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Abstract Structure-based in silico studies aiming to predict affinity of a set of
ligands to their cognate receptor have been enjoying keen interest and attention of
researchers in drug design around the globe since many decades, and made sig-
nificant progress to increase its predictive power, even it has emerged as a com-
plementary field to in vivo and in vitro studies in recent years. Structure-based drug
discovery (SBDD) process whose success heavily relies on a careful selection of
structure of receptor and ligands and its accuracy, completeness, and rigor of
chosen model, imitation of the physiological condition in such in silico models,
e.g., pH and solvation. Appropriateness of selected mechanism of binding concept
and the realization in mathematical terms used in scoring methods have a strong
influence on the accuracy too. However, constant identification of new targets using
systems approach like genomics, proteomics, metabolomics, and network biology
has led a paradigm shift from single or a couple of targets toward the appreciation
of emerging role of a network of targets. The application of such strategies in study
of complex diseases is gaining attention. Identification of binding sites of receptor
and their characterization is important to be able to portray its interacting features. It
involves the search of ligands which are able to possess the features, present them
complementary to the binding site, so by docking the set of ligands to the binding
pocket of the receptor, activity can be evaluated. In silico receptor–ligand binding
affinity prediction from docking has witnessed rigid-receptor rigid-ligand to
flexible-ligand rigid-receptor treatment, and nowadays docking studies, through
sampling side chain rotations of the binding site residues, also account for the
flexibility of binding pocket of the receptor in indirect way. Literature survey has
shown progress in ranking ligands in order of affinity using reliable scoring func-
tions to find potent scaffolds which can be further optimized to gain more affinity.
Many methods include effect of solvation in binding processes, like considering
conserved water positions in active sites (water maps), explicit water simulation in
presence of ligand with receptor, free energy perturbation, and thermodynamic
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integration. Availability of many conformers of receptors and ligands in solution
suggests the importance of entropy in estimation of binding affinity, but entropy
component of binding free energy directly is not included in such studies. In spite of
unprecedented advancement of computational modeling, faster simulation tech-
niques, accurate solvation models and current best practices, the dependence of
binding affinity on pH, estimation of entropy along with enthalpy in binding
affinity, inclusion of conformational entropy of ligand and receptor, and modulation
of flexibilities during complex formation are important challenges lying ahead.
Therefore, an account of prowess and challenges in structure-based prediction of
binding affinity addressed in present review will provide directions for its appro-
priate application, understanding its limitations and getting important feedbacks for
its betterment.

Keywords Structure-based drug design � X-ray crystal structure
Scoring function � Docking � Simulation � Structure validation
MM-PBSA � Entropy � Free energy

1 Introduction

The advancement of molecular understanding of the disease processes and their
manifestations, along with computational advancement like in silico studies, aiming
to predict high-affinity molecules/scaffolds binding to the target, grew as a
promising complementary field of study mainly because of its cost-effectiveness
and speed. It facilitated virtual high-throughput screening (vHTS) to narrow down
the search space for further experimental work by making predictions about the
ligand–receptor affinity [1]. Advancements in systems biology along with network
biology helped identifying targets for diseases [2], and crystallography [3] and
nuclear magnetic resonance (NMR) [4] techniques enabled solving structural
models of the target molecules with higher resolution setting foundation of
structure-based drug designing (SBDD). Docking is one of such computational
studies, which aims to search high-affinity molecules from a library of chemicals
and predict relative orientation (pose) of the molecule to the target. It also tries to
rank the set of molecules/poses in a sorted affinity order [5]. Knowledge about the
structure of receptors made binding site identification easier and enabled to screen
the small-molecule libraries against the target seeking complementarity with the
ligand.

Docking and scoring methods due to its promising applicability prospect has
been extensively developed, critically evaluated, and constantly refined with the
time, it has now shaped into a field of research; several software tools have been
developed and are available for academic and industry research [5–11]. Recently,
Taylor et al. [12] have reviewed the broad spectrum of major techniques amenable
to the field of non-covalent docking studies, classifying them into molecular
dynamics, Monte Carlo methods, genetic algorithms, fragment-based methods,
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point complementarity methods, distance geometry methods, tabu searches, and
systematic searches. They briefly presented algorithms and validations of models
and techniques using test cases as examples. The study has concluded that hybrids
of various types of algorithms employing novel search for appropriate poses and
consensus scoring are better for large-scale docking [12]. It has been observed that
rigid receptor and flexible ligand models achieved success rates of 70–80%. It can
be influenced by the fact that programs implementing these algorithms were well
established at that time [12]. However, they pointed out that possible reason for
failure is underestimation of conformational sampling of receptor flexibility [12]. In
spite of great success of docking methods in discriminating ligands as good and
bad, predicting the binding on the basis of their affinity towards cognate receptor is
poor. Moreover, in certain cases, docking shows inability to reproduce experimental
binding pose and it is a great concern in the technical aspects of the docking
methodology and its current progress, so need to review time to time. In 2010,
Huang et al. [13] have discussed currently practiced docking techniques, delin-
eating the ways for ligand sampling, accounting protein flexibility and specific
scoring functions.

During a docking study, one has to do many sequences of tasks/steps which
influence the final outcome of the study and its success [14]. First and the foremost
thing is to search for the potential binding sites on the receptor and characterize
them; however, sometimes when binding site is not known blind docking can be
done. Several cavity detection algorithms and software were built to help this. In
parallel, right selection of the receptor structure is crucial [14]; thus, the quality of the
structure and experimental conditions used for resolving the structure has to be taken
care of, and structure resolved with experimental conditions closest to the actual
functioning condition should be preferred if available [15]. Most often, hydrogen
atoms are missing in the structure; thus, protonation states of the titratable receptor
residues have to be fixed, and usually, it is borrowed from predictions made using
different protonation state prediction tools [16, 17]. Apart from the protonation states
of titratable residues of the receptor, ionization states of ligands to be docked have
influence on correct model of binding [16, 18]. Scoring functions also greatly
influence the final outcome of the docking studies, and there are many scoring
functions available; some may be suitable to study the specific type of protein active
site but less effective in other cases [19]. Inherent demand of fast evaluation of poses
during docking enforces the scoring functions to adopt approximations and
parameterization, which compromises predictivity [19]. Thus, it is tough to guess
which scoring will be suitable for which kind of active site. However, chemical
intuition and consensus scoring protocols can be adopted to get better results.

Although the correctness of ranking and order of predicted affinity more often
fail to provide significant correlation with experimental ranking and observed pose
[20], such limitation of the in silico high-throughput screening can be partially
attributed to the multifaceted problems in current practices, e.g., selection of
appropriate binding theory, selection of appropriate modeling data, and limited
knowledge about the reaction mechanism. Many such challenges are discussed in
the present article.
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1.1 Targets Are Diverse

To be able to comprehend the challenges lying ahead on the way to drug design/
drug discovery, it is important to understand the diversity of the drug targets that
have been exploited so far as well as the trend in new drug targets in recent history
of drug discovery [21]. Mathias Rask-Andersen et al. performed a study on all
drugs approved by FDA during 1983–2010. They took all 1542 drug entries as on
May 2009 and filtered out 225 drugs with unknown targets, 192 with no human
targets, and 609 non-therapeutic targets to yield a dataset of 435 therapeutic
effect-mediating targets for humans and to account for the time lag between drug
approval and their entry in DrugBank; drugs approved during 2007–2010 were
taken from FDA data and included for analysis. Drug–target association was
annotated by manual curation from literature data, and targets were kept in four
classes (receptors, enzymes, transporters, and others) with receptor class has highest
193 targets, followed by enzymes with 124, transporters with 67, and others with 51
targets [21]. Analyzing curated drug–target association dataset, they found that
every year 17.9 drugs targeting human proteins are approved by FDA, while 4.3 of
them act on novel targets. The trend in FDA approval of drugs targeting new human
proteins (novel target drugs: NTDs) does not decrease overall. Moreover, they
noticed three peaks corresponding to durations 1990–1993, 1994–2000, and 2001–
2008 when NTDs were plotted against years from 1983 to 2010; they called them
first-, second-, and third-target “innovation peaks,” respectively [21].

During the first innovation peak, it was observed that proportions of approved
drugs for all major target groups—GPCRs, hydrolases, transferases, and isomerases
—were similar to other two peaks. During second innovation peak, first time
integrins appeared as drug target, while during the third innovation peak, asthma
drug omalizumab-targeted Fc-receptors and imatinib appeared as kinase inhibitor
[21].

Analysis of novel targets for drugs with time by Mathias Rask-Andersen et al.
highlights the fact that with the passing time new drugs apart from targets belonging
to earlier exploited classes, novel classes of targets are also being identified for new
drugs. Thus, diversity in the classes of target molecules is expanding, and SBDD
practices have to be optimized to improve success rates in such studies. Present
review will attempt to enlighten and discuss the solutions for such relevant topics
including the challenges upcoming ahead.

1.2 Targets Are More Diverse than Earlier

Genomic-wide association studies over a set of druggable genome, utilizing
bioactivity data including approved drugs or clinical compounds and gene associ-
ation data against these targets, can be used to come up with set of further druggable
genes and gene combinations as target [22]. Recently in 2017, Finan et al. have
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performed a similar study and estimated that 4479 genes can be drugged or are
druggable out of total 20,300 annotated protein-coding genes as per Ensembl
version 73 (https://www.ensembl.org/) covering *22% of total. They reported that
there could be 2282 genes more than earlier reports of the druggable human gen-
ome [22].

Systems biology approaches have been used for decades for predicting target
genes in case of infectious diseases [2], studying systems approaches, e.g., meta-
bolic control analysis (MCA) and flux balance analysis (FBA). Systems genetics
approaches have also been used for identification of novel disease genes in rat and
human [23]. Molecular networks information can be used for improving drug
discovery projects at several stages from target identification utilizing information
of existing data about drug–target association [24]. Metabolic and signaling path-
way [25] and genome-wide association are studied in detail for identification of new
target proteins and their interactions [26]. Genome-led methods provide a new
pathway or a class of protein(s) as target.

Pharmacophore designed from ligands of a target protein can be looked for
assessing binding site similarity for the proteins of same family as well as it can be
used to compare binding site similarity for proteins from different families of
proteins for selectivity. In recent times, several highly selective inhibitors of such
protein(s) have been found to assess the multitarget activity. For example, c-Abl
inhibitor imatinib [27] was approved as drug for chronic myeloid leukemia, but its
clinical utility is widened after finding that it has shown significant activity against
several other important targets, e.g., tyrosine-protein kinase kit (c-KIT or CD117).
Similarly, sorafenib affects tumor proliferation and tumor angiogenesis pathways
due to its multikinase inhibitory activity [28]. Sunitinib is also approved for being a
multiprotein kinase inhibitor with similar effects as sorafenib [28].

1.3 Starting of Structure-Based Drug Design

One of the successful stories of the structure-based drug design started in the early
eighties with purine nucleoside phosphorylase (PNP), targeted as a salvage enzyme
important to inhibit, so that T-cell-mediated activation of immune system is sup-
pressed. PNP is an important enzyme involved in purine salvage and catabolism
[29]. Inactivity of PNP has been found to show adverse effect on T-cell proliferation
[30]. Human PNP, a homotrimer with each subunit of molecular weight 97 kD,
shows substrate specificity for guanine, inosine, and other 6-oxypurines analogs,
while bacterial PNP shows specificity for adenine [30] also. PNP active site consists
of three binding subsites: purine-binding site (Fig. 1, shown in cyan), hydrophobic
site (or ribose-binding site, Fig. 1, shown in blue), and phosphate-binding site
(Fig. 1, colored purple) [31]. In attempt to design potent PNP inhibitors, consid-
ering the features of three subsites of PNP binding site and three-dimensional
structure of PNP as starting point, an iterative process of modeling inhibitor-bound
structure, conformational search using Monte Carlo method followed by energy
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minimization and finally experimental determination of binding affinity and crys-
tallization of complex structure was used. This iterative process yielded a series of
potent and membrane-permeable 9-(arylmethyl)-9-deazapurines (2-amino-7-(aryl-
methyl)-4H-pyrrolo[3,2-d]-pyrimidin-4-ones) inhibitors of PNP [29]. Later, (S)-9-
[l-(3-chlorophenyl)-2-carboxyethyl]-9-deazaguanin showed highest potency among
all previously designed analogs [32]; however, the (R)-isomer was 30-fold less
potent. This study exemplifies how structural information can be carefully used
toward designing of potent inhibitors of the receptor of interest.

The enthalpy and entropy components of binding free energy together decide
affinity of interaction between receptor and ligand. Therefore, affinity can be modu-
lated favorably adopting following possible strategies: (i) decreasing the unfavorable
entropy maintaining favorable enthalpy, (ii) increasing favorable enthalpy without
introducing unfavorable entropy, and (iii) altering one or both of enthalpy and entropy
favorably without losing proportionally on other component [33].

An example where first strategy has been used for optimizing affinity is inhi-
bitors of PNP. Optimized picomolar-binding PNP inhibitors have also been
reported [34]. The attention has been paid on reducing the entropic penalty, without
sacrificing the enthalpy of binding to gain affinity. Hypoxanthine has Ki 4.3 lM,
with enthalpy −30.5 kcal/mol, but 23.1 kcal/mol entropy penalty to result a
−7.4 kcal/mol binding free energy [35], but optimized molecule SerMe-ImmH

Fig. 1 Human purine nucleoside phosphorylase (PNP) monomer (PDB: 1ULB) in complex with
guanine and sulfate ions. Guanine and sulfate ions are shown in ball and stick. Three subsites of
PNP binding site: First subsite is called purine-binding site (shown in cyan surface, residues
Ala116, Phe200, Glu201, Val217, Met219, Thr242, Asn243, Lys244), second subsite, i.e.,
hydrophobic site (or ribose-binding site consists of residues His86, Tyr88, Phe159 (from adjacent
subunit of PNP trimer), Phe200, Met219) where Tyr88 and Phe200 are shown in blue surface. The
third subsite termed phosphate-binding site (shown in purple surface residues Ser33, Arg84,
His86, Ser220)
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shows 5.2 pM Ki, with −20.2 kcal/mol enthalpy, but merely 4.7 kcal/mol entropy
to result −15.5 kcal/mol binding free energy [34].

The second strategy has been utilized for optimizing HIV-1 protease inhibitors.
After the FDA approval of Indinavir in 1995, which binds only because of
−14.2 kcal/mol entropy despite 1.8 kcal/mol unfavorable enthalpy with binding free
energy −12.4 kcal/mol, the process of affinity optimization started. The constant
optimization of inhibitors for efficacy leads to Darunavir which binds with only
−2.3 kcal/mol favorable entropy; however, −12.7 kcal/mol favorable enthalpy
yielded binding free energy −15.0 kcal/mol. The free energy gain of −2.6 kcal/mol
was reported where every −1.4 kcal/mol results ten times better binder [36, 37].
Another such example involves cholesterol-lowering drug statins to HMG-CoA
reductase, and Fluvastatin binds only due to −9.0 kcal/mol favorable entropy despite
zero contribution from enthalpy. However, newer drug Rosuvastatin binding has
only −3.0 kcal/mol entropy contributions, but additional −9.3 kcal/mol enthalpy
gain results −12.3 kcal/mol binding free energy, −3.3 kcal/mol better than
Fluvastatin [38].

The third strategy is more tedious and challenging mainly because of enthalpy
entropy compensation, more often enthalpy can be increased by introducing new
hydrogen bonding groups as a strong hydrogen bond which provides*4–5 kcal/mol
enthalpy; however, introduction of hydrogen bond decreases favorable solvation and
entropy by structuring regions involved in hydrogen bonding. Alternatively, in theory,
introducing multiple hydrogen bonds targeting same structural regions of receptor has
been suggested to mitigate the extent of enthalpy entropy compensation [33].

1.4 Flexibility and Adaptability of Target

Initially, the protein–ligand docking was modeled as a lock-and-key, where protein
was treated as “lock” containing a binding site as “key-hole” which can host a
complementary ligand or “key.” However, later it was realized that lock-and-key
model is not sufficient to characterize all binding events; thus, advanced models
were proposed which can be put broadly in three groups: (i) lock-and-key (ii) in-
duced fit (IF), and (iii) conformational selection (CS) [39]. The IF and CS models
introduced to account for the receptor flexibility during the binding with ligands
will be discussed in detail later. Although these models represent receptor–ligand
binding in better way, still estimate only enthalpy of the interaction and the entropy
component of the binding free energy remains to be estimated. It has been reported
in the literature that entropic component of binding can be important in many
interactions. A recent experimental and computational study of a human heat-shock
protein 90 (HSP90) highlighted important alterations in binding properties of target
on complex formation with small-molecule inhibitors [40]. Surprisingly, they found
that compounds binding to helical conformation have increased target flexibility
and gained entropy preference over compounds binding to loop conformation
which was less flexible on complex formation [40].
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1.5 Knowledge of Target Structure Is Essential
but not Sufficient

In spite of success in structure-based drug discovery process [29] at several occa-
sions, knowledge about the structure of the target involved in the disease does not
necessarily lead to a drug for cure; b-Thalassemia is one such example. It is an
inherited hematologic disease caused by less b-globin, largely reported in
Mediterranean region, identified with the mutant b-globin [41]. The present treat-
ment is continuous blood transfusions with chelation therapy [42] and less fre-
quently, bone-marrow transplantation [43], because there is no drug treatment for
cure. However, the first crystal structure of hemoglobin was known in 1968, and
since then, more than 250 human hemoglobin structures are known [44]. Hence,
druggability and understanding of disease is a field of research in itself, emerging as
translational bioinformatics.

2 Challenges in Structure-Based Designing

As discussed in many review articles earlier, major steps to find in silico chemicals
and design them for better inhibition of target macromolecule are identification of
target protein or macromolecule of importance and associated functionally with the
disease, characterization of its 3D structure and active site, mapping of interactions
possible with chemical functional groups, docking, scoring, and finally ranking the
possible chemicals to test experimentally. Each of these steps has many challenges
which will be discussed here.

2.1 Accuracy of Structures

Before starting a docking study to screen, some library of compounds to come up
with a set of molecules showing high binding affinity with the target receptor
requires to have known 3D structure. The appropriate selection of the receptor
structure can influence the success or failure of any screening study [14]. Therefore,
a researcher needs a good structure to start with which could have been resolved
mostly using X-ray or NMR. Sometimes, the structure of the desired receptor is not
known. In such cases, a homology model of the structure can be used if a suitable
template for the receptor can be found [14]. A template may be the same protein
having similar function, showing high sequence similarity from different organism
or even some other protein having same fold. If the structure of the receptor is
known in advance, then there may be multiple structures resolved in different
conditions, with varying resolution, varying model completeness, etc. In such a
case, the most suitable structure has to be chosen [14]. In selecting receptor
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structure, one has to keep in mind that how well the structure resolution condition
matches with the actual functioning condition of the receptor and resolution of the
structure [14]. Apart from this, many questions may arise like whether the structure
is ligand bound? Whether active conformation of the structure is solved? Whether
the structure is solved at pH similar to the functioning pH? These can also be of
importance to consider during docking. The receptor crystal structure selection has
to be done with care considering the quality of the structure model. Some of the
most important parameters for crystal structure assessment have been outlined in
the literature [45] and listed in Table 1. Crystal structure resolution which is a
measure of quality of electron density data collected is one of such parameters;
structures resolved at less than 1 Å are considered high-quality one being able to
resolve electron densities at atomic level while structures greater than 3 Å have
smeared electron densities and atomic positions are not clearly identifiable. Hence,
crystal structure with resolution in range: 1 Å < resolution < 3 Å can be

Table 1 List of important parameters for assessing quality of X-ray crystal structure

Parameter Description Preferred Comment

Electron density and solved model quality

r-cutoff r-cutoff applied to the data None

Lower
resolution

A minimum spacing (d) of crystal lattice planes that
still provide measurable diffraction of X-rays.

20–50 Å

Higher
resolution

A minimum spacing (d) of crystal lattice planes that
still provide measurable diffraction of X-rays and
also hI=r Ið Þi greater than 2 in high-resolution shell.

<3 Å Higher is
better

Completeness The number of observed reflections divided by the
theoretical maximum

*100% Higher is
better

hI=r Ið Þi The average ratio of reflection intensity to its
estimated error. Signal-to-noise ratio

>2

R-factor A measure of the global reliability factor or
goodness-of-fit between the experimentally obtained
structure factor amplitudes, Fobs, and the calculated
structure factor amplitudes, Fcalc, obtained from the
model.

<25% Smaller
is better

Rfree–R-factor Rfree is R-factor for random *5% reflections, not
used for model refinement. Rfree − R-factor < 2, may
be indication of overfitting while Rfree − R-
factor > 7 may be due to poor refinement of model

2–7% Smaller
is better

RO2A Observation to atom ratio Higher is
better

Geometric parameters of model quality

RMSD (bonds) Root mean square deviation of bond lengths from
ideal values

0.15–
0.25 Å

RMSD (angles) Root mean square deviation of bond angles from
ideal values

1°–3°

Ramachandran
violations

Number of /–w torsion pairs falling in disallowed
regions of Ramachandran plot

0 Smaller
is better
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considered reasonable quality structures [46]. Apart from resolution, Rvalue, Rfree

and real-space R-value and real-value correlations are among the important
parameters to assess the quality of crystal structure as discussed by Brown et al., in
2007 [45].

Geometric parameters and quality of structure: Apart from diffraction quality
and structure refinement parameters, geometric and chemical parameters are equally
important to consider while assessing its quality [15]. Atomic positions in model,
planarity of peptide plane, stereoisomer of peptide bond, bond length, bond angle,
and torsions angles should be checked for an unnatural occurrence [15]. Since all
combinations of backbone torsions /–w cannot occur in proteins, only those pairs
which conform to the Ramachandran plot, thus number of /–w pairs in disallowed
regions of the Ramachandran plot which ideally should be zero, generally lesser
violation considered better structure, are used as a critical parameter for the quality
of the crystal/model structure as best practices.

Atomic occupancy and B-factor are among other important parameters to be
considered while assessing the quality of structure. Occupancy of an atom is the
fraction of molecules which occupy modeled position among all molecules in
crystal. An occupancy 0.0 means modeled positions not observed in crystal, and 1.0
means modeled position is present in all molecules in crystal [47]. If some residues
in crystal structure show more than one conformations in crystal structure, then
conformation with highest occupancy should be preferred. In case of ligands, the
occupancy is dependent on Kd value, e.g., for a ligand with Kd in range
10–100 mM, maximum achievable occupancy ranges 70–90% or 0.70–0.90 con-
sidering working ligand concentration <500 mM [48]. B-factor in theory represents
the amplitude of oscillation of the atom around equilibrium position. It quantifies
the dynamics of the atom; often, isotropic B-factors are reported in crystal struc-
tures; however, anisotropic B-factors may be reported in high-resolution structures.
For high-resolution structures, anisotropic atomic displacement parameter
(B-factor) can be substantiated only when resolution is higher than *1.4 Å [46].
Structural regions in crystal structure having B-factor higher than a threshold
B_max should be carefully inspected because of their implications to high disorder
in the region [49].

At times, in crystal structure water molecules play important role in binding and
have to be considered for characterizing the binding site for its water interaction
profiles [50]. However, identification of structurally important waters involved in
receptor–ligand interaction is another challenge [51, 52].

Proteins are usually flexible molecules, and inherent dynamics characterizes its
interaction. Moreover, a crystal structure is usually a time and space average of the
conformers present in the crystal lattice [15]. Therefore, quite often it may not be
the conformation presenting the best possible affinity for the given ligand due to the
rigid treatment of the receptor. Thus, protein should be allowed to flex in such way
that it could show best possible affinity with the ligand.
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2.2 Comparative Homology Modeling and Role of Template

Very often the target protein crystallization is not possible, and no other way but
homology or comparative modeling of structure becomes imperative. Many stan-
dard tools and directions are reviewed, and appropriate protocols are included [53,
54]. Many such tools to evaluate the modeled structures are also discussed in the
literature [55, 56]. Here we shall cite a specific example showing importance of
choice of template using homology modeling applied for Mtb isocitrate dehydro-
genase (ICD).

Mycobacterium tuberculosis is known to use the glyoxylate shunt during the
persistent stage [57]. Experiments have been performed to understand the gly-
oxylate shunt by considering the close analogy with Escherichia coli system [58].
For E. coli, glyoxylate shunt pathway is well studied and is initiated by phos-
phorylation of specific serine-105 residue of isocitrate dehydrogenase (ICD) [59].
Mycobacterium tuberculosis being a prokaryotic organism, same type of func-
tionality was also expected for the glyoxylate bypass pathway [58, 60].

Phylogenetic analysis of the ICD sequences shows that Mtb has NADP-
dependent ICD which belongs to subfamily II of ICD. Subfamily II has predomi-
nantly eukaryotic members, while E. coli ICD is classified in subfamily I [61].
Across the family, ICDs are found to be functional either monomers or dimers.
E. coli, Mtb, and human all have functional homodimeric forms. Dimeric ICDs
contain active sites which are contributed by the residues of both domains. Though
Mtb ICD is regulated by phosphorylation process, it is more equivalent to
eukaryotic ICDs. Eukaryotic ICDs are not found to be regulated by the phospho-
rylation, and also mammalian system does not possess glyoxylate shunt [62]. So
overall evidence suggest that Mtb ICD has close similarity with eukaryotic system;
however, the presence of glyoxylate shunt pathway makes this system closer to
prokaryotic intracellular pathogenic survivor.

Understanding of shunt pathway shown that regulation of the Mtb’s ICD
depends upon the phosphorylation/de-phosphorylation state which is expected to be
regulated by some of available 11 serine/threonine phosphatase/kinases [63]. In
2009, Vinekar et al. had performed molecular dynamics simulation-based analysis
to understand the effect of selective phosphorylation of serine residues [62].
However, crystal structure of Mtb ICD was not available at that time (Table 2), so
homology modeling had been done using different crystal structures as templates to
select appropriate functional model.

The ultimate goal of the homology-based structure modeling is to model the
structure from its sequence with an accuracy that is comparable to the best results
achieved experimentally. As the crystal structure of Mtb ICD was unavailable,
homology-based structure modeling was the preferred way to understand the struc-
tural features of the ICD. For ICD modeling, target sequence (UniProt ID: P9WKL1)
was found to align with many sequences of already crystallized structures from both
prokaryote and eukaryote. Based on the homology rules of %-identity, functionality,
quality of the structure, and association with same taxonomy, three ICDs [64] were
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selected as template structure for modeling. However, in cross-taxonomy (with
eukaryote) 1LWD [65], same target sequence had higher sequence identity (Table 2)
than E. coli. Both crystal structures (3ICD and 1LWD) have same Rossmann fold and
a common dinucleotide-binding domain [64, 65].

In such case, where target structure from the same taxonomy is available and
fulfills the most homology modeling criteria, it is not always true that model
structure will also provide functional explanation. Model developed using E. coli is
shown in Fig. 2a (dark gray color) with E. coli crystal structure (green color). Both
structures are superimposed well with RMSD 4.68 Å. However, model structure
(white color) developed using Sus scrofa (orange color) as template superimposes
with crystal structure with RMSD of 0.57 Å (Fig. 2c). Both models are validated
using PROCHECK [55], and more than 85% residues are found under
Ramachandran region. So, both models follow homology criterion and passed by
the structure validation tools.

In 2013, Quartararo et al. published the crystal structure of Mtb ICD dimer
complex with NADPH. This structure is then used to understand the closeness of
modeled structure of Mtb ICD with both E. coli and Sus scrofa. Superimposition of
Mtb with E. coli and Sus scrofa is shown in Fig. 2b, d, respectively. Although all
three have same folds, Sus scrofa is more close toward Mtb than E. coli. E. coli
structure has 6.4 Å RMSD with Mtb, and major differences occurred in the
beta-hairpin loop region where E. coli structure has helical element than
beta-structure element. This region of dissimilarity known as clasp region between
inter-subunit interface [64] plays important functional role during phosphorylation
[61].

So, from this case study, it is very clear that one template cannot guarantee about
the functional state of the homology model, so different templates may be used to
develop appropriate functional model, as mentioned in comparative modeling
review [53]. Key to the selection of the model is always to be associated with the

Table 2 Comparison of the crystal structure of Mtba with selected (template) prokaryote and
eukaryote crystal structures

ICDH Mtb Sus scrofa E. coli

Sequence length 409 413 416

Template PDB ID 4HCX [66] 1LWD [65] 3ICD [64]

Year of publication 2013 2002 1989

Template structure resolution (Å) 2.18 1.85 2.5

Rfree 0.262 1.85 Å NA

Rwork 0.205 0.210 0.180

Ramachandran outliers (%) 1.8 0.2 0.5

Sequence Identity with respect to Mtb ICDH
(UniProt ID: P9WKL1) (%)

100 65.2 23.6

Sequence Similarity with respect to Mtb ICDH
(UniProt ID: P9WKL1) (%)

100 79.2 35.7

aEarlier modeled because structure was not available till 2013
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experimentally known functional features. It is also established that structure val-
idation tools like PROCHECK [55] and WHAT IF [56] can only suggest the quality
of the models not the functionality of the modeled protein. Other methods popularly
known as ab initio designing of protein, alternate to template-based modeling, have
been discussed in other reviews [67, 68]. A comparison of efficiency of modeling
protein structure called CASP (critical assessment of methods of protein structure
prediction) provides evaluation of such programs [69]. Recently, designing of
protein structures has been successfully applied to model protein from genome
sequence using an integrated pipeline by Jayaram and co-workers [70]. However,
ensembles of model structure may provide a better docking success which has been
cited in 2010 by Novoa et al. [71].

Fig. 2 Two homology-based models have been developed forMtb ICD using two different crystal
structures (one from E. coli and one from Sus scrofa). a Shows the modeled structure (dark gray
color) superimposed with E. coli crystal structure (green color). Model fit well with 4.6 Å RMSD
value. c Second model is developed using Sus scrofa structure (1LWD) and superimposed model
structure (white color) is shown with 1LWD (orange color). When Mtb structure published in
2013, it is found that mammalian ICD is much closure to Mtb as shown in panel (d) than E. coli
(panel b). Fold is well conserved in both models, but major differences are highlighted in clasp
region (shown in black circle)
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2.3 Ligand Flexibility

Apart from the traditional approach to look for potential inhibitor as small mole-
cules for proteins, small peptides can also be strategically designed to complement
interaction hot spots presented by receptor molecules, using knowledge about the
structure of receptor and its interacting partner molecules. In a recent article pub-
lished in Science, Kadam et al. [72] have exemplified the approach. The study
focuses on influenza type 1 virus and their surface protein hemagglutinin (HA),
which is associated with virus invasion of host cells. HA is composed of two
domains HA1 and HA2, and functional unit is a homotrimer of HA. The interface
of HA1 and HA2 forms a hydrophobic pocket. This HA-binding site, which is near
the stem region of the HA membrane, is targeted by the broadly neutralizing
antibodies (bnAbs) of the host and blocks large conformational rearrangement
associated with membrane fusion and thus neutralize virus [72]. Structurally,
analyzing the epitopes, at HA1/HA2 interface, a highly conserved site was found.
This structural information allowed researches to synthesize novel proteins, e.g.,
HB80 and HB36, which could mimic bnAb paratope CR6261 and bind in the
conserved hydrophobic pocket, by placing amino acid side chains in appropriate
configuration and conformation. These proteins did show binding affinity compa-
rable to CR6261 and inhibited low pH-induced conformational change in HA.
Further, optimizations lead to improved analogues of HB36, which were also
effective in protecting mice against lethal H1N1 infections [72].

Success of de novo designed protein inspired researcher to look for even smaller
peptide like inhibitors seeking better drug-like properties, e.g., availability in blood
stream with higher lifetime. Starting from the available structural and functional
information about bnAbs, e.g., CR9114, CR6261, F10, A06, FI6v3, HCDR3 was
selected which possesses major interactions as the starting point for design of
smaller HA inhibitory peptides. After creating a pool of potential HA inhibitory
peptides mimicking different structural features of the HCDR3 loop [72] and
characterization of each peptide in terms of its thermodynamic (Kd) and kinetic
parameters (koff and t1/2), a combination of all distinct structural features of these
peptides into an 11-mercyclic peptide containing five non-proteinogenic residues
was synthesized. This peptide showed better affinity and longer residence time for
binding to HA. This study exemplified a novel approach, where compendium of
available structure is utilized with chemical intuition of structure and function to
yield a small cyclic peptide with better therapeutic prospect over existing inhibitory
proteins, e.g., HB36 and its variants [72].

Alternatively, another novel idea has been floated by Young et al. of stapling small
peptides to protect them from proteolytic cleavage and further designed a series of
stapled peptides amongwhichmimic of a-helical peptide ATSP-7041was reported to
be a potent and selective dual inhibitor ofMDMXandMDM2 [73]. However,MDM2
andMDMX are suppressor of p53, thereby activates p53 pathway in tumors [74]. In a
recent in silico study, where Garima et al. tried to study the mechanistic aspect of
recognition of small stapled a-helical peptide ATSP-7041with human serum albumin
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(HSA) and compared it with mouse serum albumin (MSA) [75], starting from the
crystal structures of HSA and ATSP-7041 in complex withMDMX. They used 50 ns
molecular dynamics simulations to sample conformational states of HSA; simulation
trajectories were clustered to give five clusters, and in these six (five cluster repre-
sentatives and one crystal structure) HSA conformations were used for further
docking studies. ATSP-7041 were fully blindly docked to above six HSA confor-
mations using protein–peptide docking tool pepATTRACT [76] and generated
ensemble (*24,000 poses) of possible docking poses for each; then these ensemble of
poses was clustered using k-means algorithm to result 40 clusters for each of six HSA
conformations. Further, they refined each of the 40 clusters representative poses for
each of six HSA conformations and then performedMD simulation for 5 ns to assess
the stability of the pose. Their study resulted four binding sites R1, R2, R3, and R4
which were most occupied and considered for further study.Moreover, representative
poses of ATSP-7041 and HSA complex one for each site was simulated using explicit
solvent, and binding affinity was estimated using MM-GBSA method. However, for
MSA, no crystal structure was available, so they modeled it using swiss model
choosing HSA as template. ATSP-7041 was kept inMSA at sites R1, R2, R3, and R4,
and three replicates of 100 ns MD simulation in explicit solvent were performed.
Their analysis of these results suggested that sites R2 andR3were not stable formouse
in contrast to human which they attributed to sequence dissimilarity at the region in
human and mouse serum albumins. Moreover, they also found that sites R1 and R4
have lesser affinity in case of mouse for ATSP-7041 serum albumin binding than
HSA. They also predicted a list of residues in the binding pocket contribution to the
difference in binding energy. The binding site R1 is canonical binding site overlaps
with already known site called Sudlow’s site II, but R4 appears to be a novel binding
site. Such in silico studies try to provide computational protocols which can be
carefully utilized to gain mechanistic detail into protein–ligand interaction processes.
Flexible ligands, e.g., peptides, can show better complementarity by conformational
adaptation to attain several weak interactions with the receptor [77]. Potential to gain
affinity through modulation of flexibility of ligands has been sensed, and nowadays,
smaller peptides are also being evaluated by researchers across the globe for their
therapeutic usage.

2.4 Protein Flexibility During Binding

Proteins are generally flexible molecules. Therefore, flexibility of the receptor has to be
accounted in in silico binding affinity prediction studies to better represent the
physicochemical conditions. The enormous conformational space available to proteins
is very challenging to exhaust in docking studies because of unrealistic sampling
requirements. However, non-exhaustive but simplistic and computationally less
demanding methods have been developed over the years as proxy for accounting the
flexibility of the protein during the bindingwhich can broadly be put in four classes: soft
docking, side chain rotation, molecular relaxation, and docking to multiple structures.
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Soft Docking: This technique allows small conformational relaxations by treating
van der Waals which overlaps through a softened potential and is efficient in terms
of computational cost, but it can only account for smaller relaxation in receptor
structure during binding to ligand [78]. Ferrari et al. [78] applied this method using
two cavities of T4 lysozyme and drug-target aldose reductase which undergo large
conformation change during binding. Available Chemicals Directory (ACD) [78]
was screened against chosen targets for evaluating the method. They reported, with
single receptor conformation, soft potential was better in identifying known ligands,
while with multiple receptor conformations, it was poor in identifying leads than
hard function; this trend was similar for both receptor and more pronounced for
aldose reductase. Soft docking gives better score for ligands and decoys thereby
better scoring, but it misses true ligands [78]. Qualitatively, similar results were
reported by soft-docking studies of protein–protein [79] and antigen–antibody [80]
interaction studies.
Side chain rotation: Allowing side chains rotation of the binding site residues of the
receptor is computationally costlier than soft docking but offers better ways to
account flexibility of receptor through sampling side chain rotations of binding site
residues and overcome the limitations of soft docking, avoiding unphysical van der
Walls clashes in predicted poses [81]. Preliminary idea of incorporating side chain
flexibility into docking through usage of rotamer states of the binding site residues
with rigid ligand conformation by Leach et al. [82] has been carried forward and
adapted in several studies. For example, approach of rigid anchor and flexible
complementary growth of ligand in receptor-binding site is implemented in SLIDE
by Schnecke et al. [83] and used it to screen for potential ligands of progesterone
receptor, dihydrofolate reductase, and a DNA-repair enzyme from a dataset of
175,000 organic compounds. Another approach introduced by Dean and co-workers
[84] is applied to successfully reproduce experimental pose of ligand in binding site
by docking synthetic inhibitor RS-104966 to the S1’ pocket of the human collagenase
matrix metalloproteinase 1 (MMP-1) [84]. In this approach, an ensemble of binding
site conformations was generated using side chain rotamer states of the binding site
residues followed by identification of representative conformations combining prin-
cipal component analysis and fuzzy clustering [84]. Frimurer et al. performed a study
attempting to assess the extent of impact of flexible side chain conformations of
binding site residues on predicted binding poses and affinity [85]. They chose protein,
phosphatase tyrosine 1B co-crystalized with non-peptide inhibitors, and docked li-
gands to parent receptor structure, resulting correct poses to correlate with low pre-
dicted binding energy[85]. In the process, an ensemble of structures was generated
using rotameric states of subset of binding site residues (Asp48, Lys120, and
Phe182), and ligands were docked to each structure; correlation of binding affinity
with predicted scores improved for correct poses [85]. The importance of considering
side chain flexibility in docking is also highlighted in study of Gaudreault et al. They
created a curated non-redundant dataset of 188 proteins where unbound- and bound-
both structures were already crystallized. In their study, they found that 90% binding
sites and side chain rotation were accounting the flexibility in it, and 30% of them
were essential side chain rotation and only 10% binding sites are rigid [86].
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Molecular relaxation: This concept takes one step further toward accounting
protein flexibility from side chain rotation. In this approach, ligand is docked in the
binding site of the receptor allowing potential atomic overlaps to certain extent
followed by relaxation stage where docked pose of the ligand is energy minimized
and complex is relaxed allowing backbone relaxation along with side chain using
molecular dynamics or Monte Carlo simulation. Apostolakis et al. performed a
study in which they tried to incorporate receptor flexibility to model induced fit in
ligand and binding site over three challenging docking cases: (i) anti-steroid
antibody DB3 with two ligands, a rigid-ligand progesterone (no rotatable bonds)
and (ii) a flexible-ligand 5b–androstane-3,17-dione (having rotatable bonds), and
(iii) Na-(2-naphthyl-sulfonyl-glycyl)-D-para-amidino-phenyl-alanyl-piperidine
(NAPAP) binding to human a-thrombin [87]. Progesterone and 5b-androstane-
3,17-dione show two different binding modes, thus make a perfect test case. In this
method, ligand was seeded to the center of binding pocket in random pose followed
by a combination of minimization with shifted non-bonded interaction and Monte
Carlo minimization; authors were able to successfully reproduce the crystalized
pose for test cases with native structure of protein and without prior knowledge of
structure of NAPAP in a-thrombin case [87]. This study highlighted the importance
of considering receptor flexibility under the influence of ligands interaction field in
docking. Davis and Baker [88] implemented a method in ROSETTALIGAND to
account for the receptor backbone flexibility along with full-ligand flexibility and
showed that on a challenging cross-docking test case of Meiler and Baker [89] (10
co-crystallized receptor–ligand pairs, with large flexible ligands and multiple side
chains with changing rotamer), their new method reproduces binding poses better
(lower RMSD for best-scoring docked poses) in comparison to their rigid-backbone
docking.
Multiple structure docking: McCammon and co-workers [90] used relaxed com-
plex method to dock fully flexible version of prospective drug molecules JE-2147
wild-type and V82F/I84V drug-resistant mutants of HIV-1 protease ensemble of
conformations. In both cases, wild-type and mutant HIV-1 protease, an ensemble of
2200 conformation from 22 ns all atom explicit solvent MD simulation of closed
conformers of apo structures of receptor and coordinates were saved every 10 ps; in
both cases, crystal structure poses were successfully reproduced. Later, JE-2147 was
docked to each 2200 conformation for both wild-type and mutant cases and opti-
mized the protocol. To synthesize test inhibitors, same protocol was applied to dock
23 newly designed potential inhibitor (called JE.D.I. series molecules) to 700 con-
formations of the HIV-1 protease mutant. Based on high binding free energy of four
compounds of the JE.D.I., which were significantly different from their parent
compound JE-2147 as well rest members of the series; four new compounds with
potentially better pharmacological properties were suggested for test [90].

Similar concept but using MD simulation to dock and identify the interactions
between domain motions to influence the inhibitor/ligand binding has been
attempted in case of Fe-artemisinin adduct binding to PfATP6, a Ca++ transporter
well-known target in Plasmodium falciparum [91].
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Sarco-endoplasmic reticulum membrane calcium ATPase (SERCA) is Ca++

transporting ATPase; it is found in the mammalian systems and regulate the Ca++

flow between cytoplasm and membrane-bound stores [92]. SERCA-type transporter
is also found in P. falciparum and is known as PfATP6. PfATP6 is large mul-
tidomain Ca++ channel receptor and only orthologous receptor to mammalian
SERCA [92]. Importance of this channel receptor highlighted in 2003 when it was
found that artemisinin (one of the most effective antimalarial drug) targets this
receptor [93]. To understand the plausible mechanism of artemisinin action on
PfATP6, extensive molecular dynamics simulation-based study has been performed
[91]. This computational study shows that activated artemisinin (Fe-Artemisinin
adduct) enforced large conformational changes in the extracellular domains
(Fig. 3). Artemisinin adduct binds in the membrane-bound helical region and
makes a hydrogen bond network which connects it with extracellular nucleotide

Fig. 3 Importance of receptor flexibility as observed in case of Fe-artemisinin adduct binding to
Plasmodium falciparum ATP6 (PfATP6). Region spanning residues 364–799 shown in green
contains nucleotide domain (N), region of residues 1–45 and 130–253 shown in orange contains
actuator domain (A), region of residues 800 to 959 shown in white contains phosphorylation
domain (P), and transmembrane region is shown in dark gray and pink colors in panel A and B,
respectively. Ca++ and ligand binding sites are in the transmembrane region. Centroids of domain
N, P, and A domains are shown with green, white, and orange spheres, respectively. The angle
between centroid of domains N-P-A comes down to 78.5° (panel B) from 89.6° in open form
(panel A), and distance N-A in closed conformation comes down to 44.9Å from open
conformation distance 53.7 Å (see panels B and A, respectively). a Open-form receptor is shown
in ribbon, Fe-artemisinin adduct in ball and stick with carbons in white and rest atoms colored by
atom types. b Shows closed form or receptor; c dark gray surface shows ligand-binding site in
open form, and pink ribbon shows closed ligand-binding site due to movement in domains shown
in green and orange colors. Ligand is shown in ball and stick representation in blue color
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(N) and actuator domain (A) [91]. This case study shows the selectivity gain by
bound inhibitor, utilizing the domain flexibility of receptor [94].

2.5 Effect of pH on Binding Affinities

Protonation states of the titratable groups participating in the binding can have
significant effect on the binding affinity of the interaction [16]. Waelbroeck [95]
presented a model with assumptions that correct ionization state of all active groups
is the requisite for binding, and ionization state of non-binding residues does not
affect binding to study quantitative effect of pH change on binding affinity of the
receptor–ligands interaction. They chose pH dependency of insulin and insulin
analogs binding to their cellular receptor to study their model [95].

logðKÞ ¼ log Krealð Þþ log R�=Rð Þþ log L�=Lð Þ ð1Þ

where log(K) is pH-dependent affinity, log(Kreal) is reference affinity, R*/R is
proportions of active and total receptor concentrations, and L*/L is proportions of
active and total ligand concentrations. Their model under given assumptions
allowed them to attribute binding affinity change only due to change in proportions
of active receptor and hormone with changing pH, and express pH dependence as
function of number and ionization constants of active groups. Performing binding
affinity measurement experiments at varying pH for different insulin analogs
binding to their receptors, and analyzing data with modeled relationship [95].
Waelbroeck [95] detected two active groups responsible for marked pH dependence
in the normal pH range and suggested that these groups could either belong to the
receptor or common residues among porcine insulin, casiragua insulin, hagfish
insulin, and desalanine–desasparagine insulin analogs [95]. This study opens up a
field in medically relevant design of insulin.

A pH-dependent catalytic activity through hydrolyzing cleavage of type-1
transmembrane protein amyloid precursor protein (APP) of the b-secretase BACE-1
result amyloidogenesis in Alzheimer’s disease has been reported by McCammon
and co-workers. Enzymatic activity of the BACE-1 is highly dependent to the pH,
with peak activity at pH 4.5, while significantly active in pH ranges 4–5 only [96].
The in silico study using constant pH replica exchange molecular dynamics sim-
ulation [97] (CpHMD) showed pH dependence of binding affinity of BACE-1 with
its inhibitors [98]. The experimental binding affinity measured at pH 4.5 was taken
as reference for in silico binding affinity predictions in pH range 1–12, for different
inhibitor-bound BACE-1 complexes. CpHMD simulations enabled authors to study
influence of conformational dynamics on the protonation equilibria and thereby pH
dependence on binding affinity. The microscopic pKa values of the aspartyl dyad
residues Asp32 and Asp228 in apo- and holo-BACE-1 can be estimated from
CpHMD simulation data, and protonation changes were observed in apo- and
holo-forms suggesting their thermodynamic linkage. They also studied effect of
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protonation equilibria on conformational dynamics for the apo BACE-1 with fixed
protonation states for titratable residues using conventional molecular dynamics
(cMD) in acidic (pH range 1–3) and basic (pH range 9–11) conditions and observed
that in acidic condition, two major conformations open and closed were populated
while in basic condition, only widely open flap conformation was significantly
populated. In another similar in silico study, again using CpHMD replica exchange
simulation Ellis and Shen [96] reported that BACE-1 majorly occupies three
conformations (so called Tyr-inhibited, binding-competent, and Gln-inhibited) and
conformational population shift with varying pH causes the pH dependence of the
inhibitors binding affinity to BACE-1 [96]. They showed that Gln-inhibited and
binding-competent conformational states are separated by small (<1 kcal/mol) free
energy barrier, and Gln-inhibited state has consistently low population (<25%) for
entire pH range; thus, they focused on only remaining two of the conformational
states, suggesting that substrate BACE-1 binding follows a conformational selec-
tion model [96].

2.6 Effect of Solvation

Almost all biological functions occur in cytosol in cell, but some of them are
membrane-associated phenomena, water solubility of inhibitors showing significant
binding affinity toward its cognate receptor poses another challenge in SBDD [99],
since low solubility causes low bioavailability of the inhibitor to target. Similar
problem surfaced with the potent non-peptide cyclic urea analogs of HIV-1 protease
inhibitor, e.g., DMP-323, the carbonyl oxygen of cyclic urea of DMP-323 mimics a
structural water in the binding site by providing similar hydrogen-binding features
and therefore gains affinity by displacing the water. The low-molecular-weight
compound was expected to have high bioavailability [100], but unexpectedly low
bioavailability was observed later on, and poor solubility of DMP-323 in water and
lipid milieu was suggested the reason for it [99]. Therefore, to increase water
solubility, benzylic-substituted cyclic urea with strong acid or basic groups were
designed, but highly basic group analogs were unsuccessful as inhibitory effect of
such compounds is lowered by 1000-fold [99]. However, a neutral form binding,
weak-basic derivative bis-meta-aminobenzyl, i.e., DMP-450 showed enhanced
affinity. DMP-450 has enhanced water solubility and also found to show better oral
bioavailability in animal species, rat and human [99].

2.7 Covalent Inhibitors

Non-covalent inhibitors bind to the target reversibly in concentration dependent
manner. However, *30% of FDA approved drugs are covalent binders, which
make covalent bond with the target [101]. Aspirin induces irreversible acetylation
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of a serine residue (Ser516) in the cyclooxygenase site of the human prostaglandin
endoperoxide H synthase-2 (hPGHS-2) [102], b-lactam antibacterials forms cova-
lent bond with the active site serine of penicillin-binding proteins which inhibits
cell wall synthesis of bacteria and causes its death, and tetrahydrolipstatin a fat
absorption inhibitors acts by inhibiting activity of pancreatic lipase [103]; these are
among the blockbuster drugs and examples of covalent inhibitors. Although
non-covalent docking is more common, recently resurgence of covalent docking
has been observed [101]. The covalent docking is more complicated mainly
because their action between receptor and ligand has to be taken care of. Selectivity
of the inhibitor toward target is important to avoid cross-reactivity. However,
selective targeting via ligands equipped with different warheads makes covalent
inhibition important [104]. In covalent inhibition, an electrophilic ligand binds to a
nucleophilic target receptor via forming a covalent bond. Theory and application
aspects of covalent docking have been reviewed elsewhere [101]. A comparative
study of recent methods and tools, e.g., CovDock [105], AutoDock4 [106],
FITTED [107], MOE [108], ICP-Pro [109], and GOLD [110] for covalent docking
has also been recently published [104].

2.8 Functionally Relevant Structure

Biologically important molecules are involved in very diverse functions and pos-
sess the structural, modular, and interactional diversity to carry their functions in the
cell. Numerous enzymes are monomer, while several of them are functional only as
homo-/hetero-multimeric forms, e.g., PNP is a homotrimer [29], HIV-1 protease is
a homodimer but has slight difference in structural features of the two monomers
[90]. A large number of macromolecules catalyze enzymatic reactions, e.g.,
BACE-1 is responsible for catalyzing hydrolytic cleavage of amyloid precursor
protein (APP) [111], some of them modulate their functions, e.g., MDMX/MDM2
complex suppresses activity of p53 and activate p53 pathway in tumor cells [74],
some of them regulate, and some of them are not related to enzymatic activities at
all, like ion channels and signaling related proteins. When we are designing
structure-based drug, we are to face challenges posed by structural, functional, and
reactional mechanistic diversity of target molecules as well.

The purine nucleoside phosphorylase (PNP) is a homotrimer and hosts three
active sites each near the interface between two monomers, with monomer con-
sisting an a/b-fold formed from a b-sheet of four strands, a b-sheet of six strands
forming a distorted barrel, and eight a-helices [34]. The interaction between
monomers will influence the binding of ligands.

HIV-1 protease is a homodimer consisting of 198 residues. McCammon and
co-workers proposed a terminology to describe the topology as follows: flap
(43–58), ear (35–42), cheek (cheek turn = 11–22 and cheek sheet = 59–75), eye
(23–30), and nose (6–10) [112]. The active site of HIV-1 protease is covered by
b-hairpin flaps of the two monomers and is involved in controlling polypeptides’
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access to the active site before binding and closing the active site during the
cleavage and then release of the cleaved substrates. The flexibility of the flap plays
a crucial role in the catalytic activity of the enzyme [113].

Isocitrate dehydrogenases (ICDs) are another group of interesting enzymes with
two isoforms—one NADP+-dependent homodimer and another NAD+-dependent
heterotetrametric isoform consisting of two a-subunits one b-subunit and one
c-subunit. As observed in understanding the mechanism of action during phos-
phorylation, the structural motions facilitate the flap to cover or open the active site,
thus providing two different structures of dimmers; hence, the designing needs to
take care of such two state structures of receptor [61].

3 Mapping Interaction at Binding Site

The primary focus of structural biology has been to study the relationship between
structure and function of macromolecules. The evolution of protein structure to
confer specificity and affinity is still not completely understood. Analysis of related
structures has potential to yield local structural regions which are conserved and
those which diverge. Such knowledge can potentially be translated into under-
standing proteins evolution to attain specificity or protein acquiring completely new
function by matching curvature along the protein backbone to find structurally
active site regions [114].

3.1 Identification of Active Site or Binding Site

The binding sites of most proteins are extremely specific and can determine even very
small structural differences among putative binding patterns [114]. Folding of a
protein can be considered to be a process which generates specific binding site or
cavity from an unstructured polymer, driven and stabilized by thermodynamic forces
[115]. Knowledge of protein cavities provide clue about the structure and shape of
binding molecule [116]. Ligand-binding sites of protein provide insights to its bio-
logical function and reaction mechanism. Identification and application of druggable
active sites of target proteins are pivotal in in silico drug design [117]. A very diverse
active site of a protein is particularly useful for target-based drug discovery as it serves
as a prerequisite for protein–ligand docking, which is integral part of structure-based
drug design. Accurately predicting the binding modes of inhibitors in the active sites
of protein is still observed as a challenge in drug discovery [10].

All the methods which identify the active site of receptor use the concept of
accessible surface area as defined by Lee and Richards [118]. The accessible sur-
face (ASA), also known as solvent-accessible surface area (SASA) if water is used
as the probe, of a protein is stated as the locus of the center of the solvent molecule
as it rolls along the protein, making the maximum permitted van der Waals contacts
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without penetrating any other atom. The ASA is closely related to the concept of the
solvent-excluded surface also known as the molecular surface or Connolly surface.
The cavity identified in protein molecules, effectively the inverse of the
solvent-accessible surface, is the binding site as to be used by ligand to satisfy the
available physical and chemical interactions. This is pictorially shown in Fig. 4.

Major methods to find the shape of active site using the 3D coordinate of protein
or receptors can be classified as approximate and exact method depending on their
numerical depth and accuracy in calculation involving the coordinates exclusively.
Most of the approximate methods rely on numerical integration where some of
them are analytical [119]. Connolly in 1983 [120] introduced the exact analytical
methods for computing the accessible surface area. The computational efficiency
and robustness has been improved in recent years, but the reduction in overlapping
surfaces remains computationally expensive. The difference between approximate
and exact computation is applied to existing methods evident from the detail cal-
culation of the derivatives of the surface area with respect to atomic coordinates. All
well-known methods used for computing the active site mapping by surface area
suffer from the reproducibility problems. A method called Alpha shape [121] uses
Delaunay triangulations and computes the surface area and volume of proteins as
well as detects and measures cavities in proteins, as described by Edelsbrunner
[122], to reduce the overlap. The Alpha shapes method employs a precision geo-
metric method called triangulation to evade numerical problems by systematically
resolving all singularities without explicitly perturbing positions of centers of
spheres [123]. To provide fast calculation, an extension of the Alpha shapes method
that includes the efficient, robust, and exact analytical computation of the deriva-
tives of surface area terms has also been worked out [124].

Based on shape andASA,manyWeb-based and stand-alone software are available
as listed in Table 3 to find cavity and identify active site of known protein structures.

Fig. 4 Surface area
definition (courtesy:
Wikipedia)
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3.2 Characterization of Active Site

Identification of active sites in large binding pockets in protein or macromolecules
does not assure the correct or native poses of ligand binding because many subsites
interaction influence the binding of ligands, which has been exploited favorably in
case of designing combinatorial ligands of monoamine G-protein coupled receptors
(GPCRs) [135]. To design a ligand which effectively come out to be a functional
inhibitor requires prior knowledge of interacting subsites and their role to kon/koff
kinetics of binding, which until recently [136, 137] hardly have been explored. Our
study using kinases, from P. falciparum and from human, shows the selectivity of
subsite also residing in active site [138]. Using ser/thr kinase sequences of human
and plasmodial species those having PDB structure, a phylogenic tree was con-
structed. Human kinase proteins (22 of them having structural superimpossibility
<2 Å RMSD of main chain atoms) shown in Table 4 are listed by sequence as

Table 3 A list of some popular Web servers and stand-alone tools based on shape and ASA
formalisms

SN Programs Based Web site links

1 CASTp [125] Web http://sts.bioe.uic.edu/castp/index.html?2cpk

2 CCCPP [126] Desktop http://petitjeanmichel.free.fr/itoweb.petitjean.freeware.
html#CCCPP

3 LIGSITEcsc

[127]
Web http://projects.biotec.tu-dresden.de/pocket/

4 KVFinder
[128]

Desktop http://lnbio.cnpem.br/facilities/bioinformatics/software-2/

5 PASS [129] Web http://www.ccl.net/cca/software/UNIX/pass/overview.shtml

6 PrinCCes
[130]

Desktop http://scholar.semmelweis.hu/czirjakgabor/s/princces-
download/#t1

7 POCASA
[131]

Web http://altair.sci.hokudai.ac.jp/g6/Research/POCASA_e.html

8 RosettaHoles
[132]

Desktop https://www.rosettacommons.org/

9 SURFNET
[133]

Desktop http://www.cgl.ucsf.edu/chimera/current/docs/
ContributedSoftware/surfnet/surfnet.html

10 VOIDOO
[134]

Desktop http://xray.bmc.uu.se/usf/voidoo.html

Table 4 Binding site clustering using sequence of human and plasmodial ser/thr kinase

Plasmodial
kinases

Neighboring human kinases

Pfpk5 h_CDK4, h_CDK5, h_CDK3, h_CDK2, h_CDC2

Pfpk6
Pfmrk

h_CDKL1, h_CDKL4, h_CCRK, h_p38a, h_p38b, h_ERK1, h_ERK2,
h_CDK10, h_p38d, h_CDK6, h_CDK7, h_p38g, h_CDK9

Pfpk7 h_SmMLCK, h_NEK1, h_LATS1, h_LATS2
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nearest neighbors of specific plasmodial kinases; their 3D structures are used for
finding selectivity profile at the active sites. Separately, the ATP-binding and
substrate-binding site domains of these kinases are extracted on the basis of Hunk
and Hunter classification [139], and their structures are superimposed for clustering
on the basis of RMSD matrix and are shown in Table 5 and Fig. 5.

It is interesting to note that three of the plasmodium kinases occur in the largest
cluster containing most of human kinase, like MapK and CDKs; but PfPK7 occurs
in different cluster in both ATP & substrate specific clustering, it signifies the
selective functioning of this kinase. Hence, to achieve selectivity in favor of
malarial ligand requires subsite exploitation and using appropriate designing
strategy for docking compounds in search of both specific and selective ligand. In a
recent review [39], such small active site differences are discussed under the context
of how the entropy and enthalpy balances are carried out in free energy estimation

Table 5 Selective binding site clustering using structure of human and plasmodial ser/thr kinase,
uncommon one shown in bold face font and underlined

Plasmodial Human

Kinase domain ATP-binding site Substrate-binding site

Pfpk5
Pfpk6
Pfmrk

CDK5, CDC2, CDK3,
CDK9, ERK2, ERK1,
p38-c, p38-b, GSK3-b,
DYRK1A, MAPK8

p38-d, CDK5, p38-c,
CDK7, MAPK6, CDK3,
ERK2, GSK3-b,
MAPK8, CDK2, ERK1,
CDK9, p38-b, CDC2,
DYRK1A

CDK5, CDK3, ERK2,
CDK2, ERK1, p38-c,
p38-b, p38-a, p38-d,
CDC2, CDK6, PAK1

Pfpk7 MAPK6, PAK1,
PAK4, PAK7, PKC
iota

PAK1, PAK4, PAK7,
PKC iota

PAK4, PAK7, CDK9,
CDK4, PKC iota,
CDK7

Non-plasmodial
cluster

CDK2, CDK4, CDK6,
p38-a, p38-d

CDK6, Cdk4, p38-a DYRK1A, MAPK8,
MAPK6, GSK3-b

Fig. 5 Structure-based clustering of human kinases associated with plasmodium using
a ATP-binding site and b using substrate-binding site. It clearly depicts different combinations
of selectivity (listed in Table 5)
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in case of HIV proteases binding with ligands that differ by single functional group,
by Freire et al. [140]. It may also happen that all available features in the active sites
are not satisfied or they may be satisfied by different orientations or conformation of
complementary features in ligands. Hence, it is imperative to have prior knowledge
of biological function of active site of receptor and detail mapping/association of
the subsites with different functional groups in ligand, before starting the docking of
large number of ligands to evaluate the binding competency.

Using cliques of favorable interaction points at active site, emerging from probes
of different chemical features among a class of protein, specificity pharmacophore
has been generated [141, 142].

This novel method provides a complementary map of a class of active sites for
designing new chemical entities which specific as well as selective for the receptors.
Figure 6 provides an expanded series of such pharmacophores designed from four
plasmepsins, acid proteases of plasmodium. Using such tools, designing of ligands
is possible which can satisfy all the complementary features available in active
sites; this can be used to design compounds with better binding capacity. This
method can be applied to design the pharmacophores in search of novel inhibitor

Fig. 6 Utilization of binding site information of class of aspartic protease (human cathepsin,
pepsin proteases, and four plasmodium plasmepsins) for development of de novo pharmacophore
features using in-house program CliquePharm. a Four-point, b five-point, c six-point pharma-
cophore features, all are shown in cavity of plasmodium plasmepsin II (PDB: 1SME), respectively.
Nodes are shown as spheres with amide probe in cyan, hydroxyl probe in red, carbonyl probe in
green, respectively, and edges are connected
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for the multitarget structure-based designing like bacterial multidrug efflux pump
and AcrAB-TolC pump [143].

3.3 Why Different Poses?

While docking of different chemical ligand at the known active site, one can
generate different orientation for the same ligand, which is defined as “pose” due to
the fact that many features available in the active sites may or may not be satisfied
by the complementary features available in docked ligand. Such variations in
interaction between protein and ligand may also occur due to the flexibility of active
site residues [14].

Lock-and-key: The lock-and-key model of enzyme substrate interaction proposed
by Emil Fisher in 1894. It assumes enzyme-binding site as a cavity with specific set
of shape and physicochemical interaction features analogous to the key-hole of a
lock, while ligands are potential molecules which possess shape and interaction
feature of key, i.e., complementarity [39]. Generally, receptor–ligand interactions
are considered to imitate this model during binding. This model was the early
motivation for development of docking and scoring studies. However, many
interactions associated with the flexibility of ligand upon binding to receptors and
vice versa; hence, other models are proposed [36].
Induced fit: The idea of induced fit model (Fig. 7) of binding occurred as many
cases the binding site of the protein undergoes subtle arrangements of key residues
side chain orientations or conformational changes sensing the presence of ligand in
the vicinity under the influence of its interaction fields [144]. For example,
drug-target aldose reductase undergoes large conformation change during binding
of ligand [79]. Several other cases of this model of ligand–receptor binding are
discussed in the section Protein Flexibility.
Conformational selection: This model proposes that the receptor maintains an
ensemble of conformations in equilibrium, rather than being into some particular
conformational state before binding (as in lock-and-key) or changing conformation
sensing the ligand (as in induced fit), whereas ligand binds to the conformation
presenting best complementarity at the binding site [39]. For example, BACE-1
binding to and showing significant activity only at narrow pH range 4–5 is actually
in equilibrium of at least three Tyr-inhibited, binding-competent and Gln-inhibited
significant conformations [96]. However, only binding-competent conformation
being conformationally compatible for binding has the highest population at the
specified activity pH range 4–5, but the population of these conformation at pH < 4
or pH > 5 is decreased and hence the activity [96]. Another model known as
conformational isomerism is found in the literature [14] and has been a special case
of the conformational selection, where one or more conformational isomers of the
receptor exist in equilibrium and ligand binds to only conformationally compatible
isomeric form of the receptor, and binding shifts the conformational equilibrium in
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the direction to establish the equilibrium among conformational isomers. Earlier
reported that binding to Fab antibody and catalysis of substrate is restricted to one
of the conformation and not to others [145]. In recent paper [146], enzyme catalysis
has been prescribed due to conformational dynamics of enzyme active site.

Prediction of poses of ligand with receptor from docking study may differ due to
several reasons. For example, model of enzyme action (lock-and-key/induced fit/
conformational selection) assumed for the study may not be appropriate to capture
the underlying binding mechanism, e.g., assuming lock-and-key for an actual

Fig. 7 Schematic representation of enzyme substrate-binding models. Ligand is shown in black
color and receptor in gray color. Different binding site features/ligand features are described at the
bottom
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induced fit or conformational selection case [14]. Existence of possibly alternate
interaction features in binding site could provide complementarity for even struc-
turally very similar ligands but provide different poses; several such cases have
been reviewed by Teague et al. [147]. Another case could be enthalpy–entropy
compensation due to receptor–ligand flexibility for different poses of ligand [147].
Although docking and scoring lack capability to account entropy, considering
receptor–ligand flexibility in docking can be a poor proxy for entropy to certain
extents.

3.4 Flexibility of Ligand Provides Complementarity

Generally, small molecules can adopt a number of conformations within few kcal/
mol energy gap from the global minimum conformation. Thus, a number of con-
formations of ligands are generated and docked into the receptor to seek optimal
complementarity between receptor-binding site and the ligand conformation to yield
most probable pose. Therefore, several conformation generation schemes which can
be broadly put in two groups, (a) systematic search and (b) random search, have been
suggested and are routinely employed in docking studies [148]. Systematic search
tries to generate all the conformation corresponding to the rotational states for the
rotatable bonds of the molecule, but exponential increase of the number of con-
formations of the molecule with number of rotatable bonds turns out to be limiting
for most of the practical uses. Random search tries to generate different ligand
conformations using randomized schemes like genetic algorithm [14, 149].

Small-molecule ligands often interact with binding site presenting complemen-
tary features [150]. However, small size of such ligands at times has limited pos-
sibilities to interact with neutral binding pockets, because neutral binding site has
weak electrostatics interactions and hydrogen bonding capabilities [151]. Neutral
and wide open hydrophobic pockets can not present interactions strong enough to
portray desired high affinity for small-molecule ligands. On the other hand, peptide
ligands due to their flexibility can adopt a wide range of conformations to gain
higher affinity in such cases by making more hydrogen bond interactions and
through many weak hydrophobic interaction from several hot spots in the pocket
[151, 152].

3.5 Is Estimate of Binding Affinity Sufficient?

In case of receptor binding processes, the stability of the binding is accounted by
difference of Gibbs free energy between bound and unbound states. The equilib-
rium dissociation constant Kd which is ratio of unbinding process koff and binding
process kon is associated with thermodynamic properties of the reactants/product,
whereas the activation energy for the process influenced by kinetic properties [153].
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Thus, in silico calculated affinity of receptor–ligand binding contains information
about thermodynamic parameters and does not include kinetic parameters. All the
methods aiming to measure/predict binding affinity would miss the kinetic aspect of
the reaction. The kinetic aspect of the process is related to diffusion of the solute
molecules under influence of the entropy of the system. Collision of the receptor
molecule with the ligand is the requisite for the process to happen. Bigger solute
molecules collide with small water molecules and undergo random Brownian
motion, and their encounter allows reaction to happen [153].

The dissociation constant Kd represents the ligand concentration in which half of
the protein binding pockets are occupied and relate to Gibbs free energy [154] by
DG ¼ RT ln Kdð Þ. Gibbs free energy is a state function and does not depend on the
thermodynamic path followed during reaction; it only depends on the initial/final
chemical potential of the reactants/products [154]. Association and dissociation
rates kon and koff depend on transition states encountered on the pathway during the
chemical reaction. Specifically, they depend on highest free energy barrier for the
transition state that separates bound and unbound states [154].

Even if the reasonable accuracy in predicting affinity is achieved, it is not
sufficient to characterize the protein–ligand-binding process completely [154].
Kinetic aspect of the process can be modeled by mimicking the protein–ligand
diffusional encounter in the solvent under thermal fluctuation, which will be dis-
cussed later [155].

4 Estimation of Interactions

Scoring functions aim to predict the interaction energy between the receptor and the
ligand in a given conformational pose, by summation of weighted interaction
features. Scoring functions required to rank chemicals implemented in various
docking tools use different assumptions to evaluate modeled complexes [8].
Simplification is achieved at the cost of neglecting full domain flexibility, entropic
effects, and solvation effect [8].

4.1 Different Types of Scoring Functions

In the literature, wide choice of scoring function is available which can be classified
as force-field-based scoring functions, empirical scoring functions, knowledge-based
scoring functions, and descriptor-based scoring functions [156]. Force-field-driven
scoring functions are based on the molecular mechanics and utilize atomic properties
like atomic charge and vdW forces which are already parameterized such as AMBER
[157] or CHARMM [158]. Dock6 [159], AutoDock [160], G-score [161], and GOLD
[110] are a few popular ones in this class. In scoring functions, only intermolecular
interactions are modeled, vdW interactions are expressed using Lennard-Jones
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potential function, and electrostatics interactions are calculated using Coulombic
formulation. Empirical scoring function [162] on other hand is based on the available
physicochemical properties which corresponding to hydrogen bonding interactions,
hydrophobic interactions, entropic changes, and interactions with metal ions [162].
Binding free energy is estimated using the sum of various uncorrelated (sometime
parameterized) terms derived from the regression analysis using experimentally
determined binding energies from the already known crystallized complex structures
[163]. ChemScore [163], LUDI [164], Glide score [165], X-score [166], etc., are
major tools implemented with such empirical scoring function. Knowledge-based
scoring functions [167] are derived from the crystallized protein–ligand complexes
using statistical regression principles. The binding free energy of the complex is
assumed to be the sum of free energies (potentials of mean force) of interatomic
contacts calculated from the frequencies of these interatomic distances in a database
of experimental structures from statistical methods [168]. As compared to empirical
scoring function, knowledge-based potential function does not require known binding
affinity and so are free to explore large and diverse structural complex information to
derive the more accurate and less biased scoring function parameters. These functions
are expected readily transferred to systems that have not been used in the develop-
ment of the scoring function. Examples of knowledge-based scoring functions
include PMF [169] and DrugScore [170].

4.2 Nonlinear Relation Between IC50 and Score Values

A standard scoring function is given in kJ/mol by Eq. 2.

DG ¼ 5:4DG0 � 4:7DGHB � 8:3DGionic � 0:17DGlipo þ 1:4DGflex=rot ð2Þ

Assumed to be linear, where coefficients present the weightage of each contri-
bution as mentioned by suffix, in a case study out of 45 known ligand receptors
from PDB, the standard deviation having +7.9 kJ/mol or 1.4 log unit error in
binding constant. But this is not reflecting reality, which has been observed while
comparison of actual and predicted values of binding across the range of activity.
Correlation between the binding energies predicted by the docking programs like
AutoDock, GOLD and FlexX [171–173] with the experimentally determined
binding free energies is analyzed among a set of known ligands in the literature
[110, 174]. Prediction of affinity using scoring function has been used for ranking
compounds, while high-throughput screening but compared with known experi-
mental data it has been observed that high-affinity compounds (*nM) are predicted
with lower errors than weak binders (lM to mM). Generally, the weak binders are
overpredicted, whereas tight binders (pM) are underpredicted [171, 175]. It may
require implementing functions to address negative co-operativity so that present
scoring functions are trained to penalize weak binding. Tight binders required to be
associated with positive co-operativity. However, a measurement of applicability is
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done using reproduction of geometry from complexed crystal structure, comparing
close relation with binding affinity (experimental) and scoring and ranking and two
other important parameters known as enrichment factors (EF) and receiving oper-
ators characteristic (ROC) [176–178].

4.3 Does Scoring Function Reflect Binding Activity?

Scoring functions can only predict the binding affinity of a receptor with its ligands
in isolation [156], but the cellular environment is significantly different, where it
may be interacting with other molecules which may alter its affinity toward its
ligand, e.g., activation of tumor suppressor protein p53 activation is regulated by
MDM2/MDMX [74]. Inhibition measure of a ligand for its receptor is the end result
of several pharmacokinetic factors as well other than affinity, e.g., bioavailability
[73, 99]. Therefore, docking score of a ligand for its receptor may not be the actual
measure of its inhibitory potential always. The similar kind of evidence emerged,
when it was noticed that urea analog DMP-323 had shown good affinity and pre-
dicted inhibitory potential for HIV-1 protease [100], but it could not succeed
because of its very low bioavailability due to its poor solubility [99]. In the
follow-up study, a new analog DMP-450 with higher water solubility was designed
and found to show better inhibition of HIV-1 protease [99]. As detailed in Sect. 2.3,
in the similar way to save from proteolytic cleavage, a-helical clipped peptide was
designed from human serum protein HSP’s variants, as inhibitor of the MDM2 and
MDMX complex [73]. The proteolytic cleavage was hampering its bioavailability;
thus, clipped a-helical peptide achieved improved pharmacokinetics, thus ensured
better efficacy in human and rat models [73].

5 Limitations of Methods

5.1 Appropriate Structure of Receptor to Select

While selecting a receptor structure for initiating docking study, parameters listed in
Table 1 can be used to prioritize structures if more than one structure is available,
and to choose appropriate structure. In present case, we have summarized some of
the structure validation results for two different structures of HIV-1 protease (PDB
ids: 1FQX and 4ZIP) in Fig. 8 and crystal structure details shown in Table 6.
Analysis of structures is available from RSCB PDB [179] (https://files.rcsb.org/pub/
pdb/validation_reports/fq/1fqx/1fqx_full_validation.pdf and https://files.rcsb.org/
pub/pdb/validation_reports/zi/4zip/4zip_full_validation.pdf).

In general, structure for which different parameter values are in blue zone in
horizontal bars for it is preferable. These horizontal bars represent statistical like-
lihood of reported structure to be in acceptable/unacceptable range. The range of
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parameter value is determined from all the structures already deposited in PDB of
similar resolution range. As we see from the report that clash score, Ramachandran
outliers and side chain outliers’ values are higher than acceptable and are in red
zones (statistically unfavorable) of their respective bars [180] for 1FQX. While in
the case of 4ZIP, all the parameter values are in the blue zone (statistically

Fig. 8 Two crystal structures of HIV-1 protease shown a 1FQX.pdb and b 4ZIP. (i) and (iv) show
structure quality summary obtained from RCSB Protein Data Bank (PDB). (ii) and (v) show
conformance to geometric quality criterion of model residues: 0, 1, 2, and � 3 geometric quality
criterion outliers are shown in green, yellow, orange, and red colors, respectively. (iii) and
(vi) show mapping of model validation results with electron density over 3D structure for PDBs
1FQX.pdb and 4ZIP.pdb, respectively

Table 6 Crystal structure
parameters for HIV-1 protease
structures with RCSB PDB
(www.pdb.com) codes 1FQX
and 4ZIP

Parameter 1FQX 4ZIP

Resolution range lowa 26.00 50

Resolution highb 3.1 1.11

Completeness Not available 91.7%

Rwork 0.180 0.130

Rfree Not available 0.154

RMSD (bond lengths) 0.080 0.015
aA minimum spacing (d) of crystal lattice planes that still provide
measurable diffraction of X-ray
bAdditionally, hI=r Ið Þi greater than 2 in high-resolution shell
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favorable). Again, when looking at the geometric quality criterion for two struc-
tures, 1FQX only (chain A: 51% and chain B: 52% residues) does not have any
outlier, while rest (chain A: 47% and chain B: 40%) have at least one outlier. The
geometric quality for 4ZIP seems better as in this case 96 and 90% residues (chains
A and B, respectively) do not have any geometric outlier. Further considering fit
quality of the model to electron density, 1FQX has certain residues which has at
least two outliers and a significant percentage of residues with at least one outlier,
while in case of 4ZIP, there are no residues which have two outliers and only a
small fraction of residues with only single outlier. Considering all above points
among 1FQX and 4ZIP, 4ZIP should be preferable over 1FQX as receptor structure
for any docking study.

In Fig. 9, the docking using Dock6 of ligand GRL-0648A to two different receptor
structures of HIV-1 protease (4ZIP: high resolution and 1FQX: low resolution) is
performed to assess the effect of receptor structure quality on outcome. Results show
that when ligand was docked to native receptor structure (4ZIP), it reproduces the
crystallized pose (RMSD: 0.40 Å, see Fig. 9a), with dock score of approximately
−125. When we docked ligand to poor receptor structure (1FQX), it docked in
different poses where core group adopts similar pose but the 5-atom ring (1 nitrogen,
one oxygen) containing methyl adopts different poses and leans over Gly48 on chain
B, score is significantly low (−14) and RMSD: 2.71 Å (Fig. 9b). This observation
suggests that high-quality receptor structures are more likely to present better inter-
action complementarity, saving from predicting high-affinity binders mistakenly as
poor-affinity ligand.

Fig. 9 HIV-1 protease-binding site structures shown a HIV-1 protease structure (PDB: 4ZIP) in
complex with GRL-0648A (isophthalamide-derived P2-ligand), receptor-binding site is shown in
green ribbon and crystallized pose of GRL-0648A in black stick. GRL-0648A is docked to the
receptor using Dock6 and docked pose is shown with ball and stick representation and carbons
colored in cyan, RMSD of docked pose with reference to crystallized pose is 0.40 Å over 49
non-hydrogen atoms. b HIV-1 protease structure (PDB: 1FQX) with GRL-0648A crystallized pose
(taken from 4ZIP after superimposing receptor structures) shown in black stick, docked pose of
GRL-0648A shown in ball and stick representation with carbons in cyan color, docked pose
RMSD 2.71 Å over 49 non-hydrogen atoms
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5.2 Analysis of Docking Tools

As discussed above, it is fruitful to analyze the ligands binding efficiency using
many methods like AutoDock, GOLD, Glide, LibDock, and HADDOCK; all these
tools are different in the method of docking as well as scoring.

There are several open-source commercial but free for academic use, and
complete commercial docking programs available from different software vendors.
In particular, fifty-one stand-alone and nineteen Web servers for docking employing
diverse set of novel features are listed at http://www.click2drug.org/index.
html#Docking (accessed on Dec 2017). To select suitable program(s) for docking
studies for receptor(s) of interest requires insight and expertise [117] in the method.
However, we shall discuss only a few selectively chosen methods based on pop-
ularity and diversity of strategies implemented in them as shown in Table 7.

Herewe are discussing the in-house case study (unpublishedwork) of four docking
programs used to dock already experimentally known inhibitors of P. falciparum
protein kinase 5 (PfPK5) with IC50 values ranging from 130 to 15000 nM. PfPK5 is a
ser/thr kinase and homolog of human CDK2 [185]. Chosen inhibitors are olomoucine
(OLM), indirubin-5-sulfonate (INR), staurosporine (STA), and purvalanol B (PVB),
respectively. Crystal structures of two of the inhibitors (INR and PVB) in complex
with PfPK5 are available [185].Wehave chosenLibDock v2.3,Gold v5.2,Dock v6.7,
and Glide v7.0 for the comparison study. Different docking programs use different
scoring schemes, e.g., Glide score and Dock score assign high negative score
to high-affinity ligands, while LibDock and Gold assign high positive score to
high-affinity ligands. Pose reproduction and also scoring/ranking of docked poses of
these inhibitors is a good case to assess comparative performance of each of the
selected docking program and also with experimental values.

The best-scoring poses predicted by each of the programs were compared with
the crystallized poses for selected available complex of PfPK5 with PVB as in PDB
(1V0P). Predicted poses for PVB obtained from LibDock, Gold, Dock, and Glide
showed 0. 60, 1.01, 0.88, and 1.87 Å RMSDs with crystallized pose, respectively.
In present case, all the selected programs were able to reproduce observed binding
mode within RMSD of 2 Å.

Docking and scoring results obtained from the chosen programs show that none
of these could predict the correct ranking against the experimentally known activity
of chosen inhibitors (see Table 8). The best binder (PVB) among four inhibitors is
predicted to be best binder as rank 1, by Gold and Dock6, while LibDock and Glide
have ranked 2. LibDock is unable to discriminate between the OLM and INR and
predicts them as rank 3 and rank 4, while experimentally found ranks would be 4
and 3, respectively. Again, LibDock does not discriminate between STA and PVB
and predicted ranks are opposite to the experimental ranks. Gold predicts correct
ranks for best and worst inhibitors, while is unable to discriminate between
mid-ranged inhibitors INR and STA. Dock6 predicts correct ranks for better binders
STA and PVB, while does not discriminate between weak binders OLM and INR.
Predicted ranks from Glide did not match with experimental rank for any of the four
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Table 7 Summary of docking approach used, techniques for ligand and/or receptor flexibility,
and major features available in some chosen popular docking programs

Programs Ligand flexibility Receptor
flexibility

Major features in brief

AutoDock
[181]

Genetic algorithm modeling
flexible residues

Force field-based scoring function,
uses averaged interaction energy grid
to account for receptor conformations
and simulated annealing for ligand
conformations

DOCK [159] Incremental build Yes (through
AMBER score)

Force field- and contact score-based
scoring functions; docks either small
molecules or fragments, include
solvent effects

Glide [165] Exhaustive search No Empirical score. Although, receptor
flexibility can be used in Induced fit,
Docking (IFD workflow) with Glide
and side chain rotations through
PRIME

GOLD [110] Genetic algorithm Side chain
flexibility and
ensemble
docking

Empirical score, highly configurable
allowing to utilize chemical intuition
and domain expertise to improve pose
prediction and virtual screening

HADDOCK
[182]

Yes Semi-flexible
torsion angle
refinement

Uses biochemical and/or biophysical
interaction data such as chemical shift
perturbation data resulting from NMR
titration experiments, mutagenesis
data, or bioinformatic predictions

LibDock
[183]

Rigid docking can use
programs in suit to
generate conformation

No Docks a pre-generated set of
conformations for the ligand followed
by a final flexible gradient-based
optimization of the ligand in the
protein binding site

LigandFit
[184]

Monte Carlo No Empirical score, ligand conformation
docked into an active site based on
shape, followed by further CHARMm
minimization

Table 8 Summary of docking scoring/ranking results of chosen four inhibitors with known IC50

values to PfPK5

Inhibitor IC50 (in nM) RT ln(IC50)
(kcal/mol)

Docking score

LibDocka Golda Dock6b Glideb

OLM 15,000 −6.622 107.08(3) 55.56(4) −56.46(3) −5.75(3)

INR 5,500 −7.220 106.80(4) 64.56(2) −55.04(4) −8.65(1)

STA 1,000 −8.236 132.82(1) 60.98(3) −64.55(2) −4.99(4)

PVB 130 −9.453 130.25(2) 78.40(1) −71.41(1) −7.98(2)

Docking score from programs is given in cells of table, while rank is given in pair of parentheses.
Four docking programs, LibDock v2.3, Dock v6.7, Glide v7.0, and Gold v5.2, were used to dock
inhibitors in the PVB bound structure of PfPK5, after removing PVB. Inhibitors are tabulated from
top to bottom in increasing affinity order
aHigher positive score represents higher affinity
bHigher negative score represents higher affinity
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inhibitors. A limited study like this brings out the uncertainty in pose and rank
prediction by popular tools.

5.3 Selection of Appropriate Database

Chemical databases are selected from the ensemble of the small organic and syn-
thetic molecules, used for ligand docking, constituents of such chemical libraries
influence the final outcome in the drug designing process. In general, chemical
library databases are created to aid the drug discovery process by providing inno-
vation in new lead structures selection. After the establishment of the in silico drug
designing protocol, chemical databases are screened to identify the probable inhi-
bitors which can be tested by experimental methods. Success rate in finding true
inhibitor by in silico means depends upon both screening protocol and chemical
databases used. So, before the selection of the chemical libraries, basic biological
target specific chemical features should be marked. For the virtual screening pur-
poses, the compound database may be selected in such a manner so that maximum
structurally diverse chemicals can be utilized against the studied biological target(s).
Chemo-informatics tools are mainly used not only for diversity analysis [186, 187]
but also for converting them into focused chemical libraries [188].

Various chemical compounds databases are available which include databases of
general organic compounds intended for screening, drugs, commercial databases,
and databases with known biological activity, crystal structure information, and
various physicochemical properties information [189, 190]. Table 9 shows some of
the commonly used chemical databases which are categorized based on the different
features like associated bioactivity information, known drug information, and
having target specific information. Most of these databases provide chemical
information using 1D representatives such as SMILE and InChI Key, or 2D
structural coordinate information stored in SD file format. These databases are also
provided online interface to access the whole chunk of chemical compounds for
similarity-based screening. These functionalities intended to search close analogues
of known bioactive compounds and thereby advances the lead optimization process.

Though different chemical databases are available for virtual high-throughput
screening (vHTS), it is recommended to convert any chemical library to “target or
focus” chemical library to avoid the false hits selection as novel inhibitor [191]. In the
literature, several characteristic properties of small molecules have been discussed
that are followed by the “lead-or drug-like” molecules and are considered to be
important for a drug to be successful [192]. Currently, list of open-source
Chemoinformatics tools is available which can be utilized for drug-like properties
calculation and chemical databases filtration [193]. Well-known physicochemical
properties which are used as empirical rules are Lipinski’s “Rule of Five” [194], “Rule
of Three” [195], and Pfizer’s “Rule of 3/75” [196] (Table 10). Apart from filtering for
lead-like properties, it is also important to exclude known toxicophores or metabol-
ically liable moieties which can interfere with the assay and detection protocol.
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There is a well-recognized need of creating standard datasets for which exper-
imental bioactivity of the ligands is already known for receptors coming from
various functional classes [197] in the research community. Availability of standard
dataset for benchmarking docking would potentially aid to spot limitations and
non-optimal parameter sets used for docking and scoring with the concerned
docking program and thereby allowing tracing and possibly fixing of issues in
earlier phases of the study. Development of benchmarking datasets for docking and
scoring has been reviewed recently [197, 198]. Primary attempts toward docking
was made by Bissantz et al., a dataset contained estrogen alpha receptor (ERa) and

Table 9 Some commonly used chemical databases

Databases Web link

Bioactivity data

Binding activity database https://www.bindingdb.org/

ChEMBL https://www.ebi.ac.uk/chembldb/

NCI https://cactus.nci.nih.gov/download/nci/

PDB bind database http://sw16.im.med.umich.edu/databases/pdbbind/index.jsp

PubChem https://pubchem.ncbi.nlm.nih.gov/

Patents

IBM www-935.ibm.com/services/us/gbs/bao/siip/

SureChEMBL www.surechembl.org

Drugs

DrugBank www.drugbank.ca

FDA http://fdasis.nlm.nih.gov/srs/srs.jsp

Available for vHTS

ZINC http://zinc.docking.org

ChemSpider http://www.chemspider.com

eMolecules www.emolecules.com

MDL drug data report
(MDDR)

http://accelrys.com/products/collaborative-science/databases/
bioactivity-databases/mddr.html

BioPrint http://www.cerep.fr/cerep/users/pages/ProductsServices/
bioprintservices.asp

Target specific

Pfaldb http://pfaldb.jnu.ac.in/Malaria/homeHit.action

Mycobacterium DB http://tbnetindia.in/

Therapeutic target database http://bidd.nus.edu.sg/group/cjttd/TTD_HOME.asp

KLIFS http://klifs.vu-compmedchem.nl/

Kinase profiling inhibitor
database

http://www.kinase-screen.mrc.ac.uk/kinase-inhibitors

Structural databases

Cambridge crystallographic
data center

https://www.ccdc.cam.ac.uk/

Crystallography open
database

http://www.crystallography.net/cod/
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thymidine kinase (TK) with one PDB structure, ten active compounds, and 990
randomly selected decoys from pre-curated Advanced Chemical Directory
(ACD) which was considered for each of receptors to evaluate DOCK, FlexX, and
GOLD programs and seven scoring functions (Dock, FlexX, GOLD, PMF,
ChemScore, Fresno, and Score) [197].

5.4 Consensus Evaluation of Docking

Docking studies performed using different programs which do not necessarily agree
with each other as discussed earlier, mostly because each program carries different
subtasks of docking with potentially different approach [199]. Thus, when results
disagree among themselves, then selection of the final compounds to test becomes
indecisive. Matthew and co-workers [199] suggested selection of results based on
consensus followed by rationalization through physicochemical intuition. As dis-
cussed later, such strategies should be projected as standard to increase confidence
in docking results and decrease failure rate of docking studies.

Benchmarking of docking studies is very important for unbiased evaluation of
various docking methodologies and their implementations in docking programs. To
address this issue, Huang et al. [176] conducted a study along with creating a
directory of useful decoys (DUD) [176]. They choose total 40 different targets with
eight nuclear hormone receptors, nine kinases, three serine proteases, four metal-
loenzymes, two folate enzymes, and ten other enzymes. The crystal structures of all
targets except one kinase (PDGFrb) were available in PDB. They used 2950 li-
gands, creating 36 physically similar but topologically different decoys for each
ligand. Docking was done using DOCK 3.5.54, with flexible ligand and a
force-field-based scoring function accounting van der Waals and electrostatics in-
teraction energies corrected for ligand desolvation. Authors reported that for most
of the targets, with MDDR (Elsevier MDL, San Leandro CA) databases, enrichment
were almost half log better than DUD, which supported their conclusion that
generally databases have bias.

Another protocol is known as checking with cross-docking which aims to
summarize the overall success of docking study [200], it captures ligands specificity
for its cognate receptor at diagonal of the matrix, and off-diagonal entries represent
enrichments against off-diagonal targets. The off-diagonal enrichments could also
be indicative of promiscuity of the ligand, or the similarity of the off-diagonal
targets [201]. The cross-docking performed in the process highlighted striking
results that ligands having very good enrichment for their cognate receptor had
good enrichments against a few other receptor sets, while ligands with poor
enrichment for their receptor had poor enrichment against others [202–204].

Overall, it has been found that the interaction-based classification and estimation
of accuracy of poses during docking are in better agreement with the experimental
results [205].

In Silico Structure-Based Prediction of Receptor–Ligand Binding … 147



5.5 Selection of Suitable Scoring Function

Whether to select just a scoring function or a consensus scoring function? A
suitable scoring function has important role to play to extract correct poses while
docking. Poses should be evaluated by the docking score or the ranks are better for
evaluation of docking; these are critical aspects influencing the final outcome of the
docking results. None of the available scoring functions appears to be fit in all cases
[206]. James B. Matthew and co-workers performed a study to evaluate perfor-
mance of four individual scoring functions DOCK, GOLD, PMF, and FlexX and
several forms of consensus scores (CScore) derived from them, over a dataset of
twelve HIV protease and nine thermolysin complexes with known crystal structure
and experimental binding affinity [199]. Since DOCK and GOLD scoring functions
were not available in FlexX, they implemented these scoring functions according to
their open descriptions in the literature and will be referred by D-SCORE and
G-Score. They found that none of the considered scoring functions was consistently
good for all active sites [206], but the CScore (consensus score) was better than all
individual scoring function [199]. Secondly, they studied these scoring functions
for scoring candidate ligand configurations over a set of five known receptor ligand
complexes (2-MQPA or NAPAP into thrombin (1ETR and 1DWD), l–
3-phenyllactic acid into carboxypeptidase A (2CTC), 1-deoxynojirimycin into
glucoamylase (1DOG), and DANA into neuraminidase (1NSD) each of the ligand
was docked to cognate receptor, and top thirty configurations with most favorable
FlexX scores were chosen for further study, each of these configurations were
scored using D-SCORE, G-SCORE, PMF, rank-score, deprecated rank-sum
(rank-sum after leaving out worst rank), worst-best and CScore methods. They
found that average scores from several methods are better than individual score
[199]. Apart from this, their study highlighted that there could be alternate poses for
NAPAP binding in thrombin and DANA in neuraminidase as predicted by FlexX
along with crystal structure poses reproduced in Fig. 10a, b respectively.

Table 10 Typical physicochemical properties which are used to filter the chemical databases

Properties Lead-likeness

Molecular weight (MW) 200–500

Lipophilicity (cLogP) −4/4.2

H-bond donor � 5

H-bond acceptor � 10

Polar surface area (PSA) � 170 Å2

Number of rotatable bonds � 10

CACO-2 membrane permeability � 100

Solubility in water (log S) −5/0.5

Others Absence of both toxic and reactive fragments
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5.6 Consensus Scoring

Despite availability of variety of scoring functions, none of them is universally
good for assessment of all receptor ligand binding using docking. Therefore, several
attempts [174, 199, 207] have been made by researchers to investigate several
scoring functions and their combinations using different consensus schemes. In
particular, Oda et al. used two force field-based (Dock score and GOLD score), two
knowledge-based (DrugScore and PMF score), and five empirical (FlexX score,
ChemScore, PLP, Screen Score, and X-Score) scoring functions and systematically
assessed performances of all 511 (29 −1) consensus scores over a test set where
structures were available in PDB for all chosen 220 protein–ligand complexes. For
the sake of comparison, either all the candidate poses scored by a scoring function
were ranked assigning best-scoring pose a rank 1 or the scores were scaled to span
range 0–1, with best-scoring pose assigned 0 and worst assigned 1. These schemes
were consistently used for all the scoring functions, except for X-Score, since it
assigns a higher value to better pose in contrast to rest of others. Therefore, S-Score
was multiplied by −1 before scaling or ranking [207]. Oda et al. [207] used six
different averaging schemes for consensus score with three different ways of model
selection (selecting models with consensus score � xthreshold, top ythreshold models
from sorted list of consensus scores in increasing order, and top zthreshold % models
from sorted list of consensus score in increasing order) combined with two ways
(by rank and by scaled score) of mapping score to common scale. Prefixes
number-by-, rank-by-, and percent-by- were used to denote way of model selection,
and suffix rank and number were used to denote ways of mapping scores.
Apart from these six, three more double thresholds (one for model selection from
xthreshold, ythreshold, and zthreshold and other number of minimum votes for electing the
model)-based vote-by-consensus scores were also evaluated [207]. Considering the

Fig. 10 Alternative docking mode for identified by FlexX and CScore. The alternative
configuration is colored by atom type, whereas the binding mode found in the crystal structure
in colored orange. a NAPAP in thrombin (1DWD) and b DANA in neuraminidase (1NSD) [200].
Reproduced with permission
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accuracy and efficiency balance in selecting poses rank-by-number and
percent-by-number are more useful, while for accuracy number-by-number and
vote-by-number approaches are more pertinent to pose selection [207]. GOLD
score and Dock score were poor individually but were useful in consensus scoring
[207]. Consensus score involving all nine scores or five CScore functions were
useful without any optimization and suitable for practical usage [207]. However,
Free energy and empirical scoring has been used together in the recent paper [174].

5.7 Inclusion of Flexibility of Ligand and Receptor

In computer-assisted drug discovery process such as structure-based drug design
and ligand-based drug design, ligand flexibility plays key role for pharmacophore
features extraction and model generation [208], 3D-QSAR analysis [209], molec-
ular docking-based studies [210], shape similarity [211], and so on. In these cases,
the outcome results largely depend upon the ability to achieve those conformers that
represent the bound state. Hence, it is important to achieve bioactive conformational
space of each compounds under study [212]. The term “bioactive conformation
generation” specifies the generation of pool of all possible molecular structures that
are found in the bound state of the complex macromolecules. Various studies
suggest that during the interaction with the receptor, small molecules generally
adopt low-energy conformation [213].

The literature suggests two major classes of methods that are utilized to explore
the conformational landscape of the small molecules [214]. These approaches
include stochastic sampling, systematic or deterministic sampling. Deterministic
approaches attempt to generate full range of minimum energy conformations by
adopting systematic exhaustively space search approach. This type of space search
methods largely dependent upon the number of rotational bonds a small molecule
has. Due to combinatorial explosion in torsion angle combinations, this approach is
feasible only for very small molecules [214]. Stochastic sampling tries to explore
various energy landscapes by incorporating randomness during the search process.
Monte Carlo-type (MC) simulations and genetic algorithms (GAs) are the major
techniques of this type of sampling methods [214]. A detailed review of these
approaches can be found in the following papers [215].

Using above-mentioned approaches, various conformation generation programs
have been developed and utilized in drug discovery process cited in Table 11.
These programs generally adopt heuristics to overcome combinatorial explosion in
case of systematic search and random perturbations and selection in stochastic
search.

Ligand being usually smaller in size with lesser number of rotatable bonds
exhaustive sampling of available conformational space is achievable with current
computational capabilities; but proteins being large macromolecules, available
conformational space is vast due to large number of degrees-of-freedom (DOFs)
and its exhaustive sampling is almost infeasible. Therefore, techniques seeking to
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incorporate protein flexibility during binding has been attempted, but they incor-
porate receptor flexibility only to a limited extent, focusing on sampling only most
plausible/relevant portion of the conformational space, e.g., through side chain
flexibility, conformational relaxation, and multiple structure docking, as already
discussed in protein flexibility section. However, newer techniques, e.g., supervised
molecular dynamics (SuMD) can be useful to incorporate receptor flexibility,
because they allow receptor to experience thermal fluctuation and supervision of
ligand toward binding site from unbound state might allow receptor to adopt
induced conformational changes sensing the ligand in vicinity of binding site under
influence of its interaction field [225].

6 Binding Ability and Free Energy Calculation

The binding free energy of ligand to receptor is the thermodynamic signature of the
interaction affinity. Therefore, accurate prediction of binding free energy has been
attempted from long times. The free energy calculation methods can be grouped
into relative binding free energy calculation methods and absolute binding free
energy methods [226]. Relative binding free energy methods aim to calculate

Table 11 A brief summary of major programs for small-molecule conformation generation

Program Type Algorithm Cost/license References

Balloon_GA Stochastic Genetic algorithm Free/
proprietary

[216]

CAESAR Systematic Incremental search of torsion angles
combined with distance geometry

Commercial [217]

Confgen Stochastic Random walk on energy surface Commercial [218]

Confab Systematic Torsion driving approach Open
source

[219]

Corina Systematic Knowledge-based rules derived from
CSD

Commercial [220]

ETKDG Stochastic Distance geometry and knowledge
base

Open
source

[221]

Frog2 Stochastic Monte Carlo Open
source

[222]

MS-Dock Systematic Brute force, anchor, and grow Open
source

[223]

MOE Stochastic Random perturbations of rotatable
bonds in increments biased around
30°

Commercial [108]

OMEGA Systematic Knowledge-based, complete
enumeration

Commercial [212]

RDKit Stochastic Distance geometry Open
source

[224]
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binding free energy of one ligand (reference ligand) relative to another ligand
(target ligand) both binding to same receptor, by summing up the work carried to
convert one ligand to another in bound and free states in solution [226]. This
method can be significantly efficient when reference ligand is very similar to target
ligand, but if they are dissimilar then defining and sampling along the conversion
path may pose severe computational demand [226]. Since reference ligand to target
state conversion path is artificial, these methods are also called alchemical methods,
and excellent review on popular methods of this class already exists [227]. Absolute
binding free energy methods estimate standard binding free energy of interaction by
computing reversible work done in process of transferring it from binding site into
solution [226]. Absolute binding free energy methods have been reviewed by Shirts
et al. [228]. Practical aspects of free energy calculation have also been recently
reviewed [229, 230]. The accuracy of the binding free energy calculations is
influenced by adequacy of sampling (theoretically, accurate results require infinite
sampling), force field used for sampling, and correctness of the molecular model
used, e.g., usually simulation is performed using fixed protonation states of titrat-
able residues, while protonation states might change in experimental conditions
[226].

6.1 Calculation of Enthalpy by MM-PBSA

The end-state free energy methods explained here are most common approaches to
calculate binding free energy. Linear response approximation (LRA), linear inter-
action energy (LIE), and molecular mechanics Poisson–Boltzmann surface area
(MM-PBSA), molecular mechanics generalized Born surface area (MM-GBSA)
[231] are such methods available in the literature. End-state free energy methods are
computationally less demanding, but the speed gain in CPU comes at cost of
compromised accuracy of the results [231]. These methods are required to be
plugged with estimation of configurational entropy which usually is obtained by
rigid-rotor approximation and normal mode analysis or quasi-harmonic analysis to
yield binding free energy [232]. However, these methods can be good for evalu-
ating binding enthalpy for ligand–receptor interaction. In MM-PBSA/MM-GBSA
approaches (schematically shown in Fig. 11), the binding energy is calculated by
taking energy difference of free-form of protein (P), and ligand (L) from protein–
ligand complex form (PL) [232].

The free energy of each of the molecular species (say X) can be expressed as
sum of their molecular mechanics energy in gas phase EMM(X), solvation free
energy Gsolv(X), and entropic part—TS(X). The EMM(X) contribution can be
expressed as sum of bonded, electrostatics, and van der Waals energies, i.e.,
EMM(X) = Ebond(X) + Eelec(X) + EvdW(X) [231]. Similarly, Gsolv(X) can be
expressed as sum of polar and non-polar contributions Gpolar(X) and Gnon-polar(X),
where Gpolar(X) can be accounted using Poison–Boltzmann or its simplified version
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generalized Born method as GPB(X) or GGB(X), while non-polar is taken to be
proportional to accessible surface area change GSASA(X) [231].

DGbind ¼ GðPLÞ � GðPÞ � GðLÞ ð3Þ

The dynamics of the PfPK5 kinase structure complexed with the inhibitor(s)
described earlier in docking section is used here as case study using MD simula-
tions. Starting structures of PVB-PfPK5 [185] and INR-PfPK5 [185] complex were
taken from crystal structures 1V0P and 1V0O, while OLM-PfPK5 and STA-PfPK5
were taken as consensus pose obtained from docking study using Gold, Glide, and
Dock6 as mentioned above. All the systems were prepared using AmberTools14
[233] for MD simulation, and AM1-BCC charges for ligands and GAFF [234] force
field parameters with ff14SB [235] parameters for protein. Equilibration was per-
formed using standard protocol [236]. For each case, 12 independent (starting from
different starting velocities) MD simulations in NPT ensemble each with length
254 ns were done, initial 4 ns run were discarded to allow for equilibration, bond
lengths involving hydrogen were constrained using SHAKE [237] to allow use of
2 fs time step, temperature was controlled using Langevin thermostats with colli-
sion frequency 1 ps, and pressure was regulated with Berendsen scheme at target
pressure 1 atmosphere using cuda version of program pmemd available in Amber14
[238] MD simulation package. Coordinates were saved every 1 ps. These trajec-
tories were concatenated to yield 3 ls MD simulation for each case containing

Fig. 11 Schematic representation of the end-state free energy using molecular dynamics Poisson–
Boltzmann surface area method for estimating binding energy for receptor ligand binding
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3000,000 frames. Every 100th frame was taken for MM-PBSA analysis using
MMPBSA.py [239] program in AmberTools14 [233].

The gas phase binding energy DEMM was highest for INR followed by STA,
PVB, and OLM, but the solvation penalty was also highest for INR and least for
STA. In terms of enthalpy of binding, STA was predicted to be best, followed by
PVB, INR, and OLM, respectively. The inconsistency of binding enthalpy with
IC50 indicates possible role of entropy in this case. There may be role of solvation
as well which is not rigorously captured in solvation terms considered proportional
to buried surface area on binding in MM-PBSA method; see Table 12.

However, it may be criticized that selected docking programs use different
scoring, therefore to be able to assess their performance as well as compare with
experiment values is not possible. So, another attempt was done by normalizing all
the scores, by converting all of them to positive scores (normalized using
(score − minscore)/(maxscore − minscore)). This yields a consistent normalized score,
where weakest and strongest binder ligands get normalized scores ranging 0 and 1,
respectively. Same is used for normalizing experimental values, i.e., RTln(IC50).
Results are shown in Fig. 12, Dock6 predicted scores for all ligands are within
1-sigma range, Gold and LibDock each predicted one outlier, and Glide predicted
two outlier scores. In present case, Dock6, Gold, and LibDock appear to perform
better than Glide. These results may not be sufficient to capture docking/scoring
capabilities of chosen programs, as only four ligands are studied and they bind to
only one target. A more diverse target set and a large ligand set could better
comprehend the features and/or limitation of individual programs; this will be
discussed later also.

The binding enthalpy predicted using MM-PBSA method consists of two out-
liers from 1−r range (computed as discussed earlier), and it does not agree fully
with docking scores obtained from any of the four chosen programs, as expected.
However, strong and weak binders predicted using MM-PBSA is same as predicted
by LibDock, and second strong binder predicted using these two is similar in
affinity. While MM-PBSA results agree with Gold results for two weak binders and
not for strong binders. Glide agrees on experimentally found strong and weak
binders with MM-PBSA. Score using Dock6 agrees better than MM-PBSA
(Fig. 12). As observed in the present case, the scoring by Docking methods as well

Table 12 Enthalpy component of binding free of selected inhibitors of PfPK5, calculated using
MM-PBSA method

Inhibitor IC50 (in nM) RT ln(IC50)
(kcal/mol)

Predicted (kcal/mol)

DEMM DGSolv Total: DHPBSA

OLM 15,000 −6.622 −58.5 ± 7.9 25.4 ± 5.9 −33.1 ± 4.1

INR 5500 −7.220 −102.7 ± 8.7 62.4 ± 5.9 −40.3 ± 4.2

STA 1000 −8.236 −69.0 ± 5.5 19.8 ± 4.0 −49.2 ± 4.7

PVB 130 −9.453 −65.7 ± 8.9 22.6 ± 6.0 −43.1 ± 4.7

These values are computed for 3000 snapshots extracted from 3-ls-long MD simulations for each
inhibitors in complex with PfPK5, internal dielectric constant was taken 2, and ionic strength zero
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as the end-state Free Energy methods show discrepancies with experimental results,
which emphasizes the effect of entropic contribution in case of flexible Kinase
binding to ligands.

6.2 Effect of Entropy to Ligand Binding

Gibbs free energy ðDGÞ of binding has two components enthalpy ðDHÞ and entropy
ð�TDSÞ as given by Eq. 4:

DG ¼ DH � TDS ð4Þ

Enthalpy of the protein ligand interaction is assumed to be the major determinant
of the binding free energy assuming entropic contributions for smaller ligands
binding to the same receptor would have similar entropic profile. However, this
assumption can be seen as an attempt to simplify the scenario, as entropy estimation
of binding process still lacks direct and reliable experimental/computational
methods [240]. Experimental methods seek to estimate this quantity from the
conformation flexibility as proxy for it and relate NMR relaxation parameter to
calibrate it with conformation part of the biding entropy; conformation entropy is
again assumed to be linearly correlated with the total binding entropy [241]. While,
computation methods also try to estimate configurational entropy on similar
line-of-thought, using molecular fluctuation data generated from molecular
mechanics as a proxy for the entropy and thereby try to estimate configurational
entropy from it [242–245]. Normal mode analysis (NMA) tries to infer

Fig. 12 All the scores have been normalized as discussed in text, to compare the predicted
affinities for chosen four inhibitors of PfPK5 obtained using docking with Dock6, Gold, Glide and
LibDock and MM-PBSA against experimental binding affinity. Solid line shows perfect
correlation of scores with experimental results, and dotted lines above and below show one-r
range of error for predicted affinity
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conformational entropy as function of the vibration modes where DOFs are mod-
eled as a set of simple harmonic oscillators, vibrating independently [246], but with
the growing understanding of the nature of vibrational modes of biomolecules, it
was realized that NMA is not the most suitable theory [247] for understanding
entropy. Thus, methods utilizing internal coordinates for molecular description in
conjunction with approximations representing full dimensional probability density
function as a series of marginal PDFs of fluctuation of DOFs got attention of
research community. This theory has been successfully applied to estimate entropy
for small molecules [248], peptides [249, 250], to protein–peptide binding study
with at least qualitative insight, while quantitative aspect still remains to be
debatable [251, 252]. In some case, even for the set of ligands binding to the same
receptor, entropic components are surprisingly quite different and play a crucial role
in deciding the rank/affinity order of ligands.

As mentioned above, we found out that for a set of experimentally known
ligands binding to the P. falciparum protein kinase PfPK5, docking scores yielded
very poor correlation with experimental affinity, even inclusion of end-state free
energy using MM-PBSA [253] method using 3 ls simulation data for each of the
ligands, no significant improvement in computed affinity was observed. However,
when configurational entropy for the ligands was included with the MM-PBSA
estimates, a significant improvement in the bonding affinity was observed (manu-
script in preparation).

As shown in (Fig. 13), achieving convergence to reduce error in estimation of
entropy takes longer trajectories i.e., covering larger configuration space. Using a
distance cutoff-based adaptation of Maximum Information Spanning Tree (MIST)
called Neighbor Approximated Maximum Information Spanning Tree (A-MIST)

Fig. 13 Binding configurational entropy estimated using A-MIST methods with a distance cutoff
of 14 Å and convergence of estimate with simulation time is shown. a Convergence of first order
(assuming DOFs are uncorrelated) is shown. b Convergence of second order (accounting pair-wise
correlations DOFs) is shown
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[254], the configurational entropy was estimated using MD dataset of *5 ls,
adding enthalpy, Free energy was calculated. It indicates that largely omitted
entropic contributions can play important role and even deciding factor in case of
small ligands binding to the flexible proteins (Fig. 14).

As shown in Fig. 14, combining enthalpy ðDHÞ and configurational entropy
�TDSconfig
� �

of binding for chosen inhibitors, the binding free energy ðDGÞ for
best binder PVB is highest. However, binding free energy does not discriminate
between OLM and INR, where experimentally OLM is weakest binder. Lower DG
for INR (−18.5 kcal/mol) in comparison to OLM (−20.0 kcal/mol) may be
attributed to the role of solvation free energy which is not accounted rigorously in
MM-PBSA methods. Variations in configurational entropy of binding from
21.8 kcal/mol to mere 2.9 kcal/mol suggest that different ligands modulate and
influence receptor flexibility in their own different way while forming complex,
highlighting importance of receptor flexibility in binding affinity prediction studies;
recently more attentions are attracted in this field.

6.3 Thermodynamic Methods

Relative binding free energy for a ligand formed by a chemical group substitution
relative to parent compound can be computed using free energy perturbation
molecular dynamics simulation [255]. This technique requires constructing a path
from parent ligand L1 to analog ligand L2, which binds to a common receptor R, in
two steps as follows. First, by carrying out a sequence of simulations in solvent and
mutating L1 to L2 through several intermediate points and adding up the free energy
changes along hypothetical intermediate points to yield free energy (say As) of
mutating L1 to L2 in solvent, then similarily, mutating the ligand L1 to L2 in the

Fig. 14 Enthalpy, configurational entropy and free energy of binding of chosen inhibitors is
shown in kcal/mol. Inhibitors are arranged in increasing experimental affinity (RTln(IC50)) order
from left to right. Enthalpy is calculated using MM-PBSA method as discussed earlier. Here,
temperature is taken to be 300 K
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binding pocket of receptor in solvent to get free energy change (say Ap). Finally,
subtracting Ap from As gives the free energy change of the binding [255]. As early
as 1985, to test the concept, it was successfully applied to calculate relative sol-
vation free energy of Cl� and Br�, and computed Helmholtz free energy
DDA (3.35 ± 0.15 kcal/mol) was shown to be in excellent agreement DDAhydr �
DDGhydr ¼ 3:3 kcal=mol with experimental value [256]. Further, the applicability
of the method was extended to non-trivial systems, e.g., amino acids and their side
chains, nucleic acid bases, and other small organic molecules; computed solvation
free energies of these molecules are found to be in agreement with experiment [257,
258].

Relative free energy or potential of mean force (pmf, w rcð Þ)-based methods
relate it to the distribution of a chosen reaction coordinate rcð Þ, the direct sampling
along rc, and constructing its distribution function g rcð Þ. The distribution function
of reaction coordinate g rcð Þ can be related to pmf w rcð Þð Þ as

w rcð Þ ¼ �kBT ln g rcð Þþ constant ð5Þ

However, barrier on the w rcð Þ can limit the sampling thereby the estimated pmf.
Therefore, techniques like Umbrella sampling and Importance Sampling were
introduced. But, choosing the right biasing function and ability to verify the ade-
quacy of sampling for simulation widow is still challenging. A brief review of these
methods is presented by Jorgensen et al. [259]. Statistical perturbation theory
(SPT)-based methods which estimate free energy difference between systems i and
j are related to the average of function of energy difference between systems i and
j where sampling is based on system i [259]. Authors summarized several appli-
cations of SPT-based methods, e.g., for relative solvation free energy, relative pKa

values, study of solvent effect on conformational equilibria, study of binding and
molecular recognition, and study of reactions in solvent [259]. The computational
cost of carrying out SPT-based calculations inspired cost-effective semi-empirical
methods using MD simulation samples for binding free energy calculation [260].
Aqvist et al. divided the binding free energy in two independent components
electrostatic and non-polar, where electrostatic component DGel

solv was taken to be
half of the solvent–ion interaction energy [260]. For non-polar component, linearity
between solvent size sigma and non-polar van der Waals energy and corresponding
solvation energy, empirical parameter a was derived to relate vdW component of
solvation free energy DGvdW

solv with average of vdW component of interaction
potential for transferring ligand from binding site (i) to solvent (s) given by
DGvdW

solv ¼ a DVvdW
i!s

� �
to yield expression for binding free energy [260] as:

DGbind ¼ 1=2: Vel
i!s

� �þ a VvdW
i!s

� �
. This new semi-empirical method was tested on

aspartic protease endothiapepsin and five small-molecule inhibitors with one as
reference for which binding data and also crystal structure were available. It was
reported that predicted relative binding free energy has mean unsigned error of
0.39 kcal/mol with highest for one of five inhibitors being 0.53 kcal/mol with
parameter a = 0.161 [260]. Application of such methods in details was discussed
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by Warshel and co-workers who have systematically examined performance of
protein dipoles Langevin dipoles (PDLD) and other techniques using phosphoryl-
choline analogs binding to murine myeloma protein (McPC603) [261].

7 Molecular Recognition and Brownian Dynamics

As earlier discussed diffusional encounter of reacting substrates is the prerequisite
for the binding interaction to happen [153]. Diffusional encounter is basically
controlled by the long-range electrostatic interaction between participating chemical
species [262]. Generally, the timescale of such encounter is from micro- to mil-
lisecond, which is tough to achieve with existing hardware technologies using
molecular dynamics even for small- to moderate-sized biomolecules [263].
Therefore, simplified coarse-grained models of biomolecules can be simulated
using Langevin dynamics and Brownian dynamics [262]. Brownian dynamics has
been successfully applied to study ion permeations through ion channels [264] and
enzymatic reactions [265]. However, to gain kinetic insight into receptor–ligand
recognition, BD can be utilized [266–269], but BD being computationally very
expensive is practically challenging [263]. This has called for alternate methods
with simplistic approaches to study recognition process.

Supervised molecular dynamics (SuMD), a tabu-like search algorithm, aims to
predict the pose of the ligand in the binding site of its cognate receptor, monitoring
ligand-binding site distance along a series of short MD simulation has been pro-
posed [225]. SuMD has been successfully applied to study a variety of molecular
recognition processes [270–272]. In particular, Moro and co-workers applied to
study molecular recognition process of four globular receptor–ligand systems and
two transmembrane receptor ligand systems; in all these cases, experimental crystal
structures and binding affinity values (IC50, Ki or Kd) were already known [271]. In
the study, it is observed that using SuMD, binding from unbound state (where
ligand is placed at >30–50 Å away from binding site) of above ligands to their
cognate receptor can be simulated; moreover, various interaction hot spots (meta-
stable states) during recognition are possible to explore, which may be important in
providing insight into kinetics of the recognition process, hence better designing of
ligand [271]. In another study, the effect of allosteric modulator LUF6000 on
adenosine binding with A3 adenosine receptor (A3AR) was reported. In this study,
recognition of allosteric modulator LUF6000 to A3AR and adenosine to A3AR in
presence and absence of LUF6000 was studied using SuMD. It is observed that
adenosine visited a metastable site between helices EL3 and EL2, participating in
hydrogen bonds with Val259 and Gln261, and it triggers an orientation change in
adenosine mediated through hydrophobic interactions before occupying the binding
site [270]. In future, such techniques along with Free Energy perturbation method
will provide more accurate estimation of free energy binding of ligands to receptors
which will include the flexibility of both partners.
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8 Ligand Becomes Drug!

Drug research encompasses by various pipelines to achieve common goal, i.e., new
therapeutic molecules. After the successful identification of the novel ligand or lead
molecules by either computational or medicinal chemistry approach, each molecule
must be characterized for absorption, distribution, metabolism, excretion, and
toxicity (ADME-Tox) properties along with pharmacokinetic/pharmacodynamic
(PK/PD) activity that decides the success rate of the drug [273, 274]. Evaluation of
these properties belongs to the pre-clinical stage, and result of this stage decides the
advancement of novel chemical entity (NCE) to clinical stage. Failure of the drug is
dependent on the targeted therapeutic area; comparatively drug targeted to car-
diovascular has maximum chance of success than CNS targeted [261]. So, suc-
cessful candidates have to fulfill the essential criteria of potency, selectivity, oral
bioavailability, therapeutic efficacy, along with an acceptable side effect profile
[275]. Testing of thousands of leads molecules, found to be active against any
disease, requires huge amount of money and time, and also it is not always easy to
perform every test [276]. Understanding from the already prescribed drugs and
knowledge from the failure rate during the different clinical stages has provided
directions and specified various properties of chemicals which can be utilized to
assess the lead molecules before performing costly and complex clinical tests [277].

Detailed information about ADME-Tox and its role in successful drug design is
reviewed and available in many recent literatures [273, 278, 279]; however, major
application of these properties is related to reduction in clinical drug failures from
40 to 10% [280]. This reduction has been seen with the advancement in the
chemoinformatics and computational application in drug development process. As
mentioned in the ligand design libraries, various physiochemical properties based
on rules have been set to develop the lead-like and drug-like libraries to screen
[281–284]. Along with these filters, for further libraries optimization filters like Pan
Assay Interference Compounds (PAINS) and ALARM-NMR have been developed
to remove known toxicophores or metabolically liable moieties which can interfere
with the assay protocol [285, 286].

9 Summary

In this review, we have summarized many methods related to structure of receptor,
characterization of active sites and subsites, binding affinity calculations, docking
with specific poses, ranking chemicals and elucidated existing challenges in these
methods. In spite of many mathematically and computationally elegant tools to
understand and perform efficiently docking and scoring for large number of com-
pounds, the success of identifying novel inhibitor of infectious disease and chal-
lenges thereof is still significantly high. Some of the solutions are already evident
but many are yet to find. Still to ponder, how to estimate efficiently the effect of
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ions, pH dependency, and Brownian dynamics, which are playing significant role in
Free energy of binding to receptor. Many relevant receptors are not crystallized yet,
it is clearly evident that, errors occurring in in silico model structure and plurality of
interactions with the binding site play a dominant role in correctly identify any
novel inhibitor. Prior knowledge of physico-chemical interactions at active site and
the functional importance of interacting residues influence the pose of binding of
inhibitors to flexible receptors. A prior knowledge about the mechanism of binding
provides lead towards the accuracy and effective binding of docked ligand. Flexible
peptides derived structures provide higher affinity and in future, emerging field of
study will be designing of such restrained chemicals driven by highly active pep-
tides. Free energy estimation, rather than scoring (however accurate it may be),
provides better designing capability. Knowledge of mechanism of inhibition is
mandatory for innovation of novel chemical structure to lead the drug design, even
in dominant era of artificial intelligence.

In conclusion, we have attempted to highlight the existing challenges in esti-
mating the ligand receptor binding and critically inspect the methods applied day in
and day out in the field of structure-based drug design. Summarization of tools and
case studies are not the scope of the review. Most important aspect is that this field
evolved largely using efficient algorithm and computational tools, however, effec-
tive use requires more indulgence of chemistry and biology, in future to progress
successfully.
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