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1 Introduction

Access to high-quality care partially determines the overall health of an individual.
Environmental, socioeconomic, behavioral, and genetic factors are even larger
determinants of health outcomes. Consequently, effectively managing the health
of an individual requires full commitment and coordination of care professionals
inside and outside of hospital walls, including community and social care, payers,
local governments, and wellness and healthcare service providers.

Data is key toward understanding an individual’s health, but unfortunately,
data related to these different health determinants mostly reside in siloed systems
managed by different players in the ecosystem across the health continuum. Usually
these datasets contain information about the same patient. Lastly, governmental
organizations or quangos (“quasi-autonomous nongovernmental organization”) col-
lect census, register, and survey data on health data such as outcomes and utilization,
societal data, and economic data such as population count, income, education,
employment, and religion.

The datasets need to be brought together in order to generate better insights about
the health status of individuals. The process of bringing together those records that
are perceived to belong to the same individual, entity, location, or event is called
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data linkage. Linked and extended datasets from various services across the health
continuum lead to more insights in comparison to a single dataset individually [24].

The data linkage can be performed exactly and faultlessly if at every source
identical uniquely identifiable information is associated with all data elements.
The process is more daunting if such information is not available; identifiers
are used that are not necessarily unique such as patient names and demographic
information. Unfortunately in many practices unique identifiers are missing. To
make the situation more difficult, the available non-unique linking variables very
often contain errors due to coding errors, spelling variations, or transcription
mistakes. These factors threaten the quality of the linked data as records can be
missed or wrong records can be linked, which can result in biased analysis of the
linked data.

This chapter provides a state-of-the-art survey in data linkage technology within
healthcare. It will give a tutorial overview of the various methods in data linkage
including deterministic and probabilistic approaches, a discussion on the challenges
of using data linkage in healthcare and a synthesis of a healthcare use case in which
data linkage is essential.

2 Overview of Data Linkage Methods

Data linkage is a process in which the same entities (individuals, location, and
events) should be identified in record pairs among two or more different datasets.
This section gives an overview (shown in Fig. 1.) of the steps in data linkage.

2.1 Data Delivery

Data delivery is the first required step for linkage. Data can be provided in various
schemes such as simple structured data (e.g., pairs of files) or semistructured

Fig. 1 Data linkage process steps
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data (e.g., a pair of XML documents) [1]. Before data can be delivered, consent
for sharing or processing the data needs to be in place. Data might need to be
anonymized before processing. In addition, different data regulations may apply in
different geographies, and data may not be allowed to leave a specific premise. The
data owner can constrain the processing to a specific computing environment with
strict security access for specific individuals only. The legal and regulatory aspects
of data delivery will be further discussed in Sect. 3.1.

2.2 Data Cleansing and Standardization

The data cleansing and standardization process can be quite labor intensive, so it
is recommended to assess whether the costs of labor are paid off by the benefits
of a cleansed dataset [22]. The process can be broadly divided into six steps: (1)
handle different input file formats, (2) handle unstructured data, (3) handle data
heterogeneity, (3) handle typographical errors, (4) handle missing data, (5) handle
data overlap, and (6) parse identifiers into separate pieces of information [9, 29, 32].
Further explanation of each step is given below.

2.2.1 Handle Different Input File Formats

In practice, input files can arrive in different formats such as csv or xlsx. Especially
when it concerns longitudinal data, data can be stored in a wide or long format. In a
wide format, all data collected over time for each entity (or individual) are in a single
row. In a long format, each row is one time point per entity or individual. Variables
that do not change over time will have the same value in all rows. Sizes of files can
differ substantially. Long formats can grow out of proportions as it stacks redundant
data (i.e., variables that do not change over time). It is recommended to convert
all files to a single standard format allowing to compare and match corresponding
columns containing candidate variables for linkage.

2.2.2 Handle Unstructured Data

When data arrives in an unstructured form such as nursing notes, it first needs
to be made searchable and retrievable. Natural language processing tools are
essential to fit unstructured freeform text into a predefined data record scheme. In
particular, named entity recognition (NER) in text identifies and annotates person
and organization names, geographical locations, events, and expressions of time,
date, and amounts in text that can act as a linking variable value [21, 25].



220 A. Kostadinovska et al.

Table 1 Data heterogeneity example

First name Last name Date of birth Address Enrollment date and time

Jessica ADAMS 10-8-1985 4257 Bart Ave 25-05-2017 12:05

THERESA Pratt December 4, 1965 West Davison
8100, 48238

12/1/2017 08:05:00

2.2.3 Handle Data Heterogeneity

The coding of linking variables can differ across input files [8]. For instance, they
can differ in their data type (e.g., an age variable can be of type integer or represented
as a string), in their format (e.g., dates can have many different formats as YMD,
DMY, and MDY with various separator signs, digits, and spellings of months).
Variables should comply in representation for matching.

Table 1 is an example of data heterogeneity. The table contains two (synthetically
created) records containing identifiable information of two patients. First and last
names, date of birth, enrollment date and time, and address are variables that differ
in their format, type, case, and content.

2.2.4 Handle Typographical Errors

Input files might contain typographical errors in the linking variables such as
transposed digits and misspellings. Table 2 shows some commonly found variations
that should be taken into account. Variation in spelling in proper names or geo-
graphical locations can be unintended misspellings but also due to transliterations
or transcription from one alphabet (Cyrillic, Chinese, Japanese, Korean, Arabic,
Greek, Hebrew, and Latin) to the other. Transliteration is the use of conversion
rules for each symbol from the source alphabet to a symbol of the target alphabet.
Transcription is the writing down the sound of the name or location in the source
language as accurately as possible in the target language. As an example, Oeladzis-
lau Smjahlikau and Vladislav Smjaglikov refer to one and the same person (a boxer)
from Belarus though the spelling of the person name is obtained via transliteration
and transcription, respectively, from the Cyrillic script. Due to migration, person
names in health data can come from various geographical locations, languages, and
cultures.

Special language technology tools are developed for overcoming variation in
spelling [17, 30], for which Soundex [9, 31] is a commonly used method. Soundex
is a system for coding and indexing family (proper) names by transcription.
Another solution for handling typographical errors can be done by comparing
strings using edit distance techniques to determine the minimum number of
operations (e.g., insertions, deletions, and transpositions) to get from string A to
string B.
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Table 2 Common variations found in selected linkage identifiers [9] FIPS federal information
processing standards, SSA social security administration

Field Type Examples

Names Case John Smith | JOHN SMITH

Nicknames Charles | Chuck

Synonyms William | Bill

Prefixes Dr. John Smith

Suffixes John Smith, II

Digits John Smi9th

Punctuation O’Malley | Smith-Taylor |
Smith, Jr.

Initials JA | J.A. | Jessica Adams

Transposition Jessica Adams | Adams Jessica

Transliteration and
transcription

Oeladzislau Smjahlikau |
Vladislav Smjaglikov

Addresses Abbreviations RD | Road | DR | Drive

Dates Format 01012013 | 01-01-2013 |
01JAN2013

Invalid values Month = 13 | Day = 32 | Birth
year = 2020 | Date =
29FEB2013

Social security number Format 999999999 | 999-99-9999 |
999 99 9999

Geographical location Abbreviations NC | North Carolina

ZIP codes 99999 | 99999-99999

Sex Format Male/Female | M/F | 1/2

2.2.5 Handle Missing Data

Input files might contain a large number of missing values in linking variables or
other variables that can affect the correctness of the data linkage. After investigating
a plausible reason for missing data, imputation is a method to fill in values for the
missing data [12]. Missing data can happen for various reasons. It is recommended
to use imputation only if missing data happen at random (MCAR or MAR). If
missing data is due to an informative reason, data cannot be imputed:

• Missing completely at random (MCAR) is due to administrative errors or
unfortunate incidents during measurement or collection. A missing value is
unrelated to any individual/center characteristics or outcome.

• Missing at random (MAR) is due to patient characteristics, time, place, or
outcome. The probability of a missing value depends on values of other variables.
For instance, a patient is too sick to perform a test, which may result in missing
values for the test at high severity of the disease.

• Missing not at random or informative missing (IM) is due to the value of
the variable itself, the hospital data collection protocol, or the de-identification
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procedure. For instance, a hospital may not order particular blood tests. This
kind of missing is hard to resolve.

Yuan [34] defines several multiple imputation methods depending on the type of
missing data pattern. For monotone missing data patterns (a dataset has monotone
missing pattern when a missing variable Xi implies that all subsequent variables
Xj , when j is greater than i, are as well missing for one individual), either a
parametric regression method or nonparametric one can be used. For an arbitrary
missing data pattern, a Markov chain Monte Carlo (MCMC) method is appropriate.
An overview of the methods, together with their basic concepts and applications,
can be found in [34].

2.2.6 Handle Data Overlap

Input files can contain multiple records that refer to the same entity in the real
world. Also, input files can contain referential overlap. For example, a zip code and
a house number refer to the same home as a full address, so there is full referential
overlap. A zip code and a city name, though referring to different entities, do have
some referential overlap as the geographical area of the ZIP code is contained in
the city referred to by the city name. If these overlaps are not excluded from the
input files, the credit assigned for links on these overlaps is redundant. Referential
overlap in data is helpful in iterative linking methods; in a first pass, an exact match
can be established on ZIP code to be extended on counties when ZIP codes do not
match exactly.

2.2.7 Parse Identifiers into Separate Pieces of Information

Some of the linking variables should be split into multiple parts. This allows the
linkage process to get the most out of all parts of available information. For example,
a street variable can contain street name and street number. Due to typographical
errors, a street or address number can be incorrect, while the street name is without
error. In this case, it is better to split the street variable into two variables: street
name and street address. Another example, personal information, can change over
time, such as a name change after marriage or an address change after a move.
In such cases, linking on the separate parts allows for partial agreement, when
combined with other information, which may provide evidence that the records
being compared refer to the same person.

2.3 Searching Data

Searching entails identifying the pairs of records from two datasets that have a high
probability of matching with each other on the basis of the linking variables. In this
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search, a compromise is sought between the number of record pairs to be evaluated
for matching and the number of true links needed. Evidently, it should exclude the
pairs that do not match from further comparison [31]. Searching can be done by
blocking, sorted-neighborhood method, bigram indexing, and canopy clustering.
We elaborate more on the first two as most prominent searching methods. More
information on the latter ones can be found here [2].

2.3.1 Blocking

Blocking consists of partitioning the two datasets into mutually exclusive subsets
and searching for links matching pairs within these subsets. These subsets are called
blocks. Typically, blocking is based on a blocking variable on which the partitioning
takes place. It limits the number of pairs being evaluated for matching. Without
blocking a Cartesian product of all pairs of records need to be evaluated.

A disadvantage of the blocking is that true links are potentially missed out
as they can end up in different blocks. A common remedy is to keep the block
sizes relatively small and run multiple blocking passes using different blocking
variables [20, 29, 31]. The best blocking variables are those that have an almost
uniform value distribution on records, are error-free, do not miss values, and do not
change over an individual’s lifetime. For example, month of birth is an example
of such a variable that would result in fairly even number of records in each
block [9, 29, 31]. According to Baxter et al. [2], the blocking method trades off
pairs’ completeness with reduction of the record pairs to be compared as the number
of blocks increases. More smaller blocks result in less comparisons but more true
match pairs are missed.

2.3.2 Sorted-NeighborhoodMethod

Sorted-neighborhood method starts with sorting the records of the input files.
Sorting is done using a sorting key made out of one or several existing variables that
have only few records with the same value. Then, comparison of pairs of records is
done on records that fall into a sliding fixed-sized window. If the size of the window
is w records, then every new record entering in that window is compared with the
previous w − 1 records. Hence, the number of comparisons is reduced from n2 to
w*n (where n is the size of the input files). After the comparison, a transitive closure
step is performed; if two records r1 and r2 are found to be similar, and records r2
and r3 are found to be similar, then r1 and r3 are also marked as similar. This allows
for a small window size, hence low time complexity but with an invariant accuracy
of the result [1].

Due to the various possible types of errors in the input files, some records might
be sorted out of the window boundaries from those records with which they should
be compared to. Running this method on a single sorting key (i.e., a single-pass)
usually does not produce the best results. Therefore, a multi-pass approach can be
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used, where a number of sorting keys with small windows sizes are used. The results
from the independent passes are then combined to provide the final set of linking
records [1, 31]. According to Baxter et al. [2], this method avoids the extremes in
performance of blocking, and its behavior changes predictably as the window size
w is increased. With larger windows, pairs’ completeness results improve, but the
number of record pairs to be compared increases.

2.4 Matching/Linking Data

The matching of record pairs can either be done deterministically or probabilis-
tically, dependent on the purpose and research question underpinning the data
linkage, time and effort available, and the quantity and quality of the linking or
identifiable variable available.

In situations in which identifiable variables are not released for inspection
and processing due to privacy concerns, a linkage on encrypted identifiers
may be employed. Identifiers are first encrypted by using cryptographic hash
functions and then shared with researchers for linkage and processing, without
compromising privacy [9]. Manual inspection of encrypted linked results cannot
be done for review. A discussion on encrypted methods can be found in
Sect. 3.1.

2.4.1 Deterministic Algorithm (Single-Pass Strategy)

A deterministic algorithm decides whether a pair of records agrees or disagrees
in a given set of linked or identifiable variables on the basis of an exact match
comparison. The outcome of the comparison is of binary nature, “all-or-nothing” [9]
and can be calculated in one or multiple passes.

A single-pass deterministic algorithm, better known as the “exact deterministic
method” [9], compares all pairs of records (within a block) at once using the
entire set of linking variables. A pair of records is classified as a match if the two
records agree on all variables and are uniquely identified. Note that two records
are uniquely identified if no other record in the input files matches on the same
values of the linking variables. A pair of records is classified as a non-match if the
records disagree on at least one linking variable or if the record pair is not uniquely
identified.

This algorithm is of straightforward use if the input files contain unique
identifiers of high quality without missing values; it has limitations in use for data
containing errors or missing values.
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2.4.2 Iterative Deterministic Algorithm (Multi-Pass Strategy)

A multi-pass strategy consists of records being linked using criteria for different
linking variables in multiple successive passes. Record pairs that do not link in one
pass are forwarded to a next pass. If a record pair meets the criteria in any of the
passes, the pair is classified as a match. Otherwise, it is classified as a non-match.
The method still requires an exact match in any of the passes. It is also known as
“approximate deterministic algorithm” [9].

The iterative deterministic approach can be used when the single-pass method
provides unsatisfactory results or if no single uniquely identifiable and complete
variable in the two input files is available. However, it still requires an exact match
and high-quality linking variables.

2.4.3 Probabilistic Approach

The deterministic approach does not take into account possible erroneous values
of linking variables as it is based on finding an exact match. If linking variables
happen to agree partially due to errors (e.g., misspellings), the record pair is
registered as a non-match. In addition, the deterministic approach also ignores that
linking variables and their values can have differential discriminatory power which
expresses to what extent variables are able to discern records to represent the same
entity (i.e., patient) or different entities. As defined by Blakely and colleagues,
probabilistic linkage is “record linkage of two (or more) files that utilizes the
probabilities of agreement and disagreement between a range of linking variables”
[3]. It is able to assess (1) the discriminatory power of each linking variable and
(2) the likelihood that two records are a true match based on whether they agree or
disagree on the various linking variables [5].

A probabilistic method is a good option, if linking variables are available
but incomplete, fraught with typographical errors, or imperfectly measured, or
when no unique identifiers are available. In these scenarios it can outperform
deterministic methods, albeit with more time and resources required for running
the method.

Calculating and Summing Up Probabilities as Weights

The record pairs identified in the search phase are compared on each linking
variable for producing an agreement pattern for their values [20]. Weights for each
value of the linking variable for every record pair are calculated to measure the
contribution of each linking variable to the probability of making a correct matching
judgment. The weight assigned to each linking variable is considered a likelihood
ratio comparing the proportion of agreements with the proportion of disagreement
for that linking variable. The weight compares two probabilities,m and u, associated
with every linking variable [5, 9].
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The m probability is the likelihood that the values of a linking variable agree
on a pair of records, given that the records refer to the same entity. It is calculated
as 1 minus the error rate of the linking variable. With fewer errors in its values,
the linking variable will be more reliable which is expressed by a larger m
probability [20]. For example, if gender disagrees 10% of the time due to a
typographical error, or due to being misreported, then the m probability for this field
is 1−0.1 = 0.9. The estimates for the m probability can be based on prior knowledge
or experience or through a supervised training procedure with data containing true
links as ground truth data. Estimation is usually done by using the EM (expectation-
maximization) algorithm [29] or the EpiLink algorithm [6].

The u probability is the likelihood that the values of a linking variable agree
on a pair of records, given that the two records refer to different entities. It is a
measure of the likelihood that the values of linking variables of any two records will
agree by chance. The u probability is often estimated by 1/n (where n is the number
of possible values of the linking variable). For instance, the probability that false
matches randomly agree on month of birth (u probability) is 8.3% (1/12).

Using them and u probabilities, we can estimate how closely the linking variables
agree on each record pair being compared. If a record pair agrees on a linking
variable, an agreement weight is calculated by log2(m/u), which is most often a
positive value. When a record pair disagree on an identifier, the disagreement weight
is calculated by log2((1 − m)/(1 − u)), which is most often a negative value.

For each possible record pair, the various agreement and disagreement weights
are summed over all linking variables to produce a composite score referred to as
the total weight score. The larger the total weight score, the more likely that both
records refer to the same entity and thus should be linked. The m probability must
always be greater than the u probability. If this is not the case, then the linking
variable does not aid in discriminating matched from non-matched record pairs and
should be discarded [20].

Determining Links Based on Cut-Off Threshold

The distribution or histogram of the total weight score is generally bimodal, as
shown in Fig. 2. Since most pairs of record are non-matched pairs, or true non-links,
the left-hand mode represents low total weight scores (also called the U region). The
other mode represents the larger total weight scores for the matched pairs, or true
links (also called the M region).

An optimal cut-off threshold needs to be calculated to determine which record
pairs should be treated as links (matches) and which pairs as non-links (non-
matches). Various manual and automated methods exist to determine the threshold
value based on the distribution of the weights. One way to calculate the cut-off value
is using the relationships between file sizes, identifiers, and match weights [5]. To
determine whether a pair of records should be consider a match or not, the total
weight score of that pair is compared with the cut-off threshold value. If the total
weight score is above the cut-off, the record pair is considered a match. Otherwise,
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Fig. 2 Histogram of total
weight scores for all
comparison pairs [27]
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it is not. Sometimes an upper and a lower cut-off threshold value are used, as shown
in Fig. 2.

The intersection of the U and M regions represent pairs that are seen as
matches but are in fact non-matches, or vice versa, for which a clerical review is
required [20]. Clerical review is discussed in Sect. 2.5.2.

Cut-Off Threshold from File Sizes, Identifiers, and Match Weights

By looking into the relationships between the sizes of the input files, expected
number of links, and desired probability of true links, we are able to quantify the cut-
off threshold needed to probabilistically link two files. Moreover, we can quantify
the extent of information in various linking variables in order to choose which ones
are at least necessary to reach a desired linkage performance [5].

The relationship between the input file sizes, the expected number of links, and
the desired probability of true links is expressed as

wt = log2(p/(1 − p)) − log2(E/(A ∗ B − E)) (1)

where wt is a match weight representing the log odds for a true link corrected for
finding a true link by chance: p is the desired probability of true links; A and B

denote the size of the first and second input files, respectively; and E is the expected
number of true links. The match weightwt can act as a cut-off threshold to tell which
records match with a probability of at least p of being a true link. For example, if A
and B are input files that count 1000 records each, where every record in A uniquely
matches a record in B (hence E=1000), and with desired probability of selecting
true match p equals 0.9, then the match weight is 13.13. This means that at least
weight of 13.13 is needed to overcome the current odds and produce matches with
probability of at least 0.9 being correct.
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2.4.4 Hybrid Solutions

A hybrid solution entails combining the advantages of deterministic and probabilis-
tic algorithms into a single one. A deterministic algorithm might miss out some
truly linked record pairs due to errors in the linking variables. A hybrid solution
tries to reduce this by conducting a probabilistic linkage on the record pairs that
are considered non-matches in the deterministic pass. Fewer pairs will be processed
and additional pairs will be linked during the probabilistic linkage phase; a hybrid
solution is deemed to be more efficient with better outcome than a probabilistic or a
deterministic method alone [9].

2.4.5 Other Data Linkage Algorithms

In Table 3, we summarize the different matching methods on their advantages,
disadvantages, and applicabilities. Probabilistic linkage (or a hybrid solution) is
recommended if exact agreement between linking variables cannot be established.
A disadvantage of probabilistic linkage is that it requires estimates on weights
and thresholds from data where true link status is available as ground truth.
Machine learning (ML) can be used to arrive at these estimates in which supervised
learning takes place on labeled ground truth data to obtain a model. Bayesian
methods including Naive Bayes are ML methods that arrive at good estimated
models [28, 33]. This model can then be used to discern the links from the
non-links using unseen, unlabeled data [1]. However, this training requirement is
time-consuming, requires ground truth data, and needs to take place for every new
domain. Therefore, new probabilistic techniques known as scaling methods try to
arrive at these estimates without the need of such a supervised training phase [13].

Missing out links (false negatives) can underestimate the number of truly linked
pairs, also in probabilistic methods. A reason is the so-called entity heterogeneity
problem that appears when the same entity (e.g., patient) is known under different
identifiers in the datasets to be linked. A Bayesian approach is seen as a solution
to that problem by using a distance-based measure in order to express the similarity
between the referred entities [8].

Another disadvantage is that probabilistic linkage chooses at most a single
matched link for any pair of records that has maximum weight above threshold
while ignoring all other potential matches with a lower weight, which may bias
linked datasets. By using multiple data imputation methods, we can allow for
several potentially matched links for record pairs in a subsequent analysis instead
of only the maximum one or no one which leads to unbiased and more efficient
analyses [12].
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Table 3 Comparison of various matching methods

Method Advantage Disadvantage Applicability

Single-pass
determinis-
tic

Straightforward Limitations of use
in erroneous and
missing data

High-quality data requiring
exact match

Iterative
determinis-
tic

Multiple linking criteria.
More resource and time
efficient than probabilistic
approach if the linking
identifiers are available

Limitations of use
in erroneous and
missing data. Less
time and resource
efficient than
single-pass
approach

High-quality data requiring
exact match If no single
unique linking identifier is
available, but multiple
high-quality attributes are
available, this approach
would fit better than the
single-pass approach

Probabilistic Better coping with erroneous
data. Can handle data that is
ignored in the deterministic
algorithm and classified as a
non-link. Can outperform
deterministic methods in
information-poor scenarios.
Compared to the
deterministic (both
single-pass and iterative)
approach, a better
combination of variables can
be selected by assigning
weights and linkage score.

Requires more
time, effort, and
technical resources
to implement than
the deterministic
algorithm.

No exact agreement due to
incomplete data or no unique
identifiers: if identifiers are
available but incomplete,
fraught with typographical
errors, or imperfectly
measured, or when no unique
identifiers are available, the
probabilistic approach comes
into place

Hybrid Combining advantages of
deterministic and
probabilistic approaches.
Fewer pairs will be processed
in the resource-intensive
linkage phase, so it can be
more efficient than only
applying a deterministic or
probabilistic algorithm

After applying the
deterministic algorithm, a
large number of record pairs
are incorrectly classified as
non-links due to errors in the
input files.

2.5 Evaluating Data Linkage

This section explains how to assess the quality of data linkage by means of metrics,
clerical review, and quality reporting.

2.5.1 Metrics

In evaluating data linkage algorithms, an identified match in a pair of records can
either be a true link or a false link, and an identified non-match can either be a true
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non-link or a missed link. Linkage errors expressed by false and missed links can
result in biases in the analyses for which the linkage was established [23].

1. A Type I linkage error occurs when a true non-link is identified as a match, which
is called a false positive or false match. This implies that the linked dataset will
contain linked information that should not have been linked.

2. A Type II linkage error occurs when a true link is identified as a non-match,
which is called a false negative or a missed link. This implies that the linked
dataset misses out information that should have been linked.

Four metrics are commonly used to evaluate the performance of a linkage algo-
rithm: sensitivity (recall), specificity, positive predictive value (PPV) (precision),
and negative predictive value (NPV) [9]. These metrics measure the ability of the
algorithm to correctly classify true links as identified matches and true non-links
as identified non-matches. Sensitivity or recall is the fraction of true links that
have been identified as match. Specificity is the fraction of true non-links that have
been identified as a non-match. Precision is the fraction of true links among the
identified matches. In practice, a trade-off between recall and precision takes place.
An algorithm can act liberally to find more matched pairs, resulting into high recall
and low precision. It can also act more conservatively in finding fewer non-matched
pairs, resulting into high precision and low recall. Greater recall produces more true
links identified at the cost of more non-matches. Greater precision leads to fewer
true links identified but also fewer non-matches [1]. To investigate the effect on
precision and recall, sensitivity analyses can be done by performing the linkage on
different sets of linking variables.

When data linkage is done for analyzing a rare disease, meaning that relatively
few individuals have the diagnosis, a high recall is preferred as we do not want to
miss out any diagnosis in the linked dataset. In case a common disease is subject to
the analysis, it is preferred to increase precision so we are assured that every match
identified is a true link [9].

To demonstrate the trade-off between precision and recall, one of them is often
displayed while fixing the other one. The F-measure, introduced by Christen and
Goiser [4], combines the two in a single metric; it represents the harmonic mean of
precision and recall. Although there is no absolute criterion, a data linkage algorithm
that is typified as well-performing should be able to report an F-measure of at least
95% [9].

2.5.2 Manual and Clerical Review

Manual or clerical review (i.e., human judgment) is usually performed to identify
opportunities to refine the linkage algorithm by accounting for complex cases,
such as ties, unforeseen erroneous data, or uncertainty about matches. Reviewing
a random sample of the linked dataset is a common method to perform a manual
review [9, 27]. A review of the full linked dataset is far too time-consuming and
resource intensive.
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For instance, ties are multiple pairs of records that have similar values for the
linking variables; so ties are all candidates for a link. Additional data may be
consulted to resolve these ties. One option is to generate all possible ties or pairs
of matched records in a single overview and pick out the ones that are true links [9].

As shown in Fig. 2, uncertainty about matches refers to a midrange of record
pairs which can be either a match or a non-match on the basis of how a cut-off
threshold is positioned [27].

2.5.3 Quality Reporting

Estimates on algorithmic performance on specific datasets should be reported to
characterize the validity and reliability of the linked dataset. It should be transparent
how and for what reason one metric (e.g., recall) is prioritized over another one
(e.g., precision) and reflected in optimizing the algorithms in its parameter settings.
Besides the standard metrics on sensitivity, specificity, precision, and NPV, it is
useful to report a tie statistics expressed as the number (or proportion) of records
that are linked with more than one record, a non-match statistics expressed as the
number (or proportion) of records that are not linked, and a cleansing factor telling
the number (or proportion) of records that can be linked before and after the step of
data cleansing.

When reporting results, it is also useful to conduct a subgroup analysis of the
linked records and non-linked records. Individuals with linked records may differ in
characteristics, such as diagnoses, demographics, or outcome, from individuals with
no linked records. Propensity analysis can be helpful in estimating the effect of the
linkage by accounting for all variables in the datasets (not only the linking variables)
that explain all linked records. Differences and commonalities (i.e., linkage bias)
between the original uncoupled dataset and the newly linked dataset can be essential
to understand what information has been added through the linkage.

3 Data Linkage Use Cases in Healthcare

This section is devoted to discuss the challenges of using data linkage in healthcare
and to draw up use cases in healthcare in which data linkage is required.

3.1 Legal and Privacy Challenges

One challenge when linking data in healthcare is to address privacy concerns and
restrictions. Privacy concerns are justified and necessary to protect individuals.
However, information governance for researchers can be overly complicated and
disproportionate to the risks involved in protecting patient data. Understanding and
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negotiating the legal, ethical, and governance frameworks and requirements may be
a barrier to data access for researchers unfamiliar with using linked datasets.

When data is collected, it is usually limited to a single purpose. On the other
hand, accessing linked data for a broader purpose would be more efficient and
hypothesis-agnostic (though there are regulatory limits to the breadth of consent
that can be given under the forthcoming General Data Protection Regulation—
GDPR) [10]. The easiest way to deal with such privacy concerns is to inform the
patients about the intention to link data and the intended use of the linked data,
along with any associated risks, and to ask for permission to use their data for these
secondary purposes.

Getting Patients’ Approval for Data Linkage A patient’s informed consent
provides language to allow an institute to have access to the patient’s data that are
captured under strict and well-defined conditions and purposes. Such consent does
not necessarily approve for linking the patient data to other data sources. Therefore,
either patient’s informed consent should contain language to include data linkage as
a purpose or the contract for data usage should be specified in terms to cover data
linkage as well.

Performing the Linkage Data linkage is based on coupling personal data residing
in different data sources. In most cases, the data linkage cannot be done by the
researchers since they are not allowed to access identifiable information of patients.
Hence, dedicated persons usually do the data linkage, who are persons authorized to
view identifiable data. In some cases, patient representatives (e.g., a nurse) are asked
to do the linkage. Lastly, a third trusted party can do the linkage (in the Netherlands,
i.e., ZorgTTP).

Transferring Data FromOne Location to Another Different regulations on legal
and privacy aspects apply and should be considered. Some example regulations
that outline restrictions on disclosure of personal or sensitive data are (1) the
Data-Matching Program Act in Australia [14], (2) EU General Data Protection
Regulation (GDPR, effective May 25, 2018) in Europe [10], and (3) Health
Insurance Portability and Accountability Act (HIPAA) in the USA [18].

• When data is transferred across the EU borders, adherence to the GDPR rules
attached to the data is required. Sufficient guarantees need to be implemented
regarding appropriate technical and organizational measures to ensure data
linkage is compliant with the GDPR requirements.

• A similar approach is taken for personal data collected in the USA, which is
HIPAA applicable. The HIPAA regulation puts limits and restrictions on uses
and disclosures without patient authorization. This requires data to be treated
(de-identified) before disclosing and or using data for secondary uses, or when it
is transferred outside the USA. Depending on the contracts in place, data linkage
can only take place after creating a limited dataset [7] or de-identifying a dataset.
HIPAA de-identification can be done in two ways: safe harbor which consists of
removal of HIPAA 18 identifiers [19] and using an expert determination method
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where the data is proven statistically to have a low reidentification risk attached
to it.

According to the GDPR, pseudonymization is a method of encrypted data
protection, and it may be used in acquiring consent for secondary purposes (e.g.,
research purposes). Pseudonymization is part of the de-identification process and
is performed by replacing real identifiers with pseudo-identifiers. This can be
done using a cryptographic hash function (e.g., SHA-256) using a secret key or
a lookup table. The use of only a “cryptographic hash function” (e.g., SHA-
256 (Name+Surname+DateOfBirth)) is not secure because the generated pseudo-
identifiers can be linked back to a pool of people. The option of using “cryptographic
hashing function with a secret key” is secure with the main requirement that the
key should be kept secure. The use of a lookup table is the most secure because the
generated pseudo-identifier is independent of the real identifiers. GDPR also defines
“anonymous information” as information which does not relate to an identified or
identifiable natural person or to personal data rendered anonymous in such a manner
that the data subject is not or no longer identifiable. This can be achieved using a
reidentification risk assessment (e.g., HIPAA expert determination method), but it
is highly dependent on context. De-identification and anonymization are methods
which are enabling data usage for secondary purposes.

An example of secondary purpose is research. Data linkage based on two or
more original datasets was explained in previous sections, but the resulting linked
dataset needs to be also de-identified. Data linkage on two de-identified datasets is
another challenge because the identifiers (direct and quasi) were replaced, removed,
or generalized. In this case probabilistic methods can be used for performing the
record linkage, but starting from de-identified datasets does not guarantee also a
de-identified linked dataset. Therefore, additional de-identification actions may be
needed. As we have seen in previous sections, probabilistic linkage can produce
linkage errors that can result in biases in the data analysis. The additional de-
identification step mentioned above may remove additional outlying data, which
may add to the bias of the analysis results. This depends on the nature of the data
and whether the data analysis is focused on outliers or not.

Data linkage within a single organization does not generally involve privacy
and confidentiality concerns. It is usually permitted if the patient consented the
secondary purpose for which the data is linked. An example application is the
deduplication of a customer database by a business using data linkage techniques
for conducting effective marketing activities. In this case the secondary purpose is
“marketing.” However, in many countries data linkage across several organizations,
as required in the above example, might not allow the exchange or the sharing
of database records between organizations due to laws or regulations. When
data linkage across organizations is needed, the informed consent should allow
explicit data linkage across organizations. Alternatively, the patient can be asked
retrospectively for consent of sharing the data with the new organization or system.

Bringing data together and analyzing it is not always possible, even if patient
consent is provided. Several heath organizations are reluctant in sharing their
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anonymized data with third parties, either because they fear that their data could
be de-anonymized or for proprietary reasons. Federated analysis techniques like
secure multiparty computation (SMC) could potentially help in overcoming such
issues[11]. In SMC, the objective is to jointly compute a function from the private
input of each party, without revealing such input to the other parties. That is, at
the end of the computation, all parties learn exclusively the output. This problem is
solved using secure data transfer protocols that also apply to the privacy-preserving
distributed computation[26].

3.2 Linking Data from Homecare Services

We demonstrate a use case of the data linkage process using two datasets from
homecare services. One homecare service is a personal emergency response service
(PERS) which enables subscribers at home to summon help from a 24/7 call center
after a personal incident that potentially require emergency transport to a hospital.
The other homecare service is a telehealth service which remotely manages patients
with a long-term condition at home, while there is clinical back office for close
watch and triage of patients. Data linkage of the homecare services can help in
improving the quality of service to those patients who use both services at the same
time.

Since the datasets contain de-identified data, we purposefully synthetically cre-
ated the identifiable information for which we know the truth and errors introduced.
One dataset contains 2729 records whereas the other one includes 369 records.
Along with the non-identifiable data, these two datasets contain information for the
zip code and the gender of the patients. Additional five variables are synthetically
created in order to have identifiable information: first name, last name, address
(address name and address number), age, and date of birth. For the purpose of
introducing errors to the data, we created several functions that cover misspellings
and typographical errors: (1) add a new character in a string, (2) remove the last
character of a string, (3) remove random character from a string, (4) swap two
characters in a string, and (5) swap values of two variables.

Following the relationship between file sizes, identifiers, and match weights,
we defined several test cases. For every test case, we used a probabilistic and
deterministic method to link the datasets. The test cases are shown in Table 4. For
every test case, we used the dataset with 396 records. Different input files are created
by using subsets of the second dataset counting 2729 records. Depending on the
errors introduced and the size of the subsets, the number of true links in every test
case varies. The true link status is known from ground truth data from the medical
record number of the patients involved in both datasets. We chose zip code as a
blocking variable and first name, last name, address, age, gender, and date of birth
as identifiers. The percentage of errors introduced in every test case is equal though
it reflects actual error levels occurring in practice [12].
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Table 4 Test case details

Deterministic

Probabilistic approach approach

# of record
datasets 1
and 2

# of true
links

# of
classified
true links

# of
classified
false links

Accuracy # of
classified
links

Test case 1 396 & 2729 365 364 1 0.9999 182

Test case 2 396 & 1000 121 121 0 1 68

Test case 3 396 & 396 40 40 1 0.996 23

Test case 4 396 & 396 40 40 1271 0.4682 23

Test case 5 396 & 396 40 23 0 0.9929 23

1,2

0,8

0,6

0,4

0,2

0
Test case 1 Test case 2 Test case 3

Sensi�vity 1-Specificity

Test case 4 Test case 5

1

Fig. 3 Histogram of the test cases

In Fig. 3, a histogram is shown where every test case is represented with a
green and blue bar, indicating the sensitivity and 1-specificity of the probabilistic
approach.

Test case 4 has the same settings as test case 3, but instead of installing an optimal
cut-off threshold, we used a significantly lower value. Lowering the threshold results
in more pairs to be wrongly classified as links and thus in lower accuracy. On the
other hand, if a threshold is set higher than its optimal value as in test case 5, record
pairs will be missed out as true links as can be observed by a higher Type II error
level and no Type I error though there is still high accuracy.

The test cases demonstrate a clear difference in the results of the deterministic
and probabilistic algorithm. For every test case, the deterministic algorithm reveals
about 50% of all true links, whereas the probabilistic algorithm reveals more
than 99% of the true links. Hence, the probabilistic algorithm outperforms the
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deterministic algorithm if data quality is poor due to typographical errors introduced
in the data.

4 Conclusion

Accessing and coupling data sources for combined analyses has proven itself
to be challenging [15]. First, various data sources containing data of the same
individual, event, or location need to be brought together under the appropriate
regulatory conditions, consent, and infrastructure. Second, data can amount to
staggering volumes which requires data linkage to be entrusted to computerized
methods allowing only little manual or clerical review. Third, a lack in unique and
corresponding identifiers across data sources can hamper linkage accuracy. Fourth,
data sources can come with incomplete and erroneous data that need to be cleansed
before linkage. Lastly, the actual linked result can contain errors which may bias
analyses of the linked datasets.

In this chapter, we have provided a brief overview of the state of the art on
deterministic and probabilistic methods for data linkage. Deterministic linkage
requires exact agreement of a specified set of unique identifiers between datasets,
either via a single step or successive incremental steps. It works best when identifiers
are complete and accurate. If a match for any pair of records has been identified, it
is typically a true link as a set of identifiers is unlikely to exactly match on all
identifiers at chance level. However, due to (spelling) errors in the identifiers, true
links might be missed if no precautions in data cleansing are taken.

Probabilistic linkage computes a weight for each pair of records on the basis of its
matching identifiers, expressing the likelihood that this pair is a true link. Whether
any pair of records is considered a link is based on a cut-off threshold on the weights
that is aimed at balancing false links with missed links.

Data linkage poses privacy concerns due to the possibility of misuse of patient
data and therefore should be allowed by patient consent. Consent for use of data
for secondary purposes is enough when data is linked within an organization, with
the condition that the linked dataset is de-identified. When data is linked across
organization, the record linkage must be explicit in patient’s consent. In both cases,
the data protection regulations that apply to the data (e.g., when transferred from
one location/jurisdiction to another one) are the ones applicable in the countries
where data was collected. Hashing can be used for data linkage, and it should be
done using a secret which is complex enough and stored in a secure way.

Future research on data linkage should be focused on identifying the bias
and impact on combined analyses due to linkage error in various healthcare
domains [16] and new algorithms that minimize linkage error either by better and
efficient probabilistic weight estimates [13] or by imputing the potential matches of
record pairs [12].
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