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1 Introduction and Related Work

Clinical decision support is an emerging area where the combination of information
systems and humans interacts to perform decisions on diagnostics or treatment
selection [1, 43]. In this interaction, previously collected data is processed by the
system, interfaced to the user, e.g., by means of visualization, and a final decision is
made by a human being [26].

In modern information systems, the available information is typically much
more than one single individual can interpret within the time constraints that make
information—and inferred knowledge—useful for a clinical task [24]. Therefore,
trade-offs need to be made on what information is presented and how it is presented
to best accomplish the target task.

With the amount of information being overwhelming for a single individual
to interpret, we need to limit the amount of information presented to the end-
user. Tailoring the presented information to the task at hand, e.g., deciding which
treatment is best for a patient, allows for selection of a subset of information
useful for that particular task. However, we can never assume that a certain piece
of information will not be useful. Hence, there is a trade-off in that potentially
useful information may be lost if we limit the amount presented to the end-user too
much, while interpretability can be severely compromised if too much information
is presented.
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The manner of presentation also involves a certain trade-off, as there is a wide
range of methods for presenting information to an end-user, ranging from tables
to risk scores arising from supervised learning methods correlating past data with
known outcomes, and visual summaries of data. Different representations may
disclose patterns in the data and as such provide the end-user with insights that
can influence the final decision. Consider, for example, the case presented in [7]. In
the search for a predictive model for death from pneumonia, a neural network and a
rule-based model were evaluated. While the neural network was more accurate, the
rule-based model was in the end preferred, as it gave more insight into the reasoning
of the predictive model. The rule-based model allowed the user of the model to
identify possibly useless and even risky relations in the model. In this particular
example, a relation was found between presence of asthma as a comorbidity and
risk of death, but the relation was not as expected. It was found that having asthma
decreased the risk of death. This is explained by the fact that patients with asthma
presenting with pneumonia were usually admitted directly to the intensive care unit.

Ideally, the information presented to the end-user should be transparent and
unbiased. This means that the source of the information should be transparent (how
was the raw data manipulated to extract that piece of information) and that any
operation that was performed to process the data before displaying it does not
introduce bias towards drawing conclusions that may not be valid. Consider, for
instance, the case of a mix of continuous and categorical features, such as age and
gender; many visual data representation techniques use the distance between feature
values. Commonly used distance measures are geometrical, such as the Euclidean
distance. Applying a geometrical distance measure to the combination of age and
gender with normalized values may lead to a distorted view of the impact of gender
compared to age, as the unidimensional distance between “male” and “female” is
the extreme value of 1, while the unidimensional distance between two different
(normalized) ages is typically much smaller than 1. This inevitably introduces a
bias into the data visualization, and it should therefore be made clear to the end-user
how the data was processed, so that the user may be aware of this bias.

In this chapter, we organize the sections as follows: In Sect. 2, we explore the
added value of flexible visualization methods as compared to validated prediction
models, as well as the challenges in data visualization. A data visualization approach
that aims at providing ease of interpretability, demonstrating transparency, and
reducing inherent bias to a minimum is presented in Sect. 3. We close this chapter
with a discussion and conclusion section along with future directions (Sect. 4).

2 Motivation

With the widespread adoption of electronic health records (EHRs), patient data
storage in clinical practice is becoming digital and standardized. While previously
predictive models and guidelines in health care would be developed on data from
clinical trials, which are set up to have both strong internal and external validity, now
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development of models and guidelines from data from clinical practice becomes
possible. This has the advantage that much more data is available and models can
be developed more quickly to keep up with the pace of development of better
diagnostics and measurements and improvements in treatment. However, the strong
requirements on internal and external validation are much more difficult to meet
in a clinical practice setting. Therefore, it is important to leverage the expertise of
the clinical user to ensure that valid conclusions are drawn, taking into account the
uncertainty, while still exploiting the knowledge available from such a large and
up-to-date data source.

In the remainder of this section, the practice of modeling from clinical trial data
will be evaluated and requirements imposed by the use of clinical practice data will
be explored, motivating the choice for investigation of visualization methods for
clinical practice data.

From the area of statistics as well as from the area of machine learning, a
multitude of methods is available to model data. Given the validity of the design
of the trial and the data collection executed in the trial, these methods allow the
development, interpretation, and validation of such models. Many of those methods
are implemented in modules, packages, or tools readily available on the web (e.g.,
R [17], SPSS [31], SciPy [28], and Weka [16]). The output generated from these
methods typically consists of:

• The model: a structure which may be applied to a new patient, generating a
prediction value;

• Training error: a measure of the error of the model in representing the data used
to train the model;

• Model performance: a measure of the performance of the model on validation
data (not used to train the model).

With some exceptions, these methods typically do not provide any human
interpretable description of the model itself. For example, the support vectors
provided by the support vector machine (SVM) method can be inspected, but they
are not easy to interpret even for a data analytics expert, let alone for a non-
expert user of the model. Methods such as decision trees or Bayesian networks do
generate visual representations of the model that can be inspected and interpreted
by a non-expert user. However, even these simple model representations can quickly
become too complex to interpret when the size of the network or decision tree
increases or when the number of node relations is high. In health care, data analytics
models that outperform treatment guidelines (such as the NCCN guidelines for
cancer treatment1) often do so because they encompass a larger set of features.
For example, in cancer treatment, models outperforming guideline diagnosis and
treatment selection often include complex imaging parameters and/or genomic
features; see, for example, [38, 45]. Data analytics techniques model the data in
a finer granularity than guidelines do. For example, in non-small cell lung cancer

1See https://www.nccn.org/, last accessed: 2018-06-14.

https://www.nccn.org/
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staging, the guidelines score tumor size in three categories, smaller than 3 cm,
between 3 cm and 7 cm, and larger than 7 cm [13], while a prediction algorithm
such as a regression model may take into account the exact tumor size.

The purpose of clinical prediction models usually is to support a doctor in
the decision-making process regarding diagnosis or treatment. In the past, such
predictive models were typically developed on a large set of patients from clinical
trials, ideally from multiple sites, and subsequently validated externally in separate
clinical trials, ideally also at multiple sites. Models that are nowadays used in
clinical practice, such as the Framingham risk score for coronary heart disease [41],
usually have been developed and extensively validated in this manner. They are
widely accepted due to this extensive validation.

Data collection in clinical research has always been aimed at data analysis; it is
digitized and standardized. As data collection in clinical practice is also becoming
digital and standardized, it becomes possible to do additional data analysis on
clinical practice data. This allows for types of explorative analysis where it is not
necessary to define a hypothesis and the type of data that needs to be collected to
test the hypothesis beforehand, as is the case with clinical trials. This in turn allows
for earlier insight generation from new data arising, e.g., from new treatments,
improvements on devices for imaging, better image analysis techniques, or new
diagnostic tests. However, acceptance of such models in practice is more than just
a matter of reporting sufficient quality on a validation set. Lack of understanding of
a model has been reported as a barrier in adopting a model in clinical practice [20].
Furthermore, less extensively validated models require the doctor to have a better
understanding of the limits of the applicability of the model; i.e., the doctor must be
able to answer questions such asWhat is the level of uncertainty in the predictions?
and Do the predictions from this model apply in my current context (e.g., using an
improved diagnostic imaging device)?. As medicine is becomingmore personalized,
the number of features in a model increases, resulting in increasingly complex
models. It is therefore important to pay attention to the presentation of a model
to the user.

Visualization techniques can help provide more insight into complex models.
Visual dominance in humans shows that information processing in the visual domain
is much faster and more developed than any other modality [34]. While there is a
large variety in data visualization techniques, in general the visual domain allows
for more ease of interpretation than, for example, numerical representations of risk
scores and confidence intervals. However, even though visual representations may
improve ease of interpretation, we should beware that the other requirements are
also satisfied. Instilling in the user a sense of awareness of the uncertainty in the
data is a challenging task that will trade off against ease of interpretation.

In this chapter, focus will be on visualization techniques that are meant to
visualize relations in the data without drawing any inference on, e.g., causality.
This should force the user to leverage on his or her own clinical knowledge and
to consider the uncertainty in the data. For example, visualization of a dataset may
show a strong correlation between tumor size and 2-year survival, but it is still up to
the doctor looking at that visualization to conclude whether there is a causal relation
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between the two, or whether there may be some other explanation of why they
are correlated, such as the difference in treatment between small and large tumors.
In that sense, these visualization techniques are related to the philosophy behind
unsupervised learning. Unsupervised machine learning is the machine learning
task of inferring a function to describe hidden structure from “unlabeled” data
(a classification or categorization is not included in the observations). Popular
approaches include clustering [11] (e.g., K-means [29], mixture models [3], and
hierarchical clustering [37]); anomaly detection [8]; neural networks [35] (e.g.,
Hebbian learning [21] and generative adversarial networks [39]); approaches for
learning latent variable models [12] (e.g., expectation-maximization algorithm [4]
and method of moments [18]); blind signal separation techniques [3] (e.g., principal
component analysis [19], independent component analysis [9], non-negative matrix
factorization [25], and singular value decomposition [2]).

Unsupervised learning techniques exploit correlations in the data, without mak-
ing any inferences on outcome. As such, unsupervised models provide insights into
the data such as which patients are similar or dissimilar to each other, allowing the
doctor to make an inference on what is the expected outcome for the patient.

An on-screen display of an unsupervised model is typically done through
mapping data points onto a two-dimensional graph, using color and/or shape to
indicate which data points are grouped together, e.g., through a dimensionality
reduction technique such as principal component analysis (see, e.g., [42]). An
example is shown in Fig. 1 [32]. An advantage of such a method is that it exploits
methods of processing that humans are very good at. Current research has shown
that certain salient features such as color, shape, motion, and spatial position are
easily detected and discriminated from each other. In early selection theories of
attentional processing, this is termed “preattentive processing.” The term refers
to a kind of effortless processing for which no attention is needed. Evidence for
preattentive processing was found in visual search tasks, where subjects are asked
to locate a certain target stimulus among a set of non-target (distracting) stimuli. It

Fig. 1 An example of a
graphical display of
clustering [32],
demonstrating detection of
lung, breast, colorectal, and
prostate cancer from exhaled
breath using nanosensors
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was found that search times for stimuli defined by a single salient feature such as
a red shape among green shapes or a circle among squares were much lower than
search times for a target stimulus defined by a combination of features such as a
red circle among green circles and red and green squares. Search for a single salient
feature appears to be effortless; the target subjectively “pops out”[10].

A disadvantage of the type of representation shown in Fig. 1 is that it is difficult
to retrace what the feature values of a point are. Knowing the feature values of the
groups of patients that belong together is however a strong requirement for helping
the user make sense of the clustering. In the next section (Sect. 3), we present data
visualization methods accepted for clinical practice that demonstrate correlations
and groupings among patients in a dataset while also allowing for inspection of
individual feature values.

3 Data Visualization Techniques in Clinical Practice

In this section, we provide an example of a visualization technique for decision
support accepted for use in clinical practice. It has the aim of selecting the best
treatment for a given patient. This is achieved by providing a visual representation
comparing patient characteristics to (local) similar patients, who have already been
treated.

The parallel coordinates plot is a straightforward and ready to use visualization
of multivariate data and has been around for many decades [14]. Figure 2 shows an
example of a parallel coordinates plot with patient data. In the parallel coordinates
plot, every observation (i.e., a patient) in a dataset is represented with a polyline that
crosses a set of parallel vertical axes corresponding to features in the dataset. Parallel
coordinates plots readily reveal patients who appear most similar with respect
to their characteristics from the “tightness” of their polylines. The competitive
advantage of parallel coordinates plots lies in the fact that this tightness can be
easily identified in the 2D pattern, while separate multivariate feature values are also
still readily recognizable, as opposed to plots derived from dimensionality reduction
techniques, such as the one shown in Fig. 1.

Fig. 2 Example of a parallel coordinates plot displaying clinical characteristics of prostate cancer
patients. The plot displays thousands of patients, represented by polylines. One particular patient
currently under observation is represented by a red line
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However, the interpretation of parallel plots is dependent on the layout of the
parallel coordinates plot. The most important factors are the order of variables
and scaling of the axes. The order of variables has an impact on the capability to
find relations between the variables; relations between variables that are presented
in successive order are more easily seen than relations between variables that are
separated from each other by other variable axes that are in between. Furthermore,
as the variables are ordered in a linear fashion, a relationship among neighboring
variables is implied through the Gestalt principle of proximity (see, e.g., [22]); items
that are closer together are perceived as more related than items that are further
apart. Proper ordering and selection of the proper subset of variables is therefore
essential [44].

Another important factor is the scaling of the variable per axis. Typically, such
scaling will be a (linear) normalization such that all axes are of the same length.
Consider, for instance, a dataset that contains age and gender. Age typically has a
large range of values, while gender only has two unique values. This means that
values “male” and “female” will be mapped onto the bottom and the top of an axis
that has the same length as the axis which shows age. Furthermore, reversing the
values for “male” and “female” results in a different plot. One can also imagine that
when a variable has a logarithmic distribution, e.g., many patients have a low blood
test value for presence of cancer, mapping to a linear scaled axis will limit the ability
to observe patterns.

Parallel coordinates plots become hard to read, when there are many data records
included. In the example of Fig. 2, thousands of patients are included, resulting in a
vast overlap of lines. This makes it hard to single out sub-populations or to detect
patterns in the data. Stratified coloring of the polylines improves the readability and
is therefore often applied.

The example of the mapping of age and gender onto an axis in a parallel
coordinates plot also makes it clear that parallel coordinates plots display this
particular limitation of reduced readability even more so in rendering categorical
data. In the example of gender, with just two unique values, all polylines will cross
the axis of gender in one of two places.

A data visualization that is better equipped for dealing with categorical data is
a parallel sets plot [23]. In the parallel sets technique, the concept of individual
lines per patient is substituted for a frequency-based representation. In such a
representation, a line represents a subset of patients that have the same categorical
feature values. The width of the line is proportional to the size of the subset. See
Fig. 3 for an example parallel sets plot based on the Titanic survival data (image
generated using R software package Alluvial [5]).

While parallel sets plots are better equipped for dealing with categorical data,
they are not suitable for dealing with continuous data. Categorization is there-
fore often applied as a remedy which may lead to loss of information. Parallel
coordinates/sets techniques are therefore limited in use when dealing with hetero-
geneous data.

Another limitation of parallel sets/parallel coordinates plots is that missing
values cause a distortion of the plot. Particularly, in the parallel coordinates plot, a
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1st

2nd

3rd

Crew

Male

Female

Child

Adult

No

Yes

Class Sex Age Survived

Fig. 3 Example of a parallel sets plot showing categorical data, where instead of drawing multiple
lines, each drawn line represents a different stratification of the Titanic passengers. The width of
the line is proportional to the number of passengers

missing value would result in a missing line segment. Research into psychology and
attention has shown that humans tend to automatically fill in gaps in a contour [40].
So rendering a line with a missing segment may lead to misleading conclusions
regarding the missing values that may not be warranted by the plot itself. The end-
user may even be unaware of having made this inference.

Another important consideration from human information processing is that
short-term memory generally has a capacity of around 7 (plus or minus 2)
items [27]. This means that the number of features that can be included in a parallel
coordinates plot such that they can still be reasonably expected to be compared with
each other by a user is around 7.

The mentioned limitations are addressed by the circular layout approach
described in the next section.

3.1 An Extension Towards a Chord Diagram

Chord diagrams are gaining in popularity for several applications ranging from
large software package visualization to visualization of biological data [15]. In
the circular layout of a chord diagram, such as provided by Circos,2 connections
between objects or between positions become readily recognizable, while in a linear

2Introduction to Circos, Features, and Uses http://www.circos.ca/, last accessed: 2018-01-03.

http://www.circos.ca/
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Fig. 4 A circular layout data visualization of a cohort of prostate cancer patients, showing the
clinical parameters age (blue), PSA density (orange), biopsy Gleason score (green), and prostate
volume (red) that are commonly used variables to decide which treatment should be provided to
the patient

layout, organization of the chart such that multiple connections in a large dataset
become easily recognizable is often extremely difficult. It has been shown that
pairwise comparisons are efficient in relation-finding [36]. The circular approach
exploits this property by connecting pairs of variables. An example of a circular
plot with a clinical application is shown in Fig. 4. Here the chord diagram displays
prostate cancer patients with the four most prominent variables in the decision-
making process of clinicians, i.e., patient age, prostate-specific antigen (PSA)
density, biopsy Gleason score, and prostate volume [30].

Note that each colored arc corresponds to a variable. The length of each arc is
proportional to the range of values relative to each clinical measure. As such, the
extent of each continuous variable domain is mapped to an arc length such that each
individual attribute value assumes an equal angle. In this way, outliers are readily
recognized.
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Fig. 5 Zoom in of the circular plot. Note that the opacity and the thickness of each connecting
curve depicts the frequency of occurrence for each tuple

The biopsy Gleason score is an important measure of prostate cancer aggres-
siveness and is therefore set as the primary measure to which all other features
are paired. For each patient, a curve is drawn between the primary measure value
and the respective attribute value, i.e., the patient age, the PSA density, and the
prostate volume. This promotes the detectability of relations between pairs of
clinical measures. Furthermore, opacity and thickness of each connecting curve is
used as a means of depicting the frequency of occurrence for each tuple, as shown
in Fig. 5. In other words, the more frequently a particular combination of values
appears in the dataset, the brighter and wider the curve. Another advantage of the
chord diagram is that patients with incomplete data will still be visualized in the
figure for pairs of variables that are complete.

The circular layout presented in this chapter also reveals another advantage
over parallel coordinates plots: its compact design allows to add several layers of
information and detail by adding outer rings. For example, as demonstrated in Fig. 6,
a density graph per feature is added to the outside of the ring. This way, clinicians are
able to inspect exact feature values of individual patients, as well as the distribution
of feature values in one graph, allowing them to draw their own conclusions on the
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Fig. 6 Distribution of values
along a clinical measure.
Note that the count of patients
with a certain variable value
is displayed as a vertical ray
of proportional length
perpendicular to the attribute
arc. The gray area is the result
of filtering of another
variable, indicating that this
part of the distribution is
outside the selected cohort

correlations and variance of respective attributes. Binning of continuous variables is
avoided, such that the clinician is in control of evaluating the distribution of variable
values to promote unbiased conclusions.

An interactive filtering mechanism is added to the chord diagram by means of
brushes alongside each arc. This allows the clinician to select a range of values
of interest for a certain variable. The selection results in a subset of patients that
match the filtering criteria being highlighted. Such a comparison is also depicted
on the distribution of patients alongside each arc, as indicated in Fig. 7. Figures 6
and 5 show the effect of making a selection on a range in one variable on the other
variables. In Fig. 7, it can be seen that a range of values for PSA density (orange) is
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Fig. 7 Interaction with the circular plot allows for filtering on a specific range of variable values,
such that pairs are visualized within the subselection only

selected. In Figs. 6 and 5, the density graph for the variable age (blue) highlights the
patients that are within this selected ranges for PSA density, while patients who are
outside this range are shown in gray.

This circular approach serves as a means of comparing an individual patient
with the population of patients that already have been treated and is well suited
for identifying trends and outliers. Figure 8 demonstrates the case of an outlier.
The thick black curves refer to a particular patient record with low biopsy Gleason
score, low PSA density value, and high prostate volume and a more senior age. Even
without the exact numbers depicted on the graph, it is readily recognizable that the
patient in question does not fit the general distribution. Upon examining the graph in
Fig. 8, clinicians may be prompted to rethink whether these outlier patients should
receive the same recommendation for treatment as the general population.

4 Discussion and Conclusions

In this chapter, we have discussed the need for more flexible clinical decision
support as the fast pace of development of new techniques and treatments causes any
extensively validated model to be outdated by the time it is ready for deployment
in clinical practice. Data visualization techniques support generation of insight
from data without presenting precalculated conclusions to the user. By leaving the
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Fig. 8 Example of a patient under investigation (black line) of which the variable prostate volume
(red arc) does not fit the general distribution. This should alert the clinician that this is probably an
exceptional patient and care should be taken in the decision-making

decision power in the hands of the human expert, we can provide decision support
that is able to keep up with the fast generation of new data.

However, this presents several challenges since, even with the most simple
visualization techniques, data is being processed before it is put on the screen
and, in that processing, bias may be introduced. Therefore, transparency of which
operations were executed on the data to translate it to an on-screen visualization is
key. Furthermore, it is important for the user to be aware of the level of uncertainty
inherent in the data, as we are sacrificing extensive external validation for flexibility
and speed. Finally, leaving the power to draw conclusions in the hands of the doctor
also requires ease of interpretation so that the visualization helps the doctor to gain
the right insight into the data. Transparency, clarity of the level of uncertainty, and
ease of interpretation together should help doctors make informed decisions while
staying aware of the risks.

We have discussed that these are not all-or-none end goals in the search for the
best possible visualization method; there are trade-offs to be made on the amount of
information that is displayed (and the amount that is left out) and the way in which
information is presented. We have described how the presented circular approach
incorporates these trade-offs. The method offers ease of interpretation through
exploitation of the human psychological strength in comparing pairs of features.
This may come at a cost of identification of more global patterns among multiple
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features, but due to ease of interpretation, it does become possible to incorporate
more features compared to any method that focusses more on global patterns. Yet, it
is still advised to make a pre-selection of incorporated features through application
of clinical domain knowledge, as was done in the example for prostate cancer.

The method is transparent in that it is clear that the range of features corresponds
to the length of the arc, the distribution of the data is shown perpendicular to the
arc, and the width and brightness of the curves corresponding to the patient data
corresponds to the frequency of occurrence. However, it should still be noted that
the distances along the arcs can be arbitrarily chosen and particularly the distances
between values of categorical features should be carefully interpreted. Integration
of the data distribution into the same graph allows for assessment of uncertainty in
any conclusions that may be drawn. It can be easily seen how wide the spread is
among feature values and whether distributions on a certain feature are skewed to
the upper or the lower end.

Future experiments should investigate to what extent the circular approach allows
for inclusion of multiple features: how many features can be included without too
much loss of ease of interpretation? However, as the amount of data collected is
increasing, selective display of information will remain inevitable. This selectivity
may be automated, through employing data analytics methods such as clustering
or classification to achieve, for example, smart feature selection. However, besides
taking away a certain amount of control from the clinician, such automation also
comes at the cost of a steeper regulatory path towards incorporation of visualizations
in clinical practice.

While selective display will remain an inevitable part of the trade-off between
the amount of information displayed and the ease of interpretation, we have shown
in this chapter that the trade-off can be softened through choosing the right manner
of displaying information. We have shown that a circular approach increases the
amount of information we can display without sacrificing ease of interpretation.
Additions of solutions such as graph bundling [33] can be explored in the future to
allow for even greater increase in the amount of data that can be displayed without
sacrificing ease of interpretation.

Finally as the famous quote of George Box explains: “All models are wrong
but some are useful” [6]. The more data is collected, the more heterogeneous it
will become, thereby inherently requiring a greater amount of simplification and
therefore uncertainty in any model we create from that data, be it a machine learning
model or a visualization. It therefore becomes important to focus on the second
part of the quote and investigate how any model that can still be interpreted by a
doctor can be as useful as possible. This requires tuning any model to the correct
clinical needs as well as to the strengths and limitations of human information
processing.
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