Chapter 10 )
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Introduction

Retinal Degeneration and the Need of New Treatments

Retinal degenerative diseases as a group constitute one of the primary causes of
permanent visual impairment, affecting millions of people worldwide. The effect of this
group of conditions is debilitating with a major impact on a patient’s daily life including
difficulty in performing basic functions, deterioration of personal independence, and
often an effect on mental health. Among the most prevalent retinal degenerative diseases
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are age-related macular degeneration (AMD) and inherited retinal dystrophies of which
retinitis pigmentosa (RP) and Stargardt disease (STGD) are the commonest.

AMD represents the third leading cause of legal blindness and the most prevalent
cause of permanent visual loss in the over 55 years age group worldwide [1]. RP
constitutes the leading cause of inherited blindness estimated to affect approxi-
mately 1/4000 individuals [2], and STGD is the most common juvenile retinal
degenerative disease, with a prevalence of 1/8000—10,000 young individuals. [3]

The eye has been identified as one of the most amenable organs to be targeted by
the first generation of regenerative medicine techniques. It is easily accessible
surgically, and there are multiple imaging modalities using only light sources which
provide the ability to document structural and functional outcomes with minimal
risk. Additionally, the eye and especially the vitreous and subretinal space is a
relatively immune-privileged site, theoretically able to tolerate foreign antigens or
non-histocompatible cells without eliciting an immune response. Hence, under
normal circumstances the risk of tissue rejection after cell transplantation is reduced.
Furthermore, it is a small organ, and the majority of retinal degenerative diseases
initially target one type of cell (retinal pigment epithelial (RPE) cells, photorecep-
tors, ganglion cells, etc.), in a way that cell therapies can be focused on replacing
one specific cell group by transplanting a relatively small number of cells. These
advantages together with the invaluable combination of established surgical
experience and current development in experimental retinal surgery have put retinal
degenerative diseases at the forefront of cell-based clinical research.

In addition to the imaging and access advantages of the eye, progress in laboratory
methods of differentiation and cultivation has increased the availability of various
types of potentially therapeutic cells (Table 10.1). As a result, numerous clinical
trials involving retinal and RPE transplantation have commenced worldwide, some
of which show encouraging preliminary results, in terms of safety and possible
efficacy (Tables 10.2, 10.3, and 10.4).

Therapeutic Formulations of Cell Therapies
Cell Suspension

A cell suspension consists of a liquid medium—usually balanced salt solution or other
optimized aqueous medium—in which single cells or small aggregates of cells are
floating. Ideally, the cells would have undergone differentiation, isolation, purification,
and characterization, so that only the desired cell type is included in the suspension.

A cell delivery method in the form of suspension holds the major advantage that
it requires a relatively minor surgical intervention. Cells can easily be injected in the
intravitreal or subretinal space via small gauge cannulas, causing only minimal or
no injury to the retina.

Currently the most common approach for implanting a cell suspension is
subretinal delivery via the pars plana, i.e., the transvitreal route (Fig. 10.1c). This
approach requires a standard pars plana vitrectomy and transretinal access to the
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Table 10.1 Therapeutic cells: definitions and classification

Category Definition

Stem cells (SC) Cells in undifferentiated state, capable of infinite proliferation and
able to differentiate into various cell types

Totipotent SC (a.k.a. Cells capable of differentiation into both embryonic and

omnipotent) extraembryonic cell types. Able to generate a complete, viable organism

Pluripotent SC Cells capable of differentiation and tissue generation of any of the
three embryonic germ layers, i.e., ectoderm, mesoderm, and endoderm

Multipotent SC Cells capable of differentiation into limited cell types, able to
generate tissue of a single germ layer

Oligopotent SC Cells capable of differentiation into only a few cell types, e.g.,
myeloid, lymphoid SC

Unipotent SC Cells capable of differentiation only into their own cell type, but
retain ability to self-renew

Human embryonic SC Pluripotent SC obtained from a 5-day-old blastocyst

(hESC)

Induced pluripotent SC Pluripotent SC obtained by adult somatic cells by dedifferentiation

@iPSC) through genetic reprogramming

Mesenchymal SC (MSC) | Multipotent stromal cells capable of differentiation into variable
cell types, i.e., chondrocytes, myocytes, adipocytes, and osteoblasts
Adipose derived SC (ASC) | Series of MSC derived from adipose tissue, capable of
differentiation into endodermal, mesodermal, and ectodermal tissues

Human umbilical Series of MSC derived from human umbilical cord tissue
tissue-derived cells (WUTC)
Hunan retinal progenitor | Partially differentiated cells obtained from fetal neural retina, capable
cells (hRPC) of differentiation into retinal cell, but not for infinite replication

subretinal space. Less common, but also less invasive is the intravitreal injection,
which does not necessitate surgery in the operating room, but only a simple
transscleral injection of the suspension into the vitreous cavity (Fig. 10.1b). Finally,
a completely different method uses an “external” approach and a purpose-designed
micro-catheter to deliver the cell suspension through the sclera and choroid into the
subretinal space (Fig. 10.1a). A more detailed description of these methods will be
given in the next section of this chapter.

Sheets/Patches

A cell sheet/patch transplant system consists of a biocompatible substrate or
scaffold, seeded with the therapeutic cells in a way that they form a cellular
monolayer (e.g., a RPE monolayer patch). The scaffold provides the supportive
surface necessary for the cells to attach, proliferate, differentiate, and meet their
structural and functional roles after transplantation. Additionally, the artificial
membrane provides the required structural rigidity for the manipulations during the
delivery process.
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Vitreous
cavity

Fig. 10.1 Eye drawing illustrating the different access points and surgical approaches for
therapeutic cell delivery. (a) Suprachoroidal approach: purpose designed microcatheter progress-
ing through the potential space between retina and choroid, to inject the therapeutic cells into
induced subretinal bleb. (b) Intravitreal approach: injection of the therapeutic cells directly into the
vitreous cavity. (¢) Transvitreal approach: injection of the therapeutic cells into the subretinal
space via the vitreous cavity, after inducing a subretinal bleb with a small gauge cannula. (d) Cell
device approach: intravitreal implantation and scleral fixation of therapeutic cell-loaded micro-
device, which releases therapeutic factors into the vitreous cavity

In contrast to cell suspension delivery, transplantation of a cell sheet or patch
requires a more complex surgical procedure. It necessitates a custom device capable
of holding, protecting, and delivering the graft in a way that it sustains proper
apical-basal orientation (assuming the cells are polarized) throughout its transplantation
into the subretinal space. Furthermore, an adequately sized retinal incision is neces-
sary for the sheet to be implanted. However, the benefits of this complex delivery
procedure of sheet transplants are substantial, in terms of optimizing cell polarization,
integration to the host tissues, and the potential size of the treated area.

Devices: Encapsulated Cell Technology (ECT)

ECT consists of a semipermeable polymer membrane capsule loaded with mammalian
cells that have been genetically engineered to secrete therapeutic proteins.

Patented by Neurotech Pharmaceuticals, this novel drug delivery platform has
offered an approach of overcoming the blood-retinal barrier, which—Ilike the blood-
brain barrier—restricts access of large molecules from the blood stream to the target
cells. The circumvention of the blood-retina barrier is one of the major challenges for
long-term sustained delivery of proteins to the retina for the treatment of a broad
spectrum of eye diseases.
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The semipermeable membrane of the ECT device allows the secreted protein to
diffuse out and nutrients to diffuse in, but prevents access by the host immune
system, thereby providing a sustainable supply of the therapeutic factor over an
extended period, possibly years. In addition, the encapsulated cell implants can be
retrieved from the eye at any time, providing an additional level of safety (Fig. 10.1d).

The most common therapeutic agents delivered by ECT are neurotrophic factors.
These proteins can influence survival, proliferation, differentiation, and function of
neurons and other cells in the nervous system and seem to hold a promising ability
to retard progression of neurodegenerative disease. For the purpose of retinal neuro-
protection the most studied protein is ciliary neurotrophic factor (CNTF).

It is anticipated that with further development of the ECT platform and similar
approaches, future implants could become smaller and insertable in different locations,
either anchored, free-floating in the vitreous cavity, or implanted subretinally, and will
able to release specific proteins to replace proteins that are dysfunctional in retinal,
RPE, and/or choroidal cells as a result of hereditary dystrophies.

Sites of Delivery and Current Methods of Access

It has been more than 30 years since the first description of RPE cell transplantation
on to a denuded Bruch’s membrane in owl monkeys, using an “open-sky” surgical
technique and without attempt to reattach the retina [4]. During the last three
decades, numerous transplantation techniques and cell delivery instrumentations
have been introduced, a variety of which are being used currently in stem cell trans-
plantation studies.

At present, the most broadly studied site for delivery of therapeutic cells is the
subretinal space, i.e., the potential space between the neural retina and the RPE.
Fewer trials are using the less complicated option of intravitreal delivery, while a
very different “external” approach, which involves transscleral delivery and cross-
ing the supra-choroidal space, has been applied for subretinal drug delivery and is
now utilized for cell transplantation. Finally, future studies directed by tissue-specific
treatment requirements may also focus on more accurate intraretinal and sub-RPE
implantation.

Intravitreal

The intravitreal route delivers cells into the eye via injection using a small-gauge needle
(Fig. 10.1b). Advantages of this method include technical simplicity and minimal
invasion as it does not require a vitrectomy procedure. It can be performed in the office
setting and it has been the most well studied and broadly used method for intraocular
delivery of any therapeutic agent, since the advent of the anti-Vascular Endothelial
Growth Factor (VEGF) injections for retinal diseases. It could be appropriate for the
most prevalent diseases with high numbers of patients, such as AMD. This method,
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however, also holds some significant disadvantages. First of all, it does not target the
therapeutic cells directly to the degenerated tissue, and thus they have to migrate through
the vitreous and retina in order to reach the outer retina or subretinal space. Transretinal
migration has been shown for immune cells, RPE cells, and pigment granules
{Burke:1982em} [5], while in terms of drug delivery, studies are confined to nanoparti-
cles [6]. Another drawback of this approach is the exposure of the implanted cells in the
vitreous to immune cells, such as macrophages. Transforming cells in the vitreous also
have the potential to induce proliferative vitreoretinopathy and tractional retinal detach-
ments. This potential risk has recently been accentuated by reports of severe retinal com-
plications after intravitreal injections of experimental cell treatments [7-9].

Numerous researchers have adopted the intravitreal approach in both preclinical
and clinical trials. Tracy et al. implanted bone marrow-derived mesenchymal stem
cells (MSCs) from normal mice into the vitreous of mice undergoing retinal
degeneration as a result of PPT1 gene mutation. The implanted cells showed survival
without proliferating or invading the retina. This indicates that intravitreal implanta-
tion of MSCs is likely a safe means of long-term delivery of proteins synthesized by
the implanted cells [10]. Park et al. conducted the first clinical trial in humans
exploring the use of intravitreal autologous bone marrow CD34+ cells for ischemic
and degenerative retinal disorders. Phase I outcomes reported feasibility and good
tolerance which opened the field for further exploration [11].

Additionally, therapeutic approaches that involve factor-releasing cell devices,
such as ECT for CNTF delivery, have been using the vitreous cavity as the implanta-
tion site for the device (Fig. 10.1d). The surgical procedure involves a small opening
of the conjunctiva to access the sclera at the pars plana and a full thickness sclerot-
omy (approximately 2.5-3.0 mm) to access the vitreous cavity. The device is then
inserted into the vitreous and anchored with scleral sutures. Finally, the sclerotomy
is sutured and the insertion site is covered with re-apposition of the conjunctiva.

Preclinical studies using encapsulated cell-based CNTF delivery have offered
evidence of photoreceptor protection in a dose-dependent manner when implanted
into the eye of the rcedl dog with a cGMP-PDE6DL mutation. The implants were
seeded with human retinal pigment epithelium cells that had been transfected with
the CNTF gene to produce CNTF protein in situ [12, 13]. Sieving et al. conducted a
Phase I clinical trial of CNTF delivered by ECT in human subjects with advanced
retinitis pigmentosa (RP). The planned follow-up period was 6 months in this initial
study, after which the implants were surgically removed. No implant was rejected or
extruded, and no severe systemic or ocular adverse events occurred. The investiga-
tors reported a trend to improved visual acuity in the study eyes [14]. Conversely, the
results from a similar study by Birch et al. showed no efficacy of the CNTF against
RP in the long term (60-96 months), while over the short term there were even signs
of loss of visual field sensitivity of the treated eye, compared to the sham-treated eye.
This loss was attributed to the active implant and was found reversible after its
removal [15]. In another recent trial, patients with geographic atrophy (GA) associ-
ated with non-exudative late stage AMD received ECT implants anchored to the
sclera in an anterior location in the vitreous cavity [16]. Although the trial failed to
meet its primary endpoints, CNTF secretion persisted for up to 2 years [16]. More
examples of trials using the intravitreal route are listed in Tables 10.2 and 10.4.
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Subretinal

Both cell suspensions and cells-on-membrane sheet transplants have been targeted
to this potential space, from which the new cells can interact and integrate with both
the neural retina and the RPE/Bruch’s/choriocapillaris complex. Due to this access,
the subretinal delivery seems ideal for a large number of retinal degenerative
diseases including AMD.

In most of the reported cell transplantation studies the subretinal space is accessed
trans-vitreally. The procedure starts with a standard 23- or 25-gauge pars plana
vitrectomy, followed by induction of a posterior neurosensory retina detachment
using a stream of balanced salt solution via a small, usually 38—41-gauge cannula,
in order to create a subretinal “bleb” of fluid. Subsequently, for a cell suspension
implantation, another small (e.g., 38-gauge) cannula may be utilized for the subreti-
nal injection through the same neuro-retinal puncture (Fig. 10.1c). In the case of cell
sheet transplant, a larger retinotomy has to be performed in an extrafoveal location,
through which the therapeutic patch is placed between the retina and the residual
RPE, using a purpose-designed tool. Following inspection of the peripheral retina,
a fluid-air exchange is performed, and, according to each study protocol, a tampon-
ade agent is injected into the vitreous cavity (air, gas, or silicone oil). This approach
has been tested in various therapeutic studies that have utilized stem cells as well as
non-stem cell implantations.

Non-stem Cell Trials

Before the advent of stem cell-derived treatment in human trials, numerous research-
ers had attempted subretinal transplantation of either fetal or cadaveric tissue
patches and/or suspensions, for the treatment of retinal degeneration.

Algvere et al. carried out a study of subretinal transplantation of human fetal RPE
(13-20 weeks of gestational age) in patients with different forms of AMD. In one
group, eyes with disciform lesions due to AMD underwent pars plana vitrectomy
(PPV), excision of submacular fibrovascular membranes, and transplantation of a
patch RPE transplant into the subretinal space. The patch (approximately 1.0 x 1.5 mm?)
was initially sucked up into a purpose-designed glass micropipette (inner/outer diam-
eters approx. 0.3/0.4 mm, respectively) filled with BSS and subsequently delivered
into the submacular space through a retinotomy. In the second group, eyes with
non-exudative AMD underwent PPV and peeling of epimacular vitreous membranes
when needed, followed by the subretinal injection of a small patch-RPE transplant.
The patch (0.6 mm diameter) was placed extrafoveally at the border of the GA area. In
two other groups, patients with dry AMD and RPE tears respectively, were transplanted
with a suspension of RPE cells through a small retinotomy, using a 20-gauge glass
micropipette with a tapered tip (0.1 mm outer diameter), that had previously been
flushed with sodium hyaluronate. The suspension was injected into the center of the
macula. The retinotomy was small enough to self-seal and prevent the injected cells
from refluxing into the vitreous cavity. In all groups the subretinal space was accessed
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after inducing a neurosensory retinal detachment with a stream of fluid via a 33-gauge
Thomas needle, so that a small bleb was created. The implantation/injection of the cells
slightly enlarged the retinal bleb. The operation was completed with a fluid-air
exchange and silicone oil tamponade for the first group and air-gas exchange (20% of
SF6, or 12.5% of C3F8) and face-down posturing for 2-4 days for the other groups,
where no subretinal tissue was removed [17]. After 24—38 months of follow-up, 12 of
16 grafts failed, and this was attributed to immune rejection. The risk of rejection
seemed to be related to the integrity of the blood-retinal barrier (BRB) with both patch
transplants and RPE suspensions being rejected early—within first 3 months—when
placed over an exudative foveal area with compromised BRB. Nevertheless, allografts
in non-exudative areas were lost more slowly—over 12-20 months—while extrafo-
veal transplants were retained after 30 months postoperatively.

A similar approach was reported by Kaplan et al. who describe two cases of
transplantation of a sheet of human photoreceptor cells, harvested from cadaveric eyes,
into two patients with retinitis pigmentosa. In this study the retinotomy was created
with a myringotomy blade and extended with vertical scissors. The sheet of intact
photoreceptors encased in gelatin was delivered subretinally through a pipette mounted
on a specially designed delivery system. Subsequently, the subretinal bleb was partially
flattened and fluid-gas exchanged was performed for pneumatic tamponade (20% SF6).
Subjects did not receive any immunosuppression. There was no apparent rejection nor
improvement in vision [18]. In contrast, when this group transplanted allogeneic RPE
sheets into patients with exudative AMD (following choroidal new vessel excision),
systemic immune suppression was required to maintain graft integrity [19].

Humayun et al. delivered a full-thickness undissociated sheet of fetal retinal
tissue in the subretinal space of a patient with AMD, in addition to a microaggregate
suspension of fetal retinal cells. The fetal neural retina was obtained from the optic
vesicles of 14- to 16-week-old fetuses after scheduled pregnancy termination.
Standard PPV and submacular surgery technique was used. A 2 x 2 mm? piece of
retina was cut with microscissors and then grasped with a smooth-tip custom-built
microforceps. The tip of the forceps was used to pierce the retina and, after entering
the subretinal space, the tissue was released such that the outer retinal layer was
facing the host RPE. Because there was an extensive disciform scar in the macula of
the AMD patient, both the microaggregate suspension and the retinal sheet were
transplanted in an extramacular location superior to the optic nerve head. No signs
of rejection or visual improvement were shown [20].

Radtke et al. reported a case series of transplantation of fetal retinal sheets in
patients with RP, and fetal retina together with its RPE in patients with advanced RP
or AMD. For the delivery, a custom-made implantation instrument with a flat plastic
nozzle tip at a 130-degree angle was used. The instrument maintained the orientation
of the donor tissue. The loaded nozzle tip of the delivery instrument was inserted
through the retinotomy into the submacular space, and the nozzle was released
placing the retina/RPE sheet into the target area. The retinotomy was subsequently
sealed by laser. No immunosuppression was given. Initially no signs of rejection nor
improvement of vision was shown; however, in a follow-up publication, modest
visual improvement was reported for 7 of the 10 patients [21, 22].
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Stem Cell Trials
Transvitreal Access

In 2012 Scwarz et al. published the first description of a human stem cell-derived
therapeutic trial for retinal degeneration. This was a phase I/II prospective study
investigating safety in patients with advanced dry AMD or Stargardt disease. Subjects
in the trial received a subretinal cell suspension of hESC-derived RPE (line MA(09-
hRPE). The operation followed the standard sequence: PPV, localized neuroretinal
detachment, subretinal injection of the suspension in areas adjacent to GA loci, and
finally air-fluid exchange. Systemic immunosuppression with Tacrolimus and
mycophenolate mofetil was instituted for 12 weeks following the surgery. Schwartz
et al. went on to publish their methods and the 18-month outcomes for 9 AMD
patients and 9 Stargardt disease patients [23]. No serious ocular or systemic adverse
events were reported. There was limited, pigmented, epiretinal membrane formation
in some patients. Immune rejection was not recognized clinically. Areas of increased
pigmentation at the transplantation sites were seen in 72% of subjects, while primary
functional outcomes were reported to be promising. These results offered the first
evidence of medium- to long-term safety, transplant survival, and possible function of
pluripotent stem cell progeny in degenerative retinal disease [24]. Numerous current
and recent studies have used similar methods and are listed in Table 10.2.

The subretinal space has also been used for SC-derived transplants in the form of
a sheet [25, 26, 27]. Mandai et al. were the first to report the results of an induced
pluripotent stem cell (iPSC)-derived RPE sheet transplantation in a patient with wet
AMD. They demonstrated safety but no efficacy of their method, in terms of visual
function [25]. The London Project (TLP) to Cure Blindness and University College
London have commenced a Phase I study trying to reconstruct the anatomy of the
subretinal space in severe wet AMD by implanting confluent, polarized hESC-
derived RPE cells on an artificial basement membrane in the form of a “patch” [28].
This group uses submacular microsurgical techniques and a specially designed
injector to insert the 6 x 3 mm lozenge-shaped patch into the subretinal space of
patients who suffer from acute wet AMD with sudden severe vision loss due to
submacular or sub-RPE hemorrhage or an RPE tear. For immunosuppression they
use transient perioperative systemic steroids and, in the longer term, intraocular
depot corticosteroid delivery devices. Two patients have received the patch so far,
and the recently published one-year results were promising, with both patients hav-
ing a significant improvement in visual acuity, reading speed, and retinal sensitivity
[26]. Similar approaches utilizing cell sheet transplants are listed in Table 10.3.

Suprachoroidal Access
A completely different surgical method of accessing the subretinal space has been devel-

oped by Janssen (Titusville, NJ—division of Johnson and Johnson) in order to deliver
human umbilical tissue cells (hUTCs) to patients with GA. These cells have been
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evaluated in the Royal College of Surgeons rat model of retinal dystrophy and rescue
degenerating photoreceptors better than other cell lines [29]. This technique utilizes a
trans-scleral microcatheter-based delivery, which is advanced through the supra-choroi-
dal space. The operation starts with a minor conjunctival dissection with surface cautery,
followed by a scleral cut-down and a specialized scleral speculum insertion, 9 mm pos-
terior to the limbus. The choroid is perforated, and a subretinal bleb is created with
Healon®, under direct endoscopy (Endo Optiks, Little Silver, NJ). Subsequently, the
250-pm subretinal microcatheter (iScience Interventional, Menlo Park, CA) is inserted
from the scleral opening and advanced through choroid into the subretinal space to the
posterior pole (Fig. 10.1a). The tip of the catheter is illuminated and allows accurate
localization to the areas of GA. The hUTC suspension is then injected by a high preci-
sion pump into the subretinal space. The catheter is carefully withdrawn, and all scle-
rotomies are closed with standard techniques. This surgical approach has still to be
improved since some patients developed retinal tears and detachments.

Target Diseases and the Need for Specific Delivery Approaches

Retinal degenerative diseases constitute a large, heterogeneous group of inherited or
acquired disorders that disturb mainly the photoreceptor and the RPE layers, the
function of which constitute the most critical layers for visual function of the eye.

AMD

Age-related macular degeneration is associated with a chronic, low-grade inflammation
that affects the outer layers of the central retina, starting with the degeneration of the
RPE and Bruch’s membrane and leading to loss of photoreceptors and subsequent
Geographic Atrophy (GA). GA is expected to affect 3.8 million adults by the year
2050 [30]. Even patients with the neovascular type of the disease (wet AMD) that
can be stabilized using anti-VEGF injection treatments eventually manifest dry
AMD. Furthermore, although anti-VEGF treatment may delay the progression of
disease, there are significant drawbacks both for the patients, regarding the duration
of therapy and the risk of complications, and for the health systems, regarding the
financial burden of treating constantly increasing numbers of patients.

For a surgical AMD treatment to be feasible, it has to be technically simple, with low
risk of complications, applicable in an office-based ophthalmological therapeutic
setting, relatively inexpensive, and suitable for large numbers of patients. Cell-based
treatments, trying to replace the RPE or RPE-Bruch’s complex with stem cell-derived
equivalents, hold promise for the future but face many challenges in terms of delivering
a viable therapeutic option on a large scale. Numerous approaches have been tried so far,
with most common among them being the subretinal injection of stem cell-derived RPE
cell suspensions (Table 10.2), while most recent human studies of RPE-artificial BM
sheets transplanted subretinally are yet to prove their feasibility and efficacy (Table 10.3).
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Inherited Retinal Disease

In addition to the epidemiological and clinical significance of AMD, the management of
AMD using a cellular approach also constitutes a potential therapeutic paradigm for other
disorders that affect RPE and neural retina, such as inherited retinal diseases (IRDs).

Retinitis pigmentosa (RP) is the most prevalent of the IRDs affecting approximately
1/4000 individuals [2]. It is associated with primary photoreceptor degeneration due, in
most cases, to defective genes involved in their metabolism. Several studies mainly using
human retinal progenitor cells or human bone marrow mesenchymal stem cells to rescue
or replace the degenerating photoreceptors are now running as shown in Table 10.2.
Furthermore, some subtypes of RP caused by RPE-specific genetic defects seem to
primarily disturb the structure and function of this supportive epithelial layer. Dystrophies
associated primarily with the RPE specific genes such as MERTK [31] and RPE65 [32]
could also be potential targets for cell-based RPE therapies in the future.

Stargardt disease is a juvenile retinal dystrophy caused by a photoreceptor gene
defect that is associated with increased production of toxic bisretinoids and which leads
to abnormal RPE lipofuscin accumulation and secondary RPE degeneration. Classically,
it presents during the first two decades of age, and it is the commonest cause of juvenile
macular disease, reducing central vision in approximately 1:10000 young individuals
[3]. The first cell-based therapeutic study directed at Stargardt disease attempted to
replace defective RPE by subretinal injection of a stem cell-derived RPE cell suspension.
The results of this trial have offered the first long-term safety evidence and also
suggested potential vision and vision-related quality of life improvement.

Other IRD examples that may be treated using cell-based therapies in the future
include diseases such as vitelliform dystrophy (Best disease), choroideremia, cone and/
or rod dystrophies, and some forms of Leber congenital amaurosis. It is also possible that
retinal disorders with breaks to Bruch’s membrane and secondary RPE atrophy, such as
angioid streaks and myopia, may be amenable to an artificial membrane strengthening
Bruch’s with RPE cell replacement to reduce the effect of the secondary atrophy.

Uveitis: “Cellular Inmunotherapy”

Apart from acquired and inherited retinal degeneration, cell-derived treatments have
also been directed towards modifying other disease processes such as inflammatory
ocular diseases. Cellular immunotherapy is an approach that uses intact, fully differ-
entiated, autologous or allogeneic mature immune cells to modulate the patient’s
inflammatory reaction against a specific hazard.

More specifically, cellular immunotherapy is already being studied as a treatment
of CMV retinitis that typically occurs in immunocompromised patients with
insufficient primary T-cell response against the virus. In this approach, partially
matched donor CMV-specific cytotoxic T-cells are infused intravenously into
patients with CMV retinitis who are resistant, refractory, or intolerant to conventional
antiviral therapies. Primary results have demonstrated efficacy against persistent
viremia or systemic infection in the stem cell transplant population [33, 34].
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Discussion
Feasibility Criteria

For a surgical approach to be adopted in everyday clinical practice, it has to meet
some feasibility criteria. First of all, it has to demonstrate adequate safety for both
the target tissue—the retina—and the adjacent tissues. The risk of complications
such as retinal hemorrhage, retinal perforation, retinal detachment, and choroidal
hemorrhage has to be comparable with other already established procedures.
Secondly, the cell delivery approach must secure not only the initial implantation,
but also the retention of the therapeutic cells in the targeted location. Leakage of
cells either into the vitreous or in the suprachoroidal space may not only compro-
mise the treatment, but also put the patient at risk, in case of cell migration to
distant organs.

Additional requirements concern the procedural complexity and efficacy. The tar-
geted delivery has to be reproducible, with straightforward adoption by experienced
surgeons. Ideally, it is compatible with commonly used surgical tools and techniques
and has a duration suitable for high patient numbers. Ideally, the approach should
also be adaptable to differing eye length and globe volume and expandable to be
applied in a variable spectrum of cases.

Future Directions

The emerging progress in multimodal medical imaging and surgical instrumenta-
tion technology will open numerous new fields in therapeutic delivery in ophthal-
mology. Intraoperative OCT (optical coherence tomography) systems, already in
use, and 3D surgical visualization systems are now in the process of changing the
way ophthalmologists perceive eye surgery. The ability to obtain and analyze scans
in real time as well as the option to superimpose simultaneous and/or previous
exams onto the surgeon’s view of the operational field in real time will soon pro-
vide an upgraded level of microscopic interaction between the surgeon and the
target tissues.

Future developments in ophthalmological surgery, instrumentation, and robotics
engineering are expected to overcome the challenge of insufficient surgical dexterity.
Micro-precision devices such as surgeon extenders and teleoperated robots coupled
with multimodal imaging sourced information will augment the effectiveness of eye
surgeons in accessing and manipulating retinal and subretinal tissues. Targeting
specific layers and microscopic structures within the retina in an accurate and safe
manner may open delivery approaches that are not feasible at present [35]. In the
near future, intraretinal, intra-choroidal, and intra-optic nerve cell treatments are
expected to extend to currently untreatable diseases, the powerful new paradigm
of cellular therapy for the treatment of an increasing number of blinding ocular
degenerative diseases.
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