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Preface

Human society has immense faith in the potential of drugs. Our belief towards
therapeutically safer drugs to alleviate the symptoms of different types of diseases is
accelerating nowadays. The twenty-first century witnessed tremendous progress in
the scientific and technical aspects in several therapeutic domains, such as viral,
bacterial, cancer and other metabolic and infectious diseases. Further, bioinfor-
matics and computational biology disciplines are integrated into all levels of
medicine and health care. Future breakthroughs will depend on the strong collab-
orations between experimental and computational biologists. Areas such as building
predictive models of the cell, organelles, and organs, understanding ageing,
designing enzymes, and improving drug design and target validation are becoming
crucial for the drug discovery programme.

The main concept of the present book includes computer-aided molecular
modelling and protein/enzyme design in preclinical discovery towards understanding
the molecular mechanisms of different diseases. This technique can be successfully
employed in different areas of medical research, including rare and neglected dis-
eases. Different case studies integrated with the experimental research as well the
future plan for clinical aspects are described effectively. The present 12 chapters of the
book have been contributed by leading and internationally recognized scientists.
It addresses computer simulation techniques for studying biological phenomena from
the perspective of both methodology and applications. The chapters are organized on
the methodology of molecular simulations and its applications, chemoinformatics
methods and its use of experimental information in computational simulations.
Selected applications of structural biology and structure-based drug design, focussing
towards druggable targets, and its physiological molecular mechanisms of actions are
critically addressed.

The first five chapters are devoted to theories and methodologies, which form the
backbone of the structure-based drug design concepts as well as different molecular
modeling techniques in computer-aided drug design. Chapter “Structure-Based Drug
Design of PfDHODH Inhibitors as Antimalarial Agents” describes the latest theories
and computational methodologies in structure-based drug design for the development
of inhibitors against key druggable target Plasmodium falciparum dihydroorotate
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dehydrogenase. Chapter “Recent Advancements in Computing Reliable Binding
Free Energies in Drug Discovery Projects” is dedicated to understanding the protein–
ligand binding affinities and different concepts and methods towards free energy
calculations for the drug discovery projects. Next chapter (Chapter “Integrated
Chemoin–formatics Approaches Towards Epigenetic Drug Discovery”) addresses
the epigenetics molecular mechanism and its key targets involved in different
diseases by efficiently employing different chemoinformatics strategies. Chapter
“Structure-Based Drug Design with a Special Emphasis on Herbal Extracts” directly
deals with the natural products, a component of Ayurinformatics, and its emphasis on
the application of structure-based drug design. Chapter “Impact of Target-Based
Drug Design in Anti-bacterial Drug Discovery for the Treatment of Tuberculosis” is
devoted completely towards tuberculosis drug discovery and the role of three-
dimensional druggable targets in the structure-based anti-tuberculosis design.
The role of big data and high-performance computing is prevalent nowadays in
different fields, and the concept and algorithms presented in Chapter “Turbo
Analytics: Applications of Big Data and HPC in Drug Discovery” directly address its
importance and application towards the preclinical drug discovery aspects. Finally,
Chapter “Single-Particle cryo-EM as a Pipeline for Obtaining Atomic Resolution
Structures of Druggable Targets in Preclinial Structure-Based Drug Design” is
devoted towards the latest technique in structural biology, i.e. single-particle
cryo-EM to solve the atomic structures of single and multi-protein druggable targets
and which is key to the structure-based drug design studies.

In the future, Computers will design, discover, people will verify—John Rumble

Science knows no country, because knowledge belongs to humanity, and is the torch which
illuminates the world—Louis Pasteur

Science is beautiful when it makes simple explanations of phenomena or connections
between different observations. Examples include the double helix in biology and the
fundamental equations of physics—Stephen Hawking

The purpose of this book is to explore the theoretical strategies involved in drug
discovery and development by proper integration with the experimental concepts as
well. Further, the book is intended to deliver the reader with an overview of
multifaceted, challenging and rapidly evolving field. We feel that the scientific
material covered herein will provide the reader with an excellent overview in
preclinical drug discovery programme.

Ämrita Vishwa Vidyapeetham, Kochi, India C. Gopi Mohan
October 2018
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Free Energy-Based Methods
to Understand Drug Resistance
Mutations

Elvis A. F. Martis and Evans C. Coutinho

Abstract In this chapter, we present an overview of various computational
methods, particularly, those that are used to compute the free energy of binding to
understand target site mutations that will enable us to foresee mutations that could
significantly affect drug binding. We begin by looking at the driving forces that lead
to drug resistance and throw some light on the various mechanisms by which drugs
can be rendered ineffective. Next, we studied molecular dynamic simulations and its
use to understand the thermodynamics of protein–ligand interactions. Building on
these fundamentals, we discuss various methods that are available to compute the
free energy binding, their mathematical formulations, the practical aspects of each
these methods and finally their use in understanding drug resistance.

Keywords Molecular dynamics � Drug resistance � MM-PB(GB)-SA
Free energy perturbation � Linear interaction energy � Computational mutational
scanning � Thermodynamic integration

1 Drug Resistance Problem

Every organism attempts to survive in hostile conditions by making minor modi-
fications in its life cycle. Though these modifications are observed phenotypically,
genetic reshuffling and alterations are the underlying cause of these changes.
Although we are unable to accurately explain this phenomenon and its initiation, we
have been able to use this observed knowledge and empirically derive explanations
for such modifications. However, it may not always be necessary to know all the
details regarding genetic modifications, so long as we can correctly, at least
empirically, understand such observations, and put it to effective use to predict and
understand the drug resistance problem. Often the enzymes in the biochemical
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pathways undergo mutations to improve the survival rate of the organism by either
improving the protein function or catalytic efficiency and stability to escape the
inhibitory action of the drug. In the latter case, the motive for modifying the drug
target is to ensure that drug binding is weakened. Moreover, the mutations are such
that substrate binding is unaffected or minimally affected. Most of the computa-
tional methods employed to study the mechanism of drug resistance, attempt to
understand the differences in the binding patterns of the substrate and the drug
molecule, i.e. understanding the “substrate-envelope hypothesis”. Here, we pre-
sent an overview of those computational methods that employ free energy of
binding as a tool to gauge the differences in the binding of the substrate and the
drug molecule before and after mutation.

In the Sect. 1, we discuss the driving force for resistant mutations and throw
some light on the different mechanisms by which drug resistance can occur. In
Sect. 2, we present a brief overview of molecular dynamics, thermodynamics of
protein–ligand binding, and various methods for computing the free energy of
binding. The last section, Sect. 3, has a detailed discussion on various free
energy-based methods used to understand and predict the target site mutations
leading to loss in drug binding.

1.1 Overview of the Mechanisms of Drug Resistance

The drug-induced selection pressure [1–4] is the major driving force for infectious
organisms to try to evade the effects of drugs. One of the primary moves that any
organism will adopt is to disrupt the action of drug molecules by one or more
possible mechanisms. To show its effect, the drug must enter the cells and find its
target protein. As a primary defence mechanism against drugs, the organism may
down regulate the expression of influx channels that enable the entry of the drug,
resulting in a decreased concentration build-up within the cell. Another strategy that
hinders the build-up of the drug inside the cell is the upregulation of the expression
of efflux channels/pumps that facilitate the egress of the drug molecules. These
strategies are often very difficult to understand owing to the complicated pathways
involved in the upregulation or downregulation of various proteins associated in the
regulation of traffic to and from the cell. This attribute is difficult to study using
computational techniques that use free energy-based methods. Target site mutations
[5–8] that lead to disruption in the drug binding without significant loss of the
protein function [9, 10] is another mechanism of drug resistance. Such mutations
can be studied using computer simulations that enable us to estimate the free energy
difference between the drug binding to the mutant and the wild-type protein. An
essential factor to consider while understanding target site mutation is the fitness
cost associated with the mutational change. This can be estimated by the change in
the free energy of binding of the natural ligands/substrates; for example, a drop in
their binding energy indicates that substrate binding is impeded, which this leads to
increased fitness cost. This means the enzyme now must expend more energy to
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carry out the same reaction. Hence, we can assume that such mutations are seldom
seen, and if at all they occur, a compensatory mutation(s) will be seen to counter the
detrimental effects of those mutations [11, 12]. Another strategy adopted by
organisms is to increase the production of drug-metabolizing enzymes that modify
the drugs to their inactive form eventually leading to their elimination. A classic
example of this is the inactivation of penicillin by the enzyme b-lactamase.

1.2 Overview of Computational Methods to Study Drug
Resistance

Broadly, computer-assisted methods used to study drug resistance can be classified
into two categories based on the information they require and the output they return.
The first category of methods requires only 1D sequence data as input and the
output is generally a classification type, i.e. the test sequence is classified as a
resistant or a non-resistant sequence. Thus, the methods grouped under this class are
collectively called as “sequence-based” methods [13]. The workflow of these
methods is akin to machine learning or QSAR type classification methods. In a
nutshell, sequence-based methods require sequences with the corresponding bio-
logical activity data (Ki or IC50 or any other suitable numerical value) for the drug
under study. Such data can be curated from databases like HIVDB (for HIV
resistance, curated and maintained by Stanford University; [14, 15]) CancerDR (for
cancer resistance, curated by CSIR Institute of Microbial Technology and OSDD,
India; [16]), tuberculosis resistance mutation database (curated and maintained by
various departments and schools with Harvard University; [17], and many other
such databases. The data is then split into training and test sets to develop and
validate the predictive models. The advantage of such methods is that it is not
necessary to know the tertiary structure of the protein or the drug-receptor inter-
actions. Therefore, sequence-based methods are computationally inexpensive and
large amount of data can be trained to obtain decent quality predictive models in a
short time. However, they suffer from two major drawbacks; (1) a lot of a priori
information on drug-resistant mutations is needed to train/develop predictive
models and (2) no mechanistic insights or atomistic details can be obtained.

The drawbacks seen in the sequence-based methods are efficiently overcome by
structure-based methods [13, 18, 19]. Further, structure-based methods are the
methods of choice when atomistic details are desired. However, these additional
details come at an added computational cost and require high-resolution protein
structures to be able to make accurate and reliable predictions. However, unlike the
sequence-based methods, they do not require large a priori information on muta-
tions; on the contrary, they can be applied to systems where no data on mutation is
available. To assess the binding stability which is the basis for predictions, these
methods employ either empirical scoring functions that implicitly try to reflect the
free energy of binding or use techniques that compute the free energy of binding
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per se. Molecular docking-based methods use empirical scoring functions to find
the best docking conformations, and these methods are computationally less
expensive. Therefore, they can be applied to assess many protein–ligand com-
plexes. The ligand can be docked to various mutant proteins to predict their binding
strength before and after mutations, and this will allow one to understand the effect
of the mutation on the binding strength. The accuracy of docking-based methods
relies on the accuracy of the scoring function, and they are best suited for rank
ordering of compounds rather than computing the absolute free energy of binding.
The major issue with docking-based methods is that most docking programs treat
proteins as rigid entities, and therefore, mutations in highly flexible protein–ligand
systems are poorly understood [19]. However, in recent times there have been
several attempts to incorporate protein flexibility in molecular docking [20]. This
has largely improved the enrichment scores. Due to the limited scope of this
chapter, such docking methods will not be discussed here and have been treated
elsewhere [21–25]. Molecular dynamics-based methods can incorporate flexibility
in the protein–ligand complexes, and in most cases, are the methods of choice as a
conformational sampling tool to explore the phase space accessible to the system
under study. The conformations sampled are used to compute the free energy
change. However, the drawback of MD-based methods is the computational cost,
which is several magnitudes higher compared to docking-based methods.

Another critical issue that must be addressed about the structure-based methods
is, how fast predictions can be made, in addition to how reliable are the predictions.
These methods find application in drug discovery programs, wherein additional
filters can be placed to weed out molecules likely to encounter a high level of
resistance or assist in suitably modifying leads to inhibit the mutant proteins. Drug
discovery itself is an extremely lengthy and expensive process, and an additional
filter like resistance should be economical in terms of time as well as money.
Moreover, such methods should also assist medicinal chemists during lead opti-
mization stages to identify potential groups that will help evade drug resistance and
avoid late-stage failures that lead to huge financial losses.

2 Molecular Dynamics Simulations and Free Energy
Calculations

2.1 Overview of MD and Conformational Sampling
Methods

Computer simulations are very useful in predicting changes in molecular properties
brought about by alterations in an atom or a group of atoms, particularly, amino
acid residues. Therefore, they find good application in predicting the effect of
mutations on drug binding at the active site or elsewhere. Protein design experi-
ments clarify the effect of a mutation on drug or substrate binding, thereby facili-
tating prediction of drug-resistant mutations. This way the program can be used to
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select all mutations wherein drug binding is hampered and substrate binding is
either improved or [26].

In case of free energy calculations, molecular dynamics (MD) simulations are the
most commonly used technique to generate conformational ensembles. Hence, it is
rightly called as one of the main toolkits for theoretically studying biological
molecules (Hansson et al. [27], Binder et al. [28]. MD calculates the time-dependent
behaviour of particles or atoms, by numerical integration of Newton’s second law of
motion and predicts the future positions and momenta. MD simulations have pro-
vided detailed information on the fluctuations and conformational changes of pro-
teins and nucleic acids upon drug/substrate binding. As a result, it is now routinely
used to investigate the structure, dynamics and thermodynamics of biological
molecules and their complexes. MD simulations have an advantage in that, starting
from an X-ray or NMR solved structure, it can provide insights into the dynamic
nature of biomolecules that are inaccessible to experiments. To accurately simulate
the behaviour of molecules, one must be able to account for the thermal fluctuations
and the environment-mediated interactions arising in diverse and complex systems
(e.g., a protein-binding site or bulk solution). This depends on how accurately the
force fields represent the atoms and treats the non-bonded interactions. A complete
account of force fields can be found in the review by Pissurlenkar et al. [29].
However, most of the biological events occur at timescales that are not routinely
reachable by classical MD simulations, for example, protein folding occurs in the
timescale of few seconds, whereas drug binding and unbinding occur in the time-
scale of few microseconds to milliseconds. The routine timescale that is feasible
using high-end servers equipped with graphic processing units [30–32] and dis-
tributed grid computing [33, 34], is few tens of microseconds, that is nearly 1/100th
of the timescale required to study protein folding. Conventional MD suffers from the
severe limitation that it is extremely difficult to sample high-energy regions and
surmount energy barriers, leading to inaccuracies in free energy calculations.

The limitations of classical MD simulations have motivated the development of
new conformational sampling algorithms that facilitate the sampling of confor-
mational space that is inaccessible to classical MD simulation. The simplest way to
encourage the system to sample the high-energy regions on the phase space is to
increase the target temperature [35]. This leads to increased kinetic energy of the
system that enables it to surmount these barriers. However, it has been argued by
many, that such elevated temperatures (*400 K and above) lead to physiologically
unrealistic states that may severely distort the results; however, such methods have
been found to be advantageous in improving the sampling efficiency during MD
simulations. Another method that uses elevated temperature to enhance the sam-
pling is the replica-exchange molecular dynamics (parallel tempering, [36, 37]). In
this approach, several replicas are simulated in parallel at different temperatures. At
appropriate intervals, the replicas switch temperatures with the nearest replica, and
this exchange is governed by the Metropolis acceptance criteria. However, all these
methods do not prohibit the system from revisiting the same conformational space.
This problem was resolved by adding the memory concept in molecular dynamics
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(local elevation method [38] Metadynamics [39]) uses Gaussian potentials that
discourage the system from sampling the same conformational space. These are few
of the most commonly used methods to tackle sampling problems in molecular
dynamics, a complete account on enhanced sampling algorithms can be found
elsewhere [40–44].

2.2 An Overview of Thermodynamics of Protein–Ligand
Binding

Molecular interactions, between the ligand and receptor, are primarily non-covalent
in nature and governed by attractive and repulsive forces. In drug design experi-
ments, the goal is always to optimize the attractive interactions and reduce the
repulsive ones [45–47]. Moreover, these associations are temporary, and the
lifespan of such complexes are governed by the off rates (Koff) or the dissociation
constant (Kd), both of which indicate the binding strength of a ligand to its protein
counterpart. In the realm of thermodynamics, binding is governed by enthalpic and
entropic components [48] given by Eq. 1.

DG ¼ DH � TDS ð1Þ

where ΔG is the binding free energy; ΔH is enthalpy; ΔS is entropy and T is the
temperature in Kelvin.

The association is favourable, i.e. spontaneous when the ΔGGibbs is negative and
unfavourable otherwise. All the binding and pre-binding (recognition and
pre-organization) events in biomolecular associations are either enthalpy
(ΔH) driven or entropy (ΔS) driven. The enthalpic component represents several
types of non-covalent interactions like electrostatic, van der Waals, ionic, hydrogen
bonds and halogen bonds, while the entropic components reflect the contribution to
binding due the dynamics or flexibility of the system. Computing the enthalpic
component of binding has reached far heights, in terms of methods available for
calculating the aforementioned type of interactions. However, till date, calculation
of the entropic component is extremely difficult, and the algorithms are computa-
tionally very demanding.

The Gibbs equation is more relevant in biochemistry for calculating the free
energy and is given by Eq. 2:

DGGibbs ¼ �RT lnKd ð2Þ

where ΔGGibbs is Gibbs free energy, R is universal gas constant, T is the temperature
in Kelvin, Kd is the dissociation constant. Equations 1 and 2, along with the
Born–Haber cycle [46] (Fig. 1) form the basis for the development of the methods
used to compute the free energy binding. The two main methods are Free energy
perturbation (FEP) and Thermodynamics Integration (TI), both of which will be
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dealt with in the subsequent Sect. 2.3.2. However, measuring the dissociation
constants from simulations is a daunting task; nevertheless, computing the partition
functions from the molecular simulations is relatively easy. Hence, the ratios of the
partition functions can be used to estimate the free energy of binding, which is
given by Eq. 2a,

DG ¼ �kBT ln
QPL

QPQL
ð2aÞ

where kB is the Boltzmann constant, T is the temperature in Kelvin, Q is the
partition function with subscripts PL, P and L indicating protein–ligand complex,
protein, and ligand, respectively. This section presents a summary of thermody-
namics, which is imperative for understanding the application and methods
developed to compute binding free energy. More elaborate discussions on the
thermodynamics of protein–ligand binding can be found in the reviews by
Bronowska [48], and Homans [46].

2.3 Methods to Compute Free Energy Binding

Free energy is a quantity that can be measured for systems such as liquids or
flexible macromolecules with several minimum energy configurations separated by
high-energy barriers. However, its computation is far from trivial and the associated
quantities such as entropy and chemical potential are also difficult to calculate.
More so, the free energy cannot be accurately determined from classical molecular

Fig. 1 Thermodynamic or Born–Haber cycle for the receptor-ligand binding
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dynamics or Monte Carlo simulations due to their inability to sample adequately
from the high-energy regions of the phase space, which also make important
contributions to the free energy. However, the free energy differences (DDG) are
rather simple to compute. The free energy binding for the non-covalent association
of two molecules (protein and ligand in this case) may be written as follows:

DGbind ¼ Gcomplex � Gprotein þGligand
� � ð3Þ

The binding event is an additive interaction of many events [49–52], for example
solvation energy (Gsol), conformational energy (Gconf), energy due to interaction
with residues in the vicinity (Gint), and energy associated with different types of
motions (translational, rotational and vibrational, Gmotion). The classical binding
free energy equation now can be rewritten as follows:

DGbind ¼ Gsol þGconf þGint þGmotion ð4Þ

Directly computing the free energy from an MD or MC simulation is not trivial;
hence, the following methods have been formulated. Broadly, the methods used for
computing free energy are classified as partitioning-based methods or end-state free
energy methods and non-partitioning-based methods. The partitioning-based
methods partition the binding energy into various components as shown in
Eq. 4; however, this method has been highly criticized [53] stating that it is
physically unreal to partition the free energy into components.

2.3.1 End-State Free Energy Methods or Partitioning-Based Methods

The human body majorly comprises of water; hence, it is imperative to carefully
include the solvation effects while computing the free energy of binding. More
importantly, water plays a crucial role in ligand recognition and in the binding
phenomenon. In computational chemistry, the methods for incorporation of solvent
are divided into three groups: (i) continuum electrostatic methods/implicit solvent,
(ii) explicit solvent models with microscopic detail and (iii) hybrid approaches.
Historically, the continuum electrostatic methods were among the first to consider
the solvent effect, and they still represent very popular approaches to evaluate
solvation free energies, especially in quantum chemistry. Polarizable continuum
model (PCM, [54]), COnductor-like Screening MOdel (COSMO, [55]) and SMD
solvation model [56] are few popular models for treating solvent effects implicitly
in quantum chemistry. Continuum solvation methods are computationally eco-
nomical; however, the frictional drag of the solvent is highly underestimated and as
a consequence may drive the system to non-physical states. Moreover, solvent–
solvent and solute–solvent interactions are inadequately treated, posing a danger of
underestimating the effects of such interactions. The explicit treatment of solvent
enables one to consider the solvent–solvent and solute–solvent interactions. This
prohibits the systems from visiting non-physical states due to the inclusion of the
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dampening effect shown by the solvent atoms. The principal drawback of explicit
solvent models is the number of atoms to be considered in the system leading to
increased computational cost. However, with the help of GPU-based acceleration,
this drawback, now, is hardly any cause for worry.

The end-state free energy methods use the conformations extracted from an MD
or MC simulation, wherein the system is simulated by explicitly defining the sol-
vent. However, while solving the GB or PB equation, the solvent is implicitly
treated by defining the external dielectric constant for water (for most drug design
cases) and a suitable internal dielectric constant [57–61].

Molecular Mechanics-Poisson Boltzmann/Generalized Born Surface Area
(MM-PB/GB-SA)

The MM-GBSA [62–65] approach employs molecular mechanics-based energy
calculations and the generalized Born model to account for the solvation effects in
the calculation of the free energy. Similarly, the MM-PBSA [66–68] approach
solves the linear or nonlinear Poisson–Boltzmann equation [69–71], to account for
the solvation electrostatics, whereas the MM part is calculated as in MM-GBSA
from the derivative of the force field equations. Both these approaches are
parameterized such that they partition the energy components into various terms,
and the net free energy change is the sum of these individual terms (Coulomb, vdW,
solvation, etc.). MM-PBSA has gained considerable attention for estimating the
binding free energies of molecular complexes due to its exhaustive nature of
computing the solvation electrostatics by iteratively solving the PB equation,
whereas the GB method does not involve any rigorous and iterative procedure and
hence is faster. However, this does not necessarily guarantee that the MM-PBSA
method always outperforms MM-GBSA method. In MM-PB(GB)SA methods,
MD- or MC-derived conformational ensembles are used to compute the “average”
free energy of a state and this is approximated as follows:

Gh i ¼ EMMh iþ GPBSA=GBSA
� �� T SMMh i ð5Þ

where the angular bracket <> indicates average over the MD/MC conformations,
EMM is the molecular mechanics energy that typically includes bond, angle, torsion,
van der Waals, and electrostatic terms (see Eqs. 7c and 7d) and is evaluated with no
or extremely large (virtually infinite) non-bonded cut-off limit. The second term is
solved as mentioned in the preceding stanza and it forms the crux of this method.
The last term T <SMM>, is the solute entropy, which is estimated by quasi-harmonic
analysis [72, 73] of the trajectory or by normal mode analysis [74–76].

The following equation (Eq. 6) shows how the binding free energy is computed
from the energies of the ligand, protein, and its complex over all the MD or MC
snapshots. However, the snapshots can be obtained in two possible ways—one is
called the single trajectory approach and other is the multiple trajectory approach.
In the single trajectory approach, only the protein–ligand complex is simulated, and
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the snapshots for the protein, ligand and the complex are extracted by defining
appropriate atom numbers from the parameter and coordinate file. However, in the
multiple trajectory approach, three separate simulations are performed, one each for
the protein, ligand and protein–ligand complex.

DGbindh i ¼ Gcomplex
� �� Gprotein

� �� Gligand
� �� � ð6Þ

Furthermore, Eq. 1 is modified to accommodate solvation electrostatics and
hydrophobic terms as shown in Eq. 5. Here, Eqs. 7a–7d give the computation of
the individual terms,

DGbind ¼ DEMM þDGsol � TDS ð7aÞ

DGsol ¼ DGsol�elect þDGnonpolar ð7bÞ

DEMM ¼ DEint þDEelect þDEvdW ð7cÞ

DEint ¼ DEbond þDEangle þDEtorsion ð7dÞ

Here, ΔEMM is computed in the gas phase using classical force fields, ΔGsol is
computed using PBSA or GBSA method, ΔGsol-elect is computed using PB or the
GB method, and the ΔGnonpolar is computed by the solvent accessible surface area
(SA). While employing the single trajectory approach, Eq. 7d generally cancels out
and hence makes negligible contribution to the binding energy.

Linear Interaction Energy (LIE)

Linear interaction energy [77–79] is similar to the MM-PB/GB-SA method with
regard to the partitioning of the electrostatic and van der Waals terms (polar and
non-polar contribution, respectively,); however, the use of the weighting parameter
for electrostatic and van der Waals interactions, is unique to this method. LIE
measures the binding energy by estimating the difference in the interaction energies
of the ligand in the solvent (unbound state) and in the protein environment (bound
state). Hence, to obtain these interactions, two separate MD simulations are per-
formed. In one simulation, only the ligand is placed in the solvent (mostly water) and
in the other, the protein–ligand complex is placed in the solvent. The formulation of
this method is based on deriving the linear response approximation from converged
ensemble interactions, most often extracted from well-equilibrated trajectories from
the MD simulation of the ligand with its surroundings (solvent or protein).

The mathematical formula for computing free energies using LIE method is
given in Eq. 8

DGbind ¼ a EL�S
coul

� �
PL� EL�S

coul

� �
L

� �þ b EL�S
vdW

� �
PL� EL�S

vdW

� �
L

� � ð8Þ
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where the angular bracket <> indicates ensemble over the MD trajectory, EL�S
coul and

EL�S
vdW are electrostatic and van der Waals interactions between the ligand and its

medium in the vicinity (PL—protein–ligand complex; L—ligand in solvent), and a
is the weighting parameter for electrostatic interactions, which is most often set to
0.5 [78]. This value is assumed due to the linear response of the surroundings to the
electrostatic field and was validated using more extensive computations on the ions
(Na+ and Ca2+) in water [80]. b is the weighting parameter for van der Waals
interactions and is set to 0.16−0.18 [81], which is a subject of much debate owing
to the difficulty in estimating the vdW’s contribution to the free energy of binding.
However, these values are obtained by empirical fitting the experimental binding
free energies. Moreover, the linear response of the vdW term is assumed by
observing the linear trend in the interaction of the hydrocarbons with the solvent
(water) that depends on the number of carbons in a hydrocarbon.

2.3.2 Non-partitioning-Based Methods

In non-partitioning methods, there is no partitioning of the free energy into various
components. Statistical mechanics plays a crucial role in deriving the relationship
between the free energy of a system and the ensemble average of the Hamiltonian
that describes the system. These methods are far more accurate than the previously
mentioned end-state free energy methods, but at the same time, are computationally
very demanding. Hence, while dealing with a large dataset of molecules against a
particular protein target, it is worthwhile to screen the molecules using a fast
method like high-throughput virtual screening [82, 83], followed by a flexible
docking-based screening, then use an end-state free energy method, and finally
employ the non-partitioning methods to study few tens of molecules. Here, we will
present a brief discussion on FEP and TI methods along with their mathematical
treatment, and then move on to explain the idea behind alchemical free energy
predictions.

Free Energy Perturbation (FEP) and Thermodynamic Integration (TI)

Most of the methods for free energy calculations are generally formulated in terms
of estimating the relative free energy differences, DG, between two equilibrium
states, or binding of two similar ligands to a common target. The free energy
difference between the two states I and II can be formally obtained by Zwanzig’s
formula [84, 85].

DG ¼ GII � GI ¼ b�1 ln e �bDVð Þ
I ð9Þ

Here, b ¼ kBTð Þ�1
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This represents a sampling of the differences in potentials (DV) of the two states
using Monte Carlo or molecular dynamics simulation over the potential of state I.
To ensure the convergence of these calculations, it is recommended that the
potentials of the two systems should thermodynamically overlap. For satisfying this
condition, correct conformations must be selected, which is a daunting task, and
hence, to achieve this, a multistep process is usually implemented. A path between
the states I and II is defined by introducing a set of intermediate potential energy
functions that are constructed as linear combinations of the initial (I) and final
(II) state potentials and these intermediate states are non-physical states (Eq. 10).

Vm ¼ 1� kmð ÞVI � kmVII ð10Þ

where the transition from one state to another is discretized into many points
(m = 1,…,n), each represented by a separate potential energy function that corre-
sponds to a given value of k, such that km varies from 0 to 1. Here, zero indicates
the pure initial state of the system and one indicates pure final state of the system.
The total free energy, thus, can be obtained by summing over the intermediate states
along the k variable.

DG ¼ GII � GI ¼ �b�1
Xn�1

m¼1

lnh �b Vmþ 1�Vmð Þ½ �im ð11Þ

This approach is known as free energy perturbation (FEP)whereDkm = km−1 − km;
hence, it can be written as

DG ¼ �b�1
Xn�1

m¼1

lnhe �bDVDkmÞ½ �im ð12Þ

Since the potential difference can also be described as the derivative of the
potential with respect to km, Eq. 12 can also be written as,

DG ¼ �b�1
Xn�1

m¼1

lnhe �b@Vm@km
DkmÞ½ �im ð13Þ

Now, expansion of the Eq. 13 by the Taylor expansion series gives Eq. 14,

DG ¼
Xn�1

m¼1

he �b@Vm@km
DkmÞ½ �im ð14Þ

wherein 0 ! k can instead be written as an integral over k

DG ¼ Z1

0

hb @V kð Þ
@k

ikdk ð15Þ
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Equation 15 is usually referred to as the thermodynamic integration (TI) method
for calculating the free energy change [86, 87]. In the early days of free energy
simulations, the TI approach was synonymous with the slow-growth method [88].
In the slow-growth method, the value of k is changed at each time step during the
MD simulation. While this method was claimed to be more efficient than the
discrete FEP formulation, nowadays, a “non-continuous” change in k is a better
choice (50–100 discrete points are usually recommended). This facilitates equili-
bration at each point, the addition of extra points at any time, and use of any pattern
of spacing between the k-points, to optimize the efficiency.

Alchemical Free Energy Perturbation

Here, the free energy is computed by transforming a molecule from one state
(bound-solvated) to another state (unbound-solvated) through several physically
unrealistic states, that are called as alchemical states, hence the name “Alchemical
Free energy” [89, 90]. This method is regarded as one of the apt methods to study

Fig. 2 Thermodynamics cycle for computing alchemical free energy binding. Image reproduced
from Wang et al. [91] [open-access article distributed under the terms of the Creative Commons
Attribution License (CC BY)]
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the effect of mutations on the drug binding affinity (Fig. 2). The total free energy
change in a thermodynamic cycle in any alchemical transformation is equal to zero.

DG1 � DG4 � DG2 � DG3ð Þ ¼ 0 ð16aÞ

DG1 � DG4 ¼ DG2 � DG3 ð16bÞ

3 Application of Computational Methods to Understand
Drug-Resistant Mutations

3.1 Computational Mutation Scanning

Computational mutation scanning [92] is a useful method to explore the sensitivity
to changes in the composition of the amino acid in a protein-binding site (Fig. 3). In
computational mutation scanning, the wild-type amino acid residue is mutated to
another amino acid in the binding pocket or elsewhere. However, the most widely
practised method is to mutate any amino acid residue to an alanine, since it is the
simplest amino acid with a side chain (not glycine because it is devoid of a side
chain). Hence, this method is equivalent to the experimental “alanine-scanning
mutagenesis”, which is a powerful tool to investigate and confirm the important
interactions in the protein–protein interface and protein–ligand interactions. In
computational alanine scanning, all atoms from the Cb carbon atom of the amino
acid under study are replaced by three hydrogen atoms to convert it to an alanine.
After the mutation, the change in the binding energy is estimated either using
docking with an appropriate scoring function or by MM-PBSA or MM-GBSA to
compute DDG (Eq. 17c). By scanning with alanine at various positions in the
binding cavity, important residues can be identified, as mutating an important
amino acid will drastically decrease the binding energy.

DGWild
bind ¼ DGWild

complex � DGWild
receptor � DGligand ð17aÞ

DGMut
bind ¼ DGMut

complex � DGMut
receptor � DGligand ð17bÞ

DDG ¼ DGMut
bind � DGWild

bind ¼ DGMut
complex � DGWild

complex

h i
� DGMut

receptor � DGWild
receptor

h i

ð17cÞ

In the context of predicting drug-resistant mutations, one must perform alanine
scanning in the binding site on two complexes, i.e. with the substrate bound complex
and the inhibitor-bound complex. The change in the binding energy after mutation is
computed for both the systems, viz., for inhibitor and the substrate. A decrease in the
binding affinity for the inhibitor with negligible or no change in the binding affinity
for the substrate indicates a hotspot amenable to resistant mutation, these spots are
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termed as “mutational hotspots”. The method follows the substrate-envelope
hypothesis [93–95], which states that there is a large fitness cost that needs to be paid
if one mutates an amino acid residue that is involved in substrate binding. Mutating
such amino acids could lead to impaired enzyme function resulting in the death of an
organism. This can be put to appropriate use by developing inhibitors that com-
pletely overlap in the substrate binding region, leading to a lower predisposition
towards developing drug resistance [96–99].

Fig. 3 Thermodynamic cycle for computing free energy change between mutated and wild-type
protein
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However, a major drawback in alanine scanning is that when mutating a large
amino acid residue to alanine one can only study the effect of decreasing the side
chain or loss of charged groups in the binding site. It is difficult to understand the
resistant mutation, wherein there is a change in charged amino acid residue, for
example, arginine replacing aspartate or a large amino acid replaces a small amino
acid residue. Nevertheless, computational alanine scanning has been successfully
used to predict mutational hotspots.

Hao et al. [100] reported a modification of computational alanine scanning
(CAS), named computational mutation scanning (CMS) to study drug resistance in
six HIV-1 protease inhibitors. This protocol is an improvised version of the clas-
sical CAS that enables a geometry optimization step and incorporates entropy
calculations by means of normal model analysis. Using a single trajectory approach
and modifying the standard MM-PBSA protocol, to allow for mutations with other
amino acid residues, they computed the change in the binding affinities (DDG) of 77
drug-mutant combinations (includes single and double mutants). They obtained
promising results with *83% consistency with the experimental observations,
demonstrating that the prowess of the method lies in identifying the binding hot-
spots. However, Hao et al., do not report the change in the binding affinity for
various substrates, from which they could have investigated the substrate-envelope
hypothesis for the HIV-1 protease. This could have led to interesting findings
facilitating our understanding about those mutations that would lead to a decrease in
the enzyme function, either leading to the death of the organism or compelling a
compensatory mutation to counter the lethal effects of any mutation. This infor-
mation can be used to unravel the role and need for double, triple or even multiple
mutations.

Tse and Verkhivker [101] used CAS along with residue interaction network to
elucidate the effects of inhibitor binding on the network of residues in ABL kinase.
They showed the utility of this combination in deducing the critical networks of
amino acid residues and the changes that follow upon inhibitor binding, using a
selective kinase inhibitor (nilotinib) and two promiscuous (bosutinib and dasatinib)
kinase inhibitors. The changes in the interaction networks in the enzyme holds key
hints to unravel the mystery of how drug-resistant mutations are seen for ABL
kinase inhibitors. Moreover, the mutations that occur far from the binding site can
also be explained, since a mutation far off from the site can affect drug binding
through a cascade of events that eventually percolate into the binding site through
the changes in the residue interaction network. CAS followed by MM-PBSA added
the energetic component to locate the hotspots that could lead to drug resistance in
the kinase inhibitors

3.2 MM-PB(GB)-SA

MM-GBSA or MM-PBSA are two widely used free energy methods employed to
understand the effects of mutations on the drug binding affinity, moreover, these
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methods are successful in predicting likely mutations leading to drug resistance.
These methods are able to predict due to their amenability to decompose the free
energy into its components at the residue level that leads to better understanding of
the effect of mutations on drug binding. Lethal effects of the V82F/I84V double
mutation in HIV-1 protease on amprenavir were demonstrated using MM-PBSA
approach on snapshots obtained from the well-equilibrated protein–ligand complex
[102]. It was reported that amprenavir lost its binding affinity due to distortions in
the binding site, hence weakening many favourable interactions (DDG = 3.73 kcal/
mol). Such a distortion of the binding site was previously observed and attributed to
the rapid flap movements seen in this double mutant which is absent in the
wild-type HIV-1 protease [103]. Furthermore, newer inhibitors, that are very close
structural analogues of amprenavir, like TMC126 (DDG = 2.01 kcal/mol) and
TMC114 (darunavir, DDG = 3.45 kcal/mol) were also seen to be affected by these
mutations, though to a lesser extent than amprenavir. Despite structural distortions
in the binding site, it had no effect on the substrate binding, and hence, the catalytic
process was unhindered.

Hou et al. [104] combined MM-GBSA with the positional variability approach,
to modify Kollman’s FV value [105] to give a new scoring function also called FV
(Free energy/Variability) score. Using the FV score, they evaluated the binding of
six substrates that are hydrolysed by HIV-1 protease and confirmed Kollman’s
[105] observation that drug-resistant mutations are more likely to occur at less
conserved regions. The FV score reported by Hou et al. comprises two components,
one that reflects the binding energetics at the per-residue level, obtained by
MM-GBSA, and the second component is the sequence variability that represents
the conservation of amino acids at each position. Using this score, one can identify
amino acid residues that are crucial for substrate and inhibitor binding, and thus
classify the residues that are exclusively involved in substrate binding and those
that are exclusive for inhibitor binding. Such a classification when coupled with the
positional variability of amino acid residues can extract those positions with low
conservation and exclusivity for inhibitor binding; such positions are highly
amenable to mutations leading to drug resistance. Employing this method Hou et al.
confirmed their previous observation [102] that the V82F/I84V double mutations
are lethal for many FDA approved HIV-1 protease inhibitors, whereas TMC126 is
still active against this mutant.

3.3 Vitality Analysis

One of the primary drawbacks of the aforementioned methods to predict
drug-resistant mutations is their inability to accurately estimate the binding affinity
for the substrate molecule(s). The fitness cost of the mutation can be estimated by
gauging the change in the binding affinity of the substrate to its enzyme target; any
perturbation in the substrate binding is likely to affect the function of the enzyme.
Therefore, computing the catalytic efficiency of the enzyme before and after
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mutation will enable us to understand the fitness cost. Pioneering work in this line
was done by Gulnik et al. [1]. In this work, they have determined the catalytic
efficiency (Eq. 18a) of HIV-1 protease following few active and non-active site
mutations. This principle was incorporated in terms of free energy change by
Warshel et al., and they employed this method (Eq. 18b) to computationally predict
the likely mutations that could potentially abolish drug binding leading to drug
resistance. This method is aptly named as “Vitality approach” wherein higher
vitality values indicate that the resistance is more likely as there is little chance of
increase in the catalytic efficiency of the enzyme. The basic workflow adopted by
Warshel et al. [106, 107] is to estimate the change in the drug binding before and
after mutation, depicted in the first part of Eq. 18b and then estimate the catalytic
efficiency by determining the binding of the substrate by modelling the transition
state (TS) conformation of the enzyme, depicted in the second part of Eq. 18b.
However, the challenge of employing this method to predict likely mutations is that
a thorough knowledge of the catalytic mechanism of the enzyme is essential.
Nonetheless, this method is far more accurate and truly predictive in nature. This is
exemplified by the fact that Warshel et al. successfully used this method on six
clinical agents active against HIV-1 protease.

Vitality value ¼
Kikcat
Km

� 	
mutant

Kikcat
Km

� 	
WT

ð18aÞ

ln
cM
cN

ffi 1
RT

DDGN!M
bind drugð Þ � DDGN!M

bind TSð Þ� � ð18bÞ

where Ki = inhibition constant; kcat = constant that defines the turnover rate of an
enzyme-substrate complex to the product; Km = Michaelis constant.

4 Concluding Remarks

This chapter describes important computational methods that have been proven
extremely helpful in gaining insights into mutations leading to drug resistance. We
have attempted to introduce methods used to compute the free energy of binding
along with their mathematical formulations, practical implementation and pros and
cons of such methods. Finally, we have discussed a few applications of such
methods to study drug resistance.
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Pharmacophore Modelling
and Screening: Concepts, Recent
Developments and Applications
in Rational Drug Design

Chinmayee Choudhury and G. Narahari Sastry

Abstract Computational design of molecules with desired properties has become
indispensable in many areas of research, particularly in the pharmaceutical industry
and academia. Pharmacophore is one of the essential state-of-the-art techniques
widely used in various ways in the computer-aided drug design projects. The
pharmacophore modelling approaches have been an important part of many drug
discovery strategies due to its simple yet diverse usage. It has been extensively
applied for virtual screening, lead optimization, target identification, toxicity pre-
diction and de novo lead design and has a huge scope for application in
fragment-based drug design and lead design targeting protein–protein interaction
interfaces and target-based classification of chemical space. In this chapter, we have
briefly discussed the basic concepts and methods of generation of pharmacophore
models. The diverse applications of the pharmacophore approaches have been
discussed using number of case studies. We conclude with the limitations of the
approaches and its wide scope for the future application depending on the research
problem and the type of initial data available.
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HHCPF Hexadecahydro-1H-Cyclopenta[a]Phenanthrene Framework
HTS High-throughput screening
MD Molecular dynamics
Mtb Mycobacterium tuberculosis
QSAR Quantitative structure-activity relationship
TB Tuberculosis

1 Introduction

Rational drug discovery is highly interdisciplinary and is one of the outstanding
challenges, besides being highly arduous and expensive. The process of designing
new medications requires investment of roughly 14 years [1] of time and cost as
high as 1 billion USD [2]. Along with rapidly evolving HTS [3] and combinatorial
chemistry technologies, computer-aided drug design (CADD) strategies are also
effectively contributing to accelerate and economize the process of drug develop-
ment [4–6]. A broad range of CADD applications are employed at almost all early
stages of the drug discovery pipelines, starting from target identification, target
structure prediction, screening of initial hits to prioritization and optimization of
leads and understanding their structure-property relationships [7, 8]. We have been
working in state-of-the-art CADD techniques such as homology modelling [9],
molecular dynamics simulations [10–12], QSAR [13–15], molecular docking [16],
pharmacophore modelling [17], virtual screening [18, 19] and cheminformatics [20]
since more than a decade. One of the fundamental applications of cheminformatics
is to develop programmes that store, manage and retrieve molecular structures in
various formats, their calculated/experimental properties and bioactivities.
Cheminformatics also involves computing molecular fingerprints and descriptors
based on the molecular structures that label a physicochemical property and can be
used as screening filters [21, 22]. These molecular descriptors of known active
molecules can also be used to develop quantitative structure-activity/property
relationship (QSAR/QSPR) models to predict the inhibitory activity or toxicity of
novel compounds and preliminarily profile them in silico without performing
expensive in vitro and in vivo assays [23–26]. Docking and simulations predict the
three-dimensional binding mode of a given molecule in the binding site of a
macromolecular receptor (protein/DNA), and their affinity is quantitatively assessed
by a docking score. This technique has not only been proved enormously useful to
study receptor–ligand interactions but also is used as a popular tool to virtually
screen compound libraries to obtain a hit or to identify the target for a molecule by
reverse engineering [27–29]. A large number of studies from our group have
focused on application of these techniques to a plethora of drug targets such as
phosphodiesterases [14], kinases [12, 30], HIV proteases [10, 13] and reverse
transcriptase [31] and Mtb cyclopropane synthases [11, 17, 18]. We have also
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initiated development of a disease (tuberculosis) specific Web portal, integrating all
these techniques, which will be of tremendous help for researches working in the
field of Mtb drug discovery [32].

Pharmacophore modelling is one of the enormously useful sub-areas of CADD
with diverse structure and ligand-based applications [33, 34]. Like docking, one of
the basic applications of pharmacophore models is virtual screening, but at a much
faster speed as compared to docking [33]. This approach can also be implemented
complementarily with docking and QSAR studies [18, 20]. Many studies use
pharmacophore models for target/off-target identification as well [35, 36]. In this
chapter, we basically focus on the in silico representation of the concept and the
varieties of ways of application of pharmacophore models in drug discovery projects.

2 The Concept of Pharmacophore

The term ‘pharmacophore’ has gained immense popularity in the field of medicinal
chemistry paralleled with computer-aided structure-activity relationship studies. In
1909, Ehrlich gave an introductory definition of pharmacophore [37, 38], by
combining the words ‘phoros’ meaning carrying and ‘pharmacon’ meaning drug.
Hence, a pharmacophore is ‘the molecular framework carrying the crucial features
accountable for a drug’s biological activity’. Since then, many groups have
attributed various definitions and meanings to this term based on their scientific
background and research view. IUPAC has officially defined a pharmacophore
model as [39]

An ensemble of steric and electronic features that is necessary to ensure the optimal
supramolecular interactions with a specific biological target and to trigger (or block) its
biological response.

However, a century’s research and development has expanded its circumstantial
meaning and application considerably. Due to their simple way of capturing and
representing the chemical features of compounds, pharmacophore models have
drawn the attention of the medicinal chemistry community in last few years as a
tool to screen the cig (chemistry) data [40]. Upon administration, when a drug/small
molecule enters the human body, it comes across thousands of proteins (receptors,
transporters, carriers, plasma proteins, etc.) to potentially interact with. But it
chooses to bind to only those proteins (targets) where the protein’s active site and
drug have compatible shape/size and the protein–drug interactions are energetically
favourable. Similarly, size/volume/shape and the chemical features of the residues
lining the binding pocket determine which type of small molecules it is able to bind.
Hence, the right size, correct shape and complementary chemical features are the
key factors for the protein–drug recognition to instigate a biological effect. The
central concept of pharmacophore is based on the perception that the molecular
interaction pattern of a group of compounds with their biological target can be
credited to a small set of common features complementary to the chemical features
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present in the target’s binding pocket. The general features include hydrogen-bond
(HB) donors, HB acceptors, charged groups (positive and negative), hydrophobic
sites and aromatic rings, which are used as chemical features in pharmacophore
models by most of the programmes. Some programmes define a few additional
features such as ‘exclusion volumes’ representing steric constraints. These features
generally replicate the steric environment of the binding pocket to avoid clashes of
the mapped of compounds with the protein surface. Pharmacophore models com-
prises distinct spatial arrangement of these features that denotes the chemical
functionalities of active small molecules. Instead of real atoms/functional groups, a
pharmacophore model emphasizes the chemical features of ligands/protein–ligand
complexes, making it a better and fast tool to recognize molecular similarities.

3 A Typical Pharmacophore Model: Representation
of Pharmacophoric Features

According to the definition, a pharmacophore model represents the binding patterns
of bioactive molecules with the target binding site, by virtue of a distinct 3D
arrangement of abstract interaction features accounting for different types of
non-covalent interactions. These interaction types can be HB formation, columbic
interactions, metal interactions, hydrophobic contacts, aromatic stacking or charge
transfer interactions. Overall, a pharmacophore model characterizes a common
binding mode of diverse ligands with a specific target. In pharmacophore mod-
elling, the molecules are first segregated into a set of features, each representing a
certain type of interaction with the binding site residues. Then, each feature is
represented by points to be used for superimposition (least-squares fitting) of
molecules with each other. Here we will be discussing features employed by most
of the popular programmes [41–45].

HB donor (D): Hydroxyl groups, hydrogens bound to nitrogen, acetylenic CH
groups and thiols (SH) are normally denoted as donors. However, the –CH and –SH
groups are considered relatively weaker donors. Sometimes, along with acetylenes,
other types of –CH such as the ones in nitrogen heterocycles of some kinase
inhibitors are considered as donors. Keeping protonation in mind, basic amines
such as RCH2N(Me)2 are considered as donors. Tautomeric and ionized states
severely influence pharmacophore feature definition because they may amend the
characteristic of a feature. Hence, molecules should be presented to the pharma-
cophore elucidation programmes in all possible protonation/ionization states.

HB acceptor (A): Generally, atoms with available lone pairs of electrons such as
N, O, S are treated as acceptors. However, some programmes do not consider
oxygen atoms present in furan/oxazole rings, as they are very weak acceptors
according to theoretical and crystallographic evidence.
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Along with defining the HB features, it is very essential to fix the positions of the
complementary feature points to be overlapped in the resulting pharmacophore.
That is why the pharmacophore modelling programmes link donor and acceptor
features with the equivalent ligand atoms as well as the supposed locations of the
corresponding complementary receptor atoms involved in the interaction.

Positive and negative features (P and N): In the molecules, atoms bearing formal
charges are considered as positive or negative features provided they are not part of
a dipole. Groups possessing net formal charges are also considered as positive/
negative features. Centroid of the heteroatoms of a group is the region, where the
positive/negative charged features are generally placed. Sometimes the positive and
negative features are emphasized specifically based on their ionizability. For
example, R–NH3

+ is measured as positively ionizable feature, but R–N(Me)3
+ is not

as the interactions made by these two groups are significantly different.

Hydrophobic features (H): Choosing atoms/groups that should be measured as
hydrophobic is neither easy nor straightforward. The most commonly used algo-
rithm developed by Greene et al. [42] first allot a hydrophobicity score to each atom
based on a set of empirical rules defined from medicinal chemists’ perceptions and
then atoms with amply large hydrophobicity values are grouped into clusters. Then
a hydrophobic feature point is placed at the centroid of each such cluster. The order
of hydrophobicity score is roughly rings/ring atoms > groups like –CF3 > alkyl
chains. Some simple algorithms [44] consider all non-donors/non-acceptor/
non-charged atoms as steric groups (equivalent of hydrophobic groups), which
also yield a depiction of molecular shape.

Aromatic rings (R): Aromatic rings are treated as a special type of hydrophobic
feature represented by vectors instead of points so as to mimic the directionality of
interactions like p–p stacking and cation–p interactions. Figure 1 shows an
example of a typical pharmacophore model.

Fig. 1 An example of a pharmacophore model, generated from the conformations of S-adenosyl
methionine (SAM) and S-adenosyl homocysteine (SAHC) [17] with Phase programme. Colour
codes for the pharmacophoric features are as follows. Cyan: D, pink: A, red: N, blue: P, green: H
and orange: R
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Most recent pharmacophore modelling programmes define additional steric
constraints features. These are called exclusion volumes (XVols), representing the
steric effect of the binding pocket [46]. These features are required to avoid the
clashes of the molecule with the protein surface while mapping. Feature generation
not only facilitates the molecules to be aligned in an easy and rational way, but also
can be used in scoring. The root mean square deviation (RMSD) between matched
features gives quantitative account of the extent of overlay, which is often used as a
fitness score [40]. Hence, the placement of feature points should be accurate, and
one needs to be careful while deciding whether to consider all possible features or
to choose few of them giving adequate information about the spatial orientation of a
group of molecules. For example, sometimes there are huge number of hydrophobic
features as compared to other features, which may bias the alignment and give a
model with good score, but the model will be useless due to lack of specificity.

4 Evolution of the ‘Pharmacophore’ Concept:
Historical Perspective

Paul Ehrlich first used the concept of pharmacophore in the end of nineteenth
century, when he revealed the selective binding of methylene blue to nerve fibres.
This realization ushered the beginning of pharmacophore concept as ‘a molecular
framework that carries (phoros) the essential features responsible for a drug’s
(pharmacon) biological activity’ [37, 38]. Based on this idea, Ehrlich improved the
chemical structure of several compounds to yield efficacious drugs against syphilis
(under the trade name Salvarsan), trypanosome and spirochete infections [37, 38],
which made him win the Nobel prize in 1908 sharing with Ilya Metchnikoff.
Although Ehrlich’s early definition of pharmacophore is almost unchanged for over
a century, Schueler proposed the first modern definition in his book
‘Chemobiodynamics and Drug Design’ in 1960 [47], where the ‘chemical groups’
were replaced by patterns of ‘abstract features’. Beckett and co-workers [48] pro-
posed the first pharmacophore model of muscarinic agents in 1963 that identified
distance ranges between abstract features, and later in 1967, Kier developed the first
‘computed’ pharmacophore model for muscarinic receptor inhibitor binding pattern
[49–51]. Simple pharmacophores were in application as tools for designing new
drug molecules much before the dawn of a well-defined field like computer-aided
drug design. In the 1940s, preliminary structure-activity relationship models were
computed based on simple two-dimensional model structures utilizing the acces-
sible information of the van der Waals sizes and bond lengths [52]. Eventually, in
the 1960s, three-dimensional models could be built with the convenience of X-ray
and conformational analysis techniques. Medicinal chemists could classify some
common molecular frameworks that attributed to high biological activity more
often as compared to other structures by retrospectively analysing the chemical
structures of the various drugs. Evans et al. [52] named such frameworks as
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‘privileged structures’, which offer the basic scaffold and the substituents at dif-
ferent positions impart receptor specificity. Dihydropyridines [53],
Arylethylamines, N-arylpiperazines, diphenylmethane derivatives, biphenyls and
pyridazines [52, 53], tricyclic psychotropics and sulphonamides, benzodiazepines
[54] are among some popular examples of the privileged structures. Woods and
Fildes [55] found that p-aminobenzoic acid (PABA) and p-aminobenzenesulpho-
namide have similar critical distances; hence, bind to the PABA target with similar
efficacy and inhibits the biosynthesis of tetrahydrofolic acid. This was one of the
examples of the early two-dimensional pharmacophore models. An early 3D
pharmacophoric approach was the ‘three-point contact model’ proposed by Easson
and Stedman [56] and Beckett [48] in the case of (R)-(−)-adrenaline [= (R)-(−)-
epinephrine]. These models are based on a concept that when a chiral centre is
present in a compound, the substituents on this asymmetric atom make three-point
contacts with the binding pocket of the receptor, which can only be obtained for one
of the two isomers of epinephrine (the more active natural (R)-(−)-epinephrine).
Similarly, another three-dimensional approach was developed in the early 1970s,
characterizing the activity of clonidine on the central norepinephrine receptor [57].
It was observed that the natural ligand norepinephrine fits into the binding pocket of
its target by three main interactions [57], viz. ionic bond between an anion (car-
boxylate, phosphate) of the binding pocket and the protonated –NH2 functional
group, a HB between the NH–CO group of the binding site and the secondary
alcoholic hydroxyl and a p-stacking between the protonated imidazole of a histidine
residue of the binding pocket and the aromatic ring of the drug. It was also rec-
ognized that the cationic head must be light and the phenolic –OH groups are not
important for the biological activity. Pullmann et al. [58] in their 3D pharma-
cophore model of the norepinephrine receptor computed the critical intramolecular
distances for the above key interactions which could successfully explain the
pharmacophoric similarity between clonidine and norepinephrine, which in
turn enables clonidine to make the same kind of interactions as norepinephrine.

Fig. 2 Schematic presentation of timeline showing early developments in the field of
pharmacophore modelling
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These are some early efforts to explain pharmacophoric patterns that could act as
key features for the design of new chemical entities. Figure 2 shows few early
milestones in the field of emergence of pharmacophore modelling.

Nevertheless, in recent years, many effective pharmacophore modelling
approaches and their contributions to drug discovery have been reported [59]. With
the help of pharmacophoric insights and 3D searching tools, computer-aided drug
design efforts are swiftly gaining efficiency since the 1990s. Still, this approach
encounters many challenges that restrict its success. Pharmacophore approaches
have been widely used in virtual screening, de novo ligand design, lead opti-
mization and multi-target drug design. A range of automated pharmacophore
modelling and screening tools have constantly appeared after the computational
chemistry revolution witnessed in the past couple of decades [60]. Today, phar-
macophore screening is one of the apt choices for researchers working in drug
discovery and design.

5 Pharmacophore Model Generation

Pharmacophore models are typically generated either from a group of ligands, by
aligning them and taking out the common interaction features indispensable for
their biological activity. On the other hand, they can be constructed in a
structure-based way, by probing probable interaction points in the receptor binding
pocket, provided the 3D structure of the receptor is reported. The pharmacophore
models can also be generated from a receptor–ligand complex by identifying the
key interactions between the receptor and ligands.

5.1 Ligand-Based Pharmacophore Model Generation

Ligand-based pharmacophore modelling approach is used as a key strategy for
facilitating screening compound databases when there is no three-dimensional
structures are available for the target or receptor, but structure of a set of potent
inhibitors are available. These active molecules are superimposed, and common
pharmacophoric features representing crucial interactions between the ligands and
the common target of these molecules are identified. Firstly, a conformational space
of each of the active ligands is created corresponding to the flexibility of ligands,
followed by their alignment and determination of the important common chemical
features required for the creation of pharmacophore models. Currently, various
automated pharmacophore generators are in use such as Phase [46] (Schrodinger
Inc., http://www.schrodinger.com), HypoGen [61], HipHop [61] (Accelrys Inc.,
http://www.accelrys.com), GASP [62], DISCO [63], GALAHAD [64] (Tripos Inc.,
http://www.tripos.com) and MOE (Chemical Computing Group, http://www.
chemcomp.com) [65]. Several academic programmes [40, 60, 66–68] are also
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popularly being used. The key differences among these tools are mostly in the
algorithms that are implemented for conformational search and alignment. This
chapter is about the general steps followed by most of the programmes to recognize
a pharmacophore pattern from a group of molecules that interact with a common
receptor and the diverse applications of the pharmacophore concept.

5.1.1 Picking the Right Set of Compounds and Their Initial Structures

As the resulting pharmacophore models are highly inclined by the type, size and
structural diversity of the participating ligands, it is imperative to choose the set of
ligands that take part in the process of pharmacophore model generation. Some
programmes like RAPID [69], HipHop [61] and the Crandell Smith method [70]
assume all the compounds in the set as active, some other methods consider the
information on the inactive molecules to be important as they give an idea about the
structural features responsible for reducing the activities and the ones essential for
enhancing activity. For example, DISCO [62, 71] and CLEW [72] provide an
option to include or exclude inactive molecules in generating a model so that the
user can identify the distinguishing features, while HypoGen [61] provides an
option for including activity ranges of the set of ligands. As far as size of the dataset
is concerned, most of the programmes are capable of handling up to 100 ligands in
a set. If the dataset contains large number of molecules, then it can be sorted and
categorized based on the activity value ranges. However, some programmes like
SCAMPI [73] can handle up to a few thousand molecules but compromising the
quality of the models. The high structural diversity of the dataset also is important
to identify features that are most essential for target binding and produce
high-quality models. Correct compound structures with correct atomic valencies,
bond orders and properly defined aromaticity and the appropriate stereochemical
flags are crucial for model generation.

5.1.2 Conformational Search

Ligands being flexible may have multiple possible conformations, and each con-
formation may bind to the binding site of the target in a particular fashion. Thus, it
is crucial to consider the flexibilities of each molecule during pharmacophore
development. Conformational search is considered as a separate stage in most of the
pharmacophore modelling programmes like HipHop, DISCO and RAPID, where a
large number of conformations are generated for each ligand. Systematic search,
Monte Carlo sampling and molecular dynamics are the methods of choice for most
of the software for conformation generation. As, the number of all possible con-
formers for molecules (especially when they have complex structures with a large
number of rotatable bonds) is too large to handle and incorporate in the pharma-
cophore model building, energy minimization and clustering methods are used to
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reduce the conformational space. The conformers with lowest energy or repre-
sentatives from clusters of similar conformers are chosen to take part in model
generation. In some other software, conformational search is parallelly performed
along with pattern identification by retaining the conformers that possess certain
features in a particular spatial arrangement. GASP [63] and GAMMA [74] use such
an approach by the genetic algorithm (GA) techniques.

5.1.3 Feature Extraction and Representation

After conformational search, the molecules are subdivided into a set of features,
each feature having the capability to form a particular type of non-covalent inter-
action with the receptor. There are three main levels of resolution for defining the
features; (i) it may be atom based as implemented in MPHIL [75], GAMMA [74]
and RAPID [69], where 3D atomic position related to the atom type is used as a
feature; (ii) it can be atoms grouped into topological features such as a C = O group
or a phenyl ring; or (iii) it may be function based, where the atoms are assembled
into functional features describing the type of non-bonded interactions with the
receptor. These features are HB acceptor (A), HB donor (D), base (+ve charge pH
7) (P), acid (−ve charge, pH 7) (N), aromatic moieties (rings) (R) and hydrophobic
group (H). We have already discussed these features in Sect. 3 of this chapter. The
third type of feature extraction method is immensely popular and is being used in
many programmes like catalyst [43], Phase [46], HypoGen and HipHop [63].
Different topological features having the same chemical function can fall under
same functional feature category. At the same time, the functional features are
not assigned exclusively for any functional group. For instance, a –OH oxygen can
act as both HB acceptor, a donor and at times may act as negatively charged feature.
Commonly, the functional groups like a negatively/positively charged species, HB
donor and acceptor are represented by their centres, which are nothing but the exact
atom positions. Additionally, HB acceptors and donors are often represented by a
vector that enforces a restriction of bond directionality between the feature on the
binding site of the receptor and the complementary ligand feature. The centre of a
hydrophobic site or an aromatic ring is defined as the centroid of the group.

After extracting the features, depiction of the whole molecule’s structure is
obtained by combining the selected features. These representations are generated
mostly as: (i) 3D point set, where a ligand structure is represented as a group of
categorized points in the 3D space, where each point is linked with a feature, (ii) a
labelled graph, where nodes correspond to the features and the edges correspond to
the relations, or (iii) a set of interpoint distances, where the ligand structure is
represented as a collection of feature points, along with their interpoint distances.
The third type of representation is commonly stored as a n � n distance matrix, n
being the number of atoms.
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5.1.4 Pattern Identification and Scoring

Once the features extracted for each ligand in the dataset, a pattern is identified as a
set of relative positions in the 3D space, each linked to a feature. If a ligand holds a
set of features in at least one of its conformations, the set of features can be aligned
with the corresponding locations. Most of the methods are based on spatially
overlaying conformations of various compounds with the pharmacophores points
with minimal root mean square alignment errors. One can roughly classify the
alignment methods as either point or property-based. In the first class of algorithms,
pairs of pharmacophoric features are generally aligned using a least-squares fitting
using clique detection methods [76, 77]. According to the graph-theoretical
approach to molecular structures, a clique is a maximum completely connected
sub-graph, which recognizes all imaginable combinations of atoms/functional
groups to find out common substructures for the alignment. Property-based or
field-based algorithms utilize grid or field descriptors, based on molecular prop-
erties such as volume, shape, charge distribution, electron density and electrostatic
potentials of molecules. A 3D grid is generated about a ligand by computing the
interaction energy components between the ligand and a probe placed at each grid
point. Properties are calculated on a grid and later converted to a set of Gaussian
representations. A number of either random or thoroughly sampled initial config-
urations are then generated followed by local optimizations with some similarity
measure of the intermolecular overlap of the Gaussians.

After obtaining the pharmacophore candidates in the previous stages, they are
generally scored and ranked. The basic obligation of a scoring scheme is imple-
mented such that a high score implies higher chance of the ligands mapping to the
pharmacophore model. Despite the great advances, molecular alignment handling
ligand flexibility and proper selection of training set compounds are considered as
the biggest challenges in ligand-based pharmacophore modelling.

5.2 Structure-Based Pharmacophore Model Generation

Structure-based pharmacophore modelling requires the 3D structure of the receptor
or a receptor–ligand complex. The models are generated based on the spatial
relationships of complementary interaction features of the binding pockets followed
by selection and assembly of features to generate pharmacophore models.

5.2.1 Active Site Identification

The input for receptor-based pharmacophore modelling is the three-dimensional
structure of a receptor usually in PDB format. The receptor binding pocket is
identified using a spherical probe with customizable radius and location to include
the binding site as well as the key interacting residues involved with ligands.
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ThereĆare several programmes available for detection of clefts, crevices and
binding pockets and to suggest possible active site locations based on the geometry
of the surface [78, 79]. The key residues can be determined by user, deduced from
studying the activity of the protein after mutation of a single residue. If mutation of
a particular residue hampers function of the protein, then that residue may be part of
the active site. Computational analyses such as multiple protein structural alignment
techniques also help in identifying the active site of a protein by comparing it with a
similar protein with known active site.

5.2.2 Complementary Image Construction

The receptor binding pocket is analysed to create an interaction map of features that
the molecule is anticipated to satisfy for a reasonable interaction with the active site.
In other words, a complement of the receptor binding site is created as the basis to
create an input pharmacophore model. In particular, functional features like HB
donors/acceptors and hydrophobic groups are identified in the binding site followed
by rational placement of complementary features within the binding pockets in
chemically acceptable positions [80, 81].

5.2.3 Generation of Queries, Searching and Hit Analysis

Once the active site is defined and chemically characterized, there is no straight-
forward single step to derive pharmacophore models from the binding site
map. Since the receptor binding site has a potential to bind a variety of molecules in
a variety of binding conformations, the interaction map often gives rise to huge
number of features. To address this problem, adjacent features of the same type are
clustered and the feature that lies nearest to the geometric centre of the cluster is
retained as the cluster representative and all the other features are discarded.
Sometimes, the number of the features is still very high even after the clustering,
and all of them cannot be used as a single model because models possessing all
such features would not be able to obtain any hits from the database. So, possible
combinations of limited numbers of features are derived from the interaction map
and multiple pharmacophore modes are composed. And then, these models are used
by programmes like catalyst [43, 82] implemented in Accelrys Discovery Studio to
search the compound database and test the validity of the models (also termed as
pharmacophore ‘queries’ in catalyst) to screen or reject highly active compounds. It
is always necessary to examine these models for how they interact with the binding
site residues and how far the models extend within the binding pocket and if they
fill specificity pockets and make the strongest interactions. Queries describing only
the features present in an inhibitor might end up giving many false positive hits. At
times, they screen compounds that are able to map to all the query features but also
contain a bulky substituent causing steric hinderance and averting the compound
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from fitting into the binding site. That is why inclusion of some excluded volume
features is often recommended which penalizes the molecules’ score if some atoms
or group are placed in positions where they are likely to collide with the active site
atoms.

5.3 Generation of Pharmacophore Models
from the Protein–Ligand Complexes

Protein–ligand complexes produced by X-ray crystallography provide a detailed
picture of the interactions between the ligand and the receptor, showing which
atoms of the ligand are in contact with the receptor along with the atomic coor-
dinates of those atoms. Also, the type of interactions can also be delineated from the
atom types, distances and orientations of the ligand and receptor atoms. The major
interaction that occurs in the receptor–ligand interface is hydrogen bonding. But
other non-covalent interactions such as p–p and cation–p interactions are also
obviously essential for protein–ligand complex formation apart from the hydrogen
bonding. We have extensively looked at the importance of these interactions and
the cooperativity existing among themselves to maintain supramolecular structures
[83–86]. This information is of immense importance to establish a pharmacophore
model from the complex. However, one needs to give attention to the facts that
alternative pharmacophore models are possible within a single binding pocket
owing to the flexibilities of both the active site and the ligands which are capable of
rearranging themselves to accommodate different ligands and also there is a pos-
sibility of more than one active sites for a particular receptor. The programmes like
‘LigandScout’ developed by Wolber and Langer [87] and Phase [46] module of
Schrodinger suite generate structure-based pharmacophore models from the pro-
tein–ligand complexes given as an input. We will be discussing the steps of gen-
eration of pharmacophore models from the protein–ligand complexes by the
LigandScout and Phase, where the former characterizes the pharmacophoric fea-
tures using kekule’s patterns and the latter prioritizes the features based on the XP
docking energy components.

5.3.1 Pharmacophore Model Generation with LigandScout

With the LigandScout [87] programme, as a first step, the correct molecular
topology of rings and of hybridization state are assigned to the ligands by analysing
the neighbouring atoms followed by assignment of double bonds and Kekule’s
patterns for functional groups such as carboxylic acids and esters, nitro groups,
sulphonyl groups, thio acids, thio acetic esters guanidine-like groups, acetamidine
and phosphinoyl groups functional groups. Next, the pharmacophoric features
based on the hydrogen bonds, electrostatic interactions, charge transfer or
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hydrophobic interactions between the ligand and the receptor are defined, and
models are generated. Atoms belonging to nonacidic –OH groups (all –OHs
excluding carboxylic, sulphinic, sulphonic, phosphonic or phosphinic acids), –SH
groups, –C�C– hydrogens and –NHs (barring trifluoromethyl sulphonamide
hydrogens and tetrazoles) are recognized as HB donor atoms. When such an atom is
found in the distance range of 2.5–3.8 Å from the heavy atom of a HB acceptor of
the receptor molecule, a donor feature consisting of a donor point on the ligand side
and a projected point on the macromolecule side is created. Atoms like –OH
oxygen, –SH sulphur, –C�C– carbon or –C�N nitrogen are recognized as acceptor
atoms, and an acceptor feature is placed with the initial point positioned on the
acceptor atom and the projected point placed onto the heavy atom of the HB donor
on the receptor within the distance range of 2.5–3.8 Å. The electrostatic interaction
is represented as a vector resembling the definition of the H-bond acceptor.
Hydrophobic areas are implemented in the form of spheres with a tolerance radius
of 1.5 Å located in the centre of hydrophobic atom chains, branches or groups after
testing a group of adjacent atoms to attain a sufficient overall hydrophobicity score.

5.3.2 e-pharmacophore Model Generation by Phase

The e-pharmacophores method of Phase module [46, 88] of Schrodinger suite is a
new approach that utilizes the grid-based ligand docking with energetics (Glide)
extra precision (XP) scoring function [89] to precisely quantify protein–ligand
interactions. XP scoring function calculates enthalpic contribution of each inter-
acting (pharmacophoric) site of a molecule towards the total score. Thus, each site
gets a score based on the sum of enthalpic terms (such as HB, electrostatic,
cation–p, p–p, hydrophobic and hydrophobically packed/associated HBs and other
interactions) and is ranked. Then the e-pharmacophore models are generated from
the top scoring features. The user can choose the number and type of features
required to build a model. E-pharmacophores also include excluded volumes rep-
resenting the regions of space occupied by the receptor where any portion of the
ligand cannot be accommodated. E-pharmacophores have been shown to screen
diverse set of bioactive molecules as compared to conventional structure-based
methods, making it more useful.

5.4 Dynamic Pharmacophore Model Generation
and Multicopy Simulations

The active sites of the drug targets being very flexible, structure-based pharma-
cophore models derived from a single conformational state of the protein may not
satisfactorily account for all the possible potential drug–target interactions. In this
situation, molecular dynamics simulation has been a very competent method to
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tackle the target flexibility issues in SBDD. Dynamic pharmacophore models rec-
ognize compounds, which complementarily bind to the protein considering flexi-
bility of their binding pockets, theoretically reducing the entropic penalties
experienced by the protein due to ligand binding. MD simulation trajectories would
give rise to multiple conformations of a protein active site, describing the targets’
intrinsic flexibilities. Multiple copy minimization is also a regularly used exercise in
computational drug design. The technique first fills the active sites of the receptors
with multiple copies of probe molecules those do not react among themselves.
Then, molecular dynamics, Monte Carlo/steepest descent minimizations are per-
formed to minimize all these probes parallelly to obtain local minima. When the
probes are clustered in the various regions of the active site in different orientations,
the relative preferences of the binding regions can be estimated from the number of
probes or the interaction energies.

Highly ordered and smaller clusters represent highly crucial prerequisite for
favourable interactions, while the haphazardly spread larger ones indicate highly
flexible sites. The MUSIC algorithm [80, 90] implemented with the BOSS pro-
gramme uses similar strategy. It is capable of performing Monte Carlo simulations
for a wide range of biomolecular systems in solvent clusters and mixtures and
periodic solvent boxes with multiple solutes. It is able to calculate the interaction
energies between solvent–solvent, solvent–solute and solute–solute. Usually, the
probe or solvent are small molecules. For example, hydroxyl groups, aromatic
groups and carbonyl groups are represented by small probes like –CH3OH, C6H6

(Benzene) and –CH3CO (acetone), respectively. The probe molecules as well as the
side chains of the receptor can be treated as rigid, partially/fully flexible or all-atom.
The wide-ranging OPLS force field used in this programme is proven to be suc-
cessfully handling the flexibilities of the receptor while generating pharmacophore
models. Applications of the dynamic pharmacophore models will be discussed in
the subsequent sections of the chapter.

6 Pharmacophore Finger Prints

The complex 3D structure of a molecule is reduced to an abstract collection of
features in the pharmacophoric approach. Extending this concept, the structure of a
molecule can be interpreted a as an exclusive data string by extracting all possible
three-/four-point sets of pharmacophoric features. The inter-feature distances are
assigned using distance binning or simply by bonds. These resulting unique strings
describing the frequency of every possible combination at predefined loci of the
string are known as pharmacophore fingerprints. Different types of molecular
similarity analyses among libraries of molecules have been carried out using
pharmacophore fingerprints [91, 92]. Also, the pharmacophoric fingerprint can be
used to detect the common key features/groups contributing to the biological
function of a group of active ligands.
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7 Applications of Pharmacophore-Based Approaches

In this section, we discuss the diverse applications of the pharmacophore approa-
ches under different scenarios.

7.1 Pharmacophore Approaches for Virtual Screening

Pharmacophore models being very simple by their definition can be used in a variety
of ways depending on the research problem. This simplicity makes ‘pharmacophore
based search’ a tool of choice for drug discovery scientists in the last decade [93].
When the structure of a set of molecules with similar or different scaffolds active on a
particular target are known, then ligand-based pharmacophore models can be
developed using their structures as described in Sect. 5.1. If the structures of some
inactive derivatives are also known, then contribution of each feature towards the
bioactivity can be compared between the positive and negative datasets to distin-
guish the wanted and unwanted features. The allowable steric arrangement of the
ligands can also be mapped. When only the structure of the receptor or a receptor–
ligand complex is available, then pharmacophore models are generated as described
in Sects. 5.2 and 5.3 and can be utilized as queries to screen a database not only to
screen compounds satisfying certain geometric and chemical restraints, but also to
filter molecules with undesirable properties. For example, Voet and co-workers
identified specific antagonists of human androgen receptor by applying two phar-
macophoric filters back to back. One model is being generated from the available
receptor-agonist complexes, while the other filter applied was a pharmacophore
model generated from the receptor-antagonist complex. This approach enabled the
authors to screen the compound that matches the antagonist-specific feature [94].

7.1.1 Dynamic E-pharmacophore Models: A Case Study
with Mycobacterial CmaA1

We present here the summary of our recent work (Choudhury et al. [11, 17, 18]) on
generation and application of dynamic structure and ligand-based pharmacophore
models for screening a certain library against a mycobacterial target cyclopropane
synthase (CmaA1). Mycolic acids are the characteristic constituents of Mtb cell
wall which contribute towards the drug resistance, pathogenicity and persistence of
the parasite. CmaA1 enzyme catalyses the cis-cyclopropanation of unsaturated
mycolic acid chains at the distal position, which is an indispensable step in mycolic
acid biosynthesis and maturation, thus making CmaA1 an important Mtb drug
target. Five model systems of CmaA1 corresponding to different stages of cyclo-
propanation were studied using molecular dynamics (MD) simulations. A detailed
picture of the structural changes in the two distinct binding sites, i.e. cofactor and
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acyl substrate binding sites of CmaA1 during the cyclopropanation process was
obtained by analysing the MD simulations trajectories. The apo-state of CmaA1
was observed to have a closed conformation where the cofactor binding site is
inaccessible. Upon cofactor binding, H-bond between Pro202 of loop10 (L10) and
Asn11 of N-terminal a1 helix disrupts making the cofactor binding pocket acces-
sible. Upon cofactor binding, the non-polar side chains of the substrate binding site
position towards the inner side of the pocket forming a hydrophobic environment
for the substrate. In order to exchange the methyl group from the cofactor to the
substrate, both the ligands tend to come close to each other facilitated by the
upliftment of loop10. These observations prompted to think that the protein can
remain in diverse conformations at different stages of its catalytic function and
considering only one conformation for drug design would not be sufficient. So
multiple structures obtained from the MD trajectories were used to generate, vali-
date and use structure and ligand-based pharmacophore models.

7.1.2 Generation of Dynamic Structure-Based Pharmacophore
Models

The molecular dynamics simulations on CmaA1 revealed that the binding sites of
the enzyme exhibit huge conformational diversity, when bound to different ligands
at various stages of its function. To use this conformational diversity of the binding
sites in structure-based drug design, representative structures (snapshots) were
extracted from all the five MD trajectories at a regular interval of 5 ns, thus
obtaining a total of forty conformations of CmaA1 bound to different ligands in the
two binding sites. The crystal structure of CmaA1 reported in PDB was also added
to this pool. Now these 41 protein–ligand complexes were used to obtain
e-pharmacophore models as described in Sect. 5.3.2. The first step used was
evaluating the Glide energy terms. Active site of each CmaA1 structure was defined
as a cubical box of 12 * 12 * 12 Å3 dimension, and the Glide [89] energy grids
were generated. Glide scores with XP descriptor information were obtained for the
already bound ligands keeping their original conformations unchanged (unlike a
typical docking where protein is held rigid while ligands are kept flexible). This
exercise calculated all the interaction energy components between the receptor–
ligand complexes, which were then submitted to the Phase module of Schrodinger
to develop energy-based e-pharmacophore [88, 95] models. Figure 3 depicts the
steps of the e-pharmacophore model generation and selection of best ones as virtual
screening filters.

7.1.3 Pharmacophore Model Validation

To examine the capabilities of the dynamics-based e-pharmacophore models to
successfully distinguish inhibitors and non-inhibitors of CmaA1, a set of 23
reported CmaA1 inhibitors (MIC:0.0125–12.5 lg/mL) [96] were used as a positive
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dataset and 1398 Mtb inactive compounds reported in ChEMBL database
(molecular weight ranging from 180 to 400, number of heavy atoms ranging from
12 to 27, similar to SAM/SAHC and the 23 inhibitors) were used as the negative
dataset. Structures of these molecules were energy minimized and five lowest
energy conformers were chosen for each of them. All these conformations were
mapped to the 41 e-pharmacophore models using the ‘advanced pharmacophore
screening’ option of Phase. Fast conformational sampling was used during phar-
macophore screen, excluding molecules with >15 rotatable bonds. Molecules,
which could be mapped to at least four pharmacophoric sites of each model were
screened and among several conformers of a molecule the one with the best fitness
score (S) given by the following equation [46] was retained for each compound. S is
a measure of volume overlap and extent of match of chemical nature and direc-
tionalities of the pharmacophoric features with the corresponding complementary
features of the molecules.

S ¼ Wsite 1� Salign=Calign
� �þWvecSvec þWvolSvol þWivolSivol

where Wsite ¼ ð1� Salign=CalignÞ, Salign = alignment score, Calign = alignment cut-
off, Svec = vector score, Wvec = weight of vector score, Svol ðVcommon=VtotalÞ =
volume score, Wvol = weight of volume score, Sivol = included volume score.
Detailed explanations of the components of the fitness score are given in reference
47. Volumes were computed using van der Waals models of all atoms except
non-polar hydrogens, and Wivol is the weight of volume score. Calign, Wsite, Wvec,
Wvol and Wivol are user-adjustable parameters, with default values of 1.20, 1.00,
1.00, 1.00 and 0.0, respectively.

Analysis of the hits obtained from these pharmacophore screening showed that
most of the models developed from the CmaA1 complexes obtained from the MD
trajectories were able to screen up to 17 reported inhibitors (out of 23), while the
model developed from the crystal structure could screen only one inhibitor.

Fig. 3 Generation of dynamics-based e-pharmacophore models from the MD trajectory. The
associated active site residues’ interactions have been shown. The colour representations for the
features are same as Fig. 1
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The fitness scores of the molecules with the dynamics-based models were also
found to be higher. To further confirm our observation, a docking-based virtual
screening was parallelly performed with the 41 CmaA1 snapshots and the reported
inhibitors. Docking with the MD CmaA1 snapshots not only could bind the most
active inhibitors as top scored hits, but also the docking scores were higher than the
ones with the crystal structure. These results thus throw light on the effect of
including multiple conformations of the targets on the screening abilities of the
pharmacophore models. Five out of the 40 dynamic e-pharmacophore models were
selected to be further used in our virtual screening study based on the consistency of
docking and pharmacophore screening results.

7.1.4 Dynamic Ligand-Based Pharmacophore Models:
Construction and Validation

Dynamic ligand-based pharmacophores were developed for the cofactors SAM and
SAHC considering their conformational heterogeneity in CmaA1 binding sites as
observed from MD trajectories of the respective model systems. Average structures
of SAM/SAHC were created after superimposing the conformations obtained from
each trajectory using uniform weighting method. Phase module of Schrodinger is
used to build the ligand-based pharmacophore models, each comprising six types
and 8–11 numbers of chemical features depending on the number and type of
interactions with the CmaA1 binding sites. To verify the screening efficiencies of
these models, a positive dataset of 23 CmaA1 inhibitors [96] and a negative dataset
of 1398 non-inhibitors (the same dataset used to validate the structure-based models
described in the previous section) were screened against each of the models. The
ligand-based models created using multiple conformations of the cofactors obtained
from the MD trajectories could screen up to 22 out of 23 CmaA1 active compounds
when the condition for matching was minimum four features of a model. The fitness
scores of the inhibitors matching the dynamic-ligand-based pharmacophore models
were also higher as compared to the one developed from the conformation of SAHC
bound to the crystal structure which was able to match to four CmaA1 inhibitors.

7.1.5 Pharmacophore-Based Virtual Screening

Once the best structure and ligand-based pharmacophore models were validated,
they were employed as filters in a novel virtual screening workflow consisting of
four different levels of screenings, viz. ligand-based pharmacophore map-
ping > structure-based pharmacophore mapping > docking > pharmacokinetic
properties (ADMET) filters. A focused library of 18,239 molecules from three
different sources was used for our virtual screening studies. As the first component
of the dataset, 6583 drugs reported in DrugBank were chosen, targeting drug
repurposing. The second component of the dataset was a set of 701 molecules
which were already reported to be highly active (<1 lM activity) on Mtb cells/
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targets and was considered to obtain molecules capable of acting on multiple Mtb
targets including CmaA1. The third part of the dataset, i.e. a set of 11,089 highly
active anti-HIV molecules (<1 lM activity on HIV cell lines/targets) was taken to
screen molecules that can inhibit both Mtb-CmaA1 and HIV simultaneously. After
subjecting these three subsets of molecules parallelly through the four screening
filters, 12 compounds were obtained as potential anti-CmaA1 hits. As analysed
from the Glide XP docking results, all of the identified hits made strong interactions
with the important CmaA1 active site residues. Figure 4 shows virtual screening
workflow with various levels of filters.

Virtual screening is usually a highly ordered approach combining diverse
computational screening methods, where at each consecutive step, the filter criteria
become more and more stringent, thus retaining the most promising compounds for
experiments. As the steps proceed, the approaches used go on being more thorough
and computationally expensive. So, being simple and fast by nature, pharma-
cophore models are usually implemented at the beginning of a hierarchical protocol
to eliminate the compounds which do not even fulfil bare simple spatial and
chemical requirements of the query, before subjecting the compound libraries to
more complicated and computationally demanding docking calculations.

Fig. 4 Virtual screening workflow with structure and ligand-based pharmacophore models
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7.2 Applications of Pharmacophores in Predicting
Pharmacokinetic Properties

Poor pharmacokinetic properties contribute majorly to failures of many drugs
during development and clinical trials. Hence, these properties (also known as
ADMET) must be profiled during the early drug discovery process so as to avoid
failure at the later stages. Pharmacophore modelling approaches can be of great use
for prediction of the ADMET properties. If one can identify the possible interac-
tions made by a group of drug molecules having a well-defined ADMET profile
with enzymes involved in drug metabolism, the common interacting features can be
captured as pharmacophore models and equivalent features of the query molecules
can be matched with the models. The cytochrome P450 (CYP) constitute the major
group of enzymes involved in drug metabolism out of which isoenzymes 3A4, 2E1,
2D6, 2C19, 2C9 and 1A2 carry out 90% of the metabolism. Many recent studies
report successful implementations [97, 98] of structure-based pharmacophore
models trained from the known drugs CYP enzyme interactions to predict the
suitability of query molecules to bind to a certain CYP. Also models to assess the
probability of chemical alteration of the molecules by a CYP enzyme [99, 100]
have been successfully developed and implemented. Inhibitors of the drug clear-
ance enzymes such as the uridine 5′-diphospho-glucuronosyltransferases and
transporters like P-glycoprotein/organic cation transporter have also been utilized to
build pharmacophore models [101]. Pharmacophore models may also be employed
to predict the possibilities of off-target binging of compounds accounting for the
side effects, thereby helping design more target-specific compounds [102].

7.2.1 A Case Study with Hexadecahydro-1H-Cyclopenta[a]
Phenanthrene Framework (HHCPF)

One of the recent studies from our group [20] reports implementation of ligand-
based pharmacophore model features in combination with the QSAR techniques to
establish a relationship between the number and type of pharmacophoric feature at a
particular position of the core scaffold of a group of drugs with their drug-like
properties and target binding affinities. A set of 110 FDA approved drugs con-
taining the Hexadecahydro-1H-Cyclopenta[a]Phenanthrene Framework (HHCPF)
(Fig. 5) was considered for the study to understand their structural and functional
diversities and target specificities. Analyses of the target information collected from
DrugBank, UniProt and PDB show the selectivity of the scaffolds for different
targets and vice versa. The substituents present at 17 different positions of the
scaffolds were classified as six pharmacophoric features, viz. H-bond donors,
H-bond acceptors, aromatic rings, hydrophobic, charged and halogen groups.
ADMET (human intestinal absorption, biodegradability, P-glycoprotein binding,
carcinogenicity, Caco2 cell permeability, Ames test positivity, blood brain barrier
permeability, hERG, CYP450 binding, Rat LD50, etc.)/physicochemical properties
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(polar surface area, polarizability, LogP, refractivity, etc., obtained from DrugBank)
of the HHCPF drugs were observed to be highly correlated (R > 0.8) to the number
and type of these pharmacophoric features at positions 3 and 17 of the framework.
The chemical nature of the substitutions at different carbon atoms of the framework
was observed to play extensive role in making specific interactions with the active
site residues of their respective targets as revealed from analyses of the docking
poses. The target binding was found to be greatly influenced by the presence/
absence of aromatic rings, HB donors and HB acceptors as substitutions at different
positions of the HHCPF scaffolds. Structure-based pharmacophore models were
generated from the docked complexes of eight most important HHCPF drugs with
their targets which can further be used to screen for new inhibitors. The general
observation in the study was that the number and positions of double bonds in the
framework regulate the preference of HHCPF drugs for a target class, and the
substituents at particular carbon positions account for the target binding patterns
and ADMET profiles.

7.3 Target Identification Using Pharmacophore Approaches

Pharmacophore models may also be employed to identify possible targets for active
molecules, thereby facilitating the understanding of their mechanism of action. This
approach is also proven to be helpful for studies that explore polypharmacology and

Fig. 5 Important substitution spots on the HHCPF, where number of different pharmacophoric
features has a high correlation with target binding and ADMET properties
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drug repositioning [103–105]. Firstly, pharmacophore-based fingerprints can be
employed to search for similar molecules, whose mechanisms of action are already
understood. In the other way around, pharmacophore models can be generated from
the active sites of a group of probable proteins involved in the particular disease
pathway and then the active molecules can be mapped to them to find out the best
fit. The structures of these groups of proteins may be obtained from PDB or models
generated using various techniques. The active site pharmacophore mapped with
high scores can be proposed as potential targets for the compounds. A study on a
group of plant metabolites and pharmacophore models of their possible targets was
carried out by Rollinger et al. The best mapping targets were later proven to be
accurate by experimental testing, thus validating the usefulness of the pharma-
cophore mapping approach [106].

7.4 De Novo Ligand Design with Pharmacophores

Apart from acting as a query to screen molecules with features at desired spatial
locations and thus possibly prompting a desired biological response, pharma-
cophore models can also be employed for de novo design, of compounds, satisfying
a specific physicochemical constrains. For example, the NEWLEAD method is able
to create novel molecules from distinct disconnected fragments (mostly derived
from known active ligands) that are consistent with the features of a pharmacophore
model by using linkers. The linkers are small connecting fragment may be few
atoms, chains or sometimes ring moieties [107]. Software packages like LUDI
[108] or BUILDER [109] can grow such novel molecules when the receptor
structures are also known. Many other packages also perform such de novo ligand
design from the receptor-based pharmacophore features [110, 111]. Thus, phar-
macophore models have versatile ways of application for lead generation. De novo
design is meant to create entirely novel compounds, while pharmacophore
searching screens the available chemical space. However, pharmacophore search-
ing is faster and easier.

8 Limitations of Pharmacophore-Based Approaches

Though the literature is flooded a plenty of successful and reliable applications of
pharmacophore-based approaches in rational drug design, its limitations should be
cautiously considered as with any method [33, 112]. A systematic or straightfor-
ward way of constructing pharmacophore models is not available. This is the case
especially with the receptor-based pharmacophore models where many different
combinations of features are possible and each model may screen completely dif-
ferent set of molecules [113]. Lack of accuracy in pharmacophore scoring/fitness
functions is one of the limitations of pharmacophore searching. So, quality of
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mapping of a compound with a pharmacophore model which is often given by the
RMSD between the feature of a model and atoms of the target molecule does not
stand accurate as it does not take an account of similarity with the known active
molecules [114]. Especially, the ligand-based pharmacophore models do not con-
sider the overall compatibility with the receptor, thus sometimes end up with
screening molecules those are very different from the other active compounds, with
a completely different set of functional groups not complementary with the receptor.
The pharmacophore-based searches against the compound databases lack fast
conformation sampling as most of the programmes rely on conformer databases
having only a limited number of energetically favourable conformations of mole-
cules [115, 116]. There is a possibility of missing an active molecule if a suitable
conformation is not available. So, it is desirable to generate as many low-energy
conformers as possible for the database compounds, but again it would consume a
lot of computational time. Especially for the rotatable bonds of small hydroxyl
groups, it is difficult to sample all the different rotations.

9 Summary

Evolving from a simple concept to a well-validated and widely exploited method,
the pharmacophore modelling approaches have been an essential part of many drug
discovery strategies. The pharmacophore-based approaches are well known for their
strength to propose a diverse set of molecules having diverse molecular frameworks
but owing to a desired biological activity for one target. It has been extensively
applied for virtual screening, lead optimization, target identification, toxicity pre-
diction and de novo lead design, and it has ways to go [117]. Considering the
strengths and limitations of the pharmacophore approaches, it can either be used
alone to identify potential functional group substituents in molecules, design new
molecules specific for a target by scaffold hopping keeping the substituents with
certain pharmacophoric feature and orientation constant virtually screen for inhibi-
tors, perform ADMET profiling of compounds, investigate possible off-targets or
can be applied as a complementing approach along with other methods like docking
and QSAR. The concept can be sensibly applied for fragment-based drug design,
characterization of protein–protein interaction interfaces and target-based classifi-
cation of chemical space. In this chapter, we touched upon the basic concepts and
methods of generation of pharmacophore models. The diverse applications of the
pharmacophore approaches exemplified though a number of case studies are
believed to be useful for the readers. However, we believe that the choice and way of
application of the method depends on the research problem and the type of initial
data available.
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Analysis of Protein Structures
Using Residue Interaction Networks

Dmitrii Shcherbinin and Alexander Veselovsky

Abstract The network description is widely used to analyze the topology and the
dynamics of complex systems. Residue interaction network (RIN) represents
three-dimensional structure of protein as a set of nodes (residues) with their con-
nections (edges). Calculated topological parameters from RIN correlate with vari-
ous aspects of protein structure and function. Here, we reviewed the applications of
RIN for the analysis and prediction of functionally important residues and ligand
binding sites, protein–protein interactions, allosteric regulation, influence of point
mutations on structure and dynamics of proteins.
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1 Introduction

Proteins play a vital role in biological systems and have numerous functions such as
catalysts, transporters, regulators of signal transduction. They are linear
heteropolymers folded into three-dimensional structures. The amino acid residues
interact through various covalent and non-covalent bonds in a specific manner to
obtain a particular three-dimensional structure, which determines their functions.
Knowledge of the relationship between protein structure and its function is
important in drug design, molecular medicine, and biotechnology.

Different computational methods have been used for investigations of protein
structures and their functions, finding functionally important residues, prediction
protein–protein interactions, discovering new biological active compounds. In the
most approaches, the protein structures have been viewed as linear sequences of
amino acid residues packed into 3D globules. In the last decade, an alternative view
of proteins structures has emerged that describe the protein spatial structure as
network of amino acids residues interaction.

Network analysis has successfully used in different fields, such as social net-
works [1], Internet networks [2], road networks [3]. In biology, this method is
widely used for analysis of networks of gene regulation, protein–protein interaction,
metabolites flow, prediction of drug side effects, etc., [4–9]. Applying network
methodology for polypharmacology was reviewed in [10].

A network method is based on the graph theory and includes a set of entities
(nodes) and of the relationships (edges) occurring among them. These nodes and
edges can have various attributes. Depending on the object of the study, nodes can
represent genes, proteins, small compounds, and edges connecting these nodes
represent the physical interactions, genetic regulatory, or other properties linking
the nodes. Edges can have additional information, such as weights, directions.

According to the structure of protein, every amino acid residue in it is considered
to be a “node” or “vertex,” and the interaction of residues represents “edge”
(Fig. 1). The existence of an edge between two nodes depends only on their spatial
position in protein globule and has no relation to position in their primary sequence.
The interaction can be represented as distance between Ca or any other atoms of
amino acid residues, non-covalent interaction (electrostatic, hydrophobic, H-bonds)
of the particular amino acids [11]. Additionally, in residue interaction network
(RIN), the energy of interaction between residues can be used for weighting the
edges [12, 13]. Proteins can be also modeled as subnetworks of amino acid residues
having similar physiochemical properties. RIN method reduces spatial protein
architectures to simple maps including nodes (residues) and edges (inter-residue
interactions). Analysis of these graphs yields a characterization of the protein’s
topology and network characteristics.

There are several names of the resultant intraprotein amino acid residue inter-
action networks. They are called residue interaction graphs [14], protein structure
graphs [15, 16], protein residue networks [17], protein contact networks [18],
protein energy networks [13], amino acid networks [19], protein structure networks
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[20], residue interaction networks [21]. In this review, we will use the residue
interaction networks (RINs) to distinguish it from network of protein–protein
interactions.

The application of RIN method in drug design is just at a beginning. RINs have
been used to analyze protein stability and folding [22, 23], 3D structure modeling
[19, 23], finding functionally important amino acid residues and sites [14, 24],
analyzed protein–protein interactions [25], allosteric regulation [26], influence of
amino acid mutations [27]. These studies showed that RIN method is valuable
approaches allowed to improve the drug discovery process. Recently, several
reviews on RINs have been published [28–31].

Herein, we aim to review the investigation of the construction, analysis, and
application of RINs in fields related to drug design.

2 Graph Theory and Residue Interaction Network

Graph theory represents complex system as a set of elements (called vertices or
nodes) with their connections (called edges). Each node can be connected to each
other through multiple edges. Adding order of nodes in the graph, we get a directed
graph, where edges are directed and usually represented as arrows. Introduction of
the quantitative characteristics of the edges results in a weighted graph. Nodes with
edges form a network. The network representation helps to analyze the interaction
among individual elements and to characterize the whole system.

Fig. 1 Structure of SH2 domain of proto-oncogene tyrosine-protein kinase SRC (PDB ID 1o41)
in cartoon (A) and RIN representation
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Residue interaction network is constructed on the base of the three-dimensional
atomic coordinates of protein structure and consists of nodes and edges. Each node
represents amino acid residue (or Ca atom) that is connected to the neighbor node.
In the simplest variant, the edges are defined on the base of predefined cutoff of the
distances in 3D structure between nodes. The values of distance may be varied
based on nature of interactions (van der Waals, hydrophobic, electrostatic inter-
actions, etc.). Frequently, the covalent backbones are included as edges in the
networks. The edges can be weighed based on energy of interactions,
knowledge-based potentials, or amino acid fluctuations in molecular dynamics
simulation [30, 31]. The differential network (DDN) method was proposed where
network formed by unique edges that are present only in one state but are absent in
other ones [32].

Networks have several most common characteristics; some of them that frequently
have been used for analysis of biological systems are listed below [28, 31, 33].

A degree of a node is a number of edges in a network that connect node with its
neighbors. In a directed network, there might be two types of degrees, the in-degree,
and the out-degree depending on the orientation of the edges. An average degree is
the average number of connections that the nodes have in a network.

A connectivity represents a minimum number edges that need to be removed to
make a disconnected graph. The connectivity structure and the degree of nodes
analysis in RINs help to identify important residues, i.e., participating in ligand
binding sites.

A shortest path is a path in which the two nodes are connected by the smallest
number of intermediate nodes. A characteristic path length is defined as the
number of edges in the shortest path between two nodes, averaged over all pairs of
nodes. Residues with small shortest path lengths are often located in the active or
ligand binding sites of proteins [17] and participate in allosteric pathways [34, 35].

A betweenness centrality of a node is the number of times that a node is included
in the shortest path between each pair of nodes, normalized by the total number of
pairs.

A closeness centrality of a node is the reciprocal of the average shortest path
length.

The network concept is widely used to analyze and predict properties in different
biological systems, from intramolecular interaction to whole cells and organisms.
Biological networks are small worlds that means that two nodes are connected to
each other via only a few other nodes [23, 30]. There are several network
parameters for characterizing different aspects of biological networks.

A hub is defined as a node with a high degree or connectivity in a network. Hubs
may play a structural role in proteins increasing the thermodynamic stability of
proteins [14, 36].

A cluster is a set of nodes with the number of connections, which is higher than
in the other nodes. Clusters often are equivalent to a domain of protein and par-
ticipate in intramolecular interactions.
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A clique is a set of nodes in which each node of graph is connected to every
other node. Studies of cliques can help to understand ligand-induced population
shift in protein [37].

There are several software packages, Web servers, and plug-ins available for
construction and analyzing of RINs, such as Xpyder (http://xpyder.sourceforge.net/)
[38], Network View [39], RING (http://protein.bio.unipd.it/ring/) [21, 40],
RINalyzer (http://www.rinalyzer.de) [41], structureViz (http://www.cgl.ucsf.edu/
cytoscape/structureViz/) [42].

Web server RING constructs physicochemically RINs from PDB files for sub-
sequent visualization in the Cytoscape (software platform for the analysis and
visualization of biological networks) (http://www.cytoscape.org) or Pymol (https://
pymol.org/). Interactions (edges) are disulfide bonds, salt bridges, hydrogen bonds,
aromatic interactions, and van der Waals contacts. Several features can be added to
nodes and edges, such as secondary structure, solvent accessibility, energy score,
sequence conservation. Subnetwork can be also constructed.

RINalyzer and structureViz are plug-ins for Cytoscape [43] that link Cytoscape
with the molecular viewer UCSF Chimera (http://www.cgl.ucsf.edu/chimera/) [44].
They allow interactive structure analysis of RINs together with the corresponding
3D protein structure.

NetworkView plug-in for VMD (https://www.ks.uiuc.edu/Research/vmd/)
allows to study allostery and signaling through network models. This plug-in can
display the dynamical network representations.

3 RINs Application

3.1 Ligand Binding Sites

Identification of the ligand binding sites of proteins and functionally important
residues is a crucial first step in drug design. However, it is a difficult task in the
case of the absence of homologous proteins.

Several topological parameters of RINs may be used for the prediction of ligand
binding sites. Several investigations showed that closeness and betweenness values
of residues are correlated with ligand binding site residues [14, 34, 45–48]. The
accuracy of prediction such residues may be improved by combining with such
parameters as their solvent accessibility. So, Amitai et al. [14] could predict active
site residues in 70% of the analyzed 178 enzymes proteins, using closeness cen-
trality and solvent accessibility parameters. The similar result was obtained in [49].
The closeness centrality was used as parameter in machine learning methods for
prediction of functionally important residues [50] or in score for docking [25].

However, for non-enzyme proteins correlation between closeness centrality and
binding sites has not observed [34, 51]. In addition, global closeness centrality gave
unsatisfactory result for non-globular and oligomer proteins. For such proteins,
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more tolerable prediction was obtained with local closeness [52]. It seems that the
ligand binding sites in enzymes are correlated with centrality due to their typical
location in cavities of the enzymes, whereas in oligomer proteins, the protein–
protein interfaces are more flat [53], which reduces the centrality of their residues.

Coevolution residues networks, which include information about coevolved
residues, were also used for predicting functionally important residues [54, 55].
RIN analysis was applied for prediction similarity of ligand binding sites in dif-
ferent proteins [56, 57].

The node-weighted RIN, called node-weighted amino acid contact energy net-
work (NACEN) was developed for prediction hotspots, catalytic residues, and
allosteric residues. Nodes were weighted based on structural, sequence, physico-
chemical and dynamic properties of the residues. SVM was used for design model
to identify functionally important residues. The results revealed that parameters
from node-weighted RIN have advantages over ones from unweighted network
[58].

Poirrette et al. [56] designed RIN of the influenza sialidase binding site of
Zanamivir and used it to predict proteins having the similar binding sites. Such an
approach may be used for repurposing drugs or prediction of side effects.

3.2 Protein–Protein Interactions

Protein–protein interactions (PPIs) are crucial for many biological processes and
functions; inhibition of PPIs with small molecules is a perspective way in drug
design [53]. RIN method was used for analysis of protein–protein interfaces, pre-
diction of hotspots, and selection of protein poses in the protein–protein docking.

Several investigations were done using RIN for analysis of protein–protein
interfaces. They showed that hydrophobic and charged residues are predominant in
the dimer interface and that arginine, histidine, glutamic acid, phenylalanine, and
tyrosine are located in clusters at the interface [59, 60]. In those clusters, highly
connected residues correlate with experimentally identified hotspots in the protein
complexes [15, 16, 61, 62].

Correct prediction of protein–protein complexes using individual proteins by
docking method is a big challenge, since the docking gives many false-positive
solutions [63, 64]. Protein–protein complex formation may be viewed as combining
of two RINs, where additional edges have appeared between nodes from different
subunits. The interaction of residues occurs in accordance with their properties.
Since native protein–protein complexes are far from random, the correct and
incorrect poses have different topologies.

Chang et al. [65] designed hydrophobic and hydrophilic RINs of a protein–
protein complex. Three terms based on these networks (degree, clustering coeffi-
cient, and characteristic path length) were calculated and used in network-based
scoring function HPNet. Combining it with energy terms of RosettaDock [66]
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results in new combined scoring function HPNet-combine. It was found that
HPNet-combine could improve the discrimination of the RosettaDock scoring
function.

The similar methodology based on the construction of a hydrophobic and hy-
drophilic RINs of protein–protein complexes was used for the development NPPD
scoring function [67]. Protein–protein docking, HoDock, and scoring function
HPNCscore (hydrophobic, and polar network combined scoring function) were
developed. It showed good results for several targets in Critical Assessment of
PRedicted Interactions (CAPRI) rounds [68].

The weighed RINs were used for the development of Sn scoring function [69].
Two weighted parameters (strength and weighted average nearest neighbors’
degree) were introduced to develop a scoring function. The testing of this scoring
function for 42 protein–protein complexes had shown a satisfied performance.

The scoring function based on the local network patterns, iScore, was proposed
[70]. It achieved 83.6% specificity with 82% sensitivity for training set of *1800
two domain proteins, homo- and heterodimers.

3.3 Allosteric Regulation

Allosteric regulation is a common mechanism to control the protein activities. The
perturbation at the allosteric site results in transmission of signal through the protein
structure to other sites leading to modification of catalytic activity, oligomerization,
etc. [71, 72].

Allosteric sites became attractive target for drug design at last decade. Allosteric
drugs have several potential benefits over orthosteric drugs. They may be more
specific due to less similarity of allosteric sites comparing to active site in
homologous proteins; they can increase or decrease the activity of enzymes and
receptors; partially inhibiting by allosteric drugs may cause less side effects [73,
72].

Using allosteric sites for drug design, it is required to predict allosteric sites,
residues involved in signal transduction pathways to the active sites. The search of
allosteric sites by RIN method is similar to the other sites described above.

Allosteric pathways show how the signal may be transmitted over a long dis-
tance from allosteric to active sites within the protein. RIN is accurate and not
time-consuming method for prediction such pathways.

Once the RIN constructed, several algorithms can be used to find allosteric
pathways within the RINs. The common method is to find the shortest paths
connecting the allosteric and active sites [34, 35, 74]. The shortest path may be
determined by Floyd–Warshall algorithm. It was shown that many proteins may be
considered as a set of modules (subgraphs with many interconnections and with few
connections to other subgraphs). The residues involved in the interaction of such
modules can participate in allosteric pathways [75]. It is proposed that such residues
are conservative that also may be used for their prediction [76–78]. Proteins can
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have multiple allosteric pathways, which may preexist without effector binding at
allosteric site [79]. Various pathways may be involved depending on the different
changes in allosteric site.

However, RINs constructed based on a single structure do not take into account
the structural changes in protein globule. Therefore, the combination of molecular
dynamics simulation (MD) followed by RINs design frequently has been used to
detect and to analyze allosteric pathways. In these cases, the edges in RINs are
defined using various parameters obtained from MD. The edges may reflect the
correlation of displacements of the residues [74, 80], the fluctuation of distances
[81], interaction energy [82], etc.

Aminoacyl-tRNA synthetases are convenient objects for analysis of allosteric
communication. The combination of MD with RIN was used for discovering
pathways from anticodon region to the aminoacylation region for methionyl-tRNA
synthetase [74, 83], glutaminyl-tRNA synthetase [84], cysteinyl-tRNA synthetase
[35], and tryptophanyl-tRNA synthetase [85, 86]. Particularly, analysis of
tryptophanyl-tRNA synthetase showed changes of flexibility around the active
site induced by allosteric ligands binding and allowed to explain the molecular
mechanism of half-of-the-sites reactivity (tryptophanyl-tRNA synthetase is a
homodimer).

Another popular object is G protein-coupled receptors (GPCRs) [87–89]. It is a
large family of membrane receptors, which have ligand binding site on the extra-
cellular side of membrane and activation domain on its internal side. Using RIN
method, several conservative residues participating in the signal transduction were
discovered for the lutropin receptor [76] and A2A adenosine receptor [87] (Fig. 2).

Fig. 2 Structure of A2A

adenosine receptor (PDB ID
2ydv). One of the predicted
allosteric pathways is shown
in rainbow color scheme. The
synthetic agonist NECA is in
stick

62 D. Shcherbinin and A. Veselovsky



Fig. 3 Part of the networks near X-loop of b-lactamases TEM-1 and its triple mutant (G238S,
E240K, M182T). The additional interactions appeared in the triple mutant that results in freeze of
movement of X-loop are in green
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3.4 Analyses of Mutations

RIN methods may be used for analysis and prediction of effects of amino acid
mutation on protein properties, which may be useful for protein design, investi-
gations of disease-associated single nucleotide polymorphisms, or mechanism of
the drug resistance [27, 90–92].

Recently, we used RIN for investigation of the influence of several mutations on
structure and flexibility of b-lactamase [93]. b-lactamases are class of enzymes
responsible for bacteria resistant to b-lactam antibiotics. Besides, the key mutations,
responsible for the extended spectrum b-lactamases or inhibitor resistance pheno-
type, secondary mutations, located far from active site and with a weak impact on
the protein structure and enzyme activity, have been often appeared [94]. Analysis
of MD trajectories showed that the secondary mutations, and the key mutations can
exhibit opposite effect on the flexibility of the X-loop of b-lactamase that participate
in antibiotic hydrolysis and transport in the active site [93]. Detailed analysis of
RIN maps of proteins of consistent mutations from wild-type TEM-1 to TEM-72
(carrying two key mutations G238S and E240K and two secondary ones M182T
and Q39K) showed that key mutations (responding for extended spectrum
b-lactamases) lead to weakening interactions of the X-loop with protein globule.
The appearance of secondary mutation M182T resulted in dramatic changing of
conformation of R65, and this residue began to interact with the X-loop and fixed it
near protein globule (manuscript submitted) (Fig. 3).

4 Conclusion

Herein, we have reviewed the development and current stage of RINs and their
application for drug discovery.

RINs provide complex analysis of the proteins and their complexes. Residues are
in tight contact with each other in protein globules, and RINs allowed to estimate
their interdependence and to predict different properties and functionality of the
individual residues and the whole proteins. In addition to topology, RINs allow to
use chemicophysical properties of residues and energy of their interaction in RIN
construction and analysis of proteins.

Besides, using RINs for investigation protein structure and functions, they may
be applied in drug design in several ways.

Prediction of functionally important residues and sites can be helpful for
understanding functions and regulation of uncharacterized proteins, finding active
sites, allosteric and cryptic ligand binding sites. It may decrease the amount of
“undruggable” protein, increasing field for drug design. On the other hand, many
drug candidates fail in the late and costly stages of clinical trials [95]. Side effects
are one of the main reasons for drug failure [96]. The detection of similarity in
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network topologies and interactions with ligands for several targets may indicate the
promiscuity of drug candidates and possibly their side effects.

The development of inhibitors of protein–protein interactions is a perspective
way in drug design, and RIN showed their applicability for this purpose. The
analysis of networks may help to select correct poses in protein–protein docking
that is important for the selection of inhibitor binding sites; incorporation of the
terms from RINs may improve docking scoring functions.

Allosteric inhibitors are another mainstream in drug design in last decade. It is
proposed that such inhibitors may regulate cellular processes more accurately.
Allosteric regulation is the common property of protein, which may increase the
number of druggable targets. RINs are convenient for finding allosteric sites,
investigation of mechanism of intraprotein signal transmission. Prediction of the
effect of amino acid mutations on protein structure and dynamics is crucial for the
development drugs against diseases with a high probability of occurrence drug
resistance, in particular antibacterial, antiviral, and anticancer drugs.

Nowadays, the application of RIN methods for drug discovery is at their early
stage, but they already help to understand intimate properties of proteins and
provide a new view for drug discovery.
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Combinatorial Drug Discovery
from Activity-Related Substructure
Identification

Md. Imbesat Hassan Rizvi, Chandan Raychaudhury and Debnath Pal

Abstract A newly developed drug discovery method composed of graph theo-
retical approaches for generating structures combinatorially from an activity-related
root vertex, prediction of activity using topological distance-based vertex index and
a rule-based algorithm and prioritization of putative active compounds using a
newly defined Molecular Priority Score (MPS) has been described in this chapter.
The rule-based method is also used for identifying suitable activity-related vertices
(atoms) present in the active compounds of a data set, and identified vertex is used
for combinatorial generation of structures. An algorithm has also been described for
identifying suitable training set–test set splits (combinations) for a given data set
since getting a suitable training set is of utmost importance for getting acceptable
activity prediction. The method has also been used, to our knowledge for the first
time, for matching and searching rooted trees and sub-trees in the compounds of a
data set to discover novel drug candidates. The performance of different modules of
the proposed method has been investigated by considering two different series
of bioactive compounds: (1) convulsant and anticonvulsant barbiturates and
(2) nucleoside analogues with their activities against HIV and a data set of 3779
potential antitubercular compounds. While activity prediction, compound prioriti-
zation and structure generation studies have been carried out for barbiturates and
nucleoside analogues, activity-related tree–sub-tree searching in the said data set
has been carried for screening potential antitubercular compounds. All the results
show a high level of success rate. The possible relation of this work with scaffold
hopping and inverse quantitative structure–activity relationship (iQSAR) problem
has also been discussed. This newly developed method seems to hold promise for
discovering novel therapeutic candidates.
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Abbreviations

QSAR Quantitative structure–activity relationship
iQSAR Inverse quantitative structure–activity relationship
vHTS Virtual high-throughput screening
MIC Minimum inhibitory concentration
Mtb Mycobacterium tuberculosis
AAE Acid alkyl ester
NA Nucleoside analogue
HIV Human immunodeficiency virus
MPS Molecular Priority Score
ARL Active range length
ARW Active range weight
ARV Active range value
MAI Molecular activity index
IRL Inactive range length
IRW Inactive range weight
IRV Inactive range value
MDI Molecular de-activity index
SMILES Simplified molecular-input line-entry system
MOL file Molecular structural information file

1 Introduction

Exploring chemical space to discover a compound that elicits a desired pharma-
cologic response without undesired side effect is like searching a needle in a
haystack problem. The problem arises because we seek to screen a limited subset
that exists among many compounds that elicit a desired pharmacologic response.
Different approaches have therefore evolved to make the problem tractable, namely
effective use of macromolecular target information, if available, use synthesis
tractability of the compounds as guidance, and most importantly, the pharmaco-
logical relevance of the compounds selected. While modern advances like targeted
library search or chemogenomics have helped in bringing focus to the drug can-
didate search, the utility of drug candidate search using serendipity-based approa-
ches has not diminished in face of increasing burden of drug resistance and adverse
side effects. These problems may possibly be addressed by discovering novel
compounds using new drug discovery methods. One of such a new line of thinking
has been proposed by Ruddigkeit et al. [1] who have considered all possible
compounds having 17 atoms taken from C, N, O, S and halogens to create a
database of several billions of compounds. It is tempting to believe that such an
effort of discovering novel drug molecules from such a huge collection of com-
pounds can be useful. However, a method that enables searching of potential drug
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candidates from a relatively smaller set of compounds, quite exhaustive at the same
time within given limits, activity linked and rationally guided too may help drug
discovery more effectively.

Among the current drug discovery methods, data modelling and quantitative–
qualitative prediction of activity [2–4], use of molecular docking methods and
scoring functions for virtual high-throughput screening (vHTS) [5] and 3D quanti-
tative structure–activity relationship (QSAR) studies [6] are some of the most used
ones. At the same time, combinatorial generation of chemical compounds is also
carried out since it increases the possibility of finding novel drug molecules from a
large number of chemically diverse compounds generated particularly for the need of
making scaffold hopping [7]. It also provides the opportunity to search for com-
pounds having diverse structural characteristics which in turn may help decipher the
role of molecular components which may be responsible for the biological activities
of new drug molecules, particularly in situations where novel therapeutic candidates
are sought for to handle the challenges arising out of drug resistance problem [8].

So far generating molecular structures are concerned, molecular topology-based
approaches are in use for generating and designing molecular structures [9, 10] and
graph theory [11] and graph theoretical methods [12] have been suitably used for
doing that. However, in general these methods are used for generating structures
combinatorially [10] with no connection to their biological activities and a separate
method has to be used for the prediction of molecular properties and activities. It
appears, therefore, that a method that generates a large number of compounds
combinatorially and gets linked to their activities at the same time may be more
efficient in designing and discovering novel drug molecules. In particular, topo-
logical molecular descriptors [2] can be useful in this regard. Moreover, if this is
done using a single molecular (structural/substructural) descriptor, the process may
also be looked upon from inverse QSAR (iQSAR) point of view [13] since the basic
idea of doing iQSAR studies is to get molecular structures back from molecular
descriptor which has been used for activity prediction. In this context, it seems
reasonable to explore whether a method can be developed that is integrated in such
a way that it can be used for generating structures combinatorially that would have
molecules of diverse scaffold from a single molecular topological descriptor , can
be used for predicting molecular properties/activities and can be used for compound
prioritization and screening to help discover potential drug candidates.

So, the first question that may be asked in developing such an integrated method
is: Can we have a method such that structures can be generated combinatorially
from structural or substructural information that is already related to activity? In this
regard, there are two primary aspects in designing potential bioactive compounds
from activity-related substructural information—(1) identification of activity-related
vertices using a suitable method; (2) a method that can be used for structure
generation using topological information associated with such vertices. One of the
most useful activity-related substructure identification method was proposed by
Klopman [14] where molecular fragments of different length are identified from
active and inactive compounds, and the fragments are weighed on the basis of the
number of fragments obtained from active and inactive compounds using a suitable
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measure to assess their usefulness in predicting activities and mathematical–sta-
tistical methods are used to do that. However, no structure generation method is
used for this work [14].

In this chapter, we have described in detail a graph theory-based method,
developed recently by our research group [15], for combinatorial generation of
chemical structures from activity-related substructural topological information. This
approach [15] has been found to be useful in generating structures of active anti-
tubercular compounds from activity-related vertices of the molecular graphs repre-
senting different other active antitubercular compounds. For developing the present
method [15], we have leveraged primarily a non-isomorphic rooted tree generation
algorithm [16] and a cycle enumeration method [17] to design novel bioactive
compounds in the form of reconstructed molecular graph as outlined earlier [18, 19].
In the proposed integrated method, activity-related vertices are first identified by
using the rule-based method [18, 19] where topological distance-based vertex
indices are used as local molecular descriptors in data sets having the biological
activities of interest. Once the activity-related vertices are identified, a suitable vertex
is taken for structure generation using the distance distribution associated with the
vertex which gives the topological distances of all the vertices in molecular graph
from that vertex (say, the root vertex). A large number of rooted trees are thus
generated de novo [15]. Subsequently, 2D molecular structures containing cycles of
different size are created by joining vertices of the tree graphs. In this way, all the
generated structures contain this activity-related substructure, and therefore, there is
a possibility that some of generated structures may be classified as active.
Furthermore, to get complete 2D structures of the compounds, user-defined
parameters are used to add multiplicity of bonds (e.g. double and triple bonds)
between pairs of vertices and add chemical nature of the atoms (nitrogen, oxygen,
etc.) represented by the vertices. Canonicalization is used to identify unique struc-
tures which are further used for screening of potential active compounds.

It may be noted that scaffold hopping [7] is embedded in the method since the
generated structures are different from the starting compound and are expected to
have diverse topological architecture. Also, since both compound generation and
activity prediction are done using the same vertex index (substructural/local de-
scriptor), the method may also be regarded as an attempt to address the inverse
quantitative structure–activity relationship (iQSAR) problem [13] in its integrated
framework. Furthermore, in order to relax the condition for structure generation
from distance distribution as outlined earlier [18, 19] and to make it more flexible,
we have developed an algorithm for generating sub-trees by adding or deleting
vertices from the tree structures generated on the basis of a given distance distri-
bution associated with an activity-related vertex. To our knowledge, this is the first
time that a method [15] has been developed and used for drug discovery through
database searching using rooted tree and sub-tree matching algorithms.

The method has already been used to investigate its usefulness for a series of 41
acid alkyl ester (AAE) derivatives and three known antitubercular drugs [15]. In
this chapter, we have furnished new results obtained for a series of 19 convulsant
and anticonvulsant barbiturates [18], 20 nucleoside analogues (NA) for their
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activities against HIV [20, 21], and a data set of 3779 compounds (named GTB data
set) for which minimum inhibitory concentration (MIC) values have been measured
against H37Rv strain of Mycobacterium tuberculosis (Mtb) [22]. The GTB data set
may be obtained from the link [23] given in the reference section. The results
described here will therefore substantiate the findings obtained earlier [15].
Regarding activity prediction, results have been reported for NA and barbiturate
data sets. For barbiturates data set, we have considered the same training set and test
set as used in an earlier study [18]. However, for the NA data set, we have identified
a reasonably well-performing training set–test set split and have reported the results
for individual compounds present in that split. For prioritization of the generated
active compounds that help screen potential active compounds, Molecular Priority
Score (MPS) [15] has also been used and the results obtained for NA and barbi-
turate series of compounds have been given in the tables alongside their activity
prediction results. We have carried out combinatorial generation of structures using
topological distance-based substructural information associated with identified
activity-related vertices (atoms) in some compounds of the data set. We have been
able to reconstruct the structures of active NA and barbiturate compounds from the
substructural information associated with activity-related vertices of other active
NA and barbiturate compounds. Regarding substructure searching exercise, we
have reported identified potential active compounds from GTB data set [22, 23]
considering activity-related atoms (vertices) in the structures of Isoniazid and
Streptomycin, both of which are known antitubercular drugs in use.

It appears from the outcome of the results that the integrated method would find a
place as a useful drug discovery tool for designing and discovering novel bioactive
compounds. In particular, the method is believed to be of much help in situations
where novel drug candidates having very different structural characteristics/scaffolds
are sought for particularly to overcome the drug resistance problem.

2 Methods

In this section, we have described in detail different mathematical approaches/tools
which have been used to develop the present integrated drug discovery method and
the related computer programs. Examples with tables and figures have been used to
illustrate underlying concepts of the methods used. While we have leveraged few
existing mathematical aspects for the present purpose, we have introduced some
new algorithms as well.

2.1 Computation of Vertex Index

Let G be the carbon skeleton of n-butane and D Gð Þ, the corresponding distance
matrix is shown in Fig. 1. Computation of D�4 indices for the vertices of D(G) has
been illustrated below.
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Therefore, D�4 index for the four vertices vi, i ¼ 1; 2; . . .; 4 of G may be
computed as:

D�4 v1ð Þ ¼ 1�4 þ 2�4 þ 3�4 ¼ 1:0749

D�4 v2ð Þ ¼ 1�4 þ 1�4 þ 2�4 ¼ 2:0625

D�4 v3ð Þ ¼ 1�4 þ 1�4 þ 2�4 ¼ 2:0625

D�4 v4ð Þ ¼ 1�4 þ 2�4 þ 3�4 ¼ 1:0749

One can, therefore, compute the values of D�4 index for all the atoms (vertices) of
all the compounds (molecular graphs) in a data set considering the molecular graphs
(hydrogen-suppressed or hydrogen-filled) of the compounds. Hydrogen-suppressed
graphs may be considered for generating structures from the distance distribution
associated with a vertex since structure generation using information about the
vertices of hydrogen-filled graphs may pose computational bottlenecks during the
process because of a large number of structures that are usually generated in this
way. Moreover, if chemical information of the vertices is provided, one can always
create the hydrogen-filled graphs from the corresponding hydrogen-suppressed
graphs.

2.2 Rule-Based Activity Prediction

In order to carry out activity prediction studies using the present method, a data set
containing both active and inactive compounds for a biological endpoint of interest
is gathered. The data set is then divided suitably into a training set and a test set.
The biological activities of the compounds are then predicted for both the training
set and the test set using a rule-based system [18, 19]. In order to make the activity
prediction, ranges of vertex index values coming from active and inactive

G:     ●1-●2-●3-●4

D(G):
1 2 3 4

1 0 1 2 3
2 1 0 1 2
3 2 1 0 1
4 3 2 1 0

Fig. 1 Graph G representing
vertex labelled carbon
skeleton of n-butane and the
corresponding topological
distance matrix D Gð Þ
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compounds are first found out using some rules [18, 19] and the activity is predicted
on the basis of the number of vertex index values falling in these ranges as defined
in the rule-based system [18, 19]. For the present purpose, the values of vertex
index D�4 are computed for the vertices of the training set compounds (molecular
graphs). Once the indices are computed, they are arranged in an ascending order
and ranges of values coming from both active and inactive compounds are found in
the ordering and are tagged as “Active” and “Inactive” ranges by applying certain
rules [18, 19] given below:

1. Three or more consecutive vertex index values coming exclusively from
active compounds and exclusively from inactive compounds are said to
form an “active range” and an “inactive range”, respectively. However, at
least three index values in a range have to be distinct if they come from the
same compound and at least two index values in a range have to be
distinct if they come from different compounds.

2. Some single vertex index value coming from both active and inactive
compounds is not considered to form an “active range” or “an inactive
range” by itself or along with other vertex index values unless two-thirds
of that single vertex index comes from active compounds or inactive
compounds, respectively.

It has been discussed earlier [24] in connection with identifying ranges that the
vertices which correspond to the vertex index values forming active ranges may be
regarded as topological features responsible for making the compounds active. In
other words, they may be regarded as a set of features forming “Topological
Biophore ” which are responsible for exhibiting a given biological activity of the
compound under consideration. From this point of view, it may be said that if the
index values of some (or, all) of the vertices of a compound fall in active ranges,
then those vertices may be regarded as forming certain topological biophore which
make the compound active. Presumably, some of the vertex index values of a
compound may fall in inactive ranges as well. Thus, in order to predict activity from
the occurrences of the vertex index values in active and inactive ranges, another set
of rules [18, 19], given below, are applied:

A compound is predicted “ACTIVE” if all or some of its vertices fall:

1. Only in active ranges or
2. In both active and inactive ranges, the number of index values falling in

active ranges is greater than those falling in inactive ranges.

Otherwise, the compound is predicted “inactive”.
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In order to use this rule-based system for activity prediction, a set of bioactive
compounds with known activities (e.g. experimentally determined activities) have
to be collected (from the literature or an experimental laboratory). A training set is
then formed by picking up compounds from the data set suitably to train the system
to learn the structural requirement for a compound to be active. A fewer number of
compounds are also kept for testing purposes (test set). Once the training is done,
activity predictions for both training set compounds (retrofit studies) and test set
compounds are carried out. For predicting the activities of the test set compounds,
the D�4 index values for the test set compounds are computed. If the system is
found to produce high (acceptable) percentage of correct activity predictions for
both the training set and the test set compounds along with none or very few
(acceptable) wrong activity predictions, it may be regarded as standardized for the
prediction of activity of chemical compounds for the biological endpoint for which
the system is standardized.

2.3 Training Set–Test Set Split

It is always important that a suitable training set be obtained from a data set of
bioactive compounds such that the structural characteristics of the compounds,
present in the data set, is reflected in the training set, and the learning of the (expert)
system/prediction tool is as adequate as possible for getting useful activity pre-
dictions by the method used in this purpose. In general, researchers look for the
diversity present in the structures in creating a training set from a given data set.
Presumably, some intuition or expertise of the drug designer/medicinal chemist
may be required to do that or some mathematical diversity analysis may be carried
out in obtaining a suitable training set. However, it appears that generating a large
number (e.g. 1000) of training set–test set splits (combinations) and reporting the
successful predictions of all or some (e.g. top 20, 25) of the best-predicting splits
for a given data set of bioactive compounds would be a very straightforward and
useful approach for identifying a suitable training set. Having obtained various top
performing splits, one can select a suitable split that gives high percentage of
successful predictions for both training set and test set and obtains activity pre-
diction for the compounds present in both the sets. Although such splits have been
used [24, 25] for evaluating the performance of vertex indices and a rule-based
method for activity prediction [18, 19] considering small and large data sets, no
algorithm is available to report the activity predictions for different splits. We have
incorporated this algorithm in the program for reporting the outcome of activity
predictions for different splits so that one can consider a suitable split for further
work such as structure generation. This can be done for both quantitative data and
qualitative data (active–inactive type). It may also be noted that the computer
program can be used for the identification of training set–test set splits and activity
predictions by considering both hydrogen-filled (H-filled) and hydrogen-suppressed
(H-suppressed) molecular graphs of the compounds under consideration.
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2.4 Compound Prioritization

The present method [15] also contains a section that can be used for prioritization
of potentially active compounds. This may be particularly useful for screening few
highly active compounds from a big database, e.g. from a set of combinatorially
generated compounds (described in the next section). This method is based on
some of the characteristics of active and inactive ranges found in the ordering of
vertex index values. Therefore, one has to look into some details of such ranges. In
doing that, two factors may be given special attention—(1) the number of vertex
index values in an active range (active range length: ARL); (2) the number of
compounds contributing to form the range (active range weight: ARW ). By
applying one’s intuition too, it becomes apparent that a joint effect of these two
factors may help prioritize predicted active compounds. Therefore, we first propose
a measure, active range value (ARV), as the algebraic sum of ARL and ARW values
given by:

ARV ¼ ARLþARWð Þ ð1Þ

Clearly, a range larger in length and contributed by more number of compounds in
forming the range would have higher ARV value. We define such a range of higher
ARV value a “STRONGER” range compared to those which have lower ARV
values. Now, let us assume that M out of N vertices of a molecular graph
G (representing a chemical compound) have fallen in different active ranges. If the
vertices are denoted by v1; v2; . . .; vM , one would getM number of ARV measures as
ARV v1ð Þ;ARV v2ð Þ; . . .;ARV vMð Þ. In order to get a measure of the contribution of
the vertices falling in different active ranges (i.e. contribution of activity-related
vertices), we further propose a molecular activity index (MAI) as:

MAI Gð Þ ¼
XM
i¼1

ARV við Þ ð2Þ

It may also be noted that while considering the length of an active range and the
number of compounds contributing to form the range, some single values that come
from both active and inactive compounds are taken into account since they are part
of the active range according to the second rule of range selection mentioned
earlier.

At the same time, there is a possibility that some of the vertex indices of
molecular graph G may fall in inactive ranges too (the second rule for activity
prediction) and that may be considered to pose a negative effect on the activity of
the compound. For the prediction purpose, therefore, vertices falling in inactive
ranges have to be considered. For doing that, let us assume that M0 vertices of G,
viz. u1; u2; . . .; uM0 fall in inactive ranges. We, thus, propose a measure, molecular
de-activity index (MDI) for G and it may be defined as:
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MDI Gð Þ ¼
XM0

j¼1

IRV uj
� � ð3Þ

In Eq. 3, IRV stands for inactive range value and is the sum of IRL (inactive range
length) and IRW (inactive range weight) which is in line with the definitions used
for such measures of active ranges. Computation of IRV can be done using Eq. (4)
given below:

IRV ¼ IRLþ IRWð Þ ð4Þ

Therefore, by considering a combined effect ofMAI andMDI, one can prioritize the
newly generated active compounds and curate some high-ranking compounds for
further studies. Thus, in order to get a measure of combined effect of the vertices
falling in active ranges and inactive ranges (if any) and prioritizing (ranking) the
compounds according to their activities, we propose a measure, Molecular Priority
Score (MPS), for G and it may be computed using Eq. (5):

MPS Gð Þ ¼ MAI Gð Þ �MDI Gð Þ ð5Þ

Considering MPS value as a measure for prioritization of active compounds, a
compound with higher MPS value will occupy a higher position in the ranking.
Therefore, a compound may be regarded as more active if it gets higher MPS value.
This will then help screen some top-ranking compounds. However, ranking of
active compounds using MPS is not mandatory. One may always wish to consider
all the predicted active compounds for further studies particularly if the number of
highly ranked compounds (in terms of MPS value) is very small. At the same time,
there is no need to prioritize those compounds which are predicted inactive since
the idea is to screen potentially highly active compounds for a given biological
endpoint.

2.5 Combinatorial Structure Generation from Root Vertex

In developing the structure generation method, we have used an algorithm for
generating rooted trees [16] which have been extended to the generation of cyclic
compounds and finally a complete 2D structure of chemical compounds. The
structure generation exercise starts off as generating all possible canonical trees for
any given number of vertices. Subsequently, topological distance restriction on the
generated tree structures is used to filter and keep only those trees having a desired
distance distribution. Further, for the application of relaxed distance criteria for
compound structures having increased or decreased number of vertices
(non-hydrogen atoms), the matching criteria of distance distribution have been
suitably changed to accommodate the addition, deletion and migration of the
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vertices over the tree structures with exact distance restriction. The theories and
implementation details are described in the following subsections.

2.5.1 Structure for a Given Distance Distribution

A molecular graph represents topological connections between the atoms of the
molecules. A spanning tree of the graph can provide the basic skeleton over which
additional edges can be inserted to introduce cycles and thereby produce the entire
molecular structure. The multiplicity of bonds can be considered as edge weights
and can be dealt by assigning weights 1, 2 and 3 for single, double and triple bonds,
respectively. Similarly, heterogeneous atoms, with their valency information, can
also be introduced as nodes, which are by default considered to be carbon atoms in
our discussions.

It is clear from above that the starting point of structure generation for a given
number of vertices (atoms) is the generation of rooted trees since the structure
generation will be carried out with respect to a particular atom in a molecule in our
current approach based on topological distances from a particular vertex. Moreover,
to prevent duplicate structures, only non-isomorphic trees should be generated.

For the purpose of illustration, consider the chemical structure and the corre-
sponding graphical and tree representation as shown in Fig. 2.

The numbering of vertices has no structural significance apart from that it is done
to obtain the rightmost tree having node 1 as the root and pre-order numbering for
the other vertices and is merely for array representation of the tree structure. The
tree can be represented by the following parent and level array representations:

parent ¼ 0; 1; 2; 3; 1; 5; 5½ � level ¼ 1; 2; 3; 4; 2; 3; 3½ �

where for a given vertex i, parent i½ � ¼ j means vertex j is the parent of vertex
i except for root vertex 1 having no parent vertex and is represented by 0 as its
parent. Similarly, for a vertex i, level i½ � ¼ j means vertex i is at level j, where root
vertex 1 has a level 1 and other vertices have level one greater than the level of its
parent vertex. The root vertex can sometimes be considered to have level 0 and the
levels of the subsequent vertices follow.

With the illustrated example and the terms introduced in consideration, the
different steps in structure generation are explained in the following points:

Fig. 2 Graph and tree illustration
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(a) Non-isomorphic canonical tree generation:

Beyer and Hedetniemi [16] have proposed an iterative algorithm to reverse lexi-
cographically generate non-isomorphic canonical trees for a given number of ver-
tices. The algorithm achieves this transformation through a successor function
defined below.

Let L Tð Þ ¼ l1l2. . .ln½ � be a level sequence containing an element greater than 2.
Let p be the rightmost position of such an element, i.e. p ¼ maxfi : li [ 2g. Let
q be defined as the rightmost position preceding p such that lq ¼ lp � 1, i.e.
q ¼ maxfi : i\p; li ¼ lp � 1g. Hence, the vertex corresponding to position q is the
parent of vertex corresponding to position p. Then the successor of L Tð Þ, i.e.
succ L Tð Þð Þ ¼ s1s2. . .sn½ � is defined such that:

(i) si ¼ li for 1� i\p
(ii) si ¼ si� p�qð Þ for p� i� n:

The algorithm can be used successively generating all the non-isomorphic
canonical level representation of trees from a provided starting level sequence to the

last possible reverse lexicographic sequence, i.e. 1; 2; 2. . .2|fflfflfflffl{zfflfflfflffl}
n�1 times

2
4

3
5. If no starting level

sequence can be provided, the algorithm can start with the lexicographically largest
sequence 1; 2; 3. . .n½ �.

The trees generated by the aforementioned algorithm can in general have any
number of children for any parent vertex. In context of chemical structures of
carbon atoms, only those trees are being filtered and kept where the root has at most
four children and the rest of the vertices have at most three children. This restriction
can later be further refined for hetero-atoms in accordance with their valency.

(b) Cycle introduction by addition of edges:

The generated rooted trees are graphical models of acyclic compound structures.
Cycles can be introduced by adding edges between any two vertices, say i and j,
such that:

parent i½ � 6¼ j and parent j½ � 6¼ i

The size or the number of sides in the cycle so introduced can be obtained by the
following relation:

num cycle sides ¼ level i½ � þ level j½ �
� 2 � level lowest common anscester i; jð Þ½ � þ 1

In general, cycles of size 3 onwards will be possible. For more than one cycles to be
introduced, a combination of these identified edge introductions can be simulta-
neously carried out.
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However, introduction of multiple edges may lead to fused or bridged cycles and
the size of cycle may become different than intended. Consider the case of starting
structure generation from the tree in Fig. 2. If it is required to have two cycles
which can have size 5, or 6, it can be seen (Fig. 3) that the edge introductions
between vertices 3 and 6 and vertices 4 and 6 individually satisfy the size criteria,
but in combination, they inadvertently lead to having a 3-sided cycle.

On the other hand, edge introductions between vertices 3 and 7 and vertices 4
and 6 satisfy the size criteria individually as well as in combination (Fig. 4).

Thus, in order to detect and remove cases similar to the first multiple intro-
ductions discussed before, it will be required to check the cycle size validity criteria
considering all the elementary cycles, e.g. in the case being considered of multiple
edge introductions, the elementary cycles present are C1 (1–2–3–6–5–1), C2 (1–2–
3–4–6–5–1) and C3 (3–4–6–3), having sizes 5, 6 and 3, respectively, even though
the intended cycles were only C1 and C2. In graph theoretical terms, C1 and C2 are
the fundamental sets of cycles while C3 is a derived cycle. The term elementary
cycles here has the standard graph theoretical definition, and from now on, the term
cycle is considered to be an elementary cycle unless stated otherwise.

It will thus suffice to identify the fundamental set of cycles corresponding to the
smallest sizes. The starting fundamental set of cycles corresponds to the cycles
directly resulting from edge introductions. Any cycle enumeration algorithm can
then be used to enumerate all the cycles present. We have considered the algorithm
by Gibbs [17] which is a cycle vector space method in which the cycles of the
fundamental set form the basis of the cycle vector space. With this vector space

Fig. 3 Multiple cycle introduction example (1)

Fig. 4 Multiple cycle introduction example (2)

Combinatorial Drug Discovery from Activity-Related Substructure … 83



construct, one cycle, say C3, can be obtained from two other cycles, say C1 and C2

from the previous example by a symmetric cycle-plus operation � defined below:
Let an edge between vertices i and j be denoted by eij. Let a cycle be denoted by

the set of all such edges present in the cycle. Then for any two cycles A and B, the
result of cycle-plus operation is:

A� B ¼ eijjeij 2 A[B; eij 62 A\B
� � ¼ A[Bð Þn A\Bð Þ

The same operation can be performed computationally faster when all the edges
present in the graph are assigned a unique number and a given cycle is represented
by a bit string where bit positions from right are set “on” corresponding to the
unique numbered edges in the cycle. The cycle-plus operation is then exactly
analogous to the bit-wise XOR (^) operation, i.e. A� B , A^B.

At this point, it is worthwhile to note that the following property, henceforth
called Property 1, of the cycle-plus operator holds, which is proved using XOR
operation on bit string representation of cycles A and B:

A� A� Bð Þ, A^ A^Bð Þ
, A^Að Þ^B By associative property

, 0^B , B

Hence, A� A� Bð Þ ¼ B Propertyð1Þ
In terms of cycles, the result of the cycle-plus operation can either be another

cycle or a union of cycles having no common edges. Thus, all the cycles present in
the graph can be obtained by linear combination of cycles taken two at a time in the
fundamental set, supplemented successively by the increasing number of cycles and
union of cycles obtained through cycle-plus operation. In the end, the entries that
supplemented the fundamental set should only be cycles and the edge disjoint union
of cycles should be removed. The final set so obtained will be the set of all cycles,
say in the considered example the final set will be {C1, C2, C3} starting from the
fundamental set {C1, C2}.

It is easy to comprehend and evident from the previous example that the final set
may contain cycles smaller in size than those in the starting fundamental set of
cycles. Moreover, as the cycles are generated by linear combination over two cycles
at any given time using cycle-plus operator and as Property (1) holds, any resultant
cycle in combination with a fundamental cycle will yield the other fundamental
cycle from which it was produced. This is to say, in previous case, C2 can be
obtained from C1 and C3.

Thus, the entire fundamental set can be changed to another fundamental set
which contains only the cycles of non-decreasing number of sides starting from the
smallest sized cycle, so that all the cycles in the final set can still be generated.
Henceforth, the term fundamental set will correspond to this newly constructed set.
It can be noted, though, that the cardinality of the fundamental set does not
get altered. In the examples considered so far, this will lead to a change of
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fundamental set from {C1, C2} to {C1, C3} while the set of all cycles will still
remain {C1, C2, C3}. This, arguably, is just an instance of change of basis in the
cycle vector space.

It will now suffice to check the sizes of the cycles in the fundamental set against
the required sizes and keep or discard the generated structure accordingly. This
decision made, considering the fundamental set only, is in accordance with the
IUPAC convention of the number of rings in polycyclic systems [26] where the
number of rings is equal to the minimum number of scissions required to convert
the system into an open chain compound or structure. Following this convention of
ring count, the example corresponding to Fig. 4 will be a valid structure against the
cycle size restriction either being 5 or 6.

(c) Removal of duplicate cyclic structures using graph canonicalization:

Although the trees generated by the algorithm given by Beyer et al. [16] are
non-isomorphic (hence distinct structures), it is easy to comprehend that intro-
duction of edges may lead to generating more than one chemical structure of same
topology. As the entire process starts with tree structure, consider the case of the
rightmost tree representation shown in Fig. 2, and two different edge introductions
for a given cycle size constraint of 6 and cycle count constraint of 1 as shown in
Fig. 5.

Although the presented example is basic in nature, the problem aggravates when
the number of nodes is fairly large and such node pairs lie in different branches,
sometimes far apart. For example, the molecules with 30 or more non-hydrogen
atoms are fairly common in organic compounds developed as pharmaceutical
entities. Moreover, even when the graph topology is uniquely fixed, the combi-
natorial imposition of node colours for imparting heterogeneity by introducing
different atoms and the imposition of multiplicity of bonds can again lead to
duplicate structures. Hence, any duplicate elimination strategy should consider the
complete graph along with heterogeneity and bond multiplicity.

In the above context, molecular graph canonicalization algorithms can be used to
identify the duplicate structures and eliminate them during generation. As we intend
to store the molecules in SMILES notation format, it has been decided to use the
algorithm proposed for generation of unique SMILES by Weininger et al. [27],
which tackles the molecular graph canonicalization by extended connectivity
through an unambiguous function using product of primes.

Fig. 5 Duplicate cyclic structures
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The algorithmic steps leading to unique SMILES generation is discussed below:

(I) Initializing Rank of the Graph Vertices—The rank initialization of the ver-
tices is achieved using combined invariants which in turns are combinations of
several individual atomic invariants. A total of 6 such atomic (node) invariants
in the order of their priority are produced below:

(i) Number of connections
(ii) Number of non-hydrogen bonds
(iii) Atomic Number
(iv) Sign of Charge
(v) Absolute Charge
(vi) Number of attached hydrogen atoms.

It may be noted that the number of invariants can be varied based on the
desired distinguishing properties [27]. The combined invariant will be the
number obtained by successively concatenating the individual invariants such
that higher priority invariants are to the left of lower priority invariants in the
decimal system. For example, a methyl carbon (CH3) in a molecule will have
the individual invariants 1, 01, 06, 0, 0, 3 listed in the order of their priority
while the combined invariant will be 10106003. The distinct combined
invariants in the molecule are then sorted and mapped to their position in
increasing order, hereafter referred to as consecutive ranks. The mapped
position becomes the initial ranks of the atoms. For example, in case of
n-Pentane, i.e. (C1–C2–C3–C4–C5), where the subscripts denote the vertex
labels, the combined invariants are 10106003–20206002–20206002–
20206002–10106003 while the initial rank is 1–2–2–2–1.

(II) Extended Connectivity through an Unambiguous Function using Product of
Primes—The initial rank will not be able to identify the vertex symmetries. In
the case of n-Pentane, vertices 2 and 4 are equivalent in terms of vertex
symmetry while vertex 3 is not equivalent to them but is still initially ranked the
same. To resolve this, rank of an atom is replaced by the result of an operation
of a given function over its neighbours. This result is a representation of
extended connectivity. A simple and elegant function is the product of primes
corresponding to the rank of the neighbouring atoms. For example, in the
n-Pentane case discussed so far, the updated rank of vertex 2 will now be prime
number corresponding to rank of vertex 1 multiplied by prime number corre-
sponding to the rank of vertex 3, i.e. 1st prime� 2nd prime ¼ 2� 3 ¼ 6, as
ranks of vertices 1 and 3 are 1 and 2, respectively. Similarly, the rank of vertex
3 will be updated to 2nd prime� 2nd prime ¼ 9. Subsequently, the revised
rank will become 3–6–9–6–3 which can be remapped to consecutive ranks 1–
2–3–2–1. This procedure of rank update is repeated and is stopped when the
updated rank for each atom of the molecule remains same as the previous rank.
It may be noted that in the end, the connectivity symmetrical vertices will be
ranked the same.
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(III) Tie Breaking—The product of corresponding primes will yield same rank for
connectivity symmetrical vertices. In such cases, the ties can be broken by
arbitrarily choosing a node corresponding to the smallest repeating rank,
doubling all the ranks and then reducing only the rank of the chosen vertex by
one. The non-consecutive ranks so obtained are then remapped to form con-
secutive ranks, and the extended connectivity procedure using product of
primes is performed to update ranks as described in the previous step. This
step of breaking ties followed by rank updates is repeated until all the ties are
broken and highest rank becomes equal to the number of vertices in the graph.
The completion of this step also marks the completion of canonicalization of
the graph.

(IV) Initial Vertex Selection and Branching Decisions for Traversal—With the
completion of graph canonicalization, the only steps required for unique
SMILES generation is depth-first traversal sequence and identification of ring
closures and their order in traversal. To start with, the lowest ranked atom is
chosen for traversal. At a branching vertex, the branches are followed in the
increasing order of the ranks of the neighbouring vertices; i.e. the branch
corresponding to the lowest ranked neighbour is traversed first, then the
second lowest ranked neighbour is followed and so on. It may be noted that
Weininger et al. [27] also suggest giving branching preference towards the
double or triple bonds in a ring even though the rank corresponding to such a
vertex may be greater than other neighbouring vertices. However, this further
complicates the final traversal sequence in the case of polycyclic compounds
while the omission of this preference will save some computation time but will
still generate unique SMILES.

V) Two-pass Approach—Although, initially, the ring closures for the compounds
are the edges that were introduced by joining vertices in the canonical trees,
those edges will not be the ring closures under the depth-first traversal approach
of the canonicalized graph and the traversal rule as given in the previous
step. Additionally, the rings are to be numbered in the opening order in which
they are encountered during traversal. In order to meet these requirements, the
graph is traversed two times. During the first pass, the ring closures and their
ordering are identified for the canonicalized graph and are stored as auxiliary
data. The edges corresponding to these new ring closures will now be treated as
if they were the edges introduced to complete the cyclic structure, while the tree
obtained by removal of such edges is treated now as the spanning tree.
Subsequently, the second pass is undertaken for SMILES string generation
using the previously obtained auxiliary data.

2.5.2 Structure for a Relaxed Distance Distribution

The approach taken so far suffers from the drawback that only those compound
structures will be generated that have the same number of non-hydrogen atoms as
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the starting molecule from which the distance distribution was obtained. This
subsection tries to tackle this drawback by slightly relaxing the distance distribution
matching criteria for the trees with number of vertices deviating from the source or
starting distribution. This deviation can either lead to increased or decreased
number of vertices.

(a) Non-Isomorphic Canonical Tree Generation with Relaxed Distance
Distribution

The first step involves specifying the number of vertices (after factoring in the
deviation) and then generating the trees. Positive deviation means required number
of vertices is greater than that in the current tree while negative deviation means the
required number of vertices is lesser. However, since exact distance distribution
matching is not possible in this case, two variants of relaxed distribution matching
are considered as explained below:

Strong matching—This situation arises when the distance distribution of the
generated tree can be obtained from the starting/source distance distribution by
either adding or deleting vertices at any level (named node deviation) although
simultaneous insertion or deletion of vertices is not allowed for a given deviation. In
essence, the obtained distance distribution corresponds to a pruned tree of the
source distance distribution if the node deviation is negative and vice versa if the
node deviation is positive.

Thus, to put it mathematically, if trees are to be generated by decreasing or
increasing n number of vertices, then only n deletions or insertions are allowed so
that:

Xe

i¼1

csi � cpi
� ������

����� ¼ n

where csi is the count of vertices at level i in the source distance distribution; cpi is
the count of vertices at level i in the present distance distribution under consider-
ation; and e is the maximum of the eccentricity of the source and present distance
distribution.

Weak matching—In this case, the distance distribution matching criteria is fur-
ther relaxed in that one can add and delete vertices simultaneously at any level.
This, in effect, executes migration of vertices from one level to another (named
node migration). If this is allowed without a cap on the number of node migrations,
then all the possible structure generation will be considered a match which will
include the linear chain too. Presumably, in order to match the source distance
distribution closely using weak matching criterion, number of allowed node
migrations should be provided preferably of low value.

For this exercise, if the trees are to be obtained by decreasing or increasing
n number of vertices, then n deletions or insertions along with m migrations are
allowed that satisfies the following criteria:
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Xe

i¼1

csi � cpi
� ������

����� ¼ n

and

min mp; mn
� � ¼ m

where

mp ¼
Xe

i¼1

max csi � cpi
� �

; 0
� �

mn ¼
Xe

i¼1

min csi � cpi
� �

; 0
� ������

�����

Here csi , c
p
i and e have the same meaning as defined in the case of strong

matching while mp is the sum of vertex surplus and mn is the sum of vertex deficit
in the source distance distribution over the present distance distribution.

The procedure of cycle introduction, canonicalization and unique SMILES
notation generation is the same as done before.

Now, once the structures are generated using the methods described above, one
can use some user-defined parameters incorporated in the computer program to
restrict the number and size of the cycles to be created in the 2D structures. Few
other user-defined parameters, available in the program, may also be used to add
multiplicity of bonds (double and triple bonds) between pairs of vertices and other
hetero-atoms (e.g. nitrogen, oxygen, halogens) in order to get complete 2D struc-
tures of the compounds. The output of the generated structures may be saved in
SMILES notations and can be viewed using a molecular modelling software that is
capable of getting molecular structures from SMILES notation. Subsequently, the
activities of the generated structures may be predicted using the rule-based method
[18, 19] standardized for a biological endpoint of interest and can be prioritized and
screened from their MPS values. In this way, one may be able to screen some
potential bioactive compounds from the bigger set of combinatorially generated
molecular structures using topological distance information associated with
activity-related vertices present in the active compounds of a data set under con-
sideration. It may be worth noting at this point that this newly developed method
[15] is essentially a molecular topology-based approach and activity prediction is
done using molecular graphs of the compounds where bond multiplicity and atom
types are not required. However, since bond multiplicity and atom types can be
introduced in the combinatorially generated topological structures using the options
available in the program and those structures can be saved in SMILES format, one
can always use these generated structures for any 2D and 3D drug design/discovery
applications.
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3 Results and Discussion

We furnish in this section the results obtained using the method, described in the
previous section, that can generate chemical structures combinatorially using
activity-related substructural topological information, predict activity for the bio-
logical endpoints under consideration, prioritize compounds and screen them to
help discover novel therapeutic candidates. The results given here are for a series of
19 convulsant–anticonvulsant barbiturates [18], a series of 20 nucleoside analogues
(NA) having anti-HIV activities [20, 21] and a data set of 3779 compounds [22, 23]
for which minimum inhibitory concentration (MIC) values have been measured
against H37Rv strain of Mycobacterium tuberculosis (Mtb).

3.1 Activity Prediction–Compound Prioritization–Molecular
Design

We describe in this section the results obtained for combinatorial structure genera-
tion from the substructural information of activity-related vertices (atoms), activity
prediction using a rule-based system [18, 19] and prioritization and screening of
potential drug candidates using a newly defined Molecular Priority Score
(MPS) [15]. The application of different algorithms incorporated in the computer
program developed using the method, and the results obtained therefrom are given
here and discussed accordingly. In particular, the method has been used for activity
prediction, compound prioritization using MPS and structure generation considering
barbiturates and the NA series of compounds. On the other hand, structure matching
algorithm based on distance distribution has been used for searching potential an-
titubercular compounds from the data set of 3779 compounds mentioned above.

3.1.1 Studies with Barbiturates

The activity prediction for the series of barbiturates [18] considered for the present
study is reported here using the rule-based method [18, 19] considering
hydrogen-filled (H-filled) graphs of the compounds. Along with activity prediction
considering H-suppressed graphs, the method also supports activity prediction
using H-filled graphs and that option available in the computer program has been
used for the activity prediction studies with the barbiturates. The R-groups of the
barbiturates considered here and built on the core structure shown in Fig. 6 are
given in Table 1.

Activity prediction for this series of compounds has already been reported [18]
by considering information theoretical vertex indices Vd (vertex distance com-
plexity) and Vd

n (normalized Vd), which are also available in this software for use.
Although Vd

n has produced very high percentage of correct predictions [18], we
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Table 1 A series of 19 barbituratesa considered for the present study

R-group R-group

1. –(CH2)3CH3 11. –(CH2)3C6H11

2. –CH(CH3)(CH2)2CH3 12. –(CH2)2CH=C6H10

3. –(CH2)2CH(CH3)2 13. –(CH2)2CH=C5H8

4. –CH(CH3)CH2CH(CH3)2 14. –CH2C6H5

5. –CH=CHCH2CH3 15. –CH2CH(CH3)C6H5

6. –C(CH3)=CHCH2CH3 16. –CH=(CH)2(CH3)2
7. –CH2CH=CHCH3 17. –C(CH3)=(CH)2(CH3)2
8. –CH(CH3)CH=CHCH3 18. –(CH2)3C6H5

9. –CH2CH=C(CH3)2 19. –(CH2)2C6H5

10. –CH(CH3)CH=C(CH3)2
aThe data have been taken from Klopman and Raychaudhury [18]

Table 2 Assigned and predicted activities using D−4 index and Molecular Priority Score
(MPS) of 19 barbiturates divided into 15 training set and 4 test set compounds

Sr. no. Compound no. Activitya MPSb

Assgn. Pred. Value

Training set

1 1 + + 93

2 9 + + 10

3 10 + + 56

4 12 + + 178

5 13 + + 168

6 15 + + 34

7 2 – – −132

8 3 – – −102

9 4 – – −132

10 5 – – −113

11 6 – – −100

12 7 – – −120

13 8 – – −74

14 11 – – −149

15 14 – – −64

Test set

1 17 + + 6

2 19 + + 53

3 16 – – −97

4 18 – – 10
a(+) means active and (−) means inactive
bComputation of MPS value is described in methods section
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present here the results obtained using distance exponent index (D−4) to see how
this index performs for this series of compounds. The activity prediction results
along with MPS values using D−4 index, computed for the hydrogen-filled graphs
of the compounds, are shown in Table 2. It may, however, be noted that the indices
of only non-hydrogen atoms have been considered for ordering of index values,
range selection and activity prediction purposes. Thus, the indices computed for the
hydrogen atoms in the H-filled graphs have not been used for this purpose.

Activity Prediction and Compound Prioritization for Barbiturates
For the prediction of activity and prioritizing the compounds on the basis of MPS
values, we have considered the same set of compounds as well as the same training
set and test set for the present study as used earlier [18]. In may be noted that, in this
data set, the convulsant barbiturates are tagged active and the anticonvulsant bar-
biturates as inactive.

It can be observed that accuracy of activity prediction using D−4 index in the
barbiturate data set is 100% for both training set and test set which equals the
prediction obtained using Vd

n index reported earlier [18]. This further substantiates
earlier findings [15] using this vertex index, rule-based method and MPS value
about the usefulness of the method for activity prediction and compound prioriti-
zation. This is believed to help scientists work on the crucial issues related to
convulsion and help drug designers find novel therapeutic agents in the area of
anticonvulsant drug discovery.

Structure Generation for Barbiturates
The structure generation exercise has been carried out for the barbiturate data set
with the same training set and test set split as considered earlier [18]. The index
computation for the non-hydrogen atoms (vertices) has been performed considering
hydrogen-filled graphs. As described in the method section, the D−4 index values
computed for the training set compounds are arranged in an ascending order to find
active and inactive ranges in order to get a “strong” range to identify an

Fig. 6 Barbiturate core
structure with R-group
(Table 1) attachment point (R)
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activity-related vertex to start structure generation considering that vertex as the
root vertex. It has been observed that the vertices 17 and 18 (the numbers corre-
spond to those in the respective SMI file used to work with the compounds con-
sidered) in the molecular graph representing compound no. 13 (Table 1), an active
compound, fall in a strong range. Interestingly, when these two vertices are chosen

Table 3 Details of the range in which vertices 17 and 18, in the molecular graph of compound no.
13, lie in

Serial no. D�4 index value Compound no. (Atom no.) Activity

1 4.40994 13(16) +

2 4.40994 13(19) +

3 4.430099 12(16) +

4 4.430099 12(20) +

5 4.430937 13(17) +

6 4.430937 13(18) +

7 4.440002 1(14) +

8 4.441781 13(13) +

9 4.444924 12(13) +

10 4.449867 12(18) +

11 4.451095 12(17) +

12 4.451095 12(19) +
(+) means active, (−) means inactive

Fig. 7 a Compound no. 13 (Table 1), its molecular graph and the root vertex (vertex no. 17).
b Sample rooted tree structure generated. In the tree, the root vertex is labelled as vertex 1
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for structure generation, both of them lead to the generation of a topological
structure of another active compound. The details of the strong active range are
given in Table 3 and the structure generation details in Fig. 8.

The compound no. 13 along with its molecular graph and the chosen structure
generation vertex (root vertex) is given in Fig. 7a. The distance distribution asso-
ciated with this vertex (Vertex No. 17) starting with distance 0 is (1, 2, 2, 1, 1, 1, 1,
3, 5, 1, 1). A sample rooted tree is shown in Fig. 7b with the corresponding distance
distribution.

Considering any rooted tree, cycles can be introduced (described in the methods
section) to generate the topology of the structural formula of variety of chemical
compound while still maintaining the distance distribution. In the present study, we
have chosen to generate structures containing two cycles, having number of sides 5
or 6, to investigate whether we are able to generate any other active compound
present in the studied data set. A number of structures are generated in the process,
and it has been found that the structures generated from the root vertex of com-
pound no. 13 contain one such structure that matches with that of compound no.
19 (Fig. 8). It is interesting to note that compound no. 19 is an active compound
from the test set (Table 2) which shows that the method can generate a structure
that it has not seen in the training set. Therefore, one can expect to design novel
structures using this method.

3.1.2 Studies with Nucleoside Analogues

For the nucleoside analogues (NA), we have carried out activity prediction and
structure generation studies. It may be noted that for this series of compounds, we
have investigated the performance of the training set–test set identification tool
using the corresponding algorithm incorporated in the computer program. As
mentioned earlier, in this way we are able to obtain a suitable training set for the
system’s learning and predict activities of the compounds on the basis of this

Fig. 8 One of the structures generated, from compound no. 13, which resembles the topology of
compound no. 19 (Table 1)
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training. This section, therefore, contains the results of the performance of training
set identification and activity prediction. We have also reported here the results of
structure generation for some of the NA series compounds in the same way as it has
been done for the barbiturate series. For identifying a suitable training set–test set
combination for the purpose of identifying a suitable training set that can produce
high percentage of successful activity predictions, the program generates 1000 such
combinations. The program has the option of getting the output on the basis of best
test set predictions (starting from no misprediction) and best training set predictions.
It has been observed that there are combinations where no mispredictions are found
for the training set although there are 2 or more mispredictions for the test sets. On
the other hand, there are combinations where there is one misprediction each for
both the training set and the test set and it seems quite reasonable to consider such a
balanced combination for activity prediction of newly generated compounds. We
have reported here the activity predictions and MPS values of such a balanced
outcome in Table 5 for the nucleoside analogues (NA) considered for the present
study given in Table 4. The structural information of the compounds has been taken
from the corresponding MOL files.

Activity Prediction for Nucleoside Analogues
For carrying out activity prediction and prioritization studies for NA series of
compounds, we have used training set–test set split algorithm and the prediction
results for split that has given one misprediction each for the training set and the test
set are reported here.

It can be seen that for this NA series, activities of 92.86% (13 out of 14) of the
training set compounds and 83.33% (5 out of 6) of the test set compounds have
been predicted correctly, compound no. 10 of the training set and compound no.
13 of the test set being the lone mispredictions in each case. It is interesting to note
that in both the cases the inactive compounds have been predicted to be active
which may be regarded as an important factor in situations where a drug designer

Table 4 A series of 20 nucleoside analogues a considered for the present study

Compound Name Compound Name

1. 3′-deoxyadenosine 11. 2′-deoxyinosine

2. 2′-deoxycytidine 12. 2′,3′-dideoxythymidine

3. 2′-deoxyadenosine 13. 2′,3′-dideoxyuridine

4. 2′,3′-dideoxyadenosine 14. 2′,3′,5′-trideoxyadenosine

5. 2′,3′-dideoxycytidine 15. 3′-amino-2′,3′-dideoxycytidine

6. 3′-fluoro-2′,3′-dideoxythymidine 16. 3′-amino-2′,3′-dideoxyadenosine

7. 3′-azido-2′,3′-dideoxythymidine 17. 2′-deoxyguanosine

8. 2′,3′-dideoxyinosine 18. 3′-azido-2′,3′-dideoxyadenosine

9. 2′,3′-dideoxyguanosine 19. 3′-azido-2′,3′-dideoxycytidine

10. 5′-iodo-2′-deoxycytidine 20. 3′-azido-3′-deoxyadenosine
aData were taken from Raychaudhury et al. [20, 21]
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does not want to lose any potential active compound/drug candidate particularly the
one like the mispredicted compound of the test set (compound no. 13) which has a
high MPS value (MPS = 83). Clearly, a number of active compounds have got high
MPS values including compound no. 8 which represents a potent anti-HIV drug—
Didanosine—and is a test set compound (Table 5). The method has also produced
high MPS values for a number of training set active compounds too like compound
nos. 5, 7, 18, 19 (Table 5). Therefore, picking at least a couple of top scoring (from
MPS values) compounds out of them from prioritization point of view may help
screen useful drug candidates using the present method. This finding therefore
indicates that this method can be used for creating suitable splits in getting a
reasonably useful training set from an available data set and help screen putative
active compounds for drug discovery.

Table 5 Assigned and predicted activities using D−4 index and Molecular Priority Score
(MPS) of 20 nucleoside analogues divided into 14 training set and 6 test set compounds

Sr. no. Compound no. # Activitya MPSb

Assigned Predicted Value

Training set

1 4 + + 65

2 5 + + 83

3 6 + + 8

4 7 + + 103

5 9 + + 55

6 18 + + 97

7 19 + + 98

8 1 – – −56

9 2 – – −36

10 3 – – −48

11 10 – + 8

12 14 – – −13

13 15 – – −36

14 16 – – −48

Test set

1 8 + + 65

2 12 + + 65

3 20 + + 50

4 11 – – −48

5 13 – + 83

6 17 – – −6
a(+) means active, (−) means inactive and (#) means incorrect prediction
bThe details for the computation of MPS value are described in methods section
#Compound numbers are correspond to those in Table 4

96 Md.I. H. Rizvi et al.



Structure Generation for Nucleoside Analogous
As done for the barbiturates, structure generation from various starting points, i.e.
compound no., atom no., was carried out for the NA series of compounds too. In
doing that, activity-related vertices have been picked up from the strong ranges in
the ordering of D−4 index values for the vertices (atoms) of the H-suppressed graphs
of these compounds. It has been found that a few carbon skeletons resembling the
structure of other active compounds than the ones from where the activity-related
vertices and the corresponding distance distribution values are taken have been
generated.

For the purpose of illustration, the structure of the compound no. 6 and the
generated structure which corresponds to compound no. 8 are shown in Fig. 9. It
can be seen that in this case too, the algorithm is able to generate a structure with
significantly different scaffold than the starting compound and has a higher MPS
value (MPS = 65) too compared to that (MPS = 8) of the starting structure indi-
cating that this generated structure has the potential of being highly active and
therefore may be picked/prioritized for further studies. In fact, compound no. 8 is a
potent anti-HIV drug—Didanosine. Therefore, the method may be regarded as a
useful tool for generating, prioritizing and discovering potent anti-HIV compounds.
Moreover, the generated compound belongs to the test set indicating that the
structure of a compound that has not been used for training the system can also be

Fig. 9 Compound no. 6, its molecular graph with root vertex and one of the structures generated
from compound no. 6 that resembles the topology of compound no. 8
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designed by this method which may be believed to carry higher importance for
discovering novel therapeutic candidates.

3.2 Rooted Substructure Searching for Drug Discovery

In the previous section, we showed how the exact matching algorithm can help find
structures of active compounds which could be obtained from the trees generated
from the topological distance distribution information of activity-related vertices
obtained from other active compounds. In this section, we describe the use of two
other matching algorithms—strong matching and weak matching—along with
exact matching algorithm for searching active compounds in a data set in the form
of tree and sub-tree matching. As given in the method section, these sub-trees are
obtained by means of applying node deviation and node migration in the actual tree
obtained from the distance distribution associated with an activity-related vertex.
The presence of such trees and sub-trees are then searched for in the compounds
present in a data set to identify potential drug candidates. In doing that, we have
considered two known TB drugs—Isoniazid and Streptomycin—to describe the
usefulness of the present method in finding potential antitubercular compounds
from a data set (named GTB data set) of 3779 compounds [22, 23] for which MIC
values against H37Rv strain of Mtb have been measured. The authors have made
MIC = 5.0 as the cut-off point and the MIC value of any compound which is higher
than 5.0 give an inactive compound in the data set. It therefore seems reasonable to
consider the same cut-off value for the present purpose. We will first furnish the
results obtained for Isoniazid which will be followed by those obtained for
Streptomycin. It may be noted that the activity-related vertices for both Isoniazid
and Streptomycin have been taken from the literature information and not by using
rule-based method in the ordering of vertex indices which has been done for the
barbiturate and NA series of compounds. In fact, it shows that the method can be
used successfully in identifying potential drug candidates by picking
activity-related vertices by other means than by the rule-based method.

3.2.1 Studies with Isoniazid

Isoniazid is a known first line drug for the treatment of tuberculosis. However, it
may become resistant in situations, and therefore, this leads researchers look for
novel drug candidates to overcome drug resistance problem for the treatment of
tuberculosis . We have described in this subsection how structures generated from
activity-related vertex information of Isoniazid using the present method can help
search for potential TB drugs from a data set of 3779 compounds [22, 23]. It is
known that the chemical/biochemical reaction takes place at the point of the first
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nitrogen (N) atom (underlined) of the fragment (–NH–NH2) in isoniazid molecule
to convert this pro-drug into its metabolite that works as the effector molecule.
Therefore, this vertex (N atom) may be regarded as an activity-related vertex for
Isoniazid. Accordingly, the distance distribution associated with the vertex repre-
senting this nitrogen (N) atom has been considered for generating structures. In
order to screen out potential antitubercular compounds having high activities, the
exact, strong and weak matching algorithms (method section) have been applied on
the GTB data set of 3779 compounds considered for the present study. A number of
highly active compounds have been obtained in the process and the information for
some of them obtained applying different node deviation and node migration on the
tree obtained from the distance distribution associated with the root vertex are
shown in Table 6 along with the structures of Isoniazid (with root vertex specified)
and the screened compounds. As said earlier, in their studies [22], the researchers
have considered a compound having MIC value less than 5.0 to be active. In this
way, data set is composed of almost equal number of active and inactive com-
pounds implying no bias for active or inactive compounds in forming the data set.
Accordingly, compound nos. 1–1890 are active compounds and the other com-
pounds are inactive. Considering the same cut-off value, one can see that only
compound no. 3296 has MIC value higher than 5.0 and the rest of the compounds
may be screened out as potential active compounds. In particular, compound no.
180 which is obtained by two types of node deviation and node migration in
generating structures from the root vertex has quite low MIC value which identifies
it as a highly active compound. Therefore, the result clearly shows that the method
may be used to successfully screen potentially highly active antitubercular com-
pounds from this data set starting from Isoniazid.

3.2.2 Studies with Streptomycin

Streptomycin is another antitubercular drug in use, an antibiotic. For this com-
pound, the removal of even one of the two guanidino groups present in the structure
reduces the activity of the compound. Considering that, we have taken the vertex
representing the nitrogen (N) atom in one of the guanidino groups as the root vertex
to start generating/designing novel structures. Out of a number of structures
designed using the present method, i.e., using exact matching as well as strong
matching and weak matching algorithms in relation to node deviation and node
migration on the trees obtained from the distance distribution associated with the
root vertex, information about some of these compounds are given in Table 7 along
with the structures of Streptomycin having root vertex indicated and the matched/
searched compounds from GTB data set. It is found from this table that all the
compounds shown here are active according to the adopted criterion (MIC � 5.0 is
active) with compound no. 183 being the most active among them. Therefore, it
appears from this finding that the method may be used successfully to screen
potentially highly active antitubercular compounds from the data set of 3779
compounds starting from Streptomycin.
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Table 6 Screened compounds obtained from the matching of trees/sub-trees obtained from the
generated structure from the root vertex (indicated) of Isoniazid molecular graph

Source Compound

Isoniazid
Compounds (in the Global TB data set) whose structures topologically matched with the
source compound with the node deviation and node migration mentioned alongside

S. no. Node deviation Node migration Matched compound

1 0 0

Compound No 1387
2 0 0

Compound No. 3296
3 1 0

Compound No. 180
4 1 0

Compound No. 1174
5 1 1

Compound No. 180
6 1 1

Compound No. 1192
(continued)
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Table 6 (continued)

Source Compound

Isoniazid
Compounds (in the Global TB data set) whose structures topologically matched with the
source compound with the node deviation and node migration mentioned alongside

S. no. Node deviation Node migration Matched compound

7 2 0

Compound No. 524

8 2 0

Compound No. 928

9 2 2

Compound No. 661

10 2 2

Compound No. 1333
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Table 7 Screened compounds obtained from the matching of trees/sub-trees obtained from the
generated structure using the root vertex in Streptomycin molecular graph

Source compound

Streptomycin
Compounds (in the Global TB data set) whose structures topologically matched with the source
compound with the node deviation and node migration mentioned alongside

S.
no.

Node
deviation

Node
migration

Matched compound

1 0 0

Compound No 183
2 2 0

Compound No. 1483
3 2 1

Compound No. 1059
(continued)
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Table 7 (continued)

Source compound

Streptomycin
Compounds (in the Global TB data set) whose structures topologically matched with the source
compound with the node deviation and node migration mentioned alongside

S.
no.

Node
deviation

Node
migration

Matched compound

4 2 2

Compound No. 468
5 3 1

Compound No. 1006
(continued)
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Table 7 (continued)

Source compound

Streptomycin
Compounds (in the Global TB data set) whose structures topologically matched with the source
compound with the node deviation and node migration mentioned alongside

S.
no.

Node
deviation

Node
migration

Matched compound

6 3 2

Compound No. 671
7 4 1

Compound No. 1287
(continued)
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Table 7 (continued)

Source compound

Streptomycin
Compounds (in the Global TB data set) whose structures topologically matched with the source
compound with the node deviation and node migration mentioned alongside

S.
no.

Node
deviation

Node
migration

Matched compound

8 4 2

Compound No. 211

9 5 0

Compound No. 1086

10 5 1

Compound No. 335

(continued)
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4 Conclusions and Future Prospect

The results obtained for different series of compounds using recently developed
graph theory-based drug design/drug discovery method by our group [15] for
combinatorial drug design from substructural topological information have been
described in this chapter. Its application and usefulness for different series of an-
titubercular compounds have already been reported [15]. In this chapter, we have
presented some new results for designing active compounds for barbiturates [18,
19] and nucleoside analogues [20, 21]. We have also reported some new results
obtained for discovering novel active compounds from a data set using rooted tree/
sub-tree searching/matching algorithms. In doing that, a data set (GTB) of 3779
potential antitubercular compounds [22, 23] has been taken for this study and the
method has helped search a number of potentially highly active antitubercular
compounds from this data set. Thus, to our knowledge, we have introduced here a
method that can be used for searching databases to discover novel drug molecules
using rooted tree and sub-tree matching algorithms. Furthermore, the usefulness of
newly proposed Molecular Priority Score (MPS) for prioritizing and screening
highly active compounds has also been described for the studies with a series of
convulsant–anticonvulsant barbiturates and a series on nucleoside analogues for

Table 7 (continued)

Source compound

Streptomycin
Compounds (in the Global TB data set) whose structures topologically matched with the source
compound with the node deviation and node migration mentioned alongside

S.
no.

Node
deviation

Node
migration

Matched compound

11 5 2

Compound No. 232
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their activities against HIV. It is also found that the proposed method is capable of
generating structures of known active compound that has scaffold different from
that of the starting one. Furthermore, the structure generation starts from a vertex
which plays a role in predicting biological activity. These observations seem to
address the relationship of the present method [15] with two important aspects of
modern-day drug discovery research—scaffold hopping and inverse QSAR
(iQSAR) problem. Therefore, it appears that this newly developed method [15] may
find useful applications in designing novel therapeutic candidates and may be
helpful for working with drug resistance problems where compounds of very dif-
ferent molecular architecture may be sought for.

Our work presents an interesting alternative to “3D” drug discovery, where
actual molecular coordinates in Cartesian space is used. Combinatorial design and
generation in three-dimensional space would be far more expensive compared to
our approach. Interestingly, one can always follow up on “3D” drug discovery
based on molecule predictions from our method. This would allow a far tractable
approach to drug discovery compared to a seemingly infinite exploration of
molecules in actual “3D” Cartesian space.

Regarding future work, it may be worth exploring whether application of any
quantitative measure for activity prediction can help screen potential bioactive
compounds more effectively. Also, incorporation of new rooted tree-based com-
pound generation and searching algorithms in the existing computer program would
be another important aspect to work on. Finally, it would be of special interest to
see how incorporation of ADME/Tox and drug-able property filters in the computer
program can help discover drug molecules having desired pharmacological and
undesired toxicological activities using the present method.
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In Silico Structure-Based Prediction
of Receptor–Ligand Binding Affinity:
Current Progress and Challenges

Shailesh Kumar Panday and Indira Ghosh

Abstract Structure-based in silico studies aiming to predict affinity of a set of
ligands to their cognate receptor have been enjoying keen interest and attention of
researchers in drug design around the globe since many decades, and made sig-
nificant progress to increase its predictive power, even it has emerged as a com-
plementary field to in vivo and in vitro studies in recent years. Structure-based drug
discovery (SBDD) process whose success heavily relies on a careful selection of
structure of receptor and ligands and its accuracy, completeness, and rigor of
chosen model, imitation of the physiological condition in such in silico models,
e.g., pH and solvation. Appropriateness of selected mechanism of binding concept
and the realization in mathematical terms used in scoring methods have a strong
influence on the accuracy too. However, constant identification of new targets using
systems approach like genomics, proteomics, metabolomics, and network biology
has led a paradigm shift from single or a couple of targets toward the appreciation
of emerging role of a network of targets. The application of such strategies in study
of complex diseases is gaining attention. Identification of binding sites of receptor
and their characterization is important to be able to portray its interacting features. It
involves the search of ligands which are able to possess the features, present them
complementary to the binding site, so by docking the set of ligands to the binding
pocket of the receptor, activity can be evaluated. In silico receptor–ligand binding
affinity prediction from docking has witnessed rigid-receptor rigid-ligand to
flexible-ligand rigid-receptor treatment, and nowadays docking studies, through
sampling side chain rotations of the binding site residues, also account for the
flexibility of binding pocket of the receptor in indirect way. Literature survey has
shown progress in ranking ligands in order of affinity using reliable scoring func-
tions to find potent scaffolds which can be further optimized to gain more affinity.
Many methods include effect of solvation in binding processes, like considering
conserved water positions in active sites (water maps), explicit water simulation in
presence of ligand with receptor, free energy perturbation, and thermodynamic
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integration. Availability of many conformers of receptors and ligands in solution
suggests the importance of entropy in estimation of binding affinity, but entropy
component of binding free energy directly is not included in such studies. In spite of
unprecedented advancement of computational modeling, faster simulation tech-
niques, accurate solvation models and current best practices, the dependence of
binding affinity on pH, estimation of entropy along with enthalpy in binding
affinity, inclusion of conformational entropy of ligand and receptor, and modulation
of flexibilities during complex formation are important challenges lying ahead.
Therefore, an account of prowess and challenges in structure-based prediction of
binding affinity addressed in present review will provide directions for its appro-
priate application, understanding its limitations and getting important feedbacks for
its betterment.

Keywords Structure-based drug design � X-ray crystal structure
Scoring function � Docking � Simulation � Structure validation
MM-PBSA � Entropy � Free energy

1 Introduction

The advancement of molecular understanding of the disease processes and their
manifestations, along with computational advancement like in silico studies, aiming
to predict high-affinity molecules/scaffolds binding to the target, grew as a
promising complementary field of study mainly because of its cost-effectiveness
and speed. It facilitated virtual high-throughput screening (vHTS) to narrow down
the search space for further experimental work by making predictions about the
ligand–receptor affinity [1]. Advancements in systems biology along with network
biology helped identifying targets for diseases [2], and crystallography [3] and
nuclear magnetic resonance (NMR) [4] techniques enabled solving structural
models of the target molecules with higher resolution setting foundation of
structure-based drug designing (SBDD). Docking is one of such computational
studies, which aims to search high-affinity molecules from a library of chemicals
and predict relative orientation (pose) of the molecule to the target. It also tries to
rank the set of molecules/poses in a sorted affinity order [5]. Knowledge about the
structure of receptors made binding site identification easier and enabled to screen
the small-molecule libraries against the target seeking complementarity with the
ligand.

Docking and scoring methods due to its promising applicability prospect has
been extensively developed, critically evaluated, and constantly refined with the
time, it has now shaped into a field of research; several software tools have been
developed and are available for academic and industry research [5–11]. Recently,
Taylor et al. [12] have reviewed the broad spectrum of major techniques amenable
to the field of non-covalent docking studies, classifying them into molecular
dynamics, Monte Carlo methods, genetic algorithms, fragment-based methods,
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point complementarity methods, distance geometry methods, tabu searches, and
systematic searches. They briefly presented algorithms and validations of models
and techniques using test cases as examples. The study has concluded that hybrids
of various types of algorithms employing novel search for appropriate poses and
consensus scoring are better for large-scale docking [12]. It has been observed that
rigid receptor and flexible ligand models achieved success rates of 70–80%. It can
be influenced by the fact that programs implementing these algorithms were well
established at that time [12]. However, they pointed out that possible reason for
failure is underestimation of conformational sampling of receptor flexibility [12]. In
spite of great success of docking methods in discriminating ligands as good and
bad, predicting the binding on the basis of their affinity towards cognate receptor is
poor. Moreover, in certain cases, docking shows inability to reproduce experimental
binding pose and it is a great concern in the technical aspects of the docking
methodology and its current progress, so need to review time to time. In 2010,
Huang et al. [13] have discussed currently practiced docking techniques, delin-
eating the ways for ligand sampling, accounting protein flexibility and specific
scoring functions.

During a docking study, one has to do many sequences of tasks/steps which
influence the final outcome of the study and its success [14]. First and the foremost
thing is to search for the potential binding sites on the receptor and characterize
them; however, sometimes when binding site is not known blind docking can be
done. Several cavity detection algorithms and software were built to help this. In
parallel, right selection of the receptor structure is crucial [14]; thus, the quality of the
structure and experimental conditions used for resolving the structure has to be taken
care of, and structure resolved with experimental conditions closest to the actual
functioning condition should be preferred if available [15]. Most often, hydrogen
atoms are missing in the structure; thus, protonation states of the titratable receptor
residues have to be fixed, and usually, it is borrowed from predictions made using
different protonation state prediction tools [16, 17]. Apart from the protonation states
of titratable residues of the receptor, ionization states of ligands to be docked have
influence on correct model of binding [16, 18]. Scoring functions also greatly
influence the final outcome of the docking studies, and there are many scoring
functions available; some may be suitable to study the specific type of protein active
site but less effective in other cases [19]. Inherent demand of fast evaluation of poses
during docking enforces the scoring functions to adopt approximations and
parameterization, which compromises predictivity [19]. Thus, it is tough to guess
which scoring will be suitable for which kind of active site. However, chemical
intuition and consensus scoring protocols can be adopted to get better results.

Although the correctness of ranking and order of predicted affinity more often
fail to provide significant correlation with experimental ranking and observed pose
[20], such limitation of the in silico high-throughput screening can be partially
attributed to the multifaceted problems in current practices, e.g., selection of
appropriate binding theory, selection of appropriate modeling data, and limited
knowledge about the reaction mechanism. Many such challenges are discussed in
the present article.
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1.1 Targets Are Diverse

To be able to comprehend the challenges lying ahead on the way to drug design/
drug discovery, it is important to understand the diversity of the drug targets that
have been exploited so far as well as the trend in new drug targets in recent history
of drug discovery [21]. Mathias Rask-Andersen et al. performed a study on all
drugs approved by FDA during 1983–2010. They took all 1542 drug entries as on
May 2009 and filtered out 225 drugs with unknown targets, 192 with no human
targets, and 609 non-therapeutic targets to yield a dataset of 435 therapeutic
effect-mediating targets for humans and to account for the time lag between drug
approval and their entry in DrugBank; drugs approved during 2007–2010 were
taken from FDA data and included for analysis. Drug–target association was
annotated by manual curation from literature data, and targets were kept in four
classes (receptors, enzymes, transporters, and others) with receptor class has highest
193 targets, followed by enzymes with 124, transporters with 67, and others with 51
targets [21]. Analyzing curated drug–target association dataset, they found that
every year 17.9 drugs targeting human proteins are approved by FDA, while 4.3 of
them act on novel targets. The trend in FDA approval of drugs targeting new human
proteins (novel target drugs: NTDs) does not decrease overall. Moreover, they
noticed three peaks corresponding to durations 1990–1993, 1994–2000, and 2001–
2008 when NTDs were plotted against years from 1983 to 2010; they called them
first-, second-, and third-target “innovation peaks,” respectively [21].

During the first innovation peak, it was observed that proportions of approved
drugs for all major target groups—GPCRs, hydrolases, transferases, and isomerases
—were similar to other two peaks. During second innovation peak, first time
integrins appeared as drug target, while during the third innovation peak, asthma
drug omalizumab-targeted Fc-receptors and imatinib appeared as kinase inhibitor
[21].

Analysis of novel targets for drugs with time by Mathias Rask-Andersen et al.
highlights the fact that with the passing time new drugs apart from targets belonging
to earlier exploited classes, novel classes of targets are also being identified for new
drugs. Thus, diversity in the classes of target molecules is expanding, and SBDD
practices have to be optimized to improve success rates in such studies. Present
review will attempt to enlighten and discuss the solutions for such relevant topics
including the challenges upcoming ahead.

1.2 Targets Are More Diverse than Earlier

Genomic-wide association studies over a set of druggable genome, utilizing
bioactivity data including approved drugs or clinical compounds and gene associ-
ation data against these targets, can be used to come up with set of further druggable
genes and gene combinations as target [22]. Recently in 2017, Finan et al. have
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performed a similar study and estimated that 4479 genes can be drugged or are
druggable out of total 20,300 annotated protein-coding genes as per Ensembl
version 73 (https://www.ensembl.org/) covering *22% of total. They reported that
there could be 2282 genes more than earlier reports of the druggable human gen-
ome [22].

Systems biology approaches have been used for decades for predicting target
genes in case of infectious diseases [2], studying systems approaches, e.g., meta-
bolic control analysis (MCA) and flux balance analysis (FBA). Systems genetics
approaches have also been used for identification of novel disease genes in rat and
human [23]. Molecular networks information can be used for improving drug
discovery projects at several stages from target identification utilizing information
of existing data about drug–target association [24]. Metabolic and signaling path-
way [25] and genome-wide association are studied in detail for identification of new
target proteins and their interactions [26]. Genome-led methods provide a new
pathway or a class of protein(s) as target.

Pharmacophore designed from ligands of a target protein can be looked for
assessing binding site similarity for the proteins of same family as well as it can be
used to compare binding site similarity for proteins from different families of
proteins for selectivity. In recent times, several highly selective inhibitors of such
protein(s) have been found to assess the multitarget activity. For example, c-Abl
inhibitor imatinib [27] was approved as drug for chronic myeloid leukemia, but its
clinical utility is widened after finding that it has shown significant activity against
several other important targets, e.g., tyrosine-protein kinase kit (c-KIT or CD117).
Similarly, sorafenib affects tumor proliferation and tumor angiogenesis pathways
due to its multikinase inhibitory activity [28]. Sunitinib is also approved for being a
multiprotein kinase inhibitor with similar effects as sorafenib [28].

1.3 Starting of Structure-Based Drug Design

One of the successful stories of the structure-based drug design started in the early
eighties with purine nucleoside phosphorylase (PNP), targeted as a salvage enzyme
important to inhibit, so that T-cell-mediated activation of immune system is sup-
pressed. PNP is an important enzyme involved in purine salvage and catabolism
[29]. Inactivity of PNP has been found to show adverse effect on T-cell proliferation
[30]. Human PNP, a homotrimer with each subunit of molecular weight 97 kD,
shows substrate specificity for guanine, inosine, and other 6-oxypurines analogs,
while bacterial PNP shows specificity for adenine [30] also. PNP active site consists
of three binding subsites: purine-binding site (Fig. 1, shown in cyan), hydrophobic
site (or ribose-binding site, Fig. 1, shown in blue), and phosphate-binding site
(Fig. 1, colored purple) [31]. In attempt to design potent PNP inhibitors, consid-
ering the features of three subsites of PNP binding site and three-dimensional
structure of PNP as starting point, an iterative process of modeling inhibitor-bound
structure, conformational search using Monte Carlo method followed by energy
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minimization and finally experimental determination of binding affinity and crys-
tallization of complex structure was used. This iterative process yielded a series of
potent and membrane-permeable 9-(arylmethyl)-9-deazapurines (2-amino-7-(aryl-
methyl)-4H-pyrrolo[3,2-d]-pyrimidin-4-ones) inhibitors of PNP [29]. Later, (S)-9-
[l-(3-chlorophenyl)-2-carboxyethyl]-9-deazaguanin showed highest potency among
all previously designed analogs [32]; however, the (R)-isomer was 30-fold less
potent. This study exemplifies how structural information can be carefully used
toward designing of potent inhibitors of the receptor of interest.

The enthalpy and entropy components of binding free energy together decide
affinity of interaction between receptor and ligand. Therefore, affinity can be modu-
lated favorably adopting following possible strategies: (i) decreasing the unfavorable
entropy maintaining favorable enthalpy, (ii) increasing favorable enthalpy without
introducing unfavorable entropy, and (iii) altering one or both of enthalpy and entropy
favorably without losing proportionally on other component [33].

An example where first strategy has been used for optimizing affinity is inhi-
bitors of PNP. Optimized picomolar-binding PNP inhibitors have also been
reported [34]. The attention has been paid on reducing the entropic penalty, without
sacrificing the enthalpy of binding to gain affinity. Hypoxanthine has Ki 4.3 lM,
with enthalpy −30.5 kcal/mol, but 23.1 kcal/mol entropy penalty to result a
−7.4 kcal/mol binding free energy [35], but optimized molecule SerMe-ImmH

Fig. 1 Human purine nucleoside phosphorylase (PNP) monomer (PDB: 1ULB) in complex with
guanine and sulfate ions. Guanine and sulfate ions are shown in ball and stick. Three subsites of
PNP binding site: First subsite is called purine-binding site (shown in cyan surface, residues
Ala116, Phe200, Glu201, Val217, Met219, Thr242, Asn243, Lys244), second subsite, i.e.,
hydrophobic site (or ribose-binding site consists of residues His86, Tyr88, Phe159 (from adjacent
subunit of PNP trimer), Phe200, Met219) where Tyr88 and Phe200 are shown in blue surface. The
third subsite termed phosphate-binding site (shown in purple surface residues Ser33, Arg84,
His86, Ser220)
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shows 5.2 pM Ki, with −20.2 kcal/mol enthalpy, but merely 4.7 kcal/mol entropy
to result −15.5 kcal/mol binding free energy [34].

The second strategy has been utilized for optimizing HIV-1 protease inhibitors.
After the FDA approval of Indinavir in 1995, which binds only because of
−14.2 kcal/mol entropy despite 1.8 kcal/mol unfavorable enthalpy with binding free
energy −12.4 kcal/mol, the process of affinity optimization started. The constant
optimization of inhibitors for efficacy leads to Darunavir which binds with only
−2.3 kcal/mol favorable entropy; however, −12.7 kcal/mol favorable enthalpy
yielded binding free energy −15.0 kcal/mol. The free energy gain of −2.6 kcal/mol
was reported where every −1.4 kcal/mol results ten times better binder [36, 37].
Another such example involves cholesterol-lowering drug statins to HMG-CoA
reductase, and Fluvastatin binds only due to −9.0 kcal/mol favorable entropy despite
zero contribution from enthalpy. However, newer drug Rosuvastatin binding has
only −3.0 kcal/mol entropy contributions, but additional −9.3 kcal/mol enthalpy
gain results −12.3 kcal/mol binding free energy, −3.3 kcal/mol better than
Fluvastatin [38].

The third strategy is more tedious and challenging mainly because of enthalpy
entropy compensation, more often enthalpy can be increased by introducing new
hydrogen bonding groups as a strong hydrogen bond which provides*4–5 kcal/mol
enthalpy; however, introduction of hydrogen bond decreases favorable solvation and
entropy by structuring regions involved in hydrogen bonding. Alternatively, in theory,
introducing multiple hydrogen bonds targeting same structural regions of receptor has
been suggested to mitigate the extent of enthalpy entropy compensation [33].

1.4 Flexibility and Adaptability of Target

Initially, the protein–ligand docking was modeled as a lock-and-key, where protein
was treated as “lock” containing a binding site as “key-hole” which can host a
complementary ligand or “key.” However, later it was realized that lock-and-key
model is not sufficient to characterize all binding events; thus, advanced models
were proposed which can be put broadly in three groups: (i) lock-and-key (ii) in-
duced fit (IF), and (iii) conformational selection (CS) [39]. The IF and CS models
introduced to account for the receptor flexibility during the binding with ligands
will be discussed in detail later. Although these models represent receptor–ligand
binding in better way, still estimate only enthalpy of the interaction and the entropy
component of the binding free energy remains to be estimated. It has been reported
in the literature that entropic component of binding can be important in many
interactions. A recent experimental and computational study of a human heat-shock
protein 90 (HSP90) highlighted important alterations in binding properties of target
on complex formation with small-molecule inhibitors [40]. Surprisingly, they found
that compounds binding to helical conformation have increased target flexibility
and gained entropy preference over compounds binding to loop conformation
which was less flexible on complex formation [40].
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1.5 Knowledge of Target Structure Is Essential
but not Sufficient

In spite of success in structure-based drug discovery process [29] at several occa-
sions, knowledge about the structure of the target involved in the disease does not
necessarily lead to a drug for cure; b-Thalassemia is one such example. It is an
inherited hematologic disease caused by less b-globin, largely reported in
Mediterranean region, identified with the mutant b-globin [41]. The present treat-
ment is continuous blood transfusions with chelation therapy [42] and less fre-
quently, bone-marrow transplantation [43], because there is no drug treatment for
cure. However, the first crystal structure of hemoglobin was known in 1968, and
since then, more than 250 human hemoglobin structures are known [44]. Hence,
druggability and understanding of disease is a field of research in itself, emerging as
translational bioinformatics.

2 Challenges in Structure-Based Designing

As discussed in many review articles earlier, major steps to find in silico chemicals
and design them for better inhibition of target macromolecule are identification of
target protein or macromolecule of importance and associated functionally with the
disease, characterization of its 3D structure and active site, mapping of interactions
possible with chemical functional groups, docking, scoring, and finally ranking the
possible chemicals to test experimentally. Each of these steps has many challenges
which will be discussed here.

2.1 Accuracy of Structures

Before starting a docking study to screen, some library of compounds to come up
with a set of molecules showing high binding affinity with the target receptor
requires to have known 3D structure. The appropriate selection of the receptor
structure can influence the success or failure of any screening study [14]. Therefore,
a researcher needs a good structure to start with which could have been resolved
mostly using X-ray or NMR. Sometimes, the structure of the desired receptor is not
known. In such cases, a homology model of the structure can be used if a suitable
template for the receptor can be found [14]. A template may be the same protein
having similar function, showing high sequence similarity from different organism
or even some other protein having same fold. If the structure of the receptor is
known in advance, then there may be multiple structures resolved in different
conditions, with varying resolution, varying model completeness, etc. In such a
case, the most suitable structure has to be chosen [14]. In selecting receptor
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structure, one has to keep in mind that how well the structure resolution condition
matches with the actual functioning condition of the receptor and resolution of the
structure [14]. Apart from this, many questions may arise like whether the structure
is ligand bound? Whether active conformation of the structure is solved? Whether
the structure is solved at pH similar to the functioning pH? These can also be of
importance to consider during docking. The receptor crystal structure selection has
to be done with care considering the quality of the structure model. Some of the
most important parameters for crystal structure assessment have been outlined in
the literature [45] and listed in Table 1. Crystal structure resolution which is a
measure of quality of electron density data collected is one of such parameters;
structures resolved at less than 1 Å are considered high-quality one being able to
resolve electron densities at atomic level while structures greater than 3 Å have
smeared electron densities and atomic positions are not clearly identifiable. Hence,
crystal structure with resolution in range: 1 Å < resolution < 3 Å can be

Table 1 List of important parameters for assessing quality of X-ray crystal structure

Parameter Description Preferred Comment

Electron density and solved model quality

r-cutoff r-cutoff applied to the data None

Lower
resolution

A minimum spacing (d) of crystal lattice planes that
still provide measurable diffraction of X-rays.

20–50 Å

Higher
resolution

A minimum spacing (d) of crystal lattice planes that
still provide measurable diffraction of X-rays and
also hI=r Ið Þi greater than 2 in high-resolution shell.

<3 Å Higher is
better

Completeness The number of observed reflections divided by the
theoretical maximum

*100% Higher is
better

hI=r Ið Þi The average ratio of reflection intensity to its
estimated error. Signal-to-noise ratio

>2

R-factor A measure of the global reliability factor or
goodness-of-fit between the experimentally obtained
structure factor amplitudes, Fobs, and the calculated
structure factor amplitudes, Fcalc, obtained from the
model.

<25% Smaller
is better

Rfree–R-factor Rfree is R-factor for random *5% reflections, not
used for model refinement. Rfree − R-factor < 2, may
be indication of overfitting while Rfree − R-
factor > 7 may be due to poor refinement of model

2–7% Smaller
is better

RO2A Observation to atom ratio Higher is
better

Geometric parameters of model quality

RMSD (bonds) Root mean square deviation of bond lengths from
ideal values

0.15–
0.25 Å

RMSD (angles) Root mean square deviation of bond angles from
ideal values

1°–3°

Ramachandran
violations

Number of /–w torsion pairs falling in disallowed
regions of Ramachandran plot

0 Smaller
is better
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considered reasonable quality structures [46]. Apart from resolution, Rvalue, Rfree

and real-space R-value and real-value correlations are among the important
parameters to assess the quality of crystal structure as discussed by Brown et al., in
2007 [45].

Geometric parameters and quality of structure: Apart from diffraction quality
and structure refinement parameters, geometric and chemical parameters are equally
important to consider while assessing its quality [15]. Atomic positions in model,
planarity of peptide plane, stereoisomer of peptide bond, bond length, bond angle,
and torsions angles should be checked for an unnatural occurrence [15]. Since all
combinations of backbone torsions /–w cannot occur in proteins, only those pairs
which conform to the Ramachandran plot, thus number of /–w pairs in disallowed
regions of the Ramachandran plot which ideally should be zero, generally lesser
violation considered better structure, are used as a critical parameter for the quality
of the crystal/model structure as best practices.

Atomic occupancy and B-factor are among other important parameters to be
considered while assessing the quality of structure. Occupancy of an atom is the
fraction of molecules which occupy modeled position among all molecules in
crystal. An occupancy 0.0 means modeled positions not observed in crystal, and 1.0
means modeled position is present in all molecules in crystal [47]. If some residues
in crystal structure show more than one conformations in crystal structure, then
conformation with highest occupancy should be preferred. In case of ligands, the
occupancy is dependent on Kd value, e.g., for a ligand with Kd in range
10–100 mM, maximum achievable occupancy ranges 70–90% or 0.70–0.90 con-
sidering working ligand concentration <500 mM [48]. B-factor in theory represents
the amplitude of oscillation of the atom around equilibrium position. It quantifies
the dynamics of the atom; often, isotropic B-factors are reported in crystal struc-
tures; however, anisotropic B-factors may be reported in high-resolution structures.
For high-resolution structures, anisotropic atomic displacement parameter
(B-factor) can be substantiated only when resolution is higher than *1.4 Å [46].
Structural regions in crystal structure having B-factor higher than a threshold
B_max should be carefully inspected because of their implications to high disorder
in the region [49].

At times, in crystal structure water molecules play important role in binding and
have to be considered for characterizing the binding site for its water interaction
profiles [50]. However, identification of structurally important waters involved in
receptor–ligand interaction is another challenge [51, 52].

Proteins are usually flexible molecules, and inherent dynamics characterizes its
interaction. Moreover, a crystal structure is usually a time and space average of the
conformers present in the crystal lattice [15]. Therefore, quite often it may not be
the conformation presenting the best possible affinity for the given ligand due to the
rigid treatment of the receptor. Thus, protein should be allowed to flex in such way
that it could show best possible affinity with the ligand.
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2.2 Comparative Homology Modeling and Role of Template

Very often the target protein crystallization is not possible, and no other way but
homology or comparative modeling of structure becomes imperative. Many stan-
dard tools and directions are reviewed, and appropriate protocols are included [53,
54]. Many such tools to evaluate the modeled structures are also discussed in the
literature [55, 56]. Here we shall cite a specific example showing importance of
choice of template using homology modeling applied for Mtb isocitrate dehydro-
genase (ICD).

Mycobacterium tuberculosis is known to use the glyoxylate shunt during the
persistent stage [57]. Experiments have been performed to understand the gly-
oxylate shunt by considering the close analogy with Escherichia coli system [58].
For E. coli, glyoxylate shunt pathway is well studied and is initiated by phos-
phorylation of specific serine-105 residue of isocitrate dehydrogenase (ICD) [59].
Mycobacterium tuberculosis being a prokaryotic organism, same type of func-
tionality was also expected for the glyoxylate bypass pathway [58, 60].

Phylogenetic analysis of the ICD sequences shows that Mtb has NADP-
dependent ICD which belongs to subfamily II of ICD. Subfamily II has predomi-
nantly eukaryotic members, while E. coli ICD is classified in subfamily I [61].
Across the family, ICDs are found to be functional either monomers or dimers.
E. coli, Mtb, and human all have functional homodimeric forms. Dimeric ICDs
contain active sites which are contributed by the residues of both domains. Though
Mtb ICD is regulated by phosphorylation process, it is more equivalent to
eukaryotic ICDs. Eukaryotic ICDs are not found to be regulated by the phospho-
rylation, and also mammalian system does not possess glyoxylate shunt [62]. So
overall evidence suggest that Mtb ICD has close similarity with eukaryotic system;
however, the presence of glyoxylate shunt pathway makes this system closer to
prokaryotic intracellular pathogenic survivor.

Understanding of shunt pathway shown that regulation of the Mtb’s ICD
depends upon the phosphorylation/de-phosphorylation state which is expected to be
regulated by some of available 11 serine/threonine phosphatase/kinases [63]. In
2009, Vinekar et al. had performed molecular dynamics simulation-based analysis
to understand the effect of selective phosphorylation of serine residues [62].
However, crystal structure of Mtb ICD was not available at that time (Table 2), so
homology modeling had been done using different crystal structures as templates to
select appropriate functional model.

The ultimate goal of the homology-based structure modeling is to model the
structure from its sequence with an accuracy that is comparable to the best results
achieved experimentally. As the crystal structure of Mtb ICD was unavailable,
homology-based structure modeling was the preferred way to understand the struc-
tural features of the ICD. For ICD modeling, target sequence (UniProt ID: P9WKL1)
was found to align with many sequences of already crystallized structures from both
prokaryote and eukaryote. Based on the homology rules of %-identity, functionality,
quality of the structure, and association with same taxonomy, three ICDs [64] were
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selected as template structure for modeling. However, in cross-taxonomy (with
eukaryote) 1LWD [65], same target sequence had higher sequence identity (Table 2)
than E. coli. Both crystal structures (3ICD and 1LWD) have same Rossmann fold and
a common dinucleotide-binding domain [64, 65].

In such case, where target structure from the same taxonomy is available and
fulfills the most homology modeling criteria, it is not always true that model
structure will also provide functional explanation. Model developed using E. coli is
shown in Fig. 2a (dark gray color) with E. coli crystal structure (green color). Both
structures are superimposed well with RMSD 4.68 Å. However, model structure
(white color) developed using Sus scrofa (orange color) as template superimposes
with crystal structure with RMSD of 0.57 Å (Fig. 2c). Both models are validated
using PROCHECK [55], and more than 85% residues are found under
Ramachandran region. So, both models follow homology criterion and passed by
the structure validation tools.

In 2013, Quartararo et al. published the crystal structure of Mtb ICD dimer
complex with NADPH. This structure is then used to understand the closeness of
modeled structure of Mtb ICD with both E. coli and Sus scrofa. Superimposition of
Mtb with E. coli and Sus scrofa is shown in Fig. 2b, d, respectively. Although all
three have same folds, Sus scrofa is more close toward Mtb than E. coli. E. coli
structure has 6.4 Å RMSD with Mtb, and major differences occurred in the
beta-hairpin loop region where E. coli structure has helical element than
beta-structure element. This region of dissimilarity known as clasp region between
inter-subunit interface [64] plays important functional role during phosphorylation
[61].

So, from this case study, it is very clear that one template cannot guarantee about
the functional state of the homology model, so different templates may be used to
develop appropriate functional model, as mentioned in comparative modeling
review [53]. Key to the selection of the model is always to be associated with the

Table 2 Comparison of the crystal structure of Mtba with selected (template) prokaryote and
eukaryote crystal structures

ICDH Mtb Sus scrofa E. coli

Sequence length 409 413 416

Template PDB ID 4HCX [66] 1LWD [65] 3ICD [64]

Year of publication 2013 2002 1989

Template structure resolution (Å) 2.18 1.85 2.5

Rfree 0.262 1.85 Å NA

Rwork 0.205 0.210 0.180

Ramachandran outliers (%) 1.8 0.2 0.5

Sequence Identity with respect to Mtb ICDH
(UniProt ID: P9WKL1) (%)

100 65.2 23.6

Sequence Similarity with respect to Mtb ICDH
(UniProt ID: P9WKL1) (%)

100 79.2 35.7

aEarlier modeled because structure was not available till 2013
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experimentally known functional features. It is also established that structure val-
idation tools like PROCHECK [55] and WHAT IF [56] can only suggest the quality
of the models not the functionality of the modeled protein. Other methods popularly
known as ab initio designing of protein, alternate to template-based modeling, have
been discussed in other reviews [67, 68]. A comparison of efficiency of modeling
protein structure called CASP (critical assessment of methods of protein structure
prediction) provides evaluation of such programs [69]. Recently, designing of
protein structures has been successfully applied to model protein from genome
sequence using an integrated pipeline by Jayaram and co-workers [70]. However,
ensembles of model structure may provide a better docking success which has been
cited in 2010 by Novoa et al. [71].

Fig. 2 Two homology-based models have been developed forMtb ICD using two different crystal
structures (one from E. coli and one from Sus scrofa). a Shows the modeled structure (dark gray
color) superimposed with E. coli crystal structure (green color). Model fit well with 4.6 Å RMSD
value. c Second model is developed using Sus scrofa structure (1LWD) and superimposed model
structure (white color) is shown with 1LWD (orange color). When Mtb structure published in
2013, it is found that mammalian ICD is much closure to Mtb as shown in panel (d) than E. coli
(panel b). Fold is well conserved in both models, but major differences are highlighted in clasp
region (shown in black circle)
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2.3 Ligand Flexibility

Apart from the traditional approach to look for potential inhibitor as small mole-
cules for proteins, small peptides can also be strategically designed to complement
interaction hot spots presented by receptor molecules, using knowledge about the
structure of receptor and its interacting partner molecules. In a recent article pub-
lished in Science, Kadam et al. [72] have exemplified the approach. The study
focuses on influenza type 1 virus and their surface protein hemagglutinin (HA),
which is associated with virus invasion of host cells. HA is composed of two
domains HA1 and HA2, and functional unit is a homotrimer of HA. The interface
of HA1 and HA2 forms a hydrophobic pocket. This HA-binding site, which is near
the stem region of the HA membrane, is targeted by the broadly neutralizing
antibodies (bnAbs) of the host and blocks large conformational rearrangement
associated with membrane fusion and thus neutralize virus [72]. Structurally,
analyzing the epitopes, at HA1/HA2 interface, a highly conserved site was found.
This structural information allowed researches to synthesize novel proteins, e.g.,
HB80 and HB36, which could mimic bnAb paratope CR6261 and bind in the
conserved hydrophobic pocket, by placing amino acid side chains in appropriate
configuration and conformation. These proteins did show binding affinity compa-
rable to CR6261 and inhibited low pH-induced conformational change in HA.
Further, optimizations lead to improved analogues of HB36, which were also
effective in protecting mice against lethal H1N1 infections [72].

Success of de novo designed protein inspired researcher to look for even smaller
peptide like inhibitors seeking better drug-like properties, e.g., availability in blood
stream with higher lifetime. Starting from the available structural and functional
information about bnAbs, e.g., CR9114, CR6261, F10, A06, FI6v3, HCDR3 was
selected which possesses major interactions as the starting point for design of
smaller HA inhibitory peptides. After creating a pool of potential HA inhibitory
peptides mimicking different structural features of the HCDR3 loop [72] and
characterization of each peptide in terms of its thermodynamic (Kd) and kinetic
parameters (koff and t1/2), a combination of all distinct structural features of these
peptides into an 11-mercyclic peptide containing five non-proteinogenic residues
was synthesized. This peptide showed better affinity and longer residence time for
binding to HA. This study exemplified a novel approach, where compendium of
available structure is utilized with chemical intuition of structure and function to
yield a small cyclic peptide with better therapeutic prospect over existing inhibitory
proteins, e.g., HB36 and its variants [72].

Alternatively, another novel idea has been floated by Young et al. of stapling small
peptides to protect them from proteolytic cleavage and further designed a series of
stapled peptides amongwhichmimic of a-helical peptide ATSP-7041was reported to
be a potent and selective dual inhibitor ofMDMXandMDM2 [73]. However,MDM2
andMDMX are suppressor of p53, thereby activates p53 pathway in tumors [74]. In a
recent in silico study, where Garima et al. tried to study the mechanistic aspect of
recognition of small stapled a-helical peptide ATSP-7041with human serum albumin

122 S. K. Panday and I. Ghosh



(HSA) and compared it with mouse serum albumin (MSA) [75], starting from the
crystal structures of HSA and ATSP-7041 in complex withMDMX. They used 50 ns
molecular dynamics simulations to sample conformational states of HSA; simulation
trajectories were clustered to give five clusters, and in these six (five cluster repre-
sentatives and one crystal structure) HSA conformations were used for further
docking studies. ATSP-7041 were fully blindly docked to above six HSA confor-
mations using protein–peptide docking tool pepATTRACT [76] and generated
ensemble (*24,000 poses) of possible docking poses for each; then these ensemble of
poses was clustered using k-means algorithm to result 40 clusters for each of six HSA
conformations. Further, they refined each of the 40 clusters representative poses for
each of six HSA conformations and then performedMD simulation for 5 ns to assess
the stability of the pose. Their study resulted four binding sites R1, R2, R3, and R4
which were most occupied and considered for further study.Moreover, representative
poses of ATSP-7041 and HSA complex one for each site was simulated using explicit
solvent, and binding affinity was estimated using MM-GBSA method. However, for
MSA, no crystal structure was available, so they modeled it using swiss model
choosing HSA as template. ATSP-7041 was kept inMSA at sites R1, R2, R3, and R4,
and three replicates of 100 ns MD simulation in explicit solvent were performed.
Their analysis of these results suggested that sites R2 andR3were not stable formouse
in contrast to human which they attributed to sequence dissimilarity at the region in
human and mouse serum albumins. Moreover, they also found that sites R1 and R4
have lesser affinity in case of mouse for ATSP-7041 serum albumin binding than
HSA. They also predicted a list of residues in the binding pocket contribution to the
difference in binding energy. The binding site R1 is canonical binding site overlaps
with already known site called Sudlow’s site II, but R4 appears to be a novel binding
site. Such in silico studies try to provide computational protocols which can be
carefully utilized to gain mechanistic detail into protein–ligand interaction processes.
Flexible ligands, e.g., peptides, can show better complementarity by conformational
adaptation to attain several weak interactions with the receptor [77]. Potential to gain
affinity through modulation of flexibility of ligands has been sensed, and nowadays,
smaller peptides are also being evaluated by researchers across the globe for their
therapeutic usage.

2.4 Protein Flexibility During Binding

Proteins are generally flexible molecules. Therefore, flexibility of the receptor has to be
accounted in in silico binding affinity prediction studies to better represent the
physicochemical conditions. The enormous conformational space available to proteins
is very challenging to exhaust in docking studies because of unrealistic sampling
requirements. However, non-exhaustive but simplistic and computationally less
demanding methods have been developed over the years as proxy for accounting the
flexibility of the protein during the bindingwhich can broadly be put in four classes: soft
docking, side chain rotation, molecular relaxation, and docking to multiple structures.
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Soft Docking: This technique allows small conformational relaxations by treating
van der Waals which overlaps through a softened potential and is efficient in terms
of computational cost, but it can only account for smaller relaxation in receptor
structure during binding to ligand [78]. Ferrari et al. [78] applied this method using
two cavities of T4 lysozyme and drug-target aldose reductase which undergo large
conformation change during binding. Available Chemicals Directory (ACD) [78]
was screened against chosen targets for evaluating the method. They reported, with
single receptor conformation, soft potential was better in identifying known ligands,
while with multiple receptor conformations, it was poor in identifying leads than
hard function; this trend was similar for both receptor and more pronounced for
aldose reductase. Soft docking gives better score for ligands and decoys thereby
better scoring, but it misses true ligands [78]. Qualitatively, similar results were
reported by soft-docking studies of protein–protein [79] and antigen–antibody [80]
interaction studies.
Side chain rotation: Allowing side chains rotation of the binding site residues of the
receptor is computationally costlier than soft docking but offers better ways to
account flexibility of receptor through sampling side chain rotations of binding site
residues and overcome the limitations of soft docking, avoiding unphysical van der
Walls clashes in predicted poses [81]. Preliminary idea of incorporating side chain
flexibility into docking through usage of rotamer states of the binding site residues
with rigid ligand conformation by Leach et al. [82] has been carried forward and
adapted in several studies. For example, approach of rigid anchor and flexible
complementary growth of ligand in receptor-binding site is implemented in SLIDE
by Schnecke et al. [83] and used it to screen for potential ligands of progesterone
receptor, dihydrofolate reductase, and a DNA-repair enzyme from a dataset of
175,000 organic compounds. Another approach introduced by Dean and co-workers
[84] is applied to successfully reproduce experimental pose of ligand in binding site
by docking synthetic inhibitor RS-104966 to the S1’ pocket of the human collagenase
matrix metalloproteinase 1 (MMP-1) [84]. In this approach, an ensemble of binding
site conformations was generated using side chain rotamer states of the binding site
residues followed by identification of representative conformations combining prin-
cipal component analysis and fuzzy clustering [84]. Frimurer et al. performed a study
attempting to assess the extent of impact of flexible side chain conformations of
binding site residues on predicted binding poses and affinity [85]. They chose protein,
phosphatase tyrosine 1B co-crystalized with non-peptide inhibitors, and docked li-
gands to parent receptor structure, resulting correct poses to correlate with low pre-
dicted binding energy[85]. In the process, an ensemble of structures was generated
using rotameric states of subset of binding site residues (Asp48, Lys120, and
Phe182), and ligands were docked to each structure; correlation of binding affinity
with predicted scores improved for correct poses [85]. The importance of considering
side chain flexibility in docking is also highlighted in study of Gaudreault et al. They
created a curated non-redundant dataset of 188 proteins where unbound- and bound-
both structures were already crystallized. In their study, they found that 90% binding
sites and side chain rotation were accounting the flexibility in it, and 30% of them
were essential side chain rotation and only 10% binding sites are rigid [86].
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Molecular relaxation: This concept takes one step further toward accounting
protein flexibility from side chain rotation. In this approach, ligand is docked in the
binding site of the receptor allowing potential atomic overlaps to certain extent
followed by relaxation stage where docked pose of the ligand is energy minimized
and complex is relaxed allowing backbone relaxation along with side chain using
molecular dynamics or Monte Carlo simulation. Apostolakis et al. performed a
study in which they tried to incorporate receptor flexibility to model induced fit in
ligand and binding site over three challenging docking cases: (i) anti-steroid
antibody DB3 with two ligands, a rigid-ligand progesterone (no rotatable bonds)
and (ii) a flexible-ligand 5b–androstane-3,17-dione (having rotatable bonds), and
(iii) Na-(2-naphthyl-sulfonyl-glycyl)-D-para-amidino-phenyl-alanyl-piperidine
(NAPAP) binding to human a-thrombin [87]. Progesterone and 5b-androstane-
3,17-dione show two different binding modes, thus make a perfect test case. In this
method, ligand was seeded to the center of binding pocket in random pose followed
by a combination of minimization with shifted non-bonded interaction and Monte
Carlo minimization; authors were able to successfully reproduce the crystalized
pose for test cases with native structure of protein and without prior knowledge of
structure of NAPAP in a-thrombin case [87]. This study highlighted the importance
of considering receptor flexibility under the influence of ligands interaction field in
docking. Davis and Baker [88] implemented a method in ROSETTALIGAND to
account for the receptor backbone flexibility along with full-ligand flexibility and
showed that on a challenging cross-docking test case of Meiler and Baker [89] (10
co-crystallized receptor–ligand pairs, with large flexible ligands and multiple side
chains with changing rotamer), their new method reproduces binding poses better
(lower RMSD for best-scoring docked poses) in comparison to their rigid-backbone
docking.
Multiple structure docking: McCammon and co-workers [90] used relaxed com-
plex method to dock fully flexible version of prospective drug molecules JE-2147
wild-type and V82F/I84V drug-resistant mutants of HIV-1 protease ensemble of
conformations. In both cases, wild-type and mutant HIV-1 protease, an ensemble of
2200 conformation from 22 ns all atom explicit solvent MD simulation of closed
conformers of apo structures of receptor and coordinates were saved every 10 ps; in
both cases, crystal structure poses were successfully reproduced. Later, JE-2147 was
docked to each 2200 conformation for both wild-type and mutant cases and opti-
mized the protocol. To synthesize test inhibitors, same protocol was applied to dock
23 newly designed potential inhibitor (called JE.D.I. series molecules) to 700 con-
formations of the HIV-1 protease mutant. Based on high binding free energy of four
compounds of the JE.D.I., which were significantly different from their parent
compound JE-2147 as well rest members of the series; four new compounds with
potentially better pharmacological properties were suggested for test [90].

Similar concept but using MD simulation to dock and identify the interactions
between domain motions to influence the inhibitor/ligand binding has been
attempted in case of Fe-artemisinin adduct binding to PfATP6, a Ca++ transporter
well-known target in Plasmodium falciparum [91].
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Sarco-endoplasmic reticulum membrane calcium ATPase (SERCA) is Ca++

transporting ATPase; it is found in the mammalian systems and regulate the Ca++

flow between cytoplasm and membrane-bound stores [92]. SERCA-type transporter
is also found in P. falciparum and is known as PfATP6. PfATP6 is large mul-
tidomain Ca++ channel receptor and only orthologous receptor to mammalian
SERCA [92]. Importance of this channel receptor highlighted in 2003 when it was
found that artemisinin (one of the most effective antimalarial drug) targets this
receptor [93]. To understand the plausible mechanism of artemisinin action on
PfATP6, extensive molecular dynamics simulation-based study has been performed
[91]. This computational study shows that activated artemisinin (Fe-Artemisinin
adduct) enforced large conformational changes in the extracellular domains
(Fig. 3). Artemisinin adduct binds in the membrane-bound helical region and
makes a hydrogen bond network which connects it with extracellular nucleotide

Fig. 3 Importance of receptor flexibility as observed in case of Fe-artemisinin adduct binding to
Plasmodium falciparum ATP6 (PfATP6). Region spanning residues 364–799 shown in green
contains nucleotide domain (N), region of residues 1–45 and 130–253 shown in orange contains
actuator domain (A), region of residues 800 to 959 shown in white contains phosphorylation
domain (P), and transmembrane region is shown in dark gray and pink colors in panel A and B,
respectively. Ca++ and ligand binding sites are in the transmembrane region. Centroids of domain
N, P, and A domains are shown with green, white, and orange spheres, respectively. The angle
between centroid of domains N-P-A comes down to 78.5° (panel B) from 89.6° in open form
(panel A), and distance N-A in closed conformation comes down to 44.9Å from open
conformation distance 53.7 Å (see panels B and A, respectively). a Open-form receptor is shown
in ribbon, Fe-artemisinin adduct in ball and stick with carbons in white and rest atoms colored by
atom types. b Shows closed form or receptor; c dark gray surface shows ligand-binding site in
open form, and pink ribbon shows closed ligand-binding site due to movement in domains shown
in green and orange colors. Ligand is shown in ball and stick representation in blue color

126 S. K. Panday and I. Ghosh



(N) and actuator domain (A) [91]. This case study shows the selectivity gain by
bound inhibitor, utilizing the domain flexibility of receptor [94].

2.5 Effect of pH on Binding Affinities

Protonation states of the titratable groups participating in the binding can have
significant effect on the binding affinity of the interaction [16]. Waelbroeck [95]
presented a model with assumptions that correct ionization state of all active groups
is the requisite for binding, and ionization state of non-binding residues does not
affect binding to study quantitative effect of pH change on binding affinity of the
receptor–ligands interaction. They chose pH dependency of insulin and insulin
analogs binding to their cellular receptor to study their model [95].

logðKÞ ¼ log Krealð Þþ log R�=Rð Þþ log L�=Lð Þ ð1Þ

where log(K) is pH-dependent affinity, log(Kreal) is reference affinity, R*/R is
proportions of active and total receptor concentrations, and L*/L is proportions of
active and total ligand concentrations. Their model under given assumptions
allowed them to attribute binding affinity change only due to change in proportions
of active receptor and hormone with changing pH, and express pH dependence as
function of number and ionization constants of active groups. Performing binding
affinity measurement experiments at varying pH for different insulin analogs
binding to their receptors, and analyzing data with modeled relationship [95].
Waelbroeck [95] detected two active groups responsible for marked pH dependence
in the normal pH range and suggested that these groups could either belong to the
receptor or common residues among porcine insulin, casiragua insulin, hagfish
insulin, and desalanine–desasparagine insulin analogs [95]. This study opens up a
field in medically relevant design of insulin.

A pH-dependent catalytic activity through hydrolyzing cleavage of type-1
transmembrane protein amyloid precursor protein (APP) of the b-secretase BACE-1
result amyloidogenesis in Alzheimer’s disease has been reported by McCammon
and co-workers. Enzymatic activity of the BACE-1 is highly dependent to the pH,
with peak activity at pH 4.5, while significantly active in pH ranges 4–5 only [96].
The in silico study using constant pH replica exchange molecular dynamics sim-
ulation [97] (CpHMD) showed pH dependence of binding affinity of BACE-1 with
its inhibitors [98]. The experimental binding affinity measured at pH 4.5 was taken
as reference for in silico binding affinity predictions in pH range 1–12, for different
inhibitor-bound BACE-1 complexes. CpHMD simulations enabled authors to study
influence of conformational dynamics on the protonation equilibria and thereby pH
dependence on binding affinity. The microscopic pKa values of the aspartyl dyad
residues Asp32 and Asp228 in apo- and holo-BACE-1 can be estimated from
CpHMD simulation data, and protonation changes were observed in apo- and
holo-forms suggesting their thermodynamic linkage. They also studied effect of
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protonation equilibria on conformational dynamics for the apo BACE-1 with fixed
protonation states for titratable residues using conventional molecular dynamics
(cMD) in acidic (pH range 1–3) and basic (pH range 9–11) conditions and observed
that in acidic condition, two major conformations open and closed were populated
while in basic condition, only widely open flap conformation was significantly
populated. In another similar in silico study, again using CpHMD replica exchange
simulation Ellis and Shen [96] reported that BACE-1 majorly occupies three
conformations (so called Tyr-inhibited, binding-competent, and Gln-inhibited) and
conformational population shift with varying pH causes the pH dependence of the
inhibitors binding affinity to BACE-1 [96]. They showed that Gln-inhibited and
binding-competent conformational states are separated by small (<1 kcal/mol) free
energy barrier, and Gln-inhibited state has consistently low population (<25%) for
entire pH range; thus, they focused on only remaining two of the conformational
states, suggesting that substrate BACE-1 binding follows a conformational selec-
tion model [96].

2.6 Effect of Solvation

Almost all biological functions occur in cytosol in cell, but some of them are
membrane-associated phenomena, water solubility of inhibitors showing significant
binding affinity toward its cognate receptor poses another challenge in SBDD [99],
since low solubility causes low bioavailability of the inhibitor to target. Similar
problem surfaced with the potent non-peptide cyclic urea analogs of HIV-1 protease
inhibitor, e.g., DMP-323, the carbonyl oxygen of cyclic urea of DMP-323 mimics a
structural water in the binding site by providing similar hydrogen-binding features
and therefore gains affinity by displacing the water. The low-molecular-weight
compound was expected to have high bioavailability [100], but unexpectedly low
bioavailability was observed later on, and poor solubility of DMP-323 in water and
lipid milieu was suggested the reason for it [99]. Therefore, to increase water
solubility, benzylic-substituted cyclic urea with strong acid or basic groups were
designed, but highly basic group analogs were unsuccessful as inhibitory effect of
such compounds is lowered by 1000-fold [99]. However, a neutral form binding,
weak-basic derivative bis-meta-aminobenzyl, i.e., DMP-450 showed enhanced
affinity. DMP-450 has enhanced water solubility and also found to show better oral
bioavailability in animal species, rat and human [99].

2.7 Covalent Inhibitors

Non-covalent inhibitors bind to the target reversibly in concentration dependent
manner. However, *30% of FDA approved drugs are covalent binders, which
make covalent bond with the target [101]. Aspirin induces irreversible acetylation
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of a serine residue (Ser516) in the cyclooxygenase site of the human prostaglandin
endoperoxide H synthase-2 (hPGHS-2) [102], b-lactam antibacterials forms cova-
lent bond with the active site serine of penicillin-binding proteins which inhibits
cell wall synthesis of bacteria and causes its death, and tetrahydrolipstatin a fat
absorption inhibitors acts by inhibiting activity of pancreatic lipase [103]; these are
among the blockbuster drugs and examples of covalent inhibitors. Although
non-covalent docking is more common, recently resurgence of covalent docking
has been observed [101]. The covalent docking is more complicated mainly
because their action between receptor and ligand has to be taken care of. Selectivity
of the inhibitor toward target is important to avoid cross-reactivity. However,
selective targeting via ligands equipped with different warheads makes covalent
inhibition important [104]. In covalent inhibition, an electrophilic ligand binds to a
nucleophilic target receptor via forming a covalent bond. Theory and application
aspects of covalent docking have been reviewed elsewhere [101]. A comparative
study of recent methods and tools, e.g., CovDock [105], AutoDock4 [106],
FITTED [107], MOE [108], ICP-Pro [109], and GOLD [110] for covalent docking
has also been recently published [104].

2.8 Functionally Relevant Structure

Biologically important molecules are involved in very diverse functions and pos-
sess the structural, modular, and interactional diversity to carry their functions in the
cell. Numerous enzymes are monomer, while several of them are functional only as
homo-/hetero-multimeric forms, e.g., PNP is a homotrimer [29], HIV-1 protease is
a homodimer but has slight difference in structural features of the two monomers
[90]. A large number of macromolecules catalyze enzymatic reactions, e.g.,
BACE-1 is responsible for catalyzing hydrolytic cleavage of amyloid precursor
protein (APP) [111], some of them modulate their functions, e.g., MDMX/MDM2
complex suppresses activity of p53 and activate p53 pathway in tumor cells [74],
some of them regulate, and some of them are not related to enzymatic activities at
all, like ion channels and signaling related proteins. When we are designing
structure-based drug, we are to face challenges posed by structural, functional, and
reactional mechanistic diversity of target molecules as well.

The purine nucleoside phosphorylase (PNP) is a homotrimer and hosts three
active sites each near the interface between two monomers, with monomer con-
sisting an a/b-fold formed from a b-sheet of four strands, a b-sheet of six strands
forming a distorted barrel, and eight a-helices [34]. The interaction between
monomers will influence the binding of ligands.

HIV-1 protease is a homodimer consisting of 198 residues. McCammon and
co-workers proposed a terminology to describe the topology as follows: flap
(43–58), ear (35–42), cheek (cheek turn = 11–22 and cheek sheet = 59–75), eye
(23–30), and nose (6–10) [112]. The active site of HIV-1 protease is covered by
b-hairpin flaps of the two monomers and is involved in controlling polypeptides’
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access to the active site before binding and closing the active site during the
cleavage and then release of the cleaved substrates. The flexibility of the flap plays
a crucial role in the catalytic activity of the enzyme [113].

Isocitrate dehydrogenases (ICDs) are another group of interesting enzymes with
two isoforms—one NADP+-dependent homodimer and another NAD+-dependent
heterotetrametric isoform consisting of two a-subunits one b-subunit and one
c-subunit. As observed in understanding the mechanism of action during phos-
phorylation, the structural motions facilitate the flap to cover or open the active site,
thus providing two different structures of dimmers; hence, the designing needs to
take care of such two state structures of receptor [61].

3 Mapping Interaction at Binding Site

The primary focus of structural biology has been to study the relationship between
structure and function of macromolecules. The evolution of protein structure to
confer specificity and affinity is still not completely understood. Analysis of related
structures has potential to yield local structural regions which are conserved and
those which diverge. Such knowledge can potentially be translated into under-
standing proteins evolution to attain specificity or protein acquiring completely new
function by matching curvature along the protein backbone to find structurally
active site regions [114].

3.1 Identification of Active Site or Binding Site

The binding sites of most proteins are extremely specific and can determine even very
small structural differences among putative binding patterns [114]. Folding of a
protein can be considered to be a process which generates specific binding site or
cavity from an unstructured polymer, driven and stabilized by thermodynamic forces
[115]. Knowledge of protein cavities provide clue about the structure and shape of
binding molecule [116]. Ligand-binding sites of protein provide insights to its bio-
logical function and reaction mechanism. Identification and application of druggable
active sites of target proteins are pivotal in in silico drug design [117]. A very diverse
active site of a protein is particularly useful for target-based drug discovery as it serves
as a prerequisite for protein–ligand docking, which is integral part of structure-based
drug design. Accurately predicting the binding modes of inhibitors in the active sites
of protein is still observed as a challenge in drug discovery [10].

All the methods which identify the active site of receptor use the concept of
accessible surface area as defined by Lee and Richards [118]. The accessible sur-
face (ASA), also known as solvent-accessible surface area (SASA) if water is used
as the probe, of a protein is stated as the locus of the center of the solvent molecule
as it rolls along the protein, making the maximum permitted van der Waals contacts
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without penetrating any other atom. The ASA is closely related to the concept of the
solvent-excluded surface also known as the molecular surface or Connolly surface.
The cavity identified in protein molecules, effectively the inverse of the
solvent-accessible surface, is the binding site as to be used by ligand to satisfy the
available physical and chemical interactions. This is pictorially shown in Fig. 4.

Major methods to find the shape of active site using the 3D coordinate of protein
or receptors can be classified as approximate and exact method depending on their
numerical depth and accuracy in calculation involving the coordinates exclusively.
Most of the approximate methods rely on numerical integration where some of
them are analytical [119]. Connolly in 1983 [120] introduced the exact analytical
methods for computing the accessible surface area. The computational efficiency
and robustness has been improved in recent years, but the reduction in overlapping
surfaces remains computationally expensive. The difference between approximate
and exact computation is applied to existing methods evident from the detail cal-
culation of the derivatives of the surface area with respect to atomic coordinates. All
well-known methods used for computing the active site mapping by surface area
suffer from the reproducibility problems. A method called Alpha shape [121] uses
Delaunay triangulations and computes the surface area and volume of proteins as
well as detects and measures cavities in proteins, as described by Edelsbrunner
[122], to reduce the overlap. The Alpha shapes method employs a precision geo-
metric method called triangulation to evade numerical problems by systematically
resolving all singularities without explicitly perturbing positions of centers of
spheres [123]. To provide fast calculation, an extension of the Alpha shapes method
that includes the efficient, robust, and exact analytical computation of the deriva-
tives of surface area terms has also been worked out [124].

Based on shape andASA,manyWeb-based and stand-alone software are available
as listed in Table 3 to find cavity and identify active site of known protein structures.

Fig. 4 Surface area
definition (courtesy:
Wikipedia)
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3.2 Characterization of Active Site

Identification of active sites in large binding pockets in protein or macromolecules
does not assure the correct or native poses of ligand binding because many subsites
interaction influence the binding of ligands, which has been exploited favorably in
case of designing combinatorial ligands of monoamine G-protein coupled receptors
(GPCRs) [135]. To design a ligand which effectively come out to be a functional
inhibitor requires prior knowledge of interacting subsites and their role to kon/koff
kinetics of binding, which until recently [136, 137] hardly have been explored. Our
study using kinases, from P. falciparum and from human, shows the selectivity of
subsite also residing in active site [138]. Using ser/thr kinase sequences of human
and plasmodial species those having PDB structure, a phylogenic tree was con-
structed. Human kinase proteins (22 of them having structural superimpossibility
<2 Å RMSD of main chain atoms) shown in Table 4 are listed by sequence as

Table 3 A list of some popular Web servers and stand-alone tools based on shape and ASA
formalisms

SN Programs Based Web site links

1 CASTp [125] Web http://sts.bioe.uic.edu/castp/index.html?2cpk

2 CCCPP [126] Desktop http://petitjeanmichel.free.fr/itoweb.petitjean.freeware.
html#CCCPP

3 LIGSITEcsc

[127]
Web http://projects.biotec.tu-dresden.de/pocket/

4 KVFinder
[128]

Desktop http://lnbio.cnpem.br/facilities/bioinformatics/software-2/

5 PASS [129] Web http://www.ccl.net/cca/software/UNIX/pass/overview.shtml

6 PrinCCes
[130]

Desktop http://scholar.semmelweis.hu/czirjakgabor/s/princces-
download/#t1

7 POCASA
[131]

Web http://altair.sci.hokudai.ac.jp/g6/Research/POCASA_e.html

8 RosettaHoles
[132]

Desktop https://www.rosettacommons.org/

9 SURFNET
[133]

Desktop http://www.cgl.ucsf.edu/chimera/current/docs/
ContributedSoftware/surfnet/surfnet.html

10 VOIDOO
[134]

Desktop http://xray.bmc.uu.se/usf/voidoo.html

Table 4 Binding site clustering using sequence of human and plasmodial ser/thr kinase

Plasmodial
kinases

Neighboring human kinases

Pfpk5 h_CDK4, h_CDK5, h_CDK3, h_CDK2, h_CDC2

Pfpk6
Pfmrk

h_CDKL1, h_CDKL4, h_CCRK, h_p38a, h_p38b, h_ERK1, h_ERK2,
h_CDK10, h_p38d, h_CDK6, h_CDK7, h_p38g, h_CDK9

Pfpk7 h_SmMLCK, h_NEK1, h_LATS1, h_LATS2
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nearest neighbors of specific plasmodial kinases; their 3D structures are used for
finding selectivity profile at the active sites. Separately, the ATP-binding and
substrate-binding site domains of these kinases are extracted on the basis of Hunk
and Hunter classification [139], and their structures are superimposed for clustering
on the basis of RMSD matrix and are shown in Table 5 and Fig. 5.

It is interesting to note that three of the plasmodium kinases occur in the largest
cluster containing most of human kinase, like MapK and CDKs; but PfPK7 occurs
in different cluster in both ATP & substrate specific clustering, it signifies the
selective functioning of this kinase. Hence, to achieve selectivity in favor of
malarial ligand requires subsite exploitation and using appropriate designing
strategy for docking compounds in search of both specific and selective ligand. In a
recent review [39], such small active site differences are discussed under the context
of how the entropy and enthalpy balances are carried out in free energy estimation

Table 5 Selective binding site clustering using structure of human and plasmodial ser/thr kinase,
uncommon one shown in bold face font and underlined

Plasmodial Human

Kinase domain ATP-binding site Substrate-binding site

Pfpk5
Pfpk6
Pfmrk

CDK5, CDC2, CDK3,
CDK9, ERK2, ERK1,
p38-c, p38-b, GSK3-b,
DYRK1A, MAPK8

p38-d, CDK5, p38-c,
CDK7, MAPK6, CDK3,
ERK2, GSK3-b,
MAPK8, CDK2, ERK1,
CDK9, p38-b, CDC2,
DYRK1A

CDK5, CDK3, ERK2,
CDK2, ERK1, p38-c,
p38-b, p38-a, p38-d,
CDC2, CDK6, PAK1

Pfpk7 MAPK6, PAK1,
PAK4, PAK7, PKC
iota

PAK1, PAK4, PAK7,
PKC iota

PAK4, PAK7, CDK9,
CDK4, PKC iota,
CDK7

Non-plasmodial
cluster

CDK2, CDK4, CDK6,
p38-a, p38-d

CDK6, Cdk4, p38-a DYRK1A, MAPK8,
MAPK6, GSK3-b

Fig. 5 Structure-based clustering of human kinases associated with plasmodium using
a ATP-binding site and b using substrate-binding site. It clearly depicts different combinations
of selectivity (listed in Table 5)
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in case of HIV proteases binding with ligands that differ by single functional group,
by Freire et al. [140]. It may also happen that all available features in the active sites
are not satisfied or they may be satisfied by different orientations or conformation of
complementary features in ligands. Hence, it is imperative to have prior knowledge
of biological function of active site of receptor and detail mapping/association of
the subsites with different functional groups in ligand, before starting the docking of
large number of ligands to evaluate the binding competency.

Using cliques of favorable interaction points at active site, emerging from probes
of different chemical features among a class of protein, specificity pharmacophore
has been generated [141, 142].

This novel method provides a complementary map of a class of active sites for
designing new chemical entities which specific as well as selective for the receptors.
Figure 6 provides an expanded series of such pharmacophores designed from four
plasmepsins, acid proteases of plasmodium. Using such tools, designing of ligands
is possible which can satisfy all the complementary features available in active
sites; this can be used to design compounds with better binding capacity. This
method can be applied to design the pharmacophores in search of novel inhibitor

Fig. 6 Utilization of binding site information of class of aspartic protease (human cathepsin,
pepsin proteases, and four plasmodium plasmepsins) for development of de novo pharmacophore
features using in-house program CliquePharm. a Four-point, b five-point, c six-point pharma-
cophore features, all are shown in cavity of plasmodium plasmepsin II (PDB: 1SME), respectively.
Nodes are shown as spheres with amide probe in cyan, hydroxyl probe in red, carbonyl probe in
green, respectively, and edges are connected
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for the multitarget structure-based designing like bacterial multidrug efflux pump
and AcrAB-TolC pump [143].

3.3 Why Different Poses?

While docking of different chemical ligand at the known active site, one can
generate different orientation for the same ligand, which is defined as “pose” due to
the fact that many features available in the active sites may or may not be satisfied
by the complementary features available in docked ligand. Such variations in
interaction between protein and ligand may also occur due to the flexibility of active
site residues [14].

Lock-and-key: The lock-and-key model of enzyme substrate interaction proposed
by Emil Fisher in 1894. It assumes enzyme-binding site as a cavity with specific set
of shape and physicochemical interaction features analogous to the key-hole of a
lock, while ligands are potential molecules which possess shape and interaction
feature of key, i.e., complementarity [39]. Generally, receptor–ligand interactions
are considered to imitate this model during binding. This model was the early
motivation for development of docking and scoring studies. However, many
interactions associated with the flexibility of ligand upon binding to receptors and
vice versa; hence, other models are proposed [36].
Induced fit: The idea of induced fit model (Fig. 7) of binding occurred as many
cases the binding site of the protein undergoes subtle arrangements of key residues
side chain orientations or conformational changes sensing the presence of ligand in
the vicinity under the influence of its interaction fields [144]. For example,
drug-target aldose reductase undergoes large conformation change during binding
of ligand [79]. Several other cases of this model of ligand–receptor binding are
discussed in the section Protein Flexibility.
Conformational selection: This model proposes that the receptor maintains an
ensemble of conformations in equilibrium, rather than being into some particular
conformational state before binding (as in lock-and-key) or changing conformation
sensing the ligand (as in induced fit), whereas ligand binds to the conformation
presenting best complementarity at the binding site [39]. For example, BACE-1
binding to and showing significant activity only at narrow pH range 4–5 is actually
in equilibrium of at least three Tyr-inhibited, binding-competent and Gln-inhibited
significant conformations [96]. However, only binding-competent conformation
being conformationally compatible for binding has the highest population at the
specified activity pH range 4–5, but the population of these conformation at pH < 4
or pH > 5 is decreased and hence the activity [96]. Another model known as
conformational isomerism is found in the literature [14] and has been a special case
of the conformational selection, where one or more conformational isomers of the
receptor exist in equilibrium and ligand binds to only conformationally compatible
isomeric form of the receptor, and binding shifts the conformational equilibrium in
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the direction to establish the equilibrium among conformational isomers. Earlier
reported that binding to Fab antibody and catalysis of substrate is restricted to one
of the conformation and not to others [145]. In recent paper [146], enzyme catalysis
has been prescribed due to conformational dynamics of enzyme active site.

Prediction of poses of ligand with receptor from docking study may differ due to
several reasons. For example, model of enzyme action (lock-and-key/induced fit/
conformational selection) assumed for the study may not be appropriate to capture
the underlying binding mechanism, e.g., assuming lock-and-key for an actual

Fig. 7 Schematic representation of enzyme substrate-binding models. Ligand is shown in black
color and receptor in gray color. Different binding site features/ligand features are described at the
bottom
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induced fit or conformational selection case [14]. Existence of possibly alternate
interaction features in binding site could provide complementarity for even struc-
turally very similar ligands but provide different poses; several such cases have
been reviewed by Teague et al. [147]. Another case could be enthalpy–entropy
compensation due to receptor–ligand flexibility for different poses of ligand [147].
Although docking and scoring lack capability to account entropy, considering
receptor–ligand flexibility in docking can be a poor proxy for entropy to certain
extents.

3.4 Flexibility of Ligand Provides Complementarity

Generally, small molecules can adopt a number of conformations within few kcal/
mol energy gap from the global minimum conformation. Thus, a number of con-
formations of ligands are generated and docked into the receptor to seek optimal
complementarity between receptor-binding site and the ligand conformation to yield
most probable pose. Therefore, several conformation generation schemes which can
be broadly put in two groups, (a) systematic search and (b) random search, have been
suggested and are routinely employed in docking studies [148]. Systematic search
tries to generate all the conformation corresponding to the rotational states for the
rotatable bonds of the molecule, but exponential increase of the number of con-
formations of the molecule with number of rotatable bonds turns out to be limiting
for most of the practical uses. Random search tries to generate different ligand
conformations using randomized schemes like genetic algorithm [14, 149].

Small-molecule ligands often interact with binding site presenting complemen-
tary features [150]. However, small size of such ligands at times has limited pos-
sibilities to interact with neutral binding pockets, because neutral binding site has
weak electrostatics interactions and hydrogen bonding capabilities [151]. Neutral
and wide open hydrophobic pockets can not present interactions strong enough to
portray desired high affinity for small-molecule ligands. On the other hand, peptide
ligands due to their flexibility can adopt a wide range of conformations to gain
higher affinity in such cases by making more hydrogen bond interactions and
through many weak hydrophobic interaction from several hot spots in the pocket
[151, 152].

3.5 Is Estimate of Binding Affinity Sufficient?

In case of receptor binding processes, the stability of the binding is accounted by
difference of Gibbs free energy between bound and unbound states. The equilib-
rium dissociation constant Kd which is ratio of unbinding process koff and binding
process kon is associated with thermodynamic properties of the reactants/product,
whereas the activation energy for the process influenced by kinetic properties [153].
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Thus, in silico calculated affinity of receptor–ligand binding contains information
about thermodynamic parameters and does not include kinetic parameters. All the
methods aiming to measure/predict binding affinity would miss the kinetic aspect of
the reaction. The kinetic aspect of the process is related to diffusion of the solute
molecules under influence of the entropy of the system. Collision of the receptor
molecule with the ligand is the requisite for the process to happen. Bigger solute
molecules collide with small water molecules and undergo random Brownian
motion, and their encounter allows reaction to happen [153].

The dissociation constant Kd represents the ligand concentration in which half of
the protein binding pockets are occupied and relate to Gibbs free energy [154] by
DG ¼ RT ln Kdð Þ. Gibbs free energy is a state function and does not depend on the
thermodynamic path followed during reaction; it only depends on the initial/final
chemical potential of the reactants/products [154]. Association and dissociation
rates kon and koff depend on transition states encountered on the pathway during the
chemical reaction. Specifically, they depend on highest free energy barrier for the
transition state that separates bound and unbound states [154].

Even if the reasonable accuracy in predicting affinity is achieved, it is not
sufficient to characterize the protein–ligand-binding process completely [154].
Kinetic aspect of the process can be modeled by mimicking the protein–ligand
diffusional encounter in the solvent under thermal fluctuation, which will be dis-
cussed later [155].

4 Estimation of Interactions

Scoring functions aim to predict the interaction energy between the receptor and the
ligand in a given conformational pose, by summation of weighted interaction
features. Scoring functions required to rank chemicals implemented in various
docking tools use different assumptions to evaluate modeled complexes [8].
Simplification is achieved at the cost of neglecting full domain flexibility, entropic
effects, and solvation effect [8].

4.1 Different Types of Scoring Functions

In the literature, wide choice of scoring function is available which can be classified
as force-field-based scoring functions, empirical scoring functions, knowledge-based
scoring functions, and descriptor-based scoring functions [156]. Force-field-driven
scoring functions are based on the molecular mechanics and utilize atomic properties
like atomic charge and vdW forces which are already parameterized such as AMBER
[157] or CHARMM [158]. Dock6 [159], AutoDock [160], G-score [161], and GOLD
[110] are a few popular ones in this class. In scoring functions, only intermolecular
interactions are modeled, vdW interactions are expressed using Lennard-Jones
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potential function, and electrostatics interactions are calculated using Coulombic
formulation. Empirical scoring function [162] on other hand is based on the available
physicochemical properties which corresponding to hydrogen bonding interactions,
hydrophobic interactions, entropic changes, and interactions with metal ions [162].
Binding free energy is estimated using the sum of various uncorrelated (sometime
parameterized) terms derived from the regression analysis using experimentally
determined binding energies from the already known crystallized complex structures
[163]. ChemScore [163], LUDI [164], Glide score [165], X-score [166], etc., are
major tools implemented with such empirical scoring function. Knowledge-based
scoring functions [167] are derived from the crystallized protein–ligand complexes
using statistical regression principles. The binding free energy of the complex is
assumed to be the sum of free energies (potentials of mean force) of interatomic
contacts calculated from the frequencies of these interatomic distances in a database
of experimental structures from statistical methods [168]. As compared to empirical
scoring function, knowledge-based potential function does not require known binding
affinity and so are free to explore large and diverse structural complex information to
derive the more accurate and less biased scoring function parameters. These functions
are expected readily transferred to systems that have not been used in the develop-
ment of the scoring function. Examples of knowledge-based scoring functions
include PMF [169] and DrugScore [170].

4.2 Nonlinear Relation Between IC50 and Score Values

A standard scoring function is given in kJ/mol by Eq. 2.

DG ¼ 5:4DG0 � 4:7DGHB � 8:3DGionic � 0:17DGlipo þ 1:4DGflex=rot ð2Þ

Assumed to be linear, where coefficients present the weightage of each contri-
bution as mentioned by suffix, in a case study out of 45 known ligand receptors
from PDB, the standard deviation having +7.9 kJ/mol or 1.4 log unit error in
binding constant. But this is not reflecting reality, which has been observed while
comparison of actual and predicted values of binding across the range of activity.
Correlation between the binding energies predicted by the docking programs like
AutoDock, GOLD and FlexX [171–173] with the experimentally determined
binding free energies is analyzed among a set of known ligands in the literature
[110, 174]. Prediction of affinity using scoring function has been used for ranking
compounds, while high-throughput screening but compared with known experi-
mental data it has been observed that high-affinity compounds (*nM) are predicted
with lower errors than weak binders (lM to mM). Generally, the weak binders are
overpredicted, whereas tight binders (pM) are underpredicted [171, 175]. It may
require implementing functions to address negative co-operativity so that present
scoring functions are trained to penalize weak binding. Tight binders required to be
associated with positive co-operativity. However, a measurement of applicability is
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done using reproduction of geometry from complexed crystal structure, comparing
close relation with binding affinity (experimental) and scoring and ranking and two
other important parameters known as enrichment factors (EF) and receiving oper-
ators characteristic (ROC) [176–178].

4.3 Does Scoring Function Reflect Binding Activity?

Scoring functions can only predict the binding affinity of a receptor with its ligands
in isolation [156], but the cellular environment is significantly different, where it
may be interacting with other molecules which may alter its affinity toward its
ligand, e.g., activation of tumor suppressor protein p53 activation is regulated by
MDM2/MDMX [74]. Inhibition measure of a ligand for its receptor is the end result
of several pharmacokinetic factors as well other than affinity, e.g., bioavailability
[73, 99]. Therefore, docking score of a ligand for its receptor may not be the actual
measure of its inhibitory potential always. The similar kind of evidence emerged,
when it was noticed that urea analog DMP-323 had shown good affinity and pre-
dicted inhibitory potential for HIV-1 protease [100], but it could not succeed
because of its very low bioavailability due to its poor solubility [99]. In the
follow-up study, a new analog DMP-450 with higher water solubility was designed
and found to show better inhibition of HIV-1 protease [99]. As detailed in Sect. 2.3,
in the similar way to save from proteolytic cleavage, a-helical clipped peptide was
designed from human serum protein HSP’s variants, as inhibitor of the MDM2 and
MDMX complex [73]. The proteolytic cleavage was hampering its bioavailability;
thus, clipped a-helical peptide achieved improved pharmacokinetics, thus ensured
better efficacy in human and rat models [73].

5 Limitations of Methods

5.1 Appropriate Structure of Receptor to Select

While selecting a receptor structure for initiating docking study, parameters listed in
Table 1 can be used to prioritize structures if more than one structure is available,
and to choose appropriate structure. In present case, we have summarized some of
the structure validation results for two different structures of HIV-1 protease (PDB
ids: 1FQX and 4ZIP) in Fig. 8 and crystal structure details shown in Table 6.
Analysis of structures is available from RSCB PDB [179] (https://files.rcsb.org/pub/
pdb/validation_reports/fq/1fqx/1fqx_full_validation.pdf and https://files.rcsb.org/
pub/pdb/validation_reports/zi/4zip/4zip_full_validation.pdf).

In general, structure for which different parameter values are in blue zone in
horizontal bars for it is preferable. These horizontal bars represent statistical like-
lihood of reported structure to be in acceptable/unacceptable range. The range of
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parameter value is determined from all the structures already deposited in PDB of
similar resolution range. As we see from the report that clash score, Ramachandran
outliers and side chain outliers’ values are higher than acceptable and are in red
zones (statistically unfavorable) of their respective bars [180] for 1FQX. While in
the case of 4ZIP, all the parameter values are in the blue zone (statistically

Fig. 8 Two crystal structures of HIV-1 protease shown a 1FQX.pdb and b 4ZIP. (i) and (iv) show
structure quality summary obtained from RCSB Protein Data Bank (PDB). (ii) and (v) show
conformance to geometric quality criterion of model residues: 0, 1, 2, and � 3 geometric quality
criterion outliers are shown in green, yellow, orange, and red colors, respectively. (iii) and
(vi) show mapping of model validation results with electron density over 3D structure for PDBs
1FQX.pdb and 4ZIP.pdb, respectively

Table 6 Crystal structure
parameters for HIV-1 protease
structures with RCSB PDB
(www.pdb.com) codes 1FQX
and 4ZIP

Parameter 1FQX 4ZIP

Resolution range lowa 26.00 50

Resolution highb 3.1 1.11

Completeness Not available 91.7%

Rwork 0.180 0.130

Rfree Not available 0.154

RMSD (bond lengths) 0.080 0.015
aA minimum spacing (d) of crystal lattice planes that still provide
measurable diffraction of X-ray
bAdditionally, hI=r Ið Þi greater than 2 in high-resolution shell
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favorable). Again, when looking at the geometric quality criterion for two struc-
tures, 1FQX only (chain A: 51% and chain B: 52% residues) does not have any
outlier, while rest (chain A: 47% and chain B: 40%) have at least one outlier. The
geometric quality for 4ZIP seems better as in this case 96 and 90% residues (chains
A and B, respectively) do not have any geometric outlier. Further considering fit
quality of the model to electron density, 1FQX has certain residues which has at
least two outliers and a significant percentage of residues with at least one outlier,
while in case of 4ZIP, there are no residues which have two outliers and only a
small fraction of residues with only single outlier. Considering all above points
among 1FQX and 4ZIP, 4ZIP should be preferable over 1FQX as receptor structure
for any docking study.

In Fig. 9, the docking using Dock6 of ligand GRL-0648A to two different receptor
structures of HIV-1 protease (4ZIP: high resolution and 1FQX: low resolution) is
performed to assess the effect of receptor structure quality on outcome. Results show
that when ligand was docked to native receptor structure (4ZIP), it reproduces the
crystallized pose (RMSD: 0.40 Å, see Fig. 9a), with dock score of approximately
−125. When we docked ligand to poor receptor structure (1FQX), it docked in
different poses where core group adopts similar pose but the 5-atom ring (1 nitrogen,
one oxygen) containing methyl adopts different poses and leans over Gly48 on chain
B, score is significantly low (−14) and RMSD: 2.71 Å (Fig. 9b). This observation
suggests that high-quality receptor structures are more likely to present better inter-
action complementarity, saving from predicting high-affinity binders mistakenly as
poor-affinity ligand.

Fig. 9 HIV-1 protease-binding site structures shown a HIV-1 protease structure (PDB: 4ZIP) in
complex with GRL-0648A (isophthalamide-derived P2-ligand), receptor-binding site is shown in
green ribbon and crystallized pose of GRL-0648A in black stick. GRL-0648A is docked to the
receptor using Dock6 and docked pose is shown with ball and stick representation and carbons
colored in cyan, RMSD of docked pose with reference to crystallized pose is 0.40 Å over 49
non-hydrogen atoms. b HIV-1 protease structure (PDB: 1FQX) with GRL-0648A crystallized pose
(taken from 4ZIP after superimposing receptor structures) shown in black stick, docked pose of
GRL-0648A shown in ball and stick representation with carbons in cyan color, docked pose
RMSD 2.71 Å over 49 non-hydrogen atoms
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5.2 Analysis of Docking Tools

As discussed above, it is fruitful to analyze the ligands binding efficiency using
many methods like AutoDock, GOLD, Glide, LibDock, and HADDOCK; all these
tools are different in the method of docking as well as scoring.

There are several open-source commercial but free for academic use, and
complete commercial docking programs available from different software vendors.
In particular, fifty-one stand-alone and nineteen Web servers for docking employing
diverse set of novel features are listed at http://www.click2drug.org/index.
html#Docking (accessed on Dec 2017). To select suitable program(s) for docking
studies for receptor(s) of interest requires insight and expertise [117] in the method.
However, we shall discuss only a few selectively chosen methods based on pop-
ularity and diversity of strategies implemented in them as shown in Table 7.

Herewe are discussing the in-house case study (unpublishedwork) of four docking
programs used to dock already experimentally known inhibitors of P. falciparum
protein kinase 5 (PfPK5) with IC50 values ranging from 130 to 15000 nM. PfPK5 is a
ser/thr kinase and homolog of human CDK2 [185]. Chosen inhibitors are olomoucine
(OLM), indirubin-5-sulfonate (INR), staurosporine (STA), and purvalanol B (PVB),
respectively. Crystal structures of two of the inhibitors (INR and PVB) in complex
with PfPK5 are available [185].Wehave chosenLibDock v2.3,Gold v5.2,Dock v6.7,
and Glide v7.0 for the comparison study. Different docking programs use different
scoring schemes, e.g., Glide score and Dock score assign high negative score
to high-affinity ligands, while LibDock and Gold assign high positive score to
high-affinity ligands. Pose reproduction and also scoring/ranking of docked poses of
these inhibitors is a good case to assess comparative performance of each of the
selected docking program and also with experimental values.

The best-scoring poses predicted by each of the programs were compared with
the crystallized poses for selected available complex of PfPK5 with PVB as in PDB
(1V0P). Predicted poses for PVB obtained from LibDock, Gold, Dock, and Glide
showed 0. 60, 1.01, 0.88, and 1.87 Å RMSDs with crystallized pose, respectively.
In present case, all the selected programs were able to reproduce observed binding
mode within RMSD of 2 Å.

Docking and scoring results obtained from the chosen programs show that none
of these could predict the correct ranking against the experimentally known activity
of chosen inhibitors (see Table 8). The best binder (PVB) among four inhibitors is
predicted to be best binder as rank 1, by Gold and Dock6, while LibDock and Glide
have ranked 2. LibDock is unable to discriminate between the OLM and INR and
predicts them as rank 3 and rank 4, while experimentally found ranks would be 4
and 3, respectively. Again, LibDock does not discriminate between STA and PVB
and predicted ranks are opposite to the experimental ranks. Gold predicts correct
ranks for best and worst inhibitors, while is unable to discriminate between
mid-ranged inhibitors INR and STA. Dock6 predicts correct ranks for better binders
STA and PVB, while does not discriminate between weak binders OLM and INR.
Predicted ranks from Glide did not match with experimental rank for any of the four
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Table 7 Summary of docking approach used, techniques for ligand and/or receptor flexibility,
and major features available in some chosen popular docking programs

Programs Ligand flexibility Receptor
flexibility

Major features in brief

AutoDock
[181]

Genetic algorithm modeling
flexible residues

Force field-based scoring function,
uses averaged interaction energy grid
to account for receptor conformations
and simulated annealing for ligand
conformations

DOCK [159] Incremental build Yes (through
AMBER score)

Force field- and contact score-based
scoring functions; docks either small
molecules or fragments, include
solvent effects

Glide [165] Exhaustive search No Empirical score. Although, receptor
flexibility can be used in Induced fit,
Docking (IFD workflow) with Glide
and side chain rotations through
PRIME

GOLD [110] Genetic algorithm Side chain
flexibility and
ensemble
docking

Empirical score, highly configurable
allowing to utilize chemical intuition
and domain expertise to improve pose
prediction and virtual screening

HADDOCK
[182]

Yes Semi-flexible
torsion angle
refinement

Uses biochemical and/or biophysical
interaction data such as chemical shift
perturbation data resulting from NMR
titration experiments, mutagenesis
data, or bioinformatic predictions

LibDock
[183]

Rigid docking can use
programs in suit to
generate conformation

No Docks a pre-generated set of
conformations for the ligand followed
by a final flexible gradient-based
optimization of the ligand in the
protein binding site

LigandFit
[184]

Monte Carlo No Empirical score, ligand conformation
docked into an active site based on
shape, followed by further CHARMm
minimization

Table 8 Summary of docking scoring/ranking results of chosen four inhibitors with known IC50

values to PfPK5

Inhibitor IC50 (in nM) RT ln(IC50)
(kcal/mol)

Docking score

LibDocka Golda Dock6b Glideb

OLM 15,000 −6.622 107.08(3) 55.56(4) −56.46(3) −5.75(3)

INR 5,500 −7.220 106.80(4) 64.56(2) −55.04(4) −8.65(1)

STA 1,000 −8.236 132.82(1) 60.98(3) −64.55(2) −4.99(4)

PVB 130 −9.453 130.25(2) 78.40(1) −71.41(1) −7.98(2)

Docking score from programs is given in cells of table, while rank is given in pair of parentheses.
Four docking programs, LibDock v2.3, Dock v6.7, Glide v7.0, and Gold v5.2, were used to dock
inhibitors in the PVB bound structure of PfPK5, after removing PVB. Inhibitors are tabulated from
top to bottom in increasing affinity order
aHigher positive score represents higher affinity
bHigher negative score represents higher affinity
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inhibitors. A limited study like this brings out the uncertainty in pose and rank
prediction by popular tools.

5.3 Selection of Appropriate Database

Chemical databases are selected from the ensemble of the small organic and syn-
thetic molecules, used for ligand docking, constituents of such chemical libraries
influence the final outcome in the drug designing process. In general, chemical
library databases are created to aid the drug discovery process by providing inno-
vation in new lead structures selection. After the establishment of the in silico drug
designing protocol, chemical databases are screened to identify the probable inhi-
bitors which can be tested by experimental methods. Success rate in finding true
inhibitor by in silico means depends upon both screening protocol and chemical
databases used. So, before the selection of the chemical libraries, basic biological
target specific chemical features should be marked. For the virtual screening pur-
poses, the compound database may be selected in such a manner so that maximum
structurally diverse chemicals can be utilized against the studied biological target(s).
Chemo-informatics tools are mainly used not only for diversity analysis [186, 187]
but also for converting them into focused chemical libraries [188].

Various chemical compounds databases are available which include databases of
general organic compounds intended for screening, drugs, commercial databases,
and databases with known biological activity, crystal structure information, and
various physicochemical properties information [189, 190]. Table 9 shows some of
the commonly used chemical databases which are categorized based on the different
features like associated bioactivity information, known drug information, and
having target specific information. Most of these databases provide chemical
information using 1D representatives such as SMILE and InChI Key, or 2D
structural coordinate information stored in SD file format. These databases are also
provided online interface to access the whole chunk of chemical compounds for
similarity-based screening. These functionalities intended to search close analogues
of known bioactive compounds and thereby advances the lead optimization process.

Though different chemical databases are available for virtual high-throughput
screening (vHTS), it is recommended to convert any chemical library to “target or
focus” chemical library to avoid the false hits selection as novel inhibitor [191]. In the
literature, several characteristic properties of small molecules have been discussed
that are followed by the “lead-or drug-like” molecules and are considered to be
important for a drug to be successful [192]. Currently, list of open-source
Chemoinformatics tools is available which can be utilized for drug-like properties
calculation and chemical databases filtration [193]. Well-known physicochemical
properties which are used as empirical rules are Lipinski’s “Rule of Five” [194], “Rule
of Three” [195], and Pfizer’s “Rule of 3/75” [196] (Table 10). Apart from filtering for
lead-like properties, it is also important to exclude known toxicophores or metabol-
ically liable moieties which can interfere with the assay and detection protocol.
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There is a well-recognized need of creating standard datasets for which exper-
imental bioactivity of the ligands is already known for receptors coming from
various functional classes [197] in the research community. Availability of standard
dataset for benchmarking docking would potentially aid to spot limitations and
non-optimal parameter sets used for docking and scoring with the concerned
docking program and thereby allowing tracing and possibly fixing of issues in
earlier phases of the study. Development of benchmarking datasets for docking and
scoring has been reviewed recently [197, 198]. Primary attempts toward docking
was made by Bissantz et al., a dataset contained estrogen alpha receptor (ERa) and

Table 9 Some commonly used chemical databases

Databases Web link

Bioactivity data

Binding activity database https://www.bindingdb.org/

ChEMBL https://www.ebi.ac.uk/chembldb/

NCI https://cactus.nci.nih.gov/download/nci/

PDB bind database http://sw16.im.med.umich.edu/databases/pdbbind/index.jsp

PubChem https://pubchem.ncbi.nlm.nih.gov/

Patents

IBM www-935.ibm.com/services/us/gbs/bao/siip/

SureChEMBL www.surechembl.org

Drugs

DrugBank www.drugbank.ca

FDA http://fdasis.nlm.nih.gov/srs/srs.jsp

Available for vHTS

ZINC http://zinc.docking.org

ChemSpider http://www.chemspider.com

eMolecules www.emolecules.com

MDL drug data report
(MDDR)

http://accelrys.com/products/collaborative-science/databases/
bioactivity-databases/mddr.html

BioPrint http://www.cerep.fr/cerep/users/pages/ProductsServices/
bioprintservices.asp

Target specific

Pfaldb http://pfaldb.jnu.ac.in/Malaria/homeHit.action

Mycobacterium DB http://tbnetindia.in/

Therapeutic target database http://bidd.nus.edu.sg/group/cjttd/TTD_HOME.asp

KLIFS http://klifs.vu-compmedchem.nl/

Kinase profiling inhibitor
database

http://www.kinase-screen.mrc.ac.uk/kinase-inhibitors

Structural databases

Cambridge crystallographic
data center

https://www.ccdc.cam.ac.uk/

Crystallography open
database

http://www.crystallography.net/cod/
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thymidine kinase (TK) with one PDB structure, ten active compounds, and 990
randomly selected decoys from pre-curated Advanced Chemical Directory
(ACD) which was considered for each of receptors to evaluate DOCK, FlexX, and
GOLD programs and seven scoring functions (Dock, FlexX, GOLD, PMF,
ChemScore, Fresno, and Score) [197].

5.4 Consensus Evaluation of Docking

Docking studies performed using different programs which do not necessarily agree
with each other as discussed earlier, mostly because each program carries different
subtasks of docking with potentially different approach [199]. Thus, when results
disagree among themselves, then selection of the final compounds to test becomes
indecisive. Matthew and co-workers [199] suggested selection of results based on
consensus followed by rationalization through physicochemical intuition. As dis-
cussed later, such strategies should be projected as standard to increase confidence
in docking results and decrease failure rate of docking studies.

Benchmarking of docking studies is very important for unbiased evaluation of
various docking methodologies and their implementations in docking programs. To
address this issue, Huang et al. [176] conducted a study along with creating a
directory of useful decoys (DUD) [176]. They choose total 40 different targets with
eight nuclear hormone receptors, nine kinases, three serine proteases, four metal-
loenzymes, two folate enzymes, and ten other enzymes. The crystal structures of all
targets except one kinase (PDGFrb) were available in PDB. They used 2950 li-
gands, creating 36 physically similar but topologically different decoys for each
ligand. Docking was done using DOCK 3.5.54, with flexible ligand and a
force-field-based scoring function accounting van der Waals and electrostatics in-
teraction energies corrected for ligand desolvation. Authors reported that for most
of the targets, with MDDR (Elsevier MDL, San Leandro CA) databases, enrichment
were almost half log better than DUD, which supported their conclusion that
generally databases have bias.

Another protocol is known as checking with cross-docking which aims to
summarize the overall success of docking study [200], it captures ligands specificity
for its cognate receptor at diagonal of the matrix, and off-diagonal entries represent
enrichments against off-diagonal targets. The off-diagonal enrichments could also
be indicative of promiscuity of the ligand, or the similarity of the off-diagonal
targets [201]. The cross-docking performed in the process highlighted striking
results that ligands having very good enrichment for their cognate receptor had
good enrichments against a few other receptor sets, while ligands with poor
enrichment for their receptor had poor enrichment against others [202–204].

Overall, it has been found that the interaction-based classification and estimation
of accuracy of poses during docking are in better agreement with the experimental
results [205].
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5.5 Selection of Suitable Scoring Function

Whether to select just a scoring function or a consensus scoring function? A
suitable scoring function has important role to play to extract correct poses while
docking. Poses should be evaluated by the docking score or the ranks are better for
evaluation of docking; these are critical aspects influencing the final outcome of the
docking results. None of the available scoring functions appears to be fit in all cases
[206]. James B. Matthew and co-workers performed a study to evaluate perfor-
mance of four individual scoring functions DOCK, GOLD, PMF, and FlexX and
several forms of consensus scores (CScore) derived from them, over a dataset of
twelve HIV protease and nine thermolysin complexes with known crystal structure
and experimental binding affinity [199]. Since DOCK and GOLD scoring functions
were not available in FlexX, they implemented these scoring functions according to
their open descriptions in the literature and will be referred by D-SCORE and
G-Score. They found that none of the considered scoring functions was consistently
good for all active sites [206], but the CScore (consensus score) was better than all
individual scoring function [199]. Secondly, they studied these scoring functions
for scoring candidate ligand configurations over a set of five known receptor ligand
complexes (2-MQPA or NAPAP into thrombin (1ETR and 1DWD), l–
3-phenyllactic acid into carboxypeptidase A (2CTC), 1-deoxynojirimycin into
glucoamylase (1DOG), and DANA into neuraminidase (1NSD) each of the ligand
was docked to cognate receptor, and top thirty configurations with most favorable
FlexX scores were chosen for further study, each of these configurations were
scored using D-SCORE, G-SCORE, PMF, rank-score, deprecated rank-sum
(rank-sum after leaving out worst rank), worst-best and CScore methods. They
found that average scores from several methods are better than individual score
[199]. Apart from this, their study highlighted that there could be alternate poses for
NAPAP binding in thrombin and DANA in neuraminidase as predicted by FlexX
along with crystal structure poses reproduced in Fig. 10a, b respectively.

Table 10 Typical physicochemical properties which are used to filter the chemical databases

Properties Lead-likeness

Molecular weight (MW) 200–500

Lipophilicity (cLogP) −4/4.2

H-bond donor � 5

H-bond acceptor � 10

Polar surface area (PSA) � 170 Å2

Number of rotatable bonds � 10

CACO-2 membrane permeability � 100

Solubility in water (log S) −5/0.5

Others Absence of both toxic and reactive fragments
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5.6 Consensus Scoring

Despite availability of variety of scoring functions, none of them is universally
good for assessment of all receptor ligand binding using docking. Therefore, several
attempts [174, 199, 207] have been made by researchers to investigate several
scoring functions and their combinations using different consensus schemes. In
particular, Oda et al. used two force field-based (Dock score and GOLD score), two
knowledge-based (DrugScore and PMF score), and five empirical (FlexX score,
ChemScore, PLP, Screen Score, and X-Score) scoring functions and systematically
assessed performances of all 511 (29 −1) consensus scores over a test set where
structures were available in PDB for all chosen 220 protein–ligand complexes. For
the sake of comparison, either all the candidate poses scored by a scoring function
were ranked assigning best-scoring pose a rank 1 or the scores were scaled to span
range 0–1, with best-scoring pose assigned 0 and worst assigned 1. These schemes
were consistently used for all the scoring functions, except for X-Score, since it
assigns a higher value to better pose in contrast to rest of others. Therefore, S-Score
was multiplied by −1 before scaling or ranking [207]. Oda et al. [207] used six
different averaging schemes for consensus score with three different ways of model
selection (selecting models with consensus score � xthreshold, top ythreshold models
from sorted list of consensus scores in increasing order, and top zthreshold % models
from sorted list of consensus score in increasing order) combined with two ways
(by rank and by scaled score) of mapping score to common scale. Prefixes
number-by-, rank-by-, and percent-by- were used to denote way of model selection,
and suffix rank and number were used to denote ways of mapping scores.
Apart from these six, three more double thresholds (one for model selection from
xthreshold, ythreshold, and zthreshold and other number of minimum votes for electing the
model)-based vote-by-consensus scores were also evaluated [207]. Considering the

Fig. 10 Alternative docking mode for identified by FlexX and CScore. The alternative
configuration is colored by atom type, whereas the binding mode found in the crystal structure
in colored orange. a NAPAP in thrombin (1DWD) and b DANA in neuraminidase (1NSD) [200].
Reproduced with permission
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accuracy and efficiency balance in selecting poses rank-by-number and
percent-by-number are more useful, while for accuracy number-by-number and
vote-by-number approaches are more pertinent to pose selection [207]. GOLD
score and Dock score were poor individually but were useful in consensus scoring
[207]. Consensus score involving all nine scores or five CScore functions were
useful without any optimization and suitable for practical usage [207]. However,
Free energy and empirical scoring has been used together in the recent paper [174].

5.7 Inclusion of Flexibility of Ligand and Receptor

In computer-assisted drug discovery process such as structure-based drug design
and ligand-based drug design, ligand flexibility plays key role for pharmacophore
features extraction and model generation [208], 3D-QSAR analysis [209], molec-
ular docking-based studies [210], shape similarity [211], and so on. In these cases,
the outcome results largely depend upon the ability to achieve those conformers that
represent the bound state. Hence, it is important to achieve bioactive conformational
space of each compounds under study [212]. The term “bioactive conformation
generation” specifies the generation of pool of all possible molecular structures that
are found in the bound state of the complex macromolecules. Various studies
suggest that during the interaction with the receptor, small molecules generally
adopt low-energy conformation [213].

The literature suggests two major classes of methods that are utilized to explore
the conformational landscape of the small molecules [214]. These approaches
include stochastic sampling, systematic or deterministic sampling. Deterministic
approaches attempt to generate full range of minimum energy conformations by
adopting systematic exhaustively space search approach. This type of space search
methods largely dependent upon the number of rotational bonds a small molecule
has. Due to combinatorial explosion in torsion angle combinations, this approach is
feasible only for very small molecules [214]. Stochastic sampling tries to explore
various energy landscapes by incorporating randomness during the search process.
Monte Carlo-type (MC) simulations and genetic algorithms (GAs) are the major
techniques of this type of sampling methods [214]. A detailed review of these
approaches can be found in the following papers [215].

Using above-mentioned approaches, various conformation generation programs
have been developed and utilized in drug discovery process cited in Table 11.
These programs generally adopt heuristics to overcome combinatorial explosion in
case of systematic search and random perturbations and selection in stochastic
search.

Ligand being usually smaller in size with lesser number of rotatable bonds
exhaustive sampling of available conformational space is achievable with current
computational capabilities; but proteins being large macromolecules, available
conformational space is vast due to large number of degrees-of-freedom (DOFs)
and its exhaustive sampling is almost infeasible. Therefore, techniques seeking to
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incorporate protein flexibility during binding has been attempted, but they incor-
porate receptor flexibility only to a limited extent, focusing on sampling only most
plausible/relevant portion of the conformational space, e.g., through side chain
flexibility, conformational relaxation, and multiple structure docking, as already
discussed in protein flexibility section. However, newer techniques, e.g., supervised
molecular dynamics (SuMD) can be useful to incorporate receptor flexibility,
because they allow receptor to experience thermal fluctuation and supervision of
ligand toward binding site from unbound state might allow receptor to adopt
induced conformational changes sensing the ligand in vicinity of binding site under
influence of its interaction field [225].

6 Binding Ability and Free Energy Calculation

The binding free energy of ligand to receptor is the thermodynamic signature of the
interaction affinity. Therefore, accurate prediction of binding free energy has been
attempted from long times. The free energy calculation methods can be grouped
into relative binding free energy calculation methods and absolute binding free
energy methods [226]. Relative binding free energy methods aim to calculate

Table 11 A brief summary of major programs for small-molecule conformation generation

Program Type Algorithm Cost/license References

Balloon_GA Stochastic Genetic algorithm Free/
proprietary

[216]

CAESAR Systematic Incremental search of torsion angles
combined with distance geometry

Commercial [217]

Confgen Stochastic Random walk on energy surface Commercial [218]

Confab Systematic Torsion driving approach Open
source

[219]

Corina Systematic Knowledge-based rules derived from
CSD

Commercial [220]

ETKDG Stochastic Distance geometry and knowledge
base

Open
source

[221]

Frog2 Stochastic Monte Carlo Open
source

[222]

MS-Dock Systematic Brute force, anchor, and grow Open
source

[223]

MOE Stochastic Random perturbations of rotatable
bonds in increments biased around
30°

Commercial [108]

OMEGA Systematic Knowledge-based, complete
enumeration

Commercial [212]

RDKit Stochastic Distance geometry Open
source

[224]
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binding free energy of one ligand (reference ligand) relative to another ligand
(target ligand) both binding to same receptor, by summing up the work carried to
convert one ligand to another in bound and free states in solution [226]. This
method can be significantly efficient when reference ligand is very similar to target
ligand, but if they are dissimilar then defining and sampling along the conversion
path may pose severe computational demand [226]. Since reference ligand to target
state conversion path is artificial, these methods are also called alchemical methods,
and excellent review on popular methods of this class already exists [227]. Absolute
binding free energy methods estimate standard binding free energy of interaction by
computing reversible work done in process of transferring it from binding site into
solution [226]. Absolute binding free energy methods have been reviewed by Shirts
et al. [228]. Practical aspects of free energy calculation have also been recently
reviewed [229, 230]. The accuracy of the binding free energy calculations is
influenced by adequacy of sampling (theoretically, accurate results require infinite
sampling), force field used for sampling, and correctness of the molecular model
used, e.g., usually simulation is performed using fixed protonation states of titrat-
able residues, while protonation states might change in experimental conditions
[226].

6.1 Calculation of Enthalpy by MM-PBSA

The end-state free energy methods explained here are most common approaches to
calculate binding free energy. Linear response approximation (LRA), linear inter-
action energy (LIE), and molecular mechanics Poisson–Boltzmann surface area
(MM-PBSA), molecular mechanics generalized Born surface area (MM-GBSA)
[231] are such methods available in the literature. End-state free energy methods are
computationally less demanding, but the speed gain in CPU comes at cost of
compromised accuracy of the results [231]. These methods are required to be
plugged with estimation of configurational entropy which usually is obtained by
rigid-rotor approximation and normal mode analysis or quasi-harmonic analysis to
yield binding free energy [232]. However, these methods can be good for evalu-
ating binding enthalpy for ligand–receptor interaction. In MM-PBSA/MM-GBSA
approaches (schematically shown in Fig. 11), the binding energy is calculated by
taking energy difference of free-form of protein (P), and ligand (L) from protein–
ligand complex form (PL) [232].

The free energy of each of the molecular species (say X) can be expressed as
sum of their molecular mechanics energy in gas phase EMM(X), solvation free
energy Gsolv(X), and entropic part—TS(X). The EMM(X) contribution can be
expressed as sum of bonded, electrostatics, and van der Waals energies, i.e.,
EMM(X) = Ebond(X) + Eelec(X) + EvdW(X) [231]. Similarly, Gsolv(X) can be
expressed as sum of polar and non-polar contributions Gpolar(X) and Gnon-polar(X),
where Gpolar(X) can be accounted using Poison–Boltzmann or its simplified version

152 S. K. Panday and I. Ghosh



generalized Born method as GPB(X) or GGB(X), while non-polar is taken to be
proportional to accessible surface area change GSASA(X) [231].

DGbind ¼ GðPLÞ � GðPÞ � GðLÞ ð3Þ

The dynamics of the PfPK5 kinase structure complexed with the inhibitor(s)
described earlier in docking section is used here as case study using MD simula-
tions. Starting structures of PVB-PfPK5 [185] and INR-PfPK5 [185] complex were
taken from crystal structures 1V0P and 1V0O, while OLM-PfPK5 and STA-PfPK5
were taken as consensus pose obtained from docking study using Gold, Glide, and
Dock6 as mentioned above. All the systems were prepared using AmberTools14
[233] for MD simulation, and AM1-BCC charges for ligands and GAFF [234] force
field parameters with ff14SB [235] parameters for protein. Equilibration was per-
formed using standard protocol [236]. For each case, 12 independent (starting from
different starting velocities) MD simulations in NPT ensemble each with length
254 ns were done, initial 4 ns run were discarded to allow for equilibration, bond
lengths involving hydrogen were constrained using SHAKE [237] to allow use of
2 fs time step, temperature was controlled using Langevin thermostats with colli-
sion frequency 1 ps, and pressure was regulated with Berendsen scheme at target
pressure 1 atmosphere using cuda version of program pmemd available in Amber14
[238] MD simulation package. Coordinates were saved every 1 ps. These trajec-
tories were concatenated to yield 3 ls MD simulation for each case containing

Fig. 11 Schematic representation of the end-state free energy using molecular dynamics Poisson–
Boltzmann surface area method for estimating binding energy for receptor ligand binding
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3000,000 frames. Every 100th frame was taken for MM-PBSA analysis using
MMPBSA.py [239] program in AmberTools14 [233].

The gas phase binding energy DEMM was highest for INR followed by STA,
PVB, and OLM, but the solvation penalty was also highest for INR and least for
STA. In terms of enthalpy of binding, STA was predicted to be best, followed by
PVB, INR, and OLM, respectively. The inconsistency of binding enthalpy with
IC50 indicates possible role of entropy in this case. There may be role of solvation
as well which is not rigorously captured in solvation terms considered proportional
to buried surface area on binding in MM-PBSA method; see Table 12.

However, it may be criticized that selected docking programs use different
scoring, therefore to be able to assess their performance as well as compare with
experiment values is not possible. So, another attempt was done by normalizing all
the scores, by converting all of them to positive scores (normalized using
(score − minscore)/(maxscore − minscore)). This yields a consistent normalized score,
where weakest and strongest binder ligands get normalized scores ranging 0 and 1,
respectively. Same is used for normalizing experimental values, i.e., RTln(IC50).
Results are shown in Fig. 12, Dock6 predicted scores for all ligands are within
1-sigma range, Gold and LibDock each predicted one outlier, and Glide predicted
two outlier scores. In present case, Dock6, Gold, and LibDock appear to perform
better than Glide. These results may not be sufficient to capture docking/scoring
capabilities of chosen programs, as only four ligands are studied and they bind to
only one target. A more diverse target set and a large ligand set could better
comprehend the features and/or limitation of individual programs; this will be
discussed later also.

The binding enthalpy predicted using MM-PBSA method consists of two out-
liers from 1−r range (computed as discussed earlier), and it does not agree fully
with docking scores obtained from any of the four chosen programs, as expected.
However, strong and weak binders predicted using MM-PBSA is same as predicted
by LibDock, and second strong binder predicted using these two is similar in
affinity. While MM-PBSA results agree with Gold results for two weak binders and
not for strong binders. Glide agrees on experimentally found strong and weak
binders with MM-PBSA. Score using Dock6 agrees better than MM-PBSA
(Fig. 12). As observed in the present case, the scoring by Docking methods as well

Table 12 Enthalpy component of binding free of selected inhibitors of PfPK5, calculated using
MM-PBSA method

Inhibitor IC50 (in nM) RT ln(IC50)
(kcal/mol)

Predicted (kcal/mol)

DEMM DGSolv Total: DHPBSA

OLM 15,000 −6.622 −58.5 ± 7.9 25.4 ± 5.9 −33.1 ± 4.1

INR 5500 −7.220 −102.7 ± 8.7 62.4 ± 5.9 −40.3 ± 4.2

STA 1000 −8.236 −69.0 ± 5.5 19.8 ± 4.0 −49.2 ± 4.7

PVB 130 −9.453 −65.7 ± 8.9 22.6 ± 6.0 −43.1 ± 4.7

These values are computed for 3000 snapshots extracted from 3-ls-long MD simulations for each
inhibitors in complex with PfPK5, internal dielectric constant was taken 2, and ionic strength zero
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as the end-state Free Energy methods show discrepancies with experimental results,
which emphasizes the effect of entropic contribution in case of flexible Kinase
binding to ligands.

6.2 Effect of Entropy to Ligand Binding

Gibbs free energy ðDGÞ of binding has two components enthalpy ðDHÞ and entropy
ð�TDSÞ as given by Eq. 4:

DG ¼ DH � TDS ð4Þ

Enthalpy of the protein ligand interaction is assumed to be the major determinant
of the binding free energy assuming entropic contributions for smaller ligands
binding to the same receptor would have similar entropic profile. However, this
assumption can be seen as an attempt to simplify the scenario, as entropy estimation
of binding process still lacks direct and reliable experimental/computational
methods [240]. Experimental methods seek to estimate this quantity from the
conformation flexibility as proxy for it and relate NMR relaxation parameter to
calibrate it with conformation part of the biding entropy; conformation entropy is
again assumed to be linearly correlated with the total binding entropy [241]. While,
computation methods also try to estimate configurational entropy on similar
line-of-thought, using molecular fluctuation data generated from molecular
mechanics as a proxy for the entropy and thereby try to estimate configurational
entropy from it [242–245]. Normal mode analysis (NMA) tries to infer

Fig. 12 All the scores have been normalized as discussed in text, to compare the predicted
affinities for chosen four inhibitors of PfPK5 obtained using docking with Dock6, Gold, Glide and
LibDock and MM-PBSA against experimental binding affinity. Solid line shows perfect
correlation of scores with experimental results, and dotted lines above and below show one-r
range of error for predicted affinity
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conformational entropy as function of the vibration modes where DOFs are mod-
eled as a set of simple harmonic oscillators, vibrating independently [246], but with
the growing understanding of the nature of vibrational modes of biomolecules, it
was realized that NMA is not the most suitable theory [247] for understanding
entropy. Thus, methods utilizing internal coordinates for molecular description in
conjunction with approximations representing full dimensional probability density
function as a series of marginal PDFs of fluctuation of DOFs got attention of
research community. This theory has been successfully applied to estimate entropy
for small molecules [248], peptides [249, 250], to protein–peptide binding study
with at least qualitative insight, while quantitative aspect still remains to be
debatable [251, 252]. In some case, even for the set of ligands binding to the same
receptor, entropic components are surprisingly quite different and play a crucial role
in deciding the rank/affinity order of ligands.

As mentioned above, we found out that for a set of experimentally known
ligands binding to the P. falciparum protein kinase PfPK5, docking scores yielded
very poor correlation with experimental affinity, even inclusion of end-state free
energy using MM-PBSA [253] method using 3 ls simulation data for each of the
ligands, no significant improvement in computed affinity was observed. However,
when configurational entropy for the ligands was included with the MM-PBSA
estimates, a significant improvement in the bonding affinity was observed (manu-
script in preparation).

As shown in (Fig. 13), achieving convergence to reduce error in estimation of
entropy takes longer trajectories i.e., covering larger configuration space. Using a
distance cutoff-based adaptation of Maximum Information Spanning Tree (MIST)
called Neighbor Approximated Maximum Information Spanning Tree (A-MIST)

Fig. 13 Binding configurational entropy estimated using A-MIST methods with a distance cutoff
of 14 Å and convergence of estimate with simulation time is shown. a Convergence of first order
(assuming DOFs are uncorrelated) is shown. b Convergence of second order (accounting pair-wise
correlations DOFs) is shown
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[254], the configurational entropy was estimated using MD dataset of *5 ls,
adding enthalpy, Free energy was calculated. It indicates that largely omitted
entropic contributions can play important role and even deciding factor in case of
small ligands binding to the flexible proteins (Fig. 14).

As shown in Fig. 14, combining enthalpy ðDHÞ and configurational entropy
�TDSconfig
� �

of binding for chosen inhibitors, the binding free energy ðDGÞ for
best binder PVB is highest. However, binding free energy does not discriminate
between OLM and INR, where experimentally OLM is weakest binder. Lower DG
for INR (−18.5 kcal/mol) in comparison to OLM (−20.0 kcal/mol) may be
attributed to the role of solvation free energy which is not accounted rigorously in
MM-PBSA methods. Variations in configurational entropy of binding from
21.8 kcal/mol to mere 2.9 kcal/mol suggest that different ligands modulate and
influence receptor flexibility in their own different way while forming complex,
highlighting importance of receptor flexibility in binding affinity prediction studies;
recently more attentions are attracted in this field.

6.3 Thermodynamic Methods

Relative binding free energy for a ligand formed by a chemical group substitution
relative to parent compound can be computed using free energy perturbation
molecular dynamics simulation [255]. This technique requires constructing a path
from parent ligand L1 to analog ligand L2, which binds to a common receptor R, in
two steps as follows. First, by carrying out a sequence of simulations in solvent and
mutating L1 to L2 through several intermediate points and adding up the free energy
changes along hypothetical intermediate points to yield free energy (say As) of
mutating L1 to L2 in solvent, then similarily, mutating the ligand L1 to L2 in the

Fig. 14 Enthalpy, configurational entropy and free energy of binding of chosen inhibitors is
shown in kcal/mol. Inhibitors are arranged in increasing experimental affinity (RTln(IC50)) order
from left to right. Enthalpy is calculated using MM-PBSA method as discussed earlier. Here,
temperature is taken to be 300 K
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binding pocket of receptor in solvent to get free energy change (say Ap). Finally,
subtracting Ap from As gives the free energy change of the binding [255]. As early
as 1985, to test the concept, it was successfully applied to calculate relative sol-
vation free energy of Cl� and Br�, and computed Helmholtz free energy
DDA (3.35 ± 0.15 kcal/mol) was shown to be in excellent agreement DDAhydr �
DDGhydr ¼ 3:3 kcal=mol with experimental value [256]. Further, the applicability
of the method was extended to non-trivial systems, e.g., amino acids and their side
chains, nucleic acid bases, and other small organic molecules; computed solvation
free energies of these molecules are found to be in agreement with experiment [257,
258].

Relative free energy or potential of mean force (pmf, w rcð Þ)-based methods
relate it to the distribution of a chosen reaction coordinate rcð Þ, the direct sampling
along rc, and constructing its distribution function g rcð Þ. The distribution function
of reaction coordinate g rcð Þ can be related to pmf w rcð Þð Þ as

w rcð Þ ¼ �kBT ln g rcð Þþ constant ð5Þ

However, barrier on the w rcð Þ can limit the sampling thereby the estimated pmf.
Therefore, techniques like Umbrella sampling and Importance Sampling were
introduced. But, choosing the right biasing function and ability to verify the ade-
quacy of sampling for simulation widow is still challenging. A brief review of these
methods is presented by Jorgensen et al. [259]. Statistical perturbation theory
(SPT)-based methods which estimate free energy difference between systems i and
j are related to the average of function of energy difference between systems i and
j where sampling is based on system i [259]. Authors summarized several appli-
cations of SPT-based methods, e.g., for relative solvation free energy, relative pKa

values, study of solvent effect on conformational equilibria, study of binding and
molecular recognition, and study of reactions in solvent [259]. The computational
cost of carrying out SPT-based calculations inspired cost-effective semi-empirical
methods using MD simulation samples for binding free energy calculation [260].
Aqvist et al. divided the binding free energy in two independent components
electrostatic and non-polar, where electrostatic component DGel

solv was taken to be
half of the solvent–ion interaction energy [260]. For non-polar component, linearity
between solvent size sigma and non-polar van der Waals energy and corresponding
solvation energy, empirical parameter a was derived to relate vdW component of
solvation free energy DGvdW

solv with average of vdW component of interaction
potential for transferring ligand from binding site (i) to solvent (s) given by
DGvdW

solv ¼ a DVvdW
i!s

� �
to yield expression for binding free energy [260] as:

DGbind ¼ 1=2: Vel
i!s

� �þ a VvdW
i!s

� �
. This new semi-empirical method was tested on

aspartic protease endothiapepsin and five small-molecule inhibitors with one as
reference for which binding data and also crystal structure were available. It was
reported that predicted relative binding free energy has mean unsigned error of
0.39 kcal/mol with highest for one of five inhibitors being 0.53 kcal/mol with
parameter a = 0.161 [260]. Application of such methods in details was discussed

158 S. K. Panday and I. Ghosh



by Warshel and co-workers who have systematically examined performance of
protein dipoles Langevin dipoles (PDLD) and other techniques using phosphoryl-
choline analogs binding to murine myeloma protein (McPC603) [261].

7 Molecular Recognition and Brownian Dynamics

As earlier discussed diffusional encounter of reacting substrates is the prerequisite
for the binding interaction to happen [153]. Diffusional encounter is basically
controlled by the long-range electrostatic interaction between participating chemical
species [262]. Generally, the timescale of such encounter is from micro- to mil-
lisecond, which is tough to achieve with existing hardware technologies using
molecular dynamics even for small- to moderate-sized biomolecules [263].
Therefore, simplified coarse-grained models of biomolecules can be simulated
using Langevin dynamics and Brownian dynamics [262]. Brownian dynamics has
been successfully applied to study ion permeations through ion channels [264] and
enzymatic reactions [265]. However, to gain kinetic insight into receptor–ligand
recognition, BD can be utilized [266–269], but BD being computationally very
expensive is practically challenging [263]. This has called for alternate methods
with simplistic approaches to study recognition process.

Supervised molecular dynamics (SuMD), a tabu-like search algorithm, aims to
predict the pose of the ligand in the binding site of its cognate receptor, monitoring
ligand-binding site distance along a series of short MD simulation has been pro-
posed [225]. SuMD has been successfully applied to study a variety of molecular
recognition processes [270–272]. In particular, Moro and co-workers applied to
study molecular recognition process of four globular receptor–ligand systems and
two transmembrane receptor ligand systems; in all these cases, experimental crystal
structures and binding affinity values (IC50, Ki or Kd) were already known [271]. In
the study, it is observed that using SuMD, binding from unbound state (where
ligand is placed at >30–50 Å away from binding site) of above ligands to their
cognate receptor can be simulated; moreover, various interaction hot spots (meta-
stable states) during recognition are possible to explore, which may be important in
providing insight into kinetics of the recognition process, hence better designing of
ligand [271]. In another study, the effect of allosteric modulator LUF6000 on
adenosine binding with A3 adenosine receptor (A3AR) was reported. In this study,
recognition of allosteric modulator LUF6000 to A3AR and adenosine to A3AR in
presence and absence of LUF6000 was studied using SuMD. It is observed that
adenosine visited a metastable site between helices EL3 and EL2, participating in
hydrogen bonds with Val259 and Gln261, and it triggers an orientation change in
adenosine mediated through hydrophobic interactions before occupying the binding
site [270]. In future, such techniques along with Free Energy perturbation method
will provide more accurate estimation of free energy binding of ligands to receptors
which will include the flexibility of both partners.
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8 Ligand Becomes Drug!

Drug research encompasses by various pipelines to achieve common goal, i.e., new
therapeutic molecules. After the successful identification of the novel ligand or lead
molecules by either computational or medicinal chemistry approach, each molecule
must be characterized for absorption, distribution, metabolism, excretion, and
toxicity (ADME-Tox) properties along with pharmacokinetic/pharmacodynamic
(PK/PD) activity that decides the success rate of the drug [273, 274]. Evaluation of
these properties belongs to the pre-clinical stage, and result of this stage decides the
advancement of novel chemical entity (NCE) to clinical stage. Failure of the drug is
dependent on the targeted therapeutic area; comparatively drug targeted to car-
diovascular has maximum chance of success than CNS targeted [261]. So, suc-
cessful candidates have to fulfill the essential criteria of potency, selectivity, oral
bioavailability, therapeutic efficacy, along with an acceptable side effect profile
[275]. Testing of thousands of leads molecules, found to be active against any
disease, requires huge amount of money and time, and also it is not always easy to
perform every test [276]. Understanding from the already prescribed drugs and
knowledge from the failure rate during the different clinical stages has provided
directions and specified various properties of chemicals which can be utilized to
assess the lead molecules before performing costly and complex clinical tests [277].

Detailed information about ADME-Tox and its role in successful drug design is
reviewed and available in many recent literatures [273, 278, 279]; however, major
application of these properties is related to reduction in clinical drug failures from
40 to 10% [280]. This reduction has been seen with the advancement in the
chemoinformatics and computational application in drug development process. As
mentioned in the ligand design libraries, various physiochemical properties based
on rules have been set to develop the lead-like and drug-like libraries to screen
[281–284]. Along with these filters, for further libraries optimization filters like Pan
Assay Interference Compounds (PAINS) and ALARM-NMR have been developed
to remove known toxicophores or metabolically liable moieties which can interfere
with the assay protocol [285, 286].

9 Summary

In this review, we have summarized many methods related to structure of receptor,
characterization of active sites and subsites, binding affinity calculations, docking
with specific poses, ranking chemicals and elucidated existing challenges in these
methods. In spite of many mathematically and computationally elegant tools to
understand and perform efficiently docking and scoring for large number of com-
pounds, the success of identifying novel inhibitor of infectious disease and chal-
lenges thereof is still significantly high. Some of the solutions are already evident
but many are yet to find. Still to ponder, how to estimate efficiently the effect of
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ions, pH dependency, and Brownian dynamics, which are playing significant role in
Free energy of binding to receptor. Many relevant receptors are not crystallized yet,
it is clearly evident that, errors occurring in in silico model structure and plurality of
interactions with the binding site play a dominant role in correctly identify any
novel inhibitor. Prior knowledge of physico-chemical interactions at active site and
the functional importance of interacting residues influence the pose of binding of
inhibitors to flexible receptors. A prior knowledge about the mechanism of binding
provides lead towards the accuracy and effective binding of docked ligand. Flexible
peptides derived structures provide higher affinity and in future, emerging field of
study will be designing of such restrained chemicals driven by highly active pep-
tides. Free energy estimation, rather than scoring (however accurate it may be),
provides better designing capability. Knowledge of mechanism of inhibition is
mandatory for innovation of novel chemical structure to lead the drug design, even
in dominant era of artificial intelligence.

In conclusion, we have attempted to highlight the existing challenges in esti-
mating the ligand receptor binding and critically inspect the methods applied day in
and day out in the field of structure-based drug design. Summarization of tools and
case studies are not the scope of the review. Most important aspect is that this field
evolved largely using efficient algorithm and computational tools, however, effec-
tive use requires more indulgence of chemistry and biology, in future to progress
successfully.
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Structure-Based Drug Design
of PfDHODH Inhibitors
as Antimalarial Agents

Shweta Bhagat, Anuj Gahlawat and Prasad V. Bharatam

Abstract Structure-based drug design (SBDD) is being efficiently used for the
design of antimalarial agents. It is a very effective tool for challenges like drug
selectivity and resistance. Over the past decade, a considerable number of drug-
gable targets have been explored—these include Na+ ATPase 4 ion channel,
cytochrome bc1, mitochondrial electron transport chain, phosphatidylinositol
4-kinase (PfPI4 K), dihydroorotate dehydrogenase, hemozoin formation, dihydro-
folate reductase inhibitors, etc. Among these, Plasmodium falciparum dihy-
droorotate dehydrogenase (PfDHODH) is a new and very promising target.
PfDHODH has shown considerable potential in arresting growth of the parasite at
blood stage by inhibiting pyrimidine biosynthesis. This chapter provides a review
of all the SBDD efforts for the development of inhibitors against PfDHODH.
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1 Introduction

Malaria is one of the most challenging communicable diseases caused by plas-
modium parasite. It affects half of the world’s population with 91 countries under
the direct risk of transmission. Five million more cases of malaria were reported
globally in 2016 compared to 2015. Children under the age of five are most sus-
ceptible to the disease with high death rate. The disease has a tropical and sub-
tropical localization with prevalence in poor countries [1]. Due to the above facts
and figures, it becomes essential to look into measures to limit the spread of disease
and provide better solutions for curing malaria.
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It is observed that majority of the drugs used to cure malaria have developed
resistance within a span of 20 years of their introduction [2]. Other limitations of
the drugs in market are compliance, safety, and cost. The drugs should be fast
acting, curative within 3 days, and safe in pregnancy/early infancy [3]. Vaccine
RTS,S has also been introduced for malaria but due to low efficacy (26–50%) is not
recommended for babies between 6 and 12 weeks age [4].

To overcome these limitations, an extensive research is underway to discover
new lead molecules with the potential of being introduced as new drug.
Structure-based drug design (SBDD) is one such approach to discover new leads
[5]. With the explosion of new information regarding the structure of many new
targets, it has become easier to study the detailed structural aspects of the target.
A thorough analysis of mechanism of their enzymatic activity, important amino
acids responsible for molecular recognition and selectivity, mutated amino acids
and their role in resistance as well as changes in enzyme efficiency due to mutations
are some of the questions which are observed and answered during this process.
Choosing appropriate drug hit/lead is based on this information along with the
synthetic feasibility of the designed molecules. This is followed by biological
activity analysis and selecting lead compounds. These leads can be further modified
to improve the activity along with bioavailability and several such cycles of drug
discovery process help in identifying molecules with improved target binding and
specificity/selectivity.

PfDihydrofolateReductase (PfDHFR) is a very widely studied target which
depicts an ideal example for SBDD approach. It was identified as the target for
drugs like cycloguanil and pyrimethamine. The enzyme soon showed resistance
within a span of 20 years of introduction of its inhibitors. It was then observed that
the resistance occurred due to the mutation of Ser108 in the active site of the
enzyme to Asn108, which shows steric clash with the p-chloro substitution at the
phenyl ring of cycloguanil and pyrimethamine. This caused the emergence of two
forms of double mutants and finally the most resistant quadruple mutant [6]. To
avoid this steric clash, a linker chain was proposed to provide flexibility to the
molecule and avoid close interaction with mutated amino acid Asn108. This led to
the identification of WR99210 as lead molecule for in vitro PfDHFR inhibition both
in wild type and mutant form of the enzyme but failed during in vivo studies due to
low bioavailability and toxicity [7]. It was further observed that due to high pKa of
triazine moiety, WR99210 showed bioavailability problems. Further SBDD
approach led to the identification of P218 as the lead molecule which was suc-
cessful in both in vitro and in vivo studies and is currently undergoing clinical trials
[8]. Molecular modeling studies on this enzyme led to the identification of key
structural features that are essential for its selective inhibition. These include
(i) H-bond donor head group for molecular recognition site, (ii) hydrophobic tail,
and (iii) linker chain between the head group and tail [9]. These parameters were
applied during SBDD approach for identification of new chemical head groups for
PfDHFR inhibitor design [10]. S-substituted guanylthiourea were identified which
showed similar interactions as that of the WR99210 during molecular docking
studies and later molecular dynamics studies [11]. In this series, two compounds
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were identified to in vitro activity against PfDHFR and one compound was found to
be curative against Plasmodium berghei during in vivo studies [12].

In 2017 itself, 21 crystal structures of recently discovered targets of Plasmodium
falciparum were reported in RCSB Protein Data Bank. Given the extensive
development in availability of high-resolution crystal structures of various impor-
tant targets and techniques available to analyze these targets, the opportunities to
carry out SBDD are enormous. Also, the availability of crystal structures of mutated
enzymes offers opportunities to understand the reasons for mutation, its effect on
the parasite and modifications required to overcome these mutations. The purpose
of this review is to understand the SBDD efforts involved in the identification of
new leads for malaria taking example of PfDHODH as a target.

2 New Targets for Antimalarial Agent Design
Employing SBDD

2.1 P. falciparum ATP-Dependent Heat Shock Protein 90

Heat shock protein 90 (HSP90) is a highly conserved molecular chaperone involved
in the protein folding, stabilization, and protein–protein interaction of a variety of
different proteins such as E3 ligases, transcription factors, various kinases, and
many other proteins [6a]. It thus plays a major role in signal transduction and
cell-cycle regulation of various species including P. falciparum [13]. Various
inhibitors including geldanamycin (anticancer drug) compete with the natural
substrate (ATP) for occupying the ATP-binding domain present at the N-terminal
of the protein. This inhibition results in the arrest of the parasite growth in
intra-erythrocytic phase by blocking the transition from immature ring-form stage
to maturetrophozoite stage [13].

It is a homodimer protein and has three functional domains: (1) ATP-binding
domain present at N-terminal, (2) a middle domain which facilitates ATP turnover,
and (3) C-terminal domain which helps in dimerization. The ATPase cycle begins
with the binding of substrate protein (like transcription factors, transducers) on the
hydrophobic interface between the N-terminal and middle domains. This is fol-
lowed by ATP binding and its subsequent hydrolysis that resulting in the com-
pression of the substrate protein [14]. Its inhibitors bind to the ATP-binding site and
halt conformational changes which are necessary to convert protein into compact
one. The crystal structure reveals that PfHsp90 enzyme (PDB ID: 3K60) comprises
of seven a-helices on one side and nine antiparallel b-sheets on other side of
enzyme. The ATP binds to the solvent-accessible surface between a b-sheet and
several a-helices. Hsp90 in all the species is characterized by the presence of an
ATP lid (with different length, tertiary structure, and conformation) which is formed
by the loop connecting the b-sheets and a-helices [13b].
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Experimental high-throughput screening analysis performed over 4000 natural
compounds recognized three new molecules, that includes Harmine, as selective
inhibitor of PfHSP90 [15]. Molecular docking and molecular dynamics analysis of
7-azaindole class of compounds (IND311 and IND31119) (Fig. 1) bound to
PfHSP90 active site have reported that the enzyme hydrophobic cavity is occupied
by the side chains present at first and second position of IND31119 [6b]. The side
chain of Asn37 residue forms two hydrogen bonds with secondary amine present at
position 5 and carbonyl of amide present at position 3 of IND31119. The 7th
position of IND31119 forms water-mediated hydrogen bond with Asn92 residue
and there was another Ile96 residue which also interacts with structural water
molecule. All these structural water molecules are conserved in enzyme active site
[13b]. An in vitro study demonstrated that Geldanamycin exhibits inhibitory action
on parasitic Hsp90 (with IC50 of 20 nM) [16]. The 7-azaindole (i.e., IND3) and
several other its derivatives (i.e., IND31119 and IND311) possess in vitro and in
silico selective antimicrobial activity against PfHSP90. In 2018, Posfai et al.
reported in vitro inhibitory activity of indazol-4(5H)-one class of compounds i.e.
SNX-2112 (with Ki 5.9 nM) and Harmine (with Ki 27,000 nM) on PfHSP90 target
[17]. The molecular dynamics simulations performed on PfHsp90, human Hsp90,
and mutated PfHsp90 indicated that human Hsp90 and mutated Hsp90 have more
flexibility as compared to PfHsp90 [6b].

Fig. 1 Structure of PfATP-dependent heat shock protein 90 inhibitors
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2.2 P. falciparum Phosphatidylinositol 4-kinase (PfPI4 K)

The phosphatidylinositol 4-kinase (PI4 K) enzyme catalyze the conversion of
phosphatidylinositol into two essential phospholipids, i.e., phosphatidylinositol
4,5-bisphosphate and phosphatidylinositol 3,4,5-triphosphate by phosphorylation at
one or more hydroxyl groups present in inositol moiety [18]. These phosphorylated
products regulate numerous biological events, including intracellular signaling,
vesicular transport, and cytoskeletal organization. Therefore, this biochemical
reaction is essential for mammals and for the parasite. The parasite has only this
enzyme to facilitate the phosphorylation of Phosphatidylinositol, but mammals
have four enzymes for this biochemical reaction [19]. Inhibition of PfPI4 K in
parasite cells lead to the deficiency of phospholipids in plasmodium leading to
disruption of plasma membrane around developing merozoites and finally causing
cell death. Also, lack of PI4 K in human erythrocytes ensure the unavailability of
phospholipids in the vicinity of the parasite cells [20].

Rajkhowa et al. in 2017 developed an acceptable homology model of the cat-
alytic domain of PfPI(4) KIIIb, consisting of 327 amino acids [19]. They selected
X-ray crystal structure of HsPhosphatidylinositol 4-kinase III b(PDB ID-4D0L) as a
structural template with 44% sequence identity. Chain A was considered (with
ligand PIK93 involved in antimalarial activity) for model development. The model
was validated with the help of Ramachandran plot (favoured—90.5%, allowed—
7.7%, and outlier—1.8%). The virtual screening analysis started with 178 com-
pounds selected from PubChem database. After hERG and toxicity screening, ten
compounds were selected for further molecular docking and molecular dynamics
analysis (e.g., CHEMBL3355638 and CHEMBL2062798, Fig. 2). These ten
compounds were docked into modeled PfPI(4) KIIIb enzyme. The most active
compound showed interaction with Lys66, Leu85, Tyr124, Val125, Thr128,
Cys129, Ser130, Ser133, and Ile197 after docking. The molecular dynamics studies
after 40 ns simulations using Gromacs package-4.6.6 showed important hy-
drophobic and polar interactions with Ile40, Leu44, Asn126, Asp198 residues [19].

An in vivo study on animal model suggested that imidazopyrazine class, KDU691
compound (Fig. 2) active against several drug-resistant strains (IC50 27–70 nM) with

Fig. 2 Structure of compounds CHEMBL2062798, CHEMBL3355638, and KDU691
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good potency [20] and exert their antimalarial effect through inhibitory interaction
with the ATP-binding pocket of PfPI4 K [21]. However, these compounds failed to
provide prevention against parasite in human due to poor solubility and causes
serious hERG liability (Arrhythmia). The reason for toxicity might be catalytic
similarity between human and parasite enzyme as suggested by the homology
model designed by Rajkhowa et al. [19].

2.3 PfNDH2 (P. falciparum NADH-Ubiquinone
Oxidoreductase)

PfNADH-ubiquinone oxidoreductase is an enzyme of respiratory chain, present on
the inner mitochondrial membrane. It is involved in the transfer of electrons from
NADH to subsequent CoQ (ubiquinone) for CoQ–H2 production and is coupled
with translocation of proton or Na+ across the membrane in mammals [22]. This
enzyme is also present in P. falciparum, but it does not pump protons across the
membrane; however, it still maintains the redox state of the cell. The human NDH2
is inhibited by rotenone, but PfNDH2 enzyme was found be insensitive to it.
A flavin reagent DPI (diphenyl iodonium chloride) inhibits the PfNDH2 enzyme
which leads to the depolarization of mitochondrial membrane potential and finally
parasite cell death [23].

The PfNDH2 enzyme exists in homodimer form comprising of four domains
(1) C-terminal domain (CTD) helps in dimerization, conserved in plasmodium
species; (2) two Rossmann fold domains, A and B, which bind to FAD and NADH
cofactors, respectively; (3) domain C which shares no homology with other
structures. Pidathala et al. in 2012 identified 2-bisaryl-3-methyl quinolone deriva-
tives as PfNDH2 inhibitors through in silico high-throughput screening studies
[24]. In this series, 7-chloro-3-methyl-2-(4-(4-(trifluoromethoxy)benzyl)phenyl)
quinolin-4(1H)-one (CK-2-68, Fig. 3) was identified to be the most potent com-
pound with 16 nM IC50 value against PfNDH2. However, due to poor solubility
issues, this structure was modified with fluorine substitution on the quinolone
ring to obtain 5-floro-3-methyl-2-(4-(4-(trifluoromethoxy)benzyl)phenyl)quinolin-4
(1H)-one (RYL-552, Fig. 3) [25]. It was found that RYL-552 binds as a

Fig. 3 Structure of PfNDH2 inhibitors
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non-competitive inhibitor at two different allosteric sites which were present close
to C-terminal domain, causing conformational changes in NADH binding region
that inhibits the binding of NADH to its pocket. These allosteric sites provide
potential selectivity with minimal side effects.

Yang et al. in 2017 also reported that a total of four molecules of RYL-552 bind
in the enzyme in homodimer state (PDB ID 5JWC). One molecule in each
monomer and two molecules at dimer interface with difference in their binding
poses. The first binding pose at the allosteric site between the two C-terminals of
the homodimer (dimer interface) showed that two hydrogen bonds were formed by
trifluoromethoxy group (with Tyr74 and Lys533), a hydrogen bond by carboxyl
group (with Asn92), a water-mediated hydrogen bond by 4-oxo-5-fluoro group of
quinolone with Gly87 and Lys523, and a hydrophobic interaction offered by bisaryl
part (with Leu174, Val91, Ile170, and Ile532) of RYL-552. The other binding pose
at the second allosteric pocket present in each monomer demonstrated that a
water-mediated hydrogen bond is formed by quinolone ring nitrogen with Glu218
and Arg529 residues, two hydrogen bonds by 4-oxo-fluoro group (with Lys501),
and two edge-to-face p-p stacking interaction by quinolone ring (with Trp500 and
Tyr475 residue) [25]. Other compounds like HDQ (1-Hydroxy-2-dodecyl-4(1H)-
quinolone), Aurachins A-D [26], RYL-552 [25], 7-chloro-3-methyl-2-(4-(4-(tri-
fluoromethoxy) benzyl)phenyl) quinolin-4(1H)-one (CK-2-68) with IC50 36 nM
[24], and quinolone NQO2 (p-fluoro substituent has IC50 9.6 nM) [27] were also
reported as inhibitors of PfNDH2.

2.4 P. falciparum Aspartate Carbamoyltransferase (PfACT)

Aspartate carbamoyltransferase is an essential enzyme for the de novo pyrimidine
biosynthesis in intra-erythrocytic stage, and it catalyzes the formation of
N-carbamoyl-L-aspartate from carbamoyl phosphate and L-aspartate (Fig. 5). The
malaria parasite cannot utilize salvage pathway for pyrimidine biosynthesis, as in
the case of human cells, makes it a potential drug target for antimalarial drug design
[28].

Banerjee et al. in 2011 developed a homology model of aspartate carbamoyl-
transferase using amino acid sequence of the P. falciparum 3D7 (ID:
XP_001350162.1 of NCBI database) as the target sequence and aspartate car-
bamoyltransferase of Pyrococcus abyssi (PDB ID: 1ML4, Resolution: 1.8 Å) as
template structure, with 38% overall sequence identity. The modeled structure was
found to be stable during molecular dynamics studies performed using NAMD2.5
software. The validation of modeled structure was carried out using PROCHECK,
WHATCHECK, WHATIF, VERIFY 3D, PROSA, ERRAT programs which sug-
gested high quality of the model. The Q-SiteFinder software was used to find the
possible active sites in the modeled protein. N-(phosphonacetyl)-L-aspartate
(PALA) was known to inhibit Escherichia coli aspartate transcarbamylase.
Therefore, PALA and its derivatives were selected for molecular docking in the
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predicted active site containing Ser107 using GOLD program. 3-(4-Hydroxy-
phenyl)-2-(2-phosphono-acetylamino)-propionic acid was found to be the most
suitable molecule docked in the predicted active site based on its good binding
affinity toward the enzyme [28].

Lunev et al. first reported the crystal structure of PfACT (or
PfAspartateTranscarbamoylase, PfATC) (PDB ID 5ILQ) in 2016 without any
bound ligand. In 2018, a comparative study was reported between the apo-form of
the enzyme, PfACT complexed with citric acid at the active site (PDB ID 5ILN)
and PfACT complexed with 2,3-naphthalenediol at the allosteric site (PDB ID
6FBA). The citrate-bound complex structure of the enzyme was found to be ana-
logues to the liganded R-state of the enzyme. It was observed that the active site is
highly conserved in this enzyme which might reduce the usefulness of this enzyme
as a target using SBDD approach. The recently reported crystal structure with
PDB ID 6FBA showed the presence of an allosteric site in which the enzyme is
present in the T-state which is very similar to the apo-protein. Most of the amino
acids in the allosteric site are non-conserved, thus making this site a potential target
for SBDD [29].

2.5 P. falciparum Thioredoxin Reductase (PfTrxR)

Thioredoxin reductase (TrxR) is a flavoenzyme (i.e., NADPH dependent) that
maintains the enhanced oxidative stress in the erythrocytic stage of the parasite. It
catalyzes the reduction of disulfide bridge of oxidized thioredoxin (Trx-S2) into the
thiol form, i.e., Trx-SH2. This enzyme system is present in the cytosol, para-
sitophorous vacuole, and endoplasmic reticulum of the parasite. The PfThioredoxin
(PfTrx1), a biological substrate for PfTrxR enzyme, is an important proton donor
for the vital proteins like ribonucleotide reductase and other sets of peroxiredoxins
[30]. P. falciparum lacks classical glutathione peroxidase and catalase enzymes
which are present in eukaryotes to manage oxidative stress. Therefore, this enzyme
plays an essential role for the survival of P. falciparum in the erythrocytic stages.
The disruption of the redox state leads to antimalarial activity [31].

It is a homodimer containing three redox active centers to balance the redox state
in P. falciparum (PfTrxR) [31]. These are: (1) FAD-binding domain (2) N-terminal
redox center near to the FAD-binding domain (Cys-88 and Cys-93), and
(3) C-terminal redox center located on the flexible and accessible arm of other
monomeric subunit (Cys-535 and Cys-540) which finally interacts with the thiore-
doxin substrate [30]. The homodimer is stabilized by Met105, Phe109, Ile108,
Trp118, Phe120, and Leu123 (aromatic and hydrophobic) residues present at the
interface. Met105 and Phe109, involved in the bending of interface helices, are
conserved in the plasmodium species but not in the mammals. It is also reported that
the buried interface of PfTrxR enzyme is stabilized by more polar contacts than that
of the human enzyme [32]. The PfTrxR shows up to 40–42% sequence identity to
the HsTrxR and 77–80% sequence identity with other five species of the malaria
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parasite. The CVNVGC redox center at the N-terminal is conserved for all six
species of plasmodium and human isoenzymes. However, the GCGGGKC region at
the C-terminal is found to be preserved in all plasmodium isoforms but not in the
HsTrxR [33]. The parasite has an extended loop at C-terminal which provides
flexibility and good interaction with PfTrx1 substrate [30]. In the RCSB PDB, two
crystal structures of PfTrxR are available in complexation with Trx1 (PDB ID: 4J56,
4J57) and one crystal structure of PfTrxR in the apo-form (PDB ID: 4B1B) [30, 32].

In the PfTrxR, NADPH and FAD cofactors bind to their respective pockets in
each monomer followed by hydride transfer from NADPHto FAD and then sub-
sequently to N-terminal redox center (Cys88 and Cys93). This step is followed by
the subsequent attack of Cys88 (present at the N-terminal of one monomeric
subunit) at Cys540′ (C-terminal of the neighboring monomeric subunit). This in
turn leads to nucleophilic attack of Cys540′ residue on the disulfide bond of
thioredoxin leading to a mixed disulfide bond formation between Cys540′ of
PfTrxR and Cys30 of PfTrx1. Finally, the mixed bond is broken with the help of
Cys535′ (PfTrxR) leading to the release of reduced substrate [30].

Boumis et al. in 2012 suggested the dimer interface cavity to be the site for
non-competitive inhibitors binding in the PfTrxR enzyme. In PfTrxR, a narrow
interface cavity is formed byTyr101 andHis104 residues which in case ofHsTrxR are
much wider due to the presence of equivalent Gln72 and Leu75 residues [32]. It was
also observed that smaller and slightly more amphipathic molecules could
have selectivity toward parasite. The PfTrxR enzyme cavity walls have less negative
charge compared to the human isoforms which can be further exploited for selective
inhibitor design [34]. Munigunti et al. in 2013 studied the binding interactions
of five known inhibitors of PfTrxR enzyme (1,4-napthoquinone (1,4-NQ),
bis-(2,4-dinitrophenyl)sulfide (2,4-DNPS), 4-nitrobenzothiadiazole (4-NBT), 3-
dimethylaminopropiophenone (3-DAP), menadione (MD)) at dimer interface of
PfTrxR and HsTrxR using molecular docking (AutoDock Vina software). It was
observed that Tyr101 residue forms p-p stacking interaction with all the inhibitors
while in HsTrxR due to the presence of Gln72 at the equivalent position shows a
different docking pose in order to avoid steric clashes. The other residues, i.e., Tyr116′
and Ile108, from both monomeric subunits (or only one subunit), form hydrophobic
interaction with the docked inhibitors [34]. Munigunti et al. in 2014 reported similar
residue interactions with curcuminoids at the dimer interface of PfTrxR using Auto
Dock software and suggested that the presence of methoxy group on curcumin
structure reduces the interaction with Tyr101 residue [35]. The aculeatin-like ana-
logues were also reported as inhibitors of PfTrxR enzymes [36].

2.6 P. falciparum Histone Deacetylase (PfHDAC)

Histone deacetylase (HDAC) posttranslationally modifies the histone proteins by
removal of an acetyl group from the e-nitrogen at the lysine side chain (present
within the histone protein) and prevents the accessibility of DNA (wrapped around
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histones) for transcription factor [37]. Under normal circumstances in plasmodium
parasite, only a few genes are expressed for transcription while the rest remain silent
at a particular stage, and this phenomenon is known as stage-specific expression of
genes. The inhibition of HDAC enzyme increases the acetylation that results in the
loss of control over the gene expression which must be expressed in stage-specific
manner in the parasite and, finally, implode the transcription cascade of parasite
[37]. This enzyme is an attractive target for antimalarial drug therapy because,
unlike mammalian cells, HDACs are more limited and potentially less redundant
than plasmodium species [38].

The crystal structure of PfHDAC-1 is yet to be elucidated. Therefore, a ligand-
refined homology model of PfHDAC-1 complexed with a hydroxamate-based
inhibitor TrichostatinA (TSA) was generated, using human HDAC8 as template. It
was observed that the modeled PfHDAC-1 enzyme comprises of a single domain
with open a/b class topology. The structure consists of eight b sheets surrounded by
fourteen a helices and these secondary structures were linked by seven loops.
PfHDAC-1 comprises of hydrophobic upper region (lined with His24, Pro25,
Thr96, Phe148, Phe203, Leu269, and Tyr301 residues) and a Zn2+ metal ion pre-
sent in its catalytic site. This metal ion forms penta-coordinated geometry forming
three bonds with the enzyme (side chain O(d) of Asp174, Asp262, and the N(d) of
His176) and two bonds with ligand’s hydroxamate group (i.e., carboxyl and
hydroxyl oxygen) [39].

Mukherjee et al. in 2008 performed molecular docking and molecular dynamics
studies on the homology model and found that hydroxamate group is essential for
binding with PfHDAC enzyme. The carbonyl oxygen of hydroxamate group forms
hydrogen bond interactions with Tyr301, His138, and His139 residues. The TSA
showed hydrophobic interaction with His24, Pro25, Phe148, Phe203, Leu269, and
Tyr301 residues [39].

The development of compounds that are selective for parasitic HDACs over
mammalian HDACs is still in relative infancy. SB939 (Fig. 4) was found to be a
potent inhibitor of PfHDAC enzyme (with IC50—100 to 200 nM) in in vitro and
in vivo studies, and its inhibitory effect was potentiated by aspartic protease inhi-
bitor Lopinavir [38b]. Other compounds like 2-ASA-9, WR301801, MS-275,
FR235222, LMK235 (and its derivatives) [40], Apicidin A [41], suberoylanilide-
hydroxamic acid (SAHA, Vorinostat®), and a sulfonylpyrrolehydroxamate

Fig. 4 Structures of PfHDAC-1 inhibitors
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(4SC-201, Resminostat) [39] were also found to be active against PfHDAC1. These
compounds were found to be less selective for the PfHDAC1 and thus show off
target activity.

2.7 P. falciparum Glutathione S-Transferase (PfGST)

Glutathione S-transferase (GST) is a detoxifying enzyme which catalyzes the
conjugation of glutathione to electrophilic substrates to form conjugated products
that are easily excreted out of body [42]. In plasmodium species, this enzyme
relieves the oxidative stress during the intra-erythrocytic stage of the parasite [43].
Due to its abundance in the parasite cells and increased activity in chloroquine-
resistant cells, it makes a potential target for antimalarial drug therapy [44].

Wolf et al. in 2003 found that PfGST enzyme exists in dimer–tetramer transition
state. Liebau et al. in 2005 observed that it favors tetrameric inactive state in the
absence of reduce GST and other ligands. Liebau et al. in 2009 demonstrated that
dimer–tetramer transition state is only present in case of PfGST and absent for
HsGST. The active homodimer form is mainly assisted by hydrophobic interactions
in which Phe56 residue of one subunit is buried inside the hydrophobic pocket of
the other subunit formed by Trp131, Phe135, and Tyr134 residues. A hydrogen
bond interaction between side chain of Arg77 and Asp97 residues, present at the
two different neighboring monomeric subunits, also play important role. In typical
l-class human GSTs, the active (G- and H-) sites are present deep in the protein
structure and are shielded by amino acids where as in case of PfGST, these two sites
(G- and H-sites) have more access to solvent. Furthermore, the two non-active
dimers (i.e., inactive forms of the dimer) are interconnected by the loop 113–119
with the help of mainly hydrophobic and a few hydrophilic interactions, leading to
the formation inactive tetramer state. These loop interactions block the active site of
the enzyme and make it inactive [45]. Perbandt et al. later found that whole loop
113–119 is not important for the formation of inactive tetramer state, but Asn112
and Lys117 residues of neighboring subunits are most essential [45]. Other
hydrogen bonds formed by Thr121 and Lys175 also aid to the tetramer formation. It
was identified by Perbandt et al. that the non-substrate binding pocket was occupied
by MES (2-(N-morpholino) ethanesulfonic acid) in its tetrameric form (PDB ID
4ZXG). The non-substrate binding pocket is outlined with Tyr25, Leu26, Leu196,
Pro197, and Asn198 residues. These residues form a highly positively charged
environment which attracts negatively charged ethane sulfonic moiety of MES by
hydrogen bond formation with Asn198 and hydrophobic interaction with other
residues of the cavity [45]. After mutation studies, Tyr9 was identified as an
essential residue for selective inhibition of PfGST [43]. The other inhibitors
reported for the target were S-hexylglutathione [43], Protoporphyrin IX, cibacron
blue, and menadione [46].
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3 P. falciparum DHODH

Dihydroorotate dehydrogenase (DHODH) is one of the most validated and druggable
targets. Miller et al. in 1968 first isolated L-dihydroorotate–ubiquinone reductase
complex (from the beef liver) and was determined to be a mitochondrial enzyme [47].
The enzyme was recognized as dihydroorotate dehydrogenase (DHODH) and was
further isolated from rat liver in 1976 by Chen et al. [48]. Its localization was
determined to be the outer surface of the inner mitochondrial membrane which allows
free diffusion of dihydroorotate (DHO) from cytosol into the mitochondria and
orotate from mitochondria to the cytosol for further conversion to uridine
monophosphate (UMP). Larsen et al. established in 1985 that the E. coliDHODH is a
flavoprotein which catalyzes the conversion of dihydroorotate (DHODH) to orotate
in the fourth and only redox reaction in de novo pyrimidine biosynthesis [49].
The DHODH enzymes can be classified into two different classes [50]:

Family I includes the cytosolic enzymes which utilize fumarate or NAD+ as the
terminal electron acceptor and deprotonation of alpha hydrogen occurred in the
presence of cystein.
Family II includes membrane-bound enzymes that transfer electrons to ubiquinone
(CoQ) and deprotonation occur in the presence of serine. Both human and plas-
modium contain family II mitochondrial enzymes. In the host cells, pyrimidine
biosynthesis occurs via salvage and de novo pathway, whereas in P. falciparum
pyrimidines are synthesized only via de novo pathway. Thus, lack of salvage
pathway in plasmodium makes it a vulnerable target [51].

McRobert and McConkey in 2002 reported the importance of DHODH enzyme
in P. falciparum by performing RNA interference assay [52]. In 2002, Baldwin et al.
conducted inhibitory studies of various known human DHODH inhibitors (Redoxal,
dichloroallyllawsone (DCL), three analogs of A77-1726, and brequinar analogs) on
malarial enzyme [53]. It was observed that the plasmodium enzyme showed 102–104

folds higher IC50 compared to the human enzyme. This study suggested that inhi-
bition of DHODH enzyme is species specific and can be further explored to design
P. falciparum selective DHODH inhibitors. Boa et al. in 2005 identified brequinar
derivatives as non-selective and weakly selective PfDHODH inhibitors proving the
previous hypothesis and laying a base for further development of selective
PfDHODH inhibitors [54]. Baldwin et al. identified phenyl benzamide/
naphthamides as selective PfDHODH inhibitors in nanomolar range through
high-throughput screening [55]. Heikkilä et al. used de novo design technology to
identify six molecules as PfDHODH inhibitors in micromolar range [56].

3.1 Functional Aspects of PfDHODH

Pyrimidines are essential metabolites that are precursors for DNA and RNA
biosynthesis. Cells acquire pyrimidines either through de novo synthesis starting
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from ammonia (derived from L-Gln), bicarbonate, and L-asp, or by salvaging
preformed pyrimidine base. Plasmodium species lack pyrimidine salvage enzymes
and the de novo pathway provides the only source of pyrimidines for cell growth. In
contrast, human cells are able to utilize both pathways. Inhibition of de novo
pyrimidine synthesis in humans leads to immunosuppression and bone marrow
depression. Immunosuppression is desirable in rheumatoid arthritis and organ
transplant. However, immunosuppression and bone marrow depression during
malaria may lead to life threatening situations which necessitate selective inhibition
of parasite DHODH to be of utmost importance [57]. Pyrimidine biosynthesis
requires six enzymes that are essential for the synthesis of UMP which is further
utilized in generation of UTP, CTP, dTMP, and other metabolites of these
nucleotides required by the cell. Enzymes involved are bifunctional glutamine
amidotransferase/carbamoyl phosphate synthetase (GAT/CPS), aspartate car-
bamoyltransferase (ACT), dihydroorotase (DHOtase), DHODH, orotate phospho-
ribosyltransferase (OPRT) and orotidine 5′-monophosphate decarboxylase
(OMPDC) (Fig. 5). The only redox step in the de novo synthesis of pyrimidines is
the oxidation of DHO to ORO catalyzed by DHODH [58]. Reaction involves both a
deprotonation and a hydride transfer converting DHO to ORO [59]. The reaction
involves removal of acidic proton located at a position to the carbonyl group by an
active base (Ser in family II enzymes) and the transfer of the hydrogen on C of
DHO directly to N of the flavin as a hydride resulting in reduction of FMN to

Fig. 5 Schematic representation of pyrimidine biosynthetic pathway
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FMNH2 (Fig. 6). FMNH2 then gets reoxidised to FMN by ubiquinone (CoQ) which
itself gets reduced to ubiquinol (CoQ–H2). Inhibitors of DHODH affect the binding
of this co-substrate ubiquinone with FMNH2 [60].

A kinetic isotopic study on E. coli and human DHODH identified the mechanism
of proton and hydride transfer with specific roles played by conserved amino acids.
Two mechanisms were proposed, i.e., concerted and sequential in the absence of
tunneling. It was observed that without tunneling, a concerted oxidation of DHO to
orotate is not compatible. However, two stepwise mechanisms are still possible. If
deprotonation precedes hydride transfer, then an enolate intermediate would form
that could be stabilized by two conserved asparagine residues. If hydride transfer
precedes deprotonation, ammonium intermediate would form that could hydrogen
bond with another conserved asparagine residue [59, 61].

3.2 Structural Details of PfDHODH

PfDHODH belongs to the DHODH family 2 located on the outer side of the inner
mitochondrial membrane (mitochondrial intermembrane space) (Fig. 5) and is
embedded in the membrane by a single a-transmembrane helix that holds the

Fig. 6 Schematic representation of “hip-hop” redox mechanism involving transfer of hydride
from C of DHO to N of FMN oxidizing dihydroorotate (DHO) to orotate (ORO) and reducing
FMN to FMN-H2. FMN-H2 is reoxidised to FMN by co-substrate ubiquinone (CoQ) which itself
gets reduced to ubiquinol (CoQ–H2)
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Table 1 Crystal structures of PfDHODH with various inhibitors, year of publication, resolution
and enzyme inhibitory acitivity (IC50) in µM

Sr. No PDB
ID

Hit structures Year Resolution
(Å)

Pf IC50

(µM)
Hs IC50

(µM)
Refs.

1 1TV5 2005 2.40 190.1 0.26 [62]

2 3I6R 2009 2.50 0.28 >100 [64]

3 3I65 2009 2.00 0.047 >100 [64]

4 3I68 2009 2.40 0.056 >100 [64]

5 3O8A 2010 2.30 0.022 >30 [65]

6 3SFK 2011 2.90 Å 0.038 >100 [66]

7 4CQ8 2014 1.98 0.08 >30 [67]

8 4CQ9 2014 2.72 3.5 3.8 [67]

9 4CQA 2014 2.82 13.5 >30 [67]

10 4ORM 2014 2.07 0.022 1.6 [68]

11 4RX0 2015 2.25 0.033 >100 [69]

(continued)
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Table 1 (continued)

Sr. No PDB
ID

Hit structures Year Resolution
(Å)

Pf IC50

(µM)
Hs IC50

(µM)
Refs.

12 5BOO 2015 2.80 0.033 >100 [69]

13 5DEL 2015 2.20 0.016 >100 [70]

14 5FI8 2016 2.32 0.0046 >100 [71]

15 5TBO 2016 2.15 0.053 >100 [72]

Fig. 7 Secondary structure of PfDHODH. Cylinders represent a-helices and arrows represent
b-sheets. Green a-helices form the N-terminal and red are part of C-terminal. Yellow color
represents parallel b-sheets and cyan color represents antiparallel b-sheets. Light magenta color
shows small helices with 3–5 amino acids
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position of the enzyme in the membrane [62]. PfDHODH has a total of 569 amino
acids [50a] and till now 15 crystal structures are reported for this enzyme. Table 1
lists the reported crystal structure details from Protein Data Bank (PDB). All the
crystal structures reported so far consist of full details of C-terminal domain but
only the truncated details of N-terminal domain (amino acids 158–569). Amino
acids 143–163 are part of the transmembrane helix and the remaining N-terminal
part is located in the mitochondrial matrix for which no structural details are
available (uniport ID Q08210). The secondary structure of the truncated enzyme
(Fig. 7) (generated using Jpred 4 software using PDB ID 5FI8) consists of 13 b
sheets and 16 a helices [63]. Details of secondary structure for amino acids 1–142
are not provided in the literature so far.

The most important structural feature of PfDHODH is the presence of a/b-barrel
core domain which is formed due to the almost parallel arrangement of eight
b-sheets (Fig. 8). This b-barrel is surrounded by seven a-helices which provide
protective layer to the core. The 3D structure is also characterized by the presence
of a few short helices interspersed across the protein. The barrel is capped by a pair
of antiparallel b-strands on one side and three b-strands on the other side [62].

The catalytic site is present near the cap with three b-strands. The cofactor FMN
and substrate DHO bind in this region before undergoing redox catalytic reaction.
There is a very unique tunnel in the 3D structure of DHODH. This is the tunnel
through which a long-chain co-substrate with the quinone head group and six to ten
repeating isoprene units (ubiquinone) travel through and reach the co-substrate

Fig. 8 3D structure of PfDHODH showing central barrel formed by parallel b-sheets (in yellow)
wrapped around with a-helices (in red, a1–a9). Both ends of the barrel are covered by anti-parallel
b-sheets forming the lid (in cyan). The turns are represented in light magenta. The reaction site
contains FMN as co-factor (in dark green) and dihydroorotate (in magenta) as substrate. This site is
connected to the ubiquinone tunnel through two a-helices (in green, a10-a11) of the N-terminal
and contains the inhibitor (DSM422) in yellow (PDB ID 5FI8) [71]
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binding site. The prosthetic group of FMN in the middle separates the
dihydroorotate-binding site (substrate binding site) at the mouth of the barrel from
the CoQ-binding tunnel (co-substrate binding site) at the outer surface of the barrel.
The aromatic ring of DHO is almost parallel to FMN and is 3.2–3.8 Å from its
siface. DHO’s other face is completely covered by the Asn212–Gly226 loop [62].
The tunnel through which ubiquinone enters is formed by two a-helices (a10–a11)
of the N-terminal domain (Fig. 8). These two a-helices of the N-terminal guide the
entry of the CoQ co-substrate into the CoQ-binding tunnel to reoxidise FMNH2 to
FMN. CoQ is directed through the inner mitochondrial membrane with the help of
transmembrane a-helix which is embedded into the membrane with a tilt of 8 ± 7°.

The X-ray crystal structure analysis of the PfDHODH enzyme (PDB ID 1TV5)
proposed the CoQ-binding tunnel to be the site of inhibitor binding and co-substrate
binding (Fig. 9). In 2008, Malmquist et al. performed site-directed alanine muta-
genesis studies of seven residues (His185, Phe188, Phe227, Arg265, Ile272, Tyr528,
and Leu531) in the A77-1726 binding site. It was observed that the CoQ-binding site
and species-selective inhibitor site do not overlap. It was suggested that the inhibitor
acts by blocking the electron path between the FMN and CoQ or by stabilizing the
enzyme conformation that excludes the ubiquinone-binding site [73].

3.3 Comparison with DHODH of Other Species

A total of 162 crystal structures of dihydroorotate dehydrogenase from different
species are available. These crystal structures and sequence alignment studies
clearly established that the enzyme forms two families (Table 2) [50b, 74].

Fig. 9 Surface view of
CoQ-binding tunnel (gray)
with the inhibitor (PDB ID
5FI8)
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Inhibition of PfDHODH can be considered by either blocking the DHO (sub-
strate)-binding site or CoQ (co-substrate)-binding site. In most of the species, the
DHO-binding site is conserved which can lead to selectivity issues. High variability
is observed in ubiquinone-binding site which renders it to be the preferential site for
species-selective DHODH inhibition. Selectivity against HsDHODH and
PfDHODH is the major requirement for designing antimalarial leads.

The CoQ-binding tunnel is divided into three regions, i.e., mouth, waist, and end
of the tunnel. Structural and chemical composition differences in these regions lead
to the species-selective inhibition. The mouth of the HsDHODH is broader com-
pared to PfDHODH due to a slight kink provided by LeuHs42. This leads to an
average r.m.s backbone displacement of 2.2 Å between the human and PfDHODH
protein domain. Also, substitution of PhePf171 and MetPf536 for LeuHs42 and
ProHs364, respectively, brings the N-terminal of the first helix closer to the
C-terminal of the second helix which is responsible for the narrow mouth of the
tunnel in PfDHODH. End of the tunnel in case of PfDHODH is comparatively
smaller than the HsDHODH which is due to the replacement of ValHs134 and

Table 2 Classification and sub-classification of two families of DHODH enzyme and their
respective properties [50b, 74]

PROPERTIES FAMILY 1 FAMILY 2

Location Cytosol Outer Membrane of inner mitochondria

Final electron 

acceptor
Fumarate or NAD

+
Ubiquinone (CoQ)

Base Cystein Serine

Organisms Mostly prokaryotes Most eukaryotes

Differences Core domain forms the entire protein

In addition to core domain, N-terminal domain 

(forms ubiquinone binding tunnel). Two α-

helices of N-terminal are markers for family 2. 

This is preceded by a single transmembrane 

helix which anchors protein onto the inner 

mitochondrial membrane and a putative 

mitochondrial signaling sequence.

Properties 1A 1B 1S

Structure Homodimer Heterodimer Heteromeric

Base Cystein
NAD-

dependent
Serine

Electron 

receptor
Fumarate

An iron-sulfur 

cluster and 

FAD

CoQ and 

molecular 

oxygen

Commonality α/β-barrel core domain containing flavin prosthetic group that forms the active site
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ValHs143 with larger size hydrophobic residues, i.e., IlePf263 and IlePf272,
respectively. This results in the ineffectiveness of the larger molecules such as
brequinar and atovaquone to bind in PfDHODH. Hurt et al. in 2005 reported the
role of non-conserved residues in modifying the interactions of the inhibitor
(A77-1726) with the conserved amino acids. The replacement of MetHs43 and
AlaHs59 for LeuPf172 and PhePf188, respectively, leads to alteration in the H-bond
pattern of the inhibitor with the conserved residues (HisPf185, ArgPf265, and
TyrPf528) at the end of the tunnel. Also, the replacement of TyrHs147 for CysPf276
leads to conformational changes in HisPf185 resulting in changed interaction pattern
of the inhibitor for the two enzymes [62]. In summary, the non-conserved residues
present in the inhibitor binding site of the PfDHODH structure are PhePf171
(LeuHs42), MetPf536 (ProHs364), LeuPf172 (MetHs43), PhePf188 (AlaHs59),
LeuPf176 (GlnHs47), IlePf263 (ValHs134), IlePf272 (ValHs134) [62, 75].

3.4 Inhibition of DHODH

L-DHO was observed to be the specific substrate of DHODH with a Km value of
5.2 ± 0.6 µM. D-DHO is not a substrate but inhibits the enzyme competitively
with Ki of 1.4 mM concentration [48]. For the oxidation from DHO to orotate,
L-DHO diffuses passively from the cytosol to the intermembrane space of the
mitochondria where it binds tightly to the enzyme due to low Km value so that
enzyme shows maximum efficiency even at low concentrations of DHO. It was
observed that conversion of DHO to orotate is not the rate-limiting step, so
substrate-competitive inhibition will not be effective. This leaves the researchers
with two possibilities for inhibition of the enzyme, i.e., either by increasing the
intracellular accumulation of orotate or a lack of oxygen/its equivalent (inhibition of
electron receptor). However, intracellular accumulation of orotate inhibits dihy-
droorotase (enzyme catalyzing the formation of DHO from carbamylaspartate), thus
controlling the intracellular concentration of DHODH. Thus, the main center for
enzyme inhibition is obstructing the electron receptors [48].

Copeland et al. studied the role of N-terminal in enzyme inhibition in human
DHODH. It was observed that the essential catalytic region and site of inhibition are
located within 40 kDa area of truncated enzyme and the remaining 10 kDa of the
truncated N-terminal portion of the protein does not significantly disturb the cat-
alytic action or inhibitor binding ability of the enzyme [76]. However, it was later
observed that the truncated enzyme only retains the activity under in vitro condi-
tions and not under in vivo conditions [77]. This may be due to the removal of
signaling peptide and transmembrane helix which are responsible for cellular
localization and directing CoQ into the ubiquinone-binding tunnel.
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3.5 Reported Classes of Compounds for PfDHODH
Inhibition

There are nine chemical classes of PfDHODH inhibitors known in the literature
(Fig. 10). Different classes of PfDHODH reported in the literature are triazolopy-
rimidine (I) [78], diethyl 2-((arylamino)methylene)malonate (II) [79], benzamide/
naphthamide derivatives of anthranilic acid (III) [56], N-alkyl-5-benzimidazole
thiophene-2-carboxamide (IV) [65, 80], benzamide (V) [55], N-substituted salicy-
lamides (VI) [81], thiazole (VII) [82],7-arylaminopyrazolo[1,5-a]pyrimidines
(VIII) [83], and dihydrothiophenone (IX) [84]. DSM265 [69] from triazolopy-
rimidine class is in clinical development phase, and two analogs of Genz-667348
(N-alkyl-5-benzimidazole thiophene-2-carboxamide derivatives) [80b] are under-
going pilot toxicity testing to determine their suitability as clinical development
candidates.

3.6 Structure-Based Drug Design of PfDHODH inhibitors

All the early efforts to the identified PfDHODH inhibitors are based on the known
HsDHODH inhibitors. First effort was initiated by Boa et al. (in 2005), in which
various analogues of Brequinar (Fig. 11 XII) (HsDHODH inhibitor; immunosup-
pressive agent) were designed using analog-based methods [54]. These
quinolone-4-carboxylic acid derivatives showed poor to moderate selectivity and
activity in medium micromolar range. This study was followed by report of
high-throughput screening studies on PfDHODH inhibitors by Baldwin et al.
(2005) [55]. The chemical classes included halogenated phenyl benzamide/
naphthamides and napthyl or quinolinyl substituted urea-based compounds.
Inhibitor binding site was confirmed by direct site mutagenesis (His185Ala and

Fig. 10 Different classes of PfDHODH inhibitors
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Arg265Ala) which confirmed teriflunomide (Fig. 11XI) binding pocket to be the
current binding site. Benzamide derivatives were found to be more potent in
PfDHODH compared to HsDHODH (IC50 value range 50–520 nM) and selective
(70–12, 500 fold selectivity toward PfDHODH and against HsDHODH). In ben-
zamide derivatives, 2-nitro-3-methyl benzamide-based compounds showed high
preference for the parasite enzyme. However, these molecules showed weak activity
in cell-based assays indicating low absorption through the cells. In 2005, Hurt et al.
reported the X-ray crystal structure of PfDHODH with teriflunomide [62]. This
provided opportunity for the SBDD approach for designing of various PfDHODH
inhibitors based on the detailed knowledge about the active site in which the inhi-
bitors bind (the 3D structure of HsDHODH is known since 2000) [60].

3.6.1 Benzamide/Naphthamide Derivatives of Anthranilic Acid

Anthranilic acid derivatives were designed using de novo molecular design pro-
gram SPROUT [56]. De novo drug design is a part of structure-based drug design
methods in which molecular fragments and atoms are made to interact with the
binding pocket of the target enzyme and subsequently assembled in a stepwise
manner based on the interactions on these fragments. This finally results in a
template with novel chemotype and expanding the chemical library for A given
target. The tractable synthetic route is also considered while preparing an in silico
library of high-quality structures [85]. Sprout de novo design tool uses different
modules to achieve these functions which particularly include (a) identification of
the binding pocket; (b) recognizing the hydrophobic regions, probable polar regions
and metal bonding possibilities; (c) docking of various functional groups, frag-
ments, and atoms into the binding pocket; (d) joining all the fragments in the best
possible way by satisfying the steric constrains; (e) finally, scoring the fragments
and sorting out the templates based on their binding affinity, complexity, synthetic
feasibility, and substructure search [86].

For this study, Heikkilä et al. (2006) [56] studied the reported X-ray crystal
structures of teriflunomide (A77-1726) with HsDHODH (PDB ID 1D3H) [60] and
PfDHODH (PDB ID 1TV5) [62]. It was observed that the inhibitor binding tunnel
in the HsDHODH is considerably flattened due to the methyl side chain protrusion

Fig. 11 Structures of HsDHODH inhibitors; Leflunomide (X), Teriflunomide (XI), and Brequinar
(XII)
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of the Ala59 at the position where the phenyl ring of the teriflunomide binds.
Similar position in PfDHODH cavity is comparatively less congested (Ala59 is
replaced by Phe188) and seems to accommodate the inhibitors which might provide
a cylindrical geometry. Considering this structural feature, six molecules which are
amides of anthranilic acid were identified as potential inhibitors. The two major
conformations of designed molecules were hypothesized to play an important role
in selective inhibition of PfDHODH (Fig. 12). The non-planar arrangement of the
two phenyl rings (Fig. 12b) was considered to favor the PfHDODH binding,
whereas the planar phenyl rings (Fig. 12a) were more suitable for HsDHODH
binding. The conformer B (Fig. 12) was predicted to be more suitable for
PfDHODH inhibition and it was restricted by N-methyl substitution. Enzyme
inhibitory assay showed that the N-methyl substituted biphenyl (PfDHODHIC50

42.6 µM) and bromonaphthylbenzamide derivatives (PfDHODHIC50 93.4 µM)
were selective against PfDHODH inhibition, whereas N-unsubstituted compounds
were non-selective and more active against HsDHODH inhibition.

3.6.2 Diethyl 2-((Arylamino)Methylene) Malonate

Heikkilä et al. (2007) proposed the design of multicyclic aromatic rings which are
malonate and cyanoacrylate derivatives [79]. Ten compounds with mono-, bi, and

Fig. 12 Two observed
conformers of the designed
inhibitor template (Fig. 10,
III). Methyl substitution at
the amide nitrogen causes
conformational restrictions

Fig. 13 Structure of
compounds showing good
inhibitory activity against
PfDHODH with selectivity
against HsDHODH
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tricyclic heteroaromatic ring systems were synthesized and tested against
PfDHODH and HsDHODH. It was observed that tricyclic derivatives, i.e.,
diethyl-2-((dibenzo[b,d]thiophen-2-ylamino)methylene)malonate(Fig. 13, XIII)
and ethyl-2-cyano-3-((9-ethyl-9H-carbazol-3-yl)amino)acrylate (Fig. 13, XIV),
show the most promising results with PfDHODHIC50 in lower micromolar range
(0.16 and 0.44 µM, respectively) and relatively high selectivity toward PfDHODH
(182- and 1208-fold selectivity, respectively, against HsDHODH). Heteroaromatic
bicyclic compounds (indazole and benzimidazole derivatives), phenyl derivatives,
and m-biphenyl derivatives have PfDHODHIC50 values in higher micromolar range
and low selectivity (1–10 folds). The p-biphenyl derivatives were found to be
inactive in both PfDHODH and HsDHODH. The molecular docking results of the
tricyclic compounds (in the crystal structure with PDB ID 1TV5) demonstrated the
importance of planar aromatic hydrophobic groups for p-stacking interaction with
Phe188 (the selectivity is due to the presence of Ala59 in HsDHODH in place of
Phe188 in PfDHODH). The non-planar biphenyl rings are not accommodated into
the hydrophobic site, and hence, biphenyl derivatives are not suitable. The polar
groups of the active compounds showed hydrogen bonding interactions with
His185, Arg265, and Tyr528 amino acids at the end of the tunnel [79].

3.6.3 Triazolopyrimidine

Phillips et al. (2008) first reported triazolopyrimidine derivative obtained through
high-throughput screening studies on PfDHODH [78]. A total of 220,000 molecules
were screened through colorometric enzyme assay from which DSM1 (Fig. 14b)
was identified (PfDHODHIC50 value of 0.047 ± 0.022 µM). This molecule showed
an EC50 value of 0.079 ± 0.048 µM and 0.14 ± 0.05 µM in whole-cell assay
against non-resistant strain (3D7) and multidrug-resistant strain (Dd2), respectively.
The hit also showed >5000-fold selectivity against HsDHODH.

It was observed that primary amine is essential for the activity. Methyl group
substitution is suitable for R and R1 position (Fig. 14a). Naphthyl group at R3

(a) (b)

Fig. 14 a General structure of triazolopyrimidine class of compounds. b Structure of DSM1,
DSM2, and DSM74
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(Fig. 14a) position shows optimal activity and introduction of heteroatom in the
naphthyl ring leads to decrease in enzymatic activity. A smaller aromatic group
other than naphthyl and anthracene moiety leads to decrease in activity. Even
though DSM1 showed good in vitro and whole-cell activity, it was not active
in vivo against P. berghei. It was further observed that the compound showed
reduced plasma concentration on repeated exposure [78, 87]. In 2009, Gujjar et al.
prepared a series of forty new compounds with different substituted phenyl moieties
at R3 position [87]. Para substitution was found to give active compound compared
to the unsubstituted and o-/m-substituted analogues and large electron-withdrawing
hydrophobic substituents were found to be preferred in the order of
CF3 > Br > OCF3 > CH3 > NO2 > F > Cl. DSM74 was found to be the best
choice among the prepared series with PfDHODH IC50 0.28 ± 0.02 µM (Pf3D7
cells EC50 0.34 ± 0.04 µM). The compound DSM74 was equally potent in
P. falciparum and P. berghei and showed good plasma exposure in mice in vivo
studies. This hit was also more stable in human microsomes (in vitro). This study
established the confidence that this class of compounds can be active in in vivo
studies and there is a scope for further improvement of its metabolic profile.
However, DSM74 showed activity in mid-nanomolar range leaving a wide berth for
further improvement [87].

In 2009, Deng et al. reported the crystal structures of lead PfDHODH inhibitors
(DSM1, DSM2, DSM74) in the inhibitor binding site of PfDHODH (PDB ID 3I65,
3I68, 3I6R, entry 2–4, Table 1) [64]. The triazolopyrimidine ring in all three
inhibitors binds to the polar region at the end of the inhibitor binding tunnel similar
to the teriflunomide binding in crystal structure 1TV5. The amino acids involved
are His185 forming hydrogen bond with N1 (Fig. 14a) and Arg265 forming
hydrogen bond with N5. In case of DSM2 and DSM74, the triazolopyrimidine ring
tilts slightly inside the polar region with the slight reorientation of amino acid
Leu176. Tyr528 show water-mediated hydrogen bond with N3 of the inhibitor in all
three crystal structures. The orientation of the inhibitor in the cavity is such that C5

position lies closest to the FMN (6 Å distance) and there is a small channel which
can be further exploited for structure-based drug design. The hydrophobic pocket in
these three crystal structures is different from that of 1TV5. The amino acid residues
of the hydrophobic pocket comprises of Ile237, Leu189, Leu197, Met536, Phe227,
and Phe188. The large aromatic ring of DSM2 is accommodated by small rotational
changes of amino acid residues Leu197 and Met536, which results in the expansion
of the hydrophobic cavity. The smaller phenyl group of DSM74 does not fill the
hydrophobic cavity completely and this might be the reason for its 10-fold less
activity than that of DSM1 and DSM2. There is an extended aromatic stacking
network from FMN to Tyr528 carried forward toward the hydrophobic pocket
through Phe227 which forms edge-to-face p-p interaction with the inhibitor
naphthyl (DSM1)/phenyl (DSM74) ring followed by p-p interaction with Phe188.
The mutagenesis studies of the inhibitor binding pocket suggested that His185 and
Arg265 mutation to Ala raises the IC50 by 80–90-folds. Other mutations have less
effect on the activity with a raise of 5- to 30-fold in IC50 value. Also, a very
interesting observation was noted during the crystal structure of the inhibitor. It was
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observed that the N1–C1 (Fig. 14a) bond length of the inhibitor was between single
and double bond (1.313 Å in DSM1) and partial positive charge was observed at
N1, indicated by the presence of chloride ion adjacent to the N1 in the crystal
structure. It was suggested that the triazolopyrimidine undergoes electron delocal-
ization between N1 and N5, giving a low-range positive dipole at the N1 center
which enhances its interaction with His185 and N5 acquires a slight negative dipole
which allows it to form an ion pair with Arg265 [64]. This delocalization of charges
might be the reason for inactivity of compounds with O and S as bridging atoms.
Further modifications at the m- and p-positions led to the identification of DSM161
(Fig. 14a; R = CH3, R1/R2/R4 = H, R3 = 4-SF5-Ph) and DSM190 (Fig. 14a;
R = CH3, R1/R2/R4 = H, R3 = 3,5-diF-4-CF3-Ph) with PfDHODH IC50 to be 0.13
and 0.19 µM, respectively. These compounds showed better plasma exposure and
improved efficacy in mouse model [88].

This activity was further improved by Coteron et al. (2011) with the design of
DSM265 (Fig. 14a; R = CH3, R1/R2 = H, R3 = 4-SF5-Ph, R4 = CF2CH3) which
was found to be active against both sensitive and resistant strains of P. falciparum
[66]. As discussed above [64], the crystal structure of PfDHODH with tria-
zolopyrimidines showed a narrow channel existing between the FMN and inhibitor.
In order to improve the pharmacokinetics along with the activity, this information
was utilized and modifications were done at the R4 position. Small hydrophobic
electron-withdrawing groups were found to fit in the narrow space, out of which
CF2CH3 was found to be most suitable. It showed potency similar to chloroquine in
humanized SCID mouse Pfmodel. The compound also showed excellent oral
bioavailability, long half-life, and low clearance in humanized SCID mouse
Pfmodel. DSM265 was found to possess excellent in vivo efficacy with once a day
dose in mice. Further extended studies gave very promising results in order to
consider DSM265 as a drug candidate [69]. The Pf and Pb IC50 were found to be
0.033 and 2.5 µM, respectively, with the Pf 3D7 cells EC50 to be 0.046 µM. It
showed a high selectivity, >100 µM, against HsDHODH. The compound was
analyzed to act on both liver and blood stage of the parasite and active against
isolated resistant strains. 200–400 mg dose for eight days is well tolerated in
repeated dose with cardiovascular safety in mice and dogs. DSM265 thus shows an
excellent safety profile, blood–liver stage activity and a predicted long half-life in
humans [69]. The crystal structure (PDB ID 4RX0, entry 11, Table 1) showed that
the –CF2CH3 group shows van der Waals interactions with amino acid residues
Ile263, Ile272, the hydrophobic potion of Arg265 side chain and Tyr528. Also, the
electron-withdrawing effect of fluorine reduces the electron density on triazole ring
nitrogens, which may be responsible for increased potency. Recently, Kokkonda
et al. proposed tetrahydro-2-naphthyl and 2-indanyl substituted triazolopyrimidines
with improved potency and selectivity over DSM265 [71]. However, these com-
pounds have high metabolic clearance and are proposed to be tolerated only in
multi-dose regime.

In 2012, Bedingfield et al. proposed selectivity factors responsible which can be
exploited to design HsDHODH and PfDHODH selective triazolopyrimidine class
of inhibitors [75]. It was observed that HisHs56 and HisPf185 play important role in
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selectivity. The amino acid residue TyrHs147 form direct or indirect hydrogen bond
with HisHs56 which moves the d nitrogen of HisHs56 away from the inhibitor
binding site (Fig. 15). In case of PfDHODH, TyrHs147 is replaced by CisPf276
which cannot form hydrogen bond with HisPf185, thus directing the d nitrogen
toward the inhibitor binding site forming a direct hydrogen bond with the inhibitor.

3.6.4 N-Alkyl-5-(1H-Benzimidazol-1-yl)Thiophene-2-Carboxamide

Compounds belonging to this class were designed based on the high-throughput
screening studies from Genzyme library, by Patel et al. [80a]. In this study, 208,000
compounds were screened for PfDHODH inhibitory activity. Thirty-eight com-
pounds from this library were identified for showing PfDHODH inhibition in

Fig. 15 Overlapped N-terminal of PfDHODH (green) and HsDHODH (magenta) showing
important amino acids residues important for selectivity

Fig. 16 Structural modification of thiophene derivatives, toward optimization of PfDHODH
activity using SBDD approach
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sub-micromolar range out of which thirty-three were picked based on their selec-
tivity against human DHODH. The selected molecules were further tested against
3D7 strain of P. falciparum from which five molecules showed activity in
sub-micromolar range. The selected molecules were then tested against multidrug-
resistant strains of P. falciparum, i.e., HB3 and Dd2. 5-(2-methyl-1H-indol-1-yl)-N-
propylthiophene-2-carboxamide exhibited the most promising IC50 value (42 nM)
against PfDHODH (Fig. 16, XV).

Molecular docking results revealed that the inhibitor may bind to the same site as
teriflunomide in X-ray crystal structure with PDB 1TV5. Additional modifications
of the indole ring system with piperidine, piperazine, pyrazol, benzimidazole, and
2-methyl benzimidazole highlighted that multi-ring substitutions are important for
activity. This might be due to the better interactions shown by multiple ring sub-
stitutions in the hydrophobic region of the inhibitor binding site. Replacement of
indole moiety with benzimidazole moiety retained the PfDHODH inhibitory
activity in addition to which physiochemical properties were considerably improved
[65]. Modifications in the amide region lead to the conclusion that secondary amide
is essential for the activity, whereas primary and tertiary amides are inactive.
Cyclopropyl group was found to be the best optimized group at this position as it
occupies the hydrophobic pocket which was later found out to be different from that
occupied by triazolopyrimidine class of compounds [80b]. Second position of the
benzimidazole moiety was also optimized with various alkyl (ethyl, n-propyl) and
polar (hydroxyl, dimethyl amino) substituents out of which simple methyl substi-
tution was found to be the only suitable one and comparable to the unsubstituted
derivative. Methyl substitution at this position also improves the in vitro hepatic
metabolic stability in human microsomes. Replacement of the thiophene ring with
various aromatic substituents (such as 2,5-substituted N-methyl pyrrole, pyrrole,
thiazole, furan, oxazole, and m-/p-substituted phenyl) resulted in considerable
decrease in the potency. Also, substitution at 2,5-position on the thiophene ring is
essential and there is a loss of activity with substitution at 3,4-position (Fig. 16).

Further modifications were focused on the benzimidazole moiety at 4th to 7th
position (Fig. 16, XVI). Simple methyl substitution at 4th, 5th, and 6th position
resulted in a twofold increase in activity (Pf IC50 39–56 nM) compared to the
corresponding unsubstituted molecule (Pf IC50 80 nM). Substitution at the 7th
position causes an eightfold reduction in activity (Pf IC50 609 nM). This can be
interpreted to be due to the steric hindrance in the cavity of the enzyme caused by
substitution at the 7th position (Fig. 16). Hydrophobic electron-withdrawing group
(OCF3 and CF3) at the 5th position is more favorable, with 2–3-fold increase
in activity (Pf IC50 22–28 nM, respectively) compared to the 6th position substi-
tution (Pf IC50 52–98 nM, respectively). The 5-OCF3-substituted derivative
(N-cyclopropyl-5-(2-methyl-5-(trifluoromethoxy)-1H-benzimidazole-1-yl)thiophene-
2-carboxamide, Genz-667348; Fig. 16, XVI) was further studied in the acute
P. berghei (ANKA strain) efficacy model and was found to be curative when dosed
orally. The X-ray crystal structure of PfDHODH with Genz-667348 (PDB ID 3O8A,
entry 5, Table 1) revealed an alternate hydrophobic binding pocket different from
that of triazolopyrimidine analogues (Fig. 17) [65]. This may be due to more flexible
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nature of the inhibitor. The cyclopropyl ring interacts with the amino acids Val532,
Ile272, and Ile263 present at the mouth of the inhibitor binding tunnel near to His185
which forms H-bond with the N of methylformamide. Arg265 also forms a hydrogen
bond with the oxygen of methyl formamide. The alternate hydrophobic cavity
consists of amino acid residues Tyr168, Cys175, Phe171, Leu172, Phe188, Leu191,
and Leu531.

However, significant proof was obtained for Genz-667348 to have ADME lia-
bilities and most likely to cause drug–drug interactions. Thus, alterations were done
at the 4th position with electron-withdrawing groups such as F, Cl, Br, and CN. This
caused a fivefold increase in the activity (Pf IC50 21–40 nM). 4-CN analogue was
found to be the compound with best overall profile with suitable physiochemical
properties, cardiovascular safety, and least drug–drug interaction possibility. This
compound N-cyclopropyl-5-(2-methyl-4-(cyano)-1H-benzimidazol-1-yl)thiophene-
2-carboxamide (Genz-669178; Fig. 16, XVII) (PfIC50 40 nM) was further studied
in three species (mouse, rat, and dog) and three mouse models of malaria
(P. falciparum, P. berghei, and P. vivax). The compound showed pan-parasitic
activity with promising DHODH inhibitory activity in all three plasmodium species.
It showed selectivity against human DHODH with IC50 > 30 µM. The cell-based
IC50 values in Pf sensitive (3D7) and multidrug-resistant strain (Dd2) were observed
to be 7 and 10 nM, respectively. The lead compound showed moderate oral
bioavailability in rat and dog model (49 and 19%, respectively). The results were
also promising in human microsomes and hepatocytes with low hepatic clearance.
Genz-669178 is further being tested for its toxicity profile and is studied for its
clinical testing suitability [80b].

Fig. 17 Structural overlap of Genz-669178 (magenta) and DSM416 (yellow) in the X-ray crystal
structures with PDB ID 3O8A and 5FI8, respectively, depicting the difference in hydrophobic
cavity
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3.6.5 N-Substituted Salicylamides

This class of compounds was reported by Fritzson et al. in 2011 [81]. It was
observed that series with unsubstituted R2 position (Fig. 18) showed human
DHODH selective or non-selective property. Compound with phenyl-substituted R2

and n = 1 was found to be PfDHODH selective. This compound was developed
into a complete series by varying the substituents on the phenyl ring of salicy-
lamide. It was observed that substitutions at 3 and 6 positions are highly unfa-
vorable, whereas substitutions at 4 and 5 positions are preferred (Fig. 18). Four
compounds with substitutions 5-Cl (PfDHODH IC509.1 µM), 3,5-dichloro
(PfDHODH IC507.0 µM), 3,4-difluoro (PfDHODH IC509.9 µM), and 5-CH2OH
(PfDHODH IC508.0 µM) were found to be most active. Interactions of unsubsti-
tuted analogue were observed after manual docking in crystal structure with
PDB ID 3I65 [64] followed by energy minimization of the complex using
MacroModel program (Schrödinger software). It was observed that the oxygen of
the amide showed single H-bond with Arg265 and the biphenyl part of the molecule
forms p-stacking interactions with Phe188 [81]. The four selected compounds were
further tested for their cell-based activity against Pf 3D7 strain. 5-chloro-N-
(2,2-diphenylethyl)-2-hydroxybenzamide was found to be the most promising
compound for inhibiting parasite growth with the EC50 of 23 ± 4 µM.

3.6.6 Dihydrothiophenone Derivatives

Xu et al. in 2013 identified ethyl 2-((4-chlorophenyl)amino)-4-oxo-4,5-
dihydrothiophene-3-carboxylate compound (lead molecule) to be showing
PfDHODH inhibitory activity (IC50 1.11 µM) after virtual screening studies from
SPECS database with ID AG-690/40639878 (Fig. 19) [84]. This virtual screening
included glide-based molecular docking and prime MM-GBSA-based DE estima-
tion both fall under SBDD methods. The molecular docking studies showed that the
phenyl ring with p-Cl substitution exhibited hydrophobic and van der Waals
interactions with amino acids Leu197, Ile237, Leu240, and Met536 along with p-p
edge-to-face interactions with Phe227 at the entrance of the ubiquinone-binding
tunnel. The heterocyclic ring and its substituents form polar interactions with
His185 and Arg265.

The molecule was thus divided into two sections, namely the hydrophobic
aromatic group and dihydrothiophenone section as hydrophilic group. Three
approaches were considered for lead optimization, i.e., hydrophobic modification of

Fig. 18 General structure of
N-substituted salicylamide
analogues
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the aromatic ring, hydrophilic modification of the substituents on dihydrothiophe-
none ring, and scaffold hopping of the dihydrothiophenone core. It was observed
that para substitution is suitable at the phenyl ring of hydrophobic group. 4-t-butyl
substitution provides best results in this group with PfDHODH IC50 0.23 µM.
Single m-substitution causes loss of activity, whereas m- with p-substitution gives
improved activity compared to the lead compound. Dual meta-substitution retains
the activity comparable to the lead molecule. Ortho substitution causes loss in
activity. Replacement of the phenyl ring with larger aromatic systems improves
substantial activity with 2-nathyl group (ethyl 2-(naphthalen-2-ylamino)-
4-oxo-4,5-dihydrothiophene-3-carboxylate) showing the best results with PfIC50 of
0.02 µM activity (56-fold improvement in activity over the lead molecule).
Introducing aromatic rings with heteroatom is an improvement over lead but less
active than 2-naphthyl derivative [84].

Acid, amide, and ester substitutions were tried at the hydrophilic group. Removing
the ethoxycarbonyl substitution leads to poor activity. Acid and amide substitutions
lead to loss or poor activity. Esters larger than ethoxy also result in poor activity. It
was observed that the ester moiety forms simultaneous hydrophobic interactions
(with amino acid residues Ile263 and Ile272) and hydrogen bond (with Tyr528) in the
inhibitor binding pocket of the enzyme emphasizing its importance. Scaffold hopping
by replacement of sulfur with oxygen (ethyl 2-(naphthalen-2-ylamino)-4-oxo-4,5-
dihydrofuran-3-carboxylate) improves the activity (IC50 6 nM) by 3-fold compared
to 2-naphthyl derivative and 185-fold compared to the lead. In conclusion, bicyclic
ring systems are more promising in the hydrophobic region, ethoxycarbonyl ester
substitution in the hydrophilic region is essential, and dihydrofuranone ring is more
suitable compared to dihydrothiophenone ring. These results were also correlated in
the Pf3D7 and PfDd3 cell-based assays.

3.6.7 Thiazole derivatives

Zhu et al. reported thiazole-based HsDHODH inhibitors in 2015 [82]. However, the
lead molecule used for optimization also showed PfDHODH activity with IC50

value of 0.63 µM. It was observed that methyl substitution at R1 position (Fig. 20)
and m-/p-substitutions at the phenyl ring results in non-selective PfDHODH inhi-
bition in lower micromolar range. An overlap of crystal structure of HsDHODH
(PDB ID 4JGD) upon PfDHODH (PDB ID 3I65) revealed a smaller tunnel of

Fig. 19 Structural
modification strategy of
dihydrothiophenone class of
compounds
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inhibitor binding site in PfDHODH (Phe171, Met536, Ile263, and Ile272) com-
pared to the HsDHODH (Leu42, Pro364, Val134, and Val143) resulting in the
inability of malarial enzyme to accommodate large substituents. Thus, phenyl or
other bulky substituents at R1 and R2 position results in loss of inhibitory activity
toward PfDHODH.

3.6.8 7-Arylaminopyrazole Derivatives

Azeredo et al. proposed the bioisosteric replacement of trizolopyrimidine moiety
with 7-aryl aminopyrazole analogues leading to the design and synthesis of a new
class of PfDHODH inhibitors [83]. Fifteen compounds were synthesized and tested
for their PfDHODH inhibitory activity. It was observed that the compounds of this
series show activity in lower micromolar range with PfDHODH IC50 24–0.16 µM.
It was observed that out of substituted phenyl and 2-naphthyl derivatives, naphthyl
analogues were most promising. Alternate CF3 and CH3 substitutions were tried at
R1 and R2 position. 2-naphthyl-substituted compound with CH3 at R1 and CF3 at R2

was observed to be the most active compound in this series (Fig. 21). Further
docking studies in PfDHODH (PDB ID 3I65) perceived that these series of com-
pounds show similar binding interactions as that of the bound ligand. It was also
indicated that series with R1 CH3 and R2 CF3 show similar hydrogen bonding
interactions as that of the bound ligand in addition to the water-mediated hydrogen
bond with Tyr528.

3.7 Other in Silico Efforts

Ojha et al. (2010) performed QSAR and molecular docking studies on tria-
zolopyrimidine class of compounds [89]. A total of four models were prepared
based on classical QSAR (two models), molecular shape analysis (MSA), and
QSAR with combined set (2D and 3D) of descriptors using G/PLS spline technique.

Fig. 20 General structure of
thiazole class of PfDHODH
inhibitors

Fig. 21 General structure of
7-aryl aminopyrazole series of
compounds as PfDHODH
inhibitors
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This classical QSAR study mainly focused on physiochemical descriptors. The
descriptors used by first classical QSAR model are in the following of B1p
(Sterimol width parameter as the smallest width along Z axis; p indicates para
position), Lo (Sterimol length parameter as the maximum length along the X axis),
MRp (molar refractivity impact in the para position), MRm (molar refractivity
impact in the meta position), pm (lipophilicity substitution constant). The descrip-
tors used by second classical QSAR model are B1p, B5o (width parameter defined
as maximum width from X axis), MRp, B1m, and pp. The MSA involved use of
molecular shape descriptors (DIFFV, COSV, NCOSV, Fo, Shape RMS) in addition
to electronic (dipol-mag and Sr), spatial (radius of gyration, Jurs descriptors, area,
PMI-mag, density, Vm), thermodynamic (ALogP, ALogP98, MolRef, MR, LogP)
and structural (H-bond donor, H-bond acceptor, rotatable bonds) descriptors.
Descriptors used by MSA are Fo (common overlap steric volume descriptor),
MolRef (atom type molar refractivity), JursDPSA_3 (difference in atomic
charge-weighted surface area), JursFPSA_1 (fractional charged partial positive
surface area), LogP (partition coefficient) and JursPPSA_3 (atomic charge-weighted
positive solvent-accessible surface area). Combined set descriptors (classical QSAR
and MSA) include B1p, pp, B1o and Vm (molecular volume inside the contact
surface). The entire data set consists of 29 compounds which are divided into
training set (n = 22) and test set (n = 7) by using k-means clustering. All the
models have predictive R2 more than 0.5, thus passing the basic criteria.
Classical QSAR with physiochemical descriptors was found to be the best model
based on rm(overall)

2 (0.733) and Rp
2(0.767). It was observed through this study that

(1) unsubstituted ortho position is desirable; (2) moderate hydrophobicity and
volume at meta position of the phenyl may enhance the PfDHODH inhibitory
activity; (3) para substitution is essential for inhibition with volume and
hydrophobicity to be high but restricted.

Molecular docking was performed using LigandFit module under Discovery
studio 2.1. Figure 22 shows the general 3D interactions of various polar and
non-polar residues with the 5-methyl-N-phenyl- [1, 2, 4] triazolo[1,5-a]pyrimidin-
7-amine. It was observed that the p-position of the phenyl substitution can
accommodate hydrophobic groups with large volume. However, substitutions with
phenyl ring at p-position were not able to attain an optimal position causing a bump
with important amino acids such as His185 and Val532 [89]. Therefore, the sub-
stituents were restricted to non-aromatic groups such as CF3, OCF3, and CH3

(Fig. 22).
Shah et al. reported 3D-QSAR on the same class of compounds. Thirty-five

molecules of triazolopyrimidine class were selected for this study and molecular
docking was performed using FlexX software in X-ray crystal structure with
PDBID 3I68 [90]. The docking results highlighted two important structural fea-
tures, a hydrophobic (aromatic) region which should have planar arrangement and a
polar region. As reported by the other group, His185 and Arg265 played crucial
role in polar interactions. Amino acid residues responsible for van der Waals
interactions are Gly181, Cys184, His185, Phe188, Leu189, Phe227, Leu531, and
Val532. Phe188 forms p-p interactions and Phe227 forms edge-to-face p

210 S. Bhagat et al.



interactions. This was followed by generation of CoMFA and CoMSIA models
(using genetic algorithm for optimization). The final two models were selected from
each CoMFA and CoMSIA studies, which showed good predictive r2 value
(rpred
2 0.99 and 0.94, respectively) after test set (eight molecules) run. The

cross-validation coefficient was found to be qLOO
2 (leave-one-out) 0.841 for CoMFA

(0.757 for CoMSIA) and q2 (cross-validated) to be 0.818 for CoMFA (0.653 for
CoMSIA). The total field contribution was determined to be 21.5% electrostatic
field and 78.5% steric field (for CoMFA). It was observed that for N-2-naphthyl-
substituted triazolopyrimidine derivative, favorable steric contours surrounded the
naphthyl ring indicating good activity of the compounds with large steric bulk at
this position. The compounds with good activity observed negative electrostatic
contour at meta and para positions of the phenyl substituents indicating
electron-rich substituents at these positions enhanced the activity. These results
were also in correlation to Ojha et al. [89]. Molecular dynamics was also performed
for most active compounds (Fig. 14a; DSM125 (R = CH3, R1/R2/R4 = H,
R3 = 3-F-4-CF3-Ph); DSM1 (R = CH3, R1/R2/R4 = H, R3 = naphthyl)) using
GROMACS suite of programs with 2 ns of production run time. It was observed
that the hydrophobic residues (Lue197, Ile237, Leu240, Leu531, and Met536
showed greater fluctuation in case of DSM125 compared to DSM1. The m-fluoro

Fig. 22 Schematic 3D diagram of interactions of triazolopyrimidine derivatives in the active site
of PfDHODH. The p- and m-substituents of the phenyl ring interact with the residues in yellow.
The methyl group of triazolopyrimidine ring interacts with the residues in peach color and residues
in blue interact with the triazole ring portion. His185 and Arg256 form H-bonds with the primary
amine linker and pyrimidine ring nitrogen, respectively
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substitution was found to form favorable interactions with Leu531. Also, His185
and Arg265 were observed to form stronger hydrogen bonding interactions with
compound DSM1 indicating that CF3 substitution increased the polarity of the
compound and thus favored electrostatic interactions. Both the above studies
highlighted the factors responsible for good activity shown by triazolopyrimidine
class of compounds and further modifications which can be possible in this class.

Desai et al. designed a library of N-phenylbenzamide (Fig. 10, V) derivatives
with various substituents consisting of eighty molecules [91]. These were docked in
PfDHODH (PDBID 1TV5) using GOLD program. Out of these eighty designed
molecules, fifteen final molecules were selected (based on their docking scores and
interactions) for further synthesis and biological evaluation using cell-based in vitro
assay (3H-hypoxanthine uptake method on P. falciparum NF54 (sensitive strain)
and K1 (chloroquine and pyrimethamine resistance strain). This was followed by
3D-QSAR studies using CoMFA and CoMSIA models. One CoMFA and four
CoMSIA models were generated from 89 models. The CoMFA model predicted
that the o-position of the N-phenyl ring (Fig. 10, V(Ar2)) of the N-phenylbenzamide
and m-/p-positions of the carbonyl phenyl ring (Fig. 10, V(Ar1)) can be substituted
with electronegative atoms for improved activity. Similarly, the o- of carbonyl
phenyl ring (Ar1) and p-position of N-phenyl ring (Ar2) show electropositive
substitution. Bulky substituents are well tolerated at the m-/o-positions and not at
the p-position of the carbonyl phenyl ring (Ar1). The m-position of the N-phenyl
ring (Ar2) can only bear bulky substituents to a smaller extent and not at the
p-position. The CoMSIA studies were depicted by hydrophobic contours based on
model 3, i.e., SHE fields (steric, hydrophobic, and H-bond donor) and model 5,
EDH fields (electrostatic, H-bond donor and hydrophobic) along with hydrogen
bond donor and acceptor contours based on model 2, SDA fields (steric, H-bond
donor, and H-bond acceptor). It was observed that the entire carbonyl phenyl ring
(Ar1) is surrounded by the hydrophobic contour except the m-position. In the
N-phenyl ring (Ar2), the hydrophobic contour is situated near the m- and p-position.
H-bond acceptor contour is present at the m-position of the carbonyl phenyl ring
(Ar1), and H-bond donor contour is present at the o-region of the N-phenyl ring
(Ar2) of the N-phenylbenzamide. Out of the five models, rpred

2 for the CoMSIA
model was more satisfactory than the CoMFA model. Two compounds, KMC-3
and KMC-15, were found to be active with IC50 value of 8.7 and 5.7 µM,
respectively, against P. falciparum.

Vyas et al. in 2013 [92] performed 3D-QSAR on 5-(2-methylbenzimidazol-
1-yl)-N-alkylthiophene-2-carboxamide derivatives reported by Brooker et al. [65].
A total of thirty-eight molecules were studied with thirty-five molecules in training
set and five molecules in test set. The q2 for the best CoMFA and CoMSIA models
was determined to be 0.669 and 0.727, respectively. The prediction value (rpred

2 )
obtained after validation by external test set was observed to be 0.799 and 0.815 for
CoMFA and CoMSIA models, respectively. The CoMSIA model was observed to
be better than the CoMFA model. In CoMSIA contour maps, a large favorable
hydrophobic contour was observed near the C2 position and nitrogen atom of the
benzimidazole ring (Fig. 16). This was correlated with the presence of lipophilic
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group (methyl) at this position in active molecules. Hydrogen bond donor contour
was observed near the nitrogen of the amide and other near the cyclopropyl
group. A large hydrogen bond acceptor contour was observed near the oxygen of
the amide.

Wadood et al. generated structure-based pharmacophore model using the X-ray
crystal structure with PDBID 3O8A with 5-(2-methylbenzimidazol-1-yl)-
N-cyclopropylthiophene-2-carboxamide as the co-crystallized ligand [93]. This
pharmacophore model was used to identify molecules from ChemBridge database.
Eighty-seven molecules were identified using this model system, and the hits were
further screened using molecular docking and binding energy calculations using
GOLD, and generalized Born interaction energies, and binding affinity using MOE
docking software. Using these filters, twenty-five molecules with variable chemical
classes were identified.

Tseng et al. worked on 3D-QSAR pharmacophore generation and docking-based
pharmacophore development from a group of sixty-seven inhibitors of PfDHODH
belonging to different chemical classes [94]. The training set consisted of
thirty-eight compounds and the test set includes twenty-five molecules. The phar-
macophoric features used were hydrogen bond donor (HD), hydrogen bond
acceptor (HA), hydrophobic group (H), and hydrophobic aromatic (HR) and were
used during HypoGen during hypothesis generation. Hypo1 pharmacophoric model
was considered to be the top model due to its high correlation coefficient (0.935),
lowest RMS deviation (2.15) and successful prediction efficiency of training
(89.4%) and test sets (72.4%). In docking-based pharmacophore generation,
sixty-seven molecules (both training and test set) were docked using X-ray crystal
structure of PfDHODH with PDB ID 1TV5. The pharmacophore models generated
were based on top scoring pose and genetic algorithm-based generation of 255
conformers. The scoring function was based on the interactions shown by the
molecules with His185, Arg265, and Tyr528 [94, 95]. The docking-based phar-
macophore model, DBP-All255 (docking-based pharmacophore (DBP) of all 255
conformers) was found to show comparable results as that of Hypo1. In Hypo1, the
hydrophobic group feature was observed on the left side of the HA feature, and in
DBP-All255, the hydrophobic feature appears on the right side of the HA feature.
Both the models were able to predict the potential bioactive conformation of the
inhibitors based on the structure activity relationship and binding mode of the
inhibitors.

Hou et al. in 2016 performed QSAR on PfDHODH inhibitors using multilinear
regression (MLR) and support vector machine (SVM) [95]. A dataset of 255
molecules from ChEMBL database and literature, with PfDHODH activity, was
used. Most of the structures from the dataset contained triazolopyrimidine and
benzimidazole as basic moiety. 161 molecules as training set, 94 molecules as test
set, and 14 molecular descriptors (based on Pearson correlation) were selected. Four
final computational models were generated showing good prediction quality with q2

(leave-one-out) > 0.66, correlation coefficient (r) > 0.85 on both training and test
sets. The mean square error (MSE) for training set is <0.32 and for test set is <0.37.
It was observed through this study that the antimalarial activity of the inhibitors is
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mainly based on the hydrogen binding ability, atom polarizability, and ring
complexity.

Pavadai et al. performed a systematic search of identification of species-selective
PfDHODH inhibitors by performing 3D-QSAR pharmacophore modeling followed
by molecular docking-based virtual screening [96]. The final filtered compounds
were tested for their PfDHODH inhibitory activity and antimalarial activity. For
3D-QSAR model generation, a total of 38 compounds were selected from the work
of Xu et al. on dihydrothiophenone class of compounds [84]. These are divided into
training set (19 compounds) (activity range 6–39,450 nM) and test set (19 com-
pounds). A total of 250 conformers were generated for these compounds. Hypogen
algorithm was used to generate the pharmacophore hypotheses. Based on high
correlation coefficient (r), low cost and low root mean square (RMS), a total of top
ten hypotheses were selected. Based on the model, validation results based on test
set prediction and cost values Hypo1 (test set correlation, r = 0.933) were selected
for further virtual screening. 265,242 compounds from NCI database were used as
query. The hit compounds were selected based on the features of the pharma-
cophore model and the hit compounds undergo molecular docking studies using
PfDHODH crystal structure (PDB ID 3I65) using Glide module of Schrödinger
software. The molecules selected from standard precision docking based on the
score and poses were filtered through extra precision docking. The top-ranked
molecules obtained after this analysis were subjected to prime MM-GBSA calcu-
lations to calculate DGBind. The sixty-two compounds obtained after the thorough
virtual screening process were subjected to biological testing in which three com-
pounds were identified to exhibit PfDHODH activity in the range of 0.38–20 µM
IC50 value. The most active compound (NSC336047) showed selectivity against
HsDHODH (IC50 > 100 µM) and inhibition of parasite growth with 26 µM IC50

value [96].

4 Conclusions

SBDD proved to be a successful approach in the design of antimalarial agents. With
the expanding knowledge into the new targets and enzymes essential for malarial
parasite survival, it has become less straining in discovering or modifying the lead
molecules based on the structural knowledge of the target. Some of these targets are
PfATP-dependent heat shock protein 90, Pfphosphatidylinositol 4-kinase (PI4 K),
PfNADH dehydrogenase, Pfaspartate carbamoyltransferase, Pfthioredoxin reduc-
tase, Pfhistone deacetylase, and Pf dihydroorotate dehydrogenase.

Taking an example of PfDHODH, all the SBDD efforts related to this target
were discussed. This enzyme was found to be important for the synthesis of
pyrimidines in the parasite through de novo pathway. As this enzyme is also a part
of the mitochondrial respiratory chain complex, its inhibition also affects the
electron transfer in the inner mitochondrial membrane. The overall reaction
involves the redox hip-hop mechanism in which DHO is oxidized by FMN to ORO.
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The inhibitor binding site was predicted to be near to ubiquinone-binding site due to
non-conserved nature of amino acids in this region and reoxidation of FMN was
characterized to be the rate-limiting step.

The enzyme consists of a b-barrel core of eight parallel b-sheets surrounded by
seven a-helices. The top and bottom of the barrel is covered by antiparallel
b-strands, three on one side and two on side attached to N-terminal. The inhibitor
binding site is located between the a10–a11 helices of the N-terminal. There are
fifteen crystal structures reported for PfDHODH till date. The first reported X-ray
crystal structure with PDB ID 1TV5 containing teriflunomide as the co-crystallized
inhibitor discusses about the important hydrogen bonding interactions shown by
His185 and Arg265 at the end of the inhibitor binding tunnel. Later, two new
hydrophobic binding pockets were reported in crystal structure 3I6R (DSM74 as
co-crystallized ligand) and 3O8A (Genz-669178 as co-crystallized ligand).

A total of nine important chemical classes of PfDHODH inhibitors are reported
in the literature. Out of these triazolopyrimidine derivatives and N-alkyl-5-
benzimidazole thiophene-2-carboxamide analogs were found to be most suitable
with IC50 values in lower nanomolar range. The SBDD approach is facilitated in the
designing of lead molecules with optimal in vitro and in vivo activity, good
metabolic profile with minimum toxicity along with selectivity against HsDHODH.
DSM265 has been is under clinical development and Genz-669178 is understudy
for clinical trials suitability. Various in silico studies are also reported which mainly
include 3D-QSAR studies/molecular docking/molecular dynamics.
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Abstract In recent times, our healthcare system is being challenged by many
drug-resistant microorganisms and ageing-associated diseases for which we do not
have any drugs or drugs with poor therapeutic profile. With pharmaceutical techno-
logical advancements, increasing computational power and growth of related
biomedicalfields, there have been dramatic increase in the number of drugs approved in
general, but still way behind in drug discovery for certain class of diseases. Now, we
have access to bigger genomics database, better biophysical methods, and knowledge
about chemical space with which we should be able to easily explore and predict
synthetically feasible compounds for the lead optimization process. In this chapter, we
discuss the limitations and highlights of currently available computational methods
used for protein–ligand binding affinities estimation and this includes force-field,
ab initio electronic structure theory and machine learning approaches. Since the elec-
tronic structure-based approach cannot be applied to systems of larger length scale, the
free energymethods based on this employ certain approximations, and these have been
discussed in detail in this chapter. Recently, the methods based on electronic structure
theory and machine learning approaches also are successfully being used to compute
protein–ligand binding affinities and other pharmacokinetic and pharmacodynamic
properties and so have greater potential to take forward computer-aided drug discovery
to newer heights.
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Hybrid QM/MM � QM fragmentation � Binding affinity � Pharmacokinetic
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Abbreviations

FMO Fragment molecular orbital
MAO-B Monoamine oxidase B
MM-GBSA Molecular mechanics–Generalized Born Surface Area
MM-PBSA Molecular mechanics–Poisson–Boltzmann Surface Area
PD Pharmacodynamic
PK Pharmacokinetic
QM/MM Quantum mechanics/molecular mechanics

1 Introduction: Drugs and Targets

Disease can be defined as an abnormal condition that alters the function or beha-
viour of an organism and this can be caused by different factors, i.e. internally
e.g. due to the presence of disease-causing genes or due to external factors.
Externally, disease may be caused due to malnutrition or subjecting a human to
severe external conditions such as exposing to radiation or pollution or microbial
infections or severe physiological conditions which leads to damage or malfunc-
tioning of body machineries. Thanks to genomic analysis of normal and diseased
persons, we know that the protein profile appears quite different in these two cases
and by targeting the biomacromolecules expressed in the diseased state, and we can
develop methods to arrest the progress of the disease. By comparative protein
profiling of normal and diseased persons or by comparing the genomes of human
and pathogenic micro-organisms, [1–3] we already know the information about the
potential targets, but then the problem lies in identifying whether the aberrant
expression of a certain biomacromolecule is the main cause of disease or may be a
side product of another key process. Once the key target (protein or enzyme) is
identified, primay task is to design small molecules that can modulate the tar-
get (this can be either of inhibitor, substrate, inducer). Subsequently, the active
compound (also called hit molecule) is further optimized to pre-clinical candidate.
The aim of lead optimization is not only to increase the potency, but also to
reduce any off-target binding. In this chapter, we will discuss how to use compu-
tational approaches not only to identify small molecules that can inhibit or mod-
ulate the catalytic process of a key enzyme that is connected with disease, but also
to understand the fundamental process of biomolecular recognition which assists in
the lead optimization process in the drug discovery and development projects. The
properties of the ligand to be optimized are binding affinity and specificity towards
a key target biomacromolecule. These target molecules can be located within
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microorganism or within the host organism depending upon whether the disease
belongs to infectious or autoimmune category disease, respectively.

2 Optimization of Drug-Likeness

In addition to binding affinity and specificity, there are certain other properties
which are to be optimized for an effective drug i.e. low toxic with improved
potency and orally bioavailable for conventional dosage forms. These properties are
absorption (A), distribution (D), metabolism (M), excretion (E) and toxicity (T),
and they collectively are called ADMET or pharmacokinetic (PK) properties. The
properties in general refer to kinetic behaviour of drugs within body and give
information about the timescale required for the drug to reach the potential target
and lifetime within host organism before removal through excretion (this can be
shortly described as “what the body does to a drug?”). The optimization of potency
(binding affinity) and then the subsequent optimization of pharmacokinetic beha-
viour have been the major contributing factors for the failures at the phase II and
phase III clinical trials [4–6]. So, it is necessary simultaneously to optimize the
potency along with ADMET properties [7]. There are also other properties that are
essential for oral bioavailability such as solubility and transport properties like
membrane permeability (both cellular and across blood-brain barrier).

Overall, it is apparent that drug design is challenging as we need to optimize
several properties at the same time [3, 6]. In certain cases, optimizing one property
may lead to unexpected changes in another property making this optimization
very complex , and in those cases we need to compromise on certain properties and
try to balance different properties for better PD and PK profile. For example, if the
potency of a drug is superior/outstanding but then if it has very poor PK and PD
properties, then one can use suitable drug delivery systems such that the drug is
delivered to its target biomacromolecule. Given that drug design is an optimization
process, it is inevitable to avoid the use of computers as they can be used effectively
to speed up the overall process. But the only requirement is that we need to have
accurately enough methods that can be written in a numerically solvable form and
can reliably describe these processes involved in the drug association with a bio-
logical target and its pharmacokinetics [8]. In general, quantum mechanics is the
fundamental theory which can be used to describe any atomic and molecular systems
and their association process and their response to any external variables like heat,
pressure and fields and to any change in physiological conditions such as pH and
ionic strength. However, the complexity of the mathematics involved in solving the
Schrödinger equation grows with powers of n which is number of basis functions
used to describe one electron orbital used to build wave function of the molecule that
describes its energy and all other properties. For example, the computational demand
is at the power of three in the case density functional theory and can go to power of
5–8 for the theories which can treat the electron correlation more accurately. When
the system size is comparably larger than the wavelength of light and when we are
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not interested in processes where the matter interacts with light or laser field, it is
pragmatic to use classical mechanics to describe the molecular systems which
involves relatively simple mathematics, i.e. solving Newton’s equation of motion to
describe the interaction within system and their association with other systems and to
model their time evolution and their response to external thermodynamic variables
like temperature and pressure. As per classical mechanics, once we have the
force-field information for a system, its entire future and past can be predicted by
solving equation of motion. Force-fields can be developed by using various available
structure databases and thermodynamics data. In this chapter, We briefly cover
available force-field methods for computing the binding affinity in order to rank
protein–ligand complexes in drug discovery and design. In addition, briefly discuss
their limitations and also present the recent advancement in computational modelling
approaches based on quantum mechanical theory and machine learning algorithm in
a way suitable for drug discovery applications.

3 Free Energies Relevant to Describe Potency
and Pharmacokinetics

Free energy is the key variable that dictates the structure of biomacromolecular
complexes (protein–ligand protein, membrane–ligand, DNA–ligand etc.) and con-
trols various molecular association and ligand transport processes. When there are
many structures possible, the one with least free energy is the most stable one.
Moreover, biomacromolecular or molecular association processes such as drug
binding to receptor, protein–protein binding and drug transport involve the mini-
mization of Gibbs free energy (DG). Any process that involves lowering of Gibbs
free energy can proceed spontaneously. By calculating the free energy change, we
can predict whether an association process is feasible or not. In the case of a drug,
the most relevant aspect is to understand its binding affinity or potency towards a
target biomacromolecule and its association with transport proteins like albumins
[9] and metabolizing enzymes such as cytochrome P450s (CYP) [10–12] and with
glycoproteins responsible for absorption. The ligand binding to target biomacro-
molecule, transport protein and metabolizing enzymes is dictated by the change in
free energy of the ligand bound to these targets when compared to that in aqueous
solution. Further, it is also necessary to understand whether the compounds will
pass through certain cell membranes and also how well it will dissociate once it is
taken through oral dose which is dependent on the physicochemical properties like
lipophilicity [13] and aqueous solubility [14]. Schematic representation of various
PK computational modeling is shown in Fig. 1, and free energy of relevance is
provided in Table 1.

Computing the free energy of binding of the drug with a biological target and
other targets (such as glycoproteins, albumins, cell membranes) that mediate the
drug transport across the body to relevant target area is the main goal of any
computational approaches. All these drug association-related processes and
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transport processes involve optimization (minimization in particular) of free ener-
gies, and the free energies associated with potency, bioavailability, drug absorption,
distribution, metabolism, toxicity, solubility are listed in Table 1.

If we can calculate the free energy change for the drug to transfer from one
medium to another, then we can predict how spontaneously this process will occur.
As a conclusion, it can be deduced that the drug design involves calculations of free
energy changes in two different media and the currently available methods are
based on either force-fields or semi-empirical methods or electronic structure theory
or combination of these. In this chapter, we will provide a brief outline of various
computational methods available for computing free energy of binding of a ligand

Table 1 Computing various PK and PD properties and potency as a difference in free energy of
the ligand in different environments

Property Initial
medium

Final medium Free energyof
relevance

Inhibition constant/binding
affinity

Water Target enzyme Genzyme − Gwater

Absorption/distribution Water Glycoproteins/
albumin

Galbumin − Gwater

Metabolism Water Cytochromes P450 GP450 − Gwater

Permeability Water Membrane Gmembrane − Gwater

Solubility Crystalline Water Gwater − Gcrystal

Off-target binding Water Off-target (e.g.
hERG)

Gofftarget − Gwater

Fig. 1 Potency,
pharmacodynamic property
(such as solubility,
permeability) and a few
pharmacokinetic properties
(such as drug absorption,
distribution, metabolism and
toxicity) are related to DG
transfer, which is a free
energy difference needed for
driving a ligand from one
environment to another
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to a receptor which in turn can be used to optimize drug potency, absorption,
distribution and metabolism. These methods are so general and also can be used to
compute absolute free energies of a ligand or drug in crystalline or in different
solvent environments making it feasible to predict other PD and PK properties like
bioavailability, permeability and solubility [15, 16]. Very recently, machine
learning approaches are also contributing to the computation of interaction energies
of protein–ligand and protein–protein complexes and the progress in the use of such
approaches for drug discovery projects will be discussed at the end.

4 Force-Field-Based Free Energies of Drug Target
Binding

A force-field describes how the atomic and molecular systems behave at finite
temperature, pressure and in a specific physiological condition or under any
external fields. Force-fields have potential energy functions to explain the inter-
actions of intermolecular and intramolecular degrees of freedom within a system. In
particular, the former dictates the packing, relative orientation of molecules, while
the internal geometry is dictated by the latter potentials. The currently available
potential energy functions in different force-fields were parameterized using many
experimental thermodynamic data and structural data [17]. For example, crystal
structure database (CSD) can be easily utilized to get the information about the
characteristic equilibrium radii of atoms which then dictate the size and overall
structure of the materials. Similarly, the heat of vaporization can be used to get
information about the well depths of the interaction potential which then gives
information about transition temperatures from one phase to another. For conve-
nience, interaction energies were modelled as the sum over pair potential where the
pair potential itself is described using sum of Lennard-Jones (LJ) and electrostatic
potential (refer to terms 7 and 8 of Eq. 1, respectively). As mentioned above, the
two parameters of LJ potential, sigma and epsilon can be parameterized by using
available structure information and thermodynamic data.
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The LJ and electrostatic potentials describe only the intermolecular interactions,
while it is not accounting for the structural changes in the molecule in the vicinities
of other molecules. To describe such structural changes, we need to have as well the
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potential associated with changes in intramolecular structure. Usually, such a
potential has terms to describe variation in bond length (bond length potential),
angle (bond angle potential), dihedral angle (improper and proper dihedral angle
potential) (refer to first five terms in Eq. 1). Since the classical force-field cannot
describe the bond-breaking processes, a harmonic potential is in general used to
describe structural changes associated with bond lengths and bond angles.
However, note that the dihedral angle motion is not local and can describe con-
formational changes in molecules and in case of peptides these contribute to
changes in the secondary structure. The total potential including both intra- and
intermolecular interactions for a biomacromolecule alone or in solution or in
combination with other molecules can be described by the Eq. 1.

The force constants and equilibrium values for bond length and bond angle are
obtained from spectroscopic data and from the structural data, respectively. Also,
electronic structure theory-based calculations can be employed to get these
parameters.

In general, the binding of a ligand to a protein can be described as the equilibrium
between the protein–ligand complex and the protein and the ligand (Eq. 2). The
change in free energy/the binding free energy (DGBind) can thus be calculated as the
difference between the free energies of the ligand and protein in free and bound form
(Eq. 3) which is then compared to experimental binding affinity (inhibition constant
or IC50).

PAq þ LAq $ PLAq ð2Þ

DGBind ¼ GðPLÞAq � GðPÞAq � GðLÞAq ð3Þ

All these free energies can be computed using explicit solvent models, namely
SPC, TIP3P, TIP4P, TIP5P, but it is computationally very demanding. Alternatively,
one can use the implicit solvent models, and then the free energies of the three
systems, namely complex, receptor and ligand, can be computed with less compu-
tational effort [18]. This involves calculation of solvation free energy of a subsystem
in a solvent media described with a dielectric constant which is a macroscopic
parameter specific to solvent and describes its ability to polarize the solute [18]. The
electrostatic interaction between the solute and the solvent is solved using gener-
alized born (as in the MM-GBSA) or Poisson–Boltzmann (as in the MM-PBSA) to
get the polar part of the solvation free energies [19]. The non-polar part of the
solvation free energies is computed from the solvent-accessible surface area of the
solute. In the implicit solvent model, the only used solvent parameter is dielectric
constant, usually the solvent coordinates are removed from the molecular dynamics
or Monte Carlo trajectories, and only the protein–ligand coordinates are used.

Force-field methods for calculating free energies (e.g. MM-GBSA or
MM-PBSA) with implicit solvent models forsolvation part achieved considerable
success in explaining the drug binding to a number of receptors or biomacro-
molecular targets [20–22]. In particular, MM-PBSA method was successfully used
to predict the binding affinities of many antibacterial, antiviral benchmark
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datasets [22, 23]. Further, the MM-PBSA method has been extensively used to
understand the interaction of various substrates with the targets that are relevant in
the treatment of various neurodegenerative diseases. A detailed account of this can
be found in the reference [22].

4.1 Molecular Docking

Molecular docking is the most simplistic method available for computing the
protein–ligand binding affinities and for finding the most stable binding mode
(pose) for a ligand within the binding site of the protein. The scoring functions are
used to decide on the binders from non-binders and their least energy binding mode
and pose which can be knowledge-based, empirical and force-field-based [24–26].
In the force-field-based scoring function, the free energy of binding dictates the
drug potency. The interaction energies are calculated as a sum of polar and
non-polar interactions such as van der Waals and electrostatic. The change in
intramolecular energies of the ligand due to conformational change is also added to
the total energies just to make sure ligand conformations with unusually high
energies are avoided in the search. The entropic contributions due to conformational
degree of freedom are included in a simple mean; i.e. each flexible bond is asso-
ciated with 0.3 kcal/mol.

The working equation to compute the interaction energy between the protein and
the ligand is as given below which is a sum of van der Waals (Evdw), electrostatic
(Eelec), hydrogen bonding (EHbond) and internal energies (Eint). The last term refers to
the change in intramolecular energy of the ligand due to binding to receptor. In the gas
phase, the ligand adopts geometry where the internal energy is assumed to be zero.
But when it binds to a receptor, it undergoes certain structural changes (or confor-
mational changes) and this increase in energy is contributing to internal energy. Such
contributions are usually positive to the total binding energies; however, the other
contributions are dominantly negative in magnitude making the protein–ligand
association to happen instead of destabilization due to increase in internal energies.

Edock ¼ Evdw þEH�bond þEelectrostatic þEinternal ð4Þ
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Due to the ease in doing calculations and lower computational demand,
molecular docking methods are routinely used to rank the compounds according to
their binding affinity or using other scoring. The pharmaceutical companies use this
approach very efficiently to screen the chemical database containing millions of
compounds against a potential target in the early virtual screening process before
they can be synthezised as lead series. An elaborate list on use of molecular
docking-based screening to design candidate drug molecules for various targets,
namely G protein-coupled receptors, enzymes, ion channels, can be found in this
reference [27].

Further, the binding mode and pose for number of ligands in their biological
targets were predicted successfully using molecular docking tool. For example,
there was a good overlap between the binding modes predicted from molecular
docking and experimental crystal structure in the case of safinamide, a reversible
inhibitor in monoamine oxidase B (MAO-B) (refer to Fig. 2A) [28, 29].
Interestingly, even in the case of a irreversible inhibitor such as selegiline

Fig. 2 Overlap of binding mode obtained from molecular docking with the experimental crystal
structure
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(L-deprenyl), where there is formation of covalent bond between the inhibitor and
FAD cofactor, the predicted binding mode from molecular docking has reasonable
overlap with the one from crystal structure (refer to Fig. 2B). Figure 2 shows the
overlap of binding mode obtained from molecular docking with the experimental
crystal structure. The target is monoamine oxidase B, and two inhibitors were
considered, namely safinamide and selegiline. The former one is reversible MAO-B
inhibitor, while the latter one is irreversible inhibitor which covalently bonding to
the FAD cofactor.

4.2 Success Stories of Force-Field-Based Methods in Drug
Discovery Projects

Drug discovery for a new disease is a complex project which requires knowledge
from different domains, namely protein profiling (genomics), bioinformatics (for
doing comparative genomics for target discovery), structural biology (for structure
elucidation of the target), cheminformatics (chemical space), synthetic medicinal
chemistry (design and synthesis of molecules), toxicology, pharmacology, phar-
macokinetic property estimation, binding assay experiments, clinical studies.
Computational approaches can be employed to speed up many of the intermediate
steps involved in the drug discovery such as target discovery (computational
comparative genomics), structure elucidation for a target (homology modelling)
and lead compound prediction (using cheminformatics, virtual screening and de
nova design) and ADMET property prediction (for screening the lead compounds
with appropriate pharmacokinetic properties) and toxicity prediction (by studying
the interaction of ligands with potential known off-targets). The chemical space
consists of billions of small molecules [30], and huge genomics database suggests
that there are thousands of targets and off-targets for studying the drug potency and
its toxicity which makes the computational approaches as irreplaceable workhorses
for the drug discovery projects. Thanks to such approaches, there are many drugs
which are in the clinical trial phase as well as some of them are approved by FDA
[31]. The lists include various drug compounds, namely Captopril, Dorzolamide,
Saquinavir, Zanamivir, Oseltamivir, Aliskiren, Boceprevir, Nolatrexed, TMI-005,
LY-517717, Rupintrivir and NVP-AUY922. In particular, the compounds
Captopril and Aliskiren are used for treating heart disease, hypertension, and
Saquinavir, Zanamivir, Oseltamivir, Rupintrivir are potential antiviral compounds
(for HIV type I and type II, influenza virus and human rhinovirus).
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4.3 Limitations of Force-Field Methods and Need
for an Alternative Approach

In many occasions, force-field-based approaches were successful in explaining the
ligand binding to receptors, in predicting the relative binding affinities of structurally
similar ligands and in predicting the binding affinities towards various mutants of
same receptors. However, many failures of these methods go unnoticed as these are
not reported in general. We have noticed that the MM-GBSA and MM-PBSA
methods cannot explain the relative binding affinities of indole-Substituted ben-
zothiazoles and benzoxazoles compounds towards monoamine oxidase B and their
binding specificity towards MOA-B when compared to MOA-A [32]. We have also
reported that in the case of thiabendazole-based compounds the correlation between
the experimental and computed binding affinities towards amyloid beta fibril using
molecular docking and MM-GBSA approach when compared to quantum
mechanics-based cluster model was not impressive [33].

The main reason behind is that force-field methods cannot account for the
changes in the electronic structure of ligands when they are bound to the target.
Usually, the charges for ligands are the same for the ligand in water as well as in the
binding site of target. This is not true, the electronic structure and molecular dipole
moment of the ligand can vary significantly depending upon the microenvironment
[34, 35], and such polarization due to environment should be accounted for in the
free energy calculations. Such a requirement automatically leads to the need for the
description of the ligand using a quantum mechanical theory where the electronic
degrees of freedom are treated explicitly and so the environment-specific changes in
electronic structure and molecular structure can be accounted accurately [36, 37].
However, electronic structure theory is not suitable to describe protein–ligand
complex systems as the number of electronic degrees of freedom is too many. So,
many approximations are employed to treat the interactions between the protein–
ligands in a quantum mechanical way.

5 Ab Initio Methods in Free Energy Calculations

It should be possible to calculate binding free energies using ab initio methods;
however, calculation of the free energy is difficult and even intractable for large
systems and an approximation is often invoked where only the energy is calculated
(Eq. 6) and the temperature is assumed to be 0 K.

DE ¼ EComplex � Eprotein � Eligand ð6Þ

In this section, we briefly describe some of the known and recent developments
in QM-based approaches which have been used for free energy-based drug
development projects.
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5.1 QM Cluster Model

In this model, the ligand and binding site residues are extracted and treated using
electronic structure theory. Since the binding/catalytic site residues are mostly
dictating the binding energies with ligand and the rest of the residues only play
supportive role and are contributing to retain the structure of the enzyme, in par-
ticular the binding site conformation, this is reasonable approximation. Since not all
the amino acids of enzyme are included in the calculation, certain approximations
need to be applied. To avoid spurious charge accumulation in dangling bonds
which might alter the energetics of the whole protein–ligand systems, the cut bonds
are capped with hydrogens. Since the rigidity of the binding site was mostly sta-
bilized by the rest of the protein, the free optimization of cluster might lead to
unrealistic distortions in the binding site geometry. So, certain terminal residues are
fixed in the space, only partial optimizations are performed, and the energies are
computed for these geometries. In certain cases, the QM cluster is placed in con-
tinuum solvent to mimic the protein-like environment and the dielectric constant for
the medium is chosen to be 4 [38]. There was the use of more than one quantum
mechanical theory in some cluster calculations. For example as in the case of 8‐Cl
TIBO bound to human immunodeficiency virus reverse transcriptase, authors
employed two-layer and three-layer ONIOM (in particular [MP2/6‐31G(d),
B3LYP/6‐31G(d,p) and PM3]) approach to estimate the interaction energy. The
residues closer to ligand are described using the high-level theory (like MP2) as
these contribute to total interaction energy dominantly, while the residues far away
from the ligand can be described using low-level theory as these contributions will
not be very significant [39]. There are not many studies which employ this
methodology to compute ligand binding energies or interaction energies with
receptor [38, 40–42]. However, for modelling a number of enzymatic reactions, this
method has been used successfully. In particular, the study on the enzymatic
reaction of acetylene hydratase to produce vinyl alcohol using two different
approaches, namely QM cluster model and QM/MM model, is worth recalling [43].

5.2 Hybrid QM/MM Approach

This approach combines the best of the two worlds, namely force-fields and elec-
tronic structure theory-based approach. Even though the receptor–ligand complex
system is too large in length scale, most of the time the region of relevance to us is
the ligand and certain residues that are in direct contact with the ligand. So, it is a
smarter idea to split the system into two regions and use the more accurate level of
theory (here, it is electronic structure theory) to describe the region of relevance and
to use a relatively less accurate but cheaper (here, it is force-field) approach to
describe the rest of the region. However, the harder part is the description of the

232 N. A. Murugan et al.



interaction between these two regions or subsystems. If there is no charge transfer
between these two subsystems, then one can add electrostatic and van der Waals
terms to account for such interaction, and in this way the polarization of the
quantum mechanical subsystem due to the system described using force-field is
accounted for. The implementation is straightforward when the ligand alone is
described by quantum mechanics and receptor and solvents are described using the
force-fields. However, when certain residues of the receptors are to be included in
the QM region, then the description of the chemical bonds between the receptor
parts in QM region and MM region is a bit challenging. Methods such as hydrogen
capping are developed to describe such regions, and it has become routine to use
QM/MM methods for computing the protein–ligand interaction energies and free
energies. Another main problem is due to the over-polarization of the terminal
bonds in QM region due to atomic charges in the immediate MM region. Usually,
the properties of certain atoms or groups closer to the interfacial region are moved
further away into MM region so that such over-polarization is not a problem any
more. Other option is to use damping function in the calculation of electrostatic
contribution to deal with such effect in a mathematical way. It is also worth
mentioning that the QM/MM methods in addition to energetics can be used to
model the enzymatic catalytic reaction and can also be used to model the optical
(linear and nonlinear) and magnetic properties of ligands when they are bound to
receptors.

5.3 Fragment Molecular Orbital

A computationally viable strategy to evaluate the energy of an entire protein or
protein–ligand complex is the fragment molecular orbital (FMO) method [44]. In
the FMO method, the entire system is divided into several fragments and their
energy is evaluated in the presence of all other fragments. This is known as the
one-body FMO (FMO1) method. Usually, a single fragment consists of a single
residue. To further enhance the quality of the calculation and include important QM
effects, all pairs of fragments are evaluated in the presence of the rest of the
fragments. This is known as the two-body FMO (FMO2) method. The total energy
for an FMO2 calculation is given as in Eq. 7

E ¼
XN
I

EI þ
XN
I[ J

DEIJ ð7Þ

DEIJ ¼ EIJ � EI � EJ ð8Þ

where EI is the energy of a monomer in the electrostatic potential (ESP) of all
other monomers. DEIJ is the interaction energy of fragment I and J evaluated as in
Eq. 8.
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5.3.1 Case study: HIV-1 RT RNase H Inhibition Screening

Many drugs or inhibitors potentially bind with metal ions in the catalytic site of
enzyme or receptors in order to exhibit the therapeutic effect, e.g. magnesium ions
containing enzymes such as HIV-1 integrase and RNase H [45, 46]. Thus, a good
scoring function should be able to accurately calculate the metal–inhibitor inter-
action which impacts an overall binding affinity of individual compounds. Although
the metal-binding term in the docking-scoring function is included (e.g. glide
score), it considers only the anionic or highly polar interactions; therefore, ranking
of actives is not appropriately achieved. On the other hand, it has been reported
previously that magnesium ions in the HIV-1 reverse transcriptase-associated
ribonuclease H (RNase H or RNH) play an essential role in binding and positioning
of RNA–DNA duplex (natural substrate) during digestion in the viral genome
reverse transcription process. Inhibition of this enzyme by chelation of magnesium
ions (active site binder) is provided as an attractive approach in anti-HIV RT
inhibition based drug design and discovery projects.

It is well known that the active site binder mechanism of inhibition is primarily
through chelation with magnesium ions; thus, binding affinity prediction model was
improved through the use of QM-based calculations by primarily considering the
chelation mechanism of inhibitors with the catalytically active magnesium ions.
This could be useful as a high-throughput filter in the virtual screening process.

The simplest possible model (scenario 1) to describe the binding of the ligand is
to only describe the chelation process between the magnesium ions and the ligand in
solution yielding the following approximation to Eq. 8. To further refine scenario 1,
we consider in scenario 2 geometry optimization of the protein–ligand complexes
using the Qsite module (version 5.0) of the Schrödinger suite. Here, the magnesium
ions and inhibitors were considered in the QM region (optimized with B3LYP and
the 6-31G(d) basis set). The rest of the protein and water molecules were considered
in the MM region (evaluated using the OPLS 2005 force-field) and kept frozen.

In general, docking methods could also be used for ranking compounds; how-
ever, the correlation between scoring functions and experimental values for binding
free energies is rather poor in this case, and one reason is the lack of protein
flexibility in the majority of the docking experiments. The correlation between
molecular docking using glide score and experimental activity was quite low
(n=7; R2 = 0.098). However, when the atomic coordinates were used for chelation
energy calculations using the DFT-B3LYP method (scenario 2; n=7; R2 = 0.93)
and FMO methods(R2 = 0.80-0.94). [47].

As we have discussed above that an effective virtual screening of RNase H
inhibitors from large chemical databases could be achieved using the combination
of docking and QM-based refinement calculations. In order to identify a novel
chemotype for RNase H inhibition and to validate previously developed compu-
tational methods, the best models were used to screen the Specs database (con-
taining 277,325 drug-like compounds for purchase) for HIV-1 RNase H inhibition
screening (Fig. 3). A set of 1205 compounds was obtained at the end of the
docking-based virtual screening, and these compounds were subsequently used for
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QM-based refinement calculation based on density functional theory
(DFT) calculations as described above (Eq. 8). The best-ranked 180 compounds
from the screening were sorted for further inspection. To select a diverse set of
structures for the biochemical assays, these compounds were clustered according to
the structural similarity. Of the 50 structural clusters, 25 structurally diverse com-
pounds, with the best scores, were chosen and purchased from the chemical vendor
(www.specs.net) to be tested against the HIV RT-associated RNase H function in
enzymatic assays. The overall workflow of the virtual screening process is shown
in Fig. 4. Out of 25 compounds tested, 3 compounds inhibited the RNase H activity

Fig. 3 Structure of HIV-1 reverse transcriptase enzyme and its active site. The components of the
QM and MM region for geometry optimization are shown

Fig. 4 Overall workflow of structure-based virtual screening strategies applied. Initial hit
molecules from the first screening are provided and one of the compound is highlighted in regions
where it shares a common structural pattern with known RNase H inhibitor BHMP07
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below an IC50 value of 100 µM and compound AN-648/41665045 showed an IC50

value of 9.35 µM. Notably, none of these compounds has previously been reported
as an inhibitor for RNase H [48]. (Fig. 4).

5.4 QM Fragmentation Approach

In this approach, whole protein is fragmented into individual amino acids, and the
fragment-wise interaction energies with ligand are calculated and added together to
get the total interaction energies as in the equation below. Since the whole protein is
broken into individual fragments, the size of the protein is not a problem any more
and a high-level electronic structure theory such as Møller–Plesset perturbation
theory or coupled cluster method that accounts for electronic correlation explicitly
can be used to compute the subsystem interaction energies [49].

DE ¼
Xn
i¼1

DEðAi�ligandÞ ð9Þ

where Ai is the ith amino acid in a receptor, n is the total number of amino acids,
and Ai-ligand refers to the ith residue–ligand complex. The ΔE is interaction energy
between the ith residue and the ligand, which itself is computed as below:

DEAi�ligand ¼ EAi�ligand � EAi � Eligand ð10Þ

The amino acids are cut along the peptide bond and capped either with hydro-
gens or with other functional groups to mimic protein-like environment around the
residue. When the hydrogen atoms are employed as capping atom, then the above
equation for the calculation of interaction energy is sufficient. However, it is
appropriate to use –NHCH3 and –CO–CH3 as capping groups for either side of the
amino acids. Moreover, the additional contributions to the interaction energies due
to these capping residues should be removed as below:

Ep�L ¼
XN�2

k¼1

EFk�L �
XN�3

k¼1

ECCk�L �
XN�2

k¼1

EFk þ
XN�3

k¼1

ECCk � EL ð11Þ

In this case, the interactions are due to two molecular entities (a ligand and an
amino acid) at a time and so we completely ignore the three-body contributions to
the total interaction energies. In other words, this is similar to making an
assumption that interaction between an amino acid and the ligand is not modulated
by the presence of the neighbouring amino acids (or fragments). However, by doing
additional calculations for estimating the interaction energies of dipeptide (or in
units of two amino acids) and ligand at a time, such three-body contributions can be
included. The expression for interaction energy is now a bit more complicated and
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involves the calculation of trimer (two residues and a ligand), dimer (one residue
and ligand) and monomer energies.

QM fragmentation energies can be further made sophisticated by computing the
individual monomer, dimer, trimer energies with an embedding scheme which
allows the interaction between these fragments with the rest of the protein through
an effective Hamiltonian. This part is methodologically very similar to the
above-discussed QM/MM approach where the QM system interacts with MM
subsystem through electrostatic and van der Waals interaction. However, care

Scheme 1 Construction of various capped fragments for a peptide made of four amino acids (and
so three peptide bonds). As can be seen, there are eventually four fragments (referred to F1, F2, F3
and F4). Each peptide bond can be capped with three pairs of –CO–CH3 and –NH–CH3 groups,
so there are three conjugate caps (referred to CC1, CC2 and CC3), and the interactions of these
with ligands should be removed as these are counted twice. (Note the positive sign for these
contributions in the equation above.) It can be seen for a peptide with n amino acids there can be
n − 1 fragments formed and n − 2 conjugate gaps possible if we fragment them using a scheme
shown above
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should be taken to make sure that certain subsystem interactions are not double
counted or in general over-counted (Scheme 1).

QM fragmentation scheme has been employed successfully to compute the
interaction of ligands with various drug targets. Interestingly, certain studies
showed that the computed interaction energy is comparable to that of QM cluster
model. Figure 5 compares the interaction energy of Efavirenz with HIV NNRT
target based on the two approaches, namely QM cluster and QM fragmentation
schemes [50]. As can be seen, the interaction energy as obtained from QM frag-
mentation scheme agrees well with the full QM model suggesting that the former
scheme is accurate as well as quite inexpensive.

Recently, it has been shown [51] that QM fragmentation method was able to
correctly reproduce the relatively larger binding affinity of a tracer, FDDNP towards
tau fibril when compared to amyloid beta fibril. In contrary, the MM-GBSA-based
method predicted that FDDNP has a larger binding affinity towards amyloid beta
fibril which is not in agreement with experimental binding affinity data. As shown
in Fig. 6, it is necessary to include interaction energy of the ligand with water
(within a cut-off of 15 Å) with that of its interaction with protein residues to
correctly reproduce the experimental binding affinity data.

QM fragmentation scheme has been applied to compute not only protein–ligand
interaction energies but also solvation energy, molecular electrostatic potential and
properties such as NMR chemical shifts of the ligands in solvent and
bio-environment [50]. Even the electron density of the whole biomolecule can be
obtained using this approach.

Fig. 5 Interaction energy calculated using M062X/6-311G** for Efavirenz with a fragment of
HIV-1 reverse transcriptase containing residues in the range from Asn175 to Leu193 of chain A.
Reprinted (adapted) with permission from (Acc. Chem. Res., 2014, 47 (9), pp 2748–2757).
Copyright (2014) American Chemical Society
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6 Entropic Contributions in the QM-Based Free
Energy Calculations

So far in all the electronic structure theory-based approaches, we have only seen
how to compute the interaction energies between a receptor and a ligand. However,
the quantity of interest is the free energy of binding and not the interaction energy.
For this, we also need to add the entropic contributions. The translational, rotational
and vibrational contributions to the entropies are computed from the translational,
rotational and vibrational partition functions as given in the reference by Yu et al.
[52]. The translational and rotational contributions to the protein–ligand association
are usually positive, while the vibrational contributions favour the association
process. The vibrational contribution has been often reported to be much smaller in
quantity when compared to the translational and rotational contributions. In some
cases, we have noticed that the addition of translational and rotational contributions
to total interaction energy yielded positive binding free energies. The computation
of absolute free energy (including all these different entropic contributions) still
remains as a challenge as there are no detailed benchmarking studies on the esti-
mation of the translational and rotational contributions and their relative contri-
butions to binding free energies.

Fig. 6 Total interaction energy between the FDDNP tracer and amyloid and tau fibrils with
increasing number of residues (related to increased cut-off). Also, the interaction energy of tracer
with solvents located near the binding site is shown with increasing number of solvent. The
residues and water solvents were first arranged with increased distance from the tracer centre of
mass, and their contributions were computed and added to the total interaction energy. As can be
seen with inclusion of around 125 residues, the major part of interaction energy with amyloid and
tau fibril is retrieved. The figure has been reproduced with peermission from (ACS Chem.
Neurosci., 2018, 9 (7), pp 1757–1767). Copyright (2018) American Chemical Society

Recent Advancements in Computing Reliable Binding Free Energies … 239



7 Machine Learning (ML)-Based Approaches for Drug
Discovery

Application of machine learning (ML) methods to problems in chemistry, biology,
materials, etc., has taken a huge leap during the last few years. Specifically, a number
of problems related to accurate intermolecular potentials, [53] drug design, [54]
protein–protein interaction, [55] viable retrosynthetic pathways, [56] stability of
solids, [57] potential energy surfaces [58], etc., are being addressed [59]. Advances
that are being made in this space in terms of tackling problems in a way that was not
thought about even few years are rapid, and the number of papers that are being
published in this area is increasing exponentially. Unlike in the most research areas
of science and technology, traditional ML methods such as single-layer neural
networks or random forest have been applied in the area of computer-aided drug
design long time ago. However, modern deep learning methods within ML are
expected to make significant contributions to the area of drug design in the coming
days [54, 60, 61]. Given that the last fifteen years have witnessed prolific generation
of experimental data in terms of synthesizable compounds, their pharmacodynamic
and pharmacokinetic properties, application of data-driven methods is likely to
advance the field significantly. The following sections give a brief account of ML
and some of the recent successes in application of ML methods in areas relevant to
various drug design projects, including off-targets [62].

There are two fundamentally different methods in ML: supervised and unsu-
pervised learning. Given a large data of inputs and outputs, supervised learning
methods try to learn a function so that given a set of inputs, output may be pre-
dicted. Supervised learning methods such as the artificial neural networks (ANNs)
are pertinent in quite a few drug discovery applications. On the other hand,
unsupervised learning methods learn structure within the data when only inputs are
available, which are typically applied dimensional reduction, pattern recognition,
etc. Most of the ML methods are based on ANNs that connect the input and the
output layers via an interconnected neural network (hidden layer(s)). The ANNs
consist of a number of layers with each containing a number of neurons. Output of
one of the layers is taken as input of the next layer, and the output values are
calculated using an activation function. Fully connected deep neural network
(DNN), recurrent neural network (RNN), convolutional neural network (CNN) and
autoencoders are some of the variants of ANNs that are very successful as efficient
methods for statistical modelling in a variety of fields. For a detailed account of
different machine learning methods relevant to drug discovery, the readers may
refer to the review by Lavecchia [63].

7.1 Structure-Based ML Approaches in Drug Design

As explained in previous sections, molecular recognition is a fundamental phe-
nomenon behind all biological processes and in drug binding. While the number of

240 N. A. Murugan et al.



drug-like molecules that could be synthesized is estimated to be around 1060, the
current experimental techniques cannot possibly screen all of these within reason-
able time and expense. Computational methods such as docking calculations address
this to some extent; however, the accuracy of the scoring functions behind these
algorithms is still not good enough to efficiently narrow the search space that can be
explored by experiments. Recently, it has been shown that machine learning (ML)-
based scoring functions can predict binding affinities better than the classical scoring
functions that are primarily used in computer-aided drug design [64]. Wojcikowski
et al. recently reported a systematic study on the performance of ML-based scoring
functions and compared it to well-known established methods [65]. They proposed a
scoring function based on the random forest method (RF-Score-VS) that was
trained on about 15,000 active and 900,000 inactive molecules against about 100
different drug targets . However, the authors do indicate that use of better molecular
representations and descriptors will further increase the success of machine learning
scoring functions. In addition, Kinnings et al. also showed that the support vector
machines (SVMs) can be used to improve the performance of scoring functions.
They constructed two prediction models; one is a regression model to predict the
IC50 values, and the second is a classification model that was shown to perform very
well across the entire data set [66]. Ragoza et al. have proposed a CNN-based model
for scoring functions that can be used in structure-based drug design [67]. The model
used the existing three-dimensional structures of protein–ligand complexes to train a
model that predicts the binding affinity corresponding to any protein and ligand. The
model was systematically trained by including a series of structural and binding
variations such as high affinity binders, low affinity binders, correct binding pose and
incorrect poses. They found that the scoring function obtained based on the CNN
algorithm performs significantly better than AutoDock Vina in terms of predicting
both binding poses and affinities. Recently, Dror and co-workers proposed a method
named Siamese Atomic Surfacelet Network (SASNet) that applies CNN to predict
protein–protein binding interfaces with high accuracy compared to the previously
available knowledge-based and ML-based methods [58]. Interestingly, the training
was done on a biased data where binding-driven conformational changes are not part
of the data set; however, the model was shown to perform very well suggesting that
the model has possibly learned the inherent structural and dynamic properties of
proteins in general. In addition to the traditional neural network-based algorithms,
there are other deep learning methods such as reinforcement learning that have been
found to be very effective in drug design. Reinforcement learning is based on two
neural networks, namely the generative and predictive neural networks. Popova et al.
have recently proposed, Reinforcement Learning for Structural Evolution
(ReLeaSE), a de novo method based on reinforcement learning [68]. Initially, the
generative and predictive networks are trained individually using one of the
supervised learning methods followed by training of both models together. This
allows for predicting new chemical structures with desired biological activities. They
have shown test cases by generating libraries of molecules with desired melting
points, hydrophobicity and biological activities. They propose that it is possible to
use a similar approach for optimization of multiple properties such as biological
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activity and different ADMET properties simultaneously to identify small molecules
with desired pharmacodynamic and pharmacokinetic properties at the same time.
Machine learning methods are also being used in ligand-based drug design projects .
The main goal of ligand-based drug design activities is to predict how a chemical
structure can be modified to achieve desired biological activity and/or ADMET
properties. The aim of QSAR, one of the major methodologies in ligand-based drug
design, is to generate a predictive regression model that gives a relationship between
biological activity (or any other property) and a set of molecular descriptors. Such an
exercise is inherently very suitable for traditional machine learning algorithms, and
hence it has been adopted very early [69]. Supervised learning algorithms such as
neural networks, random forest, SVMs and k-nearest neighbour have been used in
QSAR [55, 60, 61]. Similarly, application of unsupervised methods such as clus-
tering methods, principal component analysis and independent component analysis
has been successful. Schematic representation of ANN workflow is shown in Fig. 7.

7.2 Future Prospects of AI-ML in Drug Design

Machine learning methods have been used in ligand-based drug design for a long
time and have been reasonably successful. During the last five years, applications of
deep learning algorithms have showed a lot of promise in terms of their superior
performance compared to traditional ML methods used in drug design. The rate of
advance of computational methodologies that are traditionally applied to drug design
seems to be far lower than the advances that are being made by machine learning-
based methods. The availability of high-quality data, improved biophysical experi-
mental techniques, increasing computational resources/power and faster evolution of
machine learning methods such as deep learning are further pushing the drug design
efforts in right direction. Although the efforts seem to be fragmented at this point of

Fig. 7 Schematic representation of a multi-layer feed forward ANN
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time, further involvement of research groups with varied backgrounds and avail-
ability of clean data are expected to inspire emergence of more efficient workflows in
drug design that combine traditional methods and machine learning methods.

8 Conclusions

The current drug discovery projects can be benefited a lot from advancements in the
structure elucidation methods such as cryogenic electron microscopy, NMR
spectroscopy, X-ray crystallograpy and from computational free energy calculation
methods. This chapter presents various computational approaches available for
estimating the free energies of drugs in different environments which surrogate
various components of fate of drugs in the biosystem and this not only limited to drug
binding to its targets but also other interactions and its relevant properties e.g.
ADMET. We present various free energy calculation methods which use force-field,
semi-empirical and ab initio electronic structure theory-based methods. Until a
decade ago, using the electronic structure theory method for studying the structure
and energetics of biomacromolecule was formidable. Thanks to the fragmentation
and effective Hamiltonian approaches, it is possible to employ these methods for
computing the interaction energy between ligand and biomacromolecular fragments
reliably. Here, various working principles of these approaches along with key
illustrative examples are presented. Even though the methods appear very promising
for computing the free energy of the ligands in solvent or in biomacromolecular (such
as enzyme, membrane, fibril, DNA and RNA) environment, we need to systemati-
cally study various receptor–ligand systems and test for their ability to reproduce
experimental binding affinity and other pharmacokinetic parameters before
employing them as lead compounds in drug discovery projects. While physics-based
methods such as those mentioned above are important and unavoidable, alternative
approaches based on machine learning algorithms that exploit existing experimental/
computational data are emerging to be powerful tools for drug design. We expect that
elegant combination of traditional physics-based methods, better computational
power and more sophisticated machine learning algorithms will enable efficient and
accurate quantification of protein–ligand binding affinities for improved lead
identification/optimization processes in the drug design and discovery projects.
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Abstract Epigenetics has become an important field of research in drug discovery.
Epigenetic mechanisms are dynamic in nature and play a fundamental role in
cellular processes. Dysregulation of epigenetic events, including cross-talk between
DNA methylation and histone modifications, not only affects gene expression but
also causes pathophysiological effects leading to cancer, aging, cardiovascular,
neurological, and metabolic disorders. Epigenetic targets have captured the atten-
tion of researchers from diverse backgrounds to identify potential drugs for various
diseases. However, drug development is a complex, time-consuming process and
challenged by the high attrition rate. As with many chemotherapeutics, it is perti-
nent to avoid possible risk factors in epigenetic drug discovery. In this context,
computational approaches can rationally guide the search for active compounds by
utilizing the accumulated epigenetics knowledge base. In this chapter, we have
described the chemoinformatic strategies that can be applied to facilitate the
early-stage lead discovery in epigenetics, based on current best practices.
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1 Introduction

Discovery and development of new drugs is a complex, expensive, and
time-consuming expedition that requires high R&D costs and extensive clinical
testing. Developing a drug may take a span of 10–15 years, with a cost of several
hundred million dollars [1]. Hitherto 90% of lead molecules end up in failure [2]
owing to a number of factors including problematic functionalities, solubility at
relevant concentrations, toxicity, off-target effects, etc. Epigenetic drug discovery is
emerging as a promising therapeutics for small-molecule modulation of various
metabolic, neurodegenerative, and cardiovascular diseases. The field of epigenetics
is relatively new and growing quickly. The word epigenetics is derived from Greek
prefix: ‘ἐpί-’ meaning ‘above,’ and thereby, the term ‘epigenetics’ literally
describes the regulation at a level above genetic mechanisms. While all cells in an
organism share identical genome, they are able to maintain unique physical char-
acteristics and biological functions. The characteristics of a cell are determined by
DNA sequence as well as gene expression pattern. Since DNA sequence remains
the same in all cell types, the key role in cell fate is determined by epigenetics.
Many non-specific external stimuli such as temperature, viral infections, bacteria,
and diet can affect the DNA packing [3, 4] and as a result influence epigenetic
states, impacting cellular phenotype without disrupting nucleotide sequence.
Epigenetic changes are responsible for the cellular plasticity and enable cellular
reprogramming and environmental responses. Epigenetic mechanisms play the
critical role in diseases related to diet, lifestyle, environmental exposures to
chemicals, toxins, etc., and, thus, offer a robust platform to explore therapeutic
potential in various diseases (Table 1). The epigenetic states of a cell are dynamic
in nature and can be manipulated by targeting the molecular factors associated with
a disease. Chromatin remodeling via ATP-dependent processes, regulation by
noncoding RNAs, DNA methylation, histone acetylation, and histone methylation
are some of the key mechanisms involved in epigenetic gene regulation [5]. The
recent advances in epigenetic mechanisms, gene expression control, and cellular
functions have prompted the researchers to develop small-molecule inhibitors to
target these processes. The successful approval of many epigenetic drugs is timely
and promising. Pharmaceutical companies endorse this growing interest with huge
investments in order to explore new epigenetic drugs. According to recent market
reports, epigenetic drugs and diagnostic technology market are estimated to be
worth US$5.7 billion by 2018 [6]. Many existing drugs significantly affect the
epigenetic events [7, 8] during its disease-modifying action and further validate its
uniqueness as drug target. A recent study has shown that of all the FDA-approved
drugs, 1%, show significant epigenetic activity [9].

Despite the successful approval of epi-drugs, the druggability of many of the
epigenetic modulators remains challenging. Many factors such as selectivity,
poly-pharmacology, drug combination, toxicity, and target ‘confidence’ need to be
addressed. The new generation of epi-drugs is expected to be more selective and
specific with defined drug targets. Considering the increasing rate of failures in drug
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Table 1 Epigenetic control in different diseases

Disease Targeta Alteration References

Cancer DNMT1, DNMT3, TET,
GCN5, p300/CBP, MYST,
HDAC1, HDAC2, HDAC3,
HDAC6, HDAC9, SIRT1,
SIRT2, SIRT3, SIRT6,
SIRT7, EZH2, DOT1L,
SETDB1, NSD1, LSD1,
JMJD2C, and JMJD3

Global DNA hypomethylation,
CpG island hypermethylation,
hypoacetylation, and
hypermethylation

[10–12]

Aging DNMT1, TET, SET2, p300/
CBP, SUV39H1, SIRT1,
SIRT6, HDAC4, HDAC5,
HDAC7, KDM2, and KDM7

Global DNA hypomethylation,
CpG island hypermethylation,
aberrant histone acetylation and
methylation

[13, 14]

Diabetes DNMT1, p300/CBP SET7/9 DNA hypermethylation of the
PPARGC1Ab promoter in
pancreatic islets
Insulin gene displays
hyperacetylation and
hypermethylation in b cells

[15]

Parkinson’s
disease

DNMT1, HDAC1, SIRT2 Global DNA hypomethylation,
aberrant histone acetylation

[10, 16,
17]

Alzheimer’s
disease

DNMT3B, HDAC2, HDAC6 CpG island hypermethylation,
aberrant histone acetylation

[10, 16,
17]

Huntington’s
disease

p300/CBP, ESET Aberrant histone acetylation
and methylation

[10, 18]

Multiple
sclerosis

DNMT1, TET2, HDAC1,
HDAC2

CpG island hypomethylation [10, 19]

Systemic
lupus
erythematosus

DNMT1, DNMT3a,
DNMT3b, HDAC2, HDAC7,
MAPK

CpG island hypomethylation,
aberrant acetylation and
aberrant phosphorylation

[10, 20–
22]

Rheumatoid
arthritis

DNMT1, HDAC4 Global DNA hypomethylation,
CpG island hypermethylation

[10, 23]

aDNMT1 (DNA methyltransferase 1), DNMT3 (DNA methyltransferase 3), DNMT3a (DNA
methyltransferase 3a), DNMT3b (DNA methyltransferase 3b), DOT1L (disruptor of telomeric
silencing-1 like), EZH2 (enhancer of zeste homolog 2), ESET (ERG-associated protein with SET
domain), GCN5 (general control nonderepressible 5), HDAC1 (histone deacetylase 1), HDAC2
(histone deacetylase 2), HDAC3 (histone deacetylase 3), HDAC4 (histone deacetylase 4), HDAC5
(histone deacetylase 5), HDAC6 (histone deacetylase 6), HDAC7 (histone deacetylase 7),
HDAC9 (histone deacetylase 9), JMJD2C (Jumonji domain-containing 2C), JMJD3 (Jumonji
domain-containing 3), KDM2 (lysine demethylase 2), KDM7 (lysine demethylase 7), LSD1
(lysine-specific histone demethylase 1), MAPK (mitogen-activated protein kinase), MYST (Moz,
Ybf2/Sas3, Sas2, Tip60), NSD1 (nuclear receptor-Binding SET domain protein 1), p300/CBP
(CREB-binding protein), SET2 (SET domain-containing 2), SET7/9 (SET domain-containing 7/9),
SETDB1 (SET domain, bifurcated 1), SIRT1 (silent mating-type information regulation 2 homolog
1), SIRT2 (silent mating-type information regulation 2 homolog 2), SIRT3 (silent mating-type
information regulation 2 homolog 3), SIRT6 (silent mating-type information regulation 2 homolog
6), SIRT7 (silent mating-type information regulation 2 homolog 7), SUV39H1 (suppressor Of
variegation 3-9 homolog 1), TET (ten-eleven translocation), and TET2 (ten-eleven translocation 2)
bPPARGC1A (PPARG coactivator 1 Alpha)
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discovery in past decades, it is advisable to make upfront choices before selecting
and acquiring chemical libraries for a challenging target like epigenetics. This
chapter offers a set of chemoinformatic tools to identify possible risk factors and
pitfalls, and explores the synergy with experimental methods to advance the dis-
covery of small molecules that modulate various epigenetic targets.

2 Overview: Epigenetic Control of Gene Expression

Chromatin organization

Multicellular organisms have the large genome, and it must maintain the integrity
and specialized functions of different cell types. Therefore, eukaryotes have evolved
a dynamic and efficient packaging system, where chromosomal DNA is organized
inside the nucleus of the cell with the help of histone proteins (Fig. 1). The con-
densed DNA and associated proteins together constitute the nucleosome, the basic
structural unit of chromatin [24]. The nucleosome consists of a histone octamer core
which is wrapped around by 146 base pairs of dsDNA. Each octamer contains two
copies of each of four histone proteins—H2A, H2B, H3, and H4. Further, these
nucleosomes align along the DNA with the help of a fifth type of histone (H1 and
isoforms) which acts as a linker. Histone H1, its isoforms, RNAs, and other non-
histone proteins together contribute to the next level of condensation forming the
30 nm fiber. Further, scaffold proteins and chromatin-remodeling complexes help to

Fig. 1 Chromatin organization and main categories of epigenetic protein family
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maintain the chromatin structure and allow dynamic movements between euchro-
matin and heterochromatin [4] (Fig. 1). Euchromatin is loosely packed, thereby
accessible to transcription machinery and genetically active. In contrast, the hete-
rochromatin contains highly compact DNA in which case it is difficult to access by
transcription machinery and, consequently, is genetically inactive.

Epigenetic modifications

Alterations in chromatin structure and subsequent change in the gene expression are
achieved by two main mechanisms: (1) DNA methylation at cytidine residues and
(2) histone modifications. Histone modifications may include acetylation, methy-
lation, phosphorylation, ubiquitylation, sumoylation and siRNA-controlled gene
expression. These modifications lead to multiple chromatin states, creating com-
binatorial patterns of DNA and histone variant mark areas of distinct genome
functions [25]. Such patterns both reflect and influence chromatin-related processes,
mainly DNA replication, DNA repair, transcription, and chromosomal segregation.
The epigenetic proteins that facilitate such modifications can be divided into three
major categories based on their broad functions: (1) writers that embed epigenetic
marks on DNA or histones, (2) erasers that remove such marks, and (3) readers that
identify these marks (Fig. 1).

3 The First and Second Generation of Epi-Drugs

Research interest has grown exponentially within academia and industries to
develop therapeutic agents for cancer, aging, diabetes, neurodegenerative, and
cardiovascular disorders. This has led to the development of five successful
epi-drugs that have been approved by the FDA (Food and Drug Administration),
representing the first generation of epigenetic drugs (Table 2):

(1) 5-azacytidine (also known as Vidaza®): 5-Azacytidine is an analog of the
cytidine and was first synthesized about 40 years ago. Azacitidine inhibits
DNA methylation by stoichiometrically binding to DNMT1 (DNA methyl-
transferase 1). Azacitidine has been used primarily in the treatment of leukemia
and MDS (myelodysplastic syndrome).

(2) 5-aza-2′deoxycytidine (also known as decitabine or trade name: Dacogen®):
5-aza-2′deoxycytidine is also an analog of cytidine. Similar to Azacitidine, it
also inhibits DNMT1 (DNA methyltransferase 1) and exhibits clinical utility in
MDS (myelodysplastic syndrome) and leukemia.

(3) Vorinostat (chemical name: suberoylanilide hydroxamic acid, commercially
known as Zolinza®): Vorinostat is an inhibitor of class I and II HDACs (his-
tone deacetylases). Vorinostat has been approved for the treatment of CTCL
(cutaneous T cell lymphoma).
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(4) Romidepsin (also known as Istodax®): Romidepsin is a selective inhibitor of
HDAC (histone deacetylase) that was discovered from cultures of
Chromobacterium violaceum. Romidepsin was too approved for valuable
treatment of CTCL (cutaneous T cell lymphoma).

Table 2 The first generation of epi-drugs

Drug name Chemical structure Targeta Useb

Azacytidine

O

N

H2N N

N O

OHHO

OH

DNMT1 Approved for the
treatment of
MDS [26] and
relapsed AML
[27]

Decitabine

O

N

H2N N

N O

OH

OH

DNMT1 Approved for
MDS and for
treatment of
elderly AML
patients [28]

Vorinostat

O

H
N

O

N
H

OH

Class I &
II HDACs

Approved for
CTCL [29].
Phase II trial in
recurrent
glioblastoma and
unresectable
gastric cancer
[30]

Romidepsin

O

N
H

NH

S
S

N
H

NH

O

O

O
O

O

H
H

H

Class I
HDACs

Approved for
CTCL [31] and
relapsed PTCL
[32]
Phase I/II trial in
recurrent
high-grade
glioma [33]

Belinostat

HN

O

OH

S
N
H

O O
pan-HDAC Approved for

relapsed/
refractory PTCL
[34]

aDNMT1 (DNA methyltransferase 1), HDACs (histone deacetylases)
bMDS (myelodysplastic syndrome), AML (acute myeloid leukemia), CTCL (cutaneous T cell
lymphoma), PTCL (peripheral T cell lymphoma)
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(5) Belinostat (also known as PXD-101 or Beleodaq®): Belinostat is another
histone deacetylase (HDAC) inhibitor that gained accelerated approval by the
FDA for the treatment of patients with relapsed or refractory PTCL (peripheral
T cell lymphoma).

Currently, the second generation of epi-drugs is entering clinical trials and holds
more promise because of their greater intrinsic selectivity for the molecular targets
(Table 3):

(1) GSK126: GSK126 has been validated as an histone methyltransferase
(HMT) inhibitor of EZH2 (enhancer of zeste homolog 2). It has shown
promising results in inhibition of DLBCL (diffuse large B cell lymphoma).

(2) C646: C646 is a potent and selective (HAT—histone acetyltransferase) inhibitor
of p300 enzyme, which has proven to be effective against cancer cell growth.

(3) EPZ004777: EPZ004777 is a selective inhibitor of DOT1L (disruptor of
telomeric silencing 1-like), a protein methyltransferase. It has been demon-
strated to kill MLL (mixed lineage leukemia) cells in vitro and prolongs sur-
vival in an MLL xenograft mouse model.

(4) JQ1: JQ1 is a bromodomain inhibitor for BRD4 (bromodomain-containing 4)
protein. It promotes differentiation, tumor regression, and prolonged survival in
murine models.

(5) UNC669: UNC669 is a potent and selective MBT (malignant brain tumor)
inhibitor for L3MBTL1 (lethal(3)malignant brain tumor-like protein 1).

Fig. 2 Illustrative examples of pharmacological inhibitors of epigenetic proteins. The names of
target proteins are written in parentheses
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Apart from the above-mentioned drugs, several other inhibitors of epigenetic
targets are discovered. Some of these inhibitors are depicted in Fig. 2.

4 Chemoinformatics Study on Epigenetic Modulators

This section briefly describes the key strategies to select and assess a small-molecule
library based on current best practices and theoretical guidelines. Once a target is
determined, one needs to design and select a chemical compound library. Recently,
we have developed a powerful and curated database to assist the researchers in
epigenetic drug discovery (www.epidbase.org). Our database has diverse molecules
and scaffolds that are found to be active against various epigenetic proteins. Detailed
methodology and analysis can be availed from our previously published study [46].
There are numerous chemoinformatics tools available to support the synthetic and
medicinal chemists in vetting the promising libraries [47–49]. These tools are
available in various forms to select building blocks, enumerate compounds, and also
calculate chemical descriptors and fingerprints to sketch the library. In order to
utilize these tools, an important prerequisite is to store and sort the molecules using
one of the data formatting systems such as SMILES (simplified molecular input line
entry specification format) or SDF (structure-data file format). Many software
packages including Schrodinger, Tripos, and Pipeline Pilot are powered with
structural, physicochemical, ADME, and diversity filtering tools.

Strategy 1. Analyze the chemical space and scaffold diversity

The term ‘scaffold’ represents the core structures of bioactive compounds and is
often used interchangeably with terms like ‘framework,’ ‘substructure,’ or ‘frag-
ment.’ As proposed by Bemis and Murcko [50], the framework can be obtained by
trimming the side chain atoms which are not positioned in the connecting path
between two rings. The concept of chemical scaffold diversity is widely applied in
drug discovery. The chemical space in relevance to drug-like molecules is estimated
to be of 1060 molecules (i.e., between 300 and 500 Da of molecular weight).
Practically, chemical space is infinite and meagerly populated and it is impossible to
mine out a drug. In drug discovery, a chemical library is not of significant use if the
biological and chemical space does not overlap [51]. Therefore, scaffolds should be
focused upon as the core of small chemical libraries to be synthesized or acquired.
There is a significant number of studies that have applied large substructure simi-
larity to analyze the diversity based on ring systems in the structures [52–57]. Using
such a strategy enables the medicinal chemist to select structures which belong to
the same chemical family and have a common molecular framework. For example,
in our database, to narrow down the chemical space and select the scaffolds, we
searched the literature for known modulators of epigenetic proteins. Despite the
importance of epigenetic proteins in therapeutics, there were no resources or plat-
forms available to comprehensively analyze the epigenetic modulators for drug
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discovery. Databases such as NCBI Epigenomics, HEMD, ChEpimod, ChEMBL,
and ChromoHub provide access only to epigenetic proteins and their phylogenetic
associations. However, their chemical libraries are mainly based on virtual inhi-
bitors of epigenetic proteins (e.g., PubChem bioassay data) [58]. To retain only
validated molecular scaffolds that actually interact with epigenetic targets, we
collected data manually from the literature for experimentally verified inhibitors.
We designed EpiDBase, to view, explore, search, and analyze the small-molecule
modulators targeting various epigenetic protein families. EpiDBase is manually
curated to identify unique molecular scaffolds and includes text search, structural
editor, and chemical fingerprint search, for powerful browsing [46]. Molecules from
EpiDBase can be selected and further derivatized to obtain a potent lead toward an
epigenetic protein in drug discovery.

Strategy 2. Weed out the problematic compounds

One of the key aspects in the prioritization of chemical matter is to weed out the
‘problematic’ or ‘risky’ compounds. Such compounds called ‘PAINS’ are ‘frequent
hitters’ and belong to a subset of chemical substructures that interact
non-specifically with proteins in various unrelated bioassays. PAINS can readout as
false positives due to non-selective binding with proteins [59], fluorescence [60],
redox activity [61], cysteine oxidation [62], and aggregation [63]. More than 450
structural classes [64] have been identified as PAINS, and a typical academic
screening library may consist of 5–12% of such compounds [65]. The most
recurring chemotypes are rhodanines, phenol-sulfonamides, toxoflavins, isothia-
zolones, enones, curcumin, hydroxyphenylhydrazones, quinones, and catechol. For
example, rhodanines are reported as promising bioactive compounds, but they may
undergo light-induced reactions and modify some proteins covalently [66].
Likewise, phenol-sulfonamides are unstable compounds and can alter the redox
cycle and covalently modify the target proteins. Unfortunately, several articles and
patents in the literature include PAINS as potential bioactive compounds [67–70].
A medicinal chemists‘ precise look at the structure can help the biologist to exclude
such compounds. Recently, chemical substructure filters and rules (e.g., PAINS,
REOS, and others [49, 71–74]) have been introduced to identify these problematic
moieties. In EpiDBase, Eli Lilly MedChem regular rules were applied to weed out
such promiscuous compounds [46]. The Eli Lilly MedChem rules are defined by a
set of 275 rules and are capable of identifying compounds that may interfere with
biological assays. We processed a total of 5401 molecules, out of which 1664
molecules were rejected by the filter rules. The remaining 3737 molecules can be
further exploited in epigenetic drug discovery and can prove promising.

Strategy 3. Perform the computational ADME/toxicity prediction

Majority of drug candidates fail in clinical trials owing to their unfavorable
absorption, distribution, metabolism, excretion, and toxicity (ADMET) profile
(Fig. 3) [75–77]. A recent study [2] showed that only 32% of Phase II drug
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candidates are able to make it to Phase III clinical trials and overall just *10% of
drugs reach to market. Unfortunately, terminating a lead molecule suffers from the
loss that increases exponentially as it moves further down the pipeline. For that
reason, it is important to adhere to conventional rules for drug-likeness and oral
bioavailability of drug candidates. These rules are defined by more than 3300
molecular descriptors [78] including physicochemical, geometrical, topological,
electropological, quantum chemical, and molecular fingerprints. Drug-likeness of a
molecule can be evaluated based on statistical rules (e.g., ‘rule of five’) or its
physicochemical properties (e.g., solubility, lipophilicity, rotatable bonds, polar
surface area). It is well established that prediction of ADMET properties at the
earliest stages prevents from depletion of scarce resources on bad leads and
expensive clinical trials. This allows allocation of drug development resources on
fewer but much promising drug leads. Various software packages including
DEREK, METEOR, Discovery Studio are available to predict the ADMET prop-
erties. Though not very accurate, these software packages may provide key insights
into a drug’s safety and efficacy profile to curtail the high cost of failures in clinical
trials. In EpiDBase, we performed ADMET analysis using FAF-Drugs2 [79], to
filter out the toxic, unstable molecules, and/or functional groups. Further, we used
ZINC property filter to assess the drug-likeness of 3737 molecules using various
physicochemical descriptors such as MW, hydrogen bond acceptor (HBA),
hydrogen bond donor (HBD), rotatable bonds, polar surface area. The filtered
molecules represent a set of epigenetic ligands that possess drug-like properties and
can be further explored by virtual screening and docking experiments to find
potential ligands for various epigenetic proteins.

Fig. 3 Reasons for drug failures during 2013–2015 [77]
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Strategy 4. Generate 3D conformers

Drugs act through physical interaction with specific biological targets. Such
interactions are determined primarily by complementarity of shape and properties
between the interacting molecules. On that account, the biological activity of a drug
depends on its three-dimensional structure. In solution, most drug molecules are
flexible and exist as an ensemble of low-energy conformations (shapes) in equi-
librium with one another. The biologically active conformation (target-bound) can
either be similar to the conformations present in solution or can be induced by target
binding [80]. Also, different target proteins or cellular environments can induce
different conformations of the same ligand. Thus, conformational adaptation is an
important aspect in pharmacophore modeling, rigid docking, shape-based screen-
ing, 3D-QSAR, and virtual screening and must be considered carefully during lead
optimization. There are various small-molecule conformer generation tools avail-
able such as BALLOON, CONFAB, FROG2, RDKIT, and OMEGA. These tools
use diverse algorithms which may be based on approaches including
knowledge-based rule sets [81, 82], random coordinate changes [83], random tor-
sional angle changes [84, 85], and/or distance geometry [86, 87]. Numerous studies
have reported the use of conformer generating tools for predicting bioactive con-
formations [88, 89]. In view of this, we generated a multi-conformer database of
5447 compounds using Universal Force Field (UFF) to facilitate epigenetic ligands
with maximum coverage of conformational space [46]. Conformers were generated
using RDKit, an open-source toolkit that comes under the permissive Berkeley
Software Distribution (BSD) license and employs the distance geometry approach
[90]. For each compound, we generated 50 conformers with RMSD cutoff of 0.5.
For some compounds, the number of conformers generated was less than 50 as a
result of RMSD criteria. In total, 269,052 conformers were generated which provide
the structural information about the conformational states of all epigenetic ligands
in the database and can be exploited further for in silico drug designing.

Strategy 5. Perform clustering analysis

Clustering is a powerful tool to identify homogeneous subsets within a hetero-
geneous compound dataset using structural characteristics [76, 91, 92]. For
example, it can be utilized to explore a large dataset to correlate compounds based
on their biological activity/property and scaffold hopping [93]. Clustering tools are
applied widely in drug discovery for chemical diversity, compound selection, and
data reduction in libraries. In times, it is advantageous to cluster small subsets of
compounds together to perform assays where it is not feasible to perform the
high-throughput screening. An ideal clustering process creates a series of clusters
from a larger library of compounds. Each cluster consists of compounds with
similar datapoints clubbed together as per the chosen criteria for similarity [94].
JKlustor, ChemMine Tools, and PKOM are some examples of the available clus-
tering tools. In EpiDBase, ChemMine Tools were utilized to perform clustering
analysis. ChemMine has an online workbench that provides three important clus-
tering methods including hierarchical clustering, multidimensional scaling (MDS),
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and binning clustering. ChemMine tool first calculates the similarity matrix based
on atom pair descriptors for each compound using the Tanimoto coefficient. The
Tanimoto coefficient may range between 0 and 1, indicating ‘1’ as the highest
similarity and ‘0’ as no similarity. The similarity matrix is then converted into a
distance matrix by deducting the similarity values from 1. The hierarchical clus-
tering arranges the similar compounds in a tree with branch representation, where
branch lengths are proportional to the similarity between compounds. However,
MDS represents compounds as a scatter plot. The binning cluster displays the
results as a table where similar compounds are grouped together for a user-definable
cutoff. In EpiDBase, binning clustering was performed using a similarity cutoff of
0.6 (Tanimoto coefficient) to define the chemical diversity and space coverage of
epigenetic ligands. For example, 622 ligands of SIRT2 were clustered using
ChemMine to classify similar compounds and scaffolds into groups. Out of 108
clusters formed, 65 were single molecule clusters represented by unique ligands.
Such clusters provide a rare opportunity for medicinal chemists to populate them
using rational design and structure-activity relationship (SAR) studies to identify
potential therapeutics.

Strategy 6. Optimization of fragment-based library

Fragment-based drug design has emerged as a powerful technique in lead discovery
paradigm which is used as an alternative or often complementary to traditional
high-throughput screening (HTS). Fragments are ‘atom-efficient’ binders that can
be further expanded into high-affinity lead compounds [95]. In comparison with
compounds, fragments exhibit weak affinity toward the target and need high-end
instruments for their detection. Furthermore, fragment screening needs a high
concentration of protein and fragments. These challenges can be overcome by using
a wide variety of computational approaches to identify potential fragments and
binding sites. In EpiDBase, Retrosynthetic Combinatorial Analysis Procedure
(RECAP) [96] was used to generate the fragment database for SIRT2 modulators.
RECAP cleaves along the bonds using chemical knowledge and generates a col-
lection of fragments suitable for combinatorial library synthesis. Such fragments
can be further clustered to generate effective libraries for epigenetic drug discovery.

Strategy 7. Optimization of commercial library for HTS

High-throughput screening (HTS) is a robust approach to drug discovery that
allows the assaying of a large number of small molecules against a validated target.
The aim of HTS is to accelerate drug discovery by identifying active chemical
series. It is essential to enrich small-molecule libraries with high chemical diversity
to increase the hit rate. The compound enrichment can be done using a multitude of
techniques including scaffold tree classification, virtual docking or general structure
and property filters (Fig. 4) [97, 98]. In our earlier study [99], various commercially
available chemical libraries were analyzed for their exclusiveness, drug-likeness,
and scaffold similarities (using asymmetrical metrics). The study demonstrates that
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larger libraries have optimal chemo-diversity and unique scaffolds with drug-like
properties for HTS. Accordingly, this method can be implemented in epi-drug
discovery to identify the unique scaffolds that can be further optimized to design
high-affinity lead molecules with enhanced activity (Fig. 4).

Strategy 8. Structure-based drug discovery in epigenetics

Structure-based drug design (SBDD, also known as rational drug design) is an
essential tool in drug discovery and has delivered many successful drugs [100–
105]. In contrast to conventional ways of drug discovery (which are mostly hit and
trials), SBDD is more efficient since it incorporates the 3D structural information of
biological targets to understand their functional role in a disease [106]. SBDD
methods are now often applied much earlier in the drug discovery to save resources
and time during preclinical and early clinical stages.

SBDD begins with the selection of a potent biological target for a given ther-
apeutic need. Once a target is selected, its structure must be determined to identify
potential ligand binding site using techniques such as X-ray crystallography,
cryo-EM (cryo-electron microscopy), and NMR (nuclear magnetic resonance
spectroscopy). The ligand binding site is ideally defined by a variety of hydrogen
bond donors and acceptors, hydrophobic residues, and molecular surface area. In
cases, where the structure of the target protein is not available, a homology model
can be deduced using computational tools such as SWISS-MODEL [107], Modeller
[108], Phyre2 [109]. Finally, a lead molecule is designed to interact with the target

Fig. 4 Barriers in drug discovery
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protein to modulate its biological activity. The general strategy of structure-based
drug discovery is outlined in Fig. 5.

With the advent of technologies such as high-throughput X-ray crystallography
[110], cryo-EM [111], NMR [112], and homology modeling [113], the proteomic and
structural information of new biological targets is flaring up and has further opened up
new opportunities for future lead discovery. Subsequently, the current information on
epigenetic targets in the form of available structural data and drug design perspectives
is evolving at an impressive rate. Recently, Shao et al. have discovered novel inhibitors
targeting DNMT3A by utilizing the structure-based virtual screening in addition to
biological assays [114]. Two of compounds, 40 and 40_3, showed low micromolar
inhibitory activity through binding to S-adenosyl-l-methionine and may further serve
as scaffolds for drug optimization. In another study, co-crystal structures of PRMT2
and PRMT4 with S-adenosyl-L-homocysteine or other compounds (including Cp1, a
synthetic inhibitor of PRMT2) were investigated [115]. The comparison of inhibitor
interactions with two proteins revealed that compound Cp1 is efficient at inhibiting
PRMT2 [115]. The study represents an initiative toward a better understanding of
PRMT2 substrate recognition. It may provide further insights into structure-based
drug design of PRMT2 inhibitors. Similarly, Siedlecki et al. predicted homology
model of DNMT1 [116], performed structure-based virtual screening with *2000
compounds, and identifiedRG108 inhibitor [117, 118]. Bowers et al. discoveredC646
compound as cofactor-competitive and cofactor-selective inhibitor of p300 [38].

The examples cited above represent the significance of SBDD approaches in epi-
genetic drug discovery. However, despite the success of SBDD and availability of

Fig. 5 General strategy of structure-based drug design (SBDD)
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X-ray crystal structures of many epigenetic proteins, the SBDD approaches are not
competent in all circumstances. For example, the thermodynamics of ligand-receptor
association cannot be predicted precisely because the current methodologies do not
take into account the factors such as receptor flexibility, solvation, entropy, and
dynamic inclusion of water molecules [119, 120]. Additionally, some tricky epigenetic
targets such as HATs and other complexes lack potent chemical probes and are
unexplored [121]. Nevertheless, epigenetic drug discovery is evolving and it is nec-
essary to have access to experimental data related to bioassays and 3D structures of
epigenetic enzymes. To support SBDD for epigenetic targets, EpiDBase [46] provides
information regarding available structures of epigenetic proteins with the
cross-reference to Protein Data Bank, resolution of crystal structures, the method of
obtaining crystal structure, and the information about ligand present in crystal struc-
ture, if any. EpiDBase can assist in homology modeling, docking, virtual screening
and can prove to be resourceful to accelerate structure-based drug discovery.

5 Conclusion and Future Perspectives

Transforming lead molecules into successful drugs is still a challenging task, in
spite of tremendous advances in pharmacology and medicinal chemistry [122]. In
fact, 99% of drug discovery projects fail and most leads are unable to make it
through the later stages of drug development (clinical trials). The advancement in
the knowledge of epigenetic changes associated with specific disease has encour-
aged the research efforts in the field of epigenetic drug discovery.

Box 1. Questions to ask before obtaining a chemical library
Questions? Why ask?

Do the scaffolds overlap with the
biological space of epigenetic target
binding site?

The selection of scaffolds for a particular
target limits the chemical space and
provides the key building blocks while
designing the drugs

Do the scaffolds have synthetic
accessibility?

The synthesis of various derivatives can
be achieved for scaffolds, which
demonstrate synthetic tractability. This
will probably lower the cost of synthesis
and save time

Do the compounds exhibit favorable
physicochemical properties?

All chemical compounds are not drugs.
Drug-likeness of a compound depends on
various physical and chemical properties.
Compounds with favorable
physicochemical properties are more
promising at later stages of drug
development

(continued)
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(continued)

Questions? Why ask?

Do the compounds pass through the filters
for promiscuity and common sources of
assay artifacts?

Certain chemical moieties can interact
non-specifically with proteins in multiple
assays. It is crucial to weed out such
artifacts in order to avoid expenses on bad
lead molecules

What is the library size? The library should fit as per the needs of
the project and should not be populated
unnecessarily. It is better to keep fewer
but useful compounds in the library.
However, larger libraries offer chemical
diversity for HTS

What is the clustering density of
compounds?

Clustering density can reveal interesting
patterns among the target specific
compounds synthesized over many
decades. The underexplored clusters can
be scaled up to synthesize the derivatives

The progress made so far in terms of epi-drugs is only the beginning of a revolution.
Implementing computational strategies in the selection and screening of chemical
libraries at an early stage of epigenetic drug discovery is vital for identifying promising
lead molecules. Furthermore, epigenetic specific databases such as EpiDBase, NCBI
Epigenomics, ChEMBL, and HEMD are powerful tools. For example, EpiDBase can
facilitate interactive exploring of epigenetic proteins, their curated ligands, SAR
studies, statistical analysis, and fragment-based drug design. The database can be
employed to study epigenetic ligands for their experimental IC50 values, structural
data, toxicological, and chemoinformatic information. We have attempted to provide
an overview of the myriad of considerations to all researchers engaged in epigenetic
drug discovery for selecting a small-molecule screen library (Box 1). We have high-
lighted the strategies to design a chemical library based on current best practices and
theoretical considerations (Fig. 4). Nevertheless, it is hoped that this study would be
beneficial for the design and discovery of modulators to influence epigenetic states of
various diseases. Ultimately, it shall help in guiding compounds through all the
potential pitfalls to determine the success of an epi-drug discovery campaign.

References

1. IFPMA. The pharmaceutical industry and global health: Facts and Figures 2017. 2017;
Available from: https://www.ifpma.org/wp-content/uploads/2017/02/IFPMA-Facts-And-Figures-
2017.pdf

2. Hay M et al (2014) Clinical development success rates for investigational drugs. Nat
Biotechnol 32(1):40–51

264 S. Loharch et al.

https://www.ifpma.org/wp-content/uploads/2017/02/IFPMA-Facts-And-Figures-2017.pdf
https://www.ifpma.org/wp-content/uploads/2017/02/IFPMA-Facts-And-Figures-2017.pdf


3. Abraham AL et al (2012) Genetic modifiers of chromatin acetylation antagonize the
reprogramming of epi-polymorphisms. PLoS Genet 8(9):e1002958

4. Bierne H, Hamon M, Cossart P (2012) Epigenetics and bacterial infections. Cold Spring
Harb Perspect Med 2(12):a010272

5. Brookes E, Shi Y (2014) Diverse epigenetic mechanisms of human disease. Annu Rev Genet
48:237–268

6. Epigenetics Drugs and Diagnostic Technologies Market - Global Industry Analysis, Size,
Share, Growth, Trends and Forecast, 2012–2018

7. Raynal NJ et al (2017) Repositioning FDA-approved drugs in combination with epigenetic
drugs to reprogram colon cancer epigenome. Mol Cancer Ther 16(2):397–407

8. Mendez-Lucio O et al (2014) Toward drug repurposing in epigenetics: olsalazine as a
hypomethylating compound active in a cellular context. ChemMedChem 9(3):560–565

9. Raynal NJ et al. (2014) Discovery of new epigenetic drugs among FDA-approved drug
libraries. Cancer Res. 74:19

10. Portela A, Esteller M (2010) Epigenetic modifications and human disease. Nat Biotechnol
28(10):1057–1068

11. Bhattacharjee D, Shenoy S, Bairy KL (2016) DNA methylation and chromatin remodeling:
the blueprint of cancer epigenetics. Scientifica (Cairo) 2016:6072357

12. Virani S et al (2012) Cancer epigenetics: a brief review. ILAR J 53(3–4):359–369
13. Sen P et al (2016) Epigenetic mechanisms of longevity and aging. Cell 166(4):822–839
14. Benayoun BA, Pollina EA, Brunet A (2015) Epigenetic regulation of ageing: linking

environmental inputs to genomic stability. Nat Rev Mol Cell Biol 16(10):593–610
15. Ling C, Groop L (2009) Epigenetics: a molecular link between environmental factors and

type 2 diabetes. Diabetes 58(12):2718–2725
16. Landgrave-Gomez J, Mercado-Gomez O, Guevara-Guzman R (2015) Epigenetic mecha-

nisms in neurological and neurodegenerative diseases. Front Cell Neurosci 9:58
17. Coppede F (2014) The potential of epigenetic therapies in neurodegenerative diseases. Front

Genet 5:220
18. Lee J et al (2013) Epigenetic mechanisms of neurodegeneration in Huntington’s disease.

Neurotherapeutics 10(4):664–676
19. Peedicayil J (2016) Epigenetic drugs for multiple sclerosis. Curr Neuropharmacol 14(1):3–9
20. Relle M, Foehr B, Schwarting A (2015) Epigenetic aspects of systemic lupus erythematosus.

Rheumatol Ther 2(1):33–46
21. Wu H et al (2015) The real culprit in systemic lupus erythematosus: abnormal epigenetic

regulation. Int J Mol Sci 16(5):11013–11033
22. Hedrich CM (2017) Epigenetics in SLE. Curr Rheumatol Rep 19(9):58
23. Klein K, Ospelt C, Gay S (2012) Epigenetic contributions in the development of rheumatoid

arthritis. Arthritis Res Ther 14(6):227
24. Bernstein BE, Meissner A, Lander ES (2007) The mammalian epigenome. Cell 128(4):

669–681
25. Wang Z et al (2008) Combinatorial patterns of histone acetylations and methylations in the

human genome. Nat Genet 40(7):897–903
26. Kaminskas E et al (2005) FDA drug approval summary: azacitidine (5-azacytidine, Vidaza)

for injectable suspension. Oncologist 10(3):176–182
27. Von Hoff DD, Slavik M, Muggia FM (1976) 5-Azacytidine. A new anticancer drug with

effectiveness in acute myelogenous leukemia. Ann Intern Med 85(2):237–245
28. Joeckel TE, Lubbert M (2012) Clinical results with the DNA hypomethylating agent

5-aza-2’-deoxycytidine (decitabine) in patients with myelodysplastic syndromes: an update.
Semin Hematol 49(4):330–341

29. Mann BS et al (2007) FDA approval summary: vorinostat for treatment of advanced primary
cutaneous T-cell lymphoma. Oncologist 12(10):1247–1252

30. Galanis E et al (2009) Phase II trial of vorinostat in recurrent glioblastoma multiforme: a
north central cancer treatment group study. J Clin Oncol 27(12):2052–2058

Integrated Chemoinformatics Approaches … 265



31. Prince HM, Dickinson M (2012) Romidepsin for cutaneous T-cell lymphoma. Clin Cancer
Res 18(13):3509–3515

32. Iyer SP, Foss FF (2015) Romidepsin for the treatment of peripheral T-cell lymphoma.
Oncologist 20(9):1084–1091

33. Iwamoto FM et al (2011) A phase I/II trial of the histone deacetylase inhibitor romidepsin for
adults with recurrent malignant glioma: North American Brain Tumor Consortium Study
03-03. Neuro Oncol 13(5):509–516

34. Rashidi A, Cashen AF (2015) Belinostat for the treatment of relapsed or refractory peripheral
T-cell lymphoma. Future Oncol 11(11):1659–1664

35. McCabe MT et al (2012) EZH2 inhibition as a therapeutic strategy for lymphoma with
EZH2-activating mutations. Nature 492(7427):108–112

36. Chen YT et al (2016) The novel EZH2 inhibitor, GSK126, suppresses cell migration and
angiogenesis via down-regulating VEGF-A. Cancer Chemother Pharmacol 77(4):757–765

37. Zeng D, Liu M, Pan J (2017) Blocking EZH2 methylation transferase activity by GSK126
decreases stem cell-like myeloma cells. Oncotarget 8(2):3396–3411

38. Bowers EM et al (2010) Virtual ligand screening of the p300/CBP histone acetyltransferase:
identification of a selective small molecule inhibitor. Chem Biol 17(5):471–482

39. Oike T et al (2014) C646, a selective small molecule inhibitor of histone acetyltransferase
p300, radiosensitizes lung cancer cells by enhancing mitotic catastrophe. Radiother Oncol
111(2):222–227

40. Zhao D et al (2015) C646, a novel p300/CREB-binding protein-specific inhibitor of histone
acetyltransferase, attenuates influenza A virus infection. Antimicrob Agents Chemother
60(3):1902–1906

41. Rau RE et al (2016) DOT1L as a therapeutic target for the treatment of DNMT3A-mutant
acute myeloid leukemia. Blood 128(7):971–981

42. Wong M, Polly P, Liu T (2015) The histone methyltransferase DOT1L: regulatory functions
and a cancer therapy target. Am J Cancer Res 5(9):2823–2837

43. Wang L et al (2016) JQ1, a small molecule inhibitor of BRD4, suppresses cell growth and
invasion in oral squamous cell carcinoma. Oncol Rep 36(4):1989–1996

44. Daigle SR et al (2011) Selective killing of mixed lineage leukemia cells by a potent
small-molecule DOT1L inhibitor. Cancer Cell 20(1):53–65

45. Herold JM et al (2011) Small-molecule ligands of methyl-lysine binding proteins. J Med
Chem 54(7):2504–2511

46. Loharch S, et al (2015) EpiDBase: a manually curated database for small molecule
modulators of epigenetic landscape. Database (Oxford), 2015

47. Huggins DJ, Venkitaraman AR, Spring DR (2011) Rational methods for the selection of
diverse screening compounds. ACS Chem Biol 6(3):208–217

48. Walters WP, Namchuk M (2003) Designing screens: how to make your hits a hit. Nat Rev
Drug Discov 2(4):259–266

49. Brenk R et al (2008) Lessons learnt from assembling screening libraries for drug discovery
for neglected diseases. ChemMedChem 3(3):435–444

50. Bemis GW, Murcko MA (1996) The properties of known drugs. 1. Molecular frameworks.
J Med Chem 39(15):2887–2893

51. McMillan M, Kahn M (2005) Investigating Wnt signaling: a chemogenomic safari. Drug
Discov Today 10(21):1467–1474

52. Nilakantan R, Bauman N, Haraki KS (1997) Database diversity assessment: new ideas,
concepts, and tools. J Comput Aided Mol Des 11(5):447–452

53. Lee ML, Schneider G (2001) Scaffold architecture and pharmacophoric properties of natural
products and trade drugs: application in the design of natural product-based combinatorial
libraries. J Comb Chem 3(3):284–289

54. Lewell XQ et al (2003) Drug rings database with web interface. A tool for identifying
alternative chemical rings in lead discovery programs. J Med Chem 46(15):3257–3274

55. Kho R et al (2005) Ring systems in mutagenicity databases. J Med Chem 48(21):6671–6678

266 S. Loharch et al.



56. Lameijer EW et al (2006) Mining a chemical database for fragment co-occurrence: discovery
of “chemical cliches”. J Chem Inf Model 46(2):553–562

57. Ertl P, et al (2006) Quest for the rings. In silico exploration of ring universe to identify novel
bioactive heteroaromatic scaffolds. J Med Chem 49(15):4568–4573

58. Xie XQ (2010) Exploiting pubchem for virtual screening. Expert Opin Drug Discov 5(12):
1205–1220

59. Huth JR et al (2005) ALARM NMR: a rapid and robust experimental method to detect
reactive false positives in biochemical screens. J Am Chem Soc 127(1):217–224

60. Gul S, Gribbon P (2010) Exemplification of the challenges associated with utilising
fluorescence intensity based assays in discovery. Expert Opin Drug Discov 5(7):681–690

61. Soares KM et al (2010) Profiling the NIH small molecule repository for compounds that
generate H2O2 by redox cycling in reducing environments. Assay Drug Dev Technol 8
(2):152–174

62. Crowe A et al (2013) Aminothienopyridazines and methylene blue affect Tau fibrillization
via cysteine oxidation. J Biol Chem 288(16):11024–11037

63. Feng BY et al (2007) A high-throughput screen for aggregation-based inhibition in a large
compound library. J Med Chem 50(10):2385–2390

64. Jasial S, Hu Y, Bajorath J (2017) How frequently are pan-assay interference compounds
active? Large-scale analysis of screening data reveals diverse activity profiles, low global hit
frequency, and many consistently inactive compounds. J Med Chem 60(9):3879–3886

65. Baell J, Walters MA (2014) Chemistry: chemical con artists foil drug discovery. Nature
513(7519):481–483

66. Tomasic T, Peterlin Masic L (2012) Rhodanine as a scaffold in drug discovery: a critical
review of its biological activities and mechanisms of target modulation. Expert Opin Drug
Discov 7(7):549–560

67. Ge Y et al (2012) Discovery and synthesis of hydronaphthoquinones as novel proteasome
inhibitors. J Med Chem 55(5):1978–1998

68. Priyadarsini KI (2013) Chemical and structural features influencing the biological activity of
curcumin. Curr Pharm Des 19(11):2093–2100

69. Qin J et al (2012) Identification of a novel family of BRAF(V600E) inhibitors. J Med Chem
55(11):5220–5230

70. Rai D et al (2008) Curcumin inhibits FtsZ assembly: an attractive mechanism for its
antibacterial activity. Biochem J 410(1):147–155

71. Baell JB (2010) Observations on screening-based research and some concerning trends in
the literature. Future Med Chem 2(10):1529–1546

72. Habig M et al (2009) Efficient elimination of nonstoichiometric enzyme inhibitors from HTS
hit lists. J Biomol Screen 14(6):679–689

73. Jadhav A et al (2010) Quantitative analyses of aggregation, autofluorescence, and reactivity
artifacts in a screen for inhibitors of a thiol protease. J Med Chem 53(1):37–51

74. Bruns RF, Watson IA (2012) Rules for identifying potentially reactive or promiscuous
compounds. J Med Chem 55(22):9763–9772

75. Kennedy T (1997) Managing the drug discovery/development interface. Drug Discovery
Today 2(10):436–444

76. Downs GM, Barnard JM (2002) Clustering methods and their uses in computational
chemistry. In: Lipkowitz KB, Boyd DB (eds) Reviews in computational chemistry. Wiley,
New York, pp 1–40

77. Harrison RK (2016) Phase II and phase III failures: 2013–2015. Nat Rev Drug Discovery
15:817

78. Todeschini R, Consonni V (eds) (2009) Molecular descriptors for chemoinformatics.
Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, pp I–XLI

79. Lagorce D et al (2011) The FAF-Drugs2 server: a multistep engine to prepare electronic
chemical compound collections. Bioinformatics 27(14):2018–2020

Integrated Chemoinformatics Approaches … 267



80. Perola E, Charifson PS (2004) Conformational analysis of drug-like molecules bound to
proteins: an extensive study of ligand reorganization upon binding. J Med Chem 47(10):
2499–2510

81. Bostrom J (2001) Reproducing the conformations of protein-bound ligands: a critical
evaluation of several popular conformational searching tools. J Comput Aided Mol Des
15(12):1137–1152

82. Chen IJ, Foloppe N (2008) Conformational sampling of druglike molecules with MOE and
catalyst: implications for pharmacophore modeling and virtual screening. J Chem Inf Model
48(9):1773–1791

83. Stahura FL, Bajorath J (2005) New methodologies for ligand-based virtual screening. Curr
Pharm Des 11(9):1189–1202

84. Lorber DM, Shoichet BK (1998) Flexible ligand docking using conformational ensembles.
Protein Sci 7(4):938–950

85. Lyne PD (2002) Structure-based virtual screening: an overview. Drug Discov Today 7
(20):1047–1055

86. Sadowski J, Gasteiger J, Klebe G (1994) Comparison of automatic three-dimensional model
builders using 639 X-ray structures. J Chem Inf Comput Sci 34(4):1000–1008

87. Kirchmair J et al (2006) Comparative performance assessment of the conformational model
generators omega and catalyst: a large-scale survey on the retrieval of protein-bound ligand
conformations. J Chem Inf Model 46(4):1848–1861

88. Vainio MJ, Johnson MS (2007) Generating conformer ensembles using a multiobjective
genetic algorithm. J Chem Inf Model 47(6):2462–2474

89. Liu X et al (2009) Cyndi: a multi-objective evolution algorithm based method for bioactive
molecular conformational generation. BMC Bioinformatics 10:101

90. Blaney JM, Dixon JS (2007) Distance geometry in molecular modeling. In: Lipkowitz KB,
Boyd DB (eds) Reviews in computational chemistry. pp 299–335

91. Wild, DJ, Blankley CJ (1999) VisualiSAR: a web-based application for clustering, structure
browsing, and structure-activity relationship study. JMol GraphModel 17(2):85–89, 120–125

92. Nicholls A et al (2010) Molecular shape and medicinal chemistry: a perspective. J Med
Chem 53(10):3862–3886

93. Bohm HJ, Flohr A, Stahl M (2004) Scaffold hopping. Drug Discov Today Technol 1(3):
217–224

94. Willett P (1987) A review of chemical structure retrieval systems. J Chemom 1(3):139–155
95. Scott DE et al (2012) Fragment-based approaches in drug discovery and chemical biology.

Biochemistry 51(25):4990–5003
96. Lewell XQ et al (1998) RECAP–retrosynthetic combinatorial analysis procedure: a powerful

new technique for identifying privileged molecular fragments with useful applications in
combinatorial chemistry. J Chem Inf Comput Sci 38(3):511–522

97. Varin T et al (2010) Compound set enrichment: a novel approach to analysis of primary HTS
data. J Chem Inf Model 50(12):2067–2078

98. Dandapani S et al (2012) Selecting, acquiring, and using small molecule libraries for
high-throughput screening. Curr Protoc Chem Biol 4:177–191

99. Petrova T et al (2012) Structural enrichment of HTS compounds from available commercial
libraries. MedChemComm 3(5):571–579

100. Kaldor SW et al (1997) Viracept (nelfinavir mesylate, AG1343): a potent, orally bioavailable
inhibitor of HIV-1 protease. J Med Chem 40(24):3979–3985

101. Schindler T et al (2000) Structural mechanism for STI-571 inhibition of abelson tyrosine
kinase. Science 289(5486):1938–1942

102. Varghese JN (1999) Development of neuraminidase inhibitors as anti-influenza virus drugs.
Drug Dev Res 46(3–4):176–196

103. Rutenber EE, Stroud RM (1996) Binding of the anticancer drug ZD1694 to E. coli
thymidylate synthase: assessing specificity and affinity. Structure 4(11):1317–1324

104. Filikov AV et al (2000) Identification of ligands for RNA targets via structure-based virtual
screening: HIV-1 TAR. J Comput Aided Mol Des 14(6):593–610

268 S. Loharch et al.



105. Lind KE et al (2002) Structure-based computational database screening, in vitro assay, and
NMR assessment of compounds that target TAR RNA. Chem Biol 9(2):185–193

106. Lionta E et al (2014) Structure-based virtual screening for drug discovery: principles,
applications and recent advances. Curr Top Med Chem 14(16):1923–1938

107. Schwede T et al (2003) SWISS-MODEL: An automated protein homology-modeling server.
Nucleic Acids Res 31(13):3381–3385

108. Eswar N, et al (2006) Comparative protein structure modeling using Modeller. Curr Protoc
Bioinformatics Chapter 5: p. Unit-5 6

109. Kelley LA et al (2015) The Phyre2 web portal for protein modeling, prediction and analysis.
Nat Protoc 10(6):845–858

110. Blundell TL, Patel S (2004) High-throughput X-ray crystallography for drug discovery. Curr
Opin Pharmacol 4(5):490–496

111. Boland A, Chang L, Barford D (2017) The potential of cryo-electron microscopy for
structure-based drug design. Essays Biochem 61(5):543–560

112. Sugiki, T, et al (2018) Current NMR techniques for structure-based drug discovery.
Molecules, 23(1)

113. Vyas VK et al (2012) Homology modeling a fast tool for drug discovery: current
perspectives. Indian J Pharm Sci 74(1):1–17

114. Shao Z et al (2017) Discovery of novel DNA methyltransferase 3A inhibitors via
structure-based virtual screening and biological assays. BioorgMedChemLett 27(2):342–346

115. Cura V et al (2017) Structural studies of protein arginine methyltransferase 2 reveal its
interactions with potential substrates and inhibitors. FEBS J 284(1):77–96

116. Siedlecki P et al (2003) Establishment and functional validation of a structural homology
model for human DNA methyltransferase 1. Biochem Biophys Res Commun 306(2):
558–563

117. Siedlecki P et al (2006) Discovery of two novel, small-molecule inhibitors of DNA
methylation. J Med Chem 49(2):678–683

118. Brueckner B et al (2005) Epigenetic reactivation of tumor suppressor genes by a novel
small-molecule inhibitor of human DNA methyltransferases. Cancer Res 65(14):6305–6311

119. Clark DE (2008) What has virtual screening ever done for drug discovery? Expert Opin
Drug Discov 3(8):841–851

120. Lavecchia A, Di Giovanni C (2013) Virtual screening strategies in drug discovery: a critical
review. Curr Med Chem 20(23):2839–2860

121. Wapenaar H, Dekker FJ (2016) Histone acetyltransferases: challenges in targeting
bi-substrate enzymes. Clin Epigenetics 8:59

122. Kannt A, Wieland T (2016) Managing risks in drug discovery: reproducibility of published
findings. Naunyn Schmiedebergs Arch Pharmacol 389(4):353–360

Integrated Chemoinformatics Approaches … 269



Structure-Based Drug Design
with a Special Emphasis on Herbal
Extracts

D. Velmurugan, N. H. V. Kutumbarao, V. Viswanathan
and Atanu Bhattacharjee

Abstract Structure-based drug design (SBDD) is a computational analysis of
identifying ligands which can potentially inhibit the target. SBDD is a cluster of
methods and modules which reduces the cost and time spent on experimental
procedures. SBDD plays a crucial role in preclinical drug development procedures.
There is a vast development in techniques and methods related to theoretical
physics and chemistry, computers processers, and pharmacokinetic analysis which
helps in elucidating the biological role of ligands and their receptors. Here, the
general theoretical backgrounds of various SBDD and simulation approaches
employed are discussed. These methods are also discussed with respect to the
identification of potential drug-like molecules from natural sources to control
human ailments.

Keywords Docking � Molecular simulations � Pharmacophore
Force field � Crystallography � Natural products

1 Introduction

Drug discovery involves computation in major ways. Structure-based methods
involve discovery of lead compounds, their refinement, and re-engineering to
overcome resistance. As the number of protein structures available in the Protein
Data Bank (PDB) has crossed 1.3 lakhs, SBDD effort with potent targets has
progressed well. Compounder model uses many advances in the visualization of
molecular structures. Insight II, Quanta, Cerius 2 [1], Sybyl [2], and CAChe [3] are
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some examples of the commercial programs, and Macromodel [4], Grasp [5], and
PyMOL [6] are some of the academic programs available. In all the stages, the
macromolecular design process depends heavily on the molecular structure and
visualizing it. X-ray structures of macromolecular targets/their inhibitor complexes
make it simple to visualize the active site of the enzyme, etc., where water coor-
dination having hydrogen bonds with the backbone of amino acids can be seen.
During the design process, the active site water molecule can be replaced by the
suitable inhibitor which can bind with the catalytic residues. The above type of
molecular visualization was carried out with HIV-1 protease, and the crystallo-
graphic study of its complex confirmed this. There are many examples in the
literature like the above case using which inhibitors resulting as drugs have come
out. Molecular hydrophobicity maps are useful to understand the binding mecha-
nism of inhibitors to the active site. Free energy perturbation calculations are used
in the above.

Lipinski’s “rule of five” is employed in the selection and filtering of compounds
with enhanced oral administration property. Four parameters are used as yardsticks,
such as hydrogen bond donors less than or equal to 5, hydrogen bond acceptors less
than or equal to 10, molecular weight should be under 500, and CLogP less than 5.

The leadmolecules are tested for absorption (A), distribution (D), metabolism (M),
excretion (E), and toxicity (T) profile, also known as ADMET properties. These
physical and chemical properties have a greater influence on the biological effect of
the lead molecule, which determines how drug molecules can sustain in plasma and
can determine concentration for oral administration, and also indicates its effects.

In the discovery or in the refinement of new leads, thousands of compounds from
various databases are docked with the known target structures. During the docking,
the energies of the above complexes are evaluated and the one with the lowest
energy is selected as the possible lead compound. Many reviews deal with docking
approach [7–11]. During the initial calculation of docking, hundreds of inhibitors
may sometime be used. In this situation, receptor site is kept rigid and flexibility is
provided with the ligand. This is called rigid docking. After the analysis of score
and binding energy, few ligands will be selected for docking and now flexibility
will be given to both the receptor site and ligand for a better fit at the active site.
This is called induced fit docking (IFD). In this way, docking analysis can lead to
the selection of ligands in short time. There are many ligand databases available.

The binding constant of the compounds is related to the free energy of the
binding. Many computational tools provide rapid estimates of these free energy
changes. For very simple solutes, above calculations are possible using molecular
dynamics or Monte Carlo simulations [12]. Direct calculation of free energies of
binding is not possible for solutes of complex nature. In this situation, an indirect
way of calculating relative free energies of binding is possible [13]. In recent years,
computational alchemy methods have been applied to modify the binding of the
compounds. For increasing the solubility (and bioavailability), an aromatic H is
usually modified by OH and NH2. For enzymes like thymidylate synthase [14],
acetylcholinesterase [15], adenosine deaminase [16], and elastase [17], sets of
related inhibitors have been designed in the above way.
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Computational alchemy in drug discovery involves potential energy function,
and the development of potential functions still continues to tackle various situa-
tions. Knowledge of structural waters is useful in inhibitor design.

In structure-based drug design (SBDD), the three-dimensional structure of
bioactive agents and their targets are the bases. There are many approved drugs, like
AIDS medications Crixivan and Viracept, the flu drug Tamiflu, the leukemia
therapy Gleevec, and the cancer agent Tarceva, which have come out through
SBDD. X-ray crystallography and NMR spectroscopy are very much useful in
knowing the three-dimensional molecular structures which play a crucial role in
SBDD. Important antibiotics with the targets lipid II and ribosome 50’s subunit
have come out using SBDD. Using modeling programs like Analog and QikeProp,
many antibiotics are in human clinical trials. X-ray crystal structure of Human
Immunodeficiency Virus Reverse Transcriptase (HIV-RT) and the complexes with
various antiviral drugs, diarylprimidines, have been discovered as promising inhi-
bitors and some of these are in phase II and phase III trials. In structural-based
vaccine design, at Rutgers University, the first structure of a virus that infects
animals, the cold-causing human rhinovirus, has been obtained, and its modified
form in complex with an anti-HIV antibody was used as the basis [18]. For Tumor
necrosis factor-Alpha-Converting Enzyme (TACE), novel hydroxamates were
developed using X-ray crystallography in combination with structure–activity
relationship (SAR). TACE inhibitors are potential anti-inflammatory agents. X-ray
crystallography along with molecular modeling has been used to identify potent and
selective inhibitors of human beta-secretase-1 (BASE–I). Alzheimer treatment and
selective oral chymase inhibitors for asthma and dermatitis have entered clinical
trials where SBDD was used. Since 25% of genes code for membrane proteins like
G Protein-Coupled Receptors (GPCRs), these are highly important targets for
SBDD. Unfortunately, these membrane proteins are hard to isolate and crystallize.
Due to the difficulties in crystallization and not many three-dimensional structures
are available, molecular modeling has helped to develop potent inhibitors of
glycogen phosphorylase, the target for designing anti-diabetic drugs. Using SBDD
approach, compounds were designed with 3- to 14-fold better potency than the lead
compound. Recently, fragment-based approaches (FAPs) are used in SBDD. Using
the combination of fragment screening, computational chemistry, and structural
biology for fragment-based drug discovery, a compound was synthesized and went
to clinical trial approval in just 14 months and went to the phase I clinical trial
treatment of refractory solid tumors. Like the above, there are many examples
showing how many potent drugs have come out using SBDD approach.

2 Role of X-Ray Crystallography in SBDD and Medicine

Crystallography as a science and as a diffraction technique had started and grown
exponentially after the famous Laue experiment. The diffraction experiment elu-
cidates the structure and arrangement of atoms/molecules, which form a perfectly
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ordered crystal. Apart from many biomedical applications, X-rays are majorly used
in the elucidation of three-dimensional structures of molecule(s) from the days
where X-rays were produced from gas tubes invented by Coolidge to the syn-
chrotron(s) where monochromatic waves are produced and used for diffraction
whose energy may vary depending upon the source. The wavelength of X-rays
ranges from 0.8 to 2.3 Å, suitable for protein crystallography. The low wavelength
and high-energy X-rays help in analyzing the atomic details of proteins and viruses
which largely help in the structure-based drug designing. The prerequisite of this
diffraction experiment is growth of good quality single crystals. Materials in nature
(atom, molecules) possess the property to form crystalline solid, where the basic
constituents of the material tend to arrange themselves in a highly ordered manner.
This arrangement is called “crystalline lattice,” and the solid material is crystal.
Crystals are very regular in shape and highly ordered and symmetrical in nature,
which can be understood from the external examination. The periodic arrangement
of atom and ions in three-dimensional space is “crystal lattice.” The smallest
repetitive unit in three dimensions, which on translation gives the entire crystal
structure, is called “unit cell.” Depending upon the number of atoms in the molecule
which is crystallized, there are two categories, namely small molecular crystal-
lography and macromolecular crystallography.

The structure determination of molecules which are in the range of several
hundred Daltons is named as small molecular crystallography. These structures
usually contain inorganic, organic, metallo-organic, and material structures.
Cambridge Structural Database, CSD, is the world’s repository for small molecular
organic and organo-metallic crystal structures. The CCDC plays a major role in the
collection of nearly 9, 50,000 updated entries by 2018, and this information is made
available to all scientists across the world.

The importance of enzymes, their characterization, and crystallization was stated
by Sumner, Northrup, Kunitz, Herriott and their colleagues [19–21]. These inves-
tigations proved to be an important tool in identification of the properties and nature
of catalytic mechanism of macromolecules and their nature to form crystals. There
too, many factors control the crystal growth of macromolecules. The structures of
macromolecules are deposited in Protein Data Bank (PDB) which is an open-source
database. The structure and also other experimental and relevant information are
incorporated for comparative studies. The total number of entries in PDB as of
August 2018 is 1,43,392.

Importance of protein crystallography in medicine
The availability of structural information of small molecules assisted scientists to
exploit and alter the molecule for biomedical benefits, which was evident to
crystallographers and also further in extending this method for proteins as well,
since such application has greater potential with greater degree of medical impli-
cations. The idea of structure–function relationship met with greater effect with
examples such as function of oxygen binding and affinity toward hemoglobin,
insulin function. There is a greater report on the function of proteases from different
viruses, especially, protease from HIV, where structures of apo as well as ligand

274 D. Velmurugan et al.



bound forms have provided greater insight into functioning and inhibitions [22].
Crystallography has helped in the structural characterization of many mutations
from HIV protease, where these mutations alter the active site and these mutants
reduce the drug efficacy. In case of HIV-RT, the structures helped in proposing
three mechanisms of drug resistance because of mutations, where these mutations
caused the alteration of the binding sites for the nucleoside analogue or
non-nucleoside inhibitors, mutations at the template DNA-binding site, and finally
mutations at active site region influencing the conformation of the enzyme [23–27].

Apart from individual laboratories trying to solve protein structures, there are
different structural consortium projects undertaken at higher level, which have also
been facilitated by the determination of genome sequences of most microorganism
and also humans. This has provided us with a great wealth of protein structures
which are crucial for pathogen survival and replication, thus chosen as targets in
designing new pharmaceutical importance. The role of crystallography in eluci-
dating the advent of many genetic disorders is commendable and successful. For
instance, the understanding of sickle cell anemia, thalassemias, and other defi-
ciencies of hemoglobin [28] is a well-known fact that has come out as consequence
of structure–function relationships.

The success of crystallography in the identification of inhibitors can be observed
in case of viral diseases, especially in the case of influenza virus by neuraminidase.
Numerous structures which are crucial drug targets of various bacteria have been
solved, and their function was understood using X-ray crystallography. In addition,
structural studies of a wide spectrum of target proteins from protozoa species such
as Plasmodium falciparum, Trypanosoma cruzi, and different Leishmania species
are carried out. Other phenomena such as detoxification, mutation, and enzyme
replacement mechanisms which lead to resistance are explained in molecular detail
which is possible largely by employing crystallography.

Role of synchrotron radiation in SBDD
As discussed earlier, crystallography helps in understanding the mode of binding of
ligand with target protein, and it provides detailed pattern of interactions of ligand
with which it inhibits or promotes the function of proteins. These interactions are
used as stepping stones in designing new class of ligands with better efficiency,
improving their specificity, physicochemical properties, reducing interactions
which might induce cross-interaction with protein leading to side effects [29].

The bottleneck problem arising at this situation is the availability of high-throughput
and pipelined techniques at different stages, ofwhich high-energy synchrotron radiation
plays a crucial role. The high energetic, physically tunable wavelength X-ray radiation
helps in obtaining phases (using anomalous dispersion) relatively easily than any other
methods. Advent of improved detectors (CCD and pixel array detectors) and advanced
goniometers also play major roles in more structures being determined [30].

Pipelining helps in saving time and increased precision by least human inter-
vention; they provide users with workflow to solve structures starting with data
collection, processing, structure determination, and finally with refinement with no
time and least intervention. This continuous workflow is important in understanding
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the structure–activity relationship of numerous ligands toward single target.
Crystallography offers us glimpse into the stable and global minima structure and
the atomic details of catalytic domains. Thus, implementing a high-throughput
screening of bound ligands and analyzing their ability to bind crucial residues and
identification of different modes of binding for different fragment scaffolds of li-
gands are major outcomes that play crucial roles in SBDD. Identification of such
varied mechanisms in ligand binding, if exists, can throw light into aspects of
improving the ligand efficacy to accommodate key interactions. With speedy data
collection strategies and pipeline in structure solution and analysis, synchrotron
beamlines help in carrying out ligand-binding experiment in a high-throughput
manner. One such automation process is called DIMPLE [31]. High-throughput
workflow helps in employing the screening and analyzing in the crystallographic
readout for the presence of ligands and understanding their binding with the protein
domain. These structural screening methods have helped in identification of
fragment-based ligand scaffolds which are carried forward for further clinical
testing. Automation of these modules has been completed and can be executed
remotely without being at site of diffraction. For the identification of lead mole-
cules, computational analysis is very much useful [32, 33]. Docking plays a major
role in this [34].

3 Docking

Molecular docking is a method of identification of binding mode of a small
molecule in the active site of the protein with more stability. In docking studies, the
score and energy associated with each binding pose are related to the activity. One
can refer a review article for molecular docking-related terminologies [35].

Docking aims to predict an accurate enzyme-inhibitor (EI) complex under
equilibrium conditions. The equilibrium depends on the factors such as desolvation,
rational entropy, and translational entropy.

EI½ �aq $ E½ �aqþ I½ �aq ð1Þ

E½ �aqþ I½ � aqDGbind
�����������!

Eþ I½ �aq ð2Þ

Following equation relates the binding affinity and binding free energy

DG ¼ �RTInKA ð3Þ

KA ¼ K�1
i ¼ EI½ �

E½ � I½ � ð4Þ

where [E], [I], and [EI] are concentration of enzyme, inhibitor, and enzyme-
inhibitor complex, respectively. The solvation term (aq), association constant (KA),
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and the inhibitory constant (Ki) are related using the above expressions. In the
process of identification of correct poses, the ranking is based on correlation with
corresponding KA values of the training compounds.

Steric, electrostatic, hydrogen bonding, inhibitor strain, and enzyme strain are
some of the important factors affecting the predictive accuracy of EI complex.

The binding energy is calculated from electrostatic (Ecoul) and van der Waal’s
(EvdW) interaction energies (Eqs. 5 and 6).

Ecoul rð Þ ¼
XNA

i¼1

XNB

j¼1

qiqj
4pe0rij

ð5Þ

where N is the number of atoms in the molecules A and B, q is the charge on each
atom, r is the distance separating the two point charges, and e0 is vacuum
permittivity.

The other contributing factor to the potential energy calculation is the van der
Waal’s contribution. The treatment of the non-bonded interactions is done by
implementing Lennard-Jones 12-6 function.

EvdW rð Þ ¼
XNA

j¼1

XNB

i¼1

4e
rij
rij

� �12

� rij
rij

� �6
" #

ð6Þ

where

e is the well depth of potential energy.
r is the collision diameter of the atoms i and j, respectively (Fig. 1).

Generally, molecules will be represented as a function of potential energy. Other
two ways of representation are surface and grid methods, of which surface repre-
sentation was pioneered by Connolly [36, 37]. This surface-based docking is more
suitable for protein–protein docking to a good extent. Grid representation is also a
standard method for protein–protein docking [38].

There are three methods of treating the conformation freedom during docking.

(1) Systematic methods.
(2) Random or stochastic methods.
(3) Simulation methods.

Systematic method is a stepwise or incremental search. The algorithm tries to
explore all the degrees of freedom. The search can be done in two ways. First,
fragments of molecule are docked into the active site region and then joined to each
other. Second, the ligand is divided into rigid (core fragment) and the flexible part
(side chain). The rigid portion of the ligand is first docked into the grid region to
which the flexible regions are attached in an orderly manner.

In random search method, the search was accomplished by implementing
random changes to either ligand or a cluster of ligands. The pre-defined probability
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function is used to evaluate the newly obtained ligand. Monte Carlo and genetic
algorithms are the two most widely used random search algorithms. AutoDock uses
a variant of Monte Carlo algorithm, and DOCK and GOLD use genetic algorithms.

Simulation method is a widely implemented approach with the only limitation
for crossing high-energy barrier within the stipulated time. This allows the ligands
which are trapped in local minima to cross the barrier. Monte Carlo is also added at
times to compliment the simulation method. DOCK and Glide use this method.
Some of the important and widely used search methods are listed in Table 1.

Flexibility of Protein: The methodology applied to introduce flexibility of li-
gand is well parameterized when compared with the flexibility of protein. There are
algorithms which make a part of the protein flexible, during the docking process.
Monte Carlo simulations, rotamer libraries, and protein ensemble grids help in this
regard [48]. One of the approaches is to generate average potential energy grid for
the ensemble, and the other one is to map different receptors to each grid point and
then score ligand with each of the receptor possible.

Scoring: Generating ligand conformation is achieved, but sorting and ranking
the predicted conformation are more appropriate and the most vital role in choosing
the best ligand. Separating correct pose from the incorrect poses is the crucial step
of docking as this process helps in identification of the reliable ligand which can

Fig. 1 Pictorial
representation of the
Lennard-Jones equation
(adopted from
picturesquephysics)

Table 1 Flexible ligand search methods

Random/stochastic Systematic Simulation

AutoDock (MC) [39]
MOE-Dock (MC,TS) [40]
GOLD (GA) [41]
PRO_LEADS (TS) [42]

DOCK (incremental) [43]
FlexX (incremental) [44]
Glide (incremental) [45]
Hammerhead (incremental) [46]
FLOG (database) [47]

DOCK
Glide
MOE-Dock
AutoDock
Hammerhead
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bind with the target molecule. Good scoring functions are important for docking
procedure. There are three different kinds of scoring functions which are widely
used. Different software which use a particular scoring function are listed in
Table 2. The scoring functions are

1. Force-field-based scoring.
2. Empirical scoring.
3. Knowledge-based scoring.

4 Protein Simulation and Drug Designing

Molecular dynamics (MD) and Monte Carlo (MC) simulations are widely used to
understand the structure–function relationship of proteins. A large spectrum of
studies can be studied ranging from ligand binding, enzyme mechanism, folding–
unfolding, etc., and the method started at its infancy 25 years before. In these
analyses, the simulations are understood in terms of energy as the function of
atomic coordinates. The series of frames of structure generated at thermal equi-
librium (trajectory) are function of low potential energy, and forces on individual
atoms are related to the gradient of this function, which is commonly referred as
“force field.”

The Born–Oppenheimer ground-state energy is the energy surface. It is assumed
that the atoms moving on potential energy surface obey it. The calculation of such
energy state directly is possible by means of quantum mechanics calculations;
however, it is quite difficult to do such calculations for macromolecules with
number of atoms more than 150–200, depending on the use of appropriate basis set
and method, and the available computation facility. In most practical simulations,
simple classical energy functions are used. Most of the force fields which are
employed nowadays are developed in the early 1990s.

Table 2 Types of scoring
functions

Force-field-based Empirical-based Knowledge-based

D-Score [49]
G-Score [49]
GOLD [50]
AutoDock [51]
DOCK [43]

LUDI [52, 53]
F-Score [44]
ChemScore [54]
SCORE [55, 56]
Fresno [57]
X-SCORE [58]

PMF [59–61]
DrugScore [62]
SMoG [63]

Note PMF—Potential of the mean force, GOLD—Genetic
optimization for ligand docking
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The widely used force field has the potential energy function:

V rð Þ ¼
X
bonds

kb b� b0ð Þ2 þ
X
angles

kh h� h0ð Þ2 þ
X

torsions

k/ cos n/þ dð Þþ 1½ �

þ
X

nonbonded

pairs

qiqj
rij

þ Aij

r12ij
� Cij

r6ij

" #
ð7Þ

First three summations denote the bond, angle, and torsional term, respectively
(Fig. 2).

The final summation excludes 1–2 and 1–3 interactions and often uses separate
parameters for 1–4 interactions. The equation explains electrostatics which uses
partial charges qi on every atom which are in interaction bound by Coulomb’s law.
The Lennard-Jones 6-12 potential represents the combination of dispersion and
exchange of repulsion forces. This function is usually called “van der Waals” term.
This equation helps in exploring the basic aspects of potential energy landscapes in
atomic detail. The combination of potential energy function with different param-
eters kb; b0; kh; h0ð Þ helps in constructing it and is labeled as “Force field.”

The “force field” history dates back to the year 1980, when the simulation
technique was started. Building of force field for protein simulation started with a
template, which is from the force fields of organic chemistry. Few of the potentials
are ECEPP potential by Scheraga and workers [64, 65] and CFF [66–68]. The
popular force fields that we employ are given below.

AMBER force field
The key input in the early stages of AMBER development is the charges that were
derived from quantum chemistry calculations fitting partial atomic charges to the
quantum electrostatic potential, which are generally called “electrostatic potential,”
ESP charges. The polar hydrogen was explicitly represented, but hydrogen atoms
bonded to carbon were combined with united atoms. The van der Waal’s
(vdW) terms were derived from crystal data by Lifson’s group [67, 68] and from the
liquid simulations by Jorgensen [69]. The force constants, idealized bond lengths,
and angles taken from crystal structure and normal mode frequencies are used for a

Fig. 2 Representation of
bonded (atoms 1–4) and
non-bonded (including atom
5) terms of force field
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number of peptide fragments. In due time, the studies led to employing all-atom
force fields. Further, most of the force fields are extended to their all-atom versions
with reference to the work done by Weiner [70]. The advent of high-performance
computers has prompted the development of new form of force field which is
popularly known as ff94 force field [71]. The algorithms and automation for force
field beyond protein molecule were achieved by the introduction of antechamber
program, which completely automates the creation of AMBER-like force field for
molecule. The use offitted charges at the HF/6-31G level has shown a general way to
develop charges for all 20 amino acids in the way which is roughly consistent with
the water molecule. The implementation of the above method for the development of
charges has two major complications: one being the underdetermination of effective
charge in more buried atoms and the other being the procedure of implementing
Restrained Electrostatic Potential Fit (RESP) where the charges depend on the
molecular conformations. To overcome these problems, a more complex term is
required, and this is overcome in ff94 by fitting the charges simultaneously to several
conformations, hoping to achieve optimal average behavior. Torsion angle param-
eters for the / andw backbone angles affect largely the energies of helices and sheet
in proteins. This was done by the ff94 by fitting representative points on the
dipeptide maps for glycine and alanine and computed at MP2 level with TZP basic
set. In recent years, work is still actively undertaken to test the potentials with the
experimental values of short peptides. From the works of Damm, Mitsutake and
Garcia [72–74], there are modifications done to the ff94, and at least two modifi-
cations have been proposed based on large-scale short peptide simulations [75, 76].

CHARMM force field
Chemistry at Harvard using Molecular Mechanics (CHARMM) program [77] was
developed in 1983. There were rather many versions of CHARMM, namely
CHARMM19, CHARMM22, and CHARMM27, with different charge-deriving
methodologies incorporated. The same difficulty of torsion angle parameterization
exits in CHARMM as observed in case of ff94. The comparison of AMBER and
CHARMM force fields in respect to protein potential shows that the peptide car-
bonyl group is less polar in CHARMM22 than with ff94, and NH dipole is less
polar in the case of AMBER. We can observe the similarities in the charge model
between the two force fields prominently than the differences between them.

OPLS force field
This is the other force field developed during the 1980s by Jorgensen and co-workers
to simulate liquid state. This force field called optimized potential for liquid simu-
lations (OPLS) plays a great importance to non-bonded interactions by comparison
with liquid-state thermodynamics [69]. For proteins, polar hydrogen model only was
developed initially with the atoms type and valance (bond, angle, dihedral) param-
eters form AMBER, and later, all-atoms force field was developed (OPLS-AA).

Importance of protein flexibility
SBDD works by the identification of sites on the protein surfaces, named “hot
spots,” where the chemical motifs will bind the receptor residues. The methods
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which are generally employed in most docking methods are devoid of important
aspects, protein flexibility, and are not calibrated enough to understand the differ-
ence in surface recognition by ligands and water. The target surface potential is
roughed, and in addition, local minima are identified which are false. Research
work carried by Lexa et al., analyzed the effect of complete flexible protein and
solvent on simulation and drug identification. The results point out that only when
protein is allowed to be fully flexible the true local minima were identified and also
the accurate identification of ligand-binding regions (hot spots). A protocol with
mixed-solvent molecular dynamics (MixMD) was proposed to map hot spots which
matched with that identified using an experimental method MSCS. MixMD sim-
ulations help in finding true binding minima and hot spots, thus retaining the
importance of incorporating flexibility to protein receptors [78].

Importance of protein–ligand interactions in drug design
Enzymatic reaction and ligand binding are the key steps, and the detailed under-
standing of interaction between small molecules and protein may form the basis for
a rational drug design [79–82] to address the major pathologies such as cancers [83,
84] and cardiovascular [85–87] diseases. Docking studies have been useful to
identify new lead compounds as anti-infection agents for Mycobacterium tuber-
culosis or Plasmodium falciparum, the two pathogens involved in the development
of TB and malaria, respectively [88].

Protein–protein docking approach
Protein–protein interactions (PPIs) play a vital role in all biological/cellular pro-
cesses. This results in a formation of the macromolecular assembly crucial for
different cellular functions. Initially, the protein–protein docking was introduced in
1978 itself [89] and was later extended to the interaction between the macro- and
small molecules [34]. Currently, protein–protein docking algorithms have been
developed in light of the critical assessment of prediction of interaction (CAPRI)
rule which has accelerated the development of more efficient protein docking
methods [90]. Prediction of protein complex interface is a major driving factor of
the accurate outcome [91–94]. Incorporation of global and local flexibility in the
docking algorithms provides invaluable information in mutagenesis studies and to
steer drug design applications [95–98]. Residue interaction networks (RINs) are
small-world networks, and their topological analyses have been used in particular to
study protein–protein interfaces [99] and to optimize scoring functions for the
evaluation of docking poses [100, 101]. The docking prediction can be used in
combination with homology-based methodologies and integrated into PPI networks
to enhance the structural information [102, 103]. Several disease-causing mutations
were located at the interface of protein; these key elements could be targeted by
drugs. It was predicted that, on an average, a drug binds to six different targets,
including both the primary target and additional “of targets” [104]. Using the idea,
reverse docking can be performed where one single molecule is screened against
multiple receptors instead of screening multiple small molecules against several
receptors [105, 106].
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Solvent effect
Catalytic water molecules are also crucial in enzyme-substrate recognition and
enzymatic reaction [107, 108]. The electrostatic screening performed by water
molecules helps in identification of ligand binding to the protein [109]. In a living
system, proteins are active and move in solvent environment with a dielectric
constant of around 80, where waters are arranged around the protein with constant
motion [110]. There are many types of water models, and their effect in docking and
simulations are well studied. In both explicit and implicit models, incorporation the
effect of salvation is available, and choice of the model depends on the computa-
tional resource available with the user.

Modeling solvent molecules
Explicit water models
The first model for liquid was proposed by Bernal and Flower [111]. Then, ST2
model of water proposed by Stillinger and Rahman [112] was widely used during
initial stages of development of the protein force fields. The SPC [113] and TIP3P
[114] are similar to each other in terms of atomic point charge. In both the models,
three-site rigid water models are parameterized to produce structure which is in bulk
phase. Thermodynamics of liquid water is taken care. There are other advances in
recent times, and newly developed solvent models such as TIP4P and TIP5P have
the most agreement with the experimentally calculated internal energy [115]. There
are different continuum models, majorly COSMO model [116], Poisson–Boltzmann
(PB) models, and the most commonly used Generalized Born (GB) model
[117, 118].

The increase in the computation power as a result of evolution of core processors
and GPU computations helps in the betterment of the force field development and
matches with the experimental data. The design of good potential approximation
used for simulation analysis helps in prediction of ligand binding, protein structure
prediction, and drug designing accurately. Hence, the potential functions and their
approximation are crucial. The development of force field will lead to the better
chemical accuracy that has to be reached for the best simulation of the biological
molecules aiding in studying their properties.

This development of the force field, simulation methods, and algorithms that
make the calculations automatic and varied potential energy descriptors has a great
impact on the aspect of computer-aided drug design (CADD). Molecular opti-
mization and free energy calculations are important to a major extent that will aid in
the understanding of a molecule binding with protein. In drug designing, it should
be noted that simple and fast methods should be used to screen large number of
molecules. There are different model systems available with different properties that
can be used to analyze the ligand binding to the protein and its recognition.
Different models are briefly stated below.

Fixed conformation models
Force field calculations
Most of the molecular mechanics-based assessments of ligand binding with the
receptor follow the below expression
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DE ¼ Ecomplex � Eprotein � Eligand
� � ð8Þ

where Ecomplex;Eprotein;Eligand are the potential energies of the complex, protein, and
ligand, respectively. In which, the hydrophobic contributions have the function

G/ ¼ cSAþ c ð9Þ

where c is a microscopic surface tension, SA is the solvent accessible surface area
of the solute, and c is a constant.

Poisson model
This model provides good description of electrostatic properties of molecules using
the following function

�r � e ~rð Þr/ ~rð Þ ¼ q ~rð Þ ð10Þ

where e ~rð Þ is the dielectric function, / ~rð Þ is the electrostatic potential, and q ~rð Þ is
the charge density at~r.

The analytical solution for the simple system is quite possible, but for calculation
of complicated models, the finite difference methods can be used for obtaining
numerical solution of the Poisson model. Delphi [119] and UHBD [120] are the two
packages for execution of these calculations.

Poisson–Boltzmann model
The salt effect on the solution is incorporated into the Poisson equation to gener-
alize the method to account for the experimental conditions. The density of ith type
of ion ni at different points in space can be explained using the relation,

ni ¼ n0i exp � qi/
RT

� �
ð11Þ

where n0i is the number of density if ion of ith type in pure salt solution, R is the gas
constant, and T is the absolute temperature. The atomic point charge is:

qi ¼ niqi ð12Þ

where qi is the charge of type of ion.
When this charge is added to the Poisson equation, it gives the Poisson–

Boltzmann equation, where the sum is over all types of mobile ions.

�r � e ~rð Þr/ ~rð Þ ¼ q ~rð Þþ
X
i

qin
0
i exp � qi/

RT

� �
ð13Þ

The function given above and its linearized variant which is used for low uni-
valent salt concentrations and moderately charged systems help in analyzing the
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effect of salt which is considered in a mean-field sense. This approximation is more
appropriate for many drug design applications.

Generalized Born model
Born method is relatively simpler and faster in execution [117]. Different variants
are available, of which Qiu et al. [121] use the function given below to estimate the
electrostatic contribution to the solvation energy

� 1
2

1� 1
�

� �XN
i¼1

XN
j¼1

qiqjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2ij þ a2ije�D

q ð14Þ

where a2ij ¼ aiaj and D ¼ r2ij= 2aij
� �2

ai is the Born radius of atom i, and rij is the inter-atomic distance between the
atoms i and j.

At the end of molecular dynamics simulations, one usually interprets the fol-
lowing graphs: Root Mean Squared Deviation (RMSD) as a function of simulation
time, Root Mean Squared Fluctuation (RMSF) for each amino acid residues in the
protein of interest, Radius of Gyration (Rg) as a function of simulation time (if there
are large-scale conformational changes like open-to-close conformational transition,
domain movement, a-to-b transition in protein aggregation, etc.), and frequency/
occupancy of H-bond interactions (to assess the lifetime of H-bond throughout the
simulation time).

5 Different Approaches in Drug Designing

High-throughput screening
Virtual screening is one of the commonly used approaches in lead identification
step and is seen as a complementary approach to experimental high-throughput
screening (HTS) to improve the speed and efficiency of the drug discovery and
development process [122]. This involves explicit molecular docking (process to
predict binding mode) of each ligand to the binding site of the target and scoring
(process to measure binding affinity). The compounds in the databases screened are
ranked to select and experimentally test a small subset for biological activity,
considered to be appropriate for a given receptor. Many successful applications
have been reported in the field of molecular docking-based virtual screening.
Although the energy calculations involved are crude, the compounds in the
library are readily available, making experimental testing easy and false positives
tolerable [123].

Fragment-based screening
Optimization of lead molecules which were identified from crystallographic anal-
ysis, structure-based analysis of target, ligand screening using HTS, and other
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computational methods may only provide a core structure of a drug molecule. This
basic molecule can be altered to reduce its side effects by increasing the specificity,
efficiency in bonding pattern, change in molecule weight, and so on. In overcoming
the hurdles during high-throughput screening process in identification of good lead
compound, shaping and building the core molecule architecture through
step-by-step substructure improvement was introduced. This process is called
fragment-based drug development. This method of sculpturing of molecule for
increased efficiency was first developed by Fesik group around 1996 [124].
A similar initiative was introduced well ahead by Hol et al., during 1990 [125]. This
approach has come a long way in various procedures specifically adopted in
identification of less complex, more specific small molecule with accepted
molecular weight which binds to both protein and DNA molecules. The
fragment-based drug identification is complemented with many structural charac-
terization methods such as fragment-based approach which has also a crucial role in
identification of lead molecules for unconventional targets [126–128], to identify
chemical probes of biological systems [129, 130].

A two-way approach exists in implementing the fragment-based method. Here,
the first case screening will be carried out to analyze a small set of compounds with
lower molecular weight to understand the binding mode against a protein site. The
molecular weight range of these compounds should be manageably good enough to
possess interaction and not large to overcome unfavorable interactions. In the
second phase, these small substructures are optimized to lead compound by addi-
tion or inclusion of properties of individual molecules so as to obtain a
better-optimized ligand. Different steps or doorways are present in developing lead
using fragment method, starting with library, method in identifying the interacting
fragment with protein target, structural analysis of such bound fragment, choosing
best fragment, and building the fragment into lead compound. This method largely
draws its structural and interaction information from X-ray crystallography, NMR,
surface plasma resonance, and other biophysical techniques.

The greater advantage of using the fragment-based method in drug discovery
strategies is its success in varied targets where regular high-throughput screening
fails. The targets may include large multimeric proteins, protein–protein complexes,
ubiquitin-specific proteases, etc. [131].

With a few slight variations in the workflow, the basic approach for
Fragment-Based Method (FBM) was well derived by the wake of the twenty-first
century [132–134]. The increased use of surface plasma resonance (SPR) has
boosted the fragment approach to new heights with rigorous and better fragment
binding understanding [135, 136]. In addition, many developments in implemen-
tation of other techniques such as immobilization of the protein and its reorgani-
zation by ligand using optical, NMR, mass spectrum, and other fluorescent-based
techniques [137–140] had happened.

FBM has helped in the identification and development of an FDA-approved drug
[141], and much more are in clinical trials [142]. Integration of FBM with SBDD in
identification of appropriate scaffold can significantly increase the result rate.
It should be noted that the importance and significance of small units
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(lower molecular weight), which in a combination would work to a good molecule,
would have been screened out in regular HTS workflow; this method can show and
exploit the potential of different functional groups and core structures in harboring
key interactions with the active site pocket.

Pharmacophore modeling
Pharmacophore is the method to identify and understand the structural features of
the active site or ligand-binding site of receptor which is responsible for the bio-
logical activity. Recent years had witnessed the extensive use of pharmacophore
individually or in combination with various SBDD methods for better results [143–
146]. The structural aspects and the model are derived from the sets of ligand
molecule which are substrates or reported binders toward the target protein. This
model which is derived projects the requirements which are important for ligands to
bind to receptor for their recognition, leading to biological response. The phar-
macophore model can be established as a ligand-based or in a structure-based
manner.

Ligand-based pharmacophore modeling
Common chemical features are extracted from the three-dimensional structures of a
set of known ligands. During the pharmacophore generation, the conformational
space for each ligand in the training set is created which represents the confor-
mational flexibility of ligands. Some of the commercially available software
packages for pharmacophore modeling are HipHop, Hypogen (http://accelrys.com/
services/training/life-science/pharmacophore-modeling.html), DISCO, GASP
(http://pharmacophore.org/), Phase (https://www.schrodinger.com/), molecular
operating environment (MOE, https://www.chemcomp.com), etc. There are also
several academic programs available. In these programs, algorithms are used for
handling the flexibility of ligands [147, 148] and for the alignment of molecules.

Quantitative structure–activity relationship (QSAR)
For the correlation of biological activity with the molecular properties (descriptors)
calculated from the two-dimensional or three-dimensional structures of ligands
[149], QSAR is used. For forming a linear equation of this type, a set of ligands
with the known biological activities called the training set is essential. Unknown
activity of novel compounds can then be predicted using the relationship: v = f(p),
where v is the biological activity and p is a set of descriptor properties. Most of the
software packages listed for pharmacophore modeling are having QSAR modules.
Most widely used methods are kNN, PLS, MLR, etc., and these functionalities are
available with different software packages such as VLife sciences, Schrodinger, and
MOE.

Peptide-based drugs
Drugs which are available can be categorized into smaller molecules which are
usually <500 Da, and others are larger molecules with molecular weight >5000 Da.
The lower molecular weight drugs can be orally administered, and larger ones are
delivered through injections.
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The disadvantage of small molecule drugs is that they have poor target selec-
tivity which results in a broad range of side effects. The larger molecule-based
drugs have an advantage of target specificity, majorly based on their biological
characteristics, but the disadvantage of these molecules is their lesser bioavailability
and metabolism. There is a great deal of research in the search of peptide drugs
which lie between the extreme end of the molecular weight spectrum and possess
the advantages of both.

Small molecules are identified from screening, ligand-based, structure-based, or
receptor-based design, and such small molecules were majorly subject of research
with major successes in the treatment of diseases. With advent of molecular biol-
ogy, purification, and biophysical characterization, new classes of specific mole-
cules were discovered which are named “Biologics.” These are usually antibiotics,
growth factors, insulin substitute, etc., yet these are intravenously administered.
Molecules which are presently in market such as infliximab to treat arthritis,
bevacizumab in treating colorectal cancer, and trastuzumab for breast cancer,
insulin for diabetes, Epogen and Avonex are few peptide-based molecules which
have a high pharmaceutical importance and a financial market. The market for
peptide-based drugs is around $40 billion yearly.

The development of sequencing techniques and analyzing the large datasets of
genes, proteins, and also transcription products had resulted in the identification of
many molecules which are proteins in nature that exhibit specificity toward receptors
and drug targets. Majority of these molecules do not come under the spectrum of
rule-of-five. In addition to this deviation, these peptide-based molecules are metab-
olized easily by the proteases present in the body rapidly. They have large limitation to
cross the membrane because of the size and others. In spite of these prominent
disadvantages, they possess high efficiency in selective binding and are strong and
natural binders of multiple targets. They are found to accumulate less compared to
synthetic compounds and finally less toxic. Most of the peptides used in pharma-
ceuticals belong mostly to size lesser than 10 amino acids, with few exceptions. Some
of the peptides which are at the high end of molecular spectrum are 32-residue-long
calcitonin, 34- and 36-residue-long teriparatide and Fuzeon, respectively. Food and
Drug Administration (FDA) has approved about 60 peptide drugs into market, about
140 are under clinical trials, and around 500 are in the stage of preclinical trials [150].

It is interesting to note that recent peptide molecules out in the industry are
exenatide and ziconotide. Exenatide is a 39-residue peptide employed in the dia-
betes treatment, isolated from saliva of lizard [151]. Ziconotide is isolated from
marine cone snail and targets pain relief. In addition, other low molecular peptides,
such as captopril and tirofiban (3 aa) and eptifibatide (7 aa), isolated from venom of
animals are marketed. Different organisms, namely reptiles, marine fishes, marine
plants, are rich with peptides of moderate size, and they play crucial role in binding
with many neural and inflammatory-related targets. In addition, venom of them
constitutes of various membrane-binding and pore-forming peptides that can act as
anti-bacterial and antifungal agents. Design of peptide with important functional
scaffold is an important approach which helps in producing bioactive mimicking
sequences. Many such scaffolds like knottins, cyclotides [152–155], conotoxins
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from marine snail [156, 157] were identified. The advent of proteomic data analysis
with Mass Spectroscopy (MS) and Next-Generation Sequencing (NGS) helps in
identification of such potential peptides which are conserved evolutionary. Proper
screening of such peptides can be helpful in the identification of peptides which
might be closer to lower end of molecular weight spectrum (500 Da) and far from
the higher end (5000 Da) and understanding structure–function relationship of
bioactive sequences. Such systematic search can yield side effect-free peptide or
peptide-like molecules with potential pharmaceutical application.

Other approaches in exploration of potential lead molecule employing different
approaches and revisiting old ones with new perspective will help in SBDD, and
one such aspect is drug repurposing. Drug repurposing or drug repositioning is a
process in which new uses are identified and attributed for a drug which already
exists [158]. With a huge set of drug molecules in the clinical and preclinical stages,
trials will not be carried out for next level because of side effects or toxicity, etc.
Researchers have started to understand the toxic effect of the drug-like molecule
and maintain the database with these prediction results [159]. The concept of drug
repurposing was introduced to understand the properties of existing drugs for being
safe [160]. Drug repurposing helps in avoiding adverse effects and also in saving
time in drug development pipeline [161], and this is achieved by analyzing the
similarities of drugs. Such similarities provide with a situation, where they inhibit
the same target and result in the same function. The profiling of pharmacological
properties of drugs which are presently available was done by Cheng et al., by
comparing the chemical similarity of drug molecules and their phenotypic effects
[162]. The larger information available deals not only with the properties of drugs
but also regarding targets, and this has resulted in “big data” analysis, network
analysis, machine learning by Bayesian statistics [163], deep learning, multi-task
learning [164], and ligand-based chemogenomic analysis [163, 165, 166], which
are advanced and recent algorithms, and routines are employed in drug designing
approaches. Yet, a lot of scopes still persist and also large information is to be
explored for a better profiling and understanding of the drugs and their physio-
logical roles. Out of many aspects, drug–drug interaction (DDI) is studied in recent
years. This will help in understanding the effect of one drug on the other and their
interaction. Networking analysis among drugs can help in grouping drugs which
might manifest similar physiological effect. Different parameters can be computed
with benchmark parameter with which the dataset can be classified and even be
validated using training and test datasets. Different statistical methods are
employed. For instance, Tanimoto coefficient [167] was employed in understanding
the DDI among 6711 drugs collected from the DrugBank [168]. Similarity analysis,
association networking for scoring the drugs, and target prediction to predict the
numbers of targets each drug binds and target prediction with chemical structure of
drug molecules were performed. This approach will provide us with parameters,
based on which two drugs interact, and the results project that the DDI effect can
manifest due to pharmacokinetic parameters. Even though DDI can help in pre-
dicting targets, proposing new targets, and providing us with drug–drug synergetic
effect on same target, there are still many hurdles posed for employing this method.
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This situation basically arises from the fact that in vitro or physiological mapping of
the molecule is a prerequisite for DDI.

One other approach aiding SBDD is de novo method, which means “from the
beginning.” Active site of drug targets when characterized from a structural point of
viewwill shed light on its binding features. This information of active site composition
and the orientation of various amino acids at the binding site can be used to design
ligands specific to that particular target. Computational tools that can analyze protein
active site and suggest potential compounds are extensively used for de novo design
methods. Many promising approaches with the goal of ligand design have been
reported.

Gane and Dean [169] reported that various de novo methods, especially whole
molecule methods like docking, have become integrated within disciplines that
include chemistry, pharmacology, molecular biology, and computer modeling.
Electrostatic and solvation terms critical for evaluating correct binding energies are
difficult and slow to calculate. Advances in algorithm sophistication are providing
better approximations for these parameters.

Advancement in different concepts and parameters that are crucial in SBDD is to be
employed to improve the outcome of ligand search. For instance, SBDD techniques
range from simple docking process to proteins considered to be rigid where complex
calculations involving the water mediator interactions are involved. Flexible docking
approach, first introduced by Totrov and Abagyan [170], and the use of water
molecules in docking calculation, introduced by Lengauer [171], are two of the
several milestones achieved in structure-based drug designing approaches. There are
wide varieties of docking programs available for users in both public and private. One
of the advancements is found in combining the aspects of protein flexibility and
displaced water molecule in a docking processor, named FITTED for better binding
calculations. The success of the program can be seen in the identification ofmolecules
in various drug discovery programs and collaborations [172].

Complementarity and ranking are calculated by a scoring function that is either
based on empirically fit descriptors [44, 54, 173–175], knowledge-based potential
functions [61, 62, 176], or physics-based terms [51, 93, 177–179]. Physics-based
scoring functions borrow force field derived terms, such as van der Waals
(vdW) and electrostatics, to calculate the protein–ligand interaction energy [180,
181]. A new scoring function was introduced by Micheal et al., where scoring term
is dependent on context-dependent ligand desolvation. Here, every ligand atom’s
Born radii is related to fractional desolvation. This fraction is employed in scaling
an atom-by-atom decomposition of the full transfer free energy [182]. This is scored
across the grid, and the new method improves docking performance. This method is
effective in discriminating ligands and that of other charged molecules compared to
others. With the advantage of calculating the context-dependent ligand desolvation
beforehand, the scoring function can enhance the docking consistency without
costing much time. Such advancements in different aspects of programming and
analysis, both in experimental and also theoretical understanding, will greatly
influence the outcome of our quest in identification of drug molecules in subsiding
various human ailments and infections.

290 D. Velmurugan et al.



6 Applications of SBDD Using Natural Products

The molecular modeling, docking, and SBDD modules were executed using vari-
ous modules available in Schrodinger suite (USA) [183]. Glide docking followed
by flexible docking using induced fit docking protocol was used in all the cases.
Molecular simulations were carried to analyze the stability of ligand–protein
complex over time. Simulations were carried out using AMBER. Table 3 sum-
marizes the results described in the following sections.

6.1 Toward Antidotes with PLA2 as Target

The snake venom is largely composed of melittin, which is a stimulant of PLA2.
The arachidonic acid is released excessively from the phospholipid membrane due
to the increased presence and activity of PLA2 resulting from a snakebite [184].
There are some crystal structures available for PLA2 inhibitor complexes. The
Indigofera tinctoria Linn (Neeli), Cocculus hirsutus (Linn) Diels (Kattukodi),

Table 3 Different targets and the compounds identified

Disease Plant Compound Target

Snakebite Indigofera tinctoria Linn
Cocculus hirsutus (Linn) Diels
Andrographis paniculata
Vitex negundo
Acalypha indica
Corallocarpus epigaeus
Leucas aspera Spreng
Tinospora cordifolia

Tris(2,4-di-tert-butylphenyl)
phosphate
Octadecanoic acid
Vitamin E
b-amyrin

2B17
3H1X
1DB5
1KVO

Cancer Sphaeranthus Amaranthoides
Stephania hernandifolia

Tetrahydropalmatine
Decahydro-6-(iminomethyl)-
4a-methylnaphthalen-2-ol
Diethylstilbestrol
Ethyl oleate

3UE4
1W84
1XJD
5T97

Diabetics ZINC00187322
ZINC00754305
ZINC00754341
ZINC00754234

2FZD

Dengue
virus

Azadirachta indica
Aegle marmelos
Murraya koenigii
Heliopsis scabra
Taiwania cryptomerioides
Calophyllum
Carica papaya
Fishes and crab

Oleic acid
Stearic acid
Palmitic acid
Gly-His-Met-Ser (GHMS)
Ser-Met-His-Gly (SMHG)
FB10251
FB08615

2FOM
2M9P
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Andrographis paniculata (Siriyanangai), Vitex negundo (Nochi), Acalypha indica
(Kuppameni), Corallocarpus epigaeus (Akasakarudan), Leucas aspera Spreng
(Thumbi), and Tinospora cordifolia (Shindilkodi) plants are reported to have
medicinal value, especially with antidote property. The extracts were collected and
GC-MS analysis was carried out. From these eight medicinal plants, we have
identified 100 different compounds from the methanolic extract. Glide SP was used
to screen these compounds with the four different targets (PDB ID: 2B17 and 3H1X
[185, 186], PDB ID: 1DB5 and 1KVO [187, 188]), followed by induced fit docking
(IFD), resulting in 20 compounds. The Tris(2,4-di-tert-butylphenyl) phosphate and
octadecanoic acid were the best antidote compounds, based on the docking score,
glide energy, and interactions with the active site residues (Fig. 3a, b).

6.2 Toward Anticancer Compounds with Various Targets

Different types of cancer targets were chosen such as Abl Tyrosine Kinase,
p38alpha MAP Kinase, Protein Kinase Ch and BCL-2 [189–192]. Sphaeranthus
amaranthoides (Sivakaranthai) and Stephania hernandifolia (Jabung), the two
medicinal plants from south- and northeastern regions of India, which are being
used by herbalists for cancer treatment, are considered. The S. Amaranthoides plant
sample was collected from Palani hills, and S. hernandifolia plant (rhizome) was
collected from northeast region of India. From these two medicinal plants, 40
different compounds were subjected to Glide SP, resulting in five favorable com-
pounds which were analyzed using induced fit docking (IFD). The tetrahydropal-
matine and decahydro-6-(iminomethyl)-4a-methylnaphthalen-2-ol compounds were
the best anticancer compounds, based on the docking score, glide energy, and
interaction with the active site residues (Fig. 4a, b). The cell line studies carried out

Fig. 3 a Tris(2,4-di-tert-butylphenyl) phosphate, b octadecanoic acid
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also confirm the inhibition activity of tetrahydropalmatine (from Jabung) toward
cancerous cell lines HCT-116, MCF-7, and A-549 with an IC50 of 17, 10.5, and
27 lg/ml, respectively.

6.3 With Diabetic Target

Aldose reductase (ALR2) is one of the key enzymes involved in the pathogenesis of
many diabetic complications [193, 194]. ALR2 catalyzes rate-limiting step of
polyol pathway of glucose metabolism [195, 196]. Multistage filtering approach
was employed to filter 16,000 compounds to 300 compounds. Two compounds
(ZINC00754341 and ZINC00754234) bind with the hydrophobic pocket (speci-
ficity pocket) and also with the catalytic residues (Fig. 5a, b).

6.4 Toward Dengue Virus

Dengue is one of the life-threatening diseases. The NS2B/NS3 protease (PDB ID:
2FOM, 2M9P) is a crucial component in the replication cycle of the virus. The
ligands undertaken for the modeling studies range from compounds belonging to
plants such as Neem (Azadirachta indica), Bael (Aegle marmelos), Murraya koe-
nigii, Heliopsis scabra, Taiwania cryptomerioides, Calophyllum, and also peptides
from edible fishes and crab. Some of the phytochemicals from the above herbs bind
well with the active site [197, 198]. Fatty acids isolated from the leaves of Carica
papaya showed good binding at the active site [199]. The peptides GHMS and
SMHG isolated from marine edible fishes and two compounds taken from FooDB

Fig. 4 a Tetrahydropalmatine, b decahydro-6-(iminomethyl)-4a-methylnaphthalen-2-ol

Structure-Based Drug Design… 293



(FDB008615, FDB010251) identified from docking studies were further analyzed
for binding using molecular simulation studies [200]. Flavone- and chalcone-based
inhibitors bind favorably at the active site of protease. Acridone and xanthone
prefer to bind an alternative site (the tunnel-like pocket) understood from blind
docking. Flexible docking, MD simulation, and binding free energy calculations
confirm that acridone and flavone show favorable binding suggesting that these two
compounds will have synergistic inhibitory activity against the proteolytic activity
of NS2B/NS3pro (Fig. 6a, b). Binding studies for the dual inhibition sites have not
been reported so far [201].

Fig. 5 a ZINC00754341, b ZINC00754234

Fig. 6 a GHMS. b Oleic acid
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7 Conclusion

Computer-aided drug design leads to many successful discoveries of structure-based
drugs. Combination of molecular and quantum mechanics finds potential use in
investigation of enzymatic mechanism. Protein–protein interactions are found to be
relevant in drug design. Due to the sequencing of the human genome, many ther-
apeutic targets are now available for structure-based drug design. Advancement in
many aspects of crystallography and NMR methods has contributed to the
high-resolution structures of many protein–protein–ligand complexes. Since each
computational method in the field of SBDD has its own field of applicability,
drawbacks, and limitations, they should be used in combination to come out with
potential drugs. Since potential links exist between drugs and diseases, drug
repurposing creates faster way in the field of drug discovery. In the design of
protein–protein interaction inhibitors, the challenge is to discover druggable pockets
in the interfaces of proteins engaged in transient interactions. A thorough study of
successive compounds binding the same target assists in understanding structure–
activity relationships, binding modes, and conformational changes. As more and
more human protein structures are getting solved, structure-based drug design will
have more impact in the discovery of new drugs to combat various diseases as
structural biology is a major partner in drug development.
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Impact of Target-Based Drug Design
in Anti-bacterial Drug Discovery
for the Treatment of Tuberculosis

Anju Choorakottayil Pushkaran, Raja Biswas and C. Gopi Mohan

Abstract Tuberculosis (TB) is an infectious disease caused by Mycobacterium
tuberculosis (Mtb) and is a major public health concern. According to the 2017
WHO report, global burden of TB infection was 10.4 million people causing the
mortality rate of *1.6 million. The rapid emergence of multidrug-resistant
(MDR) and extensively drug-resistant (XDR) TB is of major concern in anti-TB
drug discovery. There are different druggable targets and its pathways involved in
the virulence, which include Mtb cell wall, replication and transcription, regulatory,
protein synthesis, membrane transport, and energy production which need to be
explored for efficient killing of the bacteria. The ability of the tubercle bacilli to
remain within the host intracellular compartment is of other major concern in TB
therapy. Thus, to tackle the TB drug resistance, potent inhibitors with novel
mechanism of action of different Mtb druggable targets need to be discovered.
Three-dimensional structure of different Mtb target was solved for structure-based
drug design. The current chapter focuses on some of the key druggable targets in
Mtb and also the recent advances in target-based drug designing in the area of
anti-tubercular drug discovery.
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ClpP Caseinolytic peptidase P
CmaA1 Cyclopropane synthase
D-Ala D-Alanine
D-Glu D-Glutamic acid
DprE1 Decaprenylphosphoryl-b-D-ribofuranose 2′-oxidase
FtsZ Filamenting temperature-sensitive protein Z
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MEPS Molecular electrostatic potential surface
meso-DAP meso-diaminopimelic acid
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MSA Multiple sequence alignment
Mtb Mycobacterium tuberculosis
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PDB Protein data bank
PDF Peptide deformylase
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PtpA Tyrosine phosphatase A
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Qcrb Cytochrome bc1 complex
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RNAP RNA polymerase enzyme
ROS Reactive oxygen species
TB Tuberculosis
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VS Virtual screening
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1 Introduction

Tuberculosis (TB) is a highly infectious disease caused by Mycobacterium tuber-
culosis (Mtb). The global incidence of TB disease can be controlled by effective
chemotherapy; however, these are moderately protective, so novel effective
anti-tuberculosis agents are required to fight against TB. According to World Health
Organization (WHO), *10.4 million people are infected with the Mtb and mor-
tality was about 1.6 million people, shown in Fig. 1 [1]. Further, one-third of the
world’s population is latently infected with Mtb.

Robert Koch isolated firstMtb pathogen in 1882. Further, Paul Ehrlich a German
doctor and bacteriologist developed a staining method for the identification of Mtb
bacteria and provided the basis to develop Ziehl-Neelsen acid-fast staining to detect
the bacterium and which is still prevalent as a tool in TB diagnosis [2, 3]. In the
current scenario, novel compounds and its druggable targets for the disease therapy
need to be discovered by taking into account the drug resistance, safety, and
duration of TB treatment. Mtb cell wall having the mycolic acid forms an unusual
waxy coating on its surface making the TB drug penetration a major bottleneck. TB
chemotherapy revolution begins with Streptomycin in 1944, which was the first
antibiotics effective against Mtb. Eight years later, Isoniazid, the first orally
administered anti-TB drug, was introduced, which drastically reduces the TB
mortality rate [4].

Ethambutol and Rifampicin drugs were later introduced in the 1970s as the
first-line TB drugs. The current anti-TB therapy involves a standard two-month
course of first-line anti-TB drugs, Rifampicin, Isoniazid, Ethambutol, and
Pyrazinamide followed by a four-month course of Rifampicin and Isoniazid drugs
(Fig. 2). Treatment of MDR-TB involves two-year duration with the combination of
at least five second-line expensive drugs—Capreomycin, Ethionamide, Bedaquiline,
Moxifloxacin, and Streptomycin as well as first-line drugs shown in Table 1.

World population 

7.5 billion 

10.4 million 
TB disease 

0.49 million 
MDR cases

Fig. 1 Tuberculosis infection
worldwide statistics 2017
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The MDR and XDR-TB treatment includes six months of daily injections having
serious cardiotoxicity and ototoxicity issues. Another challenge in TB management is
the cyclic reinfection by the persistent tubercle bacillus present in the host macro-
phages. The first-line and second-line TB drug treatment generally kills growing
bacteria. However, this may not be sufficient for dormantMtb, which is metabolically
silent and persistent within the host for a longer period of time. Thus, TB treatment is
very difficult due to the nature of bacilli to withstand the host immune attack and
chemotherapy, as well as the ability of the dormant Mtb to survive for decades.

Development of novel and potent drugs for better TB treatments, especially in
the case of MDR and XDR-TB infection, should be taken up in war-footing manner
in order to have stable, relapse-free, and effective sterilization of the diverse pop-
ulations of Mtb infection [5]. With the advent of the modern technology, the drug

Fig. 2 Structure of first-line and second-line TB drugs
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resistance issue of the first-line and second-line TB drugs can be addressed more
effectively by understanding the novel mechanisms of action of the target con-
cerned and also the pharmacokinetics/pharmacodynamic properties of the drug
variability arising in different patient populations. The application of computational

Table 1 First- and second-line drugs for the treatment of sensitive and drug-resistant TB disease

S. no. Drugs Targets involved in drug
binding

Molecular mechanism of drug
action

First line of drugs for drug-sensitive TB cases

1 Isoniazid Enoyl-acyl-carrier protein
reductase InhA

Inhibition of mycolic acid
synthesis

2 Pyrazinamide Multiple targets: FAS I,
QAPRTase, RpsA, PanD,
Rv2783 of Mtb

Membrane energetic
disruption, fatty acid and
ribosomal protein synthesis
inhibition

3 Rifampicin RNA polymerase b subunit Inhibits transcription

4 Ethambutol Arabinosyltransferase Inhibits arabinogalactan
biosynthesis

Second line of drugs for drug-resistant TB cases

1 Streptomycin
Amikacin

16S rRNA subunit of Mtb
ribosome

Inhibits protein synthesis

2 Kanamycin
Capreomycin

30S rRNA subunit of Mtb
ribosome

Inhibits protein synthesis

3 Gatifloxacin
Levofloxacin
Moxifloxacin

DNA gyrase and
topoisomerase

Inhibits DNA synthesis

4 Linezolid 23S rRNA of 50S subunit Inhibits protein synthesis

5 Clofazimine Bacterial DNA Inhibits template function of
DNA

6 Ethionamide Enoyl-acyl-carrier protein
reductase InhA by activating
catalase peroxidase of Mtb

Inhibits mycolic acid synthesis

7 Cycloserine Alanine racemase and D-
alanine: D-alanine ligase

Inhibits peptidoglycan
synthesis

8 Para-amino
salicylic acid

Dihydrofolate reductase Inhibits folate biosynthesis

Other drugs for TB chemotherapy (WHO Group D Add on drugs)

1 Delamanid
Pretomanid

Not exactly known Inhibits mycolic acid synthesis

2 Bedaquiline ATP synthase subunit c
encoded by atpE gene

Inhibits ATP production

3 Thioacetazone Mycolic acid cyclopropane
synthases

Inhibits mycolic acid synthesis

4 Meropenem D,D-transpeptidase and
L,D-transpeptidase

Inhibits peptidoglycan
biosynthesis
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power to streamline the drug discovery and development process is gaining interest.
In past few years, several resources are being reported including Mtb druggable
target databases and even software for predicting molecular targets. This will fur-
ther facilitate the identification and development of novel anti-bacterial compounds.
One of the most challenging parts of computer-assisted modeling and biochemical
screening toward antibiotic development is that the compounds may lack biological
activity in the later stages of clinical studies.

2 Mtb Druggable Target Identification and Validation

The whole genome sequencing of the Mtb H37Rv strain in 1998 has revealed
several crucial genes which are necessary for growth, survival, and virulence of the
bacteria. This led to the target-based design of new anti-tubercular molecules.
Further, the drug should be orally effective, cell wall permeability, metabolically
stable, and target vulnerability by addressing the drug resistance [6]. Successful
integration of computational and wet-laboratory studies is reported for different Mtb
druggable targets (without mammalian counterpart), which includes the proteins
involved in the pathway of cell wall biosynthesis, metabolism, energy production,
and regulatory processes [7–10]. A pictorial representation of these different
druggable Mtb targets is presented below as Fig. 3.

Fig. 3 Different druggable protein targets in Mtb for drug discovery program
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2.1 Molecular Targets Involved in Cell Wall Biosynthesis
and Its Inhibitors

The Mtb cell wall is unique, and its low permeability makes the drug difficult to
penetrate the cell wall, which in turn cause bacterial survival in the host [11]. The
primary targets involved in anti-TB drug discovery process are associated with Mtb
cell wall biosynthesis pathway. The Mtb cell wall has covalently linked arabino-
galactan, mycolic acid, and peptidoglycan (PG) layers. The enzymes associated
with the biosynthesis of these layers are excellent druggable targets and are depicted
in Fig. 3. In order to understand the structure–function relationships and biological
mechanism of action of these targets for discovering small-molecule inhibitors,
different research groups worldwide used structural biology and computational
techniques [12]. Some of the best-known Mtb druggable targets and its inhibitors
are explained below to understand its molecular mechanism of inhibition.

Decaprenylphosphoryl-b-D-ribofuranose 2′-oxidase (DprE1) and arabinosyl-
transferase encoding EmbB protein are the main druggable targets in arabino-
galactan biosynthesis pathway. DprE1 is a well-validated druggable target for
anti-bacterial drug designing. Benzothiazinones chemical class of compounds are
covalently bind and inhibit the enzyme activity of DprE1 [13]. BTZ043 is a potent
inhibitor of DprE1 which is in clinical trials. The X-ray crystal structure of DprE1 in
complex with BTZ043 has already been solved, which revealed the key molecular
mechanism of enzyme inhibition. BTZ043 forms a covalent bond with active site
Cys 387 and other interacting residues are Gly 117, Lys 134, Ser 228, Leu 317,
Leu 363, Val 365, Lys 367, Phe 369, Asn 35, and Lys 418 shown in Fig. 4.

Fig. 4 Crystal structure of DprE1 in complex with BTZ-043 (PDB ID: 6HEZ [15]). (a) The
binding site of BTZ-043 (sticks) and (b) the molecular interactions with the active site amino acid
residues (lines)
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The EmbB is another validated mycobacterial drug target. Ethambutol which is a
first-line TB drug inhibits EmbB target, and the mechanism of drug action is well
studied [13, 14] (Table 1; Fig. 3).

IspD a key enzyme of methylerythritol phosphate pathway and RmlC enzyme
of rhamnose pathway form a link toward biosynthesis of arabinogalactan and PG,
which is essential for the Mtb cell wall integrity and growth [16, 17]. Both these
chemotherapeutic targets are essential for Mtb growth and are absent in mammals.
In order to carry out structure-based drug discovery, both IspD and RmlC crystal
structures are available in complex with small-molecule inhibitors and its molecular
mechanism of action was clearly elucidated [18].

2.1.1 Mycolic Acid Biosynthesis Pathway Targets

InhA is an NADH-dependent key enzyme of enoyl-acyl-carrier protein reductase of
fatty acid synthase-II involved in the biosynthesis of the mycolic acid pathway
which is targeted by Isoniazid, one of the first-line anti-TB drug and a second-line
drug Ethionamide [19, 20] shown in Table 1 and Fig. 2. Hence, mycobacterial
InhA serves as a validated target for TB therapy. Isoniazid requires activation by
KatG enzyme before binding to InhA. Most of the resistance toward Isoniazid
confers to the mutations in KatG gene. So designing of inhibitors that directly target
InhA has been of interest by several research groups. Different InhA inhibitors are
already being identified using various techniques consisting of high-throughput
screening (HTS), encoded library technology, and in silico drug design techniques
[21–23]. However, most of the identified inhibitors lack good pharmacokinetic
profile. In 2016, Martínez-Hoyos et al. identified GSK693, a direct oral InhA
inhibitor with potent anti-tubercular activity against MDR and XDR clinical isolates
and also in TB murine models [24]. Mycobacterial cyclopropane synthase
(CmaA1) is another key enzyme contributing toward the persistence and virulence
of Mtb. CmaA1 is involved in the maturation of mycolic acid in a process called
cyclopropanation [25].

Wilson et al. demonstrated that Pks13 enzyme of Mtb is required for mycolic
acid biosynthesis and is an essential druggable target by discovering new classes of
thiophene-based compounds acting as cell wall synthesis inhibitors [26]. Pks13 was
known to be involved in the final step of the mycolic acid biosynthesis pathway.
MmpL3 is another key druggable transmembrane target involved in the transport of
trehalose monomycolate biosynthetic pathway, and its inhibition by SQ109 small
molecule showed good bactericidal activity. SQ109 showed synergism with the
anti-tubercular drug bedaquiline and was very effective in acute and chronic mice
models of Mtb infection [27].

Another potential Mtb druggable target involved in the cell wall assembly is
Antigen 85 (Ag85) complexes consisting of three proteins (Ag85A, B, and C).
These proteins exhibit mycolyltransferase activities through disruption of cord
factor biosynthesis by the biogenesis of trehalose dimycolate and are also useful in
controlling MDR and XDR-TB. Crystal structure of Ag85C protein was solved at
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1.5 Å resolutions in complex with a covalent inhibitor. This structure revealed an
alpha-/beta-hydrolase polypeptide fold and a catalytic triad formed by three amino
acid residues, Ser 124, Glu 228, and His 260 [28, 29]. Kovac et al. discovered few
sulfonate inhibitors against Ag85C protein based on the catalytic mechanism of
action elucidated by its crystal structure and potent compound discovered having
promising activity of IC50 = 4.3 lM using the mycolyltransferase inhibition assay
[30]. Ag85B in complex with trehalose crystal structure was solved by Anderson
et al. to study the structure-based anti-tubercular drug design aspects of under-
standing its interface mechanisms [31].

The building block ofmycolic acid biosynthesis inMtb is controlled by an essential
carboxyltransferase enzyme, AccD6, which is involved in the synthesis of
malonyl-CoA by the catalysis of acetyl-CoA [32]. The crystal structure ofMtbAccD6
in complex with haloxyfop-R, a herbicide targeting plant acetyl-CoA carboxylases,
revealed its molecular basis of inhibitor binding leading to the development of novel
herbicides with better ADMET profile asMtbAccD6 inhibitors [33]. Other druggable
target of Mtb cellular growth includes PimA, and the target is proven by different
research groups using in vitro and in vivo techniques [34]. PimA takes part in the
biosynthesis of phosphatidyl-myoinositol mannosides. Thus, it could be used as
potent in silico/in vitro target-based HTS program for the TB therapy [34].

2.1.2 Peptidoglycan Biosynthesis Pathway Targets

Gram-positive and Gram-negative bacteria cell walls have unique biopolymer PG,
which is necessary for keeping its cellular integrity. TheMtb cell wall possesses key
druggable Mur ligases—MurA, MurC, MurD, MurE, and MurF, which are
essential for biosynthesis of bacterial PG and not present in the mammalian system
[35]. Mur proteins are conserved among different bacterial species and also possess
a common three-dimensional (3D) structural motif [38]. Structure–function rela-
tionship studies on Mtb-MurB oxidoreductase enzyme were performed in our
laboratory by an integrated approach involving multiple sequence alignment
(MSA), homology modeling, molecular dynamics, molecular electrostatic potential
surface (MEPS) mapping, and molecular docking studies. In order to understand the
sequence conservation, MSA among different mycobacteriumMtb, Escherichia coli
and Staphylococcus aureus MurB proteins showed that Tyr122, Gly123, Arg156,
Arg218, and Ser237 residues are conserved among these microbes (Fig. 5a).

The binding analysis of the natural ligand naphthyl tetronic acid toward Mtb and
E. coli-MurB is presented in Fig. 5b–d. Molecular docking studies using different
chemical classes ofwell-known28MurB inhibitors belonging to3,5-dioxopyrazolidine
derivatives showed hydrogen bonding and other week interactions with these Mtb-
MurB residues for the development of broad-spectrum anti-bacterial drug. Further, our
computational binding affinity showed good correlation of 0.83 with its experimental
IC50 value. This binding study with most potent compound 10a also supported the
experimental site-directedmutational studies on key functionalMtb-MurB residues and
is presented in Table 2 [37].
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We also adopted a similar theoretical strategy for MurD and uridine
monophosphate kinase as druggable Mtb targets for curing TB disease [35, 36].
Recently, another key target in this family Mtb phospho-MurNAc-pentapeptide
translocase (also termed as MurX) involved in the PG biosynthesis was identified
and a sansanmycin uridyl peptide natural product analogue was discovered to be
selective and potent inhibitor by in vitro and intracellular anti-mycobacterial
activity assay [39]. The biggest challenge in the development of inhibitors targeting
Mur ligase enzymes will be the chemical structure optimization of the compounds
to enable the passage through the cell wall of Mtb and its stability in the cytoplasm.
Thus, in vivo and clinically successful compounds are yet to be discovered based on
the MurC ligases [40, 41].

Next key targets in almost all Gram-positive and Gram-negative bacterial species
are involved in the PG biosynthesis. Mtb PG is composed of a repeating disac-
charide sugar units consisting of N-glycolylmuramic acid (MurNGlyc) linked to

Fig. 5 Sequence alignment of Mtb-MurB with template (E. coli)-MurB. Red boxes show highly
conserved amino acids among MurB of different bacterial species, and arrows above the residues
indicate the amino acids in E. coli and Mtb-MurB investigated for mutational study in
Staphylococcus aureus. Colors indicate amino acids with their similar characteristics, and stars,
colons, and dots represent the identical amino acids, similar amino acids, and almost similar amino
acids, respectively. The red circles indicate flavin adenine dinucleotide binding residues (a),
superimposition of active site residues within 5.5 Å region surrounding naphthyl tetronic acid
inhibitor in Mtb-MurB (green) and (E. coli)- MurB (cyan) (b); molecular electrostatic potential
surface (MEPS) map of Mtb-MurB (c) and (E. coli)- MurB (d) along with the MEPS color ramp
from (+100 to −100) kcal/mol. Most positive potential regions are shown by red color, while most
negative potential regions with blue color, on the same potential scale for comparison. The ligand
naphthyl tetronic acid is shown in ball-and-stick model (copyright permission, Springer)
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N-acetylglucosamine (GlcNAc) through a b-1,4-glycosidic bond. The MurNGlyc
unit is linked to a linear stem peptide chain consisting of amino acids L-Alanine (L-
Ala), D-Glutamic acid (D-Glu), meso-diaminopimelic acid (meso-DAP) or L-Lysine
(L-Lys) and D-Alanine (D-Ala). In Gram-positive bacterial PG, the adjacent stem
peptides are highly cross-linked and the cross-linking takes place between D-Ala4

and meso-DAP3 of neighboring stem peptides (D-Ala4 ! meso-DAP3), called a
classical type of PG cross-link mediated by D,D-transpeptidase enzyme [42]. D,D-
transpeptidase is the molecular target of b-lactam antibiotics. However, Mtb is
resistant to b-lactam antibiotics because of the production of chromosomally
encoded Ambler class A b-lactamase enzyme, which cleaves the b-lactam ring of
the antibiotic and also due to the presence of non-classical type PG cross-link
between neighboring meso-DAP3–meso-DAP3 residues. The non-classical type of
PG cross-linking is catalyzed by L,D-transpeptidase (Ldt) enzymes [43]. In Mtb,
two functional Ldt paralogs are present, namely LdtMt1 and LdtMt2; among them,
LdtMt2 is predominantly expressed than LdtMt1 and both these enzymes signify an
important druggable target [44, 45]. Recently, the crystal structure of Ldt in
complex with Meropenem, Biapenem, Tebipenem drugs are reported, which is very
useful for structure-based anti-bacterial drug discovery against this target [46, 47].

2.2 Target-Based Drug Design Toward Mtb Regulatory
Process

The literature reports suggest that the integrated signaling networks in mycobacteria
play significant roles in host–pathogen interactions as well as in intracellular survival
strategies [48]. The response regulators DevR and DevS form a well-characterized
two-component regulatory system ofMtb, which is important for the adaptation and

Table 2 Mtb-MurB, S.aureus-MurB, and E. coliMurB structure-based molecular docking studies
to understand the changes in the binding affinity due to point mutations in comparison with its
experimental kinetic studies (copyright permission, Springer)

Mtb-MurB Compound structure (10a) Autodocka (S. aureus)-
MurB

(E. coli)-
MurB

Binding
energy
(kcal/mol)

Inhibition
constant
(lM)

Kd (lM) Kd (lM)

Y155F
(mutant)

−8.48 0.61 173
(Y175F)

S237A
(mutant)

−7.45 3.44 180
(S226A)

7.3

Wild type −8.73 0.39 41 4.1

aAutodock analysis was carried out using the most potent inhibitor (10a) from the series
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dormancy of mycobacteria within the host tissues in response to hypoxia, nitric oxide,
carbon monoxide, and ascorbic acid [49–52]. These regulators represent compelling
targets for anti-bacterial drug design towards Mtb. Kaur et al. identified two DevR
mimetic peptides which specifically inhibit the DevR-dependent transcriptional
activity, thereby blocking the survival of Mtb under hypoxic conditions [53]. Gupta
et al. developed a homology model of DevR and used it for structure-based screening
of 2.5 million ZINC compounds. They identified a potential compound and validated
its sterilizing activity against tubercle bacilli by in vitro techniques [54]. Other Mtb
target involved in the regulatory process is PknB. It is a transmembrane serine/
threonine-protein kinase B and plays a crucial role in a number of signal transduction
through phosphorylation of protein and also regulates cell division and differentiation
[55]. Lougheed et al. performed an HTS of*54,000 compounds against PknB target
and identified number of inhibitors with anti-mycobacterial activities in the micro-
molar range [56]. PknG is another serine/threonine-protein kinase critical in signal
transduction pathway ofMtb, and a few PknG target-based inhibitors are reported. By
adopting a sequential pharmacophore-based virtual screening method and threefold
docking using different search algorithms followed by molecular dynamic simula-
tions, Singh et al. identified few inhibitors against PknG target. The in vitro validation
resulted in three of these compounds with significant inhibitory activity against Mtb
PknG. Further, theMtb survival studies within the infected THP-1 macrophage cells
demonstrated thatNRB04248 compound inhibited the growth ofMtb bovisBCG [57].

The pathogenicity of Mtb is based on the bacilli’s ability to inhibit phagosome
acidification and maturation processes after endocytosized by macrophages.
Tyrosine phosphatase is enzyme which dephosphorylates the host proteins in
human and which is involved in the signaling pathways leading to the prevention of
the initiation of host defense mechanisms, including phagosome acidification. Two
types of tyrosine phosphatase enzymes are present in Mtb, namely tyrosine
phosphatase A (PtpA) and tyrosine phosphatase B (PtpB) [58–60]. Inhibition of
these enzymes leads to the decrease in the proliferation of Mtb in host macrophages
and thus represents a key druggable target for TB therapy.

2.3 Druggable Targets Involved in Mtb Protein Synthesis

In bacterial protein biosynthesis, peptide deformylase (PDF), a metalloprotease
enzyme, plays a pivotal role in the maturation of nascent polypeptides. Hence, PDF
represents a potential druggable target for the TB therapy [61]. In human, PDF
homologue has been identified; however, there is a notable difference among the
Mtb and human PDF proteins. The main difference between them lies in the fin-
gerprint active site motif pattern, in which leucine residue is mutated into glutamic
acid in human PDF [62]. The sequence alignment of both Mtb and human PDF
showed very less identity in the active site region, suggesting the specific residues
involved in both the species for its function [62]. Hence, these major differences
between them enable the design and discovery of novel inhibitors with selective
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inhibitory activity toward Mtb PDF. Also, the Mtb PDF contains highly conserved
motifs, EGCLS and QHEXXH (where X is any hydrophobic amino acid), which
are important for the metal ion coordination and thus necessary for its enzyme
activity. A number of Mtb PDF inhibitors are reported till date by knowing the 3D
structure-based mechanism or HTS techniques [63–65].

Another important druggable target in Mtb protein synthesis mechanism is as-
partyl tRNA synthetase (AspS), which represents a key molecular target for
designing anti-TB agents [66]. Soto et al. recently identified a couple of inhibitors,
GSK97C (spiro-oxazolidin-2-one), GSK93A (2-amino-1,3-thiazole), GSK85A, and
GSK92A (enamides) targeting Mtb AspS using a whole cell-target-based approach
[67]. The X-ray crystal structure of Mycobacterium smegmatis AspS is already
being reported and the catalytic site consisting of three important amino acid
residues, Asp 174, Phe521, and Thr565 which will further aid in structure-based
drug discovery process [66]. Leucyl–tRNA synthetase (LeuRS) which functions in
protein synthesis represents another potent druggable target in Mtb. The compound,
GSK-070, an oxaborole derivative, is demonstrated to inhibit LeuRS and conse-
quently blocks the protein synthesis by forming a complex with tRNA and trapping
the enzyme–tRNA complex on the editing site. GSK-070 has recently completed
Phase I clinical trial [68, 69].

2.4 Molecular Targets in Mtb Energy Production
and Metabolism

Key druggable target in energy metabolism includes Cytochrome b subunit of the
cytochrome bc1 complex (Qcrb) of Mtb which is mainly involved in the respi-
ratory transport chain for ATP synthesis [70]. HTS campaign identified novel
imidazo [1,2-a] pyridine inhibitors and Q203 compound as a potential clinical
candidate for Mtb therapy [71]. However, this compound is bacteriostatic and does
not kill dormant bacteria. Further, homology modeling and docking study of Qcrb
with Q203 inhibitor was performed by Choi and Ko to elucidate the drug–target
molecular mechanism of action. Parish et al. discovered benzimidazoles of phenyl
alkyl groups showing good anti-mycobacterial intracellular activity in the
nanomolar range targeting Qcrb protein, with promising sterilizing activity and low
cytotoxicity against eukaryotic cells. This study further paved way for the molec-
ular mechanism of action of small-molecule inhibitor against Qcrb inhibition [72].
Isocitrate lyase is the first enzyme of the glyoxylate shunt pathway involved in the
Mtb carbon metabolism by cleaving isocitrate to succinate and glyoxylate. This
enzyme is critical in Mtb for its replication and persistence, shown in in vivo mouse
model [73, 74].

Malate synthase (GlcB) is the second enzyme of the Mtb carbon metabolism
and anaplerosis with catalytic conversion from glyoxylate to malate and
acetyl-coenzyme A (acetyl-CoA) into CoA, respectively. Crystal structure of GlcB
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of Mtb was solved with several inhibitors by fragment-based screening and HTS
methods. These structures revealed conformational flexibility at the active sites
during catalysis in order to screen preferred chemotypes and its molecular mode of
binding. Further, in vivo mouse model of acute infection showed reduced bacterial
load using GlcB inhibitors [75, 76]. ATP synthase is another key target in
anti-mycobacterial drug discovery. This is primarily involved in cellular energy
production in all microorganisms, plants, and animals. The structural and functional
activity of the ATP synthase enzyme is same in all organisms. Bedaquiline, a
second-line TB drug, targets ATP synthase subunit e and inhibits Mtb ATP pro-
duction (Table 1; Fig. 2). It was approved by FDA as MDR-TB drug [77, 78]. An
imidazopyridine amide compound (Q203) was discovered by the whole cell screen
in infected macrophages. Q203 is a potent inhibitor by disrupting the electron
transport chain of ATP synthesis and successfully entered in Phase I clinical trials
[79]. Lipoamide dehydrogenase (Lpd), another key target member of three mul-
tienzyme, complexes the energy metabolism pathway for Mtb virulence and can be
potential for anti-TB drug discovery program. Mtb of Lpd is crucial for the
metabolism of branched chain amino acids and thus essential for its pathogenicity.
The small-molecule inhibitor triazospirodimethoxybenzoyl which inhibits the Mtb
Lpd enzyme selectively without affecting the human Lpd enzyme can be suc-
cessfully used for TB therapy [80, 81].

Another important druggable target in Mtb is glutamine synthetase required for
both its nitrogen metabolism and cell wall biosynthesis. Glutamine synthetase is
essential forMtb virulence [82], and the inhibition of the enzyme resulted in reduced
growth of Mtb [83]. The tricarboxylic acid (TCA) cycle plays a key role in the
metabolism of almost all pathogens including mycobacteria. The fumarate hy-
dratase enzyme has been identified as one of the important enzymes, which catalyzes
the reversible conversion of fumarate to (L) malate in the TCA cycle. The presence of
the human homologue of fumarate hydratase implicated the inhibitor designing
toward this target. The first selective small-molecule inhibitor for Mtb fumarate
hydratase is reported in 2016, in which the inhibitor is binding to an allosteric site
consisting of amino acid residues which are different between human and Mtb [84].

2.5 Protein Membrane Transport Targets for Mtb
Inhibition

Mtb protein export pathway system comprising SecA cytoplasmic ATPase is
required for bacterial virulence. The SecA is an important Mtb target, since no
eukaryotic homolog exists suggesting for safe development of anti-TB drug design
and discovery. Crystal structure of SecA was solved, which was further used by Li
et al. to discover new inhibitors by structure-based virtual screening (VS) [85].
Further, Chen et al. developed biochemical ATPase assay and validated these
inhibitors at the micromolar range for TB therapy [86].
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Pyrazinamide is a first-line TB drug, and its possible targets include FAS I,
QAPRTase, RpsA, PanD, Rv2783 (Table 1; Fig. 2). Pyrazinamide is a prodrug
which is converted by pyrazinamidase into the active form pyrazinoic acid [87, 88].
This drug inhibits the transport mechanism and energy pathway in Mtb, thereby
disrupting its growth. Pyrazinoic acid is able to inhibit the enzyme, fatty acid
synthase, in Mtb, which in turn inhibits the production of fatty acids. There is also
evidence of this inhibitor in disrupting the membrane potential and energy pro-
duction, which are essential for Mtb survival [89].

2.6 Mycobacterial Drug Targets Involved in Replication
and Transcription

DNA gyrase is an essential ATP-dependent bacterial enzyme that acts by creating a
transient double-stranded DNA break, which relieves the strain caused by unwinding
of double-stranded DNA by helicase enzyme. DNA gyrase is found in all the bacterial
species and essential for DNA replication, transcription, and recombination processes
(Fig. 3). The enzyme exists as a heterotetramer consisting of two A subunits and two
B subunits (A2B2) [90]. InMtb, it is proven that the inhibition of DNA gyrase results
in high anti-mycobacterial activity toward both actively replicating and non-
replicating, dormant bacilli, which is necessary for shortening the TB treatment [91].
The synthetic antimicrobial class, Fluoroquinolones, has been demonstrated to have
anti-tubercular activity by inhibiting to themycobacterial DNAgyrase subunit A [92].
Fluoroquinolones are currently being used as second-line drugs for TB, and also these
drugs have been used in TB treatment to hamper the development of XDR-TB from
MDR-TB (Table 1; Fig. 2). Though the emergence of fluoroquinolone resistance
affects its use as second-line drugs [93], this has driven the interest in targeting the
DNA gyrase subunit B (GyrB). An approved anti-bacterial agent novobiocin was the
only approved GyrB inhibitor; however, it was withdrawn from the market due to
safety concerns [94]. A new class of compounds, aminobenzimidazole antibiotics
targeting the ATP-binding site of GyrB, has also been reported [95]. Chopra et al.
evaluated the biological activity of both aminobenzimidazole and novobiocin. The
drugs are demonstrated to be active against Mtb with minimum inhibitory concen-
tration (MIC) of 1 and 4 mg/ml, respectively. Only aminobenzimidazole compound
exhibited a time-dependant mycobactericidal activity against both drug-sensitive and
drug-resistant bacilli, which also showed potent activity against non-replicating
persistentMtb. Further, this compound significantly reduced the lung colony forming
unit counts in the mice TB model [95].

Shirude et al. identified aminopyrazinamides as novel and specific GyrB inhi-
bitors that kill replicating and non-replicating Mtb bacilli through HTS of com-
pounds. They solved the X-ray crystal structure of GyrB of M. smegmatis in
complex with one of the aminopyrazinamides. The aminopyrazinamides also
showed significant anti-mycobacterial activity under in vitro, intracellular, and
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hypoxic conditions. The interactions with the hydrophobic pockets consisting of
Val 49, Val 123, Val 128, and Ile 171 contribute to the specificity of the compound
as compared to other known GyrB inhibitors. Another, notable amino acid residues
at the active site regions include Asp 79, Arg 82, and Arg 141 obtained from GyrB
crystal structure [96]. Later, a couple of studies also reported novel classes of
compounds targeting Mtb GyrB through molecular hybridization studies followed
by protein–ligand molecular docking [97–99]. More recently, VS studies have been
conducted for a group of flavonoid compounds to identify a dual inhibitor for DNA
gyrase and isoleucyl-tRNA synthetase enzymes. The binding of the high-ranked
flavonoid, taxifolin, to both these enzymes was validated through molecular
dynamics simulation. Further, anti-mycobacterial activity of taxifolin was evaluated
using a cell viability assay resulted in MIC � 12.5 lg/ml against Mtb [100].

Another notable Mtb target is RNA polymerase enzyme (RNAP), which is
required for the transcription process. RNAP is the target for the first-line anti-TB
drug Rifampicin. An MDR and XDR strain of Mtb is resistant to Rifampicin due to
the mutations in the rpoB gene encoding RNAP. Rifampicin-resistant Mtb strains
show mutation in the 81 bp hotspot region of rpoB gene, stretching from codons
507 to 533 [101]. Researchers are underway to identify derivatives of Rifampicin
which are not affected by rpoB mutations in the binding site of Rifampicin. Lin
et al. recently solved the X-ray crystal structure of RNAP in its ligand free form as
well as in complex with Rifampicin at 3.8–4.4 Å resolution. They identified novel
compounds Na-aroyl-N-aryl-phenylalaninamides (AAPs) by HTS and solved the
crystal structure of RNAP-AAPs complexes. Further, they showed binding to a
different site than Rifampicin in the mycobacterial RNAP. Hence, mutations at the
Rifampicin binding site will not hamper AAPs activity. Also, AAPs showed
addictive anti-mycobacterial activity in combination with Rifampicin [102].

More recently, new anti-bacterial target in Mtb RNAP has been reported by
Wang et al. They constructed phylogenetic trees for 17 genes important for the
functioning of RNAP enzyme in 13 different mycobacterial species and identified
positive selection sites or conserved regions. They modeled the 3D structure of
RNAP and performed molecular docking calculations with anti-bacterial drugs. By
comparing the positive selection site and as well as molecular interaction, they
proposed a putative drug binding site near Cys 933 and His 935 residues on the
rpoB subunit [103]. Several research groups are underway to identify novel inhi-
bitors against Mtb RNAP as well as to identify potential Rifampicin analogues
effective against MDR and XDR strains of TB [104, 105].

2.7 Other Druggable Targets of Mtb

Filamenting temperature-sensitive protein Z (FtsZ) is a cytoskeletal protein
involved in the Mtb cell division. The protein forms a contractile ring structure
(Z ring) at the site of cell division. FtsZ also functions to recruit cell division
proteins to the septum required for the formation of new cell wall between dividing
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cells. FtsZ is a prokaryotic homologue to the eukaryotic protein tubulin. It contains
a GGGTGTG motif like in tubulin for guanine binding in FtsZ and also shows
GTPase activity [106]. So, blocking of FtsZ leads to cell division arrest leading to
bacterial death [107]. Das et al. recently identified phytochemicals as FtsZ inhibitor
through molecular docking-based VS; however, no experimental validation was
performed by that group [108].

Caseinolytic peptidase P (ClpP) is another important molecular target in Mtb.
ClpP acts in association with ATPases to perform energy-dependant degradation of
damaged proteins within the cell. Mtb encodes two ClpP homologues, ClpP1 and
ClpP2, and forms a mixed protein called ClpP1P2 [109]. It was experimentally val-
idated that both ClpP1 and ClpP2 are required for the protein degradation and
depletion of either of the protein results in bacterial death [110]. A novel natural
product, lassomycin, is found to inhibit ClpP [111]. Schmitz et al. solved the X-ray
structure of ClpP1P2 and elucidated the molecular mechanism of association with
ATPases [112]. This will aid in designing of novel and more potent inhibitors of ClpP
protein. Mtb produces 20S proteasome, which is essential for the survival of the
bacteria within the host and helps in defending the bacilli against nitrosative stress
[109, 113]. Gandotra et al. demonstrated that prcBA genes encoding mycobacterial
proteasome are essential for the Mtb survival in chronic phase of infection in mice
[114]. Hence, 20S proteasome serves as an important mycobacterial target for
inhibitor design.

The enzymes involved in menaquinone (Vitamin K2) synthesis, menA, menB,
menC, menD, menE, menF, and ubiE (menG), serve as an important druggable
target for anti-mycobacterial therapy [115, 116]. It has been proved that
Menaquinone synthesis is important for maintaining the mycobacterial viability
during the exponential growth phase and recovery from non-replicating persistence
and also involved in electron transfer pathways.

3 Structure-Based Anti-TB Drug Design Approach
and Its Molecular Mechanism of Action

Structure-based inhibitor design for the past two decades became significant due to
the theoretical and experimental technological advancements which include: protein
modeling, ab initio modeling, homology modeling, protein folding dynamics,
molecular docking, pharmacophore modeling, virtual screening, quantitative
structure activity relationship (QSAR), structural biology, nuclear magnetic reso-
nance (NMR) studies toward the preclinical drug discovery program. 3D structural
data present in the protein data bank (PDB) and other pharmaceutical databases
contain many millions of datasets which fit into the big data domain. This vast
amount of data can provide information about the key molecular mechanism of
action at the atomic level. Nowadays, structure- and ligand-based drug design has
also become a fundamental strategy in both lead generation and lead optimization.
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The main challenge in the anti-TB drug discovery program is the different types
of screening compounds using virtual, cell-based, and target-based in vitro methods
lack the important Mtb physiology in which its cell wall permeability, metabolic
stability, and druggable target’s resistance are often neglected. While maintaining
the compound efficacy, these unique properties are difficult to achieve for its suc-
cess toward TB drug discovery. Thus, in silico and in vitro biochemical techniques
should provide guidance for the compound to be selective and specific with respect
to particular druggable targets under different physiologically appropriate condi-
tions. This in turn can avoid compounds with unfavorable physicochemical as well
pharmacokinetics and pharmacodynamic properties. Further, the study will progress
by identifying new hits having novel scaffolds for drug development and new
protein targets, showing promising mechanism of action from the existing knowl-
edge on drugs and its resistance mechanisms.

The structure-guided inhibitor designing is performed based on the structure of
the molecular targets. Due to the advances in X-ray crystallographic techniques,
many mycobacterial protein targets have been crystallized, solved, and deposited in
the PDB. If the crystal structure of a target protein is not solved experimentally
using X-ray crystallography or NMR, homology modeling can be done to build
predictive model of the protein using a crystal structure of related proteins with a
good sequence identity. The 3D structures of the molecular targets provide an
understating of protein folding, function and active site regions that are important
aspects in the anti-tubercular drug discovery process. The druggable molecular
target in Mtb for which the crystal structure is submitted in the PDB is given in
Table 3. In addition to crystal coordinates of the target proteins, the interactions
with known inhibitors are also crucial for the structure-based inhibitor designing.
The binding mode of these compounds/drugs toward the well-characterized
molecular target aids the effective drug discovery process. Another notable advance
in structure-based drug designing is the drug repurposing/reprofiling strategy which
is described below.

Conventionally, the discovery and development of anti-bacterial agents were
based on the identification of novel compounds targeting various bacterial targets.
This process of finding novel compounds is exceptionally expensive and takes an
enormous amount of time. Only a few compounds pass the clinical trials with good
safety profiles among thousands of compounds tested, which makes the drug dis-
covery and development process very time-consuming and expensive [117]. In the
last few years, a number of new anti-TB agents have been proposed and developed
into effective therapeutics; some of them were obtained by modifying the already
existing drugs or scaffolds, and many are developed by repurposing strategy [118].

Drug repurposing or repositioning is a discovery process, which takes drugs that
have been approved for one disease and repositioning them for another disease
[118–124]. The traditional drug discovery and development process takes enor-
mous amount of time to reach into market. However, discovering new indications
for already approved drugs can improve the drug safety and can lower the devel-
opment cost and time. Many repurposed drugs are being used nowadays for the
treatment of various diseases. Also drug repurposing is becoming very popular in
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Table 3 Crystal structure of the key druggable targets in Mtb

Molecular target Pathways involved PDB ID

DprE1 Arabinogalactan
biosynthesis

6G83, 5OEL, 5OEP, 5OEQ, 4CVY, 4P8C,
4P8 K, 4P8L, 4P8P, 4NCR

IspD Arabinogalactan
biosynthesis

3OKR, 3Q7U, 3Q80, 2XWN

Antigen 85
complex

Mycolic acid synthesis 5OCJ, 5VNS, 4QDO, 4QDT, 4QDU,
3HRH

Pks13 Mycolic acid synthesis 6D8I, 6D8 J, 5XUO, 5V3 W, 5V3X

PcaA Mycolic acid synthesis 1L1E

InhA Mycolic acid synthesis

D,D-transpeptidase Peptidoglycan
biosynthesis

5CRF, 5CXW, 4RYE

L,D transpeptidase-1 Peptidoglycan
biosynthesis

4JMN, 4JMX, 5E51, 5E5L

L,D transpeptidase-2 Peptidoglycan
biosynthesis

5DZP, 5DVP, 5D7H, 4GSU, 4GSR, 4GSQ,
4HU2, 4HUC, 3VAE, 3U1P, 3TX4, 3TUR

GlmU Peptidoglycan
biosynthesis

2QKX

RmlC Arabinogalactan
biosynthesis

2IXC, 1PM7

PknB Signal transduction 6B2P, 6B2Q 5U94, 5E0Y, 5E0Z, 5E10,
5E12

PknG Signal transduction 2PZI, 4Y0X, 4Y12

DevS Regulatory process 2W3H, 2W3G, 2W3F, 2W3E, 4YOF,
4YNR

AspS Protein synthesis 5W25

Peptide
Deformylase

Maturation of nascent
polypeptides

3E3U

DNA Gyrase DNA replication
process

5BTN, 5BTL, 5BTI, 5BTG, 5BTF, 5BTD,
5BTC, 5BTA

RNA polymerase Transcription process 5W36, 5W35, 5W33, 6C06, 6C05, 6C04

Isocitrate lyase Carbon metabolism 6C4A, 6C4C, 5DQL

Malate synthase Carbon metabolism 1N8I, 1N8 W, 4TVM

Lpd Energy metabolism 4M52, 3II4

FtsZ Cell division 1RQ7, 1RQ2, 1RLU, 2Q1X, 5V68

ClpP Degradation of
damaged protein

4U0H, 2CE3

20S proteasome Protein processing 2FHG

Glutamine
synthetase

Nitrogen metabolism
and cell wall
biosynthesis

1HTO, 1HTQ

Fumarate hydratase Citric acid cycle 3NO9, 5F92, 5F91

MenB Vitamin K2 synthesis 1Q52, 1Q51

MenD Vitamin K2 synthesis 5ESD, 5ESO, 5ERY, 5ERX
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TB drug discovery, and in past years, a number of repurposed TB drugs are being
reported (Table 4; Fig. 6). Some of the drugs which are repurposed for TB treat-
ment are given below.

Table 4 Repurposed drugs that were initially developed for the treatment of other diseases and
now being evaluated for tuberculosis treatment

Drug FDA Approval Mechanism of action Repurposed
mechanism of action
in Mtb

Amoxicillin/
Clavulanate

Bacterial infections
including strep throat,
pneumonia, skin
infections, and
urinary tract
infections

Amoxicillin inhibit D,
D-transpeptidase
enzyme and inhibit
bacterial cell wall
synthesis; clavulanate
inhibits b-lactamase
enzyme

Inhibits D,
D-transpeptidase
enzyme and inhibit
bacterial cell wall
synthesis; clavulanate
inhibits b-lactamase
enzyme of Mtb

Meropenem
Imipenem

Broad-spectrum
bacterial infections

Inhibit
D,D-transpeptidase
enzyme and blocks
bacterial cell wall
synthesis

Inhibit both
D,D-transpeptidase
and L,D-transpeptidase
enzymes for Mtb PG
cross-linking

Clarithromycin Bacterial infections
affecting skin and
respiratory tract

Binds to 23S rRNA of
bacterial 50S
ribosomal subunit and
inhibits protein
synthesis

Binds to 23S rRNA of
bacterial 50S
ribosomal subunit and
inhibits specifically
mycobacterial protein
synthesis

Linezolid Infections caused by
Gram-positive
bacteria: skin
infections and
pneumonia

Inhibit protein
synthesis by binding
to 23S rRNA of
ribosomal 50S
subunit

Inhibit protein
synthesis by binding
to 23S rRNA of
ribosomal 50S
subunit of Mtb

Levofloxacin Mainly for acute
bacterial sinusitis,
pneumonia, urinary
tract infections,
chronic prostatitis,
and some types of
gastroenteritis

Inhibit bacterial DNA
replication by binding
to DNA gyrase and
topoisomerase IV

Inhibit mycobacterial
DNA replication by
binding to DNA
gyrase and
topoisomerase IV

Moxifloxacin Chronic bronchitis,
acute bacterial
sinusitis, pneumonia

Inhibit bacterial DNA
synthesis by
inhibiting DNA
gyrase

Inhibit mycobacterial
DNA replication by
inhibiting DNA
gyrase

Gatifloxacin Respiratory tract
infections

Inhibit bacterial DNA
replication by binding
to DNA gyrase and
topoisomerase IV

Inhibit mycobacterial
DNA replication by
binding to DNA
gyrase and
topoisomerase IV

(continued)
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b-lactam antibiotics: They are developed primarily to treat Gram-positive
bacterial infections, but have been repurposed to be used as an anti-TB agent.
Enormous research is being carried out to study the efficacy of b-lactam antibiotics
in combination with b-lactamase inhibitor. Among all the b-lactams, carbapenems
are considered to be more promising as anti-TB agents, as they are more stable to

Table 4 (continued)

Drug FDA Approval Mechanism of action Repurposed
mechanism of action
in Mtb

Metronidazole Antibiotic and
anti-protozoal

Covalently binds to
DNA, disrupt its
helical structure,
inhibit bacterial
nucleic acid synthesis

Interfere with
mycobacterial DNA

Chlorpromazine Antipsychotic Antagonist (blocking
agent) on different
postsynaptic receptors

Inhibit NADH:
menaquinone
oxidoreductase

Clofazimine Anti-leprosy Interference with
template function of
DNA in M. leprae;
alteration of
membrane structure
and its transport
function; disruption
of mitochondrial
electron transport
chain

Interfere with
mycobacterial DNA

Metformin Anti-diabetic Suppress hepatic
gluconeogenesis by
inhibition of the
mitochondrial
respiratory chain,
activation of AMPK,
inhibition of
glucagon-induced
elevation of cyclic
adenosine
monophosphate
(cAMP)

Activates host AMPK
leading to production
of mitochondrial
reactive oxygen
species, and aids
phagosome–lysosome
fusion

Artemisinin Antimalarial React with heme and
iron(II) oxide, results
in the generation of
free radicals that in
turn damage
susceptible parasitic
proteins

Inhibit the
establishment of
dormancy by binding
to heme molecule of
the mycobacterial
oxygen sensor, DosS/
T which turns down
its ability to detect
oxygen levels
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mycobacterial b-lactamase enzyme [125]. The anti-tubercular activity of car-
bapenems, i.e., Meropenem, Imipenem, has been of immense interest in recent
years, and some of the carbapenem antibiotics are in clinical trials for the treatment
of TB. These antibiotics targets covalently modify both D,D-transpeptidase enzyme
and Ldt enzymes involved in PG cross-linking. The mechanism of action of car-
bapenems against Ldt enzymes are well studied, and crystal structure of some of
these antibiotic compounds has been solved and deposited in PDB. The drug forms
a covalent bond with the thiol group of Cys 354/226 present in the active site of
both the Ldt enzymes (LdtMt1 & LdtMt2). Other amino acid residues which stabilize
the binding are His 208/336, Ser 209/337, Met 175/303, Tyr 190/318, His 224/352,
Gly 225/353, and Asn 228/356 of LdtMt1 and LdtMt2, respectively [46, 47, 126].
The molecular mechanism of binding of Meropenem, a carbapenem class of
antibiotic which is in clinical trials for TB therapy toward LdtMt2, is given in Fig. 7.

Artemisinin: It is an ancient Chinese medicine extracted from sweet wormwood
Artemisia annua and is used to treat malaria. In 2016, Abramovitch et al.
demonstrated the anti-tubercular activity of Artemisinin. The compound targets

Fig. 6 Structure of repurposed drugs for TB
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heme molecule present in the oxygen sensor called DosS/T present in Mtb and
inhibits the bacilli to establish dormancy during hypoxic conditions. However,
further studies are required to better understand the anti-mycobacterial activity of
Artemisinin [127].

Metformin: It is an oral drug which is approved for the treatment of type 2
diabetes mellitus. The first report on Metformin as adjunct anti-tuberculosis therapy
was reported in 2016 [128]. Instead of targeting the Mtb protein, Metformin is
involved in the host-directed therapy, which involves targeting the harmful
inflammation leading to tissue damage. Metformin is an activator of 5’adenosine
monophosphate-activated protein kinase (AMPK), and this in turn increases the
mitochondrial reactive oxygen species (ROS). The macrophages, which are
exposed to Metformin, showed high in vitro anti-mycobacterial activity because of
the increased level of ROS [128]. Briefly, Metformin is shown to promote
phagocytosis, phagosome–lysosome fusion, and autophagy, which are the host
cellular processes evaded by Mtb to survive inside macrophages. Singhal et al.
further confirmed that diabetes mellitus patients on Metformin treatment had higher
control of TB infection [128, 129].

Clofazimine: Clofazimine is a riminophenazine dye used in the leprosy treat-
ment for decades. The efficacy of treating MDR and XDR-TB is already validated,
and it is listed as a WHO-recommended second-line drug for the treatment of TB.
Clofazimine is shown to decrease the TB treatment duration [130]. However, the
main side effect of the drug is skin discoloration owing to its long half life and
higher lipophilic nature [131, 132].

Fig. 7 Molecular interactions of Meropenem with the active of LdtMt2 (PDB ID: 4GSU [47]).
(a) The binding site of Meropenem (sticks) and (b) the molecular interactions with the active site
amino acid residues (lines); the catalytic Cys 354 is represented as orange sticks and the covalent
bond with Meropenem is encircled
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Clarithromycin: It is a semisynthetic macrolide antibiotic, which is approved to
treat various skin as well as respiratory tract infections. The drug binds reversibly to
the bacterial 23S rRNA of 50S ribosomal subunit and impedes the amino acid
translocation and further protein assembly. Clarithromycin is also used to treat
nontuberculous mycobacterial infections [133]. Several studies have been conducted
from the mid-90s to study the effect of Clarithromycin on Mtb. Clarithromycin gets
metabolized into 14-hydroxyclarithromycin; both of them act synergistically [134].
Cavalieri et al. reported that clarithromycin/14-hydroxyclarithromycin had consid-
erably improved the in vitro anti-mycobacterial activities of the conventional TB
drugs, Isoniazid, Rifampicin, and Ethambutol against MDR bacilli [135].

Fluoroquinolones: Fluoroquinolones are one of the broad-spectrum antibiotic
classes effective against both Gram-negative and Gram-positive bacteria. They kill
the bacteria by preventing the bacterial DNA replication. The third-generation
Levofloxacin and the fourth-generation Moxifloxacin and Gatifloxacin are now
used as second-line anti-TB drugs for treating drug-resistant strains of Mtb [136,
137].

Linezolid: It is a synthetic antibiotic belonging to the class of oxazolidinone.
Linezolid is used to treat Gram-positive bacterial infections. Linezolid functions by
binding to the peptidyl transferase center located in the 23S portion of 50S ribo-
some, thereby inhibiting protein synthesis. The bactericidal activity of Linezolid
against drug-resistant Mtb has been well studied in the past few years, and now, it is
being used as a second-line TB drug in MDR and XDR-TB treatment regimen
[136]. But there were concerns against its safety and tolerability [138].

Chlorpromazine: It is an FDA-approved drug used to treat psychotic disorders
such as schizophrenia. Chlorpromazine showed in vitro anti-tuberculous activity by
inhibiting NADH:menaquinone oxidoreductase enzyme [139]. Also, it is shown to
improve the efficacy of the first-line anti-TB drugs in combination with
Chlorpromazine [140, 141].

4 Recent Computer-Aided Drug Design Approaches
for Anti-TB Drug Discovery

The advances in the computational methods and techniques have a great impact on
the drug discovery and development. The effectiveness of computational algorithms
and software tools has tremendous impact on speeding up the conventional drug
discovery. Now, computational techniques are inseparable part of drug discovery
and development process. Traditionally, the computer-aided drug discovery process
involves virtual screening (VS) of a set of small molecules against the X-ray crystal
structures. If the crystal structure data is not available, ligand-based drug designing
uses knowledge of existing active compounds against a particular target proteins. In
ligand-based inhibitor designing, using the structural features of the known ligands
of druggable molecular targets, new compound with improved potency can be
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developed. It majorly involves QSAR or pharmacophore-based modeling. In QSAR
modeling, the relationship between physicochemical properties called molecular
descriptors of the known ligands with the biological activity will be expressed as a
regression equation. Further, using this QSAR equation the activities of new
compounds will be predicted. QSAR is based on the assumption that the biological
activity of a compound depends upon the molecular features present in the struc-
ture. With the advancement of powerful drug designing algorithms and software,
the process of finding novel drugs has been improved a lot. Several successful drugs
are already being in a market which is developed by computational chemistry and
drug designing strategies. Some of the reported computer-aided drug designing
studies toward the development of novel anti-tubercular agents are already being
discussed in the above sections. With the use of high-end computational techniques,
many research works are carried out by different research groups, and some of the
recent advances in the in silico-based designing of anti-tubercular agents are dis-
cussed here.

Many anti-tubercular drug designing strategies are reported in past few years
involving development of structural analogues to existing TB drugs using ligand-
based strategies. Aragwal et al. performed VS using a ligand-based pharmacophore
model and identified 95 compounds from small-molecule database. The identified
hits were evaluated further using molecular docking calculations, and 15 short listed
compounds were biological assays [139]. Anquetin et al. carried out QSAR studies
on the quinolone series of compounds. Based on the QSAR results, they synthe-
sized six fluoroquinolones, and four of them were found to be active against Mtb
[142]. In another study, structure- and ligand-based computational models were
developed to identify potential inhibitors for Mtb GlmU. The ligand-based method
involved QSAR analysis of known GlmU inhibitors, and they identified lead
compounds with potential anti-mycobacterial activity [143].

Recently, an in silico-guided polypharmacological approach for drug screening
was reported. This approach considered three Mtb molecular targets, InhA, GlmU,
and DapB with the aim of simultaneous inhibition of several potential targets for the
treatment of drug-resistant TB. So, a combination of pharmacophore and
QSAR-based VS strategy considering these three targets resulted in initial 784 hits
from Asinex database small-molecule library. These hits were further subjected to
molecular docking calculations with other 33 Mtb druggable targets. Finally, 110
potential polypharmacological hits identified; however, they have not tested the
in vitro activity of those hits [144]. Choudhary et al. developed dynamics-based
pharmacophore model for mycobacterial cyclopropane synthase (CmaA1) based on
known inhibitors for the screening molecule library [145].

One of the most efficient computational methods was combinatorial design of
small molecules and screening of these compounds by a ligand-based pharma-
cophore models. Nandi et al. adopted such a method and generated a combinatorial
library of a series of 3850 fluoroquinolone and isothiazoloquinolone compounds,
which was further VS based on QSAR model against mycobacterial DNA gyrase.
The interactions of hits obtained were compared with the known ligands and 68
compounds, including 34 fluoroquinolones and 34 isothiazoloquinolones which
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were selected as potential leads [146]. Similarly, Singh et al. identified substituted
hydrazine carbothioamide as potent anti-tubercular agents by using QSAR studies
[147]. In other studies, Mtb DprE1 inhibitors are identified by employing molecular
docking calculations [148, 149].

In order to find novel drug candidates, the understanding of pathogenesis of the
underlying disease needs to be done. Kandasami et al. used bioinformatics tech-
niques involving pharmacophore modeling to identify the catalytic residues of PknI,
and those residues were experimentally validated by site-directed mutagenesis
technique. This active site residue information was used in identifying an inhibitor
specific to PknI, which was further validated by laboratory experiments [150].
Several other computer-aided drug designing studies are reported involving various
in silico techniques comprising of homology modeling, QSAR, pharmacophore
modeling, molecular docking-based VS, etc., against various Mtb drug targets
[151–154].

Apart from the in silico drug screening techniques, computational approaches
are also used to build databases of compounds for the ease of VS them toward
various druggable targets. Prakash et al. developed an anti-tubercular compound
database and a data mining procedure in the search for novel anti-tubercular agents
and targets. They computed a minimum common bioactive substructure (MCBS)
responsible for the activity of anti-tubercular agents by employing QSAR and
pharmacophore modeling techniques [155]. This database of compounds will help
to identify potential compounds with the structural feature similar to the known
anti-tubercular drugs. Dalecki et al. developed an easy-to-use software solution for
streamlining, processing, and analysis of biological screening data for Mtb. This
software also offers a scaffold of compounds from screening data, which will further
expand the scope of finding new compounds with improved activity [156].
A database, BioPhytMol, was designed to store and analyze the anti-mycobacterial
phytomolecules and plant extracts, which would in future have immense potential
as a drug discovery resource [157].

5 Novel TB Drugs in the Clinical Pipeline

Several new compounds as well as repurposed drugs for TB treatment are now in
the clinical pipeline and are listed in Table 5. Auranofin is enrolled in the Phase 2
clinical trials for TB, which is an anti-rheumatic agent. Auranofin targets
mycobacterial thioredoxin reductase, and in a cell-based screen, the drug exhibited
anti-tubercular activity against non-replicating Mtb [158]. Nitazoxanide is another
repurposed drug for TB, now in Phase 2 clinical trials. It is an FDA-approved
anti-protozoal agent [159]. GSK-286 is a new chemical class having a novel
mechanism of action against Mtb. It targets mycobacterial cholesterol catabolism,
and the compound was found to penetrate into the necrotic lesions and kill intra-
cellular Mtb with an MIC of > 10 µM. GSK070 belongs to the oxaborole chemical
class, shown to inhibit mycobacterial LeuRS enzyme. It has been shown to be
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active in in vivo murine TB model [160]. An oxazolidinone class of compounds
Sutezolid, Delpazolid, TBI-223, and Contezolid are in the various phases of clinical
trials for TB. These compounds inhibit protein synthesis in Mtb [161–163]. The
benzothiazinone class of compounds, BTZ-043 and Macozinone, is demonstrated
to inhibit the DprE1 enzyme of mycobacteria leading to the inhibition of ara-
binogalactan synthesis. Both these compounds are now in Phase 1 clinical trials.

The development of vaccines against Mtb has also been of interest by several
research groups. H56 vaccine is in clinical trials, which is a multistage vaccination
strategy consisting of a combination of early antigen Ag85B and early secretary
antigen target (ESAT-6) with Rv2660c protein, which is associated with latency.
The vaccine is demonstrated to promote T-cell response, and it is also controlled by
the reactivation of the bacilli [164].

6 Future Directions to TB Drug Discovery Process

With the availability of validated Mtb molecular targets by the knowledge of the
complete genome sequence of Mtb H37Rv, target-based discovery of new inhibi-
tors is gaining interest in which the target modeling and chemoinformatics
approaches have played a pivotal role. Host-directed therapies are also reported in
recent years, which mainly focus on boosting the immune system of the host.
Recently, pharmaceutical chemists have been pushing the discipline beyond
computer-aided drug design in the field of chemical biology, to study and manip-
ulate the biological systems at the system level. In the small-molecule drug dis-
covery program, HTS campaigns using in silico and in vitro techniques are of
paramount importance for the hit to lead identification. In addition, a recent trend in
the preclinical campaign includes fragment-based drug discovery process, which
includes focused or specific screening and iterative screening. This has been cou-
pled with the speed and automation of a number of in silico (pipeline pilot mode)
and biophysical techniques, which has the capacity to measure quantitatively the
direct interaction between small molecule and druggable protein of interest. The
application of computational and biophysical techniques demonstrates the direct
target engagement with its hits or small molecules, which in turn increases the
confidence in the HTS campaign.

During TB drug development program, different metrics were adopted in opti-
mizing the hits to lead to compound discovery with an ultimate goal of decreasing
the late-stage attrition in the clinical trials. The disease-driven biochemical path-
ways and sometimes the complex target space associated with this at the tissue level
lead to new developments in the TB drug discovery process. This involves
small-molecule library design to complex physiological models, which would in
turn mimic the target tissue in the TB disease model system [165]. In the present
scenario, the heterogeneous TB cellular models are studied thoroughly to under-
stand variety of phenotypes and its 3D cellular imaging. These in turn occupy the
bigger dataset. The informatics and algorithms for computing and analysis these big
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dataset is challenging and needs to be developed well for novel anti-TB drug
discovery.

The traditional drug discovery and development process takes up to 10–15 years.
It involves identification of right protein target in a disease, designing new inhibitors,
optimizing the activity of the molecule and further preclinical and toxicity analyses.
The enormous amount of scientific data is being reported, and analysis of this “big
data” is one of the hurdles in the target identification process. In this data-driven
process, the application of artificial intelligence (AI) plays a pivotal role nowadays.
AI and machine learning have a crucial part in the first analysis of the massive
scientific data to form essential new knowledge for the drug development process
[166]. This digital electronic field is emerging and has an immense potential toward
cost, speed, and efficiency in the drug discovery program. In drug discovery and
clinical diagnostics, AI can outperform humans on certain tasks, and machine
learning toward identifying the spot patterns and its relationship within big data
provide guidance in this aspect, which is beyond our reach. There are different case
studies of AI in the area of target identification and validation as well as in medicinal
and synthetic chemistry [167–169]. These new data-driven technologies are proving
to be tremendously promising when it reveals new mechanistic insights to disease,
thereby helping to identify promising targets. In the context of computer-aided drug
design, AI and machine learning techniques can process broader and varied chemical
space in a much faster manner to identify the potential molecules from the bigger
dataset for disease cure [170].

7 Conclusions

Current anti-TB drug regimens require better understanding of the drug–target
relationships in order to decipher the structure–function relationships and its
molecular mechanism of action with the drugs. Review of the literature surveys and
studies on the basis of bioinformatics, structure-based TB drug discovery,
computer-aided drug design, and drug repurposing study was promising for TB
diagnostics, therapeutics, and molecular mechanism of action toward MDR-TB and
XDR-TB. The proper selection of druggable TB target and its molecular mecha-
nism of inhibition are essential to understand the TB drug resistance at the fun-
damental level in which the structure-based anti-TB drug design will play a pivotal
role. The present crisis toward antibiotic resistance and the discovery of bedaqui-
line, delamanid, and recently eravacycline drugs has promised a sigh of relief for
TB patients.

Drug repurposing or repositioning is an alternative step in the anti-TB drug
discovery program addressing the drug resistance. The synergistic effect of the
repurposed/combination drugs linezolid, clofazimine, benzoxaboroles, fluoro-
quinolones, trimethoprim, thioridazine, sulfamethoxazole, sulfadiazine, minocy-
cline, amoxicillin/clavulanic acid, and carbapenems like Meropenem along with the
new FDA-approved drugs bedaquiline, delamanid, and eravacycline can be

336 A. C. Pushkaran et al.



successfully used in the treatment regimen for drug-resistant TB. This combina-
torial chemotherapy toward MDR-TB, XDR-TB, and TDR-TB can definitely
improve the life expectancy and reduce the mortality rate of TB patients to some
extent. The main obstacle in the current anti-TB drug discovery program is the drug
toxicity, mode of delivery, and duration of medication. This can surmount if new
oral drugs with good pharmacokinetic profile and anti-TB activity at the nanomolar
level can be discovered for patient compliance and safety.
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Abstract In this current age of data-driven science, perceptive research is being
carried out in the areas of genomics, network and metabolic biology, human,
animal, organ and tissue models of drug toxicity, witnessing or capturing key
biological events or interactions for drug discovery. Drug designing and repur-
posing involves understanding of ligand orientations for proper binding to the target
molecules. The crucial requirement of finding right pose of small molecule in
ligand–protein complex is done using drug docking and simulation methods. The
domains of biology like genomics, biomolecular structure dynamics, and drug
discovery are capable of generating vast molecular data in range of terabytes to
petabytes. The analysis and visualization of this data pose a great challenge to the
researchers and needs to be addressed in an accelerated and efficient way. So there
is continuous need to have advanced analytics platform and algorithms which can
perform analysis of this data in a faster way. Big data technologies may help to
provide solutions for these problems of molecular docking and simulations.
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1 Introduction

This decade has been witnessing a major shift in technologies which have been
used in various sectors ranging from social media, agriculture, services, to science
and technology. In the current age, new advances are being made in the field of
satellites, robotics, micro- and nanotechnologies as well as revolution in computing.
The stream of science has been impacted by this revolution. All disciplines of
science have been generating and building newer technologies and different
approaches for scientifically accurate experimentation. All these developments in
various scientific disciplines are also changing our social life, health, environment,
etc. One of the major streams of science is life sciences, which has been strongly
affected and accelerated due to all these advancements in techniques and
technologies.

Various technologies like next-generation sequencing (NGS) in genomics,
high-throughput assays, and supramolecular chemistry are revolutionizing the life
sciences and applied areas of human health, agriculture, livestock, and many more
[1–4]. The robotics-based automation is generating volumes of data from various
experiments and characterization techniques. The next-generation biology has been
driven heavily by wet laboratory experimentation as well as dry laboratory
computation.

Technologies like next-generation sequencing (NGS) enable sequencing of
genomes of thousands of species in plants and animals at an extremely rapid rate
[5–7]. Today, many genome sequencing centers are producing data of about ter-
abytes per week. This results in petabytes of data of sequencing information per
year. The figure is expected to grow exponentially and very soon will be facing
challenges of storage and analysis of exabytes of sequence data [5–7]. To extend
this further, there is already a race to sequence the genomes of all living species on
the planet including humans, plants, animals, microbes to name a few. It is expected
that this gigantic exercise will result in zetabytes to yottabytes of sequence data.
Such large volumes of sequence data will be the genomic ocean of tomorrow [7–9].

Similarly, structural database of biomolecules like protein, nucleic acids, lipids,
and membranes is also growing rapidly (shown in Fig. 1) due to methods like cryo
crystallization, high-frequency NMR, and other characterization techniques along
with computational modeling techniques [10]. Computational modeling and sim-
ulation of biomolecules have been drastically improving due to the advancement in
high-performance computing (HPC) [11] and development of advanced enhanced
sampling methods [12, 13]. It has paved the way for mimicking long timescale
events occurring in different biological systems more efficiently. Owing to the better
computing paradigm, today structural data generation is no more the major chal-
lenge, but analyzing this huge data has become one. Computer simulations help to
determine mechanism of action of biomolecules in a cell, thereby suggesting their
implication in various diseases and discovering their potential use in therapeutics.
Hence, the computational techniques generate biomolecular structural and
dynamical data via very long time scale simulations. Likewise, detailed and
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systematic analysis of data becomes an important part of any study, as it would
further help to understand the entire mechanism of biomolecular action. Advances
in crystallization, NMR, and computational methods are directly influencing and
accelerating the drug discovery process.

2 Drug Discovery Process

Discovering a new drug is a very complex, time-consuming, expensive, and high-risk
process for R&D and pharmaceutical laboratories [14–16]. It is also a multi-step
process involving target identification, target validation, and screening of small
molecules for validated targets. These steps need to be made easy, cost-effective, and
fast. Computational method like computer aided drug discovery is one such process
that involves identifying new ligand molecules for a particular target protein, which is
an important step in drug discovery. Historically, the drug discovery process was
involved extraction of chemical compounds from natural resources and testing them
in the cell for disease treatment [17]. With the advancement of technology and ability
to chemically synthesize small chemical moieties, various drug databases came into
existence. The availability of vast structural resource of small molecules has made
high-throughput screening of these databases against target protein a more feasible
practice. Also, increasing affinity and reducing toxicity of already available ligand
molecules needs to be addressed in drug discovery process.

Drug discovery process involves the following steps: (1) target identification,
(2) validation of target protein, (3) creation of small molecule database,

Fig. 1 Growth of structural data from 2001 onwards. Source https://www.rcsb.org/pdb/statistics
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(4) screening of small molecules against target protein, i.e., hit to lead identification,
(5) lead optimization, (6) preclinical testing, and (7) clinical testing.

Almost all these steps generate huge data from experimental laboratory and
computational laboratory experimentations and need better way of handling data
with fast and better analytics approaches. Target identification and validation
involve selection of protein molecules whose activity when blocked or enhanced
can affect the particular disease-related cellular pathway. This involves a systems
biology approach wherein an understanding of all the proteins involved in the
pathway or finding possibility of any alternate pathway available, role of particular
protein in particular pathway and identifying side effects of the target protein.
Second most important thing is to have database of lakhs of small molecules which
can be screened against the target protein. The source of these small molecules can
be microbial metabolites, plant origin, and chemically synthesized. There are var-
ious drug molecule databases, i.e., Chemspider [18], DrugBank [19], ZINC [20] to
name a few which are already available.

The technique to screen these lakhs of molecules to a target protein is performed
using molecular docking. The screening process should be fast enough, which
demands the use of and better computational or programming techniques. Each of
these molecules tends to have conformational flexibility which in turn makes the
docking process more time-consuming. Choice of efficient force field and scoring
methodologies also plays an important role in screening of these molecules. In order
to achieve this, high-throughput docking methods have been developed. Although,
the analysis of these docked conformations to choose the best ligand becomes a
big data analytics problem as it involves finding of various parameters and several
interactions between the target protein and the docked ligand.

Docking or screening projects a static picture of the binding of ligand with the
receptor [21]. However, the dynamic picture would be obtained from the molecular
dynamics simulations which provide an understanding of the flexibility of protein
and ligand. Molecular dynamics simulation gives an insight about various inter-
molecular interactions and binding affinities between protein-ligand complex,
thereby ensuing binding efficiency [16]. Molecular docking followed by simula-
tions generates huge molecular trajectories data. Thus, the management and fast
analytics of this data have become the need of the hour.

The upcoming area of drug repurposing is again proving to be a bigger com-
putational task, and it has the potential to deliver a drug molecule for a chosen
disease [22, 23]. Various pharmaceuticals and R&D laboratories are working on
drug repurposing which involves docking of already approved FDA drugs on new
target protein. The involvement of FDA-approved drugs suggests that they have
been already tested on humans for their toxicity and pharmacology. Hence, rejec-
tion of such drugs due to toxicity is ruled out, and entire duration required for the
drug discovery process can be shortened by few years. HPC-based molecular
docking and molecular dynamics simulations pose a challenging role in this area of
drug repurposing.

In order to manage this rapidly increasing data and efficient analysis, there is
need to develop tools with parallelization and thereby enhance the overall
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performance. This denotes a continuous need to have advanced analysis platform
and algorithms which can perform analysis of the biological data in a faster way.
Big data technologies may help to provide solutions for these problems of
molecular docking and simulations (Fig. 2).

3 Big data Technologies: Challenges and Solutions

The context of big data is dependent on the problems and the existing technologies.
Today’s big data can be tomorrow’s small data as the technologies and methods
that are handling the data may become more advanced in the future. The big data is
the data that cannot be handled using the existing traditional methods and requires
specialized methods to solve the big data problem.

Big data is categorized by its three main properties, viz. volume, velocity, and
variety [24]. Volume denotes the huge data that needs to be analyzed, velocity tells
about the rate at which the data is generated of the data, and variety tells about the
different types of data that can be generated by the various sources using different
formats of data generations and exchange. Big data usually expands rapidly in the
unstructured form and varies to such an extent that it becomes difficult to maintain
the data in traditional databases. In such cases, specialized techniques like NoSQL
[25] can be used to handle the problems of the unstructured data. Big data tech-
nologies are capable of managing huge data generated in different formats.
Advancements in technologies like cloud computing offer a unified platform to store
and retrieve the data. The Internet speed has increased to several manifolds, and the
cloud technologies have effectively exploited the Internet capabilities to offer a

Fig. 2 Role of big data analytics in drug discovery
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scalable, multi-user platform for big data analytics in the field of Bioinformatics.
The use of big data in the Bioinformatics is an emerging field which presents new
opportunities to medical researchers and paves the way toward prediction of per-
sonalized medicines. The greatest challenge lies in designing a strategy to acquire
the data followed by filtering it to meet the appropriate decision-making demands.

This can be achieved by bringing together experts from clinical medicines,
computer science, bioinformatics, biotechnology, and statistics and address the
challenge of the data management and analytics solutions toward precision biology.
Hadoop [26]-based platform with MapReduce and spark-based algorithms may be
useful to make all the analysis optimized with fast calculation. Hadoop- and
MapReduce [27]-based algorithms implemented on scalable architecture have been
discussed further along with drug repurposing big data case study for cancer protein.

4 Big data Technology Components

Hadoop

Apache Hadoop is an open-source software framework for storage and large-scale
processing of datasets on clusters of commodity hardware. Hadoop has gained lots of
popularity among the peer parallel data processing tools because of its simplicity,
efficiency, cost, and reliability. Hadoop can be built on the commodity hardware.
Hadoop has major three components. Hadoop Distributed File System (HDFS),
YARN scheduler and resource negotiating framework and the MapReduce [27]
programming framework. A typical framework of Hadoop test bed is shown in Fig. 3.

Fig. 3 Basic architecture diagram of hadoop test bed
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I. HDFS

Hadoop Distributed File System (HDFS) is built to provide high-throughput,
reliable, efficient, and fault-tolerant file system. It can provide streaming reads and
writes for large files. The basic architecture diagram of HDFS is shown in Fig. 4.
As shown in the figure, the HDFS has two main components, namenode, and
datanode. HDFS is mainly designed for low-cost hardware, and hence, it can be
built on cluster of commodity hardware. In HDFS, the file is divided into fixed size
blocks or chunks of 128 MB each except the last chunk. The fixed size 128 MB can
be configured with various needs. Namenode contains the metadata information of
all the files. It stores information regarding the block of file stored on datanodes,
while datanodes actually store the block of data. Each block is stored on three
datanodes of the cluster. This policy provides reliability at the cost of redundancy.
Generally, two copies of blocks are stored on two different datanodes of the same
rack of cluster, while the third copy is stored on the datanodes of the different rack
of the same cluster. These two racks are connected by a very high-speed network
switch. This policy ensures the reliability of the HDFS file system. In case, if any
two nodes fail, still the data can be accessed from the datanode having this third
copy of the data. Datanodes periodically updates their state to the namenode so that
namenode can be aware of the overall state of cluster. While scheduling
MapReduce [27] job, the hadoop framework ensures with most possibility that the
mapper task should run on the same datanode where the actual data is residing. This
avoids significant network overhead. This policy of hadoop improves the perfor-
mance of the overall cluster.

Fig. 4 Basic architecture diagram of Hadoop Distributed File System (HDFS)
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HDFS major components:

(i) Namenode
Namenode stores the metadata about the file. It has the complete view of the
distributed file system. It tracks which datanode is active and which are node.
In case of any datanode failure, it initiates the operation regarding maintaining
the replication factor by copying the data stored the failed nodes to the active
datanodes. In case, namenode fails, the complete HDFS file system gets
crashed.

(ii) Datanode
It stores the actual data. It performs the read and write operation once it
receives the command from the namenode. It is responsible for block creation,
deletion, and replication. It periodically sends the heartbeat signal to the
namenode.

II. Map Reduce

Hadoop MapReduce is the programming framework. It is one of the major parts
of the Apache Hadoop project. It provides the programing model for data parallel
application. The basic flow of MapReduce algorithm is shown in Fig. 5.
MapReduce programming model makes use of HDFS and makes the application
performance very efficient and fast. The MapReduce framework with the help of
Hadoop framework places the mapper job on the datanode where the actual data
resides. It improves the performance and removes the network bottleneck while
processing huge amounts of data. The major phases of the MapReduce program are
mapper, partitioner, combiner, shuffle and sort, and reducer.

The mapper reads the data from HDFS and processes it. This is followed by the
partitioner ensuring that the processed data is sent to be the desired reducer. The

Fig. 5 Basic flow of MapReduce algorithm execution
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data before being sent to the reducer is shuffled and sorted so that the reducer can
easily process it. Finally, the reducer performs an operation of reduction or
aggregation on the final data and this is followed by writing the final output to the
HDFS. The combiner does a similar task as the reducer but at the mapper lever
providing local lever aggregation or reduction.

III. YARN

Apache YARN stands for Yet Another Resource Negotiator. Before Hadoop 2.x,
the only framework which could run on Hadoop platform is MapReduce. The job
scheduling and resource negotiation is integrated with the MapReduce framework
and shared by Hadoop framework. The YARN provides the separate layer for job
scheduling and resource negotiation. It provides the platform for other program-
ming framework like spark and storm, and many can run on Hadoop framework.
The basic architecture of YARN is shown in Fig. 6.

YARN has ResourceManager, NodeManager, Container, and ApplicationMaster.
Each container on datanode is specified with amount of CPU and memory, and it is
configurable. ResourceManager is run on namenode, and NodeManagers are run
on datanodes. Whenever a job is submitted, one container is allocated by a
ResourceManager on any datanode. This container process is called as
ApplicationMaster. This ApplicationMaster is responsible for all job management
and resource negotiation with ResourceManager. With the help of ResourceManager,

Fig. 6 Basic architecture of YARN showing various components
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this ApplicationMaster allocates Containers from NodeManager for MapReduce
task. This approach reduces the load on ResourceManager and distributes it across
ApplicationMasters on the datanodes for each job. This way, using YARN the
hadoop cluster can grow up to 10,000 nodes. Earlier benchmark without YARN on
Hadoop 1.x was up to 4000 nodes. This way YARN provides scalability to
the Hadoop cluster along with different programming platforms to be incorporated
in hadoop framework.

5 Big data Tools Development for Drug Discovery

There have been efforts by various scientific groups to use HPC, grid technologies
for drug discovery. Multiple docking tools like DOCK6 [28], Gold [29], Autodock
Vina [30], and some others are already available in the parallel mode on HPC
platform. Most of these tools are fast and robust; however, they have their own
scoring functions based on molecular mechanics force fields and other geometrical
descriptors. Although, improvements are still going on in enhancing the scoring
function and guiding it further toward higher efficiency and accuracy. Docking with
the concept of flexible ligand and protein still remains to be time-consuming cal-
culation. Docking of multiple ligands to single protein or multiple ligands with
multiple proteins may be some of the future challenges in docking area.
Understanding the flexibility of both the proteins and ligands has been taken care by
some of the currently available molecular simulation packages like AMBER [31],
CHARMM [32], GROMACS [33], and NAMD [34]. All these packages are known
to be scalable on the HPC platform. Although molecular simulations are
time-consuming, they still prove to be the best in understanding the allowed flex-
ibility of proteins, ligands, active sites, and other biomolecular entities. The advent
of cloud and big data technologies promises to accelerate the drug development
process using MapReduce [27] and spark methods coupled with machine learning
and deep learning analytics. The tools like DIVE [35], HiMach [36], and HTMD
[37] have been developed for molecular simulations as well as trajectory visual-
ization and analysis. Many more tools may be getting developed using these newer
technologies.

Bioinformatics group at C-DAC, Pune, has been addressing the issue on data
analytics and visualization of trajectories in structural biology domain using HPC
technologies combined with big data technologies. Various analytics tools have been
developed and tested on Hadoop platform using MapReduce as shown in Fig. 7. At
this stage, analytics tools for multiple molecular trajectories include hydrogen bond
calculations, identifying water molecules and bridged water-mediated interactions.
Other big data analytics tools for RMSD, 2DRMSD, RMSF, water density,
WHAM-based free energy calculations are in the process of development. Few of the
big data analytics tools which have been already developed proved to be useful in the
process of drug discovery. These tools have described below.
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5.1 Hydrogen Bond Big data Analytics Tool (HBAT)

The molecular dynamics (MD) simulations generate large trajectories which would
be in the size of GBs to TBs depending on the size of the molecule and length of the
simulation time. Many of the MD simulations use explicit solvation models in
which water molecules are added explicitly to the solute to mimic the natural
system. This increases the size of the system drastically in terms of number of
atoms, and the analysis of such system becomes more compute intensive, iterative,
and time-consuming. There are various analysis programs (ptraj, cpptraj [38],
VMD [39], etc.) available corresponding to the different MD simulation packages.

Fig. 7 Schematic representation of role of Hadoop and MapReduce paradigm in drug discovery
process
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All these programs have modules written for performing different analyses like
RMSD, RMSF, radius of gyration, PCA [40], distance calculations, H-bond anal-
ysis, and MMGBSA [41] free energy calculations. However, many of these pro-
grams are either inefficient or very slow in calculating the H-bond interactions
within solute and especially between the solute and the solvent (water molecules).
These programs are highly time-consuming and also have constraint in dealing with
the large size data for example 500 GB or beyond. This drawback of the existing
tools suggests a strong need for the development of water-mediated H-bond anal-
ysis tool which is capable of handling a very large size of trajectories and also be
executed parallel to reduce the time. The water molecules added to the system may
play a crucial role in the activity or functioning of that particular molecule. Hence,
understanding the role and mechanism of such water molecules and their interac-
tions with the solute (protein/RNA/DNA or drug) molecules is very important [42,
43]. In order to achieve this, a big data analytics tool for hydrogen bond calculation
was developed by Bioinformatics group C-DAC.

The MapReduce algorithm for H-bond calculation was developed and ported/
tested on Hadoop cluster. The algorithm flow has been shown in Fig. 8a for H-bond
calculation using the MapReduce approach. The HDFS file system was used to
store the multiple molecular trajectories data. The current version of tool can
analyze trajectory data in the PDB format generated using molecular dynamics
packages like AMBER [31], GROMACS [33], CHARMM [32]. The tool is scal-
able or portable on any distributed computing platform and can find out H-bonds
between all types of residues including water. However, the tool requires a sig-
nificant amount of time for executing the preprocessing stage where, the PDB files
are generated from the trajectories and copied on the distributed HDFS storage.
Despite this overhead, the overall performance of the tool is better than currently
existing tools such as CPPTRAJ or PTRAJ [38], especially for trajectories with a
large number of water molecules. The benchmarking of H-bond tool is shown in
Fig. 8b. The benchmarking of up to 5.5 TB data is carried out, and it shows near
linear scale up. Additionally, the tool can also help identify water-mediated inter-
actions such as water bridges easily.

5.2 Molecular Conformation Generation on Cloud
(MOSAIC)

Drug databases usually contain millions of ligands, and for each ligand, there can be
billions of conformations [44, 45]. Such billions of conformations need to be
docked on to a target which is a generally a protein molecule. Generation and
optimization of such billions of ligand conformations is a huge computational
problem, since it involves the use of advanced methods like molecular mechanics,
semi-empirical and quantum techniques [46, 47]. The application of an embar-
rassingly parallel approach accompanied by virtualized resource scaling and an
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efficient structure optimization tool can handle billions of conformations with the
help of cloud computing technologies.

The Bioinformatics group of C-DAC has developed a tool called MOSAIC,
which stands for MOlecular Structure generator In the Cloud. MOSAIC is an
OpenStack [48] cloud-based conformation search tool to explore potential energy

Fig. 8 a MapReduce algorithm for H-bond calculation implemented in MapReduce paradigm
b Benchmarking of HBAT tool for data up to 5.5 TB
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surface of biomolecules of interest in parallel mode using semi-empirical method.
Molecular Orbital PACkage (MOPAC) is a general purpose semi-empirical
molecular orbital package for the study of molecular structures and their energies
[49]. The high-throughput energy calculations of the small molecules database can
be done by MOPAC using hadoop and cloud technologies. Multiple instances of
MOPAC are created for energy calculations of small molecules database. The tool
can screen a database of millions of small drug-like molecules and understand their
energetics and electrostatic behavior. The tool is useful for finding the target drug
ligands. The torsion angle-driven conformational search method is useful in a range
of chemical design applications [50], including drug discovery and design of tar-
geted chemical hosts. MOSAIC has an easy-to-use interface for the bioinformatics
community over Software as a Service (SaaS) platform. A user-friendly Web
interface has been developed for MOPAC-based energy calculation of small
molecule database. The Web interface has the capability of configuring any
OpenStack-based cloud and managing multiple users to submit the jobs on
dynamically created cloud VM. The Web interface has been developed using
LAMP (Linux, Apache, Mysql, and PHP) framework [51]. The Web interface is
shown in Fig. 9a, b. The application is deployed on OpenStack kilo version which
provides platform for running the MOPAC with resources allocated virtually in the
cloud. OpenStack cloud infrastructure provides scalable computational resources
and scalable storage capacity.

The details of cloud configurations are as follows:
The cloud infrastructure is installed using multi-nodes architecture. The cloud

test bed is deployed using following configurations:

• Controller node: 1 processor, 2 GB memory, and 5 GB storage and 2 NIC.
• Network node: 1 processor, 512 MB memory, and 5 GB storage and 3 NIC.
• Compute node: 1 processor, 2 GB memory, and 10 GB storage and 2 NIC.

To synchronize the clusters, there is a need to set up NTP server. The controller
node acts as NTP server, and rest of the network along with compute nodes would
be synchronize with this controller node. All the nodes in the cluster except con-
troller node have mysql client service, and on controller mysql databases have been
installed. Controller node also contains the messaging server for passing message
across the nodes, and we have used the RabbitMQ [52] server. The configuration is
depicted in Fig. 10.

MOSAIC is executed using underlying Open Stack-based cloud to distribute
millions of molecules in .mop format across the cloud nodes. The cloud nodes can
be dynamically scaled to accommodate the computing load. The drug database is in
the sdf format having different conformations of the same molecule and containing
millions of such molecules. The sdf is converted into the desirable input file, i.e., .
mop format which is used by the code for semi-empirical optimizations. The output
files generated are parsed based on the energy value, and a few best optimized
ligand molecules are selected based on the energy profile. The best few optimized
ligands may further be scrutinized for possible drug target. This tool may have
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tremendous potential in terms of ligand optimization, i.e., finding the best posture
not just for one molecule but for ligand database. The tool can be easily deployable
on any OpenStack-based cloud platform. MOSAIC has an easy-to-use interface for
the scientific community as it abstracts the complexity of cloud-based job sub-
mission. It has a user-specific work area for managing secured private data and
outputs. It has a configurable orchestration mechanism for virtual hardware con-
figuration. The result is shared in the form of a few selected molecules favorable for
drug target. It is anticipated that MOSAIC will accelerate the process of drug
discovery by using high-throughput optimization of Ligand databases in parallel

Fig. 9 a MOSAIC tool homepage b MOSAIC tool job submission page
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manner using distributed cloud environment. MOSAIC helps in high-throughput
optimization of ligand database in parallel manner using distributed cloud envi-
ronment. It will accelerate the scientific research by carrying out high-throughput
virtual screening and docking in parallel manner. The tool uses the advantages of
cloud computing like dynamic scaling and on-demand computing reducing the
overall cost and helpful in finding optimized ligands. The workflow as discussed is
shown in Fig. 11.

The tool has following features:

• Easy to use for the bioinformatics community which abstracts the complexity of
cloud-based job execution.

• It is supported by a user-friendly interface with user-specific storage area with
login time stamp features.

• Cloud-based high-throughput optimization of ligand database in parallel using
distributed environment.

• Integrated browser-based visualization for optimized ligand molecules.
• OpenStack-based cloud environment facilitates users with on-demand scalable

virtualized resources.
• Configurable orchestration mechanism for virtual hardware configuration.
• Generalized configurable solution for any OpenStack-based cloud using openrc

script.

Fig. 10 Cloud configuration of MOSAIC tool
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5.3 Embarrassingly Parallel Molecular Docking Pipeline

Molecular docking or high-throughput screening has become increasingly impor-
tant in the context of drug discovery [45]. High-throughput screening may be the
only way to identify correct inhibitors of the specific target. However,
high-throughput drug docking is cost-effective and very fast and could be very
useful for pharmaceutical industry. An attempt has been made to develop a scalable
workflow as shown in Fig. 12, for high-throughput conformational search and
docking on the high-performance computing, Hadoop or cloud-based clusters. The
workflow is divided into two sections. The first section performs conformational
search, and the second section performs the molecular docking. The objective of the
conformation search is to find the most stable conformation of the molecule along
with alternative stable conformations. The semi-empirical program like MOPAC
[49] is used for finding the stable structures as described in the previous section of
MOSAIC. After getting the stable structures of the small molecule, docking is
carried out in the parallel manner with protein of interest in the next part of the
workflow. Docking of either multiple small molecules with one protein or multiple
molecules with multiple proteins docking facility is available in the workflow. The
testing of the workflow has been done for the drug repurposing strategy in the
cancer. A test case/example of usage of this tool is given in the Sect. 6 below in the
cancer K-Ras drug repurposing studies.

This tool is also deployable on any HPC, Hadoop, or cloud platform available
worldwide. The current version is deployed on the computing resources of BRAF
(Bioinformatics Resources & Applications Facility), C-DAC, Pune, India.

Fig. 11 MOSIAC tool workflow for cloud-based MOPAC implementation
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5.4 Parallel Molecular Trajectories
Visualization & Analytics (DPICT)

In any computational study of biomolecular systems, analysis and visualization play
a pivotal role in understanding and interpretation. Molecular dynamics
(MD) simulation studies of biomolecular systems, including proteins, nucleic acids,
are no exceptions to this rule. The recent advances in MD techniques like REMD
[53] generate multiple trajectory files whose size ranges in few gigabytes (GBs).
The present-day tools often find it difficult to load a trajectory of a few GB size as it
tends to occupy the entire CPU memory. The same problem is faced for loading
multiple trajectories simultaneously, since most of the codes do not support parallel

Fig. 12 High-throughput conformation generation and drug docking pipeline
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architecture. Redundancy also occurs when the same set of calculations need to be
carried out for all the trajectories individually. This often becomes a bottleneck in
the research work, since recoding these programs to suit one’s purpose is quite
cumbersome. One often grapples around for an appropriate program/software, for
analyzing and visualizing the multiple MD simulations data. And in the absence of
a good program, one has to resort to writing codes and scripts. Also, loading
trajectory files for visualization and analysis using the present tools often becomes
extremely slow, since most of the codes are meant for serial processing and do not
support multiple processors. VMD [39] tries to solve this issue by means of
multi-threading, but the process becomes unresponsive when more than one tra-
jectory is to be loaded at a time and visualized. The development of visualization
and analysis tool capable of analyzing terascale and petascale data along with
high-end visualization screens would accelerate the drug discovery process. Here,
an attempt has been made to develop a new visualization and analysis tool capable
of reading various file formats like AMBER [31], GROMACS [33] and doing most
of the required analyses for a simulation in a parallel environment. The flowchart of
the DPICT tool is shown in Fig. 13.

The tool has two distinct modules: one for visualization and rendering and the
other for analysis of the MD simulations. The tool is an entirely GUI-based soft-
ware meant to be run on Unix/Linux operating systems. The entire software tool is
coded in C/C++ and OpenGL [ref] programming may be incorporated.

Features of DPICT:

• A tool to elucidate the visualization of huge molecular dynamics trajectories
simultaneously for better understanding of the simulation data

• Supports visualization of nine molecules simultaneously
• Different rendering options for biomolecules like ribbon, cartoon, ball, and stick

can be viewed
• Works in synchronous manner, where in nine trajectories may be handled

simultaneously to perform certain operations

Fig. 13 Flowchart of the DPICT tool
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• Widely used file formats of PDB, AMBER, and GROMACS are supported
• SSH feature enables the users to handle the transfer of large files from remote to

local HPC clusters and vice versa.

DPICT tool in its current version is able to manage big data of multiple tra-
jectories as shown in Fig. 14. However, future versions would be targeted to reach
the goal of big data visualization.

Bioinformatics group at C-DAC has used the above tools on docking, simula-
tions, and analytics for the drug repurposing studies for cancer protein. The details
of it have been described below.

6 Drug Repurposing Study Using Big data Analytics

The drug repositioning or repurposing is a strategy to find new action mechanism of
the FDA-approved drug for other disease protein than those for which it was
originally intended. The repositioned drug need not go through complete drug
development cycle of many years [54]. However, it can directly enter the preclinical
testing and clinical trials, thereby reducing risk, time, and costs. One of the
well-known examples of repurposed drug is sildenafil citrate (viagra), which was
repositioned from a common hypertension drug to a therapy for erectile dysfunction
[55, 56]. Similarly, use of off-label FDA-approved drugs for cancer medical
practice is also known and accounts for 50–75% of drugs or biologic therapies for
cancer in the USA [57, 58]. Owing to computational drug repurposing strategy, a
large number of receptors can be tested with already FDA-approved drug, thereby

Fig. 14 DPICT tool showing simultaneous multiple trajectory visualization
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increases the chance of identifying cure for disease within shortened time [59]. One
of the proteins crucial Ras in a center pathway has been discussed as a case study.

RAt Sarcoma (RAS) protein is a crucial member of the protein family known as
G-proteins. The protein Ras is encoded by one of the most common oncogene in
humans. Ras belongs to GTPase class of the proteins, which possess an inherent
property of GTP hydrolysis activity. Depending on its association with GDP/GTP,
the protein is classified in two distinct conformations: GDP-bound inactive state
and GTP-bound active state [60–62]. The malfunctioning of this protein is known
to play a crucial role in human cancers, especially pancreatic cancer and various
developmental disorders like Costello syndrome, Noonan syndrome [63–65]. The
normal functioning of Ras plays pivotal role in the processes of cell proliferation,
development, differentiation, and signal transduction [63]. The most common of the
Ras mutations are found in pancreatic cancers. Most of the cancers causing
mutations are reported to belong to the conserved switch (Sw I and Sw II) and
GEF-binding regions of the protein. As these regions are involved in protein–
protein interactions and other crucial features, and such mutations directly affect the
Ras protein interaction with other proteins [66, 67]. Studies to understand the
activation and deactivation Ras pathways and comparative studies of wild type and
mutant have been carried out by various groups. A significant low-energy barrier in
case of mutant counterparts of Ras is also well established by various experimental
and computational studies. To further explore the crucial mutations and further
comparison with the wild-type counterpart, computational studies are required to
provide more insight about their dynamics and conformational features.
Furthermore, for K-Ras which is inherently a less druggable molecule, the current
trend of the drug discovery efforts is now directed toward the development of
inhibitors of Ras downstream effectors. Related studies suggest that need of dual
site inhibitors to effectively block oncogenic Ras signaling. Also, triple site inhi-
bitors are also gaining more importance for improved cancer therapeutics.
Considering this as a reference, simulations have been performed to explore and
understand the dynamics of activation pathway of the reported hotspot mutants of
Ras [68]. Similarly, the GTP hydrolysis-mediated inactivation pathways of the
mutant Ras complexes have also been explored. This has helped to provide more
information on the energetics of the mutant Ras complexes by calculating the
energy barrier between the end states of the protein [69]. Molecular docking studies
were carried out on Ras using the approach of drug repurposing with FDA-
approved drug molecules database. The literature has suggested three active sites
for Ras as shown in Fig. 15 where ligands can be docked [70]. The residues
involved in three sites are (SITE1) residue 29–37, (SITE2) residue 68–74 and 49–
57, (SITE3) residue 58–74 and 87–91. High-throughput docking has been done
using the DOCK6 software employed in embarrassingly parallel molecular docking
pipeline. Docking-based drug repurposing and simulation study is being carried out
on four Ras systems, namely the wild type, Q61L, G12 V, and G12D mutants, each
for 37 ligands. The multiple trajectories for these systems were visualized using
parallel trajectory visualizer tool, DPICT. For understanding the ligand (drug
candidate) properties, multiple conformations (Fig. 16) were generated using
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Fig. 15 KRas docking sites: SITE 1 (red): residue 29–37, SITE2 (yellow): 68–74 and 49–57,
SITE3 (pink): 58–74 and 87–91

Fig. 16 Conformations generated for docking
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high-throughput conformation generator tool. Moreover, to study the protein–ligand
complexes for the simulated systems, in-house developed tool was used. Docked
pose of one of ligand is shown in Fig. 17. Preliminary analyses have been completed
for the systems. The hydrogen bond and water density analyses have been performed
using the in-house developed big data analytics tool, HBAT. MSM analyses are also
being carried out for the same, and the results are being compared with the wild-type
counterpart. Further, MD simulations were carried out for the best molecule per site
in order to check the binding of the molecule with Ras (data unpublished). Classical
simulations have been carried out using GROMACS software on Bioinformatics
Resource and Applications Facility (BRAF). The standard protocol has been fol-
lowed for minimization, heating, equilibration, and production run.

Fig. 17 KRas protein with ligand docked at SITE2

Turbo Analytics: Applications of Big Data and HPC in Drug … 369



Various tools discussed earlier in this chapter have been used for parallel
visualization and efficient and fast analysis of Ras docking and simulation trajec-
tories data. In-house computational facility BRAF has been used where these tools
are already deployed and tested. The results would help the experimentalist to select
the better ligand for further steps of drug development.

7 Latest Development in Big data

Bioinformatics is a technology-driven science. There have been major technolog-
ical shifts which are driving the data-driven science. With the ever-increasing data,
the storage and analysis of huge data are becoming very tedious and most of the
data remains unanalyzed. For example, the sequencing of genomes of various
organisms is generating petabytes to zetabytes of data. Also, the development of
new sequencing technology like nanopore is capable of producing long reads
generating huge data [71]. The assembly of such genomes put out a huge challenge
on the Big Data technologies. The Apache Hadoop has also enhanced to tackle such
challenges like Yarn which allows different data processing engines including graph
processing, stream processing as well as batch processing. The MapReduce
framework provided by Apache Hadoop is good for batch processing. In case of
iterative processing where the data need to be read many times, the MapReduce is
not efficient. MapReduce relies heavily on disk input/output so it is slow. The
Apache Spark addresses this limitation of Hadoop and provides in memory com-
puting but reducing disk input/output. Spark supports in memory computing and
optimizes disk performance by lazy loading and cache mechanism. Hence, spark is
suitable for iterative computing.

Recent progressions have empowered the most precision analytics strategies at
the “single cell” level. The sequencing of single cell brings about enormous volume
and complexities of information and presents an extraordinary chance to compre-
hend the cell level heterogeneity. The latest developments highlight the inherent
opportunities and challenges in Big Data analytics. The recently created tech-
nologies like erasure encoding mechanism [72] in Hadoop 3.x tend to resolve the
difficulties postured by several big data problems like single cell transcriptome
analysis in bioinformatics and present great opportunity to develop cutting-edge
technologies for the future research problems. The HDFS uses redundancy for high
availability of data. It provides great benefit at the cost of storage byte. Generally,
with replication factor of 3, HDFS uses three times more storage data redundancy.
So it is very costly in terms of storage. The erasure encoding mechanism in Hadoop
3.x provides same storage safety at the cost of 50% storage overhead. This is
effective when data is more and its access frequency is less.
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8 Conclusions

Future of medical science is to move toward personalized medicine for enhanced
health care. The high-performance computing along with parallel and better algo-
rithms would be generating volume of data from molecular docking and simula-
tions. Advanced structural biology laboratories and techniques would also be
generating different types of data. The only way which seems to be efficient in
managing and analyzing such an extreme varied data may lie in the application of
big data technologies. Similar kind of extreme data is being generated using
advanced experimentation in life sciences in the area of agriculture for better crop
production and reduced disease susceptibility and in the field of livestock to
understand their genomics as well as protect them from various diseases. Data is
also being generated in the field of microbes for genomics, drug discovery, vaccine
,and better environmental studies. The near future of biology/life sciences seems to
be data-driven hypothesis rather than hypothesis-driven data generation, and newer
computing paradigm of big data technologies may be very useful in this aspect.
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Single-Particle cryo-EM as a Pipeline
for Obtaining Atomic
Resolution Structures of Druggable
Targets in Preclinical Structure-Based
Drug Design

Ramanathan Natesh

Abstract Single-particle cryo-electron microscopy (cryo-EM) and
three-dimensional (3D) image processing have gained importance in the last few
years to obtain atomic structures of drug targets. Obtaining atomic-resolution 3D
structure better than *2.5 Å is a standard approach in pharma companies to design
and optimize therapeutic compounds against drug targets like proteins. Protein
crystallography is the main technique in solving the structures of drug targets at
atomic resolution. However, this technique requires protein crystals which in turn is
a major bottleneck. It was not possible to obtain the structure of proteins better than
2.5 Å resolution by any other methods apart from protein crystallography until
2015. Recent advances in single-particle cryo-EM and 3D image processing have
led to a resolution revolution in the field of structural biology that has led to
high-resolution protein structures, thus breaking the cryo-EM resolution barriers to
facilitate drug discovery. There are 24 structures solved by single-particle cryo-EM
with resolution 2.5 Å or better in the EMDataBank (EMDB) till date. Among
these, five cryo-EM 3D reconstructions of proteins in the EMDB have their asso-
ciated coordinates deposited in Protein Data Bank (PDB), with bound inhibitor/
ligand. Thus, for the first time, single-particle cryo-EM was included in the
structure-based drug design (SBDD) pipeline for solving protein structures inde-
pendently or where crystallography has failed to crystallize the protein. Further, this
technique can be complementary and supplementary to protein crystallography field
in solving 3D structures. Thus, single-particle cryo-EM can become a standard
approach in pharmaceutical industry in the design, validation, and optimization of
therapeutic compounds targeting therapeutically important protein molecules dur-
ing preclinical drug discovery research. The present chapter will describe briefly the
history and the principles of single-particle cryo-EM and 3D image processing to
obtain atomic-resolution structure of proteins and their complex with their drug
targets/ligands.

R. Natesh (&)
School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram
(IISER-TVM), Maruthamala P.O.,Vithura, Trivandrum 695 551, Kerala, India
e-mail: natesh@iisertvm.ac.in

© Springer Nature Switzerland AG 2019
C. G. Mohan (ed.), Structural Bioinformatics: Applications in Preclinical Drug
Discovery Process, Challenges and Advances in Computational Chemistry
and Physics 27, https://doi.org/10.1007/978-3-030-05282-9_12

375

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05282-9_12&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05282-9_12&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05282-9_12&amp;domain=pdf
mailto:natesh@iisertvm.ac.in
https://doi.org/10.1007/978-3-030-05282-9_12


Keywords Single-particle cryo-EM � Drug development � Pharmacological targets
Structural biology � High resolution

Abbreviations

3D Three Dimension
CTF Contrast Transfer Function
cryo-EM Cryo-electron microscopy
CC Cross-Correlation
DDD or DED Direct Detection Device or Direct Electron Detector
ET Electron Tomography
EMDB Electron Microscopy Data Bank
EM Electron Microscopy
FEG Field Emission Gun
FSC Fourier Shell Correlation
MSA Multivariate Statistical Analysis
PDB Protein Data Bank
PCA Principle Component Analysis
SBDD Structure-Based Drug Design
SNR Signal-to-Noise Ratio
SSNR Spectral SNR
TEM Transmission Electron Microscopy

1 Introduction

The importance of structural biology in understanding the principles of molecular
function of proteins, the workforce of cellular world, underpins its use in health
science and pharma industries. Classically, protein crystallography was ruling the
world of structure-based drug design (SBDD). This was mainly due to the capa-
bility of protein crystallography to solve high (better than 1.8 Å), atomic (better
than 1.2 Å), and ultra-high (better than 0.95 Å)-resolution 3D structures, which
give information of protein drug molecular interaction at various levels.
Particularly, the positions of hydrogen atoms were located in many atomic and
ultra-high-resolution protein structures. There were no other methods that could
rival the versatility of obtaining 3D atomic-level macromolecular structures with
which crystallography could achieve. Of the 131,108 protein structures in PDB (as
on June 15, 2018), 90% of structures among them were solved by X-ray crystal-
lography technique and 8% by NMR technique. The remaining 2% of structures by
large were solved by electron microscopy, electron crystallography, hybrid, and
other methods, which include neutron diffraction, solution scattering, fiber
diffraction. Clearly, the PDB data suggests that the protein crystallography tech-
nique dominates till date. However, the protein crystallography method comes with
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a proviso. That is, we need diffractable protein crystals of reasonable 10–100s of
micron size, in order to obtain a high-resolution X-ray crystallography protein
structure. Also, as the unit cell parameter of the protein crystals increase, the
resolution of diffraction data drops as the cube of unit cell parameter [1]. Moreover,
many proteins, in particular membrane proteins and fibrous proteins, are recalcitrant
to crystallization. An analysis of deposited protein structures in PDB by Kozma and
co-workers in 2017 [2] showed that the majority of the solved structures (97.6%)
are globular proteins and only *2.4% of them are membrane protein structures.
This is primarily because obtaining good diffraction quality 3D crystals for mem-
brane proteins is challenging. As a result, single-particle cryo-EM has gained
popularity nowadays for solving membrane protein structures as well along with
globular proteins. Also, in cases where single-particle cryo-EM cannot give
high-resolution maps, protein crystallography and cryo-EM can be used as hybrid
method to visualize macromolecular assemblies at pseudo-atomic resolution as
described in Natesh [3] and references cited therein.

SBDD is among one of the most important stages for drug discovery in industrial
drug discovery pipelines [4]. It requires the best possible resolution protein struc-
tures, preferably better than 2.5 Å resolution. Until 2015, single-particle cryo-EM
could not achieve the resolution comparable to resolution of structures in protein
crystallography [5, 6]. Recently, Danev and co-workers have solved a structure of
Mus musculus apo ferritin at 1.62 Å (EMD-9599). Others have solved the structures
of proteins with bound ligands at resolution 2.5 Å or better [7–10], presented in
Table 1. The foundation for this was laid 36 years ago in December 1981 when
Jacques Dubochet (along with AW Mc Dowall) published the paper on vitrification
(amorphous ice) of pure water for electron microscopy [11]. Jacques was excited
about the prospects of making electron microscopy water friendly. Five years after
that, they got the first cryo-EM virus structure at 35 Å resolution [12]. However,
before that the first EM structure came from Henderson and Unwin [13] of purple
membrane protein by electron crystallography, but however not using cryo, and
hence, the resolution was bit low at 7 Å. This encouraged Joachim Frank to develop
image processing algorithms for solving protein structures by building 3D recon-
struction from fussy cryo-EM projection images of proteins [14–16]. These
developments led to the first cryo-EM atomic model of the protein bacteri-
orhodopsin 15 years later in the year 1990 [17]. In recent years, other developments
like field emission gun electron source, direct electron detectors, and movie-based
cryo-EM imaging methods have led to an avalanche of high-resolution
single-particle cryo-EM protein structures [5, 6, 18]. Thus, the full potential of
cryo-EM in obtaining high-resolution structure of proteins was realized in 2015,
which led to the Noble Prize in Chemistry in the year 2017 for “developing
cryo-electron microscopy for the high-resolution structure determination of bio-
molecules in solution.” The predictions made by Henderson in 1995 [19] that
single-particle cryo-EM can be used for atomic-resolution structure determination
of protein and protein complexes has become a reality today. Thus, single-particle
cryo-EM technique can be used as a pipeline for obtaining atomic structures of
druggable targets in preclinical SBDD.
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Table 1 EMDataBank (EMDB) entries having single-particle cryo-EM 3D reconstruction with
bound ligands at 2.5 Å or better resolution and their corresponding PDB codes

EMDB
entry ID
(deposition
date)

Resolution
(Å)

Fitted
PDBs

Components

Protein Ligand

EMD-2984
(April 26,
2015)

2.2 5a1a E.coli
beta-galactosidase
(0.465 MDa)

Phenylethyl
beta-D-thiogalactopyranoside
(PETG)

EMD-3295
(January
12, 2016)

2.3 5ftj Homo sapiens p97/VCP
Transitional
endoplasmic reticulum
ATPase (0.54 MDa)

UPCDC30245 (an allosteric
inhibitor of VCP)

EMD-7025
(September
9, 2017)

2.5 6az3 Leishmania donovani
91s ribosome LSU

Paromomycin

EMD-7770
(March 28,
2018)

1.9 6cvm E. coli
beta-galactosidase
(0.465 MDa)

PETG

EMD-7638
(March 27,
2018)

2.43 6cvb Enterovirus D68 (virus
from Homo sapiens)
vp1 (0.0330 MDa), vp3
(0.0272 MDa), vp2
(0.0276 MDa, vp4
(0.00734 MDa)

Glycan. 6′-
sialyl-N-acetyllactosamine

EMD-7599
(March 20,
2018)

2.17 6csg Enterovirus D68 vp1
(0.0329 MDa), vp3
(0.0271 MDa), vp2
(0.0276 MDa), vp4
(0.00734 MDa)

No bound inhibitor

EMD-8194
(May 17,
2016)

1.8 5k12 Bos taurus Glutamate
dehydrogenase (0.334
MDa, 0.0616 MDa)

No bound inhibitor

EMD-8762
(June 8,
2017)

2.26 5w3m Human rhinovirus B14
C5 antibody variable
heavy domain (0.0120
MDa), C5 antibody
variable light domain
(0.0109 MDa), vp1
(0.0326 MDa), vp3
(0.0262 MDa), vp2
(0.0285 MDa), vp4
(0.00718 MDa)

No bound inhibitor

EMD-9012
(July 31,
2018)

1.86 6e9d Adeno-associated virus
- 2 (3.9 MDa), empty
virus from Homo
sapiens VP1 (0.0820
MDa)

No bound inhibitor

378 R. Natesh



2 The Single-Particle Cryo-EM at High Resolution

The single-particle cryo-EM method for high-resolution structure determination of
proteins and protein complexes involves four major steps, viz. (i) the sample
preparation, (ii) specimen preparation, (iii) data collection, and (iv) image pro-
cessing and 3D reconstruction (i.e., structure determination, which includes model
building and refinement of the protein/ligand coordinates in the EM map). Sample
preparation involves protein purification either from the source or expressed
recombinantly in a heterologous host system. The amount of sample required for
cryo-EM is very less (*1 µM) in comparison with protein crystallography or NMR
spectroscopy techniques, where typically *200 µM sample is required.

For single-particle electron microscopy (EM), there are two main ways of
specimen preparation: (a) negative stain specimen preparation and (b) solution-state
“vitrification” for cryo-EM. The former is used for quick characterization of
macromolecules and their complexes. However, this type of specimen preparation
involves inherent drawbacks (e.g., artifacts and visualizing stain rather than actual
protein), which limits the resolution of EM reconstruction map from 30 to 20 Å at
its best. Single-particle cryo-EM, the focus of this chapter, on the other hand is
synonymous to solution-state structure, and the specimen preparation does not
induce artifacts over the protein sample being studied. The vitrified specimen
preserves the resolution of the protein structure that is being studied.

Single-particle cryo-EM technique has the capability to solve protein structures
to better than 4 Å resolution nowadays. It is to be noted that, there is a consensus in
the EM community that better then 4 Å depicts high-resolution structures, while, in
the X-ray crystallography community, high resolution corresponds to better than
1.8 Å resolution, as described in the beginning of this chapter. Prior to the reso-
lution revolution in the year 2015, most of the cryo-EM structures with resolution
4 Å or better were virus structures [20–22]. This was possible due to their large size
and high symmetry (e.g., icosahedron symmetry). Most of these data were collected
on photographic film (KODAK SO-163 FILM). However, the asymmetric particles
(i.e., particles without higher-order symmetry) were limited to sub-nanometer
(around 6–10 Å) resolution. Only 1/10th of the total number of structures in EMDB
were with resolution 4 Å or better before the resolution revolution. This has sig-
nificantly increased to 1/6th of the total number of single-particle cryo-EM struc-
tures in EMDB as on July 29, 2018, clearly indicating that, currently, there are more
structures solved with resolution better than 4 Å in the database. These were
possible due to the advancement in the hardware and software and the way the
projection images are captured and processed during cryo-EM data collection and
processing. Main steps involved in single-particle cryo-EM for obtaining
high-resolution protein structure are presented in three subsections. First, we will
begin with the details of the specimen preparation in Sect. 2.1, followed by data
collection in Sect. 2.2, and finally image processing and 3D reconstruction in
Sect. 2.3, respectively.
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2.1 Specimen Preparation for Single-Particle Cryo-EM

The cryo-EM specimen preparation is the most challenging and a crucial step for
high-resolution data collection. Most of the time spent on single-particle cryo-EM
pipeline is in preparing the best protein specimen (which involves optimizing both
the biochemistry and vitrification of the sample) for high-resolution cryo-EM data
collection. Hence, it is worth to spend some time to get the best specimen out from
the purified sample, which will save time and money later. The first step in spec-
imen preparation is the purified sample (e.g., protein or protein complexes) typi-
cally 3–3.5 µL is applied on a pre-glow discharged holey carbon grid (in some
special cases, continuous carbon grids laid over the holey grid are used). For the
best specimen preparation, the quality of the protein sample, pre-treatment of holey
grids, and the choice of the type of grid are important. After applying the sample on
the holey carbon grid, the excess protein is blotted using a filter paper (usually
Whatman filter paper 1) to leave a very thin layer of sample and immediately the
grid is plunged into a pre-prepared liquid ethane well, surrounded and maintained at
cryogenic temperature by a bath (surrounding the ethane well) with liquid nitrogen
as shown in Fig. 1. Jacques Dubochet and co-workers standardized the vitrification

Liquid
Nitrogen

Forceps

EM grid

Edge-on view of an unsupported part of the 
Vitrified water layer on a holey grid

CryoEM Image

Fig. 1 Vitrification of cryo-EM specimens. A cryo-EM grid with a thin film of solution (<2000 Å
of thickness) is plunged into liquid ethane for vitrification. The frozen specimen is transferred into
liquid nitrogen before it is imaged at liquid nitrogen temperatures on a TEM. To the right top is a
schematic edge-on view of a part of frozen water layer, with macromolecular complexes trapped in
different orientations. Bottom right, part of a cryo-EM image showing weak and noisy views of the
complexes. Figure reproduced from Natesh, 2014 [3], by permission of publisher—Indian
Academy of Science, Bengaluru
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process in the late 1970s and published the work in the year 1981 [11]. They
showed that sample in buffer/water must be cooled in less than a millisecond to
avoid the ice crystal formation and to get amorphous ice (i.e., vitrified). They also
showed that if the temperature of specimen is kept sufficiently low below −160 °C,
the vitrified state could be maintained for long time [11, 23]. This seminal discovery
enabled proteins to be visualized in its native state under the vacuum of trans-
mission electron microscope (TEM). For this discovery, Dubochet received
one-third of the Noble Prize in Chemistry in the year 2017. The solution-state
protein sample is frozen in time and space, maintaining the integrity of the protein’s
structural state in the vitrified water. The vitrification can be carried out with a
homemade manual plunger or using a commercially available vitrification robot.
A perfect vitrified specimen is one in which the thickness of the ice over the holes
of the grid is such that there is one single layer of particles distributed, the particles
are uniformly distributed (with distance between each particles at least 1.5 times the
particle size), and the particles adopt as many different orientations as possible. The
vitrified specimen grid is then placed in a cryo grid storage box that is preserved in
liquid nitrogen storage Dewar, until the data collection is carried on a
high-resolution cryo-TEM. An extensive description of the specimen preparation is
given in Passmore and Russo [24].

2.2 Data Collection

Data collection is carried out on a cryo-TEM equipped with a 200 or 300 kV field
emission gun (FEG) necessary to obtain a high-resolution single-particle data. The
stored grids are transferred from the cryo grid storage box to a single tilt
cryo-transfer holder pre-cooled on a cryo-workstation (Fig. 2b). In this case, only
one grid can be inserted into the TEM by manually loading the holder into the
cryo-TEM (Fig. 2a) and analyzed before the holder is taken out of the microscope
at the end of data collection. Alternatively, each one of the stored grids can be
transferred one by one to a cartridge, which is then placed on multiple grid holder
cassette (which holds up to 12 grids). This cassette is then placed into the capsule,
which is loaded into the cryo-TEM (Fig. 2c) through an autoloader robot that is
built in the microscope. Thermo Fisher Scientific Talos Arctica/Glacios, Thermo
Fisher Scientific Krios, and JEOL Cryo ARM 200/300 are microscopes with such
autoloader capabilities. The robotic grid loader then can load one by one to the
stage using inbuilt robot, which can load or unload the grid on the stage controlled
by software. In case of high-end TEM analysis, grid atlas can be created to choose
the square of right thickness from all the loaded grids. It is very important to keep
the grid always under liquid nitrogen in order to avoid any ice crystal formation and
contamination on the grid. Hence, all the processes described in Fig. 2, which
involve handling of frozen specimen grid, are carried out under liquid nitrogen. Ice
crystals destroy the view of particles by dark contrast, and hence, it is critical to
avoid any exposure of plunge-frozen grid to the air.
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Once the grid is on the stage of the TEM, the data is collected on a highly
sensitive direct detection device (DDD) also called as direct electron detector
(DED) under low electron dose (typically <15 e−/Å2). Low electron dose is nec-
essary since high dose (>15–20 e−/Å2) will cause radiation damage. However, high
dose *1000 e−/Å2 is required for atomic-resolution reconstruction [25]. This
problem can be overcome by averaging similar looking particles as described in
image processing Sect. 2.3 below. DDD is more sensitive (technically, this feature
is called improved detective quantum efficiency (DQE)) and can detect lower doses
more effectively with low noise as compared to the conventional photographic film
or the CCD (charged coupled device) detectors. Data collection at the focus gives
the best resolution, but however the phase contrast is lost in the image (i.e., you
cannot clearly visualize the particles). In order to visualize the particles, the images
are captured at a defocus that restores the phase contrast in the image, which
enables us to visualize particles. Hence, data is collected at a range of defocus
between *4 µm (lower resolution) and *1 µm (higher resolution). Modern-day
advancements in hardware have led to the use of phase plates and energy filters that
can restore contrast in the images collected closer to focus. Thus, preserving
high-resolution information in the images and at the same time preserving the
image phase/amplitude contract as a result alleviate the need for contrast transfer
function (CTF) modulation correction at image processing stage.

For high-resolution structure determination, the data is collected on DED as
movie frames, which is actually a dose fractionated image stack. The movie frames
collected can be corrected for loss of resolution due to stage drifts, charging, and
beam-induced motion. The individual movie frames or subset of movie frames in
batches are then aligned with respect to each other in order to restore the
high-resolution information [26]. Relatively, high exposures up to 20 e−/Å2 can be
used for movie mode while DEDs can also be used in electron counting mode
where dose rate must be kept below 10 e−/pixel/s [26, 27]. Movie corrections are
applied immediately on the micrographs after the data collection using programs
like MotionCor2 [28], optical flow algorithm as implemented in Xmipp [29, 30],
Unblur/Summovie [31, 32]. In addition, improved stability of specimen can be
provided by the use of grids with graphene and gold support [25, 33, 34]. Hence, in
the last six years there has been many breakthroughs in detector, imaging, and
image processing technology that has led to high-resolution data collection for even
smaller proteins like hemoglobin with mass 64 kDa using Volta phase plate
(VPP) [18], thus leading to resolution revolution with structures determination to
better than 2.5 Å. Another aspect of data collection is the automation. Not all

JFig. 2 a 200 kV transmission electron microscope equipped with field emission gun (FEG).
b Gatan CT3500 single tilt liquid nitrogen cryo-transfer holder docked onto cryo-workstation.
After inserting the specimen grid onto the cryo-holder (not in scale to microscope), it is carefully
transferred to the microscope as shown by the arrow mark. c A maximum of 12 grids can be loaded
via cassette, housed in a capsule as described in the text. Each grid can be imaged one by one using
an autoloader robot housed in a 200- or 300-kV cryo-TEM. (Fig. 2a, b was reproduced from
Natesh [3], by permission of publisher—Indian Academy of Science, Bengaluru)

Single-Particle cryo-EM as a Pipeline for Obtaining Atomic … 383



proteins give homogenous samples for atomic-resolution reconstruction. The fact
that proteins are dynamic leads to heterogeneity and underlies the need for large
amount of data collection (in a hope to group particles into homogenous groups),
which is tedious to be done manually. In recent years, many software packages
have been developed to interface with the advanced electron microscopes for
automatic data acquisition. Some examples of such software that can be used for
fully automated data collection on a well-calibrated cryo-TEM are Leginon [35],
SerialEM [36], UCSFImage4 [37], FEI-EPU, JEOL-JADAS [38], GATAN-
Latitude S. Most of the software is used for automated data collection for both
single-particle cryo-EM and electron tomography (ET) work. Some programs like
Appion [39] extend the automated data collection through a pipeline from auto-
mated data collection all the way through automated particle picking to image
processing (CTF estimation, classification, and 3D reconstruction).

2.3 Image Processing and Three-Dimensional
Reconstruction

Cryo-EM is different from X-ray crystallography because it uses “images” as pri-
mary data, rather than the diffraction patterns. Translated into Fourier lingo, the
availability of images means that the “phase problem” known in X-ray crystal-
lography (described in Sects. 2.3 and 2.4 of Natesh [3]) does not exist in EM. The
electron microscope, in Hoppe’s words, is a “phase-measuring diffractometer” [40].
Hence, extreme care has to be taken in image processing. Image processing
involves preprocessing the collected data, particle picking, centering the particles in
their selected boxes, 2D classification and determining their relative orientations
and/or 3D classification and 3D reconstruction. An example of image processing
and 3D reconstruction is shown in Figs. 3 and 4. The preprocessing step involves
CTF correction and image normalization [41]. As mentioned in the data collection
section, the data is collected at various defocus positions. As one gradually
increases the defocus (i.e., under focus), the contrast of the image proportionally
improves. Improvement in contrast comes at a cost, a loss in the higher spatial
frequencies (i.e., high-resolution information is lost) in the image, and in addition, it
introduces CTF modulation in the spatial frequencies of the image. Hence, the first
step in image processing is to calculate the lens defocus and astigmatism, which is
needed to correct the measured data for the CTF of the microscope [42, 43].
Software CTFFIND, ACE2, Gctf, or e2ctf.py [44–47] can be used to estimate the
CTF that is used for CTF corrections.

After CTF correction, the images are normalized to set the mean density of the
particles to zero and same standard deviation [41]. The particles are then manually
or auto-picked into boxes of 1.5–2.5x, the size of the largest axis of the particle
using suitable software. A guide for choosing the right box size is given at the
online documentation http://blake.bcm.edu/emanwiki/EMAN2/BoxSize. Number
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of softwares are available for manual and automatic picking of particles and sub-
sequent image processing. Examples of such programs are FindEM [48] (only for
automated particle picking), EMAN (e2boxer.py) [49, 50], IMAGIC [51], Ximdisp
[52] (only for interactive display, analyses, and particle picking; now a part of
CCP-EM package [53, 54]), Xmipp [30], RELION-autopick [55], cryoSPARC
[56], APPLE Picker [57] (completely automatic particle picking, a part of ASPIRE
Suite [58]), gEMpicker [59] (only for template-based particle picking),
SIGNATURE [60] (only for particle picking and data analysis), etc. Most of the
auto-picking software employ initial manual picking routine (except APPLE
picker), where a couple of thousands of particles are manually picked from a subset
of available micrographs and use the best class averages generated from them
(having as many different representative orientations) as templates to auto-pick
particles from rest of the micrographs. This is the preferred method. Alternatively,
the auto-picking programs can use low-pass-filtered EM maps as templates for
particle picking (less preferred, but useful in protein drug complex where you have
the apo-protein structure already). Using maps from PDB (Protein Data Bank)
coordinates, as reference model is not preferred at this stage in order to avoid
“Einstein-from-noise” effect [61], i.e., to avoid any 2D model bias. CTF corrections
can also be performed on picked particle images as compared to whole micrographs
in some software, e.g., EMAN [44].

After particle picking, the next stage is to get the 3D reconstruction of the
biological macromolecules using the different but identifiable 2D projections of
particles. The first 3D reconstruction from a 2D projection was carried out on
negative stained tail of bacteriophage T4 by De Rosier and Klug [62]. However, the
2D projections of particle images cutout from the motion-corrected micrographs
have still low signal-to-noise ratio (SNR) due to low electron dose data collection as
described in data collection section. Hence, in order to improve the SNR of the
particles, many identical looking particle images are aligned and summed (clus-
tering) thus effectively increasing the SNR and dose without increasing the damage
[62]. There are three main advantages of reference-free (unsupervised) 2D classi-
fication: (i) to select few 2D classes from which we can make starting 3D map,
which can be projected as references for refinement. (ii) We can identify the fraction
of bad classes (which may contain artifacts, invalid particles, or simply empty), and
thus, those images with anomalies can be deleted from the data set in the beginning
itself. (iii) It also helps in identifying the conformational and compositional vari-
ability in the data set [50]. Two-dimensional (2D) and 3D classifications are carried
out by using various statistical analysis software suite IMAGIC [51], Spider [63],
EMAN [44], RELION-3 [64], FREALIGN [65], Appion [39], cryoSPARC [56],
ASPIRE Suite [58], Xmipp [30], SPHIRE (sphire.mpg.de), etc., or a combination of
more than one of these suites. Several of these software packages are integrated into
one processing framework, for example, as in Scipion [66]. An exhaustive list of
EM software programs is available at EMDataBank (EMDB, http://www.
emdatabank.org/emsoftware.html).

Spider [63, 67] and IMAGIC [51] were among the first programs to be devel-
oped for single-particle reconstruction in the year 1996 followed by FREALIGN
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(a)

(d)

(e)

(c)
(b)

(f)

Fig. 3 Image processing and 3D reconstruction of GroEL and non-native protein RuBisCO
complex [74]. a Raw micrograph (this image is not motion corrected, but at this stage if dose
fractionated image stacks are collected on a DED, they are motion corrected) and b 30-Å-filtered
brick view reference from empty GroEL cryo-EM map. (c) Particles from cryo-EM images like in
micrograph (a) are extracted into boxes, CTF corrected, filtered, normalized, and aligned to reference
to bring them to the same center. d Orientation separation by class averages of images using MSA
shows significant improvement in signal-to-noise ratio. eEigen image information (circled) was used
to classify images into homogenous classes. fMSA classification into three homogenous groups; 3D
reconstruction of three classes using projection matching is shown in Fig. 4
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[65] in the year 1998 and other program suites followed. The clustering of similar
particle images was first introduced by van Heel and Frank [68] in the year 1981
using multivariate statistical analysis. Clustering in the currently available programs
uses one of the following methods: multivariate statistical analysis (MSA)/principle
component analysis (PCA), hierarchical clustering, k-means clustering, and the
maximum-likelihood methods [41] or by recently proposed empirical Bayesian
approach [69]. Currently, the EMAN2 [49] and RELION-3 [64] are among the
popular program that do reference-free 2D class-averaging (references are gener-
ated from within the data set) and 3D reconstruction. EMAN2 uses iterative
MSA-based reference-free 2D classification. The latest one, the RELION, uses
empirical Bayesian likelihood approach for 2D classification [55].

Next step is to get the 3D reconstruction from selected good class averages.
High-resolution 3D reconstructions require an initial 3D model that can be itera-
tively refined to obtain the best possible resolution for the data set. The first starting

Fig. 4 Asymmetric (C1) 3D reconstructions of the three classes (structures). Each class (class 1
(a); class 2 (b); and class 3 (c)) is shown as a top view (top ring only), a side view, a central section
through the side view, and a bottom view (bottom ring only). The fitted GroEL crystal structure is
shown in green. The additional density in the upper rings of (a) and (b) is attributable to bound
non-native RuBisCO substrate. All maps were contoured at the 1r level without filtering.
Figure generated with Chimera [85]. Figure produced by the author in https://doi.org/10.1016/j.
ijbiomac.2018.06.120 [74] and reproduced here under Creative Commons Attribution License (CC
BY)
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3D model is obtained using experimental methods or by finding the relative ori-
entations of 2D projection averages (and hence the particles) by computational
methods. Assigning orientations by programs involves finding the location and
Euler angles of the particles in the boxed region. The earliest one among them was
the popular angular reconstitution method [70] by Marin van Heel, which uses
real-space implementation of “common lines” principle to get relative orientations
of the class averages as implemented in the program IMAGIC [51]. Thus, the Euler
angles assigned 2D class averages can be used to get the starting 3D model. This
method does not require reference for assigning relative orientation, while another
program Spider by Joachim Frank and co-workers uses projection matching and
cross-correlation approach [63, 71]. This method requires a starting 3D model
which is generated from ab initio random conical tilt method [72] from EM images
taken at a pair of know angles. Most of the present-day programs generate the
starting 3D model by using statistical approach and comparison with
back-projections to assign the Euler angles to a subset of manually selected good
class averages. For example, EMAN2 uses a Monte Carlo method, RELION uses
Bayesian methods, and VIPER [73] a module in SPHIRE suite (http://sphire.mpg.
de/) uses a stochastic hill-climbing algorithm. Iterative rounds of projection
matching with the references generated from starting 3D model (called as 3D
projection matching procedure) followed by subsequent 3D reconstruction (using
various algorithms) are used until the resolution of the reconstruction during sub-
sequent refinement cycles does not further improve. This will lead to the final 3D
reconstruction with the best possible resolution.

Figure 4 shows an asymmetric (C1 symmetry) 3D reconstruction carried out
using IMAGIC and Spider. The non-native RuBisCO bound to GroEL is shown
[74]. Figure 5 is another example of 1.9 Å high-resolution cryo-EM reconstruction
with inhibitor phenylethyl b-D-thiogalactopyranoside (PETG) bound to
b-galactosidase enzyme [75]. The quality of the final 3D reconstruction not only
depends on the quality of the projection images and implementation of the clever

Fig. 5 Fourier shell correlation (FSC) curve for class 1, class 2, and class 3 asymmetric
reconstruction and class 3 (C7 symmetry reconstruction) shown in Fig. 4. Vertical dashed lines
show the spatial frequency for 0.143 “gold-standard” FSC which estimates classes 1, 2, and 3
resolution to be *9.0 Å and class 3 (C7 symmetry) as *7.6 Å
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algorithms, but also on the angular distribution of the particles. Hence, in order to
get the best resolution reconstruction, it is necessary for the particle (and thus its
projections) to be distributed well in the Euler sphere [41]. By re-projecting the 3D
reconstruction at the Euler angles of the class averages, we can assess the reliability
of the 3D reconstruction. For a consistent reliable reconstruction, the re-projected
image and the actual class average must match.

3 Resolution, Model Building, and Validation

3.1 Resolution

Resolution estimation of the EM maps is still subjective, with differences among
various groups still not settled [76]. Resolution of 3D EM map is calculated from a
plot of Fourier shell correlation (FSC) [77] as a function of spatial frequency (the
resolution estimation of 3D reconstructions in Fig. 4 is shown in Fig. 5). FSC is the
cross-correlation (CC) calculated between two 3D reconstruction maps, where each
map is calculated from half the data images. The resolution that is reported in
publication essentially as a single number is the value of maximum spatial fre-
quency up to which the EM map is reliable. The identification of resolution is
subjective as it is arbitrary what one considers as reliable. The procedure for res-
olution assessment is described in detail by Penczek [76]. There are several sug-
gestions for identifying the cutoff: (i) the 3-sigma criteria where the spectral SNR
(SSNR) = 0 in which case FSC = 0; (ii) point at which power of signal is equal to
the power of noise, i.e., SSNR = 1 or FSC = 0.33; (iii) the classic midpoint of FSC
curve, i.e., FSC = 0.5 [78] where SSNR = 2, which means signal dominates noise;
and finally (iv) point where FSC = 0.143, derived by Rosenthal and Henderson
[79] in comparison with X-ray crystallography. Hence, which cutoff is chosen is a
matter of present-day debate. Recently, in order to reduce further any possible
reference bias, “gold-standard FSC” was suggested with FSC calculated between
two completely independent refinements and 3D reconstruction [80].

There are other computational ways to improve the resolution nominally without
improving the image alignment, e.g., masking/threshold flattening. In any case, the
resolution estimations have their own limitations and hence reported EM resolution
should be treated as only broad guideline rather than a definitive number and cannot
be used as validation. Nonetheless, it is an important parameter to be reported with
each EM map deposition at the EMDB. Resolution anisotropy is common in
cryo-EM structures, and it is a common practice to document it as color ramping
from low to high resolution on the cryo-EM 3D reconstruction map using programs
ResMap [81] and blocres [82]. The results can be visualized independently or with
chimera (e.g., blocres with Local FSC plug-in for chimera).

With the booming medium- and high-resolution cryo-EM 3D structures, it is
necessary to have consistency between crystallography and cryo-EM terms
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currently used for defining what is an atomic- or high-resolution structure. While it
is very common to use the term “atomic resolution” for cryo-EM resolutions better
than 3.5 Å, the crystallography definition of the term “atomic resolution” means
the resolution is 1.2 Å or better [1] and ultra-high resolution means 0.95 Å or
better ([83] and references cited therein). Similarly, 1.8 Å or better is called high
resolution [84], 3.0 Å or better up to 1.9 Å is treated as medium resolution while
low resolution is between 4 and 3.1 Å. Resolution below 4 Å is considered as poor
resolution in protein crystallography. While the method of estimation of resolution
is quite different between crystallography and cryo-EM techniques, the conventions
for using the terms should be consistent, irrespective of the method. Hence, the
author would like to suggest that it is necessary for the cryo-EM field to maintain
consistency in the future, while using the terms ultra-high, atomic, high, medium,
and low resolution.

3.2 Model Building

If the resolution of the 3D reconstruction (i.e., the electron potential map) is suf-
ficiently high, e.g., better than 3 or 4 Å, it is often possible to build ab initio atomic
model and do refinement with the EM map using known chemical constraints/
restraints. If X-ray crystallography coordinates of the segment or its homologues
are available, one can rigid body fit the segment coordinates into the cryo-EM map
using programs like UCSF Chimera [85]. Where the resolution of the 3D recon-
struction map is limited to worse than 4 Å, combining crystallography and
cryo-EM as a hybrid method is a powerful tool to obtain a pseudo-atomic model
(s). Iterative rounds of model building using programs like Coot [86], O [87] and
refinement using programs like Coot, refmac [88], or PHENIX
real-space-refinement [89] are carried out. De novo backbone tracing and model
building can be carried out using programs like Pathwalking and Gorgon [90]; it
can also build macromolecular assemblies at non-atomic resolution [90]. When the
cryo-EM map shows variation by domain movements or flexibility to the available
protein coordinates, programs like FlexEM [91, 92] and MDFF [93] with its
graphical user interface VMD [94] can be used to flexibly fit the coordinates in the
EM map. The fitted model and EM map can be visualized in programs like PyMOL
[95]/Chimera [85] to generate publication quality figures.

3.3 Validation

Validation in cryo-EM reconstruction is important to avoid errors in particle
alignment, reference bias, over-fitting of atomic coordinates, and over-estimation of
resolution. Validation tools for cryo-EM similar to the free R value (Rfree) in X-ray
crystallography [96] have been introduced in 2003 by Joachim and co-workers [97]
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and recently by Chen and co-workers [98]. There are some general guidelines [80,
99] suggested, and they are actively evolving. As described in the resolution para-
graph of this section, the reporting of resolution with one number cannot be used as
validation; however, it is an important parameter to be reported during EMDB
deposition. Further, FSC may fail when the particles are significantly misaligned. So
one has to estimate the resolution properly [76] and use the reported single number
resolution with caution. It is suggested that gold-standard FSC provides a realistic
estimate of the true signal [100], and this will lead ultimately to a better map. In
recent days, reporting local resolution has also formed a common practice in pub-
lication and thesis [81, 82]. Also, the local resolution will be helpful in avoiding
over-interpretation of poor regions in the cryo-EMmap. If the 3D map is of sufficient
resolution (better than 4 Å), it can resolve the secondary structural features. A good
validation would be especially if you can see a right-handed alpha helix or even the
side chain residues, especially the bulky residues like tryptophan, phenylalanine, or
tyrosine in the high-resolution cryo-EM map. Even the comparison of the new EM
structure with the available EM structure will be one way of validating the newly
reconstructed 3D EM map [101]. Further, programs TEMPy [102] and refmac [88]
can be used to assess the validity of the fitted coordinates to the EM map. In Coot
[86] program, one can use the Ramachandran plot (Validate !Ramachandran plot)
and geometrical quality (Validate!Geometry analysis) to validate the quality of the
refined model. One more way to validate is to compare the 3D reconstruction results
from different techniques, e.g., projection matching and the angular reconstitution.
For low-resolution maps (worse than 4 or 10 Å), measure of confidence can be
provided by a priori random conical tilt experiments [103].

4 Heterogeneity

Though cryo-EM can handle heterogeneous particles, we need homogenous par-
ticles, which are equally dispersed in the vitrified ice in order to achieve atomic
resolution. Ideally speaking, all data sets are heterogeneous! The question is how
much one is willing to tolerate [104]. Further, during cryo-EM specimen prepara-
tion, non-physiological structural heterogeneity is often introduced [105]. While
structural heterogeneity is a problem to obtain high resolution, it also provides a
unique opportunity to study the conformational flexibility/dynamics of the
macromolecular assemblies. Ideally, homogenous samples have to be biochemi-
cally standardized and prepared before the vitrification process. However, this is not
possible with all protein samples due to the inherent protein flexibility which is
necessary for its function, for example, rotation of 30S subunit of ribosome [106] or
rotational states in case of eukaryotic V-ATPase [107]. In such cases, the hetero-
geneous sample data images can be classified computationally to classes containing
homogenous particles (an example of such classification can be seen in Fig. 4).

Three main techniques are currently in use to identify and sort the macro-
molecular structural conformational variability or heterogeneity [41]. The first
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approach depends on classifying the 2D images based on the eigen images/
eigenvectors [74, 108–111] without any starting model. First, classify using MSA
to obtain orientation classes, and then, the major variation among the picked par-
ticles in each orientation classes can be identified in the low-order eigen images by
MSA, and using these, information particles can be classified into homogenous
classes, leading to preliminary 3D reconstruction from a class containing majority
of homogenous particles as shown in Fig. 3. The preliminary 3D reconstructions
can be projected as references for competitive alignment. Further, the quality of 3D
reconstruction can be iteratively improved until the eigen images show no major
variations within the class and the particles stabilize from jumping to another class
during competitive projection matching. In this manner, three class reconstructions
were obtained as shown in Fig. 4. The second method depends on detection in 2D
variations using starting model [41]. The third method also needs initial starting
model and uses a statistical approach to obtain 3D classification. In this case, large
number of 3D maps are calculated from randomly selected subset of particles (with
previously assigned orientation based on initial 3D map). Determination of the 3D
variance can be used to assess the heterogeneity, and estimation of covariance
enables one to carry out the 3D classification according to variable regions.
Alternatively, the molecular states can be separated using maximum likelihood
classification [104, 112] or by the latest multi-body refinement method [113].

5 Single-Particle Cryo-EM Applications in SBDD

There are five 3D reconstructions in the EMDB with bound inhibitors or ligands at
resolution better than 2.5 Å as shown in Table 1. We have focused at this resolution
since this is at the center of medium (3.0 Å) and high resolution (1.8 Å), which is
desired resolution for SBDD studies. Although we have highlighted reconstructions
better than 2.5 Å, ligands have been visualized in the 3D reconstructions better than
4.0 Å. While there are only 10s of EM reconstructions with bound inhibitors at
2.5 Å or better, there are several 100s of structures in the EMDB at resolution
between 2.5 and 4 Å with bound inhibitors or ligands. Here are couple of examples
of 3D reconstructions with resolution better than 2.5 Å: In the Sect. 2.3 we have
already come across the example of 3D reconstruction (by the Subramaniam group
[75]) of the inhibitor PETG bound to beta-galactosidase at 1.9 Å resolution. His
group used a similar approach to solve the cryo-EM structure of human
p97ATPase, an important target for cancer, in complex with its allosteric inhibitor
UPCDC30245 [10] as shown in Fig. 7c. Although they could not see a part of the
inhibitor in the EM electron potential map, they could see at 2.3 Å resolution the
other part where the inhibitor snugly fits into the protein pocket and proposed how
the allosteric inhibitor UPCDC30245 inhibits the conformational changes necessary
for the function of p97. They further could see three coexisting functional states of
p97 in the presence and absence of ATPcS. Here are couple of examples of 3D
reconstructions of proteins bound to inhibitors, with 3D reconstruction resolution
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poorer than 2.5 Å. For example, Paula and Ed solved the structure of 20S pro-
teasome in complex with the inhibitor (EMD-3231) at *3.6 Å resolution [114] as
shown in Fig. 7a. Another example is the structure of 70S ribosome from
Escherichia coli at 2.9 Å resolution in complex with elongation factor Tu,
aminoacyl-tRNA, and the antibiotic kirromycin [115] as shown in Fig. 7b. With
these examples, it is very clear that, in the future, the single-particle cryo-EM will
play a very important role in the preclinical SBDD studies.

PETG Trp999

Phe601
His418

Glu461

(b)

(a)

Asn102

Met502

Fig. 6 a Inhibitor phenylethyl b-D-thiogalactopyranoside (PETG) (blue surface)-bound cryo-EM
structure of b-galactosidase enzyme at 1.9 Å resolution [75]. b Zoom-in view of the squared area
with bound inhibitor PETG (blue surface). The EM map is shown in yellow mesh. Sodium
(magenta) and Mg2+ (green) ions and water molecules (red) can be seen in the pocket
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6 Conclusions and Future Prospective

Recent advances in cryo-EM have enabled us to use single-particle cryo-EM as a
method of choice to resolve solution-state 3D structures of proteins and protein
complexes at atomic resolution, thus breaking the cryo-EM resolution barrier to
facilitate SBDD [6]. In recent years, many pharmaceutical companies like Bayer,
Merck Research Laboratories, Sonafi, AstraZeneca, Regeneron Pharmaceuticals,
NovAliX, Genentech etc. have realized the importance of this method and started
hiring experts in single-particle cryo-EM to get involved in their SBDD pipeline.
Table 1 lists the protein structures with bound ligands solved by single particle
cryo-EM at resolution 2.5 Å or better; i.e., five of the structures have bound
inhibitors/glycans, which underscore the importance of single-particle cryo-EM in
SBDD. Apart from these, there are many more structures with bound ligands in the
EMDB at resolutions below 2.5 Å. The future of this technique will be in obtaining

Fig. 7 Pharmacologically important target proteins (beige color) (modeled using the cryo-EM
electron potential 3D reconstruction map) in complex with inhibitor (shown as stick model). The
cryo-EM map of the inhibitors are shown as blue mesh. a 3.6 Å reconstruction of 20S
Plasmodium falciparum proteasome [114] with bound inhibitor Mor-WLW vinyl sulfone
(EMD3231) (PDB ID: 5fmg). b 2.9 Å cryo-EM reconstruction of complete 70S Escherichia coli
ribosome with bound antibiotic kirromycin [115] (EMD 2847, PDB ID: 5afi). c 2.3 Å resolution
3D reconstruction of anticancer drug target human p97 with bound allosteric inhibitor
UPCDC30245 [10]
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the sub-nanometer resolution and perhaps atomic-resolution structures of proteins
and protein complexes in vivo. This methodology called the cellular tomography,
although not the scope of this chapter, is a promising future technology for
atomic-resolution structures of proteins and protein complexes in its native envi-
ronment “the cell.” With the advent of phase plates, energy filters, and automation
in cryo-EM data collection, promising efforts are being made to achieve that goal
and the realization of that goal may not be far away which would in turn potentially
further accelerate the SBDD program.
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