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Abstract Computational design of molecules with desired properties has become
indispensable in many areas of research, particularly in the pharmaceutical industry
and academia. Pharmacophore is one of the essential state-of-the-art techniques
widely used in various ways in the computer-aided drug design projects. The
pharmacophore modelling approaches have been an important part of many drug
discovery strategies due to its simple yet diverse usage. It has been extensively
applied for virtual screening, lead optimization, target identification, toxicity pre-
diction and de novo lead design and has a huge scope for application in
fragment-based drug design and lead design targeting protein–protein interaction
interfaces and target-based classification of chemical space. In this chapter, we have
briefly discussed the basic concepts and methods of generation of pharmacophore
models. The diverse applications of the pharmacophore approaches have been
discussed using number of case studies. We conclude with the limitations of the
approaches and its wide scope for the future application depending on the research
problem and the type of initial data available.
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HHCPF Hexadecahydro-1H-Cyclopenta[a]Phenanthrene Framework
HTS High-throughput screening
MD Molecular dynamics
Mtb Mycobacterium tuberculosis
QSAR Quantitative structure-activity relationship
TB Tuberculosis

1 Introduction

Rational drug discovery is highly interdisciplinary and is one of the outstanding
challenges, besides being highly arduous and expensive. The process of designing
new medications requires investment of roughly 14 years [1] of time and cost as
high as 1 billion USD [2]. Along with rapidly evolving HTS [3] and combinatorial
chemistry technologies, computer-aided drug design (CADD) strategies are also
effectively contributing to accelerate and economize the process of drug develop-
ment [4–6]. A broad range of CADD applications are employed at almost all early
stages of the drug discovery pipelines, starting from target identification, target
structure prediction, screening of initial hits to prioritization and optimization of
leads and understanding their structure-property relationships [7, 8]. We have been
working in state-of-the-art CADD techniques such as homology modelling [9],
molecular dynamics simulations [10–12], QSAR [13–15], molecular docking [16],
pharmacophore modelling [17], virtual screening [18, 19] and cheminformatics [20]
since more than a decade. One of the fundamental applications of cheminformatics
is to develop programmes that store, manage and retrieve molecular structures in
various formats, their calculated/experimental properties and bioactivities.
Cheminformatics also involves computing molecular fingerprints and descriptors
based on the molecular structures that label a physicochemical property and can be
used as screening filters [21, 22]. These molecular descriptors of known active
molecules can also be used to develop quantitative structure-activity/property
relationship (QSAR/QSPR) models to predict the inhibitory activity or toxicity of
novel compounds and preliminarily profile them in silico without performing
expensive in vitro and in vivo assays [23–26]. Docking and simulations predict the
three-dimensional binding mode of a given molecule in the binding site of a
macromolecular receptor (protein/DNA), and their affinity is quantitatively assessed
by a docking score. This technique has not only been proved enormously useful to
study receptor–ligand interactions but also is used as a popular tool to virtually
screen compound libraries to obtain a hit or to identify the target for a molecule by
reverse engineering [27–29]. A large number of studies from our group have
focused on application of these techniques to a plethora of drug targets such as
phosphodiesterases [14], kinases [12, 30], HIV proteases [10, 13] and reverse
transcriptase [31] and Mtb cyclopropane synthases [11, 17, 18]. We have also
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initiated development of a disease (tuberculosis) specific Web portal, integrating all
these techniques, which will be of tremendous help for researches working in the
field of Mtb drug discovery [32].

Pharmacophore modelling is one of the enormously useful sub-areas of CADD
with diverse structure and ligand-based applications [33, 34]. Like docking, one of
the basic applications of pharmacophore models is virtual screening, but at a much
faster speed as compared to docking [33]. This approach can also be implemented
complementarily with docking and QSAR studies [18, 20]. Many studies use
pharmacophore models for target/off-target identification as well [35, 36]. In this
chapter, we basically focus on the in silico representation of the concept and the
varieties of ways of application of pharmacophore models in drug discovery projects.

2 The Concept of Pharmacophore

The term ‘pharmacophore’ has gained immense popularity in the field of medicinal
chemistry paralleled with computer-aided structure-activity relationship studies. In
1909, Ehrlich gave an introductory definition of pharmacophore [37, 38], by
combining the words ‘phoros’ meaning carrying and ‘pharmacon’ meaning drug.
Hence, a pharmacophore is ‘the molecular framework carrying the crucial features
accountable for a drug’s biological activity’. Since then, many groups have
attributed various definitions and meanings to this term based on their scientific
background and research view. IUPAC has officially defined a pharmacophore
model as [39]

An ensemble of steric and electronic features that is necessary to ensure the optimal
supramolecular interactions with a specific biological target and to trigger (or block) its
biological response.

However, a century’s research and development has expanded its circumstantial
meaning and application considerably. Due to their simple way of capturing and
representing the chemical features of compounds, pharmacophore models have
drawn the attention of the medicinal chemistry community in last few years as a
tool to screen the cig (chemistry) data [40]. Upon administration, when a drug/small
molecule enters the human body, it comes across thousands of proteins (receptors,
transporters, carriers, plasma proteins, etc.) to potentially interact with. But it
chooses to bind to only those proteins (targets) where the protein’s active site and
drug have compatible shape/size and the protein–drug interactions are energetically
favourable. Similarly, size/volume/shape and the chemical features of the residues
lining the binding pocket determine which type of small molecules it is able to bind.
Hence, the right size, correct shape and complementary chemical features are the
key factors for the protein–drug recognition to instigate a biological effect. The
central concept of pharmacophore is based on the perception that the molecular
interaction pattern of a group of compounds with their biological target can be
credited to a small set of common features complementary to the chemical features
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present in the target’s binding pocket. The general features include hydrogen-bond
(HB) donors, HB acceptors, charged groups (positive and negative), hydrophobic
sites and aromatic rings, which are used as chemical features in pharmacophore
models by most of the programmes. Some programmes define a few additional
features such as ‘exclusion volumes’ representing steric constraints. These features
generally replicate the steric environment of the binding pocket to avoid clashes of
the mapped of compounds with the protein surface. Pharmacophore models com-
prises distinct spatial arrangement of these features that denotes the chemical
functionalities of active small molecules. Instead of real atoms/functional groups, a
pharmacophore model emphasizes the chemical features of ligands/protein–ligand
complexes, making it a better and fast tool to recognize molecular similarities.

3 A Typical Pharmacophore Model: Representation
of Pharmacophoric Features

According to the definition, a pharmacophore model represents the binding patterns
of bioactive molecules with the target binding site, by virtue of a distinct 3D
arrangement of abstract interaction features accounting for different types of
non-covalent interactions. These interaction types can be HB formation, columbic
interactions, metal interactions, hydrophobic contacts, aromatic stacking or charge
transfer interactions. Overall, a pharmacophore model characterizes a common
binding mode of diverse ligands with a specific target. In pharmacophore mod-
elling, the molecules are first segregated into a set of features, each representing a
certain type of interaction with the binding site residues. Then, each feature is
represented by points to be used for superimposition (least-squares fitting) of
molecules with each other. Here we will be discussing features employed by most
of the popular programmes [41–45].

HB donor (D): Hydroxyl groups, hydrogens bound to nitrogen, acetylenic CH
groups and thiols (SH) are normally denoted as donors. However, the –CH and –SH
groups are considered relatively weaker donors. Sometimes, along with acetylenes,
other types of –CH such as the ones in nitrogen heterocycles of some kinase
inhibitors are considered as donors. Keeping protonation in mind, basic amines
such as RCH2N(Me)2 are considered as donors. Tautomeric and ionized states
severely influence pharmacophore feature definition because they may amend the
characteristic of a feature. Hence, molecules should be presented to the pharma-
cophore elucidation programmes in all possible protonation/ionization states.

HB acceptor (A): Generally, atoms with available lone pairs of electrons such as
N, O, S are treated as acceptors. However, some programmes do not consider
oxygen atoms present in furan/oxazole rings, as they are very weak acceptors
according to theoretical and crystallographic evidence.
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Along with defining the HB features, it is very essential to fix the positions of the
complementary feature points to be overlapped in the resulting pharmacophore.
That is why the pharmacophore modelling programmes link donor and acceptor
features with the equivalent ligand atoms as well as the supposed locations of the
corresponding complementary receptor atoms involved in the interaction.

Positive and negative features (P and N): In the molecules, atoms bearing formal
charges are considered as positive or negative features provided they are not part of
a dipole. Groups possessing net formal charges are also considered as positive/
negative features. Centroid of the heteroatoms of a group is the region, where the
positive/negative charged features are generally placed. Sometimes the positive and
negative features are emphasized specifically based on their ionizability. For
example, R–NH3

+ is measured as positively ionizable feature, but R–N(Me)3
+ is not

as the interactions made by these two groups are significantly different.

Hydrophobic features (H): Choosing atoms/groups that should be measured as
hydrophobic is neither easy nor straightforward. The most commonly used algo-
rithm developed by Greene et al. [42] first allot a hydrophobicity score to each atom
based on a set of empirical rules defined from medicinal chemists’ perceptions and
then atoms with amply large hydrophobicity values are grouped into clusters. Then
a hydrophobic feature point is placed at the centroid of each such cluster. The order
of hydrophobicity score is roughly rings/ring atoms > groups like –CF3 > alkyl
chains. Some simple algorithms [44] consider all non-donors/non-acceptor/
non-charged atoms as steric groups (equivalent of hydrophobic groups), which
also yield a depiction of molecular shape.

Aromatic rings (R): Aromatic rings are treated as a special type of hydrophobic
feature represented by vectors instead of points so as to mimic the directionality of
interactions like p–p stacking and cation–p interactions. Figure 1 shows an
example of a typical pharmacophore model.

Fig. 1 An example of a pharmacophore model, generated from the conformations of S-adenosyl
methionine (SAM) and S-adenosyl homocysteine (SAHC) [17] with Phase programme. Colour
codes for the pharmacophoric features are as follows. Cyan: D, pink: A, red: N, blue: P, green: H
and orange: R
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Most recent pharmacophore modelling programmes define additional steric
constraints features. These are called exclusion volumes (XVols), representing the
steric effect of the binding pocket [46]. These features are required to avoid the
clashes of the molecule with the protein surface while mapping. Feature generation
not only facilitates the molecules to be aligned in an easy and rational way, but also
can be used in scoring. The root mean square deviation (RMSD) between matched
features gives quantitative account of the extent of overlay, which is often used as a
fitness score [40]. Hence, the placement of feature points should be accurate, and
one needs to be careful while deciding whether to consider all possible features or
to choose few of them giving adequate information about the spatial orientation of a
group of molecules. For example, sometimes there are huge number of hydrophobic
features as compared to other features, which may bias the alignment and give a
model with good score, but the model will be useless due to lack of specificity.

4 Evolution of the ‘Pharmacophore’ Concept:
Historical Perspective

Paul Ehrlich first used the concept of pharmacophore in the end of nineteenth
century, when he revealed the selective binding of methylene blue to nerve fibres.
This realization ushered the beginning of pharmacophore concept as ‘a molecular
framework that carries (phoros) the essential features responsible for a drug’s
(pharmacon) biological activity’ [37, 38]. Based on this idea, Ehrlich improved the
chemical structure of several compounds to yield efficacious drugs against syphilis
(under the trade name Salvarsan), trypanosome and spirochete infections [37, 38],
which made him win the Nobel prize in 1908 sharing with Ilya Metchnikoff.
Although Ehrlich’s early definition of pharmacophore is almost unchanged for over
a century, Schueler proposed the first modern definition in his book
‘Chemobiodynamics and Drug Design’ in 1960 [47], where the ‘chemical groups’
were replaced by patterns of ‘abstract features’. Beckett and co-workers [48] pro-
posed the first pharmacophore model of muscarinic agents in 1963 that identified
distance ranges between abstract features, and later in 1967, Kier developed the first
‘computed’ pharmacophore model for muscarinic receptor inhibitor binding pattern
[49–51]. Simple pharmacophores were in application as tools for designing new
drug molecules much before the dawn of a well-defined field like computer-aided
drug design. In the 1940s, preliminary structure-activity relationship models were
computed based on simple two-dimensional model structures utilizing the acces-
sible information of the van der Waals sizes and bond lengths [52]. Eventually, in
the 1960s, three-dimensional models could be built with the convenience of X-ray
and conformational analysis techniques. Medicinal chemists could classify some
common molecular frameworks that attributed to high biological activity more
often as compared to other structures by retrospectively analysing the chemical
structures of the various drugs. Evans et al. [52] named such frameworks as
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‘privileged structures’, which offer the basic scaffold and the substituents at dif-
ferent positions impart receptor specificity. Dihydropyridines [53],
Arylethylamines, N-arylpiperazines, diphenylmethane derivatives, biphenyls and
pyridazines [52, 53], tricyclic psychotropics and sulphonamides, benzodiazepines
[54] are among some popular examples of the privileged structures. Woods and
Fildes [55] found that p-aminobenzoic acid (PABA) and p-aminobenzenesulpho-
namide have similar critical distances; hence, bind to the PABA target with similar
efficacy and inhibits the biosynthesis of tetrahydrofolic acid. This was one of the
examples of the early two-dimensional pharmacophore models. An early 3D
pharmacophoric approach was the ‘three-point contact model’ proposed by Easson
and Stedman [56] and Beckett [48] in the case of (R)-(−)-adrenaline [= (R)-(−)-
epinephrine]. These models are based on a concept that when a chiral centre is
present in a compound, the substituents on this asymmetric atom make three-point
contacts with the binding pocket of the receptor, which can only be obtained for one
of the two isomers of epinephrine (the more active natural (R)-(−)-epinephrine).
Similarly, another three-dimensional approach was developed in the early 1970s,
characterizing the activity of clonidine on the central norepinephrine receptor [57].
It was observed that the natural ligand norepinephrine fits into the binding pocket of
its target by three main interactions [57], viz. ionic bond between an anion (car-
boxylate, phosphate) of the binding pocket and the protonated –NH2 functional
group, a HB between the NH–CO group of the binding site and the secondary
alcoholic hydroxyl and a p-stacking between the protonated imidazole of a histidine
residue of the binding pocket and the aromatic ring of the drug. It was also rec-
ognized that the cationic head must be light and the phenolic –OH groups are not
important for the biological activity. Pullmann et al. [58] in their 3D pharma-
cophore model of the norepinephrine receptor computed the critical intramolecular
distances for the above key interactions which could successfully explain the
pharmacophoric similarity between clonidine and norepinephrine, which in
turn enables clonidine to make the same kind of interactions as norepinephrine.

Fig. 2 Schematic presentation of timeline showing early developments in the field of
pharmacophore modelling
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These are some early efforts to explain pharmacophoric patterns that could act as
key features for the design of new chemical entities. Figure 2 shows few early
milestones in the field of emergence of pharmacophore modelling.

Nevertheless, in recent years, many effective pharmacophore modelling
approaches and their contributions to drug discovery have been reported [59]. With
the help of pharmacophoric insights and 3D searching tools, computer-aided drug
design efforts are swiftly gaining efficiency since the 1990s. Still, this approach
encounters many challenges that restrict its success. Pharmacophore approaches
have been widely used in virtual screening, de novo ligand design, lead opti-
mization and multi-target drug design. A range of automated pharmacophore
modelling and screening tools have constantly appeared after the computational
chemistry revolution witnessed in the past couple of decades [60]. Today, phar-
macophore screening is one of the apt choices for researchers working in drug
discovery and design.

5 Pharmacophore Model Generation

Pharmacophore models are typically generated either from a group of ligands, by
aligning them and taking out the common interaction features indispensable for
their biological activity. On the other hand, they can be constructed in a
structure-based way, by probing probable interaction points in the receptor binding
pocket, provided the 3D structure of the receptor is reported. The pharmacophore
models can also be generated from a receptor–ligand complex by identifying the
key interactions between the receptor and ligands.

5.1 Ligand-Based Pharmacophore Model Generation

Ligand-based pharmacophore modelling approach is used as a key strategy for
facilitating screening compound databases when there is no three-dimensional
structures are available for the target or receptor, but structure of a set of potent
inhibitors are available. These active molecules are superimposed, and common
pharmacophoric features representing crucial interactions between the ligands and
the common target of these molecules are identified. Firstly, a conformational space
of each of the active ligands is created corresponding to the flexibility of ligands,
followed by their alignment and determination of the important common chemical
features required for the creation of pharmacophore models. Currently, various
automated pharmacophore generators are in use such as Phase [46] (Schrodinger
Inc., http://www.schrodinger.com), HypoGen [61], HipHop [61] (Accelrys Inc.,
http://www.accelrys.com), GASP [62], DISCO [63], GALAHAD [64] (Tripos Inc.,
http://www.tripos.com) and MOE (Chemical Computing Group, http://www.
chemcomp.com) [65]. Several academic programmes [40, 60, 66–68] are also
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popularly being used. The key differences among these tools are mostly in the
algorithms that are implemented for conformational search and alignment. This
chapter is about the general steps followed by most of the programmes to recognize
a pharmacophore pattern from a group of molecules that interact with a common
receptor and the diverse applications of the pharmacophore concept.

5.1.1 Picking the Right Set of Compounds and Their Initial Structures

As the resulting pharmacophore models are highly inclined by the type, size and
structural diversity of the participating ligands, it is imperative to choose the set of
ligands that take part in the process of pharmacophore model generation. Some
programmes like RAPID [69], HipHop [61] and the Crandell Smith method [70]
assume all the compounds in the set as active, some other methods consider the
information on the inactive molecules to be important as they give an idea about the
structural features responsible for reducing the activities and the ones essential for
enhancing activity. For example, DISCO [62, 71] and CLEW [72] provide an
option to include or exclude inactive molecules in generating a model so that the
user can identify the distinguishing features, while HypoGen [61] provides an
option for including activity ranges of the set of ligands. As far as size of the dataset
is concerned, most of the programmes are capable of handling up to 100 ligands in
a set. If the dataset contains large number of molecules, then it can be sorted and
categorized based on the activity value ranges. However, some programmes like
SCAMPI [73] can handle up to a few thousand molecules but compromising the
quality of the models. The high structural diversity of the dataset also is important
to identify features that are most essential for target binding and produce
high-quality models. Correct compound structures with correct atomic valencies,
bond orders and properly defined aromaticity and the appropriate stereochemical
flags are crucial for model generation.

5.1.2 Conformational Search

Ligands being flexible may have multiple possible conformations, and each con-
formation may bind to the binding site of the target in a particular fashion. Thus, it
is crucial to consider the flexibilities of each molecule during pharmacophore
development. Conformational search is considered as a separate stage in most of the
pharmacophore modelling programmes like HipHop, DISCO and RAPID, where a
large number of conformations are generated for each ligand. Systematic search,
Monte Carlo sampling and molecular dynamics are the methods of choice for most
of the software for conformation generation. As, the number of all possible con-
formers for molecules (especially when they have complex structures with a large
number of rotatable bonds) is too large to handle and incorporate in the pharma-
cophore model building, energy minimization and clustering methods are used to
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reduce the conformational space. The conformers with lowest energy or repre-
sentatives from clusters of similar conformers are chosen to take part in model
generation. In some other software, conformational search is parallelly performed
along with pattern identification by retaining the conformers that possess certain
features in a particular spatial arrangement. GASP [63] and GAMMA [74] use such
an approach by the genetic algorithm (GA) techniques.

5.1.3 Feature Extraction and Representation

After conformational search, the molecules are subdivided into a set of features,
each feature having the capability to form a particular type of non-covalent inter-
action with the receptor. There are three main levels of resolution for defining the
features; (i) it may be atom based as implemented in MPHIL [75], GAMMA [74]
and RAPID [69], where 3D atomic position related to the atom type is used as a
feature; (ii) it can be atoms grouped into topological features such as a C = O group
or a phenyl ring; or (iii) it may be function based, where the atoms are assembled
into functional features describing the type of non-bonded interactions with the
receptor. These features are HB acceptor (A), HB donor (D), base (+ve charge pH
7) (P), acid (−ve charge, pH 7) (N), aromatic moieties (rings) (R) and hydrophobic
group (H). We have already discussed these features in Sect. 3 of this chapter. The
third type of feature extraction method is immensely popular and is being used in
many programmes like catalyst [43], Phase [46], HypoGen and HipHop [63].
Different topological features having the same chemical function can fall under
same functional feature category. At the same time, the functional features are
not assigned exclusively for any functional group. For instance, a –OH oxygen can
act as both HB acceptor, a donor and at times may act as negatively charged feature.
Commonly, the functional groups like a negatively/positively charged species, HB
donor and acceptor are represented by their centres, which are nothing but the exact
atom positions. Additionally, HB acceptors and donors are often represented by a
vector that enforces a restriction of bond directionality between the feature on the
binding site of the receptor and the complementary ligand feature. The centre of a
hydrophobic site or an aromatic ring is defined as the centroid of the group.

After extracting the features, depiction of the whole molecule’s structure is
obtained by combining the selected features. These representations are generated
mostly as: (i) 3D point set, where a ligand structure is represented as a group of
categorized points in the 3D space, where each point is linked with a feature, (ii) a
labelled graph, where nodes correspond to the features and the edges correspond to
the relations, or (iii) a set of interpoint distances, where the ligand structure is
represented as a collection of feature points, along with their interpoint distances.
The third type of representation is commonly stored as a n � n distance matrix, n
being the number of atoms.
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5.1.4 Pattern Identification and Scoring

Once the features extracted for each ligand in the dataset, a pattern is identified as a
set of relative positions in the 3D space, each linked to a feature. If a ligand holds a
set of features in at least one of its conformations, the set of features can be aligned
with the corresponding locations. Most of the methods are based on spatially
overlaying conformations of various compounds with the pharmacophores points
with minimal root mean square alignment errors. One can roughly classify the
alignment methods as either point or property-based. In the first class of algorithms,
pairs of pharmacophoric features are generally aligned using a least-squares fitting
using clique detection methods [76, 77]. According to the graph-theoretical
approach to molecular structures, a clique is a maximum completely connected
sub-graph, which recognizes all imaginable combinations of atoms/functional
groups to find out common substructures for the alignment. Property-based or
field-based algorithms utilize grid or field descriptors, based on molecular prop-
erties such as volume, shape, charge distribution, electron density and electrostatic
potentials of molecules. A 3D grid is generated about a ligand by computing the
interaction energy components between the ligand and a probe placed at each grid
point. Properties are calculated on a grid and later converted to a set of Gaussian
representations. A number of either random or thoroughly sampled initial config-
urations are then generated followed by local optimizations with some similarity
measure of the intermolecular overlap of the Gaussians.

After obtaining the pharmacophore candidates in the previous stages, they are
generally scored and ranked. The basic obligation of a scoring scheme is imple-
mented such that a high score implies higher chance of the ligands mapping to the
pharmacophore model. Despite the great advances, molecular alignment handling
ligand flexibility and proper selection of training set compounds are considered as
the biggest challenges in ligand-based pharmacophore modelling.

5.2 Structure-Based Pharmacophore Model Generation

Structure-based pharmacophore modelling requires the 3D structure of the receptor
or a receptor–ligand complex. The models are generated based on the spatial
relationships of complementary interaction features of the binding pockets followed
by selection and assembly of features to generate pharmacophore models.

5.2.1 Active Site Identification

The input for receptor-based pharmacophore modelling is the three-dimensional
structure of a receptor usually in PDB format. The receptor binding pocket is
identified using a spherical probe with customizable radius and location to include
the binding site as well as the key interacting residues involved with ligands.
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ThereĆare several programmes available for detection of clefts, crevices and
binding pockets and to suggest possible active site locations based on the geometry
of the surface [78, 79]. The key residues can be determined by user, deduced from
studying the activity of the protein after mutation of a single residue. If mutation of
a particular residue hampers function of the protein, then that residue may be part of
the active site. Computational analyses such as multiple protein structural alignment
techniques also help in identifying the active site of a protein by comparing it with a
similar protein with known active site.

5.2.2 Complementary Image Construction

The receptor binding pocket is analysed to create an interaction map of features that
the molecule is anticipated to satisfy for a reasonable interaction with the active site.
In other words, a complement of the receptor binding site is created as the basis to
create an input pharmacophore model. In particular, functional features like HB
donors/acceptors and hydrophobic groups are identified in the binding site followed
by rational placement of complementary features within the binding pockets in
chemically acceptable positions [80, 81].

5.2.3 Generation of Queries, Searching and Hit Analysis

Once the active site is defined and chemically characterized, there is no straight-
forward single step to derive pharmacophore models from the binding site
map. Since the receptor binding site has a potential to bind a variety of molecules in
a variety of binding conformations, the interaction map often gives rise to huge
number of features. To address this problem, adjacent features of the same type are
clustered and the feature that lies nearest to the geometric centre of the cluster is
retained as the cluster representative and all the other features are discarded.
Sometimes, the number of the features is still very high even after the clustering,
and all of them cannot be used as a single model because models possessing all
such features would not be able to obtain any hits from the database. So, possible
combinations of limited numbers of features are derived from the interaction map
and multiple pharmacophore modes are composed. And then, these models are used
by programmes like catalyst [43, 82] implemented in Accelrys Discovery Studio to
search the compound database and test the validity of the models (also termed as
pharmacophore ‘queries’ in catalyst) to screen or reject highly active compounds. It
is always necessary to examine these models for how they interact with the binding
site residues and how far the models extend within the binding pocket and if they
fill specificity pockets and make the strongest interactions. Queries describing only
the features present in an inhibitor might end up giving many false positive hits. At
times, they screen compounds that are able to map to all the query features but also
contain a bulky substituent causing steric hinderance and averting the compound
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from fitting into the binding site. That is why inclusion of some excluded volume
features is often recommended which penalizes the molecules’ score if some atoms
or group are placed in positions where they are likely to collide with the active site
atoms.

5.3 Generation of Pharmacophore Models
from the Protein–Ligand Complexes

Protein–ligand complexes produced by X-ray crystallography provide a detailed
picture of the interactions between the ligand and the receptor, showing which
atoms of the ligand are in contact with the receptor along with the atomic coor-
dinates of those atoms. Also, the type of interactions can also be delineated from the
atom types, distances and orientations of the ligand and receptor atoms. The major
interaction that occurs in the receptor–ligand interface is hydrogen bonding. But
other non-covalent interactions such as p–p and cation–p interactions are also
obviously essential for protein–ligand complex formation apart from the hydrogen
bonding. We have extensively looked at the importance of these interactions and
the cooperativity existing among themselves to maintain supramolecular structures
[83–86]. This information is of immense importance to establish a pharmacophore
model from the complex. However, one needs to give attention to the facts that
alternative pharmacophore models are possible within a single binding pocket
owing to the flexibilities of both the active site and the ligands which are capable of
rearranging themselves to accommodate different ligands and also there is a pos-
sibility of more than one active sites for a particular receptor. The programmes like
‘LigandScout’ developed by Wolber and Langer [87] and Phase [46] module of
Schrodinger suite generate structure-based pharmacophore models from the pro-
tein–ligand complexes given as an input. We will be discussing the steps of gen-
eration of pharmacophore models from the protein–ligand complexes by the
LigandScout and Phase, where the former characterizes the pharmacophoric fea-
tures using kekule’s patterns and the latter prioritizes the features based on the XP
docking energy components.

5.3.1 Pharmacophore Model Generation with LigandScout

With the LigandScout [87] programme, as a first step, the correct molecular
topology of rings and of hybridization state are assigned to the ligands by analysing
the neighbouring atoms followed by assignment of double bonds and Kekule’s
patterns for functional groups such as carboxylic acids and esters, nitro groups,
sulphonyl groups, thio acids, thio acetic esters guanidine-like groups, acetamidine
and phosphinoyl groups functional groups. Next, the pharmacophoric features
based on the hydrogen bonds, electrostatic interactions, charge transfer or
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hydrophobic interactions between the ligand and the receptor are defined, and
models are generated. Atoms belonging to nonacidic –OH groups (all –OHs
excluding carboxylic, sulphinic, sulphonic, phosphonic or phosphinic acids), –SH
groups, –C�C– hydrogens and –NHs (barring trifluoromethyl sulphonamide
hydrogens and tetrazoles) are recognized as HB donor atoms. When such an atom is
found in the distance range of 2.5–3.8 Å from the heavy atom of a HB acceptor of
the receptor molecule, a donor feature consisting of a donor point on the ligand side
and a projected point on the macromolecule side is created. Atoms like –OH
oxygen, –SH sulphur, –C�C– carbon or –C�N nitrogen are recognized as acceptor
atoms, and an acceptor feature is placed with the initial point positioned on the
acceptor atom and the projected point placed onto the heavy atom of the HB donor
on the receptor within the distance range of 2.5–3.8 Å. The electrostatic interaction
is represented as a vector resembling the definition of the H-bond acceptor.
Hydrophobic areas are implemented in the form of spheres with a tolerance radius
of 1.5 Å located in the centre of hydrophobic atom chains, branches or groups after
testing a group of adjacent atoms to attain a sufficient overall hydrophobicity score.

5.3.2 e-pharmacophore Model Generation by Phase

The e-pharmacophores method of Phase module [46, 88] of Schrodinger suite is a
new approach that utilizes the grid-based ligand docking with energetics (Glide)
extra precision (XP) scoring function [89] to precisely quantify protein–ligand
interactions. XP scoring function calculates enthalpic contribution of each inter-
acting (pharmacophoric) site of a molecule towards the total score. Thus, each site
gets a score based on the sum of enthalpic terms (such as HB, electrostatic,
cation–p, p–p, hydrophobic and hydrophobically packed/associated HBs and other
interactions) and is ranked. Then the e-pharmacophore models are generated from
the top scoring features. The user can choose the number and type of features
required to build a model. E-pharmacophores also include excluded volumes rep-
resenting the regions of space occupied by the receptor where any portion of the
ligand cannot be accommodated. E-pharmacophores have been shown to screen
diverse set of bioactive molecules as compared to conventional structure-based
methods, making it more useful.

5.4 Dynamic Pharmacophore Model Generation
and Multicopy Simulations

The active sites of the drug targets being very flexible, structure-based pharma-
cophore models derived from a single conformational state of the protein may not
satisfactorily account for all the possible potential drug–target interactions. In this
situation, molecular dynamics simulation has been a very competent method to
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tackle the target flexibility issues in SBDD. Dynamic pharmacophore models rec-
ognize compounds, which complementarily bind to the protein considering flexi-
bility of their binding pockets, theoretically reducing the entropic penalties
experienced by the protein due to ligand binding. MD simulation trajectories would
give rise to multiple conformations of a protein active site, describing the targets’
intrinsic flexibilities. Multiple copy minimization is also a regularly used exercise in
computational drug design. The technique first fills the active sites of the receptors
with multiple copies of probe molecules those do not react among themselves.
Then, molecular dynamics, Monte Carlo/steepest descent minimizations are per-
formed to minimize all these probes parallelly to obtain local minima. When the
probes are clustered in the various regions of the active site in different orientations,
the relative preferences of the binding regions can be estimated from the number of
probes or the interaction energies.

Highly ordered and smaller clusters represent highly crucial prerequisite for
favourable interactions, while the haphazardly spread larger ones indicate highly
flexible sites. The MUSIC algorithm [80, 90] implemented with the BOSS pro-
gramme uses similar strategy. It is capable of performing Monte Carlo simulations
for a wide range of biomolecular systems in solvent clusters and mixtures and
periodic solvent boxes with multiple solutes. It is able to calculate the interaction
energies between solvent–solvent, solvent–solute and solute–solute. Usually, the
probe or solvent are small molecules. For example, hydroxyl groups, aromatic
groups and carbonyl groups are represented by small probes like –CH3OH, C6H6

(Benzene) and –CH3CO (acetone), respectively. The probe molecules as well as the
side chains of the receptor can be treated as rigid, partially/fully flexible or all-atom.
The wide-ranging OPLS force field used in this programme is proven to be suc-
cessfully handling the flexibilities of the receptor while generating pharmacophore
models. Applications of the dynamic pharmacophore models will be discussed in
the subsequent sections of the chapter.

6 Pharmacophore Finger Prints

The complex 3D structure of a molecule is reduced to an abstract collection of
features in the pharmacophoric approach. Extending this concept, the structure of a
molecule can be interpreted a as an exclusive data string by extracting all possible
three-/four-point sets of pharmacophoric features. The inter-feature distances are
assigned using distance binning or simply by bonds. These resulting unique strings
describing the frequency of every possible combination at predefined loci of the
string are known as pharmacophore fingerprints. Different types of molecular
similarity analyses among libraries of molecules have been carried out using
pharmacophore fingerprints [91, 92]. Also, the pharmacophoric fingerprint can be
used to detect the common key features/groups contributing to the biological
function of a group of active ligands.
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7 Applications of Pharmacophore-Based Approaches

In this section, we discuss the diverse applications of the pharmacophore approa-
ches under different scenarios.

7.1 Pharmacophore Approaches for Virtual Screening

Pharmacophore models being very simple by their definition can be used in a variety
of ways depending on the research problem. This simplicity makes ‘pharmacophore
based search’ a tool of choice for drug discovery scientists in the last decade [93].
When the structure of a set of molecules with similar or different scaffolds active on a
particular target are known, then ligand-based pharmacophore models can be
developed using their structures as described in Sect. 5.1. If the structures of some
inactive derivatives are also known, then contribution of each feature towards the
bioactivity can be compared between the positive and negative datasets to distin-
guish the wanted and unwanted features. The allowable steric arrangement of the
ligands can also be mapped. When only the structure of the receptor or a receptor–
ligand complex is available, then pharmacophore models are generated as described
in Sects. 5.2 and 5.3 and can be utilized as queries to screen a database not only to
screen compounds satisfying certain geometric and chemical restraints, but also to
filter molecules with undesirable properties. For example, Voet and co-workers
identified specific antagonists of human androgen receptor by applying two phar-
macophoric filters back to back. One model is being generated from the available
receptor-agonist complexes, while the other filter applied was a pharmacophore
model generated from the receptor-antagonist complex. This approach enabled the
authors to screen the compound that matches the antagonist-specific feature [94].

7.1.1 Dynamic E-pharmacophore Models: A Case Study
with Mycobacterial CmaA1

We present here the summary of our recent work (Choudhury et al. [11, 17, 18]) on
generation and application of dynamic structure and ligand-based pharmacophore
models for screening a certain library against a mycobacterial target cyclopropane
synthase (CmaA1). Mycolic acids are the characteristic constituents of Mtb cell
wall which contribute towards the drug resistance, pathogenicity and persistence of
the parasite. CmaA1 enzyme catalyses the cis-cyclopropanation of unsaturated
mycolic acid chains at the distal position, which is an indispensable step in mycolic
acid biosynthesis and maturation, thus making CmaA1 an important Mtb drug
target. Five model systems of CmaA1 corresponding to different stages of cyclo-
propanation were studied using molecular dynamics (MD) simulations. A detailed
picture of the structural changes in the two distinct binding sites, i.e. cofactor and
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acyl substrate binding sites of CmaA1 during the cyclopropanation process was
obtained by analysing the MD simulations trajectories. The apo-state of CmaA1
was observed to have a closed conformation where the cofactor binding site is
inaccessible. Upon cofactor binding, H-bond between Pro202 of loop10 (L10) and
Asn11 of N-terminal a1 helix disrupts making the cofactor binding pocket acces-
sible. Upon cofactor binding, the non-polar side chains of the substrate binding site
position towards the inner side of the pocket forming a hydrophobic environment
for the substrate. In order to exchange the methyl group from the cofactor to the
substrate, both the ligands tend to come close to each other facilitated by the
upliftment of loop10. These observations prompted to think that the protein can
remain in diverse conformations at different stages of its catalytic function and
considering only one conformation for drug design would not be sufficient. So
multiple structures obtained from the MD trajectories were used to generate, vali-
date and use structure and ligand-based pharmacophore models.

7.1.2 Generation of Dynamic Structure-Based Pharmacophore
Models

The molecular dynamics simulations on CmaA1 revealed that the binding sites of
the enzyme exhibit huge conformational diversity, when bound to different ligands
at various stages of its function. To use this conformational diversity of the binding
sites in structure-based drug design, representative structures (snapshots) were
extracted from all the five MD trajectories at a regular interval of 5 ns, thus
obtaining a total of forty conformations of CmaA1 bound to different ligands in the
two binding sites. The crystal structure of CmaA1 reported in PDB was also added
to this pool. Now these 41 protein–ligand complexes were used to obtain
e-pharmacophore models as described in Sect. 5.3.2. The first step used was
evaluating the Glide energy terms. Active site of each CmaA1 structure was defined
as a cubical box of 12 * 12 * 12 Å3 dimension, and the Glide [89] energy grids
were generated. Glide scores with XP descriptor information were obtained for the
already bound ligands keeping their original conformations unchanged (unlike a
typical docking where protein is held rigid while ligands are kept flexible). This
exercise calculated all the interaction energy components between the receptor–
ligand complexes, which were then submitted to the Phase module of Schrodinger
to develop energy-based e-pharmacophore [88, 95] models. Figure 3 depicts the
steps of the e-pharmacophore model generation and selection of best ones as virtual
screening filters.

7.1.3 Pharmacophore Model Validation

To examine the capabilities of the dynamics-based e-pharmacophore models to
successfully distinguish inhibitors and non-inhibitors of CmaA1, a set of 23
reported CmaA1 inhibitors (MIC:0.0125–12.5 lg/mL) [96] were used as a positive
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dataset and 1398 Mtb inactive compounds reported in ChEMBL database
(molecular weight ranging from 180 to 400, number of heavy atoms ranging from
12 to 27, similar to SAM/SAHC and the 23 inhibitors) were used as the negative
dataset. Structures of these molecules were energy minimized and five lowest
energy conformers were chosen for each of them. All these conformations were
mapped to the 41 e-pharmacophore models using the ‘advanced pharmacophore
screening’ option of Phase. Fast conformational sampling was used during phar-
macophore screen, excluding molecules with >15 rotatable bonds. Molecules,
which could be mapped to at least four pharmacophoric sites of each model were
screened and among several conformers of a molecule the one with the best fitness
score (S) given by the following equation [46] was retained for each compound. S is
a measure of volume overlap and extent of match of chemical nature and direc-
tionalities of the pharmacophoric features with the corresponding complementary
features of the molecules.

S ¼ Wsite 1� Salign=Calign
� �þWvecSvec þWvolSvol þWivolSivol

where Wsite ¼ ð1� Salign=CalignÞ, Salign = alignment score, Calign = alignment cut-
off, Svec = vector score, Wvec = weight of vector score, Svol ðVcommon=VtotalÞ =
volume score, Wvol = weight of volume score, Sivol = included volume score.
Detailed explanations of the components of the fitness score are given in reference
47. Volumes were computed using van der Waals models of all atoms except
non-polar hydrogens, and Wivol is the weight of volume score. Calign, Wsite, Wvec,
Wvol and Wivol are user-adjustable parameters, with default values of 1.20, 1.00,
1.00, 1.00 and 0.0, respectively.

Analysis of the hits obtained from these pharmacophore screening showed that
most of the models developed from the CmaA1 complexes obtained from the MD
trajectories were able to screen up to 17 reported inhibitors (out of 23), while the
model developed from the crystal structure could screen only one inhibitor.

Fig. 3 Generation of dynamics-based e-pharmacophore models from the MD trajectory. The
associated active site residues’ interactions have been shown. The colour representations for the
features are same as Fig. 1
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The fitness scores of the molecules with the dynamics-based models were also
found to be higher. To further confirm our observation, a docking-based virtual
screening was parallelly performed with the 41 CmaA1 snapshots and the reported
inhibitors. Docking with the MD CmaA1 snapshots not only could bind the most
active inhibitors as top scored hits, but also the docking scores were higher than the
ones with the crystal structure. These results thus throw light on the effect of
including multiple conformations of the targets on the screening abilities of the
pharmacophore models. Five out of the 40 dynamic e-pharmacophore models were
selected to be further used in our virtual screening study based on the consistency of
docking and pharmacophore screening results.

7.1.4 Dynamic Ligand-Based Pharmacophore Models:
Construction and Validation

Dynamic ligand-based pharmacophores were developed for the cofactors SAM and
SAHC considering their conformational heterogeneity in CmaA1 binding sites as
observed from MD trajectories of the respective model systems. Average structures
of SAM/SAHC were created after superimposing the conformations obtained from
each trajectory using uniform weighting method. Phase module of Schrodinger is
used to build the ligand-based pharmacophore models, each comprising six types
and 8–11 numbers of chemical features depending on the number and type of
interactions with the CmaA1 binding sites. To verify the screening efficiencies of
these models, a positive dataset of 23 CmaA1 inhibitors [96] and a negative dataset
of 1398 non-inhibitors (the same dataset used to validate the structure-based models
described in the previous section) were screened against each of the models. The
ligand-based models created using multiple conformations of the cofactors obtained
from the MD trajectories could screen up to 22 out of 23 CmaA1 active compounds
when the condition for matching was minimum four features of a model. The fitness
scores of the inhibitors matching the dynamic-ligand-based pharmacophore models
were also higher as compared to the one developed from the conformation of SAHC
bound to the crystal structure which was able to match to four CmaA1 inhibitors.

7.1.5 Pharmacophore-Based Virtual Screening

Once the best structure and ligand-based pharmacophore models were validated,
they were employed as filters in a novel virtual screening workflow consisting of
four different levels of screenings, viz. ligand-based pharmacophore map-
ping > structure-based pharmacophore mapping > docking > pharmacokinetic
properties (ADMET) filters. A focused library of 18,239 molecules from three
different sources was used for our virtual screening studies. As the first component
of the dataset, 6583 drugs reported in DrugBank were chosen, targeting drug
repurposing. The second component of the dataset was a set of 701 molecules
which were already reported to be highly active (<1 lM activity) on Mtb cells/
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targets and was considered to obtain molecules capable of acting on multiple Mtb
targets including CmaA1. The third part of the dataset, i.e. a set of 11,089 highly
active anti-HIV molecules (<1 lM activity on HIV cell lines/targets) was taken to
screen molecules that can inhibit both Mtb-CmaA1 and HIV simultaneously. After
subjecting these three subsets of molecules parallelly through the four screening
filters, 12 compounds were obtained as potential anti-CmaA1 hits. As analysed
from the Glide XP docking results, all of the identified hits made strong interactions
with the important CmaA1 active site residues. Figure 4 shows virtual screening
workflow with various levels of filters.

Virtual screening is usually a highly ordered approach combining diverse
computational screening methods, where at each consecutive step, the filter criteria
become more and more stringent, thus retaining the most promising compounds for
experiments. As the steps proceed, the approaches used go on being more thorough
and computationally expensive. So, being simple and fast by nature, pharma-
cophore models are usually implemented at the beginning of a hierarchical protocol
to eliminate the compounds which do not even fulfil bare simple spatial and
chemical requirements of the query, before subjecting the compound libraries to
more complicated and computationally demanding docking calculations.

Fig. 4 Virtual screening workflow with structure and ligand-based pharmacophore models
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7.2 Applications of Pharmacophores in Predicting
Pharmacokinetic Properties

Poor pharmacokinetic properties contribute majorly to failures of many drugs
during development and clinical trials. Hence, these properties (also known as
ADMET) must be profiled during the early drug discovery process so as to avoid
failure at the later stages. Pharmacophore modelling approaches can be of great use
for prediction of the ADMET properties. If one can identify the possible interac-
tions made by a group of drug molecules having a well-defined ADMET profile
with enzymes involved in drug metabolism, the common interacting features can be
captured as pharmacophore models and equivalent features of the query molecules
can be matched with the models. The cytochrome P450 (CYP) constitute the major
group of enzymes involved in drug metabolism out of which isoenzymes 3A4, 2E1,
2D6, 2C19, 2C9 and 1A2 carry out 90% of the metabolism. Many recent studies
report successful implementations [97, 98] of structure-based pharmacophore
models trained from the known drugs CYP enzyme interactions to predict the
suitability of query molecules to bind to a certain CYP. Also models to assess the
probability of chemical alteration of the molecules by a CYP enzyme [99, 100]
have been successfully developed and implemented. Inhibitors of the drug clear-
ance enzymes such as the uridine 5′-diphospho-glucuronosyltransferases and
transporters like P-glycoprotein/organic cation transporter have also been utilized to
build pharmacophore models [101]. Pharmacophore models may also be employed
to predict the possibilities of off-target binging of compounds accounting for the
side effects, thereby helping design more target-specific compounds [102].

7.2.1 A Case Study with Hexadecahydro-1H-Cyclopenta[a]
Phenanthrene Framework (HHCPF)

One of the recent studies from our group [20] reports implementation of ligand-
based pharmacophore model features in combination with the QSAR techniques to
establish a relationship between the number and type of pharmacophoric feature at a
particular position of the core scaffold of a group of drugs with their drug-like
properties and target binding affinities. A set of 110 FDA approved drugs con-
taining the Hexadecahydro-1H-Cyclopenta[a]Phenanthrene Framework (HHCPF)
(Fig. 5) was considered for the study to understand their structural and functional
diversities and target specificities. Analyses of the target information collected from
DrugBank, UniProt and PDB show the selectivity of the scaffolds for different
targets and vice versa. The substituents present at 17 different positions of the
scaffolds were classified as six pharmacophoric features, viz. H-bond donors,
H-bond acceptors, aromatic rings, hydrophobic, charged and halogen groups.
ADMET (human intestinal absorption, biodegradability, P-glycoprotein binding,
carcinogenicity, Caco2 cell permeability, Ames test positivity, blood brain barrier
permeability, hERG, CYP450 binding, Rat LD50, etc.)/physicochemical properties
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(polar surface area, polarizability, LogP, refractivity, etc., obtained from DrugBank)
of the HHCPF drugs were observed to be highly correlated (R > 0.8) to the number
and type of these pharmacophoric features at positions 3 and 17 of the framework.
The chemical nature of the substitutions at different carbon atoms of the framework
was observed to play extensive role in making specific interactions with the active
site residues of their respective targets as revealed from analyses of the docking
poses. The target binding was found to be greatly influenced by the presence/
absence of aromatic rings, HB donors and HB acceptors as substitutions at different
positions of the HHCPF scaffolds. Structure-based pharmacophore models were
generated from the docked complexes of eight most important HHCPF drugs with
their targets which can further be used to screen for new inhibitors. The general
observation in the study was that the number and positions of double bonds in the
framework regulate the preference of HHCPF drugs for a target class, and the
substituents at particular carbon positions account for the target binding patterns
and ADMET profiles.

7.3 Target Identification Using Pharmacophore Approaches

Pharmacophore models may also be employed to identify possible targets for active
molecules, thereby facilitating the understanding of their mechanism of action. This
approach is also proven to be helpful for studies that explore polypharmacology and

Fig. 5 Important substitution spots on the HHCPF, where number of different pharmacophoric
features has a high correlation with target binding and ADMET properties
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drug repositioning [103–105]. Firstly, pharmacophore-based fingerprints can be
employed to search for similar molecules, whose mechanisms of action are already
understood. In the other way around, pharmacophore models can be generated from
the active sites of a group of probable proteins involved in the particular disease
pathway and then the active molecules can be mapped to them to find out the best
fit. The structures of these groups of proteins may be obtained from PDB or models
generated using various techniques. The active site pharmacophore mapped with
high scores can be proposed as potential targets for the compounds. A study on a
group of plant metabolites and pharmacophore models of their possible targets was
carried out by Rollinger et al. The best mapping targets were later proven to be
accurate by experimental testing, thus validating the usefulness of the pharma-
cophore mapping approach [106].

7.4 De Novo Ligand Design with Pharmacophores

Apart from acting as a query to screen molecules with features at desired spatial
locations and thus possibly prompting a desired biological response, pharma-
cophore models can also be employed for de novo design, of compounds, satisfying
a specific physicochemical constrains. For example, the NEWLEAD method is able
to create novel molecules from distinct disconnected fragments (mostly derived
from known active ligands) that are consistent with the features of a pharmacophore
model by using linkers. The linkers are small connecting fragment may be few
atoms, chains or sometimes ring moieties [107]. Software packages like LUDI
[108] or BUILDER [109] can grow such novel molecules when the receptor
structures are also known. Many other packages also perform such de novo ligand
design from the receptor-based pharmacophore features [110, 111]. Thus, phar-
macophore models have versatile ways of application for lead generation. De novo
design is meant to create entirely novel compounds, while pharmacophore
searching screens the available chemical space. However, pharmacophore search-
ing is faster and easier.

8 Limitations of Pharmacophore-Based Approaches

Though the literature is flooded a plenty of successful and reliable applications of
pharmacophore-based approaches in rational drug design, its limitations should be
cautiously considered as with any method [33, 112]. A systematic or straightfor-
ward way of constructing pharmacophore models is not available. This is the case
especially with the receptor-based pharmacophore models where many different
combinations of features are possible and each model may screen completely dif-
ferent set of molecules [113]. Lack of accuracy in pharmacophore scoring/fitness
functions is one of the limitations of pharmacophore searching. So, quality of
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mapping of a compound with a pharmacophore model which is often given by the
RMSD between the feature of a model and atoms of the target molecule does not
stand accurate as it does not take an account of similarity with the known active
molecules [114]. Especially, the ligand-based pharmacophore models do not con-
sider the overall compatibility with the receptor, thus sometimes end up with
screening molecules those are very different from the other active compounds, with
a completely different set of functional groups not complementary with the receptor.
The pharmacophore-based searches against the compound databases lack fast
conformation sampling as most of the programmes rely on conformer databases
having only a limited number of energetically favourable conformations of mole-
cules [115, 116]. There is a possibility of missing an active molecule if a suitable
conformation is not available. So, it is desirable to generate as many low-energy
conformers as possible for the database compounds, but again it would consume a
lot of computational time. Especially for the rotatable bonds of small hydroxyl
groups, it is difficult to sample all the different rotations.

9 Summary

Evolving from a simple concept to a well-validated and widely exploited method,
the pharmacophore modelling approaches have been an essential part of many drug
discovery strategies. The pharmacophore-based approaches are well known for their
strength to propose a diverse set of molecules having diverse molecular frameworks
but owing to a desired biological activity for one target. It has been extensively
applied for virtual screening, lead optimization, target identification, toxicity pre-
diction and de novo lead design, and it has ways to go [117]. Considering the
strengths and limitations of the pharmacophore approaches, it can either be used
alone to identify potential functional group substituents in molecules, design new
molecules specific for a target by scaffold hopping keeping the substituents with
certain pharmacophoric feature and orientation constant virtually screen for inhibi-
tors, perform ADMET profiling of compounds, investigate possible off-targets or
can be applied as a complementing approach along with other methods like docking
and QSAR. The concept can be sensibly applied for fragment-based drug design,
characterization of protein–protein interaction interfaces and target-based classifi-
cation of chemical space. In this chapter, we touched upon the basic concepts and
methods of generation of pharmacophore models. The diverse applications of the
pharmacophore approaches exemplified though a number of case studies are
believed to be useful for the readers. However, we believe that the choice and way of
application of the method depends on the research problem and the type of initial
data available.
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