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Preface

Human society has immense faith in the potential of drugs. Our belief towards
therapeutically safer drugs to alleviate the symptoms of different types of diseases is
accelerating nowadays. The twenty-first century witnessed tremendous progress in
the scientific and technical aspects in several therapeutic domains, such as viral,
bacterial, cancer and other metabolic and infectious diseases. Further, bioinfor-
matics and computational biology disciplines are integrated into all levels of
medicine and health care. Future breakthroughs will depend on the strong collab-
orations between experimental and computational biologists. Areas such as building
predictive models of the cell, organelles, and organs, understanding ageing,
designing enzymes, and improving drug design and target validation are becoming
crucial for the drug discovery programme.

The main concept of the present book includes computer-aided molecular
modelling and protein/enzyme design in preclinical discovery towards understanding
the molecular mechanisms of different diseases. This technique can be successfully
employed in different areas of medical research, including rare and neglected dis-
eases. Different case studies integrated with the experimental research as well the
future plan for clinical aspects are described effectively. The present 12 chapters of the
book have been contributed by leading and internationally recognized scientists.
It addresses computer simulation techniques for studying biological phenomena from
the perspective of both methodology and applications. The chapters are organized on
the methodology of molecular simulations and its applications, chemoinformatics
methods and its use of experimental information in computational simulations.
Selected applications of structural biology and structure-based drug design, focussing
towards druggable targets, and its physiological molecular mechanisms of actions are
critically addressed.

The first five chapters are devoted to theories and methodologies, which form the
backbone of the structure-based drug design concepts as well as different molecular
modeling techniques in computer-aided drug design. Chapter “Structure-Based Drug
Design of PADHODH Inhibitors as Antimalarial Agents” describes the latest theories
and computational methodologies in structure-based drug design for the development
of inhibitors against key druggable target Plasmodium falciparum dihydroorotate
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dehydrogenase. Chapter “Recent Advancements in Computing Reliable Binding
Free Energies in Drug Discovery Projects” is dedicated to understanding the protein—
ligand binding affinities and different concepts and methods towards free energy
calculations for the drug discovery projects. Next chapter (Chapter “Integrated
Chemoin—formatics Approaches Towards Epigenetic Drug Discovery”) addresses
the epigenetics molecular mechanism and its key targets involved in different
diseases by efficiently employing different chemoinformatics strategies. Chapter
“Structure-Based Drug Design with a Special Emphasis on Herbal Extracts” directly
deals with the natural products, a component of Ayurinformatics, and its emphasis on
the application of structure-based drug design. Chapter “Impact of Target-Based
Drug Design in Anti-bacterial Drug Discovery for the Treatment of Tuberculosis” is
devoted completely towards tuberculosis drug discovery and the role of three-
dimensional druggable targets in the structure-based anti-tuberculosis design.
The role of big data and high-performance computing is prevalent nowadays in
different fields, and the concept and algorithms presented in Chapter “Turbo
Analytics: Applications of Big Data and HPC in Drug Discovery” directly address its
importance and application towards the preclinical drug discovery aspects. Finally,
Chapter “Single-Particle cryo-EM as a Pipeline for Obtaining Atomic Resolution
Structures of Druggable Targets in Preclinial Structure-Based Drug Design” is
devoted towards the latest technique in structural biology, i.e. single-particle
cryo-EM to solve the atomic structures of single and multi-protein druggable targets
and which is key to the structure-based drug design studies.

In the future, Computers will design, discover, people will verify—John Rumble

Science knows no country, because knowledge belongs to humanity, and is the torch which
illuminates the world—Louis Pasteur

Science is beautiful when it makes simple explanations of phenomena or connections
between different observations. Examples include the double helix in biology and the
fundamental equations of physics—Stephen Hawking

The purpose of this book is to explore the theoretical strategies involved in drug
discovery and development by proper integration with the experimental concepts as
well. Further, the book is intended to deliver the reader with an overview of
multifaceted, challenging and rapidly evolving field. We feel that the scientific
material covered herein will provide the reader with an excellent overview in
preclinical drug discovery programme.

Amrita Vishwa Vidyapeetham, Kochi, India C. Gopi Mohan
October 2018
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Free Energy-Based Methods M)

Check for

to Understand Drug Resistance
Mutations

Elvis A. F. Martis and Evans C. Coutinho

Abstract In this chapter, we present an overview of various computational
methods, particularly, those that are used to compute the free energy of binding to
understand target site mutations that will enable us to foresee mutations that could
significantly affect drug binding. We begin by looking at the driving forces that lead
to drug resistance and throw some light on the various mechanisms by which drugs
can be rendered ineffective. Next, we studied molecular dynamic simulations and its
use to understand the thermodynamics of protein—ligand interactions. Building on
these fundamentals, we discuss various methods that are available to compute the
free energy binding, their mathematical formulations, the practical aspects of each
these methods and finally their use in understanding drug resistance.

Keywords Molecular dynamics - Drug resistance - MM-PB(GB)-SA
Free energy perturbation - Linear interaction energy - Computational mutational
scanning - Thermodynamic integration

1 Drug Resistance Problem

Every organism attempts to survive in hostile conditions by making minor modi-
fications in its life cycle. Though these modifications are observed phenotypically,
genetic reshuffling and alterations are the underlying cause of these changes.
Although we are unable to accurately explain this phenomenon and its initiation, we
have been able to use this observed knowledge and empirically derive explanations
for such modifications. However, it may not always be necessary to know all the
details regarding genetic modifications, so long as we can correctly, at least
empirically, understand such observations, and put it to effective use to predict and
understand the drug resistance problem. Often the enzymes in the biochemical
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pathways undergo mutations to improve the survival rate of the organism by either
improving the protein function or catalytic efficiency and stability to escape the
inhibitory action of the drug. In the latter case, the motive for modifying the drug
target is to ensure that drug binding is weakened. Moreover, the mutations are such
that substrate binding is unaffected or minimally affected. Most of the computa-
tional methods employed to study the mechanism of drug resistance, attempt to
understand the differences in the binding patterns of the substrate and the drug
molecule, i.e. understanding the “substrate-envelope hypothesis”. Here, we pre-
sent an overview of those computational methods that employ free energy of
binding as a tool to gauge the differences in the binding of the substrate and the
drug molecule before and after mutation.

In the Sect. 1, we discuss the driving force for resistant mutations and throw
some light on the different mechanisms by which drug resistance can occur. In
Sect. 2, we present a brief overview of molecular dynamics, thermodynamics of
protein—ligand binding, and various methods for computing the free energy of
binding. The last section, Sect. 3, has a detailed discussion on various free
energy-based methods used to understand and predict the target site mutations
leading to loss in drug binding.

1.1 Overview of the Mechanisms of Drug Resistance

The drug-induced selection pressure [1-4] is the major driving force for infectious
organisms to try to evade the effects of drugs. One of the primary moves that any
organism will adopt is to disrupt the action of drug molecules by one or more
possible mechanisms. To show its effect, the drug must enter the cells and find its
target protein. As a primary defence mechanism against drugs, the organism may
down regulate the expression of influx channels that enable the entry of the drug,
resulting in a decreased concentration build-up within the cell. Another strategy that
hinders the build-up of the drug inside the cell is the upregulation of the expression
of efflux channels/pumps that facilitate the egress of the drug molecules. These
strategies are often very difficult to understand owing to the complicated pathways
involved in the upregulation or downregulation of various proteins associated in the
regulation of traffic to and from the cell. This attribute is difficult to study using
computational techniques that use free energy-based methods. Target site mutations
[5-8] that lead to disruption in the drug binding without significant loss of the
protein function [9, 10] is another mechanism of drug resistance. Such mutations
can be studied using computer simulations that enable us to estimate the free energy
difference between the drug binding to the mutant and the wild-type protein. An
essential factor to consider while understanding target site mutation is the fitness
cost associated with the mutational change. This can be estimated by the change in
the free energy of binding of the natural ligands/substrates; for example, a drop in
their binding energy indicates that substrate binding is impeded, which this leads to
increased fitness cost. This means the enzyme now must expend more energy to
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carry out the same reaction. Hence, we can assume that such mutations are seldom
seen, and if at all they occur, a compensatory mutation(s) will be seen to counter the
detrimental effects of those mutations [11, 12]. Another strategy adopted by
organisms is to increase the production of drug-metabolizing enzymes that modify
the drugs to their inactive form eventually leading to their elimination. A classic
example of this is the inactivation of penicillin by the enzyme [-lactamase.

1.2 Overview of Computational Methods to Study Drug
Resistance

Broadly, computer-assisted methods used to study drug resistance can be classified
into two categories based on the information they require and the output they return.
The first category of methods requires only 1D sequence data as input and the
output is generally a classification type, i.e. the test sequence is classified as a
resistant or a non-resistant sequence. Thus, the methods grouped under this class are
collectively called as “sequence-based” methods [13]. The workflow of these
methods is akin to machine learning or QSAR type classification methods. In a
nutshell, sequence-based methods require sequences with the corresponding bio-
logical activity data (K; or ICs, or any other suitable numerical value) for the drug
under study. Such data can be curated from databases like HIVDB (for HIV
resistance, curated and maintained by Stanford University; [14, 15]) CancerDR (for
cancer resistance, curated by CSIR Institute of Microbial Technology and OSDD,
India; [16]), tuberculosis resistance mutation database (curated and maintained by
various departments and schools with Harvard University; [17], and many other
such databases. The data is then split into training and test sets to develop and
validate the predictive models. The advantage of such methods is that it is not
necessary to know the tertiary structure of the protein or the drug-receptor inter-
actions. Therefore, sequence-based methods are computationally inexpensive and
large amount of data can be trained to obtain decent quality predictive models in a
short time. However, they suffer from two major drawbacks; (1) a lot of a priori
information on drug-resistant mutations is needed to train/develop predictive
models and (2) no mechanistic insights or atomistic details can be obtained.

The drawbacks seen in the sequence-based methods are efficiently overcome by
structure-based methods [13, 18, 19]. Further, structure-based methods are the
methods of choice when atomistic details are desired. However, these additional
details come at an added computational cost and require high-resolution protein
structures to be able to make accurate and reliable predictions. However, unlike the
sequence-based methods, they do not require large a priori information on muta-
tions; on the contrary, they can be applied to systems where no data on mutation is
available. To assess the binding stability which is the basis for predictions, these
methods employ either empirical scoring functions that implicitly try to reflect the
free energy of binding or use techniques that compute the free energy of binding
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per se. Molecular docking-based methods use empirical scoring functions to find
the best docking conformations, and these methods are computationally less
expensive. Therefore, they can be applied to assess many protein—ligand com-
plexes. The ligand can be docked to various mutant proteins to predict their binding
strength before and after mutations, and this will allow one to understand the effect
of the mutation on the binding strength. The accuracy of docking-based methods
relies on the accuracy of the scoring function, and they are best suited for rank
ordering of compounds rather than computing the absolute free energy of binding.
The major issue with docking-based methods is that most docking programs treat
proteins as rigid entities, and therefore, mutations in highly flexible protein—ligand
systems are poorly understood [19]. However, in recent times there have been
several attempts to incorporate protein flexibility in molecular docking [20]. This
has largely improved the enrichment scores. Due to the limited scope of this
chapter, such docking methods will not be discussed here and have been treated
elsewhere [21-25]. Molecular dynamics-based methods can incorporate flexibility
in the protein—ligand complexes, and in most cases, are the methods of choice as a
conformational sampling tool to explore the phase space accessible to the system
under study. The conformations sampled are used to compute the free energy
change. However, the drawback of MD-based methods is the computational cost,
which is several magnitudes higher compared to docking-based methods.

Another critical issue that must be addressed about the structure-based methods
is, how fast predictions can be made, in addition to how reliable are the predictions.
These methods find application in drug discovery programs, wherein additional
filters can be placed to weed out molecules likely to encounter a high level of
resistance or assist in suitably modifying leads to inhibit the mutant proteins. Drug
discovery itself is an extremely lengthy and expensive process, and an additional
filter like resistance should be economical in terms of time as well as money.
Moreover, such methods should also assist medicinal chemists during lead opti-
mization stages to identify potential groups that will help evade drug resistance and
avoid late-stage failures that lead to huge financial losses.

2 Molecular Dynamics Simulations and Free Energy
Calculations

2.1 Overview of MD and Conformational Sampling
Methods

Computer simulations are very useful in predicting changes in molecular properties
brought about by alterations in an atom or a group of atoms, particularly, amino
acid residues. Therefore, they find good application in predicting the effect of
mutations on drug binding at the active site or elsewhere. Protein design experi-
ments clarify the effect of a mutation on drug or substrate binding, thereby facili-
tating prediction of drug-resistant mutations. This way the program can be used to
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select all mutations wherein drug binding is hampered and substrate binding is
either improved or [26].

In case of free energy calculations, molecular dynamics (MD) simulations are the
most commonly used technique to generate conformational ensembles. Hence, it is
rightly called as one of the main toolkits for theoretically studying biological
molecules (Hansson et al. [27], Binder et al. [28]. MD calculates the time-dependent
behaviour of particles or atoms, by numerical integration of Newton’s second law of
motion and predicts the future positions and momenta. MD simulations have pro-
vided detailed information on the fluctuations and conformational changes of pro-
teins and nucleic acids upon drug/substrate binding. As a result, it is now routinely
used to investigate the structure, dynamics and thermodynamics of biological
molecules and their complexes. MD simulations have an advantage in that, starting
from an X-ray or NMR solved structure, it can provide insights into the dynamic
nature of biomolecules that are inaccessible to experiments. To accurately simulate
the behaviour of molecules, one must be able to account for the thermal fluctuations
and the environment-mediated interactions arising in diverse and complex systems
(e.g., a protein-binding site or bulk solution). This depends on how accurately the
force fields represent the atoms and treats the non-bonded interactions. A complete
account of force fields can be found in the review by Pissurlenkar et al. [29].
However, most of the biological events occur at timescales that are not routinely
reachable by classical MD simulations, for example, protein folding occurs in the
timescale of few seconds, whereas drug binding and unbinding occur in the time-
scale of few microseconds to milliseconds. The routine timescale that is feasible
using high-end servers equipped with graphic processing units [30-32] and dis-
tributed grid computing [33, 34], is few tens of microseconds, that is nearly 1/100th
of the timescale required to study protein folding. Conventional MD suffers from the
severe limitation that it is extremely difficult to sample high-energy regions and
surmount energy barriers, leading to inaccuracies in free energy calculations.

The limitations of classical MD simulations have motivated the development of
new conformational sampling algorithms that facilitate the sampling of confor-
mational space that is inaccessible to classical MD simulation. The simplest way to
encourage the system to sample the high-energy regions on the phase space is to
increase the target temperature [35]. This leads to increased kinetic energy of the
system that enables it to surmount these barriers. However, it has been argued by
many, that such elevated temperatures (~400 K and above) lead to physiologically
unrealistic states that may severely distort the results; however, such methods have
been found to be advantageous in improving the sampling efficiency during MD
simulations. Another method that uses elevated temperature to enhance the sam-
pling is the replica-exchange molecular dynamics (parallel tempering, [36, 37]). In
this approach, several replicas are simulated in parallel at different temperatures. At
appropriate intervals, the replicas switch temperatures with the nearest replica, and
this exchange is governed by the Metropolis acceptance criteria. However, all these
methods do not prohibit the system from revisiting the same conformational space.
This problem was resolved by adding the memory concept in molecular dynamics
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(local elevation method [38] Metadynamics [39]) uses Gaussian potentials that
discourage the system from sampling the same conformational space. These are few
of the most commonly used methods to tackle sampling problems in molecular
dynamics, a complete account on enhanced sampling algorithms can be found
elsewhere [40-44].

2.2  An Overview of Thermodynamics of Protein—Ligand
Binding

Molecular interactions, between the ligand and receptor, are primarily non-covalent
in nature and governed by attractive and repulsive forces. In drug design experi-
ments, the goal is always to optimize the attractive interactions and reduce the
repulsive ones [45-47]. Moreover, these associations are temporary, and the
lifespan of such complexes are governed by the off rates (K.g) or the dissociation
constant (Ky), both of which indicate the binding strength of a ligand to its protein
counterpart. In the realm of thermodynamics, binding is governed by enthalpic and
entropic components [48] given by Eq. 1.

AG = AH — TAS (1)

where AG is the binding free energy; AH is enthalpy; AS is entropy and T is the
temperature in Kelvin.

The association is favourable, i.e. spontaneous when the AGg;pp is negative and
unfavourable otherwise. All the binding and pre-binding (recognition and
pre-organization) events in biomolecular associations are either enthalpy
(AH) driven or entropy (AS) driven. The enthalpic component represents several
types of non-covalent interactions like electrostatic, van der Waals, ionic, hydrogen
bonds and halogen bonds, while the entropic components reflect the contribution to
binding due the dynamics or flexibility of the system. Computing the enthalpic
component of binding has reached far heights, in terms of methods available for
calculating the aforementioned type of interactions. However, till date, calculation
of the entropic component is extremely difficult, and the algorithms are computa-
tionally very demanding.

The Gibbs equation is more relevant in biochemistry for calculating the free
energy and is given by Eq. 2:

AGgipps = —RT InKy (2)

where AGg;ipps 18 Gibbs free energy, R is universal gas constant, 7 is the temperature
in Kelvin, K4 is the dissociation constant. Equations 1 and 2, along with the
Born-Haber cycle [46] (Fig. 1) form the basis for the development of the methods
used to compute the free energy binding. The two main methods are Free energy
perturbation (FEP) and Thermodynamics Integration (TI), both of which will be
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bilnd, gas phase
Receptor (R) Ligand (L) Receptor-Ligand (RL) complex
4 4
AGopation R AG,ghationt AGpationRL
v A
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ES | =

Solvated Receptor Solvated Ligand Solvated Receptor-Ligand Complex

Fig. 1 Thermodynamic or Born—Haber cycle for the receptor-ligand binding

dealt with in the subsequent Sect. 2.3.2. However, measuring the dissociation
constants from simulations is a daunting task; nevertheless, computing the partition
functions from the molecular simulations is relatively easy. Hence, the ratios of the
partition functions can be used to estimate the free energy of binding, which is
given by Eq. 2a,

OrL

AG = —kgT In
? Or0L

(2a)

where kg is the Boltzmann constant, 7 is the temperature in Kelvin, Q is the
partition function with subscripts PL, P and L indicating protein-ligand complex,
protein, and ligand, respectively. This section presents a summary of thermody-
namics, which is imperative for understanding the application and methods
developed to compute binding free energy. More elaborate discussions on the
thermodynamics of protein—ligand binding can be found in the reviews by
Bronowska [48], and Homans [46].

2.3 Methods to Compute Free Energy Binding

Free energy is a quantity that can be measured for systems such as liquids or
flexible macromolecules with several minimum energy configurations separated by
high-energy barriers. However, its computation is far from trivial and the associated
quantities such as entropy and chemical potential are also difficult to calculate.
More so, the free energy cannot be accurately determined from classical molecular
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dynamics or Monte Carlo simulations due to their inability to sample adequately
from the high-energy regions of the phase space, which also make important
contributions to the free energy. However, the free energy differences (AAG) are
rather simple to compute. The free energy binding for the non-covalent association
of two molecules (protein and ligand in this case) may be written as follows:

AGbind = Gcnmp]ex - (Gprolein + Gligand) (3)

The binding event is an additive interaction of many events [49—-52], for example
solvation energy (Gs), conformational energy (G.onf), €nergy due to interaction
with residues in the vicinity (Gj,), and energy associated with different types of
motions (translational, rotational and vibrational, G ,o0n).- The classical binding
free energy equation now can be rewritten as follows:

AGbind = Gsol + Gconf + Gim + Gmotion (4)

Directly computing the free energy from an MD or MC simulation is not trivial;
hence, the following methods have been formulated. Broadly, the methods used for
computing free energy are classified as partitioning-based methods or end-state free
energy methods and non-partitioning-based methods. The partitioning-based
methods partition the binding energy into various components as shown in
Eq. 4; however, this method has been highly criticized [53] stating that it is
physically unreal to partition the free energy into components.

2.3.1 End-State Free Energy Methods or Partitioning-Based Methods

The human body majorly comprises of water; hence, it is imperative to carefully
include the solvation effects while computing the free energy of binding. More
importantly, water plays a crucial role in ligand recognition and in the binding
phenomenon. In computational chemistry, the methods for incorporation of solvent
are divided into three groups: (i) continuum electrostatic methods/implicit solvent,
(i1) explicit solvent models with microscopic detail and (iii) hybrid approaches.
Historically, the continuum electrostatic methods were among the first to consider
the solvent effect, and they still represent very popular approaches to evaluate
solvation free energies, especially in quantum chemistry. Polarizable continuum
model (PCM, [54]), COnductor-like Screening MOdel (COSMO, [55]) and SMD
solvation model [56] are few popular models for treating solvent effects implicitly
in quantum chemistry. Continuum solvation methods are computationally eco-
nomical; however, the frictional drag of the solvent is highly underestimated and as
a consequence may drive the system to non-physical states. Moreover, solvent—
solvent and solute—solvent interactions are inadequately treated, posing a danger of
underestimating the effects of such interactions. The explicit treatment of solvent
enables one to consider the solvent—solvent and solute—solvent interactions. This
prohibits the systems from visiting non-physical states due to the inclusion of the
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dampening effect shown by the solvent atoms. The principal drawback of explicit
solvent models is the number of atoms to be considered in the system leading to
increased computational cost. However, with the help of GPU-based acceleration,
this drawback, now, is hardly any cause for worry.

The end-state free energy methods use the conformations extracted from an MD
or MC simulation, wherein the system is simulated by explicitly defining the sol-
vent. However, while solving the GB or PB equation, the solvent is implicitly
treated by defining the external dielectric constant for water (for most drug design
cases) and a suitable internal dielectric constant [57-61].

Molecular Mechanics-Poisson Boltzmann/Generalized Born Surface Area
(MM-PB/GB-SA)

The MM-GBSA [62-65] approach employs molecular mechanics-based energy
calculations and the generalized Born model to account for the solvation effects in
the calculation of the free energy. Similarly, the MM-PBSA [66—68] approach
solves the linear or nonlinear Poisson—Boltzmann equation [69—71], to account for
the solvation electrostatics, whereas the MM part is calculated as in MM-GBSA
from the derivative of the force field equations. Both these approaches are
parameterized such that they partition the energy components into various terms,
and the net free energy change is the sum of these individual terms (Coulomb, vdW,
solvation, etc.). MM-PBSA has gained considerable attention for estimating the
binding free energies of molecular complexes due to its exhaustive nature of
computing the solvation electrostatics by iteratively solving the PB equation,
whereas the GB method does not involve any rigorous and iterative procedure and
hence is faster. However, this does not necessarily guarantee that the MM-PBSA
method always outperforms MM-GBSA method. In MM-PB(GB)SA methods,
MD- or MC-derived conformational ensembles are used to compute the “average”
free energy of a state and this is approximated as follows:

(G) = (Emm) + (Gppsajcesa) — T(Smm) (5)

where the angular bracket <> indicates average over the MD/MC conformations,
Env is the molecular mechanics energy that typically includes bond, angle, torsion,
van der Waals, and electrostatic terms (see Egs. 7c and 7d) and is evaluated with no
or extremely large (virtually infinite) non-bonded cut-off limit. The second term is
solved as mentioned in the preceding stanza and it forms the crux of this method.
The last term T <Syv>, is the solute entropy, which is estimated by quasi-harmonic
analysis [72, 73] of the trajectory or by normal mode analysis [74-76].

The following equation (Eq. 6) shows how the binding free energy is computed
from the energies of the ligand, protein, and its complex over all the MD or MC
snapshots. However, the snapshots can be obtained in two possible ways—one is
called the single trajectory approach and other is the multiple trajectory approach.
In the single trajectory approach, only the protein—ligand complex is simulated, and
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the snapshots for the protein, ligand and the complex are extracted by defining
appropriate atom numbers from the parameter and coordinate file. However, in the
multiple trajectory approach, three separate simulations are performed, one each for
the protein, ligand and protein—ligand complex.

(AGbind > = <Gcomplex > - ( <Gpr0tein > - < Gligand > ) (6)

Furthermore, Eq. 1 is modified to accommodate solvation electrostatics and
hydrophobic terms as shown in Eq. 5. Here, Eqs. 7a—7d give the computation of
the individual terms,

AGuing = AEsyt +AGt — TAS (7a)
AGg1 = AGgoi—clect + AGronpolar (7b)
AEmm = AEin + AEcleet + AEvaw (7c)
AEin; = AEyong + AEangie + AEiorsion (7d)

Here, AEypy is computed in the gas phase using classical force fields, AGg; is
computed using PBSA or GBSA method, AGg)clect 1S computed using PB or the
GB method, and the AGponpolar is computed by the solvent accessible surface area
(SA). While employing the single trajectory approach, Eq. 7d generally cancels out
and hence makes negligible contribution to the binding energy.

Linear Interaction Energy (LIE)

Linear interaction energy [77-79] is similar to the MM-PB/GB-SA method with
regard to the partitioning of the electrostatic and van der Waals terms (polar and
non-polar contribution, respectively,); however, the use of the weighting parameter
for electrostatic and van der Waals interactions, is unique to this method. LIE
measures the binding energy by estimating the difference in the interaction energies
of the ligand in the solvent (unbound state) and in the protein environment (bound
state). Hence, to obtain these interactions, two separate MD simulations are per-
formed. In one simulation, only the ligand is placed in the solvent (mostly water) and
in the other, the protein—ligand complex is placed in the solvent. The formulation of
this method is based on deriving the linear response approximation from converged
ensemble interactions, most often extracted from well-equilibrated trajectories from
the MD simulation of the ligand with its surroundings (solvent or protein).

The mathematical formula for computing free energies using LIE method is
given in Eq. 8

AGping = “[<Egoles>pL_<E&t;ﬂS>L] + ﬁ[<E\];(;\’\S’>PL_<E5(;\’\S’>L] (8)
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where the angular bracket <> indicates ensemble over the MD trajectory, EL S and
ELS are electrostatic and van der Waals interactions between the ligand and its
medium in the vicinity (PL—protein—ligand complex; L—ligand in solvent), and o
is the weighting parameter for electrostatic interactions, which is most often set to
0.5 [78]. This value is assumed due to the linear response of the surroundings to the
electrostatic field and was validated using more extensive computations on the ions
(Na* and Ca*") in water [80]. f8 is the weighting parameter for van der Waals
interactions and is set to 0.16—0.18 [81], which is a subject of much debate owing
to the difficulty in estimating the vdW’s contribution to the free energy of binding.
However, these values are obtained by empirical fitting the experimental binding
free energies. Moreover, the linear response of the vdW term is assumed by
observing the linear trend in the interaction of the hydrocarbons with the solvent
(water) that depends on the number of carbons in a hydrocarbon.

2.3.2 Non-partitioning-Based Methods

In non-partitioning methods, there is no partitioning of the free energy into various
components. Statistical mechanics plays a crucial role in deriving the relationship
between the free energy of a system and the ensemble average of the Hamiltonian
that describes the system. These methods are far more accurate than the previously
mentioned end-state free energy methods, but at the same time, are computationally
very demanding. Hence, while dealing with a large dataset of molecules against a
particular protein target, it is worthwhile to screen the molecules using a fast
method like high-throughput virtual screening [82, 83], followed by a flexible
docking-based screening, then use an end-state free energy method, and finally
employ the non-partitioning methods to study few tens of molecules. Here, we will
present a brief discussion on FEP and TI methods along with their mathematical
treatment, and then move on to explain the idea behind alchemical free energy
predictions.

Free Energy Perturbation (FEP) and Thermodynamic Integration (TT)
Most of the methods for free energy calculations are generally formulated in terms
of estimating the relative free energy differences, AG, between two equilibrium
states, or binding of two similar ligands to a common target. The free energy
difference between the two states I and II can be formally obtained by Zwanzig’s
formula [84, 85].

AG = G[] - G] = ﬁ71 In 6%7ﬁAv> (9)

Here, f = (kgT)""
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This represents a sampling of the differences in potentials (AV) of the two states
using Monte Carlo or molecular dynamics simulation over the potential of state I.
To ensure the convergence of these calculations, it is recommended that the
potentials of the two systems should thermodynamically overlap. For satisfying this
condition, correct conformations must be selected, which is a daunting task, and
hence, to achieve this, a multistep process is usually implemented. A path between
the states I and II is defined by introducing a set of intermediate potential energy
functions that are constructed as linear combinations of the initial (I) and final
(IT) state potentials and these intermediate states are non-physical states (Eq. 10).

Vi = (1 = 2n)Vi = 4nVin (10)

where the transition from one state to another is discretized into many points
(m = 1,...,n), each represented by a separate potential energy function that corre-
sponds to a given value of A, such that 4,, varies from O to 1. Here, zero indicates
the pure initial state of the system and one indicates pure final state of the system.
The total free energy, thus, can be obtained by summing over the intermediate states
along the A variable.

n—1

AG =G — Gy = —f Y Inf 0l (1)
m=1

This approach is known as free energy perturbation (FEP) where A4, = 4,,—1 — 4,5
hence, it can be written as

n—1
AG =" In(elFAvamly (12)

m=1

Since the potential difference can also be described as the derivative of the
potential with respect to 4,,, Eq. 12 can also be written as,

n—1
AG = —f1 Y In(elFTAm)

m=1

(13)

m

Now, expansion of the Eq. 13 by the Taylor expansion series gives Eq. 14,

n—1 i
AG = Z@[fﬁzﬁwb

m=1

(14)

m

wherein 0 — / can instead be written as an integral over A

86 = (870 ) (15)
[
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Equation 15 is usually referred to as the thermodynamic integration (TT) method
for calculating the free energy change [86, 87]. In the early days of free energy
simulations, the TI approach was synonymous with the slow-growth method [88].
In the slow-growth method, the value of 4 is changed at each time step during the
MD simulation. While this method was claimed to be more efficient than the
discrete FEP formulation, nowadays, a “non-continuous” change in 4 is a better
choice (50-100 discrete points are usually recommended). This facilitates equili-
bration at each point, the addition of extra points at any time, and use of any pattern
of spacing between the A-points, to optimize the efficiency.

Alchemical Free Energy Perturbation

Here, the free energy is computed by transforming a molecule from one state
(bound-solvated) to another state (unbound-solvated) through several physically
unrealistic states, that are called as alchemical states, hence the name “Alchemical
Free energy” [89, 90]. This method is regarded as one of the apt methods to study

B
-\ i \ Core
Water Core AG 1 Water
AG, AG,
v \
p— — ,’___,—f'“ —
/ \ -
Protein '

v

Core ﬁGq

Water

Water

Fig. 2 Thermodynamics cycle for computing alchemical free energy binding. Image reproduced
from Wang et al. [91] [open-access article distributed under the terms of the Creative Commons
Attribution License (CC BY)]
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the effect of mutations on the drug binding affinity (Fig. 2). The total free energy
change in a thermodynamic cycle in any alchemical transformation is equal to zero.

AG1 — AG4 — (AGQ — AG3) =0 (163)

AG| — AG, = AG, — AGs (16b)

3 Application of Computational Methods to Understand
Drug-Resistant Mutations

3.1 Computational Mutation Scanning

Computational mutation scanning [92] is a useful method to explore the sensitivity
to changes in the composition of the amino acid in a protein-binding site (Fig. 3). In
computational mutation scanning, the wild-type amino acid residue is mutated to
another amino acid in the binding pocket or elsewhere. However, the most widely
practised method is to mutate any amino acid residue to an alanine, since it is the
simplest amino acid with a side chain (not glycine because it is devoid of a side
chain). Hence, this method is equivalent to the experimental “alanine-scanning
mutagenesis”’, which is a powerful tool to investigate and confirm the important
interactions in the protein—protein interface and protein—ligand interactions. In
computational alanine scanning, all atoms from the Cg carbon atom of the amino
acid under study are replaced by three hydrogen atoms to convert it to an alanine.
After the mutation, the change in the binding energy is estimated either using
docking with an appropriate scoring function or by MM-PBSA or MM-GBSA to
compute AAG (Eq. 17¢). By scanning with alanine at various positions in the
binding cavity, important residues can be identified, as mutating an important
amino acid will drastically decrease the binding energy.

AGE}Y&d = AGggﬂalex - AG?’evcig)tor - AG“gand (1721)
AG%/llrlllcti = AGI&:glrlrgplex - AGi\ggépmr - AGlig‘dﬂd (17b)

complex complex receptor receptor

(17¢)

AAG = AGYs — G = |AGY o, — AGNI,| — [AGN, ., — AGYS, .|

In the context of predicting drug-resistant mutations, one must perform alanine
scanning in the binding site on two complexes, i.e. with the substrate bound complex
and the inhibitor-bound complex. The change in the binding energy after mutation is
computed for both the systems, viz., for inhibitor and the substrate. A decrease in the
binding affinity for the inhibitor with negligible or no change in the binding affinity
for the substrate indicates a hotspot amenable to resistant mutation, these spots are
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Fig. 3 Thermodynamic cycle for computing free energy change between mutated and wild-type
protein

termed as “mutational hotspots”. The method follows the substrate-envelope
hypothesis [93-95], which states that there is a large fitness cost that needs to be paid
if one mutates an amino acid residue that is involved in substrate binding. Mutating
such amino acids could lead to impaired enzyme function resulting in the death of an
organism. This can be put to appropriate use by developing inhibitors that com-
pletely overlap in the substrate binding region, leading to a lower predisposition
towards developing drug resistance [96-99].
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However, a major drawback in alanine scanning is that when mutating a large
amino acid residue to alanine one can only study the effect of decreasing the side
chain or loss of charged groups in the binding site. It is difficult to understand the
resistant mutation, wherein there is a change in charged amino acid residue, for
example, arginine replacing aspartate or a large amino acid replaces a small amino
acid residue. Nevertheless, computational alanine scanning has been successfully
used to predict mutational hotspots.

Hao et al. [100] reported a modification of computational alanine scanning
(CAS), named computational mutation scanning (CMS) to study drug resistance in
six HIV-1 protease inhibitors. This protocol is an improvised version of the clas-
sical CAS that enables a geometry optimization step and incorporates entropy
calculations by means of normal model analysis. Using a single trajectory approach
and modifying the standard MM-PBSA protocol, to allow for mutations with other
amino acid residues, they computed the change in the binding affinities (AAG) of 77
drug-mutant combinations (includes single and double mutants). They obtained
promising results with ~83% consistency with the experimental observations,
demonstrating that the prowess of the method lies in identifying the binding hot-
spots. However, Hao et al., do not report the change in the binding affinity for
various substrates, from which they could have investigated the substrate-envelope
hypothesis for the HIV-1 protease. This could have led to interesting findings
facilitating our understanding about those mutations that would lead to a decrease in
the enzyme function, either leading to the death of the organism or compelling a
compensatory mutation to counter the lethal effects of any mutation. This infor-
mation can be used to unravel the role and need for double, triple or even multiple
mutations.

Tse and Verkhivker [101] used CAS along with residue interaction network to
elucidate the effects of inhibitor binding on the network of residues in ABL kinase.
They showed the utility of this combination in deducing the critical networks of
amino acid residues and the changes that follow upon inhibitor binding, using a
selective kinase inhibitor (nilotinib) and two promiscuous (bosutinib and dasatinib)
kinase inhibitors. The changes in the interaction networks in the enzyme holds key
hints to unravel the mystery of how drug-resistant mutations are seen for ABL
kinase inhibitors. Moreover, the mutations that occur far from the binding site can
also be explained, since a mutation far off from the site can affect drug binding
through a cascade of events that eventually percolate into the binding site through
the changes in the residue interaction network. CAS followed by MM-PBSA added
the energetic component to locate the hotspots that could lead to drug resistance in
the kinase inhibitors

3.2 MM-PB(GB)-SA

MM-GBSA or MM-PBSA are two widely used free energy methods employed to
understand the effects of mutations on the drug binding affinity, moreover, these
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methods are successful in predicting likely mutations leading to drug resistance.
These methods are able to predict due to their amenability to decompose the free
energy into its components at the residue level that leads to better understanding of
the effect of mutations on drug binding. Lethal effects of the V82F/I84V double
mutation in HIV-1 protease on amprenavir were demonstrated using MM-PBSA
approach on snapshots obtained from the well-equilibrated protein—ligand complex
[102]. It was reported that amprenavir lost its binding affinity due to distortions in
the binding site, hence weakening many favourable interactions (AAG = 3.73 kcal/
mol). Such a distortion of the binding site was previously observed and attributed to
the rapid flap movements seen in this double mutant which is absent in the
wild-type HIV-1 protease [103]. Furthermore, newer inhibitors, that are very close
structural analogues of amprenavir, like TMC126 (AAG = 2.01 kcal/mol) and
TMCI114 (darunavir, AAG = 3.45 kcal/mol) were also seen to be affected by these
mutations, though to a lesser extent than amprenavir. Despite structural distortions
in the binding site, it had no effect on the substrate binding, and hence, the catalytic
process was unhindered.

Hou et al. [104] combined MM-GBSA with the positional variability approach,
to modify Kollman’s FV value [105] to give a new scoring function also called FV
(Free energy/Variability) score. Using the FV score, they evaluated the binding of
six substrates that are hydrolysed by HIV-1 protease and confirmed Kollman’s
[105] observation that drug-resistant mutations are more likely to occur at less
conserved regions. The FV score reported by Hou et al. comprises two components,
one that reflects the binding energetics at the per-residue level, obtained by
MM-GBSA, and the second component is the sequence variability that represents
the conservation of amino acids at each position. Using this score, one can identify
amino acid residues that are crucial for substrate and inhibitor binding, and thus
classify the residues that are exclusively involved in substrate binding and those
that are exclusive for inhibitor binding. Such a classification when coupled with the
positional variability of amino acid residues can extract those positions with low
conservation and exclusivity for inhibitor binding; such positions are highly
amenable to mutations leading to drug resistance. Employing this method Hou et al.
confirmed their previous observation [102] that the V82F/I84V double mutations
are lethal for many FDA approved HIV-1 protease inhibitors, whereas TMC126 is
still active against this mutant.

3.3 Vitality Analysis

One of the primary drawbacks of the aforementioned methods to predict
drug-resistant mutations is their inability to accurately estimate the binding affinity
for the substrate molecule(s). The fitness cost of the mutation can be estimated by
gauging the change in the binding affinity of the substrate to its enzyme target; any
perturbation in the substrate binding is likely to affect the function of the enzyme.
Therefore, computing the catalytic efficiency of the enzyme before and after
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mutation will enable us to understand the fitness cost. Pioneering work in this line
was done by Gulnik et al. [1]. In this work, they have determined the catalytic
efficiency (Eq. 18a) of HIV-1 protease following few active and non-active site
mutations. This principle was incorporated in terms of free energy change by
Warshel et al., and they employed this method (Eq. 18b) to computationally predict
the likely mutations that could potentially abolish drug binding leading to drug
resistance. This method is aptly named as “Vitality approach” wherein higher
vitality values indicate that the resistance is more likely as there is little chance of
increase in the catalytic efficiency of the enzyme. The basic workflow adopted by
Warshel et al. [106, 107] is to estimate the change in the drug binding before and
after mutation, depicted in the first part of Eq. 18b and then estimate the catalytic
efficiency by determining the binding of the substrate by modelling the transition
state (TS) conformation of the enzyme, depicted in the second part of Eq. 18b.
However, the challenge of employing this method to predict likely mutations is that
a thorough knowledge of the catalytic mechanism of the enzyme is essential.
Nonetheless, this method is far more accurate and truly predictive in nature. This is
exemplified by the fact that Warshel et al. successfully used this method on six
clinical agents active against HIV-1 protease.

&)
Vitality value = % (18a)
(ﬁ) WT
} 1
In i o o (BAGLY (drug) — AAGYY(TS)) (18b)

where K; = inhibition constant; k., = constant that defines the turnover rate of an
enzyme-substrate complex to the product; K, = Michaelis constant.

4 Concluding Remarks

This chapter describes important computational methods that have been proven
extremely helpful in gaining insights into mutations leading to drug resistance. We
have attempted to introduce methods used to compute the free energy of binding
along with their mathematical formulations, practical implementation and pros and
cons of such methods. Finally, we have discussed a few applications of such
methods to study drug resistance.
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Abstract Computational design of molecules with desired properties has become
indispensable in many areas of research, particularly in the pharmaceutical industry
and academia. Pharmacophore is one of the essential state-of-the-art techniques
widely used in various ways in the computer-aided drug design projects. The
pharmacophore modelling approaches have been an important part of many drug
discovery strategies due to its simple yet diverse usage. It has been extensively
applied for virtual screening, lead optimization, target identification, toxicity pre-
diction and de novo lead design and has a huge scope for application in
fragment-based drug design and lead design targeting protein—protein interaction
interfaces and target-based classification of chemical space. In this chapter, we have
briefly discussed the basic concepts and methods of generation of pharmacophore
models. The diverse applications of the pharmacophore approaches have been
discussed using number of case studies. We conclude with the limitations of the
approaches and its wide scope for the future application depending on the research
problem and the type of initial data available.
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HHCPF Hexadecahydro-1H-Cyclopenta[a]Phenanthrene Framework
HTS High-throughput screening

MD Molecular dynamics

Mtb Mycobacterium tuberculosis

QSAR  Quantitative structure-activity relationship
TB Tuberculosis

1 Introduction

Rational drug discovery is highly interdisciplinary and is one of the outstanding
challenges, besides being highly arduous and expensive. The process of designing
new medications requires investment of roughly 14 years [1] of time and cost as
high as 1 billion USD [2]. Along with rapidly evolving HTS [3] and combinatorial
chemistry technologies, computer-aided drug design (CADD) strategies are also
effectively contributing to accelerate and economize the process of drug develop-
ment [4-6]. A broad range of CADD applications are employed at almost all early
stages of the drug discovery pipelines, starting from target identification, target
structure prediction, screening of initial hits to prioritization and optimization of
leads and understanding their structure-property relationships [7, 8]. We have been
working in state-of-the-art CADD techniques such as homology modelling [9],
molecular dynamics simulations [10-12], QSAR [13-15], molecular docking [16],
pharmacophore modelling [17], virtual screening [18, 19] and cheminformatics [20]
since more than a decade. One of the fundamental applications of cheminformatics
is to develop programmes that store, manage and retrieve molecular structures in
various formats, their calculated/experimental properties and bioactivities.
Cheminformatics also involves computing molecular fingerprints and descriptors
based on the molecular structures that label a physicochemical property and can be
used as screening filters [21, 22]. These molecular descriptors of known active
molecules can also be used to develop quantitative structure-activity/property
relationship (QSAR/QSPR) models to predict the inhibitory activity or toxicity of
novel compounds and preliminarily profile them in silico without performing
expensive in vitro and in vivo assays [23-26]. Docking and simulations predict the
three-dimensional binding mode of a given molecule in the binding site of a
macromolecular receptor (protein/DNA), and their affinity is quantitatively assessed
by a docking score. This technique has not only been proved enormously useful to
study receptor-ligand interactions but also is used as a popular tool to virtually
screen compound libraries to obtain a hit or to identify the target for a molecule by
reverse engineering [27-29]. A large number of studies from our group have
focused on application of these techniques to a plethora of drug targets such as
phosphodiesterases [14], kinases [12, 30], HIV proteases [10, 13] and reverse
transcriptase [31] and Mtb cyclopropane synthases [11, 17, 18]. We have also
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initiated development of a disease (tuberculosis) specific Web portal, integrating all
these techniques, which will be of tremendous help for researches working in the
field of Mtb drug discovery [32].

Pharmacophore modelling is one of the enormously useful sub-areas of CADD
with diverse structure and ligand-based applications [33, 34]. Like docking, one of
the basic applications of pharmacophore models is virtual screening, but at a much
faster speed as compared to docking [33]. This approach can also be implemented
complementarily with docking and QSAR studies [18, 20]. Many studies use
pharmacophore models for target/off-target identification as well [35, 36]. In this
chapter, we basically focus on the in silico representation of the concept and the
varieties of ways of application of pharmacophore models in drug discovery projects.

2 The Concept of Pharmacophore

The term ‘pharmacophore’ has gained immense popularity in the field of medicinal
chemistry paralleled with computer-aided structure-activity relationship studies. In
1909, Ehrlich gave an introductory definition of pharmacophore [37, 38], by
combining the words ‘phoros’ meaning carrying and ‘pharmacon’ meaning drug.
Hence, a pharmacophore is ‘the molecular framework carrying the crucial features
accountable for a drug’s biological activity’. Since then, many groups have
attributed various definitions and meanings to this term based on their scientific
background and research view. IUPAC has officially defined a pharmacophore
model as [39]

An ensemble of steric and electronic features that is necessary to ensure the optimal
supramolecular interactions with a specific biological target and to trigger (or block) its
biological response.

However, a century’s research and development has expanded its circumstantial
meaning and application considerably. Due to their simple way of capturing and
representing the chemical features of compounds, pharmacophore models have
drawn the attention of the medicinal chemistry community in last few years as a
tool to screen the cig (chemistry) data [40]. Upon administration, when a drug/small
molecule enters the human body, it comes across thousands of proteins (receptors,
transporters, carriers, plasma proteins, etc.) to potentially interact with. But it
chooses to bind to only those proteins (targets) where the protein’s active site and
drug have compatible shape/size and the protein—drug interactions are energetically
favourable. Similarly, size/volume/shape and the chemical features of the residues
lining the binding pocket determine which type of small molecules it is able to bind.
Hence, the right size, correct shape and complementary chemical features are the
key factors for the protein—drug recognition to instigate a biological effect. The
central concept of pharmacophore is based on the perception that the molecular
interaction pattern of a group of compounds with their biological target can be
credited to a small set of common features complementary to the chemical features
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present in the target’s binding pocket. The general features include hydrogen-bond
(HB) donors, HB acceptors, charged groups (positive and negative), hydrophobic
sites and aromatic rings, which are used as chemical features in pharmacophore
models by most of the programmes. Some programmes define a few additional
features such as ‘exclusion volumes’ representing steric constraints. These features
generally replicate the steric environment of the binding pocket to avoid clashes of
the mapped of compounds with the protein surface. Pharmacophore models com-
prises distinct spatial arrangement of these features that denotes the chemical
functionalities of active small molecules. Instead of real atoms/functional groups, a
pharmacophore model emphasizes the chemical features of ligands/protein—ligand
complexes, making it a better and fast tool to recognize molecular similarities.

3 A Typical Pharmacophore Model: Representation
of Pharmacophoric Features

According to the definition, a pharmacophore model represents the binding patterns
of bioactive molecules with the target binding site, by virtue of a distinct 3D
arrangement of abstract interaction features accounting for different types of
non-covalent interactions. These interaction types can be HB formation, columbic
interactions, metal interactions, hydrophobic contacts, aromatic stacking or charge
transfer interactions. Overall, a pharmacophore model characterizes a common
binding mode of diverse ligands with a specific target. In pharmacophore mod-
elling, the molecules are first segregated into a set of features, each representing a
certain type of interaction with the binding site residues. Then, each feature is
represented by points to be used for superimposition (least-squares fitting) of
molecules with each other. Here we will be discussing features employed by most
of the popular programmes [41-45].

HB donor (D): Hydroxyl groups, hydrogens bound to nitrogen, acetylenic CH
groups and thiols (SH) are normally denoted as donors. However, the -CH and —SH
groups are considered relatively weaker donors. Sometimes, along with acetylenes,
other types of —CH such as the ones in nitrogen heterocycles of some kinase
inhibitors are considered as donors. Keeping protonation in mind, basic amines
such as RCH,N(Me), are considered as donors. Tautomeric and ionized states
severely influence pharmacophore feature definition because they may amend the
characteristic of a feature. Hence, molecules should be presented to the pharma-
cophore elucidation programmes in all possible protonation/ionization states.

HB acceptor (A): Generally, atoms with available lone pairs of electrons such as
N, O, S are treated as acceptors. However, some programmes do not consider
oxygen atoms present in furan/oxazole rings, as they are very weak acceptors
according to theoretical and crystallographic evidence.
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Along with defining the HB features, it is very essential to fix the positions of the
complementary feature points to be overlapped in the resulting pharmacophore.
That is why the pharmacophore modelling programmes link donor and acceptor
features with the equivalent ligand atoms as well as the supposed locations of the
corresponding complementary receptor atoms involved in the interaction.

Positive and negative features (P and N): In the molecules, atoms bearing formal
charges are considered as positive or negative features provided they are not part of
a dipole. Groups possessing net formal charges are also considered as positive/
negative features. Centroid of the heteroatoms of a group is the region, where the
positive/negative charged features are generally placed. Sometimes the positive and
negative features are emphasized specifically based on their ionizability. For
example, R-NH5" is measured as positively ionizable feature, but R—-N(Me)3 is not
as the interactions made by these two groups are significantly different.

Hydrophobic features (H): Choosing atoms/groups that should be measured as
hydrophobic is neither easy nor straightforward. The most commonly used algo-
rithm developed by Greene et al. [42] first allot a hydrophobicity score to each atom
based on a set of empirical rules defined from medicinal chemists’ perceptions and
then atoms with amply large hydrophobicity values are grouped into clusters. Then
a hydrophobic feature point is placed at the centroid of each such cluster. The order
of hydrophobicity score is roughly rings/ring atoms > groups like —CF; > alkyl
chains. Some simple algorithms [44] consider all non-donors/non-acceptor/
non-charged atoms as steric groups (equivalent of hydrophobic groups), which
also yield a depiction of molecular shape.

Aromatic rings (R): Aromatic rings are treated as a special type of hydrophobic
feature represented by vectors instead of points so as to mimic the directionality of
interactions like m—m stacking and cation-m interactions. Figure 1 shows an
example of a typical pharmacophore model.

e

" ‘,( -
w
Conformations of SAM and SAHC obtained Ligand based e-Pharmacophore

from MD Simulations

Fig. 1 An example of a pharmacophore model, generated from the conformations of S-adenosyl
methionine (SAM) and S-adenosyl homocysteine (SAHC) [17] with Phase programme. Colour
codes for the pharmacophoric features are as follows. Cyan: D, pink: A, red: N, blue: P, green: H
and orange: R
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Most recent pharmacophore modelling programmes define additional steric
constraints features. These are called exclusion volumes (XVols), representing the
steric effect of the binding pocket [46]. These features are required to avoid the
clashes of the molecule with the protein surface while mapping. Feature generation
not only facilitates the molecules to be aligned in an easy and rational way, but also
can be used in scoring. The root mean square deviation (RMSD) between matched
features gives quantitative account of the extent of overlay, which is often used as a
fitness score [40]. Hence, the placement of feature points should be accurate, and
one needs to be careful while deciding whether to consider all possible features or
to choose few of them giving adequate information about the spatial orientation of a
group of molecules. For example, sometimes there are huge number of hydrophobic
features as compared to other features, which may bias the alignment and give a
model with good score, but the model will be useless due to lack of specificity.

4 Evolution of the ‘Pharmacophore’ Concept:
Historical Perspective

Paul Ehrlich first used the concept of pharmacophore in the end of nineteenth
century, when he revealed the selective binding of methylene blue to nerve fibres.
This realization ushered the beginning of pharmacophore concept as ‘a molecular
framework that carries (phoros) the essential features responsible for a drug’s
(pharmacon) biological activity’ [37, 38]. Based on this idea, Ehrlich improved the
chemical structure of several compounds to yield efficacious drugs against syphilis
(under the trade name Salvarsan), trypanosome and spirochete infections [37, 38],
which made him win the Nobel prize in 1908 sharing with Ilya Metchnikoff.
Although Ehrlich’s early definition of pharmacophore is almost unchanged for over
a century, Schueler proposed the first modern definition in his book
‘Chemobiodynamics and Drug Design’ in 1960 [47], where the ‘chemical groups’
were replaced by patterns of ‘abstract features’. Beckett and co-workers [48] pro-
posed the first pharmacophore model of muscarinic agents in 1963 that identified
distance ranges between abstract features, and later in 1967, Kier developed the first
‘computed’ pharmacophore model for muscarinic receptor inhibitor binding pattern
[49-51]. Simple pharmacophores were in application as tools for designing new
drug molecules much before the dawn of a well-defined field like computer-aided
drug design. In the 1940s, preliminary structure-activity relationship models were
computed based on simple two-dimensional model structures utilizing the acces-
sible information of the van der Waals sizes and bond lengths [52]. Eventually, in
the 1960s, three-dimensional models could be built with the convenience of X-ray
and conformational analysis techniques. Medicinal chemists could classify some
common molecular frameworks that attributed to high biological activity more
often as compared to other structures by retrospectively analysing the chemical
structures of the various drugs. Evans et al. [52] named such frameworks as
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‘privileged structures’, which offer the basic scaffold and the substituents at dif-
ferent positions impart receptor  specificity. Dihydropyridines  [53],
Arylethylamines, N-arylpiperazines, diphenylmethane derivatives, biphenyls and
pyridazines [52, 53], tricyclic psychotropics and sulphonamides, benzodiazepines
[54] are among some popular examples of the privileged structures. Woods and
Fildes [55] found that p-aminobenzoic acid (PABA) and p-aminobenzenesulpho-
namide have similar critical distances; hence, bind to the PABA target with similar
efficacy and inhibits the biosynthesis of tetrahydrofolic acid. This was one of the
examples of the early two-dimensional pharmacophore models. An early 3D
pharmacophoric approach was the ‘three-point contact model’ proposed by Easson
and Stedman [56] and Beckett [48] in the case of (R)-(—)-adrenaline [= (R)-(—)-
epinephrine]. These models are based on a concept that when a chiral centre is
present in a compound, the substituents on this asymmetric atom make three-point
contacts with the binding pocket of the receptor, which can only be obtained for one
of the two isomers of epinephrine (the more active natural (R)-(—)-epinephrine).
Similarly, another three-dimensional approach was developed in the early 1970s,
characterizing the activity of clonidine on the central norepinephrine receptor [57].
It was observed that the natural ligand norepinephrine fits into the binding pocket of
its target by three main interactions [57], viz. ionic bond between an anion (car-
boxylate, phosphate) of the binding pocket and the protonated -NH, functional
group, a HB between the NH-CO group of the binding site and the secondary
alcoholic hydroxyl and a m-stacking between the protonated imidazole of a histidine
residue of the binding pocket and the aromatic ring of the drug. It was also rec-
ognized that the cationic head must be light and the phenolic -OH groups are not
important for the biological activity. Pullmann et al. [58] in their 3D pharma-
cophore model of the norepinephrine receptor computed the critical intramolecular
distances for the above key interactions which could successfully explain the
pharmacophoric similarity between clonidine and norepinephrine, which in
turn enables clonidine to make the same kind of interactions as norepinephrine.

Beckett:

Gilman & Pickens:  pharmacophore Kier:

Ehrlich: Ehrlich: First Uu of the patternrecognition  piree “comouted®
e Chemotherapy_ond pasedon  Pharmacophore Model

Mﬁm' | m ﬂmﬂnhmt w Conformations of
parts/chemical = muscarinic agents and
groups of a P"“"W"""‘ compared to extract

molecule Aar h fm ‘ distance ranges

responsible for in Patents ""“‘ distance between atomic

binding centers. WWHE.EAI

May: Far ane Doy Schueler: Korolkovas: Marshall:

hfermd ro the 2

of the girlogyof - chelergsd e befintionof ‘modern  Amextensve  First Autonated Depictionof

molecule (Atrapine) ':g" “separate” re collection of receptor Pharmacophores for active

inducing biological Pha h haptophore and as a pattern of topographies coveri molecules with a commen

effecta rmacophares o rmacophore | Gbstract chemical " about 15 different”  binding mode, calculated
3 groups for features in space ‘therapeutic from sets of aligned
trypanocidal categories. conformations for flexible
activity Arseno ligands

compounds

Fig. 2 Schematic presentation of timeline showing early developments in the field of
pharmacophore modelling
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These are some early efforts to explain pharmacophoric patterns that could act as
key features for the design of new chemical entities. Figure 2 shows few early
milestones in the field of emergence of pharmacophore modelling.

Nevertheless, in recent years, many effective pharmacophore modelling
approaches and their contributions to drug discovery have been reported [59]. With
the help of pharmacophoric insights and 3D searching tools, computer-aided drug
design efforts are swiftly gaining efficiency since the 1990s. Still, this approach
encounters many challenges that restrict its success. Pharmacophore approaches
have been widely used in virtual screening, de novo ligand design, lead opti-
mization and multi-target drug design. A range of automated pharmacophore
modelling and screening tools have constantly appeared after the computational
chemistry revolution witnessed in the past couple of decades [60]. Today, phar-
macophore screening is one of the apt choices for researchers working in drug
discovery and design.

S Pharmacophore Model Generation

Pharmacophore models are typically generated either from a group of ligands, by
aligning them and taking out the common interaction features indispensable for
their biological activity. On the other hand, they can be constructed in a
structure-based way, by probing probable interaction points in the receptor binding
pocket, provided the 3D structure of the receptor is reported. The pharmacophore
models can also be generated from a receptor—ligand complex by identifying the
key interactions between the receptor and ligands.

5.1 Ligand-Based Pharmacophore Model Generation

Ligand-based pharmacophore modelling approach is used as a key strategy for
facilitating screening compound databases when there is no three-dimensional
structures are available for the target or receptor, but structure of a set of potent
inhibitors are available. These active molecules are superimposed, and common
pharmacophoric features representing crucial interactions between the ligands and
the common target of these molecules are identified. Firstly, a conformational space
of each of the active ligands is created corresponding to the flexibility of ligands,
followed by their alignment and determination of the important common chemical
features required for the creation of pharmacophore models. Currently, various
automated pharmacophore generators are in use such as Phase [46] (Schrodinger
Inc., http://www.schrodinger.com), HypoGen [61], HipHop [61] (Accelrys Inc.,
http://www.accelrys.com), GASP [62], DISCO [63], GALAHAD [64] (Tripos Inc.,
http://www.tripos.com) and MOE (Chemical Computing Group, http://www.
chemcomp.com) [65]. Several academic programmes [40, 60, 66—68] are also
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popularly being used. The key differences among these tools are mostly in the
algorithms that are implemented for conformational search and alignment. This
chapter is about the general steps followed by most of the programmes to recognize
a pharmacophore pattern from a group of molecules that interact with a common
receptor and the diverse applications of the pharmacophore concept.

5.1.1 Picking the Right Set of Compounds and Their Initial Structures

As the resulting pharmacophore models are highly inclined by the type, size and
structural diversity of the participating ligands, it is imperative to choose the set of
ligands that take part in the process of pharmacophore model generation. Some
programmes like RAPID [69], HipHop [61] and the Crandell Smith method [70]
assume all the compounds in the set as active, some other methods consider the
information on the inactive molecules to be important as they give an idea about the
structural features responsible for reducing the activities and the ones essential for
enhancing activity. For example, DISCO [62, 71] and CLEW [72] provide an
option to include or exclude inactive molecules in generating a model so that the
user can identify the distinguishing features, while HypoGen [61] provides an
option for including activity ranges of the set of ligands. As far as size of the dataset
is concerned, most of the programmes are capable of handling up to 100 ligands in
a set. If the dataset contains large number of molecules, then it can be sorted and
categorized based on the activity value ranges. However, some programmes like
SCAMPI [73] can handle up to a few thousand molecules but compromising the
quality of the models. The high structural diversity of the dataset also is important
to identify features that are most essential for target binding and produce
high-quality models. Correct compound structures with correct atomic valencies,
bond orders and properly defined aromaticity and the appropriate stereochemical
flags are crucial for model generation.

5.1.2 Conformational Search

Ligands being flexible may have multiple possible conformations, and each con-
formation may bind to the binding site of the target in a particular fashion. Thus, it
is crucial to consider the flexibilities of each molecule during pharmacophore
development. Conformational search is considered as a separate stage in most of the
pharmacophore modelling programmes like HipHop, DISCO and RAPID, where a
large number of conformations are generated for each ligand. Systematic search,
Monte Carlo sampling and molecular dynamics are the methods of choice for most
of the software for conformation generation. As, the number of all possible con-
formers for molecules (especially when they have complex structures with a large
number of rotatable bonds) is too large to handle and incorporate in the pharma-
cophore model building, energy minimization and clustering methods are used to
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reduce the conformational space. The conformers with lowest energy or repre-
sentatives from clusters of similar conformers are chosen to take part in model
generation. In some other software, conformational search is parallelly performed
along with pattern identification by retaining the conformers that possess certain
features in a particular spatial arrangement. GASP [63] and GAMMA [74] use such
an approach by the genetic algorithm (GA) techniques.

5.1.3 Feature Extraction and Representation

After conformational search, the molecules are subdivided into a set of features,
each feature having the capability to form a particular type of non-covalent inter-
action with the receptor. There are three main levels of resolution for defining the
features; (i) it may be atom based as implemented in MPHIL [75], GAMMA [74]
and RAPID [69], where 3D atomic position related to the atom type is used as a
feature; (ii) it can be atoms grouped into topological features such as a C = O group
or a phenyl ring; or (iii) it may be function based, where the atoms are assembled
into functional features describing the type of non-bonded interactions with the
receptor. These features are HB acceptor (A), HB donor (D), base (+ve charge pH
7) (P), acid (—ve charge, pH 7) (N), aromatic moieties (rings) (R) and hydrophobic
group (H). We have already discussed these features in Sect. 3 of this chapter. The
third type of feature extraction method is immensely popular and is being used in
many programmes like catalyst [43], Phase [46], HypoGen and HipHop [63].
Different topological features having the same chemical function can fall under
same functional feature category. At the same time, the functional features are
not assigned exclusively for any functional group. For instance, a —OH oxygen can
act as both HB acceptor, a donor and at times may act as negatively charged feature.
Commonly, the functional groups like a negatively/positively charged species, HB
donor and acceptor are represented by their centres, which are nothing but the exact
atom positions. Additionally, HB acceptors and donors are often represented by a
vector that enforces a restriction of bond directionality between the feature on the
binding site of the receptor and the complementary ligand feature. The centre of a
hydrophobic site or an aromatic ring is defined as the centroid of the group.

After extracting the features, depiction of the whole molecule’s structure is
obtained by combining the selected features. These representations are generated
mostly as: (i) 3D point set, where a ligand structure is represented as a group of
categorized points in the 3D space, where each point is linked with a feature, (ii) a
labelled graph, where nodes correspond to the features and the edges correspond to
the relations, or (iii) a set of interpoint distances, where the ligand structure is
represented as a collection of feature points, along with their interpoint distances.
The third type of representation is commonly stored as a n x n distance matrix, n
being the number of atoms.



Pharmacophore Modelling and Screening: Concepts, Recent ... 35
5.1.4 Pattern Identification and Scoring

Once the features extracted for each ligand in the dataset, a pattern is identified as a
set of relative positions in the 3D space, each linked to a feature. If a ligand holds a
set of features in at least one of its conformations, the set of features can be aligned
with the corresponding locations. Most of the methods are based on spatially
overlaying conformations of various compounds with the pharmacophores points
with minimal root mean square alignment errors. One can roughly classify the
alignment methods as either point or property-based. In the first class of algorithms,
pairs of pharmacophoric features are generally aligned using a least-squares fitting
using clique detection methods [76, 77]. According to the graph-theoretical
approach to molecular structures, a clique is a maximum completely connected
sub-graph, which recognizes all imaginable combinations of atoms/functional
groups to find out common substructures for the alignment. Property-based or
field-based algorithms utilize grid or field descriptors, based on molecular prop-
erties such as volume, shape, charge distribution, electron density and electrostatic
potentials of molecules. A 3D grid is generated about a ligand by computing the
interaction energy components between the ligand and a probe placed at each grid
point. Properties are calculated on a grid and later converted to a set of Gaussian
representations. A number of either random or thoroughly sampled initial config-
urations are then generated followed by local optimizations with some similarity
measure of the intermolecular overlap of the Gaussians.

After obtaining the pharmacophore candidates in the previous stages, they are
generally scored and ranked. The basic obligation of a scoring scheme is imple-
mented such that a high score implies higher chance of the ligands mapping to the
pharmacophore model. Despite the great advances, molecular alignment handling
ligand flexibility and proper selection of training set compounds are considered as
the biggest challenges in ligand-based pharmacophore modelling.

5.2 Structure-Based Pharmacophore Model Generation

Structure-based pharmacophore modelling requires the 3D structure of the receptor
or a receptor—ligand complex. The models are generated based on the spatial
relationships of complementary interaction features of the binding pockets followed
by selection and assembly of features to generate pharmacophore models.

5.2.1 Active Site Identification

The input for receptor-based pharmacophore modelling is the three-dimensional
structure of a receptor usually in PDB format. The receptor binding pocket is
identified using a spherical probe with customizable radius and location to include
the binding site as well as the key interacting residues involved with ligands.
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ThereCare several programmes available for detection of clefts, crevices and
binding pockets and to suggest possible active site locations based on the geometry
of the surface [78, 79]. The key residues can be determined by user, deduced from
studying the activity of the protein after mutation of a single residue. If mutation of
a particular residue hampers function of the protein, then that residue may be part of
the active site. Computational analyses such as multiple protein structural alignment
techniques also help in identifying the active site of a protein by comparing it with a
similar protein with known active site.

5.2.2 Complementary Image Construction

The receptor binding pocket is analysed to create an interaction map of features that
the molecule is anticipated to satisfy for a reasonable interaction with the active site.
In other words, a complement of the receptor binding site is created as the basis to
create an input pharmacophore model. In particular, functional features like HB
donors/acceptors and hydrophobic groups are identified in the binding site followed
by rational placement of complementary features within the binding pockets in
chemically acceptable positions [80, 81].

5.2.3 Generation of Queries, Searching and Hit Analysis

Once the active site is defined and chemically characterized, there is no straight-
forward single step to derive pharmacophore models from the binding site
map. Since the receptor binding site has a potential to bind a variety of molecules in
a variety of binding conformations, the interaction map often gives rise to huge
number of features. To address this problem, adjacent features of the same type are
clustered and the feature that lies nearest to the geometric centre of the cluster is
retained as the cluster representative and all the other features are discarded.
Sometimes, the number of the features is still very high even after the clustering,
and all of them cannot be used as a single model because models possessing all
such features would not be able to obtain any hits from the database. So, possible
combinations of limited numbers of features are derived from the interaction map
and multiple pharmacophore modes are composed. And then, these models are used
by programmes like catalyst [43, 82] implemented in Accelrys Discovery Studio to
search the compound database and test the validity of the models (also termed as
pharmacophore ‘queries’ in catalyst) to screen or reject highly active compounds. It
is always necessary to examine these models for how they interact with the binding
site residues and how far the models extend within the binding pocket and if they
fill specificity pockets and make the strongest interactions. Queries describing only
the features present in an inhibitor might end up giving many false positive hits. At
times, they screen compounds that are able to map to all the query features but also
contain a bulky substituent causing steric hinderance and averting the compound
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from fitting into the binding site. That is why inclusion of some excluded volume
features is often recommended which penalizes the molecules’ score if some atoms
or group are placed in positions where they are likely to collide with the active site
atoms.

5.3 Generation of Pharmacophore Models
Jrom the Protein—Ligand Complexes

Protein-ligand complexes produced by X-ray crystallography provide a detailed
picture of the interactions between the ligand and the receptor, showing which
atoms of the ligand are in contact with the receptor along with the atomic coor-
dinates of those atoms. Also, the type of interactions can also be delineated from the
atom types, distances and orientations of the ligand and receptor atoms. The major
interaction that occurs in the receptor—ligand interface is hydrogen bonding. But
other non-covalent interactions such as m—m and cation—7 interactions are also
obviously essential for protein-ligand complex formation apart from the hydrogen
bonding. We have extensively looked at the importance of these interactions and
the cooperativity existing among themselves to maintain supramolecular structures
[83—-86]. This information is of immense importance to establish a pharmacophore
model from the complex. However, one needs to give attention to the facts that
alternative pharmacophore models are possible within a single binding pocket
owing to the flexibilities of both the active site and the ligands which are capable of
rearranging themselves to accommodate different ligands and also there is a pos-
sibility of more than one active sites for a particular receptor. The programmes like
‘LigandScout’ developed by Wolber and Langer [87] and Phase [46] module of
Schrodinger suite generate structure-based pharmacophore models from the pro-
tein—ligand complexes given as an input. We will be discussing the steps of gen-
eration of pharmacophore models from the protein-ligand complexes by the
LigandScout and Phase, where the former characterizes the pharmacophoric fea-
tures using kekule’s patterns and the latter prioritizes the features based on the XP
docking energy components.

5.3.1 Pharmacophore Model Generation with LigandScout

With the LigandScout [87] programme, as a first step, the correct molecular
topology of rings and of hybridization state are assigned to the ligands by analysing
the neighbouring atoms followed by assignment of double bonds and Kekule’s
patterns for functional groups such as carboxylic acids and esters, nitro groups,
sulphonyl groups, thio acids, thio acetic esters guanidine-like groups, acetamidine
and phosphinoyl groups functional groups. Next, the pharmacophoric features
based on the hydrogen bonds, electrostatic interactions, charge transfer or
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hydrophobic interactions between the ligand and the receptor are defined, and
models are generated. Atoms belonging to nonacidic —OH groups (all —OHs
excluding carboxylic, sulphinic, sulphonic, phosphonic or phosphinic acids), —-SH
groups, —C=C- hydrogens and —NHs (barring trifluoromethyl sulphonamide
hydrogens and tetrazoles) are recognized as HB donor atoms. When such an atom is
found in the distance range of 2.5-3.8 A from the heavy atom of a HB acceptor of
the receptor molecule, a donor feature consisting of a donor point on the ligand side
and a projected point on the macromolecule side is created. Atoms like —OH
oxygen, —SH sulphur, -C=C- carbon or -C=N nitrogen are recognized as acceptor
atoms, and an acceptor feature is placed with the initial point positioned on the
acceptor atom and the projected point placed onto the heavy atom of the HB donor
on the receptor within the distance range of 2.5-3.8 A. The electrostatic interaction
is represented as a vector resembling the definition of the H-bond acceptor.
Hydrophobic areas are implemented in the form of spheres with a tolerance radius
of 1.5 A located in the centre of hydrophobic atom chains, branches or groups after
testing a group of adjacent atoms to attain a sufficient overall hydrophobicity score.

5.3.2 e-pharmacophore Model Generation by Phase

The e-pharmacophores method of Phase module [46, 88] of Schrodinger suite is a
new approach that utilizes the grid-based ligand docking with energetics (Glide)
extra precision (XP) scoring function [89] to precisely quantify protein-ligand
interactions. XP scoring function calculates enthalpic contribution of each inter-
acting (pharmacophoric) site of a molecule towards the total score. Thus, each site
gets a score based on the sum of enthalpic terms (such as HB, electrostatic,
cation—m, n—7, hydrophobic and hydrophobically packed/associated HBs and other
interactions) and is ranked. Then the e-pharmacophore models are generated from
the top scoring features. The user can choose the number and type of features
required to build a model. E-pharmacophores also include excluded volumes rep-
resenting the regions of space occupied by the receptor where any portion of the
ligand cannot be accommodated. E-pharmacophores have been shown to screen
diverse set of bioactive molecules as compared to conventional structure-based
methods, making it more useful.

5.4 Dynamic Pharmacophore Model Generation
and Multicopy Simulations

The active sites of the drug targets being very flexible, structure-based pharma-
cophore models derived from a single conformational state of the protein may not
satisfactorily account for all the possible potential drug—target interactions. In this
situation, molecular dynamics simulation has been a very competent method to
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tackle the target flexibility issues in SBDD. Dynamic pharmacophore models rec-
ognize compounds, which complementarily bind to the protein considering flexi-
bility of their binding pockets, theoretically reducing the entropic penalties
experienced by the protein due to ligand binding. MD simulation trajectories would
give rise to multiple conformations of a protein active site, describing the targets’
intrinsic flexibilities. Multiple copy minimization is also a regularly used exercise in
computational drug design. The technique first fills the active sites of the receptors
with multiple copies of probe molecules those do not react among themselves.
Then, molecular dynamics, Monte Carlo/steepest descent minimizations are per-
formed to minimize all these probes parallelly to obtain local minima. When the
probes are clustered in the various regions of the active site in different orientations,
the relative preferences of the binding regions can be estimated from the number of
probes or the interaction energies.

Highly ordered and smaller clusters represent highly crucial prerequisite for
favourable interactions, while the haphazardly spread larger ones indicate highly
flexible sites. The MUSIC algorithm [80, 90] implemented with the BOSS pro-
gramme uses similar strategy. It is capable of performing Monte Carlo simulations
for a wide range of biomolecular systems in solvent clusters and mixtures and
periodic solvent boxes with multiple solutes. It is able to calculate the interaction
energies between solvent—solvent, solvent—solute and solute—solute. Usually, the
probe or solvent are small molecules. For example, hydroxyl groups, aromatic
groups and carbonyl groups are represented by small probes like -CH;0H, C¢Hg
(Benzene) and —CH;CO (acetone), respectively. The probe molecules as well as the
side chains of the receptor can be treated as rigid, partially/fully flexible or all-atom.
The wide-ranging OPLS force field used in this programme is proven to be suc-
cessfully handling the flexibilities of the receptor while generating pharmacophore
models. Applications of the dynamic pharmacophore models will be discussed in
the subsequent sections of the chapter.

6 Pharmacophore Finger Prints

The complex 3D structure of a molecule is reduced to an abstract collection of
features in the pharmacophoric approach. Extending this concept, the structure of a
molecule can be interpreted a as an exclusive data string by extracting all possible
three-/four-point sets of pharmacophoric features. The inter-feature distances are
assigned using distance binning or simply by bonds. These resulting unique strings
describing the frequency of every possible combination at predefined loci of the
string are known as pharmacophore fingerprints. Different types of molecular
similarity analyses among libraries of molecules have been carried out using
pharmacophore fingerprints [91, 92]. Also, the pharmacophoric fingerprint can be
used to detect the common key features/groups contributing to the biological
function of a group of active ligands.
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7 Applications of Pharmacophore-Based Approaches

In this section, we discuss the diverse applications of the pharmacophore approa-
ches under different scenarios.

7.1 Pharmacophore Approaches for Virtual Screening

Pharmacophore models being very simple by their definition can be used in a variety
of ways depending on the research problem. This simplicity makes ‘pharmacophore
based search’ a tool of choice for drug discovery scientists in the last decade [93].
When the structure of a set of molecules with similar or different scaffolds active on a
particular target are known, then ligand-based pharmacophore models can be
developed using their structures as described in Sect. 5.1. If the structures of some
inactive derivatives are also known, then contribution of each feature towards the
bioactivity can be compared between the positive and negative datasets to distin-
guish the wanted and unwanted features. The allowable steric arrangement of the
ligands can also be mapped. When only the structure of the receptor or a receptor—
ligand complex is available, then pharmacophore models are generated as described
in Sects. 5.2 and 5.3 and can be utilized as queries to screen a database not only to
screen compounds satisfying certain geometric and chemical restraints, but also to
filter molecules with undesirable properties. For example, Voet and co-workers
identified specific antagonists of human androgen receptor by applying two phar-
macophoric filters back to back. One model is being generated from the available
receptor-agonist complexes, while the other filter applied was a pharmacophore
model generated from the receptor-antagonist complex. This approach enabled the
authors to screen the compound that matches the antagonist-specific feature [94].

7.1.1 Dynamic E-pharmacophore Models: A Case Study
with Mycobacterial CmaAl

We present here the summary of our recent work (Choudhury et al. [11, 17, 18]) on
generation and application of dynamic structure and ligand-based pharmacophore
models for screening a certain library against a mycobacterial target cyclopropane
synthase (CmaAl). Mycolic acids are the characteristic constituents of Mtb cell
wall which contribute towards the drug resistance, pathogenicity and persistence of
the parasite. CmaAl enzyme catalyses the cis-cyclopropanation of unsaturated
mycolic acid chains at the distal position, which is an indispensable step in mycolic
acid biosynthesis and maturation, thus making CmaAl an important Mtb drug
target. Five model systems of CmaAl corresponding to different stages of cyclo-
propanation were studied using molecular dynamics (MD) simulations. A detailed
picture of the structural changes in the two distinct binding sites, i.e. cofactor and
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acyl substrate binding sites of CmaAl during the cyclopropanation process was
obtained by analysing the MD simulations trajectories. The apo-state of CmaAl
was observed to have a closed conformation where the cofactor binding site is
inaccessible. Upon cofactor binding, H-bond between Pro202 of loop10 (L10) and
Asnll of N-terminal ol helix disrupts making the cofactor binding pocket acces-
sible. Upon cofactor binding, the non-polar side chains of the substrate binding site
position towards the inner side of the pocket forming a hydrophobic environment
for the substrate. In order to exchange the methyl group from the cofactor to the
substrate, both the ligands tend to come close to each other facilitated by the
upliftment of loopl10. These observations prompted to think that the protein can
remain in diverse conformations at different stages of its catalytic function and
considering only one conformation for drug design would not be sufficient. So
multiple structures obtained from the MD trajectories were used to generate, vali-
date and use structure and ligand-based pharmacophore models.

7.1.2 Generation of Dynamic Structure-Based Pharmacophore
Models

The molecular dynamics simulations on CmaAl revealed that the binding sites of
the enzyme exhibit huge conformational diversity, when bound to different ligands
at various stages of its function. To use this conformational diversity of the binding
sites in structure-based drug design, representative structures (snapshots) were
extracted from all the five MD trajectories at a regular interval of 5 ns, thus
obtaining a total of forty conformations of CmaA 1 bound to different ligands in the
two binding sites. The crystal structure of CmaAl reported in PDB was also added
to this pool. Now these 41 protein—ligand complexes were used to obtain
e-pharmacophore models as described in Sect. 5.3.2. The first step used was
evaluating the Glide energy terms. Active site of each CmaAl structure was defined
as a cubical box of 12 * 12 * 12 A* dimension, and the Glide [89] energy grids
were generated. Glide scores with XP descriptor information were obtained for the
already bound ligands keeping their original conformations unchanged (unlike a
typical docking where protein is held rigid while ligands are kept flexible). This
exercise calculated all the interaction energy components between the receptor—
ligand complexes, which were then submitted to the Phase module of Schrodinger
to develop energy-based e-pharmacophore [88, 95] models. Figure 3 depicts the
steps of the e-pharmacophore model generation and selection of best ones as virtual
screening filters.

7.1.3 Pharmacophore Model Validation

To examine the capabilities of the dynamics-based e-pharmacophore models to
successfully distinguish inhibitors and non-inhibitors of CmaAl, a set of 23
reported CmaAl inhibitors (MIC:0.0125-12.5 pg/mL) [96] were used as a positive
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Fig. 3 Generation of dynamics-based e-pharmacophore models from the MD trajectory. The
associated active site residues’ interactions have been shown. The colour representations for the
features are same as Fig. 1

dataset and 1398 Mtb inactive compounds reported in ChEMBL database
(molecular weight ranging from 180 to 400, number of heavy atoms ranging from
12 to 27, similar to SAM/SAHC and the 23 inhibitors) were used as the negative
dataset. Structures of these molecules were energy minimized and five lowest
energy conformers were chosen for each of them. All these conformations were
mapped to the 41 e-pharmacophore models using the ‘advanced pharmacophore
screening’ option of Phase. Fast conformational sampling was used during phar-
macophore screen, excluding molecules with >15 rotatable bonds. Molecules,
which could be mapped to at least four pharmacophoric sites of each model were
screened and among several conformers of a molecule the one with the best fitness
score (§) given by the following equation [46] was retained for each compound. S is
a measure of volume overlap and extent of match of chemical nature and direc-
tionalities of the pharmacophoric features with the corresponding complementary
features of the molecules.

§= Wsite (1 - Salign/Calign) + ercSvec + WvolSvol + VViVDISivol

where Wgie = (1 — Saiign/Calign)> Satign = alignment score, Cyjign = alignment cut-
off, Syec = vector score, Wy = weight of vector score, Syo (Veommon/Viotal) =
volume score, W, = weight of volume score, Sj,o = included volume score.
Detailed explanations of the components of the fitness score are given in reference
47. Volumes were computed using van der Waals models of all atoms except
non-polar hydrogens, and W, is the weight of volume score. Cyjign, Wiite» Woec
W,o and W, are user-adjustable parameters, with default values of 1.20, 1.00,
1.00, 1.00 and 0.0, respectively.

Analysis of the hits obtained from these pharmacophore screening showed that
most of the models developed from the CmaAl complexes obtained from the MD
trajectories were able to screen up to 17 reported inhibitors (out of 23), while the
model developed from the crystal structure could screen only one inhibitor.
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The fitness scores of the molecules with the dynamics-based models were also
found to be higher. To further confirm our observation, a docking-based virtual
screening was parallelly performed with the 41 CmaA]1 snapshots and the reported
inhibitors. Docking with the MD CmaA1 snapshots not only could bind the most
active inhibitors as top scored hits, but also the docking scores were higher than the
ones with the crystal structure. These results thus throw light on the effect of
including multiple conformations of the targets on the screening abilities of the
pharmacophore models. Five out of the 40 dynamic e-pharmacophore models were
selected to be further used in our virtual screening study based on the consistency of
docking and pharmacophore screening results.

7.1.4 Dynamic Ligand-Based Pharmacophore Models:
Construction and Validation

Dynamic ligand-based pharmacophores were developed for the cofactors SAM and
SAHC considering their conformational heterogeneity in CmaAl binding sites as
observed from MD trajectories of the respective model systems. Average structures
of SAM/SAHC were created after superimposing the conformations obtained from
each trajectory using uniform weighting method. Phase module of Schrodinger is
used to build the ligand-based pharmacophore models, each comprising six types
and 8-11 numbers of chemical features depending on the number and type of
interactions with the CmaA1 binding sites. To verify the screening efficiencies of
these models, a positive dataset of 23 CmaA[ inhibitors [96] and a negative dataset
of 1398 non-inhibitors (the same dataset used to validate the structure-based models
described in the previous section) were screened against each of the models. The
ligand-based models created using multiple conformations of the cofactors obtained
from the MD trajectories could screen up to 22 out of 23 CmaAl active compounds
when the condition for matching was minimum four features of a model. The fitness
scores of the inhibitors matching the dynamic-ligand-based pharmacophore models
were also higher as compared to the one developed from the conformation of SAHC
bound to the crystal structure which was able to match to four CmaAl inhibitors.

7.1.5 Pharmacophore-Based Virtual Screening

Once the best structure and ligand-based pharmacophore models were validated,
they were employed as filters in a novel virtual screening workflow consisting of
four different levels of screenings, viz. ligand-based pharmacophore map-
ping > structure-based pharmacophore mapping > docking > pharmacokinetic
properties (ADMET) filters. A focused library of 18,239 molecules from three
different sources was used for our virtual screening studies. As the first component
of the dataset, 6583 drugs reported in DrugBank were chosen, targeting drug
repurposing. The second component of the dataset was a set of 701 molecules
which were already reported to be highly active (<1 pM activity) on Mtb cells/



44 C. Choudhury and G. Narahari Sastry

ChEMBL-Mtb Drug Bank | ChEMBL-HIV

MD

/ Snapshots
b

T AR ]

ADMET filters

Fig. 4 Virtual screening workflow with structure and ligand-based pharmacophore models

targets and was considered to obtain molecules capable of acting on multiple Mtb
targets including CmaAl. The third part of the dataset, i.e. a set of 11,089 highly
active anti-HIV molecules (<1 puM activity on HIV cell lines/targets) was taken to
screen molecules that can inhibit both Mtb-CmaA1 and HIV simultaneously. After
subjecting these three subsets of molecules parallelly through the four screening
filters, 12 compounds were obtained as potential anti-CmaAl hits. As analysed
from the Glide XP docking results, all of the identified hits made strong interactions
with the important CmaAl active site residues. Figure 4 shows virtual screening
workflow with various levels of filters.

Virtual screening is usually a highly ordered approach combining diverse
computational screening methods, where at each consecutive step, the filter criteria
become more and more stringent, thus retaining the most promising compounds for
experiments. As the steps proceed, the approaches used go on being more thorough
and computationally expensive. So, being simple and fast by nature, pharma-
cophore models are usually implemented at the beginning of a hierarchical protocol
to eliminate the compounds which do not even fulfil bare simple spatial and
chemical requirements of the query, before subjecting the compound libraries to
more complicated and computationally demanding docking calculations.
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7.2 Applications of Pharmacophores in Predicting
Pharmacokinetic Properties

Poor pharmacokinetic properties contribute majorly to failures of many drugs
during development and clinical trials. Hence, these properties (also known as
ADMET) must be profiled during the early drug discovery process so as to avoid
failure at the later stages. Pharmacophore modelling approaches can be of great use
for prediction of the ADMET properties. If one can identify the possible interac-
tions made by a group of drug molecules having a well-defined ADMET profile
with enzymes involved in drug metabolism, the common interacting features can be
captured as pharmacophore models and equivalent features of the query molecules
can be matched with the models. The cytochrome P450 (CYP) constitute the major
group of enzymes involved in drug metabolism out of which isoenzymes 3A4, 2E1,
2D6, 2C19, 2C9 and 1A2 carry out 90% of the metabolism. Many recent studies
report successful implementations [97, 98] of structure-based pharmacophore
models trained from the known drugs CYP enzyme interactions to predict the
suitability of query molecules to bind to a certain CYP. Also models to assess the
probability of chemical alteration of the molecules by a CYP enzyme [99, 100]
have been successfully developed and implemented. Inhibitors of the drug clear-
ance enzymes such as the uridine 5'-diphospho-glucuronosyltransferases and
transporters like P-glycoprotein/organic cation transporter have also been utilized to
build pharmacophore models [101]. Pharmacophore models may also be employed
to predict the possibilities of off-target binging of compounds accounting for the
side effects, thereby helping design more target-specific compounds [102].

7.2.1 A Case Study with Hexadecahydro-1H-Cyclopenta[a]
Phenanthrene Framework (HHCPF)

One of the recent studies from our group [20] reports implementation of ligand-
based pharmacophore model features in combination with the QSAR techniques to
establish a relationship between the number and type of pharmacophoric feature at a
particular position of the core scaffold of a group of drugs with their drug-like
properties and target binding affinities. A set of 110 FDA approved drugs con-
taining the Hexadecahydro-1H-Cyclopenta[a]Phenanthrene Framework (HHCPF)
(Fig. 5) was considered for the study to understand their structural and functional
diversities and target specificities. Analyses of the target information collected from
DrugBank, UniProt and PDB show the selectivity of the scaffolds for different
targets and vice versa. The substituents present at 17 different positions of the
scaffolds were classified as six pharmacophoric features, viz. H-bond donors,
H-bond acceptors, aromatic rings, hydrophobic, charged and halogen groups.
ADMET (human intestinal absorption, biodegradability, P-glycoprotein binding,
carcinogenicity, Caco2 cell permeability, Ames test positivity, blood brain barrier
permeability, hERG, CYP450 binding, Rat LD50, etc.)/physicochemical properties



46 C. Choudhury and G. Narahari Sastry

No.of
Charged

Species

= E No.of
No.of No.of Chatred
HBD HBA HHCP Framework e

' » Determine specific binding with the targets
» Have high correlation with the physico-chemical and
k ADMET properties of the drugs

Species

Fig. 5 Important substitution spots on the HHCPF, where number of different pharmacophoric
features has a high correlation with target binding and ADMET properties

(polar surface area, polarizability, LogP, refractivity, etc., obtained from DrugBank)
of the HHCPF drugs were observed to be highly correlated (R > 0.8) to the number
and type of these pharmacophoric features at positions 3 and 17 of the framework.
The chemical nature of the substitutions at different carbon atoms of the framework
was observed to play extensive role in making specific interactions with the active
site residues of their respective targets as revealed from analyses of the docking
poses. The target binding was found to be greatly influenced by the presence/
absence of aromatic rings, HB donors and HB acceptors as substitutions at different
positions of the HHCPF scaffolds. Structure-based pharmacophore models were
generated from the docked complexes of eight most important HHCPF drugs with
their targets which can further be used to screen for new inhibitors. The general
observation in the study was that the number and positions of double bonds in the
framework regulate the preference of HHCPF drugs for a target class, and the
substituents at particular carbon positions account for the target binding patterns
and ADMET profiles.

7.3 Target Identification Using Pharmacophore Approaches

Pharmacophore models may also be employed to identify possible targets for active
molecules, thereby facilitating the understanding of their mechanism of action. This
approach is also proven to be helpful for studies that explore polypharmacology and
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drug repositioning [103—105]. Firstly, pharmacophore-based fingerprints can be
employed to search for similar molecules, whose mechanisms of action are already
understood. In the other way around, pharmacophore models can be generated from
the active sites of a group of probable proteins involved in the particular disease
pathway and then the active molecules can be mapped to them to find out the best
fit. The structures of these groups of proteins may be obtained from PDB or models
generated using various techniques. The active site pharmacophore mapped with
high scores can be proposed as potential targets for the compounds. A study on a
group of plant metabolites and pharmacophore models of their possible targets was
carried out by Rollinger et al. The best mapping targets were later proven to be
accurate by experimental testing, thus validating the usefulness of the pharma-
cophore mapping approach [106].

7.4 De Novo Ligand Design with Pharmacophores

Apart from acting as a query to screen molecules with features at desired spatial
locations and thus possibly prompting a desired biological response, pharma-
cophore models can also be employed for de novo design, of compounds, satisfying
a specific physicochemical constrains. For example, the NEWLEAD method is able
to create novel molecules from distinct disconnected fragments (mostly derived
from known active ligands) that are consistent with the features of a pharmacophore
model by using linkers. The linkers are small connecting fragment may be few
atoms, chains or sometimes ring moieties [107]. Software packages like LUDI
[108] or BUILDER [109] can grow such novel molecules when the receptor
structures are also known. Many other packages also perform such de novo ligand
design from the receptor-based pharmacophore features [110, 111]. Thus, phar-
macophore models have versatile ways of application for lead generation. De novo
design is meant to create entirely novel compounds, while pharmacophore
searching screens the available chemical space. However, pharmacophore search-
ing is faster and easier.

8 Limitations of Pharmacophore-Based Approaches

Though the literature is flooded a plenty of successful and reliable applications of
pharmacophore-based approaches in rational drug design, its limitations should be
cautiously considered as with any method [33, 112]. A systematic or straightfor-
ward way of constructing pharmacophore models is not available. This is the case
especially with the receptor-based pharmacophore models where many different
combinations of features are possible and each model may screen completely dif-
ferent set of molecules [113]. Lack of accuracy in pharmacophore scoring/fitness
functions is one of the limitations of pharmacophore searching. So, quality of
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mapping of a compound with a pharmacophore model which is often given by the
RMSD between the feature of a model and atoms of the target molecule does not
stand accurate as it does not take an account of similarity with the known active
molecules [114]. Especially, the ligand-based pharmacophore models do not con-
sider the overall compatibility with the receptor, thus sometimes end up with
screening molecules those are very different from the other active compounds, with
a completely different set of functional groups not complementary with the receptor.
The pharmacophore-based searches against the compound databases lack fast
conformation sampling as most of the programmes rely on conformer databases
having only a limited number of energetically favourable conformations of mole-
cules [115, 116]. There is a possibility of missing an active molecule if a suitable
conformation is not available. So, it is desirable to generate as many low-energy
conformers as possible for the database compounds, but again it would consume a
lot of computational time. Especially for the rotatable bonds of small hydroxyl
groups, it is difficult to sample all the different rotations.

9 Summary

Evolving from a simple concept to a well-validated and widely exploited method,
the pharmacophore modelling approaches have been an essential part of many drug
discovery strategies. The pharmacophore-based approaches are well known for their
strength to propose a diverse set of molecules having diverse molecular frameworks
but owing to a desired biological activity for one target. It has been extensively
applied for virtual screening, lead optimization, target identification, toxicity pre-
diction and de novo lead design, and it has ways to go [117]. Considering the
strengths and limitations of the pharmacophore approaches, it can either be used
alone to identify potential functional group substituents in molecules, design new
molecules specific for a target by scaffold hopping keeping the substituents with
certain pharmacophoric feature and orientation constant virtually screen for inhibi-
tors, perform ADMET profiling of compounds, investigate possible off-targets or
can be applied as a complementing approach along with other methods like docking
and QSAR. The concept can be sensibly applied for fragment-based drug design,
characterization of protein—protein interaction interfaces and target-based classifi-
cation of chemical space. In this chapter, we touched upon the basic concepts and
methods of generation of pharmacophore models. The diverse applications of the
pharmacophore approaches exemplified though a number of case studies are
believed to be useful for the readers. However, we believe that the choice and way of
application of the method depends on the research problem and the type of initial
data available.
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Abstract The network description is widely used to analyze the topology and the
dynamics of complex systems. Residue interaction network (RIN) represents
three-dimensional structure of protein as a set of nodes (residues) with their con-
nections (edges). Calculated topological parameters from RIN correlate with vari-
ous aspects of protein structure and function. Here, we reviewed the applications of
RIN for the analysis and prediction of functionally important residues and ligand
binding sites, protein—protein interactions, allosteric regulation, influence of point
mutations on structure and dynamics of proteins.

Keywords Residue interaction network « RIN - Protein—protein interactions
Allosteric regulation « Scoring function - Allosteric pathway

Abbreviations

CAPRI Critical assessment of predicted interactions

DDN Differential network

GPCR G protein-coupled receptor

HPNCscore Hydrophobic and polar networks combined scoring function
MD Molecular dynamics simulation

NACEN Node-weighted amino acid contact energy network

PPI Protein—protein interaction

RIN Residue interaction network

SVM Support vector machine

D. Shcherbinin - A. Veselovsky (<))

Laboratory of Structural Bioinformatics, Institute of Biomedical Chemistry,
Pogodinskaya Str., 10, Moscow, Russia

e-mail: veselov@ibmh.msk.su

© Springer Nature Switzerland AG 2019 55
C. G. Mohan (ed.), Structural Bioinformatics: Applications in Preclinical Drug

Discovery Process, Challenges and Advances in Computational Chemistry

and Physics 27, https://doi.org/10.1007/978-3-030-05282-9_3


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05282-9_3&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05282-9_3&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05282-9_3&amp;domain=pdf
mailto:veselov@ibmh.msk.su
https://doi.org/10.1007/978-3-030-05282-9_3

56 D. Shcherbinin and A. Veselovsky

1 Introduction

Proteins play a vital role in biological systems and have numerous functions such as
catalysts, transporters, regulators of signal transduction. They are linear
heteropolymers folded into three-dimensional structures. The amino acid residues
interact through various covalent and non-covalent bonds in a specific manner to
obtain a particular three-dimensional structure, which determines their functions.
Knowledge of the relationship between protein structure and its function is
important in drug design, molecular medicine, and biotechnology.

Different computational methods have been used for investigations of protein
structures and their functions, finding functionally important residues, prediction
protein—protein interactions, discovering new biological active compounds. In the
most approaches, the protein structures have been viewed as linear sequences of
amino acid residues packed into 3D globules. In the last decade, an alternative view
of proteins structures has emerged that describe the protein spatial structure as
network of amino acids residues interaction.

Network analysis has successfully used in different fields, such as social net-
works [1], Internet networks [2], road networks [3]. In biology, this method is
widely used for analysis of networks of gene regulation, protein—protein interaction,
metabolites flow, prediction of drug side effects, etc., [4-9]. Applying network
methodology for polypharmacology was reviewed in [10].

A network method is based on the graph theory and includes a set of entities
(nodes) and of the relationships (edges) occurring among them. These nodes and
edges can have various attributes. Depending on the object of the study, nodes can
represent genes, proteins, small compounds, and edges connecting these nodes
represent the physical interactions, genetic regulatory, or other properties linking
the nodes. Edges can have additional information, such as weights, directions.

According to the structure of protein, every amino acid residue in it is considered
to be a “node” or “vertex,” and the interaction of residues represents “edge”
(Fig. 1). The existence of an edge between two nodes depends only on their spatial
position in protein globule and has no relation to position in their primary sequence.
The interaction can be represented as distance between C, or any other atoms of
amino acid residues, non-covalent interaction (electrostatic, hydrophobic, H-bonds)
of the particular amino acids [11]. Additionally, in residue interaction network
(RIN), the energy of interaction between residues can be used for weighting the
edges [12, 13]. Proteins can be also modeled as subnetworks of amino acid residues
having similar physiochemical properties. RIN method reduces spatial protein
architectures to simple maps including nodes (residues) and edges (inter-residue
interactions). Analysis of these graphs yields a characterization of the protein’s
topology and network characteristics.

There are several names of the resultant intraprotein amino acid residue inter-
action networks. They are called residue interaction graphs [14], protein structure
graphs [15, 16], protein residue networks [17], protein contact networks [18],
protein energy networks [13], amino acid networks [19], protein structure networks
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Fig. 1 Structure of SH2 domain of proto-oncogene tyrosine-protein kinase SRC (PDB ID 1041)
in cartoon (A) and RIN representation

[20], residue interaction networks [21]. In this review, we will use the residue
interaction networks (RINs) to distinguish it from network of protein—protein
interactions.

The application of RIN method in drug design is just at a beginning. RINs have
been used to analyze protein stability and folding [22, 23], 3D structure modeling
[19, 23], finding functionally important amino acid residues and sites [14, 24],
analyzed protein—protein interactions [25], allosteric regulation [26], influence of
amino acid mutations [27]. These studies showed that RIN method is valuable
approaches allowed to improve the drug discovery process. Recently, several
reviews on RINs have been published [28-31].

Herein, we aim to review the investigation of the construction, analysis, and
application of RINs in fields related to drug design.

2 Graph Theory and Residue Interaction Network

Graph theory represents complex system as a set of elements (called vertices or
nodes) with their connections (called edges). Each node can be connected to each
other through multiple edges. Adding order of nodes in the graph, we get a directed
graph, where edges are directed and usually represented as arrows. Introduction of
the quantitative characteristics of the edges results in a weighted graph. Nodes with
edges form a network. The network representation helps to analyze the interaction
among individual elements and to characterize the whole system.
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Residue interaction network is constructed on the base of the three-dimensional
atomic coordinates of protein structure and consists of nodes and edges. Each node
represents amino acid residue (or C, atom) that is connected to the neighbor node.
In the simplest variant, the edges are defined on the base of predefined cutoff of the
distances in 3D structure between nodes. The values of distance may be varied
based on nature of interactions (van der Waals, hydrophobic, electrostatic inter-
actions, etc.). Frequently, the covalent backbones are included as edges in the
networks. The edges can be weighed based on energy of interactions,
knowledge-based potentials, or amino acid fluctuations in molecular dynamics
simulation [30, 31]. The differential network (DDN) method was proposed where
network formed by unique edges that are present only in one state but are absent in
other ones [32].

Networks have several most common characteristics; some of them that frequently
have been used for analysis of biological systems are listed below [28, 31, 33].

A degree of a node is a number of edges in a network that connect node with its
neighbors. In a directed network, there might be two types of degrees, the in-degree,
and the out-degree depending on the orientation of the edges. An average degree is
the average number of connections that the nodes have in a network.

A connectivity represents a minimum number edges that need to be removed to
make a disconnected graph. The connectivity structure and the degree of nodes
analysis in RINs help to identify important residues, i.e., participating in ligand
binding sites.

A shortest path is a path in which the two nodes are connected by the smallest
number of intermediate nodes. A characteristic path length is defined as the
number of edges in the shortest path between two nodes, averaged over all pairs of
nodes. Residues with small shortest path lengths are often located in the active or
ligand binding sites of proteins [17] and participate in allosteric pathways [34, 35].

A betweenness centrality of a node is the number of times that a node is included
in the shortest path between each pair of nodes, normalized by the total number of
pairs.

A closeness centrality of a node is the reciprocal of the average shortest path
length.

The network concept is widely used to analyze and predict properties in different
biological systems, from intramolecular interaction to whole cells and organisms.
Biological networks are small worlds that means that two nodes are connected to
each other via only a few other nodes [23, 30]. There are several network
parameters for characterizing different aspects of biological networks.

A hub is defined as a node with a high degree or connectivity in a network. Hubs
may play a structural role in proteins increasing the thermodynamic stability of
proteins [14, 36].

A cluster is a set of nodes with the number of connections, which is higher than
in the other nodes. Clusters often are equivalent to a domain of protein and par-
ticipate in intramolecular interactions.
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A clique is a set of nodes in which each node of graph is connected to every
other node. Studies of cliques can help to understand ligand-induced population
shift in protein [37].

There are several software packages, Web servers, and plug-ins available for
construction and analyzing of RINSs, such as Xpyder (http://xpyder.sourceforge.net/)
[38], Network View [39], RING (http://protein.bio.unipd.it/ring/) [21, 40],
RINalyzer (http://www.rinalyzer.de) [41], structureViz (http://www.cgl.ucsf.edu/
cytoscape/structureViz/) [42].

Web server RING constructs physicochemically RINs from PDB files for sub-
sequent visualization in the Cytoscape (software platform for the analysis and
visualization of biological networks) (http://www.cytoscape.org) or Pymol (https://
pymol.org/). Interactions (edges) are disulfide bonds, salt bridges, hydrogen bonds,
aromatic interactions, and van der Waals contacts. Several features can be added to
nodes and edges, such as secondary structure, solvent accessibility, energy score,
sequence conservation. Subnetwork can be also constructed.

RINalyzer and structureViz are plug-ins for Cytoscape [43] that link Cytoscape
with the molecular viewer UCSF Chimera (http://www.cgl.ucsf.edu/chimera/) [44].
They allow interactive structure analysis of RINs together with the corresponding
3D protein structure.

NetworkView plug-in for VMD  (https://www.ks.uiuc.edu/Research/vmd/)
allows to study allostery and signaling through network models. This plug-in can
display the dynamical network representations.

3 RINs Application

3.1 Ligand Binding Sites

Identification of the ligand binding sites of proteins and functionally important
residues is a crucial first step in drug design. However, it is a difficult task in the
case of the absence of homologous proteins.

Several topological parameters of RINs may be used for the prediction of ligand
binding sites. Several investigations showed that closeness and betweenness values
of residues are correlated with ligand binding site residues [14, 34, 45-48]. The
accuracy of prediction such residues may be improved by combining with such
parameters as their solvent accessibility. So, Amitai et al. [14] could predict active
site residues in 70% of the analyzed 178 enzymes proteins, using closeness cen-
trality and solvent accessibility parameters. The similar result was obtained in [49].
The closeness centrality was used as parameter in machine learning methods for
prediction of functionally important residues [50] or in score for docking [25].

However, for non-enzyme proteins correlation between closeness centrality and
binding sites has not observed [34, 51]. In addition, global closeness centrality gave
unsatisfactory result for non-globular and oligomer proteins. For such proteins,
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more tolerable prediction was obtained with local closeness [52]. It seems that the
ligand binding sites in enzymes are correlated with centrality due to their typical
location in cavities of the enzymes, whereas in oligomer proteins, the protein—
protein interfaces are more flat [53], which reduces the centrality of their residues.

Coevolution residues networks, which include information about coevolved
residues, were also used for predicting functionally important residues [54, 55].
RIN analysis was applied for prediction similarity of ligand binding sites in dif-
ferent proteins [56, 57].

The node-weighted RIN, called node-weighted amino acid contact energy net-
work (NACEN) was developed for prediction hotspots, catalytic residues, and
allosteric residues. Nodes were weighted based on structural, sequence, physico-
chemical and dynamic properties of the residues. SVM was used for design model
to identify functionally important residues. The results revealed that parameters
from node-weighted RIN have advantages over ones from unweighted network
[58].

Poirrette et al. [56] designed RIN of the influenza sialidase binding site of
Zanamivir and used it to predict proteins having the similar binding sites. Such an
approach may be used for repurposing drugs or prediction of side effects.

3.2 Protein—Protein Interactions

Protein—protein interactions (PPIs) are crucial for many biological processes and
functions; inhibition of PPIs with small molecules is a perspective way in drug
design [53]. RIN method was used for analysis of protein—protein interfaces, pre-
diction of hotspots, and selection of protein poses in the protein—protein docking.

Several investigations were done using RIN for analysis of protein—protein
interfaces. They showed that hydrophobic and charged residues are predominant in
the dimer interface and that arginine, histidine, glutamic acid, phenylalanine, and
tyrosine are located in clusters at the interface [59, 60]. In those clusters, highly
connected residues correlate with experimentally identified hotspots in the protein
complexes [15, 16, 61, 62].

Correct prediction of protein—protein complexes using individual proteins by
docking method is a big challenge, since the docking gives many false-positive
solutions [63, 64]. Protein—protein complex formation may be viewed as combining
of two RINs, where additional edges have appeared between nodes from different
subunits. The interaction of residues occurs in accordance with their properties.
Since native protein—protein complexes are far from random, the correct and
incorrect poses have different topologies.

Chang et al. [65] designed hydrophobic and hydrophilic RINs of a protein—
protein complex. Three terms based on these networks (degree, clustering coeffi-
cient, and characteristic path length) were calculated and used in network-based
scoring function HPNet. Combining it with energy terms of RosettaDock [66]
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results in new combined scoring function HPNet-combine. It was found that
HPNet-combine could improve the discrimination of the RosettaDock scoring
function.

The similar methodology based on the construction of a hydrophobic and hy-
drophilic RINs of protein—protein complexes was used for the development NPPD
scoring function [67]. Protein—protein docking, HoDock, and scoring function
HPNCscore (hydrophobic, and polar network combined scoring function) were
developed. It showed good results for several targets in Critical Assessment of
PRedicted Interactions (CAPRI) rounds [68].

The weighed RINs were used for the development of Sn scoring function [69].
Two weighted parameters (strength and weighted average nearest neighbors’
degree) were introduced to develop a scoring function. The testing of this scoring
function for 42 protein—protein complexes had shown a satisfied performance.

The scoring function based on the local network patterns, iScore, was proposed
[70]. Tt achieved 83.6% specificity with 82% sensitivity for training set of ~ 1800
two domain proteins, homo- and heterodimers.

3.3 Allosteric Regulation

Allosteric regulation is a common mechanism to control the protein activities. The
perturbation at the allosteric site results in transmission of signal through the protein
structure to other sites leading to modification of catalytic activity, oligomerization,
etc. [71, 72].

Allosteric sites became attractive target for drug design at last decade. Allosteric
drugs have several potential benefits over orthosteric drugs. They may be more
specific due to less similarity of allosteric sites comparing to active site in
homologous proteins; they can increase or decrease the activity of enzymes and
receptors; partially inhibiting by allosteric drugs may cause less side effects [73,
72].

Using allosteric sites for drug design, it is required to predict allosteric sites,
residues involved in signal transduction pathways to the active sites. The search of
allosteric sites by RIN method is similar to the other sites described above.

Allosteric pathways show how the signal may be transmitted over a long dis-
tance from allosteric to active sites within the protein. RIN is accurate and not
time-consuming method for prediction such pathways.

Once the RIN constructed, several algorithms can be used to find allosteric
pathways within the RINs. The common method is to find the shortest paths
connecting the allosteric and active sites [34, 35, 74]. The shortest path may be
determined by Floyd—Warshall algorithm. It was shown that many proteins may be
considered as a set of modules (subgraphs with many interconnections and with few
connections to other subgraphs). The residues involved in the interaction of such
modules can participate in allosteric pathways [75]. It is proposed that such residues
are conservative that also may be used for their prediction [76-78]. Proteins can
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have multiple allosteric pathways, which may preexist without effector binding at
allosteric site [79]. Various pathways may be involved depending on the different
changes in allosteric site.

However, RINs constructed based on a single structure do not take into account
the structural changes in protein globule. Therefore, the combination of molecular
dynamics simulation (MD) followed by RINs design frequently has been used to
detect and to analyze allosteric pathways. In these cases, the edges in RINs are
defined using various parameters obtained from MD. The edges may reflect the
correlation of displacements of the residues [74, 80], the fluctuation of distances
[81], interaction energy [82], etc.

Aminoacyl-tRNA synthetases are convenient objects for analysis of allosteric
communication. The combination of MD with RIN was used for discovering
pathways from anticodon region to the aminoacylation region for methionyl-tRNA
synthetase [74, 83], glutaminyl-tRNA synthetase [84], cysteinyl-tRNA synthetase
[35], and tryptophanyl-tRNA synthetase [85, 86]. Particularly, analysis of
tryptophanyl-tRNA synthetase showed changes of flexibility around the active
site induced by allosteric ligands binding and allowed to explain the molecular
mechanism of half-of-the-sites reactivity (tryptophanyl-tRNA synthetase is a
homodimer).

Another popular object is G protein-coupled receptors (GPCRs) [87-89]. It is a
large family of membrane receptors, which have ligand binding site on the extra-
cellular side of membrane and activation domain on its internal side. Using RIN
method, several conservative residues participating in the signal transduction were
discovered for the lutropin receptor [76] and A, adenosine receptor [87] (Fig. 2).

Fig. 2 Structure of Aja
adenosine receptor (PDB ID
2ydv). One of the predicted
allosteric pathways is shown
in rainbow color scheme. The
synthetic agonist NECA is in
stick
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Fig. 3 Part of the networks near Q-loop of B-lactamases TEM-1 and its triple mutant (G238S,
E240K, M182T). The additional interactions appeared in the triple mutant that results in freeze of
movement of Q-loop are in green



64 D. Shcherbinin and A. Veselovsky

3.4 Analyses of Mutations

RIN methods may be used for analysis and prediction of effects of amino acid
mutation on protein properties, which may be useful for protein design, investi-
gations of disease-associated single nucleotide polymorphisms, or mechanism of
the drug resistance [27, 90-92].

Recently, we used RIN for investigation of the influence of several mutations on
structure and flexibility of B-lactamase [93]. B-lactamases are class of enzymes
responsible for bacteria resistant to B-lactam antibiotics. Besides, the key mutations,
responsible for the extended spectrum P-lactamases or inhibitor resistance pheno-
type, secondary mutations, located far from active site and with a weak impact on
the protein structure and enzyme activity, have been often appeared [94]. Analysis
of MD trajectories showed that the secondary mutations, and the key mutations can
exhibit opposite effect on the flexibility of the Q-loop of B-lactamase that participate
in antibiotic hydrolysis and transport in the active site [93]. Detailed analysis of
RIN maps of proteins of consistent mutations from wild-type TEM-1 to TEM-72
(carrying two key mutations G238S and E240K and two secondary ones M182T
and Q39K) showed that key mutations (responding for extended spectrum
B-lactamases) lead to weakening interactions of the Q-loop with protein globule.
The appearance of secondary mutation M182T resulted in dramatic changing of
conformation of R65, and this residue began to interact with the Q-loop and fixed it
near protein globule (manuscript submitted) (Fig. 3).

4 Conclusion

Herein, we have reviewed the development and current stage of RINs and their
application for drug discovery.

RINs provide complex analysis of the proteins and their complexes. Residues are
in tight contact with each other in protein globules, and RINs allowed to estimate
their interdependence and to predict different properties and functionality of the
individual residues and the whole proteins. In addition to topology, RINs allow to
use chemicophysical properties of residues and energy of their interaction in RIN
construction and analysis of proteins.

Besides, using RINs for investigation protein structure and functions, they may
be applied in drug design in several ways.

Prediction of functionally important residues and sites can be helpful for
understanding functions and regulation of uncharacterized proteins, finding active
sites, allosteric and cryptic ligand binding sites. It may decrease the amount of
“undruggable” protein, increasing field for drug design. On the other hand, many
drug candidates fail in the late and costly stages of clinical trials [95]. Side effects
are one of the main reasons for drug failure [96]. The detection of similarity in
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network topologies and interactions with ligands for several targets may indicate the
promiscuity of drug candidates and possibly their side effects.

The development of inhibitors of protein—protein interactions is a perspective
way in drug design, and RIN showed their applicability for this purpose. The
analysis of networks may help to select correct poses in protein—protein docking
that is important for the selection of inhibitor binding sites; incorporation of the
terms from RINs may improve docking scoring functions.

Allosteric inhibitors are another mainstream in drug design in last decade. It is
proposed that such inhibitors may regulate cellular processes more accurately.
Allosteric regulation is the common property of protein, which may increase the
number of druggable targets. RINs are convenient for finding allosteric sites,
investigation of mechanism of intraprotein signal transmission. Prediction of the
effect of amino acid mutations on protein structure and dynamics is crucial for the
development drugs against diseases with a high probability of occurrence drug
resistance, in particular antibacterial, antiviral, and anticancer drugs.

Nowadays, the application of RIN methods for drug discovery is at their early
stage, but they already help to understand intimate properties of proteins and
provide a new view for drug discovery.
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Abstract A newly developed drug discovery method composed of graph theo-
retical approaches for generating structures combinatorially from an activity-related
root vertex, prediction of activity using topological distance-based vertex index and
a rule-based algorithm and prioritization of putative active compounds using a
newly defined Molecular Priority Score (MPS) has been described in this chapter.
The rule-based method is also used for identifying suitable activity-related vertices
(atoms) present in the active compounds of a data set, and identified vertex is used
for combinatorial generation of structures. An algorithm has also been described for
identifying suitable training set—test set splits (combinations) for a given data set
since getting a suitable training set is of utmost importance for getting acceptable
activity prediction. The method has also been used, to our knowledge for the first
time, for matching and searching rooted trees and sub-trees in the compounds of a
data set to discover novel drug candidates. The performance of different modules of
the proposed method has been investigated by considering two different series
of bioactive compounds: (1) convulsant and anticonvulsant barbiturates and
(2) nucleoside analogues with their activities against HIV and a data set of 3779
potential antitubercular compounds. While activity prediction, compound prioriti-
zation and structure generation studies have been carried out for barbiturates and
nucleoside analogues, activity-related tree—sub-tree searching in the said data set
has been carried for screening potential antitubercular compounds. All the results
show a high level of success rate. The possible relation of this work with scaffold
hopping and inverse quantitative structure—activity relationship (iQSAR) problem
has also been discussed. This newly developed method seems to hold promise for
discovering novel therapeutic candidates.
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Abbreviations

QSAR Quantitative structure—activity relationship
iQSAR  Inverse quantitative structure—activity relationship
vHTS Virtual high-throughput screening

MIC Minimum inhibitory concentration
Mtb Mycobacterium tuberculosis
AAE Acid alkyl ester

NA Nucleoside analogue

HIV Human immunodeficiency virus
MPS Molecular Priority Score

ARL Active range length

ARW Active range weight

ARV Active range value

MAI Molecular activity index

IRL Inactive range length

IRW Inactive range weight

IRV Inactive range value

MDI Molecular de-activity index

SMILES Simplified molecular-input line-entry system
MOL file Molecular structural information file

1 Introduction

Exploring chemical space to discover a compound that elicits a desired pharma-
cologic response without undesired side effect is like searching a needle in a
haystack problem. The problem arises because we seek to screen a limited subset
that exists among many compounds that elicit a desired pharmacologic response.
Different approaches have therefore evolved to make the problem tractable, namely
effective use of macromolecular target information, if available, use synthesis
tractability of the compounds as guidance, and most importantly, the pharmaco-
logical relevance of the compounds selected. While modern advances like targeted
library search or chemogenomics have helped in bringing focus to the drug can-
didate search, the utility of drug candidate search using serendipity-based approa-
ches has not diminished in face of increasing burden of drug resistance and adverse
side effects. These problems may possibly be addressed by discovering novel
compounds using new drug discovery methods. One of such a new line of thinking
has been proposed by Ruddigkeit et al. [1] who have considered all possible
compounds having 17 atoms taken from C, N, O, S and halogens to create a
database of several billions of compounds. It is tempting to believe that such an
effort of discovering novel drug molecules from such a huge collection of com-
pounds can be useful. However, a method that enables searching of potential drug
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candidates from a relatively smaller set of compounds, quite exhaustive at the same
time within given limits, activity linked and rationally guided too may help drug
discovery more effectively.

Among the current drug discovery methods, data modelling and quantitative—
qualitative prediction of activity [2-4], use of molecular docking methods and
scoring functions for virtual high-throughput screening (VHTS) [5] and 3D quanti-
tative structure—activity relationship (QSAR) studies [6] are some of the most used
ones. At the same time, combinatorial generation of chemical compounds is also
carried out since it increases the possibility of finding novel drug molecules from a
large number of chemically diverse compounds generated particularly for the need of
making scaffold hopping [7]. It also provides the opportunity to search for com-
pounds having diverse structural characteristics which in turn may help decipher the
role of molecular components which may be responsible for the biological activities
of new drug molecules, particularly in situations where novel therapeutic candidates
are sought for to handle the challenges arising out of drug resistance problem [8].

So far generating molecular structures are concerned, molecular topology-based
approaches are in use for generating and designing molecular structures [9, 10] and
graph theory [11] and graph theoretical methods [12] have been suitably used for
doing that. However, in general these methods are used for generating structures
combinatorially [10] with no connection to their biological activities and a separate
method has to be used for the prediction of molecular properties and activities. It
appears, therefore, that a method that generates a large number of compounds
combinatorially and gets linked to their activities at the same time may be more
efficient in designing and discovering novel drug molecules. In particular, topo-
logical molecular descriptors [2] can be useful in this regard. Moreover, if this is
done using a single molecular (structural/substructural) descriptor, the process may
also be looked upon from inverse QSAR (iQSAR) point of view [13] since the basic
idea of doing iIQSAR studies is to get molecular structures back from molecular
descriptor which has been used for activity prediction. In this context, it seems
reasonable to explore whether a method can be developed that is integrated in such
a way that it can be used for generating structures combinatorially that would have
molecules of diverse scaffold from a single molecular topological descriptor , can
be used for predicting molecular properties/activities and can be used for compound
prioritization and screening to help discover potential drug candidates.

So, the first question that may be asked in developing such an integrated method
is: Can we have a method such that structures can be generated combinatorially
from structural or substructural information that is already related to activity? In this
regard, there are two primary aspects in designing potential bioactive compounds
from activity-related substructural information—(1) identification of activity-related
vertices using a suitable method; (2) a method that can be used for structure
generation using topological information associated with such vertices. One of the
most useful activity-related substructure identification method was proposed by
Klopman [14] where molecular fragments of different length are identified from
active and inactive compounds, and the fragments are weighed on the basis of the
number of fragments obtained from active and inactive compounds using a suitable
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measure to assess their usefulness in predicting activities and mathematical—sta-
tistical methods are used to do that. However, no structure generation method is
used for this work [14].

In this chapter, we have described in detail a graph theory-based method,
developed recently by our research group [15], for combinatorial generation of
chemical structures from activity-related substructural topological information. This
approach [15] has been found to be useful in generating structures of active anti-
tubercular compounds from activity-related vertices of the molecular graphs repre-
senting different other active antitubercular compounds. For developing the present
method [15], we have leveraged primarily a non-isomorphic rooted tree generation
algorithm [16] and a cycle enumeration method [17] to design novel bioactive
compounds in the form of reconstructed molecular graph as outlined earlier [18, 19].
In the proposed integrated method, activity-related vertices are first identified by
using the rule-based method [18, 19] where topological distance-based vertex
indices are used as local molecular descriptors in data sets having the biological
activities of interest. Once the activity-related vertices are identified, a suitable vertex
is taken for structure generation using the distance distribution associated with the
vertex which gives the topological distances of all the vertices in molecular graph
from that vertex (say, the root vertex). A large number of rooted trees are thus
generated de novo [15]. Subsequently, 2D molecular structures containing cycles of
different size are created by joining vertices of the tree graphs. In this way, all the
generated structures contain this activity-related substructure, and therefore, there is
a possibility that some of generated structures may be classified as active.
Furthermore, to get complete 2D structures of the compounds, user-defined
parameters are used to add multiplicity of bonds (e.g. double and triple bonds)
between pairs of vertices and add chemical nature of the atoms (nitrogen, oxygen,
etc.) represented by the vertices. Canonicalization is used to identify unique struc-
tures which are further used for screening of potential active compounds.

It may be noted that scaffold hopping [7] is embedded in the method since the
generated structures are different from the starting compound and are expected to
have diverse topological architecture. Also, since both compound generation and
activity prediction are done using the same vertex index (substructural/local de-
scriptor), the method may also be regarded as an attempt to address the inverse
quantitative structure—activity relationship 1IQSAR) problem [13] in its integrated
framework. Furthermore, in order to relax the condition for structure generation
from distance distribution as outlined earlier [18, 19] and to make it more flexible,
we have developed an algorithm for generating sub-trees by adding or deleting
vertices from the tree structures generated on the basis of a given distance distri-
bution associated with an activity-related vertex. To our knowledge, this is the first
time that a method [15] has been developed and used for drug discovery through
database searching using rooted tree and sub-tree matching algorithms.

The method has already been used to investigate its usefulness for a series of 41
acid alkyl ester (AAE) derivatives and three known antitubercular drugs [15]. In
this chapter, we have furnished new results obtained for a series of 19 convulsant
and anticonvulsant barbiturates [18], 20 nucleoside analogues (NA) for their
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activities against HIV [20, 21], and a data set of 3779 compounds (named GTB data
set) for which minimum inhibitory concentration (MIC) values have been measured
against H37Rv strain of Mycobacterium tuberculosis (Mtb) [22]. The GTB data set
may be obtained from the link [23] given in the reference section. The results
described here will therefore substantiate the findings obtained earlier [15].
Regarding activity prediction, results have been reported for NA and barbiturate
data sets. For barbiturates data set, we have considered the same training set and test
set as used in an earlier study [18]. However, for the NA data set, we have identified
a reasonably well-performing training set—test set split and have reported the results
for individual compounds present in that split. For prioritization of the generated
active compounds that help screen potential active compounds, Molecular Priority
Score (MPS) [15] has also been used and the results obtained for NA and barbi-
turate series of compounds have been given in the tables alongside their activity
prediction results. We have carried out combinatorial generation of structures using
topological distance-based substructural information associated with identified
activity-related vertices (atoms) in some compounds of the data set. We have been
able to reconstruct the structures of active NA and barbiturate compounds from the
substructural information associated with activity-related vertices of other active
NA and barbiturate compounds. Regarding substructure searching exercise, we
have reported identified potential active compounds from GTB data set [22, 23]
considering activity-related atoms (vertices) in the structures of Isoniazid and
Streptomycin, both of which are known antitubercular drugs in use.

It appears from the outcome of the results that the integrated method would find a
place as a useful drug discovery tool for designing and discovering novel bioactive
compounds. In particular, the method is believed to be of much help in situations
where novel drug candidates having very different structural characteristics/scaffolds
are sought for particularly to overcome the drug resistance problem.

2 Methods

In this section, we have described in detail different mathematical approaches/tools
which have been used to develop the present integrated drug discovery method and
the related computer programs. Examples with tables and figures have been used to
illustrate underlying concepts of the methods used. While we have leveraged few
existing mathematical aspects for the present purpose, we have introduced some
new algorithms as well.

2.1 Computation of Vertex Index

Let G be the carbon skeleton of n-butane and D(G), the corresponding distance
matrix is shown in Fig. 1. Computation of D~ indices for the vertices of D(G) has
been illustrated below.
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Fig. 1 Graph G representing 1 2 3 4

vertex labelled carbon G: ® -0 -0 -0

skeleton of n-butane and the
corresponding topological

distance matrix D(G) D (G):
1 2 3 4
I {0 1 2 3
21 0 1 2
312 1 0 1
4 13 2 1 0
Therefore, D™* index for the four vertices v;, i =1,2,...,4 of G may be

computed as:

D*(v) = 174427437 = 1.0749
D*(v) =1"*4+1"*427*=2.0625
D™ (v3) = 174+ 174 427% = 2.0625
D*(vy) =142 4374 = 1.0749

One can, therefore, compute the values of D~ index for all the atoms (vertices) of
all the compounds (molecular graphs) in a data set considering the molecular graphs
(hydrogen-suppressed or hydrogen-filled) of the compounds. Hydrogen-suppressed
graphs may be considered for generating structures from the distance distribution
associated with a vertex since structure generation using information about the
vertices of hydrogen-filled graphs may pose computational bottlenecks during the
process because of a large number of structures that are usually generated in this
way. Moreover, if chemical information of the vertices is provided, one can always
create the hydrogen-filled graphs from the corresponding hydrogen-suppressed
graphs.

2.2 Rule-Based Activity Prediction

In order to carry out activity prediction studies using the present method, a data set
containing both active and inactive compounds for a biological endpoint of interest
is gathered. The data set is then divided suitably into a training set and a test set.
The biological activities of the compounds are then predicted for both the training
set and the test set using a rule-based system [18, 19]. In order to make the activity
prediction, ranges of vertex index values coming from active and inactive
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compounds are first found out using some rules [18, 19] and the activity is predicted
on the basis of the number of vertex index values falling in these ranges as defined
in the rule-based system [18, 19]. For the present purpose, the values of vertex
index D~* are computed for the vertices of the training set compounds (molecular
graphs). Once the indices are computed, they are arranged in an ascending order
and ranges of values coming from both active and inactive compounds are found in
the ordering and are tagged as “Active” and “Inactive” ranges by applying certain
rules [18, 19] given below:

1. Three or more consecutive vertex index values coming exclusively from
active compounds and exclusively from inactive compounds are said to
form an “active range” and an “inactive range”, respectively. However, at
least three index values in a range have to be distinct if they come from the
same compound and at least two index values in a range have to be
distinct if they come from different compounds.

2. Some single vertex index value coming from both active and inactive
compounds is not considered to form an “active range” or “an inactive
range” by itself or along with other vertex index values unless two-thirds
of that single vertex index comes from active compounds or inactive
compounds, respectively.

It has been discussed earlier [24] in connection with identifying ranges that the
vertices which correspond to the vertex index values forming active ranges may be
regarded as topological features responsible for making the compounds active. In
other words, they may be regarded as a set of features forming “Topological
Biophore ” which are responsible for exhibiting a given biological activity of the
compound under consideration. From this point of view, it may be said that if the
index values of some (or, all) of the vertices of a compound fall in active ranges,
then those vertices may be regarded as forming certain topological biophore which
make the compound active. Presumably, some of the vertex index values of a
compound may fall in inactive ranges as well. Thus, in order to predict activity from
the occurrences of the vertex index values in active and inactive ranges, another set
of rules [18, 19], given below, are applied:

A compound is predicted “ACTIVE” if all or some of its vertices fall:

1. Only in active ranges or
2. In both active and inactive ranges, the number of index values falling in
active ranges is greater than those falling in inactive ranges.

Otherwise, the compound is predicted “inactive”.
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In order to use this rule-based system for activity prediction, a set of bioactive
compounds with known activities (e.g. experimentally determined activities) have
to be collected (from the literature or an experimental laboratory). A training set is
then formed by picking up compounds from the data set suitably to train the system
to learn the structural requirement for a compound to be active. A fewer number of
compounds are also kept for testing purposes (test set). Once the training is done,
activity predictions for both training set compounds (retrofit studies) and test set
compounds are carried out. For predicting the activities of the test set compounds,
the D™ index values for the test set compounds are computed. If the system is
found to produce high (acceptable) percentage of correct activity predictions for
both the training set and the test set compounds along with none or very few
(acceptable) wrong activity predictions, it may be regarded as standardized for the
prediction of activity of chemical compounds for the biological endpoint for which
the system is standardized.

2.3 Training Set-Test Set Split

It is always important that a suitable training set be obtained from a data set of
bioactive compounds such that the structural characteristics of the compounds,
present in the data set, is reflected in the training set, and the learning of the (expert)
system/prediction tool is as adequate as possible for getting useful activity pre-
dictions by the method used in this purpose. In general, researchers look for the
diversity present in the structures in creating a training set from a given data set.
Presumably, some intuition or expertise of the drug designer/medicinal chemist
may be required to do that or some mathematical diversity analysis may be carried
out in obtaining a suitable training set. However, it appears that generating a large
number (e.g. 1000) of training set—test set splits (combinations) and reporting the
successful predictions of all or some (e.g. top 20, 25) of the best-predicting splits
for a given data set of bioactive compounds would be a very straightforward and
useful approach for identifying a suitable training set. Having obtained various top
performing splits, one can select a suitable split that gives high percentage of
successful predictions for both training set and test set and obtains activity pre-
diction for the compounds present in both the sets. Although such splits have been
used [24, 25] for evaluating the performance of vertex indices and a rule-based
method for activity prediction [18, 19] considering small and large data sets, no
algorithm is available to report the activity predictions for different splits. We have
incorporated this algorithm in the program for reporting the outcome of activity
predictions for different splits so that one can consider a suitable split for further
work such as structure generation. This can be done for both quantitative data and
qualitative data (active—inactive type). It may also be noted that the computer
program can be used for the identification of training set—test set splits and activity
predictions by considering both hydrogen-filled (H-filled) and hydrogen-suppressed
(H-suppressed) molecular graphs of the compounds under consideration.



Combinatorial Drug Discovery from Activity-Related Substructure ... 79

2.4 Compound Prioritization

The present method [15] also contains a section that can be used for prioritization
of potentially active compounds. This may be particularly useful for screening few
highly active compounds from a big database, e.g. from a set of combinatorially
generated compounds (described in the next section). This method is based on
some of the characteristics of active and inactive ranges found in the ordering of
vertex index values. Therefore, one has to look into some details of such ranges. In
doing that, two factors may be given special attention—(1) the number of vertex
index values in an active range (active range length: ARL); (2) the number of
compounds contributing to form the range (active range weight: ARW). By
applying one’s intuition too, it becomes apparent that a joint effect of these two
factors may help prioritize predicted active compounds. Therefore, we first propose
a measure, active range value (ARV), as the algebraic sum of ARL and ARW values
given by:

ARV = (ARL + ARW) (1)

Clearly, a range larger in length and contributed by more number of compounds in
forming the range would have higher ARV value. We define such a range of higher
ARV value a “STRONGER” range compared to those which have lower ARV
values. Now, let us assume that M out of N vertices of a molecular graph
G (representing a chemical compound) have fallen in different active ranges. If the
vertices are denoted by v, vy, . . ., vy, one would get M number of ARV measures as
ARV (v1),ARV(v3),...,ARV(vy). In order to get a measure of the contribution of
the vertices falling in different active ranges (i.e. contribution of activity-related
vertices), we further propose a molecular activity index (MAI) as:

MAI(G) = f:ARV(vi) (2)

It may also be noted that while considering the length of an active range and the
number of compounds contributing to form the range, some single values that come
from both active and inactive compounds are taken into account since they are part
of the active range according to the second rule of range selection mentioned
earlier.

At the same time, there is a possibility that some of the vertex indices of
molecular graph G may fall in inactive ranges too (the second rule for activity
prediction) and that may be considered to pose a negative effect on the activity of
the compound. For the prediction purpose, therefore, vertices falling in inactive
ranges have to be considered. For doing that, let us assume that M’ vertices of G,
Viz. uy, uy, ..., uy fall in inactive ranges. We, thus, propose a measure, molecular
de-activity index (MDI) for G and it may be defined as:
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MDI(G) = ilRV(uj) (3)

In Eq. 3, IRV stands for inactive range value and is the sum of IRL (inactive range
length) and IRW (inactive range weight) which is in line with the definitions used
for such measures of active ranges. Computation of IRV can be done using Eq. (4)
given below:

IRV = (IRL+ IRW) (4)

Therefore, by considering a combined effect of MAI and MDI, one can prioritize the
newly generated active compounds and curate some high-ranking compounds for
further studies. Thus, in order to get a measure of combined effect of the vertices
falling in active ranges and inactive ranges (if any) and prioritizing (ranking) the
compounds according to their activities, we propose a measure, Molecular Priority
Score (MPS), for G and it may be computed using Eq. (5):

MPS(G) = MAI(G) — MDI(G) (5)

Considering MPS value as a measure for prioritization of active compounds, a
compound with higher MPS value will occupy a higher position in the ranking.
Therefore, a compound may be regarded as more active if it gets higher MPS value.
This will then help screen some top-ranking compounds. However, ranking of
active compounds using MPS is not mandatory. One may always wish to consider
all the predicted active compounds for further studies particularly if the number of
highly ranked compounds (in terms of MPS value) is very small. At the same time,
there is no need to prioritize those compounds which are predicted inactive since
the idea is to screen potentially highly active compounds for a given biological
endpoint.

2.5 Combinatorial Structure Generation from Root Vertex

In developing the structure generation method, we have used an algorithm for
generating rooted trees [16] which have been extended to the generation of cyclic
compounds and finally a complete 2D structure of chemical compounds. The
structure generation exercise starts off as generating all possible canonical trees for
any given number of vertices. Subsequently, topological distance restriction on the
generated tree structures is used to filter and keep only those trees having a desired
distance distribution. Further, for the application of relaxed distance criteria for
compound structures having increased or decreased number of vertices
(non-hydrogen atoms), the matching criteria of distance distribution have been
suitably changed to accommodate the addition, deletion and migration of the
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vertices over the tree structures with exact distance restriction. The theories and
implementation details are described in the following subsections.

2.5.1 Structure for a Given Distance Distribution

A molecular graph represents topological connections between the atoms of the
molecules. A spanning tree of the graph can provide the basic skeleton over which
additional edges can be inserted to introduce cycles and thereby produce the entire
molecular structure. The multiplicity of bonds can be considered as edge weights
and can be dealt by assigning weights 1, 2 and 3 for single, double and triple bonds,
respectively. Similarly, heterogeneous atoms, with their valency information, can
also be introduced as nodes, which are by default considered to be carbon atoms in
our discussions.

It is clear from above that the starting point of structure generation for a given
number of vertices (atoms) is the generation of rooted trees since the structure
generation will be carried out with respect to a particular atom in a molecule in our
current approach based on topological distances from a particular vertex. Moreover,
to prevent duplicate structures, only non-isomorphic trees should be generated.

For the purpose of illustration, consider the chemical structure and the corre-
sponding graphical and tree representation as shown in Fig. 2.

The numbering of vertices has no structural significance apart from that it is done
to obtain the rightmost tree having node 1 as the root and pre-order numbering for
the other vertices and is merely for array representation of the tree structure. The
tree can be represented by the following parent and level array representations:

parent = [0, 1,2,3,1,5,5] level =[1, 2, 3, 4, 2, 3, 3]

where for a given vertex i, parent[i] =j means vertex j is the parent of vertex
i except for root vertex 1 having no parent vertex and is represented by O as its
parent. Similarly, for a vertex i, level[i] = j means vertex i is at level j, where root
vertex 1 has a level 1 and other vertices have level one greater than the level of its
parent vertex. The root vertex can sometimes be considered to have level O and the
levels of the subsequent vertices follow.

With the illustrated example and the terms introduced in consideration, the
different steps in structure generation are explained in the following points:

1
W e o g S
# | ! # | | # “/" f’/ \_"'
3 6 3 6 Ve
Bl oy i
Molecular Vertex-numbered Graph One of the Spanning Trees

Structure

Fig. 2 Graph and tree illustration
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(a) Non-isomorphic canonical tree generation:

Beyer and Hedetniemi [16] have proposed an iterative algorithm to reverse lexi-
cographically generate non-isomorphic canonical trees for a given number of ver-
tices. The algorithm achieves this transformation through a successor function
defined below.

Let L(T) = [liL. . .I,] be a level sequence containing an element greater than 2.
Let p be the rightmost position of such an element, i.e. p = max{i : [; > 2}. Let
q be defined as the rightmost position preceding p such that [, =1, — 1, i.e.
g =max{i:i<p, l; =1, — 1}. Hence, the vertex corresponding to position ¢ is the
parent of vertex corresponding to position p. Then the successor of L(T), i.e.
succ(L(T)) = [s152. . .5,] is defined such that:

1) si=1lLforl <i<p
(i) s;=si_(p_qforp<i<n.

The algorithm can be used successively generating all the non-isomorphic
canonical level representation of trees from a provided starting level sequence to the

last possible reverse lexicographic sequence, i.e.|1,2,2...2|. If no starting level
—
n—1 times
sequence can be provided, the algorithm can start with the lexicographically largest
sequence [1,2,3...n].

The trees generated by the aforementioned algorithm can in general have any
number of children for any parent vertex. In context of chemical structures of
carbon atoms, only those trees are being filtered and kept where the root has at most
four children and the rest of the vertices have at most three children. This restriction
can later be further refined for hetero-atoms in accordance with their valency.

(b) Cycle introduction by addition of edges:

The generated rooted trees are graphical models of acyclic compound structures.
Cycles can be introduced by adding edges between any two vertices, say i and j,
such that:

parent[i] #j and parent[j] # i

The size or the number of sides in the cycle so introduced can be obtained by the
following relation:

num_cycle_sides = level[i] + level [J]
— 2 x level[lowest_common _anscester(i,j)] + 1

In general, cycles of size 3 onwards will be possible. For more than one cycles to be
introduced, a combination of these identified edge introductions can be simulta-
neously carried out.
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However, introduction of multiple edges may lead to fused or bridged cycles and
the size of cycle may become different than intended. Consider the case of starting
structure generation from the tree in Fig. 2. If it is required to have two cycles
which can have size 5, or 6, it can be seen (Fig. 3) that the edge introductions
between vertices 3 and 6 and vertices 4 and 6 individually satisfy the size criteria,
but in combination, they inadvertently lead to having a 3-sided cycle.

On the other hand, edge introductions between vertices 3 and 7 and vertices 4
and 6 satisfy the size criteria individually as well as in combination (Fig. 4).

Thus, in order to detect and remove cases similar to the first multiple intro-
ductions discussed before, it will be required to check the cycle size validity criteria
considering all the elementary cycles, e.g. in the case being considered of multiple
edge introductions, the elementary cycles present are C; (1-2-3-6-5-1), C, (1-2—
3-4-6-5-1) and C; (3—-4-6-3), having sizes 5, 6 and 3, respectively, even though
the intended cycles were only C; and C,. In graph theoretical terms, C; and C, are
the fundamental sets of cycles while C; is a derived cycle. The term elementary
cycles here has the standard graph theoretical definition, and from now on, the term
cycle is considered to be an elementary cycle unless stated otherwise.

It will thus suffice to identify the fundamental set of cycles corresponding to the
smallest sizes. The starting fundamental set of cycles corresponds to the cycles
directly resulting from edge introductions. Any cycle enumeration algorithm can
then be used to enumerate all the cycles present. We have considered the algorithm
by Gibbs [17] which is a cycle vector space method in which the cycles of the
fundamental set form the basis of the cycle vector space. With this vector space

1 ) 1 7 1 7 1 7
2/ \5/ 2/ \5/ 2/ \5/ 2/ \5/
| | | | I | | |
3 6 3 6 3 6 3 6
\4 \4 \4/ \4/
Starting Tree (3.6) edge (4,6) edge (3,6) and (4,6)
introduction introduction edge introduction

simultaneously

Fig. 3 Multiple cycle introduction example (1)

1 7 1 ] 7 1
37 N5 g il -
| | i/ | | | | / !
3 6 < 6 3 6 3 6
\4 \4 \4/ \4/
Starting Tree (3,7) edge (4,6) edge (3,7) and (4,6)
introduction introduction edge introduction

simultaneously

Fig. 4 Multiple cycle introduction example (2)
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construct, one cycle, say Cs, can be obtained from two other cycles, say C; and C,
from the previous example by a symmetric cycle-plus operation & defined below:

Let an edge between vertices i and j be denoted by ¢;;. Let a cycle be denoted by
the set of all such edges present in the cycle. Then for any two cycles A and B, the
result of cycle-plus operation is:

A® B = {ejle; € AUB, e; ¢ ANB} = (AUB)\(ANB)

The same operation can be performed computationally faster when all the edges
present in the graph are assigned a unique number and a given cycle is represented
by a bit string where bit positions from right are set “on” corresponding to the
unique numbered edges in the cycle. The cycle-plus operation is then exactly
analogous to the bit-wise XOR (*) operation, i.e. A ® B < A" B.

At this point, it is worthwhile to note that the following property, henceforth
called Property 1, of the cycle-plus operator holds, which is proved using XOR
operation on bit string representation of cycles A and B:

A® (A® B)= A"(A"B)
& (A"A)'B By associative property
< 0'B& B

Hence, A® (A® B) =B Property(1)

In terms of cycles, the result of the cycle-plus operation can either be another
cycle or a union of cycles having no common edges. Thus, all the cycles present in
the graph can be obtained by linear combination of cycles taken two at a time in the
fundamental set, supplemented successively by the increasing number of cycles and
union of cycles obtained through cycle-plus operation. In the end, the entries that
supplemented the fundamental set should only be cycles and the edge disjoint union
of cycles should be removed. The final set so obtained will be the set of all cycles,
say in the considered example the final set will be {C;, C,, C3} starting from the
fundamental set {C;, C,}.

It is easy to comprehend and evident from the previous example that the final set
may contain cycles smaller in size than those in the starting fundamental set of
cycles. Moreover, as the cycles are generated by linear combination over two cycles
at any given time using cycle-plus operator and as Property (1) holds, any resultant
cycle in combination with a fundamental cycle will yield the other fundamental
cycle from which it was produced. This is to say, in previous case, C, can be
obtained from C; and Cs;.

Thus, the entire fundamental set can be changed to another fundamental set
which contains only the cycles of non-decreasing number of sides starting from the
smallest sized cycle, so that all the cycles in the final set can still be generated.
Henceforth, the term fundamental set will correspond to this newly constructed set.
It can be noted, though, that the cardinality of the fundamental set does not
get altered. In the examples considered so far, this will lead to a change of
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fundamental set from {C,, C,} to {C;, C5} while the set of all cycles will still
remain {C,, C,, C3}. This, arguably, is just an instance of change of basis in the
cycle vector space.

It will now suffice to check the sizes of the cycles in the fundamental set against
the required sizes and keep or discard the generated structure accordingly. This
decision made, considering the fundamental set only, is in accordance with the
IUPAC convention of the number of rings in polycyclic systems [26] where the
number of rings is equal to the minimum number of scissions required to convert
the system into an open chain compound or structure. Following this convention of
ring count, the example corresponding to Fig. 4 will be a valid structure against the
cycle size restriction either being 5 or 6.

(c) Removal of duplicate cyclic structures using graph canonicalization:

Although the trees generated by the algorithm given by Beyer et al. [16] are
non-isomorphic (hence distinct structures), it is easy to comprehend that intro-
duction of edges may lead to generating more than one chemical structure of same
topology. As the entire process starts with tree structure, consider the case of the
rightmost tree representation shown in Fig. 2, and two different edge introductions
for a given cycle size constraint of 6 and cycle count constraint of 1 as shown in
Fig. 5.

Although the presented example is basic in nature, the problem aggravates when
the number of nodes is fairly large and such node pairs lie in different branches,
sometimes far apart. For example, the molecules with 30 or more non-hydrogen
atoms are fairly common in organic compounds developed as pharmaceutical
entities. Moreover, even when the graph topology is uniquely fixed, the combi-
natorial imposition of node colours for imparting heterogeneity by introducing
different atoms and the imposition of multiplicity of bonds can again lead to
duplicate structures. Hence, any duplicate elimination strategy should consider the
complete graph along with heterogeneity and bond multiplicity.

In the above context, molecular graph canonicalization algorithms can be used to
identify the duplicate structures and eliminate them during generation. As we intend
to store the molecules in SMILES notation format, it has been decided to use the
algorithm proposed for generation of unique SMILES by Weininger et al. [27],
which tackles the molecular graph canonicalization by extended connectivity
through an unambiguous function using product of primes.

1
1 7 1 6
2/ \5 N 5 N7
Ca | | |
3 6 & 3 I 3 7
" P 4/(’ "
Starting tree (4,6) edge (4,7) edge
introduction introduction

Fig. 5 Duplicate cyclic structures
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The algorithmic steps leading to unique SMILES generation is discussed below:

(I) Initializing Rank of the Graph Vertices—The rank initialization of the ver-
tices is achieved using combined invariants which in turns are combinations of
several individual atomic invariants. A total of 6 such atomic (node) invariants
in the order of their priority are produced below:

(i) Number of connections
(i) Number of non-hydrogen bonds
(iii) Atomic Number
(iv) Sign of Charge
(v) Absolute Charge
(vi) Number of attached hydrogen atoms.

It may be noted that the number of invariants can be varied based on the
desired distinguishing properties [27]. The combined invariant will be the
number obtained by successively concatenating the individual invariants such
that higher priority invariants are to the left of lower priority invariants in the
decimal system. For example, a methyl carbon (CH3) in a molecule will have
the individual invariants 1, 01, 06, 0, 0, 3 listed in the order of their priority
while the combined invariant will be 10106003. The distinct combined
invariants in the molecule are then sorted and mapped to their position in
increasing order, hereafter referred to as consecutive ranks. The mapped
position becomes the initial ranks of the atoms. For example, in case of
n-Pentane, i.e. (C;—C,—C3—C4—Cs), where the subscripts denote the vertex
labels, the combined invariants are 10106003-20206002-20206002—
20206002-10106003 while the initial rank is 1-2-2-2-1.

(II) Extended Connectivity through an Unambiguous Function using Product of
Primes—The initial rank will not be able to identify the vertex symmetries. In
the case of n-Pentane, vertices 2 and 4 are equivalent in terms of vertex
symmetry while vertex 3 is not equivalent to them but is still initially ranked the
same. To resolve this, rank of an atom is replaced by the result of an operation
of a given function over its neighbours. This result is a representation of
extended connectivity. A simple and elegant function is the product of primes
corresponding to the rank of the neighbouring atoms. For example, in the
n-Pentane case discussed so far, the updated rank of vertex 2 will now be prime
number corresponding to rank of vertex 1 multiplied by prime number corre-
sponding to the rank of vertex 3, i.e. lstprime X 2nd prime = 2 x 3 = 6, as
ranks of vertices 1 and 3 are 1 and 2, respectively. Similarly, the rank of vertex
3 will be updated to 2nd prime x 2nd prime = 9. Subsequently, the revised
rank will become 3-6-9-6-3 which can be remapped to consecutive ranks 1—
2-3-2-1. This procedure of rank update is repeated and is stopped when the
updated rank for each atom of the molecule remains same as the previous rank.
It may be noted that in the end, the connectivity symmetrical vertices will be
ranked the same.
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(I

Tie Breaking—The product of corresponding primes will yield same rank for
connectivity symmetrical vertices. In such cases, the ties can be broken by
arbitrarily choosing a node corresponding to the smallest repeating rank,
doubling all the ranks and then reducing only the rank of the chosen vertex by
one. The non-consecutive ranks so obtained are then remapped to form con-
secutive ranks, and the extended connectivity procedure using product of
primes is performed to update ranks as described in the previous step. This
step of breaking ties followed by rank updates is repeated until all the ties are
broken and highest rank becomes equal to the number of vertices in the graph.
The completion of this step also marks the completion of canonicalization of
the graph.

(IV) Initial Vertex Selection and Branching Decisions for Traversal—With the

V)

completion of graph canonicalization, the only steps required for unique
SMILES generation is depth-first traversal sequence and identification of ring
closures and their order in traversal. To start with, the lowest ranked atom is
chosen for traversal. At a branching vertex, the branches are followed in the
increasing order of the ranks of the neighbouring vertices; i.e. the branch
corresponding to the lowest ranked neighbour is traversed first, then the
second lowest ranked neighbour is followed and so on. It may be noted that
Weininger et al. [27] also suggest giving branching preference towards the
double or triple bonds in a ring even though the rank corresponding to such a
vertex may be greater than other neighbouring vertices. However, this further
complicates the final traversal sequence in the case of polycyclic compounds
while the omission of this preference will save some computation time but will
still generate unique SMILES.

Two-pass Approach—Although, initially, the ring closures for the compounds
are the edges that were introduced by joining vertices in the canonical trees,
those edges will not be the ring closures under the depth-first traversal approach
of the canonicalized graph and the traversal rule as given in the previous
step. Additionally, the rings are to be numbered in the opening order in which
they are encountered during traversal. In order to meet these requirements, the
graph is traversed two times. During the first pass, the ring closures and their
ordering are identified for the canonicalized graph and are stored as auxiliary
data. The edges corresponding to these new ring closures will now be treated as
if they were the edges introduced to complete the cyclic structure, while the tree
obtained by removal of such edges is treated now as the spanning tree.
Subsequently, the second pass is undertaken for SMILES string generation
using the previously obtained auxiliary data.

2.5.2 Structure for a Relaxed Distance Distribution

The approach taken so far suffers from the drawback that only those compound
structures will be generated that have the same number of non-hydrogen atoms as
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the starting molecule from which the distance distribution was obtained. This
subsection tries to tackle this drawback by slightly relaxing the distance distribution
matching criteria for the trees with number of vertices deviating from the source or
starting distribution. This deviation can either lead to increased or decreased
number of vertices.

(a) Non-Isomorphic Canonical Tree Generation with Relaxed Distance
Distribution

The first step involves specifying the number of vertices (after factoring in the
deviation) and then generating the trees. Positive deviation means required number
of vertices is greater than that in the current tree while negative deviation means the
required number of vertices is lesser. However, since exact distance distribution
matching is not possible in this case, two variants of relaxed distribution matching
are considered as explained below:

Strong matching—This situation arises when the distance distribution of the
generated tree can be obtained from the starting/source distance distribution by
either adding or deleting vertices at any level (named node deviation) although
simultaneous insertion or deletion of vertices is not allowed for a given deviation. In
essence, the obtained distance distribution corresponds to a pruned tree of the
source distance distribution if the node deviation is negative and vice versa if the
node deviation is positive.

Thus, to put it mathematically, if trees are to be generated by decreasing or
increasing n number of vertices, then only n deletions or insertions are allowed so
that:

where ¢! is the count of vertices at level i in the source distance distribution; ¢! is
the count of vertices at level i in the present distance distribution under consider-
ation; and e is the maximum of the eccentricity of the source and present distance
distribution.

Weak matching—In this case, the distance distribution matching criteria is fur-
ther relaxed in that one can add and delete vertices simultaneously at any level.
This, in effect, executes migration of vertices from one level to another (named
node migration). If this is allowed without a cap on the number of node migrations,
then all the possible structure generation will be considered a match which will
include the linear chain too. Presumably, in order to match the source distance
distribution closely using weak matching criterion, number of allowed node
migrations should be provided preferably of low value.

For this exercise, if the trees are to be obtained by decreasing or increasing
n number of vertices, then n deletions or insertions along with m migrations are
allowed that satisfies the following criteria:
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and
min(mp7 mn) =m

where

m, = Zmax((cf - ),0)
i=1

my, = ;min((cf —d),0)

Here ¢, ¢ and e have the same meaning as defined in the case of strong
matching while m, is the sum of vertex surplus and m,, is the sum of vertex deficit
in the source distance distribution over the present distance distribution.

The procedure of cycle introduction, canonicalization and unique SMILES
notation generation is the same as done before.

Now, once the structures are generated using the methods described above, one
can use some user-defined parameters incorporated in the computer program to
restrict the number and size of the cycles to be created in the 2D structures. Few
other user-defined parameters, available in the program, may also be used to add
multiplicity of bonds (double and triple bonds) between pairs of vertices and other
hetero-atoms (e.g. nitrogen, oxygen, halogens) in order to get complete 2D struc-
tures of the compounds. The output of the generated structures may be saved in
SMILES notations and can be viewed using a molecular modelling software that is
capable of getting molecular structures from SMILES notation. Subsequently, the
activities of the generated structures may be predicted using the rule-based method
[18, 19] standardized for a biological endpoint of interest and can be prioritized and
screened from their MPS values. In this way, one may be able to screen some
potential bioactive compounds from the bigger set of combinatorially generated
molecular structures using topological distance information associated with
activity-related vertices present in the active compounds of a data set under con-
sideration. It may be worth noting at this point that this newly developed method
[15] is essentially a molecular topology-based approach and activity prediction is
done using molecular graphs of the compounds where bond multiplicity and atom
types are not required. However, since bond multiplicity and atom types can be
introduced in the combinatorially generated topological structures using the options
available in the program and those structures can be saved in SMILES format, one
can always use these generated structures for any 2D and 3D drug design/discovery
applications.
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3 Results and Discussion

We furnish in this section the results obtained using the method, described in the
previous section, that can generate chemical structures combinatorially using
activity-related substructural topological information, predict activity for the bio-
logical endpoints under consideration, prioritize compounds and screen them to
help discover novel therapeutic candidates. The results given here are for a series of
19 convulsant—anticonvulsant barbiturates [18], a series of 20 nucleoside analogues
(NA) having anti-HIV activities [20, 21] and a data set of 3779 compounds [22, 23]
for which minimum inhibitory concentration (MIC) values have been measured
against H37Rv strain of Mycobacterium tuberculosis (Mtb).

3.1 Activity Prediction-Compound Prioritization—-Molecular
Design

We describe in this section the results obtained for combinatorial structure genera-
tion from the substructural information of activity-related vertices (atoms), activity
prediction using a rule-based system [18, 19] and prioritization and screening of
potential drug candidates using a newly defined Molecular Priority Score
(MPS) [15]. The application of different algorithms incorporated in the computer
program developed using the method, and the results obtained therefrom are given
here and discussed accordingly. In particular, the method has been used for activity
prediction, compound prioritization using MPS and structure generation considering
barbiturates and the NA series of compounds. On the other hand, structure matching
algorithm based on distance distribution has been used for searching potential an-
titubercular compounds from the data set of 3779 compounds mentioned above.

3.1.1 Studies with Barbiturates

The activity prediction for the series of barbiturates [18] considered for the present
study is reported here using the rule-based method [18, 19] considering
hydrogen-filled (H-filled) graphs of the compounds. Along with activity prediction
considering H-suppressed graphs, the method also supports activity prediction
using H-filled graphs and that option available in the computer program has been
used for the activity prediction studies with the barbiturates. The R-groups of the
barbiturates considered here and built on the core structure shown in Fig. 6 are
given in Table 1.

Activity prediction for this series of compounds has already been reported [18]
by considering information theoretical vertex indices V¢ (vertex distance com-
plexity) and V,f(normalized V4), which are also available in this software for use.
Although Vy’f has produced very high percentage of correct predictions [18], we
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Table 1 A series of 19 barbiturates” considered for the present study

R-group R-group
1. —(CH,);CH3; 11. —(CH,);CeH 11
2. —CH(CHj3)(CH,),CH3 12. —(CH,),CH=C4H,¢
3. —(CH,),CH(CH3;), 13. —(CH,),CH=CsHg
4. —CH(CH;3)CH,CH(CH3), 14. —CH,C¢Hs
5. —CH=CHCH,CHj3; 15. —CH,CH(CHj3)C¢Hs
6. —C(CH3)=CHCH,CH3; 16. —CH=(CH),(CH3;),
7. —CH,CH=CHCHj;3 17. —C(CH3)=(CH),(CHs),
8. —CH(CH;3)CH=CHCH; 18. —(CH,)5C¢Hs
9. —CH,CH=C(CH3;), 19. —(CH,),C¢Hs
10. —CH(CH3)CH=C(CH3;),

“The data have been taken from Klopman and Raychaudhury [18]

Table 2 Assigned and predicted activities using D~* index and Molecular Priority Score
(MPS) of 19 barbiturates divided into 15 training set and 4 test set compounds

Sr. no. Compound no. Activity” MPS®
Assgn. Pred. Value
Training set
1 1 + + 93
2 9 + + 10
3 10 + + 56
4 12 + + 178
5 13 + + 168
6 15 + + 34
7 2 - - -132
8 3 -102
9 4 -132
10 5 - - -113
11 6 - - —100
12 7 - - -120
13 8 - - =74
14 11 - - —149
15 14 - - —64
Test set
1 17 + + 6
2 19 + + 53
3 16 - - =97
4 18 - - 10

%(+) means active and (—) means inactive
"Computation of MPS value is described in methods section
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Fig. 6 Barbiturate core O
structure with R-group
(Table 1) attachment point (R)

HN CH,

HN R

O

present here the results obtained using distance exponent index (D™*) to see how
this index performs for this series of compounds. The activity prediction results
along with MPS values using D™* index, computed for the hydrogen-filled graphs
of the compounds, are shown in Table 2. It may, however, be noted that the indices
of only non-hydrogen atoms have been considered for ordering of index values,
range selection and activity prediction purposes. Thus, the indices computed for the
hydrogen atoms in the H-filled graphs have not been used for this purpose.

Activity Prediction and Compound Prioritization for Barbiturates

For the prediction of activity and prioritizing the compounds on the basis of MPS
values, we have considered the same set of compounds as well as the same training
set and test set for the present study as used earlier [18]. In may be noted that, in this
data set, the convulsant barbiturates are tagged active and the anticonvulsant bar-
biturates as inactive.

It can be observed that accuracy of activity prediction using D~ index in the
barbiturate data set is 100% for both training set and test set which equals the
prediction obtained using V¢ index reported earlier [18]. This further substantiates
earlier findings [15] using this vertex index, rule-based method and MPS value
about the usefulness of the method for activity prediction and compound prioriti-
zation. This is believed to help scientists work on the crucial issues related to
convulsion and help drug designers find novel therapeutic agents in the area of
anticonvulsant drug discovery.

Structure Generation for Barbiturates

The structure generation exercise has been carried out for the barbiturate data set
with the same training set and test set split as considered earlier [18]. The index
computation for the non-hydrogen atoms (vertices) has been performed considering
hydrogen-filled graphs. As described in the method section, the D™* index values
computed for the training set compounds are arranged in an ascending order to find
active and inactive ranges in order to get a “strong” range to identify an
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Table 3 Details of the range in which vertices 17 and 18, in the molecular graph of compound no.
13, lie in

Serial no. D~* index value Compound no. (Atom no.) Activity
1 4.40994 13(16) +
2 4.40994 13(19) +
3 4.430099 12(16) +
4 4.430099 12(20) +
5 4.430937 13(17) +
6 4.430937 13(18) +
7 4.440002 1(14) +
8 4.441781 13(13) +
9 4.444924 12(13) +
10 4.449867 12(18) +
11 4.451095 12(17) +
12 4.451095 12(19) +

(+) means active, (—) means inactive

activity-related vertex to start structure generation considering that vertex as the
root vertex. It has been observed that the vertices 17 and 18 (the numbers corre-
spond to those in the respective SMI file used to work with the compounds con-
sidered) in the molecular graph representing compound no. 13 (Table 1), an active
compound, fall in a strong range. Interestingly, when these two vertices are chosen

(a) (b) l
/ CH3 / N
o} 0 2 18
HN NH ; IIQ
|
\n/ ]
) |
Compound No. 13 ?
6
;
71
g 13 16\
Vertex No. 17 9 /ll2 114\15 17

(Root Vertex)

Molecular Graph of Compound No. 13 11
with root vertex

Fig. 7 a Compound no. 13 (Table 1), its molecular graph and the root vertex (vertex no. 17).
b Sample rooted tree structure generated. In the tree, the root vertex is labelled as vertex 1



94 Md.I. H. Rizvi et al.

Same

Topology 0 pa

O

Cyclic structure generated from Compound No. 19
Compound No. 13, Vertex No. 17

Fig. 8 One of the structures generated, from compound no. 13, which resembles the topology of
compound no. 19 (Table 1)

for structure generation, both of them lead to the generation of a topological
structure of another active compound. The details of the strong active range are
given in Table 3 and the structure generation details in Fig. 8.

The compound no. 13 along with its molecular graph and the chosen structure
generation vertex (root vertex) is given in Fig. 7a. The distance distribution asso-
ciated with this vertex (Vertex No. 17) starting with distance O is (1,2,2, 1, 1, 1, 1,
3,5, 1, 1). A sample rooted tree is shown in Fig. 7b with the corresponding distance
distribution.

Considering any rooted tree, cycles can be introduced (described in the methods
section) to generate the topology of the structural formula of variety of chemical
compound while still maintaining the distance distribution. In the present study, we
have chosen to generate structures containing two cycles, having number of sides 5
or 6, to investigate whether we are able to generate any other active compound
present in the studied data set. A number of structures are generated in the process,
and it has been found that the structures generated from the root vertex of com-
pound no. 13 contain one such structure that matches with that of compound no.
19 (Fig. 8). It is interesting to note that compound no. 19 is an active compound
from the test set (Table 2) which shows that the method can generate a structure
that it has not seen in the training set. Therefore, one can expect to design novel
structures using this method.

3.1.2 Studies with Nucleoside Analogues

For the nucleoside analogues (NA), we have carried out activity prediction and
structure generation studies. It may be noted that for this series of compounds, we
have investigated the performance of the training set—test set identification tool
using the corresponding algorithm incorporated in the computer program. As
mentioned earlier, in this way we are able to obtain a suitable training set for the
system’s learning and predict activities of the compounds on the basis of this
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a

Table 4 A series of 20 nucleoside analogues “ considered for the present study

Compound Name Compound Name
1. 3'-deoxyadenosine 11. 2'-deoxyinosine
2. 2'-deoxycytidine 12. 2',3'-dideoxythymidine
3. 2'-deoxyadenosine 13. 2',3'-dideoxyuridine
4. 2' 3'-dideoxyadenosine 14. 2'3'.5'-trideoxyadenosine
5. 2',3'-dideoxycytidine 15. 3’-amino-2',3"-dideoxycytidine
6. 3'-fluoro-2',3'-dideoxythymidine 16. 3'-amino-2',3'-dideoxyadenosine
7. 3'-azido-2',3'-dideoxythymidine 17. 2'-deoxyguanosine
8. 2',3'-dideoxyinosine 18. 3'-azido-2',3'-dideoxyadenosine
9. 2',3'-dideoxyguanosine 19. 3'-azido-2',3'-dideoxycytidine
10. 5'-iodo-2'-deoxycytidine 20. 3'-azido-3'-deoxyadenosine

“Data were taken from Raychaudhury et al. [20, 21]

training. This section, therefore, contains the results of the performance of training
set identification and activity prediction. We have also reported here the results of
structure generation for some of the NA series compounds in the same way as it has
been done for the barbiturate series. For identifying a suitable training set—test set
combination for the purpose of identifying a suitable training set that can produce
high percentage of successful activity predictions, the program generates 1000 such
combinations. The program has the option of getting the output on the basis of best
test set predictions (starting from no misprediction) and best training set predictions.
It has been observed that there are combinations where no mispredictions are found
for the training set although there are 2 or more mispredictions for the test sets. On
the other hand, there are combinations where there is one misprediction each for
both the training set and the test set and it seems quite reasonable to consider such a
balanced combination for activity prediction of newly generated compounds. We
have reported here the activity predictions and MPS values of such a balanced
outcome in Table 5 for the nucleoside analogues (NA) considered for the present
study given in Table 4. The structural information of the compounds has been taken
from the corresponding MOL files.

Activity Prediction for Nucleoside Analogues

For carrying out activity prediction and prioritization studies for NA series of
compounds, we have used training set—test set split algorithm and the prediction
results for split that has given one misprediction each for the training set and the test
set are reported here.

It can be seen that for this NA series, activities of 92.86% (13 out of 14) of the
training set compounds and 83.33% (5 out of 6) of the test set compounds have
been predicted correctly, compound no. 10 of the training set and compound no.
13 of the test set being the lone mispredictions in each case. It is interesting to note
that in both the cases the inactive compounds have been predicted to be active
which may be regarded as an important factor in situations where a drug designer



96 Md.I. H. Rizvi et al.

Table 5 Assigned and predicted activities using D* index and Molecular Priority Score
(MPS) of 20 nucleoside analogues divided into 14 training set and 6 test set compounds

Sr. no. Compound no. # Activity® MPS®
Assigned Predicted Value
Training set
1 4 + + 65
2 5 + + 83
3 6 + + 8
4 7 + + 103
5 9 + + 55
6 18 + + 97
7 19 + + 98
8 - - =56
9 - - —36
10 —48
11 10 - + 8
12 14 - - -13
13 15 - - —36
14 16 - - —48
Test set
1 8 + + 65
2 12 + + 65
3 20 + + 50
4 11 - - —48
5 13 - + 83
6 17 - - -6

%(+) means active, (—) means inactive and (#) means incorrect prediction
The details for the computation of MPS value are described in methods section
#Compound numbers are correspond to those in Table 4

does not want to lose any potential active compound/drug candidate particularly the
one like the mispredicted compound of the test set (compound no. 13) which has a
high MPS value (MPS = 83). Clearly, a number of active compounds have got high
MPS values including compound no. 8 which represents a potent anti-HIV drug—
Didanosine—and is a test set compound (Table 5). The method has also produced
high MPS values for a number of training set active compounds too like compound
nos. 5, 7, 18, 19 (Table 5). Therefore, picking at least a couple of top scoring (from
MPS values) compounds out of them from prioritization point of view may help
screen useful drug candidates using the present method. This finding therefore
indicates that this method can be used for creating suitable splits in getting a
reasonably useful training set from an available data set and help screen putative
active compounds for drug discovery.
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Structure Generation for Nucleoside Analogous

As done for the barbiturates, structure generation from various starting points, i.e.
compound no., atom no., was carried out for the NA series of compounds too. In
doing that, activity-related vertices have been picked up from the strong ranges in
the ordering of D *index values for the vertices (atoms) of the H-suppressed graphs
of these compounds. It has been found that a few carbon skeletons resembling the
structure of other active compounds than the ones from where the activity-related
vertices and the corresponding distance distribution values are taken have been
generated.

For the purpose of illustration, the structure of the compound no. 6 and the
generated structure which corresponds to compound no. § are shown in Fig. 9. It
can be seen that in this case too, the algorithm is able to generate a structure with
significantly different scaffold than the starting compound and has a higher MPS
value (MPS = 65) too compared to that (MPS = 8) of the starting structure indi-
cating that this generated structure has the potential of being highly active and
therefore may be picked/prioritized for further studies. In fact, compound no. 8 is a
potent anti-HIV drug—Didanosine. Therefore, the method may be regarded as a
useful tool for generating, prioritizing and discovering potent anti-HIV compounds.
Moreover, the generated compound belongs to the test set indicating that the
structure of a compound that has not been used for training the system can also be

Vertex No. 6
(Root Vertex)

Compound No. 6 Molecular Graph of Compound No. 6
with root vertex

N—
_\
NH
Same

—
Topology
O

N N
NS
M

Cyclic structure generated from Compound No. 8
Compound No. 6, Vertex No. 6

Fig. 9 Compound no. 6, its molecular graph with root vertex and one of the structures generated
from compound no. 6 that resembles the topology of compound no. 8
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designed by this method which may be believed to carry higher importance for
discovering novel therapeutic candidates.

3.2 Rooted Substructure Searching for Drug Discovery

In the previous section, we showed how the exact matching algorithm can help find
structures of active compounds which could be obtained from the trees generated
from the topological distance distribution information of activity-related vertices
obtained from other active compounds. In this section, we describe the use of two
other matching algorithms—strong matching and weak matching—along with
exact matching algorithm for searching active compounds in a data set in the form
of tree and sub-tree matching. As given in the method section, these sub-trees are
obtained by means of applying node deviation and node migration in the actual tree
obtained from the distance distribution associated with an activity-related vertex.
The presence of such trees and sub-trees are then searched for in the compounds
present in a data set to identify potential drug candidates. In doing that, we have
considered two known TB drugs—Isoniazid and Streptomycin—to describe the
usefulness of the present method in finding potential antitubercular compounds
from a data set (named GTB data set) of 3779 compounds [22, 23] for which MIC
values against H37Rv strain of Mtb have been measured. The authors have made
MIC = 5.0 as the cut-off point and the MIC value of any compound which is higher
than 5.0 give an inactive compound in the data set. It therefore seems reasonable to
consider the same cut-off value for the present purpose. We will first furnish the
results obtained for Isoniazid which will be followed by those obtained for
Streptomycin. It may be noted that the activity-related vertices for both Isoniazid
and Streptomycin have been taken from the literature information and not by using
rule-based method in the ordering of vertex indices which has been done for the
barbiturate and NA series of compounds. In fact, it shows that the method can be
used successfully in identifying potential drug candidates by picking
activity-related vertices by other means than by the rule-based method.

3.2.1 Studies with Isoniazid

Isoniazid is a known first line drug for the treatment of tuberculosis. However, it
may become resistant in situations, and therefore, this leads researchers look for
novel drug candidates to overcome drug resistance problem for the treatment of
tuberculosis . We have described in this subsection how structures generated from
activity-related vertex information of Isoniazid using the present method can help
search for potential TB drugs from a data set of 3779 compounds [22, 23]. It is
known that the chemical/biochemical reaction takes place at the point of the first
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nitrogen (N) atom (underlined) of the fragment (-NH-NH2) in isoniazid molecule
to convert this pro-drug into its metabolite that works as the effector molecule.
Therefore, this vertex (N atom) may be regarded as an activity-related vertex for
Isoniazid. Accordingly, the distance distribution associated with the vertex repre-
senting this nitrogen (N) atom has been considered for generating structures. In
order to screen out potential antitubercular compounds having high activities, the
exact, strong and weak matching algorithms (method section) have been applied on
the GTB data set of 3779 compounds considered for the present study. A number of
highly active compounds have been obtained in the process and the information for
some of them obtained applying different node deviation and node migration on the
tree obtained from the distance distribution associated with the root vertex are
shown in Table 6 along with the structures of Isoniazid (with root vertex specified)
and the screened compounds. As said earlier, in their studies [22], the researchers
have considered a compound having MIC value less than 5.0 to be active. In this
way, data set is composed of almost equal number of active and inactive com-
pounds implying no bias for active or inactive compounds in forming the data set.
Accordingly, compound nos. 1-1890 are active compounds and the other com-
pounds are inactive. Considering the same cut-off value, one can see that only
compound no. 3296 has MIC value higher than 5.0 and the rest of the compounds
may be screened out as potential active compounds. In particular, compound no.
180 which is obtained by two types of node deviation and node migration in
generating structures from the root vertex has quite low MIC value which identifies
it as a highly active compound. Therefore, the result clearly shows that the method
may be used to successfully screen potentially highly active antitubercular com-
pounds from this data set starting from Isoniazid.

3.2.2 Studies with Streptomycin

Streptomycin is another antitubercular drug in use, an antibiotic. For this com-
pound, the removal of even one of the two guanidino groups present in the structure
reduces the activity of the compound. Considering that, we have taken the vertex
representing the nitrogen (N) atom in one of the guanidino groups as the root vertex
to start generating/designing novel structures. Out of a number of structures
designed using the present method, i.e., using exact matching as well as strong
matching and weak matching algorithms in relation to node deviation and node
migration on the trees obtained from the distance distribution associated with the
root vertex, information about some of these compounds are given in Table 7 along
with the structures of Streptomycin having root vertex indicated and the matched/
searched compounds from GTB data set. It is found from this table that all the
compounds shown here are active according to the adopted criterion (MIC < 5.01is
active) with compound no. 183 being the most active among them. Therefore, it
appears from this finding that the method may be used successfully to screen
potentially highly active antitubercular compounds from the data set of 3779
compounds starting from Streptomycin.
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Table 6 Screened compounds obtained from the matching of trees/sub-trees obtained from the
generated structure from the root vertex (indicated) of Isoniazid molecular graph

Source Compound

(‘. Root Vertex
— HN=——NH,
N
<\:/>_<
o

Isoniazid

Compounds (in the Global TB data set) whose structures topologically matched with the
source compound with the node deviation and node migration mentioned alongside

S. no.

Node deviation

Node migration Matched compound

1
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(continued)
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Table 6 (continued)
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Source Compound

(‘. Root Vertex

Isoniazid

Compounds (in the Global TB data set) whose structures topologically matched with the
source compound with the node deviation and node migration mentioned alongside
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Table 7 Screened compounds obtained from the matching of trees/sub-trees obtained from the
generated structure using the root vertex in Streptomycin molecular graph

Source compound

M NH,
Root Vertex v\\( oM
e N N\ NH,
o
NH,
OH
OH

cH,
N
H

Streptomycin
Compounds (in the Global TB data set) whose structures topologically matched with the source
compound with the node deviation and node migration mentioned alongside
S. Node Node Matched compound
no. deviation migration
1 0 0 Root Vertex ,\\(
e, N ::\"/Nu,
Compound No 183
2 2 0 Hal NHy
Root Venex\y o "
HE HM. N

oH

OH

Compound No. 1483

CHy

N /N \/\/r«r\\/cu 3
—
(_ N NH
Root Vertex

o

Compound No. 1059

(continued)



Combinatorial Drug Discovery from Activity-Related Substructure ...

Table 7 (continued)

103

Source compound
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Streptomycin

Compounds (in the Global TB data set) whose structures topologically matched with the source

compound with the node

deviation and node migration mentioned alongside
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no.

Node
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Node
migration

Matched compound
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=
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Compound No. 468
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(continued)
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Source compound

M NH,
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H

Streptomycin

Compounds (in the Global TB data set) whose structures topologically matched with the source
compound with the node deviation and node migration mentioned alongside
S. Node Node Matched compound
no. deviation migration
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Source compound
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Compounds (in the Global TB data set) whose structures topologically matched with the source

compound with the node

deviation and node migration mentioned alongside

S. Node
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Node
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Matched compound
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Compound No. 211
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Table 7 (continued)

Source compound Root V

HM NH;
ertex ‘\\H/ oM
HiC "

N NH;
\Y
\ N
/_ ) H o

_CHy

Streptomycin

Compounds (in the Global TB data set) whose structures topologically matched with the source
compound with the node deviation and node migration mentioned alongside

S. Node Node Matched compound
no. deviation migration

11 5 2 X\J\} :i ;

Root Vertex

Compound No. 232

4 Conclusions and Future Prospect

The results obtained for different series of compounds using recently developed
graph theory-based drug design/drug discovery method by our group [15] for
combinatorial drug design from substructural topological information have been
described in this chapter. Its application and usefulness for different series of an-
titubercular compounds have already been reported [15]. In this chapter, we have
presented some new results for designing active compounds for barbiturates [18,
19] and nucleoside analogues [20, 21]. We have also reported some new results
obtained for discovering novel active compounds from a data set using rooted tree/
sub-tree searching/matching algorithms. In doing that, a data set (GTB) of 3779
potential antitubercular compounds [22, 23] has been taken for this study and the
method has helped search a number of potentially highly active antitubercular
compounds from this data set. Thus, to our knowledge, we have introduced here a
method that can be used for searching databases to discover novel drug molecules
using rooted tree and sub-tree matching algorithms. Furthermore, the usefulness of
newly proposed Molecular Priority Score (MPS) for prioritizing and screening
highly active compounds has also been described for the studies with a series of
convulsant—anticonvulsant barbiturates and a series on nucleoside analogues for
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their activities against HIV. It is also found that the proposed method is capable of
generating structures of known active compound that has scaffold different from
that of the starting one. Furthermore, the structure generation starts from a vertex
which plays a role in predicting biological activity. These observations seem to
address the relationship of the present method [15] with two important aspects of
modern-day drug discovery research—scaffold hopping and inverse QSAR
(IQSAR) problem. Therefore, it appears that this newly developed method [15] may
find useful applications in designing novel therapeutic candidates and may be
helpful for working with drug resistance problems where compounds of very dif-
ferent molecular architecture may be sought for.

Our work presents an interesting alternative to “3D” drug discovery, where
actual molecular coordinates in Cartesian space is used. Combinatorial design and
generation in three-dimensional space would be far more expensive compared to
our approach. Interestingly, one can always follow up on “3D” drug discovery
based on molecule predictions from our method. This would allow a far tractable
approach to drug discovery compared to a seemingly infinite exploration of
molecules in actual “3D” Cartesian space.

Regarding future work, it may be worth exploring whether application of any
quantitative measure for activity prediction can help screen potential bioactive
compounds more effectively. Also, incorporation of new rooted tree-based com-
pound generation and searching algorithms in the existing computer program would
be another important aspect to work on. Finally, it would be of special interest to
see how incorporation of ADME/Tox and drug-able property filters in the computer
program can help discover drug molecules having desired pharmacological and
undesired toxicological activities using the present method.
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In Silico Structure-Based Prediction m)

Check for

of Receptor-Ligand Binding Affinity:
Current Progress and Challenges

Shailesh Kumar Panday and Indira Ghosh

Abstract Structure-based in silico studies aiming to predict affinity of a set of
ligands to their cognate receptor have been enjoying keen interest and attention of
researchers in drug design around the globe since many decades, and made sig-
nificant progress to increase its predictive power, even it has emerged as a com-
plementary field to in vivo and in vitro studies in recent years. Structure-based drug
discovery (SBDD) process whose success heavily relies on a careful selection of
structure of receptor and ligands and its accuracy, completeness, and rigor of
chosen model, imitation of the physiological condition in such in silico models,
e.g., pH and solvation. Appropriateness of selected mechanism of binding concept
and the realization in mathematical terms used in scoring methods have a strong
influence on the accuracy too. However, constant identification of new targets using
systems approach like genomics, proteomics, metabolomics, and network biology
has led a paradigm shift from single or a couple of targets toward the appreciation
of emerging role of a network of targets. The application of such strategies in study
of complex diseases is gaining attention. Identification of binding sites of receptor
and their characterization is important to be able to portray its interacting features. It
involves the search of ligands which are able to possess the features, present them
complementary to the binding site, so by docking the set of ligands to the binding
pocket of the receptor, activity can be evaluated. In silico receptor—ligand binding
affinity prediction from docking has witnessed rigid-receptor rigid-ligand to
flexible-ligand rigid-receptor treatment, and nowadays docking studies, through
sampling side chain rotations of the binding site residues, also account for the
flexibility of binding pocket of the receptor in indirect way. Literature survey has
shown progress in ranking ligands in order of affinity using reliable scoring func-
tions to find potent scaffolds which can be further optimized to gain more affinity.
Many methods include effect of solvation in binding processes, like considering
conserved water positions in active sites (water maps), explicit water simulation in
presence of ligand with receptor, free energy perturbation, and thermodynamic
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integration. Availability of many conformers of receptors and ligands in solution
suggests the importance of entropy in estimation of binding affinity, but entropy
component of binding free energy directly is not included in such studies. In spite of
unprecedented advancement of computational modeling, faster simulation tech-
niques, accurate solvation models and current best practices, the dependence of
binding affinity on pH, estimation of entropy along with enthalpy in binding
affinity, inclusion of conformational entropy of ligand and receptor, and modulation
of flexibilities during complex formation are important challenges lying ahead.
Therefore, an account of prowess and challenges in structure-based prediction of
binding affinity addressed in present review will provide directions for its appro-
priate application, understanding its limitations and getting important feedbacks for
its betterment.

Keywords Structure-based drug design - X-ray crystal structure
Scoring function - Docking - Simulation - Structure validation
MM-PBSA - Entropy - Free energy

1 Introduction

The advancement of molecular understanding of the disease processes and their
manifestations, along with computational advancement like in silico studies, aiming
to predict high-affinity molecules/scaffolds binding to the target, grew as a
promising complementary field of study mainly because of its cost-effectiveness
and speed. It facilitated virtual high-throughput screening (VHTS) to narrow down
the search space for further experimental work by making predictions about the
ligand-receptor affinity [1]. Advancements in systems biology along with network
biology helped identifying targets for diseases [2], and crystallography [3] and
nuclear magnetic resonance (NMR) [4] techniques enabled solving structural
models of the target molecules with higher resolution setting foundation of
structure-based drug designing (SBDD). Docking is one of such computational
studies, which aims to search high-affinity molecules from a library of chemicals
and predict relative orientation (pose) of the molecule to the target. It also tries to
rank the set of molecules/poses in a sorted affinity order [5]. Knowledge about the
structure of receptors made binding site identification easier and enabled to screen
the small-molecule libraries against the target seeking complementarity with the
ligand.

Docking and scoring methods due to its promising applicability prospect has
been extensively developed, critically evaluated, and constantly refined with the
time, it has now shaped into a field of research; several software tools have been
developed and are available for academic and industry research [5-11]. Recently,
Taylor et al. [12] have reviewed the broad spectrum of major techniques amenable
to the field of non-covalent docking studies, classifying them into molecular
dynamics, Monte Carlo methods, genetic algorithms, fragment-based methods,
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point complementarity methods, distance geometry methods, tabu searches, and
systematic searches. They briefly presented algorithms and validations of models
and techniques using test cases as examples. The study has concluded that hybrids
of various types of algorithms employing novel search for appropriate poses and
consensus scoring are better for large-scale docking [12]. It has been observed that
rigid receptor and flexible ligand models achieved success rates of 70-80%. It can
be influenced by the fact that programs implementing these algorithms were well
established at that time [12]. However, they pointed out that possible reason for
failure is underestimation of conformational sampling of receptor flexibility [12]. In
spite of great success of docking methods in discriminating ligands as good and
bad, predicting the binding on the basis of their affinity towards cognate receptor is
poor. Moreover, in certain cases, docking shows inability to reproduce experimental
binding pose and it is a great concern in the technical aspects of the docking
methodology and its current progress, so need to review time to time. In 2010,
Huang et al. [13] have discussed currently practiced docking techniques, delin-
eating the ways for ligand sampling, accounting protein flexibility and specific
scoring functions.

During a docking study, one has to do many sequences of tasks/steps which
influence the final outcome of the study and its success [14]. First and the foremost
thing is to search for the potential binding sites on the receptor and characterize
them; however, sometimes when binding site is not known blind docking can be
done. Several cavity detection algorithms and software were built to help this. In
parallel, right selection of the receptor structure is crucial [14]; thus, the quality of the
structure and experimental conditions used for resolving the structure has to be taken
care of, and structure resolved with experimental conditions closest to the actual
functioning condition should be preferred if available [15]. Most often, hydrogen
atoms are missing in the structure; thus, protonation states of the titratable receptor
residues have to be fixed, and usually, it is borrowed from predictions made using
different protonation state prediction tools [16, 17]. Apart from the protonation states
of titratable residues of the receptor, ionization states of ligands to be docked have
influence on correct model of binding [16, 18]. Scoring functions also greatly
influence the final outcome of the docking studies, and there are many scoring
functions available; some may be suitable to study the specific type of protein active
site but less effective in other cases [19]. Inherent demand of fast evaluation of poses
during docking enforces the scoring functions to adopt approximations and
parameterization, which compromises predictivity [19]. Thus, it is tough to guess
which scoring will be suitable for which kind of active site. However, chemical
intuition and consensus scoring protocols can be adopted to get better results.

Although the correctness of ranking and order of predicted affinity more often
fail to provide significant correlation with experimental ranking and observed pose
[20], such limitation of the in silico high-throughput screening can be partially
attributed to the multifaceted problems in current practices, e.g., selection of
appropriate binding theory, selection of appropriate modeling data, and limited
knowledge about the reaction mechanism. Many such challenges are discussed in
the present article.
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1.1 Targets Are Diverse

To be able to comprehend the challenges lying ahead on the way to drug design/
drug discovery, it is important to understand the diversity of the drug targets that
have been exploited so far as well as the trend in new drug targets in recent history
of drug discovery [21]. Mathias Rask-Andersen et al. performed a study on all
drugs approved by FDA during 1983-2010. They took all 1542 drug entries as on
May 2009 and filtered out 225 drugs with unknown targets, 192 with no human
targets, and 609 non-therapeutic targets to yield a dataset of 435 therapeutic
effect-mediating targets for humans and to account for the time lag between drug
approval and their entry in DrugBank; drugs approved during 2007-2010 were
taken from FDA data and included for analysis. Drug—target association was
annotated by manual curation from literature data, and targets were kept in four
classes (receptors, enzymes, transporters, and others) with receptor class has highest
193 targets, followed by enzymes with 124, transporters with 67, and others with 51
targets [21]. Analyzing curated drug—target association dataset, they found that
every year 17.9 drugs targeting human proteins are approved by FDA, while 4.3 of
them act on novel targets. The trend in FDA approval of drugs targeting new human
proteins (novel target drugs: NTDs) does not decrease overall. Moreover, they
noticed three peaks corresponding to durations 1990-1993, 1994-2000, and 2001—
2008 when NTDs were plotted against years from 1983 to 2010; they called them
first-, second-, and third-target “innovation peaks,” respectively [21].

During the first innovation peak, it was observed that proportions of approved
drugs for all major target groups—GPCRs, hydrolases, transferases, and isomerases
—were similar to other two peaks. During second innovation peak, first time
integrins appeared as drug target, while during the third innovation peak, asthma
drug omalizumab-targeted Fc-receptors and imatinib appeared as kinase inhibitor
[21].

Analysis of novel targets for drugs with time by Mathias Rask-Andersen et al.
highlights the fact that with the passing time new drugs apart from targets belonging
to earlier exploited classes, novel classes of targets are also being identified for new
drugs. Thus, diversity in the classes of target molecules is expanding, and SBDD
practices have to be optimized to improve success rates in such studies. Present
review will attempt to enlighten and discuss the solutions for such relevant topics
including the challenges upcoming ahead.

1.2 Targets Are More Diverse than Earlier

Genomic-wide association studies over a set of druggable genome, utilizing
bioactivity data including approved drugs or clinical compounds and gene associ-
ation data against these targets, can be used to come up with set of further druggable
genes and gene combinations as target [22]. Recently in 2017, Finan et al. have
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performed a similar study and estimated that 4479 genes can be drugged or are
druggable out of total 20,300 annotated protein-coding genes as per Ensembl
version 73 (https://www.ensembl.org/) covering ~22% of total. They reported that
there could be 2282 genes more than earlier reports of the druggable human gen-
ome [22].

Systems biology approaches have been used for decades for predicting target
genes in case of infectious diseases [2], studying systems approaches, e.g., meta-
bolic control analysis (MCA) and flux balance analysis (FBA). Systems genetics
approaches have also been used for identification of novel disease genes in rat and
human [23]. Molecular networks information can be used for improving drug
discovery projects at several stages from target identification utilizing information
of existing data about drug—target association [24]. Metabolic and signaling path-
way [25] and genome-wide association are studied in detail for identification of new
target proteins and their interactions [26]. Genome-led methods provide a new
pathway or a class of protein(s) as target.

Pharmacophore designed from ligands of a target protein can be looked for
assessing binding site similarity for the proteins of same family as well as it can be
used to compare binding site similarity for proteins from different families of
proteins for selectivity. In recent times, several highly selective inhibitors of such
protein(s) have been found to assess the multitarget activity. For example, c-Abl
inhibitor imatinib [27] was approved as drug for chronic myeloid leukemia, but its
clinical utility is widened after finding that it has shown significant activity against
several other important targets, e.g., tyrosine-protein kinase kit (c-KIT or CD117).
Similarly, sorafenib affects tumor proliferation and tumor angiogenesis pathways
due to its multikinase inhibitory activity [28]. Sunitinib is also approved for being a
multiprotein kinase inhibitor with similar effects as sorafenib [28].

1.3 Starting of Structure-Based Drug Design

One of the successful stories of the structure-based drug design started in the early
eighties with purine nucleoside phosphorylase (PNP), targeted as a salvage enzyme
important to inhibit, so that T-cell-mediated activation of immune system is sup-
pressed. PNP is an important enzyme involved in purine salvage and catabolism
[29]. Inactivity of PNP has been found to show adverse effect on T-cell proliferation
[30]. Human PNP, a homotrimer with each subunit of molecular weight 97 kD,
shows substrate specificity for guanine, inosine, and other 6-oxypurines analogs,
while bacterial PNP shows specificity for adenine [30] also. PNP active site consists
of three binding subsites: purine-binding site (Fig. 1, shown in cyan), hydrophobic
site (or ribose-binding site, Fig. 1, shown in blue), and phosphate-binding site
(Fig. 1, colored purple) [31]. In attempt to design potent PNP inhibitors, consid-
ering the features of three subsites of PNP binding site and three-dimensional
structure of PNP as starting point, an iterative process of modeling inhibitor-bound
structure, conformational search using Monte Carlo method followed by energy
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Fig. 1 Human purine nucleoside phosphorylase (PNP) monomer (PDB: 1ULB) in complex with
guanine and sulfate ions. Guanine and sulfate ions are shown in ball and stick. Three subsites of
PNP binding site: First subsite is called purine-binding site (shown in cyan surface, residues
Alall6, Phe200, Glu201, Val217, Met219, Thr242, Asn243, Lys244), second subsite, i.e.,
hydrophobic site (or ribose-binding site consists of residues His86, Tyr88, Phel159 (from adjacent
subunit of PNP trimer), Phe200, Met219) where Tyr88 and Phe200 are shown in blue surface. The
third subsite termed phosphate-binding site (shown in purple surface residues Ser33, Arg84,
His86, Ser220)

minimization and finally experimental determination of binding affinity and crys-
tallization of complex structure was used. This iterative process yielded a series of
potent and membrane-permeable 9-(arylmethyl)-9-deazapurines (2-amino-7-(aryl-
methyl)-4H-pyrrolo[3,2-d]-pyrimidin-4-ones) inhibitors of PNP [29]. Later, (S)-9-
[1-(3-chlorophenyl)-2-carboxyethyl]-9-deazaguanin showed highest potency among
all previously designed analogs [32]; however, the (R)-isomer was 30-fold less
potent. This study exemplifies how structural information can be carefully used
toward designing of potent inhibitors of the receptor of interest.

The enthalpy and entropy components of binding free energy together decide
affinity of interaction between receptor and ligand. Therefore, affinity can be modu-
lated favorably adopting following possible strategies: (i) decreasing the unfavorable
entropy maintaining favorable enthalpy, (ii) increasing favorable enthalpy without
introducing unfavorable entropy, and (iii) altering one or both of enthalpy and entropy
favorably without losing proportionally on other component [33].

An example where first strategy has been used for optimizing affinity is inhi-
bitors of PNP. Optimized picomolar-binding PNP inhibitors have also been
reported [34]. The attention has been paid on reducing the entropic penalty, without
sacrificing the enthalpy of binding to gain affinity. Hypoxanthine has K; 4.3 pM,
with enthalpy —30.5 kcal/mol, but 23.1 kcal/mol entropy penalty to result a
—7.4 kcal/mol binding free energy [35], but optimized molecule SerMe-ImmH
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shows 5.2 pM K;, with —20.2 kcal/mol enthalpy, but merely 4.7 kcal/mol entropy
to result —15.5 kcal/mol binding free energy [34].

The second strategy has been utilized for optimizing HIV-1 protease inhibitors.
After the FDA approval of Indinavir in 1995, which binds only because of
—14.2 kcal/mol entropy despite 1.8 kcal/mol unfavorable enthalpy with binding free
energy —12.4 kcal/mol, the process of affinity optimization started. The constant
optimization of inhibitors for efficacy leads to Darunavir which binds with only
—2.3 kcal/mol favorable entropy; however, —12.7 kcal/mol favorable enthalpy
yielded binding free energy —15.0 kcal/mol. The free energy gain of —2.6 kcal/mol
was reported where every —1.4 kcal/mol results ten times better binder [36, 37].
Another such example involves cholesterol-lowering drug statins to HMG-CoA
reductase, and Fluvastatin binds only due to —9.0 kcal/mol favorable entropy despite
zero contribution from enthalpy. However, newer drug Rosuvastatin binding has
only —3.0 kcal/mol entropy contributions, but additional —9.3 kcal/mol enthalpy
gain results —12.3 kcal/mol binding free energy, —3.3 kcal/mol better than
Fluvastatin [38].

The third strategy is more tedious and challenging mainly because of enthalpy
entropy compensation, more often enthalpy can be increased by introducing new
hydrogen bonding groups as a strong hydrogen bond which provides ~4-5 kcal/mol
enthalpy; however, introduction of hydrogen bond decreases favorable solvation and
entropy by structuring regions involved in hydrogen bonding. Alternatively, in theory,
introducing multiple hydrogen bonds targeting same structural regions of receptor has
been suggested to mitigate the extent of enthalpy entropy compensation [33].

1.4 Flexibility and Adaptability of Target

Initially, the protein—ligand docking was modeled as a lock-and-key, where protein
was treated as “lock” containing a binding site as “key-hole” which can host a
complementary ligand or “key.” However, later it was realized that lock-and-key
model is not sufficient to characterize all binding events; thus, advanced models
were proposed which can be put broadly in three groups: (i) lock-and-key (ii) in-
duced fit (IF), and (iii) conformational selection (CS) [39]. The IF and CS models
introduced to account for the receptor flexibility during the binding with ligands
will be discussed in detail later. Although these models represent receptor-ligand
binding in better way, still estimate only enthalpy of the interaction and the entropy
component of the binding free energy remains to be estimated. It has been reported
in the literature that entropic component of binding can be important in many
interactions. A recent experimental and computational study of a human heat-shock
protein 90 (HSP90) highlighted important alterations in binding properties of target
on complex formation with small-molecule inhibitors [40]. Surprisingly, they found
that compounds binding to helical conformation have increased target flexibility
and gained entropy preference over compounds binding to loop conformation
which was less flexible on complex formation [40].
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1.5 Knowledge of Target Structure Is Essential
but not Sufficient

In spite of success in structure-based drug discovery process [29] at several occa-
sions, knowledge about the structure of the target involved in the disease does not
necessarily lead to a drug for cure; f-Thalassemia is one such example. It is an
inherited hematologic disease caused by less f-globin, largely reported in
Mediterranean region, identified with the mutant f-globin [41]. The present treat-
ment is continuous blood transfusions with chelation therapy [42] and less fre-
quently, bone-marrow transplantation [43], because there is no drug treatment for
cure. However, the first crystal structure of hemoglobin was known in 1968, and
since then, more than 250 human hemoglobin structures are known [44]. Hence,
druggability and understanding of disease is a field of research in itself, emerging as
translational bioinformatics.

2 Challenges in Structure-Based Designing

As discussed in many review articles earlier, major steps to find in silico chemicals
and design them for better inhibition of target macromolecule are identification of
target protein or macromolecule of importance and associated functionally with the
disease, characterization of its 3D structure and active site, mapping of interactions
possible with chemical functional groups, docking, scoring, and finally ranking the
possible chemicals to test experimentally. Each of these steps has many challenges
which will be discussed here.

2.1 Accuracy of Structures

Before starting a docking study to screen, some library of compounds to come up
with a set of molecules showing high binding affinity with the target receptor
requires to have known 3D structure. The appropriate selection of the receptor
structure can influence the success or failure of any screening study [14]. Therefore,
a researcher needs a good structure to start with which could have been resolved
mostly using X-ray or NMR. Sometimes, the structure of the desired receptor is not
known. In such cases, a homology model of the structure can be used if a suitable
template for the receptor can be found [14]. A template may be the same protein
having similar function, showing high sequence similarity from different organism
or even some other protein having same fold. If the structure of the receptor is
known in advance, then there may be multiple structures resolved in different
conditions, with varying resolution, varying model completeness, etc. In such a
case, the most suitable structure has to be chosen [14]. In selecting receptor
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structure, one has to keep in mind that how well the structure resolution condition
matches with the actual functioning condition of the receptor and resolution of the
structure [14]. Apart from this, many questions may arise like whether the structure
is ligand bound? Whether active conformation of the structure is solved? Whether
the structure is solved at pH similar to the functioning pH? These can also be of
importance to consider during docking. The receptor crystal structure selection has
to be done with care considering the quality of the structure model. Some of the
most important parameters for crystal structure assessment have been outlined in
the literature [45] and listed in Table 1. Crystal structure resolution which is a
measure of quality of electron density data collected is one of such parameters;
structures resolved at less than 1 A are considered high-quality one being able to
resolve electron densities at atomic level while structures greater than 3 A have
smeared electron densities and atomic positions are not clearly identifiable. Hence,
crystal structure with resolution in range: 1 A < resolution <3 A can be

Table 1 List of important parameters for assessing quality of X-ray crystal structure

Parameter Description | Preferred ‘ Comment

Electron density and solved model quality

a-cutoff o-cutoff applied to the data None

Lower A minimum spacing (d) of crystal lattice planes that | 20-50 A

resolution still provide measurable diffraction of X-rays.

Higher A minimum spacing (d) of crystal lattice planes that | <3 A Higher is
resolution still provide measurable diffraction of X-rays and better

also (I/o(I)) greater than 2 in high-resolution shell.

Completeness | The number of observed reflections divided by the | ~100% | Higher is

theoretical maximum better
(I/a(D)) The average ratio of reflection intensity to its >2
estimated error. Signal-to-noise ratio
R-factor A measure of the global reliability factor or <25% Smaller
goodness-of-fit between the experimentally obtained is better

structure factor amplitudes, F,, and the calculated
structure factor amplitudes, F.,., obtained from the

model.
Rpee—R-factor | Rgee is R-factor for random ~ 5% reflections, not 2-7% Smaller
used for model refinement. Rg.. — R-factor < 2, may is better

be indication of overfitting while Rgee — R-
factor > 7 may be due to poor refinement of model

Rooa Observation to atom ratio Higher is
better

Geometric parameters of model quality

RMSD (bonds) | Root mean square deviation of bond lengths from 0.15-

ideal values 025 A
RMSD (angles) | Root mean square deviation of bond angles from 1°-3°
ideal values
Ramachandran | Number of ¢— torsion pairs falling in disallowed |0 Smaller

violations regions of Ramachandran plot is better
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considered reasonable quality structures [46]. Apart from resolution, Ry,jue, Rfree
and real-space R-value and real-value correlations are among the important
parameters to assess the quality of crystal structure as discussed by Brown et al., in
2007 [45].

Geometric parameters and quality of structure: Apart from diffraction quality
and structure refinement parameters, geometric and chemical parameters are equally
important to consider while assessing its quality [15]. Atomic positions in model,
planarity of peptide plane, stereoisomer of peptide bond, bond length, bond angle,
and torsions angles should be checked for an unnatural occurrence [15]. Since all
combinations of backbone torsions ¢—y cannot occur in proteins, only those pairs
which conform to the Ramachandran plot, thus number of ¢— pairs in disallowed
regions of the Ramachandran plot which ideally should be zero, generally lesser
violation considered better structure, are used as a critical parameter for the quality
of the crystal/model structure as best practices.

Atomic occupancy and B-factor are among other important parameters to be
considered while assessing the quality of structure. Occupancy of an atom is the
fraction of molecules which occupy modeled position among all molecules in
crystal. An occupancy 0.0 means modeled positions not observed in crystal, and 1.0
means modeled position is present in all molecules in crystal [47]. If some residues
in crystal structure show more than one conformations in crystal structure, then
conformation with highest occupancy should be preferred. In case of ligands, the
occupancy is dependent on K, value, e.g., for a ligand with Ky in range
10-100 mM, maximum achievable occupancy ranges 70-90% or 0.70-0.90 con-
sidering working ligand concentration <500 mM [48]. B-factor in theory represents
the amplitude of oscillation of the atom around equilibrium position. It quantifies
the dynamics of the atom; often, isotropic B-factors are reported in crystal struc-
tures; however, anisotropic B-factors may be reported in high-resolution structures.
For high-resolution structures, anisotropic atomic displacement parameter
(B-factor) can be substantiated only when resolution is higher than ~ 1.4 A [46].
Structural regions in crystal structure having B-factor higher than a threshold
B_max should be carefully inspected because of their implications to high disorder
in the region [49].

At times, in crystal structure water molecules play important role in binding and
have to be considered for characterizing the binding site for its water interaction
profiles [50]. However, identification of structurally important waters involved in
receptor—ligand interaction is another challenge [51, 52].

Proteins are usually flexible molecules, and inherent dynamics characterizes its
interaction. Moreover, a crystal structure is usually a time and space average of the
conformers present in the crystal lattice [15]. Therefore, quite often it may not be
the conformation presenting the best possible affinity for the given ligand due to the
rigid treatment of the receptor. Thus, protein should be allowed to flex in such way
that it could show best possible affinity with the ligand.
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2.2 Comparative Homology Modeling and Role of Template

Very often the target protein crystallization is not possible, and no other way but
homology or comparative modeling of structure becomes imperative. Many stan-
dard tools and directions are reviewed, and appropriate protocols are included [53,
54]. Many such tools to evaluate the modeled structures are also discussed in the
literature [55, 56]. Here we shall cite a specific example showing importance of
choice of template using homology modeling applied for Mtb isocitrate dehydro-
genase (ICD).

Mpycobacterium tuberculosis is known to use the glyoxylate shunt during the
persistent stage [57]. Experiments have been performed to understand the gly-
oxylate shunt by considering the close analogy with Escherichia coli system [58].
For E. coli, glyoxylate shunt pathway is well studied and is initiated by phos-
phorylation of specific serine-105 residue of isocitrate dehydrogenase (ICD) [59].
Mpycobacterium tuberculosis being a prokaryotic organism, same type of func-
tionality was also expected for the glyoxylate bypass pathway [58, 60].

Phylogenetic analysis of the ICD sequences shows that Mtb has NADP-
dependent ICD which belongs to subfamily II of ICD. Subfamily II has predomi-
nantly eukaryotic members, while E. coli ICD is classified in subfamily I [61].
Across the family, ICDs are found to be functional either monomers or dimers.
E. coli, Mtb, and human all have functional homodimeric forms. Dimeric ICDs
contain active sites which are contributed by the residues of both domains. Though
Mtb 1ICD is regulated by phosphorylation process, it is more equivalent to
eukaryotic ICDs. Eukaryotic ICDs are not found to be regulated by the phospho-
rylation, and also mammalian system does not possess glyoxylate shunt [62]. So
overall evidence suggest that Mtb ICD has close similarity with eukaryotic system;
however, the presence of glyoxylate shunt pathway makes this system closer to
prokaryotic intracellular pathogenic survivor.

Understanding of shunt pathway shown that regulation of the Mtb’s ICD
depends upon the phosphorylation/de-phosphorylation state which is expected to be
regulated by some of available 11 serine/threonine phosphatase/kinases [63]. In
2009, Vinekar et al. had performed molecular dynamics simulation-based analysis
to understand the effect of selective phosphorylation of serine residues [62].
However, crystal structure of Mtb ICD was not available at that time (Table 2), so
homology modeling had been done using different crystal structures as templates to
select appropriate functional model.

The ultimate goal of the homology-based structure modeling is to model the
structure from its sequence with an accuracy that is comparable to the best results
achieved experimentally. As the crystal structure of Mrb ICD was unavailable,
homology-based structure modeling was the preferred way to understand the struc-
tural features of the ICD. For ICD modeling, target sequence (UniProt ID: POWKL1)
was found to align with many sequences of already crystallized structures from both
prokaryote and eukaryote. Based on the homology rules of %-identity, functionality,
quality of the structure, and association with same taxonomy, three ICDs [64] were
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Table 2 Comparison of the crystal structure of Mrb* with selected (template) prokaryote and

eukaryote crystal structures

S. K. Panday and I. Ghosh

ICDH Mtb Sus scrofa E. coli
Sequence length 409 413 416
Template PDB ID 4HCX [66] | ILWD [65] |3ICD [64]
Year of publication 2013 2002 1989
Template structure resolution (A) 2.18 1.85 2.5
Riree 0.262 1.85 A NA
Rwork 0.205 0.210 0.180
Ramachandran outliers (%) 1.8 0.2 0.5
Sequence Identity with respect to Mtb ICDH 100 65.2 23.6
(UniProt ID: P9WKLI1) (%)

Sequence Similarity with respect to Mtb ICDH | 100 79.2 35.7
(UniProt ID: P9WKLI1) (%)

“Barlier modeled because structure was not available till 2013

selected as template structure for modeling. However, in cross-taxonomy (with
eukaryote) 1ILWD [65], same target sequence had higher sequence identity (Table 2)
than E. coli. Both crystal structures (3ICD and 1LWD) have same Rossmann fold and
a common dinucleotide-binding domain [64, 65].

In such case, where target structure from the same taxonomy is available and
fulfills the most homology modeling criteria, it is not always true that model
structure will also provide functional explanation. Model developed using E. coli is
shown in Fig. 2a (dark gray color) with E. coli crystal structure (green color). Both
structures are superimposed well with RMSD 4.68 A. However, model structure
(white color) developed using Sus scrofa (orange color) as template superimposes
with crystal structure with RMSD of 0.57 A (Fig. 2¢). Both models are validated
using PROCHECK [55], and more than 85% residues are found under
Ramachandran region. So, both models follow homology criterion and passed by
the structure validation tools.

In 2013, Quartararo et al. published the crystal structure of Mtb ICD dimer
complex with NADPH. This structure is then used to understand the closeness of
modeled structure of Mtb ICD with both E. coli and Sus scrofa. Superimposition of
Mtb with E. coli and Sus scrofa is shown in Fig. 2b, d, respectively. Although all
three have same folds, Sus scrofa is more close toward Mtb than E. coli. E. coli
structure has 6.4 A RMSD with Mbh, and major differences occurred in the
beta-hairpin loop region where E. coli structure has helical element than
beta-structure element. This region of dissimilarity known as clasp region between
inter-subunit interface [64] plays important functional role during phosphorylation
[61].

So, from this case study, it is very clear that one template cannot guarantee about
the functional state of the homology model, so different templates may be used to
develop appropriate functional model, as mentioned in comparative modeling
review [53]. Key to the selection of the model is always to be associated with the
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(a) (b) LTI
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RMSD: 0.57A

Fig. 2 Two homology-based models have been developed for Mtb ICD using two different crystal
structures (one from E. coli and one from Sus scrofa). a Shows the modeled structure (dark gray
color) superimposed with E. coli crystal structure (green color). Model fit well with 4.6 A RMSD
value. ¢ Second model is developed using Sus scrofa structure (ILWD) and superimposed model
structure (white color) is shown with 1LWD (orange color). When Mb structure published in
2013, it is found that mammalian ICD is much closure to Mtb as shown in panel (d) than E. coli
(panel b). Fold is well conserved in both models, but major differences are highlighted in clasp
region (shown in black circle)

experimentally known functional features. It is also established that structure val-
idation tools like PROCHECK [55] and WHAT IF [56] can only suggest the quality
of the models not the functionality of the modeled protein. Other methods popularly
known as ab initio designing of protein, alternate to template-based modeling, have
been discussed in other reviews [67, 68]. A comparison of efficiency of modeling
protein structure called CASP (critical assessment of methods of protein structure
prediction) provides evaluation of such programs [69]. Recently, designing of
protein structures has been successfully applied to model protein from genome
sequence using an integrated pipeline by Jayaram and co-workers [70]. However,
ensembles of model structure may provide a better docking success which has been
cited in 2010 by Novoa et al. [71].
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2.3 Ligand Flexibility

Apart from the traditional approach to look for potential inhibitor as small mole-
cules for proteins, small peptides can also be strategically designed to complement
interaction hot spots presented by receptor molecules, using knowledge about the
structure of receptor and its interacting partner molecules. In a recent article pub-
lished in Science, Kadam et al. [72] have exemplified the approach. The study
focuses on influenza type 1 virus and their surface protein hemagglutinin (HA),
which is associated with virus invasion of host cells. HA is composed of two
domains HA1 and HA2, and functional unit is a homotrimer of HA. The interface
of HA1 and HA2 forms a hydrophobic pocket. This HA-binding site, which is near
the stem region of the HA membrane, is targeted by the broadly neutralizing
antibodies (bnAbs) of the host and blocks large conformational rearrangement
associated with membrane fusion and thus neutralize virus [72]. Structurally,
analyzing the epitopes, at HA1/HA?2 interface, a highly conserved site was found.
This structural information allowed researches to synthesize novel proteins, e.g.,
HB8O0 and HB36, which could mimic bnAb paratope CR6261 and bind in the
conserved hydrophobic pocket, by placing amino acid side chains in appropriate
configuration and conformation. These proteins did show binding affinity compa-
rable to CR6261 and inhibited low pH-induced conformational change in HA.
Further, optimizations lead to improved analogues of HB36, which were also
effective in protecting mice against lethal HIN1 infections [72].

Success of de novo designed protein inspired researcher to look for even smaller
peptide like inhibitors seeking better drug-like properties, e.g., availability in blood
stream with higher lifetime. Starting from the available structural and functional
information about bnAbs, e.g., CR9114, CR6261, F10, A06, FI6v3, HCDR3 was
selected which possesses major interactions as the starting point for design of
smaller HA inhibitory peptides. After creating a pool of potential HA inhibitory
peptides mimicking different structural features of the HCDR3 loop [72] and
characterization of each peptide in terms of its thermodynamic (K4) and kinetic
parameters (ko and t;,), a combination of all distinct structural features of these
peptides into an 11-mercyclic peptide containing five non-proteinogenic residues
was synthesized. This peptide showed better affinity and longer residence time for
binding to HA. This study exemplified a novel approach, where compendium of
available structure is utilized with chemical intuition of structure and function to
yield a small cyclic peptide with better therapeutic prospect over existing inhibitory
proteins, e.g., HB36 and its variants [72].

Alternatively, another novel idea has been floated by Young et al. of stapling small
peptides to protect them from proteolytic cleavage and further designed a series of
stapled peptides among which mimic of a-helical peptide ATSP-7041 was reported to
be a potent and selective dual inhibitor of MDMX and MDM2 [73]. However, MDM2
and MDMX are suppressor of p53, thereby activates p53 pathway in tumors [74]. In a
recent in silico study, where Garima et al. tried to study the mechanistic aspect of
recognition of small stapled «-helical peptide ATSP-7041 with human serum albumin
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(HSA) and compared it with mouse serum albumin (MSA) [75], starting from the
crystal structures of HSA and ATSP-7041 in complex with MDMX. They used 50 ns
molecular dynamics simulations to sample conformational states of HSA; simulation
trajectories were clustered to give five clusters, and in these six (five cluster repre-
sentatives and one crystal structure) HSA conformations were used for further
docking studies. ATSP-7041 were fully blindly docked to above six HSA confor-
mations using protein—peptide docking tool pepATTRACT [76] and generated
ensemble (~ 24,000 poses) of possible docking poses for each; then these ensemble of
poses was clustered using k-means algorithm to result 40 clusters for each of six HSA
conformations. Further, they refined each of the 40 clusters representative poses for
each of six HSA conformations and then performed MD simulation for 5 ns to assess
the stability of the pose. Their study resulted four binding sites R1, R2, R3, and R4
which were most occupied and considered for further study. Moreover, representative
poses of ATSP-7041 and HSA complex one for each site was simulated using explicit
solvent, and binding affinity was estimated using MM-GBSA method. However, for
MSA, no crystal structure was available, so they modeled it using swiss model
choosing HSA as template. ATSP-7041 was keptin MSA at sites R1, R2, R3, and R4,
and three replicates of 100 ns MD simulation in explicit solvent were performed.
Their analysis of these results suggested that sites R2 and R3 were not stable for mouse
in contrast to human which they attributed to sequence dissimilarity at the region in
human and mouse serum albumins. Moreover, they also found that sites R1 and R4
have lesser affinity in case of mouse for ATSP-7041 serum albumin binding than
HSA. They also predicted a list of residues in the binding pocket contribution to the
difference in binding energy. The binding site R1 is canonical binding site overlaps
with already known site called Sudlow’s site II, but R4 appears to be a novel binding
site. Such in silico studies try to provide computational protocols which can be
carefully utilized to gain mechanistic detail into protein—ligand interaction processes.
Flexible ligands, e.g., peptides, can show better complementarity by conformational
adaptation to attain several weak interactions with the receptor [77]. Potential to gain
affinity through modulation of flexibility of ligands has been sensed, and nowadays,
smaller peptides are also being evaluated by researchers across the globe for their
therapeutic usage.

2.4 Protein Flexibility During Binding

Proteins are generally flexible molecules. Therefore, flexibility of the receptor has to be
accounted in in silico binding affinity prediction studies to better represent the
physicochemical conditions. The enormous conformational space available to proteins
is very challenging to exhaust in docking studies because of unrealistic sampling
requirements. However, non-exhaustive but simplistic and computationally less
demanding methods have been developed over the years as proxy for accounting the
flexibility of the protein during the binding which can broadly be put in four classes: soft
docking, side chain rotation, molecular relaxation, and docking to multiple structures.
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Soft Docking: This technique allows small conformational relaxations by treating
van der Waals which overlaps through a softened potential and is efficient in terms
of computational cost, but it can only account for smaller relaxation in receptor
structure during binding to ligand [78]. Ferrari et al. [78] applied this method using
two cavities of T4 lysozyme and drug-target aldose reductase which undergo large
conformation change during binding. Available Chemicals Directory (ACD) [78]
was screened against chosen targets for evaluating the method. They reported, with
single receptor conformation, soft potential was better in identifying known ligands,
while with multiple receptor conformations, it was poor in identifying leads than
hard function; this trend was similar for both receptor and more pronounced for
aldose reductase. Soft docking gives better score for ligands and decoys thereby
better scoring, but it misses true ligands [78]. Qualitatively, similar results were
reported by soft-docking studies of protein—protein [79] and antigen—antibody [80]
interaction studies.

Side chain rotation: Allowing side chains rotation of the binding site residues of the
receptor is computationally costlier than soft docking but offers better ways to
account flexibility of receptor through sampling side chain rotations of binding site
residues and overcome the limitations of soft docking, avoiding unphysical van der
Walls clashes in predicted poses [81]. Preliminary idea of incorporating side chain
flexibility into docking through usage of rotamer states of the binding site residues
with rigid ligand conformation by Leach et al. [82] has been carried forward and
adapted in several studies. For example, approach of rigid anchor and flexible
complementary growth of ligand in receptor-binding site is implemented in SLIDE
by Schnecke et al. [83] and used it to screen for potential ligands of progesterone
receptor, dihydrofolate reductase, and a DNA-repair enzyme from a dataset of
175,000 organic compounds. Another approach introduced by Dean and co-workers
[84] is applied to successfully reproduce experimental pose of ligand in binding site
by docking synthetic inhibitor RS-104966 to the S1° pocket of the human collagenase
matrix metalloproteinase 1 (MMP-1) [84]. In this approach, an ensemble of binding
site conformations was generated using side chain rotamer states of the binding site
residues followed by identification of representative conformations combining prin-
cipal component analysis and fuzzy clustering [84]. Frimurer et al. performed a study
attempting to assess the extent of impact of flexible side chain conformations of
binding site residues on predicted binding poses and affinity [85]. They chose protein,
phosphatase tyrosine 1B co-crystalized with non-peptide inhibitors, and docked li-
gands to parent receptor structure, resulting correct poses to correlate with low pre-
dicted binding energy[85]. In the process, an ensemble of structures was generated
using rotameric states of subset of binding site residues (Asp48, Lys120, and
Phel82), and ligands were docked to each structure; correlation of binding affinity
with predicted scores improved for correct poses [85]. The importance of considering
side chain flexibility in docking is also highlighted in study of Gaudreault et al. They
created a curated non-redundant dataset of 188 proteins where unbound- and bound-
both structures were already crystallized. In their study, they found that 90% binding
sites and side chain rotation were accounting the flexibility in it, and 30% of them
were essential side chain rotation and only 10% binding sites are rigid [86].



In Silico Structure-Based Prediction of Receptor—Ligand Binding ... 125

Molecular relaxation: This concept takes one step further toward accounting
protein flexibility from side chain rotation. In this approach, ligand is docked in the
binding site of the receptor allowing potential atomic overlaps to certain extent
followed by relaxation stage where docked pose of the ligand is energy minimized
and complex is relaxed allowing backbone relaxation along with side chain using
molecular dynamics or Monte Carlo simulation. Apostolakis et al. performed a
study in which they tried to incorporate receptor flexibility to model induced fit in
ligand and binding site over three challenging docking cases: (i) anti-steroid
antibody DB3 with two ligands, a rigid-ligand progesterone (no rotatable bonds)
and (ii) a flexible-ligand 5p-androstane-3,17-dione (having rotatable bonds), and
(iii) N*-(2-naphthyl-sulfonyl-glycyl)-p-para-amidino-phenyl-alanyl-piperidine
(NAPAP) binding to human o-thrombin [87]. Progesterone and 5[5-androstane-
3,17-dione show two different binding modes, thus make a perfect test case. In this
method, ligand was seeded to the center of binding pocket in random pose followed
by a combination of minimization with shifted non-bonded interaction and Monte
Carlo minimization; authors were able to successfully reproduce the crystalized
pose for test cases with native structure of protein and without prior knowledge of
structure of NAPAP in o-thrombin case [87]. This study highlighted the importance
of considering receptor flexibility under the influence of ligands interaction field in
docking. Davis and Baker [88] implemented a method in ROSETTALIGAND to
account for the receptor backbone flexibility along with full-ligand flexibility and
showed that on a challenging cross-docking test case of Meiler and Baker [89] (10
co-crystallized receptor—ligand pairs, with large flexible ligands and multiple side
chains with changing rotamer), their new method reproduces binding poses better
(lower RMSD for best-scoring docked poses) in comparison to their rigid-backbone
docking.

Multiple structure docking: McCammon and co-workers [90] used relaxed com-
plex method to dock fully flexible version of prospective drug molecules JE-2147
wild-type and V82F/I84V drug-resistant mutants of HIV-1 protease ensemble of
conformations. In both cases, wild-type and mutant HIV-1 protease, an ensemble of
2200 conformation from 22 ns all atom explicit solvent MD simulation of closed
conformers of apo structures of receptor and coordinates were saved every 10 ps; in
both cases, crystal structure poses were successfully reproduced. Later, JE-2147 was
docked to each 2200 conformation for both wild-type and mutant cases and opti-
mized the protocol. To synthesize test inhibitors, same protocol was applied to dock
23 newly designed potential inhibitor (called JE.D.I. series molecules) to 700 con-
formations of the HIV-1 protease mutant. Based on high binding free energy of four
compounds of the JE.D.I., which were significantly different from their parent
compound JE-2147 as well rest members of the series; four new compounds with
potentially better pharmacological properties were suggested for test [90].

Similar concept but using MD simulation to dock and identify the interactions
between domain motions to influence the inhibitor/ligand binding has been
attempted in case of Fe-artemisinin adduct binding to PFATP6, a Ca*™ transporter
well-known target in Plasmodium falciparum [91].
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Sarco-endoplasmic reticulum membrane calcium ATPase (SERCA) is Ca*™
transporting ATPase; it is found in the mammalian systems and regulate the Ca*™*
flow between cytoplasm and membrane-bound stores [92]. SERCA-type transporter
is also found in P. falciparum and is known as PfATP6. PfATP6 is large mul-
tidomain Ca™ channel receptor and only orthologous receptor to mammalian
SERCA [92]. Importance of this channel receptor highlighted in 2003 when it was
found that artemisinin (one of the most effective antimalarial drug) targets this
receptor [93]. To understand the plausible mechanism of artemisinin action on
PfATP6, extensive molecular dynamics simulation-based study has been performed
[91]. This computational study shows that activated artemisinin (Fe-Artemisinin
adduct) enforced large conformational changes in the extracellular domains
(Fig. 3). Artemisinin adduct binds in the membrane-bound helical region and
makes a hydrogen bond network which connects it with extracellular nucleotide

Fig. 3 Importance of receptor flexibility as observed in case of Fe-artemisinin adduct binding to
Plasmodium falciparum ATP6 (PfATP6). Region spanning residues 364-799 shown in green
contains nucleotide domain (N), region of residues 1-45 and 130-253 shown in orange contains
actuator domain (A), region of residues 800 to 959 shown in white contains phosphorylation
domain (P), and transmembrane region is shown in dark gray and pink colors in panel A and B,
respectively. Ca** and ligand binding sites are in the transmembrane region. Centroids of domain
N, P, and A domains are shown with green, white, and orange spheres, respectively. The angle
between centroid of domains N-P-A comes down to 78.5° (panel B) from 89.6° in open form
(panel A), and distance N-A in closed conformation comes down to 44.9A from open
conformation distance 53.7 A (see panels B and A, respectively). a Open-form receptor is shown
in ribbon, Fe-artemisinin adduct in ball and stick with carbons in white and rest atoms colored by
atom types. b Shows closed form or receptor; ¢ dark gray surface shows ligand-binding site in
open form, and pink ribbon shows closed ligand-binding site due to movement in domains shown
in green and orange colors. Ligand is shown in ball and stick representation in blue color
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(N) and actuator domain (A) [91]. This case study shows the selectivity gain by
bound inhibitor, utilizing the domain flexibility of receptor [94].

2.5 Effect of pH on Binding Alffinities

Protonation states of the titratable groups participating in the binding can have
significant effect on the binding affinity of the interaction [16]. Waelbroeck [95]
presented a model with assumptions that correct ionization state of all active groups
is the requisite for binding, and ionization state of non-binding residues does not
affect binding to study quantitative effect of pH change on binding affinity of the
receptor—ligands interaction. They chose pH dependency of insulin and insulin
analogs binding to their cellular receptor to study their model [95].

log(K) = log(Krea) + log(R"/R) + log(L" /L) (1)

where log(K) is pH-dependent affinity, log(K..,) is reference affinity, R*/R is
proportions of active and total receptor concentrations, and L*/L is proportions of
active and total ligand concentrations. Their model under given assumptions
allowed them to attribute binding affinity change only due to change in proportions
of active receptor and hormone with changing pH, and express pH dependence as
function of number and ionization constants of active groups. Performing binding
affinity measurement experiments at varying pH for different insulin analogs
binding to their receptors, and analyzing data with modeled relationship [95].
Waelbroeck [95] detected two active groups responsible for marked pH dependence
in the normal pH range and suggested that these groups could either belong to the
receptor or common residues among porcine insulin, casiragua insulin, hagfish
insulin, and desalanine—desasparagine insulin analogs [95]. This study opens up a
field in medically relevant design of insulin.

A pH-dependent catalytic activity through hydrolyzing cleavage of type-1
transmembrane protein amyloid precursor protein (APP) of the f-secretase BACE-1
result amyloidogenesis in Alzheimer’s disease has been reported by McCammon
and co-workers. Enzymatic activity of the BACE-1 is highly dependent to the pH,
with peak activity at pH 4.5, while significantly active in pH ranges 4-5 only [96].
The in silico study using constant pH replica exchange molecular dynamics sim-
ulation [97] (CpHMD) showed pH dependence of binding affinity of BACE-1 with
its inhibitors [98]. The experimental binding affinity measured at pH 4.5 was taken
as reference for in silico binding affinity predictions in pH range 1-12, for different
inhibitor-bound BACE-1 complexes. CpHMD simulations enabled authors to study
influence of conformational dynamics on the protonation equilibria and thereby pH
dependence on binding affinity. The microscopic pK, values of the aspartyl dyad
residues Asp32 and Asp228 in apo- and holo-BACE-1 can be estimated from
CpHMD simulation data, and protonation changes were observed in apo- and
holo-forms suggesting their thermodynamic linkage. They also studied effect of
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protonation equilibria on conformational dynamics for the apo BACE-1 with fixed
protonation states for titratable residues using conventional molecular dynamics
(cMD) in acidic (pH range 1-3) and basic (pH range 9-11) conditions and observed
that in acidic condition, two major conformations open and closed were populated
while in basic condition, only widely open flap conformation was significantly
populated. In another similar in silico study, again using CpHMD replica exchange
simulation Ellis and Shen [96] reported that BACE-1 majorly occupies three
conformations (so called Tyr-inhibited, binding-competent, and Gln-inhibited) and
conformational population shift with varying pH causes the pH dependence of the
inhibitors binding affinity to BACE-1 [96]. They showed that Gln-inhibited and
binding-competent conformational states are separated by small (<1 kcal/mol) free
energy barrier, and Gln-inhibited state has consistently low population (<25%) for
entire pH range; thus, they focused on only remaining two of the conformational
states, suggesting that substrate BACE-1 binding follows a conformational selec-
tion model [96].

2.6 Effect of Solvation

Almost all biological functions occur in cytosol in cell, but some of them are
membrane-associated phenomena, water solubility of inhibitors showing significant
binding affinity toward its cognate receptor poses another challenge in SBDD [99],
since low solubility causes low bioavailability of the inhibitor to target. Similar
problem surfaced with the potent non-peptide cyclic urea analogs of HIV-1 protease
inhibitor, e.g., DMP-323, the carbonyl oxygen of cyclic urea of DMP-323 mimics a
structural water in the binding site by providing similar hydrogen-binding features
and therefore gains affinity by displacing the water. The low-molecular-weight
compound was expected to have high bioavailability [100], but unexpectedly low
bioavailability was observed later on, and poor solubility of DMP-323 in water and
lipid milieu was suggested the reason for it [99]. Therefore, to increase water
solubility, benzylic-substituted cyclic urea with strong acid or basic groups were
designed, but highly basic group analogs were unsuccessful as inhibitory effect of
such compounds is lowered by 1000-fold [99]. However, a neutral form binding,
weak-basic derivative bis-meta-aminobenzyl, i.e., DMP-450 showed enhanced
affinity. DMP-450 has enhanced water solubility and also found to show better oral
bioavailability in animal species, rat and human [99].

2.7 Covalent Inhibitors

Non-covalent inhibitors bind to the target reversibly in concentration dependent
manner. However, ~30% of FDA approved drugs are covalent binders, which
make covalent bond with the target [101]. Aspirin induces irreversible acetylation
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of a serine residue (Ser516) in the cyclooxygenase site of the human prostaglandin
endoperoxide H synthase-2 (hPGHS-2) [102], f-lactam antibacterials forms cova-
lent bond with the active site serine of penicillin-binding proteins which inhibits
cell wall synthesis of bacteria and causes its death, and tetrahydrolipstatin a fat
absorption inhibitors acts by inhibiting activity of pancreatic lipase [103]; these are
among the blockbuster drugs and examples of covalent inhibitors. Although
non-covalent docking is more common, recently resurgence of covalent docking
has been observed [101]. The covalent docking is more complicated mainly
because their action between receptor and ligand has to be taken care of. Selectivity
of the inhibitor toward target is important to avoid cross-reactivity. However,
selective targeting via ligands equipped with different warheads makes covalent
inhibition important [104]. In covalent inhibition, an electrophilic ligand binds to a
nucleophilic target receptor via forming a covalent bond. Theory and application
aspects of covalent docking have been reviewed elsewhere [101]. A comparative
study of recent methods and tools, e.g., CovDock [105], AutoDock4 [106],
FITTED [107], MOE [108], ICP-Pro [109], and GOLD [110] for covalent docking
has also been recently published [104].

2.8 Functionally Relevant Structure

Biologically important molecules are involved in very diverse functions and pos-
sess the structural, modular, and interactional diversity to carry their functions in the
cell. Numerous enzymes are monomer, while several of them are functional only as
homo-/hetero-multimeric forms, e.g., PNP is a homotrimer [29], HIV-1 protease is
a homodimer but has slight difference in structural features of the two monomers
[90]. A large number of macromolecules catalyze enzymatic reactions, e.g.,
BACE-1 is responsible for catalyzing hydrolytic cleavage of amyloid precursor
protein (APP) [111], some of them modulate their functions, e.g., MDMX/MDM?2
complex suppresses activity of p53 and activate p53 pathway in tumor cells [74],
some of them regulate, and some of them are not related to enzymatic activities at
all, like ion channels and signaling related proteins. When we are designing
structure-based drug, we are to face challenges posed by structural, functional, and
reactional mechanistic diversity of target molecules as well.

The purine nucleoside phosphorylase (PNP) is a homotrimer and hosts three
active sites each near the interface between two monomers, with monomer con-
sisting an o/f-fold formed from a f-sheet of four strands, a f-sheet of six strands
forming a distorted barrel, and eight o-helices [34]. The interaction between
monomers will influence the binding of ligands.

HIV-1 protease is a homodimer consisting of 198 residues. McCammon and
co-workers proposed a terminology to describe the topology as follows: flap
(43-58), ear (35-42), cheek (cheek turn = 11-22 and cheek sheet = 59-75), eye
(23-30), and nose (6-10) [112]. The active site of HIV-1 protease is covered by
p-hairpin flaps of the two monomers and is involved in controlling polypeptides’
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access to the active site before binding and closing the active site during the
cleavage and then release of the cleaved substrates. The flexibility of the flap plays
a crucial role in the catalytic activity of the enzyme [113].

Isocitrate dehydrogenases (ICDs) are another group of interesting enzymes with
two isoforms—one NADP*-dependent homodimer and another NAD*-dependent
heterotetrametric isoform consisting of two o-subunits one f-subunit and one
y-subunit. As observed in understanding the mechanism of action during phos-
phorylation, the structural motions facilitate the flap to cover or open the active site,
thus providing two different structures of dimmers; hence, the designing needs to
take care of such two state structures of receptor [61].

3 Mapping Interaction at Binding Site

The primary focus of structural biology has been to study the relationship between
structure and function of macromolecules. The evolution of protein structure to
confer specificity and affinity is still not completely understood. Analysis of related
structures has potential to yield local structural regions which are conserved and
those which diverge. Such knowledge can potentially be translated into under-
standing proteins evolution to attain specificity or protein acquiring completely new
function by matching curvature along the protein backbone to find structurally
active site regions [114].

3.1 Identification of Active Site or Binding Site

The binding sites of most proteins are extremely specific and can determine even very
small structural differences among putative binding patterns [114]. Folding of a
protein can be considered to be a process which generates specific binding site or
cavity from an unstructured polymer, driven and stabilized by thermodynamic forces
[115]. Knowledge of protein cavities provide clue about the structure and shape of
binding molecule [116]. Ligand-binding sites of protein provide insights to its bio-
logical function and reaction mechanism. Identification and application of druggable
active sites of target proteins are pivotal in in silico drug design [117]. A very diverse
active site of a protein is particularly useful for target-based drug discovery as it serves
as a prerequisite for protein—ligand docking, which is integral part of structure-based
drug design. Accurately predicting the binding modes of inhibitors in the active sites
of protein is still observed as a challenge in drug discovery [10].

All the methods which identify the active site of receptor use the concept of
accessible surface area as defined by Lee and Richards [118]. The accessible sur-
face (ASA), also known as solvent-accessible surface area (SASA) if water is used
as the probe, of a protein is stated as the locus of the center of the solvent molecule
as it rolls along the protein, making the maximum permitted van der Waals contacts
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without penetrating any other atom. The ASA is closely related to the concept of the
solvent-excluded surface also known as the molecular surface or Connolly surface.
The cavity identified in protein molecules, effectively the inverse of the
solvent-accessible surface, is the binding site as to be used by ligand to satisfy the
available physical and chemical interactions. This is pictorially shown in Fig. 4.

Major methods to find the shape of active site using the 3D coordinate of protein
or receptors can be classified as approximate and exact method depending on their
numerical depth and accuracy in calculation involving the coordinates exclusively.
Most of the approximate methods rely on numerical integration where some of
them are analytical [119]. Connolly in 1983 [120] introduced the exact analytical
methods for computing the accessible surface area. The computational efficiency
and robustness has been improved in recent years, but the reduction in overlapping
surfaces remains computationally expensive. The difference between approximate
and exact computation is applied to existing methods evident from the detail cal-
culation of the derivatives of the surface area with respect to atomic coordinates. All
well-known methods used for computing the active site mapping by surface area
suffer from the reproducibility problems. A method called Alpha shape [121] uses
Delaunay triangulations and computes the surface area and volume of proteins as
well as detects and measures cavities in proteins, as described by Edelsbrunner
[122], to reduce the overlap. The Alpha shapes method employs a precision geo-
metric method called triangulation to evade numerical problems by systematically
resolving all singularities without explicitly perturbing positions of centers of
spheres [123]. To provide fast calculation, an extension of the Alpha shapes method
that includes the efficient, robust, and exact analytical computation of the deriva-
tives of surface area terms has also been worked out [124].

Based on shape and ASA, many Web-based and stand-alone software are available
as listed in Table 3 to find cavity and identify active site of known protein structures.
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Table 3 A list of some popular Web servers and stand-alone tools based on shape and ASA
formalisms

SN | Programs Based Web site links
CASTp [125] | Web http://sts.bioe.uic.edu/castp/index.html?2cpk
2 CCCPP [126] | Desktop | http://petitjeanmichel.free.fr/itoweb.petitjean.freeware.

html#CCCPP
3 | LIGSITE® Web http://projects.biotec.tu-dresden.de/pocket/
[127]
4 KVFinder Desktop | http://Inbio.cnpem.br/facilities/bioinformatics/software-2/
[128]
5 PASS [129] Web http://www.ccl.net/cca/software/UNIX/pass/overview.shtml
6 PrinCCes Desktop | http://scholar.semmelweis.hu/czirjakgabor/s/princces-
[130] download/#t1
7 POCASA Web http://altair.sci.hokudai.ac.jp/g6/Research/POCASA_e.html

[131]

8 RosettaHoles | Desktop | https://www.rosettacommons.org/

[132]

9 SURFNET Desktop | http://www.cgl.ucsf.edu/chimera/current/docs/
[133] ContributedSoftware/surfnet/surfnet.html

10 | VOIDOO Desktop | http://xray.bmc.uu.se/usf/voidoo.html
[134]

3.2 Characterization of Active Site

Identification of active sites in large binding pockets in protein or macromolecules
does not assure the correct or native poses of ligand binding because many subsites
interaction influence the binding of ligands, which has been exploited favorably in
case of designing combinatorial ligands of monoamine G-protein coupled receptors
(GPCRs) [135]. To design a ligand which effectively come out to be a functional
inhibitor requires prior knowledge of interacting subsites and their role to k./kog
kinetics of binding, which until recently [136, 137] hardly have been explored. Our
study using kinases, from P. falciparum and from human, shows the selectivity of
subsite also residing in active site [138]. Using ser/thr kinase sequences of human
and plasmodial species those having PDB structure, a phylogenic tree was con-
structed. Human kinase proteins (22 of them having structural superimpossibility
<2 A RMSD of main chain atoms) shown in Table 4 are listed by sequence as

Table 4 Binding site clustering using sequence of human and plasmodial ser/thr kinase

Plasmodial Neighboring human kinases

kinases

Pfpk5 h_CDK4, h_CDKS5, h_CDK3, h_CDK2, h_CDC2

Pfpko6 h_CDKLI1, h_CDKL4, h_CCRK, h_p38a, h_p38b, h_ERKI1, h_ERK2,
Pfmrk h_CDKI10, h_p38d, h_CDK®6, h_CDK?7, h_p38g, h_CDK9

Pfpk7 h_SmMLCK, h_NEKI, h_LATSI, h_LATS2
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Table 5 Selective binding site clustering using structure of human and plasmodial ser/thr kinase,
uncommon one shown in bold face font and underlined

Plasmodial Human
Kinase domain ATP-binding site Substrate-binding site
PfpkS5 CDKS5, CDC2, CDK3, | p38-9, CDKS5, p38-y, CDKS5, CDK3, ERK?2,
Pfpk6 CDKO9, ERK2, ERK1, |CDK7, MAPK6, CDK3, | CDK2, ERKI, p38-y,
Pfmrk p38-y, p38-, GSK3-f, | ERK2, GSK3-8, p38-, p38-a, p38-9,
DYRKIA, MAPKS MAPKS, CDK2, ERK1, |CDC2, CDK6, PAKI1
CDK9Y, p38-5, CDC2,
DYRKIA
Pfpk7 MAPK®6, PAKI, PAKI, PAK4, PAK7, PAK4, PAK7, CDK9,

PAK4, PAK7, PKC
iota

PKC iota

CDKA4, PKC iota,
CDK7

Non-plasmodial

CDK2, CDK4, CDK®6,

CDK®6, Cdk4, p38-a

DYRKIA, MAPKS,
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Fig. 5 Structure-based clustering of human kinases associated with plasmodium using
a ATP-binding site and b using substrate-binding site. It clearly depicts different combinations
of selectivity (listed in Table 5)

nearest neighbors of specific plasmodial kinases; their 3D structures are used for
finding selectivity profile at the active sites. Separately, the ATP-binding and
substrate-binding site domains of these kinases are extracted on the basis of Hunk
and Hunter classification [139], and their structures are superimposed for clustering
on the basis of RMSD matrix and are shown in Table 5 and Fig. 5.

It is interesting to note that three of the plasmodium kinases occur in the largest
cluster containing most of human kinase, like MapK and CDKs; but PfPK7 occurs
in different cluster in both ATP & substrate specific clustering, it signifies the
selective functioning of this kinase. Hence, to achieve selectivity in favor of
malarial ligand requires subsite exploitation and using appropriate designing
strategy for docking compounds in search of both specific and selective ligand. In a
recent review [39], such small active site differences are discussed under the context
of how the entropy and enthalpy balances are carried out in free energy estimation
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in case of HIV proteases binding with ligands that differ by single functional group,
by Freire et al. [140]. It may also happen that all available features in the active sites
are not satisfied or they may be satisfied by different orientations or conformation of
complementary features in ligands. Hence, it is imperative to have prior knowledge
of biological function of active site of receptor and detail mapping/association of
the subsites with different functional groups in ligand, before starting the docking of
large number of ligands to evaluate the binding competency.

Using cliques of favorable interaction points at active site, emerging from probes
of different chemical features among a class of protein, specificity pharmacophore
has been generated [141, 142].

This novel method provides a complementary map of a class of active sites for
designing new chemical entities which specific as well as selective for the receptors.
Figure 6 provides an expanded series of such pharmacophores designed from four
plasmepsins, acid proteases of plasmodium. Using such tools, designing of ligands
is possible which can satisfy all the complementary features available in active
sites; this can be used to design compounds with better binding capacity. This
method can be applied to design the pharmacophores in search of novel inhibitor

Fig. 6 Utilization of binding site information of class of aspartic protease (human cathepsin,
pepsin proteases, and four plasmodium plasmepsins) for development of de novo pharmacophore
features using in-house program CliquePharm. a Four-point, b five-point, ¢ six-point pharma-
cophore features, all are shown in cavity of plasmodium plasmepsin II (PDB: 1SME), respectively.
Nodes are shown as spheres with amide probe in cyan, hydroxyl probe in red, carbonyl probe in
green, respectively, and edges are connected
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for the multitarget structure-based designing like bacterial multidrug efflux pump
and AcrAB-TolC pump [143].

3.3 Why Different Poses?

While docking of different chemical ligand at the known active site, one can
generate different orientation for the same ligand, which is defined as “pose” due to
the fact that many features available in the active sites may or may not be satisfied
by the complementary features available in docked ligand. Such variations in
interaction between protein and ligand may also occur due to the flexibility of active
site residues [14].

Lock-and-key: The lock-and-key model of enzyme substrate interaction proposed
by Emil Fisher in 1894. It assumes enzyme-binding site as a cavity with specific set
of shape and physicochemical interaction features analogous to the key-hole of a
lock, while ligands are potential molecules which possess shape and interaction
feature of key, i.e., complementarity [39]. Generally, receptor-ligand interactions
are considered to imitate this model during binding. This model was the early
motivation for development of docking and scoring studies. However, many
interactions associated with the flexibility of ligand upon binding to receptors and
vice versa; hence, other models are proposed [36].

Induced fit: The idea of induced fit model (Fig. 7) of binding occurred as many
cases the binding site of the protein undergoes subtle arrangements of key residues
side chain orientations or conformational changes sensing the presence of ligand in
the vicinity under the influence of its interaction fields [144]. For example,
drug-target aldose reductase undergoes large conformation change during binding
of ligand [79]. Several other cases of this model of ligand—receptor binding are
discussed in the section Protein Flexibility.

Conformational selection: This model proposes that the receptor maintains an
ensemble of conformations in equilibrium, rather than being into some particular
conformational state before binding (as in lock-and-key) or changing conformation
sensing the ligand (as in induced fit), whereas ligand binds to the conformation
presenting best complementarity at the binding site [39]. For example, BACE-1
binding to and showing significant activity only at narrow pH range 4-5 is actually
in equilibrium of at least three Tyr-inhibited, binding-competent and Gln-inhibited
significant conformations [96]. However, only binding-competent conformation
being conformationally compatible for binding has the highest population at the
specified activity pH range 4-5, but the population of these conformation at pH < 4
or pH > 5 is decreased and hence the activity [96]. Another model known as
conformational isomerism is found in the literature [14] and has been a special case
of the conformational selection, where one or more conformational isomers of the
receptor exist in equilibrium and ligand binds to only conformationally compatible
isomeric form of the receptor, and binding shifts the conformational equilibrium in
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Fig. 7 Schematic representation of enzyme substrate-binding models. Ligand is shown in black
color and receptor in gray color. Different binding site features/ligand features are described at the
bottom

the direction to establish the equilibrium among conformational isomers. Earlier
reported that binding to Fab antibody and catalysis of substrate is restricted to one
of the conformation and not to others [145]. In recent paper [146], enzyme catalysis
has been prescribed due to conformational dynamics of enzyme active site.

Prediction of poses of ligand with receptor from docking study may differ due to
several reasons. For example, model of enzyme action (lock-and-key/induced fit/
conformational selection) assumed for the study may not be appropriate to capture
the underlying binding mechanism, e.g., assuming lock-and-key for an actual
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induced fit or conformational selection case [14]. Existence of possibly alternate
interaction features in binding site could provide complementarity for even struc-
turally very similar ligands but provide different poses; several such cases have
been reviewed by Teague et al. [147]. Another case could be enthalpy—entropy
compensation due to receptor—ligand flexibility for different poses of ligand [147].
Although docking and scoring lack capability to account entropy, considering
receptor—ligand flexibility in docking can be a poor proxy for entropy to certain
extents.

3.4 Flexibility of Ligand Provides Complementarity

Generally, small molecules can adopt a number of conformations within few kcal/
mol energy gap from the global minimum conformation. Thus, a number of con-
formations of ligands are generated and docked into the receptor to seek optimal
complementarity between receptor-binding site and the ligand conformation to yield
most probable pose. Therefore, several conformation generation schemes which can
be broadly put in two groups, (a) systematic search and (b) random search, have been
suggested and are routinely employed in docking studies [148]. Systematic search
tries to generate all the conformation corresponding to the rotational states for the
rotatable bonds of the molecule, but exponential increase of the number of con-
formations of the molecule with number of rotatable bonds turns out to be limiting
for most of the practical uses. Random search tries to generate different ligand
conformations using randomized schemes like genetic algorithm [14, 149].

Small-molecule ligands often interact with binding site presenting complemen-
tary features [150]. However, small size of such ligands at times has limited pos-
sibilities to interact with neutral binding pockets, because neutral binding site has
weak electrostatics interactions and hydrogen bonding capabilities [151]. Neutral
and wide open hydrophobic pockets can not present interactions strong enough to
portray desired high affinity for small-molecule ligands. On the other hand, peptide
ligands due to their flexibility can adopt a wide range of conformations to gain
higher affinity in such cases by making more hydrogen bond interactions and
through many weak hydrophobic interaction from several hot spots in the pocket
[151, 152].

3.5 Is Estimate of Binding Affinity Sufficient?

In case of receptor binding processes, the stability of the binding is accounted by
difference of Gibbs free energy between bound and unbound states. The equilib-
rium dissociation constant Ky which is ratio of unbinding process k. and binding
process k,, is associated with thermodynamic properties of the reactants/product,
whereas the activation energy for the process influenced by kinetic properties [153].
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Thus, in silico calculated affinity of receptor—ligand binding contains information
about thermodynamic parameters and does not include kinetic parameters. All the
methods aiming to measure/predict binding affinity would miss the kinetic aspect of
the reaction. The kinetic aspect of the process is related to diffusion of the solute
molecules under influence of the entropy of the system. Collision of the receptor
molecule with the ligand is the requisite for the process to happen. Bigger solute
molecules collide with small water molecules and undergo random Brownian
motion, and their encounter allows reaction to happen [153].

The dissociation constant Ky represents the ligand concentration in which half of
the protein binding pockets are occupied and relate to Gibbs free energy [154] by
AG = RT In(Ky). Gibbs free energy is a state function and does not depend on the
thermodynamic path followed during reaction; it only depends on the initial/final
chemical potential of the reactants/products [154]. Association and dissociation
rates ko, and k. depend on transition states encountered on the pathway during the
chemical reaction. Specifically, they depend on highest free energy barrier for the
transition state that separates bound and unbound states [154].

Even if the reasonable accuracy in predicting affinity is achieved, it is not
sufficient to characterize the protein—ligand-binding process completely [154].
Kinetic aspect of the process can be modeled by mimicking the protein-ligand
diffusional encounter in the solvent under thermal fluctuation, which will be dis-
cussed later [155].

4 Estimation of Interactions

Scoring functions aim to predict the interaction energy between the receptor and the
ligand in a given conformational pose, by summation of weighted interaction
features. Scoring functions required to rank chemicals implemented in various
docking tools use different assumptions to evaluate modeled complexes [§].
Simplification is achieved at the cost of neglecting full domain flexibility, entropic
effects, and solvation effect [8].

4.1 Different Types of Scoring Functions

In the literature, wide choice of scoring function is available which can be classified
as force-field-based scoring functions, empirical scoring functions, knowledge-based
scoring functions, and descriptor-based scoring functions [156]. Force-field-driven
scoring functions are based on the molecular mechanics and utilize atomic properties
like atomic charge and vdW forces which are already parameterized such as AMBER
[157] or CHARMM [158]. Dock6 [159], AutoDock [160], G-score [161], and GOLD
[110] are a few popular ones in this class. In scoring functions, only intermolecular
interactions are modeled, vdW interactions are expressed using Lennard-Jones



In Silico Structure-Based Prediction of Receptor—Ligand Binding ... 139

potential function, and electrostatics interactions are calculated using Coulombic
formulation. Empirical scoring function [162] on other hand is based on the available
physicochemical properties which corresponding to hydrogen bonding interactions,
hydrophobic interactions, entropic changes, and interactions with metal ions [162].
Binding free energy is estimated using the sum of various uncorrelated (sometime
parameterized) terms derived from the regression analysis using experimentally
determined binding energies from the already known crystallized complex structures
[163]. ChemScore [163], LUDI [164], Glide score [165], X-score [166], etc., are
major tools implemented with such empirical scoring function. Knowledge-based
scoring functions [167] are derived from the crystallized protein—ligand complexes
using statistical regression principles. The binding free energy of the complex is
assumed to be the sum of free energies (potentials of mean force) of interatomic
contacts calculated from the frequencies of these interatomic distances in a database
of experimental structures from statistical methods [168]. As compared to empirical
scoring function, knowledge-based potential function does not require known binding
affinity and so are free to explore large and diverse structural complex information to
derive the more accurate and less biased scoring function parameters. These functions
are expected readily transferred to systems that have not been used in the develop-
ment of the scoring function. Examples of knowledge-based scoring functions
include PMF [169] and DrugScore [170].

4.2 Nonlinear Relation Between ICsy and Score Values

A standard scoring function is given in kJ/mol by Eq. 2.
AG = 5.4AGy — 4.7AGyg — 8.3 AGionic — 0.17 AGiipo + 1.4 AGiiex 1ot (2)

Assumed to be linear, where coefficients present the weightage of each contri-
bution as mentioned by suffix, in a case study out of 45 known ligand receptors
from PDB, the standard deviation having +7.9 kJ/mol or 1.4 log unit error in
binding constant. But this is not reflecting reality, which has been observed while
comparison of actual and predicted values of binding across the range of activity.
Correlation between the binding energies predicted by the docking programs like
AutoDock, GOLD and FlexX [171-173] with the experimentally determined
binding free energies is analyzed among a set of known ligands in the literature
[110, 174]. Prediction of affinity using scoring function has been used for ranking
compounds, while high-throughput screening but compared with known experi-
mental data it has been observed that high-affinity compounds (~nM) are predicted
with lower errors than weak binders (UM to mM). Generally, the weak binders are
overpredicted, whereas tight binders (pM) are underpredicted [171, 175]. It may
require implementing functions to address negative co-operativity so that present
scoring functions are trained to penalize weak binding. Tight binders required to be
associated with positive co-operativity. However, a measurement of applicability is
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done using reproduction of geometry from complexed crystal structure, comparing
close relation with binding affinity (experimental) and scoring and ranking and two
other important parameters known as enrichment factors (EF) and receiving oper-
ators characteristic (ROC) [176-178].

4.3 Does Scoring Function Reflect Binding Activity?

Scoring functions can only predict the binding affinity of a receptor with its ligands
in isolation [156], but the cellular environment is significantly different, where it
may be interacting with other molecules which may alter its affinity toward its
ligand, e.g., activation of tumor suppressor protein p53 activation is regulated by
MDM2/MDMX [74]. Inhibition measure of a ligand for its receptor is the end result
of several pharmacokinetic factors as well other than affinity, e.g., bioavailability
[73, 99]. Therefore, docking score of a ligand for its receptor may not be the actual
measure of its inhibitory potential always. The similar kind of evidence emerged,
when it was noticed that urea analog DMP-323 had shown good affinity and pre-
dicted inhibitory potential for HIV-1 protease [100], but it could not succeed
because of its very low bioavailability due to its poor solubility [99]. In the
follow-up study, a new analog DMP-450 with higher water solubility was designed
and found to show better inhibition of HIV-1 protease [99]. As detailed in Sect. 2.3,
in the similar way to save from proteolytic cleavage, o-helical clipped peptide was
designed from human serum protein HSP’s variants, as inhibitor of the MDM2 and
MDMX complex [73]. The proteolytic cleavage was hampering its bioavailability;
thus, clipped o-helical peptide achieved improved pharmacokinetics, thus ensured
better efficacy in human and rat models [73].

5 Limitations of Methods

5.1 Appropriate Structure of Receptor to Select

While selecting a receptor structure for initiating docking study, parameters listed in
Table 1 can be used to prioritize structures if more than one structure is available,
and to choose appropriate structure. In present case, we have summarized some of
the structure validation results for two different structures of HIV-1 protease (PDB
ids: 1FQX and 4ZIP) in Fig. 8 and crystal structure details shown in Table 6.
Analysis of structures is available from RSCB PDB [179] (https://files.rcsb.org/pub/
pdb/validation_reports/fq/1fqx/1fqx_full_validation.pdf and https://files.rcsb.org/
pub/pdb/validation_reports/zi/4zip/4zip_full_validation.pdf).

In general, structure for which different parameter values are in blue zone in
horizontal bars for it is preferable. These horizontal bars represent statistical like-
lihood of reported structure to be in acceptable/unacceptable range. The range of
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Fig. 8 Two crystal structures of HIV-1 protease shown a 1FQX.pdb and b 4ZIP. (i) and (iv) show
structure quality summary obtained from RCSB Protein Data Bank (PDB). (ii) and (v) show
conformance to geometric quality criterion of model residues: 0, 1, 2, and > 3 geometric quality
criterion outliers are shown in green, yellow, orange, and red colors, respectively. (iii) and
(vi) show mapping of model validation results with electron density over 3D structure for PDBs
1FQX.pdb and 4ZIP.pdb, respectively

Table 6 Crystal structure Parameter LFQX 47IP

parameters for HIV-1 protease Resoluti ow® 26.00 50

structures with RCSB PDB cs0 utfon réng: ow .

(www.pdb.com) codes 1IFQX ~ Resolution high 3.1 1.11

and 4ZIP Completeness Not available 91.7%
Rwork 0.180 0.130
Riree Not available 0.154
RMSD (bond lengths) 0.080 0.015

“A minimum spacing (d) of crystal lattice planes that still provide
measurable diffraction of X-ray
®Additionally, (I/a(I)) greater than 2 in high-resolution shell

parameter value is determined from all the structures already deposited in PDB of
similar resolution range. As we see from the report that clash score, Ramachandran
outliers and side chain outliers’ values are higher than acceptable and are in red
zones (statistically unfavorable) of their respective bars [180] for IFQX. While in
the case of 4ZIP, all the parameter values are in the blue zone (statistically
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favorable). Again, when looking at the geometric quality criterion for two struc-
tures, 1IFQX only (chain A: 51% and chain B: 52% residues) does not have any
outlier, while rest (chain A: 47% and chain B: 40%) have at least one outlier. The
geometric quality for 4ZIP seems better as in this case 96 and 90% residues (chains
A and B, respectively) do not have any geometric outlier. Further considering fit
quality of the model to electron density, 1FQX has certain residues which has at
least two outliers and a significant percentage of residues with at least one outlier,
while in case of 4ZIP, there are no residues which have two outliers and only a
small fraction of residues with only single outlier. Considering all above points
among 1FQX and 4ZIP, 4ZIP should be preferable over 1FQX as receptor structure
for any docking study.

In Fig. 9, the docking using Dock®6 of ligand GRL-0648A to two different receptor
structures of HIV-1 protease (4ZIP: high resolution and 1FQX: low resolution) is
performed to assess the effect of receptor structure quality on outcome. Results show
that when ligand was docked to native receptor structure (4ZIP), it reproduces the
crystallized pose (RMSD: 0.40 A, see Fig. 9a), with dock score of approximately
—125. When we docked ligand to poor receptor structure (1FQX), it docked in
different poses where core group adopts similar pose but the 5-atom ring (1 nitrogen,
one oxygen) containing methyl adopts different poses and leans over Gly48 on chain
B, score is significantly low (—14) and RMSD: 2.71 A (Fig. 9b). This observation
suggests that high-quality receptor structures are more likely to present better inter-
action complementarity, saving from predicting high-affinity binders mistakenly as
poor-affinity ligand.

(a)

Fig. 9 HIV-1 protease-binding site structures shown a HIV-1 protease structure (PDB: 4ZIP) in
complex with GRL-0648A (isophthalamide-derived P2-ligand), receptor-binding site is shown in
green ribbon and crystallized pose of GRL-0648A in black stick. GRL-0648A is docked to the
receptor using Dock6 and docked pose is shown with ball and stick representation and carbons
colored in cyan, RMSD of docked pose with reference to crystallized pose is 0.40 A over 49
non-hydrogen atoms. b HIV-1 protease structure (PDB: 1FQX) with GRL-0648A crystallized pose
(taken from 4ZIP after superimposing receptor structures) shown in black stick, docked pose of
GRL-0648A shown in ball and stick representation with carbons in cyan color, docked pose
RMSD 2.71 A over 49 non-hydrogen atoms
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5.2 Analysis of Docking Tools

As discussed above, it is fruitful to analyze the ligands binding efficiency using
many methods like AutoDock, GOLD, Glide, LibDock, and HADDOCK; all these
tools are different in the method of docking as well as scoring.

There are several open-source commercial but free for academic use, and
complete commercial docking programs available from different software vendors.
In particular, fifty-one stand-alone and nineteen Web servers for docking employing
diverse set of novel features are listed at http://www.click2drug.org/index.
html#Docking (accessed on Dec 2017). To select suitable program(s) for docking
studies for receptor(s) of interest requires insight and expertise [117] in the method.
However, we shall discuss only a few selectively chosen methods based on pop-
ularity and diversity of strategies implemented in them as shown in Table 7.

Here we are discussing the in-house case study (unpublished work) of four docking
programs used to dock already experimentally known inhibitors of P. falciparum
protein kinase 5 (PfPKS5) with ICsq values ranging from 130 to 15000 nM. PfPKS is a
ser/thr kinase and homolog of human CDK2 [185]. Chosen inhibitors are olomoucine
(OLM), indirubin-5-sulfonate (INR), staurosporine (STA), and purvalanol B (PVB),
respectively. Crystal structures of two of the inhibitors (INR and PVB) in complex
with PfPKS5 are available [185]. We have chosen LibDock v2.3, Gold v5.2, Dock v6.7,
and Glide v7.0 for the comparison study. Different docking programs use different
scoring schemes, e.g., Glide score and Dock score assign high negative score
to high-affinity ligands, while LibDock and Gold assign high positive score to
high-affinity ligands. Pose reproduction and also scoring/ranking of docked poses of
these inhibitors is a good case to assess comparative performance of each of the
selected docking program and also with experimental values.

The best-scoring poses predicted by each of the programs were compared with
the crystallized poses for selected available complex of PfPK5 with PVB as in PDB
(1VOP). Predicted poses for PVB obtained from LibDock, Gold, Dock, and Glide
showed 0. 60, 1.01, 0.88, and 1.87 A RMSDs with crystallized pose, respectively.
In present case, all the selected programs were able to reproduce observed binding
mode within RMSD of 2 A.

Docking and scoring results obtained from the chosen programs show that none
of these could predict the correct ranking against the experimentally known activity
of chosen inhibitors (see Table 8). The best binder (PVB) among four inhibitors is
predicted to be best binder as rank 1, by Gold and Dock6, while LibDock and Glide
have ranked 2. LibDock is unable to discriminate between the OLM and INR and
predicts them as rank 3 and rank 4, while experimentally found ranks would be 4
and 3, respectively. Again, LibDock does not discriminate between STA and PVB
and predicted ranks are opposite to the experimental ranks. Gold predicts correct
ranks for best and worst inhibitors, while is unable to discriminate between
mid-ranged inhibitors INR and STA. Dock6 predicts correct ranks for better binders
STA and PVB, while does not discriminate between weak binders OLM and INR.
Predicted ranks from Glide did not match with experimental rank for any of the four
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Table 7 Summary of docking approach used, techniques for ligand and/or receptor flexibility,
and major features available in some chosen popular docking programs

Programs Ligand flexibility Receptor Major features in brief
flexibility

AutoDock Genetic algorithm modeling Force field-based scoring function,

[181] flexible residues | uses averaged interaction energy grid
to account for receptor conformations
and simulated annealing for ligand
conformations

DOCK [159] | Incremental build Yes (through Force field- and contact score-based

AMBER score)

scoring functions; docks either small
molecules or fragments, include
solvent effects

Glide [165] Exhaustive search No Empirical score. Although, receptor
flexibility can be used in Induced fit,
Docking (IFD workflow) with Glide
and side chain rotations through
PRIME
GOLD [110] | Genetic algorithm Side chain Empirical score, highly configurable
flexibility and allowing to utilize chemical intuition
ensemble and domain expertise to improve pose
docking prediction and virtual screening

HADDOCK | Yes

Semi-flexible

Uses biochemical and/or biophysical

[182] torsion angle interaction data such as chemical shift
refinement perturbation data resulting from NMR
titration experiments, mutagenesis
data, or bioinformatic predictions
LibDock Rigid docking can use No Docks a pre-generated set of
[183] programs in suit to conformations for the ligand followed
generate conformation by a final flexible gradient-based
optimization of the ligand in the
protein binding site
LigandFit Monte Carlo No Empirical score, ligand conformation
[184] docked into an active site based on

shape, followed by further CHARMm
minimization

Table 8 Summary of docking scoring/ranking results of chosen four inhibitors with known ICs

values to PfPKS5

Inhibitor | ICsg (in nM) | RT In(ICsp) | Docking score

(kcal/mol) | [ ibDock® | Gold® Dock6” Glide®
OLM 15,000 —6.622 107.08(3) |55.56(4) |—56.46(3) |-5.75(3)
INR 5,500 =7.220 106.80(4) | 64.56(2) |—55.04(4) |-—8.65(1)
STA 1,000 -8.236 132.82(1) | 60.98(3) |—64.55(2) |—4.99(4)
PVB 130 -9.453 130.25(2) | 78.40(1) |-71.41(1) |-7.98(2)

Docking score from programs is given in cells of table, while rank is given in pair of parentheses.
Four docking programs, LibDock v2.3, Dock v6.7, Glide v7.0, and Gold v5.2, were used to dock
inhibitors in the PVB bound structure of PfPKS, after removing PVB. Inhibitors are tabulated from

top to bottom in increasing affinity order

“Higher positive score represents higher affinity
bHigher negative score represents higher affinity



In Silico Structure-Based Prediction of Receptor—Ligand Binding ... 145

inhibitors. A limited study like this brings out the uncertainty in pose and rank
prediction by popular tools.

5.3 Selection of Appropriate Database

Chemical databases are selected from the ensemble of the small organic and syn-
thetic molecules, used for ligand docking, constituents of such chemical libraries
influence the final outcome in the drug designing process. In general, chemical
library databases are created to aid the drug discovery process by providing inno-
vation in new lead structures selection. After the establishment of the in silico drug
designing protocol, chemical databases are screened to identify the probable inhi-
bitors which can be tested by experimental methods. Success rate in finding true
inhibitor by in silico means depends upon both screening protocol and chemical
databases used. So, before the selection of the chemical libraries, basic biological
target specific chemical features should be marked. For the virtual screening pur-
poses, the compound database may be selected in such a manner so that maximum
structurally diverse chemicals can be utilized against the studied biological target(s).
Chemo-informatics tools are mainly used not only for diversity analysis [186, 187]
but also for converting them into focused chemical libraries [188].

Various chemical compounds databases are available which include databases of
general organic compounds intended for screening, drugs, commercial databases,
and databases with known biological activity, crystal structure information, and
various physicochemical properties information [189, 190]. Table 9 shows some of
the commonly used chemical databases which are categorized based on the different
features like associated bioactivity information, known drug information, and
having target specific information. Most of these databases provide chemical
information using 1D representatives such as SMILE and InChl Key, or 2D
structural coordinate information stored in SD file format. These databases are also
provided online interface to access the whole chunk of chemical compounds for
similarity-based screening. These functionalities intended to search close analogues
of known bioactive compounds and thereby advances the lead optimization process.

Though different chemical databases are available for virtual high-throughput
screening (VHTS), it is recommended to convert any chemical library to “target or
focus” chemical library to avoid the false hits selection as novel inhibitor [191]. In the
literature, several characteristic properties of small molecules have been discussed
that are followed by the “lead-or drug-like” molecules and are considered to be
important for a drug to be successful [192]. Currently, list of open-source
Chemoinformatics tools is available which can be utilized for drug-like properties
calculation and chemical databases filtration [193]. Well-known physicochemical
properties which are used as empirical rules are Lipinski’s “Rule of Five” [194], “Rule
of Three” [195], and Pfizer’s “Rule of 3/75” [196] (Table 10). Apart from filtering for
lead-like properties, it is also important to exclude known toxicophores or metabol-
ically liable moieties which can interfere with the assay and detection protocol.
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Table 9 Some commonly used chemical databases

Databases

Web link

Bioactivity data

Binding activity database

https://www.bindingdb.org/

ChEMBL

https://www.ebi.ac.uk/chembldb/

NCI https://cactus.nci.nih.gov/download/nci/
PDB bind database http://sw16.im.med.umich.edu/databases/pdbbind/index.jsp
PubChem https://pubchem.ncbi.nlm.nih.gov/

Patents

IBM www-935.ibm.com/services/us/gbs/bao/siip/
SureChEMBL www.surechembl.org

Drugs

DrugBank www.drugbank.ca

FDA http:/fdasis.nlm.nih.gov/srs/srs.jsp
Available for vHTS

ZINC http://zinc.docking.org

ChemSpider http://www.chemspider.com

eMolecules www.emolecules.com

MDL drug data report
(MDDR)

http://accelrys.com/products/collaborative-science/databases/
bioactivity-databases/mddr.html

BioPrint

http://www.cerep.fr/cerep/users/pages/ProductsServices/
bioprintservices.asp

Target specific

Pfaldb

http://pfaldb.jnu.ac.in/Malaria/homeHit.action

Mycobacterium DB

http://tbnetindia.in/

Therapeutic target database

http://bidd.nus.edu.sg/group/cjttd/ TTD_HOME.asp

KLIFS

http://klifs.vu-compmedchem.nl/

Kinase profiling inhibitor
database

http://www kinase-screen.mrc.ac.uk/kinase-inhibitors

Structural databases

Cambridge crystallographic
data center

https://www.ccdc.cam.ac.uk/

Crystallography open
database

http://www.crystallography.net/cod/

There is a well-recognized need of creating standard datasets for which exper-

imental bioactivity of the ligands is already known for receptors coming from
various functional classes [197] in the research community. Availability of standard
dataset for benchmarking docking would potentially aid to spot limitations and
non-optimal parameter sets used for docking and scoring with the concerned
docking program and thereby allowing tracing and possibly fixing of issues in
earlier phases of the study. Development of benchmarking datasets for docking and
scoring has been reviewed recently [197, 198]. Primary attempts toward docking
was made by Bissantz et al., a dataset contained estrogen alpha receptor (ERa) and
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thymidine kinase (TK) with one PDB structure, ten active compounds, and 990
randomly selected decoys from pre-curated Advanced Chemical Directory
(ACD) which was considered for each of receptors to evaluate DOCK, FlexX, and
GOLD programs and seven scoring functions (Dock, FlexX, GOLD, PMF,
ChemScore, Fresno, and Score) [197].

5.4 Consensus Evaluation of Docking

Docking studies performed using different programs which do not necessarily agree
with each other as discussed earlier, mostly because each program carries different
subtasks of docking with potentially different approach [199]. Thus, when results
disagree among themselves, then selection of the final compounds to test becomes
indecisive. Matthew and co-workers [199] suggested selection of results based on
consensus followed by rationalization through physicochemical intuition. As dis-
cussed later, such strategies should be projected as standard to increase confidence
in docking results and decrease failure rate of docking studies.

Benchmarking of docking studies is very important for unbiased evaluation of
various docking methodologies and their implementations in docking programs. To
address this issue, Huang et al. [176] conducted a study along with creating a
directory of useful decoys (DUD) [176]. They choose total 40 different targets with
eight nuclear hormone receptors, nine kinases, three serine proteases, four metal-
loenzymes, two folate enzymes, and ten other enzymes. The crystal structures of all
targets except one kinase (PDGFrb) were available in PDB. They used 2950 li-
gands, creating 36 physically similar but topologically different decoys for each
ligand. Docking was done using DOCK 3.5.54, with flexible ligand and a
force-field-based scoring function accounting van der Waals and electrostatics in-
teraction energies corrected for ligand desolvation. Authors reported that for most
of the targets, with MDDR (Elsevier MDL, San Leandro CA) databases, enrichment
were almost half log better than DUD, which supported their conclusion that
generally databases have bias.

Another protocol is known as checking with cross-docking which aims to
summarize the overall success of docking study [200], it captures ligands specificity
for its cognate receptor at diagonal of the matrix, and off-diagonal entries represent
enrichments against off-diagonal targets. The off-diagonal enrichments could also
be indicative of promiscuity of the ligand, or the similarity of the off-diagonal
targets [201]. The cross-docking performed in the process highlighted striking
results that ligands having very good enrichment for their cognate receptor had
good enrichments against a few other receptor sets, while ligands with poor
enrichment for their receptor had poor enrichment against others [202-204].

Overall, it has been found that the interaction-based classification and estimation
of accuracy of poses during docking are in better agreement with the experimental
results [205].
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5.5 Selection of Suitable Scoring Function

Whether to select just a scoring function or a consensus scoring function? A
suitable scoring function has important role to play to extract correct poses while
docking. Poses should be evaluated by the docking score or the ranks are better for
evaluation of docking; these are critical aspects influencing the final outcome of the
docking results. None of the available scoring functions appears to be fit in all cases
[206]. James B. Matthew and co-workers performed a study to evaluate perfor-
mance of four individual scoring functions DOCK, GOLD, PMF, and FlexX and
several forms of consensus scores (CScore) derived from them, over a dataset of
twelve HIV protease and nine thermolysin complexes with known crystal structure
and experimental binding affinity [199]. Since DOCK and GOLD scoring functions
were not available in FlexX, they implemented these scoring functions according to
their open descriptions in the literature and will be referred by D-SCORE and
G-Score. They found that none of the considered scoring functions was consistently
good for all active sites [206], but the CScore (consensus score) was better than all
individual scoring function [199]. Secondly, they studied these scoring functions
for scoring candidate ligand configurations over a set of five known receptor ligand
complexes (2-MQPA or NAPAP into thrombin (1IETR and 1DWD), I-
3-phenyllactic acid into carboxypeptidase A (2CTC), 1-deoxynojirimycin into
glucoamylase (1DOG), and DANA into neuraminidase (1INSD) each of the ligand
was docked to cognate receptor, and top thirty configurations with most favorable
FlexX scores were chosen for further study, each of these configurations were
scored using D-SCORE, G-SCORE, PMF, rank-score, deprecated rank-sum
(rank-sum after leaving out worst rank), worst-best and CScore methods. They
found that average scores from several methods are better than individual score
[199]. Apart from this, their study highlighted that there could be alternate poses for
NAPAP binding in thrombin and DANA in neuraminidase as predicted by FlexX
along with crystal structure poses reproduced in Fig. 10a, b respectively.

Table 10 Typical physicochemical properties which are used to filter the chemical databases

Properties Lead-likeness

Molecular weight (MW) 200-500

Lipophilicity (cLogP) —4/4.2

H-bond donor <5

H-bond acceptor <10

Polar surface area (PSA) <170 A?

Number of rotatable bonds <10

CACO-2 membrane permeability > 100

Solubility in water (log S) —5/0.5

Others Absence of both toxic and reactive fragments
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(a) (b)

Fig. 10 Alternative docking mode for identified by FlexX and CScore. The alternative
configuration is colored by atom type, whereas the binding mode found in the crystal structure
in colored orange. a NAPAP in thrombin (IDWD) and b DANA in neuraminidase (INSD) [200].
Reproduced with permission

5.6 Consensus Scoring

Despite availability of variety of scoring functions, none of them is universally
good for assessment of all receptor ligand binding using docking. Therefore, several
attempts [174, 199, 207] have been made by researchers to investigate several
scoring functions and their combinations using different consensus schemes. In
particular, Oda et al. used two force field-based (Dock score and GOLD score), two
knowledge-based (DrugScore and PMF score), and five empirical (FlexX score,
ChemScore, PLP, Screen Score, and X-Score) scoring functions and systematically
assessed performances of all 511 (2° —1) consensus scores over a test set where
structures were available in PDB for all chosen 220 protein—ligand complexes. For
the sake of comparison, either all the candidate poses scored by a scoring function
were ranked assigning best-scoring pose a rank 1 or the scores were scaled to span
range 0-1, with best-scoring pose assigned 0 and worst assigned 1. These schemes
were consistently used for all the scoring functions, except for X-Score, since it
assigns a higher value to better pose in contrast to rest of others. Therefore, S-Score
was multiplied by —1 before scaling or ranking [207]. Oda et al. [207] used six
different averaging schemes for consensus score with three different ways of model
selection (selecting models with consensus score < Xresholds tOP Yihreshola Models
from sorted list of consensus scores in increasing order, and top Zreshola % models
from sorted list of consensus score in increasing order) combined with two ways
(by rank and by scaled score) of mapping score to common scale. Prefixes
number-by-, rank-by-, and percent-by- were used to denote way of model selection,
and suffix rank and number were used to denote ways of mapping scores.
Apart from these six, three more double thresholds (one for model selection from
Xthresholds Ythresholds a1d Zinreshold and other number of minimum votes for electing the
model)-based vote-by-consensus scores were also evaluated [207]. Considering the
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accuracy and efficiency balance in selecting poses rank-by-number and
percent-by-number are more useful, while for accuracy number-by-number and
vote-by-number approaches are more pertinent to pose selection [207]. GOLD
score and Dock score were poor individually but were useful in consensus scoring
[207]. Consensus score involving all nine scores or five CScore functions were
useful without any optimization and suitable for practical usage [207]. However,
Free energy and empirical scoring has been used together in the recent paper [174].

5.7 Inclusion of Flexibility of Ligand and Receptor

In computer-assisted drug discovery process such as structure-based drug design
and ligand-based drug design, ligand flexibility plays key role for pharmacophore
features extraction and model generation [208], 3D-QSAR analysis [209], molec-
ular docking-based studies [210], shape similarity [211], and so on. In these cases,
the outcome results largely depend upon the ability to achieve those conformers that
represent the bound state. Hence, it is important to achieve bioactive conformational
space of each compounds under study [212]. The term “bioactive conformation
generation” specifies the generation of pool of all possible molecular structures that
are found in the bound state of the complex macromolecules. Various studies
suggest that during the interaction with the receptor, small molecules generally
adopt low-energy conformation [213].

The literature suggests two major classes of methods that are utilized to explore
the conformational landscape of the small molecules [214]. These approaches
include stochastic sampling, systematic or deterministic sampling. Deterministic
approaches attempt to generate full range of minimum energy conformations by
adopting systematic exhaustively space search approach. This type of space search
methods largely dependent upon the number of rotational bonds a small molecule
has. Due to combinatorial explosion in torsion angle combinations, this approach is
feasible only for very small molecules [214]. Stochastic sampling tries to explore
various energy landscapes by incorporating randomness during the search process.
Monte Carlo-type (MC) simulations and genetic algorithms (GAs) are the major
techniques of this type of sampling methods [214]. A detailed review of these
approaches can be found in the following papers [215].

Using above-mentioned approaches, various conformation generation programs
have been developed and utilized in drug discovery process cited in Table 11.
These programs generally adopt heuristics to overcome combinatorial explosion in
case of systematic search and random perturbations and selection in stochastic
search.

Ligand being usually smaller in size with lesser number of rotatable bonds
exhaustive sampling of available conformational space is achievable with current
computational capabilities; but proteins being large macromolecules, available
conformational space is vast due to large number of degrees-of-freedom (DOFs)
and its exhaustive sampling is almost infeasible. Therefore, techniques seeking to
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Table 11 A brief summary of major programs for small-molecule conformation generation

Program Type Algorithm Cost/license | References
Balloon_GA | Stochastic | Genetic algorithm Free/ [216]
proprietary
CAESAR Systematic | Incremental search of torsion angles | Commercial |[217]
combined with distance geometry
Confgen Stochastic | Random walk on energy surface Commercial | [218]
Confab Systematic | Torsion driving approach Open [219]
source
Corina Systematic | Knowledge-based rules derived from | Commercial |[220]
CSD
ETKDG Stochastic | Distance geometry and knowledge Open [221]
base source
Frog2 Stochastic | Monte Carlo Open [222]
source
MS-Dock Systematic | Brute force, anchor, and grow Open [223]
source
MOE Stochastic | Random perturbations of rotatable Commercial | [108]
bonds in increments biased around
30°
OMEGA Systematic | Knowledge-based, complete Commercial | [212]
enumeration
RDKit Stochastic | Distance geometry Open [224]
source

incorporate protein flexibility during binding has been attempted, but they incor-
porate receptor flexibility only to a limited extent, focusing on sampling only most
plausible/relevant portion of the conformational space, e.g., through side chain
flexibility, conformational relaxation, and multiple structure docking, as already
discussed in protein flexibility section. However, newer techniques, e.g., supervised
molecular dynamics (SuMD) can be useful to incorporate receptor flexibility,
because they allow receptor to experience thermal fluctuation and supervision of
ligand toward binding site from unbound state might allow receptor to adopt
induced conformational changes sensing the ligand in vicinity of binding site under
influence of its interaction field [225].

6 Binding Ability and Free Energy Calculation

The binding free energy of ligand to receptor is the thermodynamic signature of the
interaction affinity. Therefore, accurate prediction of binding free energy has been
attempted from long times. The free energy calculation methods can be grouped
into relative binding free energy calculation methods and absolute binding free
energy methods [226]. Relative binding free energy methods aim to calculate
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binding free energy of one ligand (reference ligand) relative to another ligand
(target ligand) both binding to same receptor, by summing up the work carried to
convert one ligand to another in bound and free states in solution [226]. This
method can be significantly efficient when reference ligand is very similar to target
ligand, but if they are dissimilar then defining and sampling along the conversion
path may pose severe computational demand [226]. Since reference ligand to target
state conversion path is artificial, these methods are also called alchemical methods,
and excellent review on popular methods of this class already exists [227]. Absolute
binding free energy methods estimate standard binding free energy of interaction by
computing reversible work done in process of transferring it from binding site into
solution [226]. Absolute binding free energy methods have been reviewed by Shirts
et al. [228]. Practical aspects of free energy calculation have also been recently
reviewed [229, 230]. The accuracy of the binding free energy calculations is
influenced by adequacy of sampling (theoretically, accurate results require infinite
sampling), force field used for sampling, and correctness of the molecular model
used, e.g., usually simulation is performed using fixed protonation states of titrat-
able residues, while protonation states might change in experimental conditions
[226].

6.1 Calculation of Enthalpy by MM-PBSA

The end-state free energy methods explained here are most common approaches to
calculate binding free energy. Linear response approximation (LRA), linear inter-
action energy (LIE), and molecular mechanics Poisson—Boltzmann surface area
(MM-PBSA), molecular mechanics generalized Born surface area (MM-GBSA)
[231] are such methods available in the literature. End-state free energy methods are
computationally less demanding, but the speed gain in CPU comes at cost of
compromised accuracy of the results [231]. These methods are required to be
plugged with estimation of configurational entropy which usually is obtained by
rigid-rotor approximation and normal mode analysis or quasi-harmonic analysis to
yield binding free energy [232]. However, these methods can be good for evalu-
ating binding enthalpy for ligand-receptor interaction. In MM-PBSA/MM-GBSA
approaches (schematically shown in Fig. 11), the binding energy is calculated by
taking energy difference of free-form of protein (P), and ligand (L) from protein—
ligand complex form (PL) [232].

The free energy of each of the molecular species (say X) can be expressed as
sum of their molecular mechanics energy in gas phase Eypi(X), solvation free
energy Gy v(X), and entropic part—TS(X). The Eym(X) contribution can be
expressed as sum of bonded, electrostatics, and van der Waals energies, i.e.,
EMM(X) = Ebond(X) + Eelec X) + EvdW(X) [231} Slmllaﬂy, Gsolv(X) can be
expressed as sum of polar and non-polar contributions Gpea(X) and Gpon-potar(X),
where Gpo1(X) can be accounted using Poison—Boltzmann or its simplified version



In Silico Structure-Based Prediction of Receptor—Ligand Binding ... 153

Receptor Complex _ k, _ [C]
Kyima = k_‘ = TalIlrr]
ngand -1 [R][L]
AG,,,=-RThK,,,

Before Binding After Binding R or
Cavity accessible Cavity blocked Ligand
. ]

polar
non-polar

: : , A o
0 0 0 solvent
. f 0 Interaction
| ﬁcww wate with
J receptor
l Iﬂ G (L) “ Il Complex

ﬂ G bl ] . polar
_ non-polar

0 ligand
o Md ln@eracuon
AGHd = AGHM +[ac (C)-(AG,,(R)+AG,, {L}|] with
receptor

Fig. 11 Schematic representation of the end-state free energy using molecular dynamics Poisson—
Boltzmann surface area method for estimating binding energy for receptor ligand binding

generalized Born method as Gpg(X) or Ggg(X), while non-polar is taken to be
proportional to accessible surface area change Ggasa(X) [231].

AGyina = G(PL) — G(P) = G(L) 3)

The dynamics of the PfPKS5 kinase structure complexed with the inhibitor(s)
described earlier in docking section is used here as case study using MD simula-
tions. Starting structures of PVB-PfPKS5 [185] and INR-PfPKS5 [185] complex were
taken from crystal structures 1VOP and 1V0O, while OLM-PfPKS5 and STA-PfPK5
were taken as consensus pose obtained from docking study using Gold, Glide, and
Dock6 as mentioned above. All the systems were prepared using AmberTools14
[233] for MD simulation, and AM1-BCC charges for ligands and GAFF [234] force
field parameters with ff14SB [235] parameters for protein. Equilibration was per-
formed using standard protocol [236]. For each case, 12 independent (starting from
different starting velocities) MD simulations in NPT ensemble each with length
254 ns were done, initial 4 ns run were discarded to allow for equilibration, bond
lengths involving hydrogen were constrained using SHAKE [237] to allow use of
2 fs time step, temperature was controlled using Langevin thermostats with colli-
sion frequency 1 ps, and pressure was regulated with Berendsen scheme at target
pressure 1 atmosphere using cuda version of program pmemd available in Amberl14
[238] MD simulation package. Coordinates were saved every 1 ps. These trajec-
tories were concatenated to yield 3 ps MD simulation for each case containing
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3000,000 frames. Every 100th frame was taken for MM-PBSA analysis using
MMPBSA . .py [239] program in AmberTools14 [233].

The gas phase binding energy AEy was highest for INR followed by STA,
PVB, and OLM, but the solvation penalty was also highest for INR and least for
STA. In terms of enthalpy of binding, STA was predicted to be best, followed by
PVB, INR, and OLM, respectively. The inconsistency of binding enthalpy with
ICs indicates possible role of entropy in this case. There may be role of solvation
as well which is not rigorously captured in solvation terms considered proportional
to buried surface area on binding in MM-PBSA method; see Table 12.

However, it may be criticized that selected docking programs use different
scoring, therefore to be able to assess their performance as well as compare with
experiment values is not possible. So, another attempt was done by normalizing all
the scores, by converting all of them to positive scores (normalized using
(score — Ming.ye)/(MaXgeore — MiNgeore)). This yields a consistent normalized score,
where weakest and strongest binder ligands get normalized scores ranging 0 and 1,
respectively. Same is used for normalizing experimental values, i.e., RTIn(ICs).
Results are shown in Fig. 12, Dock6 predicted scores for all ligands are within
1-sigma range, Gold and LibDock each predicted one outlier, and Glide predicted
two outlier scores. In present case, Dock6, Gold, and LibDock appear to perform
better than Glide. These results may not be sufficient to capture docking/scoring
capabilities of chosen programs, as only four ligands are studied and they bind to
only one target. A more diverse target set and a large ligand set could better
comprehend the features and/or limitation of individual programs; this will be
discussed later also.

The binding enthalpy predicted using MM-PBSA method consists of two out-
liers from 1—o range (computed as discussed earlier), and it does not agree fully
with docking scores obtained from any of the four chosen programs, as expected.
However, strong and weak binders predicted using MM-PBSA is same as predicted
by LibDock, and second strong binder predicted using these two is similar in
affinity. While MM-PBSA results agree with Gold results for two weak binders and
not for strong binders. Glide agrees on experimentally found strong and weak
binders with MM-PBSA. Score using Dock6 agrees better than MM-PBSA
(Fig. 12). As observed in the present case, the scoring by Docking methods as well

Table 12 Enthalpy component of binding free of selected inhibitors of PfPKS5, calculated using
MM-PBSA method

Inhibitor | ICsqg (in nM) | RT In(ICso) | Predicted (kcal/mol)

(kcal/mol) AEyvim AGsoy Total: AHpgsa
OLM 15,000 —6.622 —-585+79 |[254+59 |-331+41
INR 5500 =7.220 -102.7 £ 87 [624+59 |[—403 +42
STA 1000 —8.236 —-69.0 £ 55 |198+£40 |—-492+47
PVB 130 —9.453 —65.7 £89 |22.6 60 |—43.1+47

These values are computed for 3000 snapshots extracted from 3-ps-long MD simulations for each
inhibitors in complex with PfPKS, internal dielectric constant was taken 2, and ionic strength zero
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Fig. 12 All the scores have been normalized as discussed in text, to compare the predicted
affinities for chosen four inhibitors of PfPKS5 obtained using docking with Dock6, Gold, Glide and
LibDock and MM-PBSA against experimental binding affinity. Solid line shows perfect
correlation of scores with experimental results, and dotted lines above and below show one-o
range of error for predicted affinity

as the end-state Free Energy methods show discrepancies with experimental results,
which emphasizes the effect of entropic contribution in case of flexible Kinase
binding to ligands.

6.2 Effect of Entropy to Ligand Binding

Gibbs free energy (AG) of binding has two components enthalpy (AH) and entropy
(=TAS) as given by Eq. 4:

AG = AH — TAS (4)

Enthalpy of the protein ligand interaction is assumed to be the major determinant
of the binding free energy assuming entropic contributions for smaller ligands
binding to the same receptor would have similar entropic profile. However, this
assumption can be seen as an attempt to simplify the scenario, as entropy estimation
of binding process still lacks direct and reliable experimental/computational
methods [240]. Experimental methods seek to estimate this quantity from the
conformation flexibility as proxy for it and relate NMR relaxation parameter to
calibrate it with conformation part of the biding entropy; conformation entropy is
again assumed to be linearly correlated with the total binding entropy [241]. While,
computation methods also try to estimate configurational entropy on similar
line-of-thought, using molecular fluctuation data generated from molecular
mechanics as a proxy for the entropy and thereby try to estimate configurational
entropy from it [242-245]. Normal mode analysis (NMA) tries to infer
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conformational entropy as function of the vibration modes where DOFs are mod-
eled as a set of simple harmonic oscillators, vibrating independently [246], but with
the growing understanding of the nature of vibrational modes of biomolecules, it
was realized that NMA is not the most suitable theory [247] for understanding
entropy. Thus, methods utilizing internal coordinates for molecular description in
conjunction with approximations representing full dimensional probability density
function as a series of marginal PDFs of fluctuation of DOFs got attention of
research community. This theory has been successfully applied to estimate entropy
for small molecules [248], peptides [249, 250], to protein—peptide binding study
with at least qualitative insight, while quantitative aspect still remains to be
debatable [251, 252]. In some case, even for the set of ligands binding to the same
receptor, entropic components are surprisingly quite different and play a crucial role
in deciding the rank/affinity order of ligands.

As mentioned above, we found out that for a set of experimentally known
ligands binding to the P. falciparum protein kinase PfPKS5, docking scores yielded
very poor correlation with experimental affinity, even inclusion of end-state free
energy using MM-PBSA [253] method using 3 ps simulation data for each of the
ligands, no significant improvement in computed affinity was observed. However,
when configurational entropy for the ligands was included with the MM-PBSA
estimates, a significant improvement in the bonding affinity was observed (manu-
script in preparation).

As shown in (Fig. 13), achieving convergence to reduce error in estimation of
entropy takes longer trajectories i.e., covering larger configuration space. Using a
distance cutoff-based adaptation of Maximum Information Spanning Tree (MIST)
called Neighbor Approximated Maximum Information Spanning Tree (A-MIST)

(a) —— INR-PPK5  —=— pvB-PPK5s (D) —— INR-PIPK5S  —s— PVB-PfPK5
STA-PPKS ~ —=— OLM-PPK5 - STA-PfPKS  —*— OLM-PfPK5
80
80
B 5
E £ &
g 60 8
- -
= =
H ® =
20
20
0
1 2 3 4 L 1 2 3 4 5
Simulation frames in millions saved @1os Simulation frames in millions saved @1ps

Fig. 13 Binding configurational entropy estimated using A-MIST methods with a distance cutoff
of 14 A and convergence of estimate with simulation time is shown. a Convergence of first order
(assuming DOFs are uncorrelated) is shown. b Convergence of second order (accounting pair-wise
correlations DOFs) is shown



In Silico Structure-Based Prediction of Receptor—Ligand Binding ... 157

_ AH
3 40 -TAS
E AG
(1]

o 20

= - @ w0 -
g, 8 & g g
':':n B 8 B o S B O o
g 8 288

= 20 RRREREBR
3 40

OLM INR STA PVB

Fig. 14 Enthalpy, configurational entropy and free energy of binding of chosen inhibitors is
shown in kcal/mol. Inhibitors are arranged in increasing experimental affinity (RTIn(IC50)) order
from left to right. Enthalpy is calculated using MM-PBSA method as discussed earlier. Here,
temperature is taken to be 300 K

[254], the configurational entropy was estimated using MD dataset of ~5 ps,
adding enthalpy, Free energy was calculated. It indicates that largely omitted
entropic contributions can play important role and even deciding factor in case of
small ligands binding to the flexible proteins (Fig. 14).

As shown in Fig. 14, combining enthalpy (AH) and configurational entropy
(—TASmnﬁg) of binding for chosen inhibitors, the binding free energy (AG) for
best binder PVB is highest. However, binding free energy does not discriminate
between OLM and INR, where experimentally OLM is weakest binder. Lower AG
for INR (—18.5 kcal/mol) in comparison to OLM (—20.0 kcal/mol) may be
attributed to the role of solvation free energy which is not accounted rigorously in
MM-PBSA methods. Variations in configurational entropy of binding from
21.8 kcal/mol to mere 2.9 kcal/mol suggest that different ligands modulate and
influence receptor flexibility in their own different way while forming complex,
highlighting importance of receptor flexibility in binding affinity prediction studies;
recently more attentions are attracted in this field.

6.3 Thermodynamic Methods

Relative binding free energy for a ligand formed by a chemical group substitution
relative to parent compound can be computed using free energy perturbation
molecular dynamics simulation [255]. This technique requires constructing a path
from parent ligand L, to analog ligand L,, which binds to a common receptor R, in
two steps as follows. First, by carrying out a sequence of simulations in solvent and
mutating L, to L, through several intermediate points and adding up the free energy
changes along hypothetical intermediate points to yield free energy (say Ay) of
mutating L; to L, in solvent, then similarily, mutating the ligand L; to L, in the
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binding pocket of receptor in solvent to get free energy change (say A,). Finally,
subtracting A, from A, gives the free energy change of the binding [255]. As early
as 1985, to test the concept, it was successfully applied to calculate relative sol-
vation free energy of CI” and Br~, and computed Helmholtz free energy
AAA (3.35 £ 0.15 kcal/mol) was shown to be in excellent agreement AAApyy ~
AAGhyar = 3.3kcal/mol with experimental value [256]. Further, the applicability
of the method was extended to non-trivial systems, e.g., amino acids and their side
chains, nucleic acid bases, and other small organic molecules; computed solvation
free energies of these molecules are found to be in agreement with experiment [257,
258].

Relative free energy or potential of mean force (pmf, w(r.))-based methods
relate it to the distribution of a chosen reaction coordinate (r.), the direct sampling
along r., and constructing its distribution function g(r.). The distribution function
of reaction coordinate g(r.) can be related to pmf (w(r.)) as

w(re) = —kgT In g(r.) + constant (5)

However, barrier on the w(r.) can limit the sampling thereby the estimated pmf.
Therefore, techniques like Umbrella sampling and Importance Sampling were
introduced. But, choosing the right biasing function and ability to verify the ade-
quacy of sampling for simulation widow is still challenging. A brief review of these
methods is presented by Jorgensen et al. [259]. Statistical perturbation theory
(SPT)-based methods which estimate free energy difference between systems i and
J are related to the average of function of energy difference between systems i and
J where sampling is based on system i [259]. Authors summarized several appli-
cations of SPT-based methods, e.g., for relative solvation free energy, relative pK,,
values, study of solvent effect on conformational equilibria, study of binding and
molecular recognition, and study of reactions in solvent [259]. The computational
cost of carrying out SPT-based calculations inspired cost-effective semi-empirical
methods using MD simulation samples for binding free energy calculation [260].
Aqvist et al. divided the binding free energy in two independent components
electrostatic and non-polar, where electrostatic component AG® was taken to be
half of the solvent—ion interaction energy [260]. For non-polar component, linearity
between solvent size sigma and non-polar van der Waals energy and corresponding
solvation energy, empirical parameter o was derived to relate vdW component of
solvation free energy AG;’gl\y with average of vdW component of interaction

potential for transferring ligand from binding site (i) to solvent (s) given by
AGYY = a{AVI™Y) to yield expression for binding free energy [260] as:

solv

AGing = 1/2.(VEL ) + a(VYV). This new semi-empirical method was tested on
aspartic protease endothiapepsin and five small-molecule inhibitors with one as
reference for which binding data and also crystal structure were available. It was
reported that predicted relative binding free energy has mean unsigned error of
0.39 kcal/mol with highest for one of five inhibitors being 0.53 kcal/mol with

parameter oo = 0.161 [260]. Application of such methods in details was discussed
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by Warshel and co-workers who have systematically examined performance of
protein dipoles Langevin dipoles (PDLD) and other techniques using phosphoryl-
choline analogs binding to murine myeloma protein (McPC603) [261].

7 Molecular Recognition and Brownian Dynamics

As earlier discussed diffusional encounter of reacting substrates is the prerequisite
for the binding interaction to happen [153]. Diffusional encounter is basically
controlled by the long-range electrostatic interaction between participating chemical
species [262]. Generally, the timescale of such encounter is from micro- to mil-
lisecond, which is tough to achieve with existing hardware technologies using
molecular dynamics even for small- to moderate-sized biomolecules [263].
Therefore, simplified coarse-grained models of biomolecules can be simulated
using Langevin dynamics and Brownian dynamics [262]. Brownian dynamics has
been successfully applied to study ion permeations through ion channels [264] and
enzymatic reactions [265]. However, to gain kinetic insight into receptor-ligand
recognition, BD can be utilized [266-269], but BD being computationally very
expensive is practically challenging [263]. This has called for alternate methods
with simplistic approaches to study recognition process.

Supervised molecular dynamics (SuMD), a tabu-like search algorithm, aims to
predict the pose of the ligand in the binding site of its cognate receptor, monitoring
ligand-binding site distance along a series of short MD simulation has been pro-
posed [225]. SuMD has been successfully applied to study a variety of molecular
recognition processes [270-272]. In particular, Moro and co-workers applied to
study molecular recognition process of four globular receptor—ligand systems and
two transmembrane receptor ligand systems; in all these cases, experimental crystal
structures and binding affinity values (ICsq, K; or Ky) were already known [271]. In
the study, it is observed that using SuMD, binding from unbound state (where
ligand is placed at >30-50 A away from binding site) of above ligands to their
cognate receptor can be simulated; moreover, various interaction hot spots (meta-
stable states) during recognition are possible to explore, which may be important in
providing insight into kinetics of the recognition process, hence better designing of
ligand [271]. In another study, the effect of allosteric modulator LUF6000 on
adenosine binding with A3 adenosine receptor (A3AR) was reported. In this study,
recognition of allosteric modulator LUF6000 to A3;AR and adenosine to A3AR in
presence and absence of LUF6000 was studied using SuMD. It is observed that
adenosine visited a metastable site between helices EL3 and EL2, participating in
hydrogen bonds with Val259 and GIn261, and it triggers an orientation change in
adenosine mediated through hydrophobic interactions before occupying the binding
site [270]. In future, such techniques along with Free Energy perturbation method
will provide more accurate estimation of free energy binding of ligands to receptors
which will include the flexibility of both partners.
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8 Ligand Becomes Drug!

Drug research encompasses by various pipelines to achieve common goal, i.e., new
therapeutic molecules. After the successful identification of the novel ligand or lead
molecules by either computational or medicinal chemistry approach, each molecule
must be characterized for absorption, distribution, metabolism, excretion, and
toxicity (ADME-Tox) properties along with pharmacokinetic/pharmacodynamic
(PK/PD) activity that decides the success rate of the drug [273, 274]. Evaluation of
these properties belongs to the pre-clinical stage, and result of this stage decides the
advancement of novel chemical entity (NCE) to clinical stage. Failure of the drug is
dependent on the targeted therapeutic area; comparatively drug targeted to car-
diovascular has maximum chance of success than CNS targeted [261]. So, suc-
cessful candidates have to fulfill the essential criteria of potency, selectivity, oral
bioavailability, therapeutic efficacy, along with an acceptable side effect profile
[275]. Testing of thousands of leads molecules, found to be active against any
disease, requires huge amount of money and time, and also it is not always easy to
perform every test [276]. Understanding from the already prescribed drugs and
knowledge from the failure rate during the different clinical stages has provided
directions and specified various properties of chemicals which can be utilized to
assess the lead molecules before performing costly and complex clinical tests [277].

Detailed information about ADME-Tox and its role in successful drug design is
reviewed and available in many recent literatures [273, 278, 279]; however, major
application of these properties is related to reduction in clinical drug failures from
40 to 10% [280]. This reduction has been seen with the advancement in the
chemoinformatics and computational application in drug development process. As
mentioned in the ligand design libraries, various physiochemical properties based
on rules have been set to develop the lead-like and drug-like libraries to screen
[281-284]. Along with these filters, for further libraries optimization filters like Pan
Assay Interference Compounds (PAINS) and ALARM-NMR have been developed
to remove known toxicophores or metabolically liable moieties which can interfere
with the assay protocol [285, 286].

9 Summary

In this review, we have summarized many methods related to structure of receptor,
characterization of active sites and subsites, binding affinity calculations, docking
with specific poses, ranking chemicals and elucidated existing challenges in these
methods. In spite of many mathematically and computationally elegant tools to
understand and perform efficiently docking and scoring for large number of com-
pounds, the success of identifying novel inhibitor of infectious disease and chal-
lenges thereof is still significantly high. Some of the solutions are already evident
but many are yet to find. Still to ponder, how to estimate efficiently the effect of



In Silico Structure-Based Prediction of Receptor—Ligand Binding ... 161

ions, pH dependency, and Brownian dynamics, which are playing significant role in
Free energy of binding to receptor. Many relevant receptors are not crystallized yet,
it is clearly evident that, errors occurring in in silico model structure and plurality of
interactions with the binding site play a dominant role in correctly identify any
novel inhibitor. Prior knowledge of physico-chemical interactions at active site and
the functional importance of interacting residues influence the pose of binding of
inhibitors to flexible receptors. A prior knowledge about the mechanism of binding
provides lead towards the accuracy and effective binding of docked ligand. Flexible
peptides derived structures provide higher affinity and in future, emerging field of
study will be designing of such restrained chemicals driven by highly active pep-
tides. Free energy estimation, rather than scoring (however accurate it may be),
provides better designing capability. Knowledge of mechanism of inhibition is
mandatory for innovation of novel chemical structure to lead the drug design, even
in dominant era of artificial intelligence.

In conclusion, we have attempted to highlight the existing challenges in esti-
mating the ligand receptor binding and critically inspect the methods applied day in
and day out in the field of structure-based drug design. Summarization of tools and
case studies are not the scope of the review. Most important aspect is that this field
evolved largely using efficient algorithm and computational tools, however, effec-
tive use requires more indulgence of chemistry and biology, in future to progress
successfully.
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Structure-Based Drug Design M)
of PFDHODH Inhibitors Lk
as Antimalarial Agents

Shweta Bhagat, Anuj Gahlawat and Prasad V. Bharatam

Abstract Structure-based drug design (SBDD) is being efficiently used for the
design of antimalarial agents. It is a very effective tool for challenges like drug
selectivity and resistance. Over the past decade, a considerable number of drug-
gable targets have been explored—these include Na* ATPase 4 ion channel,
cytochrome bcl, mitochondrial electron transport chain, phosphatidylinositol
4-kinase (PfPI4 K), dihydroorotate dehydrogenase, hemozoin formation, dihydro-
folate reductase inhibitors, etc. Among these, Plasmodium falciparum dihy-
droorotate dehydrogenase (PfDHODH) is a new and very promising target.
P/DHODH has shown considerable potential in arresting growth of the parasite at
blood stage by inhibiting pyrimidine biosynthesis. This chapter provides a review
of all the SBDD efforts for the development of inhibitors against PADHODH.

Keywords Plasmodium falciparum - Structure-based drug design
Molecular docking - Virtual screening - Dihydroorotate dehydrogenase
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1 Introduction

Malaria is one of the most challenging communicable diseases caused by plas-
modium parasite. It affects half of the world’s population with 91 countries under
the direct risk of transmission. Five million more cases of malaria were reported
globally in 2016 compared to 2015. Children under the age of five are most sus-
ceptible to the disease with high death rate. The disease has a tropical and sub-
tropical localization with prevalence in poor countries [1]. Due to the above facts
and figures, it becomes essential to look into measures to limit the spread of disease
and provide better solutions for curing malaria.
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It is observed that majority of the drugs used to cure malaria have developed
resistance within a span of 20 years of their introduction [2]. Other limitations of
the drugs in market are compliance, safety, and cost. The drugs should be fast
acting, curative within 3 days, and safe in pregnancy/early infancy [3]. Vaccine
RTS,S has also been introduced for malaria but due to low efficacy (26-50%) is not
recommended for babies between 6 and 12 weeks age [4].

To overcome these limitations, an extensive research is underway to discover
new lead molecules with the potential of being introduced as new drug.
Structure-based drug design (SBDD) is one such approach to discover new leads
[5]. With the explosion of new information regarding the structure of many new
targets, it has become easier to study the detailed structural aspects of the target.
A thorough analysis of mechanism of their enzymatic activity, important amino
acids responsible for molecular recognition and selectivity, mutated amino acids
and their role in resistance as well as changes in enzyme efficiency due to mutations
are some of the questions which are observed and answered during this process.
Choosing appropriate drug hit/lead is based on this information along with the
synthetic feasibility of the designed molecules. This is followed by biological
activity analysis and selecting lead compounds. These leads can be further modified
to improve the activity along with bioavailability and several such cycles of drug
discovery process help in identifying molecules with improved target binding and
specificity/selectivity.

PfDihydrofolateReductase (P/DHFR) is a very widely studied target which
depicts an ideal example for SBDD approach. It was identified as the target for
drugs like cycloguanil and pyrimethamine. The enzyme soon showed resistance
within a span of 20 years of introduction of its inhibitors. It was then observed that
the resistance occurred due to the mutation of Serl08 in the active site of the
enzyme to Asnl08, which shows steric clash with the p-chloro substitution at the
phenyl ring of cycloguanil and pyrimethamine. This caused the emergence of two
forms of double mutants and finally the most resistant quadruple mutant [6]. To
avoid this steric clash, a linker chain was proposed to provide flexibility to the
molecule and avoid close interaction with mutated amino acid Asn108. This led to
the identification of WR99210 as lead molecule for in vitro P/DHFR inhibition both
in wild type and mutant form of the enzyme but failed during in vivo studies due to
low bioavailability and toxicity [7]. It was further observed that due to high pKa of
triazine moiety, WR99210 showed bioavailability problems. Further SBDD
approach led to the identification of P218 as the lead molecule which was suc-
cessful in both in vitro and in vivo studies and is currently undergoing clinical trials
[8]. Molecular modeling studies on this enzyme led to the identification of key
structural features that are essential for its selective inhibition. These include
(i) H-bond donor head group for molecular recognition site, (ii) hydrophobic tail,
and (iii) linker chain between the head group and tail [9]. These parameters were
applied during SBDD approach for identification of new chemical head groups for
P/DHFR inhibitor design [10]. S-substituted guanylthiourea were identified which
showed similar interactions as that of the WR99210 during molecular docking
studies and later molecular dynamics studies [11]. In this series, two compounds
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were identified to in vitro activity against PADHFR and one compound was found to
be curative against Plasmodium berghei during in vivo studies [12].

In 2017 itself, 21 crystal structures of recently discovered targets of Plasmodium
falciparum were reported in RCSB Protein Data Bank. Given the extensive
development in availability of high-resolution crystal structures of various impor-
tant targets and techniques available to analyze these targets, the opportunities to
carry out SBDD are enormous. Also, the availability of crystal structures of mutated
enzymes offers opportunities to understand the reasons for mutation, its effect on
the parasite and modifications required to overcome these mutations. The purpose
of this review is to understand the SBDD efforts involved in the identification of
new leads for malaria taking example of P/DHODH as a target.

2 New Targets for Antimalarial Agent Design
Employing SBDD

2.1 P. falciparum ATP-Dependent Heat Shock Protein 90

Heat shock protein 90 (HSP90) is a highly conserved molecular chaperone involved
in the protein folding, stabilization, and protein—protein interaction of a variety of
different proteins such as E3 ligases, transcription factors, various kinases, and
many other proteins [6a]. It thus plays a major role in signal transduction and
cell-cycle regulation of various species including P. falciparum [13]. Various
inhibitors including geldanamycin (anticancer drug) compete with the natural
substrate (ATP) for occupying the ATP-binding domain present at the N-terminal
of the protein. This inhibition results in the arrest of the parasite growth in
intra-erythrocytic phase by blocking the transition from immature ring-form stage
to maturetrophozoite stage [13].

It is a homodimer protein and has three functional domains: (1) ATP-binding
domain present at N-terminal, (2) a middle domain which facilitates ATP turnover,
and (3) C-terminal domain which helps in dimerization. The ATPase cycle begins
with the binding of substrate protein (like transcription factors, transducers) on the
hydrophobic interface between the N-terminal and middle domains. This is fol-
lowed by ATP binding and its subsequent hydrolysis that resulting in the com-
pression of the substrate protein [14]. Its inhibitors bind to the ATP-binding site and
halt conformational changes which are necessary to convert protein into compact
one. The crystal structure reveals that PfHsp90 enzyme (PDB ID: 3K60) comprises
of seven a-helices on one side and nine antiparallel B-sheets on other side of
enzyme. The ATP binds to the solvent-accessible surface between a B-sheet and
several o-helices. Hsp90 in all the species is characterized by the presence of an
ATP lid (with different length, tertiary structure, and conformation) which is formed
by the loop connecting the B-sheets and a-helices [13b].
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Experimental high-throughput screening analysis performed over 4000 natural
compounds recognized three new molecules, that includes Harmine, as selective
inhibitor of PHSP90 [15]. Molecular docking and molecular dynamics analysis of
7-azaindole class of compounds (IND311 and IND31119) (Fig. 1) bound to
PHSPI0 active site have reported that the enzyme hydrophobic cavity is occupied
by the side chains present at first and second position of IND31119 [6b]. The side
chain of Asn37 residue forms two hydrogen bonds with secondary amine present at
position 5 and carbonyl of amide present at position 3 of IND31119. The 7th
position of IND31119 forms water-mediated hydrogen bond with Asn92 residue
and there was another 11e96 residue which also interacts with structural water
molecule. All these structural water molecules are conserved in enzyme active site
[13b]. An in vitro study demonstrated that Geldanamycin exhibits inhibitory action
on parasitic Hsp90 (with ICsq of 20 nM) [16]. The 7-azaindole (i.e., IND3) and
several other its derivatives (i.e., IND31119 and IND311) possess in vitro and in
silico selective antimicrobial activity against PfHSP90. In 2018, Posfai et al.
reported in vitro inhibitory activity of indazol-4(5H)-one class of compounds i.e.
SNX-2112 (with K; 5.9 nM) and Harmine (with K; 27,000 nM) on PfHSP90 target
[17]. The molecular dynamics simulations performed on PfHsp90, human Hsp90,
and mutated PfHsp90 indicated that human Hsp90 and mutated Hsp90 have more
flexibility as compared to PfHsp90 [6b].
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Fig. 1 Structure of PfATP-dependent heat shock protein 90 inhibitors
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2.2 P. falciparum Phosphatidylinositol 4-kinase (PfPI4 K)

The phosphatidylinositol 4-kinase (PI4 K) enzyme catalyze the conversion of
phosphatidylinositol into two essential phospholipids, i.e., phosphatidylinositol
4,5-bisphosphate and phosphatidylinositol 3,4,5-triphosphate by phosphorylation at
one or more hydroxyl groups present in inositol moiety [18]. These phosphorylated
products regulate numerous biological events, including intracellular signaling,
vesicular transport, and cytoskeletal organization. Therefore, this biochemical
reaction is essential for mammals and for the parasite. The parasite has only this
enzyme to facilitate the phosphorylation of Phosphatidylinositol, but mammals
have four enzymes for this biochemical reaction [19]. Inhibition of PfPI4 K in
parasite cells lead to the deficiency of phospholipids in plasmodium leading to
disruption of plasma membrane around developing merozoites and finally causing
cell death. Also, lack of PI4 K in human erythrocytes ensure the unavailability of
phospholipids in the vicinity of the parasite cells [20].

Rajkhowa et al. in 2017 developed an acceptable homology model of the cat-
alytic domain of PfPI(4) KIIIB, consisting of 327 amino acids [19]. They selected
X-ray crystal structure of HsPhosphatidylinositol 4-kinase III B(PDB ID-4DOL) as a
structural template with 44% sequence identity. Chain A was considered (with
ligand PIK93 involved in antimalarial activity) for model development. The model
was validated with the help of Ramachandran plot (favoured—90.5%, allowed—
7.7%, and outlier—1.8%). The virtual screening analysis started with 178 com-
pounds selected from PubChem database. After hERG and toxicity screening, ten
compounds were selected for further molecular docking and molecular dynamics
analysis (e.g., CHEMBL3355638 and CHEMBL2062798, Fig. 2). These ten
compounds were docked into modeled PfPI(4) KIIIb enzyme. The most active
compound showed interaction with Lys66, Leu85, Tyrl124, Vall25, Thrl28,
Cys129, Ser130, Ser133, and Ile197 after docking. The molecular dynamics studies
after 40 ns simulations using Gromacs package-4.6.6 showed important hy-
drophobic and polar interactions with Ile40, Leud44, Asn126, Asp198 residues [19].

An in vivo study on animal model suggested that imidazopyrazine class, KDU691
compound (Fig. 2) active against several drug-resistant strains (ICsy 27-70 nM) with
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Fig. 2 Structure of compounds CHEMBL2062798, CHEMBL3355638, and KDU691
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good potency [20] and exert their antimalarial effect through inhibitory interaction
with the ATP-binding pocket of PfPI4 K [21]. However, these compounds failed to
provide prevention against parasite in human due to poor solubility and causes
serious hERG liability (Arrhythmia). The reason for toxicity might be catalytic
similarity between human and parasite enzyme as suggested by the homology
model designed by Rajkhowa et al. [19].

2.3 PENDH?2 (P. falciparum NADH-Ubiquinone
Oxidoreductase)

PANADH-ubiquinone oxidoreductase is an enzyme of respiratory chain, present on
the inner mitochondrial membrane. It is involved in the transfer of electrons from
NADH to subsequent CoQ (ubiquinone) for CoQ-H, production and is coupled
with translocation of proton or Na* across the membrane in mammals [22]. This
enzyme is also present in P. falciparum, but it does not pump protons across the
membrane; however, it still maintains the redox state of the cell. The human NDH?2
is inhibited by rotenone, but PANDH2 enzyme was found be insensitive to it.
A flavin reagent DPI (diphenyl iodonium chloride) inhibits the PANDH2 enzyme
which leads to the depolarization of mitochondrial membrane potential and finally
parasite cell death [23].

The PANDH2 enzyme exists in homodimer form comprising of four domains
(1) C-terminal domain (CTD) helps in dimerization, conserved in plasmodium
species; (2) two Rossmann fold domains, A and B, which bind to FAD and NADH
cofactors, respectively; (3) domain C which shares no homology with other
structures. Pidathala et al. in 2012 identified 2-bisaryl-3-methyl quinolone deriva-
tives as PNDH2 inhibitors through in silico high-throughput screening studies
[24]. In this series, 7-chloro-3-methyl-2-(4-(4-(trifluoromethoxy)benzyl)phenyl)
quinolin-4(1H)-one (CK-2-68, Fig. 3) was identified to be the most potent com-
pound with 16 nM ICs, value against PANDH2. However, due to poor solubility
issues, this structure was modified with fluorine substitution on the quinolone
ring to obtain 5-floro-3-methyl-2-(4-(4-(trifluoromethoxy)benzyl)phenyl)quinolin-4
(1H)-one (RYL-552, Fig. 3) [25]. It was found that RYL-552 binds as a

CK-2-68 RYL-552

Fig. 3 Structure of PANDH2 inhibitors
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non-competitive inhibitor at two different allosteric sites which were present close
to C-terminal domain, causing conformational changes in NADH binding region
that inhibits the binding of NADH to its pocket. These allosteric sites provide
potential selectivity with minimal side effects.

Yang et al. in 2017 also reported that a total of four molecules of RYL-552 bind
in the enzyme in homodimer state (PDB ID 5JWC). One molecule in each
monomer and two molecules at dimer interface with difference in their binding
poses. The first binding pose at the allosteric site between the two C-terminals of
the homodimer (dimer interface) showed that two hydrogen bonds were formed by
trifluoromethoxy group (with Tyr74 and Lys533), a hydrogen bond by carboxyl
group (with Asn92), a water-mediated hydrogen bond by 4-oxo-5-fluoro group of
quinolone with Gly87 and Lys523, and a hydrophobic interaction offered by bisaryl
part (with Leul74, Val91, Ile170, and 1le532) of RYL-552. The other binding pose
at the second allosteric pocket present in each monomer demonstrated that a
water-mediated hydrogen bond is formed by quinolone ring nitrogen with Glu218
and Arg529 residues, two hydrogen bonds by 4-oxo-fluoro group (with Lys501),
and two edge-to-face m-n stacking interaction by quinolone ring (with Trp500 and
Tyrd75 residue) [25]. Other compounds like HDQ (1-Hydroxy-2-dodecyl-4(1H)-
quinolone), Aurachins A-D [26], RYL-552 [25], 7-chloro-3-methyl-2-(4-(4-(tri-
fluoromethoxy) benzyl)phenyl) quinolin-4(1H)-one (CK-2-68) with IC5, 36 nM
[24], and quinolone NQO?2 (p-fluoro substituent has ICsy 9.6 nM) [27] were also
reported as inhibitors of PANDH?2.

2.4 P. falciparum Aspartate Carbamoyltransferase (PfACT)

Aspartate carbamoyltransferase is an essential enzyme for the de novo pyrimidine
biosynthesis in intra-erythrocytic stage, and it catalyzes the formation of
N-carbamoyl-L-aspartate from carbamoyl phosphate and L-aspartate (Fig. 5). The
malaria parasite cannot utilize salvage pathway for pyrimidine biosynthesis, as in
the case of human cells, makes it a potential drug target for antimalarial drug design
[28].

Banerjee et al. in 2011 developed a homology model of aspartate carbamoyl-
transferase using amino acid sequence of the P. falciparum 3D7 (ID:
XP_001350162.1 of NCBI database) as the target sequence and aspartate car-
bamoyltransferase of Pyrococcus abyssi (PDB ID: 1ML4, Resolution: 1.8 A) as
template structure, with 38% overall sequence identity. The modeled structure was
found to be stable during molecular dynamics studies performed using NAMD?2.5
software. The validation of modeled structure was carried out using PROCHECK,
WHATCHECK, WHATIF, VERIFY 3D, PROSA, ERRAT programs which sug-
gested high quality of the model. The Q-SiteFinder software was used to find the
possible active sites in the modeled protein. N-(phosphonacetyl)-L-aspartate
(PALA) was known to inhibit Escherichia coli aspartate transcarbamylase.
Therefore, PALA and its derivatives were selected for molecular docking in the
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predicted active site containing Serl07 using GOLD program. 3-(4-Hydroxy-
phenyl)-2-(2-phosphono-acetylamino)-propionic acid was found to be the most
suitable molecule docked in the predicted active site based on its good binding
affinity toward the enzyme [28].

Lunev et al. first reported the crystal structure of PfACT (or
PfAspartateTranscarbamoylase, PfATC) (PDB ID 5ILQ) in 2016 without any
bound ligand. In 2018, a comparative study was reported between the apo-form of
the enzyme, PfACT complexed with citric acid at the active site (PDB ID 5ILN)
and PfACT complexed with 2,3-naphthalenediol at the allosteric site (PDB ID
6FBA). The citrate-bound complex structure of the enzyme was found to be ana-
logues to the liganded R-state of the enzyme. It was observed that the active site is
highly conserved in this enzyme which might reduce the usefulness of this enzyme
as a target using SBDD approach. The recently reported crystal structure with
PDB ID 6FBA showed the presence of an allosteric site in which the enzyme is
present in the T-state which is very similar to the apo-protein. Most of the amino
acids in the allosteric site are non-conserved, thus making this site a potential target
for SBDD [29].

2.5 P. falciparum Thioredoxin Reductase (PfTrxR)

Thioredoxin reductase (TrxR) is a flavoenzyme (i.e., NADPH dependent) that
maintains the enhanced oxidative stress in the erythrocytic stage of the parasite. It
catalyzes the reduction of disulfide bridge of oxidized thioredoxin (Trx-S,) into the
thiol form, i.e., Trx-SH,. This enzyme system is present in the cytosol, para-
sitophorous vacuole, and endoplasmic reticulum of the parasite. The PfThioredoxin
(PfTrx1), a biological substrate for PfTrxR enzyme, is an important proton donor
for the vital proteins like ribonucleotide reductase and other sets of peroxiredoxins
[30]. P. falciparum lacks classical glutathione peroxidase and catalase enzymes
which are present in eukaryotes to manage oxidative stress. Therefore, this enzyme
plays an essential role for the survival of P. falciparum in the erythrocytic stages.
The disruption of the redox state leads to antimalarial activity [31].

It is a homodimer containing three redox active centers to balance the redox state
in P. falciparum (PfTrxR) [31]. These are: (1) FAD-binding domain (2) N-terminal
redox center near to the FAD-binding domain (Cys-88 and Cys-93), and
(3) C-terminal redox center located on the flexible and accessible arm of other
monomeric subunit (Cys-535 and Cys-540) which finally interacts with the thiore-
doxin substrate [30]. The homodimer is stabilized by Met105, Phel09, Ile108,
Trp118, Phel20, and Leul23 (aromatic and hydrophobic) residues present at the
interface. Metl05 and PhelQ9, involved in the bending of interface helices, are
conserved in the plasmodium species but not in the mammals. It is also reported that
the buried interface of PfTrxR enzyme is stabilized by more polar contacts than that
of the human enzyme [32]. The PfTrxR shows up to 40-42% sequence identity to
the HsTrxR and 77-80% sequence identity with other five species of the malaria
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parasite. The CVNVGC redox center at the N-terminal is conserved for all six
species of plasmodium and human isoenzymes. However, the GCGGGKC region at
the C-terminal is found to be preserved in all plasmodium isoforms but not in the
HsTrxR [33]. The parasite has an extended loop at C-terminal which provides
flexibility and good interaction with PfTrx1 substrate [30]. In the RCSB PDB, two
crystal structures of PfTrxR are available in complexation with Trx1 (PDB ID: 4J56,
4J57) and one crystal structure of PfTrxR in the apo-form (PDB ID: 4B1B) [30, 32].

In the PfTrxR, NADPH and FAD cofactors bind to their respective pockets in
each monomer followed by hydride transfer from NADPHto FAD and then sub-
sequently to N-terminal redox center (Cys88 and Cys93). This step is followed by
the subsequent attack of Cys88 (present at the N-terminal of one monomeric
subunit) at Cys540' (C-terminal of the neighboring monomeric subunit). This in
turn leads to nucleophilic attack of Cys540" residue on the disulfide bond of
thioredoxin leading to a mixed disulfide bond formation between Cys540’ of
PfTrxR and Cys30 of PfTrx1. Finally, the mixed bond is broken with the help of
Cys535" (PfTrxR) leading to the release of reduced substrate [30].

Boumis et al. in 2012 suggested the dimer interface cavity to be the site for
non-competitive inhibitors binding in the PfTrxR enzyme. In PfTrxR, a narrow
interface cavity is formed by Tyr101 and His104 residues which in case of HsTrxR are
much wider due to the presence of equivalent GIn72 and Leu75 residues [32]. It was
also observed that smaller and slightly more amphipathic molecules could
have selectivity toward parasite. The PfTrxR enzyme cavity walls have less negative
charge compared to the human isoforms which can be further exploited for selective
inhibitor design [34]. Munigunti et al. in 2013 studied the binding interactions
of five known inhibitors of PfTrxR enzyme (1,4-napthoquinone (1,4-NQ),
bis-(2,4-dinitrophenyl)sulfide (2,4-DNPS), 4-nitrobenzothiadiazole (4-NBT), 3-
dimethylaminopropiophenone (3-DAP), menadione (MD)) at dimer interface of
PfTrxR and HsTrxR using molecular docking (AutoDock Vina software). It was
observed that Tyrl01 residue forms m-n stacking interaction with all the inhibitors
while in HsTrxR due to the presence of GIn72 at the equivalent position shows a
different docking pose in order to avoid steric clashes. The other residues, i.e., Tyr1 16’
and Ile108, from both monomeric subunits (or only one subunit), form hydrophobic
interaction with the docked inhibitors [34]. Munigunti et al. in 2014 reported similar
residue interactions with curcuminoids at the dimer interface of PfTrxR using Auto
Dock software and suggested that the presence of methoxy group on curcumin
structure reduces the interaction with Tyrl01 residue [35]. The aculeatin-like ana-
logues were also reported as inhibitors of PfTrxR enzymes [36].

2.6 P. falciparum Histone Deacetylase (PfHDAC)

Histone deacetylase (HDAC) posttranslationally modifies the histone proteins by
removal of an acetyl group from the e-nitrogen at the lysine side chain (present
within the histone protein) and prevents the accessibility of DNA (wrapped around
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histones) for transcription factor [37]. Under normal circumstances in plasmodium
parasite, only a few genes are expressed for transcription while the rest remain silent
at a particular stage, and this phenomenon is known as stage-specific expression of
genes. The inhibition of HDAC enzyme increases the acetylation that results in the
loss of control over the gene expression which must be expressed in stage-specific
manner in the parasite and, finally, implode the transcription cascade of parasite
[37]. This enzyme is an attractive target for antimalarial drug therapy because,
unlike mammalian cells, HDACs are more limited and potentially less redundant
than plasmodium species [38].

The crystal structure of PAHDAC-1 is yet to be elucidated. Therefore, a ligand-
refined homology model of P/HDAC-1 complexed with a hydroxamate-based
inhibitor TrichostatinA (TSA) was generated, using human HDACS as template. It
was observed that the modeled PAHDAC-1 enzyme comprises of a single domain
with open o/ class topology. The structure consists of eight § sheets surrounded by
fourteen o helices and these secondary structures were linked by seven loops.
PHDAC-1 comprises of hydrophobic upper region (lined with His24, Pro25,
Thr96, Phel48, Phe203, Leu269, and Tyr301 residues) and a Zn** metal ion pre-
sent in its catalytic site. This metal ion forms penta-coordinated geometry forming
three bonds with the enzyme (side chain O(3) of Aspl174, Asp262, and the N(3) of
His176) and two bonds with ligand’s hydroxamate group (i.e., carboxyl and
hydroxyl oxygen) [39].

Mukherjee et al. in 2008 performed molecular docking and molecular dynamics
studies on the homology model and found that hydroxamate group is essential for
binding with PAHDAC enzyme. The carbonyl oxygen of hydroxamate group forms
hydrogen bond interactions with Tyr301, His138, and His139 residues. The TSA
showed hydrophobic interaction with His24, Pro25, Phel48, Phe203, Leu269, and
Tyr301 residues [39].

The development of compounds that are selective for parasitic HDACs over
mammalian HDAC:s is still in relative infancy. SB939 (Fig. 4) was found to be a
potent inhibitor of PAHDAC enzyme (with IC5y—100 to 200 nM) in in vitro and
in vivo studies, and its inhibitory effect was potentiated by aspartic protease inhi-
bitor Lopinavir [38b]. Other compounds like 2-ASA-9, WR301801, MS-275,
FR235222, LMK235 (and its derivatives) [40], Apicidin A [41], suberoylanilide-
hydroxamic acid (SAHA, Vorinostat®), and a sulfonylpyrrolehydroxamate

Trichostatin A 7 SB939

Fig. 4 Structures of PfHDAC-1 inhibitors
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(4SC-201, Resminostat) [39] were also found to be active against PAHDAC]1. These
compounds were found to be less selective for the PAHDACI and thus show off
target activity.

2.7 P. falciparum Glutathione S-Transferase (PfGST)

Glutathione S-transferase (GST) is a detoxifying enzyme which catalyzes the
conjugation of glutathione to electrophilic substrates to form conjugated products
that are easily excreted out of body [42]. In plasmodium species, this enzyme
relieves the oxidative stress during the intra-erythrocytic stage of the parasite [43].
Due to its abundance in the parasite cells and increased activity in chloroquine-
resistant cells, it makes a potential target for antimalarial drug therapy [44].

Wolf et al. in 2003 found that PAGST enzyme exists in dimer—tetramer transition
state. Liebau et al. in 2005 observed that it favors tetrameric inactive state in the
absence of reduce GST and other ligands. Liebau et al. in 2009 demonstrated that
dimer—tetramer transition state is only present in case of PfGST and absent for
HsGST. The active homodimer form is mainly assisted by hydrophobic interactions
in which Phe56 residue of one subunit is buried inside the hydrophobic pocket of
the other subunit formed by Trp131, Phel35, and Tyrl34 residues. A hydrogen
bond interaction between side chain of Arg77 and Asp97 residues, present at the
two different neighboring monomeric subunits, also play important role. In typical
p-class human GSTs, the active (G- and H-) sites are present deep in the protein
structure and are shielded by amino acids where as in case of PfGST, these two sites
(G- and H-sites) have more access to solvent. Furthermore, the two non-active
dimers (i.e., inactive forms of the dimer) are interconnected by the loop 113-119
with the help of mainly hydrophobic and a few hydrophilic interactions, leading to
the formation inactive tetramer state. These loop interactions block the active site of
the enzyme and make it inactive [45]. Perbandt et al. later found that whole loop
113-119 is not important for the formation of inactive tetramer state, but Asn112
and Lys117 residues of neighboring subunits are most essential [45]. Other
hydrogen bonds formed by Thr121 and Lys175 also aid to the tetramer formation. It
was identified by Perbandt et al. that the non-substrate binding pocket was occupied
by MES (2-(N-morpholino) ethanesulfonic acid) in its tetrameric form (PDB ID
47ZXG). The non-substrate binding pocket is outlined with Tyr25, Leu26, Leul96,
Pro197, and Asnl98 residues. These residues form a highly positively charged
environment which attracts negatively charged ethane sulfonic moiety of MES by
hydrogen bond formation with Asnl198 and hydrophobic interaction with other
residues of the cavity [45]. After mutation studies, Tyr9 was identified as an
essential residue for selective inhibition of PfGST [43]. The other inhibitors
reported for the target were S-hexylglutathione [43], Protoporphyrin IX, cibacron
blue, and menadione [46].
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3 P. falciparum DHODH

Dihydroorotate dehydrogenase (DHODH) is one of the most validated and druggable
targets. Miller et al. in 1968 first isolated L-dihydroorotate—ubiquinone reductase
complex (from the beef liver) and was determined to be a mitochondrial enzyme [47].
The enzyme was recognized as dihydroorotate dehydrogenase (DHODH) and was
further isolated from rat liver in 1976 by Chen et al. [48]. Its localization was
determined to be the outer surface of the inner mitochondrial membrane which allows
free diffusion of dihydroorotate (DHO) from cytosol into the mitochondria and
orotate from mitochondria to the cytosol for further conversion to uridine
monophosphate (UMP). Larsen et al. established in 1985 that the E. coli DHODH is a
flavoprotein which catalyzes the conversion of dihydroorotate (DHODH) to orotate
in the fourth and only redox reaction in de novo pyrimidine biosynthesis [49].
The DHODH enzymes can be classified into two different classes [50]:

Family T includes the cytosolic enzymes which utilize fumarate or NAD™ as the
terminal electron acceptor and deprotonation of alpha hydrogen occurred in the
presence of cystein.

Family II includes membrane-bound enzymes that transfer electrons to ubiquinone
(CoQ) and deprotonation occur in the presence of serine. Both human and plas-
modium contain family II mitochondrial enzymes. In the host cells, pyrimidine
biosynthesis occurs via salvage and de novo pathway, whereas in P. falciparum
pyrimidines are synthesized only via de novo pathway. Thus, lack of salvage
pathway in plasmodium makes it a vulnerable target [51].

McRobert and McConkey in 2002 reported the importance of DHODH enzyme
in P. falciparum by performing RNA interference assay [52]. In 2002, Baldwin et al.
conducted inhibitory studies of various known human DHODH inhibitors (Redoxal,
dichloroallyllawsone (DCL), three analogs of A77-1726, and brequinar analogs) on
malarial enzyme [53]. It was observed that the plasmodium enzyme showed 10°~10*
folds higher ICs, compared to the human enzyme. This study suggested that inhi-
bition of DHODH enzyme is species specific and can be further explored to design
P. falciparum selective DHODH inhibitors. Boa et al. in 2005 identified brequinar
derivatives as non-selective and weakly selective PADHODH inhibitors proving the
previous hypothesis and laying a base for further development of selective
PDHODH inhibitors [54]. Baldwin et al. identified phenyl benzamide/
naphthamides as selective PfDHODH inhibitors in nanomolar range through
high-throughput screening [55]. Heikkil4 et al. used de novo design technology to
identify six molecules as PADHODH inhibitors in micromolar range [56].

3.1 Functional Aspects of PEIDHODH

Pyrimidines are essential metabolites that are precursors for DNA and RNA
biosynthesis. Cells acquire pyrimidines either through de novo synthesis starting
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from ammonia (derived from L-Gln), bicarbonate, and L-asp, or by salvaging
preformed pyrimidine base. Plasmodium species lack pyrimidine salvage enzymes
and the de novo pathway provides the only source of pyrimidines for cell growth. In
contrast, human cells are able to utilize both pathways. Inhibition of de novo
pyrimidine synthesis in humans leads to immunosuppression and bone marrow
depression. Immunosuppression is desirable in rheumatoid arthritis and organ
transplant. However, immunosuppression and bone marrow depression during
malaria may lead to life threatening situations which necessitate selective inhibition
of parasitt DHODH to be of utmost importance [57]. Pyrimidine biosynthesis
requires six enzymes that are essential for the synthesis of UMP which is further
utilized in generation of UTP, CTP, dTMP, and other metabolites of these
nucleotides required by the cell. Enzymes involved are bifunctional glutamine
amidotransferase/carbamoyl phosphate synthetase (GAT/CPS), aspartate car-
bamoyltransferase (ACT), dihydroorotase (DHOtase), DHODH, orotate phospho-
ribosyltransferase (OPRT) and orotidine 5'-monophosphate decarboxylase
(OMPDC) (Fig. 5). The only redox step in the de novo synthesis of pyrimidines is
the oxidation of DHO to ORO catalyzed by DHODH [58]. Reaction involves both a
deprotonation and a hydride transfer converting DHO to ORO [59]. The reaction
involves removal of acidic proton located at o position to the carbonyl group by an
active base (Ser in family II enzymes) and the transfer of the hydrogen on C of
DHO directly to N of the flavin as a hydride resulting in reduction of FMN to
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Fig. 5 Schematic representation of pyrimidine biosynthetic pathway
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REDUCTION

OXIDATION

REDUCTION

CoQQ

Fig. 6 Schematic representation of “hip-hop” redox mechanism involving transfer of hydride
from C of DHO to N of FMN oxidizing dihydroorotate (DHO) to orotate (ORO) and reducing
FMN to FMN-H,. FMN-H, is reoxidised to FMN by co-substrate ubiquinone (CoQ) which itself
gets reduced to ubiquinol (CoQ-H,)

FMNH, (Fig. 6). FMNH, then gets reoxidised to FMN by ubiquinone (CoQ) which
itself gets reduced to ubiquinol (CoQ-H,). Inhibitors of DHODH affect the binding
of this co-substrate ubiquinone with FMNH, [60].

A Kkinetic isotopic study on E. coli and human DHODH identified the mechanism
of proton and hydride transfer with specific roles played by conserved amino acids.
Two mechanisms were proposed, i.e., concerted and sequential in the absence of
tunneling. It was observed that without tunneling, a concerted oxidation of DHO to
orotate is not compatible. However, two stepwise mechanisms are still possible. If
deprotonation precedes hydride transfer, then an enolate intermediate would form
that could be stabilized by two conserved asparagine residues. If hydride transfer
precedes deprotonation, ammonium intermediate would form that could hydrogen
bond with another conserved asparagine residue [59, 61].

3.2 Structural Details of PAEDHODH

P/DHODH belongs to the DHODH family 2 located on the outer side of the inner
mitochondrial membrane (mitochondrial intermembrane space) (Fig. 5) and is
embedded in the membrane by a single o-transmembrane helix that holds the
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Table 1 Crystal structures of PADHODH with various inhibitors, year of publication, resolution
and enzyme inhibitory acitivity (ICsp) in pM

Sr. No |PDB Hit structures Year |Resolution |PfICsg Hs 1Csq Refs.
ID A) (uM) (uM)
1 1TV5 j\:/,/x 2005 |2.40 190.1 0.26 [62]
HO™)
07 °NH
2 3I6R FXF 2009 |2.50 0.28 >100 [64]
3 3165 2009 | 2.00 0.047 >100 [64]
4 3168 O 2009 | 2.40 0.056 >100 [64]
NN\
H,;C \NJQN>
5 308A O 2010 |2.30 0.022 >30 [65]
el
v/ 0o usc)’
6 3SFK T r 2011 |2.90 A 0.038 >100 [66]
F
HN’
NN S
He S )QN>_(:3;3
7 4CQ8 Q\ 2014 |1.98 0.08 >30 [67]
B 1 Sy
v/ o * HJC)=V
8 4CQ9 | n(™" 2014 |2.72 35 3.8 [67]
Ny Nog
]
9 4CQA ﬁ“»‘ 2014 |2.82 13.5 >30 [67]
0
N
Cl
10 40RM i cr, 2014 |2.07 0.022 1.6 [68]
HN F
z N‘N>_
NH—CF,
H;C S *\N ’
11 4RX0 SFs 2015 |2.25 0.033 >100 [69]
T
2NN
H,C \NJ\\ N>_C‘?H3

(continued)
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Table 1 (continued)
Sr. No |PDB Hit structures Year |Resolution | PfICsq Hs 1Cs Refs.
D A) (M) (M)
12 5BOO S¥s 2015 |2.80 0.033 >100 [69]
A
/)N; CF,
N en,
13 SDEL 2015 |2.20 0.016 >100 [70]
ij o cu,
14 5FI8 2016 |2.32 0.0046 | >100 [71]
HN'
f PO
15 STBO Lr 2016 |2.15 0.053 >100 [72]
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Fig. 7 Secondary structure of PADHODH. Cylinders represent o-helices and arrows represent
B-sheets. Green o-helices form the N-terminal and red are part of C-terminal. Yellow color
represents parallel B-sheets and cyan color represents antiparallel -sheets. Light magenta color
shows small helices with 3-5 amino acids
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position of the enzyme in the membrane [62]. PDHODH has a total of 569 amino
acids [50a] and till now 15 crystal structures are reported for this enzyme. Table 1
lists the reported crystal structure details from Protein Data Bank (PDB). All the
crystal structures reported so far consist of full details of C-terminal domain but
only the truncated details of N-terminal domain (amino acids 158-569). Amino
acids 143-163 are part of the transmembrane helix and the remaining N-terminal
part is located in the mitochondrial matrix for which no structural details are
available (uniport ID Q08210). The secondary structure of the truncated enzyme
(Fig. 7) (generated using Jpred 4 software using PDB ID 5FI8) consists of 13
sheets and 16 o helices [63]. Details of secondary structure for amino acids 1-142
are not provided in the literature so far.

The most important structural feature of PADHODH is the presence of o/p-barrel
core domain which is formed due to the almost parallel arrangement of eight
B-sheets (Fig. 8). This B-barrel is surrounded by seven a-helices which provide
protective layer to the core. The 3D structure is also characterized by the presence
of a few short helices interspersed across the protein. The barrel is capped by a pair
of antiparallel -strands on one side and three B-strands on the other side [62].

The catalytic site is present near the cap with three -strands. The cofactor FMN
and substrate DHO bind in this region before undergoing redox catalytic reaction.
There is a very unique tunnel in the 3D structure of DHODH. This is the tunnel
through which a long-chain co-substrate with the quinone head group and six to ten
repeating isoprene units (ubiquinone) travel through and reach the co-substrate

ab

@y O

Fig. 8 3D structure of PADHODH showing central barrel formed by parallel -sheets (in yellow)
wrapped around with a-helices (in red, o1-a9). Both ends of the barrel are covered by anti-parallel
f-sheets forming the lid (in cyan). The turns are represented in light magenta. The reaction site
contains FMN as co-factor (in dark green) and dihydroorotate (in magenta) as substrate. This site is
connected to the ubiquinone tunnel through two a-helices (in green, o10-0.11) of the N-terminal
and contains the inhibitor (DSM422) in yellow (PDB ID 5FI8) [71]
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Fig. 9 Surface view of
CoQ-binding tunnel (gray)
with the inhibitor (PDB ID
SFI8)

binding site. The prosthetic group of FMN in the middle separates the
dihydroorotate-binding site (substrate binding site) at the mouth of the barrel from
the CoQ-binding tunnel (co-substrate binding site) at the outer surface of the barrel.
The aromatic ring of DHO is almost parallel to FMN and is 3.2-3.8 A from its
siface. DHO’s other face is completely covered by the Asn212-Gly226 loop [62].
The tunnel through which ubiquinone enters is formed by two a-helices (a10-a11)
of the N-terminal domain (Fig. 8). These two a-helices of the N-terminal guide the
entry of the CoQ co-substrate into the CoQ-binding tunnel to reoxidise FMNH, to
FMN. CoQ is directed through the inner mitochondrial membrane with the help of
transmembrane o-helix which is embedded into the membrane with a tilt of 8§ & 7°.

The X-ray crystal structure analysis of the PADHODH enzyme (PDB ID 1TVS5)
proposed the CoQ-binding tunnel to be the site of inhibitor binding and co-substrate
binding (Fig. 9). In 2008, Malmquist et al. performed site-directed alanine muta-
genesis studies of seven residues (His185, Phel88, Phe227, Arg265, 11e272, Tyr528,
and Leu531) in the A77-1726 binding site. It was observed that the CoQ-binding site
and species-selective inhibitor site do not overlap. It was suggested that the inhibitor
acts by blocking the electron path between the FMN and CoQ or by stabilizing the
enzyme conformation that excludes the ubiquinone-binding site [73].

3.3 Comparison with DHODH of Other Species

A total of 162 crystal structures of dihydroorotate dehydrogenase from different
species are available. These crystal structures and sequence alignment studies
clearly established that the enzyme forms two families (Table 2) [50b, 74].
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Table 2 Classification and sub-classification of two families of DHODH enzyme and their

respective properties [S0b, 74]

S. Bhagat et al.

PROPERTIES FAMILY 1 FAMILY 2
Location Cytosol Outer Membrane of inner mitochondria
Final electron + P
Fumarate or NAD Ubiquinone (CoQ)
acceptor
Base Cystein Serine
Organisms Mostly prokaryotes Most eukaryotes
Differences Core domain forms the entire protein
Properties 1A 1B 1S . . i X
In addition to core domain, N-terminal domain
Structure Homodimer | Heterodimer Heteromeric {formspubiquinonelbindinsjuinne YIVoloy
helices of N-terminal are markers for family 2.
NAD- This is preceded by a single transmembrane
Base Cystein dependent Serine helix which anchors protein onto the inner
mitochondrial membrane and a putative
An iron-sulfur | CoQ and mitochondrial signaling sequence.
Electron
Fumarate cluster and molecular
receptor
FAD oxygen
Commonality o/B-barrel core domain containing flavin prosthetic group that forms the active site

Inhibition of PADHODH can be considered by either blocking the DHO (sub-
strate)-binding site or CoQ (co-substrate)-binding site. In most of the species, the
DHO-binding site is conserved which can lead to selectivity issues. High variability
is observed in ubiquinone-binding site which renders it to be the preferential site for
species-selective  DHODH inhibition. Selectivity against HsDHODH and
P/DHODH is the major requirement for designing antimalarial leads.

The CoQ-binding tunnel is divided into three regions, i.e., mouth, waist, and end
of the tunnel. Structural and chemical composition differences in these regions lead
to the species-selective inhibition. The mouth of the HsDHODH is broader com-
pared to P/DHODH due to a slight kink provided by Leuy42. This leads to an
average r.m.s backbone displacement of 2.2 A between the human and P/DHODH
protein domain. Also, substitution of PhepA71 and Metps536 for Leuy42 and
Proy364, respectively, brings the N-terminal of the first helix closer to the
C-terminal of the second helix which is responsible for the narrow mouth of the
tunnel in PADHODH. End of the tunnel in case of P/ADHODH is comparatively
smaller than the HsDHODH which is due to the replacement of Valg,134 and
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Valy143 with larger size hydrophobic residues, i.e., llep263 and Ilep272,
respectively. This results in the ineffectiveness of the larger molecules such as
brequinar and atovaquone to bind in PfDHODH. Hurt et al. in 2005 reported the
role of non-conserved residues in modifying the interactions of the inhibitor
(A77-1726) with the conserved amino acids. The replacement of Mety43 and
Alag,59 for Leupd72 and Phep188, respectively, leads to alteration in the H-bond
pattern of the inhibitor with the conserved residues (Hisp85, ArgpR265, and
Tyrp528) at the end of the tunnel. Also, the replacement of Tyry,147 for CyspR276
leads to conformational changes in Hisp185 resulting in changed interaction pattern
of the inhibitor for the two enzymes [62]. In summary, the non-conserved residues
present in the inhibitor binding site of the P/DHODH structure are Phep71
(Leuy42), MetpS36 (Proy364), Leupd72 (Mety43), Phep88 (Alag,59),
Leupd76 (Glngd7), llep263 (Valy,134), llep272 (Valgy134) [62, 75].

3.4 Inhibition of DHODH

L-DHO was observed to be the specific substrate of DHODH with a K, value of
5.2 &+ 0.6 uM. D-DHO is not a substrate but inhibits the enzyme competitively
with K; of 1.4 mM concentration [48]. For the oxidation from DHO to orotate,
L-DHO diffuses passively from the cytosol to the intermembrane space of the
mitochondria where it binds tightly to the enzyme due to low K,, value so that
enzyme shows maximum efficiency even at low concentrations of DHO. It was
observed that conversion of DHO to orotate is not the rate-limiting step, so
substrate-competitive inhibition will not be effective. This leaves the researchers
with two possibilities for inhibition of the enzyme, i.e., either by increasing the
intracellular accumulation of orotate or a lack of oxygen/its equivalent (inhibition of
electron receptor). However, intracellular accumulation of orotate inhibits dihy-
droorotase (enzyme catalyzing the formation of DHO from carbamylaspartate), thus
controlling the intracellular concentration of DHODH. Thus, the main center for
enzyme inhibition is obstructing the electron receptors [48].

Copeland et al. studied the role of N-terminal in enzyme inhibition in human
DHODH. It was observed that the essential catalytic region and site of inhibition are
located within 40 kDa area of truncated enzyme and the remaining 10 kDa of the
truncated N-terminal portion of the protein does not significantly disturb the cat-
alytic action or inhibitor binding ability of the enzyme [76]. However, it was later
observed that the truncated enzyme only retains the activity under in vitro condi-
tions and not under in vivo conditions [77]. This may be due to the removal of
signaling peptide and transmembrane helix which are responsible for cellular
localization and directing CoQ into the ubiquinone-binding tunnel.
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Fig. 10 Different classes of PADHODH inhibitors

3.5 Reported Classes of Compounds for PA DHODH
Inhibition

There are nine chemical classes of PADHODH inhibitors known in the literature
(Fig. 10). Different classes of PfDHODH reported in the literature are triazolopy-
rimidine (I) [78], diethyl 2-((arylamino)methylene)malonate (II) [79], benzamide/
naphthamide derivatives of anthranilic acid (III) [56], N-alkyl-5-benzimidazole
thiophene-2-carboxamide (IV) [65, 80], benzamide (V) [55], N-substituted salicy-
lamides (VI) [81], thiazole (VII) [82],7-arylaminopyrazolo[1,5-a]pyrimidines
(VII) [83], and dihydrothiophenone (IX) [84]. DSM265 [69] from triazolopy-
rimidine class is in clinical development phase, and two analogs of Genz-667348
(N-alkyl-5-benzimidazole thiophene-2-carboxamide derivatives) [80b] are under-
going pilot toxicity testing to determine their suitability as clinical development
candidates.

3.6 Structure-Based Drug Design of PEDHODH inhibitors

All the early efforts to the identified PADHODH inhibitors are based on the known
HsDHODH inhibitors. First effort was initiated by Boa et al. (in 2005), in which
various analogues of Brequinar (Fig. 11 XII) (HsDHODH inhibitor; immunosup-
pressive agent) were designed using analog-based methods [54]. These
quinolone-4-carboxylic acid derivatives showed poor to moderate selectivity and
activity in medium micromolar range. This study was followed by report of
high-throughput screening studies on P/DHODH inhibitors by Baldwin et al.
(2005) [55]. The chemical classes included halogenated phenyl benzamide/
naphthamides and napthyl or quinolinyl substituted urea-based compounds.
Inhibitor binding site was confirmed by direct site mutagenesis (His185Ala and
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Fig. 11 Structures of HsDHODH inhibitors; Leflunomide (X), Teriflunomide (XI), and Brequinar
(XII)

Arg265Ala) which confirmed teriflunomide (Fig. 11XI) binding pocket to be the
current binding site. Benzamide derivatives were found to be more potent in
P/DHODH compared to HsDHODH (ICs, value range 50-520 nM) and selective
(70-12, 500 fold selectivity toward PADHODH and against HsDHODH). In ben-
zamide derivatives, 2-nitro-3-methyl benzamide-based compounds showed high
preference for the parasite enzyme. However, these molecules showed weak activity
in cell-based assays indicating low absorption through the cells. In 2005, Hurt et al.
reported the X-ray crystal structure of PADHODH with teriflunomide [62]. This
provided opportunity for the SBDD approach for designing of various PADHODH
inhibitors based on the detailed knowledge about the active site in which the inhi-
bitors bind (the 3D structure of HsDHODH is known since 2000) [60].

3.6.1 Benzamide/Naphthamide Derivatives of Anthranilic Acid

Anthranilic acid derivatives were designed using de novo molecular design pro-
gram SPROUT [56]. De novo drug design is a part of structure-based drug design
methods in which molecular fragments and atoms are made to interact with the
binding pocket of the target enzyme and subsequently assembled in a stepwise
manner based on the interactions on these fragments. This finally results in a
template with novel chemotype and expanding the chemical library for A given
target. The tractable synthetic route is also considered while preparing an in silico
library of high-quality structures [85]. Sprout de novo design tool uses different
modules to achieve these functions which particularly include (a) identification of
the binding pocket; (b) recognizing the hydrophobic regions, probable polar regions
and metal bonding possibilities; (c¢) docking of various functional groups, frag-
ments, and atoms into the binding pocket; (d) joining all the fragments in the best
possible way by satisfying the steric constrains; (e) finally, scoring the fragments
and sorting out the templates based on their binding affinity, complexity, synthetic
feasibility, and substructure search [86].

For this study, Heikkild et al. (2006) [56] studied the reported X-ray crystal
structures of teriflunomide (A77-1726) with HsDHODH (PDB ID 1D3H) [60] and
PDHODH (PDB ID 1TV5) [62]. It was observed that the inhibitor binding tunnel
in the HsDHODH is considerably flattened due to the methyl side chain protrusion
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Fig. 12 Two observed
conformers of the designed
inhibitor template (Fig. 10,
III). Methyl substitution at
the amide nitrogen causes
conformational restrictions

(b)

of the Ala59 at the position where the phenyl ring of the teriflunomide binds.
Similar position in PADHODH cavity is comparatively less congested (Ala59 is
replaced by Phe188) and seems to accommodate the inhibitors which might provide
a cylindrical geometry. Considering this structural feature, six molecules which are
amides of anthranilic acid were identified as potential inhibitors. The two major
conformations of designed molecules were hypothesized to play an important role
in selective inhibition of PADHODH (Fig. 12). The non-planar arrangement of the
two phenyl rings (Fig. 12b) was considered to favor the PHDODH binding,
whereas the planar phenyl rings (Fig. 12a) were more suitable for HsDHODH
binding. The conformer B (Fig. 12) was predicted to be more suitable for
P/DHODH inhibition and it was restricted by N-methyl substitution. Enzyme
inhibitory assay showed that the N-methyl substituted biphenyl (Pf/DHODHICs,
42.6 uM) and bromonaphthylbenzamide derivatives (PfDHODHICs, 93.4 uM)
were selective against PADHODH inhibition, whereas N-unsubstituted compounds
were non-selective and more active against HsDHODH inhibition.

3.6.2 Diethyl 2-((Arylamino)Methylene) Malonate

Heikkila et al. (2007) proposed the design of multicyclic aromatic rings which are
malonate and cyanoacrylate derivatives [79]. Ten compounds with mono-, bi, and

Fig. 13 Structure of ( )
compounds showing good =™ o \\0 0
inhibitory activity against o -/ “\ﬂ
PfDHODH with selectivity P e N2 =y
against HsSDHODH N 0
.
(XIID) (XIV)
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tricyclic heteroaromatic ring systems were synthesized and tested against
PDHODH and HsDHODH. It was observed that tricyclic derivatives, i.e.,
diethyl-2-((dibenzo[b,d]thiophen-2-ylamino)methylene)malonate(Fig. 13, XIIT)
and ethyl-2-cyano-3-((9-ethyl-9H-carbazol-3-yl)amino)acrylate (Fig. 13, XIV),
show the most promising results with PADHODHICs, in lower micromolar range
(0.16 and 0.44 uM, respectively) and relatively high selectivity toward PADHODH
(182- and 1208-fold selectivity, respectively, against HsDHODH). Heteroaromatic
bicyclic compounds (indazole and benzimidazole derivatives), phenyl derivatives,
and m-biphenyl derivatives have PADHODHIC 5, values in higher micromolar range
and low selectivity (1-10 folds). The p-biphenyl derivatives were found to be
inactive in both PfDHODH and HsDHODH. The molecular docking results of the
tricyclic compounds (in the crystal structure with PDB ID 1TVS5) demonstrated the
importance of planar aromatic hydrophobic groups for m-stacking interaction with
Phel88 (the selectivity is due to the presence of Ala59 in HsDHODH in place of
Phel88 in PADHODH). The non-planar biphenyl rings are not accommodated into
the hydrophobic site, and hence, biphenyl derivatives are not suitable. The polar
groups of the active compounds showed hydrogen bonding interactions with
His185, Arg265, and Tyr528 amino acids at the end of the tunnel [79].

3.6.3 Triazolopyrimidine

Phillips et al. (2008) first reported triazolopyrimidine derivative obtained through
high-throughput screening studies on PADHODH [78]. A total of 220,000 molecules
were screened through colorometric enzyme assay from which DSM1 (Fig. 14b)
was identified (PfDHODHIC5, value of 0.047 %+ 0.022 uM). This molecule showed
an ECs, value of 0.079 & 0.048 puM and 0.14 £ 0.05 pM in whole-cell assay
against non-resistant strain (3D7) and multidrug-resistant strain (Dd2), respectively.
The hit also showed >5000-fold selectivity against HsDHODH.

It was observed that primary amine is essential for the activity. Methyl group
substitution is suitable for R and R; position (Fig. 14a). Naphthyl group at R;
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Fig. 14 a General structure of triazolopyrimidine class of compounds. b Structure of DSM1,
DSM2, and DSM74
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(Fig. 14a) position shows optimal activity and introduction of heteroatom in the
naphthyl ring leads to decrease in enzymatic activity. A smaller aromatic group
other than naphthyl and anthracene moiety leads to decrease in activity. Even
though DSM1 showed good in vitro and whole-cell activity, it was not active
in vivo against P. berghei. It was further observed that the compound showed
reduced plasma concentration on repeated exposure [78, 87]. In 2009, Gujjar et al.
prepared a series of forty new compounds with different substituted phenyl moieties
at R position [87]. Para substitution was found to give active compound compared
to the unsubstituted and o-/m-substituted analogues and large electron-withdrawing
hydrophobic substituents were found to be preferred in the order of
CF; > Br > OCF; > CH; > NO, > F > Cl. DSM74 was found to be the best
choice among the prepared series with PADHODH ICs, 0.28 4 0.02 uM (Pf3D7
cells ECsyp 0.34 £ 0.04 uM). The compound DSM74 was equally potent in
P. falciparum and P. berghei and showed good plasma exposure in mice in vivo
studies. This hit was also more stable in human microsomes (in vitro). This study
established the confidence that this class of compounds can be active in in vivo
studies and there is a scope for further improvement of its metabolic profile.
However, DSM74 showed activity in mid-nanomolar range leaving a wide berth for
further improvement [87].

In 2009, Deng et al. reported the crystal structures of lead PADHODH inhibitors
(DSM1, DSM2, DSM74) in the inhibitor binding site of PADHODH (PDB ID 3165,
3168, 3I6R, entry 2-4, Table 1) [64]. The triazolopyrimidine ring in all three
inhibitors binds to the polar region at the end of the inhibitor binding tunnel similar
to the teriflunomide binding in crystal structure 1TV5. The amino acids involved
are Hisl185 forming hydrogen bond with N; (Fig. 14a) and Arg265 forming
hydrogen bond with Ns. In case of DSM2 and DSM74, the triazolopyrimidine ring
tilts slightly inside the polar region with the slight reorientation of amino acid
Leul76. Tyr528 show water-mediated hydrogen bond with N5 of the inhibitor in all
three crystal structures. The orientation of the inhibitor in the cavity is such that Cs
position lies closest to the FMN (6 A distance) and there is a small channel which
can be further exploited for structure-based drug design. The hydrophobic pocket in
these three crystal structures is different from that of 1TVS5. The amino acid residues
of the hydrophobic pocket comprises of 1le237, Leul89, Leul97, Met536, Phe227,
and Phe188. The large aromatic ring of DSM2 is accommodated by small rotational
changes of amino acid residues Leu197 and Met536, which results in the expansion
of the hydrophobic cavity. The smaller phenyl group of DSM74 does not fill the
hydrophobic cavity completely and this might be the reason for its 10-fold less
activity than that of DSM1 and DSM2. There is an extended aromatic stacking
network from FMN to Tyr528 carried forward toward the hydrophobic pocket
through Phe227 which forms edge-to-face m-m interaction with the inhibitor
naphthyl (DSM1)/phenyl (DSM74) ring followed by n-m interaction with Phel88.
The mutagenesis studies of the inhibitor binding pocket suggested that His185 and
Arg265 mutation to Ala raises the IC5y by 80—90-folds. Other mutations have less
effect on the activity with a raise of 5- to 30-fold in ICsq value. Also, a very
interesting observation was noted during the crystal structure of the inhibitor. It was
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observed that the N;—C; (Fig. 14a) bond length of the inhibitor was between single
and double bond (1.313 A in DSM1) and partial positive charge was observed at
N, indicated by the presence of chloride ion adjacent to the N; in the crystal
structure. It was suggested that the triazolopyrimidine undergoes electron delocal-
ization between N; and Ns, giving a low-range positive dipole at the N; center
which enhances its interaction with His185 and N5 acquires a slight negative dipole
which allows it to form an ion pair with Arg265 [64]. This delocalization of charges
might be the reason for inactivity of compounds with O and S as bridging atoms.
Further modifications at the m- and p-positions led to the identification of DSM161
(Fig. 14a; R = CHs, R{/Ry/R4 =H, R; =4-SFs-Ph) and DSM190 (Fig. 14a;
R = CH3, R]/RQ/R4 =H, R3 = 3,5-le-4-CF3-Ph) with PfDHODH ICSO to be 0.13
and 0.19 uM, respectively. These compounds showed better plasma exposure and
improved efficacy in mouse model [88].

This activity was further improved by Coteron et al. (2011) with the design of
DSM265 (Fig. 14a; R = CH;, Ry/R; = H, R3 = 4-SFs-Ph, R4 = CF,CHj3;) which
was found to be active against both sensitive and resistant strains of P. falciparum
[66]. As discussed above [64], the crystal structure of PfDHODH with tria-
zolopyrimidines showed a narrow channel existing between the FMN and inhibitor.
In order to improve the pharmacokinetics along with the activity, this information
was utilized and modifications were done at the R4 position. Small hydrophobic
electron-withdrawing groups were found to fit in the narrow space, out of which
CF,CHj; was found to be most suitable. It showed potency similar to chloroquine in
humanized SCID mouse Pfmodel. The compound also showed excellent oral
bioavailability, long half-life, and low clearance in humanized SCID mouse
Pfmodel. DSM265 was found to possess excellent in vivo efficacy with once a day
dose in mice. Further extended studies gave very promising results in order to
consider DSM265 as a drug candidate [69]. The Pf and Pb ICs, were found to be
0.033 and 2.5 uM, respectively, with the Pf 3D7 cells EC5q to be 0.046 uM. It
showed a high selectivity, >100 uM, against HsDHODH. The compound was
analyzed to act on both liver and blood stage of the parasite and active against
isolated resistant strains. 200-400 mg dose for eight days is well tolerated in
repeated dose with cardiovascular safety in mice and dogs. DSM265 thus shows an
excellent safety profile, blood-liver stage activity and a predicted long half-life in
humans [69]. The crystal structure (PDB ID 4RXO0, entry 11, Table 1) showed that
the —CF,CHj; group shows van der Waals interactions with amino acid residues
1le263, 1le272, the hydrophobic potion of Arg265 side chain and Tyr528. Also, the
electron-withdrawing effect of fluorine reduces the electron density on triazole ring
nitrogens, which may be responsible for increased potency. Recently, Kokkonda
et al. proposed tetrahydro-2-naphthyl and 2-indanyl substituted triazolopyrimidines
with improved potency and selectivity over DSM265 [71]. However, these com-
pounds have high metabolic clearance and are proposed to be tolerated only in
multi-dose regime.

In 2012, Bedingfield et al. proposed selectivity factors responsible which can be
exploited to design HsDHODH and PfDHODH selective triazolopyrimidine class
of inhibitors [75]. It was observed that Hisz56 and Hisp/185 play important role in
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His,185

Alay,59
Phe,188

Fig. 15 Overlapped N-terminal of PfDHODH (green) and HsDHODH (magenta) showing
important amino acids residues important for selectivity

selectivity. The amino acid residue Tyry,147 form direct or indirect hydrogen bond
with Hisy,56 which moves the & nitrogen of Hisy56 away from the inhibitor
binding site (Fig. 15). In case of P/DHODH, Tyry147 is replaced by CispR276
which cannot form hydrogen bond with Hisp85, thus directing the & nitrogen
toward the inhibitor binding site forming a direct hydrogen bond with the inhibitor.

3.6.4 N-Alkyl-5-(1H-Benzimidazol-1-yl)Thiophene-2-Carboxamide

Compounds belonging to this class were designed based on the high-throughput
screening studies from Genzyme library, by Patel et al. [80a]. In this study, 208,000
compounds were screened for PADHODH inhibitory activity. Thirty-eight com-
pounds from this library were identified for showing P/DHODH inhibition in

H
N:
LI M7 u
3N7 N S’ )\ [ A\ N\q
= N / | H o N7 N S
S N\/\ [ ——— 3 4 7 _—— o
(] 5 6 NC
(XV) O (XVI) (XVII)
F3
PfDHODH ICs, 0.042 pM PfDHODH ICj 0.022 pM PfDHODH ICj, 0.050 pM
Pf3D7 ICs 0.49 pM Pf3D7ICs 0.007 pM Pf3D7 ICs; 0.008 pM
PfDd2 ICs 0.48 pM PfDd2 ICs, 0.010 pM PfDd2 ICs, 0.010 pM
HsDHODH ICs, >30 uM HsDHODH ICsy >30 uM
Hum Micr Clint 11 ml/min/kg Hum Micr Clint <5 ml/min/kg
ADME liabilities Good ADME profile

Fig. 16 Structural modification of thiophene derivatives, toward optimization of P/DHODH
activity using SBDD approach
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sub-micromolar range out of which thirty-three were picked based on their selec-
tivity against human DHODH. The selected molecules were further tested against
3D7 strain of P. falciparum from which five molecules showed activity in
sub-micromolar range. The selected molecules were then tested against multidrug-
resistant strains of P. falciparum, i.e., HB3 and Dd2. 5-(2-methyl-1H-indol-1-yl)-N-
propylthiophene-2-carboxamide exhibited the most promising ICsq value (42 nM)
against P/DHODH (Fig. 16, XV).

Molecular docking results revealed that the inhibitor may bind to the same site as
teriflunomide in X-ray crystal structure with PDB 1TV5. Additional modifications
of the indole ring system with piperidine, piperazine, pyrazol, benzimidazole, and
2-methyl benzimidazole highlighted that multi-ring substitutions are important for
activity. This might be due to the better interactions shown by multiple ring sub-
stitutions in the hydrophobic region of the inhibitor binding site. Replacement of
indole moiety with benzimidazole moiety retained the PfDHODH inhibitory
activity in addition to which physiochemical properties were considerably improved
[65]. Modifications in the amide region lead to the conclusion that secondary amide
is essential for the activity, whereas primary and tertiary amides are inactive.
Cyclopropyl group was found to be the best optimized group at this position as it
occupies the hydrophobic pocket which was later found out to be different from that
occupied by triazolopyrimidine class of compounds [80b]. Second position of the
benzimidazole moiety was also optimized with various alkyl (ethyl, n-propyl) and
polar (hydroxyl, dimethyl amino) substituents out of which simple methyl substi-
tution was found to be the only suitable one and comparable to the unsubstituted
derivative. Methyl substitution at this position also improves the in vitro hepatic
metabolic stability in human microsomes. Replacement of the thiophene ring with
various aromatic substituents (such as 2,5-substituted N-methyl pyrrole, pyrrole,
thiazole, furan, oxazole, and m-/p-substituted phenyl) resulted in considerable
decrease in the potency. Also, substitution at 2,5-position on the thiophene ring is
essential and there is a loss of activity with substitution at 3,4-position (Fig. 16).

Further modifications were focused on the benzimidazole moiety at 4th to 7th
position (Fig. 16, XVI). Simple methyl substitution at 4th, 5th, and 6th position
resulted in a twofold increase in activity (Pf ICsy 39-56 nM) compared to the
corresponding unsubstituted molecule (Pf ICso 80 nM). Substitution at the 7th
position causes an eightfold reduction in activity (Pf ICsy 609 nM). This can be
interpreted to be due to the steric hindrance in the cavity of the enzyme caused by
substitution at the 7th position (Fig. 16). Hydrophobic electron-withdrawing group
(OCF; and CF3) at the 5th position is more favorable, with 2-3-fold increase
in activity (Pf ICsq 22-28 nM, respectively) compared to the 6th position substi-
tution (Pf ICsy 52-98 nM, respectively). The 5-OCF;substituted derivative
(N-cyclopropyl-5-(2-methyl-5-(trifluoromethoxy)- 1H-benzimidazole- 1-yl)thiophene-
2-carboxamide, Genz-667348; Fig. 16, XVI) was further studied in the acute
P. berg