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Abstract A newly developed drug discovery method composed of graph theo-
retical approaches for generating structures combinatorially from an activity-related
root vertex, prediction of activity using topological distance-based vertex index and
a rule-based algorithm and prioritization of putative active compounds using a
newly defined Molecular Priority Score (MPS) has been described in this chapter.
The rule-based method is also used for identifying suitable activity-related vertices
(atoms) present in the active compounds of a data set, and identified vertex is used
for combinatorial generation of structures. An algorithm has also been described for
identifying suitable training set–test set splits (combinations) for a given data set
since getting a suitable training set is of utmost importance for getting acceptable
activity prediction. The method has also been used, to our knowledge for the first
time, for matching and searching rooted trees and sub-trees in the compounds of a
data set to discover novel drug candidates. The performance of different modules of
the proposed method has been investigated by considering two different series
of bioactive compounds: (1) convulsant and anticonvulsant barbiturates and
(2) nucleoside analogues with their activities against HIV and a data set of 3779
potential antitubercular compounds. While activity prediction, compound prioriti-
zation and structure generation studies have been carried out for barbiturates and
nucleoside analogues, activity-related tree–sub-tree searching in the said data set
has been carried for screening potential antitubercular compounds. All the results
show a high level of success rate. The possible relation of this work with scaffold
hopping and inverse quantitative structure–activity relationship (iQSAR) problem
has also been discussed. This newly developed method seems to hold promise for
discovering novel therapeutic candidates.
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Abbreviations

QSAR Quantitative structure–activity relationship
iQSAR Inverse quantitative structure–activity relationship
vHTS Virtual high-throughput screening
MIC Minimum inhibitory concentration
Mtb Mycobacterium tuberculosis
AAE Acid alkyl ester
NA Nucleoside analogue
HIV Human immunodeficiency virus
MPS Molecular Priority Score
ARL Active range length
ARW Active range weight
ARV Active range value
MAI Molecular activity index
IRL Inactive range length
IRW Inactive range weight
IRV Inactive range value
MDI Molecular de-activity index
SMILES Simplified molecular-input line-entry system
MOL file Molecular structural information file

1 Introduction

Exploring chemical space to discover a compound that elicits a desired pharma-
cologic response without undesired side effect is like searching a needle in a
haystack problem. The problem arises because we seek to screen a limited subset
that exists among many compounds that elicit a desired pharmacologic response.
Different approaches have therefore evolved to make the problem tractable, namely
effective use of macromolecular target information, if available, use synthesis
tractability of the compounds as guidance, and most importantly, the pharmaco-
logical relevance of the compounds selected. While modern advances like targeted
library search or chemogenomics have helped in bringing focus to the drug can-
didate search, the utility of drug candidate search using serendipity-based approa-
ches has not diminished in face of increasing burden of drug resistance and adverse
side effects. These problems may possibly be addressed by discovering novel
compounds using new drug discovery methods. One of such a new line of thinking
has been proposed by Ruddigkeit et al. [1] who have considered all possible
compounds having 17 atoms taken from C, N, O, S and halogens to create a
database of several billions of compounds. It is tempting to believe that such an
effort of discovering novel drug molecules from such a huge collection of com-
pounds can be useful. However, a method that enables searching of potential drug
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candidates from a relatively smaller set of compounds, quite exhaustive at the same
time within given limits, activity linked and rationally guided too may help drug
discovery more effectively.

Among the current drug discovery methods, data modelling and quantitative–
qualitative prediction of activity [2–4], use of molecular docking methods and
scoring functions for virtual high-throughput screening (vHTS) [5] and 3D quanti-
tative structure–activity relationship (QSAR) studies [6] are some of the most used
ones. At the same time, combinatorial generation of chemical compounds is also
carried out since it increases the possibility of finding novel drug molecules from a
large number of chemically diverse compounds generated particularly for the need of
making scaffold hopping [7]. It also provides the opportunity to search for com-
pounds having diverse structural characteristics which in turn may help decipher the
role of molecular components which may be responsible for the biological activities
of new drug molecules, particularly in situations where novel therapeutic candidates
are sought for to handle the challenges arising out of drug resistance problem [8].

So far generating molecular structures are concerned, molecular topology-based
approaches are in use for generating and designing molecular structures [9, 10] and
graph theory [11] and graph theoretical methods [12] have been suitably used for
doing that. However, in general these methods are used for generating structures
combinatorially [10] with no connection to their biological activities and a separate
method has to be used for the prediction of molecular properties and activities. It
appears, therefore, that a method that generates a large number of compounds
combinatorially and gets linked to their activities at the same time may be more
efficient in designing and discovering novel drug molecules. In particular, topo-
logical molecular descriptors [2] can be useful in this regard. Moreover, if this is
done using a single molecular (structural/substructural) descriptor, the process may
also be looked upon from inverse QSAR (iQSAR) point of view [13] since the basic
idea of doing iQSAR studies is to get molecular structures back from molecular
descriptor which has been used for activity prediction. In this context, it seems
reasonable to explore whether a method can be developed that is integrated in such
a way that it can be used for generating structures combinatorially that would have
molecules of diverse scaffold from a single molecular topological descriptor , can
be used for predicting molecular properties/activities and can be used for compound
prioritization and screening to help discover potential drug candidates.

So, the first question that may be asked in developing such an integrated method
is: Can we have a method such that structures can be generated combinatorially
from structural or substructural information that is already related to activity? In this
regard, there are two primary aspects in designing potential bioactive compounds
from activity-related substructural information—(1) identification of activity-related
vertices using a suitable method; (2) a method that can be used for structure
generation using topological information associated with such vertices. One of the
most useful activity-related substructure identification method was proposed by
Klopman [14] where molecular fragments of different length are identified from
active and inactive compounds, and the fragments are weighed on the basis of the
number of fragments obtained from active and inactive compounds using a suitable
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measure to assess their usefulness in predicting activities and mathematical–sta-
tistical methods are used to do that. However, no structure generation method is
used for this work [14].

In this chapter, we have described in detail a graph theory-based method,
developed recently by our research group [15], for combinatorial generation of
chemical structures from activity-related substructural topological information. This
approach [15] has been found to be useful in generating structures of active anti-
tubercular compounds from activity-related vertices of the molecular graphs repre-
senting different other active antitubercular compounds. For developing the present
method [15], we have leveraged primarily a non-isomorphic rooted tree generation
algorithm [16] and a cycle enumeration method [17] to design novel bioactive
compounds in the form of reconstructed molecular graph as outlined earlier [18, 19].
In the proposed integrated method, activity-related vertices are first identified by
using the rule-based method [18, 19] where topological distance-based vertex
indices are used as local molecular descriptors in data sets having the biological
activities of interest. Once the activity-related vertices are identified, a suitable vertex
is taken for structure generation using the distance distribution associated with the
vertex which gives the topological distances of all the vertices in molecular graph
from that vertex (say, the root vertex). A large number of rooted trees are thus
generated de novo [15]. Subsequently, 2D molecular structures containing cycles of
different size are created by joining vertices of the tree graphs. In this way, all the
generated structures contain this activity-related substructure, and therefore, there is
a possibility that some of generated structures may be classified as active.
Furthermore, to get complete 2D structures of the compounds, user-defined
parameters are used to add multiplicity of bonds (e.g. double and triple bonds)
between pairs of vertices and add chemical nature of the atoms (nitrogen, oxygen,
etc.) represented by the vertices. Canonicalization is used to identify unique struc-
tures which are further used for screening of potential active compounds.

It may be noted that scaffold hopping [7] is embedded in the method since the
generated structures are different from the starting compound and are expected to
have diverse topological architecture. Also, since both compound generation and
activity prediction are done using the same vertex index (substructural/local de-
scriptor), the method may also be regarded as an attempt to address the inverse
quantitative structure–activity relationship (iQSAR) problem [13] in its integrated
framework. Furthermore, in order to relax the condition for structure generation
from distance distribution as outlined earlier [18, 19] and to make it more flexible,
we have developed an algorithm for generating sub-trees by adding or deleting
vertices from the tree structures generated on the basis of a given distance distri-
bution associated with an activity-related vertex. To our knowledge, this is the first
time that a method [15] has been developed and used for drug discovery through
database searching using rooted tree and sub-tree matching algorithms.

The method has already been used to investigate its usefulness for a series of 41
acid alkyl ester (AAE) derivatives and three known antitubercular drugs [15]. In
this chapter, we have furnished new results obtained for a series of 19 convulsant
and anticonvulsant barbiturates [18], 20 nucleoside analogues (NA) for their
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activities against HIV [20, 21], and a data set of 3779 compounds (named GTB data
set) for which minimum inhibitory concentration (MIC) values have been measured
against H37Rv strain of Mycobacterium tuberculosis (Mtb) [22]. The GTB data set
may be obtained from the link [23] given in the reference section. The results
described here will therefore substantiate the findings obtained earlier [15].
Regarding activity prediction, results have been reported for NA and barbiturate
data sets. For barbiturates data set, we have considered the same training set and test
set as used in an earlier study [18]. However, for the NA data set, we have identified
a reasonably well-performing training set–test set split and have reported the results
for individual compounds present in that split. For prioritization of the generated
active compounds that help screen potential active compounds, Molecular Priority
Score (MPS) [15] has also been used and the results obtained for NA and barbi-
turate series of compounds have been given in the tables alongside their activity
prediction results. We have carried out combinatorial generation of structures using
topological distance-based substructural information associated with identified
activity-related vertices (atoms) in some compounds of the data set. We have been
able to reconstruct the structures of active NA and barbiturate compounds from the
substructural information associated with activity-related vertices of other active
NA and barbiturate compounds. Regarding substructure searching exercise, we
have reported identified potential active compounds from GTB data set [22, 23]
considering activity-related atoms (vertices) in the structures of Isoniazid and
Streptomycin, both of which are known antitubercular drugs in use.

It appears from the outcome of the results that the integrated method would find a
place as a useful drug discovery tool for designing and discovering novel bioactive
compounds. In particular, the method is believed to be of much help in situations
where novel drug candidates having very different structural characteristics/scaffolds
are sought for particularly to overcome the drug resistance problem.

2 Methods

In this section, we have described in detail different mathematical approaches/tools
which have been used to develop the present integrated drug discovery method and
the related computer programs. Examples with tables and figures have been used to
illustrate underlying concepts of the methods used. While we have leveraged few
existing mathematical aspects for the present purpose, we have introduced some
new algorithms as well.

2.1 Computation of Vertex Index

Let G be the carbon skeleton of n-butane and D Gð Þ, the corresponding distance
matrix is shown in Fig. 1. Computation of D�4 indices for the vertices of D(G) has
been illustrated below.

Combinatorial Drug Discovery from Activity-Related Substructure … 75



Therefore, D�4 index for the four vertices vi, i ¼ 1; 2; . . .; 4 of G may be
computed as:

D�4 v1ð Þ ¼ 1�4 þ 2�4 þ 3�4 ¼ 1:0749

D�4 v2ð Þ ¼ 1�4 þ 1�4 þ 2�4 ¼ 2:0625

D�4 v3ð Þ ¼ 1�4 þ 1�4 þ 2�4 ¼ 2:0625

D�4 v4ð Þ ¼ 1�4 þ 2�4 þ 3�4 ¼ 1:0749

One can, therefore, compute the values of D�4 index for all the atoms (vertices) of
all the compounds (molecular graphs) in a data set considering the molecular graphs
(hydrogen-suppressed or hydrogen-filled) of the compounds. Hydrogen-suppressed
graphs may be considered for generating structures from the distance distribution
associated with a vertex since structure generation using information about the
vertices of hydrogen-filled graphs may pose computational bottlenecks during the
process because of a large number of structures that are usually generated in this
way. Moreover, if chemical information of the vertices is provided, one can always
create the hydrogen-filled graphs from the corresponding hydrogen-suppressed
graphs.

2.2 Rule-Based Activity Prediction

In order to carry out activity prediction studies using the present method, a data set
containing both active and inactive compounds for a biological endpoint of interest
is gathered. The data set is then divided suitably into a training set and a test set.
The biological activities of the compounds are then predicted for both the training
set and the test set using a rule-based system [18, 19]. In order to make the activity
prediction, ranges of vertex index values coming from active and inactive

G:     ●1-●2-●3-●4

D(G):
1 2 3 4

1 0 1 2 3
2 1 0 1 2
3 2 1 0 1
4 3 2 1 0

Fig. 1 Graph G representing
vertex labelled carbon
skeleton of n-butane and the
corresponding topological
distance matrix D Gð Þ
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compounds are first found out using some rules [18, 19] and the activity is predicted
on the basis of the number of vertex index values falling in these ranges as defined
in the rule-based system [18, 19]. For the present purpose, the values of vertex
index D�4 are computed for the vertices of the training set compounds (molecular
graphs). Once the indices are computed, they are arranged in an ascending order
and ranges of values coming from both active and inactive compounds are found in
the ordering and are tagged as “Active” and “Inactive” ranges by applying certain
rules [18, 19] given below:

1. Three or more consecutive vertex index values coming exclusively from
active compounds and exclusively from inactive compounds are said to
form an “active range” and an “inactive range”, respectively. However, at
least three index values in a range have to be distinct if they come from the
same compound and at least two index values in a range have to be
distinct if they come from different compounds.

2. Some single vertex index value coming from both active and inactive
compounds is not considered to form an “active range” or “an inactive
range” by itself or along with other vertex index values unless two-thirds
of that single vertex index comes from active compounds or inactive
compounds, respectively.

It has been discussed earlier [24] in connection with identifying ranges that the
vertices which correspond to the vertex index values forming active ranges may be
regarded as topological features responsible for making the compounds active. In
other words, they may be regarded as a set of features forming “Topological
Biophore ” which are responsible for exhibiting a given biological activity of the
compound under consideration. From this point of view, it may be said that if the
index values of some (or, all) of the vertices of a compound fall in active ranges,
then those vertices may be regarded as forming certain topological biophore which
make the compound active. Presumably, some of the vertex index values of a
compound may fall in inactive ranges as well. Thus, in order to predict activity from
the occurrences of the vertex index values in active and inactive ranges, another set
of rules [18, 19], given below, are applied:

A compound is predicted “ACTIVE” if all or some of its vertices fall:

1. Only in active ranges or
2. In both active and inactive ranges, the number of index values falling in

active ranges is greater than those falling in inactive ranges.

Otherwise, the compound is predicted “inactive”.
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In order to use this rule-based system for activity prediction, a set of bioactive
compounds with known activities (e.g. experimentally determined activities) have
to be collected (from the literature or an experimental laboratory). A training set is
then formed by picking up compounds from the data set suitably to train the system
to learn the structural requirement for a compound to be active. A fewer number of
compounds are also kept for testing purposes (test set). Once the training is done,
activity predictions for both training set compounds (retrofit studies) and test set
compounds are carried out. For predicting the activities of the test set compounds,
the D�4 index values for the test set compounds are computed. If the system is
found to produce high (acceptable) percentage of correct activity predictions for
both the training set and the test set compounds along with none or very few
(acceptable) wrong activity predictions, it may be regarded as standardized for the
prediction of activity of chemical compounds for the biological endpoint for which
the system is standardized.

2.3 Training Set–Test Set Split

It is always important that a suitable training set be obtained from a data set of
bioactive compounds such that the structural characteristics of the compounds,
present in the data set, is reflected in the training set, and the learning of the (expert)
system/prediction tool is as adequate as possible for getting useful activity pre-
dictions by the method used in this purpose. In general, researchers look for the
diversity present in the structures in creating a training set from a given data set.
Presumably, some intuition or expertise of the drug designer/medicinal chemist
may be required to do that or some mathematical diversity analysis may be carried
out in obtaining a suitable training set. However, it appears that generating a large
number (e.g. 1000) of training set–test set splits (combinations) and reporting the
successful predictions of all or some (e.g. top 20, 25) of the best-predicting splits
for a given data set of bioactive compounds would be a very straightforward and
useful approach for identifying a suitable training set. Having obtained various top
performing splits, one can select a suitable split that gives high percentage of
successful predictions for both training set and test set and obtains activity pre-
diction for the compounds present in both the sets. Although such splits have been
used [24, 25] for evaluating the performance of vertex indices and a rule-based
method for activity prediction [18, 19] considering small and large data sets, no
algorithm is available to report the activity predictions for different splits. We have
incorporated this algorithm in the program for reporting the outcome of activity
predictions for different splits so that one can consider a suitable split for further
work such as structure generation. This can be done for both quantitative data and
qualitative data (active–inactive type). It may also be noted that the computer
program can be used for the identification of training set–test set splits and activity
predictions by considering both hydrogen-filled (H-filled) and hydrogen-suppressed
(H-suppressed) molecular graphs of the compounds under consideration.

78 Md.I. H. Rizvi et al.



2.4 Compound Prioritization

The present method [15] also contains a section that can be used for prioritization
of potentially active compounds. This may be particularly useful for screening few
highly active compounds from a big database, e.g. from a set of combinatorially
generated compounds (described in the next section). This method is based on
some of the characteristics of active and inactive ranges found in the ordering of
vertex index values. Therefore, one has to look into some details of such ranges. In
doing that, two factors may be given special attention—(1) the number of vertex
index values in an active range (active range length: ARL); (2) the number of
compounds contributing to form the range (active range weight: ARW ). By
applying one’s intuition too, it becomes apparent that a joint effect of these two
factors may help prioritize predicted active compounds. Therefore, we first propose
a measure, active range value (ARV), as the algebraic sum of ARL and ARW values
given by:

ARV ¼ ARLþARWð Þ ð1Þ

Clearly, a range larger in length and contributed by more number of compounds in
forming the range would have higher ARV value. We define such a range of higher
ARV value a “STRONGER” range compared to those which have lower ARV
values. Now, let us assume that M out of N vertices of a molecular graph
G (representing a chemical compound) have fallen in different active ranges. If the
vertices are denoted by v1; v2; . . .; vM , one would getM number of ARV measures as
ARV v1ð Þ;ARV v2ð Þ; . . .;ARV vMð Þ. In order to get a measure of the contribution of
the vertices falling in different active ranges (i.e. contribution of activity-related
vertices), we further propose a molecular activity index (MAI) as:

MAI Gð Þ ¼
XM
i¼1

ARV við Þ ð2Þ

It may also be noted that while considering the length of an active range and the
number of compounds contributing to form the range, some single values that come
from both active and inactive compounds are taken into account since they are part
of the active range according to the second rule of range selection mentioned
earlier.

At the same time, there is a possibility that some of the vertex indices of
molecular graph G may fall in inactive ranges too (the second rule for activity
prediction) and that may be considered to pose a negative effect on the activity of
the compound. For the prediction purpose, therefore, vertices falling in inactive
ranges have to be considered. For doing that, let us assume that M0 vertices of G,
viz. u1; u2; . . .; uM0 fall in inactive ranges. We, thus, propose a measure, molecular
de-activity index (MDI) for G and it may be defined as:
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MDI Gð Þ ¼
XM0

j¼1

IRV uj
� � ð3Þ

In Eq. 3, IRV stands for inactive range value and is the sum of IRL (inactive range
length) and IRW (inactive range weight) which is in line with the definitions used
for such measures of active ranges. Computation of IRV can be done using Eq. (4)
given below:

IRV ¼ IRLþ IRWð Þ ð4Þ

Therefore, by considering a combined effect ofMAI andMDI, one can prioritize the
newly generated active compounds and curate some high-ranking compounds for
further studies. Thus, in order to get a measure of combined effect of the vertices
falling in active ranges and inactive ranges (if any) and prioritizing (ranking) the
compounds according to their activities, we propose a measure, Molecular Priority
Score (MPS), for G and it may be computed using Eq. (5):

MPS Gð Þ ¼ MAI Gð Þ �MDI Gð Þ ð5Þ

Considering MPS value as a measure for prioritization of active compounds, a
compound with higher MPS value will occupy a higher position in the ranking.
Therefore, a compound may be regarded as more active if it gets higher MPS value.
This will then help screen some top-ranking compounds. However, ranking of
active compounds using MPS is not mandatory. One may always wish to consider
all the predicted active compounds for further studies particularly if the number of
highly ranked compounds (in terms of MPS value) is very small. At the same time,
there is no need to prioritize those compounds which are predicted inactive since
the idea is to screen potentially highly active compounds for a given biological
endpoint.

2.5 Combinatorial Structure Generation from Root Vertex

In developing the structure generation method, we have used an algorithm for
generating rooted trees [16] which have been extended to the generation of cyclic
compounds and finally a complete 2D structure of chemical compounds. The
structure generation exercise starts off as generating all possible canonical trees for
any given number of vertices. Subsequently, topological distance restriction on the
generated tree structures is used to filter and keep only those trees having a desired
distance distribution. Further, for the application of relaxed distance criteria for
compound structures having increased or decreased number of vertices
(non-hydrogen atoms), the matching criteria of distance distribution have been
suitably changed to accommodate the addition, deletion and migration of the
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vertices over the tree structures with exact distance restriction. The theories and
implementation details are described in the following subsections.

2.5.1 Structure for a Given Distance Distribution

A molecular graph represents topological connections between the atoms of the
molecules. A spanning tree of the graph can provide the basic skeleton over which
additional edges can be inserted to introduce cycles and thereby produce the entire
molecular structure. The multiplicity of bonds can be considered as edge weights
and can be dealt by assigning weights 1, 2 and 3 for single, double and triple bonds,
respectively. Similarly, heterogeneous atoms, with their valency information, can
also be introduced as nodes, which are by default considered to be carbon atoms in
our discussions.

It is clear from above that the starting point of structure generation for a given
number of vertices (atoms) is the generation of rooted trees since the structure
generation will be carried out with respect to a particular atom in a molecule in our
current approach based on topological distances from a particular vertex. Moreover,
to prevent duplicate structures, only non-isomorphic trees should be generated.

For the purpose of illustration, consider the chemical structure and the corre-
sponding graphical and tree representation as shown in Fig. 2.

The numbering of vertices has no structural significance apart from that it is done
to obtain the rightmost tree having node 1 as the root and pre-order numbering for
the other vertices and is merely for array representation of the tree structure. The
tree can be represented by the following parent and level array representations:

parent ¼ 0; 1; 2; 3; 1; 5; 5½ � level ¼ 1; 2; 3; 4; 2; 3; 3½ �

where for a given vertex i, parent i½ � ¼ j means vertex j is the parent of vertex
i except for root vertex 1 having no parent vertex and is represented by 0 as its
parent. Similarly, for a vertex i, level i½ � ¼ j means vertex i is at level j, where root
vertex 1 has a level 1 and other vertices have level one greater than the level of its
parent vertex. The root vertex can sometimes be considered to have level 0 and the
levels of the subsequent vertices follow.

With the illustrated example and the terms introduced in consideration, the
different steps in structure generation are explained in the following points:

Fig. 2 Graph and tree illustration
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(a) Non-isomorphic canonical tree generation:

Beyer and Hedetniemi [16] have proposed an iterative algorithm to reverse lexi-
cographically generate non-isomorphic canonical trees for a given number of ver-
tices. The algorithm achieves this transformation through a successor function
defined below.

Let L Tð Þ ¼ l1l2. . .ln½ � be a level sequence containing an element greater than 2.
Let p be the rightmost position of such an element, i.e. p ¼ maxfi : li [ 2g. Let
q be defined as the rightmost position preceding p such that lq ¼ lp � 1, i.e.
q ¼ maxfi : i\p; li ¼ lp � 1g. Hence, the vertex corresponding to position q is the
parent of vertex corresponding to position p. Then the successor of L Tð Þ, i.e.
succ L Tð Þð Þ ¼ s1s2. . .sn½ � is defined such that:

(i) si ¼ li for 1� i\p
(ii) si ¼ si� p�qð Þ for p� i� n:

The algorithm can be used successively generating all the non-isomorphic
canonical level representation of trees from a provided starting level sequence to the

last possible reverse lexicographic sequence, i.e. 1; 2; 2. . .2|fflfflfflffl{zfflfflfflffl}
n�1 times

2
4

3
5. If no starting level

sequence can be provided, the algorithm can start with the lexicographically largest
sequence 1; 2; 3. . .n½ �.

The trees generated by the aforementioned algorithm can in general have any
number of children for any parent vertex. In context of chemical structures of
carbon atoms, only those trees are being filtered and kept where the root has at most
four children and the rest of the vertices have at most three children. This restriction
can later be further refined for hetero-atoms in accordance with their valency.

(b) Cycle introduction by addition of edges:

The generated rooted trees are graphical models of acyclic compound structures.
Cycles can be introduced by adding edges between any two vertices, say i and j,
such that:

parent i½ � 6¼ j and parent j½ � 6¼ i

The size or the number of sides in the cycle so introduced can be obtained by the
following relation:

num cycle sides ¼ level i½ � þ level j½ �
� 2 � level lowest common anscester i; jð Þ½ � þ 1

In general, cycles of size 3 onwards will be possible. For more than one cycles to be
introduced, a combination of these identified edge introductions can be simulta-
neously carried out.
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However, introduction of multiple edges may lead to fused or bridged cycles and
the size of cycle may become different than intended. Consider the case of starting
structure generation from the tree in Fig. 2. If it is required to have two cycles
which can have size 5, or 6, it can be seen (Fig. 3) that the edge introductions
between vertices 3 and 6 and vertices 4 and 6 individually satisfy the size criteria,
but in combination, they inadvertently lead to having a 3-sided cycle.

On the other hand, edge introductions between vertices 3 and 7 and vertices 4
and 6 satisfy the size criteria individually as well as in combination (Fig. 4).

Thus, in order to detect and remove cases similar to the first multiple intro-
ductions discussed before, it will be required to check the cycle size validity criteria
considering all the elementary cycles, e.g. in the case being considered of multiple
edge introductions, the elementary cycles present are C1 (1–2–3–6–5–1), C2 (1–2–
3–4–6–5–1) and C3 (3–4–6–3), having sizes 5, 6 and 3, respectively, even though
the intended cycles were only C1 and C2. In graph theoretical terms, C1 and C2 are
the fundamental sets of cycles while C3 is a derived cycle. The term elementary
cycles here has the standard graph theoretical definition, and from now on, the term
cycle is considered to be an elementary cycle unless stated otherwise.

It will thus suffice to identify the fundamental set of cycles corresponding to the
smallest sizes. The starting fundamental set of cycles corresponds to the cycles
directly resulting from edge introductions. Any cycle enumeration algorithm can
then be used to enumerate all the cycles present. We have considered the algorithm
by Gibbs [17] which is a cycle vector space method in which the cycles of the
fundamental set form the basis of the cycle vector space. With this vector space

Fig. 3 Multiple cycle introduction example (1)

Fig. 4 Multiple cycle introduction example (2)

Combinatorial Drug Discovery from Activity-Related Substructure … 83



construct, one cycle, say C3, can be obtained from two other cycles, say C1 and C2

from the previous example by a symmetric cycle-plus operation � defined below:
Let an edge between vertices i and j be denoted by eij. Let a cycle be denoted by

the set of all such edges present in the cycle. Then for any two cycles A and B, the
result of cycle-plus operation is:

A� B ¼ eijjeij 2 A[B; eij 62 A\B
� � ¼ A[Bð Þn A\Bð Þ

The same operation can be performed computationally faster when all the edges
present in the graph are assigned a unique number and a given cycle is represented
by a bit string where bit positions from right are set “on” corresponding to the
unique numbered edges in the cycle. The cycle-plus operation is then exactly
analogous to the bit-wise XOR (^) operation, i.e. A� B , A^B.

At this point, it is worthwhile to note that the following property, henceforth
called Property 1, of the cycle-plus operator holds, which is proved using XOR
operation on bit string representation of cycles A and B:

A� A� Bð Þ, A^ A^Bð Þ
, A^Að Þ^B By associative property

, 0^B , B

Hence, A� A� Bð Þ ¼ B Propertyð1Þ
In terms of cycles, the result of the cycle-plus operation can either be another

cycle or a union of cycles having no common edges. Thus, all the cycles present in
the graph can be obtained by linear combination of cycles taken two at a time in the
fundamental set, supplemented successively by the increasing number of cycles and
union of cycles obtained through cycle-plus operation. In the end, the entries that
supplemented the fundamental set should only be cycles and the edge disjoint union
of cycles should be removed. The final set so obtained will be the set of all cycles,
say in the considered example the final set will be {C1, C2, C3} starting from the
fundamental set {C1, C2}.

It is easy to comprehend and evident from the previous example that the final set
may contain cycles smaller in size than those in the starting fundamental set of
cycles. Moreover, as the cycles are generated by linear combination over two cycles
at any given time using cycle-plus operator and as Property (1) holds, any resultant
cycle in combination with a fundamental cycle will yield the other fundamental
cycle from which it was produced. This is to say, in previous case, C2 can be
obtained from C1 and C3.

Thus, the entire fundamental set can be changed to another fundamental set
which contains only the cycles of non-decreasing number of sides starting from the
smallest sized cycle, so that all the cycles in the final set can still be generated.
Henceforth, the term fundamental set will correspond to this newly constructed set.
It can be noted, though, that the cardinality of the fundamental set does not
get altered. In the examples considered so far, this will lead to a change of
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fundamental set from {C1, C2} to {C1, C3} while the set of all cycles will still
remain {C1, C2, C3}. This, arguably, is just an instance of change of basis in the
cycle vector space.

It will now suffice to check the sizes of the cycles in the fundamental set against
the required sizes and keep or discard the generated structure accordingly. This
decision made, considering the fundamental set only, is in accordance with the
IUPAC convention of the number of rings in polycyclic systems [26] where the
number of rings is equal to the minimum number of scissions required to convert
the system into an open chain compound or structure. Following this convention of
ring count, the example corresponding to Fig. 4 will be a valid structure against the
cycle size restriction either being 5 or 6.

(c) Removal of duplicate cyclic structures using graph canonicalization:

Although the trees generated by the algorithm given by Beyer et al. [16] are
non-isomorphic (hence distinct structures), it is easy to comprehend that intro-
duction of edges may lead to generating more than one chemical structure of same
topology. As the entire process starts with tree structure, consider the case of the
rightmost tree representation shown in Fig. 2, and two different edge introductions
for a given cycle size constraint of 6 and cycle count constraint of 1 as shown in
Fig. 5.

Although the presented example is basic in nature, the problem aggravates when
the number of nodes is fairly large and such node pairs lie in different branches,
sometimes far apart. For example, the molecules with 30 or more non-hydrogen
atoms are fairly common in organic compounds developed as pharmaceutical
entities. Moreover, even when the graph topology is uniquely fixed, the combi-
natorial imposition of node colours for imparting heterogeneity by introducing
different atoms and the imposition of multiplicity of bonds can again lead to
duplicate structures. Hence, any duplicate elimination strategy should consider the
complete graph along with heterogeneity and bond multiplicity.

In the above context, molecular graph canonicalization algorithms can be used to
identify the duplicate structures and eliminate them during generation. As we intend
to store the molecules in SMILES notation format, it has been decided to use the
algorithm proposed for generation of unique SMILES by Weininger et al. [27],
which tackles the molecular graph canonicalization by extended connectivity
through an unambiguous function using product of primes.

Fig. 5 Duplicate cyclic structures
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The algorithmic steps leading to unique SMILES generation is discussed below:

(I) Initializing Rank of the Graph Vertices—The rank initialization of the ver-
tices is achieved using combined invariants which in turns are combinations of
several individual atomic invariants. A total of 6 such atomic (node) invariants
in the order of their priority are produced below:

(i) Number of connections
(ii) Number of non-hydrogen bonds
(iii) Atomic Number
(iv) Sign of Charge
(v) Absolute Charge
(vi) Number of attached hydrogen atoms.

It may be noted that the number of invariants can be varied based on the
desired distinguishing properties [27]. The combined invariant will be the
number obtained by successively concatenating the individual invariants such
that higher priority invariants are to the left of lower priority invariants in the
decimal system. For example, a methyl carbon (CH3) in a molecule will have
the individual invariants 1, 01, 06, 0, 0, 3 listed in the order of their priority
while the combined invariant will be 10106003. The distinct combined
invariants in the molecule are then sorted and mapped to their position in
increasing order, hereafter referred to as consecutive ranks. The mapped
position becomes the initial ranks of the atoms. For example, in case of
n-Pentane, i.e. (C1–C2–C3–C4–C5), where the subscripts denote the vertex
labels, the combined invariants are 10106003–20206002–20206002–
20206002–10106003 while the initial rank is 1–2–2–2–1.

(II) Extended Connectivity through an Unambiguous Function using Product of
Primes—The initial rank will not be able to identify the vertex symmetries. In
the case of n-Pentane, vertices 2 and 4 are equivalent in terms of vertex
symmetry while vertex 3 is not equivalent to them but is still initially ranked the
same. To resolve this, rank of an atom is replaced by the result of an operation
of a given function over its neighbours. This result is a representation of
extended connectivity. A simple and elegant function is the product of primes
corresponding to the rank of the neighbouring atoms. For example, in the
n-Pentane case discussed so far, the updated rank of vertex 2 will now be prime
number corresponding to rank of vertex 1 multiplied by prime number corre-
sponding to the rank of vertex 3, i.e. 1st prime� 2nd prime ¼ 2� 3 ¼ 6, as
ranks of vertices 1 and 3 are 1 and 2, respectively. Similarly, the rank of vertex
3 will be updated to 2nd prime� 2nd prime ¼ 9. Subsequently, the revised
rank will become 3–6–9–6–3 which can be remapped to consecutive ranks 1–
2–3–2–1. This procedure of rank update is repeated and is stopped when the
updated rank for each atom of the molecule remains same as the previous rank.
It may be noted that in the end, the connectivity symmetrical vertices will be
ranked the same.
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(III) Tie Breaking—The product of corresponding primes will yield same rank for
connectivity symmetrical vertices. In such cases, the ties can be broken by
arbitrarily choosing a node corresponding to the smallest repeating rank,
doubling all the ranks and then reducing only the rank of the chosen vertex by
one. The non-consecutive ranks so obtained are then remapped to form con-
secutive ranks, and the extended connectivity procedure using product of
primes is performed to update ranks as described in the previous step. This
step of breaking ties followed by rank updates is repeated until all the ties are
broken and highest rank becomes equal to the number of vertices in the graph.
The completion of this step also marks the completion of canonicalization of
the graph.

(IV) Initial Vertex Selection and Branching Decisions for Traversal—With the
completion of graph canonicalization, the only steps required for unique
SMILES generation is depth-first traversal sequence and identification of ring
closures and their order in traversal. To start with, the lowest ranked atom is
chosen for traversal. At a branching vertex, the branches are followed in the
increasing order of the ranks of the neighbouring vertices; i.e. the branch
corresponding to the lowest ranked neighbour is traversed first, then the
second lowest ranked neighbour is followed and so on. It may be noted that
Weininger et al. [27] also suggest giving branching preference towards the
double or triple bonds in a ring even though the rank corresponding to such a
vertex may be greater than other neighbouring vertices. However, this further
complicates the final traversal sequence in the case of polycyclic compounds
while the omission of this preference will save some computation time but will
still generate unique SMILES.

V) Two-pass Approach—Although, initially, the ring closures for the compounds
are the edges that were introduced by joining vertices in the canonical trees,
those edges will not be the ring closures under the depth-first traversal approach
of the canonicalized graph and the traversal rule as given in the previous
step. Additionally, the rings are to be numbered in the opening order in which
they are encountered during traversal. In order to meet these requirements, the
graph is traversed two times. During the first pass, the ring closures and their
ordering are identified for the canonicalized graph and are stored as auxiliary
data. The edges corresponding to these new ring closures will now be treated as
if they were the edges introduced to complete the cyclic structure, while the tree
obtained by removal of such edges is treated now as the spanning tree.
Subsequently, the second pass is undertaken for SMILES string generation
using the previously obtained auxiliary data.

2.5.2 Structure for a Relaxed Distance Distribution

The approach taken so far suffers from the drawback that only those compound
structures will be generated that have the same number of non-hydrogen atoms as
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the starting molecule from which the distance distribution was obtained. This
subsection tries to tackle this drawback by slightly relaxing the distance distribution
matching criteria for the trees with number of vertices deviating from the source or
starting distribution. This deviation can either lead to increased or decreased
number of vertices.

(a) Non-Isomorphic Canonical Tree Generation with Relaxed Distance
Distribution

The first step involves specifying the number of vertices (after factoring in the
deviation) and then generating the trees. Positive deviation means required number
of vertices is greater than that in the current tree while negative deviation means the
required number of vertices is lesser. However, since exact distance distribution
matching is not possible in this case, two variants of relaxed distribution matching
are considered as explained below:

Strong matching—This situation arises when the distance distribution of the
generated tree can be obtained from the starting/source distance distribution by
either adding or deleting vertices at any level (named node deviation) although
simultaneous insertion or deletion of vertices is not allowed for a given deviation. In
essence, the obtained distance distribution corresponds to a pruned tree of the
source distance distribution if the node deviation is negative and vice versa if the
node deviation is positive.

Thus, to put it mathematically, if trees are to be generated by decreasing or
increasing n number of vertices, then only n deletions or insertions are allowed so
that:

Xe

i¼1

csi � cpi
� ������

����� ¼ n

where csi is the count of vertices at level i in the source distance distribution; cpi is
the count of vertices at level i in the present distance distribution under consider-
ation; and e is the maximum of the eccentricity of the source and present distance
distribution.

Weak matching—In this case, the distance distribution matching criteria is fur-
ther relaxed in that one can add and delete vertices simultaneously at any level.
This, in effect, executes migration of vertices from one level to another (named
node migration). If this is allowed without a cap on the number of node migrations,
then all the possible structure generation will be considered a match which will
include the linear chain too. Presumably, in order to match the source distance
distribution closely using weak matching criterion, number of allowed node
migrations should be provided preferably of low value.

For this exercise, if the trees are to be obtained by decreasing or increasing
n number of vertices, then n deletions or insertions along with m migrations are
allowed that satisfies the following criteria:
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Xe

i¼1

csi � cpi
� ������

����� ¼ n

and

min mp; mn
� � ¼ m

where

mp ¼
Xe

i¼1

max csi � cpi
� �

; 0
� �

mn ¼
Xe

i¼1

min csi � cpi
� �

; 0
� ������

�����

Here csi , c
p
i and e have the same meaning as defined in the case of strong

matching while mp is the sum of vertex surplus and mn is the sum of vertex deficit
in the source distance distribution over the present distance distribution.

The procedure of cycle introduction, canonicalization and unique SMILES
notation generation is the same as done before.

Now, once the structures are generated using the methods described above, one
can use some user-defined parameters incorporated in the computer program to
restrict the number and size of the cycles to be created in the 2D structures. Few
other user-defined parameters, available in the program, may also be used to add
multiplicity of bonds (double and triple bonds) between pairs of vertices and other
hetero-atoms (e.g. nitrogen, oxygen, halogens) in order to get complete 2D struc-
tures of the compounds. The output of the generated structures may be saved in
SMILES notations and can be viewed using a molecular modelling software that is
capable of getting molecular structures from SMILES notation. Subsequently, the
activities of the generated structures may be predicted using the rule-based method
[18, 19] standardized for a biological endpoint of interest and can be prioritized and
screened from their MPS values. In this way, one may be able to screen some
potential bioactive compounds from the bigger set of combinatorially generated
molecular structures using topological distance information associated with
activity-related vertices present in the active compounds of a data set under con-
sideration. It may be worth noting at this point that this newly developed method
[15] is essentially a molecular topology-based approach and activity prediction is
done using molecular graphs of the compounds where bond multiplicity and atom
types are not required. However, since bond multiplicity and atom types can be
introduced in the combinatorially generated topological structures using the options
available in the program and those structures can be saved in SMILES format, one
can always use these generated structures for any 2D and 3D drug design/discovery
applications.
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3 Results and Discussion

We furnish in this section the results obtained using the method, described in the
previous section, that can generate chemical structures combinatorially using
activity-related substructural topological information, predict activity for the bio-
logical endpoints under consideration, prioritize compounds and screen them to
help discover novel therapeutic candidates. The results given here are for a series of
19 convulsant–anticonvulsant barbiturates [18], a series of 20 nucleoside analogues
(NA) having anti-HIV activities [20, 21] and a data set of 3779 compounds [22, 23]
for which minimum inhibitory concentration (MIC) values have been measured
against H37Rv strain of Mycobacterium tuberculosis (Mtb).

3.1 Activity Prediction–Compound Prioritization–Molecular
Design

We describe in this section the results obtained for combinatorial structure genera-
tion from the substructural information of activity-related vertices (atoms), activity
prediction using a rule-based system [18, 19] and prioritization and screening of
potential drug candidates using a newly defined Molecular Priority Score
(MPS) [15]. The application of different algorithms incorporated in the computer
program developed using the method, and the results obtained therefrom are given
here and discussed accordingly. In particular, the method has been used for activity
prediction, compound prioritization using MPS and structure generation considering
barbiturates and the NA series of compounds. On the other hand, structure matching
algorithm based on distance distribution has been used for searching potential an-
titubercular compounds from the data set of 3779 compounds mentioned above.

3.1.1 Studies with Barbiturates

The activity prediction for the series of barbiturates [18] considered for the present
study is reported here using the rule-based method [18, 19] considering
hydrogen-filled (H-filled) graphs of the compounds. Along with activity prediction
considering H-suppressed graphs, the method also supports activity prediction
using H-filled graphs and that option available in the computer program has been
used for the activity prediction studies with the barbiturates. The R-groups of the
barbiturates considered here and built on the core structure shown in Fig. 6 are
given in Table 1.

Activity prediction for this series of compounds has already been reported [18]
by considering information theoretical vertex indices Vd (vertex distance com-
plexity) and Vd

n (normalized Vd), which are also available in this software for use.
Although Vd

n has produced very high percentage of correct predictions [18], we
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Table 1 A series of 19 barbituratesa considered for the present study

R-group R-group

1. –(CH2)3CH3 11. –(CH2)3C6H11

2. –CH(CH3)(CH2)2CH3 12. –(CH2)2CH=C6H10

3. –(CH2)2CH(CH3)2 13. –(CH2)2CH=C5H8

4. –CH(CH3)CH2CH(CH3)2 14. –CH2C6H5

5. –CH=CHCH2CH3 15. –CH2CH(CH3)C6H5

6. –C(CH3)=CHCH2CH3 16. –CH=(CH)2(CH3)2
7. –CH2CH=CHCH3 17. –C(CH3)=(CH)2(CH3)2
8. –CH(CH3)CH=CHCH3 18. –(CH2)3C6H5

9. –CH2CH=C(CH3)2 19. –(CH2)2C6H5

10. –CH(CH3)CH=C(CH3)2
aThe data have been taken from Klopman and Raychaudhury [18]

Table 2 Assigned and predicted activities using D−4 index and Molecular Priority Score
(MPS) of 19 barbiturates divided into 15 training set and 4 test set compounds

Sr. no. Compound no. Activitya MPSb

Assgn. Pred. Value

Training set

1 1 + + 93

2 9 + + 10

3 10 + + 56

4 12 + + 178

5 13 + + 168

6 15 + + 34

7 2 – – −132

8 3 – – −102

9 4 – – −132

10 5 – – −113

11 6 – – −100

12 7 – – −120

13 8 – – −74

14 11 – – −149

15 14 – – −64

Test set

1 17 + + 6

2 19 + + 53

3 16 – – −97

4 18 – – 10
a(+) means active and (−) means inactive
bComputation of MPS value is described in methods section
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present here the results obtained using distance exponent index (D−4) to see how
this index performs for this series of compounds. The activity prediction results
along with MPS values using D−4 index, computed for the hydrogen-filled graphs
of the compounds, are shown in Table 2. It may, however, be noted that the indices
of only non-hydrogen atoms have been considered for ordering of index values,
range selection and activity prediction purposes. Thus, the indices computed for the
hydrogen atoms in the H-filled graphs have not been used for this purpose.

Activity Prediction and Compound Prioritization for Barbiturates
For the prediction of activity and prioritizing the compounds on the basis of MPS
values, we have considered the same set of compounds as well as the same training
set and test set for the present study as used earlier [18]. In may be noted that, in this
data set, the convulsant barbiturates are tagged active and the anticonvulsant bar-
biturates as inactive.

It can be observed that accuracy of activity prediction using D−4 index in the
barbiturate data set is 100% for both training set and test set which equals the
prediction obtained using Vd

n index reported earlier [18]. This further substantiates
earlier findings [15] using this vertex index, rule-based method and MPS value
about the usefulness of the method for activity prediction and compound prioriti-
zation. This is believed to help scientists work on the crucial issues related to
convulsion and help drug designers find novel therapeutic agents in the area of
anticonvulsant drug discovery.

Structure Generation for Barbiturates
The structure generation exercise has been carried out for the barbiturate data set
with the same training set and test set split as considered earlier [18]. The index
computation for the non-hydrogen atoms (vertices) has been performed considering
hydrogen-filled graphs. As described in the method section, the D−4 index values
computed for the training set compounds are arranged in an ascending order to find
active and inactive ranges in order to get a “strong” range to identify an

Fig. 6 Barbiturate core
structure with R-group
(Table 1) attachment point (R)
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activity-related vertex to start structure generation considering that vertex as the
root vertex. It has been observed that the vertices 17 and 18 (the numbers corre-
spond to those in the respective SMI file used to work with the compounds con-
sidered) in the molecular graph representing compound no. 13 (Table 1), an active
compound, fall in a strong range. Interestingly, when these two vertices are chosen

Table 3 Details of the range in which vertices 17 and 18, in the molecular graph of compound no.
13, lie in

Serial no. D�4 index value Compound no. (Atom no.) Activity

1 4.40994 13(16) +

2 4.40994 13(19) +

3 4.430099 12(16) +

4 4.430099 12(20) +

5 4.430937 13(17) +

6 4.430937 13(18) +

7 4.440002 1(14) +

8 4.441781 13(13) +

9 4.444924 12(13) +

10 4.449867 12(18) +

11 4.451095 12(17) +

12 4.451095 12(19) +
(+) means active, (−) means inactive

Fig. 7 a Compound no. 13 (Table 1), its molecular graph and the root vertex (vertex no. 17).
b Sample rooted tree structure generated. In the tree, the root vertex is labelled as vertex 1
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for structure generation, both of them lead to the generation of a topological
structure of another active compound. The details of the strong active range are
given in Table 3 and the structure generation details in Fig. 8.

The compound no. 13 along with its molecular graph and the chosen structure
generation vertex (root vertex) is given in Fig. 7a. The distance distribution asso-
ciated with this vertex (Vertex No. 17) starting with distance 0 is (1, 2, 2, 1, 1, 1, 1,
3, 5, 1, 1). A sample rooted tree is shown in Fig. 7b with the corresponding distance
distribution.

Considering any rooted tree, cycles can be introduced (described in the methods
section) to generate the topology of the structural formula of variety of chemical
compound while still maintaining the distance distribution. In the present study, we
have chosen to generate structures containing two cycles, having number of sides 5
or 6, to investigate whether we are able to generate any other active compound
present in the studied data set. A number of structures are generated in the process,
and it has been found that the structures generated from the root vertex of com-
pound no. 13 contain one such structure that matches with that of compound no.
19 (Fig. 8). It is interesting to note that compound no. 19 is an active compound
from the test set (Table 2) which shows that the method can generate a structure
that it has not seen in the training set. Therefore, one can expect to design novel
structures using this method.

3.1.2 Studies with Nucleoside Analogues

For the nucleoside analogues (NA), we have carried out activity prediction and
structure generation studies. It may be noted that for this series of compounds, we
have investigated the performance of the training set–test set identification tool
using the corresponding algorithm incorporated in the computer program. As
mentioned earlier, in this way we are able to obtain a suitable training set for the
system’s learning and predict activities of the compounds on the basis of this

Fig. 8 One of the structures generated, from compound no. 13, which resembles the topology of
compound no. 19 (Table 1)
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training. This section, therefore, contains the results of the performance of training
set identification and activity prediction. We have also reported here the results of
structure generation for some of the NA series compounds in the same way as it has
been done for the barbiturate series. For identifying a suitable training set–test set
combination for the purpose of identifying a suitable training set that can produce
high percentage of successful activity predictions, the program generates 1000 such
combinations. The program has the option of getting the output on the basis of best
test set predictions (starting from no misprediction) and best training set predictions.
It has been observed that there are combinations where no mispredictions are found
for the training set although there are 2 or more mispredictions for the test sets. On
the other hand, there are combinations where there is one misprediction each for
both the training set and the test set and it seems quite reasonable to consider such a
balanced combination for activity prediction of newly generated compounds. We
have reported here the activity predictions and MPS values of such a balanced
outcome in Table 5 for the nucleoside analogues (NA) considered for the present
study given in Table 4. The structural information of the compounds has been taken
from the corresponding MOL files.

Activity Prediction for Nucleoside Analogues
For carrying out activity prediction and prioritization studies for NA series of
compounds, we have used training set–test set split algorithm and the prediction
results for split that has given one misprediction each for the training set and the test
set are reported here.

It can be seen that for this NA series, activities of 92.86% (13 out of 14) of the
training set compounds and 83.33% (5 out of 6) of the test set compounds have
been predicted correctly, compound no. 10 of the training set and compound no.
13 of the test set being the lone mispredictions in each case. It is interesting to note
that in both the cases the inactive compounds have been predicted to be active
which may be regarded as an important factor in situations where a drug designer

Table 4 A series of 20 nucleoside analogues a considered for the present study

Compound Name Compound Name

1. 3′-deoxyadenosine 11. 2′-deoxyinosine

2. 2′-deoxycytidine 12. 2′,3′-dideoxythymidine

3. 2′-deoxyadenosine 13. 2′,3′-dideoxyuridine

4. 2′,3′-dideoxyadenosine 14. 2′,3′,5′-trideoxyadenosine

5. 2′,3′-dideoxycytidine 15. 3′-amino-2′,3′-dideoxycytidine

6. 3′-fluoro-2′,3′-dideoxythymidine 16. 3′-amino-2′,3′-dideoxyadenosine

7. 3′-azido-2′,3′-dideoxythymidine 17. 2′-deoxyguanosine

8. 2′,3′-dideoxyinosine 18. 3′-azido-2′,3′-dideoxyadenosine

9. 2′,3′-dideoxyguanosine 19. 3′-azido-2′,3′-dideoxycytidine

10. 5′-iodo-2′-deoxycytidine 20. 3′-azido-3′-deoxyadenosine
aData were taken from Raychaudhury et al. [20, 21]
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does not want to lose any potential active compound/drug candidate particularly the
one like the mispredicted compound of the test set (compound no. 13) which has a
high MPS value (MPS = 83). Clearly, a number of active compounds have got high
MPS values including compound no. 8 which represents a potent anti-HIV drug—
Didanosine—and is a test set compound (Table 5). The method has also produced
high MPS values for a number of training set active compounds too like compound
nos. 5, 7, 18, 19 (Table 5). Therefore, picking at least a couple of top scoring (from
MPS values) compounds out of them from prioritization point of view may help
screen useful drug candidates using the present method. This finding therefore
indicates that this method can be used for creating suitable splits in getting a
reasonably useful training set from an available data set and help screen putative
active compounds for drug discovery.

Table 5 Assigned and predicted activities using D−4 index and Molecular Priority Score
(MPS) of 20 nucleoside analogues divided into 14 training set and 6 test set compounds

Sr. no. Compound no. # Activitya MPSb

Assigned Predicted Value

Training set

1 4 + + 65

2 5 + + 83

3 6 + + 8

4 7 + + 103

5 9 + + 55

6 18 + + 97

7 19 + + 98

8 1 – – −56

9 2 – – −36

10 3 – – −48

11 10 – + 8

12 14 – – −13

13 15 – – −36

14 16 – – −48

Test set

1 8 + + 65

2 12 + + 65

3 20 + + 50

4 11 – – −48

5 13 – + 83

6 17 – – −6
a(+) means active, (−) means inactive and (#) means incorrect prediction
bThe details for the computation of MPS value are described in methods section
#Compound numbers are correspond to those in Table 4
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Structure Generation for Nucleoside Analogous
As done for the barbiturates, structure generation from various starting points, i.e.
compound no., atom no., was carried out for the NA series of compounds too. In
doing that, activity-related vertices have been picked up from the strong ranges in
the ordering of D−4 index values for the vertices (atoms) of the H-suppressed graphs
of these compounds. It has been found that a few carbon skeletons resembling the
structure of other active compounds than the ones from where the activity-related
vertices and the corresponding distance distribution values are taken have been
generated.

For the purpose of illustration, the structure of the compound no. 6 and the
generated structure which corresponds to compound no. 8 are shown in Fig. 9. It
can be seen that in this case too, the algorithm is able to generate a structure with
significantly different scaffold than the starting compound and has a higher MPS
value (MPS = 65) too compared to that (MPS = 8) of the starting structure indi-
cating that this generated structure has the potential of being highly active and
therefore may be picked/prioritized for further studies. In fact, compound no. 8 is a
potent anti-HIV drug—Didanosine. Therefore, the method may be regarded as a
useful tool for generating, prioritizing and discovering potent anti-HIV compounds.
Moreover, the generated compound belongs to the test set indicating that the
structure of a compound that has not been used for training the system can also be

Fig. 9 Compound no. 6, its molecular graph with root vertex and one of the structures generated
from compound no. 6 that resembles the topology of compound no. 8
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designed by this method which may be believed to carry higher importance for
discovering novel therapeutic candidates.

3.2 Rooted Substructure Searching for Drug Discovery

In the previous section, we showed how the exact matching algorithm can help find
structures of active compounds which could be obtained from the trees generated
from the topological distance distribution information of activity-related vertices
obtained from other active compounds. In this section, we describe the use of two
other matching algorithms—strong matching and weak matching—along with
exact matching algorithm for searching active compounds in a data set in the form
of tree and sub-tree matching. As given in the method section, these sub-trees are
obtained by means of applying node deviation and node migration in the actual tree
obtained from the distance distribution associated with an activity-related vertex.
The presence of such trees and sub-trees are then searched for in the compounds
present in a data set to identify potential drug candidates. In doing that, we have
considered two known TB drugs—Isoniazid and Streptomycin—to describe the
usefulness of the present method in finding potential antitubercular compounds
from a data set (named GTB data set) of 3779 compounds [22, 23] for which MIC
values against H37Rv strain of Mtb have been measured. The authors have made
MIC = 5.0 as the cut-off point and the MIC value of any compound which is higher
than 5.0 give an inactive compound in the data set. It therefore seems reasonable to
consider the same cut-off value for the present purpose. We will first furnish the
results obtained for Isoniazid which will be followed by those obtained for
Streptomycin. It may be noted that the activity-related vertices for both Isoniazid
and Streptomycin have been taken from the literature information and not by using
rule-based method in the ordering of vertex indices which has been done for the
barbiturate and NA series of compounds. In fact, it shows that the method can be
used successfully in identifying potential drug candidates by picking
activity-related vertices by other means than by the rule-based method.

3.2.1 Studies with Isoniazid

Isoniazid is a known first line drug for the treatment of tuberculosis. However, it
may become resistant in situations, and therefore, this leads researchers look for
novel drug candidates to overcome drug resistance problem for the treatment of
tuberculosis . We have described in this subsection how structures generated from
activity-related vertex information of Isoniazid using the present method can help
search for potential TB drugs from a data set of 3779 compounds [22, 23]. It is
known that the chemical/biochemical reaction takes place at the point of the first
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nitrogen (N) atom (underlined) of the fragment (–NH–NH2) in isoniazid molecule
to convert this pro-drug into its metabolite that works as the effector molecule.
Therefore, this vertex (N atom) may be regarded as an activity-related vertex for
Isoniazid. Accordingly, the distance distribution associated with the vertex repre-
senting this nitrogen (N) atom has been considered for generating structures. In
order to screen out potential antitubercular compounds having high activities, the
exact, strong and weak matching algorithms (method section) have been applied on
the GTB data set of 3779 compounds considered for the present study. A number of
highly active compounds have been obtained in the process and the information for
some of them obtained applying different node deviation and node migration on the
tree obtained from the distance distribution associated with the root vertex are
shown in Table 6 along with the structures of Isoniazid (with root vertex specified)
and the screened compounds. As said earlier, in their studies [22], the researchers
have considered a compound having MIC value less than 5.0 to be active. In this
way, data set is composed of almost equal number of active and inactive com-
pounds implying no bias for active or inactive compounds in forming the data set.
Accordingly, compound nos. 1–1890 are active compounds and the other com-
pounds are inactive. Considering the same cut-off value, one can see that only
compound no. 3296 has MIC value higher than 5.0 and the rest of the compounds
may be screened out as potential active compounds. In particular, compound no.
180 which is obtained by two types of node deviation and node migration in
generating structures from the root vertex has quite low MIC value which identifies
it as a highly active compound. Therefore, the result clearly shows that the method
may be used to successfully screen potentially highly active antitubercular com-
pounds from this data set starting from Isoniazid.

3.2.2 Studies with Streptomycin

Streptomycin is another antitubercular drug in use, an antibiotic. For this com-
pound, the removal of even one of the two guanidino groups present in the structure
reduces the activity of the compound. Considering that, we have taken the vertex
representing the nitrogen (N) atom in one of the guanidino groups as the root vertex
to start generating/designing novel structures. Out of a number of structures
designed using the present method, i.e., using exact matching as well as strong
matching and weak matching algorithms in relation to node deviation and node
migration on the trees obtained from the distance distribution associated with the
root vertex, information about some of these compounds are given in Table 7 along
with the structures of Streptomycin having root vertex indicated and the matched/
searched compounds from GTB data set. It is found from this table that all the
compounds shown here are active according to the adopted criterion (MIC � 5.0 is
active) with compound no. 183 being the most active among them. Therefore, it
appears from this finding that the method may be used successfully to screen
potentially highly active antitubercular compounds from the data set of 3779
compounds starting from Streptomycin.
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Table 6 Screened compounds obtained from the matching of trees/sub-trees obtained from the
generated structure from the root vertex (indicated) of Isoniazid molecular graph

Source Compound

Isoniazid
Compounds (in the Global TB data set) whose structures topologically matched with the
source compound with the node deviation and node migration mentioned alongside

S. no. Node deviation Node migration Matched compound

1 0 0

Compound No 1387
2 0 0

Compound No. 3296
3 1 0

Compound No. 180
4 1 0

Compound No. 1174
5 1 1

Compound No. 180
6 1 1

Compound No. 1192
(continued)
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Table 6 (continued)

Source Compound

Isoniazid
Compounds (in the Global TB data set) whose structures topologically matched with the
source compound with the node deviation and node migration mentioned alongside

S. no. Node deviation Node migration Matched compound

7 2 0

Compound No. 524

8 2 0

Compound No. 928

9 2 2

Compound No. 661

10 2 2

Compound No. 1333
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Table 7 Screened compounds obtained from the matching of trees/sub-trees obtained from the
generated structure using the root vertex in Streptomycin molecular graph

Source compound

Streptomycin
Compounds (in the Global TB data set) whose structures topologically matched with the source
compound with the node deviation and node migration mentioned alongside

S.
no.

Node
deviation

Node
migration

Matched compound

1 0 0

Compound No 183
2 2 0

Compound No. 1483
3 2 1

Compound No. 1059
(continued)
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Table 7 (continued)

Source compound

Streptomycin
Compounds (in the Global TB data set) whose structures topologically matched with the source
compound with the node deviation and node migration mentioned alongside

S.
no.

Node
deviation

Node
migration

Matched compound

4 2 2

Compound No. 468
5 3 1

Compound No. 1006
(continued)
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Table 7 (continued)

Source compound

Streptomycin
Compounds (in the Global TB data set) whose structures topologically matched with the source
compound with the node deviation and node migration mentioned alongside

S.
no.

Node
deviation

Node
migration

Matched compound

6 3 2

Compound No. 671
7 4 1

Compound No. 1287
(continued)
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Table 7 (continued)

Source compound

Streptomycin
Compounds (in the Global TB data set) whose structures topologically matched with the source
compound with the node deviation and node migration mentioned alongside

S.
no.

Node
deviation

Node
migration

Matched compound

8 4 2

Compound No. 211

9 5 0

Compound No. 1086

10 5 1

Compound No. 335

(continued)
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4 Conclusions and Future Prospect

The results obtained for different series of compounds using recently developed
graph theory-based drug design/drug discovery method by our group [15] for
combinatorial drug design from substructural topological information have been
described in this chapter. Its application and usefulness for different series of an-
titubercular compounds have already been reported [15]. In this chapter, we have
presented some new results for designing active compounds for barbiturates [18,
19] and nucleoside analogues [20, 21]. We have also reported some new results
obtained for discovering novel active compounds from a data set using rooted tree/
sub-tree searching/matching algorithms. In doing that, a data set (GTB) of 3779
potential antitubercular compounds [22, 23] has been taken for this study and the
method has helped search a number of potentially highly active antitubercular
compounds from this data set. Thus, to our knowledge, we have introduced here a
method that can be used for searching databases to discover novel drug molecules
using rooted tree and sub-tree matching algorithms. Furthermore, the usefulness of
newly proposed Molecular Priority Score (MPS) for prioritizing and screening
highly active compounds has also been described for the studies with a series of
convulsant–anticonvulsant barbiturates and a series on nucleoside analogues for

Table 7 (continued)

Source compound

Streptomycin
Compounds (in the Global TB data set) whose structures topologically matched with the source
compound with the node deviation and node migration mentioned alongside

S.
no.

Node
deviation

Node
migration

Matched compound

11 5 2

Compound No. 232
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their activities against HIV. It is also found that the proposed method is capable of
generating structures of known active compound that has scaffold different from
that of the starting one. Furthermore, the structure generation starts from a vertex
which plays a role in predicting biological activity. These observations seem to
address the relationship of the present method [15] with two important aspects of
modern-day drug discovery research—scaffold hopping and inverse QSAR
(iQSAR) problem. Therefore, it appears that this newly developed method [15] may
find useful applications in designing novel therapeutic candidates and may be
helpful for working with drug resistance problems where compounds of very dif-
ferent molecular architecture may be sought for.

Our work presents an interesting alternative to “3D” drug discovery, where
actual molecular coordinates in Cartesian space is used. Combinatorial design and
generation in three-dimensional space would be far more expensive compared to
our approach. Interestingly, one can always follow up on “3D” drug discovery
based on molecule predictions from our method. This would allow a far tractable
approach to drug discovery compared to a seemingly infinite exploration of
molecules in actual “3D” Cartesian space.

Regarding future work, it may be worth exploring whether application of any
quantitative measure for activity prediction can help screen potential bioactive
compounds more effectively. Also, incorporation of new rooted tree-based com-
pound generation and searching algorithms in the existing computer program would
be another important aspect to work on. Finally, it would be of special interest to
see how incorporation of ADME/Tox and drug-able property filters in the computer
program can help discover drug molecules having desired pharmacological and
undesired toxicological activities using the present method.
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