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Abstract The network description is widely used to analyze the topology and the
dynamics of complex systems. Residue interaction network (RIN) represents
three-dimensional structure of protein as a set of nodes (residues) with their con-
nections (edges). Calculated topological parameters from RIN correlate with vari-
ous aspects of protein structure and function. Here, we reviewed the applications of
RIN for the analysis and prediction of functionally important residues and ligand
binding sites, protein–protein interactions, allosteric regulation, influence of point
mutations on structure and dynamics of proteins.
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1 Introduction

Proteins play a vital role in biological systems and have numerous functions such as
catalysts, transporters, regulators of signal transduction. They are linear
heteropolymers folded into three-dimensional structures. The amino acid residues
interact through various covalent and non-covalent bonds in a specific manner to
obtain a particular three-dimensional structure, which determines their functions.
Knowledge of the relationship between protein structure and its function is
important in drug design, molecular medicine, and biotechnology.

Different computational methods have been used for investigations of protein
structures and their functions, finding functionally important residues, prediction
protein–protein interactions, discovering new biological active compounds. In the
most approaches, the protein structures have been viewed as linear sequences of
amino acid residues packed into 3D globules. In the last decade, an alternative view
of proteins structures has emerged that describe the protein spatial structure as
network of amino acids residues interaction.

Network analysis has successfully used in different fields, such as social net-
works [1], Internet networks [2], road networks [3]. In biology, this method is
widely used for analysis of networks of gene regulation, protein–protein interaction,
metabolites flow, prediction of drug side effects, etc., [4–9]. Applying network
methodology for polypharmacology was reviewed in [10].

A network method is based on the graph theory and includes a set of entities
(nodes) and of the relationships (edges) occurring among them. These nodes and
edges can have various attributes. Depending on the object of the study, nodes can
represent genes, proteins, small compounds, and edges connecting these nodes
represent the physical interactions, genetic regulatory, or other properties linking
the nodes. Edges can have additional information, such as weights, directions.

According to the structure of protein, every amino acid residue in it is considered
to be a “node” or “vertex,” and the interaction of residues represents “edge”
(Fig. 1). The existence of an edge between two nodes depends only on their spatial
position in protein globule and has no relation to position in their primary sequence.
The interaction can be represented as distance between Ca or any other atoms of
amino acid residues, non-covalent interaction (electrostatic, hydrophobic, H-bonds)
of the particular amino acids [11]. Additionally, in residue interaction network
(RIN), the energy of interaction between residues can be used for weighting the
edges [12, 13]. Proteins can be also modeled as subnetworks of amino acid residues
having similar physiochemical properties. RIN method reduces spatial protein
architectures to simple maps including nodes (residues) and edges (inter-residue
interactions). Analysis of these graphs yields a characterization of the protein’s
topology and network characteristics.

There are several names of the resultant intraprotein amino acid residue inter-
action networks. They are called residue interaction graphs [14], protein structure
graphs [15, 16], protein residue networks [17], protein contact networks [18],
protein energy networks [13], amino acid networks [19], protein structure networks
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[20], residue interaction networks [21]. In this review, we will use the residue
interaction networks (RINs) to distinguish it from network of protein–protein
interactions.

The application of RIN method in drug design is just at a beginning. RINs have
been used to analyze protein stability and folding [22, 23], 3D structure modeling
[19, 23], finding functionally important amino acid residues and sites [14, 24],
analyzed protein–protein interactions [25], allosteric regulation [26], influence of
amino acid mutations [27]. These studies showed that RIN method is valuable
approaches allowed to improve the drug discovery process. Recently, several
reviews on RINs have been published [28–31].

Herein, we aim to review the investigation of the construction, analysis, and
application of RINs in fields related to drug design.

2 Graph Theory and Residue Interaction Network

Graph theory represents complex system as a set of elements (called vertices or
nodes) with their connections (called edges). Each node can be connected to each
other through multiple edges. Adding order of nodes in the graph, we get a directed
graph, where edges are directed and usually represented as arrows. Introduction of
the quantitative characteristics of the edges results in a weighted graph. Nodes with
edges form a network. The network representation helps to analyze the interaction
among individual elements and to characterize the whole system.

Fig. 1 Structure of SH2 domain of proto-oncogene tyrosine-protein kinase SRC (PDB ID 1o41)
in cartoon (A) and RIN representation

Analysis of Protein Structures Using Residue Interaction … 57



Residue interaction network is constructed on the base of the three-dimensional
atomic coordinates of protein structure and consists of nodes and edges. Each node
represents amino acid residue (or Ca atom) that is connected to the neighbor node.
In the simplest variant, the edges are defined on the base of predefined cutoff of the
distances in 3D structure between nodes. The values of distance may be varied
based on nature of interactions (van der Waals, hydrophobic, electrostatic inter-
actions, etc.). Frequently, the covalent backbones are included as edges in the
networks. The edges can be weighed based on energy of interactions,
knowledge-based potentials, or amino acid fluctuations in molecular dynamics
simulation [30, 31]. The differential network (DDN) method was proposed where
network formed by unique edges that are present only in one state but are absent in
other ones [32].

Networks have several most common characteristics; some of them that frequently
have been used for analysis of biological systems are listed below [28, 31, 33].

A degree of a node is a number of edges in a network that connect node with its
neighbors. In a directed network, there might be two types of degrees, the in-degree,
and the out-degree depending on the orientation of the edges. An average degree is
the average number of connections that the nodes have in a network.

A connectivity represents a minimum number edges that need to be removed to
make a disconnected graph. The connectivity structure and the degree of nodes
analysis in RINs help to identify important residues, i.e., participating in ligand
binding sites.

A shortest path is a path in which the two nodes are connected by the smallest
number of intermediate nodes. A characteristic path length is defined as the
number of edges in the shortest path between two nodes, averaged over all pairs of
nodes. Residues with small shortest path lengths are often located in the active or
ligand binding sites of proteins [17] and participate in allosteric pathways [34, 35].

A betweenness centrality of a node is the number of times that a node is included
in the shortest path between each pair of nodes, normalized by the total number of
pairs.

A closeness centrality of a node is the reciprocal of the average shortest path
length.

The network concept is widely used to analyze and predict properties in different
biological systems, from intramolecular interaction to whole cells and organisms.
Biological networks are small worlds that means that two nodes are connected to
each other via only a few other nodes [23, 30]. There are several network
parameters for characterizing different aspects of biological networks.

A hub is defined as a node with a high degree or connectivity in a network. Hubs
may play a structural role in proteins increasing the thermodynamic stability of
proteins [14, 36].

A cluster is a set of nodes with the number of connections, which is higher than
in the other nodes. Clusters often are equivalent to a domain of protein and par-
ticipate in intramolecular interactions.
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A clique is a set of nodes in which each node of graph is connected to every
other node. Studies of cliques can help to understand ligand-induced population
shift in protein [37].

There are several software packages, Web servers, and plug-ins available for
construction and analyzing of RINs, such as Xpyder (http://xpyder.sourceforge.net/)
[38], Network View [39], RING (http://protein.bio.unipd.it/ring/) [21, 40],
RINalyzer (http://www.rinalyzer.de) [41], structureViz (http://www.cgl.ucsf.edu/
cytoscape/structureViz/) [42].

Web server RING constructs physicochemically RINs from PDB files for sub-
sequent visualization in the Cytoscape (software platform for the analysis and
visualization of biological networks) (http://www.cytoscape.org) or Pymol (https://
pymol.org/). Interactions (edges) are disulfide bonds, salt bridges, hydrogen bonds,
aromatic interactions, and van der Waals contacts. Several features can be added to
nodes and edges, such as secondary structure, solvent accessibility, energy score,
sequence conservation. Subnetwork can be also constructed.

RINalyzer and structureViz are plug-ins for Cytoscape [43] that link Cytoscape
with the molecular viewer UCSF Chimera (http://www.cgl.ucsf.edu/chimera/) [44].
They allow interactive structure analysis of RINs together with the corresponding
3D protein structure.

NetworkView plug-in for VMD (https://www.ks.uiuc.edu/Research/vmd/)
allows to study allostery and signaling through network models. This plug-in can
display the dynamical network representations.

3 RINs Application

3.1 Ligand Binding Sites

Identification of the ligand binding sites of proteins and functionally important
residues is a crucial first step in drug design. However, it is a difficult task in the
case of the absence of homologous proteins.

Several topological parameters of RINs may be used for the prediction of ligand
binding sites. Several investigations showed that closeness and betweenness values
of residues are correlated with ligand binding site residues [14, 34, 45–48]. The
accuracy of prediction such residues may be improved by combining with such
parameters as their solvent accessibility. So, Amitai et al. [14] could predict active
site residues in 70% of the analyzed 178 enzymes proteins, using closeness cen-
trality and solvent accessibility parameters. The similar result was obtained in [49].
The closeness centrality was used as parameter in machine learning methods for
prediction of functionally important residues [50] or in score for docking [25].

However, for non-enzyme proteins correlation between closeness centrality and
binding sites has not observed [34, 51]. In addition, global closeness centrality gave
unsatisfactory result for non-globular and oligomer proteins. For such proteins,
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more tolerable prediction was obtained with local closeness [52]. It seems that the
ligand binding sites in enzymes are correlated with centrality due to their typical
location in cavities of the enzymes, whereas in oligomer proteins, the protein–
protein interfaces are more flat [53], which reduces the centrality of their residues.

Coevolution residues networks, which include information about coevolved
residues, were also used for predicting functionally important residues [54, 55].
RIN analysis was applied for prediction similarity of ligand binding sites in dif-
ferent proteins [56, 57].

The node-weighted RIN, called node-weighted amino acid contact energy net-
work (NACEN) was developed for prediction hotspots, catalytic residues, and
allosteric residues. Nodes were weighted based on structural, sequence, physico-
chemical and dynamic properties of the residues. SVM was used for design model
to identify functionally important residues. The results revealed that parameters
from node-weighted RIN have advantages over ones from unweighted network
[58].

Poirrette et al. [56] designed RIN of the influenza sialidase binding site of
Zanamivir and used it to predict proteins having the similar binding sites. Such an
approach may be used for repurposing drugs or prediction of side effects.

3.2 Protein–Protein Interactions

Protein–protein interactions (PPIs) are crucial for many biological processes and
functions; inhibition of PPIs with small molecules is a perspective way in drug
design [53]. RIN method was used for analysis of protein–protein interfaces, pre-
diction of hotspots, and selection of protein poses in the protein–protein docking.

Several investigations were done using RIN for analysis of protein–protein
interfaces. They showed that hydrophobic and charged residues are predominant in
the dimer interface and that arginine, histidine, glutamic acid, phenylalanine, and
tyrosine are located in clusters at the interface [59, 60]. In those clusters, highly
connected residues correlate with experimentally identified hotspots in the protein
complexes [15, 16, 61, 62].

Correct prediction of protein–protein complexes using individual proteins by
docking method is a big challenge, since the docking gives many false-positive
solutions [63, 64]. Protein–protein complex formation may be viewed as combining
of two RINs, where additional edges have appeared between nodes from different
subunits. The interaction of residues occurs in accordance with their properties.
Since native protein–protein complexes are far from random, the correct and
incorrect poses have different topologies.

Chang et al. [65] designed hydrophobic and hydrophilic RINs of a protein–
protein complex. Three terms based on these networks (degree, clustering coeffi-
cient, and characteristic path length) were calculated and used in network-based
scoring function HPNet. Combining it with energy terms of RosettaDock [66]
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results in new combined scoring function HPNet-combine. It was found that
HPNet-combine could improve the discrimination of the RosettaDock scoring
function.

The similar methodology based on the construction of a hydrophobic and hy-
drophilic RINs of protein–protein complexes was used for the development NPPD
scoring function [67]. Protein–protein docking, HoDock, and scoring function
HPNCscore (hydrophobic, and polar network combined scoring function) were
developed. It showed good results for several targets in Critical Assessment of
PRedicted Interactions (CAPRI) rounds [68].

The weighed RINs were used for the development of Sn scoring function [69].
Two weighted parameters (strength and weighted average nearest neighbors’
degree) were introduced to develop a scoring function. The testing of this scoring
function for 42 protein–protein complexes had shown a satisfied performance.

The scoring function based on the local network patterns, iScore, was proposed
[70]. It achieved 83.6% specificity with 82% sensitivity for training set of *1800
two domain proteins, homo- and heterodimers.

3.3 Allosteric Regulation

Allosteric regulation is a common mechanism to control the protein activities. The
perturbation at the allosteric site results in transmission of signal through the protein
structure to other sites leading to modification of catalytic activity, oligomerization,
etc. [71, 72].

Allosteric sites became attractive target for drug design at last decade. Allosteric
drugs have several potential benefits over orthosteric drugs. They may be more
specific due to less similarity of allosteric sites comparing to active site in
homologous proteins; they can increase or decrease the activity of enzymes and
receptors; partially inhibiting by allosteric drugs may cause less side effects [73,
72].

Using allosteric sites for drug design, it is required to predict allosteric sites,
residues involved in signal transduction pathways to the active sites. The search of
allosteric sites by RIN method is similar to the other sites described above.

Allosteric pathways show how the signal may be transmitted over a long dis-
tance from allosteric to active sites within the protein. RIN is accurate and not
time-consuming method for prediction such pathways.

Once the RIN constructed, several algorithms can be used to find allosteric
pathways within the RINs. The common method is to find the shortest paths
connecting the allosteric and active sites [34, 35, 74]. The shortest path may be
determined by Floyd–Warshall algorithm. It was shown that many proteins may be
considered as a set of modules (subgraphs with many interconnections and with few
connections to other subgraphs). The residues involved in the interaction of such
modules can participate in allosteric pathways [75]. It is proposed that such residues
are conservative that also may be used for their prediction [76–78]. Proteins can
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have multiple allosteric pathways, which may preexist without effector binding at
allosteric site [79]. Various pathways may be involved depending on the different
changes in allosteric site.

However, RINs constructed based on a single structure do not take into account
the structural changes in protein globule. Therefore, the combination of molecular
dynamics simulation (MD) followed by RINs design frequently has been used to
detect and to analyze allosteric pathways. In these cases, the edges in RINs are
defined using various parameters obtained from MD. The edges may reflect the
correlation of displacements of the residues [74, 80], the fluctuation of distances
[81], interaction energy [82], etc.

Aminoacyl-tRNA synthetases are convenient objects for analysis of allosteric
communication. The combination of MD with RIN was used for discovering
pathways from anticodon region to the aminoacylation region for methionyl-tRNA
synthetase [74, 83], glutaminyl-tRNA synthetase [84], cysteinyl-tRNA synthetase
[35], and tryptophanyl-tRNA synthetase [85, 86]. Particularly, analysis of
tryptophanyl-tRNA synthetase showed changes of flexibility around the active
site induced by allosteric ligands binding and allowed to explain the molecular
mechanism of half-of-the-sites reactivity (tryptophanyl-tRNA synthetase is a
homodimer).

Another popular object is G protein-coupled receptors (GPCRs) [87–89]. It is a
large family of membrane receptors, which have ligand binding site on the extra-
cellular side of membrane and activation domain on its internal side. Using RIN
method, several conservative residues participating in the signal transduction were
discovered for the lutropin receptor [76] and A2A adenosine receptor [87] (Fig. 2).

Fig. 2 Structure of A2A

adenosine receptor (PDB ID
2ydv). One of the predicted
allosteric pathways is shown
in rainbow color scheme. The
synthetic agonist NECA is in
stick
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Fig. 3 Part of the networks near X-loop of b-lactamases TEM-1 and its triple mutant (G238S,
E240K, M182T). The additional interactions appeared in the triple mutant that results in freeze of
movement of X-loop are in green
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3.4 Analyses of Mutations

RIN methods may be used for analysis and prediction of effects of amino acid
mutation on protein properties, which may be useful for protein design, investi-
gations of disease-associated single nucleotide polymorphisms, or mechanism of
the drug resistance [27, 90–92].

Recently, we used RIN for investigation of the influence of several mutations on
structure and flexibility of b-lactamase [93]. b-lactamases are class of enzymes
responsible for bacteria resistant to b-lactam antibiotics. Besides, the key mutations,
responsible for the extended spectrum b-lactamases or inhibitor resistance pheno-
type, secondary mutations, located far from active site and with a weak impact on
the protein structure and enzyme activity, have been often appeared [94]. Analysis
of MD trajectories showed that the secondary mutations, and the key mutations can
exhibit opposite effect on the flexibility of the X-loop of b-lactamase that participate
in antibiotic hydrolysis and transport in the active site [93]. Detailed analysis of
RIN maps of proteins of consistent mutations from wild-type TEM-1 to TEM-72
(carrying two key mutations G238S and E240K and two secondary ones M182T
and Q39K) showed that key mutations (responding for extended spectrum
b-lactamases) lead to weakening interactions of the X-loop with protein globule.
The appearance of secondary mutation M182T resulted in dramatic changing of
conformation of R65, and this residue began to interact with the X-loop and fixed it
near protein globule (manuscript submitted) (Fig. 3).

4 Conclusion

Herein, we have reviewed the development and current stage of RINs and their
application for drug discovery.

RINs provide complex analysis of the proteins and their complexes. Residues are
in tight contact with each other in protein globules, and RINs allowed to estimate
their interdependence and to predict different properties and functionality of the
individual residues and the whole proteins. In addition to topology, RINs allow to
use chemicophysical properties of residues and energy of their interaction in RIN
construction and analysis of proteins.

Besides, using RINs for investigation protein structure and functions, they may
be applied in drug design in several ways.

Prediction of functionally important residues and sites can be helpful for
understanding functions and regulation of uncharacterized proteins, finding active
sites, allosteric and cryptic ligand binding sites. It may decrease the amount of
“undruggable” protein, increasing field for drug design. On the other hand, many
drug candidates fail in the late and costly stages of clinical trials [95]. Side effects
are one of the main reasons for drug failure [96]. The detection of similarity in
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network topologies and interactions with ligands for several targets may indicate the
promiscuity of drug candidates and possibly their side effects.

The development of inhibitors of protein–protein interactions is a perspective
way in drug design, and RIN showed their applicability for this purpose. The
analysis of networks may help to select correct poses in protein–protein docking
that is important for the selection of inhibitor binding sites; incorporation of the
terms from RINs may improve docking scoring functions.

Allosteric inhibitors are another mainstream in drug design in last decade. It is
proposed that such inhibitors may regulate cellular processes more accurately.
Allosteric regulation is the common property of protein, which may increase the
number of druggable targets. RINs are convenient for finding allosteric sites,
investigation of mechanism of intraprotein signal transmission. Prediction of the
effect of amino acid mutations on protein structure and dynamics is crucial for the
development drugs against diseases with a high probability of occurrence drug
resistance, in particular antibacterial, antiviral, and anticancer drugs.

Nowadays, the application of RIN methods for drug discovery is at their early
stage, but they already help to understand intimate properties of proteins and
provide a new view for drug discovery.
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