
Visual Analytics for Classifier
Construction and Evaluation
for Medical Data

Jacek Kustra and Alexandru Telea

1 Introduction

In the last decade, machine learning (ML) has made tremendous progresses and
inroads into a wide range of application areas, including image classification, time
series prediction, and text pattern mining, with application to several fields such as
social networks [43], automotive self-driving [30], and, last but not least, medical
science [1].

An important problem that ML addresses is that of classification: Given a set of
observations, the goal is to assign a label from a (typically small) predefined set to
each observation, based on the similarity of such observations with those from a so-
called training set. Classification is central to medical tasks such as diagnosis [29]
and prognosis [1] of various types of diseases based on clinical patient data.

Classification methods can be roughly divided into two main types, as follows:
Deep learning techniques based on artificial neural networks (ANNs) are the

more recent introductions to the field and have shown strong advantages for such
classification tasks, as they require minimal user intervention and fine-tuning [48].
In many cases, one can simply feed the training and/or test data at hand to
such a network and largely rely on the network’s inherent flexibility for learning
relevant features to perform the desired classification. Recent results show very high
classification accuracy for complex problems and datasets [20]. However, ANNs
also have fundamental limitations: They typically require a very high number of
labeled observations for training, in the order of tens of thousands or even more.

J. Kustra (�)
Philips Research, Eindhoven, The Netherlands
e-mail: jacek.kustra@philips.com

A. Telea
Institute Johann Bernoulli, University of Groningen, Groningen, The Netherlands
e-mail: a.c.telea@rug.nl

© Springer Nature Switzerland AG 2019
S. Consoli et al. (eds.), Data Science for Healthcare,
https://doi.org/10.1007/978-3-030-05249-2_10

267

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05249-2_10&domain=pdf
mailto:jacek.kustra@philips.com
mailto:a.c.telea@rug.nl
https://doi.org/10.1007/978-3-030-05249-2_10


268 J. Kustra and A. Telea

Obtaining such labeled datasets can be impractical or even impossible in certain
medical contexts, e.g., where observations are patients having a rare condition
and/or when labeling incurs high manual effort [5]. In addition, the understanding
of the model’s intrinsic working and the assumptions underlying the relationships
between features can be of key importance to ensure human (domain) knowledge
and supervision are taken into account when constructing amodel and also to convey
trust in how the model operates.

Explicit features are the more traditional classifier engineering methods. Here,
the classifier designer explicitly specifies how to extract several features (also called
dimensions or variables) from the input data, following established insights and
practices in a given field on which aspects of the data are discriminative for the
different classes of interest. Using classifiers based on explicit features can be more
effective than using ANNs. However, this approach has its own challenges: Simple
rule-based models (a subclass of explicit-feature classifiers) are usually defined
based on vague heuristics; and mixing domain expert knowledge with data insights
is a complex task as it requires “showing” the domain expert how the data is actually
used by the model. Applying all above in practice is hard as several questions need
to be answered, regarding what is the nature of hard-to-classify observations, which
classification technique is the best and why, and how to set its parameters. Exploring
the high-dimensional space spanned by all these choices, a process we next call
classifier engineering, is very challenging, time consuming, and error prone [26].

Visual analytics (VA) addresses the problem of understanding large amounts
of high-dimensional unstructured data by interactive and iterative exploration of
depictions of such data [24, 25]. As such, VA can be an important instrument
in the toolset of engineering classifiers based on explicit features. Recent efforts
indicate promising results for combining ML and VA techniques for classifier
engineering [45].However, to date, VA has been rarely documented in how it
supports this process end-to-end, i.e., covering all the steps of dataset structure
exploration, feature assessment and selection, classifier accuracy comparison, and
classifier improvement. One key reason for this is that ML and VA have evolved
historically separately, with limited cross-discipline dissemination.

In this work, we extend the recent VA approach and VA toolset of Rauber et al.
for explicit-feature classifier engineering [45] in two main directions:

• We extend the functionality of the abovementioned toolset with additional
classifiers, feature selection methods, and manual data clustering methods;

• We present a detailed step-by-step application of this toolset to the problem of
engineering a classifier for predicting biochemical recurrence, an indicator of
potential cancer relapse after prostate cancer treatment, from clinical patient data.
This presents concrete evidence of the added value of our approach and also
provides a practical example of how to cover all the steps required for effectively
and efficiently using VA in such a classifier engineering problem in a real-world
medical context.



Visual Analytics for Classifier Construction and Evaluation for Medical Data 269

2 Related Work

We outline related work in ML and VA along two main axes: classifier design and
visual analytics for classifier design, as follows.

Classifier Design Let D = {di}, 1 ≤ i ≤ n be a set of observations, or
samples di = (d1

i , . . . , dm
i ) taken from a m-dimensional space D , where d

j
i are

the so-called dimensions, or features, of a sample. We denote by the feature vector
fj = (d

j

1 , . . . d
j
n ) the values of feature j over all samples and by F = {fj },

1 ≤ j ≤ m, the set of all m feature vectors. Feature values d
j
i can be either

quantitative (real) values or categorical values. Let L be a set of categorical labels or
classes. Briefly put, the problem of designing a classifier for D is to find a function
f : D → L which associates to any sample in D a label in L. To design f ,
one typically uses a training set of labeled samples Dt = {(di , li )} ⊂ D × L,
1 ≤ i ≤ n, to maximize the number of samples in Dt for which f (di ) = li .
Different optimization methods give birth to different classification techniques, such
as k nearest neighbors (KNN) [3], random forest classifiers (RFC) [12], support
vector machines (SVM) [8], and learning vector quantization (LVQ) [27]. To test f ,
one typically counts, for a test set of labeled samples DT |DT ∩Dt = ∅, the number
of correctly labeled samples di ∈ DT |f (di = li ). Besides this simple so-called
classifier accuracy, more complex measures can be used, such as the area under the
receiver operator curve (AUROC) [15].

The challenges of developing a good classifier—finding a f which yields high
accuracy and/or AUROC values—can be grouped into intrinsic and technical ones.
Intrinsic challenges relate to the availability of a “good” set of features fj which
capture differences between the different classes, the availability of a sufficient
number of diverse samples that cover well the underlying phenomenon that we wish
to classify, and the accuracy of feature measurements f

j

i and assigned labels in Dt .
We call these challenges intrinsic since one cannot typically alleviate such issues by
changing the classifier technique and/or its parameters. Technical challenges relate
to the choice of optimization method and optimization parameters used to compute
f—or, in more familiar words, how one preprocesses and/or selects the features,
samples the hyperparameter space of f , and chooses the actual classification
technique f . Intrinsic challenges are often outside the full control of the classifier
engineer. In contrast, the technical challenges can be seen as a meta-optimization
problem: How can we support the engineer in the process of design, training, and
testing a classifier, so as to obtain maximal accuracy results with minimal effort?

Visual Analytics for Classifier Design Aware of the abovementioned challenge
of classifier design, also called the “black art” of, or opening the “black box” of,
classifier design [11, 36, 38, 53, 57], several types of methods have been proposed
to help various steps of classifier engineering. The most common techniques include
correlation analysis, displayed, e.g., by matrix plots, to show the correlation of any
pair of features (fi , fj ); and ROC graphs to show how specificity and sensitivity
are related. Dimensionality reduction (DR) techniques, also called projections, such



270 J. Kustra and A. Telea

as PCA [22], LAMP [21], or, more recently, t-SNE [55], are used to show the so-
called structure of the input data D by means of 2D scatterplots where inter-point
distance reflects sample similarity in D , helping one to correlate sample clusters
with their assigned labels and thus detect the kind(s) of observations that are hard to
classify [4, 31, 32, 49, 56]. Given the recent popularity of ANNs, specialized visual
analytics techniques have been designed for these architectures, to explore, e.g., the
activation patterns of hidden-layer neurons [46] or to find problems in the network
design during training [44]. A recent survey of VA techniques for deep learning
is given in [19]. While being good examples of the added value of VA for machine
learning, such techniques are not applicable to more classical designs, such as KNN,
RFC, SVM, or LVQ, which we consider in our work.

For such architectures, features play a key role in the analysis, as one aims to
understand how they correlate with each other but also how their values affect
the similarity of and, ultimately, the labels assigned to samples. For these ends,
specific techniques have been designed. Confusion matrices are used to compare
the performance of different classifiers [52]. DR methods can be modified to
implicitly label unsupervised clusters with the identities of their most discriminative
features [9]. More involved toolsets aim to cover several of the classifier engineering
steps. Early on, RadViz [17] proposed a DR technique where one can see both
the data structure (clusters) and how all features affect their appearance. Atop of
this, clustering techniques are provided to explicitly segment D into sets of similar
observations; feature scoring, based on the t statistic, which ranks how important
a feature fj is to samples having a given class li as opposed to samples of all
other classes lk �=i , allows users to eliminate features which do not strongly help
classification. However, RadViz has several limitations: (1) its DRmethod preserves
sample similarity far less than state-of-the-art techniques such as LAMP or t-SNE;
(2) feature scoring is used only to order features, yielding different scatterplots of the
input data; mechanisms for actual feature selection are not provided; (3) visual data
exploration is not integrated with actual classifier construction, training, and testing,
which breaks end-to-end support for classifier engineering (Sect. 1). RadViz’s
limitation (1) abovewas alleviated by the VizRank [28] and FreeViz [10] tools which
added the ability to select DR scatterplots which best visually discriminate between
classes. However, limitations (2) and especially (3) are still present in these tools.

The above limitations of RadViz and its followers are alleviated by a recent
toolset for classifier engineering proposed by Rauber et al. [45]. The least square
projection (LSP) method [41] is used for constructing DR scatterplots, which gives
a better data structure preservation than the earlier techniques used in [10, 17, 28].
Instead of RadViz’s simple t test, more advanced feature scoring techniques
including univariate ones (χ2, one-way ANOVA), multivariate ones (IRelief [51]),
and classifier wrappers (ensembles of randomized decision trees [12], randomized
logistic regression [34], and recursive feature elimination [14]) are used. These
allow users to interactively select features which characterize well-specific sample
clusters. As demonstrated in [45], this toolset effectively supports reducing the
dimensionality of an input dataset (by feature elimination) before training a
classifier on it.



Visual Analytics for Classifier Construction and Evaluation for Medical Data 271

3 Part 1: Visual Analytics Toolset and Workflow

We next describe the original toolset of Rauber et al. [45] and our implemented
extensions (Sect. 3.1) and outline the workflows supporting classifier engineering
that our extended toolset, called featured, supports (Sect. 3.2).

3.1 Featured Toolset

Original Tool The tool in [45] provides several interactive views for data explo-
ration and analysis—see all views in Fig. 1 except the Feature view, which we added
in this work. These work as follows. The tool reads as input a sample dataset D

stored in simple CSV matrix format (samples di are rows, features fj are columns).
Upon loading D, the observations di are displayed in the Observation view as text
items, or, if image tags are provided for these, as thumbnails, and the names of the
features fj are listed in the Feature selector view. Both these views allow selecting
a subset of samples SD ⊂ D or of features SF ⊂ F to work with next. The
Observation map displays all selected samples SD as a 2D scatterplot, using PCA
or LSP as projection technique. Samples can be colored by the value of a selected
feature fj , or class label. This allows seeing whether there is apparent structure in
D, e.g., in terms of clusters or outliers. To explain which features determine such
structure, one can next select SD in the Observation view (see the dark red points in
Fig. 1) and invoke the Feature scoring view, which displays, for all features fj ∈ F ,
a score indicating how much each fj contributes to the separation between S and
D \ S. Scores are computed by various scoring techniques, as explained in Sect. 2.
Features are shown in the Feature scoring view as bars scaled and sorted by score

feature selector observation view

group view
observation map feature map

feature score view

lowest
scoring
feature

highest
scoring
feature

sc
or

e

Fig. 1 featured toolset for classifier engineering using visual analytics (Sect. 3.1)



272 J. Kustra and A. Telea

and colored by the frequency of samples over the entire range of a given feature
using a green (low) to yellow (high) colormap. For instance, in Fig. 1 we see that the
highest scoring feature (rightmost bar) has mostly low and mid-range values (yellow
at the bottom and halfway that bar, green for the rest of the bar). The Feature scoring
view also allows selecting a subset of features SF to work with next, upon which
the Observation view updates to project D only considering these features. Finally,
the Group view allows saving selected sample subsets SD under given names, for
further analysis.

Tool Extensions Overall, the original tool [45] allows a flexible way to explore
the structure of a high-dimensional dataset D in terms of finding sample clusters
or outlier samples and explain these by means of relevant features and/or feature
values. While useful, however, such actions do not fully support the end-to-end
classifier engineering pipeline. To this end, we extended the tool in the following
three main directions:

• Classifiers: We integrated five types of classifier techniques in the tool: KNN,
RFC, SVM with linear and radial basis functions (SVM-L, SVM-R), logistic
regression (LR), and two LVQ variants. To use any of these, the user can
interactively select the training and test sets in the tool’s various views, run k-
fold cross-validation, examine the misclassifications in the Observation view,
and examine the overall accuracy and AUROC metrics. For small datasets (up
to 20,000 observations, 10–20 dimensions), the current implementation performs
such operations in under 10 s on a modern PC. All classifiers accept data which
can be normalized either by scaling or standardization (see next Sect. 4.5) and can
use various similarity metrics—Euclidean, cosine, or learned distances (LVQ).

• Projections: We extended the original tool by adding IDMAP [35], Sammon
mapping [47], LAMP [21], and t-SNE [55] as projection techniques. This is
important, since, as known in projection literature, no single projection technique
performs well (in terms of preserving the data structure) on any type of
dataset [4, 49, 56]. In particular, t-SNE has shown to be a very effective predictor
of the ease of classifying data [54].

• Feature map: To better understand how different features correlate with each
other and contribute to the data structure, we provide a new Feature map view
(see Fig. 1. Every point in here is a feature vector fj ∈ F . The points are placed
based on a 2D projection of the set F , using as similarity metric the Pearson
correlation or Spearman’s rank between these feature vectors. Hence, close points
in this plot indicate strongly similar features over the entire sample set D, while
far away points indicate independent features. Separately, points are colored to
depict the scoring of all features for the discrimination between a selected sample
set SD and the remaining samples D \ SD . In other words, this view enhances
the Feature scoring view by showing not only which features discriminate most
between SD and D \SD but also how these features are correlated. We show next
how this information is helpful in classifier engineering.



Visual Analytics for Classifier Construction and Evaluation for Medical Data 273

3.2 Visual Analytics Workflow

Explaining a VA workflow is, in general, hard [24, 25]. Yet, in our classifier
engineering context, the key elements of our VA approach are as follows:

• Show the data at hand (D) and its classes L and how, where, and why these
do or do not correlate. This way, engineers can see whether and how D is
“partitioned” into different groups (clusters) of similar observations, and whether
there is a correlation between these clusters and their labels; lack of such (strong)
correlations indicates for which observations and/or which labels we will expect
classification problems;

• Show which features fj of our dataset D are most responsible for correlations of
observations with label values. This helps understanding the predictive power of
different features;

• Show how feature engineering effectively influences classification accuracy. This
way, one can navigate the design space of the classifier, understanding easier
which feature-engineering actions were useful (in increasing accuracy, and for
which observation or label types) and which not.

The way in which VA supports all the above tasks, and is therefore instrumental
in helping classifier engineering, is illustrated next via a concrete, real-world
application.

4 Part 2: Application in Predicting Biochemical Recurrence
After Prostate Cancer Treatment

4.1 Motivation

Predicting the evolution of medical conditions in terms of different metrics such as
relapse, survival, or quality of life following a given treatment can provide vital
information to select the optimal treatment for a particular patient. Having this
prediction available for several treatment options can provide insights into which
treatment is optimal for the specific patient. In particular, for a given treatment,
being able to infer the progression of a certain disease based on the patient’s clinical
and disease-specific diagnostic information can save large amounts of effort, cost,
and patient well-being especially in the early stages of the disease’s evolution. Such
is the case for prostate cancer. After patients diagnosed with this cancer type are
treated, a treatment (or lack of it, by assigning it with active surveillance) plan is
defined for the patient taking into account the available medical information and
patient preferences. Treatment options typically involve surgery (prostatectomy),
chemotherapy, radiation therapy, or a combination therapy involving two or more of
the above options. Following treatment, the increase in concentration of a prostate-
specific antigen (PSA), a phenomenon called biochemical recurrence (BCR), is a



274 J. Kustra and A. Telea

good indicator for potential cancer recurrence, either in the prostate or other parts
of the body. Since BCR typically appears earlier than other signals that diagnose
cancer relapse by several years, predicting its appearance can save precious time
for controlling, or preventing, the evolution of the disease [39, 50]. Therefore,
the measurement of BCR typically happens at discrete points in time following
treatment. Since BCR is a time-dependent outcome, for the purpose of this study, we
define two classes: 0—no recorded relapse after treatment, or 1—relapse recorded
after 5 years following treatment.

Given the influence a prediction of BCR can have on the medical decision
for a patient based on the information present prior to treatment, several research
questions emerge:

• Is it possible to reliably predict BCR values from the above measurements?
• Which of the above measurements are the most discriminative in predicting

specific BCR values?

If answered positively, the first question indicates that “standardized” decision-
support systems can be offered to physicians so that they profit from the knowledge
captured by such systems which, in general, can be wider and/or more diverse than
their personal experience. Separately, if we have ways to objectively and intuitively
answer the second question, this will increase the confidence (and ultimately the
adoption rate) of such automated decision-support systems by medical specialists.
All in all, this has the potential to increase the efficiency and/or effectiveness
of diagnosis and treatment of prostate cancer, with important cost savings and/or
quality improvement as outcomes.

In this section, we detail the engineering of a set of classifier systems for
predicting BCR values from clinical measurements for prostate cancer. Key to this is
our use, during the whole process, of the visual analytics (VA) techniques provided
by the featured toolset introduced in Sect. 3 for data exploration and classifier
construction, testing, and improvement. We next describe these steps, as well as
our obtained results. For each step, we outline the relevant questions to be solved
and how VA assisted in answering these to lead to the next step.

4.2 Data

The input data (used next for training and testing the classifier) consists of a
set D of prostate cancer patients where for each patient, a total of mtotal = 50
features are measured. The actual clinical measurements took place over different
periods in time and were performed by an unknown number of different medical
specialists. From these m = 50 values, we next manually selected a small subset of
m = 9 features (see Table 1) to use next in predicting the presence of biochemical
recurrence (BCR) within a period of 5 years from the measurement moment.
The selection was based on the type of features which are, to our knowledge,
widest available and easiest to measure in medical practice. Hence, ground truth



Visual Analytics for Classifier Construction and Evaluation for Medical Data 275

Table 1 Input data for prostate cancer prediction (Sect. 4.2)

Feature name Feature type Feature range

Age at surgery Quantitative [37.6,78]

Prostate volume Quantitative [9,365]

Preoperative PSA level Quantitative [0.11,107.11]

Number of biopsy cores Integral [1 . . . 28]

Number of positive biopsy cores Integral [1 . . . 10]

Positive biopsy cores (%) Quantitative [10,90]

Primary biopsy Gleason score Integral [2 . . . 5]

Secondary biopsy Gleason score Integral [2 . . . 5]

Clinical stage Ordinal {T1, T1a, T1b, T1c, T2, T2, T2b,

T2c T3, T3a, T3b, T3c}

is available for the data in terms of two class labels—patients showing, respectively
not showing, BCR within 5 years from measuring the nine features. Given this data,
we want to construct a classifier able to accurately predict these two classes.

4.3 Preprocessing

To make the data directly usable, we first eliminate all samples (rows in D) where
at least one of the nine columns of interest (eight features plus class label) misses
the values. The second step regards the treatment of the clinical stage feature. As
shown in Table 1, this is an ordinal variable taking values over the three stages T1,
T2, and T3; the sub-labels (a, b, c) indicate gradations within each major stage;
values having no sub-label, e.g., T1, indicate that for that patient no finer-grained
information is available. We convert these ordinal values into quantitative ones by
using

T ij = α(i − 1) + βval(j), (1)

where val(a) = 1, val(b) = 2, val(c) = 3, and val(empty) = 0, where empty

designates entries for which we have no sub-label value, e.g., T1. The parameters
α > 0 and β > 0 with α > β control the relation between the importances of the
major stages (T1, T2, T3) to that of the importances of the sub-stages (a, b, c). We
set by default α = 10 and β = 1. The effect of these two parameters is discussed
in detail next in Sect. 4.6. With this conversion, we have now a fully quantitative
dataset which we can use for classifier engineering, as described next.



276 J. Kustra and A. Telea

4.4 First Exploration: How Hard Is the Classification
Problem?

Before actually aiming to build (train) a classifier, we want to assess how hard the
classification problem may be and how the available eight features contribute to
the separation of the two classes. For this, we project all the available samples
using t-SNE, as it is known that this method achieves a quite good separation
of existing data clusters [55], and color the projected samples by their two class
labels (Fig. 2a). We see that there is no clear separation between the blue (no BCR
within 5 years) and orange (BCR within 5 years) samples. This already indicates a
hard classification problem ahead of us. Next, we select all points of one class and
construct the feature map using as feature similarity the Pearson correlation and as
feature scoring technique the χ2 test, respectively (Sect. 3.1). The resulting image
(Fig. 2b) shows us three insights: (1) We see that there are no strongly correlated
features, except the total number and percentage of positive biopsy cores, whose
respective points are relatively close in the map. This indicates that, within our eight
feature set, there are no obviously redundant features. (2) The number of samples
is quite unbalanced—there are many more blue than orange ones. This will need to
be considered when engineering the classifier. (3) We next see that only a subset of
features have high scores (dark red points in the map). This suggests that we could
drop the other features (brighter-color points) from our dataset without reducing the
chances of building an accurate classifier. However, we need to further check this
hypothesis. For this, we use the feature scoring view, with ensembles of randomized

a) b)

c)

primary Gleason
score

positive biopsy
cores

positive biopsy
cores (%)

clinical
stage

no BCA < 5 years
BCA < 5 years

pr
eo

pe
ra

tiv
e P

SA
ag

e a
t s

ur
ge

ry
pr

os
tat

e v
olu

me
pr

im
ar

y b
iop

sy
 G

lea
so

n
po

sit
ive

 bi
op

sy
 co

re
s (

%
)

po
sit

ive
 bi

op
sy

 co
re

s
cli

nic
al 

sta
ge

bio
ps

y c
or

es
se

co
nd

ar
y b

iop
sy

 G
lea

so
n

low high
score

Fig. 2 First visual exploration of the input data (Sect. 4.4). (a) Observation view, (b) feature map,
(c) feature score view



Visual Analytics for Classifier Construction and Evaluation for Medical Data 277

decision trees [12] as scoring technique (Fig. 2c). As visible, the relative scores
of the most discriminating features are now very different as compared to the χ2

scoring technique used earlier. This indicates that we cannot, so far, drop any of
the available eight features for being not useful for classification. Separately, this
indicates that the type of considered scoring function, thus implicitly the distance
metric used to compare samples, is very important. We will revisit this insight later
on.

4.5 Classifier Design: First Experiments

Based on the insights learned during the first visual exploration (Sect. 4.4), we next
proceed to the actual training and testing a classifier, as follows. We first extract
a balanced dataset from the input data, based on insight (2) found earlier, using
random sample selection from the larger class. With this dataset, we next train and
test four different classifiers (KNN, RFC, SVM-R, SVM-L), and we also consider
a dummy classifier, for sanity checking. Optimal classifier parameters are found by
grid search using the classifier accuracy acc (number of correctly classified samples
divided by total sample count) as optimization criterion. For testing, we use fivefold
stratified cross-validation with a split of 66% to 33% between training and test
data. For normalization of the different features (columns), we use both scaling and
standardization.

Table 2 shows the obtained accuracy results from this first experiment. As visible,
the standardization normalization is slightly but consistently better than the scaling
normalization. As such, we use this next as default in our designs. As expected,
the dummy classifier returns an accuracy of 50%, which tells us that our testing
pipeline is correctly set up. Most importantly, we see that the classification accuracy
is quite independent on the classifier method and also relatively low. Hence, we ask
ourselves next which steps can be taken to improve this accuracy.

Table 2 Classifier accuracy for first design (Sect. 4.5)

Standardization normalization Scaling normalization

Classifier technique Accuracy Classifier technique Accuracy

KNN 69.853 KNN 69.345

RFC 66.878 RFC 66.369

SVM-R 66.666 SVM-R 66.634

SVM-L 65.423 SVM-L 65.201

Dummy 50.000 Dummy 50.000



278 J. Kustra and A. Telea

4.6 Classifier Refinement: What Can We Do Better?

To improve our accuracy results, several directions can be considered. A first and
quite obvious one relates to our initial decision of converting the categorical clinical
stage values into quantitative ones (Eq. (1)). Before actually trying to find better
values for the α and β parameters, let us see how the engineered quantitative clinical
stage feature given by Eq. (1) correlates with the class labels and classification
results. For this, we use the observation view to project our balanced dataset using
again t-SNE, and color the samples by classification correctness (Fig. 3a), next by
the ground-truth labels (Fig. 3b), and finally by the values of the clinical stage
feature computed with the defaults α = 10 and β = 1 (Fig. 3c). We find several
insights by studying these plots. First, we see that the data appears to be separated in
three large clusters Γ1–Γ3, each consisting of two smaller sub-clusters (see outlines
in Fig. 3a). However, these clusters do not correlate in any way with the class
labels (Fig. 3b). Moreover, the classification errors are equally spread over these
clusters (Fig. 3a). Yet, the clusters correlate quite well with the value of the clinical
stage feature—high values in the two top clusters Γ1 and Γ2, low values in the
bottom one Γ3 (Fig. 3c). This suggests that the engineered feature may influence the
data structure in a too strong, and actually undesired, way that does not help the
classification.

To further understand this, we test and train our classifiers using different values
for α and β in Eq. (1). As we aim to visually explore these results at near-interactive
rates, we do not perform now the more costly fivefold cross-validation used earlier
(Sect. 4.5), but run a single test-train experiment, which takes only a few seconds.
Figure 4 shows the observation views for five (α, β) combinations, for the RFC
classifier, ranging between very strong differences considered between the major
clinical stages T1, T2, and T3 (α = 100, β = 1), through moderate differences
(α ∈ {3, 10}, β = 1), no differentiation between sub-stages (α = 1, β = 0),
and completely dropping this feature (α = 0, β = 0). Similar results to Fig. 4

no BCR < 5 years
BCR < 5 years low high

clinical stage
a) b) c)

correctly classified
misclassification

Fig. 3 Understanding the distribution of the engineered clinical stage feature (Sect. 4.6)



Visual Analytics for Classifier Construction and Evaluation for Medical Data 279

no BCR < 5 years
BCR < 5 years

a) b) c) d) e)

Fig. 4 Understanding the parameters α and β of the engineered clinical stage feature (Sect. 4.6).
(a) α = 100, β = 1;Tij ∈ [0, 1, 2, 3, 100, 110, 120, 130, 200, 210, 220, 230]; acc = 63.048%,
(b) α = 10, β = 1;Tij ∈ [0, 1, 2, 3, 10, 11, 12, 13, 20, 21, 22, 23]; acc = 63.048%,
(c) α = 3, β = 1;Tij ∈ [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]; acc = 63.147%, (d) α =
1, β = 0;Tij ∈ [0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2]; acc = 62.351%, (e) α = 0, β = 0;Tij ∈
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; acc = 62.849%

are obtained for the other considered classifiers (omitted here for brevity). These
images give us additional insights, as follows. First, we see that the obtained
accuracy values are lower—roughly 63 vs 66–69%—than those obtained when
using the more exhaustive evaluation discussed in Sect. 4.5. This is expected, given
the rapid training-testing procedure explained above.More interestingly, we see that
the α and β settings appear to not significantly affect the class separation nor the
classification accuracy. This suggests that the clinical stage feature is completely
non-discriminative for the two considered classes. However, we have seen that
this feature scores quite high discrimination-wise (χ2 test, Fig. 2b). Putting these
two insights together, we formulate the hypothesis that the problem (of relative
insensitivity of the RFC classifier to the clinical stage feature) is due not so much to
the engineering of this feature (α and β values), but to the distance metric that this
feature is next used with inside the classifier.

To test this hypothesis, we next examine how the range of the T ij values is
correlated to the classification accuracy. As we have seen in Fig. 3, the samples can
be split into three groups Γ1–Γ3, where only Γ1 has high T-value samples—more
precisely, T ij equal to values in the T2 and T3 stages. Let us now select all samples
in Γ1 having such high T-values (Fig. 5b) and remove these from the dataset, by
interactively selecting the dark-colored points in the observation view in featured.
The remaining points are shown in Fig. 5c. We now run the same classification
procedure on this subset of points and obtain a larger accuracy (acc = 65.379%
vs acc = 63.546%. Interestingly, the misclassifications are not correlated with the
T-value distribution in neither the initial dataset nor the dataset with removals—see
the uniform spread of blue and red points in both Fig. 5a, c. We have now a number
of interesting findings: (1) The analysis in Sect. 4.4 showed us that clinical stage
can be highly discriminative between our two classes, depending on the considered
distance function. (2) The current analysis showed us that samples with high T-
values confuse the classifier.



280 J. Kustra and A. Telea

correctly classified
misclassification

correctly classified
misclassificationlow high

clinical stage
a) b) c) d)

low high
clinical stage

select and
remove

Fig. 5 Understanding how different ranges of the engineered clinical stage feature affect classi-
fication accuracy for the RFC classifier (Sect. 4.6). (a) All data: acc = 63.546%, (b) find high
T-value samples, (c) remove these samples, (d) remaining data: acc = 65.379%

Taken together, we formulate the hypothesis that one issue with the current set-
up is a suboptimal distance function used internally by the considered classifiers. So
far, we have used the Euclideanm-dimensional distance metric (on the standardized
data values), which is the default in featured. We next run the same classification
experiment as in Fig. 5a, but using the cosine distance metric, and use all available
classifiers in our tool. We obtain the following accuracy values: 66.932% (KNN),
68.147% (RFC), 68.526% (SVM-R), and 68.825% (SVM-L). These are all (slightly)
higher than the accuracy obtained by using the Euclidean metric (63.546%, RFC).
Hence, we validate the hypothesis that the distance metric used has a clear effect on
classification accuracy.

This finding leads us to the final refinement in our classifier design: We consider
using GeneralizedMatrix LearningVector Quantization (GMLVQ) [16], a variant of
the classical LVQ classifier [27] which is able to learn the distance function from the
training set. GMLVQ works as follows (for full details, we refer to [16]): We firstly
define a set of so-called prototypes wi ∈ R

m. Secondly, we associate a (typically
equal) number of prototypeswith each class. Thirdly, during training, prototypes are
moved in R

m so that their nearest neighbors from the training set match their class
labels, using a gradient-descent optimization process. Atop this process offered by
LVQ, GMLVQ also allows learning the distance metric d(xj ,wi ) used to compare
a training sample xj with a prototype wi , defined as

d(xj ,wi ) = (xj − wi )
T A(xj − wi ), (2)

where A is a m-bym real-valued distance matrix whose entries are learned during
the aforementioned optimization process. If A is a diagonal matrix (as in classical
LVQ), we obtain the classical Euclidean distance metric. Other values for A model
distances where different features have different weights. Intuitively put, GMLVQ
resembles a KNN classifier where the prototypes are the centers of several m-
dimensional Voronoi cells, and all samples within a cell get the label of the cell’s
prototype. Given that A is not an identity matrix in GMLVQ, the boundaries of
these cells can take complex shapes and therefore are able to approximate decision



Visual Analytics for Classifier Construction and Evaluation for Medical Data 281

boundaries better than the linear boundaries of LVQ. GMLVQwas shown in the past
to yield good results for problems (datasets) where other classifiers did not perform
well [16].

To assess the effectiveness of GMLVQ, we use again our balanced dataset
that we considered so far. We train GMLVQ using two prototypes, one for each
class. After training, we use the same dataset for testing, to assess the training
errors. Moreover, we now perform a more detailed analysis of the quality of the
classification, considering not only the aggregated accuracy but the finer-grained
receiver operator curve (ROC). Figure 6 shows the obtained results. The first three
images (a–c) show the evolution of the total training error, training error for the two
classes, and area under the ROC (AUROC) as a function of the gradient-descent
optimization iterations performed by GMLVQ, for 50 iterations. To construct the
ROC, during the test phase, we consider that, for a GMLVQ classifier using two
prototypes (w1 for class 1 and w2 for class 2), a test sample x is assigned to class
1 if

d(x,w1) ≤ d(x,w2) − θ, (3)

and else to class 2. Here, θ represents the bias given to class 1, and d is given
by Eq. (2). The fourth image (d) shows the final ROC obtained. We see how all
error metrics converge quickly after roughly 30 iterations. We obtain an average
error rate of 35% for the BCR within 5-year class and 25% for the no BCR within
5-year class, respectively (Fig. 6), yielding an aggregate average error of 30% for
both classes (Fig. 6a). The corresponding AUROC value reached by optimization is
0.7624 (Fig. 6c). We evaluate the accuracy acc by selecting the point on the ROC
corresponding to a bias θ = 0 (Eq. (3)), i.e., for which GMLVQ assigns to a sample
the label of the closest prototype (Fig. 6d, point marked θ = 0). We obtain acc =
75.2%. This is 10% higher than what we could obtain with all the earlier classifiers
which used the Euclidean or cosine distances.

As these findings are encouraging, we aim to strengthen them by a deeper
analysis. For this, we use again the balanced dataset, but perform now tenfolds of
training and testing, with a 66% vs 33% training vs testing data split. Figure 7 shows
the results. As visible, these are very similar to the training error analysis: GMLVQ

a) b) c) d)

BCR < 5 years
no BCR < 5 yr

acc=75.2%
(θ=0)

AUROC=0.76243
false positive rate

tru
e 

po
si

tiv
e 

ra
te

Fig. 6 GMLVQ training errors for balanced dataset. (a) Total training error, (b) per-class training
error, (c) area under ROC (AUROC), (d) final ROC



282 J. Kustra and A. Telea

a) b)

c) e)d)

training testing

training testing

BCR < 5 years
no BCR < 5 yr

BCR < 5 years
no BCR < 5 yr

AUROC=0.75557

acc=75.2%
(θ=0)

false positive rate

tru
e 

po
si

tiv
e 

ra
te

Fig. 7 GMLVQ training and testing errors for balanced dataset, tenfold cross-validation. (a) Total
training and test errors, (b) per-class training errors, (c) AUROC, training and test sets, (d) per-class
training errors, (e) final ROC (average, all folds)

a) b)

c) e)d)

training testing

training testing

BCR < 5 years
no BCR < 5 yr

BCR < 5 years
no BCR < 5 yr

AUROC=0.74053

acc=77.1%
(θ=0)

false positive rate

tru
e 

po
si

tiv
e 

ra
te

Fig. 8 GMLVQ training and testing errors for unbalanced (full) dataset, tenfold cross-validation.
(a) Total training and test errors, (b) per-class training errors, (c) AUROC, training and test sets,
(d) per-class training errors, (e) final ROC (average, all folds)

converges again quite quickly (25 iterations) and delivers an average error of 30%
for both the training and test set. As before, the per-class errors (training and testing)
are higher for the BCR within 5-year class (roughly 35% vs 25%, respectively). The
AUROC values for training and testing are both 75.5%. Choosing again the point on
the ROC in Fig. 7 for θ = 0 (Eq. (3)), we obtain a classification accuracy of 75.2%.

To further confirm these good results, we finally consider the entire unbalanced
dataset (see Sect. 4.4). We perform again tenfolds of training and testing, this time
with a 33% vs 66% training vs testing data split. The training set is always balanced,
randomly picked from the full dataset. In contrast to the previous experiments, we
now use four prototypes for each of the two classes, in order to assess whether
the performance of GMLVQ is affected by this choice. Figure 8 shows the results.
Comparing these with Fig. 7, we find a slightly slower convergence requiring about
40 of the 50 iterations used. The average error (over both classes) is the same,
roughly 30%, with a slightly different balance between the BCR within 5-year class
(35%) and the no BCR within 5-year class (5%). This is explained by the way in



Visual Analytics for Classifier Construction and Evaluation for Medical Data 283

which the dataset is unbalanced. The average AUROC, however, is still quite good
(0.74). For the chosen point on the AUC (Fig. 8e, θ = 0), we obtain an accuracy of
77.1%, which is quite consistent (actually, slightly higher) than the value of 75.2%
obtained for the previously considered balanced dataset.

In conclusion, the GMLVQ delivers the best results (accuracy of just over 77%)
from all studied methods.

5 Discussion

We discuss next several relevant points related to our proposal of using visual
analytics (VA) for classifier engineering.

Added Value of VA A very important question to answer is: What has been
precisely the main added value of using VA in the process of classifier engineering
for our application? The answer to this question is twofold. Firstly, VA provides to
classifier designers insights on the consequences of all considered design choices
(feature engineering, feature selection, and classifier design, training, and testing).
This allows forming and testing hypotheses as to the optimality of a certain decision.
When such decisions test positively, the respective design choices can be frozen
and the design process advances to the next step. In the opposite case, the designer
literally sees which are the undesired consequences of a design decision and can
formulate hypotheses (new design choices) to next test. This way, VA “drives” the
design process in a simpler and more controlled way than if one had to blindly
choose directions for exploring the design space. Secondly, VA provides a way for
actual end users of a classification system to visually understand how the system
arrived at a given decision (label assignment) for a given observation. This can help
the acceptance of such a system in decision-support contexts, especially when the
end users are not machine learning experts.

Practically, using VA during our classifier engineering, we have been able
to solve the problems of converting the clinical stage values and choosing the
distance metric (and implicitly, classifiers that can handle this). Practically, all the
experimental work described in this chapter has spanned under 10 h. This is far less
than typically needed for refining classifier pipelines for similar contexts [13].

Related Workflows End-to-end workflow construction tools are becoming more
and more pervasive in ML. For instance, RapidMiner [18] and KNIME [6] aim at
roughly the same high-level end goal as our tool—to support the end-to-end data
inspection, preprocessing, classifier engineering, validation, and refinement for a
given problem domain. However, several differences exist between our tool and
these. First and foremost, our VA approach, where the user is tightly integrated in
an interactive sensemaking loop (observe the data, find patterns, change parameters
of the pipeline, repeat until obtaining the desired result), is less present in these two
tools, which advocate a more classical “waterfall” design. Second, our visualization
options heavily rely on the use of multidimensional projections, and in particular



284 J. Kustra and A. Telea

t-SNE, which have been found to be very well suited to explore high-dimensional
data, especially when one wants to reason about observation groups. RapidMiner
and KNIME, to our knowledge, do not offer t-SNE or such more advanced
projections (with the exception of Self-Organizing MAps). Finally, they also do
not incorporate some more advanced classification techniques, such as Generalized
Matrix Learning Vector Quantization (GMLVQ). More importantly, as already
explained, our main goal in this chapter is not to claim the superiority of any
particular type of feature engineering, feature selection, or classifier technique,
but to show how visual analytics can be the key element that efficiently binds all
engineering actions together when designing a non-trivial classification system.

Limitations While useful, our VA proposal and its support in the featured toolset
has several limitations, as follows. First and foremost, we do not explore in detail
the entire space of design possibilities spanned by the normalization and selection of
input features, possible distance metrics, classification techniques, and hyperparam-
eters. This is, we believe, unavoidable, since this space is simply too large to densely
sample along all its dimensions in an effective way. Nevertheless, we argue that the
visual feedback provided by VA, via the different views of featured (observation,
scoring, and features), coupled with the user’s ability of directly controlling all
aspects of the classification pipeline from within the tool, provides insights that
allow the designer to use his/her intuition to limit the search effort toward finding
a good design. We follow here the same rationale used earlier when coupling
scientific visualization with numerical computation in so-called computational
steering approaches [37]. Second, the ability of projections to accurately expose
high-dimensional data structure is well known to be imperfect [33]. However, we do
not use projections to predict actual classifier accuracy, but only to gain insights on
general trends, such as the correlation of clusters with specific features and feature
values, which next help our classifier engineering decisions.

Implementation featured is implemented mainly in Python, using Qt for the
graphics interface. Classifiers, feature scoring techniques, and the t-SNE projection
are provided via the scipy, scikit-learn, andmlpy Python packages [2, 23, 42]. Third-
party projection techniques such as LAMP, IDMAP, and Sammon mapping, and
LSP, are provided by the Java-based Projection Explorer framework [40] via Python
wrapping. For GMLVQ, we based our implementation on the open-source code
available at [7].

6 Conclusions

We foresee two types of effective extensions of this work, as follows. On the
technical side, we aim to extend featured with mechanisms that provide a consensus
outcome for its key dimensions (projections, feature scoring metrics, and classifi-
cation techniques). This way, users can decide much easier on the importance of
an obtained insight, e.g., based on a voting scheme. On the application side, we



Visual Analytics for Classifier Construction and Evaluation for Medical Data 285

aim to perform a more in-depth study of the prediction accuracy of prostate cancer
relapse, based on more samples (patients), considering more dimensions (features),
and studying how the machine predictions match predictions performed by actual
medical specialists.

References

1. Abernethy, A.P., Etheredge, L.M., Ganz, P.A., Wallace, P., German, R.R., Neti, C., Bach,
P.B., Murphy, S.B.: Rapid-learning system for cancer care. J. Clin. Oncol. 28(27), 4268–4274
(2010). PMID: 20585094; https://doi.org/10.1200/JCO.2010.28.5478

2. Albanese, D., Visintainer, R., Merler, S.: mlpy: Machine learning Python (2012).
arXiv:1202.6548; http://mlpy.sourceforge.net

3. Altman, N.: An introduction to kernel and nearest-neighbor nonparametric regression. Am.
Stat. 46(3), 175–185 (1992)

4. Bartenhagen, C., Klein, H.U., Ruckert, C., Jiang, X., Dugas, M.: Comparative study of unsu-
pervised dimension reduction techniques for the visualization of microarray gene expression
data. BMC Bioinform. 11, 567 (2010). https://doi.org/10.1186/1471-2105-11-567

5. Bengio, Y.: Practical recommendations for gradient-based training of deep architectures. In:
Neural Networks: Tricks of the Trade, pp. 437–478. Springer, Berlin (2012)

6. Berthold, M.R., Cebron, N., Dill, F., Gabriel, T.R., Kötter, T., Meinl, T., Ohl, P., Thiel, K.,
Wiswedel, B.: KNIME – the Konstanz information miner: version 2.0 and beyond. ACM
SIGKDD Explor. Newsl. 11(1), 26–31 (2009)

7. Biehl, M.: GMLVQ source code. http://www.cs.rug.nl/~biehl/gmlvq (2017)
8. Boser, B., Guyon, I., Vapnik, V.: A training algorithm for optimal margin classifiers. In:

Proceedings of the 5th Annual Workshop on Computational Learning Theory, pp. 144–152.
ACM, New York (1992)

9. da Silva, R.R.O., Rauber, P., Martins, R.M., Minghim, R., Telea, A.: Attribute-based visual
explanation of multidimensional projections. In: Proceedings of EuroVis Workshop on Visual
Analytics (EuroVA), pp. 137–142 (2015)

10. Demsar, J., Leban, G., Zupan, B.: FreeViz – an intelligent multivariate visualization approach
to explorative analysis of biomedical data. J. Biomed. Inform. 40(6), 661–671 (2007)

11. Domingos, P.: A few useful things to know about machine learning. Commun. ACM 10(55),
78–87 (2012)

12. Geurts, P., Ernst, D., Wehenkel, L.: Extremely randomized trees. Mach. Learn. 63(1), 3–42
(2006)

13. Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. J. Mach. Learn. Res.
3, 1157–1182 (2003)

14. Guyon, I., Weston, J., Barnhill, S., Vapnik, V.: Gene selection for cancer classification using
support vector machines. Mach. Learn. 46(1–3), 389–422 (2002)

15. Hajian-Tilaki, K.: Receiver operating characteristic (ROC) curve analysis for medical diagnos-
tic test evaluation. Casp. J. Intern. Med. 4(2), 627–635 (2013). https://www.ncbi.nlm.nih.gov/
pmc/articles/PMC3755824/

16. Hammer, B., Villmann, T.: Generalized relevance learning vector quantization. Neural Netw.
15, 1059–1068 (2002)

17. Hoffman, P., Grinstein, G., Marx, K., Grosse, I., Stanley, E.: DNA visual and analytic data
mining. In: Proceedings of the IEEE Visualization, pp. 437–445 (1997)

18. Hofmann, M., Klinkenberg, R.: RapidMiner: Data Mining Use Cases and Business Analytics
Applications. Chapman & Hall/CRC Data Mining and Knowledge Discovery Series. CRC
Press, Boca Raton (2013)

https://doi.org/10.1200/JCO.2010.28.5478
http://mlpy.sourceforge.net
https://doi.org/10.1186/1471-2105-11-567
http://www.cs.rug.nl/~biehl/gmlvq
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3755824/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3755824/


286 J. Kustra and A. Telea

19. Hohman, F., Kahng, M., Pienta, R., Chau, D.H.: Visual analytics in deep learning: an
interrogative survey for the next frontiers (2018). arXiv:1801.06889 [cs.HC]

20. Hua, K.L., Hsu, C.H., Hidayati, S.C., Cheng, W.H., Chen, Y.J.: Computer-aided classification
of lung nodules on computed tomography images via deep learning technique. OncoTargets
Ther. 8, 2015–2022 (2015). https://doi.org/10.2147/OTT.S80733; https://www.ncbi.nlm.nih.
gov/pmc/articles/PMC4531007/

21. Joia, P., Coimbra, D., Cuminato, J.A., Paulovich, F.V., Nonato, L.G.: Local affine multidimen-
sional projection. IEEE Trans. Vis. Comput. Graph. 17(12), 2563–2571 (2011)

22. Jolliffe, I.T.: Principal Component Analysis. Springer, Berlin (2002)
23. Jones, E., Oliphant, T., Peterson, P.: SciPy: open source scientific tools for Python (2017).

http://www.scipy.org
24. Keim, D., Andrienko, G., Fekete, J.D., Görg, C., Kohlhammer, J., Melan con, G.: Visual

analytics: definition, process, and challenges. In: Information Visualization – Human-Centered
Issues and Perspectives, pp. 154–175. Springer, Berlin (2008)

25. Keim, D.A., Mansmann, F., Schneidewind, J., Thomas, J., Ziegler, H.: Visual analytics: scope
and challenges. In: Visual Data Mining, pp. 76–90. Springer, Berlin (2008)

26. Kimelfeld, B., Ré, C.: A relational framework for classifier engineering. In: Proceedings of the
36th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, PODS
’17, pp. 5–20. ACM, New York (2017). http://doi.acm.org/10.1145/3034786.3034797

27. Kohonen, T.: Learning vector quantization. In: Arbib, M. (ed.) The Handbook of Brain Theory
and Neural Networks, pp. 537–540. MIT Press, Cambridge (1995)

28. Leban, G., Zupan, B., Vidmar, G., Bratko, I.: VizRank: data visualization guided by machine
learning. Data Min. Knowl. Disc. 13(2), 119–136 (2006)

29. Leemput, K.V., Maes, F., Vandermeulen, D., Suetens, P.: Automated model-based tissue
classification of mr images of the brain. IEEE Trans. Med. Imaging 18(10), 897–908 (1999).
https://doi.org/10.1109/42.811270

30. Levinson, J., Askeland, J., Becker, J., Dolson, J., Held, D., Kammel, S., Kolter, J.Z., Langer,
D., Pink, O., Pratt, V., Sokolsky, M., Stanek, G., Stavens, D.M., Teichman, A., Werling, M.,
Thrun, S.: Towards fully autonomous driving: systems and algorithms. In: Intelligent Vehicles
Symposium, pp. 163–168. IEEE, Piscataway (2011)

31. Liu, S., Bremer, P.T., Pascucci, V.: Distortion-guided structure-driven interactive exploration
of high-dimensional data. Comput. Graph. Forum 33(3), 101–110 (2014)

32. Liu, S., Maljovec, D., Wang, B., Bremer, P.T., Pascucci, V.: Visualizing high-dimensional data:
advances in the past decade. IEEE Trans. Vis. Comput. Graph. 23(3), 1249–1268 (2017)

33. Martins, R., Coimbra, D., Minghim, R., Telea, A.: Visual analysis of dimensionality reduction
quality for parameterized projections. Comput. Graph. 41, 26–42 (2014)

34. Meinshausen, N., Bühlmann, P.: Stability selection. J. R. Stat. Soc. 72(4), 417–473 (2010)
35. Minghim, R., Paulovich, F.V., Lopes, A.A.: Content-based text mapping using multi-

dimensional projections for exploration of document collections. In: Visualization and Data
Analysis (Proceedings of SPIE-IS&T Electronic Imaging), vol. 60, pp. 606–615 (2006)

36. Mühlbacher, T., Piringer, H., Gratzl, S., Sedlmair, M., Streit, M.: Opening the black box:
strategies for increased user involvement in existing algorithm implementations. IEEE Trans.
Vis. Comput. Graph. 20(12), 1643–1652 (2014)

37. Mulder, J., van Wijk, J.J., van Liere, R.: A survey of computational steering environments.
Futur. Gener. Comput. Syst. 15(1), 119–129 (1999)

38. Niknazar, P., Bourgault, M.: In the eye of the beholder: opening the black box of the
classification process and demystifying classification criteria selection. Int. J. Manag. Proj.
Bus. 10(2), 346–369 (2017)

39. Paller, C.J., Antonarakis, E.S.: Management of biochemically recurrent prostate cancer after
local therapy: evolving standards of care and new directions. Clin. Adv. Hematol. Oncol. 11(1),
14–23 (2013)

40. Paulovich, F., Oliveira, M.C.F., Minghim, R.: The projection explorer: a flexible tool for
projection-based multidimensional visualization. In: Proceedings of SIBGRAPI, pp. 27–36
(2007)

https://doi.org/10.2147/OTT.S80733
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4531007/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4531007/
http://www.scipy.org
http://doi.acm.org/10.1145/3034786.3034797
https://doi.org/10.1109/42.811270


Visual Analytics for Classifier Construction and Evaluation for Medical Data 287

41. Paulovich, F., Nonato, L., Minghim, R., Levkowitz, H.: Least square projection: a fast high-
precision multidimensional projection technique and its application to document mapping.
IEEE Trans. Vis. Comput. Graph. 14(3), 564–575 (2008)

42. Pedregosa, F., Varoquaux, G., Gramfort, A., et al.: Scikit-learn: machine learning in Python. J.
Mach. Learn. Res. 12, 2825–2830 (2011). http://scikit-learn.org

43. Pennacchiotti, M., Popescu, A.M.: A machine learning approach to twitter user classification.
In: ICWSM, vol. 11, pp. 281–288 (2011)

44. Pezzotti, N., Höllt, T., van Gemert, J., Lelieveldt, B.P., Eisemann, E., Vilanova, A.: DeepEyes:
progressive visual analytics for designing deep neural networks. IEEE Trans. Vis. Comput.
Graph. 24(1), 98–108 (2018)

45. Rauber, P., da Silva, R., Feringa, S., Celebi, M., Falcão, A., Telea, A.: Interactive image
feature selection aided by dimensionality reduction. In: Proceedings of EuroVA, pp. 46–51.
Eurographics (2015)

46. Rauber, P., Fadel, S., Falcão, A., Telea, A.: Visualizing the hidden activity of artificial neural
networks. IEEE Trans. Vis. Comput. Graph. 23(1), 101–110 (2017)

47. Sammon, J.W.: A non-linear mapping for data structure analysis. IEEE Trans. Comput. C-18,
401–409 (1964)

48. Shen, D., Wu, G., Suk, H.I.: Deep learning in medical image analysis. Ann. Rev. Biomed. Eng.
19(1), 221–248 (2017). http://dx.doi.org/10.1146/annurev-bioeng-071516-044442

49. Sorzano, C., Vargas, J., Pascual-Montano, A.: A survey of dimensionality reduction techniques
(2014). http://arxiv.org/pdf/1403.2877

50. Stephenson, A.J., Kattan, M.W., Eastham, J.A., Dotan, Z.A., Bianco, F.J., Lilja, H., Scardino,
P.T.: Defining biochemical recurrence of prostate cancer after radical prostatectomy: a proposal
for a standardized definition. J. Clin. Oncol. 24(24), 3973–3978 (2006)

51. Sun, Y.: Iterative relief for feature weighting: algorithms, theories, and applications. IEEE
Trans. Pattern Anal. Mach. Intell. 29(6), 1035–1051 (2007)

52. Talbot, J., Lee, B., Kapoor, A., Tan, D.: EnsembleMatrix: interactive visualization to support
machine learning with multiple classifiers. In: Proceedings of ACM CHI, pp. 1283–1292
(2009)

53. Tamagnini, P., Krause, J., Dasgupta, A., Bertini, E.: Interpreting black-box classifiers using
instance-level visual explanations. In: Proceedings of ACM HILDA (2017)

54. van der Maaten, L.: Learning a parametric embedding by preserving local structure. In:
Proceedings of the 12th International Conference on Artificial Intelligence and Statistics
(AISTATS) (2009)

55. van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 2431–
2456 (2008)

56. van der Maaten, L., Postma, E., van den Herik, H.: Dimensionality reduction: a com-
parative review. J. Mach. Learn. Res. 10(1), 66–71 (2009). http://www.iai.uni-bonn.de/~jz/
dimensionality_reduction_a_comparative_review.pdf

57. Zhang, J., Gruenwald, L.: Opening the black box of feature extraction: incorporating visual-
ization into high-dimensional data mining processes. In: Proceedings of IEEE International
Conference on Data Mining (ICDM) (2006)

http://scikit-learn.org
http://dx.doi.org/10.1146/annurev-bioeng-071516-044442
http://arxiv.org/pdf/1403.2877
http://www.iai.uni-bonn.de/~jz/dimensionality_reduction_a_comparative_review.pdf
http://www.iai.uni-bonn.de/~jz/dimensionality_reduction_a_comparative_review.pdf

	10 Visual Analytics for Classifier Construction and Evaluation for Medical Data
	1 Introduction
	2 Related Work
	3 Part 1: Visual Analytics Toolset and Workflow
	3.1 Featured Toolset
	3.2 Visual Analytics Workflow

	4 Part 2: Application in Predicting Biochemical Recurrence After Prostate Cancer Treatment
	4.1 Motivation
	4.2 Data
	4.3 Preprocessing
	4.4 First Exploration: How Hard Is the Classification Problem?
	4.5 Classifier Design: First Experiments
	4.6 Classifier Refinement: What Can We Do Better?

	5 Discussion
	6 Conclusions
	References


