMAC runs.5 In addition to the data generated
by SMAC, we validated all incumbent configurations to decrease the uncertainty
of our EPM in the important regions of the configuration space.

4.1 Performance Analysis

The performance analysis of CAVE mainly supports different ways of analyzing
the final incumbent and the performance of the algorithm’s default parameter
configuration (the results obtained by downloading the algorithm and running it
with its default parameter settings). In particular, the performance analysis part
of CAVE consists of a qualitative tabular analysis providing aggregated perfor-
mance values across all instances, scatter plots showing default performance vs.
optimized performance for each instance (Fig. 2a), empirical cumulative perfor-
mance distribution (eCDF) plots across the instance set (Fig. 2b) and algorithm
footprint plots [14] (Fig. 3a).

What have we learned about spear? Figure 2 shows the scatter plot and the eCDF
for spear on software verification instances. From these plots, we learn that the
performance of spear was not improved on all instances, but on many of them,
with large speedups on some. The optimized configuration solved all instances
in at most 20 seconds, while the default led to many timeouts. Based on the
4 http://ml.informatik.uni-freiburg.de/papers/18-LION12-CAVE.pdf
5 The complete generated report can be found at

http://ml.informatik.uni-freiburg.de/∼biedenka/cave.html

http://ml.informatik.uni-freiburg.de/papers/18-LION12-CAVE.pdf
http://ml.informatik.uni-freiburg.de/~biedenka/cave.html

120 A. Biedenkapp et al.

(a) Scatter Plots (b) Empirical Cumulative Distri-
bution Function (eCDF) Plots

Fig. 2. Comparison of the empirical performance of the default and final incumbent.

eCDF plot, the optimized configuration solved all instances whereas the default
configuration solved only 80% of the instances. Furthermore, if the cutoff time of
spear is larger than 0.8 seconds, the optimized configuration performed better;
the blue curve is above the red curve consistently. The algorithm footprint plot
(Fig. 3a) shows that the incumbent performed well on different types of instances.
Compared to the scatter plot, we expected to see more red points in the footprint
plots (instances where the default outperforms the incumbent). Looking more
deeply into the data revealed that several of these are overlapping each other
because the instances features are missing for these instances.

4.2 Instance and Instance Feature Analysis

If instances are characterized by instance features (as done for model-based con-
figurators), these features can be studied to better understand an instance set.
To obtain instance features for the SAT instances at hand, we used the instance
feature generator accompanied by the algorithm selection tool SATzilla [29,34].
In particular, the feature analysis part of CAVE consists of box and violin plots
for each instance feature, clustering plots based on a PCA into the 2-dimensional
feature space, correlation heatmaps for each pair of features (Fig. 3b), and fea-
ture importance plots based on greedy forward selection [15].

What have we learned about the software verification instances? Based on these
plots, we learned that there are at least three instance clusters mixed together;
knowing the source of these instances (also reflected in the instance names), we
can verify that software verification for four different software tools were encoded
in this instance set and that clustering approximately recovered the sources
(merging two sources into one cluster). Since the PCA plot and the footprint
plot (Fig. 3a) indicate that the instance set is heterogeneous [35], using algo-
rithm configuration on each individual software tool or per-instance algorithm

CAVE: Configuration Assessment, Visualization and Evaluation 121

(a) Algorithm Footprint (b) Feature Correlation

Fig. 3. (a) Green dots indicate instances where the incumbent configuration performed
well i.e., at most 5% worse than the oracle performance of default and incumbent.
All other instances are plotted as red dots, indicating that the default configuration
performed well. Instances might be mapped closely together in the 2D reduced space.
(b) The correlation matrix for all features is shown.

configuration [36,37] could improve the performance of spear even further. From
the feature correlation plot, we see that roughly half of the features are highly
correlated and some of the features could be dropped potentially.

4.3 Configurator Behavior

Besides insights into the algorithm and instances at hand, the trajectory and the
runhistory returned by a configurator also allow for insights into how the con-
figurator tried to find a well-performing configuration. This may lead to insights
into how the optimization process could be adjusted. In particular, the configu-
rator behavior analysis consists of a plot showing the performance of the target
algorithm over the time spend by the configurator (Fig. 4a) and parallel coordi-
nate plots showing the interactions between parameter settings and performance
of the target algorithm [26] (Fig. 4c).

Configurator Footprint. As a novel approach, we propose in this paper to
study how a configurator iteratively sampled parameter configurations, i.e., all
configurations in the runhistory, see Algorithm 1 and exemplary Fig. 4b. It is
based on a similarity metric for parameter configurations6 which is used in a
multi-dimensional scaling (MDS) [38] based on the SMACOF algorithm [39] to
obtain a non-linear mapping into 2-dimensions [20]. We extend this analysis by
highlighting incumbent configurations in the trajectory and by scaling the dots
(parameter configurations) wrt. the number of instances they were evaluated

6 In contrast to Xu et al. [20], we normalize the relabelling cost of continuous param-
eters to [0, 1] since otherwise relabelling of continuous parameters would dominate
the similarity metric compared to relabelling of discrete parameters.

122 A. Biedenkapp et al.

(a) Cost-over-Time (b) Configurator Footprint

(c) Parallel Coordinate Plot

Fig. 4. (a) depicts the predicted performance over time. The blue area gives the first
and third quantiles over three configurator runs. (b) Dots represent sampled configura-
tions, where the size represents the amount of times a configuration was evaluated. The
background shows the predicted performance in the 2D space using an MDS. Incum-
bents are plotted as red squares, the default as orange triangle and the final incum-
bent as red inverted triangle. Configurations sampled from an acquisition function are
marked with an X, all other configurations were purely randomly sampled. (c) Parallel
Coordinate Plot for the three most important parameters with a subsampled set of
500 configurations. The best performing configuration has the brightest shade of red,
whereas the darkest shade of blue depicts the worst observed configuration.

on. For racing-based configurators, this corresponds to how well a configuration
performed compared to the current best found configuration. Furthermore, we
use an EPM in the 2D space to highlight promising parts of the configuration
space. Finally, the figures in the html-report also have a mouse-over-effect that
allows to see the parameter configuration corresponding to each dot in the figure.

What have we learned about the configurator and spear? From the cost-over-time
plot (Fig. 4a), we learned that SMAC already converged after 40, 000 seconds
and investing further time did not improve spear ’s performance further. From
the configurator footprints (Fig. 4b), we see that SMAC covered most parts of
the space (because every second parameter configuration evaluated by SMAC is
a random configuration) but it also focused on promising areas in the space. The
fraction of good configurations is fairly large, which also explains why SMAC was

CAVE: Configuration Assessment, Visualization and Evaluation 123

Algorithm 1: Configurator Footprint (Visualization of a runhistory)

1 Input: Runhistory H = {θj , πj , cj}N
j ; trajectory T = 〈θ̂k, tk〉k; Instance set Π

2 For each pair 〈θi, θj〉, compute similarity s(θi, θj) [20];
3 Fit 2D MDS based on similarities s(θi, θj);
4 Replace each θ in H by 2D projection MDS(θ);
5 Plot each θ in 2D space MDS(θ) with size proportional to #entries in H;

6 Highlight incumbents θ̂ of trajectory T ;
7 Fit EPM ĉ : R2 × Π → R based on H;
8 Plot heatmap in background based on 1

|Π|
∑

π∈Π ĉ(MDS(θ), π)

able to find a well-performing configuration early on. The parallel coordinate plot
(Fig. 4c) reveals that sp-var-dec-heur should be set to 16 for peak performance;
however, the runtime also depends on other parameters such as sp-phase-dec-
heur.

4.4 Parameter Importance

Besides obtaining a well-performing parameter configuration, the most fre-
quently asked question by developers is which parameters are important to
achieve better performance. This question is addressed in the field of param-
eter importance. Existing approaches for parameter importance analysis (used
in AC) include greedy forward selection [15], ablation analysis [17,18] and func-
tional ANOVA [16].

Parameter fANOVA Ablation LPI

sp-var-dec-heur 62.052 93.224 93.351
sp-phase-dec-heur 7.535 < 0.01 0.508
sp-orig-clause-sort-heur 0.764 < 0.01 < 0.01
sp-learned-clause-sort-heur 0.239 < 0.01 < 0.01
sp-restart-inc < 0.01 4.239 3.473
sp-clause-activity-inc < 0.01 2.406 < 0.01
sp-clause-decay < 0.01 1.097 < 0.01
sp-variable-decay < 0.01 < 0.01 1.005

(a) Parameter Importance (b) LPI on sp-restart-inc

Fig. 5. (a) Relative parameter importance values for the most important parameters of
each method. The parameters are ordered by fANOVA’s importance values. (b) Exem-
plary LPI plot. The shaded area is the model uncertainty.

Local Parameter Importance (LPI). In addition to the existing approaches,
we propose a new parameter importance analysis approach, which we dub LPI.
It is inspired by the human strategy to look for further improved parameter

124 A. Biedenkapp et al.

configurations or to understand the importance of parameter changes in the
neighborhood of a parameter configuration. For example, most users are inter-
ested in understanding which parameters in optimized parameter configurations
are crucial for the achieved performance.

Using an EPM, we study performance changes of a configuration along each
parameter. To quantify the importance of a parameter value θp, we compute
the variance of all cost values by changing θp and then compute the fraction
of all variances. Given the parameter space of the target algorithm Θ, a set of
parameters P and an EPM ĉ : Θ → R marginalized over Π, the local importance
of parameter p ∈ P with domain Θp is given by the fraction of variance caused
by p over the sum of all variances

LPI(p | θ) =
Varv∈Θp

ĉ(θ [θp = v])
∑

p′∈P Varw∈Θp′ ĉ(θ [θp′ = w])

Compared to an ablation analysis, our new analysis is even more local since
it solely focuses on one parameter configuration. Nevertheless, it is also similar
to fANOVA since we quantify the importance of a parameter by studying the
variance of performance changes. However the marginalization across all other
parameter settings is not a part of LPI.

What have we learned about spear? Figure 5a gives an example of LPI estimated
parameter importance and contrasts it to fANOVA and ablation results. The
ablation analysis reveals that the most important parameter change was setting
sp-var-dec-heur to 16 instead of the default of 0. Only a few of the 25 other
parameters were important for the performance improvement. Overall, fANOVA
and LPI agree with this assessment. However, LPI and ablation give a much
larger importance to sp-var-dec-heur than fANOVA does; this is in part due to
the fact that fANOVA (in contrast to LPI and Ablation) considers higher-order
interaction effects as important, but also in part due to fANOVA being a global
method and LPI and Ablation being local methods.

5 Exemplary Study of Parameter Importance using
CAVE

In this section we will show that CAVE enables comprehensive studies. We
will study two assumptions in the field of algorithm configuration regarding
parameter importance:

Q1 Does the set of important parameters change depending on the
instance set? If that is false, parameter importance of a given algorithm
has only to be studied once and warmstarting methods of configurators [40]
should perform quite well in general. Alternatively, parameter importance
studies would be required on each new instance set again and warmstarting
methods should perform quite poorly.

CAVE: Configuration Assessment, Visualization and Evaluation 125

Q2 Do local and global parameter importance approaches agree on
the set of important parameters? The common assumption is that local
and global parameter importance analysis are complementary. A globally
important parameter may not be important in a local analysis since it might
already be set to a well-suited parameter value in a specific configuration.

Setup: To study these two questions, we run (capped) fANOVA [16]7, ablation
analysis [18] and our newly proposed LPI analysis, through CAVE for different
algorithms from different domains on several instance sets, see Table 1. All these
benchmarks are part of the algorithm configuration library [33]8. We note that
clasp and probSAT were the respective winners on these instance sets in the con-
figurable SAT solver challenge 2014 [6]. To collect the cost data for training the
required EPMs, we ran SMAC (v3 0.7.1)9 ten times on each of the benchmarks
using a compute cluster with nodes equipped with two Intel Xeon E5-2630v4
and 128GB memory running CentOS 7.

Table 1. Algorithm Configuration Library benchmarks, with #P the number of param-
eters of each algorithm.

Algorithm Domain #P Instance sets

lpg[41] AI plan. 65 satellite, zenotravel, depots

clasp(-ASP)[42] ASP 98 ricochet, riposte, weighted-sequence

CPLEX MIP 74 cls, corlat, rcw2, regions200

SATenstein[43] SAT 49 cmbc, factoring, hgen2-small, k3-r4 26-v600, qcp, swgcp

clasp(-HAND) SAT 75 GI, LABS, queens

clasp(-RAND) SAT 75 3cnf-v350, K3, unsat-unif-k5

probSAT [44] SAT 9 3SAT1k, 5SAT500, 7SAT90

Metric: For both questions, we are interested in the sets of important parameters.
To this end, we define a parameter to be important if it is responsible for at least
5% cost improvement (ablation) or explains at least 5% of the variance in the
cost space (fANOVA, LPI). To compare the sets of important parameters for
two instance sets (Q1) or for ablation, fANOVA and LPI (Q2), we report the
fraction of the intersection and the union of the two sets. For example, if both
sets are disjoint, this metric would return 0%; and if they are identical, the score
would be 100%. In Tables 2 & 3, we show the averaged results for each solver
across all instance sets; for Q1 we averaged over all pairs of instance sets and for
Q2 we averaged over all instance sets.

7 In capped fANOVA, all cost values to train a marginalized EPM are capped at the
cost of the default configuration θdef: c(θ) := min (c(θdef), c(θ)).

8 http://aclib.net/
9 https://github.com/automl/SMAC3

http://aclib.net/
https://github.com/automl/SMAC3

126 A. Biedenkapp et al.

Table 2. Q1: Comparison of fANOVA/ablation/LPI results across different instance
sets. The values show the percentage of how often a method determined the same
parameters to be important on a pair of instance sets.

ablation fANOVA fANOVA c LPI

Algorithm μ σ μ σ μ σ μ σ

clasp(-ASP) 8.33 5.89 41.67 18.00 21.92 27.95 31.30 4.54

clasp(-HAND) 0.00 0.00 50.00 13.61 13.61 11.34 24.94 10.24

clasp(-RAND) 13.61 4.83 11.11 15.71 2.02 1.89 27.51 4.86

CPLEX 4.03 6.29 15.83 20.56 0.00 0.00 36.37 8.44

lpg 16.19 11.97 30.00 14.14 33.33 47.14 37.63 12.44

probSAT 46.67 37.71 31.67 13.12 30.95 14.68 60.65 19.12

SATenstein 14.90 28.18 26.33 13.06 15.45 27.98 26.99 16.85

Table 3. Q2: Comparison of results obtained with different importance methods, on
the same instance sets. The values show the percentage of how often two methods
agreed on the set of most important parameters.

fANOVA fANOVA c ablation

vs. ablation vs. LPI vs. ablation vs. LPI vs. LPI

Algorithm μ σ μ σ μ σ μ σ μ σ

clasp(-ASP) 8.33 11.79 5.87 1.54 3.48 2.47 25.71 19.87 12.36 4.02

clasp(-HAND) 6.67 9.43 9.98 4.06 4.88 6.90 20.23 7.53 21.97 19.15

clasp(-RAND) 38.10 44.16 13.35 3.16 35.86 45.46 13.89 7.88 31.60 15.92

CPLEX 6.86 8.59 6.76 2.64 0.82 1.64 7.12 14.25 12.95 6.18

lpg 42.86 10.10 37.90 3.90 27.78 20.79 20.97 11.76 38.91 2.83

probSAT 4.17 5.89 21.94 8.62 23.81 33.67 33.06 23.96 32.26 21.51

SATenstein 11.58 10.42 12.96 6.22 15.63 18.56 13.89 15.94 34.38 15.51

Q1: Parameter Importance across different Instance Sets. As shown in the right
part of Table 2, the overlap of important parameters on pairs of instance sets is
often quite small. Hence it depends on the instance set whether a parameter is
important or not. Surprisingly, the results of ablation and fANOVA are similar
in this respect. This indicates that for some algorithms (e.g. probSAT), a sub-
set of the important parameters is constant across all considered instance sets.
This supports the results on warmstarting of configurators [40], but also shows
that warmstarting will potentially fail for some algorithms, e.g., clasp-(RAND),
CPLEX and SATenstein.

Q2: Comparison of Local and Global Parameter Importance. As shown in Table 3,
fANOVA and Ablation do not agree on the set of important parameters for
most algorithms. Only for lpg and clasp(-RAND), both parameter importance
approaches return some overlapping parameters, i.e., more than a third of the

CAVE: Configuration Assessment, Visualization and Evaluation 127

parameters are on average important according to both approaches. LPI results
tend to agree more with ablation results, but there is also some overlap with
capped fANOVA. Thus, local and global parameter importance analysis are not
redundant and indeed provide a different view on the importance of parameters.

6 Discussion and Conclusion

Algorithm configurators generate plenty of data that is full of potential to learn
more about the algorithm or instance set at hand as well as the configurator
itself. However, this potential so far remains largely untapped. CAVE provides
users with the opportunity to broaden their understanding of the algorithm they
want to inspect, by automatically generating comprehensive reports as well as
insightful figures. We also introduced two new analysis approaches: configurator
footprints and local parameter importance analysis.

We demonstrated the usefulness of such an automatic tool by using it to verify
the assumption that local and global parameter importance are complementary
and to demonstrate that important parameters depend on the examined set of
instances.

CAVE could be further extended in many ways. In particular, we plan to
analyze instance sets for their homogeneity [35]; to this extent, CAVE could
recommend users to use per-instance algorithm configuration methods [36,45]
instead of conventional configurators if the instance set is strongly heteroge-
neous. We also plan to improve the uncertainty estimates of CAVE ’s EPM by
replacing the random forest models by quantile regression forests [46] as shown
by Eggensperger et al. [32].

Acknowledgments. The authors acknowledge support by the state of Baden-
Württemberg through bwHPC and the German Research Foundation (DFG) through
grant no INST 39/963-1 FUGG and the Emmy Noether grant HU 1900/2-1.

References

1. Hutter, F., Hoos, H., Leyton-Brown, K., Stützle, T.: ParamILS: an automatic
algorithm configuration framework. JAIR 36, 267–306 (2009)

2. Ansótegui, C., Sellmann, M., Tierney, K.: A gender-based genetic algorithm for
the automatic configuration of algorithms. In: Gent, I.P. (ed.) CP 2009. LNCS,
vol. 5732, pp. 142–157. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-04244-7 14

3. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization for
general algorithm configuration. In: Coello Coello, C.A. (ed.) LION 2011. LNCS,
vol. 6683, pp. 507–523. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-25566-3 40

4. Ansótegui, C., Malitsky, Y., Sellmann, M., Tierney, K.: Model-based genetic algo-
rithms for algorithm configuration. In: Yang, Q., Wooldridge, M. (eds.) Proceedings
of IJCAI’15, pp. 733–739 (2015)

https://doi.org/10.1007/978-3-642-04244-7_14
https://doi.org/10.1007/978-3-642-04244-7_14
https://doi.org/10.1007/978-3-642-25566-3_40
https://doi.org/10.1007/978-3-642-25566-3_40

128 A. Biedenkapp et al.

5. López-Ibáñez, M., Dubois-Lacoste, J., Caceres, L.P., Birattari, M., Stützle, T.:
The irace package: iterated racing for automatic algorithm configuration. Oper.
Res. Perspect. 3, 43–58 (2016)

6. Hutter, F., Lindauer, M., Balint, A., Bayless, S., Hoos, H., Leyton-Brown, K.: The
configurable SAT solver challenge (CSSC). AIJ 243, 1–25 (2017)

7. Fawcett, C., Helmert, M., Hoos, H., Karpas, E., Roger, G., Seipp, J.: Fd-autotune:
domain-specific configuration using fast-downward. In: Helmert, M., Edelkamp, S.
(eds.) Proceedings of ICAPS’11 (2011)

8. Mu, Z., Hoos, H.H., Stützle, T.: The impact of automated algorithm configuration
on the scaling behaviour of state-of-the-Art inexact TSP solvers. In: Festa, P.,
Sellmann, M., Vanschoren, J. (eds.) LION 2016. LNCS, vol. 10079, pp. 157–172.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-50349-3 11

9. Wagner, M., Friedrich, T., Lindauer, M.: Improving local search in a minimum
vertex cover solver for classes of networks. In: Proceedings of IEEE CEC, pp.
1704–1711. IEEE (2017)

10. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Automated configuration of mixed inte-
ger programming solvers. In: Lodi, A., Milano, M., Toth, P. (eds.) CPAIOR 2010.
LNCS, vol. 6140, pp. 186–202. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-13520-0 23

11. Snoek, J., Larochelle, H., Adams, R.P.: Practical Bayesian optimization of machine
learning algorithms. In: Proceedings of NIPS’12, pp. 2960–2968 (2012)

12. Zoph, B., Le, Q.V.: Neural architecture search with reinforcement learning. In:
Proceedings of ICLR’17 (2017)

13. Bischl, B., et al.: ASlib: a benchmark library for algorithm selection. AIJ 41–58
(2016)

14. Smith-Miles, K., Baatar, D., Wreford, B., Lewis, R.: Towards objective measures
of algorithm performance across instance space. Comput. OR 45, 12–24 (2014)

15. Hutter, F., Hoos, H., Leyton-Brown, K.: Identifying key algorithm parameters and
instance features using forward selection. In: Proceedings of LION’13, pp. 364–381
(2013)

16. Hutter, F., Hoos, H., Leyton-Brown, K.: An efficient approach for assessing hyper-
parameter importance. In: Proceedings of ICML’14, pp. 754–762 (2014)

17. Fawcett, C., Hoos, H.: Analysing differences between algorithm configurations
through ablation. J. Heuristics 22(4), 431–458 (2016)

18. Biedenkapp, A., Lindauer, M., Eggensperger, K., Fawcett, C., Hoos, H., Hutter,
F.: Efficient parameter importance analysis via ablation with surrogates. In: Pro-
ceedings of AAAI’17, pp. 773–779 (2017)

19. Babić, D., Hutter, F.: Spear theorem prover. Solver description. SAT Competition
(2007)

20. Xu, L., KhudaBukhsh, A.R., Hoos, H.H., Leyton-Brown, K.: Quantifying the simi-
larity of algorithm configurations. In: Festa, P., Sellmann, M., Vanschoren, J. (eds.)
LION 2016. LNCS, vol. 10079, pp. 203–217. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-50349-3 14

21. Bussieck, M., Drud, A.S., Meeraus, A., Pruessner, A.: Quality assurance and
global optimization. In Bliek, C., Jermann, C., Neumaier, A. (eds.) Proceedings of
GOCOS. Lecture Notes in Computer Science, vol. 2861. Springer (2003) 223–238

22. Bussieck, M., Dirkse, S., Vigerske, S.: PAVER 2.0: an open source environment for
automated performance analysis of benchmarking data. J. Glob. Optim. 59(2–3),
259–275 (2014)

23. Rice, J.: The algorithm selection problem. Adv. Comput. 15, 65–118 (1976)

https://doi.org/10.1007/978-3-319-50349-3_11
https://doi.org/10.1007/978-3-642-13520-0_23
https://doi.org/10.1007/978-3-642-13520-0_23
https://doi.org/10.1007/978-3-319-50349-3_14
https://doi.org/10.1007/978-3-319-50349-3_14

CAVE: Configuration Assessment, Visualization and Evaluation 129

24. Nell, C., Fawcett, C., Hoos, H.H., Leyton-Brown, K.: HAL: a framework for the
automated analysis and design of high-performance algorithms. In: Coello Coello,
C.A. (ed.) LION 2011. LNCS, vol. 6683, pp. 600–615. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-25566-3 47

25. Falkner, S., Lindauer, M., Hutter, F.: SpySMAC: automated configuration and
performance analysis of SAT solvers. In: Proceedings of SAT’15, pp. 1–8 (2015)

26. Golovin, D., Solnik, B., Moitra, S., Kochanski, G., Karro, J., Sculley, D.: Google
vizier: a service for black-box optimization. In: Proceedings of KDD, pp. 1487–
1495. ACM (2017)

27. Heinrich, J., Weiskopf, D.: State of the art of parallel coordinates. In: Proceedings
of Eurographics, Eurographics Association, pp. 95–116 (2013)

28. Lloyd, J., Duvenaud, D., Grosse, R., Tenenbaum, J., Ghahramani, Z.: Automatic
construction and natural-language description of nonparametric regression models.
In: Proceedings of AAAI’14, pp. 1242–1250 (2014)

29. Hutter, F., Xu, L., Hoos, H., Leyton-Brown, K.: Algorithm runtime prediction:
methods and evaluation. AIJ 206, 79–111 (2014)

30. Breimann, L.: Random forests. MLJ 45, 5–32 (2001)
31. Nudelman, E., Leyton-Brown, K., Hoos, H.H., Devkar, A., Shoham, Y.: Under-

standing random sat: beyond the clauses-to-variables ratio. In: Wallace, M. (ed.)
CP 2004. LNCS, vol. 3258, pp. 438–452. Springer, Heidelberg (2004). https://doi.
org/10.1007/978-3-540-30201-8 33

32. Eggensperger, K., Lindauer, M., Hoos, H., Hutter, F., Leyton-Brown, K.: Efficient
benchmarking of algorithm configuration procedures via model-based surrogates.
Mach. Learn. (2018) (To appear)

33. Hutter, F., et al.: AClib: a benchmark library for algorithm configuration. In:
Pardalos, P.M., Resende, M.G.C., Vogiatzis, C., Walteros, J.L. (eds.) LION 2014.
LNCS, vol. 8426, pp. 36–40. Springer, Cham (2014). https://doi.org/10.1007/978-
3-319-09584-4 4

34. Xu, L., Hutter, F., Hoos, H., Leyton-Brown, K.: SATzilla: Portfolio-based algo-
rithm selection for SAT. JAIR 32, 565–606 (2008)

35. Schneider, M., Hoos, H.H.: Quantifying homogeneity of instance sets for algorithm
configuration. In: Hamadi, Y., Schoenauer, M. (eds.) LION 2012. LNCS, pp. 190–
204. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34413-8 14

36. Xu, L., Hoos, H., Leyton-Brown, K.: Hydra: automatically configuring algorithms
for portfolio-based selection. In: Proceedings of AAAI’10, pp. 210–216 (2010)

37. Kadioglu, S., Malitsky, Y., Sellmann, M., Tierney, K.: ISAC - instance-specific
algorithm configuration. In: Proceedings of ECAI’10, pp. 751–756 (2010)

38. Kruskal, J.: Multidimensional scaling by optimizing goodness of fit to a nonmetric
hypothesis. Psychometrika 29(1), 1–27 (1964)

39. Groenen, P., van de Velden, M.: Multidimensional scaling by majorization: A
review. J. Stat. Softw. 73(8) (2016)

40. Lindauer, M., Hutter, F.: Warmstarting of model-based algorithm configuration.
In: Proceedings of the AAAI conference (2018) (To appear)

41. Gerevini, A., Serina, I.: LPG: a planner based on local search for planning graphs
with action costs. In: Proceedings of AIPS’02, pp. 13–22 (2002)

42. Gebser, M., Kaufmann, B., Schaub, T.: Conflict-driven answer set solving: from
theory to practice. AI 187–188, 52–89 (2012)

43. KhudaBukhsh, A., Xu, L., Hoos, H., Leyton-Brown, K.: SATenstein: automatically
building local search SAT solvers from components. In: Proceedings of IJCAI’09,
pp. 517–524 (2009)

https://doi.org/10.1007/978-3-642-25566-3_47
https://doi.org/10.1007/978-3-540-30201-8_33
https://doi.org/10.1007/978-3-540-30201-8_33
https://doi.org/10.1007/978-3-319-09584-4_4
https://doi.org/10.1007/978-3-319-09584-4_4
https://doi.org/10.1007/978-3-642-34413-8_14

130 A. Biedenkapp et al.

44. Balint, A., Schöning, U.: Choosing probability distributions for stochastic local
search and the role of make versus break. In: Cimatti, A., Sebastiani, R. (eds.)
SAT 2012. LNCS, vol. 7317, pp. 16–29. Springer, Heidelberg (2012). https://doi.
org/10.1007/978-3-642-31612-8 3

45. Kadioglu, S., Malitsky, Y., Sabharwal, A., Samulowitz, H., Sellmann, M.: Algo-
rithm selection and scheduling. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp.
454–469. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23786-
7 35

46. Meinshausen, N.: Quantile regression forests. JMLR 7, 983–999 (2006)

https://doi.org/10.1007/978-3-642-31612-8_3
https://doi.org/10.1007/978-3-642-31612-8_3
https://doi.org/10.1007/978-3-642-23786-7_35
https://doi.org/10.1007/978-3-642-23786-7_35

	CAVE: Configuration Assessment, Visualization and Evaluation
	1 Introduction
	2 Related Work
	3 Generation of Algorithm Configuration Data
	4 Analyzing Algorithm Configuration Data
	4.1 Performance Analysis
	4.2 Instance and Instance Feature Analysis
	4.3 Configurator Behavior
	4.4 Parameter Importance

	5 Exemplary Study of Parameter Importance using CAVE
	6 Discussion and Conclusion
	References

