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Abstract In this current age of data-driven science, perceptive research is being
carried out in the areas of genomics, network and metabolic biology, human,
animal, organ and tissue models of drug toxicity, witnessing or capturing key
biological events or interactions for drug discovery. Drug designing and repur-
posing involves understanding of ligand orientations for proper binding to the target
molecules. The crucial requirement of finding right pose of small molecule in
ligand–protein complex is done using drug docking and simulation methods. The
domains of biology like genomics, biomolecular structure dynamics, and drug
discovery are capable of generating vast molecular data in range of terabytes to
petabytes. The analysis and visualization of this data pose a great challenge to the
researchers and needs to be addressed in an accelerated and efficient way. So there
is continuous need to have advanced analytics platform and algorithms which can
perform analysis of this data in a faster way. Big data technologies may help to
provide solutions for these problems of molecular docking and simulations.
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1 Introduction

This decade has been witnessing a major shift in technologies which have been
used in various sectors ranging from social media, agriculture, services, to science
and technology. In the current age, new advances are being made in the field of
satellites, robotics, micro- and nanotechnologies as well as revolution in computing.
The stream of science has been impacted by this revolution. All disciplines of
science have been generating and building newer technologies and different
approaches for scientifically accurate experimentation. All these developments in
various scientific disciplines are also changing our social life, health, environment,
etc. One of the major streams of science is life sciences, which has been strongly
affected and accelerated due to all these advancements in techniques and
technologies.

Various technologies like next-generation sequencing (NGS) in genomics,
high-throughput assays, and supramolecular chemistry are revolutionizing the life
sciences and applied areas of human health, agriculture, livestock, and many more
[1–4]. The robotics-based automation is generating volumes of data from various
experiments and characterization techniques. The next-generation biology has been
driven heavily by wet laboratory experimentation as well as dry laboratory
computation.

Technologies like next-generation sequencing (NGS) enable sequencing of
genomes of thousands of species in plants and animals at an extremely rapid rate
[5–7]. Today, many genome sequencing centers are producing data of about ter-
abytes per week. This results in petabytes of data of sequencing information per
year. The figure is expected to grow exponentially and very soon will be facing
challenges of storage and analysis of exabytes of sequence data [5–7]. To extend
this further, there is already a race to sequence the genomes of all living species on
the planet including humans, plants, animals, microbes to name a few. It is expected
that this gigantic exercise will result in zetabytes to yottabytes of sequence data.
Such large volumes of sequence data will be the genomic ocean of tomorrow [7–9].

Similarly, structural database of biomolecules like protein, nucleic acids, lipids,
and membranes is also growing rapidly (shown in Fig. 1) due to methods like cryo
crystallization, high-frequency NMR, and other characterization techniques along
with computational modeling techniques [10]. Computational modeling and sim-
ulation of biomolecules have been drastically improving due to the advancement in
high-performance computing (HPC) [11] and development of advanced enhanced
sampling methods [12, 13]. It has paved the way for mimicking long timescale
events occurring in different biological systems more efficiently. Owing to the better
computing paradigm, today structural data generation is no more the major chal-
lenge, but analyzing this huge data has become one. Computer simulations help to
determine mechanism of action of biomolecules in a cell, thereby suggesting their
implication in various diseases and discovering their potential use in therapeutics.
Hence, the computational techniques generate biomolecular structural and
dynamical data via very long time scale simulations. Likewise, detailed and
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systematic analysis of data becomes an important part of any study, as it would
further help to understand the entire mechanism of biomolecular action. Advances
in crystallization, NMR, and computational methods are directly influencing and
accelerating the drug discovery process.

2 Drug Discovery Process

Discovering a new drug is a very complex, time-consuming, expensive, and high-risk
process for R&D and pharmaceutical laboratories [14–16]. It is also a multi-step
process involving target identification, target validation, and screening of small
molecules for validated targets. These steps need to be made easy, cost-effective, and
fast. Computational method like computer aided drug discovery is one such process
that involves identifying new ligand molecules for a particular target protein, which is
an important step in drug discovery. Historically, the drug discovery process was
involved extraction of chemical compounds from natural resources and testing them
in the cell for disease treatment [17]. With the advancement of technology and ability
to chemically synthesize small chemical moieties, various drug databases came into
existence. The availability of vast structural resource of small molecules has made
high-throughput screening of these databases against target protein a more feasible
practice. Also, increasing affinity and reducing toxicity of already available ligand
molecules needs to be addressed in drug discovery process.

Drug discovery process involves the following steps: (1) target identification,
(2) validation of target protein, (3) creation of small molecule database,

Fig. 1 Growth of structural data from 2001 onwards. Source https://www.rcsb.org/pdb/statistics
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(4) screening of small molecules against target protein, i.e., hit to lead identification,
(5) lead optimization, (6) preclinical testing, and (7) clinical testing.

Almost all these steps generate huge data from experimental laboratory and
computational laboratory experimentations and need better way of handling data
with fast and better analytics approaches. Target identification and validation
involve selection of protein molecules whose activity when blocked or enhanced
can affect the particular disease-related cellular pathway. This involves a systems
biology approach wherein an understanding of all the proteins involved in the
pathway or finding possibility of any alternate pathway available, role of particular
protein in particular pathway and identifying side effects of the target protein.
Second most important thing is to have database of lakhs of small molecules which
can be screened against the target protein. The source of these small molecules can
be microbial metabolites, plant origin, and chemically synthesized. There are var-
ious drug molecule databases, i.e., Chemspider [18], DrugBank [19], ZINC [20] to
name a few which are already available.

The technique to screen these lakhs of molecules to a target protein is performed
using molecular docking. The screening process should be fast enough, which
demands the use of and better computational or programming techniques. Each of
these molecules tends to have conformational flexibility which in turn makes the
docking process more time-consuming. Choice of efficient force field and scoring
methodologies also plays an important role in screening of these molecules. In order
to achieve this, high-throughput docking methods have been developed. Although,
the analysis of these docked conformations to choose the best ligand becomes a
big data analytics problem as it involves finding of various parameters and several
interactions between the target protein and the docked ligand.

Docking or screening projects a static picture of the binding of ligand with the
receptor [21]. However, the dynamic picture would be obtained from the molecular
dynamics simulations which provide an understanding of the flexibility of protein
and ligand. Molecular dynamics simulation gives an insight about various inter-
molecular interactions and binding affinities between protein-ligand complex,
thereby ensuing binding efficiency [16]. Molecular docking followed by simula-
tions generates huge molecular trajectories data. Thus, the management and fast
analytics of this data have become the need of the hour.

The upcoming area of drug repurposing is again proving to be a bigger com-
putational task, and it has the potential to deliver a drug molecule for a chosen
disease [22, 23]. Various pharmaceuticals and R&D laboratories are working on
drug repurposing which involves docking of already approved FDA drugs on new
target protein. The involvement of FDA-approved drugs suggests that they have
been already tested on humans for their toxicity and pharmacology. Hence, rejec-
tion of such drugs due to toxicity is ruled out, and entire duration required for the
drug discovery process can be shortened by few years. HPC-based molecular
docking and molecular dynamics simulations pose a challenging role in this area of
drug repurposing.

In order to manage this rapidly increasing data and efficient analysis, there is
need to develop tools with parallelization and thereby enhance the overall
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performance. This denotes a continuous need to have advanced analysis platform
and algorithms which can perform analysis of the biological data in a faster way.
Big data technologies may help to provide solutions for these problems of
molecular docking and simulations (Fig. 2).

3 Big data Technologies: Challenges and Solutions

The context of big data is dependent on the problems and the existing technologies.
Today’s big data can be tomorrow’s small data as the technologies and methods
that are handling the data may become more advanced in the future. The big data is
the data that cannot be handled using the existing traditional methods and requires
specialized methods to solve the big data problem.

Big data is categorized by its three main properties, viz. volume, velocity, and
variety [24]. Volume denotes the huge data that needs to be analyzed, velocity tells
about the rate at which the data is generated of the data, and variety tells about the
different types of data that can be generated by the various sources using different
formats of data generations and exchange. Big data usually expands rapidly in the
unstructured form and varies to such an extent that it becomes difficult to maintain
the data in traditional databases. In such cases, specialized techniques like NoSQL
[25] can be used to handle the problems of the unstructured data. Big data tech-
nologies are capable of managing huge data generated in different formats.
Advancements in technologies like cloud computing offer a unified platform to store
and retrieve the data. The Internet speed has increased to several manifolds, and the
cloud technologies have effectively exploited the Internet capabilities to offer a

Fig. 2 Role of big data analytics in drug discovery
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scalable, multi-user platform for big data analytics in the field of Bioinformatics.
The use of big data in the Bioinformatics is an emerging field which presents new
opportunities to medical researchers and paves the way toward prediction of per-
sonalized medicines. The greatest challenge lies in designing a strategy to acquire
the data followed by filtering it to meet the appropriate decision-making demands.

This can be achieved by bringing together experts from clinical medicines,
computer science, bioinformatics, biotechnology, and statistics and address the
challenge of the data management and analytics solutions toward precision biology.
Hadoop [26]-based platform with MapReduce and spark-based algorithms may be
useful to make all the analysis optimized with fast calculation. Hadoop- and
MapReduce [27]-based algorithms implemented on scalable architecture have been
discussed further along with drug repurposing big data case study for cancer protein.

4 Big data Technology Components

Hadoop

Apache Hadoop is an open-source software framework for storage and large-scale
processing of datasets on clusters of commodity hardware. Hadoop has gained lots of
popularity among the peer parallel data processing tools because of its simplicity,
efficiency, cost, and reliability. Hadoop can be built on the commodity hardware.
Hadoop has major three components. Hadoop Distributed File System (HDFS),
YARN scheduler and resource negotiating framework and the MapReduce [27]
programming framework. A typical framework of Hadoop test bed is shown in Fig. 3.

Fig. 3 Basic architecture diagram of hadoop test bed
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I. HDFS

Hadoop Distributed File System (HDFS) is built to provide high-throughput,
reliable, efficient, and fault-tolerant file system. It can provide streaming reads and
writes for large files. The basic architecture diagram of HDFS is shown in Fig. 4.
As shown in the figure, the HDFS has two main components, namenode, and
datanode. HDFS is mainly designed for low-cost hardware, and hence, it can be
built on cluster of commodity hardware. In HDFS, the file is divided into fixed size
blocks or chunks of 128 MB each except the last chunk. The fixed size 128 MB can
be configured with various needs. Namenode contains the metadata information of
all the files. It stores information regarding the block of file stored on datanodes,
while datanodes actually store the block of data. Each block is stored on three
datanodes of the cluster. This policy provides reliability at the cost of redundancy.
Generally, two copies of blocks are stored on two different datanodes of the same
rack of cluster, while the third copy is stored on the datanodes of the different rack
of the same cluster. These two racks are connected by a very high-speed network
switch. This policy ensures the reliability of the HDFS file system. In case, if any
two nodes fail, still the data can be accessed from the datanode having this third
copy of the data. Datanodes periodically updates their state to the namenode so that
namenode can be aware of the overall state of cluster. While scheduling
MapReduce [27] job, the hadoop framework ensures with most possibility that the
mapper task should run on the same datanode where the actual data is residing. This
avoids significant network overhead. This policy of hadoop improves the perfor-
mance of the overall cluster.

Fig. 4 Basic architecture diagram of Hadoop Distributed File System (HDFS)
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HDFS major components:

(i) Namenode
Namenode stores the metadata about the file. It has the complete view of the
distributed file system. It tracks which datanode is active and which are node.
In case of any datanode failure, it initiates the operation regarding maintaining
the replication factor by copying the data stored the failed nodes to the active
datanodes. In case, namenode fails, the complete HDFS file system gets
crashed.

(ii) Datanode
It stores the actual data. It performs the read and write operation once it
receives the command from the namenode. It is responsible for block creation,
deletion, and replication. It periodically sends the heartbeat signal to the
namenode.

II. Map Reduce

Hadoop MapReduce is the programming framework. It is one of the major parts
of the Apache Hadoop project. It provides the programing model for data parallel
application. The basic flow of MapReduce algorithm is shown in Fig. 5.
MapReduce programming model makes use of HDFS and makes the application
performance very efficient and fast. The MapReduce framework with the help of
Hadoop framework places the mapper job on the datanode where the actual data
resides. It improves the performance and removes the network bottleneck while
processing huge amounts of data. The major phases of the MapReduce program are
mapper, partitioner, combiner, shuffle and sort, and reducer.

The mapper reads the data from HDFS and processes it. This is followed by the
partitioner ensuring that the processed data is sent to be the desired reducer. The

Fig. 5 Basic flow of MapReduce algorithm execution
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data before being sent to the reducer is shuffled and sorted so that the reducer can
easily process it. Finally, the reducer performs an operation of reduction or
aggregation on the final data and this is followed by writing the final output to the
HDFS. The combiner does a similar task as the reducer but at the mapper lever
providing local lever aggregation or reduction.

III. YARN

Apache YARN stands for Yet Another Resource Negotiator. Before Hadoop 2.x,
the only framework which could run on Hadoop platform is MapReduce. The job
scheduling and resource negotiation is integrated with the MapReduce framework
and shared by Hadoop framework. The YARN provides the separate layer for job
scheduling and resource negotiation. It provides the platform for other program-
ming framework like spark and storm, and many can run on Hadoop framework.
The basic architecture of YARN is shown in Fig. 6.

YARN has ResourceManager, NodeManager, Container, and ApplicationMaster.
Each container on datanode is specified with amount of CPU and memory, and it is
configurable. ResourceManager is run on namenode, and NodeManagers are run
on datanodes. Whenever a job is submitted, one container is allocated by a
ResourceManager on any datanode. This container process is called as
ApplicationMaster. This ApplicationMaster is responsible for all job management
and resource negotiation with ResourceManager. With the help of ResourceManager,

Fig. 6 Basic architecture of YARN showing various components
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this ApplicationMaster allocates Containers from NodeManager for MapReduce
task. This approach reduces the load on ResourceManager and distributes it across
ApplicationMasters on the datanodes for each job. This way, using YARN the
hadoop cluster can grow up to 10,000 nodes. Earlier benchmark without YARN on
Hadoop 1.x was up to 4000 nodes. This way YARN provides scalability to
the Hadoop cluster along with different programming platforms to be incorporated
in hadoop framework.

5 Big data Tools Development for Drug Discovery

There have been efforts by various scientific groups to use HPC, grid technologies
for drug discovery. Multiple docking tools like DOCK6 [28], Gold [29], Autodock
Vina [30], and some others are already available in the parallel mode on HPC
platform. Most of these tools are fast and robust; however, they have their own
scoring functions based on molecular mechanics force fields and other geometrical
descriptors. Although, improvements are still going on in enhancing the scoring
function and guiding it further toward higher efficiency and accuracy. Docking with
the concept of flexible ligand and protein still remains to be time-consuming cal-
culation. Docking of multiple ligands to single protein or multiple ligands with
multiple proteins may be some of the future challenges in docking area.
Understanding the flexibility of both the proteins and ligands has been taken care by
some of the currently available molecular simulation packages like AMBER [31],
CHARMM [32], GROMACS [33], and NAMD [34]. All these packages are known
to be scalable on the HPC platform. Although molecular simulations are
time-consuming, they still prove to be the best in understanding the allowed flex-
ibility of proteins, ligands, active sites, and other biomolecular entities. The advent
of cloud and big data technologies promises to accelerate the drug development
process using MapReduce [27] and spark methods coupled with machine learning
and deep learning analytics. The tools like DIVE [35], HiMach [36], and HTMD
[37] have been developed for molecular simulations as well as trajectory visual-
ization and analysis. Many more tools may be getting developed using these newer
technologies.

Bioinformatics group at C-DAC, Pune, has been addressing the issue on data
analytics and visualization of trajectories in structural biology domain using HPC
technologies combined with big data technologies. Various analytics tools have been
developed and tested on Hadoop platform using MapReduce as shown in Fig. 7. At
this stage, analytics tools for multiple molecular trajectories include hydrogen bond
calculations, identifying water molecules and bridged water-mediated interactions.
Other big data analytics tools for RMSD, 2DRMSD, RMSF, water density,
WHAM-based free energy calculations are in the process of development. Few of the
big data analytics tools which have been already developed proved to be useful in the
process of drug discovery. These tools have described below.
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5.1 Hydrogen Bond Big data Analytics Tool (HBAT)

The molecular dynamics (MD) simulations generate large trajectories which would
be in the size of GBs to TBs depending on the size of the molecule and length of the
simulation time. Many of the MD simulations use explicit solvation models in
which water molecules are added explicitly to the solute to mimic the natural
system. This increases the size of the system drastically in terms of number of
atoms, and the analysis of such system becomes more compute intensive, iterative,
and time-consuming. There are various analysis programs (ptraj, cpptraj [38],
VMD [39], etc.) available corresponding to the different MD simulation packages.

Fig. 7 Schematic representation of role of Hadoop and MapReduce paradigm in drug discovery
process
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All these programs have modules written for performing different analyses like
RMSD, RMSF, radius of gyration, PCA [40], distance calculations, H-bond anal-
ysis, and MMGBSA [41] free energy calculations. However, many of these pro-
grams are either inefficient or very slow in calculating the H-bond interactions
within solute and especially between the solute and the solvent (water molecules).
These programs are highly time-consuming and also have constraint in dealing with
the large size data for example 500 GB or beyond. This drawback of the existing
tools suggests a strong need for the development of water-mediated H-bond anal-
ysis tool which is capable of handling a very large size of trajectories and also be
executed parallel to reduce the time. The water molecules added to the system may
play a crucial role in the activity or functioning of that particular molecule. Hence,
understanding the role and mechanism of such water molecules and their interac-
tions with the solute (protein/RNA/DNA or drug) molecules is very important [42,
43]. In order to achieve this, a big data analytics tool for hydrogen bond calculation
was developed by Bioinformatics group C-DAC.

The MapReduce algorithm for H-bond calculation was developed and ported/
tested on Hadoop cluster. The algorithm flow has been shown in Fig. 8a for H-bond
calculation using the MapReduce approach. The HDFS file system was used to
store the multiple molecular trajectories data. The current version of tool can
analyze trajectory data in the PDB format generated using molecular dynamics
packages like AMBER [31], GROMACS [33], CHARMM [32]. The tool is scal-
able or portable on any distributed computing platform and can find out H-bonds
between all types of residues including water. However, the tool requires a sig-
nificant amount of time for executing the preprocessing stage where, the PDB files
are generated from the trajectories and copied on the distributed HDFS storage.
Despite this overhead, the overall performance of the tool is better than currently
existing tools such as CPPTRAJ or PTRAJ [38], especially for trajectories with a
large number of water molecules. The benchmarking of H-bond tool is shown in
Fig. 8b. The benchmarking of up to 5.5 TB data is carried out, and it shows near
linear scale up. Additionally, the tool can also help identify water-mediated inter-
actions such as water bridges easily.

5.2 Molecular Conformation Generation on Cloud
(MOSAIC)

Drug databases usually contain millions of ligands, and for each ligand, there can be
billions of conformations [44, 45]. Such billions of conformations need to be
docked on to a target which is a generally a protein molecule. Generation and
optimization of such billions of ligand conformations is a huge computational
problem, since it involves the use of advanced methods like molecular mechanics,
semi-empirical and quantum techniques [46, 47]. The application of an embar-
rassingly parallel approach accompanied by virtualized resource scaling and an
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efficient structure optimization tool can handle billions of conformations with the
help of cloud computing technologies.

The Bioinformatics group of C-DAC has developed a tool called MOSAIC,
which stands for MOlecular Structure generator In the Cloud. MOSAIC is an
OpenStack [48] cloud-based conformation search tool to explore potential energy

Fig. 8 a MapReduce algorithm for H-bond calculation implemented in MapReduce paradigm
b Benchmarking of HBAT tool for data up to 5.5 TB
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surface of biomolecules of interest in parallel mode using semi-empirical method.
Molecular Orbital PACkage (MOPAC) is a general purpose semi-empirical
molecular orbital package for the study of molecular structures and their energies
[49]. The high-throughput energy calculations of the small molecules database can
be done by MOPAC using hadoop and cloud technologies. Multiple instances of
MOPAC are created for energy calculations of small molecules database. The tool
can screen a database of millions of small drug-like molecules and understand their
energetics and electrostatic behavior. The tool is useful for finding the target drug
ligands. The torsion angle-driven conformational search method is useful in a range
of chemical design applications [50], including drug discovery and design of tar-
geted chemical hosts. MOSAIC has an easy-to-use interface for the bioinformatics
community over Software as a Service (SaaS) platform. A user-friendly Web
interface has been developed for MOPAC-based energy calculation of small
molecule database. The Web interface has the capability of configuring any
OpenStack-based cloud and managing multiple users to submit the jobs on
dynamically created cloud VM. The Web interface has been developed using
LAMP (Linux, Apache, Mysql, and PHP) framework [51]. The Web interface is
shown in Fig. 9a, b. The application is deployed on OpenStack kilo version which
provides platform for running the MOPAC with resources allocated virtually in the
cloud. OpenStack cloud infrastructure provides scalable computational resources
and scalable storage capacity.

The details of cloud configurations are as follows:
The cloud infrastructure is installed using multi-nodes architecture. The cloud

test bed is deployed using following configurations:

• Controller node: 1 processor, 2 GB memory, and 5 GB storage and 2 NIC.
• Network node: 1 processor, 512 MB memory, and 5 GB storage and 3 NIC.
• Compute node: 1 processor, 2 GB memory, and 10 GB storage and 2 NIC.

To synchronize the clusters, there is a need to set up NTP server. The controller
node acts as NTP server, and rest of the network along with compute nodes would
be synchronize with this controller node. All the nodes in the cluster except con-
troller node have mysql client service, and on controller mysql databases have been
installed. Controller node also contains the messaging server for passing message
across the nodes, and we have used the RabbitMQ [52] server. The configuration is
depicted in Fig. 10.

MOSAIC is executed using underlying Open Stack-based cloud to distribute
millions of molecules in .mop format across the cloud nodes. The cloud nodes can
be dynamically scaled to accommodate the computing load. The drug database is in
the sdf format having different conformations of the same molecule and containing
millions of such molecules. The sdf is converted into the desirable input file, i.e., .
mop format which is used by the code for semi-empirical optimizations. The output
files generated are parsed based on the energy value, and a few best optimized
ligand molecules are selected based on the energy profile. The best few optimized
ligands may further be scrutinized for possible drug target. This tool may have
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tremendous potential in terms of ligand optimization, i.e., finding the best posture
not just for one molecule but for ligand database. The tool can be easily deployable
on any OpenStack-based cloud platform. MOSAIC has an easy-to-use interface for
the scientific community as it abstracts the complexity of cloud-based job sub-
mission. It has a user-specific work area for managing secured private data and
outputs. It has a configurable orchestration mechanism for virtual hardware con-
figuration. The result is shared in the form of a few selected molecules favorable for
drug target. It is anticipated that MOSAIC will accelerate the process of drug
discovery by using high-throughput optimization of Ligand databases in parallel

Fig. 9 a MOSAIC tool homepage b MOSAIC tool job submission page
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manner using distributed cloud environment. MOSAIC helps in high-throughput
optimization of ligand database in parallel manner using distributed cloud envi-
ronment. It will accelerate the scientific research by carrying out high-throughput
virtual screening and docking in parallel manner. The tool uses the advantages of
cloud computing like dynamic scaling and on-demand computing reducing the
overall cost and helpful in finding optimized ligands. The workflow as discussed is
shown in Fig. 11.

The tool has following features:

• Easy to use for the bioinformatics community which abstracts the complexity of
cloud-based job execution.

• It is supported by a user-friendly interface with user-specific storage area with
login time stamp features.

• Cloud-based high-throughput optimization of ligand database in parallel using
distributed environment.

• Integrated browser-based visualization for optimized ligand molecules.
• OpenStack-based cloud environment facilitates users with on-demand scalable

virtualized resources.
• Configurable orchestration mechanism for virtual hardware configuration.
• Generalized configurable solution for any OpenStack-based cloud using openrc

script.

Fig. 10 Cloud configuration of MOSAIC tool
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5.3 Embarrassingly Parallel Molecular Docking Pipeline

Molecular docking or high-throughput screening has become increasingly impor-
tant in the context of drug discovery [45]. High-throughput screening may be the
only way to identify correct inhibitors of the specific target. However,
high-throughput drug docking is cost-effective and very fast and could be very
useful for pharmaceutical industry. An attempt has been made to develop a scalable
workflow as shown in Fig. 12, for high-throughput conformational search and
docking on the high-performance computing, Hadoop or cloud-based clusters. The
workflow is divided into two sections. The first section performs conformational
search, and the second section performs the molecular docking. The objective of the
conformation search is to find the most stable conformation of the molecule along
with alternative stable conformations. The semi-empirical program like MOPAC
[49] is used for finding the stable structures as described in the previous section of
MOSAIC. After getting the stable structures of the small molecule, docking is
carried out in the parallel manner with protein of interest in the next part of the
workflow. Docking of either multiple small molecules with one protein or multiple
molecules with multiple proteins docking facility is available in the workflow. The
testing of the workflow has been done for the drug repurposing strategy in the
cancer. A test case/example of usage of this tool is given in the Sect. 6 below in the
cancer K-Ras drug repurposing studies.

This tool is also deployable on any HPC, Hadoop, or cloud platform available
worldwide. The current version is deployed on the computing resources of BRAF
(Bioinformatics Resources & Applications Facility), C-DAC, Pune, India.

Fig. 11 MOSIAC tool workflow for cloud-based MOPAC implementation
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5.4 Parallel Molecular Trajectories
Visualization & Analytics (DPICT)

In any computational study of biomolecular systems, analysis and visualization play
a pivotal role in understanding and interpretation. Molecular dynamics
(MD) simulation studies of biomolecular systems, including proteins, nucleic acids,
are no exceptions to this rule. The recent advances in MD techniques like REMD
[53] generate multiple trajectory files whose size ranges in few gigabytes (GBs).
The present-day tools often find it difficult to load a trajectory of a few GB size as it
tends to occupy the entire CPU memory. The same problem is faced for loading
multiple trajectories simultaneously, since most of the codes do not support parallel

Fig. 12 High-throughput conformation generation and drug docking pipeline
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architecture. Redundancy also occurs when the same set of calculations need to be
carried out for all the trajectories individually. This often becomes a bottleneck in
the research work, since recoding these programs to suit one’s purpose is quite
cumbersome. One often grapples around for an appropriate program/software, for
analyzing and visualizing the multiple MD simulations data. And in the absence of
a good program, one has to resort to writing codes and scripts. Also, loading
trajectory files for visualization and analysis using the present tools often becomes
extremely slow, since most of the codes are meant for serial processing and do not
support multiple processors. VMD [39] tries to solve this issue by means of
multi-threading, but the process becomes unresponsive when more than one tra-
jectory is to be loaded at a time and visualized. The development of visualization
and analysis tool capable of analyzing terascale and petascale data along with
high-end visualization screens would accelerate the drug discovery process. Here,
an attempt has been made to develop a new visualization and analysis tool capable
of reading various file formats like AMBER [31], GROMACS [33] and doing most
of the required analyses for a simulation in a parallel environment. The flowchart of
the DPICT tool is shown in Fig. 13.

The tool has two distinct modules: one for visualization and rendering and the
other for analysis of the MD simulations. The tool is an entirely GUI-based soft-
ware meant to be run on Unix/Linux operating systems. The entire software tool is
coded in C/C++ and OpenGL [ref] programming may be incorporated.

Features of DPICT:

• A tool to elucidate the visualization of huge molecular dynamics trajectories
simultaneously for better understanding of the simulation data

• Supports visualization of nine molecules simultaneously
• Different rendering options for biomolecules like ribbon, cartoon, ball, and stick

can be viewed
• Works in synchronous manner, where in nine trajectories may be handled

simultaneously to perform certain operations

Fig. 13 Flowchart of the DPICT tool
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• Widely used file formats of PDB, AMBER, and GROMACS are supported
• SSH feature enables the users to handle the transfer of large files from remote to

local HPC clusters and vice versa.

DPICT tool in its current version is able to manage big data of multiple tra-
jectories as shown in Fig. 14. However, future versions would be targeted to reach
the goal of big data visualization.

Bioinformatics group at C-DAC has used the above tools on docking, simula-
tions, and analytics for the drug repurposing studies for cancer protein. The details
of it have been described below.

6 Drug Repurposing Study Using Big data Analytics

The drug repositioning or repurposing is a strategy to find new action mechanism of
the FDA-approved drug for other disease protein than those for which it was
originally intended. The repositioned drug need not go through complete drug
development cycle of many years [54]. However, it can directly enter the preclinical
testing and clinical trials, thereby reducing risk, time, and costs. One of the
well-known examples of repurposed drug is sildenafil citrate (viagra), which was
repositioned from a common hypertension drug to a therapy for erectile dysfunction
[55, 56]. Similarly, use of off-label FDA-approved drugs for cancer medical
practice is also known and accounts for 50–75% of drugs or biologic therapies for
cancer in the USA [57, 58]. Owing to computational drug repurposing strategy, a
large number of receptors can be tested with already FDA-approved drug, thereby

Fig. 14 DPICT tool showing simultaneous multiple trajectory visualization
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increases the chance of identifying cure for disease within shortened time [59]. One
of the proteins crucial Ras in a center pathway has been discussed as a case study.

RAt Sarcoma (RAS) protein is a crucial member of the protein family known as
G-proteins. The protein Ras is encoded by one of the most common oncogene in
humans. Ras belongs to GTPase class of the proteins, which possess an inherent
property of GTP hydrolysis activity. Depending on its association with GDP/GTP,
the protein is classified in two distinct conformations: GDP-bound inactive state
and GTP-bound active state [60–62]. The malfunctioning of this protein is known
to play a crucial role in human cancers, especially pancreatic cancer and various
developmental disorders like Costello syndrome, Noonan syndrome [63–65]. The
normal functioning of Ras plays pivotal role in the processes of cell proliferation,
development, differentiation, and signal transduction [63]. The most common of the
Ras mutations are found in pancreatic cancers. Most of the cancers causing
mutations are reported to belong to the conserved switch (Sw I and Sw II) and
GEF-binding regions of the protein. As these regions are involved in protein–
protein interactions and other crucial features, and such mutations directly affect the
Ras protein interaction with other proteins [66, 67]. Studies to understand the
activation and deactivation Ras pathways and comparative studies of wild type and
mutant have been carried out by various groups. A significant low-energy barrier in
case of mutant counterparts of Ras is also well established by various experimental
and computational studies. To further explore the crucial mutations and further
comparison with the wild-type counterpart, computational studies are required to
provide more insight about their dynamics and conformational features.
Furthermore, for K-Ras which is inherently a less druggable molecule, the current
trend of the drug discovery efforts is now directed toward the development of
inhibitors of Ras downstream effectors. Related studies suggest that need of dual
site inhibitors to effectively block oncogenic Ras signaling. Also, triple site inhi-
bitors are also gaining more importance for improved cancer therapeutics.
Considering this as a reference, simulations have been performed to explore and
understand the dynamics of activation pathway of the reported hotspot mutants of
Ras [68]. Similarly, the GTP hydrolysis-mediated inactivation pathways of the
mutant Ras complexes have also been explored. This has helped to provide more
information on the energetics of the mutant Ras complexes by calculating the
energy barrier between the end states of the protein [69]. Molecular docking studies
were carried out on Ras using the approach of drug repurposing with FDA-
approved drug molecules database. The literature has suggested three active sites
for Ras as shown in Fig. 15 where ligands can be docked [70]. The residues
involved in three sites are (SITE1) residue 29–37, (SITE2) residue 68–74 and 49–
57, (SITE3) residue 58–74 and 87–91. High-throughput docking has been done
using the DOCK6 software employed in embarrassingly parallel molecular docking
pipeline. Docking-based drug repurposing and simulation study is being carried out
on four Ras systems, namely the wild type, Q61L, G12 V, and G12D mutants, each
for 37 ligands. The multiple trajectories for these systems were visualized using
parallel trajectory visualizer tool, DPICT. For understanding the ligand (drug
candidate) properties, multiple conformations (Fig. 16) were generated using

Turbo Analytics: Applications of Big Data and HPC in Drug … 367



Fig. 15 KRas docking sites: SITE 1 (red): residue 29–37, SITE2 (yellow): 68–74 and 49–57,
SITE3 (pink): 58–74 and 87–91

Fig. 16 Conformations generated for docking
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high-throughput conformation generator tool. Moreover, to study the protein–ligand
complexes for the simulated systems, in-house developed tool was used. Docked
pose of one of ligand is shown in Fig. 17. Preliminary analyses have been completed
for the systems. The hydrogen bond and water density analyses have been performed
using the in-house developed big data analytics tool, HBAT. MSM analyses are also
being carried out for the same, and the results are being compared with the wild-type
counterpart. Further, MD simulations were carried out for the best molecule per site
in order to check the binding of the molecule with Ras (data unpublished). Classical
simulations have been carried out using GROMACS software on Bioinformatics
Resource and Applications Facility (BRAF). The standard protocol has been fol-
lowed for minimization, heating, equilibration, and production run.

Fig. 17 KRas protein with ligand docked at SITE2
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Various tools discussed earlier in this chapter have been used for parallel
visualization and efficient and fast analysis of Ras docking and simulation trajec-
tories data. In-house computational facility BRAF has been used where these tools
are already deployed and tested. The results would help the experimentalist to select
the better ligand for further steps of drug development.

7 Latest Development in Big data

Bioinformatics is a technology-driven science. There have been major technolog-
ical shifts which are driving the data-driven science. With the ever-increasing data,
the storage and analysis of huge data are becoming very tedious and most of the
data remains unanalyzed. For example, the sequencing of genomes of various
organisms is generating petabytes to zetabytes of data. Also, the development of
new sequencing technology like nanopore is capable of producing long reads
generating huge data [71]. The assembly of such genomes put out a huge challenge
on the Big Data technologies. The Apache Hadoop has also enhanced to tackle such
challenges like Yarn which allows different data processing engines including graph
processing, stream processing as well as batch processing. The MapReduce
framework provided by Apache Hadoop is good for batch processing. In case of
iterative processing where the data need to be read many times, the MapReduce is
not efficient. MapReduce relies heavily on disk input/output so it is slow. The
Apache Spark addresses this limitation of Hadoop and provides in memory com-
puting but reducing disk input/output. Spark supports in memory computing and
optimizes disk performance by lazy loading and cache mechanism. Hence, spark is
suitable for iterative computing.

Recent progressions have empowered the most precision analytics strategies at
the “single cell” level. The sequencing of single cell brings about enormous volume
and complexities of information and presents an extraordinary chance to compre-
hend the cell level heterogeneity. The latest developments highlight the inherent
opportunities and challenges in Big Data analytics. The recently created tech-
nologies like erasure encoding mechanism [72] in Hadoop 3.x tend to resolve the
difficulties postured by several big data problems like single cell transcriptome
analysis in bioinformatics and present great opportunity to develop cutting-edge
technologies for the future research problems. The HDFS uses redundancy for high
availability of data. It provides great benefit at the cost of storage byte. Generally,
with replication factor of 3, HDFS uses three times more storage data redundancy.
So it is very costly in terms of storage. The erasure encoding mechanism in Hadoop
3.x provides same storage safety at the cost of 50% storage overhead. This is
effective when data is more and its access frequency is less.
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8 Conclusions

Future of medical science is to move toward personalized medicine for enhanced
health care. The high-performance computing along with parallel and better algo-
rithms would be generating volume of data from molecular docking and simula-
tions. Advanced structural biology laboratories and techniques would also be
generating different types of data. The only way which seems to be efficient in
managing and analyzing such an extreme varied data may lie in the application of
big data technologies. Similar kind of extreme data is being generated using
advanced experimentation in life sciences in the area of agriculture for better crop
production and reduced disease susceptibility and in the field of livestock to
understand their genomics as well as protect them from various diseases. Data is
also being generated in the field of microbes for genomics, drug discovery, vaccine
,and better environmental studies. The near future of biology/life sciences seems to
be data-driven hypothesis rather than hypothesis-driven data generation, and newer
computing paradigm of big data technologies may be very useful in this aspect.
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