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8Exercise in Pulmonary Vascular Diseases
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Abstract
Pulmonary arterial hypertension and chronic thromboembolic pulmonary hyperten-
sion are the most common diseases of pulmonary vasculature. The physiological 
derangements of pulmonary hypertension result in characteristic abnormalities 
observed during dynamic exercise and often lead to dyspnoea and exercise intoler-
ance. Impaired cardiac function results in reduced aerobic capacity, low anaerobic 
threshold and reduced value of the relationship between oxygen uptake and work 
rate (ΔV′O2/ΔWR). Both high physiologic dead space and chemosensitivity con-
tribute to elevated ratio of minute ventilation to CO2 output (V′E/V′CO2) during 
exercise testing. Consequently, resting hypocapnia with low end-tidal PCO2 
throughout exercise is typically observed and is related to the severity of disease. 
Exertional hypoxaemia is also a variable but frequent finding during exercise, which 
can be related to ventilation-perfusion heterogeneity, low mixed venous O2 content 
from impaired cardiac output and right-to-left shunting through a patent foramen 
ovale. Even in the absence of significant resting airflow obstruction, dynamic hyper-
inflation can occur in pulmonary vascular diseases, which contributes to exertional 
dyspnoea and exercise intolerance. Peripheral muscle dysfunction is another com-
mon component of exercise pathophysiology in these conditions.
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8.1	 �Introduction

Pulmonary hypertension is defined as a resting mean pulmonary arterial pressure 
(mPAP) ≥25 mmHg, which may result from primary diseases of the pulmonary 
vasculature, left heart disease, lung disease and systemic diseases [1]. Pulmonary 
arterial hypertension (PAH) and chronic thromboembolic pulmonary hypertension 
(CTEPH) are primary diseases of the pulmonary vasculature caused by obstruction, 
inflammation and remodelling of the pulmonary arteries and arterioles, endothelial 
dysfunction, vasoconstriction and thrombosis [2]. PAH may be idiopathic or caused 
by underlying connective tissue diseases, congenital heart disease, genetic muta-
tions, drugs and toxins, portal hypertension or infection with human immunodefi-
ciency virus or schistosomiasis [1]. CTEPH is a rare complication of pulmonary 
thromboembolism in which there is persistent obstruction of large- and medium-
sized pulmonary arteries with remodelling of distal small vessels and progressive 
pulmonary hypertension [3, 4]. Over time, patients with pulmonary vascular dis-
eases develop progressive increases in mPAP and pulmonary vascular resistance, 
which ultimately leads to right heart failure and death.

Cardiopulmonary exercise testing (CPET) is very sensitive in detecting possible 
impairments in a patient with early pulmonary vascular disease. Beside revealing 
common and non-specific symptoms like dyspnoea and exercise intolerance, CPET 
can highlight abnormal exercise response patterns suggestive of pulmonary vascular 
disease in patients with undifferentiated dyspnoea [5]. In addition to functional 
assessment, the CPET is helpful for the evaluation of responses to treatment and 
estimate prognosis [6].

This chapter will focus primarily on the dynamic exercise pathophysiology and 
patterns of exercise responses during CPET in patients with pulmonary hyperten-
sion and increased pulmonary vascular resistance, without significant left heart dis-
ease (Group 2 pulmonary hypertension) or a significant obstructive or restrictive 
ventilatory defect (Group 3 pulmonary hypertension). The features and impact of 
pulmonary hypertension secondary to other lung and heart diseases will not be dis-
cussed in this chapter.

8.2	 �Exercise Pathophysiology in PAH and CTEPH: General 
Hallmarks

From a pathophysiological point of view, PAH and CTEPH are characterised by 
obliteration and consequent obstruction of pulmonary arteries, vascular inflamma-
tion and consequent remodelling and endothelial dysfunction, which all give rise to 
increased pulmonary arterial resistance and elevated pulmonary arterial pressure 
[6]. The consequence of all this is that dead space (VD/VT) ventilation increases 
because of the reduced perfusion of well-ventilated alveoli, which is reflected 
“mainly” as a high ratio of minute ventilation (V′E) to CO2 output (V′CO2) and 
expressed as V′E/V′CO2. During exercise, cardiac output (CO) must increase to 
match oxygen transport to the increasing demand by locomotor muscles [6]. 
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Increasing pulmonary blood flow during exercise is normally guaranteed by vascu-
lar distension and recruitment to keep resistance low for the right ventricle (RV). 
However, in patients with pulmonary vascular disease, fixed vascular remodelling 
hinders normal recruitment and distension and translates into a persistently high 
vascular resistance, and therefore increases in CO during exercise give rise to fur-
ther increases in mPAP. This progressive elevation in afterload curtails the ability of 
the RV to increase stroke volume, and therefore increases in CO during exercise 
strongly rely on heart rate (HR) [6].

High RV pressure and RV dilation lead to interventricular septal shift, which, 
along with reduced pulmonary venous return to the left atrium, limits left ventricu-
lar (LV) diastolic filling, systemic CO and tissue oxygen transport [6]. Arterial 
desaturation may also occur during exercise due to a combination of low mixed 
venous oxygen saturation, relative low alveolar-capillary diffusing capacity, high 
physiologic dead space or right-to-left shunting through a patent foramen ovale. 
Hypoxaemia further worsens the blunted tissue oxygen delivery, being conducive to 
the early onset of lactic acidosis and reduced anaerobic threshold (AT) that develop 
in the presence of a reduced CO [6]. Furthermore, hypoxaemia, lactic acidosis and 
higher VCO2 stemming from anaerobic metabolism all contribute to an excessive 
increase in V′E during exercise. These pathophysiologic mechanisms result in char-
acteristic pattern of abnormalities observed during CPET in patients with pulmo-
nary vascular diseases (Table 8.1) and depict the various potential contributors to 
dyspnoea, leg fatigue and exercise intolerance (Fig. 8.1).

8.3	 �Cardiovascular Abnormalities

During cardiac systole, both the systemic and pulmonary circulations must handle 
the same volume of blood. The latter, however, is normally at 10% of the former’s 
pressure. During dynamic exercise, cardiac output (CO) must increase to match 
oxygen delivery to demand by peripheral muscles. Even the greatly increased car-
diac output of exercising healthy subjects will lead to only a modest increase in 
mPAP pressure, mainly because of the large capacitance of the pulmonary circula-
tion [7], which is the consequence of the increase in left atrial pressure.

Even in early pulmonary vascular disease, when resting mPAP is not yet ele-
vated, there is a loss of vascular distensibility [8], and mPAP rises disproportion-
ately to CO [9, 10]. In severe PAH and CTEPH, the pulmonary vasculature cannot 
accommodate increased pulmonary blood flow, resulting in further and excessive 
increases in the right ventricular (RV) afterload during exercise [11]. Because of 
ventricular interdependence, severe RV pressure overload shifts the interventricular 
septum to the left during diastole and impairs left ventricular filling [12–16], limit-
ing maximal CO and oxygen delivery. Thus, in patients with pulmonary vascular 
diseases, changes in CO during exercise are mostly mediated by increasing heart 
rate (HR) rather than increasing stroke volume [15, 17, 18]. The ability to increase 
CO during exercise is a more important determinant of peak exercise capacity than 
the resting CO in patients with PAH and CTEPH, as it reflects the severity of the 
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underlying pulmonary vascular disease and the ability of the RV to adapt to it [19]. 
In patients with chronic thromboembolism but without manifest pulmonary hyper-
tension at rest, the mPAP/CO slope during exercise is abnormally high and stroke 
volume increases minimally, indicating that RV stroke volume response is impaired 
early in the disease course [20].

These pathophysiological adaptations to the increased pulmonary arterial pres-
sures all contribute to the cardiovascular limitation to exercise during CPET. Because 
of high RV afterload and low maximal CO, oxygen delivery to the skeletal muscle 
is impaired, manifesting as reduced aerobic capacity (low peak V′O2) and early shift 
to anaerobic metabolism for a given V′O2 (i.e., low anaerobic threshold) [21]. While 
maximal work rate (WR) and maximal V′O2 are often reduced, the ΔV′O2/ΔWR 
relationship is also low (<8–9 mL·min−1 W−1) compared to healthy individuals or 
patients with left ventricular failure, reflecting impaired CO and/or abnormal 
peripheral muscle O2 utilisation (Fig. 8.2) [21–25].

Table 8.1  Typical CPET abnormalities in patients with pulmonary vascular diseases

PAH CTEPH PVOD
Metabolic and cardiovascular

Peak V′O2 ↓ ↓ ↓
V′O2 at AT ↓ ↓ ↓↓
V′O2/WR ↓ ↓ ↓
Peak O2 pulse ↓ ↓ ↓
Ventilation and mechanics
Peak V′E ↓ ↓ ↓
Breathing reserve Normal Normal Normal
Dynamic hyperinflation Possible Possible ?
Gas exchange
V′E/V′CO2 slope ↑ ↑↑ ↑↑
V′E/V′CO2 at AT ↑ ↑↑ ↑↑
OUE ↓ ↓ ?
OUES ↓ ↓ ?
OUEP ↓ ↓↓ ?
PETCO2 (peak and at AT) ↓ ↓↓ ↓↓
SaO2 ↓ ↓↓ ↓↓
Peak Pa-ETCO2 ↑ ↑↑ ↑↑
Peak PA-aO2 ↑ ↑↑ ↑↑
Peak VD/VT ↑ ↑↑ ↑↑

CPET cardiopulmonary exercise testing, PAH pulmonary arterial hypertension, CTEPH chronic 
thromboembolic pulmonary hypertension, PVOD pulmonary veno-occlusive disease, V′O2 oxygen 
consumption, AT anaerobic threshold, WR work rate, O2 pulse peak V′O2-to-heart rate ratio at peak 
exercise, V′E minute ventilation, V′E/V′CO2 ratio of minute ventilation to carbon dioxide production 
(V′CO2), OUE oxygen uptake efficiency (V′O2/V′CO2), OUES oxygen uptake efficiency slope, 
OUEP oxygen uptake efficiency plateau, PETCO2 end-tidal pressure of carbon dioxide, SaO2 arte-
rial oxygen saturation, PA-aO2 alveolar-arterial oxygen pressure gradient at peak exercise, Pa-ETCO2 
arterial to end-tidal carbon dioxide pressure gradient at peak exercise, VD/VT physiologic dead space 
fraction as ratio of dead space (VD) to tidal volume (VT) at peak exercise
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Stroke volume is an important contributor to the increase in CO during exercise, 
and we have previously discussed that it is significantly impaired in pulmonary 
vascular disease. It is, however, very difficult to measure and a surrogate measure 
can be used.

Given Fick’s equation where CO is equal to V′O2 divided by the arteriovenous 
O2 difference (CaO2–CvO2) and that CO = HR × stroke volume, the equation can 
be rearranged as V′O2/HR (O2 pulse) = stroke volume × (CaO2–CvO2). Thus, in 
the absence of arterial desaturation, a reduced O2 pulse reflects an impaired 
stroke volume response during exercise. This means that cardiac output solely 
depends on increasing heart rate, leading to a decreased and flattened profile of 
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Fig. 8.1  Pathophysiology and mechanisms of exercise intolerance in pulmonary hypertension. 
Pulmonary vascular obstruction results in high ventilation-to-perfusion ratios and impaired cardiac 
output and can result in hypoxaemia due to right-to-left shunting through a patent foramen ovale. 
Inefficient ventilation proposes high ventilatory demand, high V′E/V′CO2 and VD/VT and low 
PETCO2. Cardiac limitation and peripheral muscle abnormalities result in a low anaerobic thresh-
old, early-onset lactic acidosis and increased V′CO2, which provide further stimulation for exces-
sive ventilation. Ventilatory mechanical constraints on tidal volume expansion also contribute to 
dyspnoea during exercise. Abbreviations: V′/Q′ ventilation-to-perfusion ratio, RV right ventricle, 
LV left ventricle, V′E minute ventilation, V′E/V′CO2 ratio of minute ventilation to carbon dioxide 
production, PETCO2 end-tidal pressure of carbon dioxide, VD/VT dead space to tidal volume frac-
tion, V′O2 oxygen consumption, WR work rate, O2 pulse V′O2-to-heart rate ratio, V′CO2 carbon 
dioxide production, PvO2 venous partial pressure of oxygen, PaO2 arterial partial pressure of oxy-
gen, PaCO2 arterial partial pressure of carbon dioxide. This is an original figure, no permission is 
required
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the O2 pulse (V′O2/HR) [21, 23]. Poor RV function and stroke volume response 
may lead to low systolic blood pressure (SBP) during exercise, and symptoms of 
pre-syncope or even syncope may occur. A peak exercise SBP < 120 mmHg dur-
ing CPET should be considered an ominous sign [26]. Vagal reactivation after 
exercise is an important mechanism underlying HR recovery in the first 30 s–60 s 
after exercise and is abnormally slow in individuals with cardiac impairment 
[27]. Recovery of HR after exercise is delayed in PAH patients compared to con-
trols, and slower HR recovery (<18 beat per minute decrease in the first minute 
post-exercise) is associated with worse resting haemodynamics, lower peak V′O2 
and a worse prognosis [28, 29].

Thus, the primary abnormalities of cardiovascular variables during exercise test-
ing in patients with moderate to severe pulmonary vascular disease are (1) reduced 
peak V′O2 and peak WR, (2) low anaerobic threshold, (3) reduced ΔV′O2/ΔWR, (4) 
low and flattened O2 pulse and (5) low maximal HR with delayed HR recovery 
(Fig. 8.1 and Table 8.1).
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Fig. 8.2  Comparison of oxygen consumption (V′O2) to work rate (WR) relationships. A normal 
individual with peak V′O2 of 97% has a V′O2/WR slope of 10.8 mL per Watt. A patient with pul-
monary arterial hypertension (PAH, pulmonary vascular resistance 9.3 Wood units) and a pre-
served cardiac index (CI = 2.7 L·min·m−2) and moderately reduced peak V′O2 of 67% predicted 
has a borderline reduction in the V′O2/WR slope of 9.4 mL per Watt. The patient with PAH and 
severe reduction in peak V′O2 (39% predicted) demonstrates a reduced V′O2/WR slope of 5.7 mL 
per Watt. Note that the difference in y-intercept (V′O2) at WR of 0 Watts is largely related to vari-
ability in body mass between these individuals. Original figure. Data from authors’ own 
laboratory
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8.3.1	 �Ventilatory Abnormalities

For most patients with pulmonary vascular disease, exercise is not limited by 
encroachment upon their predicted maximal ventilatory capacity; ventilation (V′E) 
at peak exercise is usually low [21, 22, 30, 31]. In the absence of concurrent asthma 
or chronic obstructive pulmonary disease, mechanical ventilatory constraint 
(dynamic hyperinflation) is not expected in pulmonary vascular diseases during 
CPET and, if present, is not as clinically relevant as in COPD.

Resting spirometry in patients with PAH is usually normal or may show mild 
restriction [32] or reduced mean expiratory flow (MEF) at 75%, 50% and 25% of 
vital capacity and increased residual volume-to-total lung capacity ratio (RV/TLC), 
suggestive of peripheral airways obstruction and gas trapping [33, 34].

Breathing patterns during exercise are more rapid and shallow in patients with 
PAH as opposed to normal individuals. Compared to healthy controls, up to 60% of 
PAH patients exhibit a reduction in inspiratory capacity during exercise, suggesting 
dynamic hyperinflation or impaired inspiratory muscle function [33, 35]. Even in 
the setting of a normal resting FEV1/FVC, the presence of expiratory flow limitation 
and rapid shallow breathing patterns during exercise can promote dynamic hyperin-
flation in some PAH patients, which may lead to more severe dyspnoea (Figs. 8.3 
and 8.4) [33].

Diaphragmatic muscle atrophy and weakness are present in patients with severe 
PAH or CTEPH [36–38] but did not appear to be involved in the dynamic reduction in 
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IC when oesophageal manometry was performed during CPET [39]. Whether inter-
ventions such as supplemental oxygen or bronchodilators reduce or delay the onset of 
dynamic hyperinflation in this disease remains to be determined in these patients.

The efficiency of ventilation can be illustrated with the relationship between V′E and 
carbon dioxide output (V′CO2): less ventilation will be required to eliminate CO2 in a 
more efficient system. It is usually reported as the V′E/V′CO2 slope or the lowest (or 
“nadir”) value of V′E/V′CO2 during exercise. The V′E/V′CO2 slope is determined by 
the arterial PCO2 (PaCO2) and the physiologic dead space (VD/VT) according to Eq. (1):
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Fig. 8.4  Maximal and tidal flow-volume loops (average data) are shown at rest and during incre-
mental cycle exercise in patients with pulmonary arterial hypertension (PAH) (a) with hyperinfla-
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during exercise in PAH-H compared with PAH-NH. From reference [33], with permission
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Ventilatory inefficiency (i.e. high V′E/V′CO2) and gas exchange abnormali-
ties are hallmark features of pulmonary vascular diseases (Fig.  8.5a). In nor-
mal individuals <60  years old, the 95% confidence interval upper limit for 
V′E/V′CO2 slope is 33 and the V′E/V′CO2 nadir is 34 [40]. In PAH patients, V′E/
V′CO2 slope and nadir are usually significantly increased compared to normal 

0

20

40

60

80

100

120

0 0.5 1 1.5 2 2.5

V
' E
(L
.m

in
-1
)

V'CO2(L.min-1)

Mild PAH
Moderate PAH
CTEPH

a

0

5

10

15

20

25

30

35

40

45

50

0:00 2:24 4:48 7:12 9:36 12:00 14:24

P
E

T
C

O
2(

m
m

H
g

)

 
 

Time (min) 

b

Mild PAH
Moderate PAH
CTEPH

Fig. 8.5  (a) Ventilation (V′E) plotted against CO2 output (V′CO2) for patients with mild (circles) pulmo-
nary arterial hypertension (PAH), moderate PAH (solid squares) and chronic thromboembolic pulmonary 
hypertension (CTEPH, triangles). The dashed line represents the upper limit of normal. Note that in the 
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severe pulmonary vascular disease. Original Fig. (a and b). Data from authors’ own laboratory
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individuals and are even higher than in patients with left ventricular failure, 
despite a similar degree of exercise impairment [23, 30, 41–43]. In patients with 
chronic thromboembolism without pulmonary hypertension, the V′E/V′CO2 
slope, V′E/V′CO2 at anaerobic threshold and VD/VT are higher than in controls, 
indicating that ventilatory inefficiency can result from vascular obstruction and 
ventilation-perfusion (V′/Q′) inequality, even before overt pulmonary hyperten-
sion and impaired RV function develop [44, 45]. Compared to PAH, CTEPH 
patients have even greater V′E/V′CO2 slope and nadir values and higher VD/VT 
at peak exercise [46, 47].

In PAH, the severity of increase in V′E/V′CO2 is related to the degree of elevation 
in mPAP [42, 48] and is a major determinant of peak VO2 and New York Heart 
Association functional class [21]. Some authors have suggested that a combination 
of findings of low peak VO2 and low anaerobic threshold, with preserved breathing 
reserve and V′E/V′CO2 at the anaerobic threshold >34, has 88% specificity and 85% 
accuracy for pulmonary vascular limitation to exercise [49].

High V′E/V′CO2 reflects wasted ventilation and is usually attributed to high 
VD/VT from ventilation-perfusion inequality, but it can also be related to high 
chemosensitivity from sympathetic nervous system hyperactivity or a low PaCO2 
set-point [50–53]. Although resting and peak exercise VD/VT are elevated in pul-
monary vascular diseases, resting hypocapnia and exercise hyperventilation are 
common observations that correlate with disease severity, supporting the impor-
tant contributions of chemoreceptor and sympathetic neural input and the PaCO2 
set-point to ventilatory inefficiency [31, 41, 46–48, 50, 52, 54–56]. The VD/VT 
calculated from Eq. (2) is sensitive to high levels of ventilation and to rapid-
shallow breathing patterns; therefore high VD/VT may also reflect increased che-
mosensitivity [50–53].

Sympathetic nervous system activity is increased in patients with pulmonary 
hypertension and is a factor of decreased exercise capacity and worse prognosis 
[51, 57, 58]. The enhanced chemoreceptor output stimulates hyperventilation, 
which can be driven by hypoxaemia, low cardiac output and neural afferents 
from metabolic ergoreceptors in the peripheral muscles [50, 59–61]. Local accu-
mulation of H+ in skeletal muscles contributes to ergoreceptor-mediated stimula-
tion of ventilation in patients with impaired cardiac function [62]. Right 
ventricular or right atrial distension may also mediate hyperventilation through 
sympathetic neural reflexes [56, 63]. This explains why the V′E/V′CO2, an inte-
grated variable reflecting not only gas exchange, but cardiovascular and auto-
nomic nervous system dysfunction, is associated with clinical outcomes in PAH 
and CTEPH [64, 65].

8.3.2	 �Gas Exchange Abnormalities

As a consequence of alveolar hyperventilation, the end-tidal PCO2 (PETCO2) mea-
sured at the mouth during CPET is frequently decreased in patients with PAH or 
CTEPH and does not exhibit a normal pattern of gradual increase between rest and 
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the anaerobic threshold, as it remains constant or decreases further (Fig. 8.5b) [22, 
47, 48, 66]. A PETCO2 of <40 mmHg at the anaerobic threshold may suggest under-
lying pulmonary vascular disease, whereas PETCO2 < 20 mmHg is unusual in other 
diseases and raises strong suspicion of pulmonary vascular disease in a patient with 
dyspnoea of unknown aetiology [48, 67, 68]. Patients with CTEPH or pulmonary 
veno-occlusive disease (PVOD), another rare pulmonary vascular disease, tend to 
have even lower resting and peak exercise PETCO2 values than patients with idio-
pathic PAH (Table 8.1) [47, 66, 68].

Arterial oxygen desaturation and wide alveolar-arterial O2 (PA-aO2) gradient are 
common (Fig. 8.6) but not universally observed in patients with pulmonary vascular 
diseases [31, 47, 55, 60, 68]. In contrast, significant arterial desaturation and hypox-
aemia (PaO2 < 60 mmHg) are much more frequent, while also being rarely observed 
in patients with heart failure. Therefore, desaturation may suggest the presence of 
underlying pulmonary vascular disease when present in an undifferentiated dys-
pnoeic patient [69–71]. The widened PA-aO2 and arterial desaturation are primarily 
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a greater extent than in a normal individual (upper right panel). The arterial oxygen pressure (PaO2) 
decreases abnormally during exercise despite a normal increase in alveolar oxygen pressure 
(PAO2), resulting in a wide and increasing alveolar-arterial O2 difference at peak exercise (lower 
right panel). Original figure. Data from authors’ own laboratory
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related to low mixed venous PO2 returning to the pulmonary circulation as a conse-
quence of impaired cardiac function and oxygen delivery to peripheral muscles, 
which is exacerbated by ventilation-perfusion inequality in the lung [72, 73]. A 
pattern of exercise-induced hypoxaemia preceded by a sudden and sustained 
decrease in PETCO2 and increase in end-tidal PO2 (PETO2) and the V′E/V′CO2 in 
patients with pulmonary vascular disease suggests the development of a right-to-left 
shunt through a patent foramen ovale (PFO) [60, 74]. This occurs when right atrial 
pressure rises high enough during exercise to open the PFO, shunting hypoxaemic 
and acidaemic blood to the systemic circulation, which acutely stimulates periph-
eral chemoreceptors and hyperventilation.

Normally, PETCO2 increases during exercise in healthy individuals as a result 
of larger tidal volume and higher PCO2 in venous blood returning to the lungs 
(Fig.  8.5b). Since PETCO2 rises and PaCO2 remains stable (or even decreases 
slightly) during exercise, the difference between PaCO2 and PETCO2 (P(a-ET)CO2) 
is slightly positive at rest and becomes negative in most normal individuals [75, 
76]. In patients with pulmonary vascular disease, the excessive and inefficient 
V′E driven by chemoreceptor stimulation often leads to very low PETCO2 near 
peak exercise. Meanwhile, because of high physiologic dead space, ventilation-
perfusion inequalities and rapid shallow breathing patterns, the arterial PCO2 
does not change markedly, leading to a positive P(a-ET)CO2 at rest and exercise 
[47, 55, 66, 68]. Therefore, a positive value for P(a-ET)CO2 from arterial blood 
gases performed at peak exercise reflects impaired gas exchange and/or aug-
mented chemoreflexes.

8.3.3	 �Peripheral Muscle Function and Exercise in Pulmonary 
Hypertension

Deconditioning and peripheral muscle abnormalities are important contributors to 
exercise intolerance. In congestive heart failure, which shares similar limitations 
in cardiac output reserve as PAH and CTEPH, oxygen transport and diffusion at 
the level of the skeletal muscle are abnormal [77]. However, tissue oxygen satura-
tion, oxygen extraction and muscle microcirculatory function may be impaired to 
an even greater degree in PAH compared with left heart failure [78, 79]. The 
peripheral muscle in PAH patients is structurally and functionally abnormal, with 
a lower relative proportion of type I fibres and reduced quadriceps, forearm and 
respiratory muscle strength compared to controls, which may be an important 
determinant of low peak VO2 [25, 80]. Respiratory muscle strength has also been 
shown to be about 40% lower in CTEPH patients [37]. The mechanism of gener-
alised skeletal muscle dysfunction in PAH may be a result of microcirculation 
rarefaction and an imbalance in angiogenic factors [24]. Improvements in exercise 
capacity with exercise training in individuals with heart failure or peripheral vas-
cular disease [81] have been linked to improvements in skeletal muscle microcir-
culatory density, capillary-to-fibre ratio and mitochondrial volume [82], which 
may be mechanisms by which training can improve exercise capacity in stable 
patients with PAH [83, 84].
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8.3.4	 �Prognostic Utility of Cardiopulmonary Exercise Testing

Several studies have shown that CPET variables independently predict prognosis in 
PAH and CTEPH patients. PAH patients with a peak V′O2 less than 11 mL·min−1·kg−1 
or a V′E/V′CO2 slope ≥  45 are considered at high risk with an estimated 1-year 
mortality of >10% according to the European Society of Cardiology/European 
Respiratory Society guidelines [1]. Therefore, potential treatment targets for PAH 
patients have been established at obtaining peak V′O2 > 15 mL·min−1·kg−1 or > 65% 
predicted and a V′E/V′CO2 slope of <36 [1, 85].

Peak V′O2 and V′E/V′CO2 have been associated with survival in several studies 
comprising PAH and CTEPH patients [26, 64, 65, 86]. Wensel and colleagues dem-
onstrated that peak V′O2 provides additional prognostic value to resting haemody-
namics in patients with PAH [87]. Those with a low V′O2 (<46.3% predicted) and 
pulmonary vascular resistance (PVR) > 16 Wood units had a particularly dire prog-
nosis, while patients with peak V′O2 ≥ 46.3% predicted and a PVR < 11.6 Wood 
units had >90% 5-year survival.

Echocardiographic assessment of RV function in conjunction with CPET may 
provide incremental prognostic utility. Badagliacca and colleagues found that rest-
ing RV fractional area change on echocardiogram, in combination with the O2 pulse 
from CPET (which reflect RV function and stroke volume), was an independent 
predictor of outcome in patients with idiopathic PAH [88]. Patients with RV frac-
tional area change >26.5% and a peak O2 pulse >8.0 mL.beat−1 had excellent long-
term survival, while PAH patients with RV fractional area change <36.5% and a 
peak O2 pulse <8.0 mL.beat−1 had significantly worse survival.

8.3.5	 �Cardiopulmonary Exercise Testing after Interventions

Very few randomised controlled trials of PAH therapy have included CPET vari-
ables as efficacy endpoints [89, 90].

By reducing RV afterload and improving cardiac output and oxygen delivery, 
PAH therapies such as calcium channel blockers, sildenafil and epoprostenol 
improve peak V′O2 and ventilatory efficiency [91–93]. Patients who improve peak 
V′O2, maximal heart rate and O2 pulse after treatment have better survival, likely 
due to improvements in cardiac output and stroke volume [86, 94].

In CTEPH, pulmonary endarterectomy is the treatment of choice and involves 
the surgical removal of obstructing thromboembolic material from the pulmonary 
arteries. Endarterectomy leads to marked improvements in RV afterload, cardiac 
function and regained ability to increase stroke volume during exercise, which 
translates to better exercise capacity and better survival [95–100]. There is also 
improvement in V′E/V′CO2 soon after endarterectomy, as a likely result of immedi-
ate improvement in cardiac output and a decrease in chemosensitivity, while peak 
V′O2 continues to improve months after surgery, likely due to rehabilitation and 
improved peripheral muscle conditioning [101].

Medical therapies approved for PAH are used in inoperable CTEPH patients, 
which improve exercise capacity and may improve gas exchange and V′E/V′CO2 
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[102]. Balloon pulmonary angioplasty (BPA) is another treatment option for inoper-
able CTEPH patients, which involves dilation of distal obstructing lesions, improv-
ing perfusion and lowering mPAP [103, 104]. Right ventricular function and stroke 
volume improve after BPA, leading to better exercise variables in terms of peak 
V′O2, ΔV′O2/ΔWR, O2 pulse and V′E/V′CO2 [105–108]. Oxygen is also a useful 
intervention to improve exercise performance in patients with pulmonary vascular 
disease who desaturate during exercise. Supplemental oxygen during exercise 
increases maximal WR and endurance time and reduces V′E/V′CO2 by limiting 
inappropriate chemoreflex-mediated stimulation of V′E [109].

8.4	 �Conclusion

Diseases of lung vasculature result from various pathological processes that con-
verge on reducing exercise capacity and lead to early mortality. Understanding the 
pathophysiological substrates of these outcomes is of upmost importance in order to 
better orient therapeutic research. But because of the wide range of pathology 
involved, a one size fits all approach is suboptimal.

Exercise intolerance and dyspnoea in patients with pulmonary vascular disease 
are multifaceted; the key CPET-related profile responses are a reduced peak V′O2 
with impairment of cardiovascular function translating into a reduction in V′O2/
WR, low O2 pulse, and AT, and impaired ventilatory efficiency with altered gas 
exchange and chemosensitivity. The presence of high V′E/V′CO2 with a low PETCO2 
in a patient with unexplained dyspnoea should prompt consideration of pulmonary 
vascular disease in the differential diagnosis and further diagnostic investigations. 
Abnormal respiratory mechanics and locomotor muscle dysfunction also contribute 
to dyspnoea, leg fatigue and exercise pathophysiology in many patients. CPET is a 
useful tool in assessing the degree of functional impairment and disease severity, 
predicting prognosis and evaluating interventional efficacy.

Key Points
•	 Cardiopulmonary exercise testing (CPET) in patients with pulmonary vas-

cular diseases may reveal common and non-specific symptoms like dys-
pnoea and exercise intolerance.

•	 Dynamic exercise during CPET may provide a greater stress to the right 
ventricle and pulmonary circulation than static resistive exercises and 
could thus be more sensitive in detecting an abnormal response in a patient 
with early pulmonary vascular disease.

•	 CPET can also help evaluate the severity of disease, gauge responses to 
treatment and estimate prognosis in patients with known pulmonary vascu-
lar disease.

•	 Even in the absence of significant resting airflow obstruction, dynamic 
hyperinflation can occur in pulmonary vascular diseases, which contrib-
utes to exertional dyspnoea and exercise intolerance.
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