)

Check for
updates

Using Task Descriptions with Explicit
Representation of Allocation of Functions,
Authority and Responsibility to Design
and Assess Automation

Elodie Bouzekril, Alexandre Cannyl, Célia Martiniel(®>,

Philippe Palanque'-*, and Christine Gris®

! JCS-IRIT, University of Toulouse 3, Toulouse, France
{bouzekri, canny,martinie, palanque}@irit. fr
2 Airbus Operations SAS, Blagnac, France
christine. gris@airbus. com
3 Department of Industrial Design, Technical University Eindhoven,
Eindhoven, Netherlands

Abstract. Automation can be considered as a design alternative that brings the
benefits of reducing the potential for human error and of increasing perfor-
mance. However, badly designed automations, of which some of them are called
automation surprises, can have a very negative impact on the overall perfor-
mance of the couple operator/system. Automation design requires the definition
of three specific aspects defining the relationship between the user and the
system: allocation of functions, authority and responsibility. While these abstract
concepts are usually well understood at a high level of abstraction, their inte-
gration within a development process is cumbersome. This paper presents an
approach based on task models to explicitly handle those concepts. We show
how such concepts can be integrated in a task modeling notation and illustrate
on a case study how this notation can be used to describe design alternatives
with different allocation of functions, authority and responsibility between the
user and the system. Exploiting the case study, we demonstrate that embedding
explicitly these concepts in a notation supports analysis and assessment of
automation designs.

Keywords: Automation design and assessment - Task modeling
Allocation of functions - Authority - Responsibility

1 Introduction

Currently, automation is one of the main means for supporting operators using systems
that feature increasing complexity. Automation makes it possible for designers to transfer
the burden from operators to a system by allocating to the system tasks that were previ-
ously performed by the operator. Automation is defined as “the technique, method or
system of operating or controlling process by highly automatic means, as by electronic
devices, reducing human intervention to a minimum’ [9]. In this definition, the concept of

© IFIP International Federation for Information Processing 2019

Published by Springer Nature Switzerland AG 2019

B. R. Barricelli et al. (Eds.): HWID 2018, IFIP AICT 544, pp. 36-56, 2019.
https://doi.org/10.1007/978-3-030-05297-3_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05297-3_3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05297-3_3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05297-3_3&domain=pdf
https://doi.org/10.1007/978-3-030-05297-3_3

Using Task Descriptions with Explicit Representation 37

control is highlighted in addition to the concept of allocating functions to the system. This
concept of control is related to the authority the human or the system may have on the
triggering of an operation or of a process. Another term used to define automated systems
is “autonomy”. This term refers to the independence from outside control of the human or
system entity (i.e. self-directedness), whereas automation refers to an entity that will do
only what it is programmed to do without having any choice [25]. This implies that the
automated system may have a certain level of independence and thus be responsible for
the outcome of the execution of the triggered functions. As both the operator and the
automated system may have authority for triggering functions, then both the operator and
the designer of the automated system may be responsible for the outcome of the triggering
of a function. In addition to automation and autonomy, Bradshaw et al. [6] highlight
another concept that is related to the self-sufficiency of the entity (defined as the French
word for autonomous “autonome”) and that is the ability to take care of itself. An entity
with a high level of self-sufficiency should be given the authority on the functions that are
related to the acquisition of its required resources. Allocation of functions is a pillar of
automation design. Parasuraman et al. have defined a classification of different Levels of
Automation (LoA) [22]. These LoA have been extensively used for assessing automation
levels of command and control systems such as Air Traffic Management applications,
aircraft cockpits or satellite ground segments. As none of these systems reach level 10 (full
automation), they are usually called human in-the-loop command and control systems of
partly autonomous systems [18]. Beyond that, these LoA were also used as a design driver
for research and industry projects having as a target higher automation levels'. However,
we argue that authority and responsibility should also be taken into account at design time.

The three main aspects of automation at design time thus lay in describing what
functions/tasks are allocated to the system and the human (allocation of functions), who
is allowed to perform what functions/tasks (authority), and who is responsible for the
outcome of the execution of the functions/tasks (responsibility). Because
increasing/decreasing automation can have a huge impact on human performance,
workload, team size and human error, there is a need for methods and tools to support
the assessment of the impact of automation design (including the positioning with
respect to the LoAs) in early stages of the development process. In this article, we
highlight the benefits of having a notation making it possible to describe (with models),
in a complete and unambiguous way, allocation of functions, authority and responsi-
bility. We argue that a dedicated notation provides support during various stages of the
design and development of an autonomous or partly autonomous interactive system.
The proposed notation makes these abstract concepts concrete enough to provide
means for the independent analysis of each of them.

Next section (Sect. 2) identifies what information is needed, at design time, to take
into account the allocation of functions, authority and responsibility and defines those
concepts. Section 3 presents a qualitative analysis of the classification of the Levels of
Automation according to the concepts of allocation of functions, authority and

! See page 5: 17 projects and 13 PhD funded by SESAR Joint Undertaking towards higher automation
levels in aviation http://www.sesarju.eu/sites/default/files/documents/events/sesar2020-20150504/3_
SESAR2020_ER_Info_Day_FV_David_Bowen.pdf.

http://www.sesarju.eu/sites/default/files/documents/events/sesar2020-20150504/3_SESAR2020_ER_Info_Day_FV_David_Bowen.pdf
http://www.sesarju.eu/sites/default/files/documents/events/sesar2020-20150504/3_SESAR2020_ER_Info_Day_FV_David_Bowen.pdf

38 E. Bouzekri et al.

responsibility. These two sections highlight the fact that there is no available technique
for describing the allocation of functions, authority and responsibility during the design
of partly-autonomous systems. Section 4 presents the elements of notation for task
models to provide support for the identification and representation of allocation of
functions, authority and responsibility. Section 5 illustrates these elements of notation
with the example of the Game of 15.

2 The Concepts of Allocation of Functions, Authority
and Responsibility and How to Use Them for Automation
Design

This section presents the results of a literature review on approaches for designing
automation that take into account allocation of functions, authority and responsibility
(referred to as AFAR in the remainder of the paper). It first highlights the information
that needs to be taken into account when dealing with the allocation of functions,
authority and responsibility. It also highlights that most of the related work focusses on
the techniques for dealing with the allocation of functions, and does not provide precise
guidance for taking into account authority and responsibility.

2.1 Allocation of Functions

The concept of Allocation of Functions refers to “determining the distribution of work
between humans and machines early in the design process” [26]. Human work is the set
of perceptive, cognitive, motor and input interactive tasks that the user should perform
to reach her/his goal. System work is the set of algorithmic, input and output functions
that the system should perform to support user goal. The analysis of the allocation of
functions is necessary to identify the optimal distribution of both functions and tasks
between a partly-autonomous system and a user. The allocation of functions is also
central to the design of automation because it provides support to migrate user activities
to be performed by the system or to migrate system functions to be performed by the
user. Indeed, according to [27], not enough functions allocated to user will lead to
underload and boredom and thus decreased performance while too many functions will
lead to cognitive, perceptive or motoric overload and increase stress and likelihood of
user errors. The output of the allocation of functions is the description of the sets of
tasks that the user should perform to reach her/his goal and the description of the sets of
functions that the system should perform to support user goal. This implies that the
system designer has to identify all the functions that have to be performed by the
system together with all the tasks that have to be performed by the user.

2.2 Authority

The concept of Authority refers to “the power or right to give orders, make decisions,
and enforce obedience” according to [21]. When dealing with the design of automation,
Flemisch et al. [11] propose to refine this definition to “what the actor is allowed to do
or not to do”. Taking into account authority at design time requires analyzing how the

Using Task Descriptions with Explicit Representation 39

authority can be shared between the user and the system, which possibly involves
alternating between the user and the system over time. For instance, allowing the
system to trigger a function on its own increases the overall system authority and
decreases the one of the user. Thus, the goal of the design and analysis of the allocation
of authority is to identify the optimal distribution of authority between an autonomous
or partly-autonomous system and a user which heavily depends on the type of system
considered (e.g. safety critical systems). The output of the authority distribution is the
description of what the system and the user are allowed to do (and in particular, what
functions the system will be authorized to perform and to trigger — also called initia-
tive). This implies that the system designer has to identify and describe both the tasks
that the user is allowed to perform and the functions that the system is allowed to
perform.

Going back to the definition of authority presented above, “the right to give orders”
and “the right to enforce obedience” are already taken into account (for instance in a
task description) when describing the functions and tasks that the system and the
human are allowed to perform. However, in conformance with [14], we consider that
the identification of “the right to make decisions” has to be done explicitly because
there are complex relationships between decision-making authority and the allocation
of functions and tasks between the system and the human.

2.3 Responsibility

The concept of Responsibility refers to the fact that an actor should be accountable for
the result of an action [11]. The allocation of responsibilities (between the user and the
system) must make explicit the outcomes that are relevant and who (the user or the
system) influences these outcomes. The purpose of making responsibilities explicit is to
be able to support the identification of the actor who has been at the root cause of an
unwanted or unexpected outcome. The output of the allocation of responsibilities
consists in a list of both all expected and all actual outcomes when an activity is
performed. The comparison between actual outcomes and expected outcomes makes it
possible to identify deviations (that could be errors on the user side or failures on the
system side).

24 Related Work Addressing Allocation of Functions, Authority
and Responsibility

Existing approaches dealing with automation design usually focus on identifying
functions that should be allocated to either the operator or the system. These approa-
ches provide support for the identification of which tasks are good candidate for
automation and which ones should remain performed by the operator [4, 8, 10, 23, 26].
All of these approaches use task description techniques and provide support for
describing the possible workflows between user tasks and system functions. In addition
to the description of the possible workflows between user tasks and system functions,
the concept of orchestration, as defined in the software engineering and business
process modeling (BPM) literature [20], provides supports to describe the control over
the possible workflows between user tasks and system functions. Orchestration models,

40 E. Bouzekri et al.

usually represented with UML diagrams or BPM models, thus provide support to
describe the initialization, the changes and the finalization between the workflows of
the user and the system. Rovatsos et al. [24] highlighted the benefits of having an
“orchestration workflow layer” in addition to descriptions of user tasks and system
functions when developing systems that are able to adapt to different user behaviors.

Beyond analyzing allocation of functions and possible workflows at design time,
Loer et al. [16] propose a model-checking technique to verify the relevance of all
possible temporal scheduling (workflows) of adaptive automation.

We have found limited related work dealing with design approaches that provide
support for taking into account authority sharing and responsibility issues. Gombolay
et al. [14] discusses the observations they have made about decision-making authority
and responsibility sharing between human and robots from the point of view of
reaching a global human-robot optimized performance. Flemisch et al. [11] as well as
Miller and Parasuraman [19] proposed a conceptual framework that highlight the
importance of taking into account authority and responsibility at design time. Boy [5]
proposed a conceptual model to support the analysis of authority sharing amongst
several humans and systems. Cummings and Bruni [7] proposed to extend Parasuraman
information processing model by adding a decision making component. However, none
of this work provide precise techniques or even guidance to apply to describe or design
the allocation of authority and/or responsibility between a system and its user.

3 Levels of Automation and Allocation of Functions,
Authority and Responsibility (AFAR)

This section aims at discussing how the classification of the Levels of Automation, as
defined by Parasuraman et al. [22], provides support for the design of the allocation of
functions, authority when developing partly-autonomous systems. Table 1 presents the
qualitative analysis of the Levels of Automation according to the allocation of func-
tions, authority and responsibility (AFAR). The first column presents the Levels of
Automation (LoA) as defined in [22], ranging from the highest automation (Level 10),
where the “computer decides everything, acts autonomously, ignoring the human”, to
the lowest automation (Level 1), where “computer offers no assistance: human must
take all decisions and actions”. The second column presents the allocation of functions,
authority and responsibility according to the description of the LoA.

Table 1 shows that going higher in automation levels affects Authority, sometimes
Responsibility, or Allocation of Functions but that it is not done in a consistent way.
Indeed, one could have expected that going from bottom to top AF, A and R would
move progressively from user to computer. However, at LoA 7, the authority is already
all to the computer, while it is shared with the human at LoA 8, and is again all to the
computer at LoA 9. The same holds for the allocation of functions as, for instance, the
user has to perform more actions at LoA 8 (perceive and ask for information) than at
LoA 7 (where the user can only perceive information). In addition, even though most of
the levels of automation concern partly-autonomous systems where both user and

Using Task Descriptions with Explicit Representation 41

Table 1. Levels of Automation (LoA) from [22] and its interpretation using AFAR

Description of LoA as in [22]

Interpretation in terms of allocation of functions, authority and
responsibility

10. The computer decides everything, acts
autonomously, ignoring the human

9. Informs the human only if it, the computer,
decides to

8. Informs the human only if asked, or

7. Executes automatically, then necessarily
informs the human, and

AF: All to computer

A: All to computer

R: All to computer

AF: All to computer but human might perceive the information
presented

A: All to computer

R: All to computer

AF: All to computer but human might ask and perceive the
information presented

A: All to computer but human can ask to be informed

R: All to computer

AF: All to computer but human can perceive the information
presented

A: All to computer

R: All to computer

6. Allows the human a restricted time to veto
before automatic execution, or

5. Executes that suggestion if the human
approves, or

4. Suggests one alternative

3. Narrows the selection down to a few, or

2. The computer offers a complete set of
decision/action alternatives, or

1. The computer offers no assistance: human
must take all decisions and actions

AF: All to computer but human can perceive how to veto and trigger
veto

A: Mostly to computer but human can take authority over computer
using veto

R: To computer if no veto and to human if veto

AF: All to computer but human can perceive suggestion as well as
how to approve and to trigger approval/denial

A: Mostly to computer but human can take authority by rejecting
suggestion

R: Shared if approval and to human if not approved

AF: All to human but computer must compute and present one
alternative

A: Mostly to human, computer can only provide suggestion

R: Shared if human selects one element of the options presented
AF: All to human but computer must filter out and present options
A: Mostly to human, computer can only filter out options

R: Shared if human selects one element of the options presented
AF: All to human but computer must present the complete set of
options

A: All to human

R: All to human

AF: All to human but computer might allow human to provide input
A: All to human

R: All to human

system are involved, they do not provide any information about the user interface and
its associated interaction techniques. This is an important limitation of that LoA
framework as partly-autonomous systems may embed complex Uls and that the tasks
of interacting with this type of systems should be part of the description of the allo-
cation of functions. Finally, this classification represents only abstract information
about the allocation of functions and tasks. It is not sufficient when designing a partly-
autonomous system, because quantitative data about user tasks and system functions,
meaning precise descriptions of tasks and functions, is required to specify the behavior
of the system, its UI and the operations that are allowed with it.

42 E. Bouzekri et al.

We choose the Parasuraman LoA [22] as an example because these LoA are widely
used in the industry. Nonetheless, the same qualitative analysis can be done on other
existing classifications of LoA. The interested reader can find more information in the
Vagia et al. [25] literature review of proposed LoA. The Table 2 presents the results of
the qualitative analysis of the levels of driving automation according to the allocation
of functions, authority and responsibility (AFAR). This example focuses on the level 2
of the 6 levels of driving automation proposed by the standard SAE J3016 [15] for the
design of automated cars.

Table 2. Levels of driving automation from [15] and its interpretation using AFAR

Description of level of driving automation as
in [15]

Interpretation in terms of allocation of
functions, authority and responsibility

2. Partial Driving Automation

Human Driver (at all times):

* Performs the remainder of the Dynamic
Driving Task not performed by the driving
automation system

* Supervises the driving automation system
and intervenes as necessary to maintain safe
operation of the vehicle

* Determines whether/when engagement and
disengagement of the driving automation
system is appropriate

» Immediately performs the entire Dynamic
Driving Task whenever required or desired

Driving Automation System (while engaged):

* Performs part of the Dynamic Driving Task
by executing both the lateral and the
longitudinal vehicle motion control subtasks

« Disengages immediately upon driver request

AF: Mostly to the human driver, the human
driver can delegate the dynamic driving
function to the driving automation system
A: Mostly to the human driver, the driving
automation system can trigger both the lateral
and the longitudinal vehicle motion control
subtasks if the human driver engaged the
driving automation system

R: All to the human driver, except for the
lateral and longitudinal movements if the
human driver engaged the driving automation
system

At this level of driving automation, all the functions are allocated to the human
driver. However, the human driver can decide to delegate lateral and longitudinal
motion control subtasks to the driving automation system. Then, the human driver has
all the authority and responsibility except if the human driver decides to engage the
driving automation system. In the end, this classification represents only abstract
information about the responsibility and authority distribution between both entities.

Next section presents the elements of notation that aim at fulfilling the need of
precise description of tasks and functions for the specification of the system.

Using Task Descriptions with Explicit Representation 43

4 Representing Authority, Responsibility and Allocation
of Functions in Task Models

This section presents the task modeling elements of notation that aim at providing
support for the explicit representation of allocation of functions, authority and
responsibility. These elements of notations are demonstrated on the HAMSTERS
notation but they could be added to other procedural descriptions of user tasks.

4.1 The Tool Supported Notation HAMSTERS

HAMSTERS (Human — centered Assessment and Modeling to Support Task Engi-
neering for Resilient Systems) is a tool-supported task modeling notation for repre-
senting human activities in a hierarchical and structured way. The HAMSTERS
notation and its eponym tool have initially been developed to provide support for
ensuring consistency, coherence and conformity between user tasks and interactive
systems at model level [1]. HAMSTERS embeds the common ground of task mod-
elling such as hierarchical description of tasks, temporal ordering, refinement of tasks
per types, manipulated data and structuring mechanisms [17]. This common ground is
used to describe user tasks and system functions, and is thus used to describe the task
and function allocation between user and system.

4.2 Allocation of Functions

The analysis of allocation of functions, authority, and responsibility requires at least
one task model per role. The concept of role in HAMSTERS refers to a set of goals and
tasks (described in one or several task models) that can be attributed to one actor. An
actor is defined by an entity that is capable of performing a set of tasks and that has
several characteristics such as physical properties, level of knowledge, experience....
Examples of actor can be a player (user playing a game) or a software application on a
computer (as shown in Fig. 1(b)). In order to show the allocation of functions between
the user and the autonomous part of the system, we propose to describe autonomous
system functions in HAMSTERS as well. To distinguish user tasks from autonomous
system functions in tasks models, we propose to describe autonomous system functions
associated to corresponding dedicated roles in HAMSTERS. Figure 1(a) shows a
typical example of project for studying automation in a mono-user computer game. The
role called “Player as challenger” and the role called “Player as leader” contain
respectively all the task models describing how the user can play as a challenger and as
a leader. The role called “Player as game configuration manager” contain the task
models describing how the user may configure the game if s/he is in charge of it. The
role called “Software application as challenger” and the role called “Software appli-
cation as leader” contain respectively all the task models describing how the software
application can play as a challenger and as a leader. The role called “Software appli-
cation as game configuration manager” contains the task models describing how the
software application can perform tasks to configure the game (such as choosing the
leader). The role “Software application as configuration maker” contains tasks models

44 E. Bouzekri et al.

=) (}] Hamsters Files
-4 Roles
+ f@ Player as challenger
#+ 8 Player as game configuration manager
+-$% Player as leader
+ %, Software application as challenger

+ f& Software application as configuration maker = ; Actor
¥ &. Software application as game configuration manager ; Player
a) & & Software application as leader b) i ; Software application on computer

Fig. 1. (a) The six mandatory roles for describing automation and (b) example of two actors

describing how the software application can provide support to the user to configure the
game (as for example its tasks to record the winner for each game).

It is important to note the difference with standard task modeling practices where a
user task model integrates in a single model an interleaving of user behavior and
system’s response to user behavior. In our case, in order to describe explicitly user
tasks and autonomous system functions, we require the creation of several roles and at
least one associated task models for each role. This means that an autonomous system
model (belongs to the one of the roles that can be attributed to the software application)
is only made of tasks belonging to the system task category, while the user model (here
belongs to one the roles that can be attributed to the player) can embed any type of task
type but system tasks. However, due to this separation of concerns, it is impossible to
describe interleaving of actions between user and system inside those models (as it is
usually done in task modelling notations). For this reason, we have added a new event-
based mechanism dedicated to the explicit description of interleaving of actions
between the user and the system. Figure 2 (resp. Fig. 3) presents an example of
software application task model (resp. player task model). These task models contain
description of the events (grey boxes) that are produced (an outgoing arrow from a task
to an event) in one task model and that trigger tasks (an incoming arrow from an event
to a task) in the other task model.

e

IR

Event : Choices displayed Configure the leader Event : Confirmation displayed
o Obj : Leader
- MNE] -
Display leader choices ~ Process user Display confirmation
choice
Sw A » System and user leader choices G Sw A . Displayed user as the leader

Event : Selection performed

Fig. 2. Task model describing the software application behavior related to the task model of the
player (see Fig. 3) for choosing the leader

Using Task Descriptions with Explicit Representation 45

For example, in the software application task model depicted in Fig. 2, the output
interactive system task “Display leader choices” produces the event “Event: Choices
displayed”. This event triggers the execution of the visual perception task “See possible
choices” in the player task model depicted in Fig. 3. Still in the player task model in
Fig. 3, once the player has chosen who will be the leader (cognitive tasks under the
temporal ordering operator choice “[]”), the player performs the selection (interactive
input task “Select the leader”). This interactive input task produces an event “Event:
Selection performed”), which is described in the software application task model
(depicted in Fig. 2) as triggering the system task “Process selection”.

Event : Choices displayed Event : Confirmation displayed

Choose the leader

Sw A : System and user leader choices Sw A : Displayed user as the leader

See possible See
choices Selectthe Ieader confirmation

Event : Selection performed

Chooseto be Chousethe system
the leader as the leader

& Inf : Leader

Fig. 3. Task model describing the behavior of the player to choose who (between software
application and player) is the leader — this model is triggered by the model in Fig. 2

The description of the orchestration of the workflows of the user tasks and system
functions is described in an orchestration model. The elements of notation used to
describe the orchestration are the same than the HAMSTERS elements of notation with
adding two icons. The first one is the icon “conductor” (depicted in Fig. 4(a)).

® M

a) m b) User - Choose the leader

Fig. 4. (a) Symbol of the root node of a model describing how a set of task models is
orchestrated, and (b) Representation of an entire task model that is used inside an orchestration
model

46 E. Bouzekri et al.

The second one, is the icon “Model” (depicted in Fig. 4(b)), that is to be used in an
orchestration model to represent a task model that can be started. In the orchestration
model the temporal ordering of task models is represented using the standard operators
in HAMSTERS. Comparing to swim lines with one possible sequence in BPM nota-
tions, the temporal ordering operators provide support for describing several distinct
possible orchestrations. The orchestration model is used to describe the initialization of
the workflows (which tasks and functions are started on the user side and on the system
side), the possible dynamic changes (for example to represent that a function that is
delegated to the system but that it could be re-assigned to the user) and the final
completion of the workflows of the user and the system (what are the last user tasks and
system functions).

4.3 Authority

The description of Authority can be either procedural or declarative. The procedural
description of tasks aims at making what the system is allowed to do and what the user
is allowed to do. It provides support to describe how authority goes from one role to the
other one. In HAMSTERS this is represented using the event-based description of the
triggering of tasks in another model. This view describes the switching of authority
between the user and the system while the tasks are executing.

The declarative description aims at explicitly highlighting which tasks represent the
right to make decisions, in order to facilitate the sharing of the decision-making. The
icon “crown” (depicted in Fig. 5(a)) provides support to describe a task for which the
user or the system has the decision-making authority. Only the tasks of type “abstract”
may be represented with the symbol “authority” (depicted in Fig. 5(b)). This is because
the user or the system can have the authority on a decision-making task. The refinement
of the task and its associated set of actions is independent from the fact of having
decision-making authority on it.

|30
a) w b) Choose the leader

Fig. 5. (a) Symbol representing the authority (b) authority symbol associated to a task. The
symbol is displayed when the property “authority” of a task is set to true.

Within this context of sharing authority, it is important to note that operators can
perform actions by mistake or intentionally by violation. In the context of task
descriptions, only nominal actions are represented as errors and deviations should be
made explicit in other description [13]. Each task described in a task model means that
the operator in charge of it is allowed to perform it.

Using Task Descriptions with Explicit Representation 47

4.4 Responsibility

The description of Responsibility can be either procedural or declarative. The proce-
dural view is the description of the flow between the task and the outcome of the task.
This description consists in a flow (arrow) between a task and information or objects
describing the expected and actual results. The declarative view is the explicit repre-
sentation of the symbol of “responsibility” in the relevant tasks, information and
objects. The expected and actual results produced by a task can be represented with the
data types “Information” (depicted in Fig. 6(a)) when the result is produced by the user,
or with the data type “Object (depicted in Fig. 6(b)) when the result is produced by the
system.

a) 5'3Inf ; Expected result b) 530Dbj : Actual result

Fig. 6. Elements of the notation for representing responsibilities.

The tasks that set the expected results and/or have an impact on the actual results
are tagged with the icon “scale”. The icon “scale” (depicted in Fig. 7(a)) is displayed
next to the user or system task (depicted in Fig. 7(b)). This icon represents that the user
or the system is responsible for setting the expected results and/or for having an impact
on the actual result.

. 53
Compute the sum of three tokens
a) b) of the user and the system.

Fig. 7. (a) Symbol representing the responsibility (b) responsibility symbol associated to a task.

During the task modeling process, the task that produces the expected result has to
be tagged with the symbol «responsibility». This symbol is displayed when the
property “responsibility” of a task is set to true. These tasks have also to be connected
to the information or object that describes the expected result, thanks to an arrow going
from the task to the information or object describing the expected result. In addition, all
the tasks that have an impact on the actual result have to be tagged with the sym-
bol «responsibility». These tasks have also to be connected to the information or object
that describes the actual result, thanks to an arrow going from the task to the infor-
mation or object describing the actual result.

5 TIllustrative Example: The Game of Fifteen

This section presents how the HAMSTERS notation supports the description of the
allocation of functions, authority and responsibility through a simple case study.

48 E. Bouzekri et al.

5.1 Game of Fifteen: Main Principles and Rules

The Game of Fifteen is a two players game in which each player chooses and selects, in
turn, a number (graphically represented as a token) ranging from 1 to 9. The first player
who gets a combination of three numbers (amongst the set of tokens that s/he has
selected) for which the sum is exactly 15 wins the game. No explicit rule defines who
plays first, thus requiring players to reach an agreement. In the computerized version of
the game, the software application on computer may act as a referee. In that case, it
could declare the winner as soon as one of the players’ set of tokens matches the
winning condition. An example of a user interface for a computerized version of this
game is shown in Fig. 8.

[£) Game of 15 - 0o X ‘

Player 1 ‘ Player 2 (Computer - Plays to loose) H

Please wait

Your turn
Available tokens

Player 1 picks Player 2 picks

Fig. 8. An example of User Interface for the Game of Fifteen.

5.2 User Interfaces for the Game of 15 and Their Associated Levels
of Automation

Table 3 presents several examples of user interface matching the definitions of levels of
automation for the player task of selecting a token (number). We observe that at level 1
(LoA 1, Table 3), there is no information displayed regarding available or selected
tokens. The player must memorize the already selected tokens before picking up an
available one. Thus, at LoA 1, AFAR are all to human but the computer allows the
human to provide inputs. At the highest level of automation (LoA 10, Table 3), there is
no information displayed regarding available tokens either since the computer ignores
the human for the fully automated task. Thus, AFAR are all to computer. From LoA 2
to LoA 6 (UI for LoA 2 and 5 are presented in Table 3) the player remains active in the
decision process and is explicitly informed of what is going on via the User Interface.
However, this Ul evolves from “offering complete freedom” (at LoA 1) to “choose one
token” (LoA 2). In those cases AFAR are all to human and the computer must present
the entire set of options. At LoA 5, AFAR moves towards computer as the user must
consider a suggestion made by the system. At this level (LoA 5), we observe the
Allocation of Functions is all to computer but the human can perceive the computer’s
suggestion using the dialog window containing trigger for approval (“Pick 5”) and
denial (“View another one”). Authority is mostly to computer since it makes the
suggestion, even though the human can take it back by denying the suggestion. Thus,
responsibility is shared between human (if case of denial) and computer (if approval is
granted).

Using Task Descriptions with Explicit Representation 49

Table 3. User interfaces matching the definition of Level of Automation for the game of 15.

LoA Definition [19] Example of GUI supporting the LoA
The computer decides
10 everything, acts Player 1 Player 2 (Computer - Plays to loose) ‘|
. . You win! You loose!
autonomously, ignoring the
human.
Player 1 Player 2 (Computer - Plays to loose)
[The computer] informs the Your turn Please wait
9 human only if it, the formation
COmputCr decides tO [Player 1] Computer selected token 2 for you to prevent victory of Player 2 I
. .
6,7, 8 Not presented due to space constraints
Player 1 Player 2 (Computer - Plays to loose)
Your turn Please wait
[The COmputer] eXeCuteS that Player 1 selected tokens Player 2 selected tokens
5 suggestion [from LoA 4] if
Suggested pick X
the human approves. [[7] Computarsupgst o pick umber 5 s s pesant i oo e wianng combiton of G f 1.
: Continue with this pick or view another one (6 available)?
[o5 [vemanomerons

3,4 Not presented due to space constraints
The computer offers a

2 complete set of See Fig. 8
decision/action alternatives.

Player 1 Player 2 (Computer - Plays to loose)
The computer offers no Your turn Please wait
1 assistance: human must take
all decisions and actions. Please input the number your want topick: | 5| | Pick this number

5.3 Modeling of Allocation of Functions, Authority, and Responsibility
and with HAMSTERS

This section presents the description of the player tasks and of the software application
tasks corresponding to different versions of the Game of 15. It aims at illustrating how
the proposed notation provides support for the description and the analysis of the
aspects related to AFAR during the design phases of a partly autonomous system. Due
to space constraint, we have selected a set of representative models to illustrate all the
proposed elements of notation.

The allocation of functions between the player and the software application is
described in player task models (one of them is depicted in Fig. 10) and software
application task models (one of them is depicted in Fig. 11). The orchestration model
(depicted in Fig. 9) describes the possible orderings between the workflows of the
software application tasks models and player tasks models. In this orchestration model,
the player is in charge to choose the leader (represented by the model “Player as game
configuration manager — Choose the leader” task model under the concurrent “|||”
operator). Figure 3 depicts the user tasks of this model. Concurrently, the system

50 E. Bouzekri et al.

provides a mean to configure the player choice of the leader (represented by the model
“Software application as configuration maker — Configure the leader” task model with
concurrent operator). Figure 2 depicts the player tasks of this model. The model
“Software application as configuration maker — Configure the leader” produces the
object “Leader” (system side) and the model “Player as game configuration manager -
Choose the leader” produces the information “Leader” (user side). Both elements of
data contain the reference to the name of leader of the game. Then, if the user is the
leader (left branch under the choice “[]” operator in Fig. 9), s/he starts to play as the
leader (condition on the information “leader”) and the software application on com-
puter starts to play as the challenger (condition on the object “leader”). Alternatively, if
the player is the challenger (right branch under the choice “[]” operator in Fig. 9), s/he
starts to play as the challenger (condition on the information “leader”) and the software
application on computer starts to play as the leader (condition on the object “leader”).
Finally, the software application is in charge to store the winner at the end of the game
(last model “Software application as configuration maker — Store the winner” on the
right under the sequence “>>” operator).

(J

Orchestrate Game of 15 - user authority

y e {
/ 1! \\ M
\ ==Player) Software application as configuration
/ maker - Store the winner
Software application Player as game configuration = .
as configuration manager - Choose the leader Obj : Winner =2 Software application on the computer

maker - Configure the leader

/ 1l |\== Player == Software application o’ny'témp\}'\

Player as the leader - Play Software application as the Software application as Player as the challenger - Play
as the leader challenger - Play as the challenger the leader - Play as the leader as the challenger

Fig. 9. Orchestration model of the computerized version of the Game of Fifteen.

Figure 10 depicts the software application task model of the software application
tasks that have to be performed to play a turn of the version of the Game of 15 for the
LoA 5. In order to process user turn (abstract task “Process user turn (level 5)” in
Fig. 10), the system sequentially (sequence ‘“>>" operator): displays tokens played by
both the players and a suggested token for the user (interactive output tasks “Display
tokens played by user” and “Display tokens played by system’). Then, the system
suggests and displays a token iteratively (abstract iterative task “Suggest tokens”) on
user demand until the user confirms one of the suggested token (system task ‘“Process
user confirmation” under disable “[>” operator). The abstract iterative task “Suggest
tokens” consists in the following actions. The system has to suggest a token that have
to help the user to win (system task “Suggest a token” that accesses to the declarative
knowledge “The token suggested have to help the user to win”). Then, the system

Using Task Descriptions with Explicit Representation 51

displays the suggested token through a pop-up window (software application infor-
mation “Suggested pick pop-up”) and triggers an event (“Suggested token is displayed”
event). The system cannot execute its following tasks (“Suggest a token” and “Process
user confirmation” system tasks have an input event) until one of the two user events
are triggered: user clicks on “View another one” button (interactive input task “User
clicks on “View another one” button” in Fig. 11) or user clicks on “Pick [number]
button” (interactive input task “User clicks on “Pick [number]” button” in Fig. 11).

=
Sw A : "Player 1picks" area Process user tum (level 5)

Sw A : "Player 2 picks” area Obj : Listoftokens piayed by the system
510bj : Actual resuit Obi + List oftokens played by the user

252
| Obj : Chosen token

R’ a- = Process user

Display tokens Display tokens / \ Suggest tokens confirmation

playedbyuser played by system &
| 8— > Event : Userciicks on *Pick
Suggesta Display pop-up / \ [Number]” button
token with suggested token ’/
Sw A : "Suggested pick pop-up
Event : Tokens played bythe user are displayed 8—
Suggesta Display pop-up
token with-suggested token

Event : Tokens played bythe system are disclayed Event : suggestedtoken s displayed
'S DK : Thetoken must help the userto win Obj : Suggested token Event : Userdicks on "View another one" button

Fig. 10. Task model of the software application task “Process user turn” (for LoA 5).

Figure 11 depicts the player task model of the tasks that have to be performed by
the player to play a turn of the version of the Game of 15 for the LoA 5. For this LoA,
the player supervises the choice of token (abstract task “Supervise token choice” task in
Fig. 11). In that figure, the player analyzes and reads the token suggested by the system
until s/he confirm one (iterative abstract “Analyze and read suggestion” under a disable
“[>” operator with abstract task “Confirm suggested token”). At any time, the player
can think about the token to play during the supervision (iterative and optional cog-
nitive task “Think about the token to play” under the concurrent “|||” operator). More
precisely, the event “Suggested token is displayed” that is triggered by the system
allows the user to see the suggested token (motoric sight task “See suggested token™)
and to memorize it (cognitive task “Memorize the suggested token™). In the same way,
the player can read the tokens played by the system and by her or him in an inde-
pendent order (order independent “|=|” operator between user tasks “Know suggested
tokens” and “Know tokens played by the system”). Then, the player analyses the
suggested token and she or he decides to select the suggested token or to ask for
another one (sequence of cognitive decision task, motor task and user input task).

52 E. Bouzekri et al.

&

Supenise token choice (lovel 5)

& int : e I
aint : S . L\
)
R ad \ unf:
it : ~ SN) L
ry w1 Think asoutthe :
token 1o play - P
— ™~
T - ~
A C¥ - T
f P 4
Analize and read suggestion o onested ok
v a stK : The user stiategy Confirm suggested loken
out D : [EE 5> oD : '
NN) >>
Sw A : Came of 15: crcose atoken function level 5 / N\ e \
D) A N B R = % 52
Sw A : [Suggestedpit popup & & E\‘ 2 7 K & - &
< . &
Analze the Decoe 0 ask. Nove to Click o0 Choose e suggested) ':59'\910 §) Clickon N
1=1 suggestedtoken for ancther Viewasoher “Viewanolher ks Pick[Numbded” “Pick [Number]
/’/ l \‘\ emigve w_one” bution one” button 4 tuton dutton
_ ‘ S— ”
i / \ \ g af ‘-
" = FSUL
. N N ,
now suggestedioken oy emember .
Know lovens pardc. . avaiadle tokens "":“ Event : [Dsaics snied
/e sy Numer buttan
' v X
>> >> >> & inf :
. & Int ;
\ /
\ / \
v \ \ — Event : [Userdicks onView sacthet e bufon
See suggested 5] See tokens played [5] See tokens played 5]
token Memonze bythe syslem Memorze tokens p Memorge plared
N suggested N played by the system tokens
v - token N ~ \ f
.‘I“f:- Bln':- b'nf:-
Event : Sigoesiediorenispiaied Event : Tokens pared oy he user are dsplayed

Event :

Fig. 11. Task model of the player task “Supervise the token choice” (LoA 5).

The input and output events between user tasks and system tasks describe the
procedural change of authority between the player and the software application. An
output event from a system task in conjunction with an input of this event to a user task
describes a switch of authority from the system to the user. An output event from an
interactive input task in conjunction with and input of this event to a system task
describes a switch of authority from the player to the software application. However,
even if one of the roles has the authority on the other for a task, the other can execute
other concurrent task over which s/he has the authority like thinking about the token to
play (cognitive task “Thinking about the token to play” in Fig. 11). In this version of
the Game of 15, there is one task related to decision-making authority, it is the task
“Choose a leader” and the player has the authority on it (as depicted in Fig. 2). The
explicit representation of the authority on this decision task provides support for dis-
cussing about what would be the impact if assigned to the software application, or if
transferred from the player to the software application at runtime. When the player
confirms a suggested token, the software application has the responsibility to process
correctly the suggested token confirmed by the player (system task “Process user
confirmation” in Fig. 10) and the player has the responsibility to confirm the correct
suggested token according to his or her expected result (“Click on “Pick [number]
button” input task in Fig. 11). Both tasks have an impact on the outcome of the game
(connection between these tasks and the corresponding objects and information in

Using Task Descriptions with Explicit Representation 53

Figs. 10 and 11). The explicit representation of responsibility by the description of the
expected and actual outcome of these tasks provide support for arguing about the
actions that should be taken if the user or the system tasks fail in reaching the expected
outcome (e.g. modifying the display size of the tokens and or buttons if the user do not
“Click on “Pick [number] button”).

6 Future Work

We have presented extensions to a task-modelling notation and tool in order to provide
support to the explicit description of allocation of functions, authority and responsi-
bility. As a future work, we plan to propose an approach for the qualitative analysis of
allocation of functions, authority and responsibility based on task models. For example,
the systematic analysis of the required cognitive tasks described in the task models as
well as the information manipulated by the human for different allocation of functions,
authority and responsibility distributions will aim at providing insights on the impact of
these choices of allocation on the cognitive workload. Another example of analysis that
would be part of the approach is the analysis of motor tasks described in in the task
models to determine the impact on the effort for example. Furthermore, the analysis of
the number of tasks and the types of tasks allocated to the human can provide a model-
based analysis of some user experience aspects. This type of analysis can help to
prevent design solutions where the human can be bored or complacent in case of high-
level of automation. This approach will aim at providing a comparison between dif-
ferent distributions of allocations of functions, authority and responsibility.

Another possible future work is to introduce the description of possible errors in the
task models (this technique is already supported by HAMSTERS notation and tool
[13]) to provide support to analyse how to give back the authority to the human in case
of automation failure.

7 Conclusion

Automation has been studied for many years and even though metaphors [12] or
frameworks [22] have been proposed, the description of the allocation of functions,
authority and responsibility between the user and the system is not supported by
notations and tools. However, when designing automation, a precise description of
those elements are required in order to:

(1) identify and specify the partly-autonomous system functions and the user tasks,
(2) identify and reason about the actions the system is allowed to trigger and the
decisions the system is allowed to take, (the similar holds on the user side),

(3) understand mutual responsibility (and liability) in case the cooperation between
the user and the partly-autonomous system does not produce the expected

outcomes.

Existing approaches for the design of automation mainly focus on the allocation of
functions and deal with authority and responsibility only at a high abstraction level.

54 E. Bouzekri et al.

This does not provide support for reasoning about the quality of a given allocation of
authority and responsibility and makes the task of engineering of partly-autonomous
system cumbersome, leaving design decisions in the hands of the programmers. This
article has argued that the analysis of the allocation of functions must go beyond the
analysis of the sharing of the tasks of high-level types (decision, suggestions, com-
mands as proposed in [22]) and that fine-grain descriptions of user and system actions
are required. This article also argued that the allocation of authority and responsibility
has to be taken into account at the same fine-grain level as the allocation of functions
and tasks.

We have proposed several extensions to an existing notation for describing user
tasks in order to make it possible to represent in an explicit manner these three ele-
ments. We have demonstrated on a case study that the extended notation makes it
possible to describe these three elements on a concrete example and that these
descriptions provide complementary information with respect to the Levels of
Automation classical approach for automation design. Future work will be dedicated to
the use of this notation at design time to design function allocation between the system
and the user in order to avoid the pitfalls exhibited by [27] and build systems that
support best operators in their tasks.

However, in a similar way as human can make errors, automation can fail and
asking user to take over is not a viable option [1]. In order to ensure continuity of
service, the automation should degrade in a graceful way, reconfiguring itself as this
can be done with interactive or classical systems [3]. Such dynamic reconfigurations
raise interesting and challenging issues that are not covered by the presented approach
but will be addressed in future work. Finally, system behavior description might require
more powerful notations (for instance making explicit large number of states) than the
one of HAMSTERS. In order to address this, the use of complementary and compatible
notations will be required as proposed in [2].

References

1. Bainbridge, L.: Ironies of automation. Automatica 19, 775-780 (1983)

2. Barboni, E., Ladry, J-F., Navarre, D., Palanque, P., Winckler, M.: Beyond modelling: an
integrated environment supporting co-execution of tasks and systems models. In:
Proceedings of EICS 2010, pp. 143-152. ACM

3. Basnyat, S., Navarre, D., Palanque, P.: Usability service continuation through reconfigu-
ration of input and output devices in safety critical interactive systems. In: International
Conference on Computer Safety, Reliability and Security (SAFECOMP 2008), Newscastle,
UK (2008)

4. Boy, G.: Cognitive function analysis for human-centered automation of safety-critical
systems. In: Proceedings of ACM CHI 1998, pp. 265-272 (1998)

5. Boy, G.: Orchestrating situation awareness and authority in complex socio-technical
systems. In: Aiguier, M., Caseau, Y., Krob, D., Rauzy, A. (eds.) CSDM 2012, pp. 285-296.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-34404-6_19

6. Bradshaw, J.M., Hoffman, R.R., Woods, D.D., Johnson, M.: The seven deadly myths of
“autonomous systems”. IEEE Intell. Syst. 28(3), 54-61 (2013)

http://dx.doi.org/10.1007/978-3-642-34404-6_19

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Using Task Descriptions with Explicit Representation 55

Cummings, M.L., Bruni, S.: Collaborative human—automation decision making. In: Nof, S.
(ed.) Springer Handbook of Automation, pp. 437-447. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-540-78831-7_26

Dearden, A., Harrison, M.D., Wright, P.C.: Allocation of function: scenarios, context and the
economics of effort. Int. J. Hum.-Comput. Stud. 52(2), 289-318 (2000)

Dictionary. English dictionary. www.dictionary.com/browse/automation. Accessed Sept
2018

Dittmar, A., Forbrig, P.: Selective modeling to support task migratability of interactive
artifacts. In: Campos, P., Graham, N., Jorge, J., Nunes, N., Palanque, P., Winckler, M. (eds.)
INTERACT 2011. LNCS, vol. 6948, pp. 571-588. Springer, Heidelberg (2011). https://doi.
org/10.1007/978-3-642-23765-2_39

Flemisch, F., Heesen, M., Hesse, T., Kelsch, J., Schieben, A., Beller, J.: Towards a dynamic
balance between humans and automation: Authority, ability, responsibility and control in
shared and cooperative control situations. Cogn. Technol. Work 14(1), 3-18 (2012)
Flemisch, F., Adams, C., Conway, S., Goodrich, K., et al.: The H metaphor as a guideline for
vehicle automation and interaction, NASA TM, 2003-212672 (1975)

Fahssi, R., Martinie, C., Palanque, P.: Enhanced task modelling for systematic identification
and explicit representation of human errors. In: Abascal, J., Barbosa, S., Fetter, M., Gross,
T., Palanque, P., Winckler, M. (eds.) INTERACT 2015. LNCS, vol. 9299, pp. 192-212.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22723-8_16

Gombolay, M.C., Gutierrez, R.A., Clarke, S.G., Sturla, G.F., Shah, J.A.: Decision-making
authority, team efficiency and human worker satisfaction in mixed human—robot teams.
Auton. Robots 39(3), 293-312 (2015)

J3016 Taxonomy and Definitions for Terms Related to On-Road Motor Vehicle Automated
Driving Systems SAE International (2014)

Loer, K., Hildebrandt, M., Harrison, M.: Analysing dynamic function scheduling decisions.
In: Johnson, C.W., Palanque, P. (eds.) Human Error, Safety and Systems Development.
IIFIP, vol. 152, pp. 45-60. Springer, Boston, MA (2004). https://doi.org/10.1007/1-4020-
8153-7_4

Martinie, C., Palanque, P., Winckler, M.: Structuring and composition mechanisms to
address scalability issues in task models. In: Campos, P., Graham, N., Jorge, J., Nunes, N.,
Palanque, P., Winckler, M. (eds.) INTERACT 2011. LNCS, vol. 6948, pp. 589-609.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23765-2_40

Martinie, C., et al.: Formal tasks and systems models as a tool for specifying and assessing
automation designs (regular paper). In: Ist International Conference on Application and
Theory of Automation in Command and Control Systems (ATACCS 2011), Barcelona,
Spain. ACM DL, May 2011

Miller, C.A., Parasuraman, R.: Designing for flexible interaction between humans and
automation: delegation interfaces for supervisory control. Hum. Factors 49, 57-75 (2007)
Misra, J., Cook, W.R.: Computation orchestration: a basis for wide-area computing.
J. Softw. Syst. Model. 6(1), 83-110 (2007). https:/link.springer.com/article/10.1007/
$10270-006-0012-1

Oxford. English Dictionnary. https://en.oxforddictionaries.com/definition. Accessed Apr
2018

Parasuraman, R., Sheridan, T.B., Wickens, C.D.: A model for types and levels of human
interaction with automation. IEEE Trans. Syst. Man Cybern. Part A: Syst. Hum. 30(3), 286—
297 (2000)

Pocock, S., Harrison, M.D., Wright, P.C., Johnson, P.: THEA: a technique for human error
assessment early in design. In: INTERACT 2001, pp. 247-254 (2001)

http://dx.doi.org/10.1007/978-3-540-78831-7_26
http://dx.doi.org/10.1007/978-3-540-78831-7_26
http://www.dictionary.com/browse/automation
http://dx.doi.org/10.1007/978-3-642-23765-2_39
http://dx.doi.org/10.1007/978-3-642-23765-2_39
http://dx.doi.org/10.1007/978-3-319-22723-8_16
http://dx.doi.org/10.1007/1-4020-8153-7_4
http://dx.doi.org/10.1007/1-4020-8153-7_4
http://dx.doi.org/10.1007/978-3-642-23765-2_40
https://springerlink.bibliotecabuap.elogim.com/article/10.1007/s10270-006-0012-1
https://springerlink.bibliotecabuap.elogim.com/article/10.1007/s10270-006-0012-1
https://en.oxforddictionaries.com/definition

56

24,

25.

26.

217.

E. Bouzekri et al.

Rovatsos, M., Diochnos, D.I., Wen, Z., Ceppi, S., Andreadis, P.: SmartOrch: an adaptive
orchestration system for human-machine collectives. In: Proceedings of the Symposium on
Applied Computing (SAC 2017), pp. 37-44. ACM, New York (2017)

Vagia, M., Transeth, A.A., Fjerdingen, S.A.: A literature review on the levels of automation
during the years. What are the different taxonomies that have been proposed? Appl. Ergon.
53, 190-202 (2016)

Wright, P.C., Dearden, A., Fields, B.: Function allocation: a perspective from studies of
work practice. Int. J. Hum.-Comput. Stud. 52(2), 335-355 (2000)

Yerkes, R.M., Dodson, J.D.: The relation of strength of stimulus to rapidity of habit-
formation. J. Comp. Neurol. Psychol. 18, 459-482 (1908)

	Using Task Descriptions with Explicit Representation of Allocation of Functions, Authority and Responsibility to Design and Assess Automation
	Abstract
	1 Introduction
	2 The Concepts of Allocation of Functions, Authority and Responsibility and How to Use Them for Automation Design
	2.1 Allocation of Functions
	2.2 Authority
	2.3 Responsibility
	2.4 Related Work Addressing Allocation of Functions, Authority and Responsibility

	3 Levels of Automation and Allocation of Functions, Authority and Responsibility (AFAR)
	4 Representing Authority, Responsibility and Allocation of Functions in Task Models
	4.1 The Tool Supported Notation HAMSTERS
	4.2 Allocation of Functions
	4.3 Authority
	4.4 Responsibility

	5 Illustrative Example: The Game of Fifteen
	5.1 Game of Fifteen: Main Principles and Rules
	5.2 User Interfaces for the Game of 15 and Their Associated Levels of Automation
	5.3 Modeling of Allocation of Functions, Authority, and Responsibility and with HAMSTERS

	6 Future Work
	7 Conclusion
	References

