
Chapter 12
Continuity Properties of Multilinear
Localization Operators on Modulation
Spaces

Nenad Teofanov

Abstract We introduce multilinear localization operators in terms of the short-
time Fourier transform and multilinear Weyl pseudodifferential operators. We prove
that such localization operators are in fact Weyl pseudodifferential operators whose
symbols are given by the convolution between the symbol of the localization operator
and themultilinearWigner transform. To obtain such interpretation, we use the kernel
theorem for the Gelfand–Shilov space S (1)(Rd) and its dual space of tempered
ultra-distributions S (1)′(R2d). Furthermore, we study the continuity properties of
the multilinear localization operators on modulation spaces. Our results extend some
known results when restricted to the linear case.

12.1 Introduction

Multilinear localization operators were first introduced in [8], and their continu-
ity properties are formulated in terms of modulation spaces. The key point is the
interpretation of these operators as multilinear Kohn–Nirenberg pseudodifferential
operators. The multilinear pseudodifferential operators were already studied in the
context of modulation spaces in [1]; see also a more recent contribution [24] where
such approach is strengthened and applied to the bilinear and trilinear Hilbert trans-
forms.

Our approach is related toWeyl pseudodifferential operators instead, with another
(Weyl) correspondence between the operator and its symbol. Both correspondences
are particular cases of the so-called τ−pseudodifferential operators, τ ∈ [0, 1]. For
τ = 1/2 we obtain Weyl operators, while for τ = 0 we recapture Kohn–Nirenberg
operators. We refer to [7, 10] for the recent contribution in that context (see also the
references given there).

The Weyl correspondence provides an elegant interpretation of localization oper-
ators asWeyl pseudodifferential operators. This is given by the formula that contains
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the Wigner transform which is, together with the short-time Fourier transform, the
main tool in our investigations. We refer to [17, 41] for more details on the Wigner
transform.

In signal analysis, different localization techniques are used to describe signals
which are as concentrated as possible in general regions of the phase space. This
motivated I.Daubechies to address these questions by introducing certain localization
operators in the pioneering contribution [14]. Afterward, Cordero and Grochenig
made an essential contribution in the context of time–frequency analysis [6]. Among
other things, their results emphasized the role played by modulation spaces in the
study of localization operators.

In this paper, we first recall the basic facts on modulation spaces in Sect. 12.2.
Then, in Sect. 12.3, following the definition of bilinear localization operators given in
[33] we introduce multilinear localization operators, Definition 12.2. Then we define
the multilinear Weyl pseudodifferential operators and give their weak formulation in
termsof themultilinearWigner transform (Lemma12.2).Byusing the kernel theorem
for Gelfand–Shilov spaces, Theorem 12.1, we prove that the multilinear localization
operators can be interpreted as multilinear Weyl pseudodifferential operators in the
same way as in the linear case, Theorem 12.5.

In Sect. 12.4 we first recall two results from [9]: (multilinear version of) sharp
integral bounds for the Wigner transform, Theorem 12.6, and continuity properties
of pseudodifferential operators on modulation spaces, Theorem 12.8. These results,
in combination with the convolution estimates for modulation spaces from [38],
Theorem 12.3, are then used to prove the main result of the continuity properties of
multilinear localization operators on modulation spaces, Theorem 12.9.

Notation. The Schwartz space of rapidly decreasing smooth functions is denoted by
S (Rd), and its dual space of tempered distributions is denoted by S ′(Rd). We use
the brackets 〈 f, g〉 to denote the extension of the inner product 〈 f, g〉 = ∫

f (t)g(t)dt
on L2(Rd) to any pair of dual spaces. The Fourier transform is normalized to be

f̂ (ω) = F f (ω) =
∫

f (t)e−2π i tωdt.

The involution f ∗ is f ∗(·) = f (−·), and the convolution of f and g is given by
f ∗ g(x) = ∫

f (x − y)g(y)dy, when the integral exists.
We denote by 〈·〉s the polynomial weights

〈(x, ω)〉s = (1 + |x |2 + |ω|2)s/2, (x, ω) ∈ R
2d , s ∈ R,

and 〈x〉 = 〈1 + |x |2〉1/2, when x ∈ R
d .

We use the notation A � B to indicate that A ≤ cB for a suitable constant c > 0,
whereas A � B means that c−1A ≤ B ≤ cA for some c ≥ 1.

The Gelfand–Shilov space and Weyl pseudodifferential operators. The Gelfand–
Shilov-type space of analytic functions S (1)(Rd) is given by
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f ∈ S (1)(Rd) ⇐⇒ sup
x∈Rd

| f (x)eh·|x || < ∞ and sup
ω∈Rd

| f̂ (ω)eh·|ω|| < ∞, ∀h > 0.

Any f ∈ S (1)(Rd) can be extended to a holomorphic function f (x + iy) in the
strip {x + iy ∈ C

d : |y| < T } some T > 0, [18, 25]. The dual space of S (1)(Rd)

will be denoted by S (1)′(Rd).

The space S (1)(Rd) is nuclear, and we will use the following kernel theorem in
the context of S (1)(Rd).

Theorem 12.1 Let Lb(A ,B) denote the space of continuous linear mappings
between the spaces A and B (equipped with the topology of bounded convergence).
Then the following isomorphisms hold:

1. S (1)(Rd1)⊗̂S (1)(Rd2) ∼= S (1)(Rd1+d2) ∼= Lb(S
(1)′(Rd1),S (1)(Rd2)),

2. S (1)′(Rd1)⊗̂S (1)′(Rd2) ∼= S (1)′(Rd1+d2) ∼= Lb(S
(1)(Rd1),S (1)′(Rd2)).

Theorem 12.1 is a special case of [31, Theorem 2.5], see also [27], so we omit
the proof. We refer to the classical reference [40] for kernel theorems and nuclear
spaces, and in particular to Theorem 51.6 and its corollary related to S (Rd) and
S ′(Rd), which will be used later on.

By the isomorphisms in Theorem 12.1 2. it follows that for a given kernel distribu-
tion k(x, y) onRd1+d2 we may associate a continuous linear mapping k ofS (1)(Rd2)

intoS (1)′(Rd1) as follows:

〈kϕ, φ〉 = 〈k(x, y), φ(x)ϕ(y)〉, φ ∈ S (1)(Rd1),

which is commonly written as kϕ(·) = ∫
k(·, y)ϕ(y)dy. The correspondence

between k(x, y) and k is an isomorphism and this fact will be used in the proof
of Theorem 12.5.

Let σ ∈ S (1)(R2d). Then the Weyl pseudodifferential operator Lσ with the Weyl
symbol σ can be defined as the oscillatory integral:

Lσ f (x) =
∫∫

σ(
x + y

2
, ω) f (y)e2π i(x−y)·ωdydω, f ∈ S (1)(Rd).

This definition extends to each σ ∈ S (1)′(R2d), so that Lσ is a continuous mapping
fromS (1)(Rd) toS (1)′(Rd), cf. [19, Lemma 14.3.1] If

W ( f, g)(x, ω) =
∫

f (x + t

2
)g(x − t

2
)e−2π iωt dt, f, g ∈ S (1)(Rd),

(12.1.1)
denotes the Wigner transform, also known as the cross-Wigner distribution, then the
following formula holds:

〈Lσ f, g〉 = 〈σ, W (g, f )〉, f, g ∈ S (1)(Rd),

for each σ ∈ S (1)′(R2d); see e.g., [16, 19, 41].
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12.2 Modulation Spaces

In this section, we collect some facts on modulation spaces which will be used in
Sect. 12.4. First, we introduce the short-time Fourier transform in terms of duality
between the Gelfand–Shilov space S (1)(Rd) and its dual space of tempered ultra-
distributions S (1)′(R2d) as follows.

The short-time Fourier transform (STFT in the sequel) of f ∈ S (1)(Rd) with
respect to the window g ∈ S (1)(Rd) \ 0 is defined by

Vg f (x, ω) = 〈 f, MωTx g〉 =
∫

Rd

f (t) g(t − x) e−2π iωt dt, (12.2.1)

where the translation operator Tx and the modulation operator Mω are given by

Tx f (·) = f (· − x) and Mω f (·) = e2π iω· f (·) x, ω ∈ R
d . (12.2.2)

The map ( f, g) �→ Vg f from S (1)(Rd) ⊗ S (1)(Rd) to S (1)(R2d) extends
uniquely to a continuous operator from S (1)′(Rd) ⊗ S (1)′(Rd) to S (1)′(R2d) by
duality, cf. [12, Theorem 4.1], [37, proposition 1.8].

Moreover, for a fixed g ∈ S (1)(Rd) \ 0 the following characterization holds:

f ∈ S (1)(Rd) ⇐⇒ Vg f ∈ S (1)(R2d).

We recall the notation from [33] related to the bilinear case. For given ϕ1, ϕ2, f1,
f2 ∈ S (1)(Rd), we put

Vϕ1⊗ϕ2 ( f1 ⊗ f2)(x, ω) =
∫

R2d
f1(t1) f2(t2)Mω1 Tx1ϕ1(t1)Mω2 Tx2ϕ2(t2)dt1dt2

=
∫

R2d
( f1 ⊗ f2)(t)(Mω1 Tx1ϕ1 ⊗ Mω2 Tx2ϕ2)(t)dt,

(12.2.3)

where x = (x1, x2), ω = (ω1, ω2), t = (t1, t2), x1, x2, ω1, ω2, t1, t2 ∈ R
d .

To give an interpretation of multilinear operators in the weak sense we note that, if
f = ( f1, f2, . . . , fn) andϕ = (ϕ1, ϕ2, . . . , ϕn), f j , ϕ j ∈ S (1)(Rd), j = 1, 2, . . . , n,

then (12.2.3) becomes

Vϕf(x, ω) =
∫

Rnd

f(t)
n∏

j=1

Mω j Tx j ϕ j (t j )dt, (12.2.4)

see also (12.3.1) for the notation.
We refer to [23, 30–32, 37] for more details on STFT in other spaces of Gelfand–

Shilov type. Since we restrict ourselves to weighted modulation spaces with poly-
nomial weights in this paper, we proceed by using the duality between S and S ′
instead of the more general duality between S (1) and S (1)′ . Related results in the
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framework of subexponential and superexponential weights can be found in, e.g.,
[11, 12, 31, 37], and we leave the study of multilinear localization operators in that
case for a separate contribution.

Modulation spaces [15, 19] are defined through decay and integrability conditions
on STFT, which makes them suitable for time–frequency analysis, and for the study
of localization operators in particular. They are defined in terms of weighted mixed-
norm Lebesgue spaces.

In general, a weight w(·) on R
d is a nonnegative and continuous function. The

weighted Lebesgue space L p
w(Rd), p ∈ [1,∞], is the Banach space with the norm

‖ f ‖L p
w

= ‖ f w‖L p =
(∫

| f (x)|pw(x)pdx

)1/p

,

and with the usual modification when p = ∞. When w(x) = 〈x〉t , t ∈ R, we use
the notation L p

t (Rd) instead.
Similarly, the weighted mixed-norm Lebesgue space L p,q

w (R2d), p, q ∈ [1,∞],
consists of (Lebesgue) measurable functions on R

2d such that

‖F‖L p,q
w

=
(∫

Rd

(∫

Rd

|F(x, ω)|pw(x, ω)pdx

)q/p

dω

)1/q

< ∞.

where w(x, ω) is a weight on R
2d .

In particular, when w(x, ω) = 〈x〉t 〈ω〉s, s, t ∈ R, we use the notation L p,q
w

(R2d) = L p,q
s,t (R2d).

Now, modulation space M p,q
s,t (Rd) consists of distributions whose STFT belongs

to L p,q
s,t (R2d):

Definition 12.1 Let φ ∈ S (Rd) \ 0, s, t ∈ R, and p, q ∈ [1,∞]. The modulation
space M p,q

s,t (Rd) consists of all f ∈ S ′(Rd) such that

‖ f ‖M p,q
s,t

≡
(∫

Rd

(∫

Rd

|Vφ f (x, ω)〈x〉t 〈ω〉s |p dx

)q/p

dω

)1/q

< ∞

(with obvious interpretation of the integrals when p = ∞ or q = ∞).

In special cases, we use the usual abbreviations: M p,p
0,0 = M p, M p,p

t,t = M p
t , etc.

For the consistency, and according to (12.2.4), we denote by M p,q
s,t (Rnd) the set

of f = ( f1, f2, . . . , fn), f j ∈ S ′(Rd), j = 1, 2, . . . , n, such that

‖f‖M p,q
s,t

≡
(∫

Rnd

(∫

Rnd

|Vϕf(x, ω)〈x〉t 〈ω〉s |p dx

)q/p

dω

)1/q

< ∞, (12.2.5)

where ϕ = (ϕ1, ϕ2, . . . , ϕn), ϕ j ∈ S (Rd) \ 0, j = 1, 2, . . . , n, is a given n-tuple of
window functions.
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The kernel theorem for S (Rd) and S ′(Rd) (see [40]) implies that there is an
isomorphism betweenM p,q

s,t (Rnd) and M p,q
s,t (Rnd) (which commutes with the oper-

ators from (12.2.2)). This allows us to identify f ∈ M p,q
s,t (Rnd) with (its isomorphic

image) F ∈ M p,q
s,t (Rnd) (and vice versa). We will use this identification whenever

convenient and without further explanation.

Remark 12.1 The original definition of modulation spaces given in [15] deals with
more general submultiplicative weights. We restrict ourselves to the weights of the
form w(x, ω) = 〈x〉t 〈ω〉s, s, t ∈ R, since the convolution and multiplication esti-
mates which will be used later on are formulated in terms of weighted spaces with
such polynomial weights. As already mentioned, weights of exponential type growth
are used in the study of Gelfand–Shilov spaces and their duals in cf. [11, 23, 30, 37].
We refer to [20] for a survey on the most important types of weights commonly used
in time–frequency analysis.

The following theorem lists some basic properties of modulation spaces. We refer
to [15, 19] for the proof.

Theorem 12.2 Let p, q, p j , q j ∈ [1,∞] and s, t, s j , t j ∈ R, j = 1, 2. Then:

1. M p,q
s,t (Rd) are Banach spaces, independent of the choice of φ ∈ S (Rd) \ 0;

2. if p1 ≤ p2, q1 ≤ q2, s2 ≤ s1 and t2 ≤ t1, then

S (Rd) ⊆ M p1,q1
s1,t1 (Rd) ⊆ M p2,q2

s2,t2 (Rd) ⊆ S ′(Rd);

3. ∩s,t M p,q
s,t (Rd) = S (Rd), ∪s,t M p,q

s,t (Rd) = S ′(Rd);
4. For p, q ∈ [1,∞), the dual of M p,q

s,t (Rd) is M p′,q ′
−s,−t (R

d), where 1
p + 1

p′ = 1
q + 1

q ′
= 1.

Modulation spaces include the following well-known function spaces:

1. M2(Rd) = L2(Rd), and M2
t,0(R

d) = L2
t (R

d);
2. The Feichtinger algebra: M1(Rd) = S0(Rd);
3. Sobolev spaces: M2

0,s(R
d) = H 2

s (Rd) = { f | f̂ (ω)〈ω〉s ∈ L2(Rd)};
4. Shubin spaces: M2

s (Rd) = L2
s (R

d) ∩ H 2
s (Rd) = Qs(R

d), cf. [28].

To deal with duality when pq = ∞ we observe that, by a slight modification of
[1, Lemma 2.2] the following is true.

Lemma 12.1 Let L0(R2nd) denote the space of bounded, measurable functions on
R

2nd which vanish at infinity and put

M 0,q(Rnd) = {f ∈ M∞,q(Rnd) | Vϕf ∈ L0(R2nd)}, 1 ≤ q < ∞,

M p,0(Rnd) = {f ∈ M p,∞(Rnd) | Vϕf ∈ L0(R2nd)}, 1 ≤ p < ∞,

M 0,0(Rnd) = {f ∈ M∞,∞(Rnd) | Vϕf ∈ L0(R2nd)},

equipped with the norms of M∞,q ,M p,∞ and M∞,∞ respectively. Then,
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1. M 0,q is M∞,q−closure of S in M∞,q , hence is a closed subspace of M∞,q .
Likewise for M p,0 and M 0,0.

2. The following duality results hold for 1 ≤ p, q < ∞: (M 0,q)′ = M 1,q ′
,

(M p,0)′ = M p′,1, and (M 0,0)′ = M 1,1.

From now on, we will use these duality relations in the cases p = ∞ and/or
q = ∞ without further explanations.

For the results on multiplication and convolution in modulation spaces and in
weighted Lebesgue spaces, we first introduce the Young functional:

R(p) = R(p0, p1, p2) ≡ 2 − 1

p0
− 1

p1
− 1

p2
, p = (p0, p1, p2) ∈ [1,∞]3.

(12.2.6)
When R(p) = 0, the Young inequality for convolution reads as

‖ f1 ∗ f2‖L p′
0

≤ ‖ f1‖L p1 ‖ f2‖L p2 , f j ∈ L p j (Rd), j = 1, 2.

The following theorem is an extension of the Young inequality to the case of
weighted Lebesgue spaces and modulation spaces when 0 ≤ R(p) ≤ 1/2.

Theorem 12.3 Let s j , t j ∈ R, p j , q j ∈ [1,∞], j = 0, 1, 2. Assume that0 ≤ R(p) ≤
1/2, R(q) ≤ 1,

0 ≤ t j + tk, j, k = 0, 1, 2, j �= k, (12.2.7)

0 ≤ t0 + t1 + t2 − d · R(p), and (12.2.8)

0 ≤ s0 + s1 + s2, (12.2.9)

with strict inequality in (12.2.8) when R(p) > 0 and t j = d · R(p) for some j =
0, 1, 2.

Then ( f1, f2) �→ f1 ∗ f2 on C∞
0 (Rd) extends uniquely to a continuous map from

1. L p1
t1 (Rd) × L p2

t2 (Rd) to L
p′
0−t0(R

d);

2. M p1,q1
s1,t1 (Rd) × M p2,q2

s2,t2 (Rd) to M
p′
0,q

′
0−s0,−t0(R

d).

For the proof,we refer to [38]. It is based on the detailed study of an auxiliary three-
linear map over carefully chosen regions in Rd (see Sects. 3.1 and 3.2 in [38]). This
result extends multiplication and convolution properties obtained in [26]. Moreover,
the sufficient conditions fromTheorem12.3 are also necessary in the following sense.

Theorem 12.4 Let p j , q j ∈ [1,∞] and s j , t j ∈ R, j = 0, 1, 2. Assume that at least
one of the following statements hold true:

1. The map ( f1, f2) �→ f1 ∗ f2 on C∞
0 (Rd) is continuously extendable to a map

from L p1
t1 (Rd) × L p2

t2 (Rd) to L
p′
0−t0(R

d);
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2. The map ( f1, f2) �→ f1 ∗ f2 on C∞
0 (Rd) is continuously extendable to a map

from M p1,q1
s1,t1 (Rd) × M p2,q2

s2,t2 (Rd) to M
p′
0,q

′
0−s0,−t0(R

d);

Then (12.2.7) and (12.2.8) hold true.

12.3 Multilinear Localization Operators

In this section, we introduce multilinear localization operators in Definition 12.2 and
show that they can be interpreted as particular Weyl pseudodifferential operators,
Theorem 12.5. We also introduce multilinear Weyl pseudodifferential operators and
prove their connection to the multilinear Wigner transform in Lemma 12.2. This is
done in the context of the duality between S (1)(Rd) and S (1)′(Rd) and carried out
verbatim to the duality between S (Rd) and S ′(Rd) in the next section.

The localization operator Aϕ1,ϕ2
a with the symbol a ∈ L2(R2d) and with windows

ϕ1, ϕ2 ∈ L2(Rd) can be defined in terms of the short-time Fourier transform (12.2.1)
as follows:

Aϕ1,ϕ2
a f (t) =

∫

R2d

a(x, ω)Vϕ1 f (x, ω)MωTxϕ2(t) dxdω, f ∈ L2(Rd).

To define multilinear localization operators, we slightly abuse the notation (as it
is done in, e.g., [24]) so that f will denote both the vector f = ( f1, f2, . . . , fn) and
the tensor product f = f1 ⊗ f2 ⊗ · · · ⊗ fn . This will not cause confusion, since the
meaning of f will be clear from the context.

For example, if t = (t1, t2, . . . , tn), and Fj = Fj (t j ), t j ∈ R
d , j = 1, 2, . . . , n,

then

n∏

j=1

Fj (t j ) = F1(t1) · F2(t2) · · · · · Fn(tn) = F1(t1) ⊗ F2(t2) ⊗ · · · ⊗ Fn(tn) = F(t).

(12.3.1)

Definition 12.2 Let f j ∈ S (1)(Rd), j = 1, 2, . . . , n, and f = ( f1, f2, . . . , fn). The
multilinear localization operator Aϕ,φ

a with symbol a ∈ S (1)′(R2nd) and windows

ϕ = (ϕ1, ϕ2, . . . , ϕn) and φ = (φ1, φ2, . . . , φn), ϕ j , φ j ∈ S (1)(Rd ), j = 1, 2, . . . , n,

is given by

Aϕ,φ
a f(t) =

∫

R2nd

a(x, ω)

n∏

j=1

(
Vϕ j f j (x j , ω j )Mω j Tx j φ j (t j )

)
dxdω, (12.3.2)

where x j , ω j , t j ∈ R
d , j = 1, 2, . . . , n, and x = (x1, x2, . . . , xn), ω = (ω1, ω2

. . . , ωn), t = (t1, t2 . . . , tn).
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Remark 12.2 When n = 2 in Definition 12.2 we obtain the bilinear localization
operators studied in [33]. (There is a typo in [33, Definition 1]; the integration in (9)
should be taken over R4d .)

LetR denote the trace mapping that assigns to each function F defined on Rnd a
function defined on R

d by the formula

R : F �→ F
∣
∣
t1=t2=···=tn , t j ∈ R

d , j = 1, 2, . . . , n.

Then RAϕ,φ
a is the multilinear operator given in [8, Definition 2.2].

By (12.2.4) it follows that the weak definition of (12.3.2) is given by

〈Aϕ,φ
a f, g〉 = 〈aVϕf, Vφg〉 = 〈a, Vϕf Vφg〉, (12.3.3)

and f j , g j ,∈ S (1)(Rd), j = 1, 2, . . . , n. The brackets can be interpreted as duality
between a suitable pair of dual spaces. Thus, Aϕ,φ

a is well-defined continuous operator
fromS (1)(Rnd) to (S (1))′(Rnd).

Next, we introduce a class ofmultilinearWeyl pseudodifferential operators (ΨDO
for short) and use the Wigner transform to prove appropriate interpretation of
multilinear localization operators as multilinear Weyl pseudodifferential operators,
Theorem 12.5.

Recall that in [8], multilinear localization operators are introduced in connection
to Kohn–Nirenberg ΨDOs instead.

By analogy with the bilinear Weyl pseudodifferential operators given in [33], we
define the multilinear Weyl pseudodifferential operator as follows:

Lσ (f)(x) =
∫

R2nd

σ(
x + y

2
, ω)f(y)e2π iI (x−y)·ωdydω, x ∈ R

nd , (12.3.4)

where σ ∈ S (1)′(R2nd), f(y) = ∏n
j=1 f j (y j ), f j ∈ S (1)(Rd), j = 1, 2, . . . , n. Here

I denotes the identity matrix in nd, that is, I (x − y) · ω =
n∑

j=1

(x j − y j )ω j .)

Similarly, the bilinear Wigner transform from [33] extends to

W (f, g)(x, ω) =
∫

Rnd

n∏

j=1

(

f j (x j + t j

2
)g j (x j − t j

2
)

)

e−2π iI ωt dt, (12.3.5)

where f j , g j ∈ S (1)(Rd), x j , ω j , t j ∈ R
d , j = 1, 2, . . . , n, and x = (x1,

x2, . . . , xn), ω = (ω1, ω2 . . . , ωn), t = (t1, t2 . . . , tn).
It is easy to see that W (f, g) ∈ S (1)(R2nd), when f, g ∈ S (1)(Rnd).

Lemma 12.2 Let σ ∈ S (1)(R2nd) and f j , g j ∈ S (1)(Rd), j = 1, 2, . . . , n. Then
Lσ given by (12.3.4) extends to a continuous map from S (1)(Rnd) to (S (1))′(Rnd).
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〈Lσ f, g〉 = 〈σ, W (g, f)〉.
Proof The proof follows by the straightforward calculation:

〈σ, W (g, f)〉 =
∫

R2nd
σ(x, ω)W (f, g)(x, ω)dxdω

=
∫

R3nd
σ(x, ω)

n∏

j=1

(

f j (x j + t j

2
)g j (x j − t j

2
)

)

e−2π iI ωt dtdxdω

=
∫

R6d
σ(

u + v

2
, ω)

n∏

j=1

(
f j (v j )g j (u j )

)
e−2π iI (u−v)ωdudvdω

= 〈σ(
u + v

2
, ω)f(v)e2π iI (u−v)ω, g(u)〉 = 〈Lσ f, g〉,

where we used W (g, f) = W (f, g) and the change of variables u = x + t
2 , v =

x − t
2 . This extends to each σ ∈ S (1)′(R2nd), since W (f, g) ∈ S (1)(R2nd) when

f j , g j ∈ S (1)(Rd), j = 1, 2, . . . , n. �

The so-called Weyl connection between the set of linear localization operators
and Weyl ΨDOs is well known; we refer to, e.g., [4, 16, 32]. The corresponding
Weyl connection in bilinear case is established in [33, Theorem 4]. The proof is quite
technical and based on the kernel theorem for Gelfand–Shilov spaces (see, e.g., [27,
31, 39]) and direct calculations. Since the proof of the following Theorem 12.5 is
its straightforward extension, here we only sketch the main ideas. The conclusion
of Theorem 12.5 is that any multilinear localization operator can be viewed as a
particular multilinear Weyl ΨDOs, as expected.

Theorem 12.5 Let there be given a ∈ S (1)′(R2d) and let φ = (φ1, φ2, . . . , φn),

ϕ = (ϕ1, ϕ2, . . . , ϕn), ϕ j , φ j ∈ S (1)(Rd), j = 1, 2, . . . , n. Then the localization
operator Aϕ,φ

a is the Weyl pseudodifferential operator with the Weyl symbol

σ = a ∗ W (φ,ϕ) = a ∗ (

n∏

j=1

W (φ j , ϕ j )).

Therefore, if f = ( f1, f2, . . . , fn), g = (g1, g2, . . . , gn), f j , g j ,∈ S (1)′(Rd), j =
1, 2, . . . , n, then

〈Aϕ,φ
a f, g〉 = 〈La∗W (φ,ϕ)f, g〉.

Proof The formal expressions given below are justified due to the absolute conver-
gence of the involved integrals and the standard interpretation of oscillatory integrals
in distributional setting.We refer to [33, Sect. 5] for this and for detailed calculations.

The calculations from the proof of [33, Theorem 4] yield the following kernel
representation of (12.3.3):

〈Aϕ,φ
a f, g〉 = 〈k,

n∏

j=1

f j ⊗
n∏

j=1

g j 〉,
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where the kernel k = k(t, s) is given by

k(t, s) =
∫

R2nd

a(x, ω)

n∏

j=1

Mω j Tx j ϕ j (t) ·
n∏

j=1

Mω j Tx j φ j (s)dxdω, (12.3.6)

t = (t1, t2, . . . , tn), s = (s1, s2, . . . , sn), t j , s j ∈ R
d , j = 1, 2, . . . , n.

To calculate the convolution a ∗ (
∏n

j=1 W (φ j , ϕ j )) = a ∗ W (φ,ϕ), we use

W (g, f ) = W ( f, g), the commutation relation Tx Mω = e−2π i x ·ω MωTx , and the
covariance property of the Wigner transform:

W (Tx j Mω j φ j , Tx j Mω j ϕ j )(p j , q j ) = W (φ j , ϕ j )(p j − x j , q j − ω j ), j = 1, 2, . . . , n.

Let p = (p1, p2, . . . , pn),q = (q1, q2 . . . , qn), p j , q j ∈ R
d , j = 1, 2, . . . , n.Then,

a ∗ W (φ,ϕ)(p, q) =
∫

R2nd

a(x, ω)×
⎛

⎝
∫

Rnd

n∏

j=1

Mω j Tx j φ j (p j + t j

2
) ·

n∏

j=1

Mω j Tx j ϕ j (p j − t j

2
)e−2π iq·t dt

⎞

⎠ dxdω,

(12.3.7)

where q · t denotes the scalar product of q, t ∈ R
d , cf. [33, Sect. 5].

Therefore,

〈La∗W (φ,ϕ)f, g〉 = 〈a ∗
n∏

j=1

W (φ j , ϕ j ), W (g, f)〉 =
∫

R2nd

a(x, ω)×
∫

Rnd

(
∫

Rnd

n∏

j=1

Mω j Tx j φ j (p j + t j

2
) ·

n∏

j=1

Mω j Tx j ϕ j (p j − t j

2
)×

n∏

j=1

f j (p j − t j

2
) ·

n∏

j=1

g j (p j + t j

2
)dt

)
dpdxdω,

Finally, after performing the change of variables we obtain

〈La∗W (φ,ϕ)f, g〉 = 〈k,

n∏

j=1

f j ⊗
n∏

j=1

g j 〉,

where the kernel k is given by (12.3.6). The theoremnow follows from the uniqueness
of the kernel representation, Theorem 12.1. �
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12.4 Continuity Properties of Localization Operators

Wefirst recall the sharp estimates of the modulation space norm for the cross-Wigner
distribution given in [9]. There it is shown that the sufficient conditions for the
continuity of the cross-Wigner distribution on modulation spaces are also necessary
(in the unweighted case). Related results can be found elsewhere, e.g., in [32, 34,
35]. In many situations, such results overlap. For example, Proposition 10 in [33]
coincides with certain sufficient conditions from [9, Theorem 1.1] when restricted
to R(p) = 0, t0 = −t1, and t2 = |t0|.
Theorem 12.6 Let there be given s ∈ R and pi , qi , p, q ∈ [1,∞], such that

p ≤ pi , qi ≤ q, i = 1, 2 (12.4.1)

and

min

{
1

p1
+ 1

p2
,
1

q1
+ 1

q2

}

≥ 1

p
+ 1

q
. (12.4.2)

If f, g ∈ S (Rd), then the map ( f, g) �→ W ( f, g) where W is the cross-Wigner dis-
tribution given by (12.1.1) extends to sesquilinear continuous map from M p1,q1

|s| (Rd) ×
M p2,q2

s (Rd) to M p,q
s,0 (R2d) and

‖W ( f, g)‖M p,q
s,0

� ‖ f ‖M
p1 ,q1|s|

‖g‖M
p2 ,q2
s

. (12.4.3)

Viceversa, if there exists a constant C > 0 such that

‖W ( f, g)‖M p,q � ‖ f ‖M p1 ,q1 ‖g‖M p2 ,q2 .

then (12.4.1) and (12.4.2) must hold.

Proof We omit the proof which is given in [9, Sect. 3] and recall here only the main
formulas which highlight its most important parts.

The first formula is the well-known relation between the Wigner transform and
the STFT (see [19, Lemma 4.3.1]):

W ( f, g)(x, ω) = 2de4π i x ·ωVg∗ f (2x, 2ω), f, g ∈ S (Rd).

To estimate the modulation space norm of W ( f, g)(x, ω), we fix ψ1, ψ2 ∈
S (Rd) \ 0 and use the fact that modulation spaces are independent on the choice of
the window function from S (R2d) \ 0, Theorem 12.2 1. By choosing the window
to be W (ψ1, ψ2), after some calculations we obtain:

(VW (ψ1,ψ2)W (g, f ))(z, ζ )

= e−2π i z2ζ2Vψ1 f (z1 + ζ2

2
, z2 − ζ1

2
)Vψ2g(z1 − ζ2

2
, z2 + ζ1

2
),
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cf. the proof of [19, Lemma 14.5.1 (b)]. Consequently (cf. [9, Sect. 3]),

‖W (g, f )‖M p,q
s,0

�
(∫

R2d

(|Vψ1 f |p ∗ |Vψ2g
∗|p)q/p(ζ2,−ζ1)〈(ζ2,−ζ1)〉sqdζ

)1/q

= ‖|Vψ1 f |p ∗ |Vψ2g
∗|p‖Lq/p

ps,0
.

Then one proceeds with a careful case study to obtain (12.4.3) when (12.4.1) and
(12.4.2) hold true. We refer to [9] for details. �

From the inspection of the proof of Theorem 12.6 given in [9, Sect. 3], the defi-
nition of W (f, g) given by (12.3.5), and the use of the kernel theorem, we conclude
the following.

Corollary 12.1 Let the assumptions of Theorem 12.6 hold. If f = ( f1, f2, . . . , fn),
g = (g1, g2, . . . , gn) and f j , g j ∈ S (Rd), j = 1, 2, . . . , n, then the map (f, g) �→
W (f, g), where W is the cross-Wigner distribution given by (12.3.5) extends to a con-
tinuous map from M p1,q1

|s| (Rd) × M p2,q2
s (Rd) to M p,q

s,0 (R2d), where the modulation
spaces are given by (12.2.5).

Next, we give an extension of [19, Theorem 14.5.2] and [33, Theorem 14] to the
multilinear Weyl ΨDOs. Recall, if σ ∈ M∞,1(R2d) is the Weyl symbol of Lσ , then
[19, Theorem 14.5.2] says that Lσ is bounded on M p,q(Rd), 1 ≤ p, q ≤ ∞. This
result has a long history starting from the Calderon–Vaillancourt theorem on bound-
edness of the pseudodifferential operators with smooth and bounded symbols on
L2(Rd), [5]. It is generalized by Sjöstrand in [29] where M∞,1 is used as appropriate
symbol class. Sjöstrand’s results were thereafter extended in [19, 21, 22, 34–36].
Moreover,we refer to [1–3] for themultilinearKohn–NirenbergΨDOs and the recent
contribution [10] related to τ−ΨDOs (these include both Kohn–Nirenberg (when
τ = 0) and Weyl operators (when τ = 1/2)).

The following fact related to symbols σ ∈ M∞,1(R2nd) is a straightforward exten-
sion of [33, Theorem 14].

Theorem 12.7 Let σ ∈ M∞,1(R2nd) and let Lσ be given by (12.3.4). The opera-
tor Lσ is bounded from M p,q(Rnd) to M p,q(Rnd), 1 ≤ p, q ≤ ∞, with a uniform
estimate ‖Lσ‖op ≤ ‖σ‖M∞,1 for the operator norm.

On the other hand, Theorem 12.7 is a special case of [9, Theorem 5.1.] if Lσ is a
linear operator. Here, we give the multilinear version of [9, Theorem 5.1.].

Theorem 12.8 Let there be given s ≥ 0 and pi , qi , ri , p, q ∈ [1,∞], such that

q ≤ min{p′
1, q ′

1, p2, q2} (12.4.4)

and

min

{
1

p1
+ 1

p′
2

,
1

q1
+ 1

q ′
2

}

≥ 1

p′ + 1

q ′ . (12.4.5)
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Then the operator Lσ given by (12.3.4) with symbol σ ∈ M p,q
s,0 (R2nd), from S (Rnd)

toS ′(Rnd), extends uniquely to a bounded operator fromM p1,q1
s,0 (Rnd) toM p2,q2

s,0 (Rnd),
with the estimate

‖Lσ f‖M p2 ,q2
s,0

� ‖σ‖M p,q
s,0

‖f‖M p1 ,q1
s,0

. (12.4.6)

In particular, when σ ∈ M∞,1(R2nd) we have ‖Lσ‖op ≤ ‖σ‖M∞,1 for the operator
norm.

Vice versa, if (12.4.6) holds for s = 0, and for every f ∈ S (Rnd), σ ∈ S ′(R2nd),
then (12.4.1) and (12.4.2) must be satisfied.

Proof The proof is a straightforward extension of the proof of [9, Theorem 5.1.],
and we give it here for the sake of completeness.

When f ∈ M p1,q1
s,0 (Rnd) and g ∈ M

p′
2,q

′
2

s,0 (Rnd), their Wigner transform W (g, f) =
W (f, g) belongs to M p′,q ′

−s,0 since the conditions (12.4.1) and (12.4.2) of Theorem 12.6
are transferred to (12.4.4) and (12.4.5), respectively.

Now, Lemma 12.2 and the duality of modulation spaces give

|〈Lσ f, g〉| = |〈σ, W (g, f)〉| ≤ ‖σ‖M p,q
s,0

‖W (f, g)‖
M p′,q′

−s,0

≤ C‖f‖M p1,q1
s,0

‖g‖
M

p′
2,q′

2
s,0

,

for some constant C > 0 (and we used the fact that modulation spaces are closed
under the complex conjugation).

We refer to [13, Theorem 1.1.] for the necessity of conditions (12.4.4) and (12.4.5)
(in linear case). �

Next, we combine different results established so far to obtain an extension of
[33, Theorem 15]. More precisely, we use the relation between the Weyl pseudod-
ifferential operators and the localization operators (Lemma 12.5), the convolution
estimates for modulation spaces (Theorem 12.3), and boundedness of pseudodiffer-
ential operators (Theorem 12.8) to obtain continuity results for Aϕ,φ

a for different
choices of windows and symbols.

Theorem 12.9 Let there be given s ≥ 0 and pi , qi , p, q ∈ [1,∞], i = 0, 1, 2 such
that (12.4.4) and (12.4.5) hold. Moreover, let q0 ≤ q, and

p0 ≥ p if p ≥ 2, and
2p

2 − p
≥ p0 ≥ p if 2 > p ≥ 1. (12.4.7)

If ϕ ∈ M r1
2s,0(R

nd), φ ∈ M r2
2s,0(R

nd), where 1
r1

+ 1
r2

≥ 1, and a ∈ M p0,q0
s0,t0 (R2nd) with

s0 ≥ −s, and t0 ≥ d

(
1

p
− 1

p0

)

with the strict inequality when p0 = p, then Aϕ,φ
a

is continuous from M p1,q1
s,0 (Rnd) to M p2,q2

s,0 (Rnd) with

‖Aϕ,φ
a ‖op � ‖a‖M

p0 ,q0
s0 ,t0

‖ϕ‖M r1
2s,0

‖φ‖M r2
2s,0

.
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Proof We first estimate W (φ,ϕ). If ϕ ∈ M r1
2s,0(R

nd), φ ∈ M r2
2s,0(R

nd), with 1
r1

+
1
r2

≥ 1, then Corollary 12.1 implies that

W (φ,ϕ) ∈ M 1,∞
2s,0 (R2nd).

Now,we use the result of Theorem 12.3 2. TheYoung functional (12.2.6) becomes
R(p) = R(p′, p0, 1), and the condition R(p) ∈ [0, 1/2] is equivalent to (12.4.7),
whileR(q) = R(q ′, q0,∞) ≤ 1 is equivalent to q0 ≤ q. Furthermore, (12.2.9) trans-

fers to s0 ≥ −s,while (12.2.7) and (12.2.8) are equivalent to t0 ≥ d

(
1

p
− 1

p0

)

with

the strict inequality when p0 = p. Therefore, the conditions of by Theorem 12.3 2
are fulfilled, and we obtain

a ∗ W (φ,ϕ) ∈ M p0,q0
s0,t0 (R2nd) ∗ M 1,∞

2s,0 (R2nd) ⊂ M p,q
s,0 (R2nd).

Finally, by Theorem 12.7 with σ = a ∗ W (φ,ϕ), it follows that

‖Aϕ,φ
a ‖op = ‖Lσ‖op ≤ ‖σ‖M p,q

s,0
≤ ‖a‖M

p0 ,q0
s0 ,t0

‖ϕ‖M r1
2s,0

‖φ‖M r2
2s,0

,

and the Theorem is proved. �

In particular, we recover (the linear case treated in) [9, Theorem 5.2] when
r1 = r2 = r , t0 = 0, s0 = −s, p0 = p (i.e., R(p′, p0, 1) = 0), and q0 = q (i.e.,
R(q ′, q0,∞) = 1). Therefore, by [9, Remark 5.3], we obtain an extension of [6,
Theorem 3.2] and [35, Theorem 4.11] for this particular choice of weights.

Note that conditions R(p′, p0, 1) ∈ (0, 1/2] which extend the possible choices
of the Lebesgue parameters beyond the usual Young condition R(p′, p0, 1) = 0
must be compensated by an additional condition to the weights, expressed by t0 ≥
d

(
1

p
− 1

p0

)

.

Another result concerning the boundedness of (bilinear) localization operators on
unweightedmodulation spaces is given by [33, Theorem 15]. There we used different
type of estimates, leading to the result which partially overlaps with Theorem 12.9.
For example, both results give the same continuity property when the symbol a
belongs to a ∈ M∞,1(R2nd).
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38. Toft, J., Johansson, K., Pilipović, S., Teofanov, N., Sharp convolution and multiplication esti-
mates in weighted spaces, Analysis and Applications, 13 (5), 457–480 (2015)

39. Toft, J., Khrennikov, A., Nilsson, B., Nordebo, S., Decompositions of Gelfand-Shilov kernels
into kernels of similar class, J. Math. Anal. Appl. 396 (1), 315–322 (2012)

40. Treves, F., Topological Vector Spaces, Distributions and Kernels, Academic Press, New York
(1967)

41. Wong, M. W. , Weyl Transforms, Springer-Verlag, 1998.

https://doi.org/10.1155/2018/7560870

	12 Continuity Properties of Multilinear Localization Operators on Modulation Spaces
	12.1 Introduction
	12.2 Modulation Spaces
	12.3 Multilinear Localization Operators
	12.4 Continuity Properties of Localization Operators
	References




