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1 Introduction

Over the ages, humans continuously use written and spoken language as a means
of expressing and communicating our conceptualization of abstract and real-life
scenarios of varying complexity. Documented narratives are viewed as essential
sources of knowledge that can be transferred and synthesized to retrieve pertinent
insights for decision-making across all domains of expertise. The explosive growth
and access to unstructured data in the digital universe since the birth of the
Internet have helped establish natural language processing (NLP) as one of the
most important technologies needed to address complex and knowledge-dependent
tasks such as automated search, machine translation, automated question answering,
and opinion mining. In particular, the emergence of electronic health record (EHR)
systems since the 1960s has incrementally resulted in large volumes of clinical
free text documents available across healthcare networks, with the huge amount of
data inspiring research and development focused on novel clinical NLP solutions to
optimize clinical care and improve patient outcomes across the care continuum [1].

In recent years, deep learning techniques have demonstrated superior perfor-
mance over traditional machine learning (ML) techniques for various general-
domain NLP tasks, e.g., language modeling, parts-of-speech (POS) tagging, named
entity recognition, paraphrase identification, and sentiment analysis. Clinical docu-
ments generally pose unique challenges compared to general-domain text due to
the widespread use of acronyms and nonstandard clinical jargons by healthcare
providers, inconsistent document structure and organization, and requirement for
rigorous de-identification and anonymization to ensure patient data privacy. Ulti-
mately, overcoming these challenges could foster more research and innovation
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for various useful clinical applications including clinical decision support, patient
cohort identification, patient engagement support, population health management,
pharmacovigilance, personalized medicine, and clinical text summarization.

This tutorial chapter is an overview of how deep learning techniques can be
applied to solve NLP tasks, followed by a literature survey of existing deep learning
algorithms applied to clinical NLP problems, and, finally, a detailed description of
various deep learning-driven clinical NLP applications developed at the artificial
intelligence lab in Philips Research in recent years—such as diagnostic inferencing
from unstructured clinical narratives, relevant biomedical article retrieval based on
clinical case scenarios, clinical paraphrase generation, adverse drug event (ADE)
detection from social media, and medical image caption generation.

2 Deep Learning for NLP

NLP is a field intersecting computer science, artificial intelligence, and linguistics
where the goal is to process and understand human language to perform useful
tasks (e.g., automated question answering, language translation). NLP is generally
considered to be an AI-complete problem due to various complexities involved in
representing, learning, and using linguistic, situational, world, or visual knowledge.
Given an input text, NLP typically involves processing at various levels such as
tokenization, morphological analysis, syntactic analysis, semantic analysis, and
discourse processing.

Deep learning is a type of machine learning technique that utilizes multi-
layered (hence the term deep) neural network architectures to learn hierarchical
representations of data. Traditional machine learning approaches require labor-
intensive feature engineering for data representation [2]. By contrast, deep learning
approaches can automatically learn multiple levels of representations with increas-
ing order of abstractions [3]. Figure 1 shows an example of deep neural network
architecture. The recent surge in deep learning can be credited to the following:
the availability of a large amount of unlabeled data as well as faster computing
resources with powerful graphics processing units (GPUs), development of new
algorithms and frameworks, and easier adaptations/transformations of learned
features/representations from data to a related or a new domain of interest (transfer
learning).

Deep learning typically works well to solve nonlinear classification problems
with naturally occurring hierarchical inputs such as language and images. In recent
years, nonlinear neural network models applied to NLP techniques have achieved
promising results over approaches that use linear models such as support vector
machines (SVMs) or logistic regression [4].

In this section, we will introduce how deep learning techniques can be applied
to solve NLP problems in general. First, we will provide a brief description of
how input representations are generated for NLP applications. Then, we will focus
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Fig. 1 A deep neural network architecture

on two deep learning architectures that are widely used by the NLP research
community: convolutional neural networks (CNNs) and recurrent neural networks
(RNNs). Finally, we will describe memory networks and deep reinforcement
learning to facilitate the understanding of clinical NLP applications discussed in
Sect. 3.2.

2.1 Input Representation

Natural language inputs are typically represented as features such as words, named
entities, and parts-of-speech tags. Bag-of-words (BOW) modeling or one-hot vector
encoding techniques can be used to represent the meaning of the words in a
given text. In BOW modeling, the presence or absence of a word in a sentence
compared to the underlying corpus can be used to create a fixed-length vector
representation. Alternatively, term frequency-inverse document frequency (TF-IDF)
scoring can be used to create vector representations of input text. In one-hot vector
encoding, each word can be represented as a vector of size n, where n stands
for the dimensionality of the vector denoting the number of words present in the
corpus/vocabulary. For example, if there are ten words in the vocabulary, each word
can be represented as a ten-dimensional vector with one specific position set to 1 and
the rest to 0. The main limitations of BOW and one-hot encoding approaches include
inconsideration of word orders, dependency of dimensionality on the vocabulary
size, and, consequently, sparsity [4, 5].

Distributional similarity-based representations can be used to alleviate some of
the aforementioned limitations by forming a window-based co-occurrence matrix1

1This matrix can be constructed based on simple frequency count of co-occurring words in a fixed
window size across all possible combinations of the words in a corpus. The matrix can be plotted in
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for an underlying corpus. However, there still remain dimension size- and sparsity-
related issues, which can be alleviated further by reducing the dimensions via
techniques such as singular value decomposition (SVD) [6]. But, SVD involves
higher computational cost with difficulty to include new words/documents into the
considered corpus. A solution to this is to directly learn low-dimensional word
vectors from the corpus. Instead of computing co-occurrence counts, the main idea
here is to either predict surrounding words in a certain window of each word (skip-
gram model) or predict each word given the surrounding words (continuous BOW
or CBOW model) to represent words in terms of vectors (Word2Vec) [7]. A feed-
forward neural network architecture can be used to learn the vector representations
from a corpus by minimizing a loss function such as hierarchical softmax, cross-
entropy, negative sampling, etc. using an optimization technique such as stochastic
gradient descent (SGD) [8].

Deep learning for NLP applications mainly rely on learning high-dimensional
vector representations of character-level n-grams, words, phrases, sentences, or
documents and their relationships (called embeddings) using deep neural network
architectures [5, 9]. The trained language model transforms semantically similar
textual units into similar vector representations [8, 10]. The main advantage of such
architecture over the traditional bag-of-words model is its ability to capture the
embedded ordering and semantics by learning fixed-length vector representations
for variable-length text structures (via neural network architectures like RNNs),
thereby allowing the training of generative models for complex NLP tasks such
as machine translation and dialogue generation.

2.2 Convolutional Neural Networks (CNNs)

CNN is a multilayer neural network that uses a special kind of linear mathematical
operation called convolution instead of general matrix multiplication in at least
one of its layers. CNNs automatically learn the values of the filters (a.k.a. kernels)
from the input data based on an underlying task. Each filter essentially encodes a
local view of lower-level features into a higher-level representation via operating
a sliding window function to the input. Typically, a CNN is composed of three
layers/stages: convolution, detection (nonlinear activation), and pooling—to portray
two important aspects: location invariance (considers the presence of a feature as
important, not the specific location) and local compositionality (encodes lower-level
features into higher-level representations as they are passed to higher layers) [3]. The
convolution layer applies several convolutions parallelly to generate corresponding
linear activations, and then, the detector layer applies a nonlinear activation function
to each linear activation. The pooling layer computes the maximum value (max

a multidimensional space to essentially group the words with similar co-occurrence values together
denoting their semantic and syntactic relationships.
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Fig. 2 A simple CNN architecture

pooling) or the average value (average pooling) of a subset of outputs from the
underlying layers in order to provide it as input to the higher layers. Stacks of
convolutional and pooling layers can be added on top of a pooling layer to construct
a deep convolutional neural network. Figure 2 shows a simple CNN architecture.
W1,W2, . . . ,W6 are the weights of the model, and shared weights are shown with
the same color. Note that convolution and detection are plotted together in the figure
using rectified linear unit (ReLU) symbols in the convolution layer nodes.

In the NLP domain, CNNs are generally shown to be effective in solving classifi-
cation tasks [11] such as sentiment analysis, spam detection, or topic categorization
because they work similar to the BOW principles (i.e. location invariance being
similar to the lack of consideration of word order). Multiple filters/kernels can be
applied to learn various features from the input data. Each filter can essentially
transform a set of words in a certain window of size k to a d-dimensional (each
dimension is also known as a channel) vector representation that embeds key aspects
of the words in consideration [12]. Different filters can focus on certain words
inside variable window sizes to capture different features from the corpus. For
example, in a sentiment analysis task, a filter can detect a negation feature, e.g., “not
amazing” from the sentence “the product is not amazing.” However, since CNNs
do not capture the global information from the sentence due to location invariance
and local compositionality properties, they are not able to distinguish the difference
between “not amazing” and “amazing not (so much).” Hyperparameters of a CNN
model include number of filters, convolution type (narrow vs. wide), stride size,2

and number of channels.
Let xi(t) be the input vector (which can be pre-trained on a large unlabeled

dataset or can simply be initialized as one-hot encodings) for the i-th word wi(t)

of input sentence s, W be the corresponding weight matrix called kernel/filter, b be
the bias vector, and σ be the component-wise nonlinear activation function; then a
computational unit of the convolutional layer associated with the i-th word can be
formulated as follows:

σ(W · xi(t) + b) (1)

2Stride size denotes the amount by which a filter is shifted across the input data.
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W and b are the parameters of the model that are learned through training on
a labeled dataset and can be shared across all neurons of the same layer. The
rectifier, σ(x) = max(0, x), can be used as the nonlinear activation function
(other nonlinear activation functions include hyperbolic tangent or tanh(x)), max
pooling for computing higher-layer abstractions, and stochastic gradient descent for
optimization where the objective is to minimize the square loss or cross-entropy loss
with respect to the labeled training set. Finally, the output layer of the network may
use a linear classifier that exploits the learned features to predict the label for any
classification task [11, 13, 14].

In contrast to RNNs (discussed in the next subsection) that maintain a hidden
state to encode the previous sequence of the input data, CNNs do not rely on the
past steps to allow parallel processing of input elements for faster computations.
Thereby, CNNs are recently shown to achieve state-of-the-art results in sequence-to-
sequence learning tasks, e.g., neural machine translation, at a faster speed compared
to RNN-based models [15, 16].

2.3 Recurrent Neural Networks (RNNs)

RNNs generally work well for modeling sequences. Hence, they are used to solve
various NLP tasks due to their ability to deal with variable-length input and output
[17]. The RNN network architecture is similar to the standard feed-forward neural
network with the exception that hidden unit activation at a particular time t is
dependent on that of time t − 1.

Figure 3 shows an unrolled RNN architecture, where xt , yt , and ht are the input,
output, and hidden state at time step t , and W,U , and V are the parameters of the
model corresponding to input, hidden, and output layer weights (shared across all
time steps).

The hidden state ht is essentially the memory of the network as it can capture
necessary information about an input sequence by exploiting the previous hidden
state ht−1 and the current input xt as follows:

ht = f (Wxt + Uht−1), (2)

Fig. 3 Generic recurrent
neural network architecture
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where f is an element-wise nonlinear activation function. The output yt is computed
similarly as a function of the memory at time t: V ht . Although RNN is theoretically
a powerful model to encode sequential information, in practice it often suffers from
the vanishing/exploding gradient problems while learning long-range dependencies
[18]. Long short-term memory (LSTM) networks [19] and gated recurrent units
(GRU) [20] are known to be successful remedies to these problems.

A LSTM unit basically computes the hidden state ht using a different approach
than the generic RNN framework by introducing a gating mechanism. The main
idea is to control how much information to keep from the old memory and the most
recent information. Formally, LSTM computes ht using the following equations:

it = σ(Wixt + Uiht−1)

ft = σ(Wf xt + Uf ht−1)

ot = σ(Woxt + Uoht−1)

gt = tanh(Wgxt + Ught−1)

ct = ct−1 � ft + gt � it

ht = tanh(ct ) � ot (3)

where it , ft , and ot are the input, forget, and output gates, gt is the candidate
hidden state, σ(.) and tanh(.) are the element-wise sigmoid and hyperbolic tangent
functions, and � denotes element-wise multiplication. Note that all three gates and
the candidate hidden state are computed in a similar fashion as Eq. (2) with different
weight parameters. ct is the internal memory state that is essentially computed based
on the previous memory state at time t − 1 and the new input information at time
t . Finally, ht is calculated by combining the memory with the output gate, which
determines how much of the internal state information needs to be passed along to
the higher layers of the network.

GRU is a simplified version of LSTM with less number of parameters per unit,
and thus, the total number of parameters can be greatly reduced for a large neural
network [20]. In contrast to LSTM, GRU does not have an internal memory state and
the output gate; rather it introduces two gates termed update and reset to accomplish
the same goal. In fact, GRU computes the hidden state ht in a slightly alternative
fashion as follows:

zt = σ(Wzxt + Uzht−1)

rt = σ(Wrxt + Urht−1)

kt = tanh(Wkxt + Uk(rt � ht−1))

ht = (1 − zt ) � kt + zt � ht−1 (4)
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where zt and rt are the update gate and the reset gate and kt is the candidate hidden
state. Note that zt and rt are computed similarly as LSTM (using different weight
parameters) where zt determines how much of the old memory to keep, while rt
denotes how much new information is needed to be combined with the old memory.
Finally, kt is computed by exploiting rt , and ht is calculated to denote the amount
of information needed to be transmitted to the following layers.

2.4 Memory Networks (MemNNs)

MemNNs are a class of models that contain an external memory and a controller
to read from and write to the memory [21, 22]. MemNNs read a given input
source and a knowledge source several times (hops) while updating an internal
memory state. The memory state is the representation of relevant information from a
knowledge source optimized to solve a given task. In particular, a MemNN stores all
information (e.g., knowledge base, background context) into the external memory,
assigns a relevance probability to each memory slot using content-based addressing
schemes, and reads contents from each memory slot by taking their weighted
sum. MemNNs are generally harder to train than traditional networks as they need
supervision at every layer and they do not scale easily to a large memory. End-to-
end memory networks [21] and key-value memory networks (KV-MemNNs) [23]
can alleviate these issues by training multiple hops over memory (allowing for less
supervision) and compartmentalizing memory slots into hashes.

The basic structure of a MemNN involves learning memory representations
from a given knowledge base. Memory is typically organized as t number of
slots, m1, . . . ,mt . For a given input text x1, . . . , xn, an external knowledge base
represented as key-value pairs (k1, v1), (k2, v2), . . . , (km, vm), and the ground truth
outputs y, a modelF can be learned as the following:

F (xn, (km, vm)) = ŷ → y (5)

where the function F has the following parts I (input memory representation), G
(generalization), O (output memory representation), and R (response)which are the
standard components of MemNNs [22].

2.5 Deep Reinforcement Learning

Reinforcement learning is a machine learning technique that considers an agent
to learn to take actions in an environment such that it can achieve the maximum
possible reward in the future. The environment can bemodeled as aMarkov decision
process (MDP) that includes a set of states, a set of actions, a transition function to
model the probability to move from one state to the other after taking an action,



Clinical Natural Language Processing with Deep Learning 155

and a reward function that assigns a reward to the agent after its transition to a new
state. In a state s, the agent takes an action a to get to the next state, s′ = s + a. A
reward function r(s, a) can be used to estimate the reward at each state s after taking
an action a. A reinforcement learning problem can be formulated by estimating a
state-action value function Q(s, a), which determines the optimal action a to take
in a state s using the Q-learning technique [24]. In order to learn the Q-value, the
iterative updates are derived from the Bellman equation [25]:

Qi+1(s, a) = E[r + γ max
a′ Qi(s

′, a′)|s, a], (6)

where γ is a discount factor for the future rewards and the expectation is over the
whole training process. It is impractical to maintain the Q-values for all possible
state-action pairs. Hence, the Q-function can be approximated using a deep Q-
network (DQN) architecture [26] that uses a deep neural network (hence called
deep reinforcement learning) to obviate the need of explicitly designing the state
and action space. The DQN architecture approximates the Q-value function and
predicts Q(s, a) for all possible actions.

3 Clinical NLP with Deep Learning

In this section, we will focus on the application of deep learning techniques for
clinical NLP problems. First, in Sect. 3.1 we will discuss the most notable recent
clinical NLP applications developed by the research community that leverage deep
learning. Then, in Sect. 3.2 we will describe some deep learning-driven clinical NLP
applications developed at the AI lab in Philips Research.

3.1 Literature Survey

CNNs have been successfully applied to a variety of biomedical NLP tasks in
the literature. For example, CNNs are effectively used to build a biomedical
article classification model to identify the hallmarks of cancer associated with
a given article abstract [27], to learn time expression representation for clinical
temporal relation extraction [28], to model the article relevance with respect to the
query for the task of biomedical article retrieval [29], to identify protein-protein
interaction relations from biomedical articles [30], to extract drug-drug interactions
with an attention mechanism [31], to classify radiology free text reports based
on pulmonary embolism findings [32], to classify patient portal messages towards
providing necessary support [33], and to recognize named entities from biomedical
text [34]. CNN-based models are also shown to achieve better performance over
the traditional machine learning classifiers for automated coding of radiology
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reports using the International Classification of Diseases (ICD-10) coding scheme
[35]. Inspired by the aforementioned success of CNNs for various clinical NLP
applications, we proposed a novel semi-supervised CNN architecture (discussed
in Sect. 3.2.4) for automated ADE detection in social media. Unlike conventional
systems [36–41] that typically use lexicon- and traditional machine learning-based
approaches relying on expert annotations to generate large amounts of labeled
data to train supervised machine learning models for ADE detection, our proposed
system can efficiently learn from large volumes of unlabeled data in combination
with a relatively small seed set of labeled ADEs.

Some recent works explore the use of RNN architectures for the task of detecting
clinical events such as disorders, treatments, tests, and adverse drug events from
free text EHR notes [42–44] and for de-identification of patient data in EHRs
[45–47]. Bidirectional RNNs/LSTMs are used to develop models for missing
punctuation prediction in medical reports [48], for the task of biomedical event
trigger identification [49], to model relational and contextual similarities between
the named entities in biomedical articles to understand meaningful insights towards
providing appropriate treatment suggestions [50], to extract clinical concepts from
EHR reports [51], and for named entity recognition from clinical text [52, 53].
A recent work builds a bidirectional LSTM transducer by leveraging knowledge
graph embeddings to detect adverse drug reaction in social media data [54].
RNNs are also used in combination with CNNs to learn disease name recognition
models with word- and character-level embedding features [55]. Motivated by
these prior works, we proposed an attention-based bidirectional RNN architecture
inside an encoder-decoder framework for the task of clinical paraphrase generation
(discussed in Sect. 3.2.3) by casting it as a monolingual neural machine translation
problem. Unlike earlier work on clinical domain-specific paraphrasing that uses
some unsupervised textual similarity measures to generate/extract lexical and
phrasal paraphrases from monolingual parallel and comparable corpora [56, 57], or
adopts a semi-supervised word embedding model for medical synonym extraction
[58], our work was the first to propose a neural network-based architecture that
can model word/character sequences to essentially address all granularities of
paraphrase generation [59] for the clinical domain [60]. Furthermore, we have
leveraged the strengths of deep CNNs and attention-based RNNs in an encoder-
decoder framework to train medical image caption generation models (discussed in
Sect. 3.2.5) that achieved superior results in a benchmark evaluation challenge.

As stated in Sect. 2.4, variants of memory networks provide flexibility to
leverage knowledge sources to effectively accomplish NLP tasks requiring complex
reasoning and inferencing, e.g., question answering. In this regard, we proposed a
novel condensed memory network architecture for the task of clinical diagnostic
inferencing from unstructured clinical text narratives (see Sect. 3.2.1 for details).
Unlike conventional clinical decision support (CDS) systems that leverage LSTM
neural networks trained on time series data for diagnosis classification [61, 62], our
work was the first to propose the use of a novel memory network model trained
on unstructured clinical texts to recommend differential diagnoses. We have also
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utilized key-value memory networks for clinical diagnostic inferencing as a core
component of our biomedical article retrieval system discussed in Sect. 3.2.2.

Existing applications of reinforcement learning for related CDS tasks mainly
focus on modalities like medical imaging [63] or specific domain-dependent use
cases and clinical trials [64–66]. Some prior works demonstrate the utility of
deep reinforcement learning techniques for challenging tasks like playing games
and entity extraction [26, 67, 68]. These works inspired us to propose novel
deep reinforcement learning-based algorithms for clinical diagnosis inference from
unstructured text narratives (discussed in Sect. 3.2.1).

3.2 Applications Developed in Philips Research

3.2.1 Diagnostic Inferencing

Clinicians perform complex cognitive processes to infer the probable diagnosis
after observing several variables such as the patient’s past medical history, current
condition, and various clinical measurements. The cognitive burden of dealing
with complex patient situations could be reduced by having an automated assistant
provide suggestions to physicians of the most probable diagnoses for optimal
clinical decision-making.

We explored the discriminatory capability of the unstructured free text clinical
notes to correctly infer the most probable diagnoses from a complex clinical
scenario [69]. We also explored the use of an external knowledge source like
Wikipedia from which the model can extract relevant information, such as signs
and symptoms for various diseases. Our main goal was to combine such an external
clinical knowledge source with the free text clinical notes and use the learning
capability of memory networks to correctly infer the most probable diagnoses.

For real-world tasks, a large amount of memory is required to achieve state-of-
the-art results. Following the effective use of memory networks in solving question
answering tasks, we introduced condensed memory networks (C-MemNNs), an
approach to efficiently store condensed representations in memory, thereby maxi-
mizing the utility of limited memory slots. We showed that a condensed form of
memory state which contains some information from earlier hops learns efficient
representation. We took inspiration from human memory retention patterns for this
model. Humans can learn new information and yet retain relatively older mem-
ories as abstractions. We formulated the clinical diagnostic inferencing problem
as a supervised multi-label multi-class classification problem using C-MemNNs.
Figure 4 demonstrates the iterative updating process of the condensed memory
state (a, left) and the overall condensed memory network architecture (b, right) for
clinical diagnostic inferencing. Interested readers are referred to [69] for in-depth
details.
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Fig. 4 Condensed memory networks for clinical diagnostic inferencing [69]

MIMIC-III (Medical Information Mart for Intensive Care III) [70], a large
freely available clinical database, was used for our experiments. It contains phys-
iological signals and various measurements captured from patient monitors and
comprehensive clinical data obtained from hospital medical information systems
for over 58K intensive care unit (ICU) patients. We used the noteevents table from
MIMIC-III: v1.3, which contains unstructured free text clinical notes for patients.
Wikipedia pages corresponding to the diagnoses in the MIMIC-III notes are
utilized as our external knowledge source. Empirical results and analyses revealed
that C-MemNN improves the accuracy of clinical diagnostic inferencing over other
classes of memory networks by a considerable margin (up to 23% improvement in
average precision over the top five predictions with higher number of memory hops)
[69].

The efficacy of a supervised machine learning model largely depends on the size
of the annotated datasets used for training. Creation of labeled datasets requires
expert-derived annotations, which are typically very expensive and time-intensive
to obtain. To address the scarcity of large annotated datasets, we also formulated the
diagnostic inferencing problem as a sequential decision-making process using deep
reinforcement learning [71].

Extracting appropriate clinical concepts from free clinical text is a critical first
step for diagnosis inferencing. Existing clinical concept extraction tools are limited
to the original content of the text as they do not consider evidence from external
resources. Hence, clinical concepts extracted by these tools often lack aspects
related to in-domain normalization, which may have a negative impact on the
downstream clinical inferencing task. External (online) health-related resources
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Fig. 5 Clinical diagnostic inferencing via improving clinical concept extraction with deep rein-
forcement learning [71]

can serve as the evidence to improve the original extracted concepts using one of
the following ways: mapping of incomplete concepts to corresponding expressive
concepts, e.g., personality → personality changes; paraphrasing the concepts,
e.g., poor memory → memory loss; and supplementing with additional concepts.

We proposed a novel clinical diagnosis inferencing approach that uses a deep
reinforcement learning technique via a MDP formulation to incrementally learn
about the most appropriate clinical concepts that best describe the correct diagnosis
by using evidences gathered from relevant external resources (Fig. 5). During
training, the agent tries to learn the optimal policy through iterative search and
consolidation of the most relevant clinical concepts related to the given patient con-
dition. A deep Q-network architecture [26] is trained to optimize a reward function
that measures the accuracy of the candidate diagnoses and clinical concepts. Our
preliminary experiments on the Text REtrieval Conference (TREC) clinical decision
support (CDS) track3 dataset [72] demonstrated the effectiveness of our system over
various non-reinforcement learning-based baselines (up to 104% improvement in
mean reciprocal rank (MRR) scores and up to 56% improvement in average recall
at the top five diagnoses) [71].

Recently, we proposed another novel approach for clinical diagnostic inferencing
that focuses on the clinician’s cognitive process to infer the most probable diagnoses
from clinical narratives. Given a clinical text scenario, physicians typically review
the sentences sequentially, skipping irrelevant parts and focusing on those that
would contribute to the overall understanding of the clinical scenario. While
assimilating the sentences, clinicians generally try to recognize a logical pattern or

3http://www.trec-cds.org/.

http://www.trec-cds.org/
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Fig. 6 Replicating clinician’s cognitive process for clinical diagnostic inferencing using deep
reinforcement learning [73]

clinical progression similar to one or more prior patient encounters towards arriving
at a provisional diagnosis. Ultimately, the intuition of the clinicians is guided by
understanding these sentences, and they can make an overall assessment of the
scenario based on the narrative and/or additional evidence obtained from relevant
external knowledge sources. Our new system replicated this cognitive flow by
using a deep reinforcement learning technique (Fig. 6). During training, the agent
learns the optimal policy to obtain the final diagnoses through iterative search for
candidate diagnoses from external knowledge sources via a sentence-by-sentence
analysis of the inherent clinical context. A deep Q-network architecture [26] was
trained to optimize a reward function that measures the accuracy of the candidate
diagnoses. Our model predicted the differential diagnoses by utilizing the optimum
policy learned to maximize the overall possible reward for an action during training.
Extensive experiments on the TREC CDS track [72, 74] datasets demonstrated the
effectiveness of this novel approach over several non-reinforcement learning-based
systems (up to 100% improvement in terms of F -scores) [73].

We envisage that our recent works on clinical diagnostic inferencing can sup-
port the typically multitasking clinicians in considering some relevant differential
diagnoses that could otherwise be ignored leading to inadvertent diagnostic errors.
Also, relatively less skilled healthcare providers, e.g., nurse practitioners, can use
the proposed system as a source of second opinion before contacting a physician
towards accurately diagnosing and managing their patients.
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3.2.2 Biomedical Article Retrieval

The main objective of the TREC CDS track was to retrieve a ranked list of the
top biomedical articles that can answer generic clinical questions related to three
categories: diagnosis, test, and treatment given a short clinical narrative.

We participated in this challenge [75] and our approach (Fig. 7) centered on
three steps: (1) topical keyword analysis, identifying the most clinically relevant
keywords from the given topic descriptions, summaries, and clinical notes using a
clinical NLP engine [76]; (2) diagnostic inferencing, reasoning based on the topical
keywords to generate the diagnoses, tests, and treatments using the underlying
clinical contexts represented within a key-value memory network, powered by an
external clinical knowledge source; and (3) relevant article retrieval, retrieving and
ranking pertinent biomedical articles based on the topical keywords and clinical
inferences from steps (1) and (2).

We built a novel end-to-end diagnostic inferencing model using key-value
memory networks [23] trained on a large collection of MIMIC-II discharge notes
along with the Wikipedia articles in the clinical medicine category in order to
capture the overall context of a given clinical note towards inferring the most
probable diagnoses. The list of possible diagnoses was then used to extract a list of
candidate Wikipedia articles to mine related tests and treatments (from sections and
subsections of theWikipedia article) accordingly.As the final step, topical keywords
and the corresponding diagnoses, tests, and treatments obtained from the diagnostic

Fig. 7 System architecture for biomedical article retrieval
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inferencing step were used to retrieve candidate biomedical articles by searching
through the given TREC CDS corpus of over 1.25M PubMed Central4 articles
(indexed using Elasticsearch). Evaluation results showed additional gains with the
use of the key-valuememory network-based diagnostic inferencing approach for our
clinical question answering system. In particular, on average our key-value memory
network model with notes as input consistently outperformed the knowledge graph-
based system for notes and descriptions as inputs in terms of infNDCG, R-prec,
and Prec(10) scores. This system can be used to provide clinicians with biomedical
articles containing scientific findings focused on a clinical scenario towards better-
informed clinical decision-making.

3.2.3 Clinical Paraphrase Generation

Clinical paraphrase generation is important in building patient-centric decision
support applications where users are able to understand complex clinical jargons via
easily comprehensible alternative paraphrases. For example, the complex clinical
term “nocturnal enuresis” can be paraphrased as “nocturnal incontinence of urine”
or “bedwetting” to better clarify a well-known condition associated with children.
We proposed Neural Clinical Paraphrase Generation (NCPG), a novel approach
to cast the clinical paraphrase generation task as a monolingual neural machine
translation (NMT) problem. We used an end-to-end neural network in the form
of an attention-based bidirectional RNN architecture within an encoder-decoder
framework (Fig. 8) to perform the task [60].

Extensive experiments on a large curated clinical paraphrase corpus built on a
benchmark parallel paraphrase database, PPDB 2.0 [77], along with a comprehen-
sive medical metathesaurus [78], show that the proposed attention-based NCPG
model can outperform an RNN encoder-decoder based strong baseline for word-
level modeling (up to 27% improvement in BLEU scores), whereas character-level
models can achieve further improvements over their word-level counterparts (up
to 25% improvement in BLEU scores). Table 1 shows a few example paraphrases
generated by the proposed models.

Overall, the models demonstrate comparable performance relative to the state-
of-the-art phrase-based conventional machine translation models (e.g., Moses).
Recently, we further extended this work to go beyond lexical and phrasal para-
phrasing and proposed neural network-based models for sentence-level clinical
paraphrase generation and simplification [79]. We believe that these models can be
used to motivate patient engagement across the care continuum towards achieving
desired outcomes.

4http://www.ncbi.nlm.nih.gov/pmc/.

http://www.ncbi.nlm.nih.gov/pmc/
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Fig. 8 Attention-based
bidirectional RNN
architecture for clinical
paraphrase generation [60]

Table 1 Paraphrase examples [60]

Source: Target:

Contagious diseases Communicable diseases

Model Paraphrase

Baseline (Word) Habitat

Baseline (Char) Contact diseases

NCPG (Word) An infectious disease

NCPG (Char) The diseases

Phrase-based model (Moses) Infectious diseases

Source: Target:

Secondary malignant neoplasm of spleen Secondary malignant deposit to spleen

Model Paraphrase

Baseline (Word) Secondary cancer of spleen

Baseline (Char) Separation of spleen

NCPG (Word) Secondary malignant neoplasm of spleen

NCPG (Char) Secondary malignant neoplasm

Phrase-based model (Moses) Metastatic ca spleen
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3.2.4 Adverse Drug Event (ADE) Detection from Social Media

Adverse drug events (ADEs) refer to negative side effects that may occur as a
result of medication use. Monitoring and detection of such events (also called,
Pharmacovigilance) are necessary to minimize potential health risks of patients by
issuing warnings or recommending possible withdrawals of harmful pharmaceutical
products.

Following pharmaceutical development, drugs are typically approved for use by
the general public after going through clinical trials in limited settings. It is often
impossible to uncover all adverse effects during these clinical trials. To address this
issue, pharmaceutical and regulatory organizations require post-market surveillance
programs to capture previously undiscovered adverse events. Traditional post-
market ADE surveillance systems suffer from underreporting and significant time
delays in data processing, resulting in high incidence of unidentified adverse events
related to medication use.

In the past decade, the rise of social media platforms (e.g., Twitter) has
revolutionized online communication and networking. Due to the high volume and
velocity of messages generated and distributed, social media data has been used for
real-time information retrieval and trends tracking, including digital disease surveil-
lance. Hence, we proposed a semi-supervised CNN-based architecture (Fig. 9) that
automatically detects ADEs as described in social media (e.g., Twitter feeds) [14].

Unlike conventional systems that typically rely on large amounts of labeled data
to train supervised machine learning models, our system can efficiently learn from
large volumes of unlabeled data in combination with a relatively small seed set of
labeled ADEs. Our experimental results showed that the proposed system achieves

Fig. 9 Semi-supervised CNN architecture for ADE detection [14]
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better performance compared to traditional supervised machine learning algorithms
for recommendations of ADEs from real-time social media streams (up to 9.9%
improvement in F1 scores) [14]. The proposed system can be used to augment
official post-market ADE surveillance systems. Readers are referred to [14] for
additional technical details and analyses.

3.2.5 Medical Image Caption Generation

Visual perception and cues remain an important component for efficient under-
standing of natural language. Automatically understanding the content of an image
and describing in natural language is a challenging task which has gained a lot of
attention from computer vision and NLP researchers in recent years through various
challenges for visual recognition and caption generation.

Due to the ever-increasing number of images in the medical domain that are
generated across the clinical diagnostic pipeline, automated understanding of the
image content could especially be beneficial for clinicians to provide useful insights
and reduce their overall cognitive burden during patient care. Motivated by this need
for automated image understandingmethods in the healthcare domain, ImageCLEF5

recently organized its inaugural caption prediction and concept detection tasks
[80, 81]. The main objective of the concept detection task was to retrieve the
relevant clinical concepts (e.g., anatomy, finding, diagnosis) that are reflected in
a medical image, whereas in the caption prediction task, participants were supposed
to leverage the clinical concept vocabulary created in the concept detection task
towards generating a coherent caption for each medical image.

We submitted several runs for caption prediction and concept detection tasks
by using an attention-based image caption generation framework (Fig. 10). The
attention mechanism automatically learns to emphasize on salient parts of the
medical image while generating corresponding words in the output for the caption
prediction task and corresponding clinical concepts for the concept detection task.
In particular, motivated by the success of prior works in solving general-domain
image captioning tasks, we used an encoder-decoder-based deep neural network
architecture for the caption prediction task [84], where the encoder uses a deep
CNN [85] to encode a raw medical image to a feature representation, which is in
turn decoded using an attention-based RNN to generate the most relevant caption
for the given image. Figure 11 shows an example caption generated by our proposed
model.

We followed a similar approach to address the concept detection task by treating
it as a text generation problem. Our system was ranked first (with mean BLEU score
of 0.32) in the caption prediction task among submissions with no prior exposure to
the test set, while we showed a decent performance (with mean F1 score of 0.12) in

5http://www.imageclef.org/2017/caption.

http://www.imageclef.org/2017/caption
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Fig. 10 Attention-based image caption generation framework [82, 83]

Ground Truth: CT scan of the abdomen with contrast of Case 2
showing a large, loculated liver abscess measuring 10 cm.

Model: ct scan of the abdomen on the first visit shows an
irregular huge low density mass .

Fig. 11 Example caption generated by our model
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the concept detection task. Interested readers are referred to [82, 83] for additional
details and examples.

4 Conclusion

In this tutorial chapter, we have presented an overview of how deep learning tech-
niques can be applied to solve NLP tasks in general, followed by a literature survey
of existing deep learning algorithms applied to clinical NLP problems, and, finally,
a description of various deep learning-driven clinical NLP applications developed
at the artificial intelligence (AI) lab in Philips Research in recent years—such as
diagnostic inferencing from unstructured clinical narratives, relevant biomedical
article retrieval based on clinical case scenarios, clinical paraphrase generation,
adverse drug event (ADE) detection from social media, and medical image caption
generation. Our proposed models have demonstrated the effectiveness of deep
learning techniques to address various clinical NLP problems as they achieved state-
of-the-art results compared to lexicon-, knowledge source-, and traditional machine
learning-based systems.
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